a1c02325d1fd19f5943b7bd57213684afe22bf31
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = bed->dynamic_sec_flags;
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
75 }
76
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91 h->other = STV_HIDDEN;
92
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
96
97 elf_hash_table (info)->hgot = h;
98 }
99
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
102
103 return TRUE;
104 }
105 \f
106 /* Create a strtab to hold the dynamic symbol names. */
107 static bfd_boolean
108 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
109 {
110 struct elf_link_hash_table *hash_table;
111
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
115
116 if (hash_table->dynstr == NULL)
117 {
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
121 }
122 return TRUE;
123 }
124
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
131
132 bfd_boolean
133 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
134 {
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
139 const struct elf_backend_data *bed;
140
141 if (! is_elf_hash_table (info->hash))
142 return FALSE;
143
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
146
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
149
150 abfd = elf_hash_table (info)->dynobj;
151 bed = get_elf_backend_data (abfd);
152
153 flags = bed->dynamic_sec_flags;
154
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info->executable)
158 {
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
163 }
164
165 if (! info->traditional_format)
166 {
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
173 }
174
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
182
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
188
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
194
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
200
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
205
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
211
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
220 if (h != NULL)
221 {
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
227 }
228 bh = &h->root;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
232 return FALSE;
233 h = (struct elf_link_hash_entry *) bh;
234 h->def_regular = 1;
235 h->type = STT_OBJECT;
236
237 if (! info->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
239 return FALSE;
240
241 s = bfd_make_section (abfd, ".hash");
242 if (s == NULL
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
245 return FALSE;
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
247
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
252 return FALSE;
253
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
255
256 return TRUE;
257 }
258
259 /* Create dynamic sections when linking against a dynamic object. */
260
261 bfd_boolean
262 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
263 {
264 flagword flags, pltflags;
265 asection *s;
266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
267
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags = bed->dynamic_sec_flags;
271
272 pltflags = flags;
273 if (bed->plt_not_loaded)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
278 else
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
282
283 s = bfd_make_section (abfd, ".plt");
284 if (s == NULL
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
287 return FALSE;
288
289 if (bed->want_plt_sym)
290 {
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
295
296 if (! (_bfd_generic_link_add_one_symbol
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
299 return FALSE;
300 h = (struct elf_link_hash_entry *) bh;
301 h->def_regular = 1;
302 h->type = STT_OBJECT;
303
304 if (! info->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
306 return FALSE;
307 }
308
309 s = bfd_make_section (abfd,
310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315
316 if (! _bfd_elf_create_got_section (abfd, info))
317 return FALSE;
318
319 if (bed->want_dynbss)
320 {
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
328 if (s == NULL
329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
330 return FALSE;
331
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
342 copy relocs. */
343 if (! info->shared)
344 {
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
348 if (s == NULL
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 }
353 }
354
355 return TRUE;
356 }
357 \f
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
364 one. */
365
366 bfd_boolean
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
369 {
370 if (h->dynindx == -1)
371 {
372 struct elf_strtab_hash *dynstr;
373 char *p;
374 const char *name;
375 bfd_size_type indx;
376
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
382 {
383 case STV_INTERNAL:
384 case STV_HIDDEN:
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
387 {
388 h->forced_local = 1;
389 if (!elf_hash_table (info)->is_relocatable_executable)
390 return TRUE;
391 }
392
393 default:
394 break;
395 }
396
397 h->dynindx = elf_hash_table (info)->dynsymcount;
398 ++elf_hash_table (info)->dynsymcount;
399
400 dynstr = elf_hash_table (info)->dynstr;
401 if (dynstr == NULL)
402 {
403 /* Create a strtab to hold the dynamic symbol names. */
404 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
405 if (dynstr == NULL)
406 return FALSE;
407 }
408
409 /* We don't put any version information in the dynamic string
410 table. */
411 name = h->root.root.string;
412 p = strchr (name, ELF_VER_CHR);
413 if (p != NULL)
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
419 *p = 0;
420
421 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
422
423 if (p != NULL)
424 *p = ELF_VER_CHR;
425
426 if (indx == (bfd_size_type) -1)
427 return FALSE;
428 h->dynstr_index = indx;
429 }
430
431 return TRUE;
432 }
433 \f
434 /* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
436
437 bfd_boolean
438 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
439 struct bfd_link_info *info,
440 const char *name,
441 bfd_boolean provide)
442 {
443 struct elf_link_hash_entry *h;
444 struct elf_link_hash_table *htab;
445
446 if (!is_elf_hash_table (info->hash))
447 return TRUE;
448
449 htab = elf_hash_table (info);
450 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
451 if (h == NULL)
452 return provide;
453
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
456 may depend on this. */
457 if (h->root.type == bfd_link_hash_undefweak
458 || h->root.type == bfd_link_hash_undefined)
459 {
460 h->root.type = bfd_link_hash_new;
461 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
462 bfd_link_repair_undef_list (&htab->root);
463 }
464
465 if (h->root.type == bfd_link_hash_new)
466 h->non_elf = 0;
467
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
472 if (provide
473 && h->def_dynamic
474 && !h->def_regular)
475 h->root.type = bfd_link_hash_undefined;
476
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
481 if (!provide
482 && h->def_dynamic
483 && !h->def_regular)
484 h->verinfo.verdef = NULL;
485
486 h->def_regular = 1;
487
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
489 and executables. */
490 if (!info->relocatable
491 && h->dynindx != -1
492 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
494 h->forced_local = 1;
495
496 if ((h->def_dynamic
497 || h->ref_dynamic
498 || info->shared
499 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
500 && h->dynindx == -1)
501 {
502 if (! bfd_elf_link_record_dynamic_symbol (info, h))
503 return FALSE;
504
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
508 if (h->u.weakdef != NULL
509 && h->u.weakdef->dynindx == -1)
510 {
511 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
512 return FALSE;
513 }
514 }
515
516 return TRUE;
517 }
518
519 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
522
523 int
524 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
525 bfd *input_bfd,
526 long input_indx)
527 {
528 bfd_size_type amt;
529 struct elf_link_local_dynamic_entry *entry;
530 struct elf_link_hash_table *eht;
531 struct elf_strtab_hash *dynstr;
532 unsigned long dynstr_index;
533 char *name;
534 Elf_External_Sym_Shndx eshndx;
535 char esym[sizeof (Elf64_External_Sym)];
536
537 if (! is_elf_hash_table (info->hash))
538 return 0;
539
540 /* See if the entry exists already. */
541 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
542 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
543 return 1;
544
545 amt = sizeof (*entry);
546 entry = bfd_alloc (input_bfd, amt);
547 if (entry == NULL)
548 return 0;
549
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
552 1, input_indx, &entry->isym, esym, &eshndx))
553 {
554 bfd_release (input_bfd, entry);
555 return 0;
556 }
557
558 if (entry->isym.st_shndx != SHN_UNDEF
559 && (entry->isym.st_shndx < SHN_LORESERVE
560 || entry->isym.st_shndx > SHN_HIRESERVE))
561 {
562 asection *s;
563
564 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
565 if (s == NULL || bfd_is_abs_section (s->output_section))
566 {
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd, entry);
570 return 2;
571 }
572 }
573
574 name = (bfd_elf_string_from_elf_section
575 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
576 entry->isym.st_name));
577
578 dynstr = elf_hash_table (info)->dynstr;
579 if (dynstr == NULL)
580 {
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
583 if (dynstr == NULL)
584 return 0;
585 }
586
587 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
588 if (dynstr_index == (unsigned long) -1)
589 return 0;
590 entry->isym.st_name = dynstr_index;
591
592 eht = elf_hash_table (info);
593
594 entry->next = eht->dynlocal;
595 eht->dynlocal = entry;
596 entry->input_bfd = input_bfd;
597 entry->input_indx = input_indx;
598 eht->dynsymcount++;
599
600 /* Whatever binding the symbol had before, it's now local. */
601 entry->isym.st_info
602 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
603
604 /* The dynindx will be set at the end of size_dynamic_sections. */
605
606 return 1;
607 }
608
609 /* Return the dynindex of a local dynamic symbol. */
610
611 long
612 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
613 bfd *input_bfd,
614 long input_indx)
615 {
616 struct elf_link_local_dynamic_entry *e;
617
618 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
619 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
620 return e->dynindx;
621 return -1;
622 }
623
624 /* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
627
628 static bfd_boolean
629 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
630 void *data)
631 {
632 size_t *count = data;
633
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
636
637 if (h->forced_local)
638 return TRUE;
639
640 if (h->dynindx != -1)
641 h->dynindx = ++(*count);
642
643 return TRUE;
644 }
645
646
647 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
649
650 static bfd_boolean
651 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
652 void *data)
653 {
654 size_t *count = data;
655
656 if (h->root.type == bfd_link_hash_warning)
657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
658
659 if (!h->forced_local)
660 return TRUE;
661
662 if (h->dynindx != -1)
663 h->dynindx = ++(*count);
664
665 return TRUE;
666 }
667
668 /* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
670 bfd_boolean
671 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
672 struct bfd_link_info *info,
673 asection *p)
674 {
675 switch (elf_section_data (p)->this_hdr.sh_type)
676 {
677 case SHT_PROGBITS:
678 case SHT_NOBITS:
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
681 case SHT_NULL:
682 if (strcmp (p->name, ".got") == 0
683 || strcmp (p->name, ".got.plt") == 0
684 || strcmp (p->name, ".plt") == 0)
685 {
686 asection *ip;
687 bfd *dynobj = elf_hash_table (info)->dynobj;
688
689 if (dynobj != NULL
690 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
691 && (ip->flags & SEC_LINKER_CREATED)
692 && ip->output_section == p)
693 return TRUE;
694 }
695 return FALSE;
696
697 /* There shouldn't be section relative relocations
698 against any other section. */
699 default:
700 return TRUE;
701 }
702 }
703
704 /* Assign dynsym indices. In a shared library we generate a section
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
708 symbols. */
709
710 static unsigned long
711 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
712 struct bfd_link_info *info,
713 unsigned long *section_sym_count)
714 {
715 unsigned long dynsymcount = 0;
716
717 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
718 {
719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
720 asection *p;
721 for (p = output_bfd->sections; p ; p = p->next)
722 if ((p->flags & SEC_EXCLUDE) == 0
723 && (p->flags & SEC_ALLOC) != 0
724 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
725 elf_section_data (p)->dynindx = ++dynsymcount;
726 }
727 *section_sym_count = dynsymcount;
728
729 elf_link_hash_traverse (elf_hash_table (info),
730 elf_link_renumber_local_hash_table_dynsyms,
731 &dynsymcount);
732
733 if (elf_hash_table (info)->dynlocal)
734 {
735 struct elf_link_local_dynamic_entry *p;
736 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
737 p->dynindx = ++dynsymcount;
738 }
739
740 elf_link_hash_traverse (elf_hash_table (info),
741 elf_link_renumber_hash_table_dynsyms,
742 &dynsymcount);
743
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount != 0)
748 ++dynsymcount;
749
750 return elf_hash_table (info)->dynsymcount = dynsymcount;
751 }
752
753 /* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
764
765 bfd_boolean
766 _bfd_elf_merge_symbol (bfd *abfd,
767 struct bfd_link_info *info,
768 const char *name,
769 Elf_Internal_Sym *sym,
770 asection **psec,
771 bfd_vma *pvalue,
772 unsigned int *pold_alignment,
773 struct elf_link_hash_entry **sym_hash,
774 bfd_boolean *skip,
775 bfd_boolean *override,
776 bfd_boolean *type_change_ok,
777 bfd_boolean *size_change_ok)
778 {
779 asection *sec, *oldsec;
780 struct elf_link_hash_entry *h;
781 struct elf_link_hash_entry *flip;
782 int bind;
783 bfd *oldbfd;
784 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
785 bfd_boolean newweak, oldweak;
786
787 *skip = FALSE;
788 *override = FALSE;
789
790 sec = *psec;
791 bind = ELF_ST_BIND (sym->st_info);
792
793 if (! bfd_is_und_section (sec))
794 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
795 else
796 h = ((struct elf_link_hash_entry *)
797 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
798 if (h == NULL)
799 return FALSE;
800 *sym_hash = h;
801
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info->hash->creator != abfd->xvec)
805 return TRUE;
806
807 /* For merging, we only care about real symbols. */
808
809 while (h->root.type == bfd_link_hash_indirect
810 || h->root.type == bfd_link_hash_warning)
811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
812
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
816
817 if (h->root.type == bfd_link_hash_new)
818 {
819 h->non_elf = 0;
820 return TRUE;
821 }
822
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
824 existing symbol. */
825
826 switch (h->root.type)
827 {
828 default:
829 oldbfd = NULL;
830 oldsec = NULL;
831 break;
832
833 case bfd_link_hash_undefined:
834 case bfd_link_hash_undefweak:
835 oldbfd = h->root.u.undef.abfd;
836 oldsec = NULL;
837 break;
838
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 oldbfd = h->root.u.def.section->owner;
842 oldsec = h->root.u.def.section;
843 break;
844
845 case bfd_link_hash_common:
846 oldbfd = h->root.u.c.p->section->owner;
847 oldsec = h->root.u.c.p->section;
848 break;
849 }
850
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
857 if (abfd == oldbfd
858 && ((abfd->flags & DYNAMIC) == 0
859 || !h->def_regular))
860 return TRUE;
861
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
864
865 if ((abfd->flags & DYNAMIC) != 0)
866 newdyn = TRUE;
867 else
868 newdyn = FALSE;
869
870 if (oldbfd != NULL)
871 olddyn = (oldbfd->flags & DYNAMIC) != 0;
872 else
873 {
874 asection *hsec;
875
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h->root.type)
879 {
880 default:
881 hsec = NULL;
882 break;
883
884 case bfd_link_hash_defined:
885 case bfd_link_hash_defweak:
886 hsec = h->root.u.def.section;
887 break;
888
889 case bfd_link_hash_common:
890 hsec = h->root.u.c.p->section;
891 break;
892 }
893
894 if (hsec == NULL)
895 olddyn = FALSE;
896 else
897 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
898 }
899
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
902
903 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
904 newdef = FALSE;
905 else
906 newdef = TRUE;
907
908 if (h->root.type == bfd_link_hash_undefined
909 || h->root.type == bfd_link_hash_undefweak
910 || h->root.type == bfd_link_hash_common)
911 olddef = FALSE;
912 else
913 olddef = TRUE;
914
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
917 && ELF_ST_TYPE (sym->st_info) != h->type)
918 {
919 bfd *ntbfd, *tbfd;
920 bfd_boolean ntdef, tdef;
921 asection *ntsec, *tsec;
922
923 if (h->type == STT_TLS)
924 {
925 ntbfd = abfd;
926 ntsec = sec;
927 ntdef = newdef;
928 tbfd = oldbfd;
929 tsec = oldsec;
930 tdef = olddef;
931 }
932 else
933 {
934 ntbfd = oldbfd;
935 ntsec = oldsec;
936 ntdef = olddef;
937 tbfd = abfd;
938 tsec = sec;
939 tdef = newdef;
940 }
941
942 if (tdef && ntdef)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
946 else if (!tdef && !ntdef)
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd, ntbfd, h->root.root.string);
950 else if (tdef)
951 (*_bfd_error_handler)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd, tsec, ntbfd, h->root.root.string);
954 else
955 (*_bfd_error_handler)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd, ntbfd, ntsec, h->root.root.string);
958
959 bfd_set_error (bfd_error_bad_value);
960 return FALSE;
961 }
962
963 /* We need to remember if a symbol has a definition in a dynamic
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
966 if (newdyn && !h->dynamic_def)
967 {
968 if (!bfd_is_und_section (sec))
969 h->dynamic_def = 1;
970 else
971 {
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
975 if (!h->ref_dynamic)
976 {
977 if (bind == STB_WEAK)
978 h->dynamic_weak = 1;
979 }
980 else if (bind != STB_WEAK)
981 h->dynamic_weak = 0;
982 }
983 }
984
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
987 if (newdyn
988 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
989 && !bfd_is_und_section (sec))
990 {
991 *skip = TRUE;
992 /* Make sure this symbol is dynamic. */
993 h->ref_dynamic = 1;
994 /* A protected symbol has external availability. Make sure it is
995 recorded as dynamic.
996
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
999 return bfd_elf_link_record_dynamic_symbol (info, h);
1000 else
1001 return TRUE;
1002 }
1003 else if (!newdyn
1004 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1005 && h->def_dynamic)
1006 {
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1011 h = *sym_hash;
1012
1013 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1014 && bfd_is_und_section (sec))
1015 {
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
1019 up the linker hash table undefs list. Since the old
1020 definition came from a dynamic object, it is still on the
1021 undefs list. */
1022 h->root.type = bfd_link_hash_undefined;
1023 h->root.u.undef.abfd = abfd;
1024 }
1025 else
1026 {
1027 h->root.type = bfd_link_hash_new;
1028 h->root.u.undef.abfd = NULL;
1029 }
1030
1031 if (h->def_dynamic)
1032 {
1033 h->def_dynamic = 0;
1034 h->ref_dynamic = 1;
1035 h->dynamic_def = 1;
1036 }
1037 /* FIXME: Should we check type and size for protected symbol? */
1038 h->size = 0;
1039 h->type = 0;
1040 return TRUE;
1041 }
1042
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1047
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1055
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1058
1059 if (newdef && !newdyn && olddyn)
1060 newweak = FALSE;
1061 if (olddef && newdyn)
1062 oldweak = FALSE;
1063
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
1067
1068 if (oldweak
1069 || newweak
1070 || (newdef
1071 && h->root.type == bfd_link_hash_undefined))
1072 *type_change_ok = TRUE;
1073
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1076
1077 if (*type_change_ok
1078 || h->root.type == bfd_link_hash_undefined)
1079 *size_change_ok = TRUE;
1080
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1092 libraries.
1093
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1096
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1102 harmless. */
1103
1104 if (newdyn
1105 && newdef
1106 && !newweak
1107 && (sec->flags & SEC_ALLOC) != 0
1108 && (sec->flags & SEC_LOAD) == 0
1109 && sym->st_size > 0
1110 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1111 newdyncommon = TRUE;
1112 else
1113 newdyncommon = FALSE;
1114
1115 if (olddyn
1116 && olddef
1117 && h->root.type == bfd_link_hash_defined
1118 && h->def_dynamic
1119 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1120 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1121 && h->size > 0
1122 && h->type != STT_FUNC)
1123 olddyncommon = TRUE;
1124 else
1125 olddyncommon = FALSE;
1126
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1129 two. */
1130
1131 if (olddyncommon
1132 && newdyncommon
1133 && sym->st_size != h->size)
1134 {
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1140
1141 if (! ((*info->callbacks->multiple_common)
1142 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1143 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1144 return FALSE;
1145
1146 if (sym->st_size > h->size)
1147 h->size = sym->st_size;
1148
1149 *size_change_ok = TRUE;
1150 }
1151
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1158
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
1164 object to override a weak symbol in a shared object. */
1165
1166 if (newdyn
1167 && newdef
1168 && (olddef
1169 || (h->root.type == bfd_link_hash_common
1170 && (newweak
1171 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1172 {
1173 *override = TRUE;
1174 newdef = FALSE;
1175 newdyncommon = FALSE;
1176
1177 *psec = sec = bfd_und_section_ptr;
1178 *size_change_ok = TRUE;
1179
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
1185
1186 if (h->root.type == bfd_link_hash_common)
1187 *type_change_ok = TRUE;
1188 }
1189
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1194 the right thing. */
1195
1196 if (newdyncommon
1197 && h->root.type == bfd_link_hash_common)
1198 {
1199 *override = TRUE;
1200 newdef = FALSE;
1201 newdyncommon = FALSE;
1202 *pvalue = sym->st_size;
1203 *psec = sec = bfd_com_section_ptr;
1204 *size_change_ok = TRUE;
1205 }
1206
1207 /* If the old symbol is from a dynamic object, and the new symbol is
1208 a definition which is not from a dynamic object, then the new
1209 symbol overrides the old symbol. Symbols from regular files
1210 always take precedence over symbols from dynamic objects, even if
1211 they are defined after the dynamic object in the link.
1212
1213 As above, we again permit a common symbol in a regular object to
1214 override a definition in a shared object if the shared object
1215 symbol is a function or is weak. */
1216
1217 flip = NULL;
1218 if (!newdyn
1219 && (newdef
1220 || (bfd_is_com_section (sec)
1221 && (oldweak
1222 || h->type == STT_FUNC)))
1223 && olddyn
1224 && olddef
1225 && h->def_dynamic)
1226 {
1227 /* Change the hash table entry to undefined, and let
1228 _bfd_generic_link_add_one_symbol do the right thing with the
1229 new definition. */
1230
1231 h->root.type = bfd_link_hash_undefined;
1232 h->root.u.undef.abfd = h->root.u.def.section->owner;
1233 *size_change_ok = TRUE;
1234
1235 olddef = FALSE;
1236 olddyncommon = FALSE;
1237
1238 /* We again permit a type change when a common symbol may be
1239 overriding a function. */
1240
1241 if (bfd_is_com_section (sec))
1242 *type_change_ok = TRUE;
1243
1244 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1245 flip = *sym_hash;
1246 else
1247 /* This union may have been set to be non-NULL when this symbol
1248 was seen in a dynamic object. We must force the union to be
1249 NULL, so that it is correct for a regular symbol. */
1250 h->verinfo.vertree = NULL;
1251 }
1252
1253 /* Handle the special case of a new common symbol merging with an
1254 old symbol that looks like it might be a common symbol defined in
1255 a shared object. Note that we have already handled the case in
1256 which a new common symbol should simply override the definition
1257 in the shared library. */
1258
1259 if (! newdyn
1260 && bfd_is_com_section (sec)
1261 && olddyncommon)
1262 {
1263 /* It would be best if we could set the hash table entry to a
1264 common symbol, but we don't know what to use for the section
1265 or the alignment. */
1266 if (! ((*info->callbacks->multiple_common)
1267 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1268 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1269 return FALSE;
1270
1271 /* If the presumed common symbol in the dynamic object is
1272 larger, pretend that the new symbol has its size. */
1273
1274 if (h->size > *pvalue)
1275 *pvalue = h->size;
1276
1277 /* We need to remember the alignment required by the symbol
1278 in the dynamic object. */
1279 BFD_ASSERT (pold_alignment);
1280 *pold_alignment = h->root.u.def.section->alignment_power;
1281
1282 olddef = FALSE;
1283 olddyncommon = FALSE;
1284
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = h->root.u.def.section->owner;
1287
1288 *size_change_ok = TRUE;
1289 *type_change_ok = TRUE;
1290
1291 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1292 flip = *sym_hash;
1293 else
1294 h->verinfo.vertree = NULL;
1295 }
1296
1297 if (flip != NULL)
1298 {
1299 /* Handle the case where we had a versioned symbol in a dynamic
1300 library and now find a definition in a normal object. In this
1301 case, we make the versioned symbol point to the normal one. */
1302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1303 flip->root.type = h->root.type;
1304 h->root.type = bfd_link_hash_indirect;
1305 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1306 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1307 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1308 if (h->def_dynamic)
1309 {
1310 h->def_dynamic = 0;
1311 flip->ref_dynamic = 1;
1312 }
1313 }
1314
1315 return TRUE;
1316 }
1317
1318 /* This function is called to create an indirect symbol from the
1319 default for the symbol with the default version if needed. The
1320 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1321 set DYNSYM if the new indirect symbol is dynamic. */
1322
1323 bfd_boolean
1324 _bfd_elf_add_default_symbol (bfd *abfd,
1325 struct bfd_link_info *info,
1326 struct elf_link_hash_entry *h,
1327 const char *name,
1328 Elf_Internal_Sym *sym,
1329 asection **psec,
1330 bfd_vma *value,
1331 bfd_boolean *dynsym,
1332 bfd_boolean override)
1333 {
1334 bfd_boolean type_change_ok;
1335 bfd_boolean size_change_ok;
1336 bfd_boolean skip;
1337 char *shortname;
1338 struct elf_link_hash_entry *hi;
1339 struct bfd_link_hash_entry *bh;
1340 const struct elf_backend_data *bed;
1341 bfd_boolean collect;
1342 bfd_boolean dynamic;
1343 char *p;
1344 size_t len, shortlen;
1345 asection *sec;
1346
1347 /* If this symbol has a version, and it is the default version, we
1348 create an indirect symbol from the default name to the fully
1349 decorated name. This will cause external references which do not
1350 specify a version to be bound to this version of the symbol. */
1351 p = strchr (name, ELF_VER_CHR);
1352 if (p == NULL || p[1] != ELF_VER_CHR)
1353 return TRUE;
1354
1355 if (override)
1356 {
1357 /* We are overridden by an old definition. We need to check if we
1358 need to create the indirect symbol from the default name. */
1359 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1360 FALSE, FALSE);
1361 BFD_ASSERT (hi != NULL);
1362 if (hi == h)
1363 return TRUE;
1364 while (hi->root.type == bfd_link_hash_indirect
1365 || hi->root.type == bfd_link_hash_warning)
1366 {
1367 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1368 if (hi == h)
1369 return TRUE;
1370 }
1371 }
1372
1373 bed = get_elf_backend_data (abfd);
1374 collect = bed->collect;
1375 dynamic = (abfd->flags & DYNAMIC) != 0;
1376
1377 shortlen = p - name;
1378 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1379 if (shortname == NULL)
1380 return FALSE;
1381 memcpy (shortname, name, shortlen);
1382 shortname[shortlen] = '\0';
1383
1384 /* We are going to create a new symbol. Merge it with any existing
1385 symbol with this name. For the purposes of the merge, act as
1386 though we were defining the symbol we just defined, although we
1387 actually going to define an indirect symbol. */
1388 type_change_ok = FALSE;
1389 size_change_ok = FALSE;
1390 sec = *psec;
1391 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1392 NULL, &hi, &skip, &override,
1393 &type_change_ok, &size_change_ok))
1394 return FALSE;
1395
1396 if (skip)
1397 goto nondefault;
1398
1399 if (! override)
1400 {
1401 bh = &hi->root;
1402 if (! (_bfd_generic_link_add_one_symbol
1403 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1404 0, name, FALSE, collect, &bh)))
1405 return FALSE;
1406 hi = (struct elf_link_hash_entry *) bh;
1407 }
1408 else
1409 {
1410 /* In this case the symbol named SHORTNAME is overriding the
1411 indirect symbol we want to add. We were planning on making
1412 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1413 is the name without a version. NAME is the fully versioned
1414 name, and it is the default version.
1415
1416 Overriding means that we already saw a definition for the
1417 symbol SHORTNAME in a regular object, and it is overriding
1418 the symbol defined in the dynamic object.
1419
1420 When this happens, we actually want to change NAME, the
1421 symbol we just added, to refer to SHORTNAME. This will cause
1422 references to NAME in the shared object to become references
1423 to SHORTNAME in the regular object. This is what we expect
1424 when we override a function in a shared object: that the
1425 references in the shared object will be mapped to the
1426 definition in the regular object. */
1427
1428 while (hi->root.type == bfd_link_hash_indirect
1429 || hi->root.type == bfd_link_hash_warning)
1430 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1431
1432 h->root.type = bfd_link_hash_indirect;
1433 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1434 if (h->def_dynamic)
1435 {
1436 h->def_dynamic = 0;
1437 hi->ref_dynamic = 1;
1438 if (hi->ref_regular
1439 || hi->def_regular)
1440 {
1441 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1442 return FALSE;
1443 }
1444 }
1445
1446 /* Now set HI to H, so that the following code will set the
1447 other fields correctly. */
1448 hi = h;
1449 }
1450
1451 /* If there is a duplicate definition somewhere, then HI may not
1452 point to an indirect symbol. We will have reported an error to
1453 the user in that case. */
1454
1455 if (hi->root.type == bfd_link_hash_indirect)
1456 {
1457 struct elf_link_hash_entry *ht;
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1461
1462 /* See if the new flags lead us to realize that the symbol must
1463 be dynamic. */
1464 if (! *dynsym)
1465 {
1466 if (! dynamic)
1467 {
1468 if (info->shared
1469 || hi->ref_dynamic)
1470 *dynsym = TRUE;
1471 }
1472 else
1473 {
1474 if (hi->ref_regular)
1475 *dynsym = TRUE;
1476 }
1477 }
1478 }
1479
1480 /* We also need to define an indirection from the nondefault version
1481 of the symbol. */
1482
1483 nondefault:
1484 len = strlen (name);
1485 shortname = bfd_hash_allocate (&info->hash->table, len);
1486 if (shortname == NULL)
1487 return FALSE;
1488 memcpy (shortname, name, shortlen);
1489 memcpy (shortname + shortlen, p + 1, len - shortlen);
1490
1491 /* Once again, merge with any existing symbol. */
1492 type_change_ok = FALSE;
1493 size_change_ok = FALSE;
1494 sec = *psec;
1495 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1496 NULL, &hi, &skip, &override,
1497 &type_change_ok, &size_change_ok))
1498 return FALSE;
1499
1500 if (skip)
1501 return TRUE;
1502
1503 if (override)
1504 {
1505 /* Here SHORTNAME is a versioned name, so we don't expect to see
1506 the type of override we do in the case above unless it is
1507 overridden by a versioned definition. */
1508 if (hi->root.type != bfd_link_hash_defined
1509 && hi->root.type != bfd_link_hash_defweak)
1510 (*_bfd_error_handler)
1511 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1512 abfd, shortname);
1513 }
1514 else
1515 {
1516 bh = &hi->root;
1517 if (! (_bfd_generic_link_add_one_symbol
1518 (info, abfd, shortname, BSF_INDIRECT,
1519 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1520 return FALSE;
1521 hi = (struct elf_link_hash_entry *) bh;
1522
1523 /* If there is a duplicate definition somewhere, then HI may not
1524 point to an indirect symbol. We will have reported an error
1525 to the user in that case. */
1526
1527 if (hi->root.type == bfd_link_hash_indirect)
1528 {
1529 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1530
1531 /* See if the new flags lead us to realize that the symbol
1532 must be dynamic. */
1533 if (! *dynsym)
1534 {
1535 if (! dynamic)
1536 {
1537 if (info->shared
1538 || hi->ref_dynamic)
1539 *dynsym = TRUE;
1540 }
1541 else
1542 {
1543 if (hi->ref_regular)
1544 *dynsym = TRUE;
1545 }
1546 }
1547 }
1548 }
1549
1550 return TRUE;
1551 }
1552 \f
1553 /* This routine is used to export all defined symbols into the dynamic
1554 symbol table. It is called via elf_link_hash_traverse. */
1555
1556 bfd_boolean
1557 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1558 {
1559 struct elf_info_failed *eif = data;
1560
1561 /* Ignore indirect symbols. These are added by the versioning code. */
1562 if (h->root.type == bfd_link_hash_indirect)
1563 return TRUE;
1564
1565 if (h->root.type == bfd_link_hash_warning)
1566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1567
1568 if (h->dynindx == -1
1569 && (h->def_regular
1570 || h->ref_regular))
1571 {
1572 struct bfd_elf_version_tree *t;
1573 struct bfd_elf_version_expr *d;
1574
1575 for (t = eif->verdefs; t != NULL; t = t->next)
1576 {
1577 if (t->globals.list != NULL)
1578 {
1579 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1580 if (d != NULL)
1581 goto doit;
1582 }
1583
1584 if (t->locals.list != NULL)
1585 {
1586 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1587 if (d != NULL)
1588 return TRUE;
1589 }
1590 }
1591
1592 if (!eif->verdefs)
1593 {
1594 doit:
1595 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1596 {
1597 eif->failed = TRUE;
1598 return FALSE;
1599 }
1600 }
1601 }
1602
1603 return TRUE;
1604 }
1605 \f
1606 /* Look through the symbols which are defined in other shared
1607 libraries and referenced here. Update the list of version
1608 dependencies. This will be put into the .gnu.version_r section.
