Add --no-dynamic-linker option to ld, for static PIE use
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info) && !info->nointerp)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341 }
342
343 /* Create dynamic sections when linking against a dynamic object. */
344
345 bfd_boolean
346 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347 {
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435 }
436 \f
437 /* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445 bfd_boolean
446 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448 {
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511 }
512 \f
513 /* Mark a symbol dynamic. */
514
515 static void
516 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519 {
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || (sym != NULL
529 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
530 || (d != NULL
531 && h->root.type == bfd_link_hash_new
532 && (*d->match) (&d->head, NULL, h->root.root.string)))
533 h->dynamic = 1;
534 }
535
536 /* Record an assignment to a symbol made by a linker script. We need
537 this in case some dynamic object refers to this symbol. */
538
539 bfd_boolean
540 bfd_elf_record_link_assignment (bfd *output_bfd,
541 struct bfd_link_info *info,
542 const char *name,
543 bfd_boolean provide,
544 bfd_boolean hidden)
545 {
546 struct elf_link_hash_entry *h, *hv;
547 struct elf_link_hash_table *htab;
548 const struct elf_backend_data *bed;
549
550 if (!is_elf_hash_table (info->hash))
551 return TRUE;
552
553 htab = elf_hash_table (info);
554 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
555 if (h == NULL)
556 return provide;
557
558 switch (h->root.type)
559 {
560 case bfd_link_hash_defined:
561 case bfd_link_hash_defweak:
562 case bfd_link_hash_common:
563 break;
564 case bfd_link_hash_undefweak:
565 case bfd_link_hash_undefined:
566 /* Since we're defining the symbol, don't let it seem to have not
567 been defined. record_dynamic_symbol and size_dynamic_sections
568 may depend on this. */
569 h->root.type = bfd_link_hash_new;
570 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
571 bfd_link_repair_undef_list (&htab->root);
572 break;
573 case bfd_link_hash_new:
574 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
575 h->non_elf = 0;
576 break;
577 case bfd_link_hash_indirect:
578 /* We had a versioned symbol in a dynamic library. We make the
579 the versioned symbol point to this one. */
580 bed = get_elf_backend_data (output_bfd);
581 hv = h;
582 while (hv->root.type == bfd_link_hash_indirect
583 || hv->root.type == bfd_link_hash_warning)
584 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
585 /* We don't need to update h->root.u since linker will set them
586 later. */
587 h->root.type = bfd_link_hash_undefined;
588 hv->root.type = bfd_link_hash_indirect;
589 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
591 break;
592 case bfd_link_hash_warning:
593 abort ();
594 break;
595 }
596
597 /* If this symbol is being provided by the linker script, and it is
598 currently defined by a dynamic object, but not by a regular
599 object, then mark it as undefined so that the generic linker will
600 force the correct value. */
601 if (provide
602 && h->def_dynamic
603 && !h->def_regular)
604 h->root.type = bfd_link_hash_undefined;
605
606 /* If this symbol is not being provided by the linker script, and it is
607 currently defined by a dynamic object, but not by a regular object,
608 then clear out any version information because the symbol will not be
609 associated with the dynamic object any more. */
610 if (!provide
611 && h->def_dynamic
612 && !h->def_regular)
613 h->verinfo.verdef = NULL;
614
615 h->def_regular = 1;
616
617 if (hidden)
618 {
619 bed = get_elf_backend_data (output_bfd);
620 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
621 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
622 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
623 }
624
625 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
626 and executables. */
627 if (!bfd_link_relocatable (info)
628 && h->dynindx != -1
629 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
630 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
631 h->forced_local = 1;
632
633 if ((h->def_dynamic
634 || h->ref_dynamic
635 || bfd_link_pic (info)
636 || (bfd_link_pde (info)
637 && elf_hash_table (info)->is_relocatable_executable))
638 && h->dynindx == -1)
639 {
640 if (! bfd_elf_link_record_dynamic_symbol (info, h))
641 return FALSE;
642
643 /* If this is a weak defined symbol, and we know a corresponding
644 real symbol from the same dynamic object, make sure the real
645 symbol is also made into a dynamic symbol. */
646 if (h->u.weakdef != NULL
647 && h->u.weakdef->dynindx == -1)
648 {
649 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
650 return FALSE;
651 }
652 }
653
654 return TRUE;
655 }
656
657 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
658 success, and 2 on a failure caused by attempting to record a symbol
659 in a discarded section, eg. a discarded link-once section symbol. */
660
661 int
662 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
663 bfd *input_bfd,
664 long input_indx)
665 {
666 bfd_size_type amt;
667 struct elf_link_local_dynamic_entry *entry;
668 struct elf_link_hash_table *eht;
669 struct elf_strtab_hash *dynstr;
670 unsigned long dynstr_index;
671 char *name;
672 Elf_External_Sym_Shndx eshndx;
673 char esym[sizeof (Elf64_External_Sym)];
674
675 if (! is_elf_hash_table (info->hash))
676 return 0;
677
678 /* See if the entry exists already. */
679 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
680 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
681 return 1;
682
683 amt = sizeof (*entry);
684 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
685 if (entry == NULL)
686 return 0;
687
688 /* Go find the symbol, so that we can find it's name. */
689 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
690 1, input_indx, &entry->isym, esym, &eshndx))
691 {
692 bfd_release (input_bfd, entry);
693 return 0;
694 }
695
696 if (entry->isym.st_shndx != SHN_UNDEF
697 && entry->isym.st_shndx < SHN_LORESERVE)
698 {
699 asection *s;
700
701 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
702 if (s == NULL || bfd_is_abs_section (s->output_section))
703 {
704 /* We can still bfd_release here as nothing has done another
705 bfd_alloc. We can't do this later in this function. */
706 bfd_release (input_bfd, entry);
707 return 2;
708 }
709 }
710
711 name = (bfd_elf_string_from_elf_section
712 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
713 entry->isym.st_name));
714
715 dynstr = elf_hash_table (info)->dynstr;
716 if (dynstr == NULL)
717 {
718 /* Create a strtab to hold the dynamic symbol names. */
719 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
720 if (dynstr == NULL)
721 return 0;
722 }
723
724 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
725 if (dynstr_index == (unsigned long) -1)
726 return 0;
727 entry->isym.st_name = dynstr_index;
728
729 eht = elf_hash_table (info);
730
731 entry->next = eht->dynlocal;
732 eht->dynlocal = entry;
733 entry->input_bfd = input_bfd;
734 entry->input_indx = input_indx;
735 eht->dynsymcount++;
736
737 /* Whatever binding the symbol had before, it's now local. */
738 entry->isym.st_info
739 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
740
741 /* The dynindx will be set at the end of size_dynamic_sections. */
742
743 return 1;
744 }
745
746 /* Return the dynindex of a local dynamic symbol. */
747
748 long
749 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
750 bfd *input_bfd,
751 long input_indx)
752 {
753 struct elf_link_local_dynamic_entry *e;
754
755 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
756 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
757 return e->dynindx;
758 return -1;
759 }
760
761 /* This function is used to renumber the dynamic symbols, if some of
762 them are removed because they are marked as local. This is called
763 via elf_link_hash_traverse. */
764
765 static bfd_boolean
766 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
767 void *data)
768 {
769 size_t *count = (size_t *) data;
770
771 if (h->forced_local)
772 return TRUE;
773
774 if (h->dynindx != -1)
775 h->dynindx = ++(*count);
776
777 return TRUE;
778 }
779
780
781 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
782 STB_LOCAL binding. */
783
784 static bfd_boolean
785 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
786 void *data)
787 {
788 size_t *count = (size_t *) data;
789
790 if (!h->forced_local)
791 return TRUE;
792
793 if (h->dynindx != -1)
794 h->dynindx = ++(*count);
795
796 return TRUE;
797 }
798
799 /* Return true if the dynamic symbol for a given section should be
800 omitted when creating a shared library. */
801 bfd_boolean
802 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
803 struct bfd_link_info *info,
804 asection *p)
805 {
806 struct elf_link_hash_table *htab;
807 asection *ip;
808
809 switch (elf_section_data (p)->this_hdr.sh_type)
810 {
