* bfd/elf.c (INCLUDE_SECTION_IN_SEGMENT): Don't put empty sections into
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = bed->dynamic_sec_flags;
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
75 }
76
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91 h->other = STV_HIDDEN;
92
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
96
97 elf_hash_table (info)->hgot = h;
98 }
99
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
102
103 return TRUE;
104 }
105 \f
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
112
113 bfd_boolean
114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
115 {
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
120 const struct elf_backend_data *bed;
121
122 if (! is_elf_hash_table (info->hash))
123 return FALSE;
124
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
127
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
133
134 bed = get_elf_backend_data (abfd);
135
136 flags = bed->dynamic_sec_flags;
137
138 /* A dynamically linked executable has a .interp section, but a
139 shared library does not. */
140 if (info->executable)
141 {
142 s = bfd_make_section (abfd, ".interp");
143 if (s == NULL
144 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
145 return FALSE;
146 }
147
148 if (! info->traditional_format)
149 {
150 s = bfd_make_section (abfd, ".eh_frame_hdr");
151 if (s == NULL
152 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
153 || ! bfd_set_section_alignment (abfd, s, 2))
154 return FALSE;
155 elf_hash_table (info)->eh_info.hdr_sec = s;
156 }
157
158 /* Create sections to hold version informations. These are removed
159 if they are not needed. */
160 s = bfd_make_section (abfd, ".gnu.version_d");
161 if (s == NULL
162 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
163 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164 return FALSE;
165
166 s = bfd_make_section (abfd, ".gnu.version");
167 if (s == NULL
168 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
169 || ! bfd_set_section_alignment (abfd, s, 1))
170 return FALSE;
171
172 s = bfd_make_section (abfd, ".gnu.version_r");
173 if (s == NULL
174 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
175 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
176 return FALSE;
177
178 s = bfd_make_section (abfd, ".dynsym");
179 if (s == NULL
180 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
181 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
182 return FALSE;
183
184 s = bfd_make_section (abfd, ".dynstr");
185 if (s == NULL
186 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
187 return FALSE;
188
189 /* Create a strtab to hold the dynamic symbol names. */
190 if (elf_hash_table (info)->dynstr == NULL)
191 {
192 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
193 if (elf_hash_table (info)->dynstr == NULL)
194 return FALSE;
195 }
196
197 s = bfd_make_section (abfd, ".dynamic");
198 if (s == NULL
199 || ! bfd_set_section_flags (abfd, s, flags)
200 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
201 return FALSE;
202
203 /* The special symbol _DYNAMIC is always set to the start of the
204 .dynamic section. This call occurs before we have processed the
205 symbols for any dynamic object, so we don't have to worry about
206 overriding a dynamic definition. We could set _DYNAMIC in a
207 linker script, but we only want to define it if we are, in fact,
208 creating a .dynamic section. We don't want to define it if there
209 is no .dynamic section, since on some ELF platforms the start up
210 code examines it to decide how to initialize the process. */
211 bh = NULL;
212 if (! (_bfd_generic_link_add_one_symbol
213 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
214 get_elf_backend_data (abfd)->collect, &bh)))
215 return FALSE;
216 h = (struct elf_link_hash_entry *) bh;
217 h->def_regular = 1;
218 h->type = STT_OBJECT;
219
220 if (! info->executable
221 && ! bfd_elf_link_record_dynamic_symbol (info, h))
222 return FALSE;
223
224 s = bfd_make_section (abfd, ".hash");
225 if (s == NULL
226 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
227 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
228 return FALSE;
229 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
230
231 /* Let the backend create the rest of the sections. This lets the
232 backend set the right flags. The backend will normally create
233 the .got and .plt sections. */
234 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
235 return FALSE;
236
237 elf_hash_table (info)->dynamic_sections_created = TRUE;
238
239 return TRUE;
240 }
241
242 /* Create dynamic sections when linking against a dynamic object. */
243
244 bfd_boolean
245 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
246 {
247 flagword flags, pltflags;
248 asection *s;
249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
250
251 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
252 .rel[a].bss sections. */
253 flags = bed->dynamic_sec_flags;
254
255 pltflags = flags;
256 if (bed->plt_not_loaded)
257 /* We do not clear SEC_ALLOC here because we still want the OS to
258 allocate space for the section; it's just that there's nothing
259 to read in from the object file. */
260 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
261 else
262 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
263 if (bed->plt_readonly)
264 pltflags |= SEC_READONLY;
265
266 s = bfd_make_section (abfd, ".plt");
267 if (s == NULL
268 || ! bfd_set_section_flags (abfd, s, pltflags)
269 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
270 return FALSE;
271
272 if (bed->want_plt_sym)
273 {
274 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
275 .plt section. */
276 struct elf_link_hash_entry *h;
277 struct bfd_link_hash_entry *bh = NULL;
278
279 if (! (_bfd_generic_link_add_one_symbol
280 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
281 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
282 return FALSE;
283 h = (struct elf_link_hash_entry *) bh;
284 h->def_regular = 1;
285 h->type = STT_OBJECT;
286
287 if (! info->executable
288 && ! bfd_elf_link_record_dynamic_symbol (info, h))
289 return FALSE;
290 }
291
292 s = bfd_make_section (abfd,
293 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
294 if (s == NULL
295 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
296 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
297 return FALSE;
298
299 if (! _bfd_elf_create_got_section (abfd, info))
300 return FALSE;
301
302 if (bed->want_dynbss)
303 {
304 /* The .dynbss section is a place to put symbols which are defined
305 by dynamic objects, are referenced by regular objects, and are
306 not functions. We must allocate space for them in the process
307 image and use a R_*_COPY reloc to tell the dynamic linker to
308 initialize them at run time. The linker script puts the .dynbss
309 section into the .bss section of the final image. */
310 s = bfd_make_section (abfd, ".dynbss");
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
313 return FALSE;
314
315 /* The .rel[a].bss section holds copy relocs. This section is not
316 normally needed. We need to create it here, though, so that the
317 linker will map it to an output section. We can't just create it
318 only if we need it, because we will not know whether we need it
319 until we have seen all the input files, and the first time the
320 main linker code calls BFD after examining all the input files
321 (size_dynamic_sections) the input sections have already been
322 mapped to the output sections. If the section turns out not to
323 be needed, we can discard it later. We will never need this
324 section when generating a shared object, since they do not use
325 copy relocs. */
326 if (! info->shared)
327 {
328 s = bfd_make_section (abfd,
329 (bed->default_use_rela_p
330 ? ".rela.bss" : ".rel.bss"));
331 if (s == NULL
332 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 }
336 }
337
338 return TRUE;
339 }
340 \f
341 /* Record a new dynamic symbol. We record the dynamic symbols as we
342 read the input files, since we need to have a list of all of them
343 before we can determine the final sizes of the output sections.
344 Note that we may actually call this function even though we are not
345 going to output any dynamic symbols; in some cases we know that a
346 symbol should be in the dynamic symbol table, but only if there is
347 one. */
348
349 bfd_boolean
350 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
351 struct elf_link_hash_entry *h)
352 {
353 if (h->dynindx == -1)
354 {
355 struct elf_strtab_hash *dynstr;
356 char *p;
357 const char *name;
358 bfd_size_type indx;
359
360 /* XXX: The ABI draft says the linker must turn hidden and
361 internal symbols into STB_LOCAL symbols when producing the
362 DSO. However, if ld.so honors st_other in the dynamic table,
363 this would not be necessary. */
364 switch (ELF_ST_VISIBILITY (h->other))
365 {
366 case STV_INTERNAL:
367 case STV_HIDDEN:
368 if (h->root.type != bfd_link_hash_undefined
369 && h->root.type != bfd_link_hash_undefweak)
370 {
371 h->forced_local = 1;
372 return TRUE;
373 }
374
375 default:
376 break;
377 }
378
379 h->dynindx = elf_hash_table (info)->dynsymcount;
380 ++elf_hash_table (info)->dynsymcount;
381
382 dynstr = elf_hash_table (info)->dynstr;
383 if (dynstr == NULL)
384 {
385 /* Create a strtab to hold the dynamic symbol names. */
386 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
387 if (dynstr == NULL)
388 return FALSE;
389 }
390
391 /* We don't put any version information in the dynamic string
392 table. */
393 name = h->root.root.string;
394 p = strchr (name, ELF_VER_CHR);
395 if (p != NULL)
396 /* We know that the p points into writable memory. In fact,
397 there are only a few symbols that have read-only names, being
398 those like _GLOBAL_OFFSET_TABLE_ that are created specially
399 by the backends. Most symbols will have names pointing into
400 an ELF string table read from a file, or to objalloc memory. */
401 *p = 0;
402
403 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
404
405 if (p != NULL)
406 *p = ELF_VER_CHR;
407
408 if (indx == (bfd_size_type) -1)
409 return FALSE;
410 h->dynstr_index = indx;
411 }
412
413 return TRUE;
414 }
415 \f
416 /* Record an assignment to a symbol made by a linker script. We need
417 this in case some dynamic object refers to this symbol. */
418
419 bfd_boolean
420 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
421 struct bfd_link_info *info,
422 const char *name,
423 bfd_boolean provide)
424 {
425 struct elf_link_hash_entry *h;
426
427 if (!is_elf_hash_table (info->hash))
428 return TRUE;
429
430 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
431 if (h == NULL)
432 return FALSE;
433
434 /* Since we're defining the symbol, don't let it seem to have not
435 been defined. record_dynamic_symbol and size_dynamic_sections
436 may depend on this.
437 ??? Changing bfd_link_hash_undefined to bfd_link_hash_new (or
438 to bfd_link_hash_undefweak, see linker.c:link_action) runs the risk
439 of some later symbol manipulation setting the symbol back to
440 bfd_link_hash_undefined, and the linker trying to add the symbol to
441 the undefs list twice. */
442 if (h->root.type == bfd_link_hash_undefweak
443 || h->root.type == bfd_link_hash_undefined)
444 h->root.type = bfd_link_hash_new;
445
446 if (h->root.type == bfd_link_hash_new)
447 h->non_elf = 0;
448
449 /* If this symbol is being provided by the linker script, and it is
450 currently defined by a dynamic object, but not by a regular
451 object, then mark it as undefined so that the generic linker will
452 force the correct value. */
453 if (provide
454 && h->def_dynamic
455 && !h->def_regular)
456 h->root.type = bfd_link_hash_undefined;
457
458 /* If this symbol is not being provided by the linker script, and it is
459 currently defined by a dynamic object, but not by a regular object,
460 then clear out any version information because the symbol will not be
461 associated with the dynamic object any more. */
462 if (!provide
463 && h->def_dynamic
464 && !h->def_regular)
465 h->verinfo.verdef = NULL;
466
467 h->def_regular = 1;
468
469 if ((h->def_dynamic
470 || h->ref_dynamic
471 || info->shared)
472 && h->dynindx == -1)
473 {
474 if (! bfd_elf_link_record_dynamic_symbol (info, h))
475 return FALSE;
476
477 /* If this is a weak defined symbol, and we know a corresponding
478 real symbol from the same dynamic object, make sure the real
479 symbol is also made into a dynamic symbol. */
480 if (h->u.weakdef != NULL
481 && h->u.weakdef->dynindx == -1)
482 {
483 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
484 return FALSE;
485 }
486 }
487
488 return TRUE;
489 }
490
491 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
492 success, and 2 on a failure caused by attempting to record a symbol
493 in a discarded section, eg. a discarded link-once section symbol. */
494
495 int
496 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
497 bfd *input_bfd,
498 long input_indx)
499 {
500 bfd_size_type amt;
501 struct elf_link_local_dynamic_entry *entry;
502 struct elf_link_hash_table *eht;
503 struct elf_strtab_hash *dynstr;
504 unsigned long dynstr_index;
505 char *name;
506 Elf_External_Sym_Shndx eshndx;
507 char esym[sizeof (Elf64_External_Sym)];
508
509 if (! is_elf_hash_table (info->hash))
510 return 0;
511
512 /* See if the entry exists already. */
513 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
514 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
515 return 1;
516
517 amt = sizeof (*entry);
518 entry = bfd_alloc (input_bfd, amt);
519 if (entry == NULL)
520 return 0;
521
522 /* Go find the symbol, so that we can find it's name. */
523 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
524 1, input_indx, &entry->isym, esym, &eshndx))
525 {
526 bfd_release (input_bfd, entry);
527 return 0;
528 }
529
530 if (entry->isym.st_shndx != SHN_UNDEF
531 && (entry->isym.st_shndx < SHN_LORESERVE
532 || entry->isym.st_shndx > SHN_HIRESERVE))
533 {
534 asection *s;
535
536 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
537 if (s == NULL || bfd_is_abs_section (s->output_section))
538 {
539 /* We can still bfd_release here as nothing has done another
540 bfd_alloc. We can't do this later in this function. */
541 bfd_release (input_bfd, entry);
542 return 2;
543 }
544 }
545
546 name = (bfd_elf_string_from_elf_section
547 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
548 entry->isym.st_name));
549
550 dynstr = elf_hash_table (info)->dynstr;
551 if (dynstr == NULL)
552 {
553 /* Create a strtab to hold the dynamic symbol names. */
554 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
555 if (dynstr == NULL)
556 return 0;
557 }
558
559 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
560 if (dynstr_index == (unsigned long) -1)
561 return 0;
562 entry->isym.st_name = dynstr_index;
563
564 eht = elf_hash_table (info);
565
566 entry->next = eht->dynlocal;
567 eht->dynlocal = entry;
568 entry->input_bfd = input_bfd;
569 entry->input_indx = input_indx;
570 eht->dynsymcount++;
571
572 /* Whatever binding the symbol had before, it's now local. */
573 entry->isym.st_info
574 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
575
576 /* The dynindx will be set at the end of size_dynamic_sections. */
577
578 return 1;
579 }
580
581 /* Return the dynindex of a local dynamic symbol. */
582
583 long
584 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
585 bfd *input_bfd,
586 long input_indx)
587 {
588 struct elf_link_local_dynamic_entry *e;
589
590 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
591 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
592 return e->dynindx;
593 return -1;
594 }
595
596 /* This function is used to renumber the dynamic symbols, if some of
597 them are removed because they are marked as local. This is called
598 via elf_link_hash_traverse. */
599
600 static bfd_boolean
601 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
602 void *data)
603 {
604 size_t *count = data;
605
606 if (h->root.type == bfd_link_hash_warning)
607 h = (struct elf_link_hash_entry *) h->root.u.i.link;
608
609 if (h->dynindx != -1)
610 h->dynindx = ++(*count);
611
612 return TRUE;
613 }
614
615 /* Return true if the dynamic symbol for a given section should be
616 omitted when creating a shared library. */
617 bfd_boolean
618 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
619 struct bfd_link_info *info,
620 asection *p)
621 {
622 switch (elf_section_data (p)->this_hdr.sh_type)
623 {
624 case SHT_PROGBITS:
625 case SHT_NOBITS:
626 /* If sh_type is yet undecided, assume it could be
627 SHT_PROGBITS/SHT_NOBITS. */
628 case SHT_NULL:
629 if (strcmp (p->name, ".got") == 0
630 || strcmp (p->name, ".got.plt") == 0
631 || strcmp (p->name, ".plt") == 0)
632 {
633 asection *ip;
634 bfd *dynobj = elf_hash_table (info)->dynobj;
635
636 if (dynobj != NULL
637 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
638 && (ip->flags & SEC_LINKER_CREATED)
639 && ip->output_section == p)
640 return TRUE;
641 }
642 return FALSE;
643
644 /* There shouldn't be section relative relocations
645 against any other section. */
646 default:
647 return TRUE;
648 }
649 }
650
651 /* Assign dynsym indices. In a shared library we generate a section
652 symbol for each output section, which come first. Next come all of
653 the back-end allocated local dynamic syms, followed by the rest of
654 the global symbols. */
655
656 unsigned long
657 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
658 {
659 unsigned long dynsymcount = 0;
660
661 if (info->shared)
662 {
663 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
664 asection *p;
665 for (p = output_bfd->sections; p ; p = p->next)
666 if ((p->flags & SEC_EXCLUDE) == 0
667 && (p->flags & SEC_ALLOC) != 0
668 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
669 elf_section_data (p)->dynindx = ++dynsymcount;
670 }
671
672 if (elf_hash_table (info)->dynlocal)
673 {
674 struct elf_link_local_dynamic_entry *p;
675 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
676 p->dynindx = ++dynsymcount;
677 }
678
679 elf_link_hash_traverse (elf_hash_table (info),
680 elf_link_renumber_hash_table_dynsyms,
681 &dynsymcount);
682
683 /* There is an unused NULL entry at the head of the table which
684 we must account for in our count. Unless there weren't any
685 symbols, which means we'll have no table at all. */
686 if (dynsymcount != 0)
687 ++dynsymcount;
688
689 return elf_hash_table (info)->dynsymcount = dynsymcount;
690 }
691
692 /* This function is called when we want to define a new symbol. It
693 handles the various cases which arise when we find a definition in
694 a dynamic object, or when there is already a definition in a
695 dynamic object. The new symbol is described by NAME, SYM, PSEC,
696 and PVALUE. We set SYM_HASH to the hash table entry. We set
697 OVERRIDE if the old symbol is overriding a new definition. We set
698 TYPE_CHANGE_OK if it is OK for the type to change. We set
699 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
700 change, we mean that we shouldn't warn if the type or size does
701 change. */
702
703 bfd_boolean
704 _bfd_elf_merge_symbol (bfd *abfd,
705 struct bfd_link_info *info,
706 const char *name,
707 Elf_Internal_Sym *sym,
708 asection **psec,
709 bfd_vma *pvalue,
710 struct elf_link_hash_entry **sym_hash,
711 bfd_boolean *skip,
712 bfd_boolean *override,
713 bfd_boolean *type_change_ok,
714 bfd_boolean *size_change_ok)
715 {
716 asection *sec, *oldsec;
717 struct elf_link_hash_entry *h;
718 struct elf_link_hash_entry *flip;
719 int bind;
720 bfd *oldbfd;
721 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
722 bfd_boolean newweak, oldweak, old_asneeded;
723
724 *skip = FALSE;
725 *override = FALSE;
726
727 sec = *psec;
728 bind = ELF_ST_BIND (sym->st_info);
729
730 if (! bfd_is_und_section (sec))
731 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
732 else
733 h = ((struct elf_link_hash_entry *)
734 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
735 if (h == NULL)
736 return FALSE;
737 *sym_hash = h;
738
739 /* This code is for coping with dynamic objects, and is only useful
740 if we are doing an ELF link. */
741 if (info->hash->creator != abfd->xvec)
742 return TRUE;
743
744 /* For merging, we only care about real symbols. */
745
746 while (h->root.type == bfd_link_hash_indirect
747 || h->root.type == bfd_link_hash_warning)
748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749
750 /* If we just created the symbol, mark it as being an ELF symbol.
751 Other than that, there is nothing to do--there is no merge issue
752 with a newly defined symbol--so we just return. */
753
754 if (h->root.type == bfd_link_hash_new)
755 {
756 h->non_elf = 0;
757 return TRUE;
758 }
759
760 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
761 existing symbol. */
762
763 switch (h->root.type)
764 {
765 default:
766 oldbfd = NULL;
767 oldsec = NULL;
768 break;
769
770 case bfd_link_hash_undefined:
771 case bfd_link_hash_undefweak:
772 oldbfd = h->root.u.undef.abfd;
773 oldsec = NULL;
774 break;
775
776 case bfd_link_hash_defined:
777 case bfd_link_hash_defweak:
778 oldbfd = h->root.u.def.section->owner;
779 oldsec = h->root.u.def.section;
780 break;
781
782 case bfd_link_hash_common:
783 oldbfd = h->root.u.c.p->section->owner;
784 oldsec = h->root.u.c.p->section;
785 break;
786 }
787
788 /* In cases involving weak versioned symbols, we may wind up trying
789 to merge a symbol with itself. Catch that here, to avoid the
790 confusion that results if we try to override a symbol with
791 itself. The additional tests catch cases like
792 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
793 dynamic object, which we do want to handle here. */
794 if (abfd == oldbfd
795 && ((abfd->flags & DYNAMIC) == 0
796 || !h->def_regular))
797 return TRUE;
798
799 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
800 respectively, is from a dynamic object. */
801
802 if ((abfd->flags & DYNAMIC) != 0)
803 newdyn = TRUE;
804 else
805 newdyn = FALSE;
806
807 if (oldbfd != NULL)
808 olddyn = (oldbfd->flags & DYNAMIC) != 0;
809 else
810 {
811 asection *hsec;
812
813 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
814 indices used by MIPS ELF. */
815 switch (h->root.type)
816 {
817 default:
818 hsec = NULL;
819 break;
820
821 case bfd_link_hash_defined:
822 case bfd_link_hash_defweak:
823 hsec = h->root.u.def.section;
824 break;
825
826 case bfd_link_hash_common:
827 hsec = h->root.u.c.p->section;
828 break;
829 }
830
831 if (hsec == NULL)
832 olddyn = FALSE;
833 else
834 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
835 }
836
837 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
838 respectively, appear to be a definition rather than reference. */
839
840 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
841 newdef = FALSE;
842 else
843 newdef = TRUE;
844
845 if (h->root.type == bfd_link_hash_undefined
846 || h->root.type == bfd_link_hash_undefweak
847 || h->root.type == bfd_link_hash_common)
848 olddef = FALSE;
849 else
850 olddef = TRUE;
851
852 /* If the old definition came from an as-needed dynamic library which
853 wasn't found to be needed, treat the sym as undefined. */
854 old_asneeded = FALSE;
855 if (newdyn
856 && olddyn
857 && (elf_dyn_lib_class (oldbfd) & DYN_AS_NEEDED) != 0)
858 old_asneeded = TRUE;
859
860 /* Check TLS symbol. */
861 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
862 && ELF_ST_TYPE (sym->st_info) != h->type)
863 {
864 bfd *ntbfd, *tbfd;
865 bfd_boolean ntdef, tdef;
866 asection *ntsec, *tsec;
867
868 if (h->type == STT_TLS)
869 {
870 ntbfd = abfd;
871 ntsec = sec;
872 ntdef = newdef;
873 tbfd = oldbfd;
874 tsec = oldsec;
875 tdef = olddef;
876 }
877 else
878 {
879 ntbfd = oldbfd;
880 ntsec = oldsec;
881 ntdef = olddef;
882 tbfd = abfd;
883 tsec = sec;
884 tdef = newdef;
885 }
886
887 if (tdef && ntdef)
888 (*_bfd_error_handler)
889 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
890 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
891 else if (!tdef && !ntdef)
892 (*_bfd_error_handler)
893 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
894 tbfd, ntbfd, h->root.root.string);
895 else if (tdef)
896 (*_bfd_error_handler)
897 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
898 tbfd, tsec, ntbfd, h->root.root.string);
899 else
900 (*_bfd_error_handler)
901 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
902 tbfd, ntbfd, ntsec, h->root.root.string);
903
904 bfd_set_error (bfd_error_bad_value);
905 return FALSE;
906 }
907
908 /* We need to remember if a symbol has a definition in a dynamic
909 object or is weak in all dynamic objects. Internal and hidden
910 visibility will make it unavailable to dynamic objects. */
911 if (newdyn && !h->dynamic_def)
912 {
913 if (!bfd_is_und_section (sec))
914 h->dynamic_def = 1;
915 else
916 {
917 /* Check if this symbol is weak in all dynamic objects. If it
918 is the first time we see it in a dynamic object, we mark
919 if it is weak. Otherwise, we clear it. */
920 if (!h->ref_dynamic)
921 {
922 if (bind == STB_WEAK)
923 h->dynamic_weak = 1;
924 }
925 else if (bind != STB_WEAK)
926 h->dynamic_weak = 0;
927 }
928 }
929
930 /* If the old symbol has non-default visibility, we ignore the new
931 definition from a dynamic object. */
932 if (newdyn
933 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
934 && !bfd_is_und_section (sec))
935 {
936 *skip = TRUE;
937 /* Make sure this symbol is dynamic. */
938 h->ref_dynamic = 1;
939 /* A protected symbol has external availability. Make sure it is
940 recorded as dynamic.
941
942 FIXME: Should we check type and size for protected symbol? */
943 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
944 return bfd_elf_link_record_dynamic_symbol (info, h);
945 else
946 return TRUE;
947 }
948 else if (!newdyn
949 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
950 && h->def_dynamic)
951 {
952 /* If the new symbol with non-default visibility comes from a
953 relocatable file and the old definition comes from a dynamic
954 object, we remove the old definition. */
955 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
956 h = *sym_hash;
957
958 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
959 && bfd_is_und_section (sec))
960 {
961 /* If the new symbol is undefined and the old symbol was
962 also undefined before, we need to make sure
963 _bfd_generic_link_add_one_symbol doesn't mess
964 up the linker hash table undefs list. Since the old
965 definition came from a dynamic object, it is still on the
966 undefs list. */
967 h->root.type = bfd_link_hash_undefined;
968 h->root.u.undef.abfd = abfd;
969 }
970 else
971 {
972 h->root.type = bfd_link_hash_new;
973 h->root.u.undef.abfd = NULL;
974 }
975
976 if (h->def_dynamic)
977 {
978 h->def_dynamic = 0;
979 h->ref_dynamic = 1;
980 h->dynamic_def = 1;
981 }
982 /* FIXME: Should we check type and size for protected symbol? */
983 h->size = 0;
984 h->type = 0;
985 return TRUE;
986 }
987
988 /* Differentiate strong and weak symbols. */
989 newweak = bind == STB_WEAK;
990 oldweak = (h->root.type == bfd_link_hash_defweak
991 || h->root.type == bfd_link_hash_undefweak);
992
993 /* If a new weak symbol definition comes from a regular file and the
994 old symbol comes from a dynamic library, we treat the new one as
995 strong. Similarly, an old weak symbol definition from a regular
996 file is treated as strong when the new symbol comes from a dynamic
997 library. Further, an old weak symbol from a dynamic library is
998 treated as strong if the new symbol is from a dynamic library.
999 This reflects the way glibc's ld.so works.
1000
1001 Do this before setting *type_change_ok or *size_change_ok so that
1002 we warn properly when dynamic library symbols are overridden. */
1003
1004 if (newdef && !newdyn && olddyn)
1005 newweak = FALSE;
1006 if (olddef && newdyn)
1007 oldweak = FALSE;
1008
1009 /* It's OK to change the type if either the existing symbol or the
1010 new symbol is weak. A type change is also OK if the old symbol
1011 is undefined and the new symbol is defined. */
1012
1013 if (oldweak
1014 || newweak
1015 || (newdef
1016 && h->root.type == bfd_link_hash_undefined))
1017 *type_change_ok = TRUE;
1018
1019 /* It's OK to change the size if either the existing symbol or the
1020 new symbol is weak, or if the old symbol is undefined. */
1021
1022 if (*type_change_ok
1023 || h->root.type == bfd_link_hash_undefined)
1024 *size_change_ok = TRUE;
1025
1026 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1027 symbol, respectively, appears to be a common symbol in a dynamic
1028 object. If a symbol appears in an uninitialized section, and is
1029 not weak, and is not a function, then it may be a common symbol
1030 which was resolved when the dynamic object was created. We want
1031 to treat such symbols specially, because they raise special
1032 considerations when setting the symbol size: if the symbol
1033 appears as a common symbol in a regular object, and the size in
1034 the regular object is larger, we must make sure that we use the
1035 larger size. This problematic case can always be avoided in C,
1036 but it must be handled correctly when using Fortran shared
1037 libraries.
1038
1039 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1040 likewise for OLDDYNCOMMON and OLDDEF.
1041
1042 Note that this test is just a heuristic, and that it is quite
1043 possible to have an uninitialized symbol in a shared object which
1044 is really a definition, rather than a common symbol. This could
1045 lead to some minor confusion when the symbol really is a common
1046 symbol in some regular object. However, I think it will be
1047 harmless. */
1048
1049 if (newdyn
1050 && newdef
1051 && !newweak
1052 && (sec->flags & SEC_ALLOC) != 0
1053 && (sec->flags & SEC_LOAD) == 0
1054 && sym->st_size > 0
1055 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1056 newdyncommon = TRUE;
1057 else
1058 newdyncommon = FALSE;
1059
1060 if (olddyn
1061 && olddef
1062 && !old_asneeded
1063 && h->root.type == bfd_link_hash_defined
1064 && h->def_dynamic
1065 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1066 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1067 && h->size > 0
1068 && h->type != STT_FUNC)
1069 olddyncommon = TRUE;
1070 else
1071 olddyncommon = FALSE;
1072
1073 /* If both the old and the new symbols look like common symbols in a
1074 dynamic object, set the size of the symbol to the larger of the
1075 two. */
1076
1077 if (olddyncommon
1078 && newdyncommon
1079 && sym->st_size != h->size)
1080 {
1081 /* Since we think we have two common symbols, issue a multiple
1082 common warning if desired. Note that we only warn if the
1083 size is different. If the size is the same, we simply let
1084 the old symbol override the new one as normally happens with
1085 symbols defined in dynamic objects. */
1086
1087 if (! ((*info->callbacks->multiple_common)
1088 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1089 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1090 return FALSE;
1091
1092 if (sym->st_size > h->size)
1093 h->size = sym->st_size;
1094
1095 *size_change_ok = TRUE;
1096 }
1097
1098 /* If we are looking at a dynamic object, and we have found a
1099 definition, we need to see if the symbol was already defined by
1100 some other object. If so, we want to use the existing
1101 definition, and we do not want to report a multiple symbol
1102 definition error; we do this by clobbering *PSEC to be
1103 bfd_und_section_ptr.
1104
1105 We treat a common symbol as a definition if the symbol in the
1106 shared library is a function, since common symbols always
1107 represent variables; this can cause confusion in principle, but
1108 any such confusion would seem to indicate an erroneous program or
1109 shared library. We also permit a common symbol in a regular
1110 object to override a weak symbol in a shared object. */
1111
1112 if (newdyn
1113 && newdef
1114 && ((olddef && !old_asneeded)
1115 || (h->root.type == bfd_link_hash_common
1116 && (newweak
1117 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1118 {
1119 *override = TRUE;
1120 newdef = FALSE;
1121 newdyncommon = FALSE;
1122
1123 *psec = sec = bfd_und_section_ptr;
1124 *size_change_ok = TRUE;
1125
1126 /* If we get here when the old symbol is a common symbol, then
1127 we are explicitly letting it override a weak symbol or
1128 function in a dynamic object, and we don't want to warn about
1129 a type change. If the old symbol is a defined symbol, a type
1130 change warning may still be appropriate. */
1131
1132 if (h->root.type == bfd_link_hash_common)
1133 *type_change_ok = TRUE;
1134 }
1135
1136 /* Handle the special case of an old common symbol merging with a
1137 new symbol which looks like a common symbol in a shared object.
1138 We change *PSEC and *PVALUE to make the new symbol look like a
1139 common symbol, and let _bfd_generic_link_add_one_symbol will do
1140 the right thing. */
1141
1142 if (newdyncommon
1143 && h->root.type == bfd_link_hash_common)
1144 {
1145 *override = TRUE;
1146 newdef = FALSE;
1147 newdyncommon = FALSE;
1148 *pvalue = sym->st_size;
1149 *psec = sec = bfd_com_section_ptr;
1150 *size_change_ok = TRUE;
1151 }
1152
1153 /* If the old symbol is from a dynamic object, and the new symbol is
1154 a definition which is not from a dynamic object, then the new
1155 symbol overrides the old symbol. Symbols from regular files
1156 always take precedence over symbols from dynamic objects, even if
1157 they are defined after the dynamic object in the link.
1158
1159 As above, we again permit a common symbol in a regular object to
1160 override a definition in a shared object if the shared object
1161 symbol is a function or is weak. */
1162
1163 flip = NULL;
1164 if ((!newdyn || old_asneeded)
1165 && (newdef
1166 || (bfd_is_com_section (sec)
1167 && (oldweak
1168 || h->type == STT_FUNC)))
1169 && olddyn
1170 && olddef
1171 && h->def_dynamic)
1172 {
1173 /* Change the hash table entry to undefined, and let
1174 _bfd_generic_link_add_one_symbol do the right thing with the
1175 new definition. */
1176
1177 h->root.type = bfd_link_hash_undefined;
1178 h->root.u.undef.abfd = h->root.u.def.section->owner;
1179 *size_change_ok = TRUE;
1180
1181 olddef = FALSE;
1182 olddyncommon = FALSE;
1183
1184 /* We again permit a type change when a common symbol may be
1185 overriding a function. */
1186
1187 if (bfd_is_com_section (sec))
1188 *type_change_ok = TRUE;
1189
1190 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1191 flip = *sym_hash;
1192 else
1193 /* This union may have been set to be non-NULL when this symbol
1194 was seen in a dynamic object. We must force the union to be
1195 NULL, so that it is correct for a regular symbol. */
1196 h->verinfo.vertree = NULL;
1197 }
1198
1199 /* Handle the special case of a new common symbol merging with an
1200 old symbol that looks like it might be a common symbol defined in
1201 a shared object. Note that we have already handled the case in
1202 which a new common symbol should simply override the definition
1203 in the shared library. */
1204
1205 if (! newdyn
1206 && bfd_is_com_section (sec)
1207 && olddyncommon)
1208 {
1209 /* It would be best if we could set the hash table entry to a
1210 common symbol, but we don't know what to use for the section
1211 or the alignment. */
1212 if (! ((*info->callbacks->multiple_common)
1213 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1214 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1215 return FALSE;
1216
1217 /* If the presumed common symbol in the dynamic object is
1218 larger, pretend that the new symbol has its size. */
1219
1220 if (h->size > *pvalue)
1221 *pvalue = h->size;
1222
1223 /* FIXME: We no longer know the alignment required by the symbol
1224 in the dynamic object, so we just wind up using the one from
1225 the regular object. */
1226
1227 olddef = FALSE;
1228 olddyncommon = FALSE;
1229
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = h->root.u.def.section->owner;
1232
1233 *size_change_ok = TRUE;
1234 *type_change_ok = TRUE;
1235
1236 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1237 flip = *sym_hash;
1238 else
1239 h->verinfo.vertree = NULL;
1240 }
1241
1242 if (flip != NULL)
1243 {
1244 /* Handle the case where we had a versioned symbol in a dynamic
1245 library and now find a definition in a normal object. In this
1246 case, we make the versioned symbol point to the normal one. */
1247 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1248 flip->root.type = h->root.type;
1249 h->root.type = bfd_link_hash_indirect;
1250 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1251 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1252 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1253 if (h->def_dynamic)
1254 {
1255 h->def_dynamic = 0;
1256 flip->ref_dynamic = 1;
1257 }
1258 }
1259
1260 return TRUE;
1261 }
1262
1263 /* This function is called to create an indirect symbol from the
1264 default for the symbol with the default version if needed. The
1265 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1266 set DYNSYM if the new indirect symbol is dynamic. */
1267
1268 bfd_boolean
1269 _bfd_elf_add_default_symbol (bfd *abfd,
1270 struct bfd_link_info *info,
1271 struct elf_link_hash_entry *h,
1272 const char *name,
1273 Elf_Internal_Sym *sym,
1274 asection **psec,
1275 bfd_vma *value,
1276 bfd_boolean *dynsym,
1277 bfd_boolean override)
1278 {
1279 bfd_boolean type_change_ok;
1280 bfd_boolean size_change_ok;
1281 bfd_boolean skip;
1282 char *shortname;
1283 struct elf_link_hash_entry *hi;
1284 struct bfd_link_hash_entry *bh;
1285 const struct elf_backend_data *bed;
1286 bfd_boolean collect;
1287 bfd_boolean dynamic;
1288 char *p;
1289 size_t len, shortlen;
1290 asection *sec;
1291
1292 /* If this symbol has a version, and it is the default version, we
1293 create an indirect symbol from the default name to the fully
1294 decorated name. This will cause external references which do not
1295 specify a version to be bound to this version of the symbol. */
1296 p = strchr (name, ELF_VER_CHR);
1297 if (p == NULL || p[1] != ELF_VER_CHR)
1298 return TRUE;
1299
1300 if (override)
1301 {
1302 /* We are overridden by an old definition. We need to check if we
1303 need to create the indirect symbol from the default name. */
1304 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1305 FALSE, FALSE);
1306 BFD_ASSERT (hi != NULL);
1307 if (hi == h)
1308 return TRUE;
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 {
1312 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1313 if (hi == h)
1314 return TRUE;
1315 }
1316 }
1317
1318 bed = get_elf_backend_data (abfd);
1319 collect = bed->collect;
1320 dynamic = (abfd->flags & DYNAMIC) != 0;
1321
1322 shortlen = p - name;
1323 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1324 if (shortname == NULL)
1325 return FALSE;
1326 memcpy (shortname, name, shortlen);
1327 shortname[shortlen] = '\0';
1328
1329 /* We are going to create a new symbol. Merge it with any existing
1330 symbol with this name. For the purposes of the merge, act as
1331 though we were defining the symbol we just defined, although we
1332 actually going to define an indirect symbol. */
1333 type_change_ok = FALSE;
1334 size_change_ok = FALSE;
1335 sec = *psec;
1336 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1337 &hi, &skip, &override, &type_change_ok,
1338 &size_change_ok))
1339 return FALSE;
1340
1341 if (skip)
1342 goto nondefault;
1343
1344 if (! override)
1345 {
1346 bh = &hi->root;
1347 if (! (_bfd_generic_link_add_one_symbol
1348 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1349 0, name, FALSE, collect, &bh)))
1350 return FALSE;
1351 hi = (struct elf_link_hash_entry *) bh;
1352 }
1353 else
1354 {
1355 /* In this case the symbol named SHORTNAME is overriding the
1356 indirect symbol we want to add. We were planning on making
1357 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1358 is the name without a version. NAME is the fully versioned
1359 name, and it is the default version.