1609 This function is called via elf_link_hash_traverse. */
1610
1611 bfd_boolean
1612 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1613 void *data)
1614 {
1615 struct elf_find_verdep_info *rinfo = data;
1616 Elf_Internal_Verneed *t;
1617 Elf_Internal_Vernaux *a;
1618 bfd_size_type amt;
1619
1620 if (h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622
1623 /* We only care about symbols defined in shared objects with version
1624 information. */
1625 if (!h->def_dynamic
1626 || h->def_regular
1627 || h->dynindx == -1
1628 || h->verinfo.verdef == NULL)
1629 return TRUE;
1630
1631 /* See if we already know about this version. */
1632 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1633 {
1634 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1635 continue;
1636
1637 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1638 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1639 return TRUE;
1640
1641 break;
1642 }
1643
1644 /* This is a new version. Add it to tree we are building. */
1645
1646 if (t == NULL)
1647 {
1648 amt = sizeof *t;
1649 t = bfd_zalloc (rinfo->output_bfd, amt);
1650 if (t == NULL)
1651 {
1652 rinfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1657 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1658 elf_tdata (rinfo->output_bfd)->verref = t;
1659 }
1660
1661 amt = sizeof *a;
1662 a = bfd_zalloc (rinfo->output_bfd, amt);
1663
1664 /* Note that we are copying a string pointer here, and testing it
1665 above. If bfd_elf_string_from_elf_section is ever changed to
1666 discard the string data when low in memory, this will have to be
1667 fixed. */
1668 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1669
1670 a->vna_flags = h->verinfo.verdef->vd_flags;
1671 a->vna_nextptr = t->vn_auxptr;
1672
1673 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1674 ++rinfo->vers;
1675
1676 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1677
1678 t->vn_auxptr = a;
1679
1680 return TRUE;
1681 }
1682
1683 /* Figure out appropriate versions for all the symbols. We may not
1684 have the version number script until we have read all of the input
1685 files, so until that point we don't know which symbols should be
1686 local. This function is called via elf_link_hash_traverse. */
1687
1688 bfd_boolean
1689 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1690 {
1691 struct elf_assign_sym_version_info *sinfo;
1692 struct bfd_link_info *info;
1693 const struct elf_backend_data *bed;
1694 struct elf_info_failed eif;
1695 char *p;
1696 bfd_size_type amt;
1697
1698 sinfo = data;
1699 info = sinfo->info;
1700
1701 if (h->root.type == bfd_link_hash_warning)
1702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1703
1704 /* Fix the symbol flags. */
1705 eif.failed = FALSE;
1706 eif.info = info;
1707 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1708 {
1709 if (eif.failed)
1710 sinfo->failed = TRUE;
1711 return FALSE;
1712 }
1713
1714 /* We only need version numbers for symbols defined in regular
1715 objects. */
1716 if (!h->def_regular)
1717 return TRUE;
1718
1719 bed = get_elf_backend_data (sinfo->output_bfd);
1720 p = strchr (h->root.root.string, ELF_VER_CHR);
1721 if (p != NULL && h->verinfo.vertree == NULL)
1722 {
1723 struct bfd_elf_version_tree *t;
1724 bfd_boolean hidden;
1725
1726 hidden = TRUE;
1727
1728 /* There are two consecutive ELF_VER_CHR characters if this is
1729 not a hidden symbol. */
1730 ++p;
1731 if (*p == ELF_VER_CHR)
1732 {
1733 hidden = FALSE;
1734 ++p;
1735 }
1736
1737 /* If there is no version string, we can just return out. */
1738 if (*p == '\0')
1739 {
1740 if (hidden)
1741 h->hidden = 1;
1742 return TRUE;
1743 }
1744
1745 /* Look for the version. If we find it, it is no longer weak. */
1746 for (t = sinfo->verdefs; t != NULL; t = t->next)
1747 {
1748 if (strcmp (t->name, p) == 0)
1749 {
1750 size_t len;
1751 char *alc;
1752 struct bfd_elf_version_expr *d;
1753
1754 len = p - h->root.root.string;
1755 alc = bfd_malloc (len);
1756 if (alc == NULL)
1757 return FALSE;
1758 memcpy (alc, h->root.root.string, len - 1);
1759 alc[len - 1] = '\0';
1760 if (alc[len - 2] == ELF_VER_CHR)
1761 alc[len - 2] = '\0';
1762
1763 h->verinfo.vertree = t;
1764 t->used = TRUE;
1765 d = NULL;
1766
1767 if (t->globals.list != NULL)
1768 d = (*t->match) (&t->globals, NULL, alc);
1769
1770 /* See if there is anything to force this symbol to
1771 local scope. */
1772 if (d == NULL && t->locals.list != NULL)
1773 {
1774 d = (*t->match) (&t->locals, NULL, alc);
1775 if (d != NULL
1776 && h->dynindx != -1
1777 && info->shared
1778 && ! info->export_dynamic)
1779 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1780 }
1781
1782 free (alc);
1783 break;
1784 }
1785 }
1786
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
1789 if (t == NULL && info->executable)
1790 {
1791 struct bfd_elf_version_tree **pp;
1792 int version_index;
1793
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h->dynindx == -1)
1797 return TRUE;
1798
1799 amt = sizeof *t;
1800 t = bfd_zalloc (sinfo->output_bfd, amt);
1801 if (t == NULL)
1802 {
1803 sinfo->failed = TRUE;
1804 return FALSE;
1805 }
1806
1807 t->name = p;
1808 t->name_indx = (unsigned int) -1;
1809 t->used = TRUE;
1810
1811 version_index = 1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1814 version_index = 0;
1815 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1816 ++version_index;
1817 t->vernum = version_index;
1818
1819 *pp = t;
1820
1821 h->verinfo.vertree = t;
1822 }
1823 else if (t == NULL)
1824 {
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler)
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo->output_bfd, h->root.root.string);
1830 bfd_set_error (bfd_error_bad_value);
1831 sinfo->failed = TRUE;
1832 return FALSE;
1833 }
1834
1835 if (hidden)
1836 h->hidden = 1;
1837 }
1838
1839 /* If we don't have a version for this symbol, see if we can find
1840 something. */
1841 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1842 {
1843 struct bfd_elf_version_tree *t;
1844 struct bfd_elf_version_tree *local_ver;
1845 struct bfd_elf_version_expr *d;
1846
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1849 it. */
1850 local_ver = NULL;
1851 for (t = sinfo->verdefs; t != NULL; t = t->next)
1852 {
1853 if (t->globals.list != NULL)
1854 {
1855 bfd_boolean matched;
1856
1857 matched = FALSE;
1858 d = NULL;
1859 while ((d = (*t->match) (&t->globals, d,
1860 h->root.root.string)) != NULL)
1861 if (d->symver)
1862 matched = TRUE;
1863 else
1864 {
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1867 version. */
1868 h->verinfo.vertree = t;
1869 local_ver = NULL;
1870 d->script = 1;
1871 break;
1872 }
1873 if (d != NULL)
1874 break;
1875 else if (matched)
1876 /* There is no undefined version for this symbol. Hide the
1877 default one. */
1878 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1879 }
1880
1881 if (t->locals.list != NULL)
1882 {
1883 d = NULL;
1884 while ((d = (*t->match) (&t->locals, d,
1885 h->root.root.string)) != NULL)
1886 {
1887 local_ver = t;
1888 /* If the match is "*", keep looking for a more
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1892 break;
1893 }
1894
1895 if (d != NULL)
1896 break;
1897 }
1898 }
1899
1900 if (local_ver != NULL)
1901 {
1902 h->verinfo.vertree = local_ver;
1903 if (h->dynindx != -1
1904 && info->shared
1905 && ! info->export_dynamic)
1906 {
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913 }
1914 \f
1915 /* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1921
1922 Returns FALSE if something goes wrong. */
1923
1924 static bfd_boolean
1925 elf_link_read_relocs_from_section (bfd *abfd,
1926 asection *sec,
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
1930 {
1931 const struct elf_backend_data *bed;
1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
1938
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1942
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1946
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1949
1950 bed = get_elf_backend_data (abfd);
1951
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1961 }
1962
1963 erela = external_relocs;
1964 erelaend = erela + shdr->sh_size;
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1967 {
1968 bfd_vma r_symndx;
1969
1970 (*swap_in) (abfd, erela, irela);
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1975 {
1976 (*_bfd_error_handler)
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1983 }
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1986 }
1987
1988 return TRUE;
1989 }
1990
1991 /* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2000
2001 Elf_Internal_Rela *
2002 _bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
2007 {
2008 Elf_Internal_Shdr *rel_hdr;
2009 void *alloc1 = NULL;
2010 Elf_Internal_Rela *alloc2 = NULL;
2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2012
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2015
2016 if (o->reloc_count == 0)
2017 return NULL;
2018
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2020
2021 if (internal_relocs == NULL)
2022 {
2023 bfd_size_type size;
2024
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
2028 internal_relocs = bfd_alloc (abfd, size);
2029 else
2030 internal_relocs = alloc2 = bfd_malloc (size);
2031 if (internal_relocs == NULL)
2032 goto error_return;
2033 }
2034
2035 if (external_relocs == NULL)
2036 {
2037 bfd_size_type size = rel_hdr->sh_size;
2038
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
2041 alloc1 = bfd_malloc (size);
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2045 }
2046
2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
2058 goto error_return;
2059
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2063
2064 if (alloc1 != NULL)
2065 free (alloc1);
2066
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2069
2070 return internal_relocs;
2071
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2078 }
2079
2080 /* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2082
2083 bfd_boolean
2084 _bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
2087 {
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2090
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2096
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2100
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2103
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2111
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2116 {
2117 struct elf_link_hash_entry **p;
2118
2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2120 if (p == NULL)
2121 return FALSE;
2122
2123 elf_section_data (o)->rel_hashes = p;
2124 }
2125
2126 return TRUE;
2127 }
2128
2129 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2132
2133 bfd_boolean
2134 _bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
2137 Elf_Internal_Rela *internal_relocs)
2138 {
2139 Elf_Internal_Rela *irela;
2140 Elf_Internal_Rela *irelaend;
2141 bfd_byte *erel;
2142 Elf_Internal_Shdr *output_rel_hdr;
2143 asection *output_section;
2144 unsigned int *rel_countp = NULL;
2145 const struct elf_backend_data *bed;
2146 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2147
2148 output_section = input_section->output_section;
2149 output_rel_hdr = NULL;
2150
2151 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2152 == input_rel_hdr->sh_entsize)
2153 {
2154 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2155 rel_countp = &elf_section_data (output_section)->rel_count;
2156 }
2157 else if (elf_section_data (output_section)->rel_hdr2
2158 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2159 == input_rel_hdr->sh_entsize))
2160 {
2161 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2162 rel_countp = &elf_section_data (output_section)->rel_count2;
2163 }
2164 else
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: relocation size mismatch in %B section %A"),
2168 output_bfd, input_section->owner, input_section);
2169 bfd_set_error (bfd_error_wrong_object_format);
2170 return FALSE;
2171 }
2172
2173 bed = get_elf_backend_data (output_bfd);
2174 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2175 swap_out = bed->s->swap_reloc_out;
2176 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2177 swap_out = bed->s->swap_reloca_out;
2178 else
2179 abort ();
2180
2181 erel = output_rel_hdr->contents;
2182 erel += *rel_countp * input_rel_hdr->sh_entsize;
2183 irela = internal_relocs;
2184 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2185 * bed->s->int_rels_per_ext_rel);
2186 while (irela < irelaend)
2187 {
2188 (*swap_out) (output_bfd, irela, erel);
2189 irela += bed->s->int_rels_per_ext_rel;
2190 erel += input_rel_hdr->sh_entsize;
2191 }
2192
2193 /* Bump the counter, so that we know where to add the next set of
2194 relocations. */
2195 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2196
2197 return TRUE;
2198 }
2199 \f
2200 /* Fix up the flags for a symbol. This handles various cases which
2201 can only be fixed after all the input files are seen. This is
2202 currently called by both adjust_dynamic_symbol and
2203 assign_sym_version, which is unnecessary but perhaps more robust in
2204 the face of future changes. */
2205
2206 bfd_boolean
2207 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2208 struct elf_info_failed *eif)
2209 {
2210 /* If this symbol was mentioned in a non-ELF file, try to set
2211 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2212 permit a non-ELF file to correctly refer to a symbol defined in
2213 an ELF dynamic object. */
2214 if (h->non_elf)
2215 {
2216 while (h->root.type == bfd_link_hash_indirect)
2217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2218
2219 if (h->root.type != bfd_link_hash_defined
2220 && h->root.type != bfd_link_hash_defweak)
2221 {
2222 h->ref_regular = 1;
2223 h->ref_regular_nonweak = 1;
2224 }
2225 else
2226 {
2227 if (h->root.u.def.section->owner != NULL
2228 && (bfd_get_flavour (h->root.u.def.section->owner)
2229 == bfd_target_elf_flavour))
2230 {
2231 h->ref_regular = 1;
2232 h->ref_regular_nonweak = 1;
2233 }
2234 else
2235 h->def_regular = 1;
2236 }
2237
2238 if (h->dynindx == -1
2239 && (h->def_dynamic
2240 || h->ref_dynamic))
2241 {
2242 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2243 {
2244 eif->failed = TRUE;
2245 return FALSE;
2246 }
2247 }
2248 }
2249 else
2250 {
2251 /* Unfortunately, NON_ELF is only correct if the symbol
2252 was first seen in a non-ELF file. Fortunately, if the symbol
2253 was first seen in an ELF file, we're probably OK unless the
2254 symbol was defined in a non-ELF file. Catch that case here.
2255 FIXME: We're still in trouble if the symbol was first seen in
2256 a dynamic object, and then later in a non-ELF regular object. */
2257 if ((h->root.type == bfd_link_hash_defined
2258 || h->root.type == bfd_link_hash_defweak)
2259 && !h->def_regular
2260 && (h->root.u.def.section->owner != NULL
2261 ? (bfd_get_flavour (h->root.u.def.section->owner)
2262 != bfd_target_elf_flavour)
2263 : (bfd_is_abs_section (h->root.u.def.section)
2264 && !h->def_dynamic)))
2265 h->def_regular = 1;
2266 }
2267
2268 /* If this is a final link, and the symbol was defined as a common
2269 symbol in a regular object file, and there was no definition in
2270 any dynamic object, then the linker will have allocated space for
2271 the symbol in a common section but the DEF_REGULAR
2272 flag will not have been set. */
2273 if (h->root.type == bfd_link_hash_defined
2274 && !h->def_regular
2275 && h->ref_regular
2276 && !h->def_dynamic
2277 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2278 h->def_regular = 1;
2279
2280 /* If -Bsymbolic was used (which means to bind references to global
2281 symbols to the definition within the shared object), and this
2282 symbol was defined in a regular object, then it actually doesn't
2283 need a PLT entry. Likewise, if the symbol has non-default
2284 visibility. If the symbol has hidden or internal visibility, we
2285 will force it local. */
2286 if (h->needs_plt
2287 && eif->info->shared
2288 && is_elf_hash_table (eif->info->hash)
2289 && (eif->info->symbolic
2290 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2291 && h->def_regular)
2292 {
2293 const struct elf_backend_data *bed;
2294 bfd_boolean force_local;
2295
2296 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2297
2298 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2299 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2300 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2301 }
2302
2303 /* If a weak undefined symbol has non-default visibility, we also
2304 hide it from the dynamic linker. */
2305 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2306 && h->root.type == bfd_link_hash_undefweak)
2307 {
2308 const struct elf_backend_data *bed;
2309 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2310 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2311 }
2312
2313 /* If this is a weak defined symbol in a dynamic object, and we know
2314 the real definition in the dynamic object, copy interesting flags
2315 over to the real definition. */
2316 if (h->u.weakdef != NULL)
2317 {
2318 struct elf_link_hash_entry *weakdef;
2319
2320 weakdef = h->u.weakdef;
2321 if (h->root.type == bfd_link_hash_indirect)
2322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2323
2324 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2325 || h->root.type == bfd_link_hash_defweak);
2326 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2327 || weakdef->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->def_dynamic);
2329
2330 /* If the real definition is defined by a regular object file,
2331 don't do anything special. See the longer description in
2332 _bfd_elf_adjust_dynamic_symbol, below. */
2333 if (weakdef->def_regular)
2334 h->u.weakdef = NULL;
2335 else
2336 {
2337 const struct elf_backend_data *bed;
2338
2339 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2340 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2341 }
2342 }
2343
2344 return TRUE;
2345 }
2346
2347 /* Make the backend pick a good value for a dynamic symbol. This is
2348 called via elf_link_hash_traverse, and also calls itself
2349 recursively. */
2350
2351 bfd_boolean
2352 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2353 {
2354 struct elf_info_failed *eif = data;
2355 bfd *dynobj;
2356 const struct elf_backend_data *bed;
2357
2358 if (! is_elf_hash_table (eif->info->hash))
2359 return FALSE;
2360
2361 if (h->root.type == bfd_link_hash_warning)
2362 {
2363 h->plt = elf_hash_table (eif->info)->init_offset;
2364 h->got = elf_hash_table (eif->info)->init_offset;
2365
2366 /* When warning symbols are created, they **replace** the "real"
2367 entry in the hash table, thus we never get to see the real
2368 symbol in a hash traversal. So look at it now. */
2369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2370 }
2371
2372 /* Ignore indirect symbols. These are added by the versioning code. */
2373 if (h->root.type == bfd_link_hash_indirect)
2374 return TRUE;
2375
2376 /* Fix the symbol flags. */
2377 if (! _bfd_elf_fix_symbol_flags (h, eif))
2378 return FALSE;
2379
2380 /* If this symbol does not require a PLT entry, and it is not
2381 defined by a dynamic object, or is not referenced by a regular
2382 object, ignore it. We do have to handle a weak defined symbol,
2383 even if no regular object refers to it, if we decided to add it
2384 to the dynamic symbol table. FIXME: Do we normally need to worry
2385 about symbols which are defined by one dynamic object and
2386 referenced by another one? */
2387 if (!h->needs_plt
2388 && (h->def_regular
2389 || !h->def_dynamic
2390 || (!h->ref_regular
2391 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2392 {
2393 h->plt = elf_hash_table (eif->info)->init_offset;
2394 return TRUE;
2395 }
2396
2397 /* If we've already adjusted this symbol, don't do it again. This
2398 can happen via a recursive call. */
2399 if (h->dynamic_adjusted)
2400 return TRUE;
2401
2402 /* Don't look at this symbol again. Note that we must set this
2403 after checking the above conditions, because we may look at a
2404 symbol once, decide not to do anything, and then get called
2405 recursively later after REF_REGULAR is set below. */
2406 h->dynamic_adjusted = 1;
2407
2408 /* If this is a weak definition, and we know a real definition, and
2409 the real symbol is not itself defined by a regular object file,
2410 then get a good value for the real definition. We handle the
2411 real symbol first, for the convenience of the backend routine.
2412
2413 Note that there is a confusing case here. If the real definition
2414 is defined by a regular object file, we don't get the real symbol
2415 from the dynamic object, but we do get the weak symbol. If the
2416 processor backend uses a COPY reloc, then if some routine in the
2417 dynamic object changes the real symbol, we will not see that
2418 change in the corresponding weak symbol. This is the way other
2419 ELF linkers work as well, and seems to be a result of the shared
2420 library model.
2421
2422 I will clarify this issue. Most SVR4 shared libraries define the
2423 variable _timezone and define timezone as a weak synonym. The
2424 tzset call changes _timezone. If you write
2425 extern int timezone;
2426 int _timezone = 5;
2427 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2428 you might expect that, since timezone is a synonym for _timezone,
2429 the same number will print both times. However, if the processor
2430 backend uses a COPY reloc, then actually timezone will be copied
2431 into your process image, and, since you define _timezone
2432 yourself, _timezone will not. Thus timezone and _timezone will
2433 wind up at different memory locations. The tzset call will set
2434 _timezone, leaving timezone unchanged. */
2435
2436 if (h->u.weakdef != NULL)
2437 {
2438 /* If we get to this point, we know there is an implicit
2439 reference by a regular object file via the weak symbol H.
2440 FIXME: Is this really true? What if the traversal finds
2441 H->U.WEAKDEF before it finds H? */
2442 h->u.weakdef->ref_regular = 1;
2443
2444 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2445 return FALSE;
2446 }
2447
2448 /* If a symbol has no type and no size and does not require a PLT
2449 entry, then we are probably about to do the wrong thing here: we
2450 are probably going to create a COPY reloc for an empty object.
2451 This case can arise when a shared object is built with assembly
2452 code, and the assembly code fails to set the symbol type. */
2453 if (h->size == 0
2454 && h->type == STT_NOTYPE
2455 && !h->needs_plt)
2456 (*_bfd_error_handler)
2457 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2458 h->root.root.string);
2459
2460 dynobj = elf_hash_table (eif->info)->dynobj;
2461 bed = get_elf_backend_data (dynobj);
2462 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2463 {
2464 eif->failed = TRUE;
2465 return FALSE;
2466 }
2467
2468 return TRUE;
2469 }
2470
2471 /* Adjust all external symbols pointing into SEC_MERGE sections
2472 to reflect the object merging within the sections. */
2473
2474 bfd_boolean
2475 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2476 {
2477 asection *sec;
2478
2479 if (h->root.type == bfd_link_hash_warning)
2480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2481
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2485 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2486 {
2487 bfd *output_bfd = data;
2488
2489 h->root.u.def.value =
2490 _bfd_merged_section_offset (output_bfd,
2491 &h->root.u.def.section,
2492 elf_section_data (sec)->sec_info,
2493 h->root.u.def.value);
2494 }
2495
2496 return TRUE;
2497 }
2498
2499 /* Returns false if the symbol referred to by H should be considered
2500 to resolve local to the current module, and true if it should be
2501 considered to bind dynamically. */
2502
2503 bfd_boolean
2504 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2505 struct bfd_link_info *info,
2506 bfd_boolean ignore_protected)
2507 {
2508 bfd_boolean binding_stays_local_p;
2509
2510 if (h == NULL)
2511 return FALSE;
2512
2513 while (h->root.type == bfd_link_hash_indirect
2514 || h->root.type == bfd_link_hash_warning)
2515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2516
2517 /* If it was forced local, then clearly it's not dynamic. */
2518 if (h->dynindx == -1)
2519 return FALSE;
2520 if (h->forced_local)
2521 return FALSE;
2522
2523 /* Identify the cases where name binding rules say that a
2524 visible symbol resolves locally. */
2525 binding_stays_local_p = info->executable || info->symbolic;
2526
2527 switch (ELF_ST_VISIBILITY (h->other))
2528 {
2529 case STV_INTERNAL:
2530 case STV_HIDDEN:
2531 return FALSE;
2532
2533 case STV_PROTECTED:
2534 /* Proper resolution for function pointer equality may require
2535 that these symbols perhaps be resolved dynamically, even though
2536 we should be resolving them to the current module. */
2537 if (!ignore_protected || h->type != STT_FUNC)
2538 binding_stays_local_p = TRUE;
2539 break;
2540
2541 default:
2542 break;
2543 }
2544
2545 /* If it isn't defined locally, then clearly it's dynamic. */
2546 if (!h->def_regular)
2547 return TRUE;
2548
2549 /* Otherwise, the symbol is dynamic if binding rules don't tell
2550 us that it remains local. */
2551 return !binding_stays_local_p;
2552 }
2553
2554 /* Return true if the symbol referred to by H should be considered
2555 to resolve local to the current module, and false otherwise. Differs
2556 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2557 undefined symbols and weak symbols. */
2558
2559 bfd_boolean
2560 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2561 struct bfd_link_info *info,
2562 bfd_boolean local_protected)
2563 {
2564 /* If it's a local sym, of course we resolve locally. */
2565 if (h == NULL)
2566 return TRUE;
2567
2568 /* Common symbols that become definitions don't get the DEF_REGULAR
2569 flag set, so test it first, and don't bail out. */
2570 if (ELF_COMMON_DEF_P (h))
2571 /* Do nothing. */;
2572 /* If we don't have a definition in a regular file, then we can't
2573 resolve locally. The sym is either undefined or dynamic. */
2574 else if (!h->def_regular)
2575 return FALSE;
2576
2577 /* Forced local symbols resolve locally. */
2578 if (h->forced_local)
2579 return TRUE;
2580
2581 /* As do non-dynamic symbols. */
2582 if (h->dynindx == -1)
2583 return TRUE;
2584
2585 /* At this point, we know the symbol is defined and dynamic. In an
2586 executable it must resolve locally, likewise when building symbolic
2587 shared libraries. */
2588 if (info->executable || info->symbolic)
2589 return TRUE;
2590
2591 /* Now deal with defined dynamic symbols in shared libraries. Ones
2592 with default visibility might not resolve locally. */
2593 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2594 return FALSE;
2595
2596 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2597 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2598 return TRUE;
2599
2600 /* STV_PROTECTED non-function symbols are local. */
2601 if (h->type != STT_FUNC)
2602 return TRUE;
2603
2604 /* Function pointer equality tests may require that STV_PROTECTED
2605 symbols be treated as dynamic symbols, even when we know that the
2606 dynamic linker will resolve them locally. */
2607 return local_protected;
2608 }
2609
2610 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2611 aligned. Returns the first TLS output section. */
2612
2613 struct bfd_section *
2614 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2615 {
2616 struct bfd_section *sec, *tls;
2617 unsigned int align = 0;
2618
2619 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2620 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2621 break;
2622 tls = sec;
2623
2624 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2625 if (sec->alignment_power > align)
2626 align = sec->alignment_power;
2627
2628 elf_hash_table (info)->tls_sec = tls;
2629
2630 /* Ensure the alignment of the first section is the largest alignment,
2631 so that the tls segment starts aligned. */
2632 if (tls != NULL)
2633 tls->alignment_power = align;
2634
2635 return tls;
2636 }
2637
2638 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2639 static bfd_boolean
2640 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2641 Elf_Internal_Sym *sym)
2642 {
2643 /* Local symbols do not count, but target specific ones might. */
2644 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2645 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2646 return FALSE;
2647
2648 /* Function symbols do not count. */
2649 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2650 return FALSE;
2651
2652 /* If the section is undefined, then so is the symbol. */
2653 if (sym->st_shndx == SHN_UNDEF)
2654 return FALSE;
2655
2656 /* If the symbol is defined in the common section, then
2657 it is a common definition and so does not count. */
2658 if (sym->st_shndx == SHN_COMMON)
2659 return FALSE;
2660
2661 /* If the symbol is in a target specific section then we
2662 must rely upon the backend to tell us what it is. */
2663 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2664 /* FIXME - this function is not coded yet:
2665
2666 return _bfd_is_global_symbol_definition (abfd, sym);
2667
2668 Instead for now assume that the definition is not global,
2669 Even if this is wrong, at least the linker will behave
2670 in the same way that it used to do. */
2671 return FALSE;
2672
2673 return TRUE;
2674 }
2675
2676 /* Search the symbol table of the archive element of the archive ABFD
2677 whose archive map contains a mention of SYMDEF, and determine if
2678 the symbol is defined in this element. */
2679 static bfd_boolean
2680 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2681 {
2682 Elf_Internal_Shdr * hdr;
2683 bfd_size_type symcount;
2684 bfd_size_type extsymcount;
2685 bfd_size_type extsymoff;
2686 Elf_Internal_Sym *isymbuf;
2687 Elf_Internal_Sym *isym;
2688 Elf_Internal_Sym *isymend;
2689 bfd_boolean result;
2690
2691 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2692 if (abfd == NULL)
2693 return FALSE;
2694
2695 if (! bfd_check_format (abfd, bfd_object))
2696 return FALSE;
2697
2698 /* If we have already included the element containing this symbol in the
2699 link then we do not need to include it again. Just claim that any symbol
2700 it contains is not a definition, so that our caller will not decide to
2701 (re)include this element. */
2702 if (abfd->archive_pass)
2703 return FALSE;
2704
2705 /* Select the appropriate symbol table. */
2706 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2707 hdr = &elf_tdata (abfd)->symtab_hdr;
2708 else
2709 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2710
2711 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2712
2713 /* The sh_info field of the symtab header tells us where the
2714 external symbols start. We don't care about the local symbols. */
2715 if (elf_bad_symtab (abfd))
2716 {
2717 extsymcount = symcount;
2718 extsymoff = 0;
2719 }
2720 else
2721 {
2722 extsymcount = symcount - hdr->sh_info;
2723 extsymoff = hdr->sh_info;
2724 }
2725
2726 if (extsymcount == 0)
2727 return FALSE;
2728
2729 /* Read in the symbol table. */
2730 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2731 NULL, NULL, NULL);
2732 if (isymbuf == NULL)
2733 return FALSE;
2734
2735 /* Scan the symbol table looking for SYMDEF. */
2736 result = FALSE;
2737 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2738 {
2739 const char *name;
2740
2741 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2742 isym->st_name);
2743 if (name == NULL)
2744 break;
2745
2746 if (strcmp (name, symdef->name) == 0)
2747 {
2748 result = is_global_data_symbol_definition (abfd, isym);
2749 break;
2750 }
2751 }
2752
2753 free (isymbuf);
2754
2755 return result;
2756 }
2757 \f
2758 /* Add an entry to the .dynamic table. */
2759
2760 bfd_boolean
2761 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2762 bfd_vma tag,
2763 bfd_vma val)
2764 {
2765 struct elf_link_hash_table *hash_table;
2766 const struct elf_backend_data *bed;
2767 asection *s;
2768 bfd_size_type newsize;
2769 bfd_byte *newcontents;
2770 Elf_Internal_Dyn dyn;
2771
2772 hash_table = elf_hash_table (info);
2773 if (! is_elf_hash_table (hash_table))
2774 return FALSE;
2775
2776 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2777 _bfd_error_handler
2778 (_("warning: creating a DT_TEXTREL in a shared object."));
2779
2780 bed = get_elf_backend_data (hash_table->dynobj);
2781 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2782 BFD_ASSERT (s != NULL);
2783
2784 newsize = s->size + bed->s->sizeof_dyn;
2785 newcontents = bfd_realloc (s->contents, newsize);
2786 if (newcontents == NULL)
2787 return FALSE;
2788
2789 dyn.d_tag = tag;
2790 dyn.d_un.d_val = val;
2791 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2792
2793 s->size = newsize;
2794 s->contents = newcontents;
2795
2796 return TRUE;
2797 }
2798
2799 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2800 otherwise just check whether one already exists. Returns -1 on error,
2801 1 if a DT_NEEDED tag already exists, and 0 on success. */
2802
2803 static int
2804 elf_add_dt_needed_tag (bfd *abfd,
2805 struct bfd_link_info *info,
2806 const char *soname,
2807 bfd_boolean do_it)
2808 {
2809 struct elf_link_hash_table *hash_table;
2810 bfd_size_type oldsize;
2811 bfd_size_type strindex;
2812
2813 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2814 return -1;
2815
2816 hash_table = elf_hash_table (info);
2817 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2818 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2819 if (strindex == (bfd_size_type) -1)
2820 return -1;
2821
2822 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2823 {
2824 asection *sdyn;
2825 const struct elf_backend_data *bed;
2826 bfd_byte *extdyn;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2830 if (sdyn != NULL)
2831 for (extdyn = sdyn->contents;
2832 extdyn < sdyn->contents + sdyn->size;
2833 extdyn += bed->s->sizeof_dyn)
2834 {
2835 Elf_Internal_Dyn dyn;
2836
2837 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2838 if (dyn.d_tag == DT_NEEDED
2839 && dyn.d_un.d_val == strindex)
2840 {
2841 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2842 return 1;
2843 }
2844 }
2845 }
2846
2847 if (do_it)
2848 {
2849 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2850 return -1;
2851
2852 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2853 return -1;
2854 }
2855 else
2856 /* We were just checking for existence of the tag. */
2857 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2858
2859 return 0;
2860 }
2861
2862 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2863 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2864 references from regular objects to these symbols.
2865
2866 ??? Should we do something about references from other dynamic
2867 obects? If not, we potentially lose some warnings about undefined
2868 symbols. But how can we recover the initial undefined / undefweak
2869 state? */
2870
2871 struct elf_smash_syms_data
2872 {
2873 bfd *not_needed;
2874 struct elf_link_hash_table *htab;
2875 bfd_boolean twiddled;
2876 };
2877
2878 static bfd_boolean
2879 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2880 {
2881 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2882 struct bfd_link_hash_entry *bh;
2883
2884 switch (h->root.type)
2885 {
2886 default:
2887 case bfd_link_hash_new:
2888 return TRUE;
2889
2890 case bfd_link_hash_undefined:
2891 if (h->root.u.undef.abfd != inf->not_needed)
2892 return TRUE;
2893 if (h->root.u.undef.weak != NULL
2894 && h->root.u.undef.weak != inf->not_needed)
2895 {
2896 /* Symbol was undefweak in u.undef.weak bfd, and has become
2897 undefined in as-needed lib. Restore weak. */
2898 h->root.type = bfd_link_hash_undefweak;
2899 h->root.u.undef.abfd = h->root.u.undef.weak;
2900 if (h->root.u.undef.next != NULL
2901 || inf->htab->root.undefs_tail == &h->root)
2902 inf->twiddled = TRUE;
2903 return TRUE;
2904 }
2905 break;
2906
2907 case bfd_link_hash_undefweak:
2908 if (h->root.u.undef.abfd != inf->not_needed)
2909 return TRUE;
2910 break;
2911
2912 case bfd_link_hash_defined:
2913 case bfd_link_hash_defweak:
2914 if (h->root.u.def.section->owner != inf->not_needed)
2915 return TRUE;
2916 break;
2917
2918 case bfd_link_hash_common:
2919 if (h->root.u.c.p->section->owner != inf->not_needed)
2920 return TRUE;
2921 break;
2922
2923 case bfd_link_hash_warning:
2924 case bfd_link_hash_indirect:
2925 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2926 if (h->root.u.i.link->type != bfd_link_hash_new)
2927 return TRUE;
2928 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2929 return TRUE;
2930 break;
2931 }
2932
2933 /* There is no way we can undo symbol table state from defined or
2934 defweak back to undefined. */
2935 if (h->ref_regular)
2936 abort ();
2937
2938 /* Set sym back to newly created state, but keep undef.next if it is
2939 being used as a list pointer. */
2940 bh = h->root.u.undef.next;
2941 if (bh == &h->root)
2942 bh = NULL;
2943 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2944 inf->twiddled = TRUE;
2945 (*inf->htab->root.table.newfunc) (&h->root.root,
2946 &inf->htab->root.table,
2947 h->root.root.string);
2948 h->root.u.undef.next = bh;
2949 h->root.u.undef.abfd = inf->not_needed;
2950 h->non_elf = 0;
2951 return TRUE;
2952 }
2953
2954 /* Sort symbol by value and section. */
2955 static int
2956 elf_sort_symbol (const void *arg1, const void *arg2)
2957 {
2958 const struct elf_link_hash_entry *h1;
2959 const struct elf_link_hash_entry *h2;
2960 bfd_signed_vma vdiff;
2961
2962 h1 = *(const struct elf_link_hash_entry **) arg1;
2963 h2 = *(const struct elf_link_hash_entry **) arg2;
2964 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2965 if (vdiff != 0)
2966 return vdiff > 0 ? 1 : -1;
2967 else
2968 {
2969 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2970 if (sdiff != 0)
2971 return sdiff > 0 ? 1 : -1;
2972 }
2973 return 0;
2974 }
2975
2976 /* This function is used to adjust offsets into .dynstr for
2977 dynamic symbols. This is called via elf_link_hash_traverse. */
2978
2979 static bfd_boolean
2980 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2981 {
2982 struct elf_strtab_hash *dynstr = data;
2983
2984 if (h->root.type == bfd_link_hash_warning)
2985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2986
2987 if (h->dynindx != -1)
2988 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2989 return TRUE;
2990 }
2991
2992 /* Assign string offsets in .dynstr, update all structures referencing
2993 them. */
2994
2995 static bfd_boolean
2996 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2997 {
2998 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2999 struct elf_link_local_dynamic_entry *entry;
3000 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3001 bfd *dynobj = hash_table->dynobj;
3002 asection *sdyn;
3003 bfd_size_type size;
3004 const struct elf_backend_data *bed;
3005 bfd_byte *extdyn;
3006
3007 _bfd_elf_strtab_finalize (dynstr);
3008 size = _bfd_elf_strtab_size (dynstr);
3009
3010 bed = get_elf_backend_data (dynobj);
3011 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3012 BFD_ASSERT (sdyn != NULL);
3013
3014 /* Update all .dynamic entries referencing .dynstr strings. */
3015 for (extdyn = sdyn->contents;
3016 extdyn < sdyn->contents + sdyn->size;
3017 extdyn += bed->s->sizeof_dyn)
3018 {
3019 Elf_Internal_Dyn dyn;
3020
3021 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3022 switch (dyn.d_tag)
3023 {
3024 case DT_STRSZ:
3025 dyn.d_un.d_val = size;
3026 break;
3027 case DT_NEEDED:
3028 case DT_SONAME:
3029 case DT_RPATH:
3030 case DT_RUNPATH:
3031 case DT_FILTER:
3032 case DT_AUXILIARY:
3033 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3034 break;
3035 default:
3036 continue;
3037 }
3038 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3039 }
3040
3041 /* Now update local dynamic symbols. */
3042 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3043 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3044 entry->isym.st_name);
3045
3046 /* And the rest of dynamic symbols. */
3047 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3048
3049 /* Adjust version definitions. */
3050 if (elf_tdata (output_bfd)->cverdefs)
3051 {
3052 asection *s;
3053 bfd_byte *p;
3054 bfd_size_type i;
3055 Elf_Internal_Verdef def;
3056 Elf_Internal_Verdaux defaux;
3057
3058 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3059 p = s->contents;
3060 do
3061 {
3062 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3063 &def);
3064 p += sizeof (Elf_External_Verdef);
3065 if (def.vd_aux != sizeof (Elf_External_Verdef))
3066 continue;
3067 for (i = 0; i < def.vd_cnt; ++i)
3068 {
3069 _bfd_elf_swap_verdaux_in (output_bfd,
3070 (Elf_External_Verdaux *) p, &defaux);
3071 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3072 defaux.vda_name);
3073 _bfd_elf_swap_verdaux_out (output_bfd,
3074 &defaux, (Elf_External_Verdaux *) p);
3075 p += sizeof (Elf_External_Verdaux);
3076 }
3077 }
3078 while (def.vd_next);
3079 }
3080
3081 /* Adjust version references. */
3082 if (elf_tdata (output_bfd)->verref)
3083 {
3084 asection *s;
3085 bfd_byte *p;
3086 bfd_size_type i;
3087 Elf_Internal_Verneed need;
3088 Elf_Internal_Vernaux needaux;
3089
3090 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3091 p = s->contents;
3092 do
3093 {
3094 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3095 &need);
3096 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3097 _bfd_elf_swap_verneed_out (output_bfd, &need,
3098 (Elf_External_Verneed *) p);
3099 p += sizeof (Elf_External_Verneed);
3100 for (i = 0; i < need.vn_cnt; ++i)
3101 {
3102 _bfd_elf_swap_vernaux_in (output_bfd,
3103 (Elf_External_Vernaux *) p, &needaux);
3104 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3105 needaux.vna_name);
3106 _bfd_elf_swap_vernaux_out (output_bfd,
3107 &needaux,
3108 (Elf_External_Vernaux *) p);
3109 p += sizeof (Elf_External_Vernaux);
3110 }
3111 }
3112 while (need.vn_next);
3113 }
3114
3115 return TRUE;
3116 }
3117 \f
3118 /* Add symbols from an ELF object file to the linker hash table. */
3119
3120 static bfd_boolean
3121 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3122 {
3123 bfd_boolean (*add_symbol_hook)
3124 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3125 const char **, flagword *, asection **, bfd_vma *);
3126 bfd_boolean (*check_relocs)
3127 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3128 bfd_boolean (*check_directives)
3129 (bfd *, struct bfd_link_info *);
3130 bfd_boolean collect;
3131 Elf_Internal_Shdr *hdr;
3132 bfd_size_type symcount;
3133 bfd_size_type extsymcount;
3134 bfd_size_type extsymoff;
3135 struct elf_link_hash_entry **sym_hash;
3136 bfd_boolean dynamic;
3137 Elf_External_Versym *extversym = NULL;
3138 Elf_External_Versym *ever;
3139 struct elf_link_hash_entry *weaks;
3140 struct elf_link_hash_entry **nondeflt_vers = NULL;
3141 bfd_size_type nondeflt_vers_cnt = 0;
3142 Elf_Internal_Sym *isymbuf = NULL;
3143 Elf_Internal_Sym *isym;
3144 Elf_Internal_Sym *isymend;
3145 const struct elf_backend_data *bed;
3146 bfd_boolean add_needed;
3147 struct elf_link_hash_table * hash_table;
3148 bfd_size_type amt;
3149
3150 hash_table = elf_hash_table (info);
3151
3152 bed = get_elf_backend_data (abfd);
3153 add_symbol_hook = bed->elf_add_symbol_hook;
3154 collect = bed->collect;
3155
3156 if ((abfd->flags & DYNAMIC) == 0)
3157 dynamic = FALSE;
3158 else
3159 {
3160 dynamic = TRUE;
3161
3162 /* You can't use -r against a dynamic object. Also, there's no
3163 hope of using a dynamic object which does not exactly match
3164 the format of the output file. */
3165 if (info->relocatable
3166 || !is_elf_hash_table (hash_table)
3167 || hash_table->root.creator != abfd->xvec)
3168 {
3169 if (info->relocatable)
3170 bfd_set_error (bfd_error_invalid_operation);
3171 else
3172 bfd_set_error (bfd_error_wrong_format);
3173 goto error_return;
3174 }
3175 }
3176
3177 /* As a GNU extension, any input sections which are named
3178 .gnu.warning.SYMBOL are treated as warning symbols for the given
3179 symbol. This differs from .gnu.warning sections, which generate
3180 warnings when they are included in an output file. */
3181 if (info->executable)
3182 {
3183 asection *s;
3184
3185 for (s = abfd->sections; s != NULL; s = s->next)
3186 {
3187 const char *name;
3188
3189 name = bfd_get_section_name (abfd, s);
3190 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3191 {
3192 char *msg;
3193 bfd_size_type sz;
3194
3195 name += sizeof ".gnu.warning." - 1;
3196
3197 /* If this is a shared object, then look up the symbol
3198 in the hash table. If it is there, and it is already
3199 been defined, then we will not be using the entry
3200 from this shared object, so we don't need to warn.
