ab19be255a6518f66a96dedb75224d7522b2b685
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->output_bfd->xvec != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2800
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2804
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2808
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2814
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2819
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3258
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3262 {
3263 return input == output;
3264 }
3265
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3269
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3273 {
3274 const struct elf_backend_data *obed, *ibed;
3275
3276 if (input == output)
3277 return TRUE;
3278
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3281
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3284
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3287 }
3288
3289 /* Add symbols from an ELF object file to the linker hash table. */
3290
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3293 {
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3324
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3327
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3331 {
3332 dynamic = TRUE;
3333
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || info->output_bfd->xvec != abfd->xvec)
3340 {
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3346 }
3347 }
3348
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3354 {
3355 asection *s;
3356
3357 for (s = abfd->sections; s != NULL; s = s->next)
3358 {
3359 const char *name;
3360
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3363 {
3364 char *msg;
3365 bfd_size_type sz;
3366
3367 name += sizeof ".gnu.warning." - 1;
3368
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3379 {
3380 struct elf_link_hash_entry *h;
3381
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3383
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3388 {
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3394 }
3395 }
3396
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3401
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3404
3405 msg[sz] = '\0';
3406
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3411
3412 if (! info->relocatable)
3413 {
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3417
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3421 }
3422 }
3423 }
3424 }
3425
3426 add_needed = TRUE;
3427 if (! dynamic)
3428 {
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && info->output_bfd->xvec == abfd->xvec
3437 && !htab->dynamic_sections_created)
3438 {
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3441 }
3442 }
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3446 {
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3451
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3457
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3468
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3471 {
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 int elfsec;
3475 unsigned long shlink;
3476
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3479
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == -1)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3484
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3488 {
3489 Elf_Internal_Dyn dyn;
3490
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3493 {
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3498 }
3499 if (dyn.d_tag == DT_NEEDED)
3500 {
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3504
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3519 ;
3520 *pn = n;
3521 }
3522 if (dyn.d_tag == DT_RUNPATH)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3544 ;
3545 *pn = n;
3546 }
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 {
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3566 }
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 }
3578
3579 free (dynbuf);
3580 }
3581
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3586
3587 if (rpath)
3588 {
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3591 ;
3592 *pn = rpath;
3593 }
3594
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3603
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3610 {
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3614 }
3615
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3619
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3623
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3629 }
3630
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3635
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3640
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3642
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3647 {
3648 extsymcount = symcount;
3649 extsymoff = 0;
3650 }
3651 else
3652 {
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3655 }
3656
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3659 {
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3664
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3672 }
3673
3674 if (dynamic)
3675 {
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3680
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3684 {
3685 Elf_Internal_Shdr *versymhdr;
3686
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3695 }
3696 }
3697
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3702 {
3703 unsigned int i;
3704 size_t entsize;
3705
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3707 {
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3710
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3712 {
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3717 }
3718 }
3719
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3725
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3731
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3737
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3750
3751 for (i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3762 {
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3765 }
3766 }
3767 }
3768 }
3769
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3775 {
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3790
3791 override = FALSE;
3792
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3798
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3801 {
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3807 }
3808 else if (bind == STB_GLOBAL)
3809 {
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3812 }
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3816 {
3817 /* Leave it up to the processor backend. */
3818 }
3819
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx < SHN_LORESERVE
3823 || isym->st_shndx > SHN_HIRESERVE)
3824 {
3825 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3826 if (sec == NULL)
3827 sec = bfd_abs_section_ptr;
3828 else if (sec->kept_section)
3829 {
3830 /* Symbols from discarded section are undefined. We keep
3831 its visibility. */
3832 sec = bfd_und_section_ptr;
3833 isym->st_shndx = SHN_UNDEF;
3834 }
3835 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3836 value -= sec->vma;
3837 }
3838 else if (isym->st_shndx == SHN_ABS)
3839 sec = bfd_abs_section_ptr;
3840 else if (isym->st_shndx == SHN_COMMON)
3841 {
3842 sec = bfd_com_section_ptr;
3843 /* What ELF calls the size we call the value. What ELF
3844 calls the value we call the alignment. */
3845 value = isym->st_size;
3846 }
3847 else
3848 {
3849 /* Leave it up to the processor backend. */
3850 }
3851
3852 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3853 isym->st_name);
3854 if (name == NULL)
3855 goto error_free_vers;
3856
3857 if (isym->st_shndx == SHN_COMMON
3858 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3859 && !info->relocatable)
3860 {
3861 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3862
3863 if (tcomm == NULL)
3864 {
3865 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3866 (SEC_ALLOC
3867 | SEC_IS_COMMON
3868 | SEC_LINKER_CREATED
3869 | SEC_THREAD_LOCAL));
3870 if (tcomm == NULL)
3871 goto error_free_vers;
3872 }
3873 sec = tcomm;
3874 }
3875 else if (bed->elf_add_symbol_hook)
3876 {
3877 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3878 &sec, &value))
3879 goto error_free_vers;
3880
3881 /* The hook function sets the name to NULL if this symbol
3882 should be skipped for some reason. */
3883 if (name == NULL)
3884 continue;
3885 }
3886
3887 /* Sanity check that all possibilities were handled. */
3888 if (sec == NULL)
3889 {
3890 bfd_set_error (bfd_error_bad_value);
3891 goto error_free_vers;
3892 }
3893
3894 if (bfd_is_und_section (sec)
3895 || bfd_is_com_section (sec))
3896 definition = FALSE;
3897 else
3898 definition = TRUE;
3899
3900 size_change_ok = FALSE;
3901 type_change_ok = bed->type_change_ok;
3902 old_alignment = 0;
3903 old_bfd = NULL;
3904 new_sec = sec;
3905
3906 if (is_elf_hash_table (htab))
3907 {
3908 Elf_Internal_Versym iver;
3909 unsigned int vernum = 0;
3910 bfd_boolean skip;
3911
3912 if (ever == NULL)
3913 {
3914 if (info->default_imported_symver)
3915 /* Use the default symbol version created earlier. */
3916 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3917 else
3918 iver.vs_vers = 0;
3919 }
3920 else
3921 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3922
3923 vernum = iver.vs_vers & VERSYM_VERSION;
3924
3925 /* If this is a hidden symbol, or if it is not version
3926 1, we append the version name to the symbol name.
3927 However, we do not modify a non-hidden absolute symbol
3928 if it is not a function, because it might be the version
3929 symbol itself. FIXME: What if it isn't? */
3930 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3931 || (vernum > 1
3932 && (!bfd_is_abs_section (sec)
3933 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3934 {
3935 const char *verstr;
3936 size_t namelen, verlen, newlen;
3937 char *newname, *p;
3938
3939 if (isym->st_shndx != SHN_UNDEF)
3940 {
3941 if (vernum > elf_tdata (abfd)->cverdefs)
3942 verstr = NULL;
3943 else if (vernum > 1)
3944 verstr =
3945 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3946 else
3947 verstr = "";
3948
3949 if (verstr == NULL)
3950 {
3951 (*_bfd_error_handler)
3952 (_("%B: %s: invalid version %u (max %d)"),
3953 abfd, name, vernum,
3954 elf_tdata (abfd)->cverdefs);
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3957 }
3958 }
3959 else
3960 {
3961 /* We cannot simply test for the number of
3962 entries in the VERNEED section since the
3963 numbers for the needed versions do not start
3964 at 0. */
3965 Elf_Internal_Verneed *t;
3966
3967 verstr = NULL;
3968 for (t = elf_tdata (abfd)->verref;
3969 t != NULL;
3970 t = t->vn_nextref)
3971 {
3972 Elf_Internal_Vernaux *a;
3973
3974 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3975 {
3976 if (a->vna_other == vernum)
3977 {
3978 verstr = a->vna_nodename;
3979 break;
3980 }
3981 }
3982 if (a != NULL)
3983 break;
3984 }
3985 if (verstr == NULL)
3986 {
3987 (*_bfd_error_handler)
3988 (_("%B: %s: invalid needed version %d"),
3989 abfd, name, vernum);
3990 bfd_set_error (bfd_error_bad_value);
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 namelen = strlen (name);
3996 verlen = strlen (verstr);
3997 newlen = namelen + verlen + 2;
3998 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3999 && isym->st_shndx != SHN_UNDEF)
4000 ++newlen;
4001
4002 newname = bfd_hash_allocate (&htab->root.table, newlen);
4003 if (newname == NULL)
4004 goto error_free_vers;
4005 memcpy (newname, name, namelen);
4006 p = newname + namelen;
4007 *p++ = ELF_VER_CHR;
4008 /* If this is a defined non-hidden version symbol,
4009 we add another @ to the name. This indicates the
4010 default version of the symbol. */
4011 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4012 && isym->st_shndx != SHN_UNDEF)
4013 *p++ = ELF_VER_CHR;
4014 memcpy (p, verstr, verlen + 1);
4015
4016 name = newname;
4017 }
4018
4019 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4020 &value, &old_alignment,
4021 sym_hash, &skip, &override,
4022 &type_change_ok, &size_change_ok))
4023 goto error_free_vers;
4024
4025 if (skip)
4026 continue;
4027
4028 if (override)
4029 definition = FALSE;
4030
4031 h = *sym_hash;
4032 while (h->root.type == bfd_link_hash_indirect
4033 || h->root.type == bfd_link_hash_warning)
4034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4035
4036 /* Remember the old alignment if this is a common symbol, so
4037 that we don't reduce the alignment later on. We can't
4038 check later, because _bfd_generic_link_add_one_symbol
4039 will set a default for the alignment which we want to
4040 override. We also remember the old bfd where the existing
4041 definition comes from. */
4042 switch (h->root.type)
4043 {
4044 default:
4045 break;
4046
4047 case bfd_link_hash_defined:
4048 case bfd_link_hash_defweak:
4049 old_bfd = h->root.u.def.section->owner;
4050 break;
4051
4052 case bfd_link_hash_common:
4053 old_bfd = h->root.u.c.p->section->owner;
4054 old_alignment = h->root.u.c.p->alignment_power;
4055 break;
4056 }
4057
4058 if (elf_tdata (abfd)->verdef != NULL
4059 && ! override
4060 && vernum > 1
4061 && definition)
4062 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4063 }
4064
4065 if (! (_bfd_generic_link_add_one_symbol
4066 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4067 (struct bfd_link_hash_entry **) sym_hash)))
4068 goto error_free_vers;
4069
4070 h = *sym_hash;
4071 while (h->root.type == bfd_link_hash_indirect
4072 || h->root.type == bfd_link_hash_warning)
4073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4074 *sym_hash = h;
4075
4076 new_weakdef = FALSE;
4077 if (dynamic
4078 && definition
4079 && (flags & BSF_WEAK) != 0
4080 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4081 && is_elf_hash_table (htab)
4082 && h->u.weakdef == NULL)
4083 {
4084 /* Keep a list of all weak defined non function symbols from
4085 a dynamic object, using the weakdef field. Later in this
4086 function we will set the weakdef field to the correct
4087 value. We only put non-function symbols from dynamic
4088 objects on this list, because that happens to be the only
4089 time we need to know the normal symbol corresponding to a
4090 weak symbol, and the information is time consuming to
4091 figure out. If the weakdef field is not already NULL,
4092 then this symbol was already defined by some previous
4093 dynamic object, and we will be using that previous
4094 definition anyhow. */
4095
4096 h->u.weakdef = weaks;
4097 weaks = h;
4098 new_weakdef = TRUE;
4099 }
4100
4101 /* Set the alignment of a common symbol. */
4102 if ((common || bfd_is_com_section (sec))
4103 && h->root.type == bfd_link_hash_common)
4104 {
4105 unsigned int align;
4106
4107 if (common)
4108 align = bfd_log2 (isym->st_value);
4109 else
4110 {
4111 /* The new symbol is a common symbol in a shared object.
4112 We need to get the alignment from the section. */
4113 align = new_sec->alignment_power;
4114 }
4115 if (align > old_alignment
4116 /* Permit an alignment power of zero if an alignment of one
4117 is specified and no other alignments have been specified. */
4118 || (isym->st_value == 1 && old_alignment == 0))
4119 h->root.u.c.p->alignment_power = align;
4120 else
4121 h->root.u.c.p->alignment_power = old_alignment;
4122 }
4123
4124 if (is_elf_hash_table (htab))
4125 {
4126 bfd_boolean dynsym;
4127
4128 /* Check the alignment when a common symbol is involved. This
4129 can change when a common symbol is overridden by a normal
4130 definition or a common symbol is ignored due to the old
4131 normal definition. We need to make sure the maximum
4132 alignment is maintained. */
4133 if ((old_alignment || common)
4134 && h->root.type != bfd_link_hash_common)
4135 {
4136 unsigned int common_align;
4137 unsigned int normal_align;
4138 unsigned int symbol_align;
4139 bfd *normal_bfd;
4140 bfd *common_bfd;
4141
4142 symbol_align = ffs (h->root.u.def.value) - 1;
4143 if (h->root.u.def.section->owner != NULL
4144 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4145 {
4146 normal_align = h->root.u.def.section->alignment_power;
4147 if (normal_align > symbol_align)
4148 normal_align = symbol_align;
4149 }
4150 else
4151 normal_align = symbol_align;
4152
4153 if (old_alignment)
4154 {
4155 common_align = old_alignment;
4156 common_bfd = old_bfd;
4157 normal_bfd = abfd;
4158 }
4159 else
4160 {
4161 common_align = bfd_log2 (isym->st_value);
4162 common_bfd = abfd;
4163 normal_bfd = old_bfd;
4164 }
4165
4166 if (normal_align < common_align)
4167 {
4168 /* PR binutils/2735 */
4169 if (normal_bfd == NULL)
4170 (*_bfd_error_handler)
4171 (_("Warning: alignment %u of common symbol `%s' in %B"
4172 " is greater than the alignment (%u) of its section %A"),
4173 common_bfd, h->root.u.def.section,
4174 1 << common_align, name, 1 << normal_align);
4175 else
4176 (*_bfd_error_handler)
4177 (_("Warning: alignment %u of symbol `%s' in %B"
4178 " is smaller than %u in %B"),
4179 normal_bfd, common_bfd,
4180 1 << normal_align, name, 1 << common_align);
4181 }
4182 }
4183
4184 /* Remember the symbol size if it isn't undefined. */
4185 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4186 && (definition || h->size == 0))
4187 {
4188 if (h->size != 0
4189 && h->size != isym->st_size
4190 && ! size_change_ok)
4191 (*_bfd_error_handler)
4192 (_("Warning: size of symbol `%s' changed"
4193 " from %lu in %B to %lu in %B"),
4194 old_bfd, abfd,
4195 name, (unsigned long) h->size,
4196 (unsigned long) isym->st_size);
4197
4198 h->size = isym->st_size;
4199 }
4200
4201 /* If this is a common symbol, then we always want H->SIZE
4202 to be the size of the common symbol. The code just above
4203 won't fix the size if a common symbol becomes larger. We
4204 don't warn about a size change here, because that is
4205 covered by --warn-common. Allow changed between different
4206 function types. */
4207 if (h->root.type == bfd_link_hash_common)
4208 h->size = h->root.u.c.size;
4209
4210 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4211 && (definition || h->type == STT_NOTYPE))
4212 {
4213 if (h->type != STT_NOTYPE
4214 && h->type != ELF_ST_TYPE (isym->st_info)
4215 && ! type_change_ok)
4216 (*_bfd_error_handler)
4217 (_("Warning: type of symbol `%s' changed"
4218 " from %d to %d in %B"),
4219 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4220
4221 h->type = ELF_ST_TYPE (isym->st_info);
4222 }
4223
4224 /* If st_other has a processor-specific meaning, specific
4225 code might be needed here. We never merge the visibility
4226 attribute with the one from a dynamic object. */
4227 if (bed->elf_backend_merge_symbol_attribute)
4228 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4229 dynamic);
4230
4231 /* If this symbol has default visibility and the user has requested
4232 we not re-export it, then mark it as hidden. */
4233 if (definition && !dynamic
4234 && (abfd->no_export
4235 || (abfd->my_archive && abfd->my_archive->no_export))
4236 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4237 isym->st_other = (STV_HIDDEN
4238 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4239
4240 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4241 {
4242 unsigned char hvis, symvis, other, nvis;
4243
4244 /* Only merge the visibility. Leave the remainder of the
4245 st_other field to elf_backend_merge_symbol_attribute. */
4246 other = h->other & ~ELF_ST_VISIBILITY (-1);
4247
4248 /* Combine visibilities, using the most constraining one. */
4249 hvis = ELF_ST_VISIBILITY (h->other);
4250 symvis = ELF_ST_VISIBILITY (isym->st_other);
4251 if (! hvis)
4252 nvis = symvis;
4253 else if (! symvis)
4254 nvis = hvis;
4255 else
4256 nvis = hvis < symvis ? hvis : symvis;
4257
4258 h->other = other | nvis;
4259 }
4260
4261 /* Set a flag in the hash table entry indicating the type of
4262 reference or definition we just found. Keep a count of
4263 the number of dynamic symbols we find. A dynamic symbol
4264 is one which is referenced or defined by both a regular
4265 object and a shared object. */
4266 dynsym = FALSE;
4267 if (! dynamic)
4268 {
4269 if (! definition)
4270 {
4271 h->ref_regular = 1;
4272 if (bind != STB_WEAK)
4273 h->ref_regular_nonweak = 1;
4274 }
4275 else
4276 h->def_regular = 1;
4277 if (! info->executable
4278 || h->def_dynamic
4279 || h->ref_dynamic)
4280 dynsym = TRUE;
4281 }
4282 else
4283 {
4284 if (! definition)
4285 h->ref_dynamic = 1;
4286 else
4287 h->def_dynamic = 1;
4288 if (h->def_regular
4289 || h->ref_regular
4290 || (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx != -1))
4293 dynsym = TRUE;
4294 }
4295
4296 if (definition && (sec->flags & SEC_DEBUGGING))
4297 {
4298 /* We don't want to make debug symbol dynamic. */
4299 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4300 dynsym = FALSE;
4301 }
4302
4303 /* Check to see if we need to add an indirect symbol for
4304 the default name. */
4305 if (definition || h->root.type == bfd_link_hash_common)
4306 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4307 &sec, &value, &dynsym,
4308 override))
4309 goto error_free_vers;
4310
4311 if (definition && !dynamic)
4312 {
4313 char *p = strchr (name, ELF_VER_CHR);
4314 if (p != NULL && p[1] != ELF_VER_CHR)
4315 {
4316 /* Queue non-default versions so that .symver x, x@FOO
4317 aliases can be checked. */
4318 if (!nondeflt_vers)
4319 {
4320 amt = ((isymend - isym + 1)
4321 * sizeof (struct elf_link_hash_entry *));
4322 nondeflt_vers = bfd_malloc (amt);
4323 if (!nondeflt_vers)
4324 goto error_free_vers;
4325 }
4326 nondeflt_vers[nondeflt_vers_cnt++] = h;
4327 }
4328 }
4329
4330 if (dynsym && h->dynindx == -1)
4331 {
4332 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4333 goto error_free_vers;
4334 if (h->u.weakdef != NULL
4335 && ! new_weakdef
4336 && h->u.weakdef->dynindx == -1)
4337 {
4338 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4339 goto error_free_vers;
4340 }
4341 }
4342 else if (dynsym && h->dynindx != -1)
4343 /* If the symbol already has a dynamic index, but
4344 visibility says it should not be visible, turn it into
4345 a local symbol. */
4346 switch (ELF_ST_VISIBILITY (h->other))
4347 {
4348 case STV_INTERNAL:
4349 case STV_HIDDEN:
4350 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4351 dynsym = FALSE;
4352 break;
4353 }
4354
4355 if (!add_needed
4356 && definition
4357 && dynsym
4358 && h->ref_regular)
4359 {
4360 int ret;
4361 const char *soname = elf_dt_name (abfd);
4362
4363 /* A symbol from a library loaded via DT_NEEDED of some
4364 other library is referenced by a regular object.
4365 Add a DT_NEEDED entry for it. Issue an error if
4366 --no-add-needed is used. */
4367 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4368 {
4369 (*_bfd_error_handler)
4370 (_("%s: invalid DSO for symbol `%s' definition"),
4371 abfd, name);
4372 bfd_set_error (bfd_error_bad_value);
4373 goto error_free_vers;
4374 }
4375
4376 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4377
4378 add_needed = TRUE;
4379 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4380 if (ret < 0)
4381 goto error_free_vers;
4382
4383 BFD_ASSERT (ret == 0);
4384 }
4385 }
4386 }
4387
4388 if (extversym != NULL)
4389 {
4390 free (extversym);
4391 extversym = NULL;
4392 }
4393
4394 if (isymbuf != NULL)
4395 {
4396 free (isymbuf);
4397 isymbuf = NULL;
4398 }
4399
4400 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4401 {
4402 unsigned int i;
4403
4404 /* Restore the symbol table. */
4405 if (bed->as_needed_cleanup)
4406 (*bed->as_needed_cleanup) (abfd, info);
4407 old_hash = (char *) old_tab + tabsize;
4408 old_ent = (char *) old_hash + hashsize;
4409 sym_hash = elf_sym_hashes (abfd);
4410 htab->root.table.table = old_table;
4411 htab->root.table.size = old_size;
4412 htab->root.table.count = old_count;
4413 memcpy (htab->root.table.table, old_tab, tabsize);
4414 memcpy (sym_hash, old_hash, hashsize);
4415 htab->root.undefs = old_undefs;
4416 htab->root.undefs_tail = old_undefs_tail;
4417 for (i = 0; i < htab->root.table.size; i++)
4418 {
4419 struct bfd_hash_entry *p;
4420 struct elf_link_hash_entry *h;
4421
4422 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4423 {
4424 h = (struct elf_link_hash_entry *) p;
4425 if (h->root.type == bfd_link_hash_warning)
4426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4427 if (h->dynindx >= old_dynsymcount)
4428 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4429
4430 memcpy (p, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 h = (struct elf_link_hash_entry *) p;
4433 if (h->root.type == bfd_link_hash_warning)
4434 {
4435 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4436 old_ent = (char *) old_ent + htab->root.table.entsize;
4437 }
4438 }
4439 }
4440
4441 /* Make a special call to the linker "notice" function to
4442 tell it that symbols added for crefs may need to be removed. */
4443 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4444 notice_not_needed))
4445 goto error_free_vers;
4446
4447 free (old_tab);
4448 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4449 alloc_mark);
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 return TRUE;
4453 }
4454
4455 if (old_tab != NULL)
4456 {
4457 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4458 notice_needed))
4459 goto error_free_vers;
4460 free (old_tab);
4461 old_tab = NULL;
4462 }
4463
4464 /* Now that all the symbols from this input file are created, handle
4465 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4466 if (nondeflt_vers != NULL)
4467 {
4468 bfd_size_type cnt, symidx;
4469
4470 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4471 {
4472 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4473 char *shortname, *p;
4474
4475 p = strchr (h->root.root.string, ELF_VER_CHR);
4476 if (p == NULL
4477 || (h->root.type != bfd_link_hash_defined
4478 && h->root.type != bfd_link_hash_defweak))
4479 continue;
4480
4481 amt = p - h->root.root.string;
4482 shortname = bfd_malloc (amt + 1);
4483 if (!shortname)
4484 goto error_free_vers;
4485 memcpy (shortname, h->root.root.string, amt);
4486 shortname[amt] = '\0';
4487
4488 hi = (struct elf_link_hash_entry *)
4489 bfd_link_hash_lookup (&htab->root, shortname,
4490 FALSE, FALSE, FALSE);
4491 if (hi != NULL
4492 && hi->root.type == h->root.type
4493 && hi->root.u.def.value == h->root.u.def.value
4494 && hi->root.u.def.section == h->root.u.def.section)
4495 {
4496 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4497 hi->root.type = bfd_link_hash_indirect;
4498 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4499 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4500 sym_hash = elf_sym_hashes (abfd);
4501 if (sym_hash)
4502 for (symidx = 0; symidx < extsymcount; ++symidx)
4503 if (sym_hash[symidx] == hi)
4504 {
4505 sym_hash[symidx] = h;
4506 break;
4507 }
4508 }
4509 free (shortname);
4510 }
4511 free (nondeflt_vers);
4512 nondeflt_vers = NULL;
4513 }
4514
4515 /* Now set the weakdefs field correctly for all the weak defined
4516 symbols we found. The only way to do this is to search all the
4517 symbols. Since we only need the information for non functions in
4518 dynamic objects, that's the only time we actually put anything on
4519 the list WEAKS. We need this information so that if a regular
4520 object refers to a symbol defined weakly in a dynamic object, the
4521 real symbol in the dynamic object is also put in the dynamic
4522 symbols; we also must arrange for both symbols to point to the
4523 same memory location. We could handle the general case of symbol
4524 aliasing, but a general symbol alias can only be generated in
4525 assembler code, handling it correctly would be very time
4526 consuming, and other ELF linkers don't handle general aliasing
4527 either. */
4528 if (weaks != NULL)
4529 {
4530 struct elf_link_hash_entry **hpp;
4531 struct elf_link_hash_entry **hppend;
4532 struct elf_link_hash_entry **sorted_sym_hash;
4533 struct elf_link_hash_entry *h;
4534 size_t sym_count;
4535
4536 /* Since we have to search the whole symbol list for each weak
4537 defined symbol, search time for N weak defined symbols will be
4538 O(N^2). Binary search will cut it down to O(NlogN). */
4539 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4540 sorted_sym_hash = bfd_malloc (amt);
4541 if (sorted_sym_hash == NULL)
4542 goto error_return;
4543 sym_hash = sorted_sym_hash;
4544 hpp = elf_sym_hashes (abfd);
4545 hppend = hpp + extsymcount;
4546 sym_count = 0;
4547 for (; hpp < hppend; hpp++)
4548 {
4549 h = *hpp;
4550 if (h != NULL
4551 && h->root.type == bfd_link_hash_defined
4552 && !bed->is_function_type (h->type))
4553 {
4554 *sym_hash = h;
4555 sym_hash++;
4556 sym_count++;
4557 }
4558 }
4559
4560 qsort (sorted_sym_hash, sym_count,
4561 sizeof (struct elf_link_hash_entry *),
4562 elf_sort_symbol);
4563
4564 while (weaks != NULL)
4565 {
4566 struct elf_link_hash_entry *hlook;
4567 asection *slook;
4568 bfd_vma vlook;
4569 long ilook;
4570 size_t i, j, idx;
4571
4572 hlook = weaks;
4573 weaks = hlook->u.weakdef;
4574 hlook->u.weakdef = NULL;
4575
4576 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4577 || hlook->root.type == bfd_link_hash_defweak
4578 || hlook->root.type == bfd_link_hash_common
4579 || hlook->root.type == bfd_link_hash_indirect);
4580 slook = hlook->root.u.def.section;
4581 vlook = hlook->root.u.def.value;
4582
4583 ilook = -1;
4584 i = 0;
4585 j = sym_count;
4586 while (i < j)
4587 {
4588 bfd_signed_vma vdiff;
4589 idx = (i + j) / 2;
4590 h = sorted_sym_hash [idx];
4591 vdiff = vlook - h->root.u.def.value;
4592 if (vdiff < 0)
4593 j = idx;
4594 else if (vdiff > 0)
4595 i = idx + 1;
4596 else
4597 {
4598 long sdiff = slook->id - h->root.u.def.section->id;
4599 if (sdiff < 0)
4600 j = idx;
4601 else if (sdiff > 0)
4602 i = idx + 1;
4603 else
4604 {
4605 ilook = idx;
4606 break;
4607 }
4608 }
4609 }
4610
4611 /* We didn't find a value/section match. */
4612 if (ilook == -1)
4613 continue;
4614
4615 for (i = ilook; i < sym_count; i++)
4616 {
4617 h = sorted_sym_hash [i];
4618
4619 /* Stop if value or section doesn't match. */
4620 if (h->root.u.def.value != vlook
4621 || h->root.u.def.section != slook)
4622 break;
4623 else if (h != hlook)
4624 {
4625 hlook->u.weakdef = h;
4626
4627 /* If the weak definition is in the list of dynamic
4628 symbols, make sure the real definition is put
4629 there as well. */
4630 if (hlook->dynindx != -1 && h->dynindx == -1)
4631 {
4632 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4633 goto error_return;
4634 }
4635
4636 /* If the real definition is in the list of dynamic
4637 symbols, make sure the weak definition is put
4638 there as well. If we don't do this, then the
4639 dynamic loader might not merge the entries for the
4640 real definition and the weak definition. */
4641 if (h->dynindx != -1 && hlook->dynindx == -1)
4642 {
4643 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4644 goto error_return;
4645 }
4646 break;
4647 }
4648 }
4649 }
4650
4651 free (sorted_sym_hash);
4652 }
4653
4654 if (bed->check_directives)
4655 (*bed->check_directives) (abfd, info);
4656
4657 /* If this object is the same format as the output object, and it is
4658 not a shared library, then let the backend look through the
4659 relocs.
4660
4661 This is required to build global offset table entries and to
4662 arrange for dynamic relocs. It is not required for the
4663 particular common case of linking non PIC code, even when linking
4664 against shared libraries, but unfortunately there is no way of
4665 knowing whether an object file has been compiled PIC or not.
4666 Looking through the relocs is not particularly time consuming.
4667 The problem is that we must either (1) keep the relocs in memory,
4668 which causes the linker to require additional runtime memory or
4669 (2) read the relocs twice from the input file, which wastes time.
4670 This would be a good case for using mmap.
4671
4672 I have no idea how to handle linking PIC code into a file of a
4673 different format. It probably can't be done. */
4674 if (! dynamic
4675 && is_elf_hash_table (htab)
4676 && bed->check_relocs != NULL
4677 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4678 {
4679 asection *o;
4680
4681 for (o = abfd->sections; o != NULL; o = o->next)
4682 {
4683 Elf_Internal_Rela *internal_relocs;
4684 bfd_boolean ok;
4685
4686 if ((o->flags & SEC_RELOC) == 0
4687 || o->reloc_count == 0
4688 || ((info->strip == strip_all || info->strip == strip_debugger)
4689 && (o->flags & SEC_DEBUGGING) != 0)
4690 || bfd_is_abs_section (o->output_section))
4691 continue;
4692
4693 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4694 info->keep_memory);
4695 if (internal_relocs == NULL)
4696 goto error_return;
4697
4698 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4699
4700 if (elf_section_data (o)->relocs != internal_relocs)
4701 free (internal_relocs);
4702
4703 if (! ok)
4704 goto error_return;
4705 }
4706 }
4707
4708 /* If this is a non-traditional link, try to optimize the handling
4709 of the .stab/.stabstr sections. */
4710 if (! dynamic
4711 && ! info->traditional_format
4712 && is_elf_hash_table (htab)
4713 && (info->strip != strip_all && info->strip != strip_debugger))
4714 {
4715 asection *stabstr;
4716
4717 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4718 if (stabstr != NULL)
4719 {
4720 bfd_size_type string_offset = 0;
4721 asection *stab;
4722
4723 for (stab = abfd->sections; stab; stab = stab->next)
4724 if (CONST_STRNEQ (stab->name, ".stab")
4725 && (!stab->name[5] ||
4726 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4727 && (stab->flags & SEC_MERGE) == 0
4728 && !bfd_is_abs_section (stab->output_section))
4729 {
4730 struct bfd_elf_section_data *secdata;
4731
4732 secdata = elf_section_data (stab);
4733 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4734 stabstr, &secdata->sec_info,
4735 &string_offset))
4736 goto error_return;
4737 if (secdata->sec_info)
4738 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4739 }
4740 }
4741 }
4742
4743 if (is_elf_hash_table (htab) && add_needed)
4744 {
4745 /* Add this bfd to the loaded list. */
4746 struct elf_link_loaded_list *n;
4747
4748 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4749 if (n == NULL)
4750 goto error_return;
4751 n->abfd = abfd;
4752 n->next = htab->loaded;
4753 htab->loaded = n;
4754 }
4755
4756 return TRUE;
4757
4758 error_free_vers:
4759 if (old_tab != NULL)
4760 free (old_tab);
4761 if (nondeflt_vers != NULL)
4762 free (nondeflt_vers);
4763 if (extversym != NULL)
4764 free (extversym);
4765 error_free_sym:
4766 if (isymbuf != NULL)
4767 free (isymbuf);
4768 error_return:
4769 return FALSE;
4770 }
4771
4772 /* Return the linker hash table entry of a symbol that might be
4773 satisfied by an archive symbol. Return -1 on error. */
4774
4775 struct elf_link_hash_entry *
4776 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4777 struct bfd_link_info *info,
4778 const char *name)
4779 {
4780 struct elf_link_hash_entry *h;
4781 char *p, *copy;
4782 size_t len, first;
4783
4784 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4785 if (h != NULL)
4786 return h;
4787
4788 /* If this is a default version (the name contains @@), look up the
4789 symbol again with only one `@' as well as without the version.