1360
1361 Overriding means that we already saw a definition for the
1362 symbol SHORTNAME in a regular object, and it is overriding
1363 the symbol defined in the dynamic object.
1364
1365 When this happens, we actually want to change NAME, the
1366 symbol we just added, to refer to SHORTNAME. This will cause
1367 references to NAME in the shared object to become references
1368 to SHORTNAME in the regular object. This is what we expect
1369 when we override a function in a shared object: that the
1370 references in the shared object will be mapped to the
1371 definition in the regular object. */
1372
1373 while (hi->root.type == bfd_link_hash_indirect
1374 || hi->root.type == bfd_link_hash_warning)
1375 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1376
1377 h->root.type = bfd_link_hash_indirect;
1378 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1379 if (h->def_dynamic)
1380 {
1381 h->def_dynamic = 0;
1382 hi->ref_dynamic = 1;
1383 if (hi->ref_regular
1384 || hi->def_regular)
1385 {
1386 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1387 return FALSE;
1388 }
1389 }
1390
1391 /* Now set HI to H, so that the following code will set the
1392 other fields correctly. */
1393 hi = h;
1394 }
1395
1396 /* If there is a duplicate definition somewhere, then HI may not
1397 point to an indirect symbol. We will have reported an error to
1398 the user in that case. */
1399
1400 if (hi->root.type == bfd_link_hash_indirect)
1401 {
1402 struct elf_link_hash_entry *ht;
1403
1404 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1405 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1406
1407 /* See if the new flags lead us to realize that the symbol must
1408 be dynamic. */
1409 if (! *dynsym)
1410 {
1411 if (! dynamic)
1412 {
1413 if (info->shared
1414 || hi->ref_dynamic)
1415 *dynsym = TRUE;
1416 }
1417 else
1418 {
1419 if (hi->ref_regular)
1420 *dynsym = TRUE;
1421 }
1422 }
1423 }
1424
1425 /* We also need to define an indirection from the nondefault version
1426 of the symbol. */
1427
1428 nondefault:
1429 len = strlen (name);
1430 shortname = bfd_hash_allocate (&info->hash->table, len);
1431 if (shortname == NULL)
1432 return FALSE;
1433 memcpy (shortname, name, shortlen);
1434 memcpy (shortname + shortlen, p + 1, len - shortlen);
1435
1436 /* Once again, merge with any existing symbol. */
1437 type_change_ok = FALSE;
1438 size_change_ok = FALSE;
1439 sec = *psec;
1440 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1441 &hi, &skip, &override, &type_change_ok,
1442 &size_change_ok))
1443 return FALSE;
1444
1445 if (skip)
1446 return TRUE;
1447
1448 if (override)
1449 {
1450 /* Here SHORTNAME is a versioned name, so we don't expect to see
1451 the type of override we do in the case above unless it is
1452 overridden by a versioned definition. */
1453 if (hi->root.type != bfd_link_hash_defined
1454 && hi->root.type != bfd_link_hash_defweak)
1455 (*_bfd_error_handler)
1456 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1457 abfd, shortname);
1458 }
1459 else
1460 {
1461 bh = &hi->root;
1462 if (! (_bfd_generic_link_add_one_symbol
1463 (info, abfd, shortname, BSF_INDIRECT,
1464 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1465 return FALSE;
1466 hi = (struct elf_link_hash_entry *) bh;
1467
1468 /* If there is a duplicate definition somewhere, then HI may not
1469 point to an indirect symbol. We will have reported an error
1470 to the user in that case. */
1471
1472 if (hi->root.type == bfd_link_hash_indirect)
1473 {
1474 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1475
1476 /* See if the new flags lead us to realize that the symbol
1477 must be dynamic. */
1478 if (! *dynsym)
1479 {
1480 if (! dynamic)
1481 {
1482 if (info->shared
1483 || hi->ref_dynamic)
1484 *dynsym = TRUE;
1485 }
1486 else
1487 {
1488 if (hi->ref_regular)
1489 *dynsym = TRUE;
1490 }
1491 }
1492 }
1493 }
1494
1495 return TRUE;
1496 }
1497 \f
1498 /* This routine is used to export all defined symbols into the dynamic
1499 symbol table. It is called via elf_link_hash_traverse. */
1500
1501 bfd_boolean
1502 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1503 {
1504 struct elf_info_failed *eif = data;
1505
1506 /* Ignore indirect symbols. These are added by the versioning code. */
1507 if (h->root.type == bfd_link_hash_indirect)
1508 return TRUE;
1509
1510 if (h->root.type == bfd_link_hash_warning)
1511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1512
1513 if (h->dynindx == -1
1514 && (h->def_regular
1515 || h->ref_regular))
1516 {
1517 struct bfd_elf_version_tree *t;
1518 struct bfd_elf_version_expr *d;
1519
1520 for (t = eif->verdefs; t != NULL; t = t->next)
1521 {
1522 if (t->globals.list != NULL)
1523 {
1524 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1525 if (d != NULL)
1526 goto doit;
1527 }
1528
1529 if (t->locals.list != NULL)
1530 {
1531 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1532 if (d != NULL)
1533 return TRUE;
1534 }
1535 }
1536
1537 if (!eif->verdefs)
1538 {
1539 doit:
1540 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1541 {
1542 eif->failed = TRUE;
1543 return FALSE;
1544 }
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550 \f
1551 /* Look through the symbols which are defined in other shared
1552 libraries and referenced here. Update the list of version
1553 dependencies. This will be put into the .gnu.version_r section.
1554 This function is called via elf_link_hash_traverse. */
1555
1556 bfd_boolean
1557 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1558 void *data)
1559 {
1560 struct elf_find_verdep_info *rinfo = data;
1561 Elf_Internal_Verneed *t;
1562 Elf_Internal_Vernaux *a;
1563 bfd_size_type amt;
1564
1565 if (h->root.type == bfd_link_hash_warning)
1566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1567
1568 /* We only care about symbols defined in shared objects with version
1569 information. */
1570 if (!h->def_dynamic
1571 || h->def_regular
1572 || h->dynindx == -1
1573 || h->verinfo.verdef == NULL)
1574 return TRUE;
1575
1576 /* See if we already know about this version. */
1577 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1578 {
1579 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1580 continue;
1581
1582 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1583 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1584 return TRUE;
1585
1586 break;
1587 }
1588
1589 /* This is a new version. Add it to tree we are building. */
1590
1591 if (t == NULL)
1592 {
1593 amt = sizeof *t;
1594 t = bfd_zalloc (rinfo->output_bfd, amt);
1595 if (t == NULL)
1596 {
1597 rinfo->failed = TRUE;
1598 return FALSE;
1599 }
1600
1601 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1602 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1603 elf_tdata (rinfo->output_bfd)->verref = t;
1604 }
1605
1606 amt = sizeof *a;
1607 a = bfd_zalloc (rinfo->output_bfd, amt);
1608
1609 /* Note that we are copying a string pointer here, and testing it
1610 above. If bfd_elf_string_from_elf_section is ever changed to
1611 discard the string data when low in memory, this will have to be
1612 fixed. */
1613 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1614
1615 a->vna_flags = h->verinfo.verdef->vd_flags;
1616 a->vna_nextptr = t->vn_auxptr;
1617
1618 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1619 ++rinfo->vers;
1620
1621 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1622
1623 t->vn_auxptr = a;
1624
1625 return TRUE;
1626 }
1627
1628 /* Figure out appropriate versions for all the symbols. We may not
1629 have the version number script until we have read all of the input
1630 files, so until that point we don't know which symbols should be
1631 local. This function is called via elf_link_hash_traverse. */
1632
1633 bfd_boolean
1634 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1635 {
1636 struct elf_assign_sym_version_info *sinfo;
1637 struct bfd_link_info *info;
1638 const struct elf_backend_data *bed;
1639 struct elf_info_failed eif;
1640 char *p;
1641 bfd_size_type amt;
1642
1643 sinfo = data;
1644 info = sinfo->info;
1645
1646 if (h->root.type == bfd_link_hash_warning)
1647 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1648
1649 /* Fix the symbol flags. */
1650 eif.failed = FALSE;
1651 eif.info = info;
1652 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1653 {
1654 if (eif.failed)
1655 sinfo->failed = TRUE;
1656 return FALSE;
1657 }
1658
1659 /* We only need version numbers for symbols defined in regular
1660 objects. */
1661 if (!h->def_regular)
1662 return TRUE;
1663
1664 bed = get_elf_backend_data (sinfo->output_bfd);
1665 p = strchr (h->root.root.string, ELF_VER_CHR);
1666 if (p != NULL && h->verinfo.vertree == NULL)
1667 {
1668 struct bfd_elf_version_tree *t;
1669 bfd_boolean hidden;
1670
1671 hidden = TRUE;
1672
1673 /* There are two consecutive ELF_VER_CHR characters if this is
1674 not a hidden symbol. */
1675 ++p;
1676 if (*p == ELF_VER_CHR)
1677 {
1678 hidden = FALSE;
1679 ++p;
1680 }
1681
1682 /* If there is no version string, we can just return out. */
1683 if (*p == '\0')
1684 {
1685 if (hidden)
1686 h->hidden = 1;
1687 return TRUE;
1688 }
1689
1690 /* Look for the version. If we find it, it is no longer weak. */
1691 for (t = sinfo->verdefs; t != NULL; t = t->next)
1692 {
1693 if (strcmp (t->name, p) == 0)
1694 {
1695 size_t len;
1696 char *alc;
1697 struct bfd_elf_version_expr *d;
1698
1699 len = p - h->root.root.string;
1700 alc = bfd_malloc (len);
1701 if (alc == NULL)
1702 return FALSE;
1703 memcpy (alc, h->root.root.string, len - 1);
1704 alc[len - 1] = '\0';
1705 if (alc[len - 2] == ELF_VER_CHR)
1706 alc[len - 2] = '\0';
1707
1708 h->verinfo.vertree = t;
1709 t->used = TRUE;
1710 d = NULL;
1711
1712 if (t->globals.list != NULL)
1713 d = (*t->match) (&t->globals, NULL, alc);
1714
1715 /* See if there is anything to force this symbol to
1716 local scope. */
1717 if (d == NULL && t->locals.list != NULL)
1718 {
1719 d = (*t->match) (&t->locals, NULL, alc);
1720 if (d != NULL
1721 && h->dynindx != -1
1722 && info->shared
1723 && ! info->export_dynamic)
1724 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1725 }
1726
1727 free (alc);
1728 break;
1729 }
1730 }
1731
1732 /* If we are building an application, we need to create a
1733 version node for this version. */
1734 if (t == NULL && info->executable)
1735 {
1736 struct bfd_elf_version_tree **pp;
1737 int version_index;
1738
1739 /* If we aren't going to export this symbol, we don't need
1740 to worry about it. */
1741 if (h->dynindx == -1)
1742 return TRUE;
1743
1744 amt = sizeof *t;
1745 t = bfd_zalloc (sinfo->output_bfd, amt);
1746 if (t == NULL)
1747 {
1748 sinfo->failed = TRUE;
1749 return FALSE;
1750 }
1751
1752 t->name = p;
1753 t->name_indx = (unsigned int) -1;
1754 t->used = TRUE;
1755
1756 version_index = 1;
1757 /* Don't count anonymous version tag. */
1758 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1759 version_index = 0;
1760 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1761 ++version_index;
1762 t->vernum = version_index;
1763
1764 *pp = t;
1765
1766 h->verinfo.vertree = t;
1767 }
1768 else if (t == NULL)
1769 {
1770 /* We could not find the version for a symbol when
1771 generating a shared archive. Return an error. */
1772 (*_bfd_error_handler)
1773 (_("%B: undefined versioned symbol name %s"),
1774 sinfo->output_bfd, h->root.root.string);
1775 bfd_set_error (bfd_error_bad_value);
1776 sinfo->failed = TRUE;
1777 return FALSE;
1778 }
1779
1780 if (hidden)
1781 h->hidden = 1;
1782 }
1783
1784 /* If we don't have a version for this symbol, see if we can find
1785 something. */
1786 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1787 {
1788 struct bfd_elf_version_tree *t;
1789 struct bfd_elf_version_tree *local_ver;
1790 struct bfd_elf_version_expr *d;
1791
1792 /* See if can find what version this symbol is in. If the
1793 symbol is supposed to be local, then don't actually register
1794 it. */
1795 local_ver = NULL;
1796 for (t = sinfo->verdefs; t != NULL; t = t->next)
1797 {
1798 if (t->globals.list != NULL)
1799 {
1800 bfd_boolean matched;
1801
1802 matched = FALSE;
1803 d = NULL;
1804 while ((d = (*t->match) (&t->globals, d,
1805 h->root.root.string)) != NULL)
1806 if (d->symver)
1807 matched = TRUE;
1808 else
1809 {
1810 /* There is a version without definition. Make
1811 the symbol the default definition for this
1812 version. */
1813 h->verinfo.vertree = t;
1814 local_ver = NULL;
1815 d->script = 1;
1816 break;
1817 }
1818 if (d != NULL)
1819 break;
1820 else if (matched)
1821 /* There is no undefined version for this symbol. Hide the
1822 default one. */
1823 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1824 }
1825
1826 if (t->locals.list != NULL)
1827 {
1828 d = NULL;
1829 while ((d = (*t->match) (&t->locals, d,
1830 h->root.root.string)) != NULL)
1831 {
1832 local_ver = t;
1833 /* If the match is "*", keep looking for a more
1834 explicit, perhaps even global, match.
1835 XXX: Shouldn't this be !d->wildcard instead? */
1836 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1837 break;
1838 }
1839
1840 if (d != NULL)
1841 break;
1842 }
1843 }
1844
1845 if (local_ver != NULL)
1846 {
1847 h->verinfo.vertree = local_ver;
1848 if (h->dynindx != -1
1849 && info->shared
1850 && ! info->export_dynamic)
1851 {
1852 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1853 }
1854 }
1855 }
1856
1857 return TRUE;
1858 }
1859 \f
1860 /* Read and swap the relocs from the section indicated by SHDR. This
1861 may be either a REL or a RELA section. The relocations are
1862 translated into RELA relocations and stored in INTERNAL_RELOCS,
1863 which should have already been allocated to contain enough space.
1864 The EXTERNAL_RELOCS are a buffer where the external form of the
1865 relocations should be stored.
1866
1867 Returns FALSE if something goes wrong. */
1868
1869 static bfd_boolean
1870 elf_link_read_relocs_from_section (bfd *abfd,
1871 asection *sec,
1872 Elf_Internal_Shdr *shdr,
1873 void *external_relocs,
1874 Elf_Internal_Rela *internal_relocs)
1875 {
1876 const struct elf_backend_data *bed;
1877 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1878 const bfd_byte *erela;
1879 const bfd_byte *erelaend;
1880 Elf_Internal_Rela *irela;
1881 Elf_Internal_Shdr *symtab_hdr;
1882 size_t nsyms;
1883
1884 /* Position ourselves at the start of the section. */
1885 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1886 return FALSE;
1887
1888 /* Read the relocations. */
1889 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1890 return FALSE;
1891
1892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1893 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1894
1895 bed = get_elf_backend_data (abfd);
1896
1897 /* Convert the external relocations to the internal format. */
1898 if (shdr->sh_entsize == bed->s->sizeof_rel)
1899 swap_in = bed->s->swap_reloc_in;
1900 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1901 swap_in = bed->s->swap_reloca_in;
1902 else
1903 {
1904 bfd_set_error (bfd_error_wrong_format);
1905 return FALSE;
1906 }
1907
1908 erela = external_relocs;
1909 erelaend = erela + shdr->sh_size;
1910 irela = internal_relocs;
1911 while (erela < erelaend)
1912 {
1913 bfd_vma r_symndx;
1914
1915 (*swap_in) (abfd, erela, irela);
1916 r_symndx = ELF32_R_SYM (irela->r_info);
1917 if (bed->s->arch_size == 64)
1918 r_symndx >>= 24;
1919 if ((size_t) r_symndx >= nsyms)
1920 {
1921 (*_bfd_error_handler)
1922 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1923 " for offset 0x%lx in section `%A'"),
1924 abfd, sec,
1925 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1926 bfd_set_error (bfd_error_bad_value);
1927 return FALSE;
1928 }
1929 irela += bed->s->int_rels_per_ext_rel;
1930 erela += shdr->sh_entsize;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* Read and swap the relocs for a section O. They may have been
1937 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1938 not NULL, they are used as buffers to read into. They are known to
1939 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1940 the return value is allocated using either malloc or bfd_alloc,
1941 according to the KEEP_MEMORY argument. If O has two relocation
1942 sections (both REL and RELA relocations), then the REL_HDR
1943 relocations will appear first in INTERNAL_RELOCS, followed by the
1944 REL_HDR2 relocations. */
1945
1946 Elf_Internal_Rela *
1947 _bfd_elf_link_read_relocs (bfd *abfd,
1948 asection *o,
1949 void *external_relocs,
1950 Elf_Internal_Rela *internal_relocs,
1951 bfd_boolean keep_memory)
1952 {
1953 Elf_Internal_Shdr *rel_hdr;
1954 void *alloc1 = NULL;
1955 Elf_Internal_Rela *alloc2 = NULL;
1956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1957
1958 if (elf_section_data (o)->relocs != NULL)
1959 return elf_section_data (o)->relocs;
1960
1961 if (o->reloc_count == 0)
1962 return NULL;
1963
1964 rel_hdr = &elf_section_data (o)->rel_hdr;
1965
1966 if (internal_relocs == NULL)
1967 {
1968 bfd_size_type size;
1969
1970 size = o->reloc_count;
1971 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1972 if (keep_memory)
1973 internal_relocs = bfd_alloc (abfd, size);
1974 else
1975 internal_relocs = alloc2 = bfd_malloc (size);
1976 if (internal_relocs == NULL)
1977 goto error_return;
1978 }
1979
1980 if (external_relocs == NULL)
1981 {
1982 bfd_size_type size = rel_hdr->sh_size;
1983
1984 if (elf_section_data (o)->rel_hdr2)
1985 size += elf_section_data (o)->rel_hdr2->sh_size;
1986 alloc1 = bfd_malloc (size);
1987 if (alloc1 == NULL)
1988 goto error_return;
1989 external_relocs = alloc1;
1990 }
1991
1992 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1993 external_relocs,
1994 internal_relocs))
1995 goto error_return;
1996 if (elf_section_data (o)->rel_hdr2
1997 && (!elf_link_read_relocs_from_section
1998 (abfd, o,
1999 elf_section_data (o)->rel_hdr2,
2000 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2001 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2002 * bed->s->int_rels_per_ext_rel))))
2003 goto error_return;
2004
2005 /* Cache the results for next time, if we can. */
2006 if (keep_memory)
2007 elf_section_data (o)->relocs = internal_relocs;
2008
2009 if (alloc1 != NULL)
2010 free (alloc1);
2011
2012 /* Don't free alloc2, since if it was allocated we are passing it
2013 back (under the name of internal_relocs). */
2014
2015 return internal_relocs;
2016
2017 error_return:
2018 if (alloc1 != NULL)
2019 free (alloc1);
2020 if (alloc2 != NULL)
2021 free (alloc2);
2022 return NULL;
2023 }
2024
2025 /* Compute the size of, and allocate space for, REL_HDR which is the
2026 section header for a section containing relocations for O. */
2027
2028 bfd_boolean
2029 _bfd_elf_link_size_reloc_section (bfd *abfd,
2030 Elf_Internal_Shdr *rel_hdr,
2031 asection *o)
2032 {
2033 bfd_size_type reloc_count;
2034 bfd_size_type num_rel_hashes;
2035
2036 /* Figure out how many relocations there will be. */
2037 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2038 reloc_count = elf_section_data (o)->rel_count;
2039 else
2040 reloc_count = elf_section_data (o)->rel_count2;
2041
2042 num_rel_hashes = o->reloc_count;
2043 if (num_rel_hashes < reloc_count)
2044 num_rel_hashes = reloc_count;
2045
2046 /* That allows us to calculate the size of the section. */
2047 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2048
2049 /* The contents field must last into write_object_contents, so we
2050 allocate it with bfd_alloc rather than malloc. Also since we
2051 cannot be sure that the contents will actually be filled in,
2052 we zero the allocated space. */
2053 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2054 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2055 return FALSE;
2056
2057 /* We only allocate one set of hash entries, so we only do it the
2058 first time we are called. */
2059 if (elf_section_data (o)->rel_hashes == NULL
2060 && num_rel_hashes)
2061 {
2062 struct elf_link_hash_entry **p;
2063
2064 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2065 if (p == NULL)
2066 return FALSE;
2067
2068 elf_section_data (o)->rel_hashes = p;
2069 }
2070
2071 return TRUE;
2072 }
2073
2074 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2075 originated from the section given by INPUT_REL_HDR) to the
2076 OUTPUT_BFD. */
2077
2078 bfd_boolean
2079 _bfd_elf_link_output_relocs (bfd *output_bfd,
2080 asection *input_section,
2081 Elf_Internal_Shdr *input_rel_hdr,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 Elf_Internal_Rela *irela;
2085 Elf_Internal_Rela *irelaend;
2086 bfd_byte *erel;
2087 Elf_Internal_Shdr *output_rel_hdr;
2088 asection *output_section;
2089 unsigned int *rel_countp = NULL;
2090 const struct elf_backend_data *bed;
2091 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2092
2093 output_section = input_section->output_section;
2094 output_rel_hdr = NULL;
2095
2096 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2097 == input_rel_hdr->sh_entsize)
2098 {
2099 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2100 rel_countp = &elf_section_data (output_section)->rel_count;
2101 }
2102 else if (elf_section_data (output_section)->rel_hdr2
2103 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2104 == input_rel_hdr->sh_entsize))
2105 {
2106 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2107 rel_countp = &elf_section_data (output_section)->rel_count2;
2108 }
2109 else
2110 {
2111 (*_bfd_error_handler)
2112 (_("%B: relocation size mismatch in %B section %A"),
2113 output_bfd, input_section->owner, input_section);
2114 bfd_set_error (bfd_error_wrong_object_format);
2115 return FALSE;
2116 }
2117
2118 bed = get_elf_backend_data (output_bfd);
2119 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2120 swap_out = bed->s->swap_reloc_out;
2121 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2122 swap_out = bed->s->swap_reloca_out;
2123 else
2124 abort ();
2125
2126 erel = output_rel_hdr->contents;
2127 erel += *rel_countp * input_rel_hdr->sh_entsize;
2128 irela = internal_relocs;
2129 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2130 * bed->s->int_rels_per_ext_rel);
2131 while (irela < irelaend)
2132 {
2133 (*swap_out) (output_bfd, irela, erel);
2134 irela += bed->s->int_rels_per_ext_rel;
2135 erel += input_rel_hdr->sh_entsize;
2136 }
2137
2138 /* Bump the counter, so that we know where to add the next set of
2139 relocations. */
2140 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2141
2142 return TRUE;
2143 }
2144 \f
2145 /* Fix up the flags for a symbol. This handles various cases which
2146 can only be fixed after all the input files are seen. This is
2147 currently called by both adjust_dynamic_symbol and
2148 assign_sym_version, which is unnecessary but perhaps more robust in
2149 the face of future changes. */
2150
2151 bfd_boolean
2152 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2153 struct elf_info_failed *eif)
2154 {
2155 /* If this symbol was mentioned in a non-ELF file, try to set
2156 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2157 permit a non-ELF file to correctly refer to a symbol defined in
2158 an ELF dynamic object. */
2159 if (h->non_elf)
2160 {
2161 while (h->root.type == bfd_link_hash_indirect)
2162 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2163
2164 if (h->root.type != bfd_link_hash_defined
2165 && h->root.type != bfd_link_hash_defweak)
2166 {
2167 h->ref_regular = 1;
2168 h->ref_regular_nonweak = 1;
2169 }
2170 else
2171 {
2172 if (h->root.u.def.section->owner != NULL
2173 && (bfd_get_flavour (h->root.u.def.section->owner)
2174 == bfd_target_elf_flavour))
2175 {
2176 h->ref_regular = 1;
2177 h->ref_regular_nonweak = 1;
2178 }
2179 else
2180 h->def_regular = 1;
2181 }
2182
2183 if (h->dynindx == -1
2184 && (h->def_dynamic
2185 || h->ref_dynamic))
2186 {
2187 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2188 {
2189 eif->failed = TRUE;
2190 return FALSE;
2191 }
2192 }
2193 }
2194 else
2195 {
2196 /* Unfortunately, NON_ELF is only correct if the symbol
2197 was first seen in a non-ELF file. Fortunately, if the symbol
2198 was first seen in an ELF file, we're probably OK unless the
2199 symbol was defined in a non-ELF file. Catch that case here.
2200 FIXME: We're still in trouble if the symbol was first seen in
2201 a dynamic object, and then later in a non-ELF regular object. */
2202 if ((h->root.type == bfd_link_hash_defined
2203 || h->root.type == bfd_link_hash_defweak)
2204 && !h->def_regular
2205 && (h->root.u.def.section->owner != NULL
2206 ? (bfd_get_flavour (h->root.u.def.section->owner)
2207 != bfd_target_elf_flavour)
2208 : (bfd_is_abs_section (h->root.u.def.section)
2209 && !h->def_dynamic)))
2210 h->def_regular = 1;
2211 }
2212
2213 /* If this is a final link, and the symbol was defined as a common
2214 symbol in a regular object file, and there was no definition in
2215 any dynamic object, then the linker will have allocated space for
2216 the symbol in a common section but the DEF_REGULAR
2217 flag will not have been set. */
2218 if (h->root.type == bfd_link_hash_defined
2219 && !h->def_regular
2220 && h->ref_regular
2221 && !h->def_dynamic
2222 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2223 h->def_regular = 1;
2224
2225 /* If -Bsymbolic was used (which means to bind references to global
2226 symbols to the definition within the shared object), and this
2227 symbol was defined in a regular object, then it actually doesn't
2228 need a PLT entry. Likewise, if the symbol has non-default
2229 visibility. If the symbol has hidden or internal visibility, we
2230 will force it local. */
2231 if (h->needs_plt
2232 && eif->info->shared
2233 && is_elf_hash_table (eif->info->hash)
2234 && (eif->info->symbolic
2235 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2236 && h->def_regular)
2237 {
2238 const struct elf_backend_data *bed;
2239 bfd_boolean force_local;
2240
2241 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2242
2243 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2244 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2245 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2246 }
2247
2248 /* If a weak undefined symbol has non-default visibility, we also
2249 hide it from the dynamic linker. */
2250 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2251 && h->root.type == bfd_link_hash_undefweak)
2252 {
2253 const struct elf_backend_data *bed;
2254 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2255 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2256 }
2257
2258 /* If this is a weak defined symbol in a dynamic object, and we know
2259 the real definition in the dynamic object, copy interesting flags
2260 over to the real definition. */
2261 if (h->u.weakdef != NULL)
2262 {
2263 struct elf_link_hash_entry *weakdef;
2264
2265 weakdef = h->u.weakdef;
2266 if (h->root.type == bfd_link_hash_indirect)
2267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2268
2269 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2270 || h->root.type == bfd_link_hash_defweak);
2271 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2272 || weakdef->root.type == bfd_link_hash_defweak);
2273 BFD_ASSERT (weakdef->def_dynamic);
2274
2275 /* If the real definition is defined by a regular object file,
2276 don't do anything special. See the longer description in
2277 _bfd_elf_adjust_dynamic_symbol, below. */
2278 if (weakdef->def_regular)
2279 h->u.weakdef = NULL;
2280 else
2281 {
2282 const struct elf_backend_data *bed;
2283
2284 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2285 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2286 }
2287 }
2288
2289 return TRUE;
2290 }
2291
2292 /* Make the backend pick a good value for a dynamic symbol. This is
2293 called via elf_link_hash_traverse, and also calls itself
2294 recursively. */
2295
2296 bfd_boolean
2297 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2298 {
2299 struct elf_info_failed *eif = data;
2300 bfd *dynobj;
2301 const struct elf_backend_data *bed;
2302
2303 if (! is_elf_hash_table (eif->info->hash))
2304 return FALSE;
2305
2306 if (h->root.type == bfd_link_hash_warning)
2307 {
2308 h->plt = elf_hash_table (eif->info)->init_offset;
2309 h->got = elf_hash_table (eif->info)->init_offset;
2310
2311 /* When warning symbols are created, they **replace** the "real"
2312 entry in the hash table, thus we never get to see the real
2313 symbol in a hash traversal. So look at it now. */
2314 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2315 }
2316
2317 /* Ignore indirect symbols. These are added by the versioning code. */
2318 if (h->root.type == bfd_link_hash_indirect)
2319 return TRUE;
2320
2321 /* Fix the symbol flags. */
2322 if (! _bfd_elf_fix_symbol_flags (h, eif))
2323 return FALSE;
2324
2325 /* If this symbol does not require a PLT entry, and it is not
2326 defined by a dynamic object, or is not referenced by a regular
2327 object, ignore it. We do have to handle a weak defined symbol,
2328 even if no regular object refers to it, if we decided to add it
2329 to the dynamic symbol table. FIXME: Do we normally need to worry
2330 about symbols which are defined by one dynamic object and
2331 referenced by another one? */
2332 if (!h->needs_plt
2333 && (h->def_regular
2334 || !h->def_dynamic
2335 || (!h->ref_regular
2336 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2337 {
2338 h->plt = elf_hash_table (eif->info)->init_offset;
2339 return TRUE;
2340 }
2341
2342 /* If we've already adjusted this symbol, don't do it again. This
2343 can happen via a recursive call. */
2344 if (h->dynamic_adjusted)
2345 return TRUE;
2346
2347 /* Don't look at this symbol again. Note that we must set this
2348 after checking the above conditions, because we may look at a
2349 symbol once, decide not to do anything, and then get called
2350 recursively later after REF_REGULAR is set below. */
2351 h->dynamic_adjusted = 1;
2352
2353 /* If this is a weak definition, and we know a real definition, and
2354 the real symbol is not itself defined by a regular object file,
2355 then get a good value for the real definition. We handle the
2356 real symbol first, for the convenience of the backend routine.
2357
2358 Note that there is a confusing case here. If the real definition
2359 is defined by a regular object file, we don't get the real symbol
2360 from the dynamic object, but we do get the weak symbol. If the
2361 processor backend uses a COPY reloc, then if some routine in the
2362 dynamic object changes the real symbol, we will not see that
2363 change in the corresponding weak symbol. This is the way other
2364 ELF linkers work as well, and seems to be a result of the shared
2365 library model.
2366
2367 I will clarify this issue. Most SVR4 shared libraries define the
2368 variable _timezone and define timezone as a weak synonym. The
2369 tzset call changes _timezone. If you write
2370 extern int timezone;
2371 int _timezone = 5;
2372 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2373 you might expect that, since timezone is a synonym for _timezone,
2374 the same number will print both times. However, if the processor
2375 backend uses a COPY reloc, then actually timezone will be copied
2376 into your process image, and, since you define _timezone
2377 yourself, _timezone will not. Thus timezone and _timezone will
2378 wind up at different memory locations. The tzset call will set
2379 _timezone, leaving timezone unchanged. */
2380
2381 if (h->u.weakdef != NULL)
2382 {
2383 /* If we get to this point, we know there is an implicit
2384 reference by a regular object file via the weak symbol H.
2385 FIXME: Is this really true? What if the traversal finds
2386 H->U.WEAKDEF before it finds H? */
2387 h->u.weakdef->ref_regular = 1;
2388
2389 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2390 return FALSE;
2391 }
2392
2393 /* If a symbol has no type and no size and does not require a PLT
2394 entry, then we are probably about to do the wrong thing here: we
2395 are probably going to create a COPY reloc for an empty object.