3201 FIXME: If we see the definition in a regular object
3202 later on, we will warn, but we shouldn't. The only
3203 fix is to keep track of what warnings we are supposed
3204 to emit, and then handle them all at the end of the
3205 link. */
3206 if (dynamic)
3207 {
3208 struct elf_link_hash_entry *h;
3209
3210 h = elf_link_hash_lookup (hash_table, name,
3211 FALSE, FALSE, TRUE);
3212
3213 /* FIXME: What about bfd_link_hash_common? */
3214 if (h != NULL
3215 && (h->root.type == bfd_link_hash_defined
3216 || h->root.type == bfd_link_hash_defweak))
3217 {
3218 /* We don't want to issue this warning. Clobber
3219 the section size so that the warning does not
3220 get copied into the output file. */
3221 s->size = 0;
3222 continue;
3223 }
3224 }
3225
3226 sz = s->size;
3227 msg = bfd_alloc (abfd, sz + 1);
3228 if (msg == NULL)
3229 goto error_return;
3230
3231 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3232 goto error_return;
3233
3234 msg[sz] = '\0';
3235
3236 if (! (_bfd_generic_link_add_one_symbol
3237 (info, abfd, name, BSF_WARNING, s, 0, msg,
3238 FALSE, collect, NULL)))
3239 goto error_return;
3240
3241 if (! info->relocatable)
3242 {
3243 /* Clobber the section size so that the warning does
3244 not get copied into the output file. */
3245 s->size = 0;
3246
3247 /* Also set SEC_EXCLUDE, so that symbols defined in
3248 the warning section don't get copied to the output. */
3249 s->flags |= SEC_EXCLUDE;
3250 }
3251 }
3252 }
3253 }
3254
3255 add_needed = TRUE;
3256 if (! dynamic)
3257 {
3258 /* If we are creating a shared library, create all the dynamic
3259 sections immediately. We need to attach them to something,
3260 so we attach them to this BFD, provided it is the right
3261 format. FIXME: If there are no input BFD's of the same
3262 format as the output, we can't make a shared library. */
3263 if (info->shared
3264 && is_elf_hash_table (hash_table)
3265 && hash_table->root.creator == abfd->xvec
3266 && ! hash_table->dynamic_sections_created)
3267 {
3268 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3269 goto error_return;
3270 }
3271 }
3272 else if (!is_elf_hash_table (hash_table))
3273 goto error_return;
3274 else
3275 {
3276 asection *s;
3277 const char *soname = NULL;
3278 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3279 int ret;
3280
3281 /* ld --just-symbols and dynamic objects don't mix very well.
3282 Test for --just-symbols by looking at info set up by
3283 _bfd_elf_link_just_syms. */
3284 if ((s = abfd->sections) != NULL
3285 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3286 goto error_return;
3287
3288 /* If this dynamic lib was specified on the command line with
3289 --as-needed in effect, then we don't want to add a DT_NEEDED
3290 tag unless the lib is actually used. Similary for libs brought
3291 in by another lib's DT_NEEDED. When --no-add-needed is used
3292 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3293 any dynamic library in DT_NEEDED tags in the dynamic lib at
3294 all. */
3295 add_needed = (elf_dyn_lib_class (abfd)
3296 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3297 | DYN_NO_NEEDED)) == 0;
3298
3299 s = bfd_get_section_by_name (abfd, ".dynamic");
3300 if (s != NULL)
3301 {
3302 bfd_byte *dynbuf;
3303 bfd_byte *extdyn;
3304 int elfsec;
3305 unsigned long shlink;
3306
3307 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3308 goto error_free_dyn;
3309
3310 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3311 if (elfsec == -1)
3312 goto error_free_dyn;
3313 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3314
3315 for (extdyn = dynbuf;
3316 extdyn < dynbuf + s->size;
3317 extdyn += bed->s->sizeof_dyn)
3318 {
3319 Elf_Internal_Dyn dyn;
3320
3321 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3322 if (dyn.d_tag == DT_SONAME)
3323 {
3324 unsigned int tagv = dyn.d_un.d_val;
3325 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3326 if (soname == NULL)
3327 goto error_free_dyn;
3328 }
3329 if (dyn.d_tag == DT_NEEDED)
3330 {
3331 struct bfd_link_needed_list *n, **pn;
3332 char *fnm, *anm;
3333 unsigned int tagv = dyn.d_un.d_val;
3334
3335 amt = sizeof (struct bfd_link_needed_list);
3336 n = bfd_alloc (abfd, amt);
3337 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3338 if (n == NULL || fnm == NULL)
3339 goto error_free_dyn;
3340 amt = strlen (fnm) + 1;
3341 anm = bfd_alloc (abfd, amt);
3342 if (anm == NULL)
3343 goto error_free_dyn;
3344 memcpy (anm, fnm, amt);
3345 n->name = anm;
3346 n->by = abfd;
3347 n->next = NULL;
3348 for (pn = & hash_table->needed;
3349 *pn != NULL;
3350 pn = &(*pn)->next)
3351 ;
3352 *pn = n;
3353 }
3354 if (dyn.d_tag == DT_RUNPATH)
3355 {
3356 struct bfd_link_needed_list *n, **pn;
3357 char *fnm, *anm;
3358 unsigned int tagv = dyn.d_un.d_val;
3359
3360 amt = sizeof (struct bfd_link_needed_list);
3361 n = bfd_alloc (abfd, amt);
3362 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3363 if (n == NULL || fnm == NULL)
3364 goto error_free_dyn;
3365 amt = strlen (fnm) + 1;
3366 anm = bfd_alloc (abfd, amt);
3367 if (anm == NULL)
3368 goto error_free_dyn;
3369 memcpy (anm, fnm, amt);
3370 n->name = anm;
3371 n->by = abfd;
3372 n->next = NULL;
3373 for (pn = & runpath;
3374 *pn != NULL;
3375 pn = &(*pn)->next)
3376 ;
3377 *pn = n;
3378 }
3379 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3380 if (!runpath && dyn.d_tag == DT_RPATH)
3381 {
3382 struct bfd_link_needed_list *n, **pn;
3383 char *fnm, *anm;
3384 unsigned int tagv = dyn.d_un.d_val;
3385
3386 amt = sizeof (struct bfd_link_needed_list);
3387 n = bfd_alloc (abfd, amt);
3388 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3389 if (n == NULL || fnm == NULL)
3390 goto error_free_dyn;
3391 amt = strlen (fnm) + 1;
3392 anm = bfd_alloc (abfd, amt);
3393 if (anm == NULL)
3394 {
3395 error_free_dyn:
3396 free (dynbuf);
3397 goto error_return;
3398 }
3399 memcpy (anm, fnm, amt);
3400 n->name = anm;
3401 n->by = abfd;
3402 n->next = NULL;
3403 for (pn = & rpath;
3404 *pn != NULL;
3405 pn = &(*pn)->next)
3406 ;
3407 *pn = n;
3408 }
3409 }
3410
3411 free (dynbuf);
3412 }
3413
3414 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3415 frees all more recently bfd_alloc'd blocks as well. */
3416 if (runpath)
3417 rpath = runpath;
3418
3419 if (rpath)
3420 {
3421 struct bfd_link_needed_list **pn;
3422 for (pn = & hash_table->runpath;
3423 *pn != NULL;
3424 pn = &(*pn)->next)
3425 ;
3426 *pn = rpath;
3427 }
3428
3429 /* We do not want to include any of the sections in a dynamic
3430 object in the output file. We hack by simply clobbering the
3431 list of sections in the BFD. This could be handled more
3432 cleanly by, say, a new section flag; the existing
3433 SEC_NEVER_LOAD flag is not the one we want, because that one
3434 still implies that the section takes up space in the output
3435 file. */
3436 bfd_section_list_clear (abfd);
3437
3438 /* Find the name to use in a DT_NEEDED entry that refers to this
3439 object. If the object has a DT_SONAME entry, we use it.
3440 Otherwise, if the generic linker stuck something in
3441 elf_dt_name, we use that. Otherwise, we just use the file
3442 name. */
3443 if (soname == NULL || *soname == '\0')
3444 {
3445 soname = elf_dt_name (abfd);
3446 if (soname == NULL || *soname == '\0')
3447 soname = bfd_get_filename (abfd);
3448 }
3449
3450 /* Save the SONAME because sometimes the linker emulation code
3451 will need to know it. */
3452 elf_dt_name (abfd) = soname;
3453
3454 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3455 if (ret < 0)
3456 goto error_return;
3457
3458 /* If we have already included this dynamic object in the
3459 link, just ignore it. There is no reason to include a
3460 particular dynamic object more than once. */
3461 if (ret > 0)
3462 return TRUE;
3463 }
3464
3465 /* If this is a dynamic object, we always link against the .dynsym
3466 symbol table, not the .symtab symbol table. The dynamic linker
3467 will only see the .dynsym symbol table, so there is no reason to
3468 look at .symtab for a dynamic object. */
3469
3470 if (! dynamic || elf_dynsymtab (abfd) == 0)
3471 hdr = &elf_tdata (abfd)->symtab_hdr;
3472 else
3473 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3474
3475 symcount = hdr->sh_size / bed->s->sizeof_sym;
3476
3477 /* The sh_info field of the symtab header tells us where the
3478 external symbols start. We don't care about the local symbols at
3479 this point. */
3480 if (elf_bad_symtab (abfd))
3481 {
3482 extsymcount = symcount;
3483 extsymoff = 0;
3484 }
3485 else
3486 {
3487 extsymcount = symcount - hdr->sh_info;
3488 extsymoff = hdr->sh_info;
3489 }
3490
3491 sym_hash = NULL;
3492 if (extsymcount != 0)
3493 {
3494 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3495 NULL, NULL, NULL);
3496 if (isymbuf == NULL)
3497 goto error_return;
3498
3499 /* We store a pointer to the hash table entry for each external
3500 symbol. */
3501 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3502 sym_hash = bfd_alloc (abfd, amt);
3503 if (sym_hash == NULL)
3504 goto error_free_sym;
3505 elf_sym_hashes (abfd) = sym_hash;
3506 }
3507
3508 if (dynamic)
3509 {
3510 /* Read in any version definitions. */
3511 if (!_bfd_elf_slurp_version_tables (abfd,
3512 info->default_imported_symver))
3513 goto error_free_sym;
3514
3515 /* Read in the symbol versions, but don't bother to convert them
3516 to internal format. */
3517 if (elf_dynversym (abfd) != 0)
3518 {
3519 Elf_Internal_Shdr *versymhdr;
3520
3521 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3522 extversym = bfd_malloc (versymhdr->sh_size);
3523 if (extversym == NULL)
3524 goto error_free_sym;
3525 amt = versymhdr->sh_size;
3526 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3527 || bfd_bread (extversym, amt, abfd) != amt)
3528 goto error_free_vers;
3529 }
3530 }
3531
3532 weaks = NULL;
3533
3534 ever = extversym != NULL ? extversym + extsymoff : NULL;
3535 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3536 isym < isymend;
3537 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3538 {
3539 int bind;
3540 bfd_vma value;
3541 asection *sec, *new_sec;
3542 flagword flags;
3543 const char *name;
3544 struct elf_link_hash_entry *h;
3545 bfd_boolean definition;
3546 bfd_boolean size_change_ok;
3547 bfd_boolean type_change_ok;
3548 bfd_boolean new_weakdef;
3549 bfd_boolean override;
3550 unsigned int old_alignment;
3551 bfd *old_bfd;
3552
3553 override = FALSE;
3554
3555 flags = BSF_NO_FLAGS;
3556 sec = NULL;
3557 value = isym->st_value;
3558 *sym_hash = NULL;
3559
3560 bind = ELF_ST_BIND (isym->st_info);
3561 if (bind == STB_LOCAL)
3562 {
3563 /* This should be impossible, since ELF requires that all
3564 global symbols follow all local symbols, and that sh_info
3565 point to the first global symbol. Unfortunately, Irix 5
3566 screws this up. */
3567 continue;
3568 }
3569 else if (bind == STB_GLOBAL)
3570 {
3571 if (isym->st_shndx != SHN_UNDEF
3572 && isym->st_shndx != SHN_COMMON)
3573 flags = BSF_GLOBAL;
3574 }
3575 else if (bind == STB_WEAK)
3576 flags = BSF_WEAK;
3577 else
3578 {
3579 /* Leave it up to the processor backend. */
3580 }
3581
3582 if (isym->st_shndx == SHN_UNDEF)
3583 sec = bfd_und_section_ptr;
3584 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3585 {
3586 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3587 if (sec == NULL)
3588 sec = bfd_abs_section_ptr;
3589 else if (sec->kept_section)
3590 {
3591 /* Symbols from discarded section are undefined, and have
3592 default visibility. */
3593 sec = bfd_und_section_ptr;
3594 isym->st_shndx = SHN_UNDEF;
3595 isym->st_other = STV_DEFAULT
3596 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3597 }
3598 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3599 value -= sec->vma;
3600 }
3601 else if (isym->st_shndx == SHN_ABS)
3602 sec = bfd_abs_section_ptr;
3603 else if (isym->st_shndx == SHN_COMMON)
3604 {
3605 sec = bfd_com_section_ptr;
3606 /* What ELF calls the size we call the value. What ELF
3607 calls the value we call the alignment. */
3608 value = isym->st_size;
3609 }
3610 else
3611 {
3612 /* Leave it up to the processor backend. */
3613 }
3614
3615 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3616 isym->st_name);
3617 if (name == NULL)
3618 goto error_free_vers;
3619
3620 if (isym->st_shndx == SHN_COMMON
3621 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3622 {
3623 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3624
3625 if (tcomm == NULL)
3626 {
3627 tcomm = bfd_make_section (abfd, ".tcommon");
3628 if (tcomm == NULL
3629 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3630 | SEC_IS_COMMON
3631 | SEC_LINKER_CREATED
3632 | SEC_THREAD_LOCAL)))
3633 goto error_free_vers;
3634 }
3635 sec = tcomm;
3636 }
3637 else if (add_symbol_hook)
3638 {
3639 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3640 &value))
3641 goto error_free_vers;
3642
3643 /* The hook function sets the name to NULL if this symbol
3644 should be skipped for some reason. */
3645 if (name == NULL)
3646 continue;
3647 }
3648
3649 /* Sanity check that all possibilities were handled. */
3650 if (sec == NULL)
3651 {
3652 bfd_set_error (bfd_error_bad_value);
3653 goto error_free_vers;
3654 }
3655
3656 if (bfd_is_und_section (sec)
3657 || bfd_is_com_section (sec))
3658 definition = FALSE;
3659 else
3660 definition = TRUE;
3661
3662 size_change_ok = FALSE;
3663 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3664 old_alignment = 0;
3665 old_bfd = NULL;
3666 new_sec = sec;
3667
3668 if (is_elf_hash_table (hash_table))
3669 {
3670 Elf_Internal_Versym iver;
3671 unsigned int vernum = 0;
3672 bfd_boolean skip;
3673
3674 if (ever == NULL)
3675 {
3676 if (info->default_imported_symver)
3677 /* Use the default symbol version created earlier. */
3678 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3679 else
3680 iver.vs_vers = 0;
3681 }
3682 else
3683 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3684
3685 vernum = iver.vs_vers & VERSYM_VERSION;
3686
3687 /* If this is a hidden symbol, or if it is not version
3688 1, we append the version name to the symbol name.
3689 However, we do not modify a non-hidden absolute
3690 symbol, because it might be the version symbol
3691 itself. FIXME: What if it isn't? */
3692 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3693 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3694 {
3695 const char *verstr;
3696 size_t namelen, verlen, newlen;
3697 char *newname, *p;
3698
3699 if (isym->st_shndx != SHN_UNDEF)
3700 {
3701 if (vernum > elf_tdata (abfd)->cverdefs)
3702 verstr = NULL;
3703 else if (vernum > 1)
3704 verstr =
3705 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3706 else
3707 verstr = "";
3708
3709 if (verstr == NULL)
3710 {
3711 (*_bfd_error_handler)
3712 (_("%B: %s: invalid version %u (max %d)"),
3713 abfd, name, vernum,
3714 elf_tdata (abfd)->cverdefs);
3715 bfd_set_error (bfd_error_bad_value);
3716 goto error_free_vers;
3717 }
3718 }
3719 else
3720 {
3721 /* We cannot simply test for the number of
3722 entries in the VERNEED section since the
3723 numbers for the needed versions do not start
3724 at 0. */
3725 Elf_Internal_Verneed *t;
3726
3727 verstr = NULL;
3728 for (t = elf_tdata (abfd)->verref;
3729 t != NULL;
3730 t = t->vn_nextref)
3731 {
3732 Elf_Internal_Vernaux *a;
3733
3734 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3735 {
3736 if (a->vna_other == vernum)
3737 {
3738 verstr = a->vna_nodename;
3739 break;
3740 }
3741 }
3742 if (a != NULL)
3743 break;
3744 }
3745 if (verstr == NULL)
3746 {
3747 (*_bfd_error_handler)
3748 (_("%B: %s: invalid needed version %d"),
3749 abfd, name, vernum);
3750 bfd_set_error (bfd_error_bad_value);
3751 goto error_free_vers;
3752 }
3753 }
3754
3755 namelen = strlen (name);
3756 verlen = strlen (verstr);
3757 newlen = namelen + verlen + 2;
3758 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3759 && isym->st_shndx != SHN_UNDEF)
3760 ++newlen;
3761
3762 newname = bfd_alloc (abfd, newlen);
3763 if (newname == NULL)
3764 goto error_free_vers;
3765 memcpy (newname, name, namelen);
3766 p = newname + namelen;
3767 *p++ = ELF_VER_CHR;
3768 /* If this is a defined non-hidden version symbol,
3769 we add another @ to the name. This indicates the
3770 default version of the symbol. */
3771 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3772 && isym->st_shndx != SHN_UNDEF)
3773 *p++ = ELF_VER_CHR;
3774 memcpy (p, verstr, verlen + 1);
3775
3776 name = newname;
3777 }
3778
3779 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3780 &value, &old_alignment,
3781 sym_hash, &skip, &override,
3782 &type_change_ok, &size_change_ok))
3783 goto error_free_vers;
3784
3785 if (skip)
3786 continue;
3787
3788 if (override)
3789 definition = FALSE;
3790
3791 h = *sym_hash;
3792 while (h->root.type == bfd_link_hash_indirect
3793 || h->root.type == bfd_link_hash_warning)
3794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3795
3796 /* Remember the old alignment if this is a common symbol, so
3797 that we don't reduce the alignment later on. We can't
3798 check later, because _bfd_generic_link_add_one_symbol
3799 will set a default for the alignment which we want to
3800 override. We also remember the old bfd where the existing
3801 definition comes from. */
3802 switch (h->root.type)
3803 {
3804 default:
3805 break;
3806
3807 case bfd_link_hash_defined:
3808 case bfd_link_hash_defweak:
3809 old_bfd = h->root.u.def.section->owner;
3810 break;
3811
3812 case bfd_link_hash_common:
3813 old_bfd = h->root.u.c.p->section->owner;
3814 old_alignment = h->root.u.c.p->alignment_power;
3815 break;
3816 }
3817
3818 if (elf_tdata (abfd)->verdef != NULL
3819 && ! override
3820 && vernum > 1
3821 && definition)
3822 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3823 }
3824
3825 if (! (_bfd_generic_link_add_one_symbol
3826 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3827 (struct bfd_link_hash_entry **) sym_hash)))
3828 goto error_free_vers;
3829
3830 h = *sym_hash;
3831 while (h->root.type == bfd_link_hash_indirect
3832 || h->root.type == bfd_link_hash_warning)
3833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3834 *sym_hash = h;
3835
3836 new_weakdef = FALSE;
3837 if (dynamic
3838 && definition
3839 && (flags & BSF_WEAK) != 0
3840 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3841 && is_elf_hash_table (hash_table)
3842 && h->u.weakdef == NULL)
3843 {
3844 /* Keep a list of all weak defined non function symbols from
3845 a dynamic object, using the weakdef field. Later in this
3846 function we will set the weakdef field to the correct
3847 value. We only put non-function symbols from dynamic
3848 objects on this list, because that happens to be the only
3849 time we need to know the normal symbol corresponding to a
3850 weak symbol, and the information is time consuming to
3851 figure out. If the weakdef field is not already NULL,
3852 then this symbol was already defined by some previous
3853 dynamic object, and we will be using that previous
3854 definition anyhow. */
3855
3856 h->u.weakdef = weaks;
3857 weaks = h;
3858 new_weakdef = TRUE;
3859 }
3860
3861 /* Set the alignment of a common symbol. */
3862 if ((isym->st_shndx == SHN_COMMON
3863 || bfd_is_com_section (sec))
3864 && h->root.type == bfd_link_hash_common)
3865 {
3866 unsigned int align;
3867
3868 if (isym->st_shndx == SHN_COMMON)
3869 align = bfd_log2 (isym->st_value);
3870 else
3871 {
3872 /* The new symbol is a common symbol in a shared object.
3873 We need to get the alignment from the section. */
3874 align = new_sec->alignment_power;
3875 }
3876 if (align > old_alignment
3877 /* Permit an alignment power of zero if an alignment of one
3878 is specified and no other alignments have been specified. */
3879 || (isym->st_value == 1 && old_alignment == 0))
3880 h->root.u.c.p->alignment_power = align;
3881 else
3882 h->root.u.c.p->alignment_power = old_alignment;
3883 }
3884
3885 if (is_elf_hash_table (hash_table))
3886 {
3887 bfd_boolean dynsym;
3888
3889 /* Check the alignment when a common symbol is involved. This
3890 can change when a common symbol is overridden by a normal
3891 definition or a common symbol is ignored due to the old
3892 normal definition. We need to make sure the maximum
3893 alignment is maintained. */
3894 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3895 && h->root.type != bfd_link_hash_common)
3896 {
3897 unsigned int common_align;
3898 unsigned int normal_align;
3899 unsigned int symbol_align;
3900 bfd *normal_bfd;
3901 bfd *common_bfd;
3902
3903 symbol_align = ffs (h->root.u.def.value) - 1;
3904 if (h->root.u.def.section->owner != NULL
3905 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3906 {
3907 normal_align = h->root.u.def.section->alignment_power;
3908 if (normal_align > symbol_align)
3909 normal_align = symbol_align;
3910 }
3911 else
3912 normal_align = symbol_align;
3913
3914 if (old_alignment)
3915 {
3916 common_align = old_alignment;
3917 common_bfd = old_bfd;
3918 normal_bfd = abfd;
3919 }
3920 else
3921 {
3922 common_align = bfd_log2 (isym->st_value);
3923 common_bfd = abfd;
3924 normal_bfd = old_bfd;
3925 }
3926
3927 if (normal_align < common_align)
3928 (*_bfd_error_handler)
3929 (_("Warning: alignment %u of symbol `%s' in %B"
3930 " is smaller than %u in %B"),
3931 normal_bfd, common_bfd,
3932 1 << normal_align, name, 1 << common_align);
3933 }
3934
3935 /* Remember the symbol size and type. */
3936 if (isym->st_size != 0
3937 && (definition || h->size == 0))
3938 {
3939 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3940 (*_bfd_error_handler)
3941 (_("Warning: size of symbol `%s' changed"
3942 " from %lu in %B to %lu in %B"),
3943 old_bfd, abfd,
3944 name, (unsigned long) h->size,
3945 (unsigned long) isym->st_size);
3946
3947 h->size = isym->st_size;
3948 }
3949
3950 /* If this is a common symbol, then we always want H->SIZE
3951 to be the size of the common symbol. The code just above
3952 won't fix the size if a common symbol becomes larger. We
3953 don't warn about a size change here, because that is
3954 covered by --warn-common. */
3955 if (h->root.type == bfd_link_hash_common)
3956 h->size = h->root.u.c.size;
3957
3958 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3959 && (definition || h->type == STT_NOTYPE))
3960 {
3961 if (h->type != STT_NOTYPE
3962 && h->type != ELF_ST_TYPE (isym->st_info)
3963 && ! type_change_ok)
3964 (*_bfd_error_handler)
3965 (_("Warning: type of symbol `%s' changed"
3966 " from %d to %d in %B"),
3967 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3968
3969 h->type = ELF_ST_TYPE (isym->st_info);
3970 }
3971
3972 /* If st_other has a processor-specific meaning, specific
3973 code might be needed here. We never merge the visibility
3974 attribute with the one from a dynamic object. */
3975 if (bed->elf_backend_merge_symbol_attribute)
3976 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3977 dynamic);
3978
3979 /* If this symbol has default visibility and the user has requested
3980 we not re-export it, then mark it as hidden. */
3981 if (definition && !dynamic
3982 && (abfd->no_export
3983 || (abfd->my_archive && abfd->my_archive->no_export))
3984 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3985 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3986
3987 if (isym->st_other != 0 && !dynamic)
3988 {
3989 unsigned char hvis, symvis, other, nvis;
3990
3991 /* Take the balance of OTHER from the definition. */
3992 other = (definition ? isym->st_other : h->other);
3993 other &= ~ ELF_ST_VISIBILITY (-1);
3994
3995 /* Combine visibilities, using the most constraining one. */
3996 hvis = ELF_ST_VISIBILITY (h->other);
3997 symvis = ELF_ST_VISIBILITY (isym->st_other);
3998 if (! hvis)
3999 nvis = symvis;
4000 else if (! symvis)
4001 nvis = hvis;
4002 else
4003 nvis = hvis < symvis ? hvis : symvis;
4004
4005 h->other = other | nvis;
4006 }
4007
4008 /* Set a flag in the hash table entry indicating the type of
4009 reference or definition we just found. Keep a count of
4010 the number of dynamic symbols we find. A dynamic symbol
4011 is one which is referenced or defined by both a regular
4012 object and a shared object. */
4013 dynsym = FALSE;
4014 if (! dynamic)
4015 {
4016 if (! definition)
4017 {
4018 h->ref_regular = 1;
4019 if (bind != STB_WEAK)
4020 h->ref_regular_nonweak = 1;
4021 }
4022 else
4023 h->def_regular = 1;
4024 if (! info->executable
4025 || h->def_dynamic
4026 || h->ref_dynamic)
4027 dynsym = TRUE;
4028 }
4029 else
4030 {
4031 if (! definition)
4032 h->ref_dynamic = 1;
4033 else
4034 h->def_dynamic = 1;
4035 if (h->def_regular
4036 || h->ref_regular
4037 || (h->u.weakdef != NULL
4038 && ! new_weakdef
4039 && h->u.weakdef->dynindx != -1))
4040 dynsym = TRUE;
4041 }
4042
4043 /* Check to see if we need to add an indirect symbol for
4044 the default name. */
4045 if (definition || h->root.type == bfd_link_hash_common)
4046 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4047 &sec, &value, &dynsym,
4048 override))
4049 goto error_free_vers;
4050
4051 if (definition && !dynamic)
4052 {
4053 char *p = strchr (name, ELF_VER_CHR);
4054 if (p != NULL && p[1] != ELF_VER_CHR)
4055 {
4056 /* Queue non-default versions so that .symver x, x@FOO
4057 aliases can be checked. */
4058 if (! nondeflt_vers)
4059 {
4060 amt = (isymend - isym + 1)
4061 * sizeof (struct elf_link_hash_entry *);
4062 nondeflt_vers = bfd_malloc (amt);
4063 }
4064 nondeflt_vers [nondeflt_vers_cnt++] = h;
4065 }
4066 }
4067
4068 if (dynsym && h->dynindx == -1)
4069 {
4070 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4071 goto error_free_vers;
4072 if (h->u.weakdef != NULL
4073 && ! new_weakdef
4074 && h->u.weakdef->dynindx == -1)
4075 {
4076 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4077 goto error_free_vers;
4078 }
4079 }
4080 else if (dynsym && h->dynindx != -1)
4081 /* If the symbol already has a dynamic index, but
4082 visibility says it should not be visible, turn it into
4083 a local symbol. */
4084 switch (ELF_ST_VISIBILITY (h->other))
4085 {
4086 case STV_INTERNAL:
4087 case STV_HIDDEN:
4088 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4089 dynsym = FALSE;
4090 break;
4091 }
4092
4093 if (!add_needed
4094 && definition
4095 && dynsym
4096 && h->ref_regular)
4097 {
4098 int ret;
4099 const char *soname = elf_dt_name (abfd);
4100
4101 /* A symbol from a library loaded via DT_NEEDED of some
4102 other library is referenced by a regular object.