811 case SHT_PROGBITS:
812 case SHT_NOBITS:
813 /* If sh_type is yet undecided, assume it could be
814 SHT_PROGBITS/SHT_NOBITS. */
815 case SHT_NULL:
816 htab = elf_hash_table (info);
817 if (p == htab->tls_sec)
818 return FALSE;
819
820 if (htab->text_index_section != NULL)
821 return p != htab->text_index_section && p != htab->data_index_section;
822
823 return (htab->dynobj != NULL
824 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
825 && ip->output_section == p);
826
827 /* There shouldn't be section relative relocations
828 against any other section. */
829 default:
830 return TRUE;
831 }
832 }
833
834 /* Assign dynsym indices. In a shared library we generate a section
835 symbol for each output section, which come first. Next come symbols
836 which have been forced to local binding. Then all of the back-end
837 allocated local dynamic syms, followed by the rest of the global
838 symbols. */
839
840 static unsigned long
841 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
842 struct bfd_link_info *info,
843 unsigned long *section_sym_count)
844 {
845 unsigned long dynsymcount = 0;
846
847 if (bfd_link_pic (info)
848 || elf_hash_table (info)->is_relocatable_executable)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
851 asection *p;
852 for (p = output_bfd->sections; p ; p = p->next)
853 if ((p->flags & SEC_EXCLUDE) == 0
854 && (p->flags & SEC_ALLOC) != 0
855 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
856 elf_section_data (p)->dynindx = ++dynsymcount;
857 else
858 elf_section_data (p)->dynindx = 0;
859 }
860 *section_sym_count = dynsymcount;
861
862 elf_link_hash_traverse (elf_hash_table (info),
863 elf_link_renumber_local_hash_table_dynsyms,
864 &dynsymcount);
865
866 if (elf_hash_table (info)->dynlocal)
867 {
868 struct elf_link_local_dynamic_entry *p;
869 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
870 p->dynindx = ++dynsymcount;
871 }
872
873 elf_link_hash_traverse (elf_hash_table (info),
874 elf_link_renumber_hash_table_dynsyms,
875 &dynsymcount);
876
877 /* There is an unused NULL entry at the head of the table which
878 we must account for in our count. Unless there weren't any
879 symbols, which means we'll have no table at all. */
880 if (dynsymcount != 0)
881 ++dynsymcount;
882
883 elf_hash_table (info)->dynsymcount = dynsymcount;
884 return dynsymcount;
885 }
886
887 /* Merge st_other field. */
888
889 static void
890 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
891 const Elf_Internal_Sym *isym, asection *sec,
892 bfd_boolean definition, bfd_boolean dynamic)
893 {
894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
895
896 /* If st_other has a processor-specific meaning, specific
897 code might be needed here. */
898 if (bed->elf_backend_merge_symbol_attribute)
899 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
900 dynamic);
901
902 if (!dynamic)
903 {
904 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
905 unsigned hvis = ELF_ST_VISIBILITY (h->other);
906
907 /* Keep the most constraining visibility. Leave the remainder
908 of the st_other field to elf_backend_merge_symbol_attribute. */
909 if (symvis - 1 < hvis - 1)
910 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
911 }
912 else if (definition
913 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
914 && (sec->flags & SEC_READONLY) == 0)
915 h->protected_def = 1;
916 }
917
918 /* This function is called when we want to merge a new symbol with an
919 existing symbol. It handles the various cases which arise when we
920 find a definition in a dynamic object, or when there is already a
921 definition in a dynamic object. The new symbol is described by
922 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
923 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
924 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
925 of an old common symbol. We set OVERRIDE if the old symbol is
926 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
927 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
928 to change. By OK to change, we mean that we shouldn't warn if the
929 type or size does change. */
930
931 static bfd_boolean
932 _bfd_elf_merge_symbol (bfd *abfd,
933 struct bfd_link_info *info,
934 const char *name,
935 Elf_Internal_Sym *sym,
936 asection **psec,
937 bfd_vma *pvalue,
938 struct elf_link_hash_entry **sym_hash,
939 bfd **poldbfd,
940 bfd_boolean *pold_weak,
941 unsigned int *pold_alignment,
942 bfd_boolean *skip,
943 bfd_boolean *override,
944 bfd_boolean *type_change_ok,
945 bfd_boolean *size_change_ok,
946 bfd_boolean *matched)
947 {
948 asection *sec, *oldsec;
949 struct elf_link_hash_entry *h;
950 struct elf_link_hash_entry *hi;
951 struct elf_link_hash_entry *flip;
952 int bind;
953 bfd *oldbfd;
954 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
955 bfd_boolean newweak, oldweak, newfunc, oldfunc;
956 const struct elf_backend_data *bed;
957 char *new_version;
958
959 *skip = FALSE;
960 *override = FALSE;
961
962 sec = *psec;
963 bind = ELF_ST_BIND (sym->st_info);
964
965 if (! bfd_is_und_section (sec))
966 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
967 else
968 h = ((struct elf_link_hash_entry *)
969 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
970 if (h == NULL)
971 return FALSE;
972 *sym_hash = h;
973
974 bed = get_elf_backend_data (abfd);
975
976 /* NEW_VERSION is the symbol version of the new symbol. */
977 if (h->versioned != unversioned)
978 {
979 /* Symbol version is unknown or versioned. */
980 new_version = strrchr (name, ELF_VER_CHR);
981 if (new_version)
982 {
983 if (h->versioned == unknown)
984 {
985 if (new_version > name && new_version[-1] != ELF_VER_CHR)
986 h->versioned = versioned_hidden;
987 else
988 h->versioned = versioned;
989 }
990 new_version += 1;
991 if (new_version[0] == '\0')
992 new_version = NULL;
993 }
994 else
995 h->versioned = unversioned;
996 }
997 else
998 new_version = NULL;
999
1000 /* For merging, we only care about real symbols. But we need to make
1001 sure that indirect symbol dynamic flags are updated. */
1002 hi = h;
1003 while (h->root.type == bfd_link_hash_indirect
1004 || h->root.type == bfd_link_hash_warning)
1005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1006
1007 if (!*matched)
1008 {
1009 if (hi == h || h->root.type == bfd_link_hash_new)
1010 *matched = TRUE;
1011 else
1012 {
1013 /* OLD_HIDDEN is true if the existing symbol is only visibile
1014 to the symbol with the same symbol version. NEW_HIDDEN is
1015 true if the new symbol is only visibile to the symbol with
1016 the same symbol version. */
1017 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1018 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1019 if (!old_hidden && !new_hidden)
1020 /* The new symbol matches the existing symbol if both
1021 aren't hidden. */
1022 *matched = TRUE;
1023 else
1024 {
1025 /* OLD_VERSION is the symbol version of the existing
1026 symbol. */
1027 char *old_version;
1028
1029 if (h->versioned >= versioned)
1030 old_version = strrchr (h->root.root.string,
1031 ELF_VER_CHR) + 1;
1032 else
1033 old_version = NULL;
1034
1035 /* The new symbol matches the existing symbol if they
1036 have the same symbol version. */
1037 *matched = (old_version == new_version
1038 || (old_version != NULL
1039 && new_version != NULL
1040 && strcmp (old_version, new_version) == 0));
1041 }
1042 }
1043 }
1044
1045 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1046 existing symbol. */
1047
1048 oldbfd = NULL;
1049 oldsec = NULL;
1050 switch (h->root.type)
1051 {
1052 default:
1053 break;
1054
1055 case bfd_link_hash_undefined:
1056 case bfd_link_hash_undefweak:
1057 oldbfd = h->root.u.undef.abfd;
1058 break;
1059
1060 case bfd_link_hash_defined:
1061 case bfd_link_hash_defweak:
1062 oldbfd = h->root.u.def.section->owner;
1063 oldsec = h->root.u.def.section;
1064 break;
1065
1066 case bfd_link_hash_common:
1067 oldbfd = h->root.u.c.p->section->owner;
1068 oldsec = h->root.u.c.p->section;
1069 if (pold_alignment)
1070 *pold_alignment = h->root.u.c.p->alignment_power;
1071 break;
1072 }
1073 if (poldbfd && *poldbfd == NULL)
1074 *poldbfd = oldbfd;
1075
1076 /* Differentiate strong and weak symbols. */
1077 newweak = bind == STB_WEAK;
1078 oldweak = (h->root.type == bfd_link_hash_defweak
1079 || h->root.type == bfd_link_hash_undefweak);
1080 if (pold_weak)
1081 *pold_weak = oldweak;
1082
1083 /* This code is for coping with dynamic objects, and is only useful
1084 if we are doing an ELF link. */
1085 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1086 return TRUE;
1087
1088 /* We have to check it for every instance since the first few may be
1089 references and not all compilers emit symbol type for undefined
1090 symbols. */
1091 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1092
1093 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1094 respectively, is from a dynamic object. */
1095
1096 newdyn = (abfd->flags & DYNAMIC) != 0;
1097
1098 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1099 syms and defined syms in dynamic libraries respectively.