2396 This case can arise when a shared object is built with assembly
2397 code, and the assembly code fails to set the symbol type. */
2398 if (h->size == 0
2399 && h->type == STT_NOTYPE
2400 && !h->needs_plt)
2401 (*_bfd_error_handler)
2402 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2403 h->root.root.string);
2404
2405 dynobj = elf_hash_table (eif->info)->dynobj;
2406 bed = get_elf_backend_data (dynobj);
2407 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2408 {
2409 eif->failed = TRUE;
2410 return FALSE;
2411 }
2412
2413 return TRUE;
2414 }
2415
2416 /* Adjust all external symbols pointing into SEC_MERGE sections
2417 to reflect the object merging within the sections. */
2418
2419 bfd_boolean
2420 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2421 {
2422 asection *sec;
2423
2424 if (h->root.type == bfd_link_hash_warning)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2426
2427 if ((h->root.type == bfd_link_hash_defined
2428 || h->root.type == bfd_link_hash_defweak)
2429 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2430 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2431 {
2432 bfd *output_bfd = data;
2433
2434 h->root.u.def.value =
2435 _bfd_merged_section_offset (output_bfd,
2436 &h->root.u.def.section,
2437 elf_section_data (sec)->sec_info,
2438 h->root.u.def.value);
2439 }
2440
2441 return TRUE;
2442 }
2443
2444 /* Returns false if the symbol referred to by H should be considered
2445 to resolve local to the current module, and true if it should be
2446 considered to bind dynamically. */
2447
2448 bfd_boolean
2449 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2450 struct bfd_link_info *info,
2451 bfd_boolean ignore_protected)
2452 {
2453 bfd_boolean binding_stays_local_p;
2454
2455 if (h == NULL)
2456 return FALSE;
2457
2458 while (h->root.type == bfd_link_hash_indirect
2459 || h->root.type == bfd_link_hash_warning)
2460 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2461
2462 /* If it was forced local, then clearly it's not dynamic. */
2463 if (h->dynindx == -1)
2464 return FALSE;
2465 if (h->forced_local)
2466 return FALSE;
2467
2468 /* Identify the cases where name binding rules say that a
2469 visible symbol resolves locally. */
2470 binding_stays_local_p = info->executable || info->symbolic;
2471
2472 switch (ELF_ST_VISIBILITY (h->other))
2473 {
2474 case STV_INTERNAL:
2475 case STV_HIDDEN:
2476 return FALSE;
2477
2478 case STV_PROTECTED:
2479 /* Proper resolution for function pointer equality may require
2480 that these symbols perhaps be resolved dynamically, even though
2481 we should be resolving them to the current module. */
2482 if (!ignore_protected)
2483 binding_stays_local_p = TRUE;
2484 break;
2485
2486 default:
2487 break;
2488 }
2489
2490 /* If it isn't defined locally, then clearly it's dynamic. */
2491 if (!h->def_regular)
2492 return TRUE;
2493
2494 /* Otherwise, the symbol is dynamic if binding rules don't tell
2495 us that it remains local. */
2496 return !binding_stays_local_p;
2497 }
2498
2499 /* Return true if the symbol referred to by H should be considered
2500 to resolve local to the current module, and false otherwise. Differs
2501 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2502 undefined symbols and weak symbols. */
2503
2504 bfd_boolean
2505 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2506 struct bfd_link_info *info,
2507 bfd_boolean local_protected)
2508 {
2509 /* If it's a local sym, of course we resolve locally. */
2510 if (h == NULL)
2511 return TRUE;
2512
2513 /* Common symbols that become definitions don't get the DEF_REGULAR
2514 flag set, so test it first, and don't bail out. */
2515 if (ELF_COMMON_DEF_P (h))
2516 /* Do nothing. */;
2517 /* If we don't have a definition in a regular file, then we can't
2518 resolve locally. The sym is either undefined or dynamic. */
2519 else if (!h->def_regular)
2520 return FALSE;
2521
2522 /* Forced local symbols resolve locally. */
2523 if (h->forced_local)
2524 return TRUE;
2525
2526 /* As do non-dynamic symbols. */
2527 if (h->dynindx == -1)
2528 return TRUE;
2529
2530 /* At this point, we know the symbol is defined and dynamic. In an
2531 executable it must resolve locally, likewise when building symbolic
2532 shared libraries. */
2533 if (info->executable || info->symbolic)
2534 return TRUE;
2535
2536 /* Now deal with defined dynamic symbols in shared libraries. Ones
2537 with default visibility might not resolve locally. */
2538 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2539 return FALSE;
2540
2541 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2542 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2543 return TRUE;
2544
2545 /* Function pointer equality tests may require that STV_PROTECTED
2546 symbols be treated as dynamic symbols, even when we know that the
2547 dynamic linker will resolve them locally. */
2548 return local_protected;
2549 }
2550
2551 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2552 aligned. Returns the first TLS output section. */
2553
2554 struct bfd_section *
2555 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2556 {
2557 struct bfd_section *sec, *tls;
2558 unsigned int align = 0;
2559
2560 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2561 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2562 break;
2563 tls = sec;
2564
2565 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2566 if (sec->alignment_power > align)
2567 align = sec->alignment_power;
2568
2569 elf_hash_table (info)->tls_sec = tls;
2570
2571 /* Ensure the alignment of the first section is the largest alignment,
2572 so that the tls segment starts aligned. */
2573 if (tls != NULL)
2574 tls->alignment_power = align;
2575
2576 return tls;
2577 }
2578
2579 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2580 static bfd_boolean
2581 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2582 Elf_Internal_Sym *sym)
2583 {
2584 /* Local symbols do not count, but target specific ones might. */
2585 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2586 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2587 return FALSE;
2588
2589 /* Function symbols do not count. */
2590 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2591 return FALSE;
2592
2593 /* If the section is undefined, then so is the symbol. */
2594 if (sym->st_shndx == SHN_UNDEF)
2595 return FALSE;
2596
2597 /* If the symbol is defined in the common section, then
2598 it is a common definition and so does not count. */
2599 if (sym->st_shndx == SHN_COMMON)
2600 return FALSE;
2601
2602 /* If the symbol is in a target specific section then we
2603 must rely upon the backend to tell us what it is. */
2604 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2605 /* FIXME - this function is not coded yet:
2606
2607 return _bfd_is_global_symbol_definition (abfd, sym);
2608
2609 Instead for now assume that the definition is not global,
2610 Even if this is wrong, at least the linker will behave
2611 in the same way that it used to do. */
2612 return FALSE;
2613
2614 return TRUE;
2615 }
2616
2617 /* Search the symbol table of the archive element of the archive ABFD
2618 whose archive map contains a mention of SYMDEF, and determine if
2619 the symbol is defined in this element. */
2620 static bfd_boolean
2621 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2622 {
2623 Elf_Internal_Shdr * hdr;
2624 bfd_size_type symcount;
2625 bfd_size_type extsymcount;
2626 bfd_size_type extsymoff;
2627 Elf_Internal_Sym *isymbuf;
2628 Elf_Internal_Sym *isym;
2629 Elf_Internal_Sym *isymend;
2630 bfd_boolean result;
2631
2632 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2633 if (abfd == NULL)
2634 return FALSE;
2635
2636 if (! bfd_check_format (abfd, bfd_object))
2637 return FALSE;
2638
2639 /* If we have already included the element containing this symbol in the
2640 link then we do not need to include it again. Just claim that any symbol
2641 it contains is not a definition, so that our caller will not decide to
2642 (re)include this element. */
2643 if (abfd->archive_pass)
2644 return FALSE;
2645
2646 /* Select the appropriate symbol table. */
2647 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2648 hdr = &elf_tdata (abfd)->symtab_hdr;
2649 else
2650 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2651
2652 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2653
2654 /* The sh_info field of the symtab header tells us where the
2655 external symbols start. We don't care about the local symbols. */
2656 if (elf_bad_symtab (abfd))
2657 {
2658 extsymcount = symcount;
2659 extsymoff = 0;
2660 }
2661 else
2662 {
2663 extsymcount = symcount - hdr->sh_info;
2664 extsymoff = hdr->sh_info;
2665 }
2666
2667 if (extsymcount == 0)
2668 return FALSE;
2669
2670 /* Read in the symbol table. */
2671 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2672 NULL, NULL, NULL);
2673 if (isymbuf == NULL)
2674 return FALSE;
2675
2676 /* Scan the symbol table looking for SYMDEF. */
2677 result = FALSE;
2678 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2679 {
2680 const char *name;
2681
2682 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2683 isym->st_name);
2684 if (name == NULL)
2685 break;
2686
2687 if (strcmp (name, symdef->name) == 0)
2688 {
2689 result = is_global_data_symbol_definition (abfd, isym);
2690 break;
2691 }
2692 }
2693
2694 free (isymbuf);
2695
2696 return result;
2697 }
2698 \f
2699 /* Add an entry to the .dynamic table. */
2700
2701 bfd_boolean
2702 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2703 bfd_vma tag,
2704 bfd_vma val)
2705 {
2706 struct elf_link_hash_table *hash_table;
2707 const struct elf_backend_data *bed;
2708 asection *s;
2709 bfd_size_type newsize;
2710 bfd_byte *newcontents;
2711 Elf_Internal_Dyn dyn;
2712
2713 hash_table = elf_hash_table (info);
2714 if (! is_elf_hash_table (hash_table))
2715 return FALSE;
2716
2717 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2718 _bfd_error_handler
2719 (_("warning: creating a DT_TEXTREL in a shared object."));
2720
2721 bed = get_elf_backend_data (hash_table->dynobj);
2722 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2723 BFD_ASSERT (s != NULL);
2724
2725 newsize = s->size + bed->s->sizeof_dyn;
2726 newcontents = bfd_realloc (s->contents, newsize);
2727 if (newcontents == NULL)
2728 return FALSE;
2729
2730 dyn.d_tag = tag;
2731 dyn.d_un.d_val = val;
2732 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2733
2734 s->size = newsize;
2735 s->contents = newcontents;
2736
2737 return TRUE;
2738 }
2739
2740 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2741 otherwise just check whether one already exists. Returns -1 on error,
2742 1 if a DT_NEEDED tag already exists, and 0 on success. */
2743
2744 static int
2745 elf_add_dt_needed_tag (struct bfd_link_info *info,
2746 const char *soname,
2747 bfd_boolean do_it)
2748 {
2749 struct elf_link_hash_table *hash_table;
2750 bfd_size_type oldsize;
2751 bfd_size_type strindex;
2752
2753 hash_table = elf_hash_table (info);
2754 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2755 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2756 if (strindex == (bfd_size_type) -1)
2757 return -1;
2758
2759 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2760 {
2761 asection *sdyn;
2762 const struct elf_backend_data *bed;
2763 bfd_byte *extdyn;
2764
2765 bed = get_elf_backend_data (hash_table->dynobj);
2766 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2767 BFD_ASSERT (sdyn != NULL);
2768
2769 for (extdyn = sdyn->contents;
2770 extdyn < sdyn->contents + sdyn->size;
2771 extdyn += bed->s->sizeof_dyn)
2772 {
2773 Elf_Internal_Dyn dyn;
2774
2775 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2776 if (dyn.d_tag == DT_NEEDED
2777 && dyn.d_un.d_val == strindex)
2778 {
2779 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2780 return 1;
2781 }
2782 }
2783 }
2784
2785 if (do_it)
2786 {
2787 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2788 return -1;
2789 }
2790 else
2791 /* We were just checking for existence of the tag. */
2792 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2793
2794 return 0;
2795 }
2796
2797 /* Sort symbol by value and section. */
2798 static int
2799 elf_sort_symbol (const void *arg1, const void *arg2)
2800 {
2801 const struct elf_link_hash_entry *h1;
2802 const struct elf_link_hash_entry *h2;
2803 bfd_signed_vma vdiff;
2804
2805 h1 = *(const struct elf_link_hash_entry **) arg1;
2806 h2 = *(const struct elf_link_hash_entry **) arg2;
2807 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2808 if (vdiff != 0)
2809 return vdiff > 0 ? 1 : -1;
2810 else
2811 {
2812 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2813 if (sdiff != 0)
2814 return sdiff > 0 ? 1 : -1;
2815 }
2816 return 0;
2817 }
2818
2819 /* This function is used to adjust offsets into .dynstr for
2820 dynamic symbols. This is called via elf_link_hash_traverse. */
2821
2822 static bfd_boolean
2823 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2824 {
2825 struct elf_strtab_hash *dynstr = data;
2826
2827 if (h->root.type == bfd_link_hash_warning)
2828 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2829
2830 if (h->dynindx != -1)
2831 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2832 return TRUE;
2833 }
2834
2835 /* Assign string offsets in .dynstr, update all structures referencing
2836 them. */
2837
2838 static bfd_boolean
2839 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2840 {
2841 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2842 struct elf_link_local_dynamic_entry *entry;
2843 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2844 bfd *dynobj = hash_table->dynobj;
2845 asection *sdyn;
2846 bfd_size_type size;
2847 const struct elf_backend_data *bed;
2848 bfd_byte *extdyn;
2849
2850 _bfd_elf_strtab_finalize (dynstr);
2851 size = _bfd_elf_strtab_size (dynstr);
2852
2853 bed = get_elf_backend_data (dynobj);
2854 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2855 BFD_ASSERT (sdyn != NULL);
2856
2857 /* Update all .dynamic entries referencing .dynstr strings. */
2858 for (extdyn = sdyn->contents;
2859 extdyn < sdyn->contents + sdyn->size;
2860 extdyn += bed->s->sizeof_dyn)
2861 {
2862 Elf_Internal_Dyn dyn;
2863
2864 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2865 switch (dyn.d_tag)
2866 {
2867 case DT_STRSZ:
2868 dyn.d_un.d_val = size;
2869 break;
2870 case DT_NEEDED:
2871 case DT_SONAME:
2872 case DT_RPATH:
2873 case DT_RUNPATH:
2874 case DT_FILTER:
2875 case DT_AUXILIARY:
2876 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2877 break;
2878 default:
2879 continue;
2880 }
2881 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2882 }
2883
2884 /* Now update local dynamic symbols. */
2885 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2886 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2887 entry->isym.st_name);
2888
2889 /* And the rest of dynamic symbols. */
2890 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2891
2892 /* Adjust version definitions. */
2893 if (elf_tdata (output_bfd)->cverdefs)
2894 {
2895 asection *s;
2896 bfd_byte *p;
2897 bfd_size_type i;
2898 Elf_Internal_Verdef def;
2899 Elf_Internal_Verdaux defaux;
2900
2901 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2902 p = s->contents;
2903 do
2904 {
2905 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2906 &def);
2907 p += sizeof (Elf_External_Verdef);
2908 if (def.vd_aux != sizeof (Elf_External_Verdef))
2909 continue;
2910 for (i = 0; i < def.vd_cnt; ++i)
2911 {
2912 _bfd_elf_swap_verdaux_in (output_bfd,
2913 (Elf_External_Verdaux *) p, &defaux);
2914 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2915 defaux.vda_name);
2916 _bfd_elf_swap_verdaux_out (output_bfd,
2917 &defaux, (Elf_External_Verdaux *) p);
2918 p += sizeof (Elf_External_Verdaux);
2919 }
2920 }
2921 while (def.vd_next);
2922 }
2923
2924 /* Adjust version references. */
2925 if (elf_tdata (output_bfd)->verref)
2926 {
2927 asection *s;
2928 bfd_byte *p;
2929 bfd_size_type i;
2930 Elf_Internal_Verneed need;
2931 Elf_Internal_Vernaux needaux;
2932
2933 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2934 p = s->contents;
2935 do
2936 {
2937 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2938 &need);
2939 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2940 _bfd_elf_swap_verneed_out (output_bfd, &need,
2941 (Elf_External_Verneed *) p);
2942 p += sizeof (Elf_External_Verneed);
2943 for (i = 0; i < need.vn_cnt; ++i)
2944 {
2945 _bfd_elf_swap_vernaux_in (output_bfd,
2946 (Elf_External_Vernaux *) p, &needaux);
2947 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2948 needaux.vna_name);
2949 _bfd_elf_swap_vernaux_out (output_bfd,
2950 &needaux,
2951 (Elf_External_Vernaux *) p);
2952 p += sizeof (Elf_External_Vernaux);
2953 }
2954 }
2955 while (need.vn_next);
2956 }
2957
2958 return TRUE;
2959 }
2960 \f
2961 /* Add symbols from an ELF object file to the linker hash table. */
2962
2963 static bfd_boolean
2964 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2965 {
2966 bfd_boolean (*add_symbol_hook)
2967 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2968 const char **, flagword *, asection **, bfd_vma *);
2969 bfd_boolean (*check_relocs)
2970 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2971 bfd_boolean (*check_directives)
2972 (bfd *, struct bfd_link_info *);
2973 bfd_boolean collect;
2974 Elf_Internal_Shdr *hdr;
2975 bfd_size_type symcount;
2976 bfd_size_type extsymcount;
2977 bfd_size_type extsymoff;
2978 struct elf_link_hash_entry **sym_hash;
2979 bfd_boolean dynamic;
2980 Elf_External_Versym *extversym = NULL;
2981 Elf_External_Versym *ever;
2982 struct elf_link_hash_entry *weaks;
2983 struct elf_link_hash_entry **nondeflt_vers = NULL;
2984 bfd_size_type nondeflt_vers_cnt = 0;
2985 Elf_Internal_Sym *isymbuf = NULL;
2986 Elf_Internal_Sym *isym;
2987 Elf_Internal_Sym *isymend;
2988 const struct elf_backend_data *bed;
2989 bfd_boolean add_needed;
2990 struct elf_link_hash_table * hash_table;
2991 bfd_size_type amt;
2992
2993 hash_table = elf_hash_table (info);
2994
2995 bed = get_elf_backend_data (abfd);
2996 add_symbol_hook = bed->elf_add_symbol_hook;
2997 collect = bed->collect;
2998
2999 if ((abfd->flags & DYNAMIC) == 0)
3000 dynamic = FALSE;
3001 else
3002 {
3003 dynamic = TRUE;
3004
3005 /* You can't use -r against a dynamic object. Also, there's no
3006 hope of using a dynamic object which does not exactly match
3007 the format of the output file. */
3008 if (info->relocatable
3009 || !is_elf_hash_table (hash_table)
3010 || hash_table->root.creator != abfd->xvec)
3011 {
3012 if (info->relocatable)
3013 bfd_set_error (bfd_error_invalid_operation);
3014 else
3015 bfd_set_error (bfd_error_wrong_format);
3016 goto error_return;
3017 }
3018 }
3019
3020 /* As a GNU extension, any input sections which are named
3021 .gnu.warning.SYMBOL are treated as warning symbols for the given
3022 symbol. This differs from .gnu.warning sections, which generate
3023 warnings when they are included in an output file. */
3024 if (info->executable)
3025 {
3026 asection *s;
3027
3028 for (s = abfd->sections; s != NULL; s = s->next)
3029 {
3030 const char *name;
3031
3032 name = bfd_get_section_name (abfd, s);
3033 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3034 {
3035 char *msg;
3036 bfd_size_type sz;
3037 bfd_size_type prefix_len;
3038 const char * gnu_warning_prefix = _("warning: ");
3039
3040 name += sizeof ".gnu.warning." - 1;
3041
3042 /* If this is a shared object, then look up the symbol
3043 in the hash table. If it is there, and it is already
3044 been defined, then we will not be using the entry
3045 from this shared object, so we don't need to warn.
3046 FIXME: If we see the definition in a regular object
3047 later on, we will warn, but we shouldn't. The only
3048 fix is to keep track of what warnings we are supposed
3049 to emit, and then handle them all at the end of the
3050 link. */
3051 if (dynamic)
3052 {
3053 struct elf_link_hash_entry *h;
3054
3055 h = elf_link_hash_lookup (hash_table, name,
3056 FALSE, FALSE, TRUE);
3057
3058 /* FIXME: What about bfd_link_hash_common? */
3059 if (h != NULL
3060 && (h->root.type == bfd_link_hash_defined
3061 || h->root.type == bfd_link_hash_defweak))
3062 {
3063 /* We don't want to issue this warning. Clobber
3064 the section size so that the warning does not
3065 get copied into the output file. */
3066 s->size = 0;
3067 continue;
3068 }
3069 }
3070
3071 sz = s->size;
3072 prefix_len = strlen (gnu_warning_prefix);
3073 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3074 if (msg == NULL)
3075 goto error_return;
3076
3077 strcpy (msg, gnu_warning_prefix);
3078 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3079 goto error_return;
3080
3081 msg[prefix_len + sz] = '\0';
3082
3083 if (! (_bfd_generic_link_add_one_symbol
3084 (info, abfd, name, BSF_WARNING, s, 0, msg,
3085 FALSE, collect, NULL)))
3086 goto error_return;
3087
3088 if (! info->relocatable)
3089 {
3090 /* Clobber the section size so that the warning does
3091 not get copied into the output file. */
3092 s->size = 0;
3093 }
3094 }
3095 }
3096 }
3097
3098 add_needed = TRUE;
3099 if (! dynamic)
3100 {
3101 /* If we are creating a shared library, create all the dynamic
3102 sections immediately. We need to attach them to something,
3103 so we attach them to this BFD, provided it is the right
3104 format. FIXME: If there are no input BFD's of the same
3105 format as the output, we can't make a shared library. */
3106 if (info->shared
3107 && is_elf_hash_table (hash_table)
3108 && hash_table->root.creator == abfd->xvec
3109 && ! hash_table->dynamic_sections_created)
3110 {
3111 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3112 goto error_return;
3113 }
3114 }
3115 else if (!is_elf_hash_table (hash_table))
3116 goto error_return;
3117 else
3118 {
3119 asection *s;
3120 const char *soname = NULL;
3121 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3122 int ret;
3123
3124 /* ld --just-symbols and dynamic objects don't mix very well.
3125 Test for --just-symbols by looking at info set up by
3126 _bfd_elf_link_just_syms. */
3127 if ((s = abfd->sections) != NULL
3128 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3129 goto error_return;
3130
3131 /* If this dynamic lib was specified on the command line with
3132 --as-needed in effect, then we don't want to add a DT_NEEDED
3133 tag unless the lib is actually used. Similary for libs brought
3134 in by another lib's DT_NEEDED. When --no-add-needed is used
3135 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3136 any dynamic library in DT_NEEDED tags in the dynamic lib at
3137 all. */
3138 add_needed = (elf_dyn_lib_class (abfd)
3139 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3140 | DYN_NO_NEEDED)) == 0;
3141
3142 s = bfd_get_section_by_name (abfd, ".dynamic");
3143 if (s != NULL)
3144 {
3145 bfd_byte *dynbuf;
3146 bfd_byte *extdyn;
3147 int elfsec;
3148 unsigned long shlink;
3149
3150 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3151 goto error_free_dyn;
3152
3153 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3154 if (elfsec == -1)
3155 goto error_free_dyn;
3156 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3157
3158 for (extdyn = dynbuf;
3159 extdyn < dynbuf + s->size;
3160 extdyn += bed->s->sizeof_dyn)
3161 {
3162 Elf_Internal_Dyn dyn;
3163
3164 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3165 if (dyn.d_tag == DT_SONAME)
3166 {
3167 unsigned int tagv = dyn.d_un.d_val;
3168 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3169 if (soname == NULL)
3170 goto error_free_dyn;
3171 }
3172 if (dyn.d_tag == DT_NEEDED)
3173 {
3174 struct bfd_link_needed_list *n, **pn;
3175 char *fnm, *anm;
3176 unsigned int tagv = dyn.d_un.d_val;
3177
3178 amt = sizeof (struct bfd_link_needed_list);
3179 n = bfd_alloc (abfd, amt);
3180 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3181 if (n == NULL || fnm == NULL)
3182 goto error_free_dyn;
3183 amt = strlen (fnm) + 1;
3184 anm = bfd_alloc (abfd, amt);
3185 if (anm == NULL)
3186 goto error_free_dyn;
3187 memcpy (anm, fnm, amt);
3188 n->name = anm;
3189 n->by = abfd;
3190 n->next = NULL;
3191 for (pn = & hash_table->needed;
3192 *pn != NULL;
3193 pn = &(*pn)->next)
3194 ;
3195 *pn = n;
3196 }
3197 if (dyn.d_tag == DT_RUNPATH)
3198 {
3199 struct bfd_link_needed_list *n, **pn;
3200 char *fnm, *anm;
3201 unsigned int tagv = dyn.d_un.d_val;
3202
3203 amt = sizeof (struct bfd_link_needed_list);
3204 n = bfd_alloc (abfd, amt);
3205 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3206 if (n == NULL || fnm == NULL)
3207 goto error_free_dyn;
3208 amt = strlen (fnm) + 1;
3209 anm = bfd_alloc (abfd, amt);
3210 if (anm == NULL)
3211 goto error_free_dyn;
3212 memcpy (anm, fnm, amt);
3213 n->name = anm;
3214 n->by = abfd;
3215 n->next = NULL;
3216 for (pn = & runpath;
3217 *pn != NULL;
3218 pn = &(*pn)->next)
3219 ;
3220 *pn = n;
3221 }
3222 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3223 if (!runpath && dyn.d_tag == DT_RPATH)
3224 {
3225 struct bfd_link_needed_list *n, **pn;
3226 char *fnm, *anm;
3227 unsigned int tagv = dyn.d_un.d_val;
3228
3229 amt = sizeof (struct bfd_link_needed_list);
3230 n = bfd_alloc (abfd, amt);
3231 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3232 if (n == NULL || fnm == NULL)
3233 goto error_free_dyn;
3234 amt = strlen (fnm) + 1;
3235 anm = bfd_alloc (abfd, amt);
3236 if (anm == NULL)
3237 {
3238 error_free_dyn:
3239 free (dynbuf);
3240 goto error_return;
3241 }
3242 memcpy (anm, fnm, amt);
3243 n->name = anm;
3244 n->by = abfd;
3245 n->next = NULL;
3246 for (pn = & rpath;
3247 *pn != NULL;
3248 pn = &(*pn)->next)
3249 ;
3250 *pn = n;
3251 }
3252 }
3253
3254 free (dynbuf);
3255 }
3256
3257 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3258 frees all more recently bfd_alloc'd blocks as well. */
3259 if (runpath)
3260 rpath = runpath;
3261
3262 if (rpath)
3263 {
3264 struct bfd_link_needed_list **pn;
3265 for (pn = & hash_table->runpath;
3266 *pn != NULL;
3267 pn = &(*pn)->next)
3268 ;
3269 *pn = rpath;
3270 }
3271
3272 /* We do not want to include any of the sections in a dynamic
3273 object in the output file. We hack by simply clobbering the
3274 list of sections in the BFD. This could be handled more
3275 cleanly by, say, a new section flag; the existing
3276 SEC_NEVER_LOAD flag is not the one we want, because that one
3277 still implies that the section takes up space in the output
3278 file. */
3279 bfd_section_list_clear (abfd);
3280
3281 /* If this is the first dynamic object found in the link, create
3282 the special sections required for dynamic linking. */
3283 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3284 goto error_return;
3285
3286 /* Find the name to use in a DT_NEEDED entry that refers to this
3287 object. If the object has a DT_SONAME entry, we use it.
3288 Otherwise, if the generic linker stuck something in
3289 elf_dt_name, we use that. Otherwise, we just use the file
3290 name. */
3291 if (soname == NULL || *soname == '\0')
3292 {
3293 soname = elf_dt_name (abfd);
3294 if (soname == NULL || *soname == '\0')
3295 soname = bfd_get_filename (abfd);
3296 }
3297
3298 /* Save the SONAME because sometimes the linker emulation code
3299 will need to know it. */
3300 elf_dt_name (abfd) = soname;
3301
3302 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3303 if (ret < 0)
3304 goto error_return;
3305
3306 /* If we have already included this dynamic object in the
3307 link, just ignore it. There is no reason to include a
3308 particular dynamic object more than once. */
3309 if (ret > 0)
3310 return TRUE;
3311 }
3312
3313 /* If this is a dynamic object, we always link against the .dynsym
3314 symbol table, not the .symtab symbol table. The dynamic linker
3315 will only see the .dynsym symbol table, so there is no reason to
3316 look at .symtab for a dynamic object. */
3317
3318 if (! dynamic || elf_dynsymtab (abfd) == 0)
3319 hdr = &elf_tdata (abfd)->symtab_hdr;
3320 else
3321 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3322
3323 symcount = hdr->sh_size / bed->s->sizeof_sym;
3324
3325 /* The sh_info field of the symtab header tells us where the
3326 external symbols start. We don't care about the local symbols at
3327 this point. */
3328 if (elf_bad_symtab (abfd))
3329 {
3330 extsymcount = symcount;
3331 extsymoff = 0;
3332 }
3333 else
3334 {
3335 extsymcount = symcount - hdr->sh_info;
3336 extsymoff = hdr->sh_info;
3337 }
3338
3339 sym_hash = NULL;
3340 if (extsymcount != 0)
3341 {
3342 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3343 NULL, NULL, NULL);
3344 if (isymbuf == NULL)
3345 goto error_return;
3346
3347 /* We store a pointer to the hash table entry for each external
3348 symbol. */
3349 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3350 sym_hash = bfd_alloc (abfd, amt);
3351 if (sym_hash == NULL)
3352 goto error_free_sym;
3353 elf_sym_hashes (abfd) = sym_hash;
3354 }
3355
3356 if (dynamic)
3357 {
3358 /* Read in any version definitions. */
3359 if (!_bfd_elf_slurp_version_tables (abfd,
3360 info->default_imported_symver))
3361 goto error_free_sym;
3362
3363 /* Read in the symbol versions, but don't bother to convert them
3364 to internal format. */
3365 if (elf_dynversym (abfd) != 0)
3366 {
3367 Elf_Internal_Shdr *versymhdr;
3368
3369 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3370 extversym = bfd_malloc (versymhdr->sh_size);
3371 if (extversym == NULL)
3372 goto error_free_sym;
3373 amt = versymhdr->sh_size;
3374 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3375 || bfd_bread (extversym, amt, abfd) != amt)
3376 goto error_free_vers;
3377 }
3378 }
3379
3380 weaks = NULL;
3381
3382 ever = extversym != NULL ? extversym + extsymoff : NULL;
3383 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3384 isym < isymend;
3385 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3386 {
3387 int bind;
3388 bfd_vma value;
3389 asection *sec;
3390 flagword flags;
3391 const char *name;
3392 struct elf_link_hash_entry *h;
3393 bfd_boolean definition;
3394 bfd_boolean size_change_ok;
3395 bfd_boolean type_change_ok;
3396 bfd_boolean new_weakdef;
3397 bfd_boolean override;
3398 unsigned int old_alignment;
3399 bfd *old_bfd;
3400
3401 override = FALSE;
3402
3403 flags = BSF_NO_FLAGS;
3404 sec = NULL;
3405 value = isym->st_value;
3406 *sym_hash = NULL;
3407
3408 bind = ELF_ST_BIND (isym->st_info);
3409 if (bind == STB_LOCAL)
3410 {
3411 /* This should be impossible, since ELF requires that all
3412 global symbols follow all local symbols, and that sh_info
3413 point to the first global symbol. Unfortunately, Irix 5
3414 screws this up. */
3415 continue;
3416 }
3417 else if (bind == STB_GLOBAL)
3418 {
3419 if (isym->st_shndx != SHN_UNDEF
3420 && isym->st_shndx != SHN_COMMON)
3421 flags = BSF_GLOBAL;
3422 }
3423 else if (bind == STB_WEAK)
3424 flags = BSF_WEAK;
3425 else
3426 {
3427 /* Leave it up to the processor backend. */
3428 }
3429
3430 if (isym->st_shndx == SHN_UNDEF)
3431 sec = bfd_und_section_ptr;
3432 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3433 {
3434 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3435 if (sec == NULL)
3436 sec = bfd_abs_section_ptr;
3437 else if (sec->kept_section)
3438 {
3439 /* Symbols from discarded section are undefined. */
3440 sec = bfd_und_section_ptr;
3441 isym->st_shndx = SHN_UNDEF;
3442 }
3443 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3444 value -= sec->vma;
3445 }
3446 else if (isym->st_shndx == SHN_ABS)
3447 sec = bfd_abs_section_ptr;
3448 else if (isym->st_shndx == SHN_COMMON)
3449 {
3450 sec = bfd_com_section_ptr;
3451 /* What ELF calls the size we call the value. What ELF
3452 calls the value we call the alignment. */
3453 value = isym->st_size;
3454 }
3455 else
3456 {
3457 /* Leave it up to the processor backend. */
3458 }
3459
3460 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3461 isym->st_name);
3462 if (name == NULL)
3463 goto error_free_vers;
3464
3465 if (isym->st_shndx == SHN_COMMON
3466 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3467 {
3468 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3469
3470 if (tcomm == NULL)
3471 {
3472 tcomm = bfd_make_section (abfd, ".tcommon");
3473 if (tcomm == NULL
3474 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3475 | SEC_IS_COMMON
3476 | SEC_LINKER_CREATED
3477 | SEC_THREAD_LOCAL)))
3478 goto error_free_vers;
3479 }
3480 sec = tcomm;
3481 }
3482 else if (add_symbol_hook)
3483 {
3484 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3485 &value))
3486 goto error_free_vers;
3487
3488 /* The hook function sets the name to NULL if this symbol
3489 should be skipped for some reason. */
3490 if (name == NULL)
3491 continue;
3492 }
3493
3494 /* Sanity check that all possibilities were handled. */
3495 if (sec == NULL)
3496 {
3497 bfd_set_error (bfd_error_bad_value);
3498 goto error_free_vers;
3499 }
3500
3501 if (bfd_is_und_section (sec)
3502 || bfd_is_com_section (sec))
3503 definition = FALSE;
3504 else
3505 definition = TRUE;
3506
3507 size_change_ok = FALSE;
3508 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3509 old_alignment = 0;
3510 old_bfd = NULL;
3511
3512 if (is_elf_hash_table (hash_table))
3513 {
3514 Elf_Internal_Versym iver;
3515 unsigned int vernum = 0;
3516 bfd_boolean skip;
3517
3518 if (ever == NULL)
3519 {
3520 if (info->default_imported_symver)
3521 /* Use the default symbol version created earlier. */
3522 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3523 else
3524 iver.vs_vers = 0;
3525 }
3526 else
3527 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3528
3529 vernum = iver.vs_vers & VERSYM_VERSION;
3530
3531 /* If this is a hidden symbol, or if it is not version
3532 1, we append the version name to the symbol name.