4103 Add a DT_NEEDED entry for it. Issue an error if
4104 --no-add-needed is used. */
4105 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4106 {
4107 (*_bfd_error_handler)
4108 (_("%s: invalid DSO for symbol `%s' definition"),
4109 abfd, name);
4110 bfd_set_error (bfd_error_bad_value);
4111 goto error_free_vers;
4112 }
4113
4114 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4115
4116 add_needed = TRUE;
4117 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4118 if (ret < 0)
4119 goto error_free_vers;
4120
4121 BFD_ASSERT (ret == 0);
4122 }
4123 }
4124 }
4125
4126 /* Now that all the symbols from this input file are created, handle
4127 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4128 if (nondeflt_vers != NULL)
4129 {
4130 bfd_size_type cnt, symidx;
4131
4132 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4133 {
4134 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4135 char *shortname, *p;
4136
4137 p = strchr (h->root.root.string, ELF_VER_CHR);
4138 if (p == NULL
4139 || (h->root.type != bfd_link_hash_defined
4140 && h->root.type != bfd_link_hash_defweak))
4141 continue;
4142
4143 amt = p - h->root.root.string;
4144 shortname = bfd_malloc (amt + 1);
4145 memcpy (shortname, h->root.root.string, amt);
4146 shortname[amt] = '\0';
4147
4148 hi = (struct elf_link_hash_entry *)
4149 bfd_link_hash_lookup (&hash_table->root, shortname,
4150 FALSE, FALSE, FALSE);
4151 if (hi != NULL
4152 && hi->root.type == h->root.type
4153 && hi->root.u.def.value == h->root.u.def.value
4154 && hi->root.u.def.section == h->root.u.def.section)
4155 {
4156 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4157 hi->root.type = bfd_link_hash_indirect;
4158 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4159 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4160 sym_hash = elf_sym_hashes (abfd);
4161 if (sym_hash)
4162 for (symidx = 0; symidx < extsymcount; ++symidx)
4163 if (sym_hash[symidx] == hi)
4164 {
4165 sym_hash[symidx] = h;
4166 break;
4167 }
4168 }
4169 free (shortname);
4170 }
4171 free (nondeflt_vers);
4172 nondeflt_vers = NULL;
4173 }
4174
4175 if (extversym != NULL)
4176 {
4177 free (extversym);
4178 extversym = NULL;
4179 }
4180
4181 if (isymbuf != NULL)
4182 free (isymbuf);
4183 isymbuf = NULL;
4184
4185 if (!add_needed
4186 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4187 {
4188 /* Remove symbols defined in an as-needed shared lib that wasn't
4189 needed. */
4190 struct elf_smash_syms_data inf;
4191 inf.not_needed = abfd;
4192 inf.htab = hash_table;
4193 inf.twiddled = FALSE;
4194 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4195 if (inf.twiddled)
4196 bfd_link_repair_undef_list (&hash_table->root);
4197 weaks = NULL;
4198 }
4199
4200 /* Now set the weakdefs field correctly for all the weak defined
4201 symbols we found. The only way to do this is to search all the
4202 symbols. Since we only need the information for non functions in
4203 dynamic objects, that's the only time we actually put anything on
4204 the list WEAKS. We need this information so that if a regular
4205 object refers to a symbol defined weakly in a dynamic object, the
4206 real symbol in the dynamic object is also put in the dynamic
4207 symbols; we also must arrange for both symbols to point to the
4208 same memory location. We could handle the general case of symbol
4209 aliasing, but a general symbol alias can only be generated in
4210 assembler code, handling it correctly would be very time
4211 consuming, and other ELF linkers don't handle general aliasing
4212 either. */
4213 if (weaks != NULL)
4214 {
4215 struct elf_link_hash_entry **hpp;
4216 struct elf_link_hash_entry **hppend;
4217 struct elf_link_hash_entry **sorted_sym_hash;
4218 struct elf_link_hash_entry *h;
4219 size_t sym_count;
4220
4221 /* Since we have to search the whole symbol list for each weak
4222 defined symbol, search time for N weak defined symbols will be
4223 O(N^2). Binary search will cut it down to O(NlogN). */
4224 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4225 sorted_sym_hash = bfd_malloc (amt);
4226 if (sorted_sym_hash == NULL)
4227 goto error_return;
4228 sym_hash = sorted_sym_hash;
4229 hpp = elf_sym_hashes (abfd);
4230 hppend = hpp + extsymcount;
4231 sym_count = 0;
4232 for (; hpp < hppend; hpp++)
4233 {
4234 h = *hpp;
4235 if (h != NULL
4236 && h->root.type == bfd_link_hash_defined
4237 && h->type != STT_FUNC)
4238 {
4239 *sym_hash = h;
4240 sym_hash++;
4241 sym_count++;
4242 }
4243 }
4244
4245 qsort (sorted_sym_hash, sym_count,
4246 sizeof (struct elf_link_hash_entry *),
4247 elf_sort_symbol);
4248
4249 while (weaks != NULL)
4250 {
4251 struct elf_link_hash_entry *hlook;
4252 asection *slook;
4253 bfd_vma vlook;
4254 long ilook;
4255 size_t i, j, idx;
4256
4257 hlook = weaks;
4258 weaks = hlook->u.weakdef;
4259 hlook->u.weakdef = NULL;
4260
4261 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4262 || hlook->root.type == bfd_link_hash_defweak
4263 || hlook->root.type == bfd_link_hash_common
4264 || hlook->root.type == bfd_link_hash_indirect);
4265 slook = hlook->root.u.def.section;
4266 vlook = hlook->root.u.def.value;
4267
4268 ilook = -1;
4269 i = 0;
4270 j = sym_count;
4271 while (i < j)
4272 {
4273 bfd_signed_vma vdiff;
4274 idx = (i + j) / 2;
4275 h = sorted_sym_hash [idx];
4276 vdiff = vlook - h->root.u.def.value;
4277 if (vdiff < 0)
4278 j = idx;
4279 else if (vdiff > 0)
4280 i = idx + 1;
4281 else
4282 {
4283 long sdiff = slook->id - h->root.u.def.section->id;
4284 if (sdiff < 0)
4285 j = idx;
4286 else if (sdiff > 0)
4287 i = idx + 1;
4288 else
4289 {
4290 ilook = idx;
4291 break;
4292 }
4293 }
4294 }
4295
4296 /* We didn't find a value/section match. */
4297 if (ilook == -1)
4298 continue;
4299
4300 for (i = ilook; i < sym_count; i++)
4301 {
4302 h = sorted_sym_hash [i];
4303
4304 /* Stop if value or section doesn't match. */
4305 if (h->root.u.def.value != vlook
4306 || h->root.u.def.section != slook)
4307 break;
4308 else if (h != hlook)
4309 {
4310 hlook->u.weakdef = h;
4311
4312 /* If the weak definition is in the list of dynamic
4313 symbols, make sure the real definition is put
4314 there as well. */
4315 if (hlook->dynindx != -1 && h->dynindx == -1)
4316 {
4317 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4318 goto error_return;
4319 }
4320
4321 /* If the real definition is in the list of dynamic
4322 symbols, make sure the weak definition is put
4323 there as well. If we don't do this, then the
4324 dynamic loader might not merge the entries for the
4325 real definition and the weak definition. */
4326 if (h->dynindx != -1 && hlook->dynindx == -1)
4327 {
4328 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4329 goto error_return;
4330 }
4331 break;
4332 }
4333 }
4334 }
4335
4336 free (sorted_sym_hash);
4337 }
4338
4339 check_directives = get_elf_backend_data (abfd)->check_directives;
4340 if (check_directives)
4341 check_directives (abfd, info);
4342
4343 /* If this object is the same format as the output object, and it is
4344 not a shared library, then let the backend look through the
4345 relocs.
4346
4347 This is required to build global offset table entries and to
4348 arrange for dynamic relocs. It is not required for the
4349 particular common case of linking non PIC code, even when linking
4350 against shared libraries, but unfortunately there is no way of
4351 knowing whether an object file has been compiled PIC or not.
4352 Looking through the relocs is not particularly time consuming.
4353 The problem is that we must either (1) keep the relocs in memory,
4354 which causes the linker to require additional runtime memory or
4355 (2) read the relocs twice from the input file, which wastes time.
4356 This would be a good case for using mmap.
4357
4358 I have no idea how to handle linking PIC code into a file of a
4359 different format. It probably can't be done. */
4360 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4361 if (! dynamic
4362 && is_elf_hash_table (hash_table)
4363 && hash_table->root.creator == abfd->xvec
4364 && check_relocs != NULL)
4365 {
4366 asection *o;
4367
4368 for (o = abfd->sections; o != NULL; o = o->next)
4369 {
4370 Elf_Internal_Rela *internal_relocs;
4371 bfd_boolean ok;
4372
4373 if ((o->flags & SEC_RELOC) == 0
4374 || o->reloc_count == 0
4375 || ((info->strip == strip_all || info->strip == strip_debugger)
4376 && (o->flags & SEC_DEBUGGING) != 0)
4377 || bfd_is_abs_section (o->output_section))
4378 continue;
4379
4380 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4381 info->keep_memory);
4382 if (internal_relocs == NULL)
4383 goto error_return;
4384
4385 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4386
4387 if (elf_section_data (o)->relocs != internal_relocs)
4388 free (internal_relocs);
4389
4390 if (! ok)
4391 goto error_return;
4392 }
4393 }
4394
4395 /* If this is a non-traditional link, try to optimize the handling
4396 of the .stab/.stabstr sections. */
4397 if (! dynamic
4398 && ! info->traditional_format
4399 && is_elf_hash_table (hash_table)
4400 && (info->strip != strip_all && info->strip != strip_debugger))
4401 {
4402 asection *stabstr;
4403
4404 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4405 if (stabstr != NULL)
4406 {
4407 bfd_size_type string_offset = 0;
4408 asection *stab;
4409
4410 for (stab = abfd->sections; stab; stab = stab->next)
4411 if (strncmp (".stab", stab->name, 5) == 0
4412 && (!stab->name[5] ||
4413 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4414 && (stab->flags & SEC_MERGE) == 0
4415 && !bfd_is_abs_section (stab->output_section))
4416 {
4417 struct bfd_elf_section_data *secdata;
4418
4419 secdata = elf_section_data (stab);
4420 if (! _bfd_link_section_stabs (abfd,
4421 &hash_table->stab_info,
4422 stab, stabstr,
4423 &secdata->sec_info,
4424 &string_offset))
4425 goto error_return;
4426 if (secdata->sec_info)
4427 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4428 }
4429 }
4430 }
4431
4432 if (is_elf_hash_table (hash_table) && add_needed)
4433 {
4434 /* Add this bfd to the loaded list. */
4435 struct elf_link_loaded_list *n;
4436
4437 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4438 if (n == NULL)
4439 goto error_return;
4440 n->abfd = abfd;
4441 n->next = hash_table->loaded;
4442 hash_table->loaded = n;
4443 }
4444
4445 return TRUE;
4446
4447 error_free_vers:
4448 if (nondeflt_vers != NULL)
4449 free (nondeflt_vers);
4450 if (extversym != NULL)
4451 free (extversym);
4452 error_free_sym:
4453 if (isymbuf != NULL)
4454 free (isymbuf);
4455 error_return:
4456 return FALSE;
4457 }
4458
4459 /* Return the linker hash table entry of a symbol that might be
4460 satisfied by an archive symbol. Return -1 on error. */
4461
4462 struct elf_link_hash_entry *
4463 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4464 struct bfd_link_info *info,
4465 const char *name)
4466 {
4467 struct elf_link_hash_entry *h;
4468 char *p, *copy;
4469 size_t len, first;
4470
4471 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4472 if (h != NULL)
4473 return h;
4474
4475 /* If this is a default version (the name contains @@), look up the
4476 symbol again with only one `@' as well as without the version.
4477 The effect is that references to the symbol with and without the
4478 version will be matched by the default symbol in the archive. */
4479
4480 p = strchr (name, ELF_VER_CHR);
4481 if (p == NULL || p[1] != ELF_VER_CHR)
4482 return h;
4483
4484 /* First check with only one `@'. */
4485 len = strlen (name);
4486 copy = bfd_alloc (abfd, len);
4487 if (copy == NULL)
4488 return (struct elf_link_hash_entry *) 0 - 1;
4489
4490 first = p - name + 1;
4491 memcpy (copy, name, first);
4492 memcpy (copy + first, name + first + 1, len - first);
4493
4494 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4495 if (h == NULL)
4496 {
4497 /* We also need to check references to the symbol without the
4498 version. */
4499 copy[first - 1] = '\0';
4500 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4501 FALSE, FALSE, FALSE);
4502 }
4503
4504 bfd_release (abfd, copy);
4505 return h;
4506 }
4507
4508 /* Add symbols from an ELF archive file to the linker hash table. We
4509 don't use _bfd_generic_link_add_archive_symbols because of a
4510 problem which arises on UnixWare. The UnixWare libc.so is an
4511 archive which includes an entry libc.so.1 which defines a bunch of
4512 symbols. The libc.so archive also includes a number of other
4513 object files, which also define symbols, some of which are the same
4514 as those defined in libc.so.1. Correct linking requires that we
4515 consider each object file in turn, and include it if it defines any
4516 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4517 this; it looks through the list of undefined symbols, and includes
4518 any object file which defines them. When this algorithm is used on
4519 UnixWare, it winds up pulling in libc.so.1 early and defining a
4520 bunch of symbols. This means that some of the other objects in the
4521 archive are not included in the link, which is incorrect since they
4522 precede libc.so.1 in the archive.
4523
4524 Fortunately, ELF archive handling is simpler than that done by
4525 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4526 oddities. In ELF, if we find a symbol in the archive map, and the
4527 symbol is currently undefined, we know that we must pull in that
4528 object file.
4529
4530 Unfortunately, we do have to make multiple passes over the symbol
4531 table until nothing further is resolved. */
4532
4533 static bfd_boolean
4534 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4535 {
4536 symindex c;
4537 bfd_boolean *defined = NULL;
4538 bfd_boolean *included = NULL;
4539 carsym *symdefs;
4540 bfd_boolean loop;
4541 bfd_size_type amt;
4542 const struct elf_backend_data *bed;
4543 struct elf_link_hash_entry * (*archive_symbol_lookup)
4544 (bfd *, struct bfd_link_info *, const char *);
4545
4546 if (! bfd_has_map (abfd))
4547 {
4548 /* An empty archive is a special case. */
4549 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4550 return TRUE;
4551 bfd_set_error (bfd_error_no_armap);
4552 return FALSE;
4553 }
4554
4555 /* Keep track of all symbols we know to be already defined, and all
4556 files we know to be already included. This is to speed up the
4557 second and subsequent passes. */
4558 c = bfd_ardata (abfd)->symdef_count;
4559 if (c == 0)
4560 return TRUE;
4561 amt = c;
4562 amt *= sizeof (bfd_boolean);
4563 defined = bfd_zmalloc (amt);
4564 included = bfd_zmalloc (amt);
4565 if (defined == NULL || included == NULL)
4566 goto error_return;
4567
4568 symdefs = bfd_ardata (abfd)->symdefs;
4569 bed = get_elf_backend_data (abfd);
4570 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4571
4572 do
4573 {
4574 file_ptr last;
4575 symindex i;
4576 carsym *symdef;
4577 carsym *symdefend;
4578
4579 loop = FALSE;
4580 last = -1;
4581
4582 symdef = symdefs;
4583 symdefend = symdef + c;
4584 for (i = 0; symdef < symdefend; symdef++, i++)
4585 {
4586 struct elf_link_hash_entry *h;
4587 bfd *element;
4588 struct bfd_link_hash_entry *undefs_tail;
4589 symindex mark;
4590
4591 if (defined[i] || included[i])
4592 continue;
4593 if (symdef->file_offset == last)
4594 {
4595 included[i] = TRUE;
4596 continue;
4597 }
4598
4599 h = archive_symbol_lookup (abfd, info, symdef->name);
4600 if (h == (struct elf_link_hash_entry *) 0 - 1)
4601 goto error_return;
4602
4603 if (h == NULL)
4604 continue;
4605
4606 if (h->root.type == bfd_link_hash_common)
4607 {
4608 /* We currently have a common symbol. The archive map contains
4609 a reference to this symbol, so we may want to include it. We
4610 only want to include it however, if this archive element
4611 contains a definition of the symbol, not just another common
4612 declaration of it.
4613
4614 Unfortunately some archivers (including GNU ar) will put
4615 declarations of common symbols into their archive maps, as
4616 well as real definitions, so we cannot just go by the archive
4617 map alone. Instead we must read in the element's symbol
4618 table and check that to see what kind of symbol definition
4619 this is. */
4620 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4621 continue;
4622 }
4623 else if (h->root.type != bfd_link_hash_undefined)
4624 {
4625 if (h->root.type != bfd_link_hash_undefweak)
4626 defined[i] = TRUE;
4627 continue;
4628 }
4629
4630 /* We need to include this archive member. */
4631 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4632 if (element == NULL)
4633 goto error_return;
4634
4635 if (! bfd_check_format (element, bfd_object))
4636 goto error_return;
4637
4638 /* Doublecheck that we have not included this object
4639 already--it should be impossible, but there may be
4640 something wrong with the archive. */
4641 if (element->archive_pass != 0)
4642 {
4643 bfd_set_error (bfd_error_bad_value);
4644 goto error_return;
4645 }
4646 element->archive_pass = 1;
4647
4648 undefs_tail = info->hash->undefs_tail;
4649
4650 if (! (*info->callbacks->add_archive_element) (info, element,
4651 symdef->name))
4652 goto error_return;
4653 if (! bfd_link_add_symbols (element, info))
4654 goto error_return;
4655
4656 /* If there are any new undefined symbols, we need to make
4657 another pass through the archive in order to see whether
4658 they can be defined. FIXME: This isn't perfect, because
4659 common symbols wind up on undefs_tail and because an
4660 undefined symbol which is defined later on in this pass
4661 does not require another pass. This isn't a bug, but it
4662 does make the code less efficient than it could be. */
4663 if (undefs_tail != info->hash->undefs_tail)
4664 loop = TRUE;
4665
4666 /* Look backward to mark all symbols from this object file
4667 which we have already seen in this pass. */
4668 mark = i;
4669 do
4670 {
4671 included[mark] = TRUE;
4672 if (mark == 0)
4673 break;
4674 --mark;
4675 }
4676 while (symdefs[mark].file_offset == symdef->file_offset);
4677
4678 /* We mark subsequent symbols from this object file as we go
4679 on through the loop. */
4680 last = symdef->file_offset;
4681 }
4682 }
4683 while (loop);
4684
4685 free (defined);
4686 free (included);
4687
4688 return TRUE;
4689
4690 error_return:
4691 if (defined != NULL)
4692 free (defined);
4693 if (included != NULL)
4694 free (included);
4695 return FALSE;
4696 }
4697
4698 /* Given an ELF BFD, add symbols to the global hash table as
4699 appropriate. */
4700
4701 bfd_boolean
4702 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4703 {
4704 switch (bfd_get_format (abfd))
4705 {
4706 case bfd_object:
4707 return elf_link_add_object_symbols (abfd, info);
4708 case bfd_archive:
4709 return elf_link_add_archive_symbols (abfd, info);
4710 default:
4711 bfd_set_error (bfd_error_wrong_format);
4712 return FALSE;
4713 }
4714 }
4715 \f
4716 /* This function will be called though elf_link_hash_traverse to store
4717 all hash value of the exported symbols in an array. */
4718
4719 static bfd_boolean
4720 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4721 {
4722 unsigned long **valuep = data;
4723 const char *name;
4724 char *p;
4725 unsigned long ha;
4726 char *alc = NULL;
4727
4728 if (h->root.type == bfd_link_hash_warning)
4729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4730
4731 /* Ignore indirect symbols. These are added by the versioning code. */
4732 if (h->dynindx == -1)
4733 return TRUE;
4734
4735 name = h->root.root.string;
4736 p = strchr (name, ELF_VER_CHR);
4737 if (p != NULL)
4738 {
4739 alc = bfd_malloc (p - name + 1);
4740 memcpy (alc, name, p - name);
4741 alc[p - name] = '\0';
4742 name = alc;
4743 }
4744
4745 /* Compute the hash value. */
4746 ha = bfd_elf_hash (name);
4747
4748 /* Store the found hash value in the array given as the argument. */
4749 *(*valuep)++ = ha;
4750
4751 /* And store it in the struct so that we can put it in the hash table
4752 later. */
4753 h->u.elf_hash_value = ha;
4754
4755 if (alc != NULL)
4756 free (alc);
4757
4758 return TRUE;
4759 }
4760
4761 /* Array used to determine the number of hash table buckets to use
4762 based on the number of symbols there are. If there are fewer than
4763 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4764 fewer than 37 we use 17 buckets, and so forth. We never use more
4765 than 32771 buckets. */
4766
4767 static const size_t elf_buckets[] =
4768 {
4769 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4770 16411, 32771, 0
4771 };
4772
4773 /* Compute bucket count for hashing table. We do not use a static set
4774 of possible tables sizes anymore. Instead we determine for all
4775 possible reasonable sizes of the table the outcome (i.e., the
4776 number of collisions etc) and choose the best solution. The
4777 weighting functions are not too simple to allow the table to grow
4778 without bounds. Instead one of the weighting factors is the size.
4779 Therefore the result is always a good payoff between few collisions
4780 (= short chain lengths) and table size. */
4781 static size_t
4782 compute_bucket_count (struct bfd_link_info *info)
4783 {
4784 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4785 size_t best_size = 0;
4786 unsigned long int *hashcodes;
4787 unsigned long int *hashcodesp;
4788 unsigned long int i;
4789 bfd_size_type amt;
4790
4791 /* Compute the hash values for all exported symbols. At the same
4792 time store the values in an array so that we could use them for
4793 optimizations. */
4794 amt = dynsymcount;
4795 amt *= sizeof (unsigned long int);
4796 hashcodes = bfd_malloc (amt);
4797 if (hashcodes == NULL)
4798 return 0;
4799 hashcodesp = hashcodes;
4800
4801 /* Put all hash values in HASHCODES. */
4802 elf_link_hash_traverse (elf_hash_table (info),
4803 elf_collect_hash_codes, &hashcodesp);
4804
4805 /* We have a problem here. The following code to optimize the table
4806 size requires an integer type with more the 32 bits. If
4807 BFD_HOST_U_64_BIT is set we know about such a type. */
4808 #ifdef BFD_HOST_U_64_BIT
4809 if (info->optimize)
4810 {
4811 unsigned long int nsyms = hashcodesp - hashcodes;
4812 size_t minsize;
4813 size_t maxsize;
4814 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4815 unsigned long int *counts ;
4816 bfd *dynobj = elf_hash_table (info)->dynobj;
4817 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4818
4819 /* Possible optimization parameters: if we have NSYMS symbols we say
4820 that the hashing table must at least have NSYMS/4 and at most
4821 2*NSYMS buckets. */
4822 minsize = nsyms / 4;
4823 if (minsize == 0)
4824 minsize = 1;
4825 best_size = maxsize = nsyms * 2;
4826
4827 /* Create array where we count the collisions in. We must use bfd_malloc
4828 since the size could be large. */
4829 amt = maxsize;
4830 amt *= sizeof (unsigned long int);
4831 counts = bfd_malloc (amt);
4832 if (counts == NULL)
4833 {
4834 free (hashcodes);
4835 return 0;
4836 }
4837
4838 /* Compute the "optimal" size for the hash table. The criteria is a
4839 minimal chain length. The minor criteria is (of course) the size
4840 of the table. */
4841 for (i = minsize; i < maxsize; ++i)
4842 {
4843 /* Walk through the array of hashcodes and count the collisions. */
4844 BFD_HOST_U_64_BIT max;
4845 unsigned long int j;
4846 unsigned long int fact;
4847
4848 memset (counts, '\0', i * sizeof (unsigned long int));
4849
4850 /* Determine how often each hash bucket is used. */
4851 for (j = 0; j < nsyms; ++j)
4852 ++counts[hashcodes[j] % i];
4853
4854 /* For the weight function we need some information about the
4855 pagesize on the target. This is information need not be 100%
4856 accurate. Since this information is not available (so far) we
4857 define it here to a reasonable default value. If it is crucial
4858 to have a better value some day simply define this value. */
4859 # ifndef BFD_TARGET_PAGESIZE
4860 # define BFD_TARGET_PAGESIZE (4096)
4861 # endif
4862
4863 /* We in any case need 2 + NSYMS entries for the size values and
4864 the chains. */
4865 max = (2 + nsyms) * (bed->s->arch_size / 8);
4866
4867 # if 1
4868 /* Variant 1: optimize for short chains. We add the squares
4869 of all the chain lengths (which favors many small chain
4870 over a few long chains). */
4871 for (j = 0; j < i; ++j)
4872 max += counts[j] * counts[j];
4873
4874 /* This adds penalties for the overall size of the table. */
4875 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4876 max *= fact * fact;
4877 # else
4878 /* Variant 2: Optimize a lot more for small table. Here we
4879 also add squares of the size but we also add penalties for
4880 empty slots (the +1 term). */
4881 for (j = 0; j < i; ++j)
4882 max += (1 + counts[j]) * (1 + counts[j]);
4883
4884 /* The overall size of the table is considered, but not as
4885 strong as in variant 1, where it is squared. */
4886 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4887 max *= fact;
4888 # endif
4889
4890 /* Compare with current best results. */
4891 if (max < best_chlen)
4892 {
4893 best_chlen = max;
4894 best_size = i;
4895 }
4896 }
4897
4898 free (counts);
4899 }
4900 else
4901 #endif /* defined (BFD_HOST_U_64_BIT) */
4902 {
4903 /* This is the fallback solution if no 64bit type is available or if we
4904 are not supposed to spend much time on optimizations. We select the
4905 bucket count using a fixed set of numbers. */
4906 for (i = 0; elf_buckets[i] != 0; i++)
4907 {
4908 best_size = elf_buckets[i];
4909 if (dynsymcount < elf_buckets[i + 1])
4910 break;
4911 }
4912 }
4913
4914 /* Free the arrays we needed. */
4915 free (hashcodes);
4916
4917 return best_size;
4918 }
4919
4920 /* Set up the sizes and contents of the ELF dynamic sections. This is
4921 called by the ELF linker emulation before_allocation routine. We
4922 must set the sizes of the sections before the linker sets the
4923 addresses of the various sections. */
4924
4925 bfd_boolean
4926 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4927 const char *soname,
4928 const char *rpath,
4929 const char *filter_shlib,
4930 const char * const *auxiliary_filters,
4931 struct bfd_link_info *info,
4932 asection **sinterpptr,
4933 struct bfd_elf_version_tree *verdefs)
4934 {
4935 bfd_size_type soname_indx;
4936 bfd *dynobj;
4937 const struct elf_backend_data *bed;
4938 struct elf_assign_sym_version_info asvinfo;
4939
4940 *sinterpptr = NULL;
4941
4942 soname_indx = (bfd_size_type) -1;
4943
4944 if (!is_elf_hash_table (info->hash))
4945 return TRUE;
4946
4947 elf_tdata (output_bfd)->relro = info->relro;
4948 if (info->execstack)
4949 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4950 else if (info->noexecstack)
4951 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4952 else
4953 {
4954 bfd *inputobj;
4955 asection *notesec = NULL;
4956 int exec = 0;
4957
4958 for (inputobj = info->input_bfds;
4959 inputobj;
4960 inputobj = inputobj->link_next)
4961 {
4962 asection *s;
4963
4964 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4965 continue;
4966 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4967 if (s)
4968 {
4969 if (s->flags & SEC_CODE)
4970 exec = PF_X;
4971 notesec = s;
4972 }
4973 else
4974 exec = PF_X;
4975 }
4976 if (notesec)
4977 {
4978 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4979 if (exec && info->relocatable
4980 && notesec->output_section != bfd_abs_section_ptr)
4981 notesec->output_section->flags |= SEC_CODE;
4982 }
4983 }
4984
4985 /* Any syms created from now on start with -1 in
4986 got.refcount/offset and plt.refcount/offset. */
4987 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4988
4989 /* The backend may have to create some sections regardless of whether
4990 we're dynamic or not. */
4991 bed = get_elf_backend_data (output_bfd);
4992 if (bed->elf_backend_always_size_sections
4993 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4994 return FALSE;
4995
4996 dynobj = elf_hash_table (info)->dynobj;
4997
4998 /* If there were no dynamic objects in the link, there is nothing to
4999 do here. */
5000 if (dynobj == NULL)
5001 return TRUE;
5002
5003 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5004 return FALSE;
5005
5006 if (elf_hash_table (info)->dynamic_sections_created)
5007 {
5008 struct elf_info_failed eif;
5009 struct elf_link_hash_entry *h;
5010 asection *dynstr;
5011 struct bfd_elf_version_tree *t;
5012 struct bfd_elf_version_expr *d;
5013 bfd_boolean all_defined;
5014
5015 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5016 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5017
5018 if (soname != NULL)
5019 {
5020 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5021 soname, TRUE);
5022 if (soname_indx == (bfd_size_type) -1
5023 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5024 return FALSE;
5025 }
5026
5027 if (info->symbolic)
5028 {
5029 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5030 return FALSE;
5031 info->flags |= DF_SYMBOLIC;
5032 }
5033
5034 if (rpath != NULL)
5035 {
5036 bfd_size_type indx;
5037
5038 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5039 TRUE);
5040 if (indx == (bfd_size_type) -1
5041 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5042 return FALSE;
5043
5044 if (info->new_dtags)
5045 {
5046 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5047 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5048 return FALSE;
5049 }
5050 }
5051
5052 if (filter_shlib != NULL)
5053 {
5054 bfd_size_type indx;
5055
5056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5057 filter_shlib, TRUE);
5058 if (indx == (bfd_size_type) -1
5059 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5060 return FALSE;
5061 }
5062
5063 if (auxiliary_filters != NULL)
5064 {
5065 const char * const *p;
5066
5067 for (p = auxiliary_filters; *p != NULL; p++)
5068 {
5069 bfd_size_type indx;
5070
5071 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5072 *p, TRUE);
5073 if (indx == (bfd_size_type) -1
5074 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5075 return FALSE;
5076 }
5077 }
5078
5079 eif.info = info;
5080 eif.verdefs = verdefs;
5081 eif.failed = FALSE;
5082
5083 /* If we are supposed to export all symbols into the dynamic symbol
5084 table (this is not the normal case), then do so. */
5085 if (info->export_dynamic)
5086 {
5087 elf_link_hash_traverse (elf_hash_table (info),
5088 _bfd_elf_export_symbol,
5089 &eif);
5090 if (eif.failed)
5091 return FALSE;
5092 }
5093
5094 /* Make all global versions with definition. */
5095 for (t = verdefs; t != NULL; t = t->next)
5096 for (d = t->globals.list; d != NULL; d = d->next)
5097 if (!d->symver && d->symbol)
5098 {
5099 const char *verstr, *name;
5100 size_t namelen, verlen, newlen;
5101 char *newname, *p;
5102 struct elf_link_hash_entry *newh;
5103
5104 name = d->symbol;
5105 namelen = strlen (name);
5106 verstr = t->name;