1100 ref_dynamic on the other hand can be set for a symbol defined in
1101 a dynamic library, and def_dynamic may not be set; When the
1102 definition in a dynamic lib is overridden by a definition in the
1103 executable use of the symbol in the dynamic lib becomes a
1104 reference to the executable symbol. */
1105 if (newdyn)
1106 {
1107 if (bfd_is_und_section (sec))
1108 {
1109 if (bind != STB_WEAK)
1110 {
1111 h->ref_dynamic_nonweak = 1;
1112 hi->ref_dynamic_nonweak = 1;
1113 }
1114 }
1115 else
1116 {
1117 /* Update the existing symbol only if they match. */
1118 if (*matched)
1119 h->dynamic_def = 1;
1120 hi->dynamic_def = 1;
1121 }
1122 }
1123
1124 /* If we just created the symbol, mark it as being an ELF symbol.
1125 Other than that, there is nothing to do--there is no merge issue
1126 with a newly defined symbol--so we just return. */
1127
1128 if (h->root.type == bfd_link_hash_new)
1129 {
1130 h->non_elf = 0;
1131 return TRUE;
1132 }
1133
1134 /* In cases involving weak versioned symbols, we may wind up trying
1135 to merge a symbol with itself. Catch that here, to avoid the
1136 confusion that results if we try to override a symbol with
1137 itself. The additional tests catch cases like
1138 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1139 dynamic object, which we do want to handle here. */
1140 if (abfd == oldbfd
1141 && (newweak || oldweak)
1142 && ((abfd->flags & DYNAMIC) == 0
1143 || !h->def_regular))
1144 return TRUE;
1145
1146 olddyn = FALSE;
1147 if (oldbfd != NULL)
1148 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1149 else if (oldsec != NULL)
1150 {
1151 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1152 indices used by MIPS ELF. */
1153 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1154 }
1155
1156 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1157 respectively, appear to be a definition rather than reference. */
1158
1159 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1160
1161 olddef = (h->root.type != bfd_link_hash_undefined
1162 && h->root.type != bfd_link_hash_undefweak
1163 && h->root.type != bfd_link_hash_common);
1164
1165 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1166 respectively, appear to be a function. */
1167
1168 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1169 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1170
1171 oldfunc = (h->type != STT_NOTYPE
1172 && bed->is_function_type (h->type));
1173
1174 /* When we try to create a default indirect symbol from the dynamic
1175 definition with the default version, we skip it if its type and
1176 the type of existing regular definition mismatch. */
1177 if (pold_alignment == NULL
1178 && newdyn
1179 && newdef
1180 && !olddyn
1181 && (((olddef || h->root.type == bfd_link_hash_common)
1182 && ELF_ST_TYPE (sym->st_info) != h->type
1183 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1184 && h->type != STT_NOTYPE
1185 && !(newfunc && oldfunc))
1186 || (olddef
1187 && ((h->type == STT_GNU_IFUNC)
1188 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1189 {
1190 *skip = TRUE;
1191 return TRUE;
1192 }
1193
1194 /* Check TLS symbols. We don't check undefined symbols introduced
1195 by "ld -u" which have no type (and oldbfd NULL), and we don't
1196 check symbols from plugins because they also have no type. */
1197 if (oldbfd != NULL
1198 && (oldbfd->flags & BFD_PLUGIN) == 0
1199 && (abfd->flags & BFD_PLUGIN) == 0
1200 && ELF_ST_TYPE (sym->st_info) != h->type
1201 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1202 {
1203 bfd *ntbfd, *tbfd;
1204 bfd_boolean ntdef, tdef;
1205 asection *ntsec, *tsec;
1206
1207 if (h->type == STT_TLS)
1208 {
1209 ntbfd = abfd;
1210 ntsec = sec;
1211 ntdef = newdef;
1212 tbfd = oldbfd;
1213 tsec = oldsec;
1214 tdef = olddef;
1215 }
1216 else
1217 {
1218 ntbfd = oldbfd;
1219 ntsec = oldsec;
1220 ntdef = olddef;
1221 tbfd = abfd;
1222 tsec = sec;
1223 tdef = newdef;
1224 }
1225
1226 if (tdef && ntdef)
1227 (*_bfd_error_handler)
1228 (_("%s: TLS definition in %B section %A "
1229 "mismatches non-TLS definition in %B section %A"),
1230 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1231 else if (!tdef && !ntdef)
1232 (*_bfd_error_handler)
1233 (_("%s: TLS reference in %B "
1234 "mismatches non-TLS reference in %B"),
1235 tbfd, ntbfd, h->root.root.string);
1236 else if (tdef)
1237 (*_bfd_error_handler)
1238 (_("%s: TLS definition in %B section %A "
1239 "mismatches non-TLS reference in %B"),
1240 tbfd, tsec, ntbfd, h->root.root.string);
1241 else
1242 (*_bfd_error_handler)
1243 (_("%s: TLS reference in %B "
1244 "mismatches non-TLS definition in %B section %A"),
1245 tbfd, ntbfd, ntsec, h->root.root.string);
1246
1247 bfd_set_error (bfd_error_bad_value);
1248 return FALSE;
1249 }
1250
1251 /* If the old symbol has non-default visibility, we ignore the new
1252 definition from a dynamic object. */
1253 if (newdyn
1254 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1255 && !bfd_is_und_section (sec))
1256 {
1257 *skip = TRUE;
1258 /* Make sure this symbol is dynamic. */
1259 h->ref_dynamic = 1;
1260 hi->ref_dynamic = 1;
1261 /* A protected symbol has external availability. Make sure it is
1262 recorded as dynamic.