4790 The effect is that references to the symbol with and without the
4791 version will be matched by the default symbol in the archive. */
4792
4793 p = strchr (name, ELF_VER_CHR);
4794 if (p == NULL || p[1] != ELF_VER_CHR)
4795 return h;
4796
4797 /* First check with only one `@'. */
4798 len = strlen (name);
4799 copy = bfd_alloc (abfd, len);
4800 if (copy == NULL)
4801 return (struct elf_link_hash_entry *) 0 - 1;
4802
4803 first = p - name + 1;
4804 memcpy (copy, name, first);
4805 memcpy (copy + first, name + first + 1, len - first);
4806
4807 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4808 if (h == NULL)
4809 {
4810 /* We also need to check references to the symbol without the
4811 version. */
4812 copy[first - 1] = '\0';
4813 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4814 FALSE, FALSE, FALSE);
4815 }
4816
4817 bfd_release (abfd, copy);
4818 return h;
4819 }
4820
4821 /* Add symbols from an ELF archive file to the linker hash table. We
4822 don't use _bfd_generic_link_add_archive_symbols because of a
4823 problem which arises on UnixWare. The UnixWare libc.so is an
4824 archive which includes an entry libc.so.1 which defines a bunch of
4825 symbols. The libc.so archive also includes a number of other
4826 object files, which also define symbols, some of which are the same
4827 as those defined in libc.so.1. Correct linking requires that we
4828 consider each object file in turn, and include it if it defines any
4829 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4830 this; it looks through the list of undefined symbols, and includes
4831 any object file which defines them. When this algorithm is used on
4832 UnixWare, it winds up pulling in libc.so.1 early and defining a
4833 bunch of symbols. This means that some of the other objects in the
4834 archive are not included in the link, which is incorrect since they
4835 precede libc.so.1 in the archive.
4836
4837 Fortunately, ELF archive handling is simpler than that done by
4838 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4839 oddities. In ELF, if we find a symbol in the archive map, and the
4840 symbol is currently undefined, we know that we must pull in that
4841 object file.
4842
4843 Unfortunately, we do have to make multiple passes over the symbol
4844 table until nothing further is resolved. */
4845
4846 static bfd_boolean
4847 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4848 {
4849 symindex c;
4850 bfd_boolean *defined = NULL;
4851 bfd_boolean *included = NULL;
4852 carsym *symdefs;
4853 bfd_boolean loop;
4854 bfd_size_type amt;
4855 const struct elf_backend_data *bed;
4856 struct elf_link_hash_entry * (*archive_symbol_lookup)
4857 (bfd *, struct bfd_link_info *, const char *);
4858
4859 if (! bfd_has_map (abfd))
4860 {
4861 /* An empty archive is a special case. */
4862 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4863 return TRUE;
4864 bfd_set_error (bfd_error_no_armap);
4865 return FALSE;
4866 }
4867
4868 /* Keep track of all symbols we know to be already defined, and all
4869 files we know to be already included. This is to speed up the
4870 second and subsequent passes. */
4871 c = bfd_ardata (abfd)->symdef_count;
4872 if (c == 0)
4873 return TRUE;
4874 amt = c;
4875 amt *= sizeof (bfd_boolean);
4876 defined = bfd_zmalloc (amt);
4877 included = bfd_zmalloc (amt);
4878 if (defined == NULL || included == NULL)
4879 goto error_return;
4880
4881 symdefs = bfd_ardata (abfd)->symdefs;
4882 bed = get_elf_backend_data (abfd);
4883 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4884
4885 do
4886 {
4887 file_ptr last;
4888 symindex i;
4889 carsym *symdef;
4890 carsym *symdefend;
4891
4892 loop = FALSE;
4893 last = -1;
4894
4895 symdef = symdefs;
4896 symdefend = symdef + c;
4897 for (i = 0; symdef < symdefend; symdef++, i++)
4898 {
4899 struct elf_link_hash_entry *h;
4900 bfd *element;
4901 struct bfd_link_hash_entry *undefs_tail;
4902 symindex mark;
4903
4904 if (defined[i] || included[i])
4905 continue;
4906 if (symdef->file_offset == last)
4907 {
4908 included[i] = TRUE;
4909 continue;
4910 }
4911
4912 h = archive_symbol_lookup (abfd, info, symdef->name);
4913 if (h == (struct elf_link_hash_entry *) 0 - 1)
4914 goto error_return;
4915
4916 if (h == NULL)
4917 continue;
4918
4919 if (h->root.type == bfd_link_hash_common)
4920 {
4921 /* We currently have a common symbol. The archive map contains
4922 a reference to this symbol, so we may want to include it. We
4923 only want to include it however, if this archive element
4924 contains a definition of the symbol, not just another common
4925 declaration of it.
4926
4927 Unfortunately some archivers (including GNU ar) will put
4928 declarations of common symbols into their archive maps, as
4929 well as real definitions, so we cannot just go by the archive
4930 map alone. Instead we must read in the element's symbol
4931 table and check that to see what kind of symbol definition
4932 this is. */
4933 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4934 continue;
4935 }
4936 else if (h->root.type != bfd_link_hash_undefined)
4937 {
4938 if (h->root.type != bfd_link_hash_undefweak)
4939 defined[i] = TRUE;
4940 continue;
4941 }
4942
4943 /* We need to include this archive member. */
4944 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4945 if (element == NULL)
4946 goto error_return;
4947
4948 if (! bfd_check_format (element, bfd_object))
4949 goto error_return;
4950
4951 /* Doublecheck that we have not included this object
4952 already--it should be impossible, but there may be
4953 something wrong with the archive. */
4954 if (element->archive_pass != 0)
4955 {
4956 bfd_set_error (bfd_error_bad_value);
4957 goto error_return;
4958 }
4959 element->archive_pass = 1;
4960
4961 undefs_tail = info->hash->undefs_tail;
4962
4963 if (! (*info->callbacks->add_archive_element) (info, element,
4964 symdef->name))
4965 goto error_return;
4966 if (! bfd_link_add_symbols (element, info))
4967 goto error_return;
4968
4969 /* If there are any new undefined symbols, we need to make
4970 another pass through the archive in order to see whether
4971 they can be defined. FIXME: This isn't perfect, because
4972 common symbols wind up on undefs_tail and because an
4973 undefined symbol which is defined later on in this pass
4974 does not require another pass. This isn't a bug, but it
4975 does make the code less efficient than it could be. */
4976 if (undefs_tail != info->hash->undefs_tail)
4977 loop = TRUE;
4978
4979 /* Look backward to mark all symbols from this object file
4980 which we have already seen in this pass. */
4981 mark = i;
4982 do
4983 {
4984 included[mark] = TRUE;
4985 if (mark == 0)
4986 break;
4987 --mark;
4988 }
4989 while (symdefs[mark].file_offset == symdef->file_offset);
4990
4991 /* We mark subsequent symbols from this object file as we go
4992 on through the loop. */
4993 last = symdef->file_offset;
4994 }
4995 }
4996 while (loop);
4997
4998 free (defined);
4999 free (included);
5000
5001 return TRUE;
5002
5003 error_return:
5004 if (defined != NULL)
5005 free (defined);
5006 if (included != NULL)
5007 free (included);
5008 return FALSE;
5009 }
5010
5011 /* Given an ELF BFD, add symbols to the global hash table as
5012 appropriate. */
5013
5014 bfd_boolean
5015 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5016 {
5017 switch (bfd_get_format (abfd))
5018 {
5019 case bfd_object:
5020 return elf_link_add_object_symbols (abfd, info);
5021 case bfd_archive:
5022 return elf_link_add_archive_symbols (abfd, info);
5023 default:
5024 bfd_set_error (bfd_error_wrong_format);
5025 return FALSE;
5026 }
5027 }
5028 \f
5029 struct hash_codes_info
5030 {
5031 unsigned long *hashcodes;
5032 bfd_boolean error;
5033 };
5034
5035 /* This function will be called though elf_link_hash_traverse to store
5036 all hash value of the exported symbols in an array. */
5037
5038 static bfd_boolean
5039 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5040 {
5041 struct hash_codes_info *inf = data;
5042 const char *name;
5043 char *p;
5044 unsigned long ha;
5045 char *alc = NULL;
5046
5047 if (h->root.type == bfd_link_hash_warning)
5048 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5049
5050 /* Ignore indirect symbols. These are added by the versioning code. */
5051 if (h->dynindx == -1)
5052 return TRUE;
5053
5054 name = h->root.root.string;
5055 p = strchr (name, ELF_VER_CHR);
5056 if (p != NULL)
5057 {
5058 alc = bfd_malloc (p - name + 1);
5059 if (alc == NULL)
5060 {
5061 inf->error = TRUE;
5062 return FALSE;
5063 }
5064 memcpy (alc, name, p - name);
5065 alc[p - name] = '\0';
5066 name = alc;
5067 }
5068
5069 /* Compute the hash value. */
5070 ha = bfd_elf_hash (name);
5071
5072 /* Store the found hash value in the array given as the argument. */
5073 *(inf->hashcodes)++ = ha;
5074
5075 /* And store it in the struct so that we can put it in the hash table
5076 later. */
5077 h->u.elf_hash_value = ha;
5078
5079 if (alc != NULL)
5080 free (alc);
5081
5082 return TRUE;
5083 }
5084
5085 struct collect_gnu_hash_codes
5086 {
5087 bfd *output_bfd;
5088 const struct elf_backend_data *bed;
5089 unsigned long int nsyms;
5090 unsigned long int maskbits;
5091 unsigned long int *hashcodes;
5092 unsigned long int *hashval;
5093 unsigned long int *indx;
5094 unsigned long int *counts;
5095 bfd_vma *bitmask;
5096 bfd_byte *contents;
5097 long int min_dynindx;
5098 unsigned long int bucketcount;
5099 unsigned long int symindx;
5100 long int local_indx;
5101 long int shift1, shift2;
5102 unsigned long int mask;
5103 bfd_boolean error;
5104 };
5105
5106 /* This function will be called though elf_link_hash_traverse to store
5107 all hash value of the exported symbols in an array. */
5108
5109 static bfd_boolean
5110 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5111 {
5112 struct collect_gnu_hash_codes *s = data;
5113 const char *name;
5114 char *p;
5115 unsigned long ha;
5116 char *alc = NULL;
5117
5118 if (h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5120
5121 /* Ignore indirect symbols. These are added by the versioning code. */
5122 if (h->dynindx == -1)
5123 return TRUE;
5124
5125 /* Ignore also local symbols and undefined symbols. */
5126 if (! (*s->bed->elf_hash_symbol) (h))
5127 return TRUE;
5128
5129 name = h->root.root.string;
5130 p = strchr (name, ELF_VER_CHR);
5131 if (p != NULL)
5132 {
5133 alc = bfd_malloc (p - name + 1);
5134 if (alc == NULL)
5135 {
5136 s->error = TRUE;
5137 return FALSE;
5138 }
5139 memcpy (alc, name, p - name);
5140 alc[p - name] = '\0';
5141 name = alc;
5142 }
5143
5144 /* Compute the hash value. */
5145 ha = bfd_elf_gnu_hash (name);
5146
5147 /* Store the found hash value in the array for compute_bucket_count,
5148 and also for .dynsym reordering purposes. */
5149 s->hashcodes[s->nsyms] = ha;
5150 s->hashval[h->dynindx] = ha;
5151 ++s->nsyms;
5152 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5153 s->min_dynindx = h->dynindx;
5154
5155 if (alc != NULL)
5156 free (alc);
5157
5158 return TRUE;
5159 }
5160
5161 /* This function will be called though elf_link_hash_traverse to do
5162 final dynaminc symbol renumbering. */
5163
5164 static bfd_boolean
5165 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5166 {
5167 struct collect_gnu_hash_codes *s = data;
5168 unsigned long int bucket;
5169 unsigned long int val;
5170
5171 if (h->root.type == bfd_link_hash_warning)
5172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5173
5174 /* Ignore indirect symbols. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s->bed->elf_hash_symbol) (h))
5180 {
5181 if (h->dynindx >= s->min_dynindx)
5182 h->dynindx = s->local_indx++;
5183 return TRUE;
5184 }
5185
5186 bucket = s->hashval[h->dynindx] % s->bucketcount;
5187 val = (s->hashval[h->dynindx] >> s->shift1)
5188 & ((s->maskbits >> s->shift1) - 1);
5189 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5190 s->bitmask[val]
5191 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5192 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5193 if (s->counts[bucket] == 1)
5194 /* Last element terminates the chain. */
5195 val |= 1;
5196 bfd_put_32 (s->output_bfd, val,
5197 s->contents + (s->indx[bucket] - s->symindx) * 4);
5198 --s->counts[bucket];
5199 h->dynindx = s->indx[bucket]++;
5200 return TRUE;
5201 }
5202
5203 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5204
5205 bfd_boolean
5206 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5207 {
5208 return !(h->forced_local
5209 || h->root.type == bfd_link_hash_undefined
5210 || h->root.type == bfd_link_hash_undefweak
5211 || ((h->root.type == bfd_link_hash_defined
5212 || h->root.type == bfd_link_hash_defweak)
5213 && h->root.u.def.section->output_section == NULL));
5214 }
5215
5216 /* Array used to determine the number of hash table buckets to use
5217 based on the number of symbols there are. If there are fewer than
5218 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5219 fewer than 37 we use 17 buckets, and so forth. We never use more
5220 than 32771 buckets. */
5221
5222 static const size_t elf_buckets[] =
5223 {
5224 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5225 16411, 32771, 0
5226 };
5227
5228 /* Compute bucket count for hashing table. We do not use a static set
5229 of possible tables sizes anymore. Instead we determine for all
5230 possible reasonable sizes of the table the outcome (i.e., the
5231 number of collisions etc) and choose the best solution. The
5232 weighting functions are not too simple to allow the table to grow
5233 without bounds. Instead one of the weighting factors is the size.
5234 Therefore the result is always a good payoff between few collisions
5235 (= short chain lengths) and table size. */
5236 static size_t
5237 compute_bucket_count (struct bfd_link_info *info,
5238 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5239 unsigned long int nsyms,
5240 int gnu_hash)
5241 {
5242 size_t best_size = 0;
5243 unsigned long int i;
5244
5245 /* We have a problem here. The following code to optimize the table
5246 size requires an integer type with more the 32 bits. If
5247 BFD_HOST_U_64_BIT is set we know about such a type. */
5248 #ifdef BFD_HOST_U_64_BIT
5249 if (info->optimize)
5250 {
5251 size_t minsize;
5252 size_t maxsize;
5253 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5254 bfd *dynobj = elf_hash_table (info)->dynobj;
5255 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5256 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5257 unsigned long int *counts;
5258 bfd_size_type amt;
5259
5260 /* Possible optimization parameters: if we have NSYMS symbols we say
5261 that the hashing table must at least have NSYMS/4 and at most
5262 2*NSYMS buckets. */
5263 minsize = nsyms / 4;
5264 if (minsize == 0)
5265 minsize = 1;
5266 best_size = maxsize = nsyms * 2;
5267 if (gnu_hash)
5268 {
5269 if (minsize < 2)
5270 minsize = 2;
5271 if ((best_size & 31) == 0)
5272 ++best_size;
5273 }
5274
5275 /* Create array where we count the collisions in. We must use bfd_malloc
5276 since the size could be large. */
5277 amt = maxsize;
5278 amt *= sizeof (unsigned long int);
5279 counts = bfd_malloc (amt);
5280 if (counts == NULL)
5281 return 0;
5282
5283 /* Compute the "optimal" size for the hash table. The criteria is a
5284 minimal chain length. The minor criteria is (of course) the size
5285 of the table. */
5286 for (i = minsize; i < maxsize; ++i)
5287 {
5288 /* Walk through the array of hashcodes and count the collisions. */
5289 BFD_HOST_U_64_BIT max;
5290 unsigned long int j;
5291 unsigned long int fact;
5292
5293 if (gnu_hash && (i & 31) == 0)
5294 continue;
5295
5296 memset (counts, '\0', i * sizeof (unsigned long int));
5297
5298 /* Determine how often each hash bucket is used. */
5299 for (j = 0; j < nsyms; ++j)
5300 ++counts[hashcodes[j] % i];
5301
5302 /* For the weight function we need some information about the
5303 pagesize on the target. This is information need not be 100%
5304 accurate. Since this information is not available (so far) we
5305 define it here to a reasonable default value. If it is crucial
5306 to have a better value some day simply define this value. */
5307 # ifndef BFD_TARGET_PAGESIZE
5308 # define BFD_TARGET_PAGESIZE (4096)
5309 # endif
5310
5311 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5312 and the chains. */
5313 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5314
5315 # if 1
5316 /* Variant 1: optimize for short chains. We add the squares
5317 of all the chain lengths (which favors many small chain
5318 over a few long chains). */
5319 for (j = 0; j < i; ++j)
5320 max += counts[j] * counts[j];
5321
5322 /* This adds penalties for the overall size of the table. */
5323 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5324 max *= fact * fact;
5325 # else
5326 /* Variant 2: Optimize a lot more for small table. Here we
5327 also add squares of the size but we also add penalties for
5328 empty slots (the +1 term). */
5329 for (j = 0; j < i; ++j)
5330 max += (1 + counts[j]) * (1 + counts[j]);
5331
5332 /* The overall size of the table is considered, but not as
5333 strong as in variant 1, where it is squared. */
5334 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5335 max *= fact;
5336 # endif
5337
5338 /* Compare with current best results. */
5339 if (max < best_chlen)
5340 {
5341 best_chlen = max;
5342 best_size = i;
5343 }
5344 }
5345
5346 free (counts);
5347 }
5348 else
5349 #endif /* defined (BFD_HOST_U_64_BIT) */
5350 {
5351 /* This is the fallback solution if no 64bit type is available or if we
5352 are not supposed to spend much time on optimizations. We select the
5353 bucket count using a fixed set of numbers. */
5354 for (i = 0; elf_buckets[i] != 0; i++)
5355 {
5356 best_size = elf_buckets[i];
5357 if (nsyms < elf_buckets[i + 1])
5358 break;
5359 }
5360 if (gnu_hash && best_size < 2)
5361 best_size = 2;
5362 }
5363
5364 return best_size;
5365 }
5366
5367 /* Set up the sizes and contents of the ELF dynamic sections. This is
5368 called by the ELF linker emulation before_allocation routine. We
5369 must set the sizes of the sections before the linker sets the
5370 addresses of the various sections. */
5371
5372 bfd_boolean
5373 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5374 const char *soname,
5375 const char *rpath,
5376 const char *filter_shlib,
5377 const char * const *auxiliary_filters,
5378 struct bfd_link_info *info,
5379 asection **sinterpptr,
5380 struct bfd_elf_version_tree *verdefs)
5381 {
5382 bfd_size_type soname_indx;
5383 bfd *dynobj;
5384 const struct elf_backend_data *bed;
5385 struct elf_assign_sym_version_info asvinfo;
5386
5387 *sinterpptr = NULL;
5388
5389 soname_indx = (bfd_size_type) -1;
5390
5391 if (!is_elf_hash_table (info->hash))
5392 return TRUE;
5393
5394 bed = get_elf_backend_data (output_bfd);
5395 if (info->execstack)
5396 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5397 else if (info->noexecstack)
5398 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5399 else
5400 {
5401 bfd *inputobj;
5402 asection *notesec = NULL;
5403 int exec = 0;
5404
5405 for (inputobj = info->input_bfds;
5406 inputobj;
5407 inputobj = inputobj->link_next)
5408 {
5409 asection *s;
5410
5411 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5412 continue;
5413 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5414 if (s)
5415 {
5416 if (s->flags & SEC_CODE)
5417 exec = PF_X;
5418 notesec = s;
5419 }
5420 else if (bed->default_execstack)
5421 exec = PF_X;
5422 }
5423 if (notesec)
5424 {
5425 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5426 if (exec && info->relocatable
5427 && notesec->output_section != bfd_abs_section_ptr)
5428 notesec->output_section->flags |= SEC_CODE;
5429 }
5430 }
5431
5432 /* Any syms created from now on start with -1 in
5433 got.refcount/offset and plt.refcount/offset. */
5434 elf_hash_table (info)->init_got_refcount
5435 = elf_hash_table (info)->init_got_offset;
5436 elf_hash_table (info)->init_plt_refcount
5437 = elf_hash_table (info)->init_plt_offset;
5438
5439 /* The backend may have to create some sections regardless of whether
5440 we're dynamic or not. */
5441 if (bed->elf_backend_always_size_sections
5442 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5443 return FALSE;
5444
5445 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5446 return FALSE;
5447
5448 dynobj = elf_hash_table (info)->dynobj;
5449
5450 /* If there were no dynamic objects in the link, there is nothing to
5451 do here. */
5452 if (dynobj == NULL)
5453 return TRUE;
5454
5455 if (elf_hash_table (info)->dynamic_sections_created)
5456 {
5457 struct elf_info_failed eif;
5458 struct elf_link_hash_entry *h;
5459 asection *dynstr;
5460 struct bfd_elf_version_tree *t;
5461 struct bfd_elf_version_expr *d;
5462 asection *s;
5463 bfd_boolean all_defined;
5464
5465 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5466 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5467
5468 if (soname != NULL)
5469 {
5470 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5471 soname, TRUE);
5472 if (soname_indx == (bfd_size_type) -1
5473 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5474 return FALSE;
5475 }
5476
5477 if (info->symbolic)
5478 {
5479 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5480 return FALSE;
5481 info->flags |= DF_SYMBOLIC;
5482 }
5483
5484 if (rpath != NULL)
5485 {
5486 bfd_size_type indx;
5487
5488 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5489 TRUE);
5490 if (indx == (bfd_size_type) -1
5491 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5492 return FALSE;
5493
5494 if (info->new_dtags)
5495 {
5496 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5497 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5498 return FALSE;
5499 }
5500 }
5501
5502 if (filter_shlib != NULL)
5503 {
5504 bfd_size_type indx;
5505
5506 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5507 filter_shlib, TRUE);
5508 if (indx == (bfd_size_type) -1
5509 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5510 return FALSE;
5511 }
5512
5513 if (auxiliary_filters != NULL)
5514 {
5515 const char * const *p;
5516
5517 for (p = auxiliary_filters; *p != NULL; p++)
5518 {
5519 bfd_size_type indx;
5520
5521 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5522 *p, TRUE);
5523 if (indx == (bfd_size_type) -1
5524 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5525 return FALSE;
5526 }
5527 }
5528
5529 eif.info = info;
5530 eif.verdefs = verdefs;
5531 eif.failed = FALSE;
5532
5533 /* If we are supposed to export all symbols into the dynamic symbol
5534 table (this is not the normal case), then do so. */
5535 if (info->export_dynamic
5536 || (info->executable && info->dynamic))
5537 {
5538 elf_link_hash_traverse (elf_hash_table (info),
5539 _bfd_elf_export_symbol,
5540 &eif);
5541 if (eif.failed)
5542 return FALSE;
5543 }
5544
5545 /* Make all global versions with definition. */
5546 for (t = verdefs; t != NULL; t = t->next)
5547 for (d = t->globals.list; d != NULL; d = d->next)
5548 if (!d->symver && d->symbol)
5549 {
5550 const char *verstr, *name;
5551 size_t namelen, verlen, newlen;
5552 char *newname, *p;
5553 struct elf_link_hash_entry *newh;
5554
5555 name = d->symbol;
5556 namelen = strlen (name);
5557 verstr = t->name;
5558 verlen = strlen (verstr);
5559 newlen = namelen + verlen + 3;
5560
5561 newname = bfd_malloc (newlen);
5562 if (newname == NULL)
5563 return FALSE;
5564 memcpy (newname, name, namelen);
5565
5566 /* Check the hidden versioned definition. */
5567 p = newname + namelen;
5568 *p++ = ELF_VER_CHR;
5569 memcpy (p, verstr, verlen + 1);
5570 newh = elf_link_hash_lookup (elf_hash_table (info),
5571 newname, FALSE, FALSE,
5572 FALSE);
5573 if (newh == NULL
5574 || (newh->root.type != bfd_link_hash_defined
5575 && newh->root.type != bfd_link_hash_defweak))
5576 {
5577 /* Check the default versioned definition. */
5578 *p++ = ELF_VER_CHR;
5579 memcpy (p, verstr, verlen + 1);
5580 newh = elf_link_hash_lookup (elf_hash_table (info),
5581 newname, FALSE, FALSE,
5582 FALSE);
5583 }
5584 free (newname);
5585
5586 /* Mark this version if there is a definition and it is
5587 not defined in a shared object. */
5588 if (newh != NULL
5589 && !newh->def_dynamic
5590 && (newh->root.type == bfd_link_hash_defined
5591 || newh->root.type == bfd_link_hash_defweak))
5592 d->symver = 1;
5593 }
5594
5595 /* Attach all the symbols to their version information. */
5596 asvinfo.output_bfd = output_bfd;
5597 asvinfo.info = info;
5598 asvinfo.verdefs = verdefs;
5599 asvinfo.failed = FALSE;
5600
5601 elf_link_hash_traverse (elf_hash_table (info),
5602 _bfd_elf_link_assign_sym_version,
5603 &asvinfo);
5604 if (asvinfo.failed)
5605 return FALSE;
5606
5607 if (!info->allow_undefined_version)
5608 {
5609 /* Check if all global versions have a definition. */
5610 all_defined = TRUE;
5611 for (t = verdefs; t != NULL; t = t->next)
5612 for (d = t->globals.list; d != NULL; d = d->next)
5613 if (!d->symver && !d->script)
5614 {
5615 (*_bfd_error_handler)
5616 (_("%s: undefined version: %s"),
5617 d->pattern, t->name);
5618 all_defined = FALSE;
5619 }
5620
5621 if (!all_defined)
5622 {
5623 bfd_set_error (bfd_error_bad_value);
5624 return FALSE;
5625 }
5626 }
5627
5628 /* Find all symbols which were defined in a dynamic object and make
5629 the backend pick a reasonable value for them. */
5630 elf_link_hash_traverse (elf_hash_table (info),
5631 _bfd_elf_adjust_dynamic_symbol,
5632 &eif);
5633 if (eif.failed)
5634 return FALSE;
5635
5636 /* Add some entries to the .dynamic section. We fill in some of the
5637 values later, in bfd_elf_final_link, but we must add the entries
5638 now so that we know the final size of the .dynamic section. */
5639
5640 /* If there are initialization and/or finalization functions to
5641 call then add the corresponding DT_INIT/DT_FINI entries. */
5642 h = (info->init_function
5643 ? elf_link_hash_lookup (elf_hash_table (info),
5644 info->init_function, FALSE,
5645 FALSE, FALSE)
5646 : NULL);
5647 if (h != NULL
5648 && (h->ref_regular
5649 || h->def_regular))
5650 {
5651 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5652 return FALSE;
5653 }
5654 h = (info->fini_function
5655 ? elf_link_hash_lookup (elf_hash_table (info),
5656 info->fini_function, FALSE,
5657 FALSE, FALSE)
5658 : NULL);
5659 if (h != NULL
5660 && (h->ref_regular
5661 || h->def_regular))
5662 {
5663 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5664 return FALSE;
5665 }
5666
5667 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5668 if (s != NULL && s->linker_has_input)
5669 {
5670 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5671 if (! info->executable)
5672 {
5673 bfd *sub;
5674 asection *o;
5675
5676 for (sub = info->input_bfds; sub != NULL;
5677 sub = sub->link_next)
5678 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5679 for (o = sub->sections; o != NULL; o = o->next)
5680 if (elf_section_data (o)->this_hdr.sh_type