3533 However, we do not modify a non-hidden absolute
3534 symbol, because it might be the version symbol
3535 itself. FIXME: What if it isn't? */
3536 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3537 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3538 {
3539 const char *verstr;
3540 size_t namelen, verlen, newlen;
3541 char *newname, *p;
3542
3543 if (isym->st_shndx != SHN_UNDEF)
3544 {
3545 if (vernum > elf_tdata (abfd)->cverdefs)
3546 verstr = NULL;
3547 else if (vernum > 1)
3548 verstr =
3549 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3550 else
3551 verstr = "";
3552
3553 if (verstr == NULL)
3554 {
3555 (*_bfd_error_handler)
3556 (_("%B: %s: invalid version %u (max %d)"),
3557 abfd, name, vernum,
3558 elf_tdata (abfd)->cverdefs);
3559 bfd_set_error (bfd_error_bad_value);
3560 goto error_free_vers;
3561 }
3562 }
3563 else
3564 {
3565 /* We cannot simply test for the number of
3566 entries in the VERNEED section since the
3567 numbers for the needed versions do not start
3568 at 0. */
3569 Elf_Internal_Verneed *t;
3570
3571 verstr = NULL;
3572 for (t = elf_tdata (abfd)->verref;
3573 t != NULL;
3574 t = t->vn_nextref)
3575 {
3576 Elf_Internal_Vernaux *a;
3577
3578 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3579 {
3580 if (a->vna_other == vernum)
3581 {
3582 verstr = a->vna_nodename;
3583 break;
3584 }
3585 }
3586 if (a != NULL)
3587 break;
3588 }
3589 if (verstr == NULL)
3590 {
3591 (*_bfd_error_handler)
3592 (_("%B: %s: invalid needed version %d"),
3593 abfd, name, vernum);
3594 bfd_set_error (bfd_error_bad_value);
3595 goto error_free_vers;
3596 }
3597 }
3598
3599 namelen = strlen (name);
3600 verlen = strlen (verstr);
3601 newlen = namelen + verlen + 2;
3602 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3603 && isym->st_shndx != SHN_UNDEF)
3604 ++newlen;
3605
3606 newname = bfd_alloc (abfd, newlen);
3607 if (newname == NULL)
3608 goto error_free_vers;
3609 memcpy (newname, name, namelen);
3610 p = newname + namelen;
3611 *p++ = ELF_VER_CHR;
3612 /* If this is a defined non-hidden version symbol,
3613 we add another @ to the name. This indicates the
3614 default version of the symbol. */
3615 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3616 && isym->st_shndx != SHN_UNDEF)
3617 *p++ = ELF_VER_CHR;
3618 memcpy (p, verstr, verlen + 1);
3619
3620 name = newname;
3621 }
3622
3623 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3624 sym_hash, &skip, &override,
3625 &type_change_ok, &size_change_ok))
3626 goto error_free_vers;
3627
3628 if (skip)
3629 continue;
3630
3631 if (override)
3632 definition = FALSE;
3633
3634 h = *sym_hash;
3635 while (h->root.type == bfd_link_hash_indirect
3636 || h->root.type == bfd_link_hash_warning)
3637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3638
3639 /* Remember the old alignment if this is a common symbol, so
3640 that we don't reduce the alignment later on. We can't
3641 check later, because _bfd_generic_link_add_one_symbol
3642 will set a default for the alignment which we want to
3643 override. We also remember the old bfd where the existing
3644 definition comes from. */
3645 switch (h->root.type)
3646 {
3647 default:
3648 break;
3649
3650 case bfd_link_hash_defined:
3651 case bfd_link_hash_defweak:
3652 old_bfd = h->root.u.def.section->owner;
3653 break;
3654
3655 case bfd_link_hash_common:
3656 old_bfd = h->root.u.c.p->section->owner;
3657 old_alignment = h->root.u.c.p->alignment_power;
3658 break;
3659 }
3660
3661 if (elf_tdata (abfd)->verdef != NULL
3662 && ! override
3663 && vernum > 1
3664 && definition)
3665 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3666 }
3667
3668 if (! (_bfd_generic_link_add_one_symbol
3669 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3670 (struct bfd_link_hash_entry **) sym_hash)))
3671 goto error_free_vers;
3672
3673 h = *sym_hash;
3674 while (h->root.type == bfd_link_hash_indirect
3675 || h->root.type == bfd_link_hash_warning)
3676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3677 *sym_hash = h;
3678
3679 new_weakdef = FALSE;
3680 if (dynamic
3681 && definition
3682 && (flags & BSF_WEAK) != 0
3683 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3684 && is_elf_hash_table (hash_table)
3685 && h->u.weakdef == NULL)
3686 {
3687 /* Keep a list of all weak defined non function symbols from
3688 a dynamic object, using the weakdef field. Later in this
3689 function we will set the weakdef field to the correct
3690 value. We only put non-function symbols from dynamic
3691 objects on this list, because that happens to be the only
3692 time we need to know the normal symbol corresponding to a
3693 weak symbol, and the information is time consuming to
3694 figure out. If the weakdef field is not already NULL,
3695 then this symbol was already defined by some previous
3696 dynamic object, and we will be using that previous
3697 definition anyhow. */
3698
3699 h->u.weakdef = weaks;
3700 weaks = h;
3701 new_weakdef = TRUE;
3702 }
3703
3704 /* Set the alignment of a common symbol. */
3705 if (isym->st_shndx == SHN_COMMON
3706 && h->root.type == bfd_link_hash_common)
3707 {
3708 unsigned int align;
3709
3710 align = bfd_log2 (isym->st_value);
3711 if (align > old_alignment
3712 /* Permit an alignment power of zero if an alignment of one
3713 is specified and no other alignments have been specified. */
3714 || (isym->st_value == 1 && old_alignment == 0))
3715 h->root.u.c.p->alignment_power = align;
3716 else
3717 h->root.u.c.p->alignment_power = old_alignment;
3718 }
3719
3720 if (is_elf_hash_table (hash_table))
3721 {
3722 bfd_boolean dynsym;
3723
3724 /* Check the alignment when a common symbol is involved. This
3725 can change when a common symbol is overridden by a normal
3726 definition or a common symbol is ignored due to the old
3727 normal definition. We need to make sure the maximum
3728 alignment is maintained. */
3729 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3730 && h->root.type != bfd_link_hash_common)
3731 {
3732 unsigned int common_align;
3733 unsigned int normal_align;
3734 unsigned int symbol_align;
3735 bfd *normal_bfd;
3736 bfd *common_bfd;
3737
3738 symbol_align = ffs (h->root.u.def.value) - 1;
3739 if (h->root.u.def.section->owner != NULL
3740 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3741 {
3742 normal_align = h->root.u.def.section->alignment_power;
3743 if (normal_align > symbol_align)
3744 normal_align = symbol_align;
3745 }
3746 else
3747 normal_align = symbol_align;
3748
3749 if (old_alignment)
3750 {
3751 common_align = old_alignment;
3752 common_bfd = old_bfd;
3753 normal_bfd = abfd;
3754 }
3755 else
3756 {
3757 common_align = bfd_log2 (isym->st_value);
3758 common_bfd = abfd;
3759 normal_bfd = old_bfd;
3760 }
3761
3762 if (normal_align < common_align)
3763 (*_bfd_error_handler)
3764 (_("Warning: alignment %u of symbol `%s' in %B"
3765 " is smaller than %u in %B"),
3766 normal_bfd, common_bfd,
3767 1 << normal_align, name, 1 << common_align);
3768 }
3769
3770 /* Remember the symbol size and type. */
3771 if (isym->st_size != 0
3772 && (definition || h->size == 0))
3773 {
3774 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3775 (*_bfd_error_handler)
3776 (_("Warning: size of symbol `%s' changed"
3777 " from %lu in %B to %lu in %B"),
3778 old_bfd, abfd,
3779 name, (unsigned long) h->size,
3780 (unsigned long) isym->st_size);
3781
3782 h->size = isym->st_size;
3783 }
3784
3785 /* If this is a common symbol, then we always want H->SIZE
3786 to be the size of the common symbol. The code just above
3787 won't fix the size if a common symbol becomes larger. We
3788 don't warn about a size change here, because that is
3789 covered by --warn-common. */
3790 if (h->root.type == bfd_link_hash_common)
3791 h->size = h->root.u.c.size;
3792
3793 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3794 && (definition || h->type == STT_NOTYPE))
3795 {
3796 if (h->type != STT_NOTYPE
3797 && h->type != ELF_ST_TYPE (isym->st_info)
3798 && ! type_change_ok)
3799 (*_bfd_error_handler)
3800 (_("Warning: type of symbol `%s' changed"
3801 " from %d to %d in %B"),
3802 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3803
3804 h->type = ELF_ST_TYPE (isym->st_info);
3805 }
3806
3807 /* If st_other has a processor-specific meaning, specific
3808 code might be needed here. We never merge the visibility
3809 attribute with the one from a dynamic object. */
3810 if (bed->elf_backend_merge_symbol_attribute)
3811 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3812 dynamic);
3813
3814 /* If this symbol has default visibility and the user has requested
3815 we not re-export it, then mark it as hidden. */
3816 if (definition && !dynamic
3817 && (abfd->no_export
3818 || (abfd->my_archive && abfd->my_archive->no_export))
3819 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3820 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3821
3822 if (isym->st_other != 0 && !dynamic)
3823 {
3824 unsigned char hvis, symvis, other, nvis;
3825
3826 /* Take the balance of OTHER from the definition. */
3827 other = (definition ? isym->st_other : h->other);
3828 other &= ~ ELF_ST_VISIBILITY (-1);
3829
3830 /* Combine visibilities, using the most constraining one. */
3831 hvis = ELF_ST_VISIBILITY (h->other);
3832 symvis = ELF_ST_VISIBILITY (isym->st_other);
3833 if (! hvis)
3834 nvis = symvis;
3835 else if (! symvis)
3836 nvis = hvis;
3837 else
3838 nvis = hvis < symvis ? hvis : symvis;
3839
3840 h->other = other | nvis;
3841 }
3842
3843 /* Set a flag in the hash table entry indicating the type of
3844 reference or definition we just found. Keep a count of
3845 the number of dynamic symbols we find. A dynamic symbol
3846 is one which is referenced or defined by both a regular
3847 object and a shared object. */
3848 dynsym = FALSE;
3849 if (! dynamic)
3850 {
3851 if (! definition)
3852 {
3853 h->ref_regular = 1;
3854 if (bind != STB_WEAK)
3855 h->ref_regular_nonweak = 1;
3856 }
3857 else
3858 h->def_regular = 1;
3859 if (! info->executable
3860 || h->def_dynamic
3861 || h->ref_dynamic)
3862 dynsym = TRUE;
3863 }
3864 else
3865 {
3866 if (! definition)
3867 h->ref_dynamic = 1;
3868 else
3869 h->def_dynamic = 1;
3870 if (h->def_regular
3871 || h->ref_regular
3872 || (h->u.weakdef != NULL
3873 && ! new_weakdef
3874 && h->u.weakdef->dynindx != -1))
3875 dynsym = TRUE;
3876 }
3877
3878 /* Check to see if we need to add an indirect symbol for
3879 the default name. */
3880 if (definition || h->root.type == bfd_link_hash_common)
3881 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3882 &sec, &value, &dynsym,
3883 override))
3884 goto error_free_vers;
3885
3886 if (definition && !dynamic)
3887 {
3888 char *p = strchr (name, ELF_VER_CHR);
3889 if (p != NULL && p[1] != ELF_VER_CHR)
3890 {
3891 /* Queue non-default versions so that .symver x, x@FOO
3892 aliases can be checked. */
3893 if (! nondeflt_vers)
3894 {
3895 amt = (isymend - isym + 1)
3896 * sizeof (struct elf_link_hash_entry *);
3897 nondeflt_vers = bfd_malloc (amt);
3898 }
3899 nondeflt_vers [nondeflt_vers_cnt++] = h;
3900 }
3901 }
3902
3903 if (dynsym && h->dynindx == -1)
3904 {
3905 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3906 goto error_free_vers;
3907 if (h->u.weakdef != NULL
3908 && ! new_weakdef
3909 && h->u.weakdef->dynindx == -1)
3910 {
3911 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
3912 goto error_free_vers;
3913 }
3914 }
3915 else if (dynsym && h->dynindx != -1)
3916 /* If the symbol already has a dynamic index, but
3917 visibility says it should not be visible, turn it into
3918 a local symbol. */
3919 switch (ELF_ST_VISIBILITY (h->other))
3920 {
3921 case STV_INTERNAL:
3922 case STV_HIDDEN:
3923 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3924 dynsym = FALSE;
3925 break;
3926 }
3927
3928 if (!add_needed
3929 && definition
3930 && dynsym
3931 && h->ref_regular)
3932 {
3933 int ret;
3934 const char *soname = elf_dt_name (abfd);
3935
3936 /* A symbol from a library loaded via DT_NEEDED of some
3937 other library is referenced by a regular object.
3938 Add a DT_NEEDED entry for it. Issue an error if
3939 --no-add-needed is used. */
3940 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3941 {
3942 (*_bfd_error_handler)
3943 (_("%s: invalid DSO for symbol `%s' definition"),
3944 abfd, name);
3945 bfd_set_error (bfd_error_bad_value);
3946 goto error_free_vers;
3947 }
3948
3949 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
3950
3951 add_needed = TRUE;
3952 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3953 if (ret < 0)
3954 goto error_free_vers;
3955
3956 BFD_ASSERT (ret == 0);
3957 }
3958 }
3959 }
3960
3961 /* Now that all the symbols from this input file are created, handle
3962 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3963 if (nondeflt_vers != NULL)
3964 {
3965 bfd_size_type cnt, symidx;
3966
3967 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3968 {
3969 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3970 char *shortname, *p;
3971
3972 p = strchr (h->root.root.string, ELF_VER_CHR);
3973 if (p == NULL
3974 || (h->root.type != bfd_link_hash_defined
3975 && h->root.type != bfd_link_hash_defweak))
3976 continue;
3977
3978 amt = p - h->root.root.string;
3979 shortname = bfd_malloc (amt + 1);
3980 memcpy (shortname, h->root.root.string, amt);
3981 shortname[amt] = '\0';
3982
3983 hi = (struct elf_link_hash_entry *)
3984 bfd_link_hash_lookup (&hash_table->root, shortname,
3985 FALSE, FALSE, FALSE);
3986 if (hi != NULL
3987 && hi->root.type == h->root.type
3988 && hi->root.u.def.value == h->root.u.def.value
3989 && hi->root.u.def.section == h->root.u.def.section)
3990 {
3991 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3992 hi->root.type = bfd_link_hash_indirect;
3993 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3994 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3995 sym_hash = elf_sym_hashes (abfd);
3996 if (sym_hash)
3997 for (symidx = 0; symidx < extsymcount; ++symidx)
3998 if (sym_hash[symidx] == hi)
3999 {
4000 sym_hash[symidx] = h;
4001 break;
4002 }
4003 }
4004 free (shortname);
4005 }
4006 free (nondeflt_vers);
4007 nondeflt_vers = NULL;
4008 }
4009
4010 if (extversym != NULL)
4011 {
4012 free (extversym);
4013 extversym = NULL;
4014 }
4015
4016 if (isymbuf != NULL)
4017 free (isymbuf);
4018 isymbuf = NULL;
4019
4020 /* Now set the weakdefs field correctly for all the weak defined
4021 symbols we found. The only way to do this is to search all the
4022 symbols. Since we only need the information for non functions in
4023 dynamic objects, that's the only time we actually put anything on
4024 the list WEAKS. We need this information so that if a regular
4025 object refers to a symbol defined weakly in a dynamic object, the
4026 real symbol in the dynamic object is also put in the dynamic
4027 symbols; we also must arrange for both symbols to point to the
4028 same memory location. We could handle the general case of symbol
4029 aliasing, but a general symbol alias can only be generated in
4030 assembler code, handling it correctly would be very time
4031 consuming, and other ELF linkers don't handle general aliasing
4032 either. */
4033 if (weaks != NULL)
4034 {
4035 struct elf_link_hash_entry **hpp;
4036 struct elf_link_hash_entry **hppend;
4037 struct elf_link_hash_entry **sorted_sym_hash;
4038 struct elf_link_hash_entry *h;
4039 size_t sym_count;
4040
4041 /* Since we have to search the whole symbol list for each weak
4042 defined symbol, search time for N weak defined symbols will be
4043 O(N^2). Binary search will cut it down to O(NlogN). */
4044 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4045 sorted_sym_hash = bfd_malloc (amt);
4046 if (sorted_sym_hash == NULL)
4047 goto error_return;
4048 sym_hash = sorted_sym_hash;
4049 hpp = elf_sym_hashes (abfd);
4050 hppend = hpp + extsymcount;
4051 sym_count = 0;
4052 for (; hpp < hppend; hpp++)
4053 {
4054 h = *hpp;
4055 if (h != NULL
4056 && h->root.type == bfd_link_hash_defined
4057 && h->type != STT_FUNC)
4058 {
4059 *sym_hash = h;
4060 sym_hash++;
4061 sym_count++;
4062 }
4063 }
4064
4065 qsort (sorted_sym_hash, sym_count,
4066 sizeof (struct elf_link_hash_entry *),
4067 elf_sort_symbol);
4068
4069 while (weaks != NULL)
4070 {
4071 struct elf_link_hash_entry *hlook;
4072 asection *slook;
4073 bfd_vma vlook;
4074 long ilook;
4075 size_t i, j, idx;
4076
4077 hlook = weaks;
4078 weaks = hlook->u.weakdef;
4079 hlook->u.weakdef = NULL;
4080
4081 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4082 || hlook->root.type == bfd_link_hash_defweak
4083 || hlook->root.type == bfd_link_hash_common
4084 || hlook->root.type == bfd_link_hash_indirect);
4085 slook = hlook->root.u.def.section;
4086 vlook = hlook->root.u.def.value;
4087
4088 ilook = -1;
4089 i = 0;
4090 j = sym_count;
4091 while (i < j)
4092 {
4093 bfd_signed_vma vdiff;
4094 idx = (i + j) / 2;
4095 h = sorted_sym_hash [idx];
4096 vdiff = vlook - h->root.u.def.value;
4097 if (vdiff < 0)
4098 j = idx;
4099 else if (vdiff > 0)
4100 i = idx + 1;
4101 else
4102 {
4103 long sdiff = slook->id - h->root.u.def.section->id;
4104 if (sdiff < 0)
4105 j = idx;
4106 else if (sdiff > 0)
4107 i = idx + 1;
4108 else
4109 {
4110 ilook = idx;
4111 break;
4112 }
4113 }
4114 }
4115
4116 /* We didn't find a value/section match. */
4117 if (ilook == -1)
4118 continue;
4119
4120 for (i = ilook; i < sym_count; i++)
4121 {
4122 h = sorted_sym_hash [i];
4123
4124 /* Stop if value or section doesn't match. */
4125 if (h->root.u.def.value != vlook
4126 || h->root.u.def.section != slook)
4127 break;
4128 else if (h != hlook)
4129 {
4130 hlook->u.weakdef = h;
4131
4132 /* If the weak definition is in the list of dynamic
4133 symbols, make sure the real definition is put
4134 there as well. */
4135 if (hlook->dynindx != -1 && h->dynindx == -1)
4136 {
4137 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4138 goto error_return;
4139 }
4140
4141 /* If the real definition is in the list of dynamic
4142 symbols, make sure the weak definition is put
4143 there as well. If we don't do this, then the
4144 dynamic loader might not merge the entries for the
4145 real definition and the weak definition. */
4146 if (h->dynindx != -1 && hlook->dynindx == -1)
4147 {
4148 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4149 goto error_return;
4150 }
4151 break;
4152 }
4153 }
4154 }
4155
4156 free (sorted_sym_hash);
4157 }
4158
4159 check_directives = get_elf_backend_data (abfd)->check_directives;
4160 if (check_directives)
4161 check_directives (abfd, info);
4162
4163 /* If this object is the same format as the output object, and it is
4164 not a shared library, then let the backend look through the
4165 relocs.
4166
4167 This is required to build global offset table entries and to
4168 arrange for dynamic relocs. It is not required for the
4169 particular common case of linking non PIC code, even when linking
4170 against shared libraries, but unfortunately there is no way of
4171 knowing whether an object file has been compiled PIC or not.
4172 Looking through the relocs is not particularly time consuming.
4173 The problem is that we must either (1) keep the relocs in memory,
4174 which causes the linker to require additional runtime memory or
4175 (2) read the relocs twice from the input file, which wastes time.
4176 This would be a good case for using mmap.
4177
4178 I have no idea how to handle linking PIC code into a file of a
4179 different format. It probably can't be done. */
4180 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4181 if (! dynamic
4182 && is_elf_hash_table (hash_table)
4183 && hash_table->root.creator == abfd->xvec
4184 && check_relocs != NULL)
4185 {
4186 asection *o;
4187
4188 for (o = abfd->sections; o != NULL; o = o->next)
4189 {
4190 Elf_Internal_Rela *internal_relocs;
4191 bfd_boolean ok;
4192
4193 if ((o->flags & SEC_RELOC) == 0
4194 || o->reloc_count == 0
4195 || ((info->strip == strip_all || info->strip == strip_debugger)
4196 && (o->flags & SEC_DEBUGGING) != 0)
4197 || bfd_is_abs_section (o->output_section))
4198 continue;
4199
4200 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4201 info->keep_memory);
4202 if (internal_relocs == NULL)
4203 goto error_return;
4204
4205 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4206
4207 if (elf_section_data (o)->relocs != internal_relocs)
4208 free (internal_relocs);
4209
4210 if (! ok)
4211 goto error_return;
4212 }
4213 }
4214
4215 /* If this is a non-traditional link, try to optimize the handling
4216 of the .stab/.stabstr sections. */
4217 if (! dynamic
4218 && ! info->traditional_format
4219 && is_elf_hash_table (hash_table)
4220 && (info->strip != strip_all && info->strip != strip_debugger))
4221 {
4222 asection *stabstr;
4223
4224 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4225 if (stabstr != NULL)
4226 {
4227 bfd_size_type string_offset = 0;
4228 asection *stab;
4229
4230 for (stab = abfd->sections; stab; stab = stab->next)
4231 if (strncmp (".stab", stab->name, 5) == 0
4232 && (!stab->name[5] ||
4233 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4234 && (stab->flags & SEC_MERGE) == 0
4235 && !bfd_is_abs_section (stab->output_section))
4236 {
4237 struct bfd_elf_section_data *secdata;
4238
4239 secdata = elf_section_data (stab);
4240 if (! _bfd_link_section_stabs (abfd,
4241 &hash_table->stab_info,
4242 stab, stabstr,
4243 &secdata->sec_info,
4244 &string_offset))
4245 goto error_return;
4246 if (secdata->sec_info)
4247 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4248 }
4249 }
4250 }
4251
4252 if (is_elf_hash_table (hash_table))
4253 {
4254 /* Add this bfd to the loaded list. */
4255 struct elf_link_loaded_list *n;
4256
4257 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4258 if (n == NULL)
4259 goto error_return;
4260 n->abfd = abfd;
4261 n->next = hash_table->loaded;
4262 hash_table->loaded = n;
4263 }
4264
4265 return TRUE;
4266
4267 error_free_vers:
4268 if (nondeflt_vers != NULL)
4269 free (nondeflt_vers);
4270 if (extversym != NULL)
4271 free (extversym);
4272 error_free_sym:
4273 if (isymbuf != NULL)
4274 free (isymbuf);
4275 error_return:
4276 return FALSE;
4277 }
4278
4279 /* Return the linker hash table entry of a symbol that might be
4280 satisfied by an archive symbol. Return -1 on error. */
4281
4282 struct elf_link_hash_entry *
4283 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4284 struct bfd_link_info *info,
4285 const char *name)
4286 {
4287 struct elf_link_hash_entry *h;
4288 char *p, *copy;
4289 size_t len, first;
4290
4291 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4292 if (h != NULL)
4293 return h;
4294
4295 /* If this is a default version (the name contains @@), look up the
4296 symbol again with only one `@' as well as without the version.
4297 The effect is that references to the symbol with and without the
4298 version will be matched by the default symbol in the archive. */
4299
4300 p = strchr (name, ELF_VER_CHR);
4301 if (p == NULL || p[1] != ELF_VER_CHR)
4302 return h;
4303
4304 /* First check with only one `@'. */
4305 len = strlen (name);
4306 copy = bfd_alloc (abfd, len);
4307 if (copy == NULL)
4308 return (struct elf_link_hash_entry *) 0 - 1;
4309
4310 first = p - name + 1;
4311 memcpy (copy, name, first);
4312 memcpy (copy + first, name + first + 1, len - first);
4313
4314 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4315 if (h == NULL)
4316 {
4317 /* We also need to check references to the symbol without the
4318 version. */
4319 copy[first - 1] = '\0';
4320 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4321 FALSE, FALSE, FALSE);
4322 }
4323
4324 bfd_release (abfd, copy);
4325 return h;
4326 }
4327
4328 /* Add symbols from an ELF archive file to the linker hash table. We
4329 don't use _bfd_generic_link_add_archive_symbols because of a
4330 problem which arises on UnixWare. The UnixWare libc.so is an
4331 archive which includes an entry libc.so.1 which defines a bunch of
4332 symbols. The libc.so archive also includes a number of other
4333 object files, which also define symbols, some of which are the same
4334 as those defined in libc.so.1. Correct linking requires that we
4335 consider each object file in turn, and include it if it defines any
4336 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4337 this; it looks through the list of undefined symbols, and includes
4338 any object file which defines them. When this algorithm is used on
4339 UnixWare, it winds up pulling in libc.so.1 early and defining a
4340 bunch of symbols. This means that some of the other objects in the
4341 archive are not included in the link, which is incorrect since they
4342 precede libc.so.1 in the archive.
4343
4344 Fortunately, ELF archive handling is simpler than that done by
4345 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4346 oddities. In ELF, if we find a symbol in the archive map, and the
4347 symbol is currently undefined, we know that we must pull in that
4348 object file.
4349
4350 Unfortunately, we do have to make multiple passes over the symbol
4351 table until nothing further is resolved. */
4352
4353 static bfd_boolean
4354 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4355 {
4356 symindex c;
4357 bfd_boolean *defined = NULL;
4358 bfd_boolean *included = NULL;
4359 carsym *symdefs;
4360 bfd_boolean loop;
4361 bfd_size_type amt;
4362 const struct elf_backend_data *bed;
4363 struct elf_link_hash_entry * (*archive_symbol_lookup)
4364 (bfd *, struct bfd_link_info *, const char *);
4365
4366 if (! bfd_has_map (abfd))
4367 {
4368 /* An empty archive is a special case. */
4369 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4370 return TRUE;
4371 bfd_set_error (bfd_error_no_armap);
4372 return FALSE;
4373 }
4374
4375 /* Keep track of all symbols we know to be already defined, and all
4376 files we know to be already included. This is to speed up the
4377 second and subsequent passes. */
4378 c = bfd_ardata (abfd)->symdef_count;
4379 if (c == 0)
4380 return TRUE;
4381 amt = c;
4382 amt *= sizeof (bfd_boolean);
4383 defined = bfd_zmalloc (amt);
4384 included = bfd_zmalloc (amt);
4385 if (defined == NULL || included == NULL)
4386 goto error_return;
4387
4388 symdefs = bfd_ardata (abfd)->symdefs;
4389 bed = get_elf_backend_data (abfd);
4390 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4391
4392 do
4393 {
4394 file_ptr last;
4395 symindex i;
4396 carsym *symdef;
4397 carsym *symdefend;
4398
4399 loop = FALSE;
4400 last = -1;
4401
4402 symdef = symdefs;
4403 symdefend = symdef + c;
4404 for (i = 0; symdef < symdefend; symdef++, i++)
4405 {
4406 struct elf_link_hash_entry *h;
4407 bfd *element;
4408 struct bfd_link_hash_entry *undefs_tail;
4409 symindex mark;
4410
4411 if (defined[i] || included[i])
4412 continue;
4413 if (symdef->file_offset == last)
4414 {
4415 included[i] = TRUE;
4416 continue;
4417 }
4418
4419 h = archive_symbol_lookup (abfd, info, symdef->name);
4420 if (h == (struct elf_link_hash_entry *) 0 - 1)
4421 goto error_return;
4422
4423 if (h == NULL)
4424 continue;
4425
4426 if (h->root.type == bfd_link_hash_common)
4427 {
4428 /* We currently have a common symbol. The archive map contains
4429 a reference to this symbol, so we may want to include it. We
4430 only want to include it however, if this archive element
4431 contains a definition of the symbol, not just another common
4432 declaration of it.
4433
4434 Unfortunately some archivers (including GNU ar) will put
4435 declarations of common symbols into their archive maps, as
4436 well as real definitions, so we cannot just go by the archive
4437 map alone. Instead we must read in the element's symbol
4438 table and check that to see what kind of symbol definition
4439 this is. */
4440 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4441 continue;
4442 }
4443 else if (h->root.type != bfd_link_hash_undefined)
4444 {
4445 if (h->root.type != bfd_link_hash_undefweak)
4446 defined[i] = TRUE;
4447 continue;
4448 }
4449
4450 /* We need to include this archive member. */
4451 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4452 if (element == NULL)
4453 goto error_return;
4454
4455 if (! bfd_check_format (element, bfd_object))
4456 goto error_return;
4457
4458 /* Doublecheck that we have not included this object
4459 already--it should be impossible, but there may be
4460 something wrong with the archive. */
4461 if (element->archive_pass != 0)
4462 {
4463 bfd_set_error (bfd_error_bad_value);
4464 goto error_return;
4465 }
4466 element->archive_pass = 1;
4467
4468 undefs_tail = info->hash->undefs_tail;
4469
4470 if (! (*info->callbacks->add_archive_element) (info, element,
4471 symdef->name))
4472 goto error_return;
4473 if (! bfd_link_add_symbols (element, info))
4474 goto error_return;
4475
4476 /* If there are any new undefined symbols, we need to make
4477 another pass through the archive in order to see whether
4478 they can be defined. FIXME: This isn't perfect, because
4479 common symbols wind up on undefs_tail and because an
4480 undefined symbol which is defined later on in this pass
4481 does not require another pass. This isn't a bug, but it
4482 does make the code less efficient than it could be. */
4483 if (undefs_tail != info->hash->undefs_tail)
4484 loop = TRUE;
4485
4486 /* Look backward to mark all symbols from this object file
4487 which we have already seen in this pass. */
4488 mark = i;
4489 do
4490 {
4491 included[mark] = TRUE;
4492 if (mark == 0)
4493 break;
4494 --mark;
4495 }
4496 while (symdefs[mark].file_offset == symdef->file_offset);
4497
4498 /* We mark subsequent symbols from this object file as we go
4499 on through the loop. */
4500 last = symdef->file_offset;
4501 }
4502 }
4503 while (loop);
4504
4505 free (defined);
4506 free (included);
4507
4508 return TRUE;
4509
4510 error_return:
4511 if (defined != NULL)
4512 free (defined);
4513 if (included != NULL)
4514 free (included);
4515 return FALSE;
4516 }
4517
4518 /* Given an ELF BFD, add symbols to the global hash table as
4519 appropriate. */
4520
4521 bfd_boolean
4522 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4523 {
4524 switch (bfd_get_format (abfd))
4525 {
4526 case bfd_object:
4527 return elf_link_add_object_symbols (abfd, info);
4528 case bfd_archive:
4529 return elf_link_add_archive_symbols (abfd, info);
4530 default:
4531 bfd_set_error (bfd_error_wrong_format);
4532 return FALSE;
4533 }
4534 }
4535 \f
4536 /* This function will be called though elf_link_hash_traverse to store
4537 all hash value of the exported symbols in an array. */
4538
4539 static bfd_boolean
4540 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4541 {
4542 unsigned long **valuep = data;
4543 const char *name;
4544 char *p;
4545 unsigned long ha;
4546 char *alc = NULL;
4547
4548 if (h->root.type == bfd_link_hash_warning)
4549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4550
4551 /* Ignore indirect symbols. These are added by the versioning code. */
4552 if (h->dynindx == -1)
4553 return TRUE;
4554
4555 name = h->root.root.string;
4556 p = strchr (name, ELF_VER_CHR);
4557 if (p != NULL)
4558 {
4559 alc = bfd_malloc (p - name + 1);
4560 memcpy (alc, name, p - name);
4561 alc[p - name] = '\0';
4562 name = alc;
4563 }
4564
4565 /* Compute the hash value. */
4566 ha = bfd_elf_hash (name);
4567
4568 /* Store the found hash value in the array given as the argument. */
4569 *(*valuep)++ = ha;
4570
4571 /* And store it in the struct so that we can put it in the hash table
4572 later. */
4573 h->u.elf_hash_value = ha;
4574
4575 if (alc != NULL)
4576 free (alc);
4577
4578 return TRUE;
4579 }
4580
4581 /* Array used to determine the number of hash table buckets to use
4582 based on the number of symbols there are. If there are fewer than
4583 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4584 fewer than 37 we use 17 buckets, and so forth. We never use more
4585 than 32771 buckets. */
4586
4587 static const size_t elf_buckets[] =
4588 {
4589 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4590 16411, 32771, 0
4591 };
4592
4593 /* Compute bucket count for hashing table. We do not use a static set
4594 of possible tables sizes anymore. Instead we determine for all
4595 possible reasonable sizes of the table the outcome (i.e., the
4596 number of collisions etc) and choose the best solution. The
4597 weighting functions are not too simple to allow the table to grow
4598 without bounds. Instead one of the weighting factors is the size.