1263
1264 FIXME: Should we check type and size for protected symbol? */
1265 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1266 return bfd_elf_link_record_dynamic_symbol (info, h);
1267 else
1268 return TRUE;
1269 }
1270 else if (!newdyn
1271 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1272 && h->def_dynamic)
1273 {
1274 /* If the new symbol with non-default visibility comes from a
1275 relocatable file and the old definition comes from a dynamic
1276 object, we remove the old definition. */
1277 if (hi->root.type == bfd_link_hash_indirect)
1278 {
1279 /* Handle the case where the old dynamic definition is
1280 default versioned. We need to copy the symbol info from
1281 the symbol with default version to the normal one if it
1282 was referenced before. */
1283 if (h->ref_regular)
1284 {
1285 hi->root.type = h->root.type;
1286 h->root.type = bfd_link_hash_indirect;
1287 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1288
1289 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1290 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1291 {
1292 /* If the new symbol is hidden or internal, completely undo
1293 any dynamic link state. */
1294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1295 h->forced_local = 0;
1296 h->ref_dynamic = 0;
1297 }
1298 else
1299 h->ref_dynamic = 1;
1300
1301 h->def_dynamic = 0;
1302 /* FIXME: Should we check type and size for protected symbol? */
1303 h->size = 0;
1304 h->type = 0;
1305
1306 h = hi;
1307 }
1308 else
1309 h = hi;
1310 }
1311
1312 /* If the old symbol was undefined before, then it will still be
1313 on the undefs list. If the new symbol is undefined or
1314 common, we can't make it bfd_link_hash_new here, because new
1315 undefined or common symbols will be added to the undefs list
1316 by _bfd_generic_link_add_one_symbol. Symbols may not be
1317 added twice to the undefs list. Also, if the new symbol is
1318 undefweak then we don't want to lose the strong undef. */
1319 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 {
1321 h->root.type = bfd_link_hash_undefined;
1322 h->root.u.undef.abfd = abfd;
1323 }
1324 else
1325 {
1326 h->root.type = bfd_link_hash_new;
1327 h->root.u.undef.abfd = NULL;
1328 }
1329
1330 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1331 {
1332 /* If the new symbol is hidden or internal, completely undo
1333 any dynamic link state. */
1334 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1335 h->forced_local = 0;
1336 h->ref_dynamic = 0;
1337 }
1338 else
1339 h->ref_dynamic = 1;
1340 h->def_dynamic = 0;
1341 /* FIXME: Should we check type and size for protected symbol? */
1342 h->size = 0;
1343 h->type = 0;
1344 return TRUE;
1345 }
1346
1347 /* If a new weak symbol definition comes from a regular file and the
1348 old symbol comes from a dynamic library, we treat the new one as
1349 strong. Similarly, an old weak symbol definition from a regular
1350 file is treated as strong when the new symbol comes from a dynamic
1351 library. Further, an old weak symbol from a dynamic library is
1352 treated as strong if the new symbol is from a dynamic library.
1353 This reflects the way glibc's ld.so works.
1354
1355 Do this before setting *type_change_ok or *size_change_ok so that
1356 we warn properly when dynamic library symbols are overridden. */
1357
1358 if (newdef && !newdyn && olddyn)
1359 newweak = FALSE;
1360 if (olddef && newdyn)
1361 oldweak = FALSE;
1362
1363 /* Allow changes between different types of function symbol. */
1364 if (newfunc && oldfunc)
1365 *type_change_ok = TRUE;
1366
1367 /* It's OK to change the type if either the existing symbol or the
1368 new symbol is weak. A type change is also OK if the old symbol
1369 is undefined and the new symbol is defined. */
1370
1371 if (oldweak
1372 || newweak
1373 || (newdef
1374 && h->root.type == bfd_link_hash_undefined))
1375 *type_change_ok = TRUE;
1376
1377 /* It's OK to change the size if either the existing symbol or the
1378 new symbol is weak, or if the old symbol is undefined. */
1379
1380 if (*type_change_ok
1381 || h->root.type == bfd_link_hash_undefined)
1382 *size_change_ok = TRUE;
1383
1384 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1385 symbol, respectively, appears to be a common symbol in a dynamic
1386 object. If a symbol appears in an uninitialized section, and is
1387 not weak, and is not a function, then it may be a common symbol
1388 which was resolved when the dynamic object was created. We want
1389 to treat such symbols specially, because they raise special
1390 considerations when setting the symbol size: if the symbol
1391 appears as a common symbol in a regular object, and the size in
1392 the regular object is larger, we must make sure that we use the
1393 larger size. This problematic case can always be avoided in C,
1394 but it must be handled correctly when using Fortran shared
1395 libraries.
1396
1397 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1398 likewise for OLDDYNCOMMON and OLDDEF.
1399
1400 Note that this test is just a heuristic, and that it is quite
1401 possible to have an uninitialized symbol in a shared object which
1402 is really a definition, rather than a common symbol. This could
1403 lead to some minor confusion when the symbol really is a common
1404 symbol in some regular object. However, I think it will be
1405 harmless. */
1406
1407 if (newdyn
1408 && newdef
1409 && !newweak
1410 && (sec->flags & SEC_ALLOC) != 0
1411 && (sec->flags & SEC_LOAD) == 0
1412 && sym->st_size > 0
1413 && !newfunc)
1414 newdyncommon = TRUE;
1415 else
1416 newdyncommon = FALSE;
1417
1418 if (olddyn
1419 && olddef
1420 && h->root.type == bfd_link_hash_defined
1421 && h->def_dynamic
1422 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1423 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1424 && h->size > 0
1425 && !oldfunc)
1426 olddyncommon = TRUE;
1427 else
1428 olddyncommon = FALSE;
1429
1430 /* We now know everything about the old and new symbols. We ask the
1431 backend to check if we can merge them. */
1432 if (bed->merge_symbol != NULL)
1433 {
1434 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1435 return FALSE;
1436 sec = *psec;
1437 }
1438
1439 /* If both the old and the new symbols look like common symbols in a
1440 dynamic object, set the size of the symbol to the larger of the
1441 two. */
1442
1443 if (olddyncommon
1444 && newdyncommon
1445 && sym->st_size != h->size)
1446 {
1447 /* Since we think we have two common symbols, issue a multiple
1448 common warning if desired. Note that we only warn if the
1449 size is different. If the size is the same, we simply let
1450 the old symbol override the new one as normally happens with
1451 symbols defined in dynamic objects. */
1452
1453 if (! ((*info->callbacks->multiple_common)
1454 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1455 return FALSE;
1456
1457 if (sym->st_size > h->size)
1458 h->size = sym->st_size;
1459
1460 *size_change_ok = TRUE;
1461 }
1462
1463 /* If we are looking at a dynamic object, and we have found a
1464 definition, we need to see if the symbol was already defined by
1465 some other object. If so, we want to use the existing
1466 definition, and we do not want to report a multiple symbol
1467 definition error; we do this by clobbering *PSEC to be
1468 bfd_und_section_ptr.
1469
1470 We treat a common symbol as a definition if the symbol in the
1471 shared library is a function, since common symbols always
1472 represent variables; this can cause confusion in principle, but
1473 any such confusion would seem to indicate an erroneous program or
1474 shared library. We also permit a common symbol in a regular
1475 object to override a weak symbol in a shared object. */
1476
1477 if (newdyn
1478 && newdef
1479 && (olddef
1480 || (h->root.type == bfd_link_hash_common
1481 && (newweak || newfunc))))
1482 {
1483 *override = TRUE;
1484 newdef = FALSE;
1485 newdyncommon = FALSE;
1486
1487 *psec = sec = bfd_und_section_ptr;
1488 *size_change_ok = TRUE;
1489
1490 /* If we get here when the old symbol is a common symbol, then
1491 we are explicitly letting it override a weak symbol or
1492 function in a dynamic object, and we don't want to warn about
1493 a type change. If the old symbol is a defined symbol, a type
1494 change warning may still be appropriate. */
1495
1496 if (h->root.type == bfd_link_hash_common)
1497 *type_change_ok = TRUE;
1498 }
1499
1500 /* Handle the special case of an old common symbol merging with a
1501 new symbol which looks like a common symbol in a shared object.
1502 We change *PSEC and *PVALUE to make the new symbol look like a
1503 common symbol, and let _bfd_generic_link_add_one_symbol do the
1504 right thing. */
1505
1506 if (newdyncommon
1507 && h->root.type == bfd_link_hash_common)
1508 {
1509 *override = TRUE;
1510 newdef = FALSE;
1511 newdyncommon = FALSE;
1512 *pvalue = sym->st_size;
1513 *psec = sec = bed->common_section (oldsec);
1514 *size_change_ok = TRUE;
1515 }
1516
1517 /* Skip weak definitions of symbols that are already defined. */
1518 if (newdef && olddef && newweak)
1519 {
1520 /* Don't skip new non-IR weak syms. */
1521 if (!(oldbfd != NULL
1522 && (oldbfd->flags & BFD_PLUGIN) != 0
1523 && (abfd->flags & BFD_PLUGIN) == 0))
1524 {
1525 newdef = FALSE;
1526 *skip = TRUE;
1527 }
1528
1529 /* Merge st_other. If the symbol already has a dynamic index,
1530 but visibility says it should not be visible, turn it into a
1531 local symbol. */
1532 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1533 if (h->dynindx != -1)
1534 switch (ELF_ST_VISIBILITY (h->other))
1535 {
1536 case STV_INTERNAL:
1537 case STV_HIDDEN:
1538 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1539 break;
1540 }
1541 }
1542
1543 /* If the old symbol is from a dynamic object, and the new symbol is
1544 a definition which is not from a dynamic object, then the new
1545 symbol overrides the old symbol. Symbols from regular files
1546 always take precedence over symbols from dynamic objects, even if
1547 they are defined after the dynamic object in the link.