5681 == SHT_PREINIT_ARRAY)
5682 {
5683 (*_bfd_error_handler)
5684 (_("%B: .preinit_array section is not allowed in DSO"),
5685 sub);
5686 break;
5687 }
5688
5689 bfd_set_error (bfd_error_nonrepresentable_section);
5690 return FALSE;
5691 }
5692
5693 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5694 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5695 return FALSE;
5696 }
5697 s = bfd_get_section_by_name (output_bfd, ".init_array");
5698 if (s != NULL && s->linker_has_input)
5699 {
5700 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5701 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5702 return FALSE;
5703 }
5704 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5705 if (s != NULL && s->linker_has_input)
5706 {
5707 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5708 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5709 return FALSE;
5710 }
5711
5712 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5713 /* If .dynstr is excluded from the link, we don't want any of
5714 these tags. Strictly, we should be checking each section
5715 individually; This quick check covers for the case where
5716 someone does a /DISCARD/ : { *(*) }. */
5717 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5718 {
5719 bfd_size_type strsize;
5720
5721 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5722 if ((info->emit_hash
5723 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5724 || (info->emit_gnu_hash
5725 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5726 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5727 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5728 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5729 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5730 bed->s->sizeof_sym))
5731 return FALSE;
5732 }
5733 }
5734
5735 /* The backend must work out the sizes of all the other dynamic
5736 sections. */
5737 if (bed->elf_backend_size_dynamic_sections
5738 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5739 return FALSE;
5740
5741 if (elf_hash_table (info)->dynamic_sections_created)
5742 {
5743 unsigned long section_sym_count;
5744 asection *s;
5745
5746 /* Set up the version definition section. */
5747 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5748 BFD_ASSERT (s != NULL);
5749
5750 /* We may have created additional version definitions if we are
5751 just linking a regular application. */
5752 verdefs = asvinfo.verdefs;
5753
5754 /* Skip anonymous version tag. */
5755 if (verdefs != NULL && verdefs->vernum == 0)
5756 verdefs = verdefs->next;
5757
5758 if (verdefs == NULL && !info->create_default_symver)
5759 s->flags |= SEC_EXCLUDE;
5760 else
5761 {
5762 unsigned int cdefs;
5763 bfd_size_type size;
5764 struct bfd_elf_version_tree *t;
5765 bfd_byte *p;
5766 Elf_Internal_Verdef def;
5767 Elf_Internal_Verdaux defaux;
5768 struct bfd_link_hash_entry *bh;
5769 struct elf_link_hash_entry *h;
5770 const char *name;
5771
5772 cdefs = 0;
5773 size = 0;
5774
5775 /* Make space for the base version. */
5776 size += sizeof (Elf_External_Verdef);
5777 size += sizeof (Elf_External_Verdaux);
5778 ++cdefs;
5779
5780 /* Make space for the default version. */
5781 if (info->create_default_symver)
5782 {
5783 size += sizeof (Elf_External_Verdef);
5784 ++cdefs;
5785 }
5786
5787 for (t = verdefs; t != NULL; t = t->next)
5788 {
5789 struct bfd_elf_version_deps *n;
5790
5791 size += sizeof (Elf_External_Verdef);
5792 size += sizeof (Elf_External_Verdaux);
5793 ++cdefs;
5794
5795 for (n = t->deps; n != NULL; n = n->next)
5796 size += sizeof (Elf_External_Verdaux);
5797 }
5798
5799 s->size = size;
5800 s->contents = bfd_alloc (output_bfd, s->size);
5801 if (s->contents == NULL && s->size != 0)
5802 return FALSE;
5803
5804 /* Fill in the version definition section. */
5805
5806 p = s->contents;
5807
5808 def.vd_version = VER_DEF_CURRENT;
5809 def.vd_flags = VER_FLG_BASE;
5810 def.vd_ndx = 1;
5811 def.vd_cnt = 1;
5812 if (info->create_default_symver)
5813 {
5814 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5815 def.vd_next = sizeof (Elf_External_Verdef);
5816 }
5817 else
5818 {
5819 def.vd_aux = sizeof (Elf_External_Verdef);
5820 def.vd_next = (sizeof (Elf_External_Verdef)
5821 + sizeof (Elf_External_Verdaux));
5822 }
5823
5824 if (soname_indx != (bfd_size_type) -1)
5825 {
5826 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5827 soname_indx);
5828 def.vd_hash = bfd_elf_hash (soname);
5829 defaux.vda_name = soname_indx;
5830 name = soname;
5831 }
5832 else
5833 {
5834 bfd_size_type indx;
5835
5836 name = lbasename (output_bfd->filename);
5837 def.vd_hash = bfd_elf_hash (name);
5838 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5839 name, FALSE);
5840 if (indx == (bfd_size_type) -1)
5841 return FALSE;
5842 defaux.vda_name = indx;
5843 }
5844 defaux.vda_next = 0;
5845
5846 _bfd_elf_swap_verdef_out (output_bfd, &def,
5847 (Elf_External_Verdef *) p);
5848 p += sizeof (Elf_External_Verdef);
5849 if (info->create_default_symver)
5850 {
5851 /* Add a symbol representing this version. */
5852 bh = NULL;
5853 if (! (_bfd_generic_link_add_one_symbol
5854 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5855 0, NULL, FALSE,
5856 get_elf_backend_data (dynobj)->collect, &bh)))
5857 return FALSE;
5858 h = (struct elf_link_hash_entry *) bh;
5859 h->non_elf = 0;
5860 h->def_regular = 1;
5861 h->type = STT_OBJECT;
5862 h->verinfo.vertree = NULL;
5863
5864 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5865 return FALSE;
5866
5867 /* Create a duplicate of the base version with the same
5868 aux block, but different flags. */
5869 def.vd_flags = 0;
5870 def.vd_ndx = 2;
5871 def.vd_aux = sizeof (Elf_External_Verdef);
5872 if (verdefs)
5873 def.vd_next = (sizeof (Elf_External_Verdef)
5874 + sizeof (Elf_External_Verdaux));
5875 else
5876 def.vd_next = 0;
5877 _bfd_elf_swap_verdef_out (output_bfd, &def,
5878 (Elf_External_Verdef *) p);
5879 p += sizeof (Elf_External_Verdef);
5880 }
5881 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5882 (Elf_External_Verdaux *) p);
5883 p += sizeof (Elf_External_Verdaux);
5884
5885 for (t = verdefs; t != NULL; t = t->next)
5886 {
5887 unsigned int cdeps;
5888 struct bfd_elf_version_deps *n;
5889
5890 cdeps = 0;
5891 for (n = t->deps; n != NULL; n = n->next)
5892 ++cdeps;
5893
5894 /* Add a symbol representing this version. */
5895 bh = NULL;
5896 if (! (_bfd_generic_link_add_one_symbol
5897 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5898 0, NULL, FALSE,
5899 get_elf_backend_data (dynobj)->collect, &bh)))
5900 return FALSE;
5901 h = (struct elf_link_hash_entry *) bh;
5902 h->non_elf = 0;
5903 h->def_regular = 1;
5904 h->type = STT_OBJECT;
5905 h->verinfo.vertree = t;
5906
5907 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5908 return FALSE;
5909
5910 def.vd_version = VER_DEF_CURRENT;
5911 def.vd_flags = 0;
5912 if (t->globals.list == NULL
5913 && t->locals.list == NULL
5914 && ! t->used)
5915 def.vd_flags |= VER_FLG_WEAK;
5916 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5917 def.vd_cnt = cdeps + 1;
5918 def.vd_hash = bfd_elf_hash (t->name);
5919 def.vd_aux = sizeof (Elf_External_Verdef);
5920 def.vd_next = 0;
5921 if (t->next != NULL)
5922 def.vd_next = (sizeof (Elf_External_Verdef)
5923 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5924
5925 _bfd_elf_swap_verdef_out (output_bfd, &def,
5926 (Elf_External_Verdef *) p);
5927 p += sizeof (Elf_External_Verdef);
5928
5929 defaux.vda_name = h->dynstr_index;
5930 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5931 h->dynstr_index);
5932 defaux.vda_next = 0;
5933 if (t->deps != NULL)
5934 defaux.vda_next = sizeof (Elf_External_Verdaux);
5935 t->name_indx = defaux.vda_name;
5936
5937 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5938 (Elf_External_Verdaux *) p);
5939 p += sizeof (Elf_External_Verdaux);
5940
5941 for (n = t->deps; n != NULL; n = n->next)
5942 {
5943 if (n->version_needed == NULL)
5944 {
5945 /* This can happen if there was an error in the
5946 version script. */
5947 defaux.vda_name = 0;
5948 }
5949 else
5950 {
5951 defaux.vda_name = n->version_needed->name_indx;
5952 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5953 defaux.vda_name);
5954 }
5955 if (n->next == NULL)
5956 defaux.vda_next = 0;
5957 else
5958 defaux.vda_next = sizeof (Elf_External_Verdaux);
5959
5960 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5961 (Elf_External_Verdaux *) p);
5962 p += sizeof (Elf_External_Verdaux);
5963 }
5964 }
5965
5966 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5967 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5968 return FALSE;
5969
5970 elf_tdata (output_bfd)->cverdefs = cdefs;
5971 }
5972
5973 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5976 return FALSE;
5977 }
5978 else if (info->flags & DF_BIND_NOW)
5979 {
5980 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5981 return FALSE;
5982 }
5983
5984 if (info->flags_1)
5985 {
5986 if (info->executable)
5987 info->flags_1 &= ~ (DF_1_INITFIRST
5988 | DF_1_NODELETE
5989 | DF_1_NOOPEN);
5990 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5991 return FALSE;
5992 }
5993
5994 /* Work out the size of the version reference section. */
5995
5996 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5997 BFD_ASSERT (s != NULL);
5998 {
5999 struct elf_find_verdep_info sinfo;
6000
6001 sinfo.output_bfd = output_bfd;
6002 sinfo.info = info;
6003 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6004 if (sinfo.vers == 0)
6005 sinfo.vers = 1;
6006 sinfo.failed = FALSE;
6007
6008 elf_link_hash_traverse (elf_hash_table (info),
6009 _bfd_elf_link_find_version_dependencies,
6010 &sinfo);
6011 if (sinfo.failed)
6012 return FALSE;
6013
6014 if (elf_tdata (output_bfd)->verref == NULL)
6015 s->flags |= SEC_EXCLUDE;
6016 else
6017 {
6018 Elf_Internal_Verneed *t;
6019 unsigned int size;
6020 unsigned int crefs;
6021 bfd_byte *p;
6022
6023 /* Build the version definition section. */
6024 size = 0;
6025 crefs = 0;
6026 for (t = elf_tdata (output_bfd)->verref;
6027 t != NULL;
6028 t = t->vn_nextref)
6029 {
6030 Elf_Internal_Vernaux *a;
6031
6032 size += sizeof (Elf_External_Verneed);
6033 ++crefs;
6034 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6035 size += sizeof (Elf_External_Vernaux);
6036 }
6037
6038 s->size = size;
6039 s->contents = bfd_alloc (output_bfd, s->size);
6040 if (s->contents == NULL)
6041 return FALSE;
6042
6043 p = s->contents;
6044 for (t = elf_tdata (output_bfd)->verref;
6045 t != NULL;
6046 t = t->vn_nextref)
6047 {
6048 unsigned int caux;
6049 Elf_Internal_Vernaux *a;
6050 bfd_size_type indx;
6051
6052 caux = 0;
6053 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6054 ++caux;
6055
6056 t->vn_version = VER_NEED_CURRENT;
6057 t->vn_cnt = caux;
6058 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6059 elf_dt_name (t->vn_bfd) != NULL
6060 ? elf_dt_name (t->vn_bfd)
6061 : lbasename (t->vn_bfd->filename),
6062 FALSE);
6063 if (indx == (bfd_size_type) -1)
6064 return FALSE;
6065 t->vn_file = indx;
6066 t->vn_aux = sizeof (Elf_External_Verneed);
6067 if (t->vn_nextref == NULL)
6068 t->vn_next = 0;
6069 else
6070 t->vn_next = (sizeof (Elf_External_Verneed)
6071 + caux * sizeof (Elf_External_Vernaux));
6072
6073 _bfd_elf_swap_verneed_out (output_bfd, t,
6074 (Elf_External_Verneed *) p);
6075 p += sizeof (Elf_External_Verneed);
6076
6077 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6078 {
6079 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6080 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6081 a->vna_nodename, FALSE);
6082 if (indx == (bfd_size_type) -1)
6083 return FALSE;
6084 a->vna_name = indx;
6085 if (a->vna_nextptr == NULL)
6086 a->vna_next = 0;
6087 else
6088 a->vna_next = sizeof (Elf_External_Vernaux);
6089
6090 _bfd_elf_swap_vernaux_out (output_bfd, a,
6091 (Elf_External_Vernaux *) p);
6092 p += sizeof (Elf_External_Vernaux);
6093 }
6094 }
6095
6096 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6097 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6098 return FALSE;
6099
6100 elf_tdata (output_bfd)->cverrefs = crefs;
6101 }
6102 }
6103
6104 if ((elf_tdata (output_bfd)->cverrefs == 0
6105 && elf_tdata (output_bfd)->cverdefs == 0)
6106 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6107 &section_sym_count) == 0)
6108 {
6109 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6110 s->flags |= SEC_EXCLUDE;
6111 }
6112 }
6113 return TRUE;
6114 }
6115
6116 /* Find the first non-excluded output section. We'll use its
6117 section symbol for some emitted relocs. */
6118 void
6119 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6120 {
6121 asection *s;
6122
6123 for (s = output_bfd->sections; s != NULL; s = s->next)
6124 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6125 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6126 {
6127 elf_hash_table (info)->text_index_section = s;
6128 break;
6129 }
6130 }
6131
6132 /* Find two non-excluded output sections, one for code, one for data.
6133 We'll use their section symbols for some emitted relocs. */
6134 void
6135 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6136 {
6137 asection *s;
6138
6139 for (s = output_bfd->sections; s != NULL; s = s->next)
6140 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6141 == (SEC_ALLOC | SEC_READONLY))
6142 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6143 {
6144 elf_hash_table (info)->text_index_section = s;
6145 break;
6146 }
6147
6148 for (s = output_bfd->sections; s != NULL; s = s->next)
6149 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6150 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6151 {
6152 elf_hash_table (info)->data_index_section = s;
6153 break;
6154 }
6155
6156 if (elf_hash_table (info)->text_index_section == NULL)
6157 elf_hash_table (info)->text_index_section
6158 = elf_hash_table (info)->data_index_section;
6159 }
6160
6161 bfd_boolean
6162 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6163 {
6164 const struct elf_backend_data *bed;
6165
6166 if (!is_elf_hash_table (info->hash))
6167 return TRUE;
6168
6169 bed = get_elf_backend_data (output_bfd);
6170 (*bed->elf_backend_init_index_section) (output_bfd, info);
6171
6172 if (elf_hash_table (info)->dynamic_sections_created)
6173 {
6174 bfd *dynobj;
6175 asection *s;
6176 bfd_size_type dynsymcount;
6177 unsigned long section_sym_count;
6178 unsigned int dtagcount;
6179
6180 dynobj = elf_hash_table (info)->dynobj;
6181
6182 /* Assign dynsym indicies. In a shared library we generate a
6183 section symbol for each output section, which come first.
6184 Next come all of the back-end allocated local dynamic syms,
6185 followed by the rest of the global symbols. */
6186
6187 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6188 &section_sym_count);
6189
6190 /* Work out the size of the symbol version section. */
6191 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6192 BFD_ASSERT (s != NULL);
6193 if (dynsymcount != 0
6194 && (s->flags & SEC_EXCLUDE) == 0)
6195 {
6196 s->size = dynsymcount * sizeof (Elf_External_Versym);
6197 s->contents = bfd_zalloc (output_bfd, s->size);
6198 if (s->contents == NULL)
6199 return FALSE;
6200
6201 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6202 return FALSE;
6203 }
6204
6205 /* Set the size of the .dynsym and .hash sections. We counted
6206 the number of dynamic symbols in elf_link_add_object_symbols.
6207 We will build the contents of .dynsym and .hash when we build
6208 the final symbol table, because until then we do not know the
6209 correct value to give the symbols. We built the .dynstr
6210 section as we went along in elf_link_add_object_symbols. */
6211 s = bfd_get_section_by_name (dynobj, ".dynsym");
6212 BFD_ASSERT (s != NULL);
6213 s->size = dynsymcount * bed->s->sizeof_sym;
6214
6215 if (dynsymcount != 0)
6216 {
6217 s->contents = bfd_alloc (output_bfd, s->size);
6218 if (s->contents == NULL)
6219 return FALSE;
6220
6221 /* The first entry in .dynsym is a dummy symbol.
6222 Clear all the section syms, in case we don't output them all. */
6223 ++section_sym_count;
6224 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6225 }
6226
6227 elf_hash_table (info)->bucketcount = 0;
6228
6229 /* Compute the size of the hashing table. As a side effect this
6230 computes the hash values for all the names we export. */
6231 if (info->emit_hash)
6232 {
6233 unsigned long int *hashcodes;
6234 struct hash_codes_info hashinf;
6235 bfd_size_type amt;
6236 unsigned long int nsyms;
6237 size_t bucketcount;
6238 size_t hash_entry_size;
6239
6240 /* Compute the hash values for all exported symbols. At the same
6241 time store the values in an array so that we could use them for
6242 optimizations. */
6243 amt = dynsymcount * sizeof (unsigned long int);
6244 hashcodes = bfd_malloc (amt);
6245 if (hashcodes == NULL)
6246 return FALSE;
6247 hashinf.hashcodes = hashcodes;
6248 hashinf.error = FALSE;
6249
6250 /* Put all hash values in HASHCODES. */
6251 elf_link_hash_traverse (elf_hash_table (info),
6252 elf_collect_hash_codes, &hashinf);
6253 if (hashinf.error)
6254 return FALSE;
6255
6256 nsyms = hashinf.hashcodes - hashcodes;
6257 bucketcount
6258 = compute_bucket_count (info, hashcodes, nsyms, 0);
6259 free (hashcodes);
6260
6261 if (bucketcount == 0)
6262 return FALSE;
6263
6264 elf_hash_table (info)->bucketcount = bucketcount;
6265
6266 s = bfd_get_section_by_name (dynobj, ".hash");
6267 BFD_ASSERT (s != NULL);
6268 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6269 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6270 s->contents = bfd_zalloc (output_bfd, s->size);
6271 if (s->contents == NULL)
6272 return FALSE;
6273
6274 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6275 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6276 s->contents + hash_entry_size);
6277 }
6278
6279 if (info->emit_gnu_hash)
6280 {
6281 size_t i, cnt;
6282 unsigned char *contents;
6283 struct collect_gnu_hash_codes cinfo;
6284 bfd_size_type amt;
6285 size_t bucketcount;
6286
6287 memset (&cinfo, 0, sizeof (cinfo));
6288
6289 /* Compute the hash values for all exported symbols. At the same
6290 time store the values in an array so that we could use them for
6291 optimizations. */
6292 amt = dynsymcount * 2 * sizeof (unsigned long int);
6293 cinfo.hashcodes = bfd_malloc (amt);
6294 if (cinfo.hashcodes == NULL)
6295 return FALSE;
6296
6297 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6298 cinfo.min_dynindx = -1;
6299 cinfo.output_bfd = output_bfd;
6300 cinfo.bed = bed;
6301
6302 /* Put all hash values in HASHCODES. */
6303 elf_link_hash_traverse (elf_hash_table (info),
6304 elf_collect_gnu_hash_codes, &cinfo);
6305 if (cinfo.error)
6306 return FALSE;
6307
6308 bucketcount
6309 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6310
6311 if (bucketcount == 0)
6312 {
6313 free (cinfo.hashcodes);
6314 return FALSE;
6315 }
6316
6317 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6318 BFD_ASSERT (s != NULL);
6319
6320 if (cinfo.nsyms == 0)
6321 {
6322 /* Empty .gnu.hash section is special. */
6323 BFD_ASSERT (cinfo.min_dynindx == -1);
6324 free (cinfo.hashcodes);
6325 s->size = 5 * 4 + bed->s->arch_size / 8;
6326 contents = bfd_zalloc (output_bfd, s->size);
6327 if (contents == NULL)
6328 return FALSE;
6329 s->contents = contents;
6330 /* 1 empty bucket. */
6331 bfd_put_32 (output_bfd, 1, contents);
6332 /* SYMIDX above the special symbol 0. */
6333 bfd_put_32 (output_bfd, 1, contents + 4);
6334 /* Just one word for bitmask. */
6335 bfd_put_32 (output_bfd, 1, contents + 8);
6336 /* Only hash fn bloom filter. */
6337 bfd_put_32 (output_bfd, 0, contents + 12);
6338 /* No hashes are valid - empty bitmask. */
6339 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6340 /* No hashes in the only bucket. */
6341 bfd_put_32 (output_bfd, 0,
6342 contents + 16 + bed->s->arch_size / 8);
6343 }
6344 else
6345 {
6346 unsigned long int maskwords, maskbitslog2;
6347 BFD_ASSERT (cinfo.min_dynindx != -1);
6348
6349 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6350 if (maskbitslog2 < 3)
6351 maskbitslog2 = 5;
6352 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6353 maskbitslog2 = maskbitslog2 + 3;
6354 else
6355 maskbitslog2 = maskbitslog2 + 2;
6356 if (bed->s->arch_size == 64)
6357 {
6358 if (maskbitslog2 == 5)
6359 maskbitslog2 = 6;
6360 cinfo.shift1 = 6;
6361 }
6362 else
6363 cinfo.shift1 = 5;
6364 cinfo.mask = (1 << cinfo.shift1) - 1;
6365 cinfo.shift2 = maskbitslog2;
6366 cinfo.maskbits = 1 << maskbitslog2;
6367 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6368 amt = bucketcount * sizeof (unsigned long int) * 2;
6369 amt += maskwords * sizeof (bfd_vma);
6370 cinfo.bitmask = bfd_malloc (amt);
6371 if (cinfo.bitmask == NULL)
6372 {
6373 free (cinfo.hashcodes);
6374 return FALSE;
6375 }
6376
6377 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6378 cinfo.indx = cinfo.counts + bucketcount;
6379 cinfo.symindx = dynsymcount - cinfo.nsyms;
6380 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6381
6382 /* Determine how often each hash bucket is used. */
6383 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6384 for (i = 0; i < cinfo.nsyms; ++i)
6385 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6386
6387 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6388 if (cinfo.counts[i] != 0)
6389 {
6390 cinfo.indx[i] = cnt;
6391 cnt += cinfo.counts[i];
6392 }
6393 BFD_ASSERT (cnt == dynsymcount);
6394 cinfo.bucketcount = bucketcount;
6395 cinfo.local_indx = cinfo.min_dynindx;
6396
6397 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6398 s->size += cinfo.maskbits / 8;
6399 contents = bfd_zalloc (output_bfd, s->size);
6400 if (contents == NULL)
6401 {
6402 free (cinfo.bitmask);
6403 free (cinfo.hashcodes);
6404 return FALSE;
6405 }
6406
6407 s->contents = contents;
6408 bfd_put_32 (output_bfd, bucketcount, contents);
6409 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6410 bfd_put_32 (output_bfd, maskwords, contents + 8);
6411 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6412 contents += 16 + cinfo.maskbits / 8;
6413
6414 for (i = 0; i < bucketcount; ++i)
6415 {
6416 if (cinfo.counts[i] == 0)
6417 bfd_put_32 (output_bfd, 0, contents);
6418 else
6419 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6420 contents += 4;
6421 }
6422
6423 cinfo.contents = contents;
6424
6425 /* Renumber dynamic symbols, populate .gnu.hash section. */
6426 elf_link_hash_traverse (elf_hash_table (info),
6427 elf_renumber_gnu_hash_syms, &cinfo);
6428
6429 contents = s->contents + 16;
6430 for (i = 0; i < maskwords; ++i)
6431 {
6432 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6433 contents);
6434 contents += bed->s->arch_size / 8;
6435 }
6436
6437 free (cinfo.bitmask);
6438 free (cinfo.hashcodes);
6439 }
6440 }
6441
6442 s = bfd_get_section_by_name (dynobj, ".dynstr");
6443 BFD_ASSERT (s != NULL);
6444
6445 elf_finalize_dynstr (output_bfd, info);
6446
6447 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6448
6449 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6450 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6451 return FALSE;
6452 }
6453
6454 return TRUE;
6455 }
6456 \f
6457 /* Indicate that we are only retrieving symbol values from this
6458 section. */
6459
6460 void
6461 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6462 {
6463 if (is_elf_hash_table (info->hash))
6464 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6465 _bfd_generic_link_just_syms (sec, info);
6466 }
6467
6468 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6469
6470 static void
6471 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6472 asection *sec)
6473 {
6474 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6475 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6476 }
6477
6478 /* Finish SHF_MERGE section merging. */
6479
6480 bfd_boolean
6481 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6482 {
6483 bfd *ibfd;
6484 asection *sec;
6485
6486 if (!is_elf_hash_table (info->hash))
6487 return FALSE;
6488
6489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6490 if ((ibfd->flags & DYNAMIC) == 0)
6491 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6492 if ((sec->flags & SEC_MERGE) != 0
6493 && !bfd_is_abs_section (sec->output_section))
6494 {
6495 struct bfd_elf_section_data *secdata;
6496
6497 secdata = elf_section_data (sec);
6498 if (! _bfd_add_merge_section (abfd,
6499 &elf_hash_table (info)->merge_info,
6500 sec, &secdata->sec_info))
6501 return FALSE;
6502 else if (secdata->sec_info)
6503 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6504 }
6505
6506 if (elf_hash_table (info)->merge_info != NULL)
6507 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6508 merge_sections_remove_hook);
6509 return TRUE;
6510 }
6511
6512 /* Create an entry in an ELF linker hash table. */
6513
6514 struct bfd_hash_entry *
6515 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6516 struct bfd_hash_table *table,
6517 const char *string)
6518 {
6519 /* Allocate the structure if it has not already been allocated by a
6520 subclass. */
6521 if (entry == NULL)
6522 {
6523 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6524 if (entry == NULL)
6525 return entry;
6526 }
6527
6528 /* Call the allocation method of the superclass. */
6529 entry = _bfd_link_hash_newfunc (entry, table, string);
6530 if (entry != NULL)
6531 {
6532 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6533 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6534
6535 /* Set local fields. */
6536 ret->indx = -1;
6537 ret->dynindx = -1;
6538 ret->got = htab->init_got_refcount;
6539 ret->plt = htab->init_plt_refcount;
6540 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6541 - offsetof (struct elf_link_hash_entry, size)));
6542 /* Assume that we have been called by a non-ELF symbol reader.
6543 This flag is then reset by the code which reads an ELF input
6544 file. This ensures that a symbol created by a non-ELF symbol
6545 reader will have the flag set correctly. */
6546 ret->non_elf = 1;
6547 }
6548
6549 return entry;
6550 }
6551
6552 /* Copy data from an indirect symbol to its direct symbol, hiding the
6553 old indirect symbol. Also used for copying flags to a weakdef. */
6554
6555 void
6556 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6557 struct elf_link_hash_entry *dir,
6558 struct elf_link_hash_entry *ind)
6559 {
6560 struct elf_link_hash_table *htab;
6561
6562 /* Copy down any references that we may have already seen to the
6563 symbol which just became indirect. */
6564
6565 dir->ref_dynamic |= ind->ref_dynamic;
6566 dir->ref_regular |= ind->ref_regular;
6567 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6568 dir->non_got_ref |= ind->non_got_ref;
6569 dir->needs_plt |= ind->needs_plt;
6570 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6571
6572 if (ind->root.type != bfd_link_hash_indirect)
6573 return;
6574
6575 /* Copy over the global and procedure linkage table refcount entries.