5107 verlen = strlen (verstr);
5108 newlen = namelen + verlen + 3;
5109
5110 newname = bfd_malloc (newlen);
5111 if (newname == NULL)
5112 return FALSE;
5113 memcpy (newname, name, namelen);
5114
5115 /* Check the hidden versioned definition. */
5116 p = newname + namelen;
5117 *p++ = ELF_VER_CHR;
5118 memcpy (p, verstr, verlen + 1);
5119 newh = elf_link_hash_lookup (elf_hash_table (info),
5120 newname, FALSE, FALSE,
5121 FALSE);
5122 if (newh == NULL
5123 || (newh->root.type != bfd_link_hash_defined
5124 && newh->root.type != bfd_link_hash_defweak))
5125 {
5126 /* Check the default versioned definition. */
5127 *p++ = ELF_VER_CHR;
5128 memcpy (p, verstr, verlen + 1);
5129 newh = elf_link_hash_lookup (elf_hash_table (info),
5130 newname, FALSE, FALSE,
5131 FALSE);
5132 }
5133 free (newname);
5134
5135 /* Mark this version if there is a definition and it is
5136 not defined in a shared object. */
5137 if (newh != NULL
5138 && !newh->def_dynamic
5139 && (newh->root.type == bfd_link_hash_defined
5140 || newh->root.type == bfd_link_hash_defweak))
5141 d->symver = 1;
5142 }
5143
5144 /* Attach all the symbols to their version information. */
5145 asvinfo.output_bfd = output_bfd;
5146 asvinfo.info = info;
5147 asvinfo.verdefs = verdefs;
5148 asvinfo.failed = FALSE;
5149
5150 elf_link_hash_traverse (elf_hash_table (info),
5151 _bfd_elf_link_assign_sym_version,
5152 &asvinfo);
5153 if (asvinfo.failed)
5154 return FALSE;
5155
5156 if (!info->allow_undefined_version)
5157 {
5158 /* Check if all global versions have a definition. */
5159 all_defined = TRUE;
5160 for (t = verdefs; t != NULL; t = t->next)
5161 for (d = t->globals.list; d != NULL; d = d->next)
5162 if (!d->symver && !d->script)
5163 {
5164 (*_bfd_error_handler)
5165 (_("%s: undefined version: %s"),
5166 d->pattern, t->name);
5167 all_defined = FALSE;
5168 }
5169
5170 if (!all_defined)
5171 {
5172 bfd_set_error (bfd_error_bad_value);
5173 return FALSE;
5174 }
5175 }
5176
5177 /* Find all symbols which were defined in a dynamic object and make
5178 the backend pick a reasonable value for them. */
5179 elf_link_hash_traverse (elf_hash_table (info),
5180 _bfd_elf_adjust_dynamic_symbol,
5181 &eif);
5182 if (eif.failed)
5183 return FALSE;
5184
5185 /* Add some entries to the .dynamic section. We fill in some of the
5186 values later, in bfd_elf_final_link, but we must add the entries
5187 now so that we know the final size of the .dynamic section. */
5188
5189 /* If there are initialization and/or finalization functions to
5190 call then add the corresponding DT_INIT/DT_FINI entries. */
5191 h = (info->init_function
5192 ? elf_link_hash_lookup (elf_hash_table (info),
5193 info->init_function, FALSE,
5194 FALSE, FALSE)
5195 : NULL);
5196 if (h != NULL
5197 && (h->ref_regular
5198 || h->def_regular))
5199 {
5200 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5201 return FALSE;
5202 }
5203 h = (info->fini_function
5204 ? elf_link_hash_lookup (elf_hash_table (info),
5205 info->fini_function, FALSE,
5206 FALSE, FALSE)
5207 : NULL);
5208 if (h != NULL
5209 && (h->ref_regular
5210 || h->def_regular))
5211 {
5212 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5213 return FALSE;
5214 }
5215
5216 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5217 {
5218 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5219 if (! info->executable)
5220 {
5221 bfd *sub;
5222 asection *o;
5223
5224 for (sub = info->input_bfds; sub != NULL;
5225 sub = sub->link_next)
5226 for (o = sub->sections; o != NULL; o = o->next)
5227 if (elf_section_data (o)->this_hdr.sh_type
5228 == SHT_PREINIT_ARRAY)
5229 {
5230 (*_bfd_error_handler)
5231 (_("%B: .preinit_array section is not allowed in DSO"),
5232 sub);
5233 break;
5234 }
5235
5236 bfd_set_error (bfd_error_nonrepresentable_section);
5237 return FALSE;
5238 }
5239
5240 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5241 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5242 return FALSE;
5243 }
5244 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5245 {
5246 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5247 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5248 return FALSE;
5249 }
5250 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5251 {
5252 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5253 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5254 return FALSE;
5255 }
5256
5257 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5258 /* If .dynstr is excluded from the link, we don't want any of
5259 these tags. Strictly, we should be checking each section
5260 individually; This quick check covers for the case where
5261 someone does a /DISCARD/ : { *(*) }. */
5262 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5263 {
5264 bfd_size_type strsize;
5265
5266 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5267 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5268 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5269 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5270 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5271 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5272 bed->s->sizeof_sym))
5273 return FALSE;
5274 }
5275 }
5276
5277 /* The backend must work out the sizes of all the other dynamic
5278 sections. */
5279 if (bed->elf_backend_size_dynamic_sections
5280 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5281 return FALSE;
5282
5283 if (elf_hash_table (info)->dynamic_sections_created)
5284 {
5285 bfd_size_type dynsymcount;
5286 unsigned long section_sym_count;
5287 asection *s;
5288 size_t bucketcount = 0;
5289 size_t hash_entry_size;
5290 unsigned int dtagcount;
5291
5292 /* Set up the version definition section. */
5293 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5294 BFD_ASSERT (s != NULL);
5295
5296 /* We may have created additional version definitions if we are
5297 just linking a regular application. */
5298 verdefs = asvinfo.verdefs;
5299
5300 /* Skip anonymous version tag. */
5301 if (verdefs != NULL && verdefs->vernum == 0)
5302 verdefs = verdefs->next;
5303
5304 if (verdefs == NULL && !info->create_default_symver)
5305 _bfd_strip_section_from_output (info, s);
5306 else
5307 {
5308 unsigned int cdefs;
5309 bfd_size_type size;
5310 struct bfd_elf_version_tree *t;
5311 bfd_byte *p;
5312 Elf_Internal_Verdef def;
5313 Elf_Internal_Verdaux defaux;
5314 struct bfd_link_hash_entry *bh;
5315 struct elf_link_hash_entry *h;
5316 const char *name;
5317
5318 cdefs = 0;
5319 size = 0;
5320
5321 /* Make space for the base version. */
5322 size += sizeof (Elf_External_Verdef);
5323 size += sizeof (Elf_External_Verdaux);
5324 ++cdefs;
5325
5326 /* Make space for the default version. */
5327 if (info->create_default_symver)
5328 {
5329 size += sizeof (Elf_External_Verdef);
5330 ++cdefs;
5331 }
5332
5333 for (t = verdefs; t != NULL; t = t->next)
5334 {
5335 struct bfd_elf_version_deps *n;
5336
5337 size += sizeof (Elf_External_Verdef);
5338 size += sizeof (Elf_External_Verdaux);
5339 ++cdefs;
5340
5341 for (n = t->deps; n != NULL; n = n->next)
5342 size += sizeof (Elf_External_Verdaux);
5343 }
5344
5345 s->size = size;
5346 s->contents = bfd_alloc (output_bfd, s->size);
5347 if (s->contents == NULL && s->size != 0)
5348 return FALSE;
5349
5350 /* Fill in the version definition section. */
5351
5352 p = s->contents;
5353
5354 def.vd_version = VER_DEF_CURRENT;
5355 def.vd_flags = VER_FLG_BASE;
5356 def.vd_ndx = 1;
5357 def.vd_cnt = 1;
5358 if (info->create_default_symver)
5359 {
5360 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5361 def.vd_next = sizeof (Elf_External_Verdef);
5362 }
5363 else
5364 {
5365 def.vd_aux = sizeof (Elf_External_Verdef);
5366 def.vd_next = (sizeof (Elf_External_Verdef)
5367 + sizeof (Elf_External_Verdaux));
5368 }
5369
5370 if (soname_indx != (bfd_size_type) -1)
5371 {
5372 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5373 soname_indx);
5374 def.vd_hash = bfd_elf_hash (soname);
5375 defaux.vda_name = soname_indx;
5376 name = soname;
5377 }
5378 else
5379 {
5380 bfd_size_type indx;
5381
5382 name = basename (output_bfd->filename);
5383 def.vd_hash = bfd_elf_hash (name);
5384 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5385 name, FALSE);
5386 if (indx == (bfd_size_type) -1)
5387 return FALSE;
5388 defaux.vda_name = indx;
5389 }
5390 defaux.vda_next = 0;
5391
5392 _bfd_elf_swap_verdef_out (output_bfd, &def,
5393 (Elf_External_Verdef *) p);
5394 p += sizeof (Elf_External_Verdef);
5395 if (info->create_default_symver)
5396 {
5397 /* Add a symbol representing this version. */
5398 bh = NULL;
5399 if (! (_bfd_generic_link_add_one_symbol
5400 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5401 0, NULL, FALSE,
5402 get_elf_backend_data (dynobj)->collect, &bh)))
5403 return FALSE;
5404 h = (struct elf_link_hash_entry *) bh;
5405 h->non_elf = 0;
5406 h->def_regular = 1;
5407 h->type = STT_OBJECT;
5408 h->verinfo.vertree = NULL;
5409
5410 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5411 return FALSE;
5412
5413 /* Create a duplicate of the base version with the same
5414 aux block, but different flags. */
5415 def.vd_flags = 0;
5416 def.vd_ndx = 2;
5417 def.vd_aux = sizeof (Elf_External_Verdef);
5418 if (verdefs)
5419 def.vd_next = (sizeof (Elf_External_Verdef)
5420 + sizeof (Elf_External_Verdaux));
5421 else
5422 def.vd_next = 0;
5423 _bfd_elf_swap_verdef_out (output_bfd, &def,
5424 (Elf_External_Verdef *) p);
5425 p += sizeof (Elf_External_Verdef);
5426 }
5427 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5428 (Elf_External_Verdaux *) p);
5429 p += sizeof (Elf_External_Verdaux);
5430
5431 for (t = verdefs; t != NULL; t = t->next)
5432 {
5433 unsigned int cdeps;
5434 struct bfd_elf_version_deps *n;
5435
5436 cdeps = 0;
5437 for (n = t->deps; n != NULL; n = n->next)
5438 ++cdeps;
5439
5440 /* Add a symbol representing this version. */
5441 bh = NULL;
5442 if (! (_bfd_generic_link_add_one_symbol
5443 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5444 0, NULL, FALSE,
5445 get_elf_backend_data (dynobj)->collect, &bh)))
5446 return FALSE;
5447 h = (struct elf_link_hash_entry *) bh;
5448 h->non_elf = 0;
5449 h->def_regular = 1;
5450 h->type = STT_OBJECT;
5451 h->verinfo.vertree = t;
5452
5453 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5454 return FALSE;
5455
5456 def.vd_version = VER_DEF_CURRENT;
5457 def.vd_flags = 0;
5458 if (t->globals.list == NULL
5459 && t->locals.list == NULL
5460 && ! t->used)
5461 def.vd_flags |= VER_FLG_WEAK;
5462 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5463 def.vd_cnt = cdeps + 1;
5464 def.vd_hash = bfd_elf_hash (t->name);
5465 def.vd_aux = sizeof (Elf_External_Verdef);
5466 def.vd_next = 0;
5467 if (t->next != NULL)
5468 def.vd_next = (sizeof (Elf_External_Verdef)
5469 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5470
5471 _bfd_elf_swap_verdef_out (output_bfd, &def,
5472 (Elf_External_Verdef *) p);
5473 p += sizeof (Elf_External_Verdef);
5474
5475 defaux.vda_name = h->dynstr_index;
5476 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5477 h->dynstr_index);
5478 defaux.vda_next = 0;
5479 if (t->deps != NULL)
5480 defaux.vda_next = sizeof (Elf_External_Verdaux);
5481 t->name_indx = defaux.vda_name;
5482
5483 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5484 (Elf_External_Verdaux *) p);
5485 p += sizeof (Elf_External_Verdaux);
5486
5487 for (n = t->deps; n != NULL; n = n->next)
5488 {
5489 if (n->version_needed == NULL)
5490 {
5491 /* This can happen if there was an error in the
5492 version script. */
5493 defaux.vda_name = 0;
5494 }
5495 else
5496 {
5497 defaux.vda_name = n->version_needed->name_indx;
5498 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5499 defaux.vda_name);
5500 }
5501 if (n->next == NULL)
5502 defaux.vda_next = 0;
5503 else
5504 defaux.vda_next = sizeof (Elf_External_Verdaux);
5505
5506 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5507 (Elf_External_Verdaux *) p);
5508 p += sizeof (Elf_External_Verdaux);
5509 }
5510 }
5511
5512 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5513 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5514 return FALSE;
5515
5516 elf_tdata (output_bfd)->cverdefs = cdefs;
5517 }
5518
5519 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5520 {
5521 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5522 return FALSE;
5523 }
5524 else if (info->flags & DF_BIND_NOW)
5525 {
5526 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5527 return FALSE;
5528 }
5529
5530 if (info->flags_1)
5531 {
5532 if (info->executable)
5533 info->flags_1 &= ~ (DF_1_INITFIRST
5534 | DF_1_NODELETE
5535 | DF_1_NOOPEN);
5536 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5537 return FALSE;
5538 }
5539
5540 /* Work out the size of the version reference section. */
5541
5542 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5543 BFD_ASSERT (s != NULL);
5544 {
5545 struct elf_find_verdep_info sinfo;
5546
5547 sinfo.output_bfd = output_bfd;
5548 sinfo.info = info;
5549 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5550 if (sinfo.vers == 0)
5551 sinfo.vers = 1;
5552 sinfo.failed = FALSE;
5553
5554 elf_link_hash_traverse (elf_hash_table (info),
5555 _bfd_elf_link_find_version_dependencies,
5556 &sinfo);
5557
5558 if (elf_tdata (output_bfd)->verref == NULL)
5559 _bfd_strip_section_from_output (info, s);
5560 else
5561 {
5562 Elf_Internal_Verneed *t;
5563 unsigned int size;
5564 unsigned int crefs;
5565 bfd_byte *p;
5566
5567 /* Build the version definition section. */
5568 size = 0;
5569 crefs = 0;
5570 for (t = elf_tdata (output_bfd)->verref;
5571 t != NULL;
5572 t = t->vn_nextref)
5573 {
5574 Elf_Internal_Vernaux *a;
5575
5576 size += sizeof (Elf_External_Verneed);
5577 ++crefs;
5578 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5579 size += sizeof (Elf_External_Vernaux);
5580 }
5581
5582 s->size = size;
5583 s->contents = bfd_alloc (output_bfd, s->size);
5584 if (s->contents == NULL)
5585 return FALSE;
5586
5587 p = s->contents;
5588 for (t = elf_tdata (output_bfd)->verref;
5589 t != NULL;
5590 t = t->vn_nextref)
5591 {
5592 unsigned int caux;
5593 Elf_Internal_Vernaux *a;
5594 bfd_size_type indx;
5595
5596 caux = 0;
5597 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5598 ++caux;
5599
5600 t->vn_version = VER_NEED_CURRENT;
5601 t->vn_cnt = caux;
5602 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5603 elf_dt_name (t->vn_bfd) != NULL
5604 ? elf_dt_name (t->vn_bfd)
5605 : basename (t->vn_bfd->filename),
5606 FALSE);
5607 if (indx == (bfd_size_type) -1)
5608 return FALSE;
5609 t->vn_file = indx;
5610 t->vn_aux = sizeof (Elf_External_Verneed);
5611 if (t->vn_nextref == NULL)
5612 t->vn_next = 0;
5613 else
5614 t->vn_next = (sizeof (Elf_External_Verneed)
5615 + caux * sizeof (Elf_External_Vernaux));
5616
5617 _bfd_elf_swap_verneed_out (output_bfd, t,
5618 (Elf_External_Verneed *) p);
5619 p += sizeof (Elf_External_Verneed);
5620
5621 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5622 {
5623 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 a->vna_nodename, FALSE);
5626 if (indx == (bfd_size_type) -1)
5627 return FALSE;
5628 a->vna_name = indx;
5629 if (a->vna_nextptr == NULL)
5630 a->vna_next = 0;
5631 else
5632 a->vna_next = sizeof (Elf_External_Vernaux);
5633
5634 _bfd_elf_swap_vernaux_out (output_bfd, a,
5635 (Elf_External_Vernaux *) p);
5636 p += sizeof (Elf_External_Vernaux);
5637 }
5638 }
5639
5640 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5641 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5642 return FALSE;
5643
5644 elf_tdata (output_bfd)->cverrefs = crefs;
5645 }
5646 }
5647
5648 /* Assign dynsym indicies. In a shared library we generate a
5649 section symbol for each output section, which come first.
5650 Next come all of the back-end allocated local dynamic syms,
5651 followed by the rest of the global symbols. */
5652
5653 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5654 &section_sym_count);
5655
5656 /* Work out the size of the symbol version section. */
5657 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5658 BFD_ASSERT (s != NULL);
5659 if (dynsymcount == 0
5660 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5661 && !info->create_default_symver))
5662 {
5663 _bfd_strip_section_from_output (info, s);
5664 /* The DYNSYMCOUNT might have changed if we were going to
5665 output a dynamic symbol table entry for S. */
5666 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5667 &section_sym_count);
5668 }
5669 else
5670 {
5671 s->size = dynsymcount * sizeof (Elf_External_Versym);
5672 s->contents = bfd_zalloc (output_bfd, s->size);
5673 if (s->contents == NULL)
5674 return FALSE;
5675
5676 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5677 return FALSE;
5678 }
5679
5680 /* Set the size of the .dynsym and .hash sections. We counted
5681 the number of dynamic symbols in elf_link_add_object_symbols.
5682 We will build the contents of .dynsym and .hash when we build
5683 the final symbol table, because until then we do not know the
5684 correct value to give the symbols. We built the .dynstr
5685 section as we went along in elf_link_add_object_symbols. */
5686 s = bfd_get_section_by_name (dynobj, ".dynsym");
5687 BFD_ASSERT (s != NULL);
5688 s->size = dynsymcount * bed->s->sizeof_sym;
5689
5690 if (dynsymcount != 0)
5691 {
5692 s->contents = bfd_alloc (output_bfd, s->size);
5693 if (s->contents == NULL)
5694 return FALSE;
5695
5696 /* The first entry in .dynsym is a dummy symbol.
5697 Clear all the section syms, in case we don't output them all. */
5698 ++section_sym_count;
5699 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5700 }
5701
5702 /* Compute the size of the hashing table. As a side effect this
5703 computes the hash values for all the names we export. */
5704 bucketcount = compute_bucket_count (info);
5705
5706 s = bfd_get_section_by_name (dynobj, ".hash");
5707 BFD_ASSERT (s != NULL);
5708 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5709 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5710 s->contents = bfd_zalloc (output_bfd, s->size);
5711 if (s->contents == NULL)
5712 return FALSE;
5713
5714 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5715 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5716 s->contents + hash_entry_size);
5717
5718 elf_hash_table (info)->bucketcount = bucketcount;
5719
5720 s = bfd_get_section_by_name (dynobj, ".dynstr");
5721 BFD_ASSERT (s != NULL);
5722
5723 elf_finalize_dynstr (output_bfd, info);
5724
5725 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5726
5727 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5728 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5729 return FALSE;
5730 }
5731
5732 return TRUE;
5733 }
5734
5735 /* Final phase of ELF linker. */
5736
5737 /* A structure we use to avoid passing large numbers of arguments. */
5738
5739 struct elf_final_link_info
5740 {
5741 /* General link information. */
5742 struct bfd_link_info *info;
5743 /* Output BFD. */
5744 bfd *output_bfd;
5745 /* Symbol string table. */
5746 struct bfd_strtab_hash *symstrtab;
5747 /* .dynsym section. */
5748 asection *dynsym_sec;
5749 /* .hash section. */
5750 asection *hash_sec;
5751 /* symbol version section (.gnu.version). */
5752 asection *symver_sec;
5753 /* Buffer large enough to hold contents of any section. */
5754 bfd_byte *contents;
5755 /* Buffer large enough to hold external relocs of any section. */
5756 void *external_relocs;
5757 /* Buffer large enough to hold internal relocs of any section. */
5758 Elf_Internal_Rela *internal_relocs;
5759 /* Buffer large enough to hold external local symbols of any input
5760 BFD. */
5761 bfd_byte *external_syms;
5762 /* And a buffer for symbol section indices. */
5763 Elf_External_Sym_Shndx *locsym_shndx;
5764 /* Buffer large enough to hold internal local symbols of any input
5765 BFD. */
5766 Elf_Internal_Sym *internal_syms;
5767 /* Array large enough to hold a symbol index for each local symbol
5768 of any input BFD. */
5769 long *indices;
5770 /* Array large enough to hold a section pointer for each local
5771 symbol of any input BFD. */
5772 asection **sections;
5773 /* Buffer to hold swapped out symbols. */
5774 bfd_byte *symbuf;
5775 /* And one for symbol section indices. */
5776 Elf_External_Sym_Shndx *symshndxbuf;
5777 /* Number of swapped out symbols in buffer. */
5778 size_t symbuf_count;
5779 /* Number of symbols which fit in symbuf. */
5780 size_t symbuf_size;
5781 /* And same for symshndxbuf. */
5782 size_t shndxbuf_size;
5783 };
5784
5785 /* This struct is used to pass information to elf_link_output_extsym. */
5786
5787 struct elf_outext_info
5788 {
5789 bfd_boolean failed;
5790 bfd_boolean localsyms;
5791 struct elf_final_link_info *finfo;
5792 };
5793
5794 /* When performing a relocatable link, the input relocations are
5795 preserved. But, if they reference global symbols, the indices
5796 referenced must be updated. Update all the relocations in
5797 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5798
5799 static void
5800 elf_link_adjust_relocs (bfd *abfd,
5801 Elf_Internal_Shdr *rel_hdr,
5802 unsigned int count,
5803 struct elf_link_hash_entry **rel_hash)
5804 {
5805 unsigned int i;
5806 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5807 bfd_byte *erela;
5808 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5809 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5810 bfd_vma r_type_mask;
5811 int r_sym_shift;
5812
5813 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5814 {
5815 swap_in = bed->s->swap_reloc_in;
5816 swap_out = bed->s->swap_reloc_out;
5817 }
5818 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5819 {
5820 swap_in = bed->s->swap_reloca_in;
5821 swap_out = bed->s->swap_reloca_out;
5822 }
5823 else
5824 abort ();
5825
5826 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5827 abort ();
5828
5829 if (bed->s->arch_size == 32)
5830 {
5831 r_type_mask = 0xff;
5832 r_sym_shift = 8;
5833 }
5834 else
5835 {
5836 r_type_mask = 0xffffffff;
5837 r_sym_shift = 32;
5838 }
5839
5840 erela = rel_hdr->contents;
5841 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5842 {
5843 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5844 unsigned int j;
5845
5846 if (*rel_hash == NULL)
5847 continue;
5848
5849 BFD_ASSERT ((*rel_hash)->indx >= 0);
5850
5851 (*swap_in) (abfd, erela, irela);
5852 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5853 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5854 | (irela[j].r_info & r_type_mask));
5855 (*swap_out) (abfd, irela, erela);
5856 }
5857 }
5858
5859 struct elf_link_sort_rela
5860 {
5861 union {
5862 bfd_vma offset;
5863 bfd_vma sym_mask;
5864 } u;
5865 enum elf_reloc_type_class type;
5866 /* We use this as an array of size int_rels_per_ext_rel. */
5867 Elf_Internal_Rela rela[1];
5868 };
5869
5870 static int
5871 elf_link_sort_cmp1 (const void *A, const void *B)
5872 {
5873 const struct elf_link_sort_rela *a = A;
5874 const struct elf_link_sort_rela *b = B;
5875 int relativea, relativeb;
5876
5877 relativea = a->type == reloc_class_relative;
5878 relativeb = b->type == reloc_class_relative;
5879
5880 if (relativea < relativeb)
5881 return 1;
5882 if (relativea > relativeb)
5883 return -1;
5884 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5885 return -1;
5886 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5887 return 1;
5888 if (a->rela->r_offset < b->rela->r_offset)
5889 return -1;
5890 if (a->rela->r_offset > b->rela->r_offset)
5891 return 1;
5892 return 0;
5893 }
5894
5895 static int
5896 elf_link_sort_cmp2 (const void *A, const void *B)
5897 {
5898 const struct elf_link_sort_rela *a = A;
5899 const struct elf_link_sort_rela *b = B;
5900 int copya, copyb;
5901
5902 if (a->u.offset < b->u.offset)
5903 return -1;
5904 if (a->u.offset > b->u.offset)
5905 return 1;
5906 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5907 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5908 if (copya < copyb)
5909 return -1;
5910 if (copya > copyb)
5911 return 1;
5912 if (a->rela->r_offset < b->rela->r_offset)
5913 return -1;
5914 if (a->rela->r_offset > b->rela->r_offset)
5915 return 1;
5916 return 0;
5917 }
5918
5919 static size_t
5920 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5921 {
5922 asection *reldyn;
5923 bfd_size_type count, size;
5924 size_t i, ret, sort_elt, ext_size;
5925 bfd_byte *sort, *s_non_relative, *p;
5926 struct elf_link_sort_rela *sq;
5927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5928 int i2e = bed->s->int_rels_per_ext_rel;
5929 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5930 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5931 struct bfd_link_order *lo;
5932 bfd_vma r_sym_mask;
5933
5934 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5935 if (reldyn == NULL || reldyn->size == 0)
5936 {
5937 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5938 if (reldyn == NULL || reldyn->size == 0)
5939 return 0;
5940 ext_size = bed->s->sizeof_rel;
5941 swap_in = bed->s->swap_reloc_in;
5942 swap_out = bed->s->swap_reloc_out;
5943 }
5944 else
5945 {
5946 ext_size = bed->s->sizeof_rela;
5947 swap_in = bed->s->swap_reloca_in;
5948 swap_out = bed->s->swap_reloca_out;
5949 }
5950 count = reldyn->size / ext_size;
5951
5952 size = 0;
5953 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5954 if (lo->type == bfd_indirect_link_order)
5955 {
5956 asection *o = lo->u.indirect.section;
5957 size += o->size;
5958 }
5959
5960 if (size != reldyn->size)
5961 return 0;
5962
5963 sort_elt = (sizeof (struct elf_link_sort_rela)
5964 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5965 sort = bfd_zmalloc (sort_elt * count);
5966 if (sort == NULL)
5967 {
5968 (*info->callbacks->warning)
5969 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5970 return 0;
5971 }
5972
5973 if (bed->s->arch_size == 32)
5974 r_sym_mask = ~(bfd_vma) 0xff;
5975 else
5976 r_sym_mask = ~(bfd_vma) 0xffffffff;
5977
5978 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5979 if (lo->type == bfd_indirect_link_order)
5980 {
5981 bfd_byte *erel, *erelend;
5982 asection *o = lo->u.indirect.section;
5983
5984 if (o->contents == NULL && o->size != 0)
5985 {
5986 /* This is a reloc section that is being handled as a normal
5987 section. See bfd_section_from_shdr. We can't combine
5988 relocs in this case. */
5989 free (sort);
5990 return 0;
5991 }
5992 erel = o->contents;
5993 erelend = o->contents + o->size;
5994 p = sort + o->output_offset / ext_size * sort_elt;
5995 while (erel < erelend)
5996 {
5997 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5998 (*swap_in) (abfd, erel, s->rela);
5999 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6000 s->u.sym_mask = r_sym_mask;
6001 p += sort_elt;
6002 erel += ext_size;
6003 }
6004 }
6005
6006 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6007
6008 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6009 {
6010 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6011 if (s->type != reloc_class_relative)
6012 break;
6013 }
6014 ret = i;
6015 s_non_relative = p;
6016
6017 sq = (struct elf_link_sort_rela *) s_non_relative;
6018 for (; i < count; i++, p += sort_elt)
6019 {
6020 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6021 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6022 sq = sp;
6023 sp->u.offset = sq->rela->r_offset;
6024 }
6025
6026 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6027
6028 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
6029 if (lo->type == bfd_indirect_link_order)
6030 {
6031 bfd_byte *erel, *erelend;
6032 asection *o = lo->u.indirect.section;
6033
6034 erel = o->contents;
6035 erelend = o->contents + o->size;
6036 p = sort + o->output_offset / ext_size * sort_elt;
6037 while (erel < erelend)
6038 {
6039 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6040 (*swap_out) (abfd, s->rela, erel);
6041 p += sort_elt;
6042 erel += ext_size;
6043 }
6044 }
6045
6046 free (sort);
6047 *psec = reldyn;
6048 return ret;
6049 }
6050
6051 /* Flush the output symbols to the file. */
6052
6053 static bfd_boolean
6054 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6055 const struct elf_backend_data *bed)
6056 {
6057 if (finfo->symbuf_count > 0)
6058 {
6059 Elf_Internal_Shdr *hdr;
6060 file_ptr pos;
6061 bfd_size_type amt;
6062
6063 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6064 pos = hdr->sh_offset + hdr->sh_size;
6065 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6066 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6067 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6068 return FALSE;
6069
6070 hdr->sh_size += amt;
6071 finfo->symbuf_count = 0;
6072 }
6073
6074 return TRUE;
6075 }
6076
6077 /* Add a symbol to the output symbol table. */
6078
6079 static bfd_boolean
6080 elf_link_output_sym (struct elf_final_link_info *finfo,
6081 const char *name,
6082 Elf_Internal_Sym *elfsym,
6083 asection *input_sec,
6084 struct elf_link_hash_entry *h)
6085 {
6086 bfd_byte *dest;
6087 Elf_External_Sym_Shndx *destshndx;
6088 bfd_boolean (*output_symbol_hook)
6089 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6090 struct elf_link_hash_entry *);
6091 const struct elf_backend_data *bed;
6092
6093 bed = get_elf_backend_data (finfo->output_bfd);
6094 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6095 if (output_symbol_hook != NULL)
6096 {
6097 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6098 return FALSE;
6099 }
6100
6101 if (name == NULL || *name == '\0')
6102 elfsym->st_name = 0;
6103 else if (input_sec->flags & SEC_EXCLUDE)
6104 elfsym->st_name = 0;
6105 else
6106 {
6107 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6108 name, TRUE, FALSE);
6109 if (elfsym->st_name == (unsigned long) -1)
6110 return FALSE;
6111 }
6112
6113 if (finfo->symbuf_count >= finfo->symbuf_size)
6114 {
6115 if (! elf_link_flush_output_syms (finfo, bed))
6116 return FALSE;
6117 }
6118
6119 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6120 destshndx = finfo->symshndxbuf;
6121 if (destshndx != NULL)
6122 {
6123 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6124 {
6125 bfd_size_type amt;
6126
6127 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6128 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6129 if (destshndx == NULL)
6130 return FALSE;
6131 memset ((char *) destshndx + amt, 0, amt);
6132 finfo->shndxbuf_size *= 2;
6133 }
6134 destshndx += bfd_get_symcount (finfo->output_bfd);
6135 }
6136
6137 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6138 finfo->symbuf_count += 1;
6139 bfd_get_symcount (finfo->output_bfd) += 1;
6140
6141 return TRUE;
6142 }
6143
6144 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6145 allowing an unsatisfied unversioned symbol in the DSO to match a
6146 versioned symbol that would normally require an explicit version.