4599 Therefore the result is always a good payoff between few collisions
4600 (= short chain lengths) and table size. */
4601 static size_t
4602 compute_bucket_count (struct bfd_link_info *info)
4603 {
4604 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4605 size_t best_size = 0;
4606 unsigned long int *hashcodes;
4607 unsigned long int *hashcodesp;
4608 unsigned long int i;
4609 bfd_size_type amt;
4610
4611 /* Compute the hash values for all exported symbols. At the same
4612 time store the values in an array so that we could use them for
4613 optimizations. */
4614 amt = dynsymcount;
4615 amt *= sizeof (unsigned long int);
4616 hashcodes = bfd_malloc (amt);
4617 if (hashcodes == NULL)
4618 return 0;
4619 hashcodesp = hashcodes;
4620
4621 /* Put all hash values in HASHCODES. */
4622 elf_link_hash_traverse (elf_hash_table (info),
4623 elf_collect_hash_codes, &hashcodesp);
4624
4625 /* We have a problem here. The following code to optimize the table
4626 size requires an integer type with more the 32 bits. If
4627 BFD_HOST_U_64_BIT is set we know about such a type. */
4628 #ifdef BFD_HOST_U_64_BIT
4629 if (info->optimize)
4630 {
4631 unsigned long int nsyms = hashcodesp - hashcodes;
4632 size_t minsize;
4633 size_t maxsize;
4634 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4635 unsigned long int *counts ;
4636 bfd *dynobj = elf_hash_table (info)->dynobj;
4637 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4638
4639 /* Possible optimization parameters: if we have NSYMS symbols we say
4640 that the hashing table must at least have NSYMS/4 and at most
4641 2*NSYMS buckets. */
4642 minsize = nsyms / 4;
4643 if (minsize == 0)
4644 minsize = 1;
4645 best_size = maxsize = nsyms * 2;
4646
4647 /* Create array where we count the collisions in. We must use bfd_malloc
4648 since the size could be large. */
4649 amt = maxsize;
4650 amt *= sizeof (unsigned long int);
4651 counts = bfd_malloc (amt);
4652 if (counts == NULL)
4653 {
4654 free (hashcodes);
4655 return 0;
4656 }
4657
4658 /* Compute the "optimal" size for the hash table. The criteria is a
4659 minimal chain length. The minor criteria is (of course) the size
4660 of the table. */
4661 for (i = minsize; i < maxsize; ++i)
4662 {
4663 /* Walk through the array of hashcodes and count the collisions. */
4664 BFD_HOST_U_64_BIT max;
4665 unsigned long int j;
4666 unsigned long int fact;
4667
4668 memset (counts, '\0', i * sizeof (unsigned long int));
4669
4670 /* Determine how often each hash bucket is used. */
4671 for (j = 0; j < nsyms; ++j)
4672 ++counts[hashcodes[j] % i];
4673
4674 /* For the weight function we need some information about the
4675 pagesize on the target. This is information need not be 100%
4676 accurate. Since this information is not available (so far) we
4677 define it here to a reasonable default value. If it is crucial
4678 to have a better value some day simply define this value. */
4679 # ifndef BFD_TARGET_PAGESIZE
4680 # define BFD_TARGET_PAGESIZE (4096)
4681 # endif
4682
4683 /* We in any case need 2 + NSYMS entries for the size values and
4684 the chains. */
4685 max = (2 + nsyms) * (bed->s->arch_size / 8);
4686
4687 # if 1
4688 /* Variant 1: optimize for short chains. We add the squares
4689 of all the chain lengths (which favors many small chain
4690 over a few long chains). */
4691 for (j = 0; j < i; ++j)
4692 max += counts[j] * counts[j];
4693
4694 /* This adds penalties for the overall size of the table. */
4695 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4696 max *= fact * fact;
4697 # else
4698 /* Variant 2: Optimize a lot more for small table. Here we
4699 also add squares of the size but we also add penalties for
4700 empty slots (the +1 term). */
4701 for (j = 0; j < i; ++j)
4702 max += (1 + counts[j]) * (1 + counts[j]);
4703
4704 /* The overall size of the table is considered, but not as
4705 strong as in variant 1, where it is squared. */
4706 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4707 max *= fact;
4708 # endif
4709
4710 /* Compare with current best results. */
4711 if (max < best_chlen)
4712 {
4713 best_chlen = max;
4714 best_size = i;
4715 }
4716 }
4717
4718 free (counts);
4719 }
4720 else
4721 #endif /* defined (BFD_HOST_U_64_BIT) */
4722 {
4723 /* This is the fallback solution if no 64bit type is available or if we
4724 are not supposed to spend much time on optimizations. We select the
4725 bucket count using a fixed set of numbers. */
4726 for (i = 0; elf_buckets[i] != 0; i++)
4727 {
4728 best_size = elf_buckets[i];
4729 if (dynsymcount < elf_buckets[i + 1])
4730 break;
4731 }
4732 }
4733
4734 /* Free the arrays we needed. */
4735 free (hashcodes);
4736
4737 return best_size;
4738 }
4739
4740 /* Set up the sizes and contents of the ELF dynamic sections. This is
4741 called by the ELF linker emulation before_allocation routine. We
4742 must set the sizes of the sections before the linker sets the
4743 addresses of the various sections. */
4744
4745 bfd_boolean
4746 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4747 const char *soname,
4748 const char *rpath,
4749 const char *filter_shlib,
4750 const char * const *auxiliary_filters,
4751 struct bfd_link_info *info,
4752 asection **sinterpptr,
4753 struct bfd_elf_version_tree *verdefs)
4754 {
4755 bfd_size_type soname_indx;
4756 bfd *dynobj;
4757 const struct elf_backend_data *bed;
4758 struct elf_assign_sym_version_info asvinfo;
4759
4760 *sinterpptr = NULL;
4761
4762 soname_indx = (bfd_size_type) -1;
4763
4764 if (!is_elf_hash_table (info->hash))
4765 return TRUE;
4766
4767 elf_tdata (output_bfd)->relro = info->relro;
4768 if (info->execstack)
4769 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4770 else if (info->noexecstack)
4771 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4772 else
4773 {
4774 bfd *inputobj;
4775 asection *notesec = NULL;
4776 int exec = 0;
4777
4778 for (inputobj = info->input_bfds;
4779 inputobj;
4780 inputobj = inputobj->link_next)
4781 {
4782 asection *s;
4783
4784 if (inputobj->flags & DYNAMIC)
4785 continue;
4786 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4787 if (s)
4788 {
4789 if (s->flags & SEC_CODE)
4790 exec = PF_X;
4791 notesec = s;
4792 }
4793 else
4794 exec = PF_X;
4795 }
4796 if (notesec)
4797 {
4798 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4799 if (exec && info->relocatable
4800 && notesec->output_section != bfd_abs_section_ptr)
4801 notesec->output_section->flags |= SEC_CODE;
4802 }
4803 }
4804
4805 /* Any syms created from now on start with -1 in
4806 got.refcount/offset and plt.refcount/offset. */
4807 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4808
4809 /* The backend may have to create some sections regardless of whether
4810 we're dynamic or not. */
4811 bed = get_elf_backend_data (output_bfd);
4812 if (bed->elf_backend_always_size_sections
4813 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4814 return FALSE;
4815
4816 dynobj = elf_hash_table (info)->dynobj;
4817
4818 /* If there were no dynamic objects in the link, there is nothing to
4819 do here. */
4820 if (dynobj == NULL)
4821 return TRUE;
4822
4823 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4824 return FALSE;
4825
4826 if (elf_hash_table (info)->dynamic_sections_created)
4827 {
4828 struct elf_info_failed eif;
4829 struct elf_link_hash_entry *h;
4830 asection *dynstr;
4831 struct bfd_elf_version_tree *t;
4832 struct bfd_elf_version_expr *d;
4833 bfd_boolean all_defined;
4834
4835 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4836 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4837
4838 if (soname != NULL)
4839 {
4840 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4841 soname, TRUE);
4842 if (soname_indx == (bfd_size_type) -1
4843 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4844 return FALSE;
4845 }
4846
4847 if (info->symbolic)
4848 {
4849 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4850 return FALSE;
4851 info->flags |= DF_SYMBOLIC;
4852 }
4853
4854 if (rpath != NULL)
4855 {
4856 bfd_size_type indx;
4857
4858 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4859 TRUE);
4860 if (indx == (bfd_size_type) -1
4861 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4862 return FALSE;
4863
4864 if (info->new_dtags)
4865 {
4866 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4867 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4868 return FALSE;
4869 }
4870 }
4871
4872 if (filter_shlib != NULL)
4873 {
4874 bfd_size_type indx;
4875
4876 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4877 filter_shlib, TRUE);
4878 if (indx == (bfd_size_type) -1
4879 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4880 return FALSE;
4881 }
4882
4883 if (auxiliary_filters != NULL)
4884 {
4885 const char * const *p;
4886
4887 for (p = auxiliary_filters; *p != NULL; p++)
4888 {
4889 bfd_size_type indx;
4890
4891 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4892 *p, TRUE);
4893 if (indx == (bfd_size_type) -1
4894 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4895 return FALSE;
4896 }
4897 }
4898
4899 eif.info = info;
4900 eif.verdefs = verdefs;
4901 eif.failed = FALSE;
4902
4903 /* If we are supposed to export all symbols into the dynamic symbol
4904 table (this is not the normal case), then do so. */
4905 if (info->export_dynamic)
4906 {
4907 elf_link_hash_traverse (elf_hash_table (info),
4908 _bfd_elf_export_symbol,
4909 &eif);
4910 if (eif.failed)
4911 return FALSE;
4912 }
4913
4914 /* Make all global versions with definition. */
4915 for (t = verdefs; t != NULL; t = t->next)
4916 for (d = t->globals.list; d != NULL; d = d->next)
4917 if (!d->symver && d->symbol)
4918 {
4919 const char *verstr, *name;
4920 size_t namelen, verlen, newlen;
4921 char *newname, *p;
4922 struct elf_link_hash_entry *newh;
4923
4924 name = d->symbol;
4925 namelen = strlen (name);
4926 verstr = t->name;
4927 verlen = strlen (verstr);
4928 newlen = namelen + verlen + 3;
4929
4930 newname = bfd_malloc (newlen);
4931 if (newname == NULL)
4932 return FALSE;
4933 memcpy (newname, name, namelen);
4934
4935 /* Check the hidden versioned definition. */
4936 p = newname + namelen;
4937 *p++ = ELF_VER_CHR;
4938 memcpy (p, verstr, verlen + 1);
4939 newh = elf_link_hash_lookup (elf_hash_table (info),
4940 newname, FALSE, FALSE,
4941 FALSE);
4942 if (newh == NULL
4943 || (newh->root.type != bfd_link_hash_defined
4944 && newh->root.type != bfd_link_hash_defweak))
4945 {
4946 /* Check the default versioned definition. */
4947 *p++ = ELF_VER_CHR;
4948 memcpy (p, verstr, verlen + 1);
4949 newh = elf_link_hash_lookup (elf_hash_table (info),
4950 newname, FALSE, FALSE,
4951 FALSE);
4952 }
4953 free (newname);
4954
4955 /* Mark this version if there is a definition and it is
4956 not defined in a shared object. */
4957 if (newh != NULL
4958 && !newh->def_dynamic
4959 && (newh->root.type == bfd_link_hash_defined
4960 || newh->root.type == bfd_link_hash_defweak))
4961 d->symver = 1;
4962 }
4963
4964 /* Attach all the symbols to their version information. */
4965 asvinfo.output_bfd = output_bfd;
4966 asvinfo.info = info;
4967 asvinfo.verdefs = verdefs;
4968 asvinfo.failed = FALSE;
4969
4970 elf_link_hash_traverse (elf_hash_table (info),
4971 _bfd_elf_link_assign_sym_version,
4972 &asvinfo);
4973 if (asvinfo.failed)
4974 return FALSE;
4975
4976 if (!info->allow_undefined_version)
4977 {
4978 /* Check if all global versions have a definition. */
4979 all_defined = TRUE;
4980 for (t = verdefs; t != NULL; t = t->next)
4981 for (d = t->globals.list; d != NULL; d = d->next)
4982 if (!d->symver && !d->script)
4983 {
4984 (*_bfd_error_handler)
4985 (_("%s: undefined version: %s"),
4986 d->pattern, t->name);
4987 all_defined = FALSE;
4988 }
4989
4990 if (!all_defined)
4991 {
4992 bfd_set_error (bfd_error_bad_value);
4993 return FALSE;
4994 }
4995 }
4996
4997 /* Find all symbols which were defined in a dynamic object and make
4998 the backend pick a reasonable value for them. */
4999 elf_link_hash_traverse (elf_hash_table (info),
5000 _bfd_elf_adjust_dynamic_symbol,
5001 &eif);
5002 if (eif.failed)
5003 return FALSE;
5004
5005 /* Add some entries to the .dynamic section. We fill in some of the
5006 values later, in bfd_elf_final_link, but we must add the entries
5007 now so that we know the final size of the .dynamic section. */
5008
5009 /* If there are initialization and/or finalization functions to
5010 call then add the corresponding DT_INIT/DT_FINI entries. */
5011 h = (info->init_function
5012 ? elf_link_hash_lookup (elf_hash_table (info),
5013 info->init_function, FALSE,
5014 FALSE, FALSE)
5015 : NULL);
5016 if (h != NULL
5017 && (h->ref_regular
5018 || h->def_regular))
5019 {
5020 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5021 return FALSE;
5022 }
5023 h = (info->fini_function
5024 ? elf_link_hash_lookup (elf_hash_table (info),
5025 info->fini_function, FALSE,
5026 FALSE, FALSE)
5027 : NULL);
5028 if (h != NULL
5029 && (h->ref_regular
5030 || h->def_regular))
5031 {
5032 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5033 return FALSE;
5034 }
5035
5036 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5037 {
5038 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5039 if (! info->executable)
5040 {
5041 bfd *sub;
5042 asection *o;
5043
5044 for (sub = info->input_bfds; sub != NULL;
5045 sub = sub->link_next)
5046 for (o = sub->sections; o != NULL; o = o->next)
5047 if (elf_section_data (o)->this_hdr.sh_type
5048 == SHT_PREINIT_ARRAY)
5049 {
5050 (*_bfd_error_handler)
5051 (_("%B: .preinit_array section is not allowed in DSO"),
5052 sub);
5053 break;
5054 }
5055
5056 bfd_set_error (bfd_error_nonrepresentable_section);
5057 return FALSE;
5058 }
5059
5060 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5061 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5062 return FALSE;
5063 }
5064 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5065 {
5066 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5067 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5068 return FALSE;
5069 }
5070 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5071 {
5072 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5073 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5074 return FALSE;
5075 }
5076
5077 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5078 /* If .dynstr is excluded from the link, we don't want any of
5079 these tags. Strictly, we should be checking each section
5080 individually; This quick check covers for the case where
5081 someone does a /DISCARD/ : { *(*) }. */
5082 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5083 {
5084 bfd_size_type strsize;
5085
5086 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5087 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5088 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5089 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5090 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5091 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5092 bed->s->sizeof_sym))
5093 return FALSE;
5094 }
5095 }
5096
5097 /* The backend must work out the sizes of all the other dynamic
5098 sections. */
5099 if (bed->elf_backend_size_dynamic_sections
5100 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5101 return FALSE;
5102
5103 if (elf_hash_table (info)->dynamic_sections_created)
5104 {
5105 bfd_size_type dynsymcount;
5106 asection *s;
5107 size_t bucketcount = 0;
5108 size_t hash_entry_size;
5109 unsigned int dtagcount;
5110
5111 /* Set up the version definition section. */
5112 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5113 BFD_ASSERT (s != NULL);
5114
5115 /* We may have created additional version definitions if we are
5116 just linking a regular application. */
5117 verdefs = asvinfo.verdefs;
5118
5119 /* Skip anonymous version tag. */
5120 if (verdefs != NULL && verdefs->vernum == 0)
5121 verdefs = verdefs->next;
5122
5123 if (verdefs == NULL && !info->create_default_symver)
5124 _bfd_strip_section_from_output (info, s);
5125 else
5126 {
5127 unsigned int cdefs;
5128 bfd_size_type size;
5129 struct bfd_elf_version_tree *t;
5130 bfd_byte *p;
5131 Elf_Internal_Verdef def;
5132 Elf_Internal_Verdaux defaux;
5133 struct bfd_link_hash_entry *bh;
5134 struct elf_link_hash_entry *h;
5135 const char *name;
5136
5137 cdefs = 0;
5138 size = 0;
5139
5140 /* Make space for the base version. */
5141 size += sizeof (Elf_External_Verdef);
5142 size += sizeof (Elf_External_Verdaux);
5143 ++cdefs;
5144
5145 /* Make space for the default version. */
5146 if (info->create_default_symver)
5147 {
5148 size += sizeof (Elf_External_Verdef);
5149 ++cdefs;
5150 }
5151
5152 for (t = verdefs; t != NULL; t = t->next)
5153 {
5154 struct bfd_elf_version_deps *n;
5155
5156 size += sizeof (Elf_External_Verdef);
5157 size += sizeof (Elf_External_Verdaux);
5158 ++cdefs;
5159
5160 for (n = t->deps; n != NULL; n = n->next)
5161 size += sizeof (Elf_External_Verdaux);
5162 }
5163
5164 s->size = size;
5165 s->contents = bfd_alloc (output_bfd, s->size);
5166 if (s->contents == NULL && s->size != 0)
5167 return FALSE;
5168
5169 /* Fill in the version definition section. */
5170
5171 p = s->contents;
5172
5173 def.vd_version = VER_DEF_CURRENT;
5174 def.vd_flags = VER_FLG_BASE;
5175 def.vd_ndx = 1;
5176 def.vd_cnt = 1;
5177 if (info->create_default_symver)
5178 {
5179 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5180 def.vd_next = sizeof (Elf_External_Verdef);
5181 }
5182 else
5183 {
5184 def.vd_aux = sizeof (Elf_External_Verdef);
5185 def.vd_next = (sizeof (Elf_External_Verdef)
5186 + sizeof (Elf_External_Verdaux));
5187 }
5188
5189 if (soname_indx != (bfd_size_type) -1)
5190 {
5191 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5192 soname_indx);
5193 def.vd_hash = bfd_elf_hash (soname);
5194 defaux.vda_name = soname_indx;
5195 name = soname;
5196 }
5197 else
5198 {
5199 bfd_size_type indx;
5200
5201 name = basename (output_bfd->filename);
5202 def.vd_hash = bfd_elf_hash (name);
5203 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5204 name, FALSE);
5205 if (indx == (bfd_size_type) -1)
5206 return FALSE;
5207 defaux.vda_name = indx;
5208 }
5209 defaux.vda_next = 0;
5210
5211 _bfd_elf_swap_verdef_out (output_bfd, &def,
5212 (Elf_External_Verdef *) p);
5213 p += sizeof (Elf_External_Verdef);
5214 if (info->create_default_symver)
5215 {
5216 /* Add a symbol representing this version. */
5217 bh = NULL;
5218 if (! (_bfd_generic_link_add_one_symbol
5219 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5220 0, NULL, FALSE,
5221 get_elf_backend_data (dynobj)->collect, &bh)))
5222 return FALSE;
5223 h = (struct elf_link_hash_entry *) bh;
5224 h->non_elf = 0;
5225 h->def_regular = 1;
5226 h->type = STT_OBJECT;
5227 h->verinfo.vertree = NULL;
5228
5229 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5230 return FALSE;
5231
5232 /* Create a duplicate of the base version with the same
5233 aux block, but different flags. */
5234 def.vd_flags = 0;
5235 def.vd_ndx = 2;
5236 def.vd_aux = sizeof (Elf_External_Verdef);
5237 if (verdefs)
5238 def.vd_next = (sizeof (Elf_External_Verdef)
5239 + sizeof (Elf_External_Verdaux));
5240 else
5241 def.vd_next = 0;
5242 _bfd_elf_swap_verdef_out (output_bfd, &def,
5243 (Elf_External_Verdef *) p);
5244 p += sizeof (Elf_External_Verdef);
5245 }
5246 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5247 (Elf_External_Verdaux *) p);
5248 p += sizeof (Elf_External_Verdaux);
5249
5250 for (t = verdefs; t != NULL; t = t->next)
5251 {
5252 unsigned int cdeps;
5253 struct bfd_elf_version_deps *n;
5254
5255 cdeps = 0;
5256 for (n = t->deps; n != NULL; n = n->next)
5257 ++cdeps;
5258
5259 /* Add a symbol representing this version. */
5260 bh = NULL;
5261 if (! (_bfd_generic_link_add_one_symbol
5262 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5263 0, NULL, FALSE,
5264 get_elf_backend_data (dynobj)->collect, &bh)))
5265 return FALSE;
5266 h = (struct elf_link_hash_entry *) bh;
5267 h->non_elf = 0;
5268 h->def_regular = 1;
5269 h->type = STT_OBJECT;
5270 h->verinfo.vertree = t;
5271
5272 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5273 return FALSE;
5274
5275 def.vd_version = VER_DEF_CURRENT;
5276 def.vd_flags = 0;
5277 if (t->globals.list == NULL
5278 && t->locals.list == NULL
5279 && ! t->used)
5280 def.vd_flags |= VER_FLG_WEAK;
5281 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5282 def.vd_cnt = cdeps + 1;
5283 def.vd_hash = bfd_elf_hash (t->name);
5284 def.vd_aux = sizeof (Elf_External_Verdef);
5285 def.vd_next = 0;
5286 if (t->next != NULL)
5287 def.vd_next = (sizeof (Elf_External_Verdef)
5288 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5289
5290 _bfd_elf_swap_verdef_out (output_bfd, &def,
5291 (Elf_External_Verdef *) p);
5292 p += sizeof (Elf_External_Verdef);
5293
5294 defaux.vda_name = h->dynstr_index;
5295 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5296 h->dynstr_index);
5297 defaux.vda_next = 0;
5298 if (t->deps != NULL)
5299 defaux.vda_next = sizeof (Elf_External_Verdaux);
5300 t->name_indx = defaux.vda_name;
5301
5302 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5303 (Elf_External_Verdaux *) p);
5304 p += sizeof (Elf_External_Verdaux);
5305
5306 for (n = t->deps; n != NULL; n = n->next)
5307 {
5308 if (n->version_needed == NULL)
5309 {
5310 /* This can happen if there was an error in the
5311 version script. */
5312 defaux.vda_name = 0;
5313 }
5314 else
5315 {
5316 defaux.vda_name = n->version_needed->name_indx;
5317 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5318 defaux.vda_name);
5319 }
5320 if (n->next == NULL)
5321 defaux.vda_next = 0;
5322 else
5323 defaux.vda_next = sizeof (Elf_External_Verdaux);
5324
5325 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5326 (Elf_External_Verdaux *) p);
5327 p += sizeof (Elf_External_Verdaux);
5328 }
5329 }
5330
5331 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5332 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5333 return FALSE;
5334
5335 elf_tdata (output_bfd)->cverdefs = cdefs;
5336 }
5337
5338 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5339 {
5340 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5341 return FALSE;
5342 }
5343 else if (info->flags & DF_BIND_NOW)
5344 {
5345 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5346 return FALSE;
5347 }
5348
5349 if (info->flags_1)
5350 {
5351 if (info->executable)
5352 info->flags_1 &= ~ (DF_1_INITFIRST
5353 | DF_1_NODELETE
5354 | DF_1_NOOPEN);
5355 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5356 return FALSE;
5357 }
5358
5359 /* Work out the size of the version reference section. */
5360
5361 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5362 BFD_ASSERT (s != NULL);
5363 {
5364 struct elf_find_verdep_info sinfo;
5365
5366 sinfo.output_bfd = output_bfd;
5367 sinfo.info = info;
5368 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5369 if (sinfo.vers == 0)
5370 sinfo.vers = 1;
5371 sinfo.failed = FALSE;
5372
5373 elf_link_hash_traverse (elf_hash_table (info),
5374 _bfd_elf_link_find_version_dependencies,
5375 &sinfo);
5376
5377 if (elf_tdata (output_bfd)->verref == NULL)
5378 _bfd_strip_section_from_output (info, s);
5379 else
5380 {
5381 Elf_Internal_Verneed *t;
5382 unsigned int size;
5383 unsigned int crefs;
5384 bfd_byte *p;
5385
5386 /* Build the version definition section. */
5387 size = 0;
5388 crefs = 0;
5389 for (t = elf_tdata (output_bfd)->verref;
5390 t != NULL;
5391 t = t->vn_nextref)
5392 {
5393 Elf_Internal_Vernaux *a;
5394
5395 size += sizeof (Elf_External_Verneed);
5396 ++crefs;
5397 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5398 size += sizeof (Elf_External_Vernaux);
5399 }
5400
5401 s->size = size;
5402 s->contents = bfd_alloc (output_bfd, s->size);
5403 if (s->contents == NULL)
5404 return FALSE;
5405
5406 p = s->contents;
5407 for (t = elf_tdata (output_bfd)->verref;
5408 t != NULL;
5409 t = t->vn_nextref)
5410 {
5411 unsigned int caux;
5412 Elf_Internal_Vernaux *a;
5413 bfd_size_type indx;
5414
5415 caux = 0;
5416 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5417 ++caux;
5418
5419 t->vn_version = VER_NEED_CURRENT;
5420 t->vn_cnt = caux;
5421 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5422 elf_dt_name (t->vn_bfd) != NULL
5423 ? elf_dt_name (t->vn_bfd)
5424 : basename (t->vn_bfd->filename),
5425 FALSE);
5426 if (indx == (bfd_size_type) -1)
5427 return FALSE;
5428 t->vn_file = indx;
5429 t->vn_aux = sizeof (Elf_External_Verneed);
5430 if (t->vn_nextref == NULL)
5431 t->vn_next = 0;
5432 else
5433 t->vn_next = (sizeof (Elf_External_Verneed)
5434 + caux * sizeof (Elf_External_Vernaux));
5435
5436 _bfd_elf_swap_verneed_out (output_bfd, t,
5437 (Elf_External_Verneed *) p);
5438 p += sizeof (Elf_External_Verneed);
5439
5440 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5441 {
5442 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5443 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5444 a->vna_nodename, FALSE);
5445 if (indx == (bfd_size_type) -1)
5446 return FALSE;
5447 a->vna_name = indx;
5448 if (a->vna_nextptr == NULL)
5449 a->vna_next = 0;
5450 else
5451 a->vna_next = sizeof (Elf_External_Vernaux);
5452
5453 _bfd_elf_swap_vernaux_out (output_bfd, a,
5454 (Elf_External_Vernaux *) p);
5455 p += sizeof (Elf_External_Vernaux);
5456 }
5457 }
5458
5459 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5460 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5461 return FALSE;
5462
5463 elf_tdata (output_bfd)->cverrefs = crefs;
5464 }
5465 }
5466
5467 /* Assign dynsym indicies. In a shared library we generate a
5468 section symbol for each output section, which come first.
5469 Next come all of the back-end allocated local dynamic syms,
5470 followed by the rest of the global symbols. */
5471
5472 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5473
5474 /* Work out the size of the symbol version section. */
5475 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5476 BFD_ASSERT (s != NULL);
5477 if (dynsymcount == 0
5478 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5479 && !info->create_default_symver))
5480 {
5481 _bfd_strip_section_from_output (info, s);
5482 /* The DYNSYMCOUNT might have changed if we were going to
5483 output a dynamic symbol table entry for S. */
5484 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5485 }
5486 else
5487 {
5488 s->size = dynsymcount * sizeof (Elf_External_Versym);
5489 s->contents = bfd_zalloc (output_bfd, s->size);
5490 if (s->contents == NULL)
5491 return FALSE;
5492
5493 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5494 return FALSE;
5495 }
5496
5497 /* Set the size of the .dynsym and .hash sections. We counted
5498 the number of dynamic symbols in elf_link_add_object_symbols.
5499 We will build the contents of .dynsym and .hash when we build
5500 the final symbol table, because until then we do not know the
5501 correct value to give the symbols. We built the .dynstr
5502 section as we went along in elf_link_add_object_symbols. */
5503 s = bfd_get_section_by_name (dynobj, ".dynsym");
5504 BFD_ASSERT (s != NULL);
5505 s->size = dynsymcount * bed->s->sizeof_sym;
5506 s->contents = bfd_alloc (output_bfd, s->size);
5507 if (s->contents == NULL && s->size != 0)
5508 return FALSE;
5509
5510 if (dynsymcount != 0)
5511 {
5512 Elf_Internal_Sym isym;
5513
5514 /* The first entry in .dynsym is a dummy symbol. */
5515 isym.st_value = 0;
5516 isym.st_size = 0;
5517 isym.st_name = 0;
5518 isym.st_info = 0;
5519 isym.st_other = 0;
5520 isym.st_shndx = 0;
5521 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5522 }
5523
5524 /* Compute the size of the hashing table. As a side effect this
5525 computes the hash values for all the names we export. */
5526 bucketcount = compute_bucket_count (info);
5527
5528 s = bfd_get_section_by_name (dynobj, ".hash");
5529 BFD_ASSERT (s != NULL);
5530 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5531 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5532 s->contents = bfd_zalloc (output_bfd, s->size);
5533 if (s->contents == NULL)
5534 return FALSE;
5535
5536 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5537 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5538 s->contents + hash_entry_size);
5539
5540 elf_hash_table (info)->bucketcount = bucketcount;
5541
5542 s = bfd_get_section_by_name (dynobj, ".dynstr");
5543 BFD_ASSERT (s != NULL);
5544
5545 elf_finalize_dynstr (output_bfd, info);
5546
5547 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5548
5549 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5550 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5551 return FALSE;
5552 }
5553
5554 return TRUE;
5555 }
5556
5557 /* Final phase of ELF linker. */
5558
5559 /* A structure we use to avoid passing large numbers of arguments. */
5560
5561 struct elf_final_link_info
5562 {
5563 /* General link information. */
5564 struct bfd_link_info *info;
5565 /* Output BFD. */
5566 bfd *output_bfd;
5567 /* Symbol string table. */
5568 struct bfd_strtab_hash *symstrtab;
5569 /* .dynsym section. */
5570 asection *dynsym_sec;
5571 /* .hash section. */
5572 asection *hash_sec;
5573 /* symbol version section (.gnu.version). */
5574 asection *symver_sec;
5575 /* Buffer large enough to hold contents of any section. */
5576 bfd_byte *contents;
5577 /* Buffer large enough to hold external relocs of any section. */
5578 void *external_relocs;
5579 /* Buffer large enough to hold internal relocs of any section. */
5580 Elf_Internal_Rela *internal_relocs;
5581 /* Buffer large enough to hold external local symbols of any input
5582 BFD. */
5583 bfd_byte *external_syms;
5584 /* And a buffer for symbol section indices. */
5585 Elf_External_Sym_Shndx *locsym_shndx;
5586 /* Buffer large enough to hold internal local symbols of any input
5587 BFD. */
5588 Elf_Internal_Sym *internal_syms;
5589 /* Array large enough to hold a symbol index for each local symbol
5590 of any input BFD. */
5591 long *indices;
5592 /* Array large enough to hold a section pointer for each local
5593 symbol of any input BFD. */
5594 asection **sections;
5595 /* Buffer to hold swapped out symbols. */
5596 bfd_byte *symbuf;
5597 /* And one for symbol section indices. */
5598 Elf_External_Sym_Shndx *symshndxbuf;
5599 /* Number of swapped out symbols in buffer. */
5600 size_t symbuf_count;
5601 /* Number of symbols which fit in symbuf. */
5602 size_t symbuf_size;
5603 /* And same for symshndxbuf. */
5604 size_t shndxbuf_size;
5605 };
5606
5607 /* This struct is used to pass information to elf_link_output_extsym. */
5608
5609 struct elf_outext_info
5610 {
5611 bfd_boolean failed;
5612 bfd_boolean localsyms;
5613 struct elf_final_link_info *finfo;
5614 };
5615
5616 /* When performing a relocatable link, the input relocations are
5617 preserved. But, if they reference global symbols, the indices
5618 referenced must be updated. Update all the relocations in
5619 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5620
5621 static void
5622 elf_link_adjust_relocs (bfd *abfd,
5623 Elf_Internal_Shdr *rel_hdr,
5624 unsigned int count,
5625 struct elf_link_hash_entry **rel_hash)
5626 {
5627 unsigned int i;
5628 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5629 bfd_byte *erela;
5630 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5631 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5632 bfd_vma r_type_mask;
5633 int r_sym_shift;
5634
5635 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5636 {
5637 swap_in = bed->s->swap_reloc_in;
5638 swap_out = bed->s->swap_reloc_out;
5639 }
5640 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5641 {
5642 swap_in = bed->s->swap_reloca_in;
5643 swap_out = bed->s->swap_reloca_out;
5644 }
5645 else
5646 abort ();
5647
5648 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5649 abort ();
5650
5651 if (bed->s->arch_size == 32)
5652 {
5653 r_type_mask = 0xff;
5654 r_sym_shift = 8;
5655 }
5656 else
5657 {
5658 r_type_mask = 0xffffffff;
5659 r_sym_shift = 32;
5660 }
5661
5662 erela = rel_hdr->contents;
5663 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5664 {
5665 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5666 unsigned int j;
5667
5668 if (*rel_hash == NULL)
5669 continue;
5670
5671 BFD_ASSERT ((*rel_hash)->indx >= 0);
5672
5673 (*swap_in) (abfd, erela, irela);
5674 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5675 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5676 | (irela[j].r_info & r_type_mask));
5677 (*swap_out) (abfd, irela, erela);
5678 }
5679 }
5680
5681 struct elf_link_sort_rela
5682 {
5683 union {
5684 bfd_vma offset;
5685 bfd_vma sym_mask;
5686 } u;
5687 enum elf_reloc_type_class type;
5688 /* We use this as an array of size int_rels_per_ext_rel. */
5689 Elf_Internal_Rela rela[1];
5690 };
5691
5692 static int
5693 elf_link_sort_cmp1 (const void *A, const void *B)
5694 {
5695 const struct elf_link_sort_rela *a = A;
5696 const struct elf_link_sort_rela *b = B;
5697 int relativea, relativeb;
5698
5699 relativea = a->type == reloc_class_relative;
5700 relativeb = b->type == reloc_class_relative;
5701
5702 if (relativea < relativeb)
5703 return 1;
5704 if (relativea > relativeb)
5705 return -1;
5706 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5707 return -1;
5708 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5709 return 1;
5710 if (a->rela->r_offset < b->rela->r_offset)
5711 return -1;
5712 if (a->rela->r_offset > b->rela->r_offset)
5713 return 1;
5714 return 0;
5715 }
5716
5717 static int
5718 elf_link_sort_cmp2 (const void *A, const void *B)
5719 {
5720 const struct elf_link_sort_rela *a = A;
5721 const struct elf_link_sort_rela *b = B;
5722 int copya, copyb;
5723
5724 if (a->u.offset < b->u.offset)
5725 return -1;
5726 if (a->u.offset > b->u.offset)
5727 return 1;
5728 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5729 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5730 if (copya < copyb)
5731 return -1;
5732 if (copya > copyb)
5733 return 1;
5734 if (a->rela->r_offset < b->rela->r_offset)
5735 return -1;
5736 if (a->rela->r_offset > b->rela->r_offset)
5737 return 1;
5738 return 0;
5739 }
5740
5741 static size_t
5742 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5743 {
5744 asection *reldyn;
5745 bfd_size_type count, size;
5746 size_t i, ret, sort_elt, ext_size;
5747 bfd_byte *sort, *s_non_relative, *p;
5748 struct elf_link_sort_rela *sq;
5749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5750 int i2e = bed->s->int_rels_per_ext_rel;
5751 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5752 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5753 struct bfd_link_order *lo;
5754 bfd_vma r_sym_mask;
5755
5756 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5757 if (reldyn == NULL || reldyn->size == 0)
5758 {
5759 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5760 if (reldyn == NULL || reldyn->size == 0)
5761 return 0;
5762 ext_size = bed->s->sizeof_rel;
5763 swap_in = bed->s->swap_reloc_in;
5764 swap_out = bed->s->swap_reloc_out;
5765 }
5766 else
5767 {
5768 ext_size = bed->s->sizeof_rela;
5769 swap_in = bed->s->swap_reloca_in;
5770 swap_out = bed->s->swap_reloca_out;
5771 }
5772 count = reldyn->size / ext_size;
5773
5774 size = 0;
5775 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5776 if (lo->type == bfd_indirect_link_order)
5777 {
5778 asection *o = lo->u.indirect.section;
5779 size += o->size;
5780 }
5781
5782 if (size != reldyn->size)
5783 return 0;
5784
5785 sort_elt = (sizeof (struct elf_link_sort_rela)
5786 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5787 sort = bfd_zmalloc (sort_elt * count);
5788 if (sort == NULL)
5789 {
5790 (*info->callbacks->warning)
5791 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5792 return 0;
5793 }
5794
5795 if (bed->s->arch_size == 32)
5796 r_sym_mask = ~(bfd_vma) 0xff;
5797 else
5798 r_sym_mask = ~(bfd_vma) 0xffffffff;
5799
5800 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5801 if (lo->type == bfd_indirect_link_order)
5802 {
5803 bfd_byte *erel, *erelend;
5804 asection *o = lo->u.indirect.section;
5805
5806 if (o->contents == NULL && o->size != 0)
5807 {
5808 /* This is a reloc section that is being handled as a normal
5809 section. See bfd_section_from_shdr. We can't combine
5810 relocs in this case. */
5811 free (sort);
5812 return 0;
5813 }
5814 erel = o->contents;
5815 erelend = o->contents + o->size;
5816 p = sort + o->output_offset / ext_size * sort_elt;
5817 while (erel < erelend)
5818 {
5819 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5820 (*swap_in) (abfd, erel, s->rela);
5821 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5822 s->u.sym_mask = r_sym_mask;
5823 p += sort_elt;
5824 erel += ext_size;
5825 }
5826 }
5827
5828 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5829
5830 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5831 {
5832 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5833 if (s->type != reloc_class_relative)
5834 break;
5835 }
5836 ret = i;
5837 s_non_relative = p;
5838
5839 sq = (struct elf_link_sort_rela *) s_non_relative;
5840 for (; i < count; i++, p += sort_elt)
5841 {
5842 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5843 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5844 sq = sp;
5845 sp->u.offset = sq->rela->r_offset;
5846 }
5847
5848 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5849
5850 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5851 if (lo->type == bfd_indirect_link_order)
5852 {
5853 bfd_byte *erel, *erelend;
5854 asection *o = lo->u.indirect.section;
5855
5856 erel = o->contents;
5857 erelend = o->contents + o->size;
5858 p = sort + o->output_offset / ext_size * sort_elt;
5859 while (erel < erelend)
5860 {
5861 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5862 (*swap_out) (abfd, s->rela, erel);
5863 p += sort_elt;
5864 erel += ext_size;
5865 }
5866 }
5867
5868 free (sort);
5869 *psec = reldyn;
5870 return ret;
5871 }
5872
5873 /* Flush the output symbols to the file. */
5874
5875 static bfd_boolean
5876 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5877 const struct elf_backend_data *bed)
5878 {
5879 if (finfo->symbuf_count > 0)
5880 {
5881 Elf_Internal_Shdr *hdr;
5882 file_ptr pos;
5883 bfd_size_type amt;
5884
5885 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5886 pos = hdr->sh_offset + hdr->sh_size;
5887 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5888 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5889 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5890 return FALSE;
5891
5892 hdr->sh_size += amt;
5893 finfo->symbuf_count = 0;
5894 }
5895
5896 return TRUE;
5897 }
5898
5899 /* Add a symbol to the output symbol table. */
5900
5901 static bfd_boolean
5902 elf_link_output_sym (struct elf_final_link_info *finfo,
5903 const char *name,
5904 Elf_Internal_Sym *elfsym,
5905 asection *input_sec,
5906 struct elf_link_hash_entry *h)
5907 {
5908 bfd_byte *dest;
5909 Elf_External_Sym_Shndx *destshndx;
5910 bfd_boolean (*output_symbol_hook)
5911 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5912 struct elf_link_hash_entry *);
5913 const struct elf_backend_data *bed;
5914
5915 bed = get_elf_backend_data (finfo->output_bfd);
5916 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5917 if (output_symbol_hook != NULL)
5918 {
5919 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5920 return FALSE;
5921 }
5922
5923 if (name == NULL || *name == '\0')
5924 elfsym->st_name = 0;
5925 else if (input_sec->flags & SEC_EXCLUDE)
5926 elfsym->st_name = 0;
5927 else
5928 {
5929 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5930 name, TRUE, FALSE);
5931 if (elfsym->st_name == (unsigned long) -1)
5932 return FALSE;
5933 }
5934
5935 if (finfo->symbuf_count >= finfo->symbuf_size)
5936 {
5937 if (! elf_link_flush_output_syms (finfo, bed))
5938 return FALSE;
5939 }
5940
5941 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5942 destshndx = finfo->symshndxbuf;
5943 if (destshndx != NULL)
5944 {
5945 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5946 {
5947 bfd_size_type amt;
5948
5949 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5950 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5951 if (destshndx == NULL)
5952 return FALSE;
5953 memset ((char *) destshndx + amt, 0, amt);
5954 finfo->shndxbuf_size *= 2;
5955 }
5956 destshndx += bfd_get_symcount (finfo->output_bfd);
5957 }
5958
5959 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5960 finfo->symbuf_count += 1;
5961 bfd_get_symcount (finfo->output_bfd) += 1;
5962
5963 return TRUE;
5964 }
5965
5966 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5967 allowing an unsatisfied unversioned symbol in the DSO to match a
5968 versioned symbol that would normally require an explicit version.