6576 These may have been already set up by a check_relocs routine. */
6577 htab = elf_hash_table (info);
6578 if (ind->got.refcount > htab->init_got_refcount.refcount)
6579 {
6580 if (dir->got.refcount < 0)
6581 dir->got.refcount = 0;
6582 dir->got.refcount += ind->got.refcount;
6583 ind->got.refcount = htab->init_got_refcount.refcount;
6584 }
6585
6586 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6587 {
6588 if (dir->plt.refcount < 0)
6589 dir->plt.refcount = 0;
6590 dir->plt.refcount += ind->plt.refcount;
6591 ind->plt.refcount = htab->init_plt_refcount.refcount;
6592 }
6593
6594 if (ind->dynindx != -1)
6595 {
6596 if (dir->dynindx != -1)
6597 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6598 dir->dynindx = ind->dynindx;
6599 dir->dynstr_index = ind->dynstr_index;
6600 ind->dynindx = -1;
6601 ind->dynstr_index = 0;
6602 }
6603 }
6604
6605 void
6606 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6607 struct elf_link_hash_entry *h,
6608 bfd_boolean force_local)
6609 {
6610 h->plt = elf_hash_table (info)->init_plt_offset;
6611 h->needs_plt = 0;
6612 if (force_local)
6613 {
6614 h->forced_local = 1;
6615 if (h->dynindx != -1)
6616 {
6617 h->dynindx = -1;
6618 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6619 h->dynstr_index);
6620 }
6621 }
6622 }
6623
6624 /* Initialize an ELF linker hash table. */
6625
6626 bfd_boolean
6627 _bfd_elf_link_hash_table_init
6628 (struct elf_link_hash_table *table,
6629 bfd *abfd,
6630 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6631 struct bfd_hash_table *,
6632 const char *),
6633 unsigned int entsize)
6634 {
6635 bfd_boolean ret;
6636 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6637
6638 memset (table, 0, sizeof * table);
6639 table->init_got_refcount.refcount = can_refcount - 1;
6640 table->init_plt_refcount.refcount = can_refcount - 1;
6641 table->init_got_offset.offset = -(bfd_vma) 1;
6642 table->init_plt_offset.offset = -(bfd_vma) 1;
6643 /* The first dynamic symbol is a dummy. */
6644 table->dynsymcount = 1;
6645
6646 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6647 table->root.type = bfd_link_elf_hash_table;
6648
6649 return ret;
6650 }
6651
6652 /* Create an ELF linker hash table. */
6653
6654 struct bfd_link_hash_table *
6655 _bfd_elf_link_hash_table_create (bfd *abfd)
6656 {
6657 struct elf_link_hash_table *ret;
6658 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6659
6660 ret = bfd_malloc (amt);
6661 if (ret == NULL)
6662 return NULL;
6663
6664 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6665 sizeof (struct elf_link_hash_entry)))
6666 {
6667 free (ret);
6668 return NULL;
6669 }
6670
6671 return &ret->root;
6672 }
6673
6674 /* This is a hook for the ELF emulation code in the generic linker to
6675 tell the backend linker what file name to use for the DT_NEEDED
6676 entry for a dynamic object. */
6677
6678 void
6679 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6680 {
6681 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6682 && bfd_get_format (abfd) == bfd_object)
6683 elf_dt_name (abfd) = name;
6684 }
6685
6686 int
6687 bfd_elf_get_dyn_lib_class (bfd *abfd)
6688 {
6689 int lib_class;
6690 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6691 && bfd_get_format (abfd) == bfd_object)
6692 lib_class = elf_dyn_lib_class (abfd);
6693 else
6694 lib_class = 0;
6695 return lib_class;
6696 }
6697
6698 void
6699 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6700 {
6701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6702 && bfd_get_format (abfd) == bfd_object)
6703 elf_dyn_lib_class (abfd) = lib_class;
6704 }
6705
6706 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6707 the linker ELF emulation code. */
6708
6709 struct bfd_link_needed_list *
6710 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6711 struct bfd_link_info *info)
6712 {
6713 if (! is_elf_hash_table (info->hash))
6714 return NULL;
6715 return elf_hash_table (info)->needed;
6716 }
6717
6718 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6719 hook for the linker ELF emulation code. */
6720
6721 struct bfd_link_needed_list *
6722 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6723 struct bfd_link_info *info)
6724 {
6725 if (! is_elf_hash_table (info->hash))
6726 return NULL;
6727 return elf_hash_table (info)->runpath;
6728 }
6729
6730 /* Get the name actually used for a dynamic object for a link. This
6731 is the SONAME entry if there is one. Otherwise, it is the string
6732 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6733
6734 const char *
6735 bfd_elf_get_dt_soname (bfd *abfd)
6736 {
6737 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6738 && bfd_get_format (abfd) == bfd_object)
6739 return elf_dt_name (abfd);
6740 return NULL;
6741 }
6742
6743 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6744 the ELF linker emulation code. */
6745
6746 bfd_boolean
6747 bfd_elf_get_bfd_needed_list (bfd *abfd,
6748 struct bfd_link_needed_list **pneeded)
6749 {
6750 asection *s;
6751 bfd_byte *dynbuf = NULL;
6752 int elfsec;
6753 unsigned long shlink;
6754 bfd_byte *extdyn, *extdynend;
6755 size_t extdynsize;
6756 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6757
6758 *pneeded = NULL;
6759
6760 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6761 || bfd_get_format (abfd) != bfd_object)
6762 return TRUE;
6763
6764 s = bfd_get_section_by_name (abfd, ".dynamic");
6765 if (s == NULL || s->size == 0)
6766 return TRUE;
6767
6768 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6769 goto error_return;
6770
6771 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6772 if (elfsec == -1)
6773 goto error_return;
6774
6775 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6776
6777 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6778 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6779
6780 extdyn = dynbuf;
6781 extdynend = extdyn + s->size;
6782 for (; extdyn < extdynend; extdyn += extdynsize)
6783 {
6784 Elf_Internal_Dyn dyn;
6785
6786 (*swap_dyn_in) (abfd, extdyn, &dyn);
6787
6788 if (dyn.d_tag == DT_NULL)
6789 break;
6790
6791 if (dyn.d_tag == DT_NEEDED)
6792 {
6793 const char *string;
6794 struct bfd_link_needed_list *l;
6795 unsigned int tagv = dyn.d_un.d_val;
6796 bfd_size_type amt;
6797
6798 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6799 if (string == NULL)
6800 goto error_return;
6801
6802 amt = sizeof *l;
6803 l = bfd_alloc (abfd, amt);
6804 if (l == NULL)
6805 goto error_return;
6806
6807 l->by = abfd;
6808 l->name = string;
6809 l->next = *pneeded;
6810 *pneeded = l;
6811 }
6812 }
6813
6814 free (dynbuf);
6815
6816 return TRUE;
6817
6818 error_return:
6819 if (dynbuf != NULL)
6820 free (dynbuf);
6821 return FALSE;
6822 }
6823
6824 struct elf_symbuf_symbol
6825 {
6826 unsigned long st_name; /* Symbol name, index in string tbl */
6827 unsigned char st_info; /* Type and binding attributes */
6828 unsigned char st_other; /* Visibilty, and target specific */
6829 };
6830
6831 struct elf_symbuf_head
6832 {
6833 struct elf_symbuf_symbol *ssym;
6834 bfd_size_type count;
6835 unsigned int st_shndx;
6836 };
6837
6838 struct elf_symbol
6839 {
6840 union
6841 {
6842 Elf_Internal_Sym *isym;
6843 struct elf_symbuf_symbol *ssym;
6844 } u;
6845 const char *name;
6846 };
6847
6848 /* Sort references to symbols by ascending section number. */
6849
6850 static int
6851 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6852 {
6853 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6854 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6855
6856 return s1->st_shndx - s2->st_shndx;
6857 }
6858
6859 static int
6860 elf_sym_name_compare (const void *arg1, const void *arg2)
6861 {
6862 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6863 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6864 return strcmp (s1->name, s2->name);
6865 }
6866
6867 static struct elf_symbuf_head *
6868 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6869 {
6870 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6871 struct elf_symbuf_symbol *ssym;
6872 struct elf_symbuf_head *ssymbuf, *ssymhead;
6873 bfd_size_type i, shndx_count;
6874
6875 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6876 if (indbuf == NULL)
6877 return NULL;
6878
6879 for (ind = indbuf, i = 0; i < symcount; i++)
6880 if (isymbuf[i].st_shndx != SHN_UNDEF)
6881 *ind++ = &isymbuf[i];
6882 indbufend = ind;
6883
6884 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6885 elf_sort_elf_symbol);
6886
6887 shndx_count = 0;
6888 if (indbufend > indbuf)
6889 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6890 if (ind[0]->st_shndx != ind[1]->st_shndx)
6891 shndx_count++;
6892
6893 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6894 + (indbufend - indbuf) * sizeof (*ssymbuf));
6895 if (ssymbuf == NULL)
6896 {
6897 free (indbuf);
6898 return NULL;
6899 }
6900
6901 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6902 ssymbuf->ssym = NULL;
6903 ssymbuf->count = shndx_count;
6904 ssymbuf->st_shndx = 0;
6905 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6906 {
6907 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6908 {
6909 ssymhead++;
6910 ssymhead->ssym = ssym;
6911 ssymhead->count = 0;
6912 ssymhead->st_shndx = (*ind)->st_shndx;
6913 }
6914 ssym->st_name = (*ind)->st_name;
6915 ssym->st_info = (*ind)->st_info;
6916 ssym->st_other = (*ind)->st_other;
6917 ssymhead->count++;
6918 }
6919 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6920
6921 free (indbuf);
6922 return ssymbuf;
6923 }
6924
6925 /* Check if 2 sections define the same set of local and global
6926 symbols. */
6927
6928 static bfd_boolean
6929 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6930 struct bfd_link_info *info)
6931 {
6932 bfd *bfd1, *bfd2;
6933 const struct elf_backend_data *bed1, *bed2;
6934 Elf_Internal_Shdr *hdr1, *hdr2;
6935 bfd_size_type symcount1, symcount2;
6936 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6937 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6938 Elf_Internal_Sym *isym, *isymend;
6939 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6940 bfd_size_type count1, count2, i;
6941 int shndx1, shndx2;
6942 bfd_boolean result;
6943
6944 bfd1 = sec1->owner;
6945 bfd2 = sec2->owner;
6946
6947 /* Both sections have to be in ELF. */
6948 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6949 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6950 return FALSE;
6951
6952 if (elf_section_type (sec1) != elf_section_type (sec2))
6953 return FALSE;
6954
6955 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6956 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6957 if (shndx1 == -1 || shndx2 == -1)
6958 return FALSE;
6959
6960 bed1 = get_elf_backend_data (bfd1);
6961 bed2 = get_elf_backend_data (bfd2);
6962 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6963 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6964 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6965 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6966
6967 if (symcount1 == 0 || symcount2 == 0)
6968 return FALSE;
6969
6970 result = FALSE;
6971 isymbuf1 = NULL;
6972 isymbuf2 = NULL;
6973 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6974 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6975
6976 if (ssymbuf1 == NULL)
6977 {
6978 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6979 NULL, NULL, NULL);
6980 if (isymbuf1 == NULL)
6981 goto done;
6982
6983 if (!info->reduce_memory_overheads)
6984 elf_tdata (bfd1)->symbuf = ssymbuf1
6985 = elf_create_symbuf (symcount1, isymbuf1);
6986 }
6987
6988 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6989 {
6990 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6991 NULL, NULL, NULL);
6992 if (isymbuf2 == NULL)
6993 goto done;
6994
6995 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6996 elf_tdata (bfd2)->symbuf = ssymbuf2
6997 = elf_create_symbuf (symcount2, isymbuf2);
6998 }
6999
7000 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7001 {
7002 /* Optimized faster version. */
7003 bfd_size_type lo, hi, mid;
7004 struct elf_symbol *symp;
7005 struct elf_symbuf_symbol *ssym, *ssymend;
7006
7007 lo = 0;
7008 hi = ssymbuf1->count;
7009 ssymbuf1++;
7010 count1 = 0;
7011 while (lo < hi)
7012 {
7013 mid = (lo + hi) / 2;
7014 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
7015 hi = mid;
7016 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
7017 lo = mid + 1;
7018 else
7019 {
7020 count1 = ssymbuf1[mid].count;
7021 ssymbuf1 += mid;
7022 break;
7023 }
7024 }
7025
7026 lo = 0;
7027 hi = ssymbuf2->count;
7028 ssymbuf2++;
7029 count2 = 0;
7030 while (lo < hi)
7031 {
7032 mid = (lo + hi) / 2;
7033 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7034 hi = mid;
7035 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7036 lo = mid + 1;
7037 else
7038 {
7039 count2 = ssymbuf2[mid].count;
7040 ssymbuf2 += mid;
7041 break;
7042 }
7043 }
7044
7045 if (count1 == 0 || count2 == 0 || count1 != count2)
7046 goto done;
7047
7048 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7049 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7050 if (symtable1 == NULL || symtable2 == NULL)
7051 goto done;
7052
7053 symp = symtable1;
7054 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7055 ssym < ssymend; ssym++, symp++)
7056 {
7057 symp->u.ssym = ssym;
7058 symp->name = bfd_elf_string_from_elf_section (bfd1,
7059 hdr1->sh_link,
7060 ssym->st_name);
7061 }
7062
7063 symp = symtable2;
7064 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7065 ssym < ssymend; ssym++, symp++)
7066 {
7067 symp->u.ssym = ssym;
7068 symp->name = bfd_elf_string_from_elf_section (bfd2,
7069 hdr2->sh_link,
7070 ssym->st_name);
7071 }
7072
7073 /* Sort symbol by name. */
7074 qsort (symtable1, count1, sizeof (struct elf_symbol),
7075 elf_sym_name_compare);
7076 qsort (symtable2, count1, sizeof (struct elf_symbol),
7077 elf_sym_name_compare);
7078
7079 for (i = 0; i < count1; i++)
7080 /* Two symbols must have the same binding, type and name. */
7081 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7082 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7083 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7084 goto done;
7085
7086 result = TRUE;
7087 goto done;
7088 }
7089
7090 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7091 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7092 if (symtable1 == NULL || symtable2 == NULL)
7093 goto done;
7094
7095 /* Count definitions in the section. */
7096 count1 = 0;
7097 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7098 if (isym->st_shndx == (unsigned int) shndx1)
7099 symtable1[count1++].u.isym = isym;
7100
7101 count2 = 0;
7102 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7103 if (isym->st_shndx == (unsigned int) shndx2)
7104 symtable2[count2++].u.isym = isym;
7105
7106 if (count1 == 0 || count2 == 0 || count1 != count2)
7107 goto done;
7108
7109 for (i = 0; i < count1; i++)
7110 symtable1[i].name
7111 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7112 symtable1[i].u.isym->st_name);
7113
7114 for (i = 0; i < count2; i++)
7115 symtable2[i].name
7116 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7117 symtable2[i].u.isym->st_name);
7118
7119 /* Sort symbol by name. */
7120 qsort (symtable1, count1, sizeof (struct elf_symbol),
7121 elf_sym_name_compare);
7122 qsort (symtable2, count1, sizeof (struct elf_symbol),
7123 elf_sym_name_compare);
7124
7125 for (i = 0; i < count1; i++)
7126 /* Two symbols must have the same binding, type and name. */
7127 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7128 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7129 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7130 goto done;
7131
7132 result = TRUE;
7133
7134 done:
7135 if (symtable1)
7136 free (symtable1);
7137 if (symtable2)
7138 free (symtable2);
7139 if (isymbuf1)
7140 free (isymbuf1);
7141 if (isymbuf2)
7142 free (isymbuf2);
7143
7144 return result;
7145 }
7146
7147 /* Return TRUE if 2 section types are compatible. */
7148
7149 bfd_boolean
7150 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7151 bfd *bbfd, const asection *bsec)
7152 {
7153 if (asec == NULL
7154 || bsec == NULL
7155 || abfd->xvec->flavour != bfd_target_elf_flavour
7156 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7157 return TRUE;
7158
7159 return elf_section_type (asec) == elf_section_type (bsec);
7160 }
7161 \f
7162 /* Final phase of ELF linker. */
7163
7164 /* A structure we use to avoid passing large numbers of arguments. */
7165
7166 struct elf_final_link_info
7167 {
7168 /* General link information. */
7169 struct bfd_link_info *info;
7170 /* Output BFD. */
7171 bfd *output_bfd;
7172 /* Symbol string table. */
7173 struct bfd_strtab_hash *symstrtab;
7174 /* .dynsym section. */
7175 asection *dynsym_sec;
7176 /* .hash section. */
7177 asection *hash_sec;
7178 /* symbol version section (.gnu.version). */
7179 asection *symver_sec;
7180 /* Buffer large enough to hold contents of any section. */
7181 bfd_byte *contents;
7182 /* Buffer large enough to hold external relocs of any section. */
7183 void *external_relocs;
7184 /* Buffer large enough to hold internal relocs of any section. */
7185 Elf_Internal_Rela *internal_relocs;
7186 /* Buffer large enough to hold external local symbols of any input
7187 BFD. */
7188 bfd_byte *external_syms;
7189 /* And a buffer for symbol section indices. */
7190 Elf_External_Sym_Shndx *locsym_shndx;
7191 /* Buffer large enough to hold internal local symbols of any input
7192 BFD. */
7193 Elf_Internal_Sym *internal_syms;
7194 /* Array large enough to hold a symbol index for each local symbol
7195 of any input BFD. */
7196 long *indices;
7197 /* Array large enough to hold a section pointer for each local
7198 symbol of any input BFD. */
7199 asection **sections;
7200 /* Buffer to hold swapped out symbols. */
7201 bfd_byte *symbuf;
7202 /* And one for symbol section indices. */
7203 Elf_External_Sym_Shndx *symshndxbuf;
7204 /* Number of swapped out symbols in buffer. */
7205 size_t symbuf_count;
7206 /* Number of symbols which fit in symbuf. */
7207 size_t symbuf_size;
7208 /* And same for symshndxbuf. */
7209 size_t shndxbuf_size;
7210 };
7211
7212 /* This struct is used to pass information to elf_link_output_extsym. */
7213
7214 struct elf_outext_info
7215 {
7216 bfd_boolean failed;
7217 bfd_boolean localsyms;
7218 struct elf_final_link_info *finfo;
7219 };
7220
7221
7222 /* Support for evaluating a complex relocation.
7223
7224 Complex relocations are generalized, self-describing relocations. The
7225 implementation of them consists of two parts: complex symbols, and the
7226 relocations themselves.
7227
7228 The relocations are use a reserved elf-wide relocation type code (R_RELC
7229 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7230 information (start bit, end bit, word width, etc) into the addend. This
7231 information is extracted from CGEN-generated operand tables within gas.
7232
7233 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7234 internal) representing prefix-notation expressions, including but not
7235 limited to those sorts of expressions normally encoded as addends in the
7236 addend field. The symbol mangling format is:
7237
7238 <node> := <literal>
7239 | <unary-operator> ':' <node>
7240 | <binary-operator> ':' <node> ':' <node>
7241 ;
7242
7243 <literal> := 's' <digits=N> ':' <N character symbol name>
7244 | 'S' <digits=N> ':' <N character section name>
7245 | '#' <hexdigits>
7246 ;
7247
7248 <binary-operator> := as in C
7249 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7250
7251 static void
7252 set_symbol_value (bfd *bfd_with_globals,
7253 Elf_Internal_Sym *isymbuf,
7254 size_t locsymcount,
7255 size_t symidx,
7256 bfd_vma val)
7257 {
7258 struct elf_link_hash_entry **sym_hashes;
7259 struct elf_link_hash_entry *h;
7260 size_t extsymoff = locsymcount;
7261
7262 if (symidx < locsymcount)
7263 {
7264 Elf_Internal_Sym *sym;
7265
7266 sym = isymbuf + symidx;
7267 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7268 {
7269 /* It is a local symbol: move it to the
7270 "absolute" section and give it a value. */
7271 sym->st_shndx = SHN_ABS;
7272 sym->st_value = val;
7273 return;
7274 }
7275 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7276 extsymoff = 0;
7277 }
7278
7279 /* It is a global symbol: set its link type
7280 to "defined" and give it a value. */
7281
7282 sym_hashes = elf_sym_hashes (bfd_with_globals);
7283 h = sym_hashes [symidx - extsymoff];
7284 while (h->root.type == bfd_link_hash_indirect
7285 || h->root.type == bfd_link_hash_warning)
7286 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7287 h->root.type = bfd_link_hash_defined;
7288 h->root.u.def.value = val;
7289 h->root.u.def.section = bfd_abs_section_ptr;
7290 }
7291
7292 static bfd_boolean
7293 resolve_symbol (const char *name,
7294 bfd *input_bfd,
7295 struct elf_final_link_info *finfo,
7296 bfd_vma *result,
7297 Elf_Internal_Sym *isymbuf,
7298 size_t locsymcount)
7299 {
7300 Elf_Internal_Sym *sym;
7301 struct bfd_link_hash_entry *global_entry;
7302 const char *candidate = NULL;
7303 Elf_Internal_Shdr *symtab_hdr;
7304 size_t i;
7305
7306 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7307
7308 for (i = 0; i < locsymcount; ++ i)
7309 {
7310 sym = isymbuf + i;
7311
7312 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7313 continue;
7314
7315 candidate = bfd_elf_string_from_elf_section (input_bfd,
7316 symtab_hdr->sh_link,
7317 sym->st_name);
7318 #ifdef DEBUG
7319 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7320 name, candidate, (unsigned long) sym->st_value);
7321 #endif
7322 if (candidate && strcmp (candidate, name) == 0)
7323 {
7324 asection *sec = finfo->sections [i];
7325
7326 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7327 *result += sec->output_offset + sec->output_section->vma;
7328 #ifdef DEBUG
7329 printf ("Found symbol with value %8.8lx\n",
7330 (unsigned long) *result);
7331 #endif
7332 return TRUE;
7333 }
7334 }
7335
7336 /* Hmm, haven't found it yet. perhaps it is a global. */
7337 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7338 FALSE, FALSE, TRUE);
7339 if (!global_entry)
7340 return FALSE;
7341
7342 if (global_entry->type == bfd_link_hash_defined
7343 || global_entry->type == bfd_link_hash_defweak)
7344 {
7345 *result = (global_entry->u.def.value
7346 + global_entry->u.def.section->output_section->vma
7347 + global_entry->u.def.section->output_offset);
7348 #ifdef DEBUG
7349 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7350 global_entry->root.string, (unsigned long) *result);
7351 #endif
7352 return TRUE;
7353 }
7354
7355 return FALSE;
7356 }
7357
7358 static bfd_boolean
7359 resolve_section (const char *name,
7360 asection *sections,
7361 bfd_vma *result)
7362 {
7363 asection *curr;
7364 unsigned int len;
7365
7366 for (curr = sections; curr; curr = curr->next)
7367 if (strcmp (curr->name, name) == 0)
7368 {
7369 *result = curr->vma;
7370 return TRUE;
7371 }
7372
7373 /* Hmm. still haven't found it. try pseudo-section names. */
7374 for (curr = sections; curr; curr = curr->next)
7375 {
7376 len = strlen (curr->name);
7377 if (len > strlen (name))
7378 continue;
7379
7380 if (strncmp (curr->name, name, len) == 0)
7381 {
7382 if (strncmp (".end", name + len, 4) == 0)
7383 {
7384 *result = curr->vma + curr->size;
7385 return TRUE;
7386 }
7387
7388 /* Insert more pseudo-section names here, if you like. */
7389 }
7390 }
7391
7392 return FALSE;
7393 }
7394
7395 static void
7396 undefined_reference (const char *reftype, const char *name)
7397 {
7398 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7399 reftype, name);
7400 }
7401
7402 static bfd_boolean
7403 eval_symbol (bfd_vma *result,
7404 const char **symp,
7405 bfd *input_bfd,
7406 struct elf_final_link_info *finfo,
7407 bfd_vma dot,
7408 Elf_Internal_Sym *isymbuf,
7409 size_t locsymcount,
7410 int signed_p)
7411 {
7412 size_t len;
7413 size_t symlen;
7414 bfd_vma a;
7415 bfd_vma b;
7416 char symbuf[4096];
7417 const char *sym = *symp;
7418 const char *symend;
7419 bfd_boolean symbol_is_section = FALSE;
7420
7421 len = strlen (sym);
7422 symend = sym + len;
7423
7424 if (len < 1 || len > sizeof (symbuf))
7425 {
7426 bfd_set_error (bfd_error_invalid_operation);
7427 return FALSE;
7428 }
7429
7430 switch (* sym)
7431 {
7432 case '.':
7433 *result = dot;
7434 *symp = sym + 1;
7435 return TRUE;
7436
7437 case '#':
7438 ++sym;
7439 *result = strtoul (sym, (char **) symp, 16);
7440 return TRUE;
7441
7442 case 'S':
7443 symbol_is_section = TRUE;
7444 case 's':
7445 ++sym;
7446 symlen = strtol (sym, (char **) symp, 10);
7447 sym = *symp + 1; /* Skip the trailing ':'. */
7448
7449 if (symend < sym || symlen + 1 > sizeof (symbuf))
7450 {
7451 bfd_set_error (bfd_error_invalid_operation);
7452 return FALSE;
7453 }
7454
7455 memcpy (symbuf, sym, symlen);
7456 symbuf[symlen] = '\0';
7457 *symp = sym + symlen;
7458
7459 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7460 the symbol as a section, or vice-versa. so we're pretty liberal in our
7461 interpretation here; section means "try section first", not "must be a
7462 section", and likewise with symbol. */
7463
7464 if (symbol_is_section)
7465 {
7466 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7467 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7468 isymbuf, locsymcount))
7469 {
7470 undefined_reference ("section", symbuf);
7471 return FALSE;
7472 }
7473 }
7474 else
7475 {
7476 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7477 isymbuf, locsymcount)
7478 && !resolve_section (symbuf, finfo->output_bfd->sections,
7479 result))
7480 {
7481 undefined_reference ("symbol", symbuf);
7482 return FALSE;
7483 }
7484 }
7485
7486 return TRUE;
7487
7488 /* All that remains are operators. */
7489
7490 #define UNARY_OP(op) \
7491 if (strncmp (sym, #op, strlen (#op)) == 0) \
7492 { \
7493 sym += strlen (#op); \
7494 if (*sym == ':') \
7495 ++sym; \
7496 *symp = sym; \
7497 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7498 isymbuf, locsymcount, signed_p)) \
7499 return FALSE; \
7500 if (signed_p) \
7501 *result = op ((bfd_signed_vma) a); \
7502 else \
7503 *result = op a; \
7504 return TRUE; \
7505 }
7506
7507 #define BINARY_OP(op) \
7508 if (strncmp (sym, #op, strlen (#op)) == 0) \
7509 { \
7510 sym += strlen (#op); \
7511 if (*sym == ':') \
7512 ++sym; \
7513 *symp = sym; \
7514 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7515 isymbuf, locsymcount, signed_p)) \
7516 return FALSE; \
7517 ++*symp; \
7518 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7519 isymbuf, locsymcount, signed_p)) \
7520 return FALSE; \
7521 if (signed_p) \
7522 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7523 else \
7524 *result = a op b; \
7525 return TRUE; \
7526 }
7527
7528 default:
7529 UNARY_OP (0-);
7530 BINARY_OP (<<);
7531 BINARY_OP (>>);
7532 BINARY_OP (==);
7533 BINARY_OP (!=);
7534 BINARY_OP (<=);
7535 BINARY_OP (>=);
7536 BINARY_OP (&&);
7537 BINARY_OP (||);
7538 UNARY_OP (~);
7539 UNARY_OP (!);
7540 BINARY_OP (*);
7541 BINARY_OP (/);
7542 BINARY_OP (%);
7543 BINARY_OP (^);
7544 BINARY_OP (|);
7545 BINARY_OP (&);
7546 BINARY_OP (+);
7547 BINARY_OP (-);
7548 BINARY_OP (<);
7549 BINARY_OP (>);
7550 #undef UNARY_OP
7551 #undef BINARY_OP
7552 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7553 bfd_set_error (bfd_error_invalid_operation);
7554 return FALSE;
7555 }
7556 }
7557
7558 static void
7559 put_value (bfd_vma size,
7560 unsigned long chunksz,
7561 bfd *input_bfd,
7562 bfd_vma x,
7563 bfd_byte *location)
7564 {
7565 location += (size - chunksz);
7566
7567 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7568 {
7569 switch (chunksz)
7570 {
7571 default:
7572 case 0:
7573 abort ();
7574 case 1:
7575 bfd_put_8 (input_bfd, x, location);
7576 break;
7577 case 2:
7578 bfd_put_16 (input_bfd, x, location);
7579 break;
7580 case 4:
7581 bfd_put_32 (input_bfd, x, location);
7582 break;
7583 case 8:
7584 #ifdef BFD64
7585 bfd_put_64 (input_bfd, x, location);
7586 #else
7587 abort ();
7588 #endif
7589 break;
7590 }
7591 }
7592 }
7593
7594 static bfd_vma
7595 get_value (bfd_vma size,
7596 unsigned long chunksz,
7597 bfd *input_bfd,
7598 bfd_byte *location)
7599 {
7600 bfd_vma x = 0;
7601
7602 for (; size; size -= chunksz, location += chunksz)
7603 {
7604 switch (chunksz)
7605 {
7606 default:
7607 case 0:
7608 abort ();
7609 case 1:
7610 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7611 break;
7612 case 2:
7613 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7614 break;
7615 case 4:
7616 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7617 break;
7618 case 8:
7619 #ifdef BFD64
7620 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7621 #else
7622 abort ();
7623 #endif
7624 break;
7625 }
7626 }
7627 return x;
7628 }
7629
7630 static void
7631 decode_complex_addend (unsigned long *start, /* in bits */
7632 unsigned long *oplen, /* in bits */
7633 unsigned long *len, /* in bits */
7634 unsigned long *wordsz, /* in bytes */
7635 unsigned long *chunksz, /* in bytes */
7636 unsigned long *lsb0_p,
7637 unsigned long *signed_p,
7638 unsigned long *trunc_p,
7639 unsigned long encoded)
7640 {
7641 * start = encoded & 0x3F;
7642 * len = (encoded >> 6) & 0x3F;
7643 * oplen = (encoded >> 12) & 0x3F;
7644 * wordsz = (encoded >> 18) & 0xF;
7645 * chunksz = (encoded >> 22) & 0xF;
7646 * lsb0_p = (encoded >> 27) & 1;
7647 * signed_p = (encoded >> 28) & 1;
7648 * trunc_p = (encoded >> 29) & 1;
7649 }
7650
7651 bfd_reloc_status_type
7652 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7653 asection *input_section ATTRIBUTE_UNUSED,
7654 bfd_byte *contents,
7655 Elf_Internal_Rela *rel,
7656 bfd_vma relocation)
7657 {
7658 bfd_vma shift, x, mask;
7659 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7660 bfd_reloc_status_type r;
7661
7662 /* Perform this reloc, since it is complex.
7663 (this is not to say that it necessarily refers to a complex
7664 symbol; merely that it is a self-describing CGEN based reloc.
7665 i.e. the addend has the complete reloc information (bit start, end,
7666 word size, etc) encoded within it.). */
7667
7668 decode_complex_addend (&start, &oplen, &len, &wordsz,
7669 &chunksz, &lsb0_p, &signed_p,
7670 &trunc_p, rel->r_addend);
7671
7672 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7673
7674 if (lsb0_p)
7675 shift = (start + 1) - len;
7676 else
7677 shift = (8 * wordsz) - (start + len);
7678
7679 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7680
7681 #ifdef DEBUG
7682 printf ("Doing complex reloc: "
7683 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7684 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7685 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7686 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7687 oplen, x, mask, relocation);
7688 #endif
7689
7690 r = bfd_reloc_ok;
7691 if (! trunc_p)
7692 /* Now do an overflow check. */
7693 r = bfd_check_overflow ((signed_p
7694 ? complain_overflow_signed
7695 : complain_overflow_unsigned),
7696 len, 0, (8 * wordsz),
7697 relocation);
7698
7699 /* Do the deed. */
7700 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7701
7702 #ifdef DEBUG
7703 printf (" relocation: %8.8lx\n"
7704 " shifted mask: %8.8lx\n"
7705 " shifted/masked reloc: %8.8lx\n"
7706 " result: %8.8lx\n",
7707 relocation, (mask << shift),
7708 ((relocation & mask) << shift), x);
7709 #endif
7710 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7711 return r;
7712 }
7713
7714 /* When performing a relocatable link, the input relocations are
7715 preserved. But, if they reference global symbols, the indices
7716 referenced must be updated. Update all the relocations in
7717 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7718
7719 static void
7720 elf_link_adjust_relocs (bfd *abfd,
7721 Elf_Internal_Shdr *rel_hdr,
7722 unsigned int count,
7723 struct elf_link_hash_entry **rel_hash)
7724 {
7725 unsigned int i;
7726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7727 bfd_byte *erela;
7728 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7729 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7730 bfd_vma r_type_mask;
7731 int r_sym_shift;
7732
7733 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7734 {
7735 swap_in = bed->s->swap_reloc_in;
7736 swap_out = bed->s->swap_reloc_out;
7737 }
7738 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7739 {
7740 swap_in = bed->s->swap_reloca_in;
7741 swap_out = bed->s->swap_reloca_out;
7742 }
7743 else
7744 abort ();
7745
7746 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7747 abort ();
7748
7749 if (bed->s->arch_size == 32)
7750 {
7751 r_type_mask = 0xff;
7752 r_sym_shift = 8;
7753 }
7754 else
7755 {
7756 r_type_mask = 0xffffffff;
7757 r_sym_shift = 32;
7758 }
7759
7760 erela = rel_hdr->contents;
7761 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7762 {
7763 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7764 unsigned int j;
7765
7766 if (*rel_hash == NULL)
7767 continue;
7768
7769 BFD_ASSERT ((*rel_hash)->indx >= 0);
7770
7771 (*swap_in) (abfd, erela, irela);
7772 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7773 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7774 | (irela[j].r_info & r_type_mask));
7775 (*swap_out) (abfd, irela, erela);
7776 }
7777 }
7778
7779 struct elf_link_sort_rela
7780 {
7781 union {
7782 bfd_vma offset;
7783 bfd_vma sym_mask;
7784 } u;
7785 enum elf_reloc_type_class type;
7786 /* We use this as an array of size int_rels_per_ext_rel. */
7787 Elf_Internal_Rela rela[1];
7788 };
7789
7790 static int
7791 elf_link_sort_cmp1 (const void *A, const void *B)
7792 {
7793 const struct elf_link_sort_rela *a = A;
7794 const struct elf_link_sort_rela *b = B;
7795 int relativea, relativeb;
7796
7797 relativea = a->type == reloc_class_relative;
7798 relativeb = b->type == reloc_class_relative;
7799
7800 if (relativea < relativeb)
7801 return 1;
7802 if (relativea > relativeb)
7803 return -1;
7804 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7805 return -1;
7806 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7807 return 1;
7808 if (a->rela->r_offset < b->rela->r_offset)
7809 return -1;
7810 if (a->rela->r_offset > b->rela->r_offset)
7811 return 1;
7812 return 0;
7813 }
7814
7815 static int
7816 elf_link_sort_cmp2 (const void *A, const void *B)
7817 {
7818 const struct elf_link_sort_rela *a = A;
7819 const struct elf_link_sort_rela *b = B;
7820 int copya, copyb;
7821
7822 if (a->u.offset < b->u.offset)
7823 return -1;
7824 if (a->u.offset > b->u.offset)
7825 return 1;
7826 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7827 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7828 if (copya < copyb)
7829 return -1;
7830 if (copya > copyb)
7831 return 1;
7832 if (a->rela->r_offset < b->rela->r_offset)
7833 return -1;
7834 if (a->rela->r_offset > b->rela->r_offset)
7835 return 1;
7836 return 0;
7837 }
7838
7839 static size_t
7840 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7841 {
7842 asection *dynamic_relocs;
7843 asection *rela_dyn;
7844 asection *rel_dyn;
7845 bfd_size_type count, size;
7846 size_t i, ret, sort_elt, ext_size;
7847 bfd_byte *sort, *s_non_relative, *p;
7848 struct elf_link_sort_rela *sq;
7849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7850 int i2e = bed->s->int_rels_per_ext_rel;
7851 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7852 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7853 struct bfd_link_order *lo;
7854 bfd_vma r_sym_mask;
7855 bfd_boolean use_rela;
7856
7857 /* Find a dynamic reloc section. */
7858 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7859 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7860 if (rela_dyn != NULL && rela_dyn->size > 0
7861 && rel_dyn != NULL && rel_dyn->size > 0)
7862 {
7863 bfd_boolean use_rela_initialised = FALSE;
7864
7865 /* This is just here to stop gcc from complaining.
7866 It's initialization checking code is not perfect. */
7867 use_rela = TRUE;
7868
7869 /* Both sections are present. Examine the sizes
7870 of the indirect sections to help us choose. */
7871 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7872 if (lo->type == bfd_indirect_link_order)
7873 {
7874 asection *o = lo->u.indirect.section;
7875
7876 if ((o->size % bed->s->sizeof_rela) == 0)
7877 {
7878 if ((o->size % bed->s->sizeof_rel) == 0)
7879 /* Section size is divisible by both rel and rela sizes.
7880 It is of no help to us. */
7881 ;
7882 else
7883 {
7884 /* Section size is only divisible by rela. */
7885 if (use_rela_initialised && (use_rela == FALSE))
7886 {
7887 _bfd_error_handler
7888 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7889 bfd_set_error (bfd_error_invalid_operation);
7890 return 0;
7891 }
7892 else
7893 {
7894 use_rela = TRUE;
7895 use_rela_initialised = TRUE;
7896 }
7897 }
7898 }
7899 else if ((o->size % bed->s->sizeof_rel) == 0)
7900 {
7901 /* Section size is only divisible by rel. */
7902 if (use_rela_initialised && (use_rela == TRUE))
7903 {
7904 _bfd_error_handler
7905 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7906 bfd_set_error (bfd_error_invalid_operation);
7907 return 0;
7908 }
7909 else
7910 {
7911 use_rela = FALSE;
7912 use_rela_initialised = TRUE;
7913 }
7914 }
7915 else
7916 {
7917 /* The section size is not divisible by either - something is wrong. */
7918 _bfd_error_handler
7919 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7920 bfd_set_error (bfd_error_invalid_operation);
7921 return 0;
7922 }
7923 }
7924
7925 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7926 if (lo->type == bfd_indirect_link_order)
7927 {
7928 asection *o = lo->u.indirect.section;
7929
7930 if ((o->size % bed->s->sizeof_rela) == 0)
7931 {
7932 if ((o->size % bed->s->sizeof_rel) == 0)
7933 /* Section size is divisible by both rel and rela sizes.