1548
1549 As above, we again permit a common symbol in a regular object to
1550 override a definition in a shared object if the shared object
1551 symbol is a function or is weak. */
1552
1553 flip = NULL;
1554 if (!newdyn
1555 && (newdef
1556 || (bfd_is_com_section (sec)
1557 && (oldweak || oldfunc)))
1558 && olddyn
1559 && olddef
1560 && h->def_dynamic)
1561 {
1562 /* Change the hash table entry to undefined, and let
1563 _bfd_generic_link_add_one_symbol do the right thing with the
1564 new definition. */
1565
1566 h->root.type = bfd_link_hash_undefined;
1567 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569
1570 olddef = FALSE;
1571 olddyncommon = FALSE;
1572
1573 /* We again permit a type change when a common symbol may be
1574 overriding a function. */
1575
1576 if (bfd_is_com_section (sec))
1577 {
1578 if (oldfunc)
1579 {
1580 /* If a common symbol overrides a function, make sure
1581 that it isn't defined dynamically nor has type
1582 function. */
1583 h->def_dynamic = 0;
1584 h->type = STT_NOTYPE;
1585 }
1586 *type_change_ok = TRUE;
1587 }
1588
1589 if (hi->root.type == bfd_link_hash_indirect)
1590 flip = hi;
1591 else
1592 /* This union may have been set to be non-NULL when this symbol
1593 was seen in a dynamic object. We must force the union to be
1594 NULL, so that it is correct for a regular symbol. */
1595 h->verinfo.vertree = NULL;
1596 }
1597
1598 /* Handle the special case of a new common symbol merging with an
1599 old symbol that looks like it might be a common symbol defined in
1600 a shared object. Note that we have already handled the case in
1601 which a new common symbol should simply override the definition
1602 in the shared library. */
1603
1604 if (! newdyn
1605 && bfd_is_com_section (sec)
1606 && olddyncommon)
1607 {
1608 /* It would be best if we could set the hash table entry to a
1609 common symbol, but we don't know what to use for the section
1610 or the alignment. */
1611 if (! ((*info->callbacks->multiple_common)
1612 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1613 return FALSE;
1614
1615 /* If the presumed common symbol in the dynamic object is
1616 larger, pretend that the new symbol has its size. */
1617
1618 if (h->size > *pvalue)
1619 *pvalue = h->size;
1620
1621 /* We need to remember the alignment required by the symbol
1622 in the dynamic object. */
1623 BFD_ASSERT (pold_alignment);
1624 *pold_alignment = h->root.u.def.section->alignment_power;
1625
1626 olddef = FALSE;
1627 olddyncommon = FALSE;
1628
1629 h->root.type = bfd_link_hash_undefined;
1630 h->root.u.undef.abfd = h->root.u.def.section->owner;
1631
1632 *size_change_ok = TRUE;
1633 *type_change_ok = TRUE;
1634
1635 if (hi->root.type == bfd_link_hash_indirect)
1636 flip = hi;
1637 else
1638 h->verinfo.vertree = NULL;
1639 }
1640
1641 if (flip != NULL)
1642 {
1643 /* Handle the case where we had a versioned symbol in a dynamic
1644 library and now find a definition in a normal object. In this
1645 case, we make the versioned symbol point to the normal one. */
1646 flip->root.type = h->root.type;
1647 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1650 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1651 if (h->def_dynamic)
1652 {
1653 h->def_dynamic = 0;
1654 flip->ref_dynamic = 1;
1655 }
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* This function is called to create an indirect symbol from the
1662 default for the symbol with the default version if needed. The
1663 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1664 set DYNSYM if the new indirect symbol is dynamic. */
1665
1666 static bfd_boolean
1667 _bfd_elf_add_default_symbol (bfd *abfd,
1668 struct bfd_link_info *info,
1669 struct elf_link_hash_entry *h,
1670 const char *name,
1671 Elf_Internal_Sym *sym,
1672 asection *sec,
1673 bfd_vma value,
1674 bfd **poldbfd,
1675 bfd_boolean *dynsym)
1676 {
1677 bfd_boolean type_change_ok;
1678 bfd_boolean size_change_ok;
1679 bfd_boolean skip;
1680 char *shortname;
1681 struct elf_link_hash_entry *hi;
1682 struct bfd_link_hash_entry *bh;
1683 const struct elf_backend_data *bed;
1684 bfd_boolean collect;
1685 bfd_boolean dynamic;
1686 bfd_boolean override;
1687 char *p;
1688 size_t len, shortlen;
1689 asection *tmp_sec;
1690 bfd_boolean matched;
1691
1692 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1693 return TRUE;
1694
1695 /* If this symbol has a version, and it is the default version, we
1696 create an indirect symbol from the default name to the fully
1697 decorated name. This will cause external references which do not
1698 specify a version to be bound to this version of the symbol. */
1699 p = strchr (name, ELF_VER_CHR);
1700 if (h->versioned == unknown)
1701 {
1702 if (p == NULL)
1703 {
1704 h->versioned = unversioned;
1705 return TRUE;
1706 }
1707 else
1708 {
1709 if (p[1] != ELF_VER_CHR)
1710 {
1711 h->versioned = versioned_hidden;
1712 return TRUE;
1713 }
1714 else
1715 h->versioned = versioned;
1716 }
1717 }
1718
1719 bed = get_elf_backend_data (abfd);
1720 collect = bed->collect;
1721 dynamic = (abfd->flags & DYNAMIC) != 0;
1722
1723 shortlen = p - name;
1724 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1725 if (shortname == NULL)
1726 return FALSE;
1727 memcpy (shortname, name, shortlen);
1728 shortname[shortlen] = '\0';
1729
1730 /* We are going to create a new symbol. Merge it with any existing
1731 symbol with this name. For the purposes of the merge, act as
1732 though we were defining the symbol we just defined, although we
1733 actually going to define an indirect symbol. */
1734 type_change_ok = FALSE;
1735 size_change_ok = FALSE;
1736 matched = TRUE;
1737 tmp_sec = sec;
1738 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1739 &hi, poldbfd, NULL, NULL, &skip, &override,
1740 &type_change_ok, &size_change_ok, &matched))
1741 return FALSE;
1742
1743 if (skip)
1744 goto nondefault;
1745
1746 if (! override)
1747 {
1748 /* Add the default symbol if not performing a relocatable link. */
1749 if (! bfd_link_relocatable (info))
1750 {
1751 bh = &hi->root;
1752 if (! (_bfd_generic_link_add_one_symbol
1753 (info, abfd, shortname, BSF_INDIRECT,
1754 bfd_ind_section_ptr,
1755 0, name, FALSE, collect, &bh)))
1756 return FALSE;
1757 hi = (struct elf_link_hash_entry *) bh;
1758 }
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is overriding the
1763 indirect symbol we want to add. We were planning on making
1764 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1765 is the name without a version. NAME is the fully versioned
1766 name, and it is the default version.
1767
1768 Overriding means that we already saw a definition for the
1769 symbol SHORTNAME in a regular object, and it is overriding
1770 the symbol defined in the dynamic object.