6147 We also handle the case that a DSO references a hidden symbol
6148 which may be satisfied by a versioned symbol in another DSO. */
6149
6150 static bfd_boolean
6151 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6152 const struct elf_backend_data *bed,
6153 struct elf_link_hash_entry *h)
6154 {
6155 bfd *abfd;
6156 struct elf_link_loaded_list *loaded;
6157
6158 if (!is_elf_hash_table (info->hash))
6159 return FALSE;
6160
6161 switch (h->root.type)
6162 {
6163 default:
6164 abfd = NULL;
6165 break;
6166
6167 case bfd_link_hash_undefined:
6168 case bfd_link_hash_undefweak:
6169 abfd = h->root.u.undef.abfd;
6170 if ((abfd->flags & DYNAMIC) == 0
6171 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6172 return FALSE;
6173 break;
6174
6175 case bfd_link_hash_defined:
6176 case bfd_link_hash_defweak:
6177 abfd = h->root.u.def.section->owner;
6178 break;
6179
6180 case bfd_link_hash_common:
6181 abfd = h->root.u.c.p->section->owner;
6182 break;
6183 }
6184 BFD_ASSERT (abfd != NULL);
6185
6186 for (loaded = elf_hash_table (info)->loaded;
6187 loaded != NULL;
6188 loaded = loaded->next)
6189 {
6190 bfd *input;
6191 Elf_Internal_Shdr *hdr;
6192 bfd_size_type symcount;
6193 bfd_size_type extsymcount;
6194 bfd_size_type extsymoff;
6195 Elf_Internal_Shdr *versymhdr;
6196 Elf_Internal_Sym *isym;
6197 Elf_Internal_Sym *isymend;
6198 Elf_Internal_Sym *isymbuf;
6199 Elf_External_Versym *ever;
6200 Elf_External_Versym *extversym;
6201
6202 input = loaded->abfd;
6203
6204 /* We check each DSO for a possible hidden versioned definition. */
6205 if (input == abfd
6206 || (input->flags & DYNAMIC) == 0
6207 || elf_dynversym (input) == 0)
6208 continue;
6209
6210 hdr = &elf_tdata (input)->dynsymtab_hdr;
6211
6212 symcount = hdr->sh_size / bed->s->sizeof_sym;
6213 if (elf_bad_symtab (input))
6214 {
6215 extsymcount = symcount;
6216 extsymoff = 0;
6217 }
6218 else
6219 {
6220 extsymcount = symcount - hdr->sh_info;
6221 extsymoff = hdr->sh_info;
6222 }
6223
6224 if (extsymcount == 0)
6225 continue;
6226
6227 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6228 NULL, NULL, NULL);
6229 if (isymbuf == NULL)
6230 return FALSE;
6231
6232 /* Read in any version definitions. */
6233 versymhdr = &elf_tdata (input)->dynversym_hdr;
6234 extversym = bfd_malloc (versymhdr->sh_size);
6235 if (extversym == NULL)
6236 goto error_ret;
6237
6238 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6239 || (bfd_bread (extversym, versymhdr->sh_size, input)
6240 != versymhdr->sh_size))
6241 {
6242 free (extversym);
6243 error_ret:
6244 free (isymbuf);
6245 return FALSE;
6246 }
6247
6248 ever = extversym + extsymoff;
6249 isymend = isymbuf + extsymcount;
6250 for (isym = isymbuf; isym < isymend; isym++, ever++)
6251 {
6252 const char *name;
6253 Elf_Internal_Versym iver;
6254 unsigned short version_index;
6255
6256 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6257 || isym->st_shndx == SHN_UNDEF)
6258 continue;
6259
6260 name = bfd_elf_string_from_elf_section (input,
6261 hdr->sh_link,
6262 isym->st_name);
6263 if (strcmp (name, h->root.root.string) != 0)
6264 continue;
6265
6266 _bfd_elf_swap_versym_in (input, ever, &iver);
6267
6268 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6269 {
6270 /* If we have a non-hidden versioned sym, then it should
6271 have provided a definition for the undefined sym. */
6272 abort ();
6273 }
6274
6275 version_index = iver.vs_vers & VERSYM_VERSION;
6276 if (version_index == 1 || version_index == 2)
6277 {
6278 /* This is the base or first version. We can use it. */
6279 free (extversym);
6280 free (isymbuf);
6281 return TRUE;
6282 }
6283 }
6284
6285 free (extversym);
6286 free (isymbuf);
6287 }
6288
6289 return FALSE;
6290 }
6291
6292 /* Add an external symbol to the symbol table. This is called from
6293 the hash table traversal routine. When generating a shared object,
6294 we go through the symbol table twice. The first time we output
6295 anything that might have been forced to local scope in a version
6296 script. The second time we output the symbols that are still
6297 global symbols. */
6298
6299 static bfd_boolean
6300 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6301 {
6302 struct elf_outext_info *eoinfo = data;
6303 struct elf_final_link_info *finfo = eoinfo->finfo;
6304 bfd_boolean strip;
6305 Elf_Internal_Sym sym;
6306 asection *input_sec;
6307 const struct elf_backend_data *bed;
6308
6309 if (h->root.type == bfd_link_hash_warning)
6310 {
6311 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6312 if (h->root.type == bfd_link_hash_new)
6313 return TRUE;
6314 }
6315
6316 /* Decide whether to output this symbol in this pass. */
6317 if (eoinfo->localsyms)
6318 {
6319 if (!h->forced_local)
6320 return TRUE;
6321 }
6322 else
6323 {
6324 if (h->forced_local)
6325 return TRUE;
6326 }
6327
6328 bed = get_elf_backend_data (finfo->output_bfd);
6329
6330 /* If we have an undefined symbol reference here then it must have
6331 come from a shared library that is being linked in. (Undefined
6332 references in regular files have already been handled). If we
6333 are reporting errors for this situation then do so now. */
6334 if (h->root.type == bfd_link_hash_undefined
6335 && h->ref_dynamic
6336 && !h->ref_regular
6337 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6338 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6339 {
6340 if (! ((*finfo->info->callbacks->undefined_symbol)
6341 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6342 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6343 {
6344 eoinfo->failed = TRUE;
6345 return FALSE;
6346 }
6347 }
6348
6349 /* We should also warn if a forced local symbol is referenced from
6350 shared libraries. */
6351 if (! finfo->info->relocatable
6352 && (! finfo->info->shared)
6353 && h->forced_local
6354 && h->ref_dynamic
6355 && !h->dynamic_def
6356 && !h->dynamic_weak
6357 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6358 {
6359 (*_bfd_error_handler)
6360 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6361 finfo->output_bfd, h->root.u.def.section->owner,
6362 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6363 ? "internal"
6364 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6365 ? "hidden" : "local",
6366 h->root.root.string);
6367 eoinfo->failed = TRUE;
6368 return FALSE;
6369 }
6370
6371 /* We don't want to output symbols that have never been mentioned by
6372 a regular file, or that we have been told to strip. However, if
6373 h->indx is set to -2, the symbol is used by a reloc and we must
6374 output it. */
6375 if (h->indx == -2)
6376 strip = FALSE;
6377 else if ((h->def_dynamic
6378 || h->ref_dynamic
6379 || h->root.type == bfd_link_hash_new)
6380 && !h->def_regular
6381 && !h->ref_regular)
6382 strip = TRUE;
6383 else if (finfo->info->strip == strip_all)
6384 strip = TRUE;
6385 else if (finfo->info->strip == strip_some
6386 && bfd_hash_lookup (finfo->info->keep_hash,
6387 h->root.root.string, FALSE, FALSE) == NULL)
6388 strip = TRUE;
6389 else if (finfo->info->strip_discarded
6390 && (h->root.type == bfd_link_hash_defined
6391 || h->root.type == bfd_link_hash_defweak)
6392 && elf_discarded_section (h->root.u.def.section))
6393 strip = TRUE;
6394 else
6395 strip = FALSE;
6396
6397 /* If we're stripping it, and it's not a dynamic symbol, there's
6398 nothing else to do unless it is a forced local symbol. */
6399 if (strip
6400 && h->dynindx == -1
6401 && !h->forced_local)
6402 return TRUE;
6403
6404 sym.st_value = 0;
6405 sym.st_size = h->size;
6406 sym.st_other = h->other;
6407 if (h->forced_local)
6408 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6409 else if (h->root.type == bfd_link_hash_undefweak
6410 || h->root.type == bfd_link_hash_defweak)
6411 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6412 else
6413 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6414
6415 switch (h->root.type)
6416 {
6417 default:
6418 case bfd_link_hash_new:
6419 case bfd_link_hash_warning:
6420 abort ();
6421 return FALSE;
6422
6423 case bfd_link_hash_undefined:
6424 case bfd_link_hash_undefweak:
6425 input_sec = bfd_und_section_ptr;
6426 sym.st_shndx = SHN_UNDEF;
6427 break;
6428
6429 case bfd_link_hash_defined:
6430 case bfd_link_hash_defweak:
6431 {
6432 input_sec = h->root.u.def.section;
6433 if (input_sec->output_section != NULL)
6434 {
6435 sym.st_shndx =
6436 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6437 input_sec->output_section);
6438 if (sym.st_shndx == SHN_BAD)
6439 {
6440 (*_bfd_error_handler)
6441 (_("%B: could not find output section %A for input section %A"),
6442 finfo->output_bfd, input_sec->output_section, input_sec);
6443 eoinfo->failed = TRUE;
6444 return FALSE;
6445 }
6446
6447 /* ELF symbols in relocatable files are section relative,
6448 but in nonrelocatable files they are virtual
6449 addresses. */
6450 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6451 if (! finfo->info->relocatable)
6452 {
6453 sym.st_value += input_sec->output_section->vma;
6454 if (h->type == STT_TLS)
6455 {
6456 /* STT_TLS symbols are relative to PT_TLS segment
6457 base. */
6458 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6459 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6460 }
6461 }
6462 }
6463 else
6464 {
6465 BFD_ASSERT (input_sec->owner == NULL
6466 || (input_sec->owner->flags & DYNAMIC) != 0);
6467 sym.st_shndx = SHN_UNDEF;
6468 input_sec = bfd_und_section_ptr;
6469 }
6470 }
6471 break;
6472
6473 case bfd_link_hash_common:
6474 input_sec = h->root.u.c.p->section;
6475 sym.st_shndx = SHN_COMMON;
6476 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6477 break;
6478
6479 case bfd_link_hash_indirect:
6480 /* These symbols are created by symbol versioning. They point
6481 to the decorated version of the name. For example, if the
6482 symbol foo@@GNU_1.2 is the default, which should be used when
6483 foo is used with no version, then we add an indirect symbol
6484 foo which points to foo@@GNU_1.2. We ignore these symbols,
6485 since the indirected symbol is already in the hash table. */
6486 return TRUE;
6487 }
6488
6489 /* Give the processor backend a chance to tweak the symbol value,
6490 and also to finish up anything that needs to be done for this
6491 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6492 forced local syms when non-shared is due to a historical quirk. */
6493 if ((h->dynindx != -1
6494 || h->forced_local)
6495 && ((finfo->info->shared
6496 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6497 || h->root.type != bfd_link_hash_undefweak))
6498 || !h->forced_local)
6499 && elf_hash_table (finfo->info)->dynamic_sections_created)
6500 {
6501 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6502 (finfo->output_bfd, finfo->info, h, &sym)))
6503 {
6504 eoinfo->failed = TRUE;
6505 return FALSE;
6506 }
6507 }
6508
6509 /* If we are marking the symbol as undefined, and there are no
6510 non-weak references to this symbol from a regular object, then
6511 mark the symbol as weak undefined; if there are non-weak
6512 references, mark the symbol as strong. We can't do this earlier,
6513 because it might not be marked as undefined until the
6514 finish_dynamic_symbol routine gets through with it. */
6515 if (sym.st_shndx == SHN_UNDEF
6516 && h->ref_regular
6517 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6518 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6519 {
6520 int bindtype;
6521
6522 if (h->ref_regular_nonweak)
6523 bindtype = STB_GLOBAL;
6524 else
6525 bindtype = STB_WEAK;
6526 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6527 }
6528
6529 /* If a non-weak symbol with non-default visibility is not defined
6530 locally, it is a fatal error. */
6531 if (! finfo->info->relocatable
6532 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6533 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6534 && h->root.type == bfd_link_hash_undefined
6535 && !h->def_regular)
6536 {
6537 (*_bfd_error_handler)
6538 (_("%B: %s symbol `%s' isn't defined"),
6539 finfo->output_bfd,
6540 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6541 ? "protected"
6542 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6543 ? "internal" : "hidden",
6544 h->root.root.string);
6545 eoinfo->failed = TRUE;
6546 return FALSE;
6547 }
6548
6549 /* If this symbol should be put in the .dynsym section, then put it
6550 there now. We already know the symbol index. We also fill in
6551 the entry in the .hash section. */
6552 if (h->dynindx != -1
6553 && elf_hash_table (finfo->info)->dynamic_sections_created)
6554 {
6555 size_t bucketcount;
6556 size_t bucket;
6557 size_t hash_entry_size;
6558 bfd_byte *bucketpos;
6559 bfd_vma chain;
6560 bfd_byte *esym;
6561
6562 sym.st_name = h->dynstr_index;
6563 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6564 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6565
6566 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6567 bucket = h->u.elf_hash_value % bucketcount;
6568 hash_entry_size
6569 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6570 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6571 + (bucket + 2) * hash_entry_size);
6572 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6573 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6574 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6575 ((bfd_byte *) finfo->hash_sec->contents
6576 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6577
6578 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6579 {
6580 Elf_Internal_Versym iversym;
6581 Elf_External_Versym *eversym;
6582
6583 if (!h->def_regular)
6584 {
6585 if (h->verinfo.verdef == NULL)
6586 iversym.vs_vers = 0;
6587 else
6588 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6589 }
6590 else
6591 {
6592 if (h->verinfo.vertree == NULL)
6593 iversym.vs_vers = 1;
6594 else
6595 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6596 if (finfo->info->create_default_symver)
6597 iversym.vs_vers++;
6598 }
6599
6600 if (h->hidden)
6601 iversym.vs_vers |= VERSYM_HIDDEN;
6602
6603 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6604 eversym += h->dynindx;
6605 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6606 }
6607 }
6608
6609 /* If we're stripping it, then it was just a dynamic symbol, and
6610 there's nothing else to do. */
6611 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6612 return TRUE;
6613
6614 h->indx = bfd_get_symcount (finfo->output_bfd);
6615
6616 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6617 {
6618 eoinfo->failed = TRUE;
6619 return FALSE;
6620 }
6621
6622 return TRUE;
6623 }
6624
6625 /* Return TRUE if special handling is done for relocs in SEC against
6626 symbols defined in discarded sections. */
6627
6628 static bfd_boolean
6629 elf_section_ignore_discarded_relocs (asection *sec)
6630 {
6631 const struct elf_backend_data *bed;
6632
6633 switch (sec->sec_info_type)
6634 {
6635 case ELF_INFO_TYPE_STABS:
6636 case ELF_INFO_TYPE_EH_FRAME:
6637 return TRUE;
6638 default:
6639 break;
6640 }
6641
6642 bed = get_elf_backend_data (sec->owner);
6643 if (bed->elf_backend_ignore_discarded_relocs != NULL
6644 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6645 return TRUE;
6646
6647 return FALSE;
6648 }
6649
6650 enum action_discarded
6651 {
6652 COMPLAIN = 1,
6653 PRETEND = 2
6654 };
6655
6656 /* Return a mask saying how ld should treat relocations in SEC against
6657 symbols defined in discarded sections. If this function returns
6658 COMPLAIN set, ld will issue a warning message. If this function
6659 returns PRETEND set, and the discarded section was link-once and the
6660 same size as the kept link-once section, ld will pretend that the
6661 symbol was actually defined in the kept section. Otherwise ld will
6662 zero the reloc (at least that is the intent, but some cooperation by
6663 the target dependent code is needed, particularly for REL targets). */
6664
6665 static unsigned int
6666 elf_action_discarded (asection *sec)
6667 {
6668 if (sec->flags & SEC_DEBUGGING)
6669 return PRETEND;
6670
6671 if (strcmp (".eh_frame", sec->name) == 0)
6672 return 0;
6673
6674 if (strcmp (".gcc_except_table", sec->name) == 0)
6675 return 0;
6676
6677 if (strcmp (".PARISC.unwind", sec->name) == 0)
6678 return 0;
6679
6680 if (strcmp (".fixup", sec->name) == 0)
6681 return 0;
6682
6683 return COMPLAIN | PRETEND;
6684 }
6685
6686 /* Find a match between a section and a member of a section group. */
6687
6688 static asection *
6689 match_group_member (asection *sec, asection *group)
6690 {
6691 asection *first = elf_next_in_group (group);
6692 asection *s = first;
6693
6694 while (s != NULL)
6695 {
6696 if (bfd_elf_match_symbols_in_sections (s, sec))
6697 return s;
6698
6699 if (s == first)
6700 break;
6701 }
6702
6703 return NULL;
6704 }
6705
6706 /* Check if the kept section of a discarded section SEC can be used
6707 to replace it. Return the replacement if it is OK. Otherwise return
6708 NULL. */
6709
6710 asection *
6711 _bfd_elf_check_kept_section (asection *sec)
6712 {
6713 asection *kept;
6714
6715 kept = sec->kept_section;
6716 if (kept != NULL)
6717 {
6718 if (elf_sec_group (sec) != NULL)
6719 kept = match_group_member (sec, kept);
6720 if (kept != NULL && sec->size != kept->size)
6721 kept = NULL;
6722 }
6723 return kept;
6724 }
6725
6726 /* Link an input file into the linker output file. This function
6727 handles all the sections and relocations of the input file at once.
6728 This is so that we only have to read the local symbols once, and
6729 don't have to keep them in memory. */
6730
6731 static bfd_boolean
6732 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6733 {
6734 bfd_boolean (*relocate_section)
6735 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6736 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6737 bfd *output_bfd;
6738 Elf_Internal_Shdr *symtab_hdr;
6739 size_t locsymcount;
6740 size_t extsymoff;
6741 Elf_Internal_Sym *isymbuf;
6742 Elf_Internal_Sym *isym;
6743 Elf_Internal_Sym *isymend;
6744 long *pindex;
6745 asection **ppsection;
6746 asection *o;
6747 const struct elf_backend_data *bed;
6748 bfd_boolean emit_relocs;
6749 struct elf_link_hash_entry **sym_hashes;
6750
6751 output_bfd = finfo->output_bfd;
6752 bed = get_elf_backend_data (output_bfd);
6753 relocate_section = bed->elf_backend_relocate_section;
6754
6755 /* If this is a dynamic object, we don't want to do anything here:
6756 we don't want the local symbols, and we don't want the section
6757 contents. */
6758 if ((input_bfd->flags & DYNAMIC) != 0)
6759 return TRUE;
6760
6761 emit_relocs = (finfo->info->relocatable
6762 || finfo->info->emitrelocations
6763 || bed->elf_backend_emit_relocs);
6764
6765 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6766 if (elf_bad_symtab (input_bfd))
6767 {
6768 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6769 extsymoff = 0;
6770 }
6771 else
6772 {
6773 locsymcount = symtab_hdr->sh_info;
6774 extsymoff = symtab_hdr->sh_info;
6775 }
6776
6777 /* Read the local symbols. */
6778 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6779 if (isymbuf == NULL && locsymcount != 0)
6780 {
6781 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6782 finfo->internal_syms,
6783 finfo->external_syms,
6784 finfo->locsym_shndx);
6785 if (isymbuf == NULL)
6786 return FALSE;
6787 }
6788
6789 /* Find local symbol sections and adjust values of symbols in
6790 SEC_MERGE sections. Write out those local symbols we know are
6791 going into the output file. */
6792 isymend = isymbuf + locsymcount;
6793 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6794 isym < isymend;
6795 isym++, pindex++, ppsection++)
6796 {
6797 asection *isec;
6798 const char *name;
6799 Elf_Internal_Sym osym;
6800
6801 *pindex = -1;
6802
6803 if (elf_bad_symtab (input_bfd))
6804 {
6805 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6806 {
6807 *ppsection = NULL;
6808 continue;
6809 }
6810 }
6811
6812 if (isym->st_shndx == SHN_UNDEF)
6813 isec = bfd_und_section_ptr;
6814 else if (isym->st_shndx < SHN_LORESERVE
6815 || isym->st_shndx > SHN_HIRESERVE)
6816 {
6817 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6818 if (isec
6819 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6820 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6821 isym->st_value =
6822 _bfd_merged_section_offset (output_bfd, &isec,
6823 elf_section_data (isec)->sec_info,
6824 isym->st_value);
6825 }
6826 else if (isym->st_shndx == SHN_ABS)
6827 isec = bfd_abs_section_ptr;
6828 else if (isym->st_shndx == SHN_COMMON)
6829 isec = bfd_com_section_ptr;
6830 else
6831 {
6832 /* Who knows? */
6833 isec = NULL;
6834 }
6835
6836 *ppsection = isec;
6837
6838 /* Don't output the first, undefined, symbol. */
6839 if (ppsection == finfo->sections)
6840 continue;
6841
6842 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6843 {
6844 /* We never output section symbols. Instead, we use the
6845 section symbol of the corresponding section in the output
6846 file. */
6847 continue;
6848 }
6849
6850 /* If we are stripping all symbols, we don't want to output this
6851 one. */
6852 if (finfo->info->strip == strip_all)
6853 continue;
6854
6855 /* If we are discarding all local symbols, we don't want to
6856 output this one. If we are generating a relocatable output
6857 file, then some of the local symbols may be required by
6858 relocs; we output them below as we discover that they are
6859 needed. */
6860 if (finfo->info->discard == discard_all)
6861 continue;
6862
6863 /* If this symbol is defined in a section which we are
6864 discarding, we don't need to keep it, but note that
6865 linker_mark is only reliable for sections that have contents.
6866 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6867 as well as linker_mark. */
6868 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6869 && (isec == NULL
6870 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6871 || (! finfo->info->relocatable
6872 && (isec->flags & SEC_EXCLUDE) != 0)))
6873 continue;
6874
6875 /* If the section is not in the output BFD's section list, it is not
6876 being output. */
6877 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6878 continue;
6879
6880 /* Get the name of the symbol. */
6881 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6882 isym->st_name);
6883 if (name == NULL)
6884 return FALSE;
6885
6886 /* See if we are discarding symbols with this name. */
6887 if ((finfo->info->strip == strip_some
6888 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6889 == NULL))
6890 || (((finfo->info->discard == discard_sec_merge
6891 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6892 || finfo->info->discard == discard_l)
6893 && bfd_is_local_label_name (input_bfd, name)))
6894 continue;
6895
6896 /* If we get here, we are going to output this symbol. */
6897
6898 osym = *isym;
6899
6900 /* Adjust the section index for the output file. */
6901 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6902 isec->output_section);
6903 if (osym.st_shndx == SHN_BAD)
6904 return FALSE;
6905
6906 *pindex = bfd_get_symcount (output_bfd);
6907
6908 /* ELF symbols in relocatable files are section relative, but
6909 in executable files they are virtual addresses. Note that
6910 this code assumes that all ELF sections have an associated
6911 BFD section with a reasonable value for output_offset; below
6912 we assume that they also have a reasonable value for
6913 output_section. Any special sections must be set up to meet
6914 these requirements. */
6915 osym.st_value += isec->output_offset;
6916 if (! finfo->info->relocatable)
6917 {
6918 osym.st_value += isec->output_section->vma;
6919 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6920 {
6921 /* STT_TLS symbols are relative to PT_TLS segment base. */
6922 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6923 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6924 }
6925 }
6926
6927 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6928 return FALSE;
6929 }
6930
6931 /* Relocate the contents of each section. */
6932 sym_hashes = elf_sym_hashes (input_bfd);
6933 for (o = input_bfd->sections; o != NULL; o = o->next)
6934 {
6935 bfd_byte *contents;
6936
6937 if (! o->linker_mark)
6938 {
6939 /* This section was omitted from the link. */
6940 continue;
6941 }
6942
6943 if ((o->flags & SEC_HAS_CONTENTS) == 0
6944 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6945 continue;
6946
6947 if ((o->flags & SEC_LINKER_CREATED) != 0)
6948 {
6949 /* Section was created by _bfd_elf_link_create_dynamic_sections
6950 or somesuch. */
6951 continue;
6952 }
6953
6954 /* Get the contents of the section. They have been cached by a
6955 relaxation routine. Note that o is a section in an input
6956 file, so the contents field will not have been set by any of
6957 the routines which work on output files. */
6958 if (elf_section_data (o)->this_hdr.contents != NULL)
6959 contents = elf_section_data (o)->this_hdr.contents;
6960 else
6961 {
6962 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6963
6964 contents = finfo->contents;
6965 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6966 return FALSE;
6967 }
6968
6969 if ((o->flags & SEC_RELOC) != 0)
6970 {
6971 Elf_Internal_Rela *internal_relocs;
6972 bfd_vma r_type_mask;
6973 int r_sym_shift;
6974
6975 /* Get the swapped relocs. */
6976 internal_relocs
6977 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6978 finfo->internal_relocs, FALSE);
6979 if (internal_relocs == NULL
6980 && o->reloc_count > 0)
6981 return FALSE;
6982
6983 if (bed->s->arch_size == 32)
6984 {
6985 r_type_mask = 0xff;
6986 r_sym_shift = 8;
6987 }
6988 else
6989 {
6990 r_type_mask = 0xffffffff;
6991 r_sym_shift = 32;
6992 }
6993
6994 /* Run through the relocs looking for any against symbols
6995 from discarded sections and section symbols from
6996 removed link-once sections. Complain about relocs
6997 against discarded sections. Zero relocs against removed
6998 link-once sections. Preserve debug information as much
6999 as we can. */
7000 if (!elf_section_ignore_discarded_relocs (o))
7001 {
7002 Elf_Internal_Rela *rel, *relend;
7003 unsigned int action = elf_action_discarded (o);
7004
7005 rel = internal_relocs;
7006 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7007 for ( ; rel < relend; rel++)
7008 {
7009 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7010 asection **ps, *sec;
7011 struct elf_link_hash_entry *h = NULL;
7012 const char *sym_name;
7013
7014 if (r_symndx == STN_UNDEF)
7015 continue;
7016
7017 if (r_symndx >= locsymcount
7018 || (elf_bad_symtab (input_bfd)
7019 && finfo->sections[r_symndx] == NULL))
7020 {
7021 h = sym_hashes[r_symndx - extsymoff];
7022
7023 /* Badly formatted input files can contain relocs that
7024 reference non-existant symbols. Check here so that
7025 we do not seg fault. */
7026 if (h == NULL)
7027 {
7028 char buffer [32];
7029
7030 sprintf_vma (buffer, rel->r_info);
7031 (*_bfd_error_handler)
7032 (_("error: %B contains a reloc (0x%s) for section %A "
7033 "that references a non-existent global symbol"),
7034 input_bfd, o, buffer);
7035 bfd_set_error (bfd_error_bad_value);
7036 return FALSE;
7037 }
7038
7039 while (h->root.type == bfd_link_hash_indirect
7040 || h->root.type == bfd_link_hash_warning)
7041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7042
7043 if (h->root.type != bfd_link_hash_defined
7044 && h->root.type != bfd_link_hash_defweak)
7045 continue;
7046
7047 ps = &h->root.u.def.section;
7048 sym_name = h->root.root.string;
7049 }
7050 else
7051 {
7052 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7053 ps = &finfo->sections[r_symndx];
7054 sym_name = bfd_elf_sym_name (input_bfd,
7055 symtab_hdr,
7056 sym, *ps);
7057 }
7058
7059 /* Complain if the definition comes from a
7060 discarded section. */
7061 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7062 {
7063 BFD_ASSERT (r_symndx != 0);
7064 if (action & COMPLAIN)
7065 {
7066 (*_bfd_error_handler)
7067 (_("`%s' referenced in section `%A' of %B: "
7068 "defined in discarded section `%A' of %B"),
7069 o, input_bfd, sec, sec->owner, sym_name);
7070 bfd_set_error (bfd_error_bad_value);
7071 return FALSE;
7072 }
7073
7074 /* Try to do the best we can to support buggy old
7075 versions of gcc. If we've warned, or this is
7076 debugging info, pretend that the symbol is
7077 really defined in the kept linkonce section.
7078 FIXME: This is quite broken. Modifying the
7079 symbol here means we will be changing all later
7080 uses of the symbol, not just in this section.
7081 The only thing that makes this half reasonable
7082 is that we warn in non-debug sections, and
7083 debug sections tend to come after other
7084 sections. */
7085 if (action & PRETEND)
7086 {
7087 asection *kept;
7088
7089 kept = _bfd_elf_check_kept_section (sec);
7090 if (kept != NULL)
7091 {
7092 *ps = kept;
7093 continue;
7094 }
7095 }
7096
7097 /* Remove the symbol reference from the reloc, but
7098 don't kill the reloc completely. This is so that
7099 a zero value will be written into the section,
7100 which may have non-zero contents put there by the
7101 assembler. Zero in things like an eh_frame fde
7102 pc_begin allows stack unwinders to recognize the
7103 fde as bogus. */
7104 rel->r_info &= r_type_mask;
7105 rel->r_addend = 0;
7106 }
7107 }
7108 }
7109
7110 /* Relocate the section by invoking a back end routine.
7111
7112 The back end routine is responsible for adjusting the
7113 section contents as necessary, and (if using Rela relocs
7114 and generating a relocatable output file) adjusting the
7115 reloc addend as necessary.
7116
7117 The back end routine does not have to worry about setting
7118 the reloc address or the reloc symbol index.
7119
7120 The back end routine is given a pointer to the swapped in
7121 internal symbols, and can access the hash table entries
7122 for the external symbols via elf_sym_hashes (input_bfd).
7123
7124 When generating relocatable output, the back end routine
7125 must handle STB_LOCAL/STT_SECTION symbols specially. The
7126 output symbol is going to be a section symbol
7127 corresponding to the output section, which will require
7128 the addend to be adjusted. */
7129
7130 if (! (*relocate_section) (output_bfd, finfo->info,
7131 input_bfd, o, contents,
7132 internal_relocs,
7133 isymbuf,
7134 finfo->sections))
7135 return FALSE;
7136
7137 if (emit_relocs)
7138 {
7139 Elf_Internal_Rela *irela;
7140 Elf_Internal_Rela *irelaend;
7141 bfd_vma last_offset;
7142 struct elf_link_hash_entry **rel_hash;
7143 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7144 unsigned int next_erel;
7145 bfd_boolean (*reloc_emitter)
7146 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7147 bfd_boolean rela_normal;
7148
7149 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7150 rela_normal = (bed->rela_normal
7151 && (input_rel_hdr->sh_entsize
7152 == bed->s->sizeof_rela));
7153
7154 /* Adjust the reloc addresses and symbol indices. */
7155
7156 irela = internal_relocs;
7157 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7158 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7159 + elf_section_data (o->output_section)->rel_count
7160 + elf_section_data (o->output_section)->rel_count2);
7161 last_offset = o->output_offset;
7162 if (!finfo->info->relocatable)
7163 last_offset += o->output_section->vma;
7164 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7165 {
7166 unsigned long r_symndx;
7167 asection *sec;
7168 Elf_Internal_Sym sym;
7169
7170 if (next_erel == bed->s->int_rels_per_ext_rel)
7171 {
7172 rel_hash++;
7173 next_erel = 0;
7174 }
7175
7176 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7177 finfo->info, o,
7178 irela->r_offset);
7179 if (irela->r_offset >= (bfd_vma) -2)
7180 {
7181 /* This is a reloc for a deleted entry or somesuch.
7182 Turn it into an R_*_NONE reloc, at the same
7183 offset as the last reloc. elf_eh_frame.c and
7184 elf_bfd_discard_info rely on reloc offsets
7185 being ordered. */
7186 irela->r_offset = last_offset;
7187 irela->r_info = 0;
7188 irela->r_addend = 0;
7189 continue;
7190 }
7191
7192 irela->r_offset += o->output_offset;
7193
7194 /* Relocs in an executable have to be virtual addresses. */
7195 if (!finfo->info->relocatable)
7196 irela->r_offset += o->output_section->vma;
7197
7198 last_offset = irela->r_offset;
7199
7200 r_symndx = irela->r_info >> r_sym_shift;
7201 if (r_symndx == STN_UNDEF)
7202 continue;
7203
7204 if (r_symndx >= locsymcount
7205 || (elf_bad_symtab (input_bfd)
7206 && finfo->sections[r_symndx] == NULL))
7207 {
7208 struct elf_link_hash_entry *rh;
7209 unsigned long indx;
7210
7211 /* This is a reloc against a global symbol. We
7212 have not yet output all the local symbols, so
7213 we do not know the symbol index of any global
7214 symbol. We set the rel_hash entry for this
7215 reloc to point to the global hash table entry
7216 for this symbol. The symbol index is then
7217 set at the end of bfd_elf_final_link. */
7218 indx = r_symndx - extsymoff;
7219 rh = elf_sym_hashes (input_bfd)[indx];
7220 while (rh->root.type == bfd_link_hash_indirect
7221 || rh->root.type == bfd_link_hash_warning)
7222 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7223
7224 /* Setting the index to -2 tells
7225 elf_link_output_extsym that this symbol is
7226 used by a reloc. */
7227 BFD_ASSERT (rh->indx < 0);
7228 rh->indx = -2;
7229
7230 *rel_hash = rh;
7231
7232 continue;
7233 }
7234
7235 /* This is a reloc against a local symbol. */
7236
7237 *rel_hash = NULL;
7238 sym = isymbuf[r_symndx];
7239 sec = finfo->sections[r_symndx];
7240 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7241 {
7242 /* I suppose the backend ought to fill in the
7243 section of any STT_SECTION symbol against a
7244 processor specific section. */
7245 r_symndx = 0;
7246 if (bfd_is_abs_section (sec))
7247 ;
7248 else if (sec == NULL || sec->owner == NULL)
7249 {
7250 bfd_set_error (bfd_error_bad_value);
7251 return FALSE;
7252 }
7253 else
7254 {
7255 asection *osec = sec->output_section;
7256
7257 /* If we have discarded a section, the output
7258 section will be the absolute section. In
7259 case of discarded link-once and discarded
7260 SEC_MERGE sections, use the kept section. */
7261 if (bfd_is_abs_section (osec)
7262 && sec->kept_section != NULL
7263 && sec->kept_section->output_section != NULL)
7264 {
7265 osec = sec->kept_section->output_section;
7266 irela->r_addend -= osec->vma;
7267 }
7268
7269 if (!bfd_is_abs_section (osec))
7270 {
7271 r_symndx = osec->target_index;
7272 BFD_ASSERT (r_symndx != 0);
7273 }
7274 }
7275
7276 /* Adjust the addend according to where the
7277 section winds up in the output section. */
7278 if (rela_normal)
7279 irela->r_addend += sec->output_offset;
7280 }
7281 else
7282 {
7283 if (finfo->indices[r_symndx] == -1)
7284 {
7285 unsigned long shlink;
7286 const char *name;
7287 asection *osec;
7288
7289 if (finfo->info->strip == strip_all)
7290 {
7291 /* You can't do ld -r -s. */
7292 bfd_set_error (bfd_error_invalid_operation);
7293 return FALSE;
7294 }
7295
7296 /* This symbol was skipped earlier, but
7297 since it is needed by a reloc, we
7298 must output it now. */
7299 shlink = symtab_hdr->sh_link;
7300 name = (bfd_elf_string_from_elf_section
7301 (input_bfd, shlink, sym.st_name));
7302 if (name == NULL)
7303 return FALSE;
7304
7305 osec = sec->output_section;
7306 sym.st_shndx =
7307 _bfd_elf_section_from_bfd_section (output_bfd,
7308 osec);
7309 if (sym.st_shndx == SHN_BAD)
7310 return FALSE;
7311
7312 sym.st_value += sec->output_offset;
7313 if (! finfo->info->relocatable)
7314 {
7315 sym.st_value += osec->vma;
7316 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7317 {
7318 /* STT_TLS symbols are relative to PT_TLS
7319 segment base. */
7320 BFD_ASSERT (elf_hash_table (finfo->info)
7321 ->tls_sec != NULL);
7322 sym.st_value -= (elf_hash_table (finfo->info)
7323 ->tls_sec->vma);
7324 }
7325 }
7326
7327 finfo->indices[r_symndx]
7328 = bfd_get_symcount (output_bfd);
7329
7330 if (! elf_link_output_sym (finfo, name, &sym, sec,
7331 NULL))
7332 return FALSE;
7333 }
7334
7335 r_symndx = finfo->indices[r_symndx];
7336 }
7337
7338 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7339 | (irela->r_info & r_type_mask));
7340 }
7341
7342 /* Swap out the relocs. */
7343 if (bed->elf_backend_emit_relocs
7344 && !(finfo->info->relocatable
7345 || finfo->info->emitrelocations))
7346 reloc_emitter = bed->elf_backend_emit_relocs;
7347 else
7348 reloc_emitter = _bfd_elf_link_output_relocs;
7349
7350 if (input_rel_hdr->sh_size != 0
7351 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7352 internal_relocs))
7353 return FALSE;