5969 We also handle the case that a DSO references a hidden symbol
5970 which may be satisfied by a versioned symbol in another DSO. */
5971
5972 static bfd_boolean
5973 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5974 const struct elf_backend_data *bed,
5975 struct elf_link_hash_entry *h)
5976 {
5977 bfd *abfd;
5978 struct elf_link_loaded_list *loaded;
5979
5980 if (!is_elf_hash_table (info->hash))
5981 return FALSE;
5982
5983 switch (h->root.type)
5984 {
5985 default:
5986 abfd = NULL;
5987 break;
5988
5989 case bfd_link_hash_undefined:
5990 case bfd_link_hash_undefweak:
5991 abfd = h->root.u.undef.abfd;
5992 if ((abfd->flags & DYNAMIC) == 0
5993 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
5994 return FALSE;
5995 break;
5996
5997 case bfd_link_hash_defined:
5998 case bfd_link_hash_defweak:
5999 abfd = h->root.u.def.section->owner;
6000 break;
6001
6002 case bfd_link_hash_common:
6003 abfd = h->root.u.c.p->section->owner;
6004 break;
6005 }
6006 BFD_ASSERT (abfd != NULL);
6007
6008 for (loaded = elf_hash_table (info)->loaded;
6009 loaded != NULL;
6010 loaded = loaded->next)
6011 {
6012 bfd *input;
6013 Elf_Internal_Shdr *hdr;
6014 bfd_size_type symcount;
6015 bfd_size_type extsymcount;
6016 bfd_size_type extsymoff;
6017 Elf_Internal_Shdr *versymhdr;
6018 Elf_Internal_Sym *isym;
6019 Elf_Internal_Sym *isymend;
6020 Elf_Internal_Sym *isymbuf;
6021 Elf_External_Versym *ever;
6022 Elf_External_Versym *extversym;
6023
6024 input = loaded->abfd;
6025
6026 /* We check each DSO for a possible hidden versioned definition. */
6027 if (input == abfd
6028 || (input->flags & DYNAMIC) == 0
6029 || elf_dynversym (input) == 0)
6030 continue;
6031
6032 hdr = &elf_tdata (input)->dynsymtab_hdr;
6033
6034 symcount = hdr->sh_size / bed->s->sizeof_sym;
6035 if (elf_bad_symtab (input))
6036 {
6037 extsymcount = symcount;
6038 extsymoff = 0;
6039 }
6040 else
6041 {
6042 extsymcount = symcount - hdr->sh_info;
6043 extsymoff = hdr->sh_info;
6044 }
6045
6046 if (extsymcount == 0)
6047 continue;
6048
6049 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6050 NULL, NULL, NULL);
6051 if (isymbuf == NULL)
6052 return FALSE;
6053
6054 /* Read in any version definitions. */
6055 versymhdr = &elf_tdata (input)->dynversym_hdr;
6056 extversym = bfd_malloc (versymhdr->sh_size);
6057 if (extversym == NULL)
6058 goto error_ret;
6059
6060 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6061 || (bfd_bread (extversym, versymhdr->sh_size, input)
6062 != versymhdr->sh_size))
6063 {
6064 free (extversym);
6065 error_ret:
6066 free (isymbuf);
6067 return FALSE;
6068 }
6069
6070 ever = extversym + extsymoff;
6071 isymend = isymbuf + extsymcount;
6072 for (isym = isymbuf; isym < isymend; isym++, ever++)
6073 {
6074 const char *name;
6075 Elf_Internal_Versym iver;
6076 unsigned short version_index;
6077
6078 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6079 || isym->st_shndx == SHN_UNDEF)
6080 continue;
6081
6082 name = bfd_elf_string_from_elf_section (input,
6083 hdr->sh_link,
6084 isym->st_name);
6085 if (strcmp (name, h->root.root.string) != 0)
6086 continue;
6087
6088 _bfd_elf_swap_versym_in (input, ever, &iver);
6089
6090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6091 {
6092 /* If we have a non-hidden versioned sym, then it should
6093 have provided a definition for the undefined sym. */
6094 abort ();
6095 }
6096
6097 version_index = iver.vs_vers & VERSYM_VERSION;
6098 if (version_index == 1 || version_index == 2)
6099 {
6100 /* This is the base or first version. We can use it. */
6101 free (extversym);
6102 free (isymbuf);
6103 return TRUE;
6104 }
6105 }
6106
6107 free (extversym);
6108 free (isymbuf);
6109 }
6110
6111 return FALSE;
6112 }
6113
6114 /* Add an external symbol to the symbol table. This is called from
6115 the hash table traversal routine. When generating a shared object,
6116 we go through the symbol table twice. The first time we output
6117 anything that might have been forced to local scope in a version
6118 script. The second time we output the symbols that are still
6119 global symbols. */
6120
6121 static bfd_boolean
6122 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6123 {
6124 struct elf_outext_info *eoinfo = data;
6125 struct elf_final_link_info *finfo = eoinfo->finfo;
6126 bfd_boolean strip;
6127 Elf_Internal_Sym sym;
6128 asection *input_sec;
6129 const struct elf_backend_data *bed;
6130
6131 if (h->root.type == bfd_link_hash_warning)
6132 {
6133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6134 if (h->root.type == bfd_link_hash_new)
6135 return TRUE;
6136 }
6137
6138 /* Decide whether to output this symbol in this pass. */
6139 if (eoinfo->localsyms)
6140 {
6141 if (!h->forced_local)
6142 return TRUE;
6143 }
6144 else
6145 {
6146 if (h->forced_local)
6147 return TRUE;
6148 }
6149
6150 bed = get_elf_backend_data (finfo->output_bfd);
6151
6152 /* If we have an undefined symbol reference here then it must have
6153 come from a shared library that is being linked in. (Undefined
6154 references in regular files have already been handled). If we
6155 are reporting errors for this situation then do so now. */
6156 if (h->root.type == bfd_link_hash_undefined
6157 && h->ref_dynamic
6158 && !h->ref_regular
6159 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6160 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6161 {
6162 if (! ((*finfo->info->callbacks->undefined_symbol)
6163 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6164 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6165 {
6166 eoinfo->failed = TRUE;
6167 return FALSE;
6168 }
6169 }
6170
6171 /* We should also warn if a forced local symbol is referenced from
6172 shared libraries. */
6173 if (! finfo->info->relocatable
6174 && (! finfo->info->shared)
6175 && h->forced_local
6176 && h->ref_dynamic
6177 && !h->dynamic_def
6178 && !h->dynamic_weak
6179 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6180 {
6181 (*_bfd_error_handler)
6182 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6183 finfo->output_bfd, h->root.u.def.section->owner,
6184 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6185 ? "internal"
6186 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6187 ? "hidden" : "local",
6188 h->root.root.string);
6189 eoinfo->failed = TRUE;
6190 return FALSE;
6191 }
6192
6193 /* We don't want to output symbols that have never been mentioned by
6194 a regular file, or that we have been told to strip. However, if
6195 h->indx is set to -2, the symbol is used by a reloc and we must
6196 output it. */
6197 if (h->indx == -2)
6198 strip = FALSE;
6199 else if ((h->def_dynamic
6200 || h->ref_dynamic)
6201 && !h->def_regular
6202 && !h->ref_regular)
6203 strip = TRUE;
6204 else if (finfo->info->strip == strip_all)
6205 strip = TRUE;
6206 else if (finfo->info->strip == strip_some
6207 && bfd_hash_lookup (finfo->info->keep_hash,
6208 h->root.root.string, FALSE, FALSE) == NULL)
6209 strip = TRUE;
6210 else if (finfo->info->strip_discarded
6211 && (h->root.type == bfd_link_hash_defined
6212 || h->root.type == bfd_link_hash_defweak)
6213 && elf_discarded_section (h->root.u.def.section))
6214 strip = TRUE;
6215 else
6216 strip = FALSE;
6217
6218 /* If we're stripping it, and it's not a dynamic symbol, there's
6219 nothing else to do unless it is a forced local symbol. */
6220 if (strip
6221 && h->dynindx == -1
6222 && !h->forced_local)
6223 return TRUE;
6224
6225 sym.st_value = 0;
6226 sym.st_size = h->size;
6227 sym.st_other = h->other;
6228 if (h->forced_local)
6229 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6230 else if (h->root.type == bfd_link_hash_undefweak
6231 || h->root.type == bfd_link_hash_defweak)
6232 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6233 else
6234 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6235
6236 switch (h->root.type)
6237 {
6238 default:
6239 case bfd_link_hash_new:
6240 case bfd_link_hash_warning:
6241 abort ();
6242 return FALSE;
6243
6244 case bfd_link_hash_undefined:
6245 case bfd_link_hash_undefweak:
6246 input_sec = bfd_und_section_ptr;
6247 sym.st_shndx = SHN_UNDEF;
6248 break;
6249
6250 case bfd_link_hash_defined:
6251 case bfd_link_hash_defweak:
6252 {
6253 input_sec = h->root.u.def.section;
6254 if (input_sec->output_section != NULL)
6255 {
6256 sym.st_shndx =
6257 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6258 input_sec->output_section);
6259 if (sym.st_shndx == SHN_BAD)
6260 {
6261 (*_bfd_error_handler)
6262 (_("%B: could not find output section %A for input section %A"),
6263 finfo->output_bfd, input_sec->output_section, input_sec);
6264 eoinfo->failed = TRUE;
6265 return FALSE;
6266 }
6267
6268 /* ELF symbols in relocatable files are section relative,
6269 but in nonrelocatable files they are virtual
6270 addresses. */
6271 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6272 if (! finfo->info->relocatable)
6273 {
6274 sym.st_value += input_sec->output_section->vma;
6275 if (h->type == STT_TLS)
6276 {
6277 /* STT_TLS symbols are relative to PT_TLS segment
6278 base. */
6279 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6280 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6281 }
6282 }
6283 }
6284 else
6285 {
6286 BFD_ASSERT (input_sec->owner == NULL
6287 || (input_sec->owner->flags & DYNAMIC) != 0);
6288 sym.st_shndx = SHN_UNDEF;
6289 input_sec = bfd_und_section_ptr;
6290 }
6291 }
6292 break;
6293
6294 case bfd_link_hash_common:
6295 input_sec = h->root.u.c.p->section;
6296 sym.st_shndx = SHN_COMMON;
6297 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6298 break;
6299
6300 case bfd_link_hash_indirect:
6301 /* These symbols are created by symbol versioning. They point
6302 to the decorated version of the name. For example, if the
6303 symbol foo@@GNU_1.2 is the default, which should be used when
6304 foo is used with no version, then we add an indirect symbol
6305 foo which points to foo@@GNU_1.2. We ignore these symbols,
6306 since the indirected symbol is already in the hash table. */
6307 return TRUE;
6308 }
6309
6310 /* Give the processor backend a chance to tweak the symbol value,
6311 and also to finish up anything that needs to be done for this
6312 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6313 forced local syms when non-shared is due to a historical quirk. */
6314 if ((h->dynindx != -1
6315 || h->forced_local)
6316 && ((finfo->info->shared
6317 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6318 || h->root.type != bfd_link_hash_undefweak))
6319 || !h->forced_local)
6320 && elf_hash_table (finfo->info)->dynamic_sections_created)
6321 {
6322 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6323 (finfo->output_bfd, finfo->info, h, &sym)))
6324 {
6325 eoinfo->failed = TRUE;
6326 return FALSE;
6327 }
6328 }
6329
6330 /* If we are marking the symbol as undefined, and there are no
6331 non-weak references to this symbol from a regular object, then
6332 mark the symbol as weak undefined; if there are non-weak
6333 references, mark the symbol as strong. We can't do this earlier,
6334 because it might not be marked as undefined until the
6335 finish_dynamic_symbol routine gets through with it. */
6336 if (sym.st_shndx == SHN_UNDEF
6337 && h->ref_regular
6338 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6339 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6340 {
6341 int bindtype;
6342
6343 if (h->ref_regular_nonweak)
6344 bindtype = STB_GLOBAL;
6345 else
6346 bindtype = STB_WEAK;
6347 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6348 }
6349
6350 /* If a non-weak symbol with non-default visibility is not defined
6351 locally, it is a fatal error. */
6352 if (! finfo->info->relocatable
6353 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6354 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6355 && h->root.type == bfd_link_hash_undefined
6356 && !h->def_regular)
6357 {
6358 (*_bfd_error_handler)
6359 (_("%B: %s symbol `%s' isn't defined"),
6360 finfo->output_bfd,
6361 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6362 ? "protected"
6363 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6364 ? "internal" : "hidden",
6365 h->root.root.string);
6366 eoinfo->failed = TRUE;
6367 return FALSE;
6368 }
6369
6370 /* If this symbol should be put in the .dynsym section, then put it
6371 there now. We already know the symbol index. We also fill in
6372 the entry in the .hash section. */
6373 if (h->dynindx != -1
6374 && elf_hash_table (finfo->info)->dynamic_sections_created)
6375 {
6376 size_t bucketcount;
6377 size_t bucket;
6378 size_t hash_entry_size;
6379 bfd_byte *bucketpos;
6380 bfd_vma chain;
6381 bfd_byte *esym;
6382
6383 sym.st_name = h->dynstr_index;
6384 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6385 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6386
6387 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6388 bucket = h->u.elf_hash_value % bucketcount;
6389 hash_entry_size
6390 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6391 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6392 + (bucket + 2) * hash_entry_size);
6393 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6394 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6395 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6396 ((bfd_byte *) finfo->hash_sec->contents
6397 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6398
6399 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6400 {
6401 Elf_Internal_Versym iversym;
6402 Elf_External_Versym *eversym;
6403
6404 if (!h->def_regular)
6405 {
6406 if (h->verinfo.verdef == NULL)
6407 iversym.vs_vers = 0;
6408 else
6409 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6410 }
6411 else
6412 {
6413 if (h->verinfo.vertree == NULL)
6414 iversym.vs_vers = 1;
6415 else
6416 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6417 if (finfo->info->create_default_symver)
6418 iversym.vs_vers++;
6419 }
6420
6421 if (h->hidden)
6422 iversym.vs_vers |= VERSYM_HIDDEN;
6423
6424 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6425 eversym += h->dynindx;
6426 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6427 }
6428 }
6429
6430 /* If we're stripping it, then it was just a dynamic symbol, and
6431 there's nothing else to do. */
6432 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6433 return TRUE;
6434
6435 h->indx = bfd_get_symcount (finfo->output_bfd);
6436
6437 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6438 {
6439 eoinfo->failed = TRUE;
6440 return FALSE;
6441 }
6442
6443 return TRUE;
6444 }
6445
6446 /* Return TRUE if special handling is done for relocs in SEC against
6447 symbols defined in discarded sections. */
6448
6449 static bfd_boolean
6450 elf_section_ignore_discarded_relocs (asection *sec)
6451 {
6452 const struct elf_backend_data *bed;
6453
6454 switch (sec->sec_info_type)
6455 {
6456 case ELF_INFO_TYPE_STABS:
6457 case ELF_INFO_TYPE_EH_FRAME:
6458 return TRUE;
6459 default:
6460 break;
6461 }
6462
6463 bed = get_elf_backend_data (sec->owner);
6464 if (bed->elf_backend_ignore_discarded_relocs != NULL
6465 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6466 return TRUE;
6467
6468 return FALSE;
6469 }
6470
6471 enum action_discarded
6472 {
6473 COMPLAIN = 1,
6474 PRETEND = 2
6475 };
6476
6477 /* Return a mask saying how ld should treat relocations in SEC against
6478 symbols defined in discarded sections. If this function returns
6479 COMPLAIN set, ld will issue a warning message. If this function
6480 returns PRETEND set, and the discarded section was link-once and the
6481 same size as the kept link-once section, ld will pretend that the
6482 symbol was actually defined in the kept section. Otherwise ld will
6483 zero the reloc (at least that is the intent, but some cooperation by
6484 the target dependent code is needed, particularly for REL targets). */
6485
6486 static unsigned int
6487 elf_action_discarded (asection *sec)
6488 {
6489 if (sec->flags & SEC_DEBUGGING)
6490 return PRETEND;
6491
6492 if (strcmp (".eh_frame", sec->name) == 0)
6493 return 0;
6494
6495 if (strcmp (".gcc_except_table", sec->name) == 0)
6496 return 0;
6497
6498 if (strcmp (".PARISC.unwind", sec->name) == 0)
6499 return 0;
6500
6501 if (strcmp (".fixup", sec->name) == 0)
6502 return 0;
6503
6504 return COMPLAIN | PRETEND;
6505 }
6506
6507 /* Find a match between a section and a member of a section group. */
6508
6509 static asection *
6510 match_group_member (asection *sec, asection *group)
6511 {
6512 asection *first = elf_next_in_group (group);
6513 asection *s = first;
6514
6515 while (s != NULL)
6516 {
6517 if (bfd_elf_match_symbols_in_sections (s, sec))
6518 return s;
6519
6520 if (s == first)
6521 break;
6522 }
6523
6524 return NULL;
6525 }
6526
6527 /* Link an input file into the linker output file. This function
6528 handles all the sections and relocations of the input file at once.
6529 This is so that we only have to read the local symbols once, and
6530 don't have to keep them in memory. */
6531
6532 static bfd_boolean
6533 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6534 {
6535 bfd_boolean (*relocate_section)
6536 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6537 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6538 bfd *output_bfd;
6539 Elf_Internal_Shdr *symtab_hdr;
6540 size_t locsymcount;
6541 size_t extsymoff;
6542 Elf_Internal_Sym *isymbuf;
6543 Elf_Internal_Sym *isym;
6544 Elf_Internal_Sym *isymend;
6545 long *pindex;
6546 asection **ppsection;
6547 asection *o;
6548 const struct elf_backend_data *bed;
6549 bfd_boolean emit_relocs;
6550 struct elf_link_hash_entry **sym_hashes;
6551
6552 output_bfd = finfo->output_bfd;
6553 bed = get_elf_backend_data (output_bfd);
6554 relocate_section = bed->elf_backend_relocate_section;
6555
6556 /* If this is a dynamic object, we don't want to do anything here:
6557 we don't want the local symbols, and we don't want the section
6558 contents. */
6559 if ((input_bfd->flags & DYNAMIC) != 0)
6560 return TRUE;
6561
6562 emit_relocs = (finfo->info->relocatable
6563 || finfo->info->emitrelocations
6564 || bed->elf_backend_emit_relocs);
6565
6566 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6567 if (elf_bad_symtab (input_bfd))
6568 {
6569 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6570 extsymoff = 0;
6571 }
6572 else
6573 {
6574 locsymcount = symtab_hdr->sh_info;
6575 extsymoff = symtab_hdr->sh_info;
6576 }
6577
6578 /* Read the local symbols. */
6579 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6580 if (isymbuf == NULL && locsymcount != 0)
6581 {
6582 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6583 finfo->internal_syms,
6584 finfo->external_syms,
6585 finfo->locsym_shndx);
6586 if (isymbuf == NULL)
6587 return FALSE;
6588 }
6589
6590 /* Find local symbol sections and adjust values of symbols in
6591 SEC_MERGE sections. Write out those local symbols we know are
6592 going into the output file. */
6593 isymend = isymbuf + locsymcount;
6594 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6595 isym < isymend;
6596 isym++, pindex++, ppsection++)
6597 {
6598 asection *isec;
6599 const char *name;
6600 Elf_Internal_Sym osym;
6601
6602 *pindex = -1;
6603
6604 if (elf_bad_symtab (input_bfd))
6605 {
6606 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6607 {
6608 *ppsection = NULL;
6609 continue;
6610 }
6611 }
6612
6613 if (isym->st_shndx == SHN_UNDEF)
6614 isec = bfd_und_section_ptr;
6615 else if (isym->st_shndx < SHN_LORESERVE
6616 || isym->st_shndx > SHN_HIRESERVE)
6617 {
6618 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6619 if (isec
6620 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6621 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6622 isym->st_value =
6623 _bfd_merged_section_offset (output_bfd, &isec,
6624 elf_section_data (isec)->sec_info,
6625 isym->st_value);
6626 }
6627 else if (isym->st_shndx == SHN_ABS)
6628 isec = bfd_abs_section_ptr;
6629 else if (isym->st_shndx == SHN_COMMON)
6630 isec = bfd_com_section_ptr;
6631 else
6632 {
6633 /* Who knows? */
6634 isec = NULL;
6635 }
6636
6637 *ppsection = isec;
6638
6639 /* Don't output the first, undefined, symbol. */
6640 if (ppsection == finfo->sections)
6641 continue;
6642
6643 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6644 {
6645 /* We never output section symbols. Instead, we use the
6646 section symbol of the corresponding section in the output
6647 file. */
6648 continue;
6649 }
6650
6651 /* If we are stripping all symbols, we don't want to output this
6652 one. */
6653 if (finfo->info->strip == strip_all)
6654 continue;
6655
6656 /* If we are discarding all local symbols, we don't want to
6657 output this one. If we are generating a relocatable output
6658 file, then some of the local symbols may be required by
6659 relocs; we output them below as we discover that they are
6660 needed. */
6661 if (finfo->info->discard == discard_all)
6662 continue;
6663
6664 /* If this symbol is defined in a section which we are
6665 discarding, we don't need to keep it, but note that
6666 linker_mark is only reliable for sections that have contents.
6667 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6668 as well as linker_mark. */
6669 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6670 && isec != NULL
6671 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6672 || (! finfo->info->relocatable
6673 && (isec->flags & SEC_EXCLUDE) != 0)))
6674 continue;
6675
6676 /* Get the name of the symbol. */
6677 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6678 isym->st_name);
6679 if (name == NULL)
6680 return FALSE;
6681
6682 /* See if we are discarding symbols with this name. */
6683 if ((finfo->info->strip == strip_some
6684 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6685 == NULL))
6686 || (((finfo->info->discard == discard_sec_merge
6687 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6688 || finfo->info->discard == discard_l)
6689 && bfd_is_local_label_name (input_bfd, name)))
6690 continue;
6691
6692 /* If we get here, we are going to output this symbol. */
6693
6694 osym = *isym;
6695
6696 /* Adjust the section index for the output file. */
6697 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6698 isec->output_section);
6699 if (osym.st_shndx == SHN_BAD)
6700 return FALSE;
6701
6702 *pindex = bfd_get_symcount (output_bfd);
6703
6704 /* ELF symbols in relocatable files are section relative, but
6705 in executable files they are virtual addresses. Note that
6706 this code assumes that all ELF sections have an associated
6707 BFD section with a reasonable value for output_offset; below
6708 we assume that they also have a reasonable value for
6709 output_section. Any special sections must be set up to meet
6710 these requirements. */
6711 osym.st_value += isec->output_offset;
6712 if (! finfo->info->relocatable)
6713 {
6714 osym.st_value += isec->output_section->vma;
6715 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6716 {
6717 /* STT_TLS symbols are relative to PT_TLS segment base. */
6718 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6719 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6720 }
6721 }
6722
6723 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6724 return FALSE;
6725 }
6726
6727 /* Relocate the contents of each section. */
6728 sym_hashes = elf_sym_hashes (input_bfd);
6729 for (o = input_bfd->sections; o != NULL; o = o->next)
6730 {
6731 bfd_byte *contents;
6732
6733 if (! o->linker_mark)
6734 {
6735 /* This section was omitted from the link. */
6736 continue;
6737 }
6738
6739 if ((o->flags & SEC_HAS_CONTENTS) == 0
6740 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6741 continue;
6742
6743 if ((o->flags & SEC_LINKER_CREATED) != 0)
6744 {
6745 /* Section was created by _bfd_elf_link_create_dynamic_sections
6746 or somesuch. */
6747 continue;
6748 }
6749
6750 /* Get the contents of the section. They have been cached by a
6751 relaxation routine. Note that o is a section in an input
6752 file, so the contents field will not have been set by any of
6753 the routines which work on output files. */
6754 if (elf_section_data (o)->this_hdr.contents != NULL)
6755 contents = elf_section_data (o)->this_hdr.contents;
6756 else
6757 {
6758 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6759
6760 contents = finfo->contents;
6761 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6762 return FALSE;
6763 }
6764
6765 if ((o->flags & SEC_RELOC) != 0)
6766 {
6767 Elf_Internal_Rela *internal_relocs;
6768 bfd_vma r_type_mask;
6769 int r_sym_shift;
6770
6771 /* Get the swapped relocs. */
6772 internal_relocs
6773 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6774 finfo->internal_relocs, FALSE);
6775 if (internal_relocs == NULL
6776 && o->reloc_count > 0)
6777 return FALSE;
6778
6779 if (bed->s->arch_size == 32)
6780 {
6781 r_type_mask = 0xff;
6782 r_sym_shift = 8;
6783 }
6784 else
6785 {
6786 r_type_mask = 0xffffffff;
6787 r_sym_shift = 32;
6788 }
6789
6790 /* Run through the relocs looking for any against symbols
6791 from discarded sections and section symbols from
6792 removed link-once sections. Complain about relocs
6793 against discarded sections. Zero relocs against removed
6794 link-once sections. Preserve debug information as much
6795 as we can. */
6796 if (!elf_section_ignore_discarded_relocs (o))
6797 {
6798 Elf_Internal_Rela *rel, *relend;
6799 unsigned int action = elf_action_discarded (o);
6800
6801 rel = internal_relocs;
6802 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6803 for ( ; rel < relend; rel++)
6804 {
6805 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6806 asection **ps, *sec;
6807 struct elf_link_hash_entry *h = NULL;
6808 const char *sym_name;
6809
6810 if (r_symndx == STN_UNDEF)
6811 continue;
6812
6813 if (r_symndx >= locsymcount
6814 || (elf_bad_symtab (input_bfd)
6815 && finfo->sections[r_symndx] == NULL))
6816 {
6817 h = sym_hashes[r_symndx - extsymoff];
6818 while (h->root.type == bfd_link_hash_indirect
6819 || h->root.type == bfd_link_hash_warning)
6820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6821
6822 if (h->root.type != bfd_link_hash_defined
6823 && h->root.type != bfd_link_hash_defweak)
6824 continue;
6825
6826 ps = &h->root.u.def.section;
6827 sym_name = h->root.root.string;
6828 }
6829 else
6830 {
6831 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6832 ps = &finfo->sections[r_symndx];
6833 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
6834 }
6835
6836 /* Complain if the definition comes from a
6837 discarded section. */
6838 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6839 {
6840 asection *kept;
6841
6842 BFD_ASSERT (r_symndx != 0);
6843 if (action & COMPLAIN)
6844 {
6845 (*_bfd_error_handler)
6846 (_("`%s' referenced in section `%A' of %B: "
6847 "defined in discarded section `%A' of %B\n"),
6848 o, input_bfd, sec, sec->owner, sym_name);
6849 }
6850
6851 /* Try to do the best we can to support buggy old
6852 versions of gcc. If we've warned, or this is
6853 debugging info, pretend that the symbol is
6854 really defined in the kept linkonce section.
6855 FIXME: This is quite broken. Modifying the
6856 symbol here means we will be changing all later
6857 uses of the symbol, not just in this section.
6858 The only thing that makes this half reasonable
6859 is that we warn in non-debug sections, and
6860 debug sections tend to come after other
6861 sections. */
6862 kept = sec->kept_section;
6863 if (kept != NULL && (action & PRETEND))
6864 {
6865 if (elf_sec_group (sec) != NULL)
6866 kept = match_group_member (sec, kept);
6867 if (kept != NULL
6868 && sec->size == kept->size)
6869 {
6870 *ps = kept;
6871 continue;
6872 }
6873 }
6874
6875 /* Remove the symbol reference from the reloc, but
6876 don't kill the reloc completely. This is so that
6877 a zero value will be written into the section,
6878 which may have non-zero contents put there by the
6879 assembler. Zero in things like an eh_frame fde
6880 pc_begin allows stack unwinders to recognize the
6881 fde as bogus. */
6882 rel->r_info &= r_type_mask;
6883 rel->r_addend = 0;
6884 }
6885 }
6886 }
6887
6888 /* Relocate the section by invoking a back end routine.
6889
6890 The back end routine is responsible for adjusting the
6891 section contents as necessary, and (if using Rela relocs
6892 and generating a relocatable output file) adjusting the
6893 reloc addend as necessary.
6894
6895 The back end routine does not have to worry about setting
6896 the reloc address or the reloc symbol index.
6897
6898 The back end routine is given a pointer to the swapped in
6899 internal symbols, and can access the hash table entries
6900 for the external symbols via elf_sym_hashes (input_bfd).
6901
6902 When generating relocatable output, the back end routine
6903 must handle STB_LOCAL/STT_SECTION symbols specially. The
6904 output symbol is going to be a section symbol
6905 corresponding to the output section, which will require
6906 the addend to be adjusted. */
6907
6908 if (! (*relocate_section) (output_bfd, finfo->info,
6909 input_bfd, o, contents,
6910 internal_relocs,
6911 isymbuf,
6912 finfo->sections))
6913 return FALSE;
6914
6915 if (emit_relocs)
6916 {
6917 Elf_Internal_Rela *irela;
6918 Elf_Internal_Rela *irelaend;
6919 bfd_vma last_offset;
6920 struct elf_link_hash_entry **rel_hash;
6921 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6922 unsigned int next_erel;
6923 bfd_boolean (*reloc_emitter)
6924 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6925 bfd_boolean rela_normal;
6926
6927 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6928 rela_normal = (bed->rela_normal
6929 && (input_rel_hdr->sh_entsize
6930 == bed->s->sizeof_rela));
6931
6932 /* Adjust the reloc addresses and symbol indices. */
6933
6934 irela = internal_relocs;
6935 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6936 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6937 + elf_section_data (o->output_section)->rel_count
6938 + elf_section_data (o->output_section)->rel_count2);
6939 last_offset = o->output_offset;
6940 if (!finfo->info->relocatable)
6941 last_offset += o->output_section->vma;
6942 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6943 {
6944 unsigned long r_symndx;
6945 asection *sec;
6946 Elf_Internal_Sym sym;
6947
6948 if (next_erel == bed->s->int_rels_per_ext_rel)
6949 {
6950 rel_hash++;
6951 next_erel = 0;
6952 }
6953
6954 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6955 finfo->info, o,
6956 irela->r_offset);
6957 if (irela->r_offset >= (bfd_vma) -2)
6958 {
6959 /* This is a reloc for a deleted entry or somesuch.