1771
1772 When this happens, we actually want to change NAME, the
1773 symbol we just added, to refer to SHORTNAME. This will cause
1774 references to NAME in the shared object to become references
1775 to SHORTNAME in the regular object. This is what we expect
1776 when we override a function in a shared object: that the
1777 references in the shared object will be mapped to the
1778 definition in the regular object. */
1779
1780 while (hi->root.type == bfd_link_hash_indirect
1781 || hi->root.type == bfd_link_hash_warning)
1782 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1783
1784 h->root.type = bfd_link_hash_indirect;
1785 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1786 if (h->def_dynamic)
1787 {
1788 h->def_dynamic = 0;
1789 hi->ref_dynamic = 1;
1790 if (hi->ref_regular
1791 || hi->def_regular)
1792 {
1793 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1794 return FALSE;
1795 }
1796 }
1797
1798 /* Now set HI to H, so that the following code will set the
1799 other fields correctly. */
1800 hi = h;
1801 }
1802
1803 /* Check if HI is a warning symbol. */
1804 if (hi->root.type == bfd_link_hash_warning)
1805 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1806
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error to
1809 the user in that case. */
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 {
1813 struct elf_link_hash_entry *ht;
1814
1815 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1816 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1817
1818 /* A reference to the SHORTNAME symbol from a dynamic library
1819 will be satisfied by the versioned symbol at runtime. In
1820 effect, we have a reference to the versioned symbol. */
1821 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1822 hi->dynamic_def |= ht->dynamic_def;
1823
1824 /* See if the new flags lead us to realize that the symbol must
1825 be dynamic. */
1826 if (! *dynsym)
1827 {
1828 if (! dynamic)
1829 {
1830 if (! bfd_link_executable (info)
1831 || hi->def_dynamic
1832 || hi->ref_dynamic)
1833 *dynsym = TRUE;
1834 }
1835 else
1836 {
1837 if (hi->ref_regular)
1838 *dynsym = TRUE;
1839 }
1840 }
1841 }
1842
1843 /* We also need to define an indirection from the nondefault version
1844 of the symbol. */
1845
1846 nondefault:
1847 len = strlen (name);
1848 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1849 if (shortname == NULL)
1850 return FALSE;
1851 memcpy (shortname, name, shortlen);
1852 memcpy (shortname + shortlen, p + 1, len - shortlen);
1853
1854 /* Once again, merge with any existing symbol. */
1855 type_change_ok = FALSE;
1856 size_change_ok = FALSE;
1857 tmp_sec = sec;
1858 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1859 &hi, poldbfd, NULL, NULL, &skip, &override,
1860 &type_change_ok, &size_change_ok, &matched))
1861 return FALSE;
1862
1863 if (skip)
1864 return TRUE;
1865
1866 if (override)
1867 {
1868 /* Here SHORTNAME is a versioned name, so we don't expect to see
1869 the type of override we do in the case above unless it is
1870 overridden by a versioned definition. */
1871 if (hi->root.type != bfd_link_hash_defined
1872 && hi->root.type != bfd_link_hash_defweak)
1873 (*_bfd_error_handler)
1874 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1875 abfd, shortname);
1876 }
1877 else
1878 {
1879 bh = &hi->root;
1880 if (! (_bfd_generic_link_add_one_symbol
1881 (info, abfd, shortname, BSF_INDIRECT,
1882 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1883 return FALSE;
1884 hi = (struct elf_link_hash_entry *) bh;
1885
1886 /* If there is a duplicate definition somewhere, then HI may not
1887 point to an indirect symbol. We will have reported an error
1888 to the user in that case. */
1889
1890 if (hi->root.type == bfd_link_hash_indirect)
1891 {
1892 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1893 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1894 hi->dynamic_def |= h->dynamic_def;
1895
1896 /* See if the new flags lead us to realize that the symbol
1897 must be dynamic. */
1898 if (! *dynsym)
1899 {
1900 if (! dynamic)
1901 {
1902 if (! bfd_link_executable (info)
1903 || hi->ref_dynamic)
1904 *dynsym = TRUE;
1905 }
1906 else
1907 {
1908 if (hi->ref_regular)
1909 *dynsym = TRUE;
1910 }
1911 }
1912 }
1913 }
1914
1915 return TRUE;
1916 }
1917 \f
1918 /* This routine is used to export all defined symbols into the dynamic
1919 symbol table. It is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1925
1926 /* Ignore indirect symbols. These are added by the versioning code. */
1927 if (h->root.type == bfd_link_hash_indirect)
1928 return TRUE;
1929
1930 /* Ignore this if we won't export it. */
1931 if (!eif->info->export_dynamic && !h->dynamic)
1932 return TRUE;
1933
1934 if (h->dynindx == -1
1935 && (h->def_regular || h->ref_regular)
1936 && ! bfd_hide_sym_by_version (eif->info->version_info,
1937 h->root.root.string))
1938 {
1939 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1940 {
1941 eif->failed = TRUE;
1942 return FALSE;
1943 }
1944 }
1945
1946 return TRUE;
1947 }
1948 \f
1949 /* Look through the symbols which are defined in other shared
1950 libraries and referenced here. Update the list of version
1951 dependencies. This will be put into the .gnu.version_r section.
1952 This function is called via elf_link_hash_traverse. */
1953
1954 static bfd_boolean
1955 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1956 void *data)
1957 {
1958 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1959 Elf_Internal_Verneed *t;
1960 Elf_Internal_Vernaux *a;
1961 bfd_size_type amt;
1962
1963 /* We only care about symbols defined in shared objects with version
1964 information. */
1965 if (!h->def_dynamic
1966 || h->def_regular
1967 || h->dynindx == -1
1968 || h->verinfo.verdef == NULL
1969 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1970 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1971 return TRUE;
1972
1973 /* See if we already know about this version. */
1974 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1975 t != NULL;
1976 t = t->vn_nextref)
1977 {
1978 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1979 continue;
1980
1981 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1982 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1983 return TRUE;
1984
1985 break;
1986 }
1987
1988 /* This is a new version. Add it to tree we are building. */
1989
1990 if (t == NULL)
1991 {
1992 amt = sizeof *t;
1993 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1994 if (t == NULL)
1995 {
1996 rinfo->failed = TRUE;
1997 return FALSE;
1998 }
1999
2000 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2001 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2002 elf_tdata (rinfo->info->output_bfd)->verref = t;
2003 }
2004
2005 amt = sizeof *a;
2006 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2007 if (a == NULL)
2008 {
2009 rinfo->failed = TRUE;
2010 return FALSE;
2011 }
2012
2013 /* Note that we are copying a string pointer here, and testing it
2014 above. If bfd_elf_string_from_elf_section is ever changed to
2015 discard the string data when low in memory, this will have to be
2016 fixed. */
2017 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2018
2019 a->vna_flags = h->verinfo.verdef->vd_flags;
2020 a->vna_nextptr = t->vn_auxptr;
2021
2022 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2023 ++rinfo->vers;
2024
2025 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2026
2027 t->vn_auxptr = a;
2028
2029 return TRUE;
2030 }
2031
2032 /* Figure out appropriate versions for all the symbols. We may not
2033 have the version number script until we have read all of the input
2034 files, so until that point we don't know which symbols should be
2035 local. This function is called via elf_link_hash_traverse. */
2036
2037 static bfd_boolean
2038 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2039 {
2040 struct elf_info_failed *sinfo;
2041 struct bfd_link_info *info;
2042 const struct elf_backend_data *bed;
2043 struct elf_info_failed eif;
2044 char *p;
2045 bfd_size_type amt;
2046
2047 sinfo = (struct elf_info_failed *) data;
2048 info = sinfo->info;
2049
2050 /* Fix the symbol flags. */
2051 eif.failed = FALSE;
2052 eif.info = info;
2053 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2054 {
2055 if (eif.failed)
2056 sinfo->failed = TRUE;
2057 return FALSE;
2058 }
2059
2060 /* We only need version numbers for symbols defined in regular
2061 objects. */
2062 if (!h->def_regular)
2063 return TRUE;
2064
2065 bed = get_elf_backend_data (info->output_bfd);
2066 p = strchr (h->root.root.string, ELF_VER_CHR);
2067 if (p != NULL && h->verinfo.vertree == NULL)
2068 {
2069 struct bfd_elf_version_tree *t;
2070
2071 ++p;
2072 if (*p == ELF_VER_CHR)
2073 ++p;
2074
2075 /* If there is no version string, we can just return out. */
2076 if (*p == '\0')
2077 return TRUE;
2078
2079 /* Look for the version. If we find it, it is no longer weak. */
2080 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2081 {
2082 if (strcmp (t->name, p) == 0)
2083 {
2084 size_t len;
2085 char *alc;
2086 struct bfd_elf_version_expr *d;
2087
2088 len = p - h->root.root.string;
2089 alc = (char *) bfd_malloc (len);
2090 if (alc == NULL)
2091 {
2092 sinfo->failed = TRUE;
2093 return FALSE;
2094 }
2095 memcpy (alc, h->root.root.string, len - 1);
2096 alc[len - 1] = '\0';
2097 if (alc[len - 2] == ELF_VER_CHR)
2098 alc[len - 2] = '\0';
2099
2100 h->verinfo.vertree = t;
2101 t->used = TRUE;
2102 d = NULL;
2103
2104 if (t->globals.list != NULL)
2105 d = (*t->match) (&t->globals, NULL, alc);
2106
2107 /* See if there is anything to force this symbol to
2108 local scope. */
2109 if (d == NULL && t->locals.list != NULL)
2110 {
2111 d = (*t->match) (&t->locals, NULL, alc);
2112 if (d != NULL
2113 && h->dynindx != -1
2114 && ! info->export_dynamic)
2115 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2116 }
2117
2118 free (alc);
2119 break;
2120 }
2121 }
2122
2123 /* If we are building an application, we need to create a
2124 version node for this version. */
2125 if (t == NULL && bfd_link_executable (info))
2126 {
2127 struct bfd_elf_version_tree **pp;
2128 int version_index;
2129
2130 /* If we aren't going to export this symbol, we don't need
2131 to worry about it. */
2132 if (h->dynindx == -1)
2133 return TRUE;
2134
2135 amt = sizeof *t;
2136 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2137 if (t == NULL)
2138 {
2139 sinfo->failed = TRUE;
2140 return FALSE;
2141 }
2142
2143 t->name = p;
2144 t->name_indx = (unsigned int) -1;
2145 t->used = TRUE;
2146
2147 version_index = 1;
2148 /* Don't count anonymous version tag. */
2149 if (sinfo->info->version_info != NULL
2150 && sinfo->info->version_info->vernum == 0)
2151 version_index = 0;
2152 for (pp = &sinfo->info->version_info;
2153 *pp != NULL;
2154 pp = &(*pp)->next)
2155 ++version_index;
2156 t->vernum = version_index;
2157
2158 *pp = t;
2159
2160 h->verinfo.vertree = t;
2161 }
2162 else if (t == NULL)
2163 {
2164 /* We could not find the version for a symbol when
2165 generating a shared archive. Return an error. */
2166 (*_bfd_error_handler)
2167 (_("%B: version node not found for symbol %s"),
2168 info->output_bfd, h->root.root.string);
2169 bfd_set_error (bfd_error_bad_value);
2170 sinfo->failed = TRUE;
2171 return FALSE;
2172 }
2173 }
2174
2175 /* If we don't have a version for this symbol, see if we can find
2176 something. */
2177 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2178 {
2179 bfd_boolean hide;
2180
2181 h->verinfo.vertree
2182 = bfd_find_version_for_sym (sinfo->info->version_info,
2183 h->root.root.string, &hide);
2184 if (h->verinfo.vertree != NULL && hide)
2185 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2186 }
2187
2188 return TRUE;
2189 }
2190 \f
2191 /* Read and swap the relocs from the section indicated by SHDR. This
2192 may be either a REL or a RELA section. The relocations are
2193 translated into RELA relocations and stored in INTERNAL_RELOCS,
2194 which should have already been allocated to contain enough space.
2195 The EXTERNAL_RELOCS are a buffer where the external form of the
2196 relocations should be stored.
2197
2198 Returns FALSE if something goes wrong. */
2199
2200 static bfd_boolean
2201 elf_link_read_relocs_from_section (bfd *abfd,
2202 asection *sec,
2203 Elf_Internal_Shdr *shdr,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs)
2206 {
2207 const struct elf_backend_data *bed;
2208 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2209 const bfd_byte *erela;
2210 const bfd_byte *erelaend;
2211 Elf_Internal_Rela *irela;
2212 Elf_Internal_Shdr *symtab_hdr;
2213 size_t nsyms;
2214
2215 /* Position ourselves at the start of the section. */
2216 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2217 return FALSE;
2218
2219 /* Read the relocations. */
2220 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2221 return FALSE;
2222
2223 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2224 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2225
2226 bed = get_elf_backend_data (abfd);
2227
2228 /* Convert the external relocations to the internal format. */
2229 if (shdr->sh_entsize == bed->s->sizeof_rel)
2230 swap_in = bed->s->swap_reloc_in;
2231 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2232 swap_in = bed->s->swap_reloca_in;
2233 else
2234 {
2235 bfd_set_error (bfd_error_wrong_format);
2236 return FALSE;
2237 }
2238
2239 erela = (const bfd_byte *) external_relocs;
2240 erelaend = erela + shdr->sh_size;
2241 irela = internal_relocs;
2242 while (erela < erelaend)
2243 {
2244 bfd_vma r_symndx;
2245
2246 (*swap_in) (abfd, erela, irela);
2247 r_symndx = ELF32_R_SYM (irela->r_info);
2248 if (bed->s->arch_size == 64)
2249 r_symndx >>= 24;
2250 if (nsyms > 0)
2251 {
2252 if ((size_t) r_symndx >= nsyms)
2253 {
2254 (*_bfd_error_handler)
2255 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2256 " for offset 0x%lx in section `%A'"),
2257 abfd, sec,
2258 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2259 bfd_set_error (bfd_error_bad_value);
2260 return FALSE;
2261 }
2262 }
2263 else if (r_symndx != STN_UNDEF)
2264 {
2265 (*_bfd_error_handler)
2266 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2267 " when the object file has no symbol table"),
2268 abfd, sec,
2269 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2270 bfd_set_error (bfd_error_bad_value);
2271 return FALSE;
2272 }
2273 irela += bed->s->int_rels_per_ext_rel;
2274 erela += shdr->sh_entsize;
2275 }
2276
2277 return TRUE;
2278 }
2279
2280 /* Read and swap the relocs for a section O. They may have been
2281 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2282 not NULL, they are used as buffers to read into. They are known to
2283 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2284 the return value is allocated using either malloc or bfd_alloc,
2285 according to the KEEP_MEMORY argument. If O has two relocation
2286 sections (both REL and RELA relocations), then the REL_HDR
2287 relocations will appear first in INTERNAL_RELOCS, followed by the
2288 RELA_HDR relocations. */
2289
2290 Elf_Internal_Rela *
2291 _bfd_elf_link_read_relocs (bfd *abfd,
2292 asection *o,
2293 void *external_relocs,
2294 Elf_Internal_Rela *internal_relocs,
2295 bfd_boolean keep_memory)
2296 {
2297 void *alloc1 = NULL;
2298 Elf_Internal_Rela *alloc2 = NULL;
2299 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2300 struct bfd_elf_section_data *esdo = elf_section_data (o);
2301 Elf_Internal_Rela *internal_rela_relocs;
2302
2303 if (esdo->relocs != NULL)
2304 return esdo->relocs;
2305