7934 It is of no help to us. */
7935 ;
7936 else
7937 {
7938 /* Section size is only divisible by rela. */
7939 if (use_rela_initialised && (use_rela == FALSE))
7940 {
7941 _bfd_error_handler
7942 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7943 bfd_set_error (bfd_error_invalid_operation);
7944 return 0;
7945 }
7946 else
7947 {
7948 use_rela = TRUE;
7949 use_rela_initialised = TRUE;
7950 }
7951 }
7952 }
7953 else if ((o->size % bed->s->sizeof_rel) == 0)
7954 {
7955 /* Section size is only divisible by rel. */
7956 if (use_rela_initialised && (use_rela == TRUE))
7957 {
7958 _bfd_error_handler
7959 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7960 bfd_set_error (bfd_error_invalid_operation);
7961 return 0;
7962 }
7963 else
7964 {
7965 use_rela = FALSE;
7966 use_rela_initialised = TRUE;
7967 }
7968 }
7969 else
7970 {
7971 /* The section size is not divisible by either - something is wrong. */
7972 _bfd_error_handler
7973 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7974 bfd_set_error (bfd_error_invalid_operation);
7975 return 0;
7976 }
7977 }
7978
7979 if (! use_rela_initialised)
7980 /* Make a guess. */
7981 use_rela = TRUE;
7982 }
7983 else if (rela_dyn != NULL && rela_dyn->size > 0)
7984 use_rela = TRUE;
7985 else if (rel_dyn != NULL && rel_dyn->size > 0)
7986 use_rela = FALSE;
7987 else
7988 return 0;
7989
7990 if (use_rela)
7991 {
7992 dynamic_relocs = rela_dyn;
7993 ext_size = bed->s->sizeof_rela;
7994 swap_in = bed->s->swap_reloca_in;
7995 swap_out = bed->s->swap_reloca_out;
7996 }
7997 else
7998 {
7999 dynamic_relocs = rel_dyn;
8000 ext_size = bed->s->sizeof_rel;
8001 swap_in = bed->s->swap_reloc_in;
8002 swap_out = bed->s->swap_reloc_out;
8003 }
8004
8005 size = 0;
8006 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8007 if (lo->type == bfd_indirect_link_order)
8008 size += lo->u.indirect.section->size;
8009
8010 if (size != dynamic_relocs->size)
8011 return 0;
8012
8013 sort_elt = (sizeof (struct elf_link_sort_rela)
8014 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8015
8016 count = dynamic_relocs->size / ext_size;
8017 sort = bfd_zmalloc (sort_elt * count);
8018
8019 if (sort == NULL)
8020 {
8021 (*info->callbacks->warning)
8022 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8023 return 0;
8024 }
8025
8026 if (bed->s->arch_size == 32)
8027 r_sym_mask = ~(bfd_vma) 0xff;
8028 else
8029 r_sym_mask = ~(bfd_vma) 0xffffffff;
8030
8031 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8032 if (lo->type == bfd_indirect_link_order)
8033 {
8034 bfd_byte *erel, *erelend;
8035 asection *o = lo->u.indirect.section;
8036
8037 if (o->contents == NULL && o->size != 0)
8038 {
8039 /* This is a reloc section that is being handled as a normal
8040 section. See bfd_section_from_shdr. We can't combine
8041 relocs in this case. */
8042 free (sort);
8043 return 0;
8044 }
8045 erel = o->contents;
8046 erelend = o->contents + o->size;
8047 p = sort + o->output_offset / ext_size * sort_elt;
8048
8049 while (erel < erelend)
8050 {
8051 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8052
8053 (*swap_in) (abfd, erel, s->rela);
8054 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8055 s->u.sym_mask = r_sym_mask;
8056 p += sort_elt;
8057 erel += ext_size;
8058 }
8059 }
8060
8061 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8062
8063 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8064 {
8065 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8066 if (s->type != reloc_class_relative)
8067 break;
8068 }
8069 ret = i;
8070 s_non_relative = p;
8071
8072 sq = (struct elf_link_sort_rela *) s_non_relative;
8073 for (; i < count; i++, p += sort_elt)
8074 {
8075 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8076 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8077 sq = sp;
8078 sp->u.offset = sq->rela->r_offset;
8079 }
8080
8081 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8082
8083 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8084 if (lo->type == bfd_indirect_link_order)
8085 {
8086 bfd_byte *erel, *erelend;
8087 asection *o = lo->u.indirect.section;
8088
8089 erel = o->contents;
8090 erelend = o->contents + o->size;
8091 p = sort + o->output_offset / ext_size * sort_elt;
8092 while (erel < erelend)
8093 {
8094 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8095 (*swap_out) (abfd, s->rela, erel);
8096 p += sort_elt;
8097 erel += ext_size;
8098 }
8099 }
8100
8101 free (sort);
8102 *psec = dynamic_relocs;
8103 return ret;
8104 }
8105
8106 /* Flush the output symbols to the file. */
8107
8108 static bfd_boolean
8109 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8110 const struct elf_backend_data *bed)
8111 {
8112 if (finfo->symbuf_count > 0)
8113 {
8114 Elf_Internal_Shdr *hdr;
8115 file_ptr pos;
8116 bfd_size_type amt;
8117
8118 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8119 pos = hdr->sh_offset + hdr->sh_size;
8120 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8121 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8122 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8123 return FALSE;
8124
8125 hdr->sh_size += amt;
8126 finfo->symbuf_count = 0;
8127 }
8128
8129 return TRUE;
8130 }
8131
8132 /* Add a symbol to the output symbol table. */
8133
8134 static bfd_boolean
8135 elf_link_output_sym (struct elf_final_link_info *finfo,
8136 const char *name,
8137 Elf_Internal_Sym *elfsym,
8138 asection *input_sec,
8139 struct elf_link_hash_entry *h)
8140 {
8141 bfd_byte *dest;
8142 Elf_External_Sym_Shndx *destshndx;
8143 bfd_boolean (*output_symbol_hook)
8144 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8145 struct elf_link_hash_entry *);
8146 const struct elf_backend_data *bed;
8147
8148 bed = get_elf_backend_data (finfo->output_bfd);
8149 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8150 if (output_symbol_hook != NULL)
8151 {
8152 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8153 return FALSE;
8154 }
8155
8156 if (name == NULL || *name == '\0')
8157 elfsym->st_name = 0;
8158 else if (input_sec->flags & SEC_EXCLUDE)
8159 elfsym->st_name = 0;
8160 else
8161 {
8162 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8163 name, TRUE, FALSE);
8164 if (elfsym->st_name == (unsigned long) -1)
8165 return FALSE;
8166 }
8167
8168 if (finfo->symbuf_count >= finfo->symbuf_size)
8169 {
8170 if (! elf_link_flush_output_syms (finfo, bed))
8171 return FALSE;
8172 }
8173
8174 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8175 destshndx = finfo->symshndxbuf;
8176 if (destshndx != NULL)
8177 {
8178 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8179 {
8180 bfd_size_type amt;
8181
8182 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8183 destshndx = bfd_realloc (destshndx, amt * 2);
8184 if (destshndx == NULL)
8185 return FALSE;
8186 finfo->symshndxbuf = destshndx;
8187 memset ((char *) destshndx + amt, 0, amt);
8188 finfo->shndxbuf_size *= 2;
8189 }
8190 destshndx += bfd_get_symcount (finfo->output_bfd);
8191 }
8192
8193 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8194 finfo->symbuf_count += 1;
8195 bfd_get_symcount (finfo->output_bfd) += 1;
8196
8197 return TRUE;
8198 }
8199
8200 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8201
8202 static bfd_boolean
8203 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8204 {
8205 if (sym->st_shndx > SHN_HIRESERVE)
8206 {
8207 /* The gABI doesn't support dynamic symbols in output sections
8208 beyond 64k. */
8209 (*_bfd_error_handler)
8210 (_("%B: Too many sections: %d (>= %d)"),
8211 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8212 bfd_set_error (bfd_error_nonrepresentable_section);
8213 return FALSE;
8214 }
8215 return TRUE;
8216 }
8217
8218 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8219 allowing an unsatisfied unversioned symbol in the DSO to match a
8220 versioned symbol that would normally require an explicit version.
8221 We also handle the case that a DSO references a hidden symbol
8222 which may be satisfied by a versioned symbol in another DSO. */
8223
8224 static bfd_boolean
8225 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8226 const struct elf_backend_data *bed,
8227 struct elf_link_hash_entry *h)
8228 {
8229 bfd *abfd;
8230 struct elf_link_loaded_list *loaded;
8231
8232 if (!is_elf_hash_table (info->hash))
8233 return FALSE;
8234
8235 switch (h->root.type)
8236 {
8237 default:
8238 abfd = NULL;
8239 break;
8240
8241 case bfd_link_hash_undefined:
8242 case bfd_link_hash_undefweak:
8243 abfd = h->root.u.undef.abfd;
8244 if ((abfd->flags & DYNAMIC) == 0
8245 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8246 return FALSE;
8247 break;
8248
8249 case bfd_link_hash_defined:
8250 case bfd_link_hash_defweak:
8251 abfd = h->root.u.def.section->owner;
8252 break;
8253
8254 case bfd_link_hash_common:
8255 abfd = h->root.u.c.p->section->owner;
8256 break;
8257 }
8258 BFD_ASSERT (abfd != NULL);
8259
8260 for (loaded = elf_hash_table (info)->loaded;
8261 loaded != NULL;
8262 loaded = loaded->next)
8263 {
8264 bfd *input;
8265 Elf_Internal_Shdr *hdr;
8266 bfd_size_type symcount;
8267 bfd_size_type extsymcount;
8268 bfd_size_type extsymoff;
8269 Elf_Internal_Shdr *versymhdr;
8270 Elf_Internal_Sym *isym;
8271 Elf_Internal_Sym *isymend;
8272 Elf_Internal_Sym *isymbuf;
8273 Elf_External_Versym *ever;
8274 Elf_External_Versym *extversym;
8275
8276 input = loaded->abfd;
8277
8278 /* We check each DSO for a possible hidden versioned definition. */
8279 if (input == abfd
8280 || (input->flags & DYNAMIC) == 0
8281 || elf_dynversym (input) == 0)
8282 continue;
8283
8284 hdr = &elf_tdata (input)->dynsymtab_hdr;
8285
8286 symcount = hdr->sh_size / bed->s->sizeof_sym;
8287 if (elf_bad_symtab (input))
8288 {
8289 extsymcount = symcount;
8290 extsymoff = 0;
8291 }
8292 else
8293 {
8294 extsymcount = symcount - hdr->sh_info;
8295 extsymoff = hdr->sh_info;
8296 }
8297
8298 if (extsymcount == 0)
8299 continue;
8300
8301 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8302 NULL, NULL, NULL);
8303 if (isymbuf == NULL)
8304 return FALSE;
8305
8306 /* Read in any version definitions. */
8307 versymhdr = &elf_tdata (input)->dynversym_hdr;
8308 extversym = bfd_malloc (versymhdr->sh_size);
8309 if (extversym == NULL)
8310 goto error_ret;
8311
8312 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8313 || (bfd_bread (extversym, versymhdr->sh_size, input)
8314 != versymhdr->sh_size))
8315 {
8316 free (extversym);
8317 error_ret:
8318 free (isymbuf);
8319 return FALSE;
8320 }
8321
8322 ever = extversym + extsymoff;
8323 isymend = isymbuf + extsymcount;
8324 for (isym = isymbuf; isym < isymend; isym++, ever++)
8325 {
8326 const char *name;
8327 Elf_Internal_Versym iver;
8328 unsigned short version_index;
8329
8330 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8331 || isym->st_shndx == SHN_UNDEF)
8332 continue;
8333
8334 name = bfd_elf_string_from_elf_section (input,
8335 hdr->sh_link,
8336 isym->st_name);
8337 if (strcmp (name, h->root.root.string) != 0)
8338 continue;
8339
8340 _bfd_elf_swap_versym_in (input, ever, &iver);
8341
8342 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8343 {
8344 /* If we have a non-hidden versioned sym, then it should
8345 have provided a definition for the undefined sym. */
8346 abort ();
8347 }
8348
8349 version_index = iver.vs_vers & VERSYM_VERSION;
8350 if (version_index == 1 || version_index == 2)
8351 {
8352 /* This is the base or first version. We can use it. */
8353 free (extversym);
8354 free (isymbuf);
8355 return TRUE;
8356 }
8357 }
8358
8359 free (extversym);
8360 free (isymbuf);
8361 }
8362
8363 return FALSE;
8364 }
8365
8366 /* Add an external symbol to the symbol table. This is called from
8367 the hash table traversal routine. When generating a shared object,
8368 we go through the symbol table twice. The first time we output
8369 anything that might have been forced to local scope in a version
8370 script. The second time we output the symbols that are still
8371 global symbols. */
8372
8373 static bfd_boolean
8374 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8375 {
8376 struct elf_outext_info *eoinfo = data;
8377 struct elf_final_link_info *finfo = eoinfo->finfo;
8378 bfd_boolean strip;
8379 Elf_Internal_Sym sym;
8380 asection *input_sec;
8381 const struct elf_backend_data *bed;
8382
8383 if (h->root.type == bfd_link_hash_warning)
8384 {
8385 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8386 if (h->root.type == bfd_link_hash_new)
8387 return TRUE;
8388 }
8389
8390 /* Decide whether to output this symbol in this pass. */
8391 if (eoinfo->localsyms)
8392 {
8393 if (!h->forced_local)
8394 return TRUE;
8395 }
8396 else
8397 {
8398 if (h->forced_local)
8399 return TRUE;
8400 }
8401
8402 bed = get_elf_backend_data (finfo->output_bfd);
8403
8404 if (h->root.type == bfd_link_hash_undefined)
8405 {
8406 /* If we have an undefined symbol reference here then it must have
8407 come from a shared library that is being linked in. (Undefined
8408 references in regular files have already been handled). */
8409 bfd_boolean ignore_undef = FALSE;
8410
8411 /* Some symbols may be special in that the fact that they're
8412 undefined can be safely ignored - let backend determine that. */
8413 if (bed->elf_backend_ignore_undef_symbol)
8414 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8415
8416 /* If we are reporting errors for this situation then do so now. */
8417 if (ignore_undef == FALSE
8418 && h->ref_dynamic
8419 && ! h->ref_regular
8420 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8421 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8422 {
8423 if (! (finfo->info->callbacks->undefined_symbol
8424 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8425 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8426 {
8427 eoinfo->failed = TRUE;
8428 return FALSE;
8429 }
8430 }
8431 }
8432
8433 /* We should also warn if a forced local symbol is referenced from
8434 shared libraries. */
8435 if (! finfo->info->relocatable
8436 && (! finfo->info->shared)
8437 && h->forced_local
8438 && h->ref_dynamic
8439 && !h->dynamic_def
8440 && !h->dynamic_weak
8441 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8442 {
8443 (*_bfd_error_handler)
8444 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8445 finfo->output_bfd,
8446 h->root.u.def.section == bfd_abs_section_ptr
8447 ? finfo->output_bfd : h->root.u.def.section->owner,
8448 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8449 ? "internal"
8450 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8451 ? "hidden" : "local",
8452 h->root.root.string);
8453 eoinfo->failed = TRUE;
8454 return FALSE;
8455 }
8456
8457 /* We don't want to output symbols that have never been mentioned by
8458 a regular file, or that we have been told to strip. However, if
8459 h->indx is set to -2, the symbol is used by a reloc and we must
8460 output it. */
8461 if (h->indx == -2)
8462 strip = FALSE;
8463 else if ((h->def_dynamic
8464 || h->ref_dynamic
8465 || h->root.type == bfd_link_hash_new)
8466 && !h->def_regular
8467 && !h->ref_regular)
8468 strip = TRUE;
8469 else if (finfo->info->strip == strip_all)
8470 strip = TRUE;
8471 else if (finfo->info->strip == strip_some
8472 && bfd_hash_lookup (finfo->info->keep_hash,
8473 h->root.root.string, FALSE, FALSE) == NULL)
8474 strip = TRUE;
8475 else if (finfo->info->strip_discarded
8476 && (h->root.type == bfd_link_hash_defined
8477 || h->root.type == bfd_link_hash_defweak)
8478 && elf_discarded_section (h->root.u.def.section))
8479 strip = TRUE;
8480 else
8481 strip = FALSE;
8482
8483 /* If we're stripping it, and it's not a dynamic symbol, there's
8484 nothing else to do unless it is a forced local symbol. */
8485 if (strip
8486 && h->dynindx == -1
8487 && !h->forced_local)
8488 return TRUE;
8489
8490 sym.st_value = 0;
8491 sym.st_size = h->size;
8492 sym.st_other = h->other;
8493 if (h->forced_local)
8494 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8495 else if (h->root.type == bfd_link_hash_undefweak
8496 || h->root.type == bfd_link_hash_defweak)
8497 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8498 else
8499 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8500
8501 switch (h->root.type)
8502 {
8503 default:
8504 case bfd_link_hash_new:
8505 case bfd_link_hash_warning:
8506 abort ();
8507 return FALSE;
8508
8509 case bfd_link_hash_undefined:
8510 case bfd_link_hash_undefweak:
8511 input_sec = bfd_und_section_ptr;
8512 sym.st_shndx = SHN_UNDEF;
8513 break;
8514
8515 case bfd_link_hash_defined:
8516 case bfd_link_hash_defweak:
8517 {
8518 input_sec = h->root.u.def.section;
8519 if (input_sec->output_section != NULL)
8520 {
8521 sym.st_shndx =
8522 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8523 input_sec->output_section);
8524 if (sym.st_shndx == SHN_BAD)
8525 {
8526 (*_bfd_error_handler)
8527 (_("%B: could not find output section %A for input section %A"),
8528 finfo->output_bfd, input_sec->output_section, input_sec);
8529 eoinfo->failed = TRUE;
8530 return FALSE;
8531 }
8532
8533 /* ELF symbols in relocatable files are section relative,
8534 but in nonrelocatable files they are virtual
8535 addresses. */
8536 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8537 if (! finfo->info->relocatable)
8538 {
8539 sym.st_value += input_sec->output_section->vma;
8540 if (h->type == STT_TLS)
8541 {
8542 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8543 if (tls_sec != NULL)
8544 sym.st_value -= tls_sec->vma;
8545 else
8546 {
8547 /* The TLS section may have been garbage collected. */
8548 BFD_ASSERT (finfo->info->gc_sections
8549 && !input_sec->gc_mark);
8550 }
8551 }
8552 }
8553 }
8554 else
8555 {
8556 BFD_ASSERT (input_sec->owner == NULL
8557 || (input_sec->owner->flags & DYNAMIC) != 0);
8558 sym.st_shndx = SHN_UNDEF;
8559 input_sec = bfd_und_section_ptr;
8560 }
8561 }
8562 break;
8563
8564 case bfd_link_hash_common:
8565 input_sec = h->root.u.c.p->section;
8566 sym.st_shndx = bed->common_section_index (input_sec);
8567 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8568 break;
8569
8570 case bfd_link_hash_indirect:
8571 /* These symbols are created by symbol versioning. They point
8572 to the decorated version of the name. For example, if the
8573 symbol foo@@GNU_1.2 is the default, which should be used when
8574 foo is used with no version, then we add an indirect symbol
8575 foo which points to foo@@GNU_1.2. We ignore these symbols,
8576 since the indirected symbol is already in the hash table. */
8577 return TRUE;
8578 }
8579
8580 /* Give the processor backend a chance to tweak the symbol value,
8581 and also to finish up anything that needs to be done for this
8582 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8583 forced local syms when non-shared is due to a historical quirk. */
8584 if ((h->dynindx != -1
8585 || h->forced_local)
8586 && ((finfo->info->shared
8587 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8588 || h->root.type != bfd_link_hash_undefweak))
8589 || !h->forced_local)
8590 && elf_hash_table (finfo->info)->dynamic_sections_created)
8591 {
8592 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8593 (finfo->output_bfd, finfo->info, h, &sym)))
8594 {
8595 eoinfo->failed = TRUE;
8596 return FALSE;
8597 }
8598 }
8599
8600 /* If we are marking the symbol as undefined, and there are no
8601 non-weak references to this symbol from a regular object, then
8602 mark the symbol as weak undefined; if there are non-weak
8603 references, mark the symbol as strong. We can't do this earlier,
8604 because it might not be marked as undefined until the
8605 finish_dynamic_symbol routine gets through with it. */
8606 if (sym.st_shndx == SHN_UNDEF
8607 && h->ref_regular
8608 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8609 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8610 {
8611 int bindtype;
8612
8613 if (h->ref_regular_nonweak)
8614 bindtype = STB_GLOBAL;
8615 else
8616 bindtype = STB_WEAK;
8617 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8618 }
8619
8620 /* If a non-weak symbol with non-default visibility is not defined
8621 locally, it is a fatal error. */
8622 if (! finfo->info->relocatable
8623 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8624 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8625 && h->root.type == bfd_link_hash_undefined
8626 && !h->def_regular)
8627 {
8628 (*_bfd_error_handler)
8629 (_("%B: %s symbol `%s' isn't defined"),
8630 finfo->output_bfd,
8631 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8632 ? "protected"
8633 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8634 ? "internal" : "hidden",
8635 h->root.root.string);
8636 eoinfo->failed = TRUE;
8637 return FALSE;
8638 }
8639
8640 /* If this symbol should be put in the .dynsym section, then put it
8641 there now. We already know the symbol index. We also fill in
8642 the entry in the .hash section. */
8643 if (h->dynindx != -1
8644 && elf_hash_table (finfo->info)->dynamic_sections_created)
8645 {
8646 bfd_byte *esym;
8647
8648 sym.st_name = h->dynstr_index;
8649 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8650 if (! check_dynsym (finfo->output_bfd, &sym))
8651 {
8652 eoinfo->failed = TRUE;
8653 return FALSE;
8654 }
8655 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8656
8657 if (finfo->hash_sec != NULL)
8658 {
8659 size_t hash_entry_size;
8660 bfd_byte *bucketpos;
8661 bfd_vma chain;
8662 size_t bucketcount;
8663 size_t bucket;
8664
8665 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8666 bucket = h->u.elf_hash_value % bucketcount;
8667
8668 hash_entry_size
8669 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8670 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8671 + (bucket + 2) * hash_entry_size);
8672 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8673 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8674 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8675 ((bfd_byte *) finfo->hash_sec->contents
8676 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8677 }
8678
8679 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8680 {
8681 Elf_Internal_Versym iversym;
8682 Elf_External_Versym *eversym;
8683
8684 if (!h->def_regular)
8685 {
8686 if (h->verinfo.verdef == NULL)
8687 iversym.vs_vers = 0;
8688 else
8689 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8690 }
8691 else
8692 {
8693 if (h->verinfo.vertree == NULL)
8694 iversym.vs_vers = 1;
8695 else
8696 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8697 if (finfo->info->create_default_symver)
8698 iversym.vs_vers++;
8699 }
8700
8701 if (h->hidden)
8702 iversym.vs_vers |= VERSYM_HIDDEN;
8703
8704 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8705 eversym += h->dynindx;
8706 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8707 }
8708 }
8709
8710 /* If we're stripping it, then it was just a dynamic symbol, and
8711 there's nothing else to do. */
8712 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8713 return TRUE;
8714
8715 h->indx = bfd_get_symcount (finfo->output_bfd);
8716
8717 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8718 {
8719 eoinfo->failed = TRUE;
8720 return FALSE;
8721 }
8722
8723 return TRUE;
8724 }
8725
8726 /* Return TRUE if special handling is done for relocs in SEC against
8727 symbols defined in discarded sections. */
8728
8729 static bfd_boolean
8730 elf_section_ignore_discarded_relocs (asection *sec)
8731 {
8732 const struct elf_backend_data *bed;
8733
8734 switch (sec->sec_info_type)
8735 {
8736 case ELF_INFO_TYPE_STABS:
8737 case ELF_INFO_TYPE_EH_FRAME:
8738 return TRUE;
8739 default:
8740 break;
8741 }
8742
8743 bed = get_elf_backend_data (sec->owner);
8744 if (bed->elf_backend_ignore_discarded_relocs != NULL
8745 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8746 return TRUE;
8747
8748 return FALSE;
8749 }
8750
8751 /* Return a mask saying how ld should treat relocations in SEC against
8752 symbols defined in discarded sections. If this function returns
8753 COMPLAIN set, ld will issue a warning message. If this function
8754 returns PRETEND set, and the discarded section was link-once and the
8755 same size as the kept link-once section, ld will pretend that the
8756 symbol was actually defined in the kept section. Otherwise ld will
8757 zero the reloc (at least that is the intent, but some cooperation by
8758 the target dependent code is needed, particularly for REL targets). */
8759
8760 unsigned int
8761 _bfd_elf_default_action_discarded (asection *sec)
8762 {
8763 if (sec->flags & SEC_DEBUGGING)
8764 return PRETEND;
8765
8766 if (strcmp (".eh_frame", sec->name) == 0)
8767 return 0;
8768
8769 if (strcmp (".gcc_except_table", sec->name) == 0)
8770 return 0;
8771
8772 return COMPLAIN | PRETEND;
8773 }
8774
8775 /* Find a match between a section and a member of a section group. */
8776
8777 static asection *
8778 match_group_member (asection *sec, asection *group,
8779 struct bfd_link_info *info)
8780 {
8781 asection *first = elf_next_in_group (group);
8782 asection *s = first;
8783
8784 while (s != NULL)
8785 {
8786 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8787 return s;
8788
8789 s = elf_next_in_group (s);
8790 if (s == first)
8791 break;
8792 }
8793
8794 return NULL;
8795 }
8796
8797 /* Check if the kept section of a discarded section SEC can be used
8798 to replace it. Return the replacement if it is OK. Otherwise return
8799 NULL. */
8800
8801 asection *
8802 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8803 {
8804 asection *kept;
8805
8806 kept = sec->kept_section;
8807 if (kept != NULL)
8808 {
8809 if ((kept->flags & SEC_GROUP) != 0)
8810 kept = match_group_member (sec, kept, info);
8811 if (kept != NULL
8812 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8813 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8814 kept = NULL;
8815 sec->kept_section = kept;
8816 }
8817 return kept;
8818 }
8819
8820 /* Link an input file into the linker output file. This function
8821 handles all the sections and relocations of the input file at once.
8822 This is so that we only have to read the local symbols once, and
8823 don't have to keep them in memory. */
8824
8825 static bfd_boolean
8826 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8827 {
8828 int (*relocate_section)
8829 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8830 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8831 bfd *output_bfd;
8832 Elf_Internal_Shdr *symtab_hdr;
8833 size_t locsymcount;
8834 size_t extsymoff;
8835 Elf_Internal_Sym *isymbuf;
8836 Elf_Internal_Sym *isym;
8837 Elf_Internal_Sym *isymend;
8838 long *pindex;
8839 asection **ppsection;
8840 asection *o;
8841 const struct elf_backend_data *bed;
8842 struct elf_link_hash_entry **sym_hashes;
8843
8844 output_bfd = finfo->output_bfd;
8845 bed = get_elf_backend_data (output_bfd);
8846 relocate_section = bed->elf_backend_relocate_section;
8847
8848 /* If this is a dynamic object, we don't want to do anything here:
8849 we don't want the local symbols, and we don't want the section
8850 contents. */
8851 if ((input_bfd->flags & DYNAMIC) != 0)
8852 return TRUE;
8853
8854 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8855 if (elf_bad_symtab (input_bfd))
8856 {
8857 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8858 extsymoff = 0;
8859 }
8860 else
8861 {
8862 locsymcount = symtab_hdr->sh_info;
8863 extsymoff = symtab_hdr->sh_info;
8864 }
8865
8866 /* Read the local symbols. */
8867 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8868 if (isymbuf == NULL && locsymcount != 0)
8869 {
8870 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8871 finfo->internal_syms,
8872 finfo->external_syms,
8873 finfo->locsym_shndx);
8874 if (isymbuf == NULL)
8875 return FALSE;
8876 }
8877
8878 /* Find local symbol sections and adjust values of symbols in
8879 SEC_MERGE sections. Write out those local symbols we know are
8880 going into the output file. */
8881 isymend = isymbuf + locsymcount;
8882 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8883 isym < isymend;
8884 isym++, pindex++, ppsection++)
8885 {
8886 asection *isec;
8887 const char *name;
8888 Elf_Internal_Sym osym;
8889
8890 *pindex = -1;
8891
8892 if (elf_bad_symtab (input_bfd))
8893 {
8894 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8895 {
8896 *ppsection = NULL;
8897 continue;
8898 }
8899 }
8900
8901 if (isym->st_shndx == SHN_UNDEF)
8902 isec = bfd_und_section_ptr;
8903 else if (isym->st_shndx < SHN_LORESERVE
8904 || isym->st_shndx > SHN_HIRESERVE)
8905 {
8906 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8907 if (isec
8908 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8909 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8910 isym->st_value =
8911 _bfd_merged_section_offset (output_bfd, &isec,
8912 elf_section_data (isec)->sec_info,
8913 isym->st_value);
8914 }
8915 else if (isym->st_shndx == SHN_ABS)
8916 isec = bfd_abs_section_ptr;
8917 else if (isym->st_shndx == SHN_COMMON)
8918 isec = bfd_com_section_ptr;
8919 else
8920 {
8921 /* Don't attempt to output symbols with st_shnx in the
8922 reserved range other than SHN_ABS and SHN_COMMON. */
8923 *ppsection = NULL;
8924 continue;
8925 }
8926
8927 *ppsection = isec;
8928
8929 /* Don't output the first, undefined, symbol. */
8930 if (ppsection == finfo->sections)
8931 continue;
8932
8933 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8934 {
8935 /* We never output section symbols. Instead, we use the
8936 section symbol of the corresponding section in the output
8937 file. */
8938 continue;
8939 }
8940
8941 /* If we are stripping all symbols, we don't want to output this
8942 one. */
8943 if (finfo->info->strip == strip_all)
8944 continue;
8945
8946 /* If we are discarding all local symbols, we don't want to
8947 output this one. If we are generating a relocatable output
8948 file, then some of the local symbols may be required by
8949 relocs; we output them below as we discover that they are
8950 needed. */
8951 if (finfo->info->discard == discard_all)
8952 continue;
8953
8954 /* If this symbol is defined in a section which we are
8955 discarding, we don't need to keep it. */
8956 if (isym->st_shndx != SHN_UNDEF
8957 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8958 && (isec == NULL
8959 || bfd_section_removed_from_list (output_bfd,
8960 isec->output_section)))
8961 continue;
8962
8963 /* Get the name of the symbol. */
8964 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8965 isym->st_name);
8966 if (name == NULL)
8967 return FALSE;
8968
8969 /* See if we are discarding symbols with this name. */
8970 if ((finfo->info->strip == strip_some
8971 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8972 == NULL))
8973 || (((finfo->info->discard == discard_sec_merge
8974 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8975 || finfo->info->discard == discard_l)
8976 && bfd_is_local_label_name (input_bfd, name)))
8977 continue;
8978
8979 /* If we get here, we are going to output this symbol. */
8980
8981 osym = *isym;
8982
8983 /* Adjust the section index for the output file. */
8984 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8985 isec->output_section);
8986 if (osym.st_shndx == SHN_BAD)
8987 return FALSE;
8988
8989 *pindex = bfd_get_symcount (output_bfd);
8990
8991 /* ELF symbols in relocatable files are section relative, but
8992 in executable files they are virtual addresses. Note that
8993 this code assumes that all ELF sections have an associated
8994 BFD section with a reasonable value for output_offset; below
8995 we assume that they also have a reasonable value for
8996 output_section. Any special sections must be set up to meet
8997 these requirements. */
8998 osym.st_value += isec->output_offset;
8999 if (! finfo->info->relocatable)
9000 {
9001 osym.st_value += isec->output_section->vma;
9002 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9003 {
9004 /* STT_TLS symbols are relative to PT_TLS segment base. */
9005 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9006 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9007 }
9008 }
9009
9010 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9011 return FALSE;
9012 }
9013
9014 /* Relocate the contents of each section. */
9015 sym_hashes = elf_sym_hashes (input_bfd);
9016 for (o = input_bfd->sections; o != NULL; o = o->next)
9017 {
9018 bfd_byte *contents;
9019
9020 if (! o->linker_mark)
9021 {
9022 /* This section was omitted from the link. */
9023 continue;
9024 }
9025
9026 if ((o->flags & SEC_HAS_CONTENTS) == 0
9027 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9028 continue;
9029
9030 if ((o->flags & SEC_LINKER_CREATED) != 0)
9031 {
9032 /* Section was created by _bfd_elf_link_create_dynamic_sections
9033 or somesuch. */
9034 continue;
9035 }
9036
9037 /* Get the contents of the section. They have been cached by a
9038 relaxation routine. Note that o is a section in an input
9039 file, so the contents field will not have been set by any of
9040 the routines which work on output files. */
9041 if (elf_section_data (o)->this_hdr.contents != NULL)
9042 contents = elf_section_data (o)->this_hdr.contents;
9043 else
9044 {
9045 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9046
9047 contents = finfo->contents;
9048 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9049 return FALSE;
9050 }
9051
9052 if ((o->flags & SEC_RELOC) != 0)
9053 {
9054 Elf_Internal_Rela *internal_relocs;
9055 Elf_Internal_Rela *rel, *relend;
9056 bfd_vma r_type_mask;
9057 int r_sym_shift;
9058 int action_discarded;
9059 int ret;
9060
9061 /* Get the swapped relocs. */
9062 internal_relocs
9063 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9064 finfo->internal_relocs, FALSE);
9065 if (internal_relocs == NULL
9066 && o->reloc_count > 0)
9067 return FALSE;
9068
9069 if (bed->s->arch_size == 32)
9070 {
9071 r_type_mask = 0xff;
9072 r_sym_shift = 8;
9073 }
9074 else
9075 {
9076 r_type_mask = 0xffffffff;
9077 r_sym_shift = 32;
9078 }
9079
9080 action_discarded = -1;
9081 if (!elf_section_ignore_discarded_relocs (o))
9082 action_discarded = (*bed->action_discarded) (o);
9083
9084 /* Run through the relocs evaluating complex reloc symbols and
9085 looking for relocs against symbols from discarded sections
9086 or section symbols from removed link-once sections.