7354
7355 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7356 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7357 {
7358 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7359 * bed->s->int_rels_per_ext_rel);
7360 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7361 internal_relocs))
7362 return FALSE;
7363 }
7364 }
7365 }
7366
7367 /* Write out the modified section contents. */
7368 if (bed->elf_backend_write_section
7369 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7370 {
7371 /* Section written out. */
7372 }
7373 else switch (o->sec_info_type)
7374 {
7375 case ELF_INFO_TYPE_STABS:
7376 if (! (_bfd_write_section_stabs
7377 (output_bfd,
7378 &elf_hash_table (finfo->info)->stab_info,
7379 o, &elf_section_data (o)->sec_info, contents)))
7380 return FALSE;
7381 break;
7382 case ELF_INFO_TYPE_MERGE:
7383 if (! _bfd_write_merged_section (output_bfd, o,
7384 elf_section_data (o)->sec_info))
7385 return FALSE;
7386 break;
7387 case ELF_INFO_TYPE_EH_FRAME:
7388 {
7389 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7390 o, contents))
7391 return FALSE;
7392 }
7393 break;
7394 default:
7395 {
7396 if (! (o->flags & SEC_EXCLUDE)
7397 && ! bfd_set_section_contents (output_bfd, o->output_section,
7398 contents,
7399 (file_ptr) o->output_offset,
7400 o->size))
7401 return FALSE;
7402 }
7403 break;
7404 }
7405 }
7406
7407 return TRUE;
7408 }
7409
7410 /* Generate a reloc when linking an ELF file. This is a reloc
7411 requested by the linker, and does come from any input file. This
7412 is used to build constructor and destructor tables when linking
7413 with -Ur. */
7414
7415 static bfd_boolean
7416 elf_reloc_link_order (bfd *output_bfd,
7417 struct bfd_link_info *info,
7418 asection *output_section,
7419 struct bfd_link_order *link_order)
7420 {
7421 reloc_howto_type *howto;
7422 long indx;
7423 bfd_vma offset;
7424 bfd_vma addend;
7425 struct elf_link_hash_entry **rel_hash_ptr;
7426 Elf_Internal_Shdr *rel_hdr;
7427 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7428 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7429 bfd_byte *erel;
7430 unsigned int i;
7431
7432 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7433 if (howto == NULL)
7434 {
7435 bfd_set_error (bfd_error_bad_value);
7436 return FALSE;
7437 }
7438
7439 addend = link_order->u.reloc.p->addend;
7440
7441 /* Figure out the symbol index. */
7442 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7443 + elf_section_data (output_section)->rel_count
7444 + elf_section_data (output_section)->rel_count2);
7445 if (link_order->type == bfd_section_reloc_link_order)
7446 {
7447 indx = link_order->u.reloc.p->u.section->target_index;
7448 BFD_ASSERT (indx != 0);
7449 *rel_hash_ptr = NULL;
7450 }
7451 else
7452 {
7453 struct elf_link_hash_entry *h;
7454
7455 /* Treat a reloc against a defined symbol as though it were
7456 actually against the section. */
7457 h = ((struct elf_link_hash_entry *)
7458 bfd_wrapped_link_hash_lookup (output_bfd, info,
7459 link_order->u.reloc.p->u.name,
7460 FALSE, FALSE, TRUE));
7461 if (h != NULL
7462 && (h->root.type == bfd_link_hash_defined
7463 || h->root.type == bfd_link_hash_defweak))
7464 {
7465 asection *section;
7466
7467 section = h->root.u.def.section;
7468 indx = section->output_section->target_index;
7469 *rel_hash_ptr = NULL;
7470 /* It seems that we ought to add the symbol value to the
7471 addend here, but in practice it has already been added
7472 because it was passed to constructor_callback. */
7473 addend += section->output_section->vma + section->output_offset;
7474 }
7475 else if (h != NULL)
7476 {
7477 /* Setting the index to -2 tells elf_link_output_extsym that
7478 this symbol is used by a reloc. */
7479 h->indx = -2;
7480 *rel_hash_ptr = h;
7481 indx = 0;
7482 }
7483 else
7484 {
7485 if (! ((*info->callbacks->unattached_reloc)
7486 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7487 return FALSE;
7488 indx = 0;
7489 }
7490 }
7491
7492 /* If this is an inplace reloc, we must write the addend into the
7493 object file. */
7494 if (howto->partial_inplace && addend != 0)
7495 {
7496 bfd_size_type size;
7497 bfd_reloc_status_type rstat;
7498 bfd_byte *buf;
7499 bfd_boolean ok;
7500 const char *sym_name;
7501
7502 size = bfd_get_reloc_size (howto);
7503 buf = bfd_zmalloc (size);
7504 if (buf == NULL)
7505 return FALSE;
7506 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7507 switch (rstat)
7508 {
7509 case bfd_reloc_ok:
7510 break;
7511
7512 default:
7513 case bfd_reloc_outofrange:
7514 abort ();
7515
7516 case bfd_reloc_overflow:
7517 if (link_order->type == bfd_section_reloc_link_order)
7518 sym_name = bfd_section_name (output_bfd,
7519 link_order->u.reloc.p->u.section);
7520 else
7521 sym_name = link_order->u.reloc.p->u.name;
7522 if (! ((*info->callbacks->reloc_overflow)
7523 (info, NULL, sym_name, howto->name, addend, NULL,
7524 NULL, (bfd_vma) 0)))
7525 {
7526 free (buf);
7527 return FALSE;
7528 }
7529 break;
7530 }
7531 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7532 link_order->offset, size);
7533 free (buf);
7534 if (! ok)
7535 return FALSE;
7536 }
7537
7538 /* The address of a reloc is relative to the section in a
7539 relocatable file, and is a virtual address in an executable
7540 file. */
7541 offset = link_order->offset;
7542 if (! info->relocatable)
7543 offset += output_section->vma;
7544
7545 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7546 {
7547 irel[i].r_offset = offset;
7548 irel[i].r_info = 0;
7549 irel[i].r_addend = 0;
7550 }
7551 if (bed->s->arch_size == 32)
7552 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7553 else
7554 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7555
7556 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7557 erel = rel_hdr->contents;
7558 if (rel_hdr->sh_type == SHT_REL)
7559 {
7560 erel += (elf_section_data (output_section)->rel_count
7561 * bed->s->sizeof_rel);
7562 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7563 }
7564 else
7565 {
7566 irel[0].r_addend = addend;
7567 erel += (elf_section_data (output_section)->rel_count
7568 * bed->s->sizeof_rela);
7569 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7570 }
7571
7572 ++elf_section_data (output_section)->rel_count;
7573
7574 return TRUE;
7575 }
7576
7577
7578 /* Get the output vma of the section pointed to by the sh_link field. */
7579
7580 static bfd_vma
7581 elf_get_linked_section_vma (struct bfd_link_order *p)
7582 {
7583 Elf_Internal_Shdr **elf_shdrp;
7584 asection *s;
7585 int elfsec;
7586
7587 s = p->u.indirect.section;
7588 elf_shdrp = elf_elfsections (s->owner);
7589 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7590 elfsec = elf_shdrp[elfsec]->sh_link;
7591 /* PR 290:
7592 The Intel C compiler generates SHT_IA_64_UNWIND with
7593 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7594 sh_info fields. Hence we could get the situation
7595 where elfsec is 0. */
7596 if (elfsec == 0)
7597 {
7598 const struct elf_backend_data *bed
7599 = get_elf_backend_data (s->owner);
7600 if (bed->link_order_error_handler)
7601 bed->link_order_error_handler
7602 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7603 return 0;
7604 }
7605 else
7606 {
7607 s = elf_shdrp[elfsec]->bfd_section;
7608 return s->output_section->vma + s->output_offset;
7609 }
7610 }
7611
7612
7613 /* Compare two sections based on the locations of the sections they are
7614 linked to. Used by elf_fixup_link_order. */
7615
7616 static int
7617 compare_link_order (const void * a, const void * b)
7618 {
7619 bfd_vma apos;
7620 bfd_vma bpos;
7621
7622 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7623 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7624 if (apos < bpos)
7625 return -1;
7626 return apos > bpos;
7627 }
7628
7629
7630 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7631 order as their linked sections. Returns false if this could not be done
7632 because an output section includes both ordered and unordered
7633 sections. Ideally we'd do this in the linker proper. */
7634
7635 static bfd_boolean
7636 elf_fixup_link_order (bfd *abfd, asection *o)
7637 {
7638 int seen_linkorder;
7639 int seen_other;
7640 int n;
7641 struct bfd_link_order *p;
7642 bfd *sub;
7643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7644 int elfsec;
7645 struct bfd_link_order **sections;
7646 asection *s;
7647 bfd_vma offset;
7648
7649 seen_other = 0;
7650 seen_linkorder = 0;
7651 for (p = o->link_order_head; p != NULL; p = p->next)
7652 {
7653 if (p->type == bfd_indirect_link_order
7654 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7655 == bfd_target_elf_flavour)
7656 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7657 {
7658 s = p->u.indirect.section;
7659 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7660 if (elfsec != -1
7661 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7662 seen_linkorder++;
7663 else
7664 seen_other++;
7665 }
7666 else
7667 seen_other++;
7668 }
7669
7670 if (!seen_linkorder)
7671 return TRUE;
7672
7673 if (seen_other && seen_linkorder)
7674 {
7675 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7676 o);
7677 bfd_set_error (bfd_error_bad_value);
7678 return FALSE;
7679 }
7680
7681 sections = (struct bfd_link_order **)
7682 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7683 seen_linkorder = 0;
7684
7685 for (p = o->link_order_head; p != NULL; p = p->next)
7686 {
7687 sections[seen_linkorder++] = p;
7688 }
7689 /* Sort the input sections in the order of their linked section. */
7690 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7691 compare_link_order);
7692
7693 /* Change the offsets of the sections. */
7694 offset = 0;
7695 for (n = 0; n < seen_linkorder; n++)
7696 {
7697 s = sections[n]->u.indirect.section;
7698 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7699 s->output_offset = offset;
7700 sections[n]->offset = offset;
7701 offset += sections[n]->size;
7702 }
7703
7704 return TRUE;
7705 }
7706
7707
7708 /* Do the final step of an ELF link. */
7709
7710 bfd_boolean
7711 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7712 {
7713 bfd_boolean dynamic;
7714 bfd_boolean emit_relocs;
7715 bfd *dynobj;
7716 struct elf_final_link_info finfo;
7717 register asection *o;
7718 register struct bfd_link_order *p;
7719 register bfd *sub;
7720 bfd_size_type max_contents_size;
7721 bfd_size_type max_external_reloc_size;
7722 bfd_size_type max_internal_reloc_count;
7723 bfd_size_type max_sym_count;
7724 bfd_size_type max_sym_shndx_count;
7725 file_ptr off;
7726 Elf_Internal_Sym elfsym;
7727 unsigned int i;
7728 Elf_Internal_Shdr *symtab_hdr;
7729 Elf_Internal_Shdr *symtab_shndx_hdr;
7730 Elf_Internal_Shdr *symstrtab_hdr;
7731 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7732 struct elf_outext_info eoinfo;
7733 bfd_boolean merged;
7734 size_t relativecount = 0;
7735 asection *reldyn = 0;
7736 bfd_size_type amt;
7737
7738 if (! is_elf_hash_table (info->hash))
7739 return FALSE;
7740
7741 if (info->shared)
7742 abfd->flags |= DYNAMIC;
7743
7744 dynamic = elf_hash_table (info)->dynamic_sections_created;
7745 dynobj = elf_hash_table (info)->dynobj;
7746
7747 emit_relocs = (info->relocatable
7748 || info->emitrelocations
7749 || bed->elf_backend_emit_relocs);
7750
7751 finfo.info = info;
7752 finfo.output_bfd = abfd;
7753 finfo.symstrtab = _bfd_elf_stringtab_init ();
7754 if (finfo.symstrtab == NULL)
7755 return FALSE;
7756
7757 if (! dynamic)
7758 {
7759 finfo.dynsym_sec = NULL;
7760 finfo.hash_sec = NULL;
7761 finfo.symver_sec = NULL;
7762 }
7763 else
7764 {
7765 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7766 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7767 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7768 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7769 /* Note that it is OK if symver_sec is NULL. */
7770 }
7771
7772 finfo.contents = NULL;
7773 finfo.external_relocs = NULL;
7774 finfo.internal_relocs = NULL;
7775 finfo.external_syms = NULL;
7776 finfo.locsym_shndx = NULL;
7777 finfo.internal_syms = NULL;
7778 finfo.indices = NULL;
7779 finfo.sections = NULL;
7780 finfo.symbuf = NULL;
7781 finfo.symshndxbuf = NULL;
7782 finfo.symbuf_count = 0;
7783 finfo.shndxbuf_size = 0;
7784
7785 /* Count up the number of relocations we will output for each output
7786 section, so that we know the sizes of the reloc sections. We
7787 also figure out some maximum sizes. */
7788 max_contents_size = 0;
7789 max_external_reloc_size = 0;
7790 max_internal_reloc_count = 0;
7791 max_sym_count = 0;
7792 max_sym_shndx_count = 0;
7793 merged = FALSE;
7794 for (o = abfd->sections; o != NULL; o = o->next)
7795 {
7796 struct bfd_elf_section_data *esdo = elf_section_data (o);
7797 o->reloc_count = 0;
7798
7799 for (p = o->link_order_head; p != NULL; p = p->next)
7800 {
7801 unsigned int reloc_count = 0;
7802 struct bfd_elf_section_data *esdi = NULL;
7803 unsigned int *rel_count1;
7804
7805 if (p->type == bfd_section_reloc_link_order
7806 || p->type == bfd_symbol_reloc_link_order)
7807 reloc_count = 1;
7808 else if (p->type == bfd_indirect_link_order)
7809 {
7810 asection *sec;
7811
7812 sec = p->u.indirect.section;
7813 esdi = elf_section_data (sec);
7814
7815 /* Mark all sections which are to be included in the
7816 link. This will normally be every section. We need
7817 to do this so that we can identify any sections which
7818 the linker has decided to not include. */
7819 sec->linker_mark = TRUE;
7820
7821 if (sec->flags & SEC_MERGE)
7822 merged = TRUE;
7823
7824 if (info->relocatable || info->emitrelocations)
7825 reloc_count = sec->reloc_count;
7826 else if (bed->elf_backend_count_relocs)
7827 {
7828 Elf_Internal_Rela * relocs;
7829
7830 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7831 info->keep_memory);
7832
7833 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7834
7835 if (elf_section_data (o)->relocs != relocs)
7836 free (relocs);
7837 }
7838
7839 if (sec->rawsize > max_contents_size)
7840 max_contents_size = sec->rawsize;
7841 if (sec->size > max_contents_size)
7842 max_contents_size = sec->size;
7843
7844 /* We are interested in just local symbols, not all
7845 symbols. */
7846 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7847 && (sec->owner->flags & DYNAMIC) == 0)
7848 {
7849 size_t sym_count;
7850
7851 if (elf_bad_symtab (sec->owner))
7852 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7853 / bed->s->sizeof_sym);
7854 else
7855 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7856
7857 if (sym_count > max_sym_count)
7858 max_sym_count = sym_count;
7859
7860 if (sym_count > max_sym_shndx_count
7861 && elf_symtab_shndx (sec->owner) != 0)
7862 max_sym_shndx_count = sym_count;
7863
7864 if ((sec->flags & SEC_RELOC) != 0)
7865 {
7866 size_t ext_size;
7867
7868 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7869 if (ext_size > max_external_reloc_size)
7870 max_external_reloc_size = ext_size;
7871 if (sec->reloc_count > max_internal_reloc_count)
7872 max_internal_reloc_count = sec->reloc_count;
7873 }
7874 }
7875 }
7876
7877 if (reloc_count == 0)
7878 continue;
7879
7880 o->reloc_count += reloc_count;
7881
7882 /* MIPS may have a mix of REL and RELA relocs on sections.
7883 To support this curious ABI we keep reloc counts in
7884 elf_section_data too. We must be careful to add the
7885 relocations from the input section to the right output
7886 count. FIXME: Get rid of one count. We have
7887 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7888 rel_count1 = &esdo->rel_count;
7889 if (esdi != NULL)
7890 {
7891 bfd_boolean same_size;
7892 bfd_size_type entsize1;
7893
7894 entsize1 = esdi->rel_hdr.sh_entsize;
7895 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7896 || entsize1 == bed->s->sizeof_rela);
7897 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7898
7899 if (!same_size)
7900 rel_count1 = &esdo->rel_count2;
7901
7902 if (esdi->rel_hdr2 != NULL)
7903 {
7904 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7905 unsigned int alt_count;
7906 unsigned int *rel_count2;
7907
7908 BFD_ASSERT (entsize2 != entsize1
7909 && (entsize2 == bed->s->sizeof_rel
7910 || entsize2 == bed->s->sizeof_rela));
7911
7912 rel_count2 = &esdo->rel_count2;
7913 if (!same_size)
7914 rel_count2 = &esdo->rel_count;
7915
7916 /* The following is probably too simplistic if the
7917 backend counts output relocs unusually. */
7918 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7919 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7920 *rel_count2 += alt_count;
7921 reloc_count -= alt_count;
7922 }
7923 }
7924 *rel_count1 += reloc_count;
7925 }
7926
7927 if (o->reloc_count > 0)
7928 o->flags |= SEC_RELOC;
7929 else
7930 {
7931 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7932 set it (this is probably a bug) and if it is set
7933 assign_section_numbers will create a reloc section. */
7934 o->flags &=~ SEC_RELOC;
7935 }
7936
7937 /* If the SEC_ALLOC flag is not set, force the section VMA to
7938 zero. This is done in elf_fake_sections as well, but forcing
7939 the VMA to 0 here will ensure that relocs against these
7940 sections are handled correctly. */
7941 if ((o->flags & SEC_ALLOC) == 0
7942 && ! o->user_set_vma)
7943 o->vma = 0;
7944 }
7945
7946 if (! info->relocatable && merged)
7947 elf_link_hash_traverse (elf_hash_table (info),
7948 _bfd_elf_link_sec_merge_syms, abfd);
7949
7950 /* Figure out the file positions for everything but the symbol table
7951 and the relocs. We set symcount to force assign_section_numbers
7952 to create a symbol table. */
7953 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7954 BFD_ASSERT (! abfd->output_has_begun);
7955 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7956 goto error_return;
7957
7958 /* Set sizes, and assign file positions for reloc sections. */
7959 for (o = abfd->sections; o != NULL; o = o->next)
7960 {
7961 if ((o->flags & SEC_RELOC) != 0)
7962 {
7963 if (!(_bfd_elf_link_size_reloc_section
7964 (abfd, &elf_section_data (o)->rel_hdr, o)))
7965 goto error_return;
7966
7967 if (elf_section_data (o)->rel_hdr2
7968 && !(_bfd_elf_link_size_reloc_section
7969 (abfd, elf_section_data (o)->rel_hdr2, o)))
7970 goto error_return;
7971 }
7972
7973 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7974 to count upwards while actually outputting the relocations. */
7975 elf_section_data (o)->rel_count = 0;
7976 elf_section_data (o)->rel_count2 = 0;
7977 }
7978
7979 _bfd_elf_assign_file_positions_for_relocs (abfd);
7980
7981 /* We have now assigned file positions for all the sections except
7982 .symtab and .strtab. We start the .symtab section at the current
7983 file position, and write directly to it. We build the .strtab
7984 section in memory. */
7985 bfd_get_symcount (abfd) = 0;
7986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7987 /* sh_name is set in prep_headers. */
7988 symtab_hdr->sh_type = SHT_SYMTAB;
7989 /* sh_flags, sh_addr and sh_size all start off zero. */
7990 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7991 /* sh_link is set in assign_section_numbers. */
7992 /* sh_info is set below. */
7993 /* sh_offset is set just below. */
7994 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7995
7996 off = elf_tdata (abfd)->next_file_pos;
7997 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7998
7999 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8000 incorrect. We do not yet know the size of the .symtab section.
8001 We correct next_file_pos below, after we do know the size. */
8002
8003 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8004 continuously seeking to the right position in the file. */
8005 if (! info->keep_memory || max_sym_count < 20)
8006 finfo.symbuf_size = 20;
8007 else
8008 finfo.symbuf_size = max_sym_count;
8009 amt = finfo.symbuf_size;
8010 amt *= bed->s->sizeof_sym;
8011 finfo.symbuf = bfd_malloc (amt);
8012 if (finfo.symbuf == NULL)
8013 goto error_return;
8014 if (elf_numsections (abfd) > SHN_LORESERVE)
8015 {
8016 /* Wild guess at number of output symbols. realloc'd as needed. */
8017 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8018 finfo.shndxbuf_size = amt;
8019 amt *= sizeof (Elf_External_Sym_Shndx);
8020 finfo.symshndxbuf = bfd_zmalloc (amt);
8021 if (finfo.symshndxbuf == NULL)
8022 goto error_return;
8023 }
8024
8025 /* Start writing out the symbol table. The first symbol is always a
8026 dummy symbol. */
8027 if (info->strip != strip_all
8028 || emit_relocs)
8029 {
8030 elfsym.st_value = 0;
8031 elfsym.st_size = 0;
8032 elfsym.st_info = 0;
8033 elfsym.st_other = 0;
8034 elfsym.st_shndx = SHN_UNDEF;
8035 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8036 NULL))
8037 goto error_return;
8038 }
8039
8040 /* Output a symbol for each section. We output these even if we are
8041 discarding local symbols, since they are used for relocs. These
8042 symbols have no names. We store the index of each one in the
8043 index field of the section, so that we can find it again when
8044 outputting relocs. */
8045 if (info->strip != strip_all
8046 || emit_relocs)
8047 {
8048 elfsym.st_size = 0;
8049 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8050 elfsym.st_other = 0;
8051 for (i = 1; i < elf_numsections (abfd); i++)
8052 {
8053 o = bfd_section_from_elf_index (abfd, i);
8054 if (o != NULL)
8055 o->target_index = bfd_get_symcount (abfd);
8056 elfsym.st_shndx = i;
8057 if (info->relocatable || o == NULL)
8058 elfsym.st_value = 0;
8059 else
8060 elfsym.st_value = o->vma;
8061 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8062 goto error_return;
8063 if (i == SHN_LORESERVE - 1)
8064 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8065 }
8066 }
8067
8068 /* Allocate some memory to hold information read in from the input
8069 files. */
8070 if (max_contents_size != 0)
8071 {
8072 finfo.contents = bfd_malloc (max_contents_size);
8073 if (finfo.contents == NULL)
8074 goto error_return;
8075 }
8076
8077 if (max_external_reloc_size != 0)
8078 {
8079 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8080 if (finfo.external_relocs == NULL)
8081 goto error_return;
8082 }
8083
8084 if (max_internal_reloc_count != 0)
8085 {
8086 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8087 amt *= sizeof (Elf_Internal_Rela);
8088 finfo.internal_relocs = bfd_malloc (amt);
8089 if (finfo.internal_relocs == NULL)
8090 goto error_return;
8091 }
8092
8093 if (max_sym_count != 0)
8094 {
8095 amt = max_sym_count * bed->s->sizeof_sym;
8096 finfo.external_syms = bfd_malloc (amt);
8097 if (finfo.external_syms == NULL)
8098 goto error_return;
8099
8100 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8101 finfo.internal_syms = bfd_malloc (amt);
8102 if (finfo.internal_syms == NULL)
8103 goto error_return;
8104
8105 amt = max_sym_count * sizeof (long);
8106 finfo.indices = bfd_malloc (amt);
8107 if (finfo.indices == NULL)
8108 goto error_return;
8109
8110 amt = max_sym_count * sizeof (asection *);
8111 finfo.sections = bfd_malloc (amt);
8112 if (finfo.sections == NULL)
8113 goto error_return;
8114 }
8115
8116 if (max_sym_shndx_count != 0)
8117 {
8118 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8119 finfo.locsym_shndx = bfd_malloc (amt);
8120 if (finfo.locsym_shndx == NULL)
8121 goto error_return;
8122 }
8123
8124 if (elf_hash_table (info)->tls_sec)
8125 {
8126 bfd_vma base, end = 0;
8127 asection *sec;
8128
8129 for (sec = elf_hash_table (info)->tls_sec;
8130 sec && (sec->flags & SEC_THREAD_LOCAL);
8131 sec = sec->next)
8132 {
8133 bfd_vma size = sec->size;
8134
8135 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8136 {
8137 struct bfd_link_order *o;
8138
8139 for (o = sec->link_order_head; o != NULL; o = o->next)
8140 if (size < o->offset + o->size)
8141 size = o->offset + o->size;
8142 }
8143 end = sec->vma + size;
8144 }
8145 base = elf_hash_table (info)->tls_sec->vma;
8146 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8147 elf_hash_table (info)->tls_size = end - base;
8148 }
8149
8150 /* Reorder SHF_LINK_ORDER sections. */
8151 for (o = abfd->sections; o != NULL; o = o->next)
8152 {
8153 if (!elf_fixup_link_order (abfd, o))
8154 return FALSE;
8155 }
8156
8157 /* Since ELF permits relocations to be against local symbols, we
8158 must have the local symbols available when we do the relocations.
8159 Since we would rather only read the local symbols once, and we
8160 would rather not keep them in memory, we handle all the
8161 relocations for a single input file at the same time.
8162
8163 Unfortunately, there is no way to know the total number of local
8164 symbols until we have seen all of them, and the local symbol
8165 indices precede the global symbol indices. This means that when
8166 we are generating relocatable output, and we see a reloc against
8167 a global symbol, we can not know the symbol index until we have
8168 finished examining all the local symbols to see which ones we are
8169 going to output. To deal with this, we keep the relocations in
8170 memory, and don't output them until the end of the link. This is
8171 an unfortunate waste of memory, but I don't see a good way around
8172 it. Fortunately, it only happens when performing a relocatable
8173 link, which is not the common case. FIXME: If keep_memory is set
8174 we could write the relocs out and then read them again; I don't
8175 know how bad the memory loss will be. */
8176
8177 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8178 sub->output_has_begun = FALSE;
8179 for (o = abfd->sections; o != NULL; o = o->next)
8180 {
8181 for (p = o->link_order_head; p != NULL; p = p->next)
8182 {
8183 if (p->type == bfd_indirect_link_order
8184 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8185 == bfd_target_elf_flavour)
8186 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8187 {
8188 if (! sub->output_has_begun)
8189 {
8190 if (! elf_link_input_bfd (&finfo, sub))
8191 goto error_return;
8192 sub->output_has_begun = TRUE;
8193 }
8194 }
8195 else if (p->type == bfd_section_reloc_link_order
8196 || p->type == bfd_symbol_reloc_link_order)
8197 {
8198 if (! elf_reloc_link_order (abfd, info, o, p))
8199 goto error_return;
8200 }
8201 else
8202 {
8203 if (! _bfd_default_link_order (abfd, info, o, p))
8204 goto error_return;
8205 }
8206 }
8207 }
8208
8209 /* Output any global symbols that got converted to local in a
8210 version script or due to symbol visibility. We do this in a
8211 separate step since ELF requires all local symbols to appear
8212 prior to any global symbols. FIXME: We should only do this if
8213 some global symbols were, in fact, converted to become local.
8214 FIXME: Will this work correctly with the Irix 5 linker? */
8215 eoinfo.failed = FALSE;
8216 eoinfo.finfo = &finfo;
8217 eoinfo.localsyms = TRUE;
8218 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8219 &eoinfo);
8220 if (eoinfo.failed)
8221 return FALSE;
8222
8223 /* That wrote out all the local symbols. Finish up the symbol table
8224 with the global symbols. Even if we want to strip everything we
8225 can, we still need to deal with those global symbols that got
8226 converted to local in a version script. */
8227
8228 /* The sh_info field records the index of the first non local symbol. */
8229 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8230
8231 if (dynamic
8232 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8233 {
8234 Elf_Internal_Sym sym;
8235 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8236 long last_local = 0;
8237
8238 /* Write out the section symbols for the output sections. */
8239 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8240 {
8241 asection *s;
8242
8243 sym.st_size = 0;
8244 sym.st_name = 0;
8245 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8246 sym.st_other = 0;
8247
8248 for (s = abfd->sections; s != NULL; s = s->next)
8249 {
8250 int indx;
8251 bfd_byte *dest;
8252 long dynindx;
8253
8254 dynindx = elf_section_data (s)->dynindx;
8255 if (dynindx <= 0)
8256 continue;
8257 indx = elf_section_data (s)->this_idx;
8258 BFD_ASSERT (indx > 0);
8259 sym.st_shndx = indx;
8260 sym.st_value = s->vma;
8261 dest = dynsym + dynindx * bed->s->sizeof_sym;
8262 if (last_local < dynindx)
8263 last_local = dynindx;
8264 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8265 }
8266 }
8267
8268 /* Write out the local dynsyms. */
8269 if (elf_hash_table (info)->dynlocal)
8270 {
8271 struct elf_link_local_dynamic_entry *e;
8272 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8273 {
8274 asection *s;
8275 bfd_byte *dest;
8276
8277 sym.st_size = e->isym.st_size;
8278 sym.st_other = e->isym.st_other;
8279
8280 /* Copy the internal symbol as is.
8281 Note that we saved a word of storage and overwrote
8282 the original st_name with the dynstr_index. */
8283 sym = e->isym;
8284
8285 if (e->isym.st_shndx != SHN_UNDEF
8286 && (e->isym.st_shndx < SHN_LORESERVE
8287 || e->isym.st_shndx > SHN_HIRESERVE))
8288 {
8289 s = bfd_section_from_elf_index (e->input_bfd,
8290 e->isym.st_shndx);
8291
8292 sym.st_shndx =
8293 elf_section_data (s->output_section)->this_idx;
8294 sym.st_value = (s->output_section->vma
8295 + s->output_offset
8296 + e->isym.st_value);
8297 }
8298
8299 if (last_local < e->dynindx)
8300 last_local = e->dynindx;
8301
8302 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8303 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8304 }
8305 }
8306
8307 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8308 last_local + 1;
8309 }
8310
8311 /* We get the global symbols from the hash table. */
8312 eoinfo.failed = FALSE;
8313 eoinfo.localsyms = FALSE;
8314 eoinfo.finfo = &finfo;
8315 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8316 &eoinfo);
8317 if (eoinfo.failed)
8318 return FALSE;
8319
8320 /* If backend needs to output some symbols not present in the hash
8321 table, do it now. */
8322 if (bed->elf_backend_output_arch_syms)
8323 {
8324 typedef bfd_boolean (*out_sym_func)
8325 (void *, const char *, Elf_Internal_Sym *, asection *,
8326 struct elf_link_hash_entry *);
8327
8328 if (! ((*bed->elf_backend_output_arch_syms)
8329 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8330 return FALSE;
8331 }
8332
8333 /* Flush all symbols to the file. */
8334 if (! elf_link_flush_output_syms (&finfo, bed))
8335 return FALSE;
8336
8337 /* Now we know the size of the symtab section. */
8338 off += symtab_hdr->sh_size;
8339
8340 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8341 if (symtab_shndx_hdr->sh_name != 0)
8342 {
8343 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8344 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8345 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8346 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8347 symtab_shndx_hdr->sh_size = amt;
8348
8349 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8350 off, TRUE);
8351
8352 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8353 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8354 return FALSE;
8355 }
8356
8357
8358 /* Finish up and write out the symbol string table (.strtab)
8359 section. */
8360 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8361 /* sh_name was set in prep_headers. */
8362 symstrtab_hdr->sh_type = SHT_STRTAB;
8363 symstrtab_hdr->sh_flags = 0;
8364 symstrtab_hdr->sh_addr = 0;
8365 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8366 symstrtab_hdr->sh_entsize = 0;
8367 symstrtab_hdr->sh_link = 0;
8368 symstrtab_hdr->sh_info = 0;
8369 /* sh_offset is set just below. */
8370 symstrtab_hdr->sh_addralign = 1;
8371
8372 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8373 elf_tdata (abfd)->next_file_pos = off;
8374
8375 if (bfd_get_symcount (abfd) > 0)
8376 {
8377 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8378 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8379 return FALSE;
8380 }
8381
8382 /* Adjust the relocs to have the correct symbol indices. */
8383 for (o = abfd->sections; o != NULL; o = o->next)
8384 {
8385 if ((o->flags & SEC_RELOC) == 0)
8386 continue;
8387
8388 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8389 elf_section_data (o)->rel_count,
8390 elf_section_data (o)->rel_hashes);
8391 if (elf_section_data (o)->rel_hdr2 != NULL)
8392 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8393 elf_section_data (o)->rel_count2,
8394 (elf_section_data (o)->rel_hashes
8395 + elf_section_data (o)->rel_count));
8396
8397 /* Set the reloc_count field to 0 to prevent write_relocs from
8398 trying to swap the relocs out itself. */
8399 o->reloc_count = 0;
8400 }
8401
8402 if (dynamic && info->combreloc && dynobj != NULL)
8403 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8404
8405 /* If we are linking against a dynamic object, or generating a
8406 shared library, finish up the dynamic linking information. */
8407 if (dynamic)
8408 {
8409 bfd_byte *dyncon, *dynconend;
8410
8411 /* Fix up .dynamic entries. */
8412 o = bfd_get_section_by_name (dynobj, ".dynamic");
8413 BFD_ASSERT (o != NULL);
8414
8415 dyncon = o->contents;
8416 dynconend = o->contents + o->size;
8417 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8418 {
8419 Elf_Internal_Dyn dyn;
8420 const char *name;
8421 unsigned int type;
8422
8423 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8424
8425 switch (dyn.d_tag)
8426 {
8427 default:
8428 continue;
8429 case DT_NULL:
8430 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8431 {
8432 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8433 {
8434 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8435 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8436 default: continue;
8437 }
8438 dyn.d_un.d_val = relativecount;
8439 relativecount = 0;
8440 break;
8441 }
8442 continue;
8443
8444 case DT_INIT:
8445 name = info->init_function;
8446 goto get_sym;
8447 case DT_FINI:
8448 name = info->fini_function;
8449 get_sym:
8450 {
8451 struct elf_link_hash_entry *h;
8452
8453 h = elf_link_hash_lookup (elf_hash_table (info), name,
8454 FALSE, FALSE, TRUE);
8455 if (h != NULL
8456 && (h->root.type == bfd_link_hash_defined
8457 || h->root.type == bfd_link_hash_defweak))
8458 {
8459 dyn.d_un.d_val = h->root.u.def.value;
8460 o = h->root.u.def.section;
8461 if (o->output_section != NULL)
8462 dyn.d_un.d_val += (o->output_section->vma
8463 + o->output_offset);
8464 else
8465 {
8466 /* The symbol is imported from another shared
8467 library and does not apply to this one. */
8468 dyn.d_un.d_val = 0;
8469 }
8470 break;
8471 }
8472 }
8473 continue;
8474
8475 case DT_PREINIT_ARRAYSZ:
8476 name = ".preinit_array";
8477 goto get_size;
8478 case DT_INIT_ARRAYSZ:
8479 name = ".init_array";
8480 goto get_size;
8481 case DT_FINI_ARRAYSZ:
8482 name = ".fini_array";
8483 get_size:
8484 o = bfd_get_section_by_name (abfd, name);
8485 if (o == NULL)
8486 {
8487 (*_bfd_error_handler)
8488 (_("%B: could not find output section %s"), abfd, name);
8489 goto error_return;
8490 }
8491 if (o->size == 0)
8492 (*_bfd_error_handler)
8493 (_("warning: %s section has zero size"), name);
8494 dyn.d_un.d_val = o->size;
8495 break;
8496
8497 case DT_PREINIT_ARRAY:
8498 name = ".preinit_array";
8499 goto get_vma;
8500 case DT_INIT_ARRAY:
8501 name = ".init_array";
8502 goto get_vma;
8503 case DT_FINI_ARRAY:
8504 name = ".fini_array";
8505 goto get_vma;
8506
8507 case DT_HASH:
8508 name = ".hash";
8509 goto get_vma;
8510 case DT_STRTAB:
8511 name = ".dynstr";
8512 goto get_vma;
8513 case DT_SYMTAB:
8514 name = ".dynsym";
8515 goto get_vma;
8516 case DT_VERDEF:
8517 name = ".gnu.version_d";
8518 goto get_vma;
8519 case DT_VERNEED:
8520 name = ".gnu.version_r";
8521 goto get_vma;
8522 case DT_VERSYM:
8523 name = ".gnu.version";
8524 get_vma:
8525 o = bfd_get_section_by_name (abfd, name);
8526 if (o == NULL)
8527 {
8528 (*_bfd_error_handler)
8529 (_("%B: could not find output section %s"), abfd, name);
8530 goto error_return;
8531 }
8532 dyn.d_un.d_ptr = o->vma;
8533 break;
8534
8535 case DT_REL:
8536 case DT_RELA:
8537 case DT_RELSZ:
8538 case DT_RELASZ:
8539 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8540 type = SHT_REL;
8541 else
8542 type = SHT_RELA;
8543 dyn.d_un.d_val = 0;
8544 for (i = 1; i < elf_numsections (abfd); i++)
8545 {
8546 Elf_Internal_Shdr *hdr;
8547
8548 hdr = elf_elfsections (abfd)[i];
8549 if (hdr->sh_type == type
8550 && (hdr->sh_flags & SHF_ALLOC) != 0)
8551 {
8552 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8553 dyn.d_un.d_val += hdr->sh_size;
8554 else
8555 {
8556 if (dyn.d_un.d_val == 0
8557 || hdr->sh_addr < dyn.d_un.d_val)
8558 dyn.d_un.d_val = hdr->sh_addr;
8559 }
8560 }
8561 }
8562 break;
8563 }
8564 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8565 }
8566 }
8567