2306 if (o->reloc_count == 0)
2307 return NULL;
2308
2309 if (internal_relocs == NULL)
2310 {
2311 bfd_size_type size;
2312
2313 size = o->reloc_count;
2314 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2315 if (keep_memory)
2316 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2317 else
2318 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2319 if (internal_relocs == NULL)
2320 goto error_return;
2321 }
2322
2323 if (external_relocs == NULL)
2324 {
2325 bfd_size_type size = 0;
2326
2327 if (esdo->rel.hdr)
2328 size += esdo->rel.hdr->sh_size;
2329 if (esdo->rela.hdr)
2330 size += esdo->rela.hdr->sh_size;
2331
2332 alloc1 = bfd_malloc (size);
2333 if (alloc1 == NULL)
2334 goto error_return;
2335 external_relocs = alloc1;
2336 }
2337
2338 internal_rela_relocs = internal_relocs;
2339 if (esdo->rel.hdr)
2340 {
2341 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2342 external_relocs,
2343 internal_relocs))
2344 goto error_return;
2345 external_relocs = (((bfd_byte *) external_relocs)
2346 + esdo->rel.hdr->sh_size);
2347 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2348 * bed->s->int_rels_per_ext_rel);
2349 }
2350
2351 if (esdo->rela.hdr
2352 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2353 external_relocs,
2354 internal_rela_relocs)))
2355 goto error_return;
2356
2357 /* Cache the results for next time, if we can. */
2358 if (keep_memory)
2359 esdo->relocs = internal_relocs;
2360
2361 if (alloc1 != NULL)
2362 free (alloc1);
2363
2364 /* Don't free alloc2, since if it was allocated we are passing it
2365 back (under the name of internal_relocs). */
2366
2367 return internal_relocs;
2368
2369 error_return:
2370 if (alloc1 != NULL)
2371 free (alloc1);
2372 if (alloc2 != NULL)
2373 {
2374 if (keep_memory)
2375 bfd_release (abfd, alloc2);
2376 else
2377 free (alloc2);
2378 }
2379 return NULL;
2380 }
2381
2382 /* Compute the size of, and allocate space for, REL_HDR which is the
2383 section header for a section containing relocations for O. */
2384
2385 static bfd_boolean
2386 _bfd_elf_link_size_reloc_section (bfd *abfd,
2387 struct bfd_elf_section_reloc_data *reldata)
2388 {
2389 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2390
2391 /* That allows us to calculate the size of the section. */
2392 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2393
2394 /* The contents field must last into write_object_contents, so we
2395 allocate it with bfd_alloc rather than malloc. Also since we
2396 cannot be sure that the contents will actually be filled in,
2397 we zero the allocated space. */
2398 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2399 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2400 return FALSE;
2401
2402 if (reldata->hashes == NULL && reldata->count)
2403 {
2404 struct elf_link_hash_entry **p;
2405
2406 p = ((struct elf_link_hash_entry **)
2407 bfd_zmalloc (reldata->count * sizeof (*p)));
2408 if (p == NULL)
2409 return FALSE;
2410
2411 reldata->hashes = p;
2412 }
2413
2414 return TRUE;
2415 }
2416
2417 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2418 originated from the section given by INPUT_REL_HDR) to the
2419 OUTPUT_BFD. */
2420
2421 bfd_boolean
2422 _bfd_elf_link_output_relocs (bfd *output_bfd,
2423 asection *input_section,
2424 Elf_Internal_Shdr *input_rel_hdr,
2425 Elf_Internal_Rela *internal_relocs,
2426 struct elf_link_hash_entry **rel_hash
2427 ATTRIBUTE_UNUSED)
2428 {
2429 Elf_Internal_Rela *irela;
2430 Elf_Internal_Rela *irelaend;
2431 bfd_byte *erel;
2432 struct bfd_elf_section_reloc_data *output_reldata;
2433 asection *output_section;
2434 const struct elf_backend_data *bed;
2435 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2436 struct bfd_elf_section_data *esdo;
2437
2438 output_section = input_section->output_section;
2439
2440 bed = get_elf_backend_data (output_bfd);
2441 esdo = elf_section_data (output_section);
2442 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2443 {
2444 output_reldata = &esdo->rel;
2445 swap_out = bed->s->swap_reloc_out;
2446 }
2447 else if (esdo->rela.hdr
2448 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2449 {
2450 output_reldata = &esdo->rela;
2451 swap_out = bed->s->swap_reloca_out;
2452 }
2453 else
2454 {
2455 (*_bfd_error_handler)
2456 (_("%B: relocation size mismatch in %B section %A"),
2457 output_bfd, input_section->owner, input_section);
2458 bfd_set_error (bfd_error_wrong_format);
2459 return FALSE;
2460 }
2461
2462 erel = output_reldata->hdr->contents;
2463 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2464 irela = internal_relocs;
2465 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2466 * bed->s->int_rels_per_ext_rel);
2467 while (irela < irelaend)
2468 {
2469 (*swap_out) (output_bfd, irela, erel);
2470 irela += bed->s->int_rels_per_ext_rel;
2471 erel += input_rel_hdr->sh_entsize;
2472 }
2473
2474 /* Bump the counter, so that we know where to add the next set of
2475 relocations. */
2476 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2477
2478 return TRUE;
2479 }
2480 \f
2481 /* Make weak undefined symbols in PIE dynamic. */
2482
2483 bfd_boolean
2484 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2485 struct elf_link_hash_entry *h)
2486 {
2487 if (bfd_link_pie (info)
2488 && h->dynindx == -1
2489 && h->root.type == bfd_link_hash_undefweak)
2490 return bfd_elf_link_record_dynamic_symbol (info, h);
2491
2492 return TRUE;
2493 }
2494
2495 /* Fix up the flags for a symbol. This handles various cases which
2496 can only be fixed after all the input files are seen. This is
2497 currently called by both adjust_dynamic_symbol and
2498 assign_sym_version, which is unnecessary but perhaps more robust in
2499 the face of future changes. */
2500
2501 static bfd_boolean
2502 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2503 struct elf_info_failed *eif)
2504 {
2505 const struct elf_backend_data *bed;
2506
2507 /* If this symbol was mentioned in a non-ELF file, try to set
2508 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2509 permit a non-ELF file to correctly refer to a symbol defined in
2510 an ELF dynamic object. */
2511 if (h->non_elf)
2512 {
2513 while (h->root.type == bfd_link_hash_indirect)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 if (h->root.type != bfd_link_hash_defined
2517 && h->root.type != bfd_link_hash_defweak)
2518 {
2519 h->ref_regular = 1;
2520 h->ref_regular_nonweak = 1;
2521 }
2522 else
2523 {
2524 if (h->root.u.def.section->owner != NULL
2525 && (bfd_get_flavour (h->root.u.def.section->owner)
2526 == bfd_target_elf_flavour))
2527 {
2528 h->ref_regular = 1;
2529 h->ref_regular_nonweak = 1;
2530 }
2531 else
2532 h->def_regular = 1;
2533 }
2534
2535 if (h->dynindx == -1
2536 && (h->def_dynamic
2537 || h->ref_dynamic))
2538 {
2539 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2540 {
2541 eif->failed = TRUE;
2542 return FALSE;
2543 }
2544 }
2545 }
2546 else
2547 {
2548 /* Unfortunately, NON_ELF is only correct if the symbol
2549 was first seen in a non-ELF file. Fortunately, if the symbol
2550 was first seen in an ELF file, we're probably OK unless the
2551 symbol was defined in a non-ELF file. Catch that case here.
2552 FIXME: We're still in trouble if the symbol was first seen in
2553 a dynamic object, and then later in a non-ELF regular object. */
2554 if ((h->root.type == bfd_link_hash_defined
2555 || h->root.type == bfd_link_hash_defweak)
2556 && !h->def_regular
2557 && (h->root.u.def.section->owner != NULL
2558 ? (bfd_get_flavour (h->root.u.def.section->owner)
2559 != bfd_target_elf_flavour)
2560 : (bfd_is_abs_section (h->root.u.def.section)
2561 && !h->def_dynamic)))
2562 h->def_regular = 1;
2563 }
2564
2565 /* Backend specific symbol fixup. */
2566 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2567 if (bed->elf_backend_fixup_symbol
2