9087 Complain about relocs against discarded sections. Zero
9088 relocs against removed link-once sections. */
9089
9090 rel = internal_relocs;
9091 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9092 for ( ; rel < relend; rel++)
9093 {
9094 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9095 unsigned int s_type;
9096 asection **ps, *sec;
9097 struct elf_link_hash_entry *h = NULL;
9098 const char *sym_name;
9099
9100 if (r_symndx == STN_UNDEF)
9101 continue;
9102
9103 if (r_symndx >= locsymcount
9104 || (elf_bad_symtab (input_bfd)
9105 && finfo->sections[r_symndx] == NULL))
9106 {
9107 h = sym_hashes[r_symndx - extsymoff];
9108
9109 /* Badly formatted input files can contain relocs that
9110 reference non-existant symbols. Check here so that
9111 we do not seg fault. */
9112 if (h == NULL)
9113 {
9114 char buffer [32];
9115
9116 sprintf_vma (buffer, rel->r_info);
9117 (*_bfd_error_handler)
9118 (_("error: %B contains a reloc (0x%s) for section %A "
9119 "that references a non-existent global symbol"),
9120 input_bfd, o, buffer);
9121 bfd_set_error (bfd_error_bad_value);
9122 return FALSE;
9123 }
9124
9125 while (h->root.type == bfd_link_hash_indirect
9126 || h->root.type == bfd_link_hash_warning)
9127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9128
9129 s_type = h->type;
9130
9131 ps = NULL;
9132 if (h->root.type == bfd_link_hash_defined
9133 || h->root.type == bfd_link_hash_defweak)
9134 ps = &h->root.u.def.section;
9135
9136 sym_name = h->root.root.string;
9137 }
9138 else
9139 {
9140 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9141
9142 s_type = ELF_ST_TYPE (sym->st_info);
9143 ps = &finfo->sections[r_symndx];
9144 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9145 sym, *ps);
9146 }
9147
9148 if (s_type == STT_RELC || s_type == STT_SRELC)
9149 {
9150 bfd_vma val;
9151 bfd_vma dot = (rel->r_offset
9152 + o->output_offset + o->output_section->vma);
9153 #ifdef DEBUG
9154 printf ("Encountered a complex symbol!");
9155 printf (" (input_bfd %s, section %s, reloc %ld\n",
9156 input_bfd->filename, o->name, rel - internal_relocs);
9157 printf (" symbol: idx %8.8lx, name %s\n",
9158 r_symndx, sym_name);
9159 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9160 (unsigned long) rel->r_info,
9161 (unsigned long) rel->r_offset);
9162 #endif
9163 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9164 isymbuf, locsymcount, s_type == STT_SRELC))
9165 return FALSE;
9166
9167 /* Symbol evaluated OK. Update to absolute value. */
9168 set_symbol_value (input_bfd, isymbuf, locsymcount,
9169 r_symndx, val);
9170 continue;
9171 }
9172
9173 if (action_discarded != -1 && ps != NULL)
9174 {
9175 /* Complain if the definition comes from a
9176 discarded section. */
9177 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9178 {
9179 BFD_ASSERT (r_symndx != 0);
9180 if (action_discarded & COMPLAIN)
9181 (*finfo->info->callbacks->einfo)
9182 (_("%X`%s' referenced in section `%A' of %B: "
9183 "defined in discarded section `%A' of %B\n"),
9184 sym_name, o, input_bfd, sec, sec->owner);
9185
9186 /* Try to do the best we can to support buggy old
9187 versions of gcc. Pretend that the symbol is
9188 really defined in the kept linkonce section.
9189 FIXME: This is quite broken. Modifying the
9190 symbol here means we will be changing all later
9191 uses of the symbol, not just in this section. */
9192 if (action_discarded & PRETEND)
9193 {
9194 asection *kept;
9195
9196 kept = _bfd_elf_check_kept_section (sec,
9197 finfo->info);
9198 if (kept != NULL)
9199 {
9200 *ps = kept;
9201 continue;
9202 }
9203 }
9204 }
9205 }
9206 }
9207
9208 /* Relocate the section by invoking a back end routine.
9209
9210 The back end routine is responsible for adjusting the
9211 section contents as necessary, and (if using Rela relocs
9212 and generating a relocatable output file) adjusting the
9213 reloc addend as necessary.
9214
9215 The back end routine does not have to worry about setting
9216 the reloc address or the reloc symbol index.
9217
9218 The back end routine is given a pointer to the swapped in
9219 internal symbols, and can access the hash table entries
9220 for the external symbols via elf_sym_hashes (input_bfd).
9221
9222 When generating relocatable output, the back end routine
9223 must handle STB_LOCAL/STT_SECTION symbols specially. The
9224 output symbol is going to be a section symbol
9225 corresponding to the output section, which will require
9226 the addend to be adjusted. */
9227
9228 ret = (*relocate_section) (output_bfd, finfo->info,
9229 input_bfd, o, contents,
9230 internal_relocs,
9231 isymbuf,
9232 finfo->sections);
9233 if (!ret)
9234 return FALSE;
9235
9236 if (ret == 2
9237 || finfo->info->relocatable
9238 || finfo->info->emitrelocations)
9239 {
9240 Elf_Internal_Rela *irela;
9241 Elf_Internal_Rela *irelaend;
9242 bfd_vma last_offset;
9243 struct elf_link_hash_entry **rel_hash;
9244 struct elf_link_hash_entry **rel_hash_list;
9245 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9246 unsigned int next_erel;
9247 bfd_boolean rela_normal;
9248
9249 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9250 rela_normal = (bed->rela_normal
9251 && (input_rel_hdr->sh_entsize
9252 == bed->s->sizeof_rela));
9253
9254 /* Adjust the reloc addresses and symbol indices. */
9255
9256 irela = internal_relocs;
9257 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9258 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9259 + elf_section_data (o->output_section)->rel_count
9260 + elf_section_data (o->output_section)->rel_count2);
9261 rel_hash_list = rel_hash;
9262 last_offset = o->output_offset;
9263 if (!finfo->info->relocatable)
9264 last_offset += o->output_section->vma;
9265 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9266 {
9267 unsigned long r_symndx;
9268 asection *sec;
9269 Elf_Internal_Sym sym;
9270
9271 if (next_erel == bed->s->int_rels_per_ext_rel)
9272 {
9273 rel_hash++;
9274 next_erel = 0;
9275 }
9276
9277 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9278 finfo->info, o,
9279 irela->r_offset);
9280 if (irela->r_offset >= (bfd_vma) -2)
9281 {
9282 /* This is a reloc for a deleted entry or somesuch.
9283 Turn it into an R_*_NONE reloc, at the same
9284 offset as the last reloc. elf_eh_frame.c and
9285 bfd_elf_discard_info rely on reloc offsets
9286 being ordered. */
9287 irela->r_offset = last_offset;
9288 irela->r_info = 0;
9289 irela->r_addend = 0;
9290 continue;
9291 }
9292
9293 irela->r_offset += o->output_offset;
9294
9295 /* Relocs in an executable have to be virtual addresses. */
9296 if (!finfo->info->relocatable)
9297 irela->r_offset += o->output_section->vma;
9298
9299 last_offset = irela->r_offset;
9300
9301 r_symndx = irela->r_info >> r_sym_shift;
9302 if (r_symndx == STN_UNDEF)
9303 continue;
9304
9305 if (r_symndx >= locsymcount
9306 || (elf_bad_symtab (input_bfd)
9307 && finfo->sections[r_symndx] == NULL))
9308 {
9309 struct elf_link_hash_entry *rh;
9310 unsigned long indx;
9311
9312 /* This is a reloc against a global symbol. We
9313 have not yet output all the local symbols, so
9314 we do not know the symbol index of any global
9315 symbol. We set the rel_hash entry for this
9316 reloc to point to the global hash table entry
9317 for this symbol. The symbol index is then
9318 set at the end of bfd_elf_final_link. */
9319 indx = r_symndx - extsymoff;
9320 rh = elf_sym_hashes (input_bfd)[indx];
9321 while (rh->root.type == bfd_link_hash_indirect
9322 || rh->root.type == bfd_link_hash_warning)
9323 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9324
9325 /* Setting the index to -2 tells
9326 elf_link_output_extsym that this symbol is
9327 used by a reloc. */
9328 BFD_ASSERT (rh->indx < 0);
9329 rh->indx = -2;
9330
9331 *rel_hash = rh;
9332
9333 continue;
9334 }
9335
9336 /* This is a reloc against a local symbol. */
9337
9338 *rel_hash = NULL;
9339 sym = isymbuf[r_symndx];
9340 sec = finfo->sections[r_symndx];
9341 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9342 {
9343 /* I suppose the backend ought to fill in the
9344 section of any STT_SECTION symbol against a
9345 processor specific section. */
9346 r_symndx = 0;
9347 if (bfd_is_abs_section (sec))
9348 ;
9349 else if (sec == NULL || sec->owner == NULL)
9350 {
9351 bfd_set_error (bfd_error_bad_value);
9352 return FALSE;
9353 }
9354 else
9355 {
9356 asection *osec = sec->output_section;
9357
9358 /* If we have discarded a section, the output
9359 section will be the absolute section. In
9360 case of discarded SEC_MERGE sections, use
9361 the kept section. relocate_section should
9362 have already handled discarded linkonce
9363 sections. */
9364 if (bfd_is_abs_section (osec)
9365 && sec->kept_section != NULL
9366 && sec->kept_section->output_section != NULL)
9367 {
9368 osec = sec->kept_section->output_section;
9369 irela->r_addend -= osec->vma;
9370 }
9371
9372 if (!bfd_is_abs_section (osec))
9373 {
9374 r_symndx = osec->target_index;
9375 if (r_symndx == 0)
9376 {
9377 struct elf_link_hash_table *htab;
9378 asection *oi;
9379
9380 htab = elf_hash_table (finfo->info);
9381 oi = htab->text_index_section;
9382 if ((osec->flags & SEC_READONLY) == 0
9383 && htab->data_index_section != NULL)
9384 oi = htab->data_index_section;
9385
9386 if (oi != NULL)
9387 {
9388 irela->r_addend += osec->vma - oi->vma;
9389 r_symndx = oi->target_index;
9390 }
9391 }
9392
9393 BFD_ASSERT (r_symndx != 0);
9394 }
9395 }
9396
9397 /* Adjust the addend according to where the
9398 section winds up in the output section. */
9399 if (rela_normal)
9400 irela->r_addend += sec->output_offset;
9401 }
9402 else
9403 {
9404 if (finfo->indices[r_symndx] == -1)
9405 {
9406 unsigned long shlink;
9407 const char *name;
9408 asection *osec;
9409
9410 if (finfo->info->strip == strip_all)
9411 {
9412 /* You can't do ld -r -s. */
9413 bfd_set_error (bfd_error_invalid_operation);
9414 return FALSE;
9415 }
9416
9417 /* This symbol was skipped earlier, but
9418 since it is needed by a reloc, we
9419 must output it now. */
9420 shlink = symtab_hdr->sh_link;
9421 name = (bfd_elf_string_from_elf_section
9422 (input_bfd, shlink, sym.st_name));
9423 if (name == NULL)
9424 return FALSE;
9425
9426 osec = sec->output_section;
9427 sym.st_shndx =
9428 _bfd_elf_section_from_bfd_section (output_bfd,
9429 osec);
9430 if (sym.st_shndx == SHN_BAD)
9431 return FALSE;
9432
9433 sym.st_value += sec->output_offset;
9434 if (! finfo->info->relocatable)
9435 {
9436 sym.st_value += osec->vma;
9437 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9438 {
9439 /* STT_TLS symbols are relative to PT_TLS
9440 segment base. */
9441 BFD_ASSERT (elf_hash_table (finfo->info)
9442 ->tls_sec != NULL);
9443 sym.st_value -= (elf_hash_table (finfo->info)
9444 ->tls_sec->vma);
9445 }
9446 }
9447
9448 finfo->indices[r_symndx]
9449 = bfd_get_symcount (output_bfd);
9450
9451 if (! elf_link_output_sym (finfo, name, &sym, sec,
9452 NULL))
9453 return FALSE;
9454 }
9455
9456 r_symndx = finfo->indices[r_symndx];
9457 }
9458
9459 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9460 | (irela->r_info & r_type_mask));
9461 }
9462
9463 /* Swap out the relocs. */
9464 if (input_rel_hdr->sh_size != 0
9465 && !bed->elf_backend_emit_relocs (output_bfd, o,
9466 input_rel_hdr,
9467 internal_relocs,
9468 rel_hash_list))
9469 return FALSE;
9470
9471 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9472 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9473 {
9474 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9475 * bed->s->int_rels_per_ext_rel);
9476 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9477 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9478 input_rel_hdr2,
9479 internal_relocs,
9480 rel_hash_list))
9481 return FALSE;
9482 }
9483 }
9484 }
9485
9486 /* Write out the modified section contents. */
9487 if (bed->elf_backend_write_section
9488 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9489 contents))
9490 {
9491 /* Section written out. */
9492 }
9493 else switch (o->sec_info_type)
9494 {
9495 case ELF_INFO_TYPE_STABS:
9496 if (! (_bfd_write_section_stabs
9497 (output_bfd,
9498 &elf_hash_table (finfo->info)->stab_info,
9499 o, &elf_section_data (o)->sec_info, contents)))
9500 return FALSE;
9501 break;
9502 case ELF_INFO_TYPE_MERGE:
9503 if (! _bfd_write_merged_section (output_bfd, o,
9504 elf_section_data (o)->sec_info))
9505 return FALSE;
9506 break;
9507 case ELF_INFO_TYPE_EH_FRAME:
9508 {
9509 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9510 o, contents))
9511 return FALSE;
9512 }
9513 break;
9514 default:
9515 {
9516 if (! (o->flags & SEC_EXCLUDE)
9517 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9518 && ! bfd_set_section_contents (output_bfd, o->output_section,
9519 contents,
9520 (file_ptr) o->output_offset,
9521 o->size))
9522 return FALSE;
9523 }
9524 break;
9525 }
9526 }
9527
9528 return TRUE;
9529 }
9530
9531 /* Generate a reloc when linking an ELF file. This is a reloc
9532 requested by the linker, and does not come from any input file. This
9533 is used to build constructor and destructor tables when linking
9534 with -Ur. */
9535
9536 static bfd_boolean
9537 elf_reloc_link_order (bfd *output_bfd,
9538 struct bfd_link_info *info,
9539 asection *output_section,
9540 struct bfd_link_order *link_order)
9541 {
9542 reloc_howto_type *howto;
9543 long indx;
9544 bfd_vma offset;
9545 bfd_vma addend;
9546 struct elf_link_hash_entry **rel_hash_ptr;
9547 Elf_Internal_Shdr *rel_hdr;
9548 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9549 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9550 bfd_byte *erel;
9551 unsigned int i;
9552
9553 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9554 if (howto == NULL)
9555 {
9556 bfd_set_error (bfd_error_bad_value);
9557 return FALSE;
9558 }
9559
9560 addend = link_order->u.reloc.p->addend;
9561
9562 /* Figure out the symbol index. */
9563 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9564 + elf_section_data (output_section)->rel_count
9565 + elf_section_data (output_section)->rel_count2);
9566 if (link_order->type == bfd_section_reloc_link_order)
9567 {
9568 indx = link_order->u.reloc.p->u.section->target_index;
9569 BFD_ASSERT (indx != 0);
9570 *rel_hash_ptr = NULL;
9571 }
9572 else
9573 {
9574 struct elf_link_hash_entry *h;
9575
9576 /* Treat a reloc against a defined symbol as though it were
9577 actually against the section. */
9578 h = ((struct elf_link_hash_entry *)
9579 bfd_wrapped_link_hash_lookup (output_bfd, info,
9580 link_order->u.reloc.p->u.name,
9581 FALSE, FALSE, TRUE));
9582 if (h != NULL
9583 && (h->root.type == bfd_link_hash_defined
9584 || h->root.type == bfd_link_hash_defweak))
9585 {
9586 asection *section;
9587
9588 section = h->root.u.def.section;
9589 indx = section->output_section->target_index;
9590 *rel_hash_ptr = NULL;
9591 /* It seems that we ought to add the symbol value to the
9592 addend here, but in practice it has already been added
9593 because it was passed to constructor_callback. */
9594 addend += section->output_section->vma + section->output_offset;
9595 }
9596 else if (h != NULL)
9597 {
9598 /* Setting the index to -2 tells elf_link_output_extsym that
9599 this symbol is used by a reloc. */
9600 h->indx = -2;
9601 *rel_hash_ptr = h;
9602 indx = 0;
9603 }
9604 else
9605 {
9606 if (! ((*info->callbacks->unattached_reloc)
9607 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9608 return FALSE;
9609 indx = 0;
9610 }
9611 }
9612
9613 /* If this is an inplace reloc, we must write the addend into the
9614 object file. */
9615 if (howto->partial_inplace && addend != 0)
9616 {
9617 bfd_size_type size;
9618 bfd_reloc_status_type rstat;
9619 bfd_byte *buf;
9620 bfd_boolean ok;
9621 const char *sym_name;
9622
9623 size = bfd_get_reloc_size (howto);
9624 buf = bfd_zmalloc (size);
9625 if (buf == NULL)
9626 return FALSE;
9627 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9628 switch (rstat)
9629 {
9630 case bfd_reloc_ok:
9631 break;
9632
9633 default:
9634 case bfd_reloc_outofrange:
9635 abort ();
9636
9637 case bfd_reloc_overflow:
9638 if (link_order->type == bfd_section_reloc_link_order)
9639 sym_name = bfd_section_name (output_bfd,
9640 link_order->u.reloc.p->u.section);
9641 else
9642 sym_name = link_order->u.reloc.p->u.name;
9643 if (! ((*info->callbacks->reloc_overflow)
9644 (info, NULL, sym_name, howto->name, addend, NULL,
9645 NULL, (bfd_vma) 0)))
9646 {
9647 free (buf);
9648 return FALSE;
9649 }
9650 break;
9651 }
9652 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9653 link_order->offset, size);
9654 free (buf);
9655 if (! ok)
9656 return FALSE;
9657 }
9658
9659 /* The address of a reloc is relative to the section in a
9660 relocatable file, and is a virtual address in an executable
9661 file. */
9662 offset = link_order->offset;
9663 if (! info->relocatable)
9664 offset += output_section->vma;
9665
9666 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9667 {
9668 irel[i].r_offset = offset;
9669 irel[i].r_info = 0;
9670 irel[i].r_addend = 0;
9671 }
9672 if (bed->s->arch_size == 32)
9673 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9674 else
9675 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9676
9677 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9678 erel = rel_hdr->contents;
9679 if (rel_hdr->sh_type == SHT_REL)
9680 {
9681 erel += (elf_section_data (output_section)->rel_count
9682 * bed->s->sizeof_rel);
9683 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9684 }
9685 else
9686 {
9687 irel[0].r_addend = addend;
9688 erel += (elf_section_data (output_section)->rel_count
9689 * bed->s->sizeof_rela);
9690 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9691 }
9692
9693 ++elf_section_data (output_section)->rel_count;
9694
9695 return TRUE;
9696 }
9697
9698
9699 /* Get the output vma of the section pointed to by the sh_link field. */
9700
9701 static bfd_vma
9702 elf_get_linked_section_vma (struct bfd_link_order *p)
9703 {
9704 Elf_Internal_Shdr **elf_shdrp;
9705 asection *s;
9706 int elfsec;
9707
9708 s = p->u.indirect.section;
9709 elf_shdrp = elf_elfsections (s->owner);
9710 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9711 elfsec = elf_shdrp[elfsec]->sh_link;
9712 /* PR 290:
9713 The Intel C compiler generates SHT_IA_64_UNWIND with
9714 SHF_LINK_ORDER. But it doesn't set the sh_link or
9715 sh_info fields. Hence we could get the situation
9716 where elfsec is 0. */
9717 if (elfsec == 0)
9718 {
9719 const struct elf_backend_data *bed
9720 = get_elf_backend_data (s->owner);
9721 if (bed->link_order_error_handler)
9722 bed->link_order_error_handler
9723 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9724 return 0;
9725 }
9726 else
9727 {
9728 s = elf_shdrp[elfsec]->bfd_section;
9729 return s->output_section->vma + s->output_offset;
9730 }
9731 }
9732
9733
9734 /* Compare two sections based on the locations of the sections they are
9735 linked to. Used by elf_fixup_link_order. */
9736
9737 static int
9738 compare_link_order (const void * a, const void * b)
9739 {
9740 bfd_vma apos;
9741 bfd_vma bpos;
9742
9743 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9744 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9745 if (apos < bpos)
9746 return -1;
9747 return apos > bpos;
9748 }
9749
9750
9751 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9752 order as their linked sections. Returns false if this could not be done
9753 because an output section includes both ordered and unordered
9754 sections. Ideally we'd do this in the linker proper. */
9755
9756 static bfd_boolean
9757 elf_fixup_link_order (bfd *abfd, asection *o)
9758 {
9759 int seen_linkorder;
9760 int seen_other;
9761 int n;
9762 struct bfd_link_order *p;
9763 bfd *sub;
9764 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9765 unsigned elfsec;
9766 struct bfd_link_order **sections;
9767 asection *s, *other_sec, *linkorder_sec;
9768 bfd_vma offset;
9769
9770 other_sec = NULL;
9771 linkorder_sec = NULL;
9772 seen_other = 0;
9773 seen_linkorder = 0;
9774 for (p = o->map_head.link_order; p != NULL; p = p->next)
9775 {
9776 if (p->type == bfd_indirect_link_order)
9777 {
9778 s = p->u.indirect.section;
9779 sub = s->owner;
9780 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9781 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9782 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9783 && elfsec < elf_numsections (sub)
9784 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9785 {
9786 seen_linkorder++;
9787 linkorder_sec = s;
9788 }
9789 else
9790 {
9791 seen_other++;
9792 other_sec = s;
9793 }
9794 }
9795 else
9796 seen_other++;
9797
9798 if (seen_other && seen_linkorder)
9799 {
9800 if (other_sec && linkorder_sec)
9801 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9802 o, linkorder_sec,
9803 linkorder_sec->owner, other_sec,
9804 other_sec->owner);
9805 else
9806 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9807 o);
9808 bfd_set_error (bfd_error_bad_value);
9809 return FALSE;
9810 }
9811 }
9812
9813 if (!seen_linkorder)
9814 return TRUE;
9815
9816 sections = (struct bfd_link_order **)
9817 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9818 if (sections == NULL)
9819 return FALSE;
9820 seen_linkorder = 0;
9821
9822 for (p = o->map_head.link_order; p != NULL; p = p->next)
9823 {
9824 sections[seen_linkorder++] = p;
9825 }
9826 /* Sort the input sections in the order of their linked section. */
9827 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9828 compare_link_order);
9829
9830 /* Change the offsets of the sections. */
9831 offset = 0;
9832 for (n = 0; n < seen_linkorder; n++)
9833 {
9834 s = sections[n]->u.indirect.section;
9835 offset &= ~(bfd_vma) 0 << s->alignment_power;
9836 s->output_offset = offset;
9837 sections[n]->offset = offset;
9838 offset += sections[n]->size;
9839 }
9840
9841 return TRUE;
9842 }
9843
9844
9845 /* Do the final step of an ELF link. */
9846
9847 bfd_boolean
9848 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9849 {
9850 bfd_boolean dynamic;
9851 bfd_boolean emit_relocs;
9852 bfd *dynobj;
9853 struct elf_final_link_info finfo;
9854 register asection *o;
9855 register struct bfd_link_order *p;
9856 register bfd *sub;
9857 bfd_size_type max_contents_size;
9858 bfd_size_type max_external_reloc_size;
9859 bfd_size_type max_internal_reloc_count;
9860 bfd_size_type max_sym_count;
9861 bfd_size_type max_sym_shndx_count;
9862 file_ptr off;
9863 Elf_Internal_Sym elfsym;
9864 unsigned int i;
9865 Elf_Internal_Shdr *symtab_hdr;
9866 Elf_Internal_Shdr *symtab_shndx_hdr;
9867 Elf_Internal_Shdr *symstrtab_hdr;
9868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9869 struct elf_outext_info eoinfo;
9870 bfd_boolean merged;
9871 size_t relativecount = 0;
9872 asection *reldyn = 0;
9873 bfd_size_type amt;
9874 asection *attr_section = NULL;
9875 bfd_vma attr_size = 0;
9876 const char *std_attrs_section;
9877
9878 if (! is_elf_hash_table (info->hash))
9879 return FALSE;
9880
9881 if (info->shared)
9882 abfd->flags |= DYNAMIC;
9883
9884 dynamic = elf_hash_table (info)->dynamic_sections_created;
9885 dynobj = elf_hash_table (info)->dynobj;
9886
9887 emit_relocs = (info->relocatable
9888 || info->emitrelocations);
9889
9890 finfo.info = info;
9891 finfo.output_bfd = abfd;
9892 finfo.symstrtab = _bfd_elf_stringtab_init ();
9893 if (finfo.symstrtab == NULL)
9894 return FALSE;
9895
9896 if (! dynamic)
9897 {
9898 finfo.dynsym_sec = NULL;
9899 finfo.hash_sec = NULL;
9900 finfo.symver_sec = NULL;
9901 }
9902 else
9903 {
9904 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9905 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9906 BFD_ASSERT (finfo.dynsym_sec != NULL);
9907 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9908 /* Note that it is OK if symver_sec is NULL. */
9909 }
9910
9911 finfo.contents = NULL;
9912 finfo.external_relocs = NULL;
9913 finfo.internal_relocs = NULL;
9914 finfo.external_syms = NULL;
9915 finfo.locsym_shndx = NULL;
9916 finfo.internal_syms = NULL;
9917 finfo.indices = NULL;
9918 finfo.sections = NULL;
9919 finfo.symbuf = NULL;
9920 finfo.symshndxbuf = NULL;
9921 finfo.symbuf_count = 0;
9922 finfo.shndxbuf_size = 0;
9923
9924 /* The object attributes have been merged. Remove the input
9925 sections from the link, and set the contents of the output
9926 secton. */
9927 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9928 for (o = abfd->sections; o != NULL; o = o->next)
9929 {
9930 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9931 || strcmp (o->name, ".gnu.attributes") == 0)
9932 {
9933 for (p = o->map_head.link_order; p != NULL; p = p->next)
9934 {
9935 asection *input_section;
9936
9937 if (p->type != bfd_indirect_link_order)
9938 continue;
9939 input_section = p->u.indirect.section;
9940 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9941 elf_link_input_bfd ignores this section. */
9942 input_section->flags &= ~SEC_HAS_CONTENTS;
9943 }
9944
9945 attr_size = bfd_elf_obj_attr_size (abfd);
9946 if (attr_size)
9947 {
9948 bfd_set_section_size (abfd, o, attr_size);
9949 attr_section = o;
9950 /* Skip this section later on. */
9951 o->map_head.link_order = NULL;
9952 }
9953 else
9954 o->flags |= SEC_EXCLUDE;
9955 }
9956 }
9957
9958 /* Count up the number of relocations we will output for each output
9959 section, so that we know the sizes of the reloc sections. We
9960 also figure out some maximum sizes. */
9961 max_contents_size = 0;
9962 max_external_reloc_size = 0;
9963 max_internal_reloc_count = 0;
9964 max_sym_count = 0;
9965 max_sym_shndx_count = 0;
9966 merged = FALSE;
9967 for (o = abfd->sections; o != NULL; o = o->next)
9968 {
9969 struct bfd_elf_section_data *esdo = elf_section_data (o);
9970 o->reloc_count = 0;
9971
9972 for (p = o->map_head.link_order; p != NULL; p = p->next)
9973 {
9974 unsigned int reloc_count = 0;
9975 struct bfd_elf_section_data *esdi = NULL;
9976 unsigned int *rel_count1;
9977
9978 if (p->type == bfd_section_reloc_link_order
9979 || p->type == bfd_symbol_reloc_link_order)
9980 reloc_count = 1;
9981 else if (p->type == bfd_indirect_link_order)
9982 {
9983 asection *sec;
9984
9985 sec = p->u.indirect.section;
9986 esdi = elf_section_data (sec);
9987
9988 /* Mark all sections which are to be included in the
9989 link. This will normally be every section. We need
9990 to do this so that we can identify any sections which
9991 the linker has decided to not include. */
9992 sec->linker_mark = TRUE;
9993
9994 if (sec->flags & SEC_MERGE)
9995 merged = TRUE;
9996
9997 if (info->relocatable || info->emitrelocations)
9998 reloc_count = sec->reloc_count;
9999 else if (bed->elf_backend_count_relocs)
10000 {
10001 Elf_Internal_Rela * relocs;
10002
10003 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10004 NULL, NULL,
10005 info->keep_memory);
10006
10007 if (relocs != NULL)
10008 {
10009 reloc_count
10010 = (*bed->elf_backend_count_relocs) (sec, relocs);
10011
10012 if (elf_section_data (sec)->relocs != relocs)
10013 free (relocs);
10014 }
10015 }
10016
10017 if (sec->rawsize > max_contents_size)
10018 max_contents_size = sec->rawsize;
10019 if (sec->size > max_contents_size)
10020 max_contents_size = sec->size;
10021
10022 /* We are interested in just local symbols, not all
10023 symbols. */
10024 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10025 && (sec->owner->flags & DYNAMIC) == 0)
10026 {
10027 size_t sym_count;
10028
10029 if (elf_bad_symtab (sec->owner))
10030 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10031 / bed->s->sizeof_sym);
10032 else
10033 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10034
10035 if (sym_count > max_sym_count)
10036 max_sym_count = sym_count;
10037
10038 if (sym_count > max_sym_shndx_count
10039 && elf_symtab_shndx (sec->owner) != 0)
10040 max_sym_shndx_count = sym_count;
10041
10042 if ((sec->flags & SEC_RELOC) != 0)
10043 {
10044 size_t ext_size;
10045
10046 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10047 if (ext_size > max_external_reloc_size)
10048 max_external_reloc_size = ext_size;
10049 if (sec->reloc_count > max_internal_reloc_count)
10050 max_internal_reloc_count = sec->reloc_count;
10051 }
10052 }
10053 }
10054
10055 if (reloc_count == 0)
10056 continue;
10057
10058 o->reloc_count += reloc_count;
10059
10060 /* MIPS may have a mix of REL and RELA relocs on sections.