6960 Turn it into an R_*_NONE reloc, at the same
6961 offset as the last reloc. elf_eh_frame.c and
6962 elf_bfd_discard_info rely on reloc offsets
6963 being ordered. */
6964 irela->r_offset = last_offset;
6965 irela->r_info = 0;
6966 irela->r_addend = 0;
6967 continue;
6968 }
6969
6970 irela->r_offset += o->output_offset;
6971
6972 /* Relocs in an executable have to be virtual addresses. */
6973 if (!finfo->info->relocatable)
6974 irela->r_offset += o->output_section->vma;
6975
6976 last_offset = irela->r_offset;
6977
6978 r_symndx = irela->r_info >> r_sym_shift;
6979 if (r_symndx == STN_UNDEF)
6980 continue;
6981
6982 if (r_symndx >= locsymcount
6983 || (elf_bad_symtab (input_bfd)
6984 && finfo->sections[r_symndx] == NULL))
6985 {
6986 struct elf_link_hash_entry *rh;
6987 unsigned long indx;
6988
6989 /* This is a reloc against a global symbol. We
6990 have not yet output all the local symbols, so
6991 we do not know the symbol index of any global
6992 symbol. We set the rel_hash entry for this
6993 reloc to point to the global hash table entry
6994 for this symbol. The symbol index is then
6995 set at the end of bfd_elf_final_link. */
6996 indx = r_symndx - extsymoff;
6997 rh = elf_sym_hashes (input_bfd)[indx];
6998 while (rh->root.type == bfd_link_hash_indirect
6999 || rh->root.type == bfd_link_hash_warning)
7000 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7001
7002 /* Setting the index to -2 tells
7003 elf_link_output_extsym that this symbol is
7004 used by a reloc. */
7005 BFD_ASSERT (rh->indx < 0);
7006 rh->indx = -2;
7007
7008 *rel_hash = rh;
7009
7010 continue;
7011 }
7012
7013 /* This is a reloc against a local symbol. */
7014
7015 *rel_hash = NULL;
7016 sym = isymbuf[r_symndx];
7017 sec = finfo->sections[r_symndx];
7018 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7019 {
7020 /* I suppose the backend ought to fill in the
7021 section of any STT_SECTION symbol against a
7022 processor specific section. */
7023 r_symndx = 0;
7024 if (bfd_is_abs_section (sec))
7025 ;
7026 else if (sec == NULL || sec->owner == NULL)
7027 {
7028 bfd_set_error (bfd_error_bad_value);
7029 return FALSE;
7030 }
7031 else
7032 {
7033 asection *osec = sec->output_section;
7034
7035 /* If we have discarded a section, the output
7036 section will be the absolute section. In
7037 case of discarded link-once and discarded
7038 SEC_MERGE sections, use the kept section. */
7039 if (bfd_is_abs_section (osec)
7040 && sec->kept_section != NULL
7041 && sec->kept_section->output_section != NULL)
7042 {
7043 osec = sec->kept_section->output_section;
7044 irela->r_addend -= osec->vma;
7045 }
7046
7047 if (!bfd_is_abs_section (osec))
7048 {
7049 r_symndx = osec->target_index;
7050 BFD_ASSERT (r_symndx != 0);
7051 }
7052 }
7053
7054 /* Adjust the addend according to where the
7055 section winds up in the output section. */
7056 if (rela_normal)
7057 irela->r_addend += sec->output_offset;
7058 }
7059 else
7060 {
7061 if (finfo->indices[r_symndx] == -1)
7062 {
7063 unsigned long shlink;
7064 const char *name;
7065 asection *osec;
7066
7067 if (finfo->info->strip == strip_all)
7068 {
7069 /* You can't do ld -r -s. */
7070 bfd_set_error (bfd_error_invalid_operation);
7071 return FALSE;
7072 }
7073
7074 /* This symbol was skipped earlier, but
7075 since it is needed by a reloc, we
7076 must output it now. */
7077 shlink = symtab_hdr->sh_link;
7078 name = (bfd_elf_string_from_elf_section
7079 (input_bfd, shlink, sym.st_name));
7080 if (name == NULL)
7081 return FALSE;
7082
7083 osec = sec->output_section;
7084 sym.st_shndx =
7085 _bfd_elf_section_from_bfd_section (output_bfd,
7086 osec);
7087 if (sym.st_shndx == SHN_BAD)
7088 return FALSE;
7089
7090 sym.st_value += sec->output_offset;
7091 if (! finfo->info->relocatable)
7092 {
7093 sym.st_value += osec->vma;
7094 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7095 {
7096 /* STT_TLS symbols are relative to PT_TLS
7097 segment base. */
7098 BFD_ASSERT (elf_hash_table (finfo->info)
7099 ->tls_sec != NULL);
7100 sym.st_value -= (elf_hash_table (finfo->info)
7101 ->tls_sec->vma);
7102 }
7103 }
7104
7105 finfo->indices[r_symndx]
7106 = bfd_get_symcount (output_bfd);
7107
7108 if (! elf_link_output_sym (finfo, name, &sym, sec,
7109 NULL))
7110 return FALSE;
7111 }
7112
7113 r_symndx = finfo->indices[r_symndx];
7114 }
7115
7116 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7117 | (irela->r_info & r_type_mask));
7118 }
7119
7120 /* Swap out the relocs. */
7121 if (bed->elf_backend_emit_relocs
7122 && !(finfo->info->relocatable
7123 || finfo->info->emitrelocations))
7124 reloc_emitter = bed->elf_backend_emit_relocs;
7125 else
7126 reloc_emitter = _bfd_elf_link_output_relocs;
7127
7128 if (input_rel_hdr->sh_size != 0
7129 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7130 internal_relocs))
7131 return FALSE;
7132
7133 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7134 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7135 {
7136 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7137 * bed->s->int_rels_per_ext_rel);
7138 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7139 internal_relocs))
7140 return FALSE;
7141 }
7142 }
7143 }
7144
7145 /* Write out the modified section contents. */
7146 if (bed->elf_backend_write_section
7147 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7148 {
7149 /* Section written out. */
7150 }
7151 else switch (o->sec_info_type)
7152 {
7153 case ELF_INFO_TYPE_STABS:
7154 if (! (_bfd_write_section_stabs
7155 (output_bfd,
7156 &elf_hash_table (finfo->info)->stab_info,
7157 o, &elf_section_data (o)->sec_info, contents)))
7158 return FALSE;
7159 break;
7160 case ELF_INFO_TYPE_MERGE:
7161 if (! _bfd_write_merged_section (output_bfd, o,
7162 elf_section_data (o)->sec_info))
7163 return FALSE;
7164 break;
7165 case ELF_INFO_TYPE_EH_FRAME:
7166 {
7167 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7168 o, contents))
7169 return FALSE;
7170 }
7171 break;
7172 default:
7173 {
7174 if (! (o->flags & SEC_EXCLUDE)
7175 && ! bfd_set_section_contents (output_bfd, o->output_section,
7176 contents,
7177 (file_ptr) o->output_offset,
7178 o->size))
7179 return FALSE;
7180 }
7181 break;
7182 }
7183 }
7184
7185 return TRUE;
7186 }
7187
7188 /* Generate a reloc when linking an ELF file. This is a reloc
7189 requested by the linker, and does come from any input file. This
7190 is used to build constructor and destructor tables when linking
7191 with -Ur. */
7192
7193 static bfd_boolean
7194 elf_reloc_link_order (bfd *output_bfd,
7195 struct bfd_link_info *info,
7196 asection *output_section,
7197 struct bfd_link_order *link_order)
7198 {
7199 reloc_howto_type *howto;
7200 long indx;
7201 bfd_vma offset;
7202 bfd_vma addend;
7203 struct elf_link_hash_entry **rel_hash_ptr;
7204 Elf_Internal_Shdr *rel_hdr;
7205 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7206 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7207 bfd_byte *erel;
7208 unsigned int i;
7209
7210 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7211 if (howto == NULL)
7212 {
7213 bfd_set_error (bfd_error_bad_value);
7214 return FALSE;
7215 }
7216
7217 addend = link_order->u.reloc.p->addend;
7218
7219 /* Figure out the symbol index. */
7220 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7221 + elf_section_data (output_section)->rel_count
7222 + elf_section_data (output_section)->rel_count2);
7223 if (link_order->type == bfd_section_reloc_link_order)
7224 {
7225 indx = link_order->u.reloc.p->u.section->target_index;
7226 BFD_ASSERT (indx != 0);
7227 *rel_hash_ptr = NULL;
7228 }
7229 else
7230 {
7231 struct elf_link_hash_entry *h;
7232
7233 /* Treat a reloc against a defined symbol as though it were
7234 actually against the section. */
7235 h = ((struct elf_link_hash_entry *)
7236 bfd_wrapped_link_hash_lookup (output_bfd, info,
7237 link_order->u.reloc.p->u.name,
7238 FALSE, FALSE, TRUE));
7239 if (h != NULL
7240 && (h->root.type == bfd_link_hash_defined
7241 || h->root.type == bfd_link_hash_defweak))
7242 {
7243 asection *section;
7244
7245 section = h->root.u.def.section;
7246 indx = section->output_section->target_index;
7247 *rel_hash_ptr = NULL;
7248 /* It seems that we ought to add the symbol value to the
7249 addend here, but in practice it has already been added
7250 because it was passed to constructor_callback. */
7251 addend += section->output_section->vma + section->output_offset;
7252 }
7253 else if (h != NULL)
7254 {
7255 /* Setting the index to -2 tells elf_link_output_extsym that
7256 this symbol is used by a reloc. */
7257 h->indx = -2;
7258 *rel_hash_ptr = h;
7259 indx = 0;
7260 }
7261 else
7262 {
7263 if (! ((*info->callbacks->unattached_reloc)
7264 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7265 return FALSE;
7266 indx = 0;
7267 }
7268 }
7269
7270 /* If this is an inplace reloc, we must write the addend into the
7271 object file. */
7272 if (howto->partial_inplace && addend != 0)
7273 {
7274 bfd_size_type size;
7275 bfd_reloc_status_type rstat;
7276 bfd_byte *buf;
7277 bfd_boolean ok;
7278 const char *sym_name;
7279
7280 size = bfd_get_reloc_size (howto);
7281 buf = bfd_zmalloc (size);
7282 if (buf == NULL)
7283 return FALSE;
7284 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7285 switch (rstat)
7286 {
7287 case bfd_reloc_ok:
7288 break;
7289
7290 default:
7291 case bfd_reloc_outofrange:
7292 abort ();
7293
7294 case bfd_reloc_overflow:
7295 if (link_order->type == bfd_section_reloc_link_order)
7296 sym_name = bfd_section_name (output_bfd,
7297 link_order->u.reloc.p->u.section);
7298 else
7299 sym_name = link_order->u.reloc.p->u.name;
7300 if (! ((*info->callbacks->reloc_overflow)
7301 (info, NULL, sym_name, howto->name, addend, NULL,
7302 NULL, (bfd_vma) 0)))
7303 {
7304 free (buf);
7305 return FALSE;
7306 }
7307 break;
7308 }
7309 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7310 link_order->offset, size);
7311 free (buf);
7312 if (! ok)
7313 return FALSE;
7314 }
7315
7316 /* The address of a reloc is relative to the section in a
7317 relocatable file, and is a virtual address in an executable
7318 file. */
7319 offset = link_order->offset;
7320 if (! info->relocatable)
7321 offset += output_section->vma;
7322
7323 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7324 {
7325 irel[i].r_offset = offset;
7326 irel[i].r_info = 0;
7327 irel[i].r_addend = 0;
7328 }
7329 if (bed->s->arch_size == 32)
7330 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7331 else
7332 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7333
7334 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7335 erel = rel_hdr->contents;
7336 if (rel_hdr->sh_type == SHT_REL)
7337 {
7338 erel += (elf_section_data (output_section)->rel_count
7339 * bed->s->sizeof_rel);
7340 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7341 }
7342 else
7343 {
7344 irel[0].r_addend = addend;
7345 erel += (elf_section_data (output_section)->rel_count
7346 * bed->s->sizeof_rela);
7347 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7348 }
7349
7350 ++elf_section_data (output_section)->rel_count;
7351
7352 return TRUE;
7353 }
7354
7355
7356 /* Get the output vma of the section pointed to by the sh_link field. */
7357
7358 static bfd_vma
7359 elf_get_linked_section_vma (struct bfd_link_order *p)
7360 {
7361 Elf_Internal_Shdr **elf_shdrp;
7362 asection *s;
7363 int elfsec;
7364
7365 s = p->u.indirect.section;
7366 elf_shdrp = elf_elfsections (s->owner);
7367 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7368 elfsec = elf_shdrp[elfsec]->sh_link;
7369 /* PR 290:
7370 The Intel C compiler generates SHT_IA_64_UNWIND with
7371 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7372 sh_info fields. Hence we could get the situation
7373 where elfsec is 0. */
7374 if (elfsec == 0)
7375 {
7376 const struct elf_backend_data *bed
7377 = get_elf_backend_data (s->owner);
7378 if (bed->link_order_error_handler)
7379 bed->link_order_error_handler
7380 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7381 return 0;
7382 }
7383 else
7384 {
7385 s = elf_shdrp[elfsec]->bfd_section;
7386 return s->output_section->vma + s->output_offset;
7387 }
7388 }
7389
7390
7391 /* Compare two sections based on the locations of the sections they are
7392 linked to. Used by elf_fixup_link_order. */
7393
7394 static int
7395 compare_link_order (const void * a, const void * b)
7396 {
7397 bfd_vma apos;
7398 bfd_vma bpos;
7399
7400 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7401 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7402 if (apos < bpos)
7403 return -1;
7404 return apos > bpos;
7405 }
7406
7407
7408 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7409 order as their linked sections. Returns false if this could not be done
7410 because an output section includes both ordered and unordered
7411 sections. Ideally we'd do this in the linker proper. */
7412
7413 static bfd_boolean
7414 elf_fixup_link_order (bfd *abfd, asection *o)
7415 {
7416 int seen_linkorder;
7417 int seen_other;
7418 int n;
7419 struct bfd_link_order *p;
7420 bfd *sub;
7421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7422 int elfsec;
7423 struct bfd_link_order **sections;
7424 asection *s;
7425 bfd_vma offset;
7426
7427 seen_other = 0;
7428 seen_linkorder = 0;
7429 for (p = o->link_order_head; p != NULL; p = p->next)
7430 {
7431 if (p->type == bfd_indirect_link_order
7432 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7433 == bfd_target_elf_flavour)
7434 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7435 {
7436 s = p->u.indirect.section;
7437 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7438 if (elfsec != -1
7439 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7440 seen_linkorder++;
7441 else
7442 seen_other++;
7443 }
7444 else
7445 seen_other++;
7446 }
7447
7448 if (!seen_linkorder)
7449 return TRUE;
7450
7451 if (seen_other && seen_linkorder)
7452 {
7453 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7454 o);
7455 bfd_set_error (bfd_error_bad_value);
7456 return FALSE;
7457 }
7458
7459 sections = (struct bfd_link_order **)
7460 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7461 seen_linkorder = 0;
7462
7463 for (p = o->link_order_head; p != NULL; p = p->next)
7464 {
7465 sections[seen_linkorder++] = p;
7466 }
7467 /* Sort the input sections in the order of their linked section. */
7468 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7469 compare_link_order);
7470
7471 /* Change the offsets of the sections. */
7472 offset = 0;
7473 for (n = 0; n < seen_linkorder; n++)
7474 {
7475 s = sections[n]->u.indirect.section;
7476 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7477 s->output_offset = offset;
7478 sections[n]->offset = offset;
7479 offset += sections[n]->size;
7480 }
7481
7482 return TRUE;
7483 }
7484
7485
7486 /* Do the final step of an ELF link. */
7487
7488 bfd_boolean
7489 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7490 {
7491 bfd_boolean dynamic;
7492 bfd_boolean emit_relocs;
7493 bfd *dynobj;
7494 struct elf_final_link_info finfo;
7495 register asection *o;
7496 register struct bfd_link_order *p;
7497 register bfd *sub;
7498 bfd_size_type max_contents_size;
7499 bfd_size_type max_external_reloc_size;
7500 bfd_size_type max_internal_reloc_count;
7501 bfd_size_type max_sym_count;
7502 bfd_size_type max_sym_shndx_count;
7503 file_ptr off;
7504 Elf_Internal_Sym elfsym;
7505 unsigned int i;
7506 Elf_Internal_Shdr *symtab_hdr;
7507 Elf_Internal_Shdr *symtab_shndx_hdr;
7508 Elf_Internal_Shdr *symstrtab_hdr;
7509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7510 struct elf_outext_info eoinfo;
7511 bfd_boolean merged;
7512 size_t relativecount = 0;
7513 asection *reldyn = 0;
7514 bfd_size_type amt;
7515
7516 if (! is_elf_hash_table (info->hash))
7517 return FALSE;
7518
7519 if (info->shared)
7520 abfd->flags |= DYNAMIC;
7521
7522 dynamic = elf_hash_table (info)->dynamic_sections_created;
7523 dynobj = elf_hash_table (info)->dynobj;
7524
7525 emit_relocs = (info->relocatable
7526 || info->emitrelocations
7527 || bed->elf_backend_emit_relocs);
7528
7529 finfo.info = info;
7530 finfo.output_bfd = abfd;
7531 finfo.symstrtab = _bfd_elf_stringtab_init ();
7532 if (finfo.symstrtab == NULL)
7533 return FALSE;
7534
7535 if (! dynamic)
7536 {
7537 finfo.dynsym_sec = NULL;
7538 finfo.hash_sec = NULL;
7539 finfo.symver_sec = NULL;
7540 }
7541 else
7542 {
7543 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7544 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7545 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7546 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7547 /* Note that it is OK if symver_sec is NULL. */
7548 }
7549
7550 finfo.contents = NULL;
7551 finfo.external_relocs = NULL;
7552 finfo.internal_relocs = NULL;
7553 finfo.external_syms = NULL;
7554 finfo.locsym_shndx = NULL;
7555 finfo.internal_syms = NULL;
7556 finfo.indices = NULL;
7557 finfo.sections = NULL;
7558 finfo.symbuf = NULL;
7559 finfo.symshndxbuf = NULL;
7560 finfo.symbuf_count = 0;
7561 finfo.shndxbuf_size = 0;
7562
7563 /* Count up the number of relocations we will output for each output
7564 section, so that we know the sizes of the reloc sections. We
7565 also figure out some maximum sizes. */
7566 max_contents_size = 0;
7567 max_external_reloc_size = 0;
7568 max_internal_reloc_count = 0;
7569 max_sym_count = 0;
7570 max_sym_shndx_count = 0;
7571 merged = FALSE;
7572 for (o = abfd->sections; o != NULL; o = o->next)
7573 {
7574 struct bfd_elf_section_data *esdo = elf_section_data (o);
7575 o->reloc_count = 0;
7576
7577 for (p = o->link_order_head; p != NULL; p = p->next)
7578 {
7579 unsigned int reloc_count = 0;
7580 struct bfd_elf_section_data *esdi = NULL;
7581 unsigned int *rel_count1;
7582
7583 if (p->type == bfd_section_reloc_link_order
7584 || p->type == bfd_symbol_reloc_link_order)
7585 reloc_count = 1;
7586 else if (p->type == bfd_indirect_link_order)
7587 {
7588 asection *sec;
7589
7590 sec = p->u.indirect.section;
7591 esdi = elf_section_data (sec);
7592
7593 /* Mark all sections which are to be included in the
7594 link. This will normally be every section. We need
7595 to do this so that we can identify any sections which
7596 the linker has decided to not include. */
7597 sec->linker_mark = TRUE;
7598
7599 if (sec->flags & SEC_MERGE)
7600 merged = TRUE;
7601
7602 if (info->relocatable || info->emitrelocations)
7603 reloc_count = sec->reloc_count;
7604 else if (bed->elf_backend_count_relocs)
7605 {
7606 Elf_Internal_Rela * relocs;
7607
7608 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7609 info->keep_memory);
7610
7611 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7612
7613 if (elf_section_data (o)->relocs != relocs)
7614 free (relocs);
7615 }
7616
7617 if (sec->rawsize > max_contents_size)
7618 max_contents_size = sec->rawsize;
7619 if (sec->size > max_contents_size)
7620 max_contents_size = sec->size;
7621
7622 /* We are interested in just local symbols, not all
7623 symbols. */
7624 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7625 && (sec->owner->flags & DYNAMIC) == 0)
7626 {
7627 size_t sym_count;
7628
7629 if (elf_bad_symtab (sec->owner))
7630 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7631 / bed->s->sizeof_sym);
7632 else
7633 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7634
7635 if (sym_count > max_sym_count)
7636 max_sym_count = sym_count;
7637
7638 if (sym_count > max_sym_shndx_count
7639 && elf_symtab_shndx (sec->owner) != 0)
7640 max_sym_shndx_count = sym_count;
7641
7642 if ((sec->flags & SEC_RELOC) != 0)
7643 {
7644 size_t ext_size;
7645
7646 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7647 if (ext_size > max_external_reloc_size)
7648 max_external_reloc_size = ext_size;
7649 if (sec->reloc_count > max_internal_reloc_count)
7650 max_internal_reloc_count = sec->reloc_count;
7651 }
7652 }
7653 }
7654
7655 if (reloc_count == 0)
7656 continue;
7657
7658 o->reloc_count += reloc_count;
7659
7660 /* MIPS may have a mix of REL and RELA relocs on sections.
7661 To support this curious ABI we keep reloc counts in
7662 elf_section_data too. We must be careful to add the
7663 relocations from the input section to the right output
7664 count. FIXME: Get rid of one count. We have
7665 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7666 rel_count1 = &esdo->rel_count;
7667 if (esdi != NULL)
7668 {
7669 bfd_boolean same_size;
7670 bfd_size_type entsize1;
7671
7672 entsize1 = esdi->rel_hdr.sh_entsize;
7673 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7674 || entsize1 == bed->s->sizeof_rela);
7675 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7676
7677 if (!same_size)
7678 rel_count1 = &esdo->rel_count2;
7679
7680 if (esdi->rel_hdr2 != NULL)
7681 {
7682 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7683 unsigned int alt_count;
7684 unsigned int *rel_count2;
7685
7686 BFD_ASSERT (entsize2 != entsize1
7687 && (entsize2 == bed->s->sizeof_rel
7688 || entsize2 == bed->s->sizeof_rela));
7689
7690 rel_count2 = &esdo->rel_count2;
7691 if (!same_size)
7692 rel_count2 = &esdo->rel_count;
7693
7694 /* The following is probably too simplistic if the
7695 backend counts output relocs unusually. */
7696 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7697 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7698 *rel_count2 += alt_count;
7699 reloc_count -= alt_count;
7700 }
7701 }
7702 *rel_count1 += reloc_count;
7703 }
7704
7705 if (o->reloc_count > 0)
7706 o->flags |= SEC_RELOC;
7707 else
7708 {
7709 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7710 set it (this is probably a bug) and if it is set
7711 assign_section_numbers will create a reloc section. */
7712 o->flags &=~ SEC_RELOC;
7713 }
7714
7715 /* If the SEC_ALLOC flag is not set, force the section VMA to
7716 zero. This is done in elf_fake_sections as well, but forcing
7717 the VMA to 0 here will ensure that relocs against these
7718 sections are handled correctly. */
7719 if ((o->flags & SEC_ALLOC) == 0
7720 && ! o->user_set_vma)
7721 o->vma = 0;
7722 }
7723
7724 if (! info->relocatable && merged)
7725 elf_link_hash_traverse (elf_hash_table (info),
7726 _bfd_elf_link_sec_merge_syms, abfd);
7727
7728 /* Figure out the file positions for everything but the symbol table
7729 and the relocs. We set symcount to force assign_section_numbers
7730 to create a symbol table. */
7731 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7732 BFD_ASSERT (! abfd->output_has_begun);
7733 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7734 goto error_return;
7735
7736 /* Set sizes, and assign file positions for reloc sections. */
7737 for (o = abfd->sections; o != NULL; o = o->next)
7738 {
7739 if ((o->flags & SEC_RELOC) != 0)
7740 {
7741 if (!(_bfd_elf_link_size_reloc_section
7742 (abfd, &elf_section_data (o)->rel_hdr, o)))
7743 goto error_return;
7744
7745 if (elf_section_data (o)->rel_hdr2
7746 && !(_bfd_elf_link_size_reloc_section
7747 (abfd, elf_section_data (o)->rel_hdr2, o)))
7748 goto error_return;
7749 }
7750
7751 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7752 to count upwards while actually outputting the relocations. */
7753 elf_section_data (o)->rel_count = 0;
7754 elf_section_data (o)->rel_count2 = 0;
7755 }
7756
7757 _bfd_elf_assign_file_positions_for_relocs (abfd);
7758
7759 /* We have now assigned file positions for all the sections except
7760 .symtab and .strtab. We start the .symtab section at the current
7761 file position, and write directly to it. We build the .strtab
7762 section in memory. */
7763 bfd_get_symcount (abfd) = 0;
7764 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7765 /* sh_name is set in prep_headers. */
7766 symtab_hdr->sh_type = SHT_SYMTAB;
7767 /* sh_flags, sh_addr and sh_size all start off zero. */
7768 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7769 /* sh_link is set in assign_section_numbers. */
7770 /* sh_info is set below. */
7771 /* sh_offset is set just below. */
7772 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7773
7774 off = elf_tdata (abfd)->next_file_pos;
7775 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7776
7777 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7778 incorrect. We do not yet know the size of the .symtab section.
7779 We correct next_file_pos below, after we do know the size. */
7780
7781 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7782 continuously seeking to the right position in the file. */
7783 if (! info->keep_memory || max_sym_count < 20)
7784 finfo.symbuf_size = 20;
7785 else
7786 finfo.symbuf_size = max_sym_count;
7787 amt = finfo.symbuf_size;
7788 amt *= bed->s->sizeof_sym;
7789 finfo.symbuf = bfd_malloc (amt);
7790 if (finfo.symbuf == NULL)
7791 goto error_return;
7792 if (elf_numsections (abfd) > SHN_LORESERVE)
7793 {
7794 /* Wild guess at number of output symbols. realloc'd as needed. */
7795 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7796 finfo.shndxbuf_size = amt;
7797 amt *= sizeof (Elf_External_Sym_Shndx);
7798 finfo.symshndxbuf = bfd_zmalloc (amt);
7799 if (finfo.symshndxbuf == NULL)
7800 goto error_return;
7801 }
7802
7803 /* Start writing out the symbol table. The first symbol is always a
7804 dummy symbol. */
7805 if (info->strip != strip_all
7806 || emit_relocs)
7807 {
7808 elfsym.st_value = 0;
7809 elfsym.st_size = 0;
7810 elfsym.st_info = 0;
7811 elfsym.st_other = 0;
7812 elfsym.st_shndx = SHN_UNDEF;
7813 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7814 NULL))
7815 goto error_return;
7816 }
7817
7818 #if 0
7819 /* Some standard ELF linkers do this, but we don't because it causes
7820 bootstrap comparison failures. */
7821 /* Output a file symbol for the output file as the second symbol.
7822 We output this even if we are discarding local symbols, although
7823 I'm not sure if this is correct. */
7824 elfsym.st_value = 0;
7825 elfsym.st_size = 0;
7826 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7827 elfsym.st_other = 0;
7828 elfsym.st_shndx = SHN_ABS;
7829 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7830 &elfsym, bfd_abs_section_ptr, NULL))
7831 goto error_return;
7832 #endif
7833
7834 /* Output a symbol for each section. We output these even if we are
7835 discarding local symbols, since they are used for relocs. These
7836 symbols have no names. We store the index of each one in the
7837 index field of the section, so that we can find it again when
7838 outputting relocs. */
7839 if (info->strip != strip_all
7840 || emit_relocs)
7841 {
7842 elfsym.st_size = 0;
7843 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7844 elfsym.st_other = 0;
7845 for (i = 1; i < elf_numsections (abfd); i++)
7846 {
7847 o = bfd_section_from_elf_index (abfd, i);
7848 if (o != NULL)
7849 o->target_index = bfd_get_symcount (abfd);
7850 elfsym.st_shndx = i;
7851 if (info->relocatable || o == NULL)
7852 elfsym.st_value = 0;
7853 else
7854 elfsym.st_value = o->vma;
7855 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7856 goto error_return;
7857 if (i == SHN_LORESERVE - 1)
7858 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7859 }
7860 }
7861
7862 /* Allocate some memory to hold information read in from the input
7863 files. */
7864 if (max_contents_size != 0)
7865 {
7866 finfo.contents = bfd_malloc (max_contents_size);
7867 if (finfo.contents == NULL)
7868 goto error_return;
7869 }
7870
7871 if (max_external_reloc_size != 0)
7872 {
7873 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7874 if (finfo.external_relocs == NULL)
7875 goto error_return;
7876 }
7877
7878 if (max_internal_reloc_count != 0)
7879 {
7880 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7881 amt *= sizeof (Elf_Internal_Rela);
7882 finfo.internal_relocs = bfd_malloc (amt);
7883 if (finfo.internal_relocs == NULL)
7884 goto error_return;
7885 }
7886
7887 if (max_sym_count != 0)
7888 {
7889 amt = max_sym_count * bed->s->sizeof_sym;
7890 finfo.external_syms = bfd_malloc (amt);
7891 if (finfo.external_syms == NULL)
7892 goto error_return;
7893
7894 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7895 finfo.internal_syms = bfd_malloc (amt);
7896 if (finfo.internal_syms == NULL)
7897 goto error_return;
7898
7899 amt = max_sym_count * sizeof (long);
7900 finfo.indices = bfd_malloc (amt);
7901 if (finfo.indices == NULL)
7902 goto error_return;
7903
7904 amt = max_sym_count * sizeof (asection *);
7905 finfo.sections = bfd_malloc (amt);
7906 if (finfo.sections == NULL)
7907 goto error_return;
7908 }
7909
7910 if (max_sym_shndx_count != 0)
7911 {
7912 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7913 finfo.locsym_shndx = bfd_malloc (amt);
7914 if (finfo.locsym_shndx == NULL)
7915 goto error_return;
7916 }
7917
7918 if (elf_hash_table (info)->tls_sec)
7919 {
7920 bfd_vma base, end = 0;
7921 asection *sec;
7922
7923 for (sec = elf_hash_table (info)->tls_sec;
7924 sec && (sec->flags & SEC_THREAD_LOCAL);
7925 sec = sec->next)
7926 {
7927 bfd_vma size = sec->size;
7928
7929 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7930 {
7931 struct bfd_link_order *o;
7932
7933 for (o = sec->link_order_head; o != NULL; o = o->next)
7934 if (size < o->offset + o->size)
7935 size = o->offset + o->size;
7936 }
7937 end = sec->vma + size;
7938 }
7939 base = elf_hash_table (info)->tls_sec->vma;
7940 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7941 elf_hash_table (info)->tls_size = end - base;
7942 }
7943
7944 /* Reorder SHF_LINK_ORDER sections. */
7945 for (o = abfd->sections; o != NULL; o = o->next)
7946 {
7947 if (!elf_fixup_link_order (abfd, o))
7948 return FALSE;
7949 }
7950
7951 /* Since ELF permits relocations to be against local symbols, we
7952 must have the local symbols available when we do the relocations.
7953 Since we would rather only read the local symbols once, and we
7954 would rather not keep them in memory, we handle all the
7955 relocations for a single input file at the same time.
7956
7957 Unfortunately, there is no way to know the total number of local
7958 symbols until we have seen all of them, and the local symbol
7959 indices precede the global symbol indices. This means that when
7960 we are generating relocatable output, and we see a reloc against
7961 a global symbol, we can not know the symbol index until we have
7962 finished examining all the local symbols to see which ones we are
7963 going to output. To deal with this, we keep the relocations in
7964 memory, and don't output them until the end of the link. This is
7965 an unfortunate waste of memory, but I don't see a good way around
7966 it. Fortunately, it only happens when performing a relocatable
7967 link, which is not the common case. FIXME: If keep_memory is set
7968 we could write the relocs out and then read them again; I don't
7969 know how bad the memory loss will be. */
7970
7971 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7972 sub->output_has_begun = FALSE;
7973 for (o = abfd->sections; o != NULL; o = o->next)
7974 {
7975 for (p = o->link_order_head; p != NULL; p = p->next)
7976 {
7977 if (p->type == bfd_indirect_link_order
7978 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7979 == bfd_target_elf_flavour)
7980 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7981 {
7982 if (! sub->output_has_begun)
7983 {
7984 if (! elf_link_input_bfd (&finfo, sub))
7985 goto error_return;
7986 sub->output_has_begun = TRUE;
7987 }
7988 }
7989 else if (p->type == bfd_section_reloc_link_order
7990 || p->type == bfd_symbol_reloc_link_order)
7991 {
7992 if (! elf_reloc_link_order (abfd, info, o, p))
7993 goto error_return;
7994 }
7995 else
7996 {
7997 if (! _bfd_default_link_order (abfd, info, o, p))
7998 goto error_return;
7999 }
8000 }
8001 }
8002
8003 /* Output any global symbols that got converted to local in a
8004 version script or due to symbol visibility. We do this in a
8005 separate step since ELF requires all local symbols to appear
8006 prior to any global symbols. FIXME: We should only do this if
8007 some global symbols were, in fact, converted to become local.
8008 FIXME: Will this work correctly with the Irix 5 linker? */
8009 eoinfo.failed = FALSE;
8010 eoinfo.finfo = &finfo;
8011 eoinfo.localsyms = TRUE;
8012 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8013 &eoinfo);
8014 if (eoinfo.failed)
8015 return FALSE;
8016
8017 /* That wrote out all the local symbols. Finish up the symbol table
8018 with the global symbols. Even if we want to strip everything we
8019 can, we still need to deal with those global symbols that got
8020 converted to local in a version script. */
8021
8022 /* The sh_info field records the index of the first non local symbol. */
8023 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8024
8025 if (dynamic
8026 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8027 {
8028 Elf_Internal_Sym sym;
8029 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8030 long last_local = 0;
8031
8032 /* Write out the section symbols for the output sections. */
8033 if (info->shared)
8034 {
8035 asection *s;
8036
8037 sym.st_size = 0;
8038 sym.st_name = 0;
8039 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8040 sym.st_other = 0;
8041
8042 for (s = abfd->sections; s != NULL; s = s->next)
8043 {
8044 int indx;
8045 bfd_byte *dest;
8046 long dynindx;
8047
8048 dynindx = elf_section_data (s)->dynindx;
8049 if (dynindx <= 0)
8050 continue;
8051 indx = elf_section_data (s)->this_idx;
8052 BFD_ASSERT (indx > 0);
8053 sym.st_shndx = indx;
8054 sym.st_value = s->vma;
8055 dest = dynsym + dynindx * bed->s->sizeof_sym;
8056 if (last_local < dynindx)
8057 last_local = dynindx;
8058 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8059 }
8060 }
8061
8062 /* Write out the local dynsyms. */
8063 if (elf_hash_table (info)->dynlocal)
8064 {
8065 struct elf_link_local_dynamic_entry *e;
8066 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8067 {
8068 asection *s;
8069 bfd_byte *dest;
8070
8071 sym.st_size = e->isym.st_size;
8072 sym.st_other = e->isym.st_other;
8073
8074 /* Copy the internal symbol as is.