8568 /* If we have created any dynamic sections, then output them. */
8569 if (dynobj != NULL)
8570 {
8571 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8572 goto error_return;
8573
8574 for (o = dynobj->sections; o != NULL; o = o->next)
8575 {
8576 if ((o->flags & SEC_HAS_CONTENTS) == 0
8577 || o->size == 0
8578 || o->output_section == bfd_abs_section_ptr)
8579 continue;
8580 if ((o->flags & SEC_LINKER_CREATED) == 0)
8581 {
8582 /* At this point, we are only interested in sections
8583 created by _bfd_elf_link_create_dynamic_sections. */
8584 continue;
8585 }
8586 if (elf_hash_table (info)->stab_info.stabstr == o)
8587 continue;
8588 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8589 continue;
8590 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8591 != SHT_STRTAB)
8592 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8593 {
8594 if (! bfd_set_section_contents (abfd, o->output_section,
8595 o->contents,
8596 (file_ptr) o->output_offset,
8597 o->size))
8598 goto error_return;
8599 }
8600 else
8601 {
8602 /* The contents of the .dynstr section are actually in a
8603 stringtab. */
8604 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8605 if (bfd_seek (abfd, off, SEEK_SET) != 0
8606 || ! _bfd_elf_strtab_emit (abfd,
8607 elf_hash_table (info)->dynstr))
8608 goto error_return;
8609 }
8610 }
8611 }
8612
8613 if (info->relocatable)
8614 {
8615 bfd_boolean failed = FALSE;
8616
8617 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8618 if (failed)
8619 goto error_return;
8620 }
8621
8622 /* If we have optimized stabs strings, output them. */
8623 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8624 {
8625 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8626 goto error_return;
8627 }
8628
8629 if (info->eh_frame_hdr)
8630 {
8631 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8632 goto error_return;
8633 }
8634
8635 if (finfo.symstrtab != NULL)
8636 _bfd_stringtab_free (finfo.symstrtab);
8637 if (finfo.contents != NULL)
8638 free (finfo.contents);
8639 if (finfo.external_relocs != NULL)
8640 free (finfo.external_relocs);
8641 if (finfo.internal_relocs != NULL)
8642 free (finfo.internal_relocs);
8643 if (finfo.external_syms != NULL)
8644 free (finfo.external_syms);
8645 if (finfo.locsym_shndx != NULL)
8646 free (finfo.locsym_shndx);
8647 if (finfo.internal_syms != NULL)
8648 free (finfo.internal_syms);
8649 if (finfo.indices != NULL)
8650 free (finfo.indices);
8651 if (finfo.sections != NULL)
8652 free (finfo.sections);
8653 if (finfo.symbuf != NULL)
8654 free (finfo.symbuf);
8655 if (finfo.symshndxbuf != NULL)
8656 free (finfo.symshndxbuf);
8657 for (o = abfd->sections; o != NULL; o = o->next)
8658 {
8659 if ((o->flags & SEC_RELOC) != 0
8660 && elf_section_data (o)->rel_hashes != NULL)
8661 free (elf_section_data (o)->rel_hashes);
8662 }
8663
8664 elf_tdata (abfd)->linker = TRUE;
8665
8666 return TRUE;
8667
8668 error_return:
8669 if (finfo.symstrtab != NULL)
8670 _bfd_stringtab_free (finfo.symstrtab);
8671 if (finfo.contents != NULL)
8672 free (finfo.contents);
8673 if (finfo.external_relocs != NULL)
8674 free (finfo.external_relocs);
8675 if (finfo.internal_relocs != NULL)
8676 free (finfo.internal_relocs);
8677 if (finfo.external_syms != NULL)
8678 free (finfo.external_syms);
8679 if (finfo.locsym_shndx != NULL)
8680 free (finfo.locsym_shndx);
8681 if (finfo.internal_syms != NULL)
8682 free (finfo.internal_syms);
8683 if (finfo.indices != NULL)
8684 free (finfo.indices);
8685 if (finfo.sections != NULL)
8686 free (finfo.sections);
8687 if (finfo.symbuf != NULL)
8688 free (finfo.symbuf);
8689 if (finfo.symshndxbuf != NULL)
8690 free (finfo.symshndxbuf);
8691 for (o = abfd->sections; o != NULL; o = o->next)
8692 {
8693 if ((o->flags & SEC_RELOC) != 0
8694 && elf_section_data (o)->rel_hashes != NULL)
8695 free (elf_section_data (o)->rel_hashes);
8696 }
8697
8698 return FALSE;
8699 }
8700 \f
8701 /* Garbage collect unused sections. */
8702
8703 /* The mark phase of garbage collection. For a given section, mark
8704 it and any sections in this section's group, and all the sections
8705 which define symbols to which it refers. */
8706
8707 typedef asection * (*gc_mark_hook_fn)
8708 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8709 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8710
8711 bfd_boolean
8712 _bfd_elf_gc_mark (struct bfd_link_info *info,
8713 asection *sec,
8714 gc_mark_hook_fn gc_mark_hook)
8715 {
8716 bfd_boolean ret;
8717 asection *group_sec;
8718
8719 sec->gc_mark = 1;
8720
8721 /* Mark all the sections in the group. */
8722 group_sec = elf_section_data (sec)->next_in_group;
8723 if (group_sec && !group_sec->gc_mark)
8724 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8725 return FALSE;
8726
8727 /* Look through the section relocs. */
8728 ret = TRUE;
8729 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8730 {
8731 Elf_Internal_Rela *relstart, *rel, *relend;
8732 Elf_Internal_Shdr *symtab_hdr;
8733 struct elf_link_hash_entry **sym_hashes;
8734 size_t nlocsyms;
8735 size_t extsymoff;
8736 bfd *input_bfd = sec->owner;
8737 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8738 Elf_Internal_Sym *isym = NULL;
8739 int r_sym_shift;
8740
8741 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8742 sym_hashes = elf_sym_hashes (input_bfd);
8743
8744 /* Read the local symbols. */
8745 if (elf_bad_symtab (input_bfd))
8746 {
8747 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8748 extsymoff = 0;
8749 }
8750 else
8751 extsymoff = nlocsyms = symtab_hdr->sh_info;
8752
8753 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8754 if (isym == NULL && nlocsyms != 0)
8755 {
8756 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8757 NULL, NULL, NULL);
8758 if (isym == NULL)
8759 return FALSE;
8760 }
8761
8762 /* Read the relocations. */
8763 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8764 info->keep_memory);
8765 if (relstart == NULL)
8766 {
8767 ret = FALSE;
8768 goto out1;
8769 }
8770 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8771
8772 if (bed->s->arch_size == 32)
8773 r_sym_shift = 8;
8774 else
8775 r_sym_shift = 32;
8776
8777 for (rel = relstart; rel < relend; rel++)
8778 {
8779 unsigned long r_symndx;
8780 asection *rsec;
8781 struct elf_link_hash_entry *h;
8782
8783 r_symndx = rel->r_info >> r_sym_shift;
8784 if (r_symndx == 0)
8785 continue;
8786
8787 if (r_symndx >= nlocsyms
8788 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8789 {
8790 h = sym_hashes[r_symndx - extsymoff];
8791 while (h->root.type == bfd_link_hash_indirect
8792 || h->root.type == bfd_link_hash_warning)
8793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8794 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8795 }
8796 else
8797 {
8798 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8799 }
8800
8801 if (rsec && !rsec->gc_mark)
8802 {
8803 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8804 rsec->gc_mark = 1;
8805 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8806 {
8807 ret = FALSE;
8808 goto out2;
8809 }
8810 }
8811 }
8812
8813 out2:
8814 if (elf_section_data (sec)->relocs != relstart)
8815 free (relstart);
8816 out1:
8817 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8818 {
8819 if (! info->keep_memory)
8820 free (isym);
8821 else
8822 symtab_hdr->contents = (unsigned char *) isym;
8823 }
8824 }
8825
8826 return ret;
8827 }
8828
8829 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8830
8831 static bfd_boolean
8832 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8833 {
8834 int *idx = idxptr;
8835
8836 if (h->root.type == bfd_link_hash_warning)
8837 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8838
8839 if (h->dynindx != -1
8840 && ((h->root.type != bfd_link_hash_defined
8841 && h->root.type != bfd_link_hash_defweak)
8842 || h->root.u.def.section->gc_mark))
8843 h->dynindx = (*idx)++;
8844
8845 return TRUE;
8846 }
8847
8848 /* The sweep phase of garbage collection. Remove all garbage sections. */
8849
8850 typedef bfd_boolean (*gc_sweep_hook_fn)
8851 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8852
8853 static bfd_boolean
8854 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8855 {
8856 bfd *sub;
8857
8858 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8859 {
8860 asection *o;
8861
8862 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8863 continue;
8864
8865 for (o = sub->sections; o != NULL; o = o->next)
8866 {
8867 /* Keep debug and special sections. */
8868 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8869 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8870 o->gc_mark = 1;
8871
8872 if (o->gc_mark)
8873 continue;
8874
8875 /* Skip sweeping sections already excluded. */
8876 if (o->flags & SEC_EXCLUDE)
8877 continue;
8878
8879 /* Since this is early in the link process, it is simple
8880 to remove a section from the output. */
8881 o->flags |= SEC_EXCLUDE;
8882
8883 /* But we also have to update some of the relocation
8884 info we collected before. */
8885 if (gc_sweep_hook
8886 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8887 {
8888 Elf_Internal_Rela *internal_relocs;
8889 bfd_boolean r;
8890
8891 internal_relocs
8892 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8893 info->keep_memory);
8894 if (internal_relocs == NULL)
8895 return FALSE;
8896
8897 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8898
8899 if (elf_section_data (o)->relocs != internal_relocs)
8900 free (internal_relocs);
8901
8902 if (!r)
8903 return FALSE;
8904 }
8905 }
8906 }
8907
8908 /* Remove the symbols that were in the swept sections from the dynamic
8909 symbol table. GCFIXME: Anyone know how to get them out of the
8910 static symbol table as well? */
8911 {
8912 int i = 0;
8913
8914 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8915
8916 elf_hash_table (info)->dynsymcount = i;
8917 }
8918
8919 return TRUE;
8920 }
8921
8922 /* Propagate collected vtable information. This is called through
8923 elf_link_hash_traverse. */
8924
8925 static bfd_boolean
8926 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8927 {
8928 if (h->root.type == bfd_link_hash_warning)
8929 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8930
8931 /* Those that are not vtables. */
8932 if (h->vtable == NULL || h->vtable->parent == NULL)
8933 return TRUE;
8934
8935 /* Those vtables that do not have parents, we cannot merge. */
8936 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8937 return TRUE;
8938
8939 /* If we've already been done, exit. */
8940 if (h->vtable->used && h->vtable->used[-1])
8941 return TRUE;
8942
8943 /* Make sure the parent's table is up to date. */
8944 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8945
8946 if (h->vtable->used == NULL)
8947 {
8948 /* None of this table's entries were referenced. Re-use the
8949 parent's table. */
8950 h->vtable->used = h->vtable->parent->vtable->used;
8951 h->vtable->size = h->vtable->parent->vtable->size;
8952 }
8953 else
8954 {
8955 size_t n;
8956 bfd_boolean *cu, *pu;
8957
8958 /* Or the parent's entries into ours. */
8959 cu = h->vtable->used;
8960 cu[-1] = TRUE;
8961 pu = h->vtable->parent->vtable->used;
8962 if (pu != NULL)
8963 {
8964 const struct elf_backend_data *bed;
8965 unsigned int log_file_align;
8966
8967 bed = get_elf_backend_data (h->root.u.def.section->owner);
8968 log_file_align = bed->s->log_file_align;
8969 n = h->vtable->parent->vtable->size >> log_file_align;
8970 while (n--)
8971 {
8972 if (*pu)
8973 *cu = TRUE;
8974 pu++;
8975 cu++;
8976 }
8977 }
8978 }
8979
8980 return TRUE;
8981 }
8982
8983 static bfd_boolean
8984 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8985 {
8986 asection *sec;
8987 bfd_vma hstart, hend;
8988 Elf_Internal_Rela *relstart, *relend, *rel;
8989 const struct elf_backend_data *bed;
8990 unsigned int log_file_align;
8991
8992 if (h->root.type == bfd_link_hash_warning)
8993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8994
8995 /* Take care of both those symbols that do not describe vtables as
8996 well as those that are not loaded. */
8997 if (h->vtable == NULL || h->vtable->parent == NULL)
8998 return TRUE;
8999
9000 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9001 || h->root.type == bfd_link_hash_defweak);
9002
9003 sec = h->root.u.def.section;
9004 hstart = h->root.u.def.value;
9005 hend = hstart + h->size;
9006
9007 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9008 if (!relstart)
9009 return *(bfd_boolean *) okp = FALSE;
9010 bed = get_elf_backend_data (sec->owner);
9011 log_file_align = bed->s->log_file_align;
9012
9013 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9014
9015 for (rel = relstart; rel < relend; ++rel)
9016 if (rel->r_offset >= hstart && rel->r_offset < hend)
9017 {
9018 /* If the entry is in use, do nothing. */
9019 if (h->vtable->used
9020 && (rel->r_offset - hstart) < h->vtable->size)
9021 {
9022 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9023 if (h->vtable->used[entry])
9024 continue;
9025 }
9026 /* Otherwise, kill it. */
9027 rel->r_offset = rel->r_info = rel->r_addend = 0;
9028 }
9029
9030 return TRUE;
9031 }
9032
9033 /* Mark sections containing dynamically referenced symbols. This is called
9034 through elf_link_hash_traverse. */
9035
9036 static bfd_boolean
9037 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9038 void *okp ATTRIBUTE_UNUSED)
9039 {
9040 if (h->root.type == bfd_link_hash_warning)
9041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9042
9043 if ((h->root.type == bfd_link_hash_defined
9044 || h->root.type == bfd_link_hash_defweak)
9045 && h->ref_dynamic)
9046 h->root.u.def.section->flags |= SEC_KEEP;
9047
9048 return TRUE;
9049 }
9050
9051 /* Mark sections containing global symbols. This is called through
9052 elf_link_hash_traverse. */
9053
9054 static bfd_boolean
9055 elf_mark_used_section (struct elf_link_hash_entry *h,
9056 void *data ATTRIBUTE_UNUSED)
9057 {
9058 if (h->root.type == bfd_link_hash_warning)
9059 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9060
9061 if (h->root.type == bfd_link_hash_defined
9062 || h->root.type == bfd_link_hash_defweak)
9063 {
9064 asection *s = h->root.u.def.section;
9065 if (s != NULL && s->output_section != NULL)
9066 s->output_section->flags |= SEC_KEEP;
9067 }
9068
9069 return TRUE;
9070 }
9071
9072 /* Do mark and sweep of unused sections. */
9073
9074 bfd_boolean
9075 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9076 {
9077 bfd_boolean ok = TRUE;
9078 bfd *sub;
9079 asection * (*gc_mark_hook)
9080 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9081 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9082
9083 if (!info->gc_sections)
9084 {
9085 /* If we are called when info->gc_sections is 0, we will mark
9086 all sections containing global symbols for non-relocatable
9087 link. */
9088 if (!info->relocatable)
9089 elf_link_hash_traverse (elf_hash_table (info),
9090 elf_mark_used_section, NULL);
9091 return TRUE;
9092 }
9093
9094 if (!get_elf_backend_data (abfd)->can_gc_sections
9095 || info->relocatable
9096 || info->emitrelocations
9097 || info->shared
9098 || !is_elf_hash_table (info->hash))
9099 {
9100 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9101 return TRUE;
9102 }
9103
9104 /* Apply transitive closure to the vtable entry usage info. */
9105 elf_link_hash_traverse (elf_hash_table (info),
9106 elf_gc_propagate_vtable_entries_used,
9107 &ok);
9108 if (!ok)
9109 return FALSE;
9110
9111 /* Kill the vtable relocations that were not used. */
9112 elf_link_hash_traverse (elf_hash_table (info),
9113 elf_gc_smash_unused_vtentry_relocs,
9114 &ok);
9115 if (!ok)
9116 return FALSE;
9117
9118 /* Mark dynamically referenced symbols. */
9119 if (elf_hash_table (info)->dynamic_sections_created)
9120 elf_link_hash_traverse (elf_hash_table (info),
9121 elf_gc_mark_dynamic_ref_symbol,
9122 &ok);
9123 if (!ok)
9124 return FALSE;
9125
9126 /* Grovel through relocs to find out who stays ... */
9127 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9128 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9129 {
9130 asection *o;
9131
9132 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9133 continue;
9134
9135 for (o = sub->sections; o != NULL; o = o->next)
9136 {
9137 if (o->flags & SEC_KEEP)
9138 {
9139 /* _bfd_elf_discard_section_eh_frame knows how to discard
9140 orphaned FDEs so don't mark sections referenced by the
9141 EH frame section. */
9142 if (strcmp (o->name, ".eh_frame") == 0)
9143 o->gc_mark = 1;
9144 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9145 return FALSE;
9146 }
9147 }
9148 }
9149
9150 /* ... and mark SEC_EXCLUDE for those that go. */
9151 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9152 return FALSE;
9153
9154 return TRUE;
9155 }
9156 \f
9157 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9158
9159 bfd_boolean
9160 bfd_elf_gc_record_vtinherit (bfd *abfd,
9161 asection *sec,
9162 struct elf_link_hash_entry *h,
9163 bfd_vma offset)
9164 {
9165 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9166 struct elf_link_hash_entry **search, *child;
9167 bfd_size_type extsymcount;
9168 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9169
9170 /* The sh_info field of the symtab header tells us where the
9171 external symbols start. We don't care about the local symbols at
9172 this point. */
9173 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9174 if (!elf_bad_symtab (abfd))
9175 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9176
9177 sym_hashes = elf_sym_hashes (abfd);
9178 sym_hashes_end = sym_hashes + extsymcount;
9179
9180 /* Hunt down the child symbol, which is in this section at the same
9181 offset as the relocation. */
9182 for (search = sym_hashes; search != sym_hashes_end; ++search)
9183 {
9184 if ((child = *search) != NULL
9185 && (child->root.type == bfd_link_hash_defined
9186 || child->root.type == bfd_link_hash_defweak)
9187 && child->root.u.def.section == sec
9188 && child->root.u.def.value == offset)
9189 goto win;
9190 }
9191
9192 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9193 abfd, sec, (unsigned long) offset);
9194 bfd_set_error (bfd_error_invalid_operation);
9195 return FALSE;
9196
9197 win:
9198 if (!child->vtable)
9199 {
9200 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9201 if (!child->vtable)
9202 return FALSE;
9203 }
9204 if (!h)
9205 {
9206 /* This *should* only be the absolute section. It could potentially
9207 be that someone has defined a non-global vtable though, which
9208 would be bad. It isn't worth paging in the local symbols to be
9209 sure though; that case should simply be handled by the assembler. */
9210
9211 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9212 }
9213 else
9214 child->vtable->parent = h;
9215
9216 return TRUE;
9217 }
9218
9219 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9220
9221 bfd_boolean
9222 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9223 asection *sec ATTRIBUTE_UNUSED,
9224 struct elf_link_hash_entry *h,
9225 bfd_vma addend)
9226 {
9227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9228 unsigned int log_file_align = bed->s->log_file_align;
9229
9230 if (!h->vtable)
9231 {
9232 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9233 if (!h->vtable)
9234 return FALSE;
9235 }
9236
9237 if (addend >= h->vtable->size)
9238 {
9239 size_t size, bytes, file_align;
9240 bfd_boolean *ptr = h->vtable->used;
9241
9242 /* While the symbol is undefined, we have to be prepared to handle
9243 a zero size. */
9244 file_align = 1 << log_file_align;
9245 if (h->root.type == bfd_link_hash_undefined)
9246 size = addend + file_align;
9247 else
9248 {
9249 size = h->size;
9250 if (addend >= size)
9251 {
9252 /* Oops! We've got a reference past the defined end of
9253 the table. This is probably a bug -- shall we warn? */
9254 size = addend + file_align;
9255 }
9256 }
9257 size = (size + file_align - 1) & -file_align;
9258
9259 /* Allocate one extra entry for use as a "done" flag for the
9260 consolidation pass. */
9261 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9262
9263 if (ptr)
9264 {
9265 ptr = bfd_realloc (ptr - 1, bytes);
9266
9267 if (ptr != NULL)
9268 {
9269 size_t oldbytes;
9270
9271 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9272 * sizeof (bfd_boolean));
9273 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9274 }
9275 }
9276 else
9277 ptr = bfd_zmalloc (bytes);
9278
9279 if (ptr == NULL)
9280 return FALSE;
9281
9282 /* And arrange for that done flag to be at index -1. */
9283 h->vtable->used = ptr + 1;
9284 h->vtable->size = size;
9285 }
9286
9287 h->vtable->used[addend >> log_file_align] = TRUE;
9288
9289 return TRUE;
9290 }
9291
9292 struct alloc_got_off_arg {
9293 bfd_vma gotoff;
9294 unsigned int got_elt_size;
9295 };
9296
9297 /* We need a special top-level link routine to convert got reference counts
9298 to real got offsets. */
9299
9300 static bfd_boolean
9301 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9302 {
9303 struct alloc_got_off_arg *gofarg = arg;
9304
9305 if (h->root.type == bfd_link_hash_warning)
9306 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9307
9308 if (h->got.refcount > 0)
9309 {
9310 h->got.offset = gofarg->gotoff;
9311 gofarg->gotoff += gofarg->got_elt_size;
9312 }
9313 else
9314 h->got.offset = (bfd_vma) -1;
9315
9316 return TRUE;
9317 }
9318
9319 /* And an accompanying bit to work out final got entry offsets once
9320 we're done. Should be called from final_link. */
9321
9322 bfd_boolean
9323 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9324 struct bfd_link_info *info)
9325 {
9326 bfd *i;
9327 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9328 bfd_vma gotoff;
9329 unsigned int got_elt_size = bed->s->arch_size / 8;
9330 struct alloc_got_off_arg gofarg;
9331
9332 if (! is_elf_hash_table (info->hash))
9333 return FALSE;
9334
9335 /* The GOT offset is relative to the .got section, but the GOT header is
9336 put into the .got.plt section, if the backend uses it. */
9337 if (bed->want_got_plt)
9338 gotoff = 0;
9339 else
9340 gotoff = bed->got_header_size;
9341
9342 /* Do the local .got entries first. */
9343 for (i = info->input_bfds; i; i = i->link_next)
9344 {
9345 bfd_signed_vma *local_got;
9346 bfd_size_type j, locsymcount;
9347 Elf_Internal_Shdr *symtab_hdr;
9348
9349 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9350 continue;
9351
9352 local_got = elf_local_got_refcounts (i);
9353 if (!local_got)
9354 continue;
9355
9356 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9357 if (elf_bad_symtab (i))
9358 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9359 else
9360 locsymcount = symtab_hdr->sh_info;
9361
9362 for (j = 0; j < locsymcount; ++j)
9363 {
9364 if (local_got[j] > 0)
9365 {
9366 local_got[j] = gotoff;
9367 gotoff += got_elt_size;
9368 }
9369 else
9370 local_got[j] = (bfd_vma) -1;
9371 }
9372 }
9373
9374 /* Then the global .got entries. .plt refcounts are handled by
9375 adjust_dynamic_symbol */
9376 gofarg.gotoff = gotoff;
9377 gofarg.got_elt_size = got_elt_size;
9378 elf_link_hash_traverse (elf_hash_table (info),
9379 elf_gc_allocate_got_offsets,
9380 &gofarg);
9381 return TRUE;
9382 }
9383
9384 /* Many folk need no more in the way of final link than this, once
9385 got entry reference counting is enabled. */
9386
9387 bfd_boolean
9388 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9389 {
9390 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9391 return FALSE;
9392
9393 /* Invoke the regular ELF backend linker to do all the work. */
9394 return bfd_elf_final_link (abfd, info);
9395 }
9396
9397 bfd_boolean
9398 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9399 {
9400 struct elf_reloc_cookie *rcookie = cookie;
9401
9402 if (rcookie->bad_symtab)
9403 rcookie->rel = rcookie->rels;
9404
9405 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9406 {
9407 unsigned long r_symndx;
9408
9409 if (! rcookie->bad_symtab)
9410 if (rcookie->rel->r_offset > offset)
9411 return FALSE;
9412 if (rcookie->rel->r_offset != offset)
9413 continue;
9414
9415 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9416 if (r_symndx == SHN_UNDEF)
9417 return TRUE;
9418
9419 if (r_symndx >= rcookie->locsymcount
9420 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9421 {
9422 struct elf_link_hash_entry *h;
9423
9424 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9425
9426 while (h->root.type == bfd_link_hash_indirect
9427 || h->root.type == bfd_link_hash_warning)
9428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9429
9430 if ((h->root.type == bfd_link_hash_defined
9431 || h->root.type == bfd_link_hash_defweak)
9432 && elf_discarded_section (h->root.u.def.section))
9433 return TRUE;
9434 else
9435 return FALSE;
9436 }
9437 else
9438 {
9439 /* It's not a relocation against a global symbol,
9440 but it could be a relocation against a local
9441 symbol for a discarded section. */
9442 asection *isec;
9443 Elf_Internal_Sym *isym;
9444
9445 /* Need to: get the symbol; get the section. */
9446 isym = &rcookie->locsyms[r_symndx];
9447 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9448 {
9449 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9450 if (isec != NULL && elf_discarded_section (isec))
9451 return TRUE;
9452 }
9453 }
9454 return FALSE;
9455 }
9456 return FALSE;
9457 }
9458
9459 /* Discard unneeded references to discarded sections.
9460 Returns TRUE if any section's size was changed. */
9461 /* This function assumes that the relocations are in sorted order,
9462 which is true for all known assemblers. */
9463
9464 bfd_boolean
9465 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9466 {
9467 struct elf_reloc_cookie cookie;
9468 asection *stab, *eh;
9469 Elf_Internal_Shdr *symtab_hdr;
9470 const struct elf_backend_data *bed;
9471 bfd *abfd;
9472 unsigned int count;
9473 bfd_boolean ret = FALSE;
9474
9475 if (info->traditional_format
9476 || !is_elf_hash_table (info->hash))
9477 return FALSE;
9478
9479 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9480 {
9481 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9482 continue;
9483
9484 bed = get_elf_backend_data (abfd);
9485
9486 if ((abfd->flags & DYNAMIC) != 0)
9487 continue;
9488
9489 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9490 if (info->relocatable
9491 || (eh != NULL
9492 && (eh->size == 0
9493 || bfd_is_abs_section (eh->output_section))))
9494 eh = NULL;
9495
9496 stab = bfd_get_section_by_name (abfd, ".stab");
9497 if (stab != NULL
9498 && (stab->size == 0
9499 || bfd_is_abs_section (stab->output_section)
9500 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9501 stab = NULL;
9502
9503 if (stab == NULL
9504 && eh == NULL
9505 && bed->elf_backend_discard_info == NULL)
9506 continue;
9507
9508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9509 cookie.abfd = abfd;
9510 cookie.sym_hashes = elf_sym_hashes (abfd);
9511 cookie.bad_symtab = elf_bad_symtab (abfd);
9512 if (cookie.bad_symtab)
9513 {
9514 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9515 cookie.extsymoff = 0;
9516 }
9517 else
9518 {
9519 cookie.locsymcount = symtab_hdr->sh_info;
9520 cookie.extsymoff = symtab_hdr->sh_info;
9521 }
9522
9523 if (bed->s->arch_size == 32)
9524 cookie.r_sym_shift = 8;
9525 else
9526 cookie.r_sym_shift = 32;
9527
9528 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9529 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9530 {
9531 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9532 cookie.locsymcount, 0,
9533 NULL, NULL, NULL);
9534 if (cookie.locsyms == NULL)
9535 return FALSE;
9536 }
9537
9538 if (stab != NULL)
9539 {
9540 cookie.rels = NULL;
9541 count = stab->reloc_count;
9542 if (count != 0)
9543 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9544 info->keep_memory);
9545 if (cookie.rels != NULL)
9546 {
9547 cookie.rel = cookie.rels;
9548 cookie.relend = cookie.rels;
9549 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9550 if (_bfd_discard_section_stabs (abfd, stab,
9551 elf_section_data (stab)->sec_info,
9552 bfd_elf_reloc_symbol_deleted_p,
9553 &cookie))
9554 ret = TRUE;
9555 if (elf_section_data (stab)->relocs != cookie.rels)
9556 free (cookie.rels);
9557 }
9558 }
9559
9560 if (eh != NULL)
9561 {
9562 cookie.rels = NULL;
9563 count = eh->reloc_count;
9564 if (count != 0)
9565 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9566 info->keep_memory);
9567 cookie.rel = cookie.rels;
9568 cookie.relend = cookie.rels;
9569 if (cookie.rels != NULL)
9570 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9571
9572 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9573 bfd_elf_reloc_symbol_deleted_p,
9574 &cookie))
9575 ret = TRUE;
9576
9577 if (cookie.rels != NULL
9578 && elf_section_data (eh)->relocs != cookie.rels)
9579 free (cookie.rels);
9580 }
9581
9582 if (bed->elf_backend_discard_info != NULL
9583 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9584 ret = TRUE;
9585
9586 if (cookie.locsyms != NULL
9587 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9588 {
9589 if (! info->keep_memory)
9590 free (cookie.locsyms);
9591 else
9592 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9593 }
9594 }
9595
9596 if (info->eh_frame_hdr
9597 && !info->relocatable
9598 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9599 ret = TRUE;
9600
9601 return ret;
9602 }
9603
9604 void
9605 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9606 {
9607 flagword flags;
9608 const char *name, *p;
9609 struct bfd_section_already_linked *l;
9610 struct bfd_section_already_linked_hash_entry *already_linked_list;
9611 asection *group;
9612
9613 /* A single member comdat group section may be discarded by a
9614 linkonce section. See below. */
9615 if (sec->output_section == bfd_abs_section_ptr)
9616 return;
9617
9618 flags = sec->flags;
9619
9620 /* Check if it belongs to a section group. */
9621 group = elf_sec_group (sec);
9622
9623 /* Return if it isn't a linkonce section nor a member of a group. A
9624 comdat group section also has SEC_LINK_ONCE set. */
9625 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9626 return;
9627
9628 if (group)
9629 {
9630 /* If this is the member of a single member comdat group, check if
9631 the group should be discarded. */
9632 if (elf_next_in_group (sec) == sec
9633 && (group->flags & SEC_LINK_ONCE) != 0)
9634 sec = group;
9635 else
9636 return;
9637 }
9638
9639 /* FIXME: When doing a relocatable link, we may have trouble
9640 copying relocations in other sections that refer to local symbols
9641 in the section being discarded. Those relocations will have to
9642 be converted somehow; as of this writing I'm not sure that any of
9643 the backends handle that correctly.
9644
9645 It is tempting to instead not discard link once sections when
9646 doing a relocatable link (technically, they should be discarded
9647 whenever we are building constructors). However, that fails,
9648 because the linker winds up combining all the link once sections
9649 into a single large link once section, which defeats the purpose
9650 of having link once sections in the first place.
9651
9652 Also, not merging link once sections in a relocatable link
9653 causes trouble for MIPS ELF, which relies on link once semantics
9654 to handle the .reginfo section correctly. */
9655
9656 name = bfd_get_section_name (abfd, sec);
9657
9658 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9659 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9660 p++;
9661 else
9662 p = name;
9663
9664 already_linked_list = bfd_section_already_linked_table_lookup (p);
9665
9666 for (l = already_linked_list->entry; l != NULL; l = l->next)
9667 {
9668 /* We may have 3 different sections on the list: group section,
9669 comdat section and linkonce section. SEC may be a linkonce or
9670 group section. We match a group section with a group section,
9671 a linkonce section with a linkonce section, and ignore comdat
9672 section. */
9673 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9674 && strcmp (name, l->sec->name) == 0
9675 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9676 {
9677 /* The section has already been linked. See if we should
9678 issue a warning. */
9679 switch (flags & SEC_LINK_DUPLICATES)
9680 {
9681 default:
9682 abort ();
9683
9684 case SEC_LINK_DUPLICATES_DISCARD:
9685 break;
9686
9687 case SEC_LINK_DUPLICATES_ONE_ONLY:
9688 (*_bfd_error_handler)
9689 (_("%B: ignoring duplicate section `%A'"),
9690 abfd, sec);
9691 break;
9692
9693 case SEC_LINK_DUPLICATES_SAME_SIZE:
9694 if (sec->size != l->sec->size)
9695 (*_bfd_error_handler)
9696 (_("%B: duplicate section `%A' has different size"),
9697 abfd, sec);
9698 break;
9699
9700 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9701 if (sec->size != l->sec->size)
9702 (*_bfd_error_handler)
9703 (_("%B: duplicate section `%A' has different size"),
9704 abfd, sec);
9705 else if (sec->size != 0)
9706 {
9707 bfd_byte *sec_contents, *l_sec_contents;
9708
9709 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9710 (*_bfd_error_handler)
9711 (_("%B: warning: could not read contents of section `%A'"),
9712 abfd, sec);
9713 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9714 &l_sec_contents))
9715 (*_bfd_error_handler)
9716 (_("%B: warning: could not read contents of section `%A'"),
9717 l->sec->owner, l->sec);
9718 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9719 (*_bfd_error_handler)
9720 (_("%B: warning: duplicate section `%A' has different contents"),
9721 abfd, sec);
9722
9723 if (sec_contents)
9724 free (sec_contents);
9725 if (l_sec_contents)
9726 free (l_sec_contents);
9727 }
9728 break;
9729 }
9730
9731 /* Set the output_section field so that lang_add_section
9732 does not create a lang_input_section structure for this
9733 section. Since there might be a symbol in the section
9734 being discarded, we must retain a pointer to the section
9735 which we are really going to use. */
9736 sec->output_section = bfd_abs_section_ptr;
9737 sec->kept_section = l->sec;
9738
9739 if (flags & SEC_GROUP)
9740 {
9741 asection *first = elf_next_in_group (sec);
9742 asection *s = first;
9743
9744 while (s != NULL)
9745 {
9746 s->output_section = bfd_abs_section_ptr;
9747 /* Record which group discards it. */
9748 s->kept_section = l->sec;
9749 s = elf_next_in_group (s);
9750 /* These lists are circular. */
9751 if (s == first)
9752 break;
9753 }
9754 }
9755
9756 return;
9757 }
9758 }
9759
9760 if (group)
9761 {
9762 /* If this is the member of a single member comdat group and the
9763 group hasn't be discarded, we check if it matches a linkonce
9764 section. We only record the discarded comdat group. Otherwise
9765 the undiscarded group will be discarded incorrectly later since
9766 itself has been recorded. */
9767 for (l = already_linked_list->entry; l != NULL; l = l->next)
9768 if ((l->sec->flags & SEC_GROUP) == 0
9769 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9770 && bfd_elf_match_symbols_in_sections (l->sec,
9771 elf_next_in_group (sec)))
9772 {
9773 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9774 elf_next_in_group (sec)->kept_section = l->sec;
9775 group->output_section = bfd_abs_section_ptr;
9776 break;
9777 }
9778 if (l == NULL)
9779 return;
9780 }
9781 else
9782 /* There is no direct match. But for linkonce section, we should
9783 check if there is a match with comdat group member. We always
9784 record the linkonce section, discarded or not. */
9785 for (l = already_linked_list->entry; l != NULL; l = l->next)
9786 if (l->sec->flags & SEC_GROUP)
9787 {
9788 asection *first = elf_next_in_group (l->sec);
9789
9790 if (first != NULL
9791 && elf_next_in_group (first) == first
9792 && bfd_elf_match_symbols_in_sections (first, sec))
9793 {
9794 sec->output_section = bfd_abs_section_ptr;
9795 sec->kept_section = l->sec;
9796 break;
9797 }
9798 }
9799
9800 /* This is the first section with this name. Record it. */
9801 bfd_section_already_linked_table_insert (already_linked_list, sec);
9802 }
9803
9804 /* Set NAME to VAL if the symbol exists and is undefined. */
9805
9806 void
9807 _bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
9808 bfd_vma val)
9809 {
9810 struct elf_link_hash_entry *h;
9811 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9812 FALSE);
9813 if (h != NULL && h->root.type == bfd_link_hash_undefined)
9814 {
9815 h->root.type = bfd_link_hash_defined;
9816 h->root.u.def.section = bfd_abs_section_ptr;
9817 h->root.u.def.value = val;
9818 h->def_regular = 1;
9819 h->type = STT_OBJECT;
9820 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9821 h->forced_local = 1;
9822 }
9823 }
This page took 0.235339 seconds and 4 git commands to generate.