10061 To support this curious ABI we keep reloc counts in
10062 elf_section_data too. We must be careful to add the
10063 relocations from the input section to the right output
10064 count. FIXME: Get rid of one count. We have
10065 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10066 rel_count1 = &esdo->rel_count;
10067 if (esdi != NULL)
10068 {
10069 bfd_boolean same_size;
10070 bfd_size_type entsize1;
10071
10072 entsize1 = esdi->rel_hdr.sh_entsize;
10073 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10074 || entsize1 == bed->s->sizeof_rela);
10075 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10076
10077 if (!same_size)
10078 rel_count1 = &esdo->rel_count2;
10079
10080 if (esdi->rel_hdr2 != NULL)
10081 {
10082 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10083 unsigned int alt_count;
10084 unsigned int *rel_count2;
10085
10086 BFD_ASSERT (entsize2 != entsize1
10087 && (entsize2 == bed->s->sizeof_rel
10088 || entsize2 == bed->s->sizeof_rela));
10089
10090 rel_count2 = &esdo->rel_count2;
10091 if (!same_size)
10092 rel_count2 = &esdo->rel_count;
10093
10094 /* The following is probably too simplistic if the
10095 backend counts output relocs unusually. */
10096 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10097 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10098 *rel_count2 += alt_count;
10099 reloc_count -= alt_count;
10100 }
10101 }
10102 *rel_count1 += reloc_count;
10103 }
10104
10105 if (o->reloc_count > 0)
10106 o->flags |= SEC_RELOC;
10107 else
10108 {
10109 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10110 set it (this is probably a bug) and if it is set
10111 assign_section_numbers will create a reloc section. */
10112 o->flags &=~ SEC_RELOC;
10113 }
10114
10115 /* If the SEC_ALLOC flag is not set, force the section VMA to
10116 zero. This is done in elf_fake_sections as well, but forcing
10117 the VMA to 0 here will ensure that relocs against these
10118 sections are handled correctly. */
10119 if ((o->flags & SEC_ALLOC) == 0
10120 && ! o->user_set_vma)
10121 o->vma = 0;
10122 }
10123
10124 if (! info->relocatable && merged)
10125 elf_link_hash_traverse (elf_hash_table (info),
10126 _bfd_elf_link_sec_merge_syms, abfd);
10127
10128 /* Figure out the file positions for everything but the symbol table
10129 and the relocs. We set symcount to force assign_section_numbers
10130 to create a symbol table. */
10131 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10132 BFD_ASSERT (! abfd->output_has_begun);
10133 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10134 goto error_return;
10135
10136 /* Set sizes, and assign file positions for reloc sections. */
10137 for (o = abfd->sections; o != NULL; o = o->next)
10138 {
10139 if ((o->flags & SEC_RELOC) != 0)
10140 {
10141 if (!(_bfd_elf_link_size_reloc_section
10142 (abfd, &elf_section_data (o)->rel_hdr, o)))
10143 goto error_return;
10144
10145 if (elf_section_data (o)->rel_hdr2
10146 && !(_bfd_elf_link_size_reloc_section
10147 (abfd, elf_section_data (o)->rel_hdr2, o)))
10148 goto error_return;
10149 }
10150
10151 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10152 to count upwards while actually outputting the relocations. */
10153 elf_section_data (o)->rel_count = 0;
10154 elf_section_data (o)->rel_count2 = 0;
10155 }
10156
10157 _bfd_elf_assign_file_positions_for_relocs (abfd);
10158
10159 /* We have now assigned file positions for all the sections except
10160 .symtab and .strtab. We start the .symtab section at the current
10161 file position, and write directly to it. We build the .strtab
10162 section in memory. */
10163 bfd_get_symcount (abfd) = 0;
10164 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10165 /* sh_name is set in prep_headers. */
10166 symtab_hdr->sh_type = SHT_SYMTAB;
10167 /* sh_flags, sh_addr and sh_size all start off zero. */
10168 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10169 /* sh_link is set in assign_section_numbers. */
10170 /* sh_info is set below. */
10171 /* sh_offset is set just below. */
10172 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10173
10174 off = elf_tdata (abfd)->next_file_pos;
10175 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10176
10177 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10178 incorrect. We do not yet know the size of the .symtab section.
10179 We correct next_file_pos below, after we do know the size. */
10180
10181 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10182 continuously seeking to the right position in the file. */
10183 if (! info->keep_memory || max_sym_count < 20)
10184 finfo.symbuf_size = 20;
10185 else
10186 finfo.symbuf_size = max_sym_count;
10187 amt = finfo.symbuf_size;
10188 amt *= bed->s->sizeof_sym;
10189 finfo.symbuf = bfd_malloc (amt);
10190 if (finfo.symbuf == NULL)
10191 goto error_return;
10192 if (elf_numsections (abfd) > SHN_LORESERVE)
10193 {
10194 /* Wild guess at number of output symbols. realloc'd as needed. */
10195 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10196 finfo.shndxbuf_size = amt;
10197 amt *= sizeof (Elf_External_Sym_Shndx);
10198 finfo.symshndxbuf = bfd_zmalloc (amt);
10199 if (finfo.symshndxbuf == NULL)
10200 goto error_return;
10201 }
10202
10203 /* Start writing out the symbol table. The first symbol is always a
10204 dummy symbol. */
10205 if (info->strip != strip_all
10206 || emit_relocs)
10207 {
10208 elfsym.st_value = 0;
10209 elfsym.st_size = 0;
10210 elfsym.st_info = 0;
10211 elfsym.st_other = 0;
10212 elfsym.st_shndx = SHN_UNDEF;
10213 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10214 NULL))
10215 goto error_return;
10216 }
10217
10218 /* Output a symbol for each section. We output these even if we are
10219 discarding local symbols, since they are used for relocs. These
10220 symbols have no names. We store the index of each one in the
10221 index field of the section, so that we can find it again when
10222 outputting relocs. */
10223 if (info->strip != strip_all
10224 || emit_relocs)
10225 {
10226 elfsym.st_size = 0;
10227 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10228 elfsym.st_other = 0;
10229 elfsym.st_value = 0;
10230 for (i = 1; i < elf_numsections (abfd); i++)
10231 {
10232 o = bfd_section_from_elf_index (abfd, i);
10233 if (o != NULL)
10234 {
10235 o->target_index = bfd_get_symcount (abfd);
10236 elfsym.st_shndx = i;
10237 if (!info->relocatable)
10238 elfsym.st_value = o->vma;
10239 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10240 goto error_return;
10241 }
10242 if (i == SHN_LORESERVE - 1)
10243 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10244 }
10245 }
10246
10247 /* Allocate some memory to hold information read in from the input
10248 files. */
10249 if (max_contents_size != 0)
10250 {
10251 finfo.contents = bfd_malloc (max_contents_size);
10252 if (finfo.contents == NULL)
10253 goto error_return;
10254 }
10255
10256 if (max_external_reloc_size != 0)
10257 {
10258 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10259 if (finfo.external_relocs == NULL)
10260 goto error_return;
10261 }
10262
10263 if (max_internal_reloc_count != 0)
10264 {
10265 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10266 amt *= sizeof (Elf_Internal_Rela);
10267 finfo.internal_relocs = bfd_malloc (amt);
10268 if (finfo.internal_relocs == NULL)
10269 goto error_return;
10270 }
10271
10272 if (max_sym_count != 0)
10273 {
10274 amt = max_sym_count * bed->s->sizeof_sym;
10275 finfo.external_syms = bfd_malloc (amt);
10276 if (finfo.external_syms == NULL)
10277 goto error_return;
10278
10279 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10280 finfo.internal_syms = bfd_malloc (amt);
10281 if (finfo.internal_syms == NULL)
10282 goto error_return;
10283
10284 amt = max_sym_count * sizeof (long);
10285 finfo.indices = bfd_malloc (amt);
10286 if (finfo.indices == NULL)
10287 goto error_return;
10288
10289 amt = max_sym_count * sizeof (asection *);
10290 finfo.sections = bfd_malloc (amt);
10291 if (finfo.sections == NULL)
10292 goto error_return;
10293 }
10294
10295 if (max_sym_shndx_count != 0)
10296 {
10297 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10298 finfo.locsym_shndx = bfd_malloc (amt);
10299 if (finfo.locsym_shndx == NULL)
10300 goto error_return;
10301 }
10302
10303 if (elf_hash_table (info)->tls_sec)
10304 {
10305 bfd_vma base, end = 0;
10306 asection *sec;
10307
10308 for (sec = elf_hash_table (info)->tls_sec;
10309 sec && (sec->flags & SEC_THREAD_LOCAL);
10310 sec = sec->next)
10311 {
10312 bfd_size_type size = sec->size;
10313
10314 if (size == 0
10315 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10316 {
10317 struct bfd_link_order *o = sec->map_tail.link_order;
10318 if (o != NULL)
10319 size = o->offset + o->size;
10320 }
10321 end = sec->vma + size;
10322 }
10323 base = elf_hash_table (info)->tls_sec->vma;
10324 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10325 elf_hash_table (info)->tls_size = end - base;
10326 }
10327
10328 /* Reorder SHF_LINK_ORDER sections. */
10329 for (o = abfd->sections; o != NULL; o = o->next)
10330 {
10331 if (!elf_fixup_link_order (abfd, o))
10332 return FALSE;
10333 }
10334
10335 /* Since ELF permits relocations to be against local symbols, we
10336 must have the local symbols available when we do the relocations.
10337 Since we would rather only read the local symbols once, and we
10338 would rather not keep them in memory, we handle all the
10339 relocations for a single input file at the same time.
10340
10341 Unfortunately, there is no way to know the total number of local
10342 symbols until we have seen all of them, and the local symbol
10343 indices precede the global symbol indices. This means that when
10344 we are generating relocatable output, and we see a reloc against
10345 a global symbol, we can not know the symbol index until we have
10346 finished examining all the local symbols to see which ones we are
10347 going to output. To deal with this, we keep the relocations in
10348 memory, and don't output them until the end of the link. This is
10349 an unfortunate waste of memory, but I don't see a good way around
10350 it. Fortunately, it only happens when performing a relocatable
10351 link, which is not the common case. FIXME: If keep_memory is set
10352 we could write the relocs out and then read them again; I don't
10353 know how bad the memory loss will be. */
10354
10355 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10356 sub->output_has_begun = FALSE;
10357 for (o = abfd->sections; o != NULL; o = o->next)
10358 {
10359 for (p = o->map_head.link_order; p != NULL; p = p->next)
10360 {
10361 if (p->type == bfd_indirect_link_order
10362 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10363 == bfd_target_elf_flavour)
10364 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10365 {
10366 if (! sub->output_has_begun)
10367 {
10368 if (! elf_link_input_bfd (&finfo, sub))
10369 goto error_return;
10370 sub->output_has_begun = TRUE;
10371 }
10372 }
10373 else if (p->type == bfd_section_reloc_link_order
10374 || p->type == bfd_symbol_reloc_link_order)
10375 {
10376 if (! elf_reloc_link_order (abfd, info, o, p))
10377 goto error_return;
10378 }
10379 else
10380 {
10381 if (! _bfd_default_link_order (abfd, info, o, p))
10382 goto error_return;
10383 }
10384 }
10385 }
10386
10387 /* Free symbol buffer if needed. */
10388 if (!info->reduce_memory_overheads)
10389 {
10390 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10391 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10392 && elf_tdata (sub)->symbuf)
10393 {
10394 free (elf_tdata (sub)->symbuf);
10395 elf_tdata (sub)->symbuf = NULL;
10396 }
10397 }
10398
10399 /* Output any global symbols that got converted to local in a
10400 version script or due to symbol visibility. We do this in a
10401 separate step since ELF requires all local symbols to appear
10402 prior to any global symbols. FIXME: We should only do this if
10403 some global symbols were, in fact, converted to become local.
10404 FIXME: Will this work correctly with the Irix 5 linker? */
10405 eoinfo.failed = FALSE;
10406 eoinfo.finfo = &finfo;
10407 eoinfo.localsyms = TRUE;
10408 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10409 &eoinfo);
10410 if (eoinfo.failed)
10411 return FALSE;
10412
10413 /* If backend needs to output some local symbols not present in the hash
10414 table, do it now. */
10415 if (bed->elf_backend_output_arch_local_syms)
10416 {
10417 typedef bfd_boolean (*out_sym_func)
10418 (void *, const char *, Elf_Internal_Sym *, asection *,
10419 struct elf_link_hash_entry *);
10420
10421 if (! ((*bed->elf_backend_output_arch_local_syms)
10422 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10423 return FALSE;
10424 }
10425
10426 /* That wrote out all the local symbols. Finish up the symbol table
10427 with the global symbols. Even if we want to strip everything we
10428 can, we still need to deal with those global symbols that got
10429 converted to local in a version script. */
10430
10431 /* The sh_info field records the index of the first non local symbol. */
10432 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10433
10434 if (dynamic
10435 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10436 {
10437 Elf_Internal_Sym sym;
10438 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10439 long last_local = 0;
10440
10441 /* Write out the section symbols for the output sections. */
10442 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10443 {
10444 asection *s;
10445
10446 sym.st_size = 0;
10447 sym.st_name = 0;
10448 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10449 sym.st_other = 0;
10450
10451 for (s = abfd->sections; s != NULL; s = s->next)
10452 {
10453 int indx;
10454 bfd_byte *dest;
10455 long dynindx;
10456
10457 dynindx = elf_section_data (s)->dynindx;
10458 if (dynindx <= 0)
10459 continue;
10460 indx = elf_section_data (s)->this_idx;
10461 BFD_ASSERT (indx > 0);
10462 sym.st_shndx = indx;
10463 if (! check_dynsym (abfd, &sym))
10464 return FALSE;
10465 sym.st_value = s->vma;
10466 dest = dynsym + dynindx * bed->s->sizeof_sym;
10467 if (last_local < dynindx)
10468 last_local = dynindx;
10469 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10470 }
10471 }
10472
10473 /* Write out the local dynsyms. */
10474 if (elf_hash_table (info)->dynlocal)
10475 {
10476 struct elf_link_local_dynamic_entry *e;
10477 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10478 {
10479 asection *s;
10480 bfd_byte *dest;
10481
10482 sym.st_size = e->isym.st_size;
10483 sym.st_other = e->isym.st_other;
10484
10485 /* Copy the internal symbol as is.
10486 Note that we saved a word of storage and overwrote
10487 the original st_name with the dynstr_index. */
10488 sym = e->isym;
10489
10490 if (e->isym.st_shndx != SHN_UNDEF
10491 && (e->isym.st_shndx < SHN_LORESERVE
10492 || e->isym.st_shndx > SHN_HIRESERVE))
10493 {
10494 s = bfd_section_from_elf_index (e->input_bfd,
10495 e->isym.st_shndx);
10496
10497 sym.st_shndx =
10498 elf_section_data (s->output_section)->this_idx;
10499 if (! check_dynsym (abfd, &sym))
10500 return FALSE;
10501 sym.st_value = (s->output_section->vma
10502 + s->output_offset
10503 + e->isym.st_value);
10504 }
10505
10506 if (last_local < e->dynindx)
10507 last_local = e->dynindx;
10508
10509 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10510 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10511 }
10512 }
10513
10514 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10515 last_local + 1;
10516 }
10517
10518 /* We get the global symbols from the hash table. */
10519 eoinfo.failed = FALSE;
10520 eoinfo.localsyms = FALSE;
10521 eoinfo.finfo = &finfo;
10522 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10523 &eoinfo);
10524 if (eoinfo.failed)
10525 return FALSE;
10526
10527 /* If backend needs to output some symbols not present in the hash
10528 table, do it now. */
10529 if (bed->elf_backend_output_arch_syms)
10530 {
10531 typedef bfd_boolean (*out_sym_func)
10532 (void *, const char *, Elf_Internal_Sym *, asection *,
10533 struct elf_link_hash_entry *);
10534
10535 if (! ((*bed->elf_backend_output_arch_syms)
10536 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10537 return FALSE;
10538 }
10539
10540 /* Flush all symbols to the file. */
10541 if (! elf_link_flush_output_syms (&finfo, bed))
10542 return FALSE;
10543
10544 /* Now we know the size of the symtab section. */
10545 off += symtab_hdr->sh_size;
10546
10547 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10548 if (symtab_shndx_hdr->sh_name != 0)
10549 {
10550 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10551 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10552 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10553 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10554 symtab_shndx_hdr->sh_size = amt;
10555
10556 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10557 off, TRUE);
10558
10559 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10560 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10561 return FALSE;
10562 }
10563
10564
10565 /* Finish up and write out the symbol string table (.strtab)
10566 section. */
10567 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10568 /* sh_name was set in prep_headers. */
10569 symstrtab_hdr->sh_type = SHT_STRTAB;
10570 symstrtab_hdr->sh_flags = 0;
10571 symstrtab_hdr->sh_addr = 0;
10572 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10573 symstrtab_hdr->sh_entsize = 0;
10574 symstrtab_hdr->sh_link = 0;
10575 symstrtab_hdr->sh_info = 0;
10576 /* sh_offset is set just below. */
10577 symstrtab_hdr->sh_addralign = 1;
10578
10579 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10580 elf_tdata (abfd)->next_file_pos = off;
10581
10582 if (bfd_get_symcount (abfd) > 0)
10583 {
10584 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10585 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10586 return FALSE;
10587 }
10588
10589 /* Adjust the relocs to have the correct symbol indices. */
10590 for (o = abfd->sections; o != NULL; o = o->next)
10591 {
10592 if ((o->flags & SEC_RELOC) == 0)
10593 continue;
10594
10595 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10596 elf_section_data (o)->rel_count,
10597 elf_section_data (o)->rel_hashes);
10598 if (elf_section_data (o)->rel_hdr2 != NULL)
10599 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10600 elf_section_data (o)->rel_count2,
10601 (elf_section_data (o)->rel_hashes
10602 + elf_section_data (o)->rel_count));
10603
10604 /* Set the reloc_count field to 0 to prevent write_relocs from
10605 trying to swap the relocs out itself. */
10606 o->reloc_count = 0;
10607 }
10608
10609 if (dynamic && info->combreloc && dynobj != NULL)
10610 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10611
10612 /* If we are linking against a dynamic object, or generating a
10613 shared library, finish up the dynamic linking information. */
10614 if (dynamic)
10615 {
10616 bfd_byte *dyncon, *dynconend;
10617
10618 /* Fix up .dynamic entries. */
10619 o = bfd_get_section_by_name (dynobj, ".dynamic");
10620 BFD_ASSERT (o != NULL);
10621
10622 dyncon = o->contents;
10623 dynconend = o->contents + o->size;
10624 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10625 {
10626 Elf_Internal_Dyn dyn;
10627 const char *name;
10628 unsigned int type;
10629
10630 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10631
10632 switch (dyn.d_tag)
10633 {
10634 default:
10635 continue;
10636 case DT_NULL:
10637 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10638 {
10639 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10640 {
10641 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10642 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10643 default: continue;
10644 }
10645 dyn.d_un.d_val = relativecount;
10646 relativecount = 0;
10647 break;
10648 }
10649 continue;
10650
10651 case DT_INIT:
10652 name = info->init_function;
10653 goto get_sym;
10654 case DT_FINI:
10655 name = info->fini_function;
10656 get_sym:
10657 {
10658 struct elf_link_hash_entry *h;
10659
10660 h = elf_link_hash_lookup (elf_hash_table (info), name,
10661 FALSE, FALSE, TRUE);
10662 if (h != NULL
10663 && (h->root.type == bfd_link_hash_defined
10664 || h->root.type == bfd_link_hash_defweak))
10665 {
10666 dyn.d_un.d_val = h->root.u.def.value;
10667 o = h->root.u.def.section;
10668 if (o->output_section != NULL)
10669 dyn.d_un.d_val += (o->output_section->vma
10670 + o->output_offset);
10671 else
10672 {
10673 /* The symbol is imported from another shared
10674 library and does not apply to this one. */
10675 dyn.d_un.d_val = 0;
10676 }
10677 break;
10678 }
10679 }
10680 continue;
10681
10682 case DT_PREINIT_ARRAYSZ:
10683 name = ".preinit_array";
10684 goto get_size;
10685 case DT_INIT_ARRAYSZ:
10686 name = ".init_array";
10687 goto get_size;
10688 case DT_FINI_ARRAYSZ:
10689 name = ".fini_array";
10690 get_size:
10691 o = bfd_get_section_by_name (abfd, name);
10692 if (o == NULL)
10693 {
10694 (*_bfd_error_handler)
10695 (_("%B: could not find output section %s"), abfd, name);
10696 goto error_return;
10697 }
10698 if (o->size == 0)
10699 (*_bfd_error_handler)
10700 (_("warning: %s section has zero size"), name);
10701 dyn.d_un.d_val = o->size;
10702 break;
10703
10704 case DT_PREINIT_ARRAY:
10705 name = ".preinit_array";
10706 goto get_vma;
10707 case DT_INIT_ARRAY:
10708 name = ".init_array";
10709 goto get_vma;
10710 case DT_FINI_ARRAY:
10711 name = ".fini_array";
10712 goto get_vma;
10713
10714 case DT_HASH:
10715 name = ".hash";
10716 goto get_vma;
10717 case DT_GNU_HASH:
10718 name = ".gnu.hash";
10719 goto get_vma;
10720 case DT_STRTAB:
10721 name = ".dynstr";
10722 goto get_vma;
10723 case DT_SYMTAB:
10724 name = ".dynsym";
10725 goto get_vma;
10726 case DT_VERDEF:
10727 name = ".gnu.version_d";
10728 goto get_vma;
10729 case DT_VERNEED:
10730 name = ".gnu.version_r";
10731 goto get_vma;
10732 case DT_VERSYM:
10733 name = ".gnu.version";
10734 get_vma:
10735 o = bfd_get_section_by_name (abfd, name);
10736 if (o == NULL)
10737 {
10738 (*_bfd_error_handler)
10739 (_("%B: could not find output section %s"), abfd, name);
10740 goto error_return;
10741 }
10742 dyn.d_un.d_ptr = o->vma;
10743 break;
10744
10745 case DT_REL:
10746 case DT_RELA:
10747 case DT_RELSZ:
10748 case DT_RELASZ:
10749 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10750 type = SHT_REL;
10751 else
10752 type = SHT_RELA;
10753 dyn.d_un.d_val = 0;
10754 for (i = 1; i < elf_numsections (abfd); i++)
10755 {
10756 Elf_Internal_Shdr *hdr;
10757
10758 hdr = elf_elfsections (abfd)[i];
10759 if (hdr->sh_type == type
10760 && (hdr->sh_flags & SHF_ALLOC) != 0)
10761 {
10762 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10763 dyn.d_un.d_val += hdr->sh_size;
10764 else
10765 {
10766 if (dyn.d_un.d_val == 0
10767 || hdr->sh_addr < dyn.d_un.d_val)
10768 dyn.d_un.d_val = hdr->sh_addr;
10769 }
10770 }
10771 }
10772 break;
10773 }
10774 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10775 }
10776 }
10777
10778 /* If we have created any dynamic sections, then output them. */
10779 if (dynobj != NULL)
10780 {
10781 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10782 goto error_return;
10783
10784 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10785 if (info->warn_shared_textrel && info->shared)
10786 {
10787 bfd_byte *dyncon, *dynconend;
10788
10789 /* Fix up .dynamic entries. */
10790 o = bfd_get_section_by_name (dynobj, ".dynamic");
10791 BFD_ASSERT (o != NULL);
10792
10793 dyncon = o->contents;
10794 dynconend = o->contents + o->size;
10795 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10796 {
10797 Elf_Internal_Dyn dyn;
10798
10799 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10800
10801 if (dyn.d_tag == DT_TEXTREL)
10802 {
10803 info->callbacks->einfo
10804 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10805 break;
10806 }
10807 }
10808 }
10809
10810 for (o = dynobj->sections; o != NULL; o = o->next)
10811 {
10812 if ((o->flags & SEC_HAS_CONTENTS) == 0
10813 || o->size == 0
10814 || o->output_section == bfd_abs_section_ptr)
10815 continue;
10816 if ((o->flags & SEC_LINKER_CREATED) == 0)
10817 {
10818 /* At this point, we are only interested in sections
10819 created by _bfd_elf_link_create_dynamic_sections. */
10820 continue;
10821 }
10822 if (elf_hash_table (info)->stab_info.stabstr == o)
10823 continue;
10824 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10825 continue;
10826 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10827 != SHT_STRTAB)
10828 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10829 {
10830 if (! bfd_set_section_contents (abfd, o->output_section,
10831 o->contents,
10832 (file_ptr) o->output_offset,
10833 o->size))
10834 goto error_return;
10835 }
10836 else
10837 {
10838 /* The contents of the .dynstr section are actually in a
10839 stringtab. */
10840 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10841 if (bfd_seek (abfd, off, SEEK_SET) != 0
10842 || ! _bfd_elf_strtab_emit (abfd,
10843 elf_hash_table (info)->dynstr))
10844 goto error_return;
10845 }
10846 }
10847 }
10848
10849 if (info->relocatable)
10850 {
10851 bfd_boolean failed = FALSE;
10852
10853 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10854 if (failed)
10855 goto error_return;
10856 }
10857
10858 /* If we have optimized stabs strings, output them. */
10859 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10860 {
10861 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10862 goto error_return;
10863 }
10864
10865 if (info->eh_frame_hdr)
10866 {
10867 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10868 goto error_return;
10869 }
10870
10871 if (finfo.symstrtab != NULL)
10872 _bfd_stringtab_free (finfo.symstrtab);
10873 if (finfo.contents != NULL)
10874 free (finfo.contents);
10875 if (finfo.external_relocs != NULL)
10876 free (finfo.external_relocs);
10877 if (finfo.internal_relocs != NULL)
10878 free (finfo.internal_relocs);
10879 if (finfo.external_syms != NULL)
10880 free (finfo.external_syms);
10881 if (finfo.locsym_shndx != NULL)
10882 free (finfo.locsym_shndx);
10883 if (finfo.internal_syms != NULL)
10884 free (finfo.internal_syms);
10885 if (finfo.indices != NULL)
10886 free (finfo.indices);
10887 if (finfo.sections != NULL)
10888 free (finfo.sections);
10889 if (finfo.symbuf != NULL)
10890 free (finfo.symbuf);
10891 if (finfo.symshndxbuf != NULL)
10892 free (finfo.symshndxbuf);
10893 for (o = abfd->sections; o != NULL; o = o->next)
10894 {
10895 if ((o->flags & SEC_RELOC) != 0
10896 && elf_section_data (o)->rel_hashes != NULL)
10897 free (elf_section_data (o)->rel_hashes);
10898 }
10899
10900 elf_tdata (abfd)->linker = TRUE;
10901
10902 if (attr_section)
10903 {
10904 bfd_byte *contents = bfd_malloc (attr_size);
10905 if (contents == NULL)
10906 return FALSE; /* Bail out and fail. */
10907 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10908 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10909 free (contents);
10910 }
10911
10912 return TRUE;
10913
10914 error_return:
10915 if (finfo.symstrtab != NULL)
10916 _bfd_stringtab_free (finfo.symstrtab);
10917 if (finfo.contents != NULL)
10918 free (finfo.contents);
10919 if (finfo.external_relocs != NULL)
10920 free (finfo.external_relocs);
10921 if (finfo.internal_relocs != NULL)
10922 free (finfo.internal_relocs);
10923 if (finfo.external_syms != NULL)
10924 free (finfo.external_syms);
10925 if (finfo.locsym_shndx != NULL)
10926 free (finfo.locsym_shndx);
10927 if (finfo.internal_syms != NULL)
10928 free (finfo.internal_syms);
10929 if (finfo.indices != NULL)
10930 free (finfo.indices);
10931 if (finfo.sections != NULL)
10932 free (finfo.sections);
10933 if (finfo.symbuf != NULL)
10934 free (finfo.symbuf);
10935 if (finfo.symshndxbuf != NULL)
10936 free (finfo.symshndxbuf);
10937 for (o = abfd->sections; o != NULL; o = o->next)
10938 {
10939 if ((o->flags & SEC_RELOC) != 0
10940 && elf_section_data (o)->rel_hashes != NULL)
10941 free (elf_section_data (o)->rel_hashes);
10942 }
10943
10944 return FALSE;
10945 }
10946 \f
10947 /* Initialize COOKIE for input bfd ABFD. */
10948
10949 static bfd_boolean
10950 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10951 struct bfd_link_info *info, bfd *abfd)
10952 {
10953 Elf_Internal_Shdr *symtab_hdr;
10954 const struct elf_backend_data *bed;
10955
10956 bed = get_elf_backend_data (abfd);
10957 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10958
10959 cookie->abfd = abfd;
10960 cookie->sym_hashes = elf_sym_hashes (abfd);
10961 cookie->bad_symtab = elf_bad_symtab (abfd);
10962 if (cookie->bad_symtab)
10963 {
10964 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10965 cookie->extsymoff = 0;
10966 }
10967 else
10968 {
10969 cookie->locsymcount = symtab_hdr->sh_info;
10970 cookie->extsymoff = symtab_hdr->sh_info;
10971 }
10972
10973 if (bed->s->arch_size == 32)
10974 cookie->r_sym_shift = 8;
10975 else
10976 cookie->r_sym_shift = 32;
10977
10978 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10979 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10980 {
10981 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10982 cookie->locsymcount, 0,
10983 NULL, NULL, NULL);
10984 if (cookie->locsyms == NULL)
10985 {
10986 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10987 return FALSE;
10988 }
10989 if (info->keep_memory)
10990 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10991 }
10992 return TRUE;
10993 }
10994
10995 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10996
10997 static void
10998 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
10999 {
11000 Elf_Internal_Shdr *symtab_hdr;
11001
11002 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11003 if (cookie->locsyms != NULL
11004 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11005 free (cookie->locsyms);
11006 }
11007
11008 /* Initialize the relocation information in COOKIE for input section SEC
11009 of input bfd ABFD. */
11010
11011 static bfd_boolean
11012 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11013 struct bfd_link_info *info, bfd *abfd,
11014 asection *sec)
11015 {
11016 const struct elf_backend_data *bed;
11017
11018 if (sec->reloc_count == 0)
11019 {
11020 cookie->rels = NULL;
11021 cookie->relend = NULL;
11022 }
11023 else
11024 {
11025 bed = get_elf_backend_data (abfd);
11026
11027 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11028 info->keep_memory);
11029 if (cookie->rels == NULL)
11030 return FALSE;
11031 cookie->rel = cookie->rels;
11032 cookie->relend = (cookie->rels
11033 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11034 }
11035 cookie->rel = cookie->rels;
11036 return TRUE;
11037 }
11038
11039 /* Free the memory allocated by init_reloc_cookie_rels,
11040 if appropriate. */
11041
11042 static void
11043 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11044 asection *sec)
11045 {
11046 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11047 free (cookie->rels);
11048 }
11049
11050 /* Initialize the whole of COOKIE for input section SEC. */
11051
11052 static bfd_boolean
11053 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11054 struct bfd_link_info *info,
11055 asection *sec)
11056 {
11057 if (!init_reloc_cookie (cookie, info, sec->owner))
11058 goto error1;
11059 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11060 goto error2;
11061 return TRUE;
11062
11063 error2:
11064 fini_reloc_cookie (cookie, sec->owner);
11065 error1:
11066 return FALSE;
11067 }
11068
11069 /* Free the memory allocated by init_reloc_cookie_for_section,
11070 if appropriate. */
11071
11072 static void
11073 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11074 asection *sec)
11075 {
11076 fini_reloc_cookie_rels (cookie, sec);
11077 fini_reloc_cookie (cookie, sec->owner);
11078 }
11079 \f
11080 /* Garbage collect unused sections. */
11081
11082 /* Default gc_mark_hook. */
11083
11084 asection *
11085 _bfd_elf_gc_mark_hook (asection *sec,
11086 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11087 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11088 struct elf_link_hash_entry *h,
11089 Elf_Internal_Sym *sym)
11090 {
11091 if (h != NULL)
11092 {
11093 switch (h->root.type)
11094 {
11095 case bfd_link_hash_defined:
11096 case bfd_link_hash_defweak:
11097 return h->root.u.def.section;
11098
11099 case bfd_link_hash_common:
11100 return h->root.u.c.p->section;
11101
11102 default:
11103 break;
11104 }
11105 }
11106 else