8075 Note that we saved a word of storage and overwrote
8076 the original st_name with the dynstr_index. */
8077 sym = e->isym;
8078
8079 if (e->isym.st_shndx != SHN_UNDEF
8080 && (e->isym.st_shndx < SHN_LORESERVE
8081 || e->isym.st_shndx > SHN_HIRESERVE))
8082 {
8083 s = bfd_section_from_elf_index (e->input_bfd,
8084 e->isym.st_shndx);
8085
8086 sym.st_shndx =
8087 elf_section_data (s->output_section)->this_idx;
8088 sym.st_value = (s->output_section->vma
8089 + s->output_offset
8090 + e->isym.st_value);
8091 }
8092
8093 if (last_local < e->dynindx)
8094 last_local = e->dynindx;
8095
8096 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8097 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8098 }
8099 }
8100
8101 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8102 last_local + 1;
8103 }
8104
8105 /* We get the global symbols from the hash table. */
8106 eoinfo.failed = FALSE;
8107 eoinfo.localsyms = FALSE;
8108 eoinfo.finfo = &finfo;
8109 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8110 &eoinfo);
8111 if (eoinfo.failed)
8112 return FALSE;
8113
8114 /* If backend needs to output some symbols not present in the hash
8115 table, do it now. */
8116 if (bed->elf_backend_output_arch_syms)
8117 {
8118 typedef bfd_boolean (*out_sym_func)
8119 (void *, const char *, Elf_Internal_Sym *, asection *,
8120 struct elf_link_hash_entry *);
8121
8122 if (! ((*bed->elf_backend_output_arch_syms)
8123 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8124 return FALSE;
8125 }
8126
8127 /* Flush all symbols to the file. */
8128 if (! elf_link_flush_output_syms (&finfo, bed))
8129 return FALSE;
8130
8131 /* Now we know the size of the symtab section. */
8132 off += symtab_hdr->sh_size;
8133
8134 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8135 if (symtab_shndx_hdr->sh_name != 0)
8136 {
8137 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8138 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8139 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8140 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8141 symtab_shndx_hdr->sh_size = amt;
8142
8143 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8144 off, TRUE);
8145
8146 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8147 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8148 return FALSE;
8149 }
8150
8151
8152 /* Finish up and write out the symbol string table (.strtab)
8153 section. */
8154 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8155 /* sh_name was set in prep_headers. */
8156 symstrtab_hdr->sh_type = SHT_STRTAB;
8157 symstrtab_hdr->sh_flags = 0;
8158 symstrtab_hdr->sh_addr = 0;
8159 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8160 symstrtab_hdr->sh_entsize = 0;
8161 symstrtab_hdr->sh_link = 0;
8162 symstrtab_hdr->sh_info = 0;
8163 /* sh_offset is set just below. */
8164 symstrtab_hdr->sh_addralign = 1;
8165
8166 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8167 elf_tdata (abfd)->next_file_pos = off;
8168
8169 if (bfd_get_symcount (abfd) > 0)
8170 {
8171 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8172 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8173 return FALSE;
8174 }
8175
8176 /* Adjust the relocs to have the correct symbol indices. */
8177 for (o = abfd->sections; o != NULL; o = o->next)
8178 {
8179 if ((o->flags & SEC_RELOC) == 0)
8180 continue;
8181
8182 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8183 elf_section_data (o)->rel_count,
8184 elf_section_data (o)->rel_hashes);
8185 if (elf_section_data (o)->rel_hdr2 != NULL)
8186 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8187 elf_section_data (o)->rel_count2,
8188 (elf_section_data (o)->rel_hashes
8189 + elf_section_data (o)->rel_count));
8190
8191 /* Set the reloc_count field to 0 to prevent write_relocs from
8192 trying to swap the relocs out itself. */
8193 o->reloc_count = 0;
8194 }
8195
8196 if (dynamic && info->combreloc && dynobj != NULL)
8197 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8198
8199 /* If we are linking against a dynamic object, or generating a
8200 shared library, finish up the dynamic linking information. */
8201 if (dynamic)
8202 {
8203 bfd_byte *dyncon, *dynconend;
8204
8205 /* Fix up .dynamic entries. */
8206 o = bfd_get_section_by_name (dynobj, ".dynamic");
8207 BFD_ASSERT (o != NULL);
8208
8209 dyncon = o->contents;
8210 dynconend = o->contents + o->size;
8211 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8212 {
8213 Elf_Internal_Dyn dyn;
8214 const char *name;
8215 unsigned int type;
8216
8217 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8218
8219 switch (dyn.d_tag)
8220 {
8221 default:
8222 continue;
8223 case DT_NULL:
8224 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8225 {
8226 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8227 {
8228 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8229 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8230 default: continue;
8231 }
8232 dyn.d_un.d_val = relativecount;
8233 relativecount = 0;
8234 break;
8235 }
8236 continue;
8237
8238 case DT_INIT:
8239 name = info->init_function;
8240 goto get_sym;
8241 case DT_FINI:
8242 name = info->fini_function;
8243 get_sym:
8244 {
8245 struct elf_link_hash_entry *h;
8246
8247 h = elf_link_hash_lookup (elf_hash_table (info), name,
8248 FALSE, FALSE, TRUE);
8249 if (h != NULL
8250 && (h->root.type == bfd_link_hash_defined
8251 || h->root.type == bfd_link_hash_defweak))
8252 {
8253 dyn.d_un.d_val = h->root.u.def.value;
8254 o = h->root.u.def.section;
8255 if (o->output_section != NULL)
8256 dyn.d_un.d_val += (o->output_section->vma
8257 + o->output_offset);
8258 else
8259 {
8260 /* The symbol is imported from another shared
8261 library and does not apply to this one. */
8262 dyn.d_un.d_val = 0;
8263 }
8264 break;
8265 }
8266 }
8267 continue;
8268
8269 case DT_PREINIT_ARRAYSZ:
8270 name = ".preinit_array";
8271 goto get_size;
8272 case DT_INIT_ARRAYSZ:
8273 name = ".init_array";
8274 goto get_size;
8275 case DT_FINI_ARRAYSZ:
8276 name = ".fini_array";
8277 get_size:
8278 o = bfd_get_section_by_name (abfd, name);
8279 if (o == NULL)
8280 {
8281 (*_bfd_error_handler)
8282 (_("%B: could not find output section %s"), abfd, name);
8283 goto error_return;
8284 }
8285 if (o->size == 0)
8286 (*_bfd_error_handler)
8287 (_("warning: %s section has zero size"), name);
8288 dyn.d_un.d_val = o->size;
8289 break;
8290
8291 case DT_PREINIT_ARRAY:
8292 name = ".preinit_array";
8293 goto get_vma;
8294 case DT_INIT_ARRAY:
8295 name = ".init_array";
8296 goto get_vma;
8297 case DT_FINI_ARRAY:
8298 name = ".fini_array";
8299 goto get_vma;
8300
8301 case DT_HASH:
8302 name = ".hash";
8303 goto get_vma;
8304 case DT_STRTAB:
8305 name = ".dynstr";
8306 goto get_vma;
8307 case DT_SYMTAB:
8308 name = ".dynsym";
8309 goto get_vma;
8310 case DT_VERDEF:
8311 name = ".gnu.version_d";
8312 goto get_vma;
8313 case DT_VERNEED:
8314 name = ".gnu.version_r";
8315 goto get_vma;
8316 case DT_VERSYM:
8317 name = ".gnu.version";
8318 get_vma:
8319 o = bfd_get_section_by_name (abfd, name);
8320 if (o == NULL)
8321 {
8322 (*_bfd_error_handler)
8323 (_("%B: could not find output section %s"), abfd, name);
8324 goto error_return;
8325 }
8326 dyn.d_un.d_ptr = o->vma;
8327 break;
8328
8329 case DT_REL:
8330 case DT_RELA:
8331 case DT_RELSZ:
8332 case DT_RELASZ:
8333 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8334 type = SHT_REL;
8335 else
8336 type = SHT_RELA;
8337 dyn.d_un.d_val = 0;
8338 for (i = 1; i < elf_numsections (abfd); i++)
8339 {
8340 Elf_Internal_Shdr *hdr;
8341
8342 hdr = elf_elfsections (abfd)[i];
8343 if (hdr->sh_type == type
8344 && (hdr->sh_flags & SHF_ALLOC) != 0)
8345 {
8346 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8347 dyn.d_un.d_val += hdr->sh_size;
8348 else
8349 {
8350 if (dyn.d_un.d_val == 0
8351 || hdr->sh_addr < dyn.d_un.d_val)
8352 dyn.d_un.d_val = hdr->sh_addr;
8353 }
8354 }
8355 }
8356 break;
8357 }
8358 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8359 }
8360 }
8361
8362 /* If we have created any dynamic sections, then output them. */
8363 if (dynobj != NULL)
8364 {
8365 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8366 goto error_return;
8367
8368 for (o = dynobj->sections; o != NULL; o = o->next)
8369 {
8370 if ((o->flags & SEC_HAS_CONTENTS) == 0
8371 || o->size == 0
8372 || o->output_section == bfd_abs_section_ptr)
8373 continue;
8374 if ((o->flags & SEC_LINKER_CREATED) == 0)
8375 {
8376 /* At this point, we are only interested in sections
8377 created by _bfd_elf_link_create_dynamic_sections. */
8378 continue;
8379 }
8380 if (elf_hash_table (info)->stab_info.stabstr == o)
8381 continue;
8382 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8383 continue;
8384 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8385 != SHT_STRTAB)
8386 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8387 {
8388 if (! bfd_set_section_contents (abfd, o->output_section,
8389 o->contents,
8390 (file_ptr) o->output_offset,
8391 o->size))
8392 goto error_return;
8393 }
8394 else
8395 {
8396 /* The contents of the .dynstr section are actually in a
8397 stringtab. */
8398 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8399 if (bfd_seek (abfd, off, SEEK_SET) != 0
8400 || ! _bfd_elf_strtab_emit (abfd,
8401 elf_hash_table (info)->dynstr))
8402 goto error_return;
8403 }
8404 }
8405 }
8406
8407 if (info->relocatable)
8408 {
8409 bfd_boolean failed = FALSE;
8410
8411 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8412 if (failed)
8413 goto error_return;
8414 }
8415
8416 /* If we have optimized stabs strings, output them. */
8417 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8418 {
8419 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8420 goto error_return;
8421 }
8422
8423 if (info->eh_frame_hdr)
8424 {
8425 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8426 goto error_return;
8427 }
8428
8429 if (finfo.symstrtab != NULL)
8430 _bfd_stringtab_free (finfo.symstrtab);
8431 if (finfo.contents != NULL)
8432 free (finfo.contents);
8433 if (finfo.external_relocs != NULL)
8434 free (finfo.external_relocs);
8435 if (finfo.internal_relocs != NULL)
8436 free (finfo.internal_relocs);
8437 if (finfo.external_syms != NULL)
8438 free (finfo.external_syms);
8439 if (finfo.locsym_shndx != NULL)
8440 free (finfo.locsym_shndx);
8441 if (finfo.internal_syms != NULL)
8442 free (finfo.internal_syms);
8443 if (finfo.indices != NULL)
8444 free (finfo.indices);
8445 if (finfo.sections != NULL)
8446 free (finfo.sections);
8447 if (finfo.symbuf != NULL)
8448 free (finfo.symbuf);
8449 if (finfo.symshndxbuf != NULL)
8450 free (finfo.symshndxbuf);
8451 for (o = abfd->sections; o != NULL; o = o->next)
8452 {
8453 if ((o->flags & SEC_RELOC) != 0
8454 && elf_section_data (o)->rel_hashes != NULL)
8455 free (elf_section_data (o)->rel_hashes);
8456 }
8457
8458 elf_tdata (abfd)->linker = TRUE;
8459
8460 return TRUE;
8461
8462 error_return:
8463 if (finfo.symstrtab != NULL)
8464 _bfd_stringtab_free (finfo.symstrtab);
8465 if (finfo.contents != NULL)
8466 free (finfo.contents);
8467 if (finfo.external_relocs != NULL)
8468 free (finfo.external_relocs);
8469 if (finfo.internal_relocs != NULL)
8470 free (finfo.internal_relocs);
8471 if (finfo.external_syms != NULL)
8472 free (finfo.external_syms);
8473 if (finfo.locsym_shndx != NULL)
8474 free (finfo.locsym_shndx);
8475 if (finfo.internal_syms != NULL)
8476 free (finfo.internal_syms);
8477 if (finfo.indices != NULL)
8478 free (finfo.indices);
8479 if (finfo.sections != NULL)
8480 free (finfo.sections);
8481 if (finfo.symbuf != NULL)
8482 free (finfo.symbuf);
8483 if (finfo.symshndxbuf != NULL)
8484 free (finfo.symshndxbuf);
8485 for (o = abfd->sections; o != NULL; o = o->next)
8486 {
8487 if ((o->flags & SEC_RELOC) != 0
8488 && elf_section_data (o)->rel_hashes != NULL)
8489 free (elf_section_data (o)->rel_hashes);
8490 }
8491
8492 return FALSE;
8493 }
8494 \f
8495 /* Garbage collect unused sections. */
8496
8497 /* The mark phase of garbage collection. For a given section, mark
8498 it and any sections in this section's group, and all the sections
8499 which define symbols to which it refers. */
8500
8501 typedef asection * (*gc_mark_hook_fn)
8502 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8503 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8504
8505 bfd_boolean
8506 _bfd_elf_gc_mark (struct bfd_link_info *info,
8507 asection *sec,
8508 gc_mark_hook_fn gc_mark_hook)
8509 {
8510 bfd_boolean ret;
8511 asection *group_sec;
8512
8513 sec->gc_mark = 1;
8514
8515 /* Mark all the sections in the group. */
8516 group_sec = elf_section_data (sec)->next_in_group;
8517 if (group_sec && !group_sec->gc_mark)
8518 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8519 return FALSE;
8520
8521 /* Look through the section relocs. */
8522 ret = TRUE;
8523 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8524 {
8525 Elf_Internal_Rela *relstart, *rel, *relend;
8526 Elf_Internal_Shdr *symtab_hdr;
8527 struct elf_link_hash_entry **sym_hashes;
8528 size_t nlocsyms;
8529 size_t extsymoff;
8530 bfd *input_bfd = sec->owner;
8531 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8532 Elf_Internal_Sym *isym = NULL;
8533 int r_sym_shift;
8534
8535 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8536 sym_hashes = elf_sym_hashes (input_bfd);
8537
8538 /* Read the local symbols. */
8539 if (elf_bad_symtab (input_bfd))
8540 {
8541 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8542 extsymoff = 0;
8543 }
8544 else
8545 extsymoff = nlocsyms = symtab_hdr->sh_info;
8546
8547 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8548 if (isym == NULL && nlocsyms != 0)
8549 {
8550 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8551 NULL, NULL, NULL);
8552 if (isym == NULL)
8553 return FALSE;
8554 }
8555
8556 /* Read the relocations. */
8557 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8558 info->keep_memory);
8559 if (relstart == NULL)
8560 {
8561 ret = FALSE;
8562 goto out1;
8563 }
8564 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8565
8566 if (bed->s->arch_size == 32)
8567 r_sym_shift = 8;
8568 else
8569 r_sym_shift = 32;
8570
8571 for (rel = relstart; rel < relend; rel++)
8572 {
8573 unsigned long r_symndx;
8574 asection *rsec;
8575 struct elf_link_hash_entry *h;
8576
8577 r_symndx = rel->r_info >> r_sym_shift;
8578 if (r_symndx == 0)
8579 continue;
8580
8581 if (r_symndx >= nlocsyms
8582 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8583 {
8584 h = sym_hashes[r_symndx - extsymoff];
8585 while (h->root.type == bfd_link_hash_indirect
8586 || h->root.type == bfd_link_hash_warning)
8587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8588 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8589 }
8590 else
8591 {
8592 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8593 }
8594
8595 if (rsec && !rsec->gc_mark)
8596 {
8597 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8598 rsec->gc_mark = 1;
8599 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8600 {
8601 ret = FALSE;
8602 goto out2;
8603 }
8604 }
8605 }
8606
8607 out2:
8608 if (elf_section_data (sec)->relocs != relstart)
8609 free (relstart);
8610 out1:
8611 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8612 {
8613 if (! info->keep_memory)
8614 free (isym);
8615 else
8616 symtab_hdr->contents = (unsigned char *) isym;
8617 }
8618 }
8619
8620 return ret;
8621 }
8622
8623 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8624
8625 static bfd_boolean
8626 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8627 {
8628 int *idx = idxptr;
8629
8630 if (h->root.type == bfd_link_hash_warning)
8631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8632
8633 if (h->dynindx != -1
8634 && ((h->root.type != bfd_link_hash_defined
8635 && h->root.type != bfd_link_hash_defweak)
8636 || h->root.u.def.section->gc_mark))
8637 h->dynindx = (*idx)++;
8638
8639 return TRUE;
8640 }
8641
8642 /* The sweep phase of garbage collection. Remove all garbage sections. */
8643
8644 typedef bfd_boolean (*gc_sweep_hook_fn)
8645 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8646
8647 static bfd_boolean
8648 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8649 {
8650 bfd *sub;
8651
8652 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8653 {
8654 asection *o;
8655
8656 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8657 continue;
8658
8659 for (o = sub->sections; o != NULL; o = o->next)
8660 {
8661 /* Keep debug and special sections. */
8662 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8663 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8664 o->gc_mark = 1;
8665
8666 if (o->gc_mark)
8667 continue;
8668
8669 /* Skip sweeping sections already excluded. */
8670 if (o->flags & SEC_EXCLUDE)
8671 continue;
8672
8673 /* Since this is early in the link process, it is simple
8674 to remove a section from the output. */
8675 o->flags |= SEC_EXCLUDE;
8676
8677 /* But we also have to update some of the relocation
8678 info we collected before. */
8679 if (gc_sweep_hook
8680 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8681 {
8682 Elf_Internal_Rela *internal_relocs;
8683 bfd_boolean r;
8684
8685 internal_relocs
8686 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8687 info->keep_memory);
8688 if (internal_relocs == NULL)
8689 return FALSE;
8690
8691 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8692
8693 if (elf_section_data (o)->relocs != internal_relocs)
8694 free (internal_relocs);
8695
8696 if (!r)
8697 return FALSE;
8698 }
8699 }
8700 }
8701
8702 /* Remove the symbols that were in the swept sections from the dynamic
8703 symbol table. GCFIXME: Anyone know how to get them out of the
8704 static symbol table as well? */
8705 {
8706 int i = 0;
8707
8708 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8709
8710 elf_hash_table (info)->dynsymcount = i;
8711 }
8712
8713 return TRUE;
8714 }
8715
8716 /* Propagate collected vtable information. This is called through
8717 elf_link_hash_traverse. */
8718
8719 static bfd_boolean
8720 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8721 {
8722 if (h->root.type == bfd_link_hash_warning)
8723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8724
8725 /* Those that are not vtables. */
8726 if (h->vtable == NULL || h->vtable->parent == NULL)
8727 return TRUE;
8728
8729 /* Those vtables that do not have parents, we cannot merge. */
8730 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8731 return TRUE;
8732
8733 /* If we've already been done, exit. */
8734 if (h->vtable->used && h->vtable->used[-1])
8735 return TRUE;
8736
8737 /* Make sure the parent's table is up to date. */
8738 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8739
8740 if (h->vtable->used == NULL)
8741 {
8742 /* None of this table's entries were referenced. Re-use the
8743 parent's table. */
8744 h->vtable->used = h->vtable->parent->vtable->used;
8745 h->vtable->size = h->vtable->parent->vtable->size;
8746 }
8747 else
8748 {
8749 size_t n;
8750 bfd_boolean *cu, *pu;
8751
8752 /* Or the parent's entries into ours. */
8753 cu = h->vtable->used;
8754 cu[-1] = TRUE;
8755 pu = h->vtable->parent->vtable->used;
8756 if (pu != NULL)
8757 {
8758 const struct elf_backend_data *bed;
8759 unsigned int log_file_align;
8760
8761 bed = get_elf_backend_data (h->root.u.def.section->owner);
8762 log_file_align = bed->s->log_file_align;
8763 n = h->vtable->parent->vtable->size >> log_file_align;
8764 while (n--)
8765 {
8766 if (*pu)
8767 *cu = TRUE;
8768 pu++;
8769 cu++;
8770 }
8771 }
8772 }
8773
8774 return TRUE;
8775 }
8776
8777 static bfd_boolean
8778 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8779 {
8780 asection *sec;
8781 bfd_vma hstart, hend;
8782 Elf_Internal_Rela *relstart, *relend, *rel;
8783 const struct elf_backend_data *bed;
8784 unsigned int log_file_align;
8785
8786 if (h->root.type == bfd_link_hash_warning)
8787 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8788
8789 /* Take care of both those symbols that do not describe vtables as
8790 well as those that are not loaded. */
8791 if (h->vtable == NULL || h->vtable->parent == NULL)
8792 return TRUE;
8793
8794 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8795 || h->root.type == bfd_link_hash_defweak);
8796
8797 sec = h->root.u.def.section;
8798 hstart = h->root.u.def.value;
8799 hend = hstart + h->size;
8800
8801 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8802 if (!relstart)
8803 return *(bfd_boolean *) okp = FALSE;
8804 bed = get_elf_backend_data (sec->owner);
8805 log_file_align = bed->s->log_file_align;
8806
8807 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8808
8809 for (rel = relstart; rel < relend; ++rel)
8810 if (rel->r_offset >= hstart && rel->r_offset < hend)
8811 {
8812 /* If the entry is in use, do nothing. */
8813 if (h->vtable->used
8814 && (rel->r_offset - hstart) < h->vtable->size)
8815 {
8816 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8817 if (h->vtable->used[entry])
8818 continue;
8819 }
8820 /* Otherwise, kill it. */
8821 rel->r_offset = rel->r_info = rel->r_addend = 0;
8822 }
8823
8824 return TRUE;
8825 }
8826
8827 /* Mark sections containing dynamically referenced symbols. This is called
8828 through elf_link_hash_traverse. */
8829
8830 static bfd_boolean
8831 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8832 void *okp ATTRIBUTE_UNUSED)
8833 {
8834 if (h->root.type == bfd_link_hash_warning)
8835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8836
8837 if ((h->root.type == bfd_link_hash_defined
8838 || h->root.type == bfd_link_hash_defweak)
8839 && h->ref_dynamic)
8840 h->root.u.def.section->flags |= SEC_KEEP;
8841
8842 return TRUE;
8843 }
8844
8845 /* Do mark and sweep of unused sections. */
8846
8847 bfd_boolean
8848 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8849 {
8850 bfd_boolean ok = TRUE;
8851 bfd *sub;
8852 asection * (*gc_mark_hook)
8853 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8854 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8855
8856 if (!get_elf_backend_data (abfd)->can_gc_sections
8857 || info->relocatable
8858 || info->emitrelocations
8859 || info->shared
8860 || !is_elf_hash_table (info->hash))
8861 {
8862 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8863 return TRUE;
8864 }
8865
8866 /* Apply transitive closure to the vtable entry usage info. */
8867 elf_link_hash_traverse (elf_hash_table (info),
8868 elf_gc_propagate_vtable_entries_used,
8869 &ok);
8870 if (!ok)
8871 return FALSE;
8872
8873 /* Kill the vtable relocations that were not used. */
8874 elf_link_hash_traverse (elf_hash_table (info),
8875 elf_gc_smash_unused_vtentry_relocs,
8876 &ok);
8877 if (!ok)
8878 return FALSE;
8879
8880 /* Mark dynamically referenced symbols. */
8881 if (elf_hash_table (info)->dynamic_sections_created)
8882 elf_link_hash_traverse (elf_hash_table (info),
8883 elf_gc_mark_dynamic_ref_symbol,
8884 &ok);
8885 if (!ok)
8886 return FALSE;
8887
8888 /* Grovel through relocs to find out who stays ... */
8889 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8890 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8891 {
8892 asection *o;
8893
8894 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8895 continue;
8896
8897 for (o = sub->sections; o != NULL; o = o->next)
8898 {
8899 if (o->flags & SEC_KEEP)
8900 {
8901 /* _bfd_elf_discard_section_eh_frame knows how to discard
8902 orphaned FDEs so don't mark sections referenced by the
8903 EH frame section. */
8904 if (strcmp (o->name, ".eh_frame") == 0)
8905 o->gc_mark = 1;
8906 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8907 return FALSE;
8908 }
8909 }
8910 }
8911
8912 /* ... and mark SEC_EXCLUDE for those that go. */
8913 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8914 return FALSE;
8915
8916 return TRUE;
8917 }
8918 \f
8919 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8920
8921 bfd_boolean
8922 bfd_elf_gc_record_vtinherit (bfd *abfd,
8923 asection *sec,
8924 struct elf_link_hash_entry *h,
8925 bfd_vma offset)
8926 {
8927 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8928 struct elf_link_hash_entry **search, *child;
8929 bfd_size_type extsymcount;
8930 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8931
8932 /* The sh_info field of the symtab header tells us where the
8933 external symbols start. We don't care about the local symbols at
8934 this point. */
8935 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8936 if (!elf_bad_symtab (abfd))
8937 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8938
8939 sym_hashes = elf_sym_hashes (abfd);
8940 sym_hashes_end = sym_hashes + extsymcount;
8941
8942 /* Hunt down the child symbol, which is in this section at the same
8943 offset as the relocation. */
8944 for (search = sym_hashes; search != sym_hashes_end; ++search)
8945 {
8946 if ((child = *search) != NULL
8947 && (child->root.type == bfd_link_hash_defined
8948 || child->root.type == bfd_link_hash_defweak)
8949 && child->root.u.def.section == sec
8950 && child->root.u.def.value == offset)
8951 goto win;
8952 }
8953
8954 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
8955 abfd, sec, (unsigned long) offset);
8956 bfd_set_error (bfd_error_invalid_operation);
8957 return FALSE;
8958
8959 win:
8960 if (!child->vtable)
8961 {
8962 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
8963 if (!child->vtable)
8964 return FALSE;
8965 }
8966 if (!h)
8967 {
8968 /* This *should* only be the absolute section. It could potentially
8969 be that someone has defined a non-global vtable though, which
8970 would be bad. It isn't worth paging in the local symbols to be
8971 sure though; that case should simply be handled by the assembler. */
8972
8973 child->vtable->parent = (struct elf_link_hash_entry *) -1;
8974 }
8975 else
8976 child->vtable->parent = h;
8977
8978 return TRUE;
8979 }
8980
8981 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8982
8983 bfd_boolean
8984 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8985 asection *sec ATTRIBUTE_UNUSED,
8986 struct elf_link_hash_entry *h,
8987 bfd_vma addend)
8988 {
8989 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8990 unsigned int log_file_align = bed->s->log_file_align;
8991
8992 if (!h->vtable)
8993 {
8994 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
8995 if (!h->vtable)
8996 return FALSE;
8997 }
8998
8999 if (addend >= h->vtable->size)
9000 {
9001 size_t size, bytes, file_align;
9002 bfd_boolean *ptr = h->vtable->used;
9003
9004 /* While the symbol is undefined, we have to be prepared to handle
9005 a zero size. */
9006 file_align = 1 << log_file_align;
9007 if (h->root.type == bfd_link_hash_undefined)
9008 size = addend + file_align;
9009 else
9010 {
9011 size = h->size;
9012 if (addend >= size)
9013 {
9014 /* Oops! We've got a reference past the defined end of
9015 the table. This is probably a bug -- shall we warn? */
9016 size = addend + file_align;
9017 }
9018 }
9019 size = (size + file_align - 1) & -file_align;
9020
9021 /* Allocate one extra entry for use as a "done" flag for the
9022 consolidation pass. */
9023 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9024
9025 if (ptr)
9026 {
9027 ptr = bfd_realloc (ptr - 1, bytes);
9028
9029 if (ptr != NULL)
9030 {
9031 size_t oldbytes;
9032
9033 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9034 * sizeof (bfd_boolean));
9035 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9036 }
9037 }
9038 else
9039 ptr = bfd_zmalloc (bytes);
9040
9041 if (ptr == NULL)
9042 return FALSE;
9043
9044 /* And arrange for that done flag to be at index -1. */
9045 h->vtable->used = ptr + 1;
9046 h->vtable->size = size;
9047 }
9048
9049 h->vtable->used[addend >> log_file_align] = TRUE;
9050
9051 return TRUE;
9052 }
9053
9054 struct alloc_got_off_arg {
9055 bfd_vma gotoff;
9056 unsigned int got_elt_size;
9057 };
9058
9059 /* We need a special top-level link routine to convert got reference counts
9060 to real got offsets. */
9061
9062 static bfd_boolean
9063 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9064 {
9065 struct alloc_got_off_arg *gofarg = arg;
9066
9067 if (h->root.type == bfd_link_hash_warning)
9068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9069
9070 if (h->got.refcount > 0)
9071 {
9072 h->got.offset = gofarg->gotoff;
9073 gofarg->gotoff += gofarg->got_elt_size;
9074 }
9075 else
9076 h->got.offset = (bfd_vma) -1;
9077
9078 return TRUE;
9079 }
9080
9081 /* And an accompanying bit to work out final got entry offsets once
9082 we're done. Should be called from final_link. */
9083
9084 bfd_boolean
9085 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9086 struct bfd_link_info *info)
9087 {
9088 bfd *i;
9089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9090 bfd_vma gotoff;
9091 unsigned int got_elt_size = bed->s->arch_size / 8;
9092 struct alloc_got_off_arg gofarg;
9093
9094 if (! is_elf_hash_table (info->hash))
9095 return FALSE;
9096
9097 /* The GOT offset is relative to the .got section, but the GOT header is
9098 put into the .got.plt section, if the backend uses it. */
9099 if (bed->want_got_plt)
9100 gotoff = 0;
9101 else
9102 gotoff = bed->got_header_size;
9103
9104 /* Do the local .got entries first. */
9105 for (i = info->input_bfds; i; i = i->link_next)
9106 {
9107 bfd_signed_vma *local_got;
9108 bfd_size_type j, locsymcount;
9109 Elf_Internal_Shdr *symtab_hdr;
9110
9111 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9112 continue;
9113
9114 local_got = elf_local_got_refcounts (i);
9115 if (!local_got)
9116 continue;
9117
9118 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9119 if (elf_bad_symtab (i))
9120 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9121 else
9122 locsymcount = symtab_hdr->sh_info;
9123
9124 for (j = 0; j < locsymcount; ++j)
9125 {
9126 if (local_got[j] > 0)
9127 {
9128 local_got[j] = gotoff;
9129 gotoff += got_elt_size;
9130 }
9131 else
9132 local_got[j] = (bfd_vma) -1;
9133 }
9134 }
9135
9136 /* Then the global .got entries. .plt refcounts are handled by
9137 adjust_dynamic_symbol */
9138 gofarg.gotoff = gotoff;
9139 gofarg.got_elt_size = got_elt_size;
9140 elf_link_hash_traverse (elf_hash_table (info),
9141 elf_gc_allocate_got_offsets,
9142 &gofarg);
9143 return TRUE;
9144 }
9145
9146 /* Many folk need no more in the way of final link than this, once
9147 got entry reference counting is enabled. */
9148
9149 bfd_boolean
9150 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9151 {
9152 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9153 return FALSE;
9154
9155 /* Invoke the regular ELF backend linker to do all the work. */
9156 return bfd_elf_final_link (abfd, info);
9157 }
9158
9159 bfd_boolean
9160 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9161 {
9162 struct elf_reloc_cookie *rcookie = cookie;
9163
9164 if (rcookie->bad_symtab)
9165 rcookie->rel = rcookie->rels;
9166
9167 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9168 {
9169 unsigned long r_symndx;
9170
9171 if (! rcookie->bad_symtab)
9172 if (rcookie->rel->r_offset > offset)
9173 return FALSE;
9174 if (rcookie->rel->r_offset != offset)
9175 continue;
9176
9177 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9178 if (r_symndx == SHN_UNDEF)
9179 return TRUE;
9180
9181 if (r_symndx >= rcookie->locsymcount
9182 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9183 {
9184 struct elf_link_hash_entry *h;
9185
9186 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9187
9188 while (h->root.type == bfd_link_hash_indirect
9189 || h->root.type == bfd_link_hash_warning)
9190 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9191
9192 if ((h->root.type == bfd_link_hash_defined
9193 || h->root.type == bfd_link_hash_defweak)
9194 && elf_discarded_section (h->root.u.def.section))
9195 return TRUE;
9196 else
9197 return FALSE;
9198 }
9199 else
9200 {
9201 /* It's not a relocation against a global symbol,
9202 but it could be a relocation against a local
9203 symbol for a discarded section. */
9204 asection *isec;
9205 Elf_Internal_Sym *isym;
9206
9207 /* Need to: get the symbol; get the section. */
9208 isym = &rcookie->locsyms[r_symndx];
9209 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9210 {
9211 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9212 if (isec != NULL && elf_discarded_section (isec))
9213 return TRUE;
9214 }
9215 }
9216 return FALSE;
9217 }
9218 return FALSE;
9219 }
9220
9221 /* Discard unneeded references to discarded sections.
9222 Returns TRUE if any section's size was changed. */
9223 /* This function assumes that the relocations are in sorted order,
9224 which is true for all known assemblers. */
9225
9226 bfd_boolean
9227 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9228 {
9229 struct elf_reloc_cookie cookie;
9230 asection *stab, *eh;
9231 Elf_Internal_Shdr *symtab_hdr;
9232 const struct elf_backend_data *bed;
9233 bfd *abfd;
9234 unsigned int count;
9235 bfd_boolean ret = FALSE;
9236
9237 if (info->traditional_format
9238 || !is_elf_hash_table (info->hash))
9239 return FALSE;
9240
9241 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9242 {
9243 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9244 continue;
9245
9246 bed = get_elf_backend_data (abfd);
9247
9248 if ((abfd->flags & DYNAMIC) != 0)
9249 continue;
9250
9251 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9252 if (info->relocatable
9253 || (eh != NULL
9254 && (eh->size == 0
9255 || bfd_is_abs_section (eh->output_section))))
9256 eh = NULL;
9257
9258 stab = bfd_get_section_by_name (abfd, ".stab");
9259 if (stab != NULL
9260 && (stab->size == 0
9261 || bfd_is_abs_section (stab->output_section)
9262 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9263 stab = NULL;
9264
9265 if (stab == NULL
9266 && eh == NULL
9267 && bed->elf_backend_discard_info == NULL)
9268 continue;
9269
9270 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9271 cookie.abfd = abfd;
9272 cookie.sym_hashes = elf_sym_hashes (abfd);
9273 cookie.bad_symtab = elf_bad_symtab (abfd);
9274 if (cookie.bad_symtab)
9275 {
9276 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9277 cookie.extsymoff = 0;
9278 }
9279 else
9280 {
9281 cookie.locsymcount = symtab_hdr->sh_info;
9282 cookie.extsymoff = symtab_hdr->sh_info;
9283 }
9284
9285 if (bed->s->arch_size == 32)
9286 cookie.r_sym_shift = 8;
9287 else
9288 cookie.r_sym_shift = 32;
9289
9290 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9291 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9292 {
9293 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9294 cookie.locsymcount, 0,
9295 NULL, NULL, NULL);
9296 if (cookie.locsyms == NULL)
9297 return FALSE;
9298 }
9299
9300 if (stab != NULL)
9301 {
9302 cookie.rels = NULL;
9303 count = stab->reloc_count;
9304 if (count != 0)
9305 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9306 info->keep_memory);
9307 if (cookie.rels != NULL)
9308 {
9309 cookie.rel = cookie.rels;
9310 cookie.relend = cookie.rels;
9311 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9312 if (_bfd_discard_section_stabs (abfd, stab,
9313 elf_section_data (stab)->sec_info,
9314 bfd_elf_reloc_symbol_deleted_p,
9315 &cookie))
9316 ret = TRUE;
9317 if (elf_section_data (stab)->relocs != cookie.rels)
9318 free (cookie.rels);
9319 }
9320 }
9321
9322 if (eh != NULL)
9323 {
9324 cookie.rels = NULL;
9325 count = eh->reloc_count;
9326 if (count != 0)
9327 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9328 info->keep_memory);
9329 cookie.rel = cookie.rels;
9330 cookie.relend = cookie.rels;
9331 if (cookie.rels != NULL)
9332 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9333
9334 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9335 bfd_elf_reloc_symbol_deleted_p,
9336 &cookie))
9337 ret = TRUE;
9338
9339 if (cookie.rels != NULL
9340 && elf_section_data (eh)->relocs != cookie.rels)
9341 free (cookie.rels);
9342 }
9343
9344 if (bed->elf_backend_discard_info != NULL
9345 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9346 ret = TRUE;
9347
9348 if (cookie.locsyms != NULL
9349 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9350 {
9351 if (! info->keep_memory)
9352 free (cookie.locsyms);
9353 else
9354 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9355 }
9356 }
9357
9358 if (info->eh_frame_hdr
9359 && !info->relocatable
9360 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9361 ret = TRUE;
9362
9363 return ret;
9364 }
9365
9366 void
9367 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9368 {
9369 flagword flags;
9370 const char *name, *p;
9371 struct bfd_section_already_linked *l;
9372 struct bfd_section_already_linked_hash_entry *already_linked_list;
9373 asection *group;
9374
9375 /* A single member comdat group section may be discarded by a
9376 linkonce section. See below. */
9377 if (sec->output_section == bfd_abs_section_ptr)
9378 return;
9379
9380 flags = sec->flags;
9381
9382 /* Check if it belongs to a section group. */
9383 group = elf_sec_group (sec);
9384
9385 /* Return if it isn't a linkonce section nor a member of a group. A
9386 comdat group section also has SEC_LINK_ONCE set. */
9387 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9388 return;
9389
9390 if (group)
9391 {
9392 /* If this is the member of a single member comdat group, check if
9393 the group should be discarded. */
9394 if (elf_next_in_group (sec) == sec
9395 && (group->flags & SEC_LINK_ONCE) != 0)
9396 sec = group;
9397 else
9398 return;
9399 }
9400
9401 /* FIXME: When doing a relocatable link, we may have trouble
9402 copying relocations in other sections that refer to local symbols
9403 in the section being discarded. Those relocations will have to
9404 be converted somehow; as of this writing I'm not sure that any of
9405 the backends handle that correctly.
9406
9407 It is tempting to instead not discard link once sections when
9408 doing a relocatable link (technically, they should be discarded
9409 whenever we are building constructors). However, that fails,
9410 because the linker winds up combining all the link once sections
9411 into a single large link once section, which defeats the purpose
9412 of having link once sections in the first place.
9413
9414 Also, not merging link once sections in a relocatable link
9415 causes trouble for MIPS ELF, which relies on link once semantics
9416 to handle the .reginfo section correctly. */
9417
9418 name = bfd_get_section_name (abfd, sec);
9419
9420 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9421 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9422 p++;
9423 else
9424 p = name;
9425
9426 already_linked_list = bfd_section_already_linked_table_lookup (p);
9427
9428 for (l = already_linked_list->entry; l != NULL; l = l->next)
9429 {
9430 /* We may have 3 different sections on the list: group section,
9431 comdat section and linkonce section. SEC may be a linkonce or
9432 group section. We match a group section with a group section,
9433 a linkonce section with a linkonce section, and ignore comdat
9434 section. */
9435 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9436 && strcmp (name, l->sec->name) == 0
9437 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9438 {
9439 /* The section has already been linked. See if we should
9440 issue a warning. */
9441 switch (flags & SEC_LINK_DUPLICATES)
9442 {
9443 default:
9444 abort ();
9445
9446 case SEC_LINK_DUPLICATES_DISCARD:
9447 break;
9448
9449 case SEC_LINK_DUPLICATES_ONE_ONLY:
9450 (*_bfd_error_handler)
9451 (_("%B: ignoring duplicate section `%A'\n"),
9452 abfd, sec);
9453 break;
9454
9455 case SEC_LINK_DUPLICATES_SAME_SIZE:
9456 if (sec->size != l->sec->size)
9457 (*_bfd_error_handler)
9458 (_("%B: duplicate section `%A' has different size\n"),
9459 abfd, sec);
9460 break;
9461
9462 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9463 if (sec->size != l->sec->size)
9464 (*_bfd_error_handler)
9465 (_("%B: duplicate section `%A' has different size\n"),
9466 abfd, sec);
9467 else if (sec->size != 0)
9468 {
9469 bfd_byte *sec_contents, *l_sec_contents;
9470
9471 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9472 (*_bfd_error_handler)
9473 (_("%B: warning: could not read contents of section `%A'\n"),
9474 abfd, sec);
9475 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9476 &l_sec_contents))
9477 (*_bfd_error_handler)
9478 (_("%B: warning: could not read contents of section `%A'\n"),
9479 l->sec->owner, l->sec);
9480 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9481 (*_bfd_error_handler)
9482 (_("%B: warning: duplicate section `%A' has different contents\n"),
9483 abfd, sec);
9484
9485 if (sec_contents)
9486 free (sec_contents);
9487 if (l_sec_contents)
9488 free (l_sec_contents);
9489 }
9490 break;
9491 }
9492
9493 /* Set the output_section field so that lang_add_section
9494 does not create a lang_input_section structure for this
9495 section. Since there might be a symbol in the section
9496 being discarded, we must retain a pointer to the section
9497 which we are really going to use. */
9498 sec->output_section = bfd_abs_section_ptr;
9499 sec->kept_section = l->sec;
9500
9501 if (flags & SEC_GROUP)
9502 {
9503 asection *first = elf_next_in_group (sec);
9504 asection *s = first;
9505
9506 while (s != NULL)
9507 {
9508 s->output_section = bfd_abs_section_ptr;
9509 /* Record which group discards it. */
9510 s->kept_section = l->sec;
9511 s = elf_next_in_group (s);
9512 /* These lists are circular. */
9513 if (s == first)
9514 break;
9515 }
9516 }
9517
9518 return;
9519 }
9520 }
9521
9522 if (group)
9523 {
9524 /* If this is the member of a single member comdat group and the
9525 group hasn't be discarded, we check if it matches a linkonce
9526 section. We only record the discarded comdat group. Otherwise
9527 the undiscarded group will be discarded incorrectly later since
9528 itself has been recorded. */
9529 for (l = already_linked_list->entry; l != NULL; l = l->next)
9530 if ((l->sec->flags & SEC_GROUP) == 0
9531 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9532 && bfd_elf_match_symbols_in_sections (l->sec,
9533 elf_next_in_group (sec)))
9534 {
9535 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9536 elf_next_in_group (sec)->kept_section = l->sec;
9537 group->output_section = bfd_abs_section_ptr;
9538 break;
9539 }
9540 if (l == NULL)
9541 return;
9542 }
9543 else
9544 /* There is no direct match. But for linkonce section, we should
9545 check if there is a match with comdat group member. We always
9546 record the linkonce section, discarded or not. */
9547 for (l = already_linked_list->entry; l != NULL; l = l->next)
9548 if (l->sec->flags & SEC_GROUP)
9549 {
9550 asection *first = elf_next_in_group (l->sec);
9551
9552 if (first != NULL
9553 && elf_next_in_group (first) == first
9554 && bfd_elf_match_symbols_in_sections (first, sec))
9555 {
9556 sec->output_section = bfd_abs_section_ptr;
9557 sec->kept_section = l->sec;
9558 break;
9559 }
9560 }
9561
9562 /* This is the first section with this name. Record it. */
9563 bfd_section_already_linked_table_insert (already_linked_list, sec);
9564 }
This page took 0.320303 seconds and 4 git commands to generate.