11107 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11108
11109 return NULL;
11110 }
11111
11112 /* COOKIE->rel describes a relocation against section SEC, which is
11113 a section we've decided to keep. Return the section that contains
11114 the relocation symbol, or NULL if no section contains it. */
11115
11116 asection *
11117 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11118 elf_gc_mark_hook_fn gc_mark_hook,
11119 struct elf_reloc_cookie *cookie)
11120 {
11121 unsigned long r_symndx;
11122 struct elf_link_hash_entry *h;
11123
11124 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11125 if (r_symndx == 0)
11126 return NULL;
11127
11128 if (r_symndx >= cookie->locsymcount
11129 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11130 {
11131 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11132 while (h->root.type == bfd_link_hash_indirect
11133 || h->root.type == bfd_link_hash_warning)
11134 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11135 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11136 }
11137
11138 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11139 &cookie->locsyms[r_symndx]);
11140 }
11141
11142 /* COOKIE->rel describes a relocation against section SEC, which is
11143 a section we've decided to keep. Mark the section that contains
11144 the relocation symbol. */
11145
11146 bfd_boolean
11147 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11148 asection *sec,
11149 elf_gc_mark_hook_fn gc_mark_hook,
11150 struct elf_reloc_cookie *cookie)
11151 {
11152 asection *rsec;
11153
11154 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11155 if (rsec && !rsec->gc_mark)
11156 {
11157 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11158 rsec->gc_mark = 1;
11159 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11160 return FALSE;
11161 }
11162 return TRUE;
11163 }
11164
11165 /* The mark phase of garbage collection. For a given section, mark
11166 it and any sections in this section's group, and all the sections
11167 which define symbols to which it refers. */
11168
11169 bfd_boolean
11170 _bfd_elf_gc_mark (struct bfd_link_info *info,
11171 asection *sec,
11172 elf_gc_mark_hook_fn gc_mark_hook)
11173 {
11174 bfd_boolean ret;
11175 asection *group_sec, *eh_frame;
11176
11177 sec->gc_mark = 1;
11178
11179 /* Mark all the sections in the group. */
11180 group_sec = elf_section_data (sec)->next_in_group;
11181 if (group_sec && !group_sec->gc_mark)
11182 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11183 return FALSE;
11184
11185 /* Look through the section relocs. */
11186 ret = TRUE;
11187 eh_frame = elf_eh_frame_section (sec->owner);
11188 if ((sec->flags & SEC_RELOC) != 0
11189 && sec->reloc_count > 0
11190 && sec != eh_frame)
11191 {
11192 struct elf_reloc_cookie cookie;
11193
11194 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11195 ret = FALSE;
11196 else
11197 {
11198 for (; cookie.rel < cookie.relend; cookie.rel++)
11199 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11200 {
11201 ret = FALSE;
11202 break;
11203 }
11204 fini_reloc_cookie_for_section (&cookie, sec);
11205 }
11206 }
11207
11208 if (ret && eh_frame && elf_fde_list (sec))
11209 {
11210 struct elf_reloc_cookie cookie;
11211
11212 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11213 ret = FALSE;
11214 else
11215 {
11216 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11217 gc_mark_hook, &cookie))
11218 ret = FALSE;
11219 fini_reloc_cookie_for_section (&cookie, eh_frame);
11220 }
11221 }
11222
11223 return ret;
11224 }
11225
11226 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11227
11228 struct elf_gc_sweep_symbol_info
11229 {
11230 struct bfd_link_info *info;
11231 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11232 bfd_boolean);
11233 };
11234
11235 static bfd_boolean
11236 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11237 {
11238 if (h->root.type == bfd_link_hash_warning)
11239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11240
11241 if ((h->root.type == bfd_link_hash_defined
11242 || h->root.type == bfd_link_hash_defweak)
11243 && !h->root.u.def.section->gc_mark
11244 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11245 {
11246 struct elf_gc_sweep_symbol_info *inf = data;
11247 (*inf->hide_symbol) (inf->info, h, TRUE);
11248 }
11249
11250 return TRUE;
11251 }
11252
11253 /* The sweep phase of garbage collection. Remove all garbage sections. */
11254
11255 typedef bfd_boolean (*gc_sweep_hook_fn)
11256 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11257
11258 static bfd_boolean
11259 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11260 {
11261 bfd *sub;
11262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11263 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11264 unsigned long section_sym_count;
11265 struct elf_gc_sweep_symbol_info sweep_info;
11266
11267 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11268 {
11269 asection *o;
11270
11271 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11272 continue;
11273
11274 for (o = sub->sections; o != NULL; o = o->next)
11275 {
11276 /* Keep debug and special sections. */
11277 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11278 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11279 o->gc_mark = 1;
11280
11281 if (o->gc_mark)
11282 continue;
11283
11284 /* Skip sweeping sections already excluded. */
11285 if (o->flags & SEC_EXCLUDE)
11286 continue;
11287
11288 /* Since this is early in the link process, it is simple
11289 to remove a section from the output. */
11290 o->flags |= SEC_EXCLUDE;
11291
11292 if (info->print_gc_sections && o->size != 0)
11293 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11294
11295 /* But we also have to update some of the relocation
11296 info we collected before. */
11297 if (gc_sweep_hook
11298 && (o->flags & SEC_RELOC) != 0
11299 && o->reloc_count > 0
11300 && !bfd_is_abs_section (o->output_section))
11301 {
11302 Elf_Internal_Rela *internal_relocs;
11303 bfd_boolean r;
11304
11305 internal_relocs
11306 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11307 info->keep_memory);
11308 if (internal_relocs == NULL)
11309 return FALSE;
11310
11311 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11312
11313 if (elf_section_data (o)->relocs != internal_relocs)
11314 free (internal_relocs);
11315
11316 if (!r)
11317 return FALSE;
11318 }
11319 }
11320 }
11321
11322 /* Remove the symbols that were in the swept sections from the dynamic
11323 symbol table. GCFIXME: Anyone know how to get them out of the
11324 static symbol table as well? */
11325 sweep_info.info = info;
11326 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11327 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11328 &sweep_info);
11329
11330 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11331 return TRUE;
11332 }
11333
11334 /* Propagate collected vtable information. This is called through
11335 elf_link_hash_traverse. */
11336
11337 static bfd_boolean
11338 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11339 {
11340 if (h->root.type == bfd_link_hash_warning)
11341 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11342
11343 /* Those that are not vtables. */
11344 if (h->vtable == NULL || h->vtable->parent == NULL)
11345 return TRUE;
11346
11347 /* Those vtables that do not have parents, we cannot merge. */
11348 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11349 return TRUE;
11350
11351 /* If we've already been done, exit. */
11352 if (h->vtable->used && h->vtable->used[-1])
11353 return TRUE;
11354
11355 /* Make sure the parent's table is up to date. */
11356 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11357
11358 if (h->vtable->used == NULL)
11359 {
11360 /* None of this table's entries were referenced. Re-use the
11361 parent's table. */
11362 h->vtable->used = h->vtable->parent->vtable->used;
11363 h->vtable->size = h->vtable->parent->vtable->size;
11364 }
11365 else
11366 {
11367 size_t n;
11368 bfd_boolean *cu, *pu;
11369
11370 /* Or the parent's entries into ours. */
11371 cu = h->vtable->used;
11372 cu[-1] = TRUE;
11373 pu = h->vtable->parent->vtable->used;
11374 if (pu != NULL)
11375 {
11376 const struct elf_backend_data *bed;
11377 unsigned int log_file_align;
11378
11379 bed = get_elf_backend_data (h->root.u.def.section->owner);
11380 log_file_align = bed->s->log_file_align;
11381 n = h->vtable->parent->vtable->size >> log_file_align;
11382 while (n--)
11383 {
11384 if (*pu)
11385 *cu = TRUE;
11386 pu++;
11387 cu++;
11388 }
11389 }
11390 }
11391
11392 return TRUE;
11393 }
11394
11395 static bfd_boolean
11396 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11397 {
11398 asection *sec;
11399 bfd_vma hstart, hend;
11400 Elf_Internal_Rela *relstart, *relend, *rel;
11401 const struct elf_backend_data *bed;
11402 unsigned int log_file_align;
11403
11404 if (h->root.type == bfd_link_hash_warning)
11405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11406
11407 /* Take care of both those symbols that do not describe vtables as
11408 well as those that are not loaded. */
11409 if (h->vtable == NULL || h->vtable->parent == NULL)
11410 return TRUE;
11411
11412 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11413 || h->root.type == bfd_link_hash_defweak);
11414
11415 sec = h->root.u.def.section;
11416 hstart = h->root.u.def.value;
11417 hend = hstart + h->size;
11418
11419 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11420 if (!relstart)
11421 return *(bfd_boolean *) okp = FALSE;
11422 bed = get_elf_backend_data (sec->owner);
11423 log_file_align = bed->s->log_file_align;
11424
11425 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11426
11427 for (rel = relstart; rel < relend; ++rel)
11428 if (rel->r_offset >= hstart && rel->r_offset < hend)
11429 {
11430 /* If the entry is in use, do nothing. */
11431 if (h->vtable->used
11432 && (rel->r_offset - hstart) < h->vtable->size)
11433 {
11434 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11435 if (h->vtable->used[entry])
11436 continue;
11437 }
11438 /* Otherwise, kill it. */
11439 rel->r_offset = rel->r_info = rel->r_addend = 0;
11440 }
11441
11442 return TRUE;
11443 }
11444
11445 /* Mark sections containing dynamically referenced symbols. When
11446 building shared libraries, we must assume that any visible symbol is
11447 referenced. */
11448
11449 bfd_boolean
11450 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11451 {
11452 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11453
11454 if (h->root.type == bfd_link_hash_warning)
11455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11456
11457 if ((h->root.type == bfd_link_hash_defined
11458 || h->root.type == bfd_link_hash_defweak)
11459 && (h->ref_dynamic
11460 || (!info->executable
11461 && h->def_regular
11462 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11463 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11464 h->root.u.def.section->flags |= SEC_KEEP;
11465
11466 return TRUE;
11467 }
11468
11469 /* Keep all sections containing symbols undefined on the command-line,
11470 and the section containing the entry symbol. */
11471
11472 void
11473 _bfd_elf_gc_keep (struct bfd_link_info *info)
11474 {
11475 struct bfd_sym_chain *sym;
11476
11477 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11478 {
11479 struct elf_link_hash_entry *h;
11480
11481 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11482 FALSE, FALSE, FALSE);
11483
11484 if (h != NULL
11485 && (h->root.type == bfd_link_hash_defined
11486 || h->root.type == bfd_link_hash_defweak)
11487 && !bfd_is_abs_section (h->root.u.def.section))
11488 h->root.u.def.section->flags |= SEC_KEEP;
11489 }
11490 }
11491
11492 /* Do mark and sweep of unused sections. */
11493
11494 bfd_boolean
11495 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11496 {
11497 bfd_boolean ok = TRUE;
11498 bfd *sub;
11499 elf_gc_mark_hook_fn gc_mark_hook;
11500 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11501
11502 if (!bed->can_gc_sections
11503 || !is_elf_hash_table (info->hash))
11504 {
11505 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11506 return TRUE;
11507 }
11508
11509 bed->gc_keep (info);
11510
11511 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11512 at the .eh_frame section if we can mark the FDEs individually. */
11513 _bfd_elf_begin_eh_frame_parsing (info);
11514 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11515 {
11516 asection *sec;
11517 struct elf_reloc_cookie cookie;
11518
11519 sec = bfd_get_section_by_name (sub, ".eh_frame");
11520 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11521 {
11522 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11523 if (elf_section_data (sec)->sec_info)
11524 elf_eh_frame_section (sub) = sec;
11525 fini_reloc_cookie_for_section (&cookie, sec);
11526 }
11527 }
11528 _bfd_elf_end_eh_frame_parsing (info);
11529
11530 /* Apply transitive closure to the vtable entry usage info. */
11531 elf_link_hash_traverse (elf_hash_table (info),
11532 elf_gc_propagate_vtable_entries_used,
11533 &ok);
11534 if (!ok)
11535 return FALSE;
11536
11537 /* Kill the vtable relocations that were not used. */
11538 elf_link_hash_traverse (elf_hash_table (info),
11539 elf_gc_smash_unused_vtentry_relocs,
11540 &ok);
11541 if (!ok)
11542 return FALSE;
11543
11544 /* Mark dynamically referenced symbols. */
11545 if (elf_hash_table (info)->dynamic_sections_created)
11546 elf_link_hash_traverse (elf_hash_table (info),
11547 bed->gc_mark_dynamic_ref,
11548 info);
11549
11550 /* Grovel through relocs to find out who stays ... */
11551 gc_mark_hook = bed->gc_mark_hook;
11552 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11553 {
11554 asection *o;
11555
11556 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11557 continue;
11558
11559 for (o = sub->sections; o != NULL; o = o->next)
11560 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11561 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11562 return FALSE;
11563 }
11564
11565 /* Allow the backend to mark additional target specific sections. */
11566 if (bed->gc_mark_extra_sections)
11567 bed->gc_mark_extra_sections (info, gc_mark_hook);
11568
11569 /* ... and mark SEC_EXCLUDE for those that go. */
11570 return elf_gc_sweep (abfd, info);
11571 }
11572 \f
11573 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11574
11575 bfd_boolean
11576 bfd_elf_gc_record_vtinherit (bfd *abfd,
11577 asection *sec,
11578 struct elf_link_hash_entry *h,
11579 bfd_vma offset)
11580 {
11581 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11582 struct elf_link_hash_entry **search, *child;
11583 bfd_size_type extsymcount;
11584 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11585
11586 /* The sh_info field of the symtab header tells us where the
11587 external symbols start. We don't care about the local symbols at
11588 this point. */
11589 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11590 if (!elf_bad_symtab (abfd))
11591 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11592
11593 sym_hashes = elf_sym_hashes (abfd);
11594 sym_hashes_end = sym_hashes + extsymcount;
11595
11596 /* Hunt down the child symbol, which is in this section at the same
11597 offset as the relocation. */
11598 for (search = sym_hashes; search != sym_hashes_end; ++search)
11599 {
11600 if ((child = *search) != NULL
11601 && (child->root.type == bfd_link_hash_defined
11602 || child->root.type == bfd_link_hash_defweak)
11603 && child->root.u.def.section == sec
11604 && child->root.u.def.value == offset)
11605 goto win;
11606 }
11607
11608 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11609 abfd, sec, (unsigned long) offset);
11610 bfd_set_error (bfd_error_invalid_operation);
11611 return FALSE;
11612
11613 win:
11614 if (!child->vtable)
11615 {
11616 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11617 if (!child->vtable)
11618 return FALSE;
11619 }
11620 if (!h)
11621 {
11622 /* This *should* only be the absolute section. It could potentially
11623 be that someone has defined a non-global vtable though, which
11624 would be bad. It isn't worth paging in the local symbols to be
11625 sure though; that case should simply be handled by the assembler. */
11626
11627 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11628 }
11629 else
11630 child->vtable->parent = h;
11631
11632 return TRUE;
11633 }
11634
11635 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11636
11637 bfd_boolean
11638 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11639 asection *sec ATTRIBUTE_UNUSED,
11640 struct elf_link_hash_entry *h,
11641 bfd_vma addend)
11642 {
11643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11644 unsigned int log_file_align = bed->s->log_file_align;
11645
11646 if (!h->vtable)
11647 {
11648 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11649 if (!h->vtable)
11650 return FALSE;
11651 }
11652
11653 if (addend >= h->vtable->size)
11654 {
11655 size_t size, bytes, file_align;
11656 bfd_boolean *ptr = h->vtable->used;
11657
11658 /* While the symbol is undefined, we have to be prepared to handle
11659 a zero size. */
11660 file_align = 1 << log_file_align;
11661 if (h->root.type == bfd_link_hash_undefined)
11662 size = addend + file_align;
11663 else
11664 {
11665 size = h->size;
11666 if (addend >= size)
11667 {
11668 /* Oops! We've got a reference past the defined end of
11669 the table. This is probably a bug -- shall we warn? */
11670 size = addend + file_align;
11671 }
11672 }
11673 size = (size + file_align - 1) & -file_align;
11674
11675 /* Allocate one extra entry for use as a "done" flag for the
11676 consolidation pass. */
11677 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11678
11679 if (ptr)
11680 {
11681 ptr = bfd_realloc (ptr - 1, bytes);
11682
11683 if (ptr != NULL)
11684 {
11685 size_t oldbytes;
11686
11687 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11688 * sizeof (bfd_boolean));
11689 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11690 }
11691 }
11692 else
11693 ptr = bfd_zmalloc (bytes);
11694
11695 if (ptr == NULL)
11696 return FALSE;
11697
11698 /* And arrange for that done flag to be at index -1. */
11699 h->vtable->used = ptr + 1;
11700 h->vtable->size = size;
11701 }
11702
11703 h->vtable->used[addend >> log_file_align] = TRUE;
11704
11705 return TRUE;
11706 }
11707
11708 struct alloc_got_off_arg {
11709 bfd_vma gotoff;
11710 unsigned int got_elt_size;
11711 };
11712
11713 /* We need a special top-level link routine to convert got reference counts
11714 to real got offsets. */
11715
11716 static bfd_boolean
11717 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11718 {
11719 struct alloc_got_off_arg *gofarg = arg;
11720
11721 if (h->root.type == bfd_link_hash_warning)
11722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11723
11724 if (h->got.refcount > 0)
11725 {
11726 h->got.offset = gofarg->gotoff;
11727 gofarg->gotoff += gofarg->got_elt_size;
11728 }
11729 else
11730 h->got.offset = (bfd_vma) -1;
11731
11732 return TRUE;
11733 }
11734
11735 /* And an accompanying bit to work out final got entry offsets once
11736 we're done. Should be called from final_link. */
11737
11738 bfd_boolean
11739 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11740 struct bfd_link_info *info)
11741 {
11742 bfd *i;
11743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11744 bfd_vma gotoff;
11745 unsigned int got_elt_size = bed->s->arch_size / 8;
11746 struct alloc_got_off_arg gofarg;
11747
11748 if (! is_elf_hash_table (info->hash))
11749 return FALSE;
11750
11751 /* The GOT offset is relative to the .got section, but the GOT header is
11752 put into the .got.plt section, if the backend uses it. */
11753 if (bed->want_got_plt)
11754 gotoff = 0;
11755 else
11756 gotoff = bed->got_header_size;
11757
11758 /* Do the local .got entries first. */
11759 for (i = info->input_bfds; i; i = i->link_next)
11760 {
11761 bfd_signed_vma *local_got;
11762 bfd_size_type j, locsymcount;
11763 Elf_Internal_Shdr *symtab_hdr;
11764
11765 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11766 continue;
11767
11768 local_got = elf_local_got_refcounts (i);
11769 if (!local_got)
11770 continue;
11771
11772 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11773 if (elf_bad_symtab (i))
11774 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11775 else
11776 locsymcount = symtab_hdr->sh_info;
11777
11778 for (j = 0; j < locsymcount; ++j)
11779 {
11780 if (local_got[j] > 0)
11781 {
11782 local_got[j] = gotoff;
11783 gotoff += got_elt_size;
11784 }
11785 else
11786 local_got[j] = (bfd_vma) -1;
11787 }
11788 }
11789
11790 /* Then the global .got entries. .plt refcounts are handled by
11791 adjust_dynamic_symbol */
11792 gofarg.gotoff = gotoff;
11793 gofarg.got_elt_size = got_elt_size;
11794 elf_link_hash_traverse (elf_hash_table (info),
11795 elf_gc_allocate_got_offsets,
11796 &gofarg);
11797 return TRUE;
11798 }
11799
11800 /* Many folk need no more in the way of final link than this, once
11801 got entry reference counting is enabled. */
11802
11803 bfd_boolean
11804 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11805 {
11806 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11807 return FALSE;
11808
11809 /* Invoke the regular ELF backend linker to do all the work. */
11810 return bfd_elf_final_link (abfd, info);
11811 }
11812
11813 bfd_boolean
11814 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11815 {
11816 struct elf_reloc_cookie *rcookie = cookie;
11817
11818 if (rcookie->bad_symtab)
11819 rcookie->rel = rcookie->rels;
11820
11821 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11822 {
11823 unsigned long r_symndx;
11824
11825 if (! rcookie->bad_symtab)
11826 if (rcookie->rel->r_offset > offset)
11827 return FALSE;
11828 if (rcookie->rel->r_offset != offset)
11829 continue;
11830
11831 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11832 if (r_symndx == SHN_UNDEF)
11833 return TRUE;
11834
11835 if (r_symndx >= rcookie->locsymcount
11836 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11837 {
11838 struct elf_link_hash_entry *h;
11839
11840 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11841
11842 while (h->root.type == bfd_link_hash_indirect
11843 || h->root.type == bfd_link_hash_warning)
11844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11845
11846 if ((h->root.type == bfd_link_hash_defined
11847 || h->root.type == bfd_link_hash_defweak)
11848 && elf_discarded_section (h->root.u.def.section))
11849 return TRUE;
11850 else
11851 return FALSE;
11852 }
11853 else
11854 {
11855 /* It's not a relocation against a global symbol,
11856 but it could be a relocation against a local
11857 symbol for a discarded section. */
11858 asection *isec;
11859 Elf_Internal_Sym *isym;
11860
11861 /* Need to: get the symbol; get the section. */
11862 isym = &rcookie->locsyms[r_symndx];
11863 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11864 {
11865 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11866 if (isec != NULL && elf_discarded_section (isec))
11867 return TRUE;
11868 }
11869 }
11870 return FALSE;
11871 }
11872 return FALSE;
11873 }
11874
11875 /* Discard unneeded references to discarded sections.
11876 Returns TRUE if any section's size was changed. */
11877 /* This function assumes that the relocations are in sorted order,
11878 which is true for all known assemblers. */
11879
11880 bfd_boolean
11881 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11882 {
11883 struct elf_reloc_cookie cookie;
11884 asection *stab, *eh;
11885 const struct elf_backend_data *bed;
11886 bfd *abfd;
11887 bfd_boolean ret = FALSE;
11888
11889 if (info->traditional_format
11890 || !is_elf_hash_table (info->hash))
11891 return FALSE;
11892
11893 _bfd_elf_begin_eh_frame_parsing (info);
11894 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11895 {
11896 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11897 continue;
11898
11899 bed = get_elf_backend_data (abfd);
11900
11901 if ((abfd->flags & DYNAMIC) != 0)
11902 continue;
11903
11904 eh = NULL;
11905 if (!info->relocatable)
11906 {
11907 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11908 if (eh != NULL
11909 && (eh->size == 0
11910 || bfd_is_abs_section (eh->output_section)))
11911 eh = NULL;
11912 }
11913
11914 stab = bfd_get_section_by_name (abfd, ".stab");
11915 if (stab != NULL
11916 && (stab->size == 0
11917 || bfd_is_abs_section (stab->output_section)
11918 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11919 stab = NULL;
11920
11921 if (stab == NULL
11922 && eh == NULL
11923 && bed->elf_backend_discard_info == NULL)
11924 continue;
11925
11926 if (!init_reloc_cookie (&cookie, info, abfd))
11927 return FALSE;
11928
11929 if (stab != NULL
11930 && stab->reloc_count > 0
11931 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11932 {
11933 if (_bfd_discard_section_stabs (abfd, stab,
11934 elf_section_data (stab)->sec_info,
11935 bfd_elf_reloc_symbol_deleted_p,
11936 &cookie))
11937 ret = TRUE;
11938 fini_reloc_cookie_rels (&cookie, stab);
11939 }
11940
11941 if (eh != NULL
11942 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11943 {
11944 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11945 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11946 bfd_elf_reloc_symbol_deleted_p,
11947 &cookie))
11948 ret = TRUE;
11949 fini_reloc_cookie_rels (&cookie, eh);
11950 }
11951
11952 if (bed->elf_backend_discard_info != NULL
11953 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11954 ret = TRUE;
11955
11956 fini_reloc_cookie (&cookie, abfd);
11957 }
11958 _bfd_elf_end_eh_frame_parsing (info);
11959
11960 if (info->eh_frame_hdr
11961 && !info->relocatable
11962 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11963 ret = TRUE;
11964
11965 return ret;
11966 }
11967
11968 void
11969 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11970 struct bfd_link_info *info)
11971 {
11972 flagword flags;
11973 const char *name, *p;
11974 struct bfd_section_already_linked *l;
11975 struct bfd_section_already_linked_hash_entry *already_linked_list;
11976
11977 if (sec->output_section == bfd_abs_section_ptr)
11978 return;
11979
11980 flags = sec->flags;
11981
11982 /* Return if it isn't a linkonce section. A comdat group section
11983 also has SEC_LINK_ONCE set. */
11984 if ((flags & SEC_LINK_ONCE) == 0)
11985 return;
11986
11987 /* Don't put group member sections on our list of already linked
11988 sections. They are handled as a group via their group section. */
11989 if (elf_sec_group (sec) != NULL)
11990 return;
11991
11992 /* FIXME: When doing a relocatable link, we may have trouble
11993 copying relocations in other sections that refer to local symbols
11994 in the section being discarded. Those relocations will have to
11995 be converted somehow; as of this writing I'm not sure that any of
11996 the backends handle that correctly.
11997
11998 It is tempting to instead not discard link once sections when
11999 doing a relocatable link (technically, they should be discarded
12000 whenever we are building constructors). However, that fails,
12001 because the linker winds up combining all the link once sections
12002 into a single large link once section, which defeats the purpose
12003 of having link once sections in the first place.
12004
12005 Also, not merging link once sections in a relocatable link
12006 causes trouble for MIPS ELF, which relies on link once semantics
12007 to handle the .reginfo section correctly. */
12008
12009 name = bfd_get_section_name (abfd, sec);
12010
12011 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12012 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12013 p++;
12014 else
12015 p = name;
12016
12017 already_linked_list = bfd_section_already_linked_table_lookup (p);
12018
12019 for (l = already_linked_list->entry; l != NULL; l = l->next)
12020 {
12021 /* We may have 2 different types of sections on the list: group
12022 sections and linkonce sections. Match like sections. */
12023 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12024 && strcmp (name, l->sec->name) == 0
12025 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12026 {
12027 /* The section has already been linked. See if we should
12028 issue a warning. */
12029 switch (flags & SEC_LINK_DUPLICATES)
12030 {
12031 default:
12032 abort ();
12033
12034 case SEC_LINK_DUPLICATES_DISCARD:
12035 break;
12036
12037 case SEC_LINK_DUPLICATES_ONE_ONLY:
12038 (*_bfd_error_handler)
12039 (_("%B: ignoring duplicate section `%A'"),
12040 abfd, sec);
12041 break;
12042
12043 case SEC_LINK_DUPLICATES_SAME_SIZE:
12044 if (sec->size != l->sec->size)
12045 (*_bfd_error_handler)
12046 (_("%B: duplicate section `%A' has different size"),
12047 abfd, sec);
12048 break;
12049
12050 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12051 if (sec->size != l->sec->size)
12052 (*_bfd_error_handler)
12053 (_("%B: duplicate section `%A' has different size"),
12054 abfd, sec);
12055 else if (sec->size != 0)
12056 {
12057 bfd_byte *sec_contents, *l_sec_contents;
12058
12059 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12060 (*_bfd_error_handler)
12061 (_("%B: warning: could not read contents of section `%A'"),
12062 abfd, sec);
12063 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12064 &l_sec_contents))
12065 (*_bfd_error_handler)
12066 (_("%B: warning: could not read contents of section `%A'"),
12067 l->sec->owner, l->sec);
12068 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12069 (*_bfd_error_handler)
12070 (_("%B: warning: duplicate section `%A' has different contents"),
12071 abfd, sec);
12072
12073 if (sec_contents)
12074 free (sec_contents);
12075 if (l_sec_contents)
12076 free (l_sec_contents);
12077 }
12078 break;
12079 }
12080
12081 /* Set the output_section field so that lang_add_section
12082 does not create a lang_input_section structure for this
12083 section. Since there might be a symbol in the section
12084 being discarded, we must retain a pointer to the section
12085 which we are really going to use. */
12086 sec->output_section = bfd_abs_section_ptr;
12087 sec->kept_section = l->sec;
12088
12089 if (flags & SEC_GROUP)
12090 {
12091 asection *first = elf_next_in_group (sec);
12092 asection *s = first;
12093
12094 while (s != NULL)
12095 {
12096 s->output_section = bfd_abs_section_ptr;
12097 /* Record which group discards it. */
12098 s->kept_section = l->sec;
12099 s = elf_next_in_group (s);
12100 /* These lists are circular. */
12101 if (s == first)
12102 break;
12103 }
12104 }
12105
12106 return;
12107 }
12108 }
12109
12110 /* A single member comdat group section may be discarded by a
12111 linkonce section and vice versa. */
12112
12113 if ((flags & SEC_GROUP) != 0)
12114 {
12115 asection *first = elf_next_in_group (sec);
12116
12117 if (first != NULL && elf_next_in_group (first) == first)
12118 /* Check this single member group against linkonce sections. */
12119 for (l = already_linked_list->entry; l != NULL; l = l->next)
12120 if ((l->sec->flags & SEC_GROUP) == 0
12121 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12122 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12123 {
12124 first->output_section = bfd_abs_section_ptr;
12125 first->kept_section = l->sec;
12126 sec->output_section = bfd_abs_section_ptr;
12127 break;
12128 }
12129 }
12130 else
12131 /* Check this linkonce section against single member groups. */
12132 for (l = already_linked_list->entry; l != NULL; l = l->next)
12133 if (l->sec->flags & SEC_GROUP)
12134 {
12135 asection *first = elf_next_in_group (l->sec);
12136
12137 if (first != NULL
12138 && elf_next_in_group (first) == first
12139 && bfd_elf_match_symbols_in_sections (first, sec, info))
12140 {
12141 sec->output_section = bfd_abs_section_ptr;
12142 sec->kept_section = first;
12143 break;
12144 }
12145 }
12146
12147 /* This is the first section with this name. Record it. */
12148 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12149 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12150 }
12151
12152 bfd_boolean
12153 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12154 {
12155 return sym->st_shndx == SHN_COMMON;
12156 }
12157
12158 unsigned int
12159 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12160 {
12161 return SHN_COMMON;
12162 }
12163
12164 asection *
12165 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12166 {
12167 return bfd_com_section_ptr;
12168 }
This page took 0.360854 seconds and 4 git commands to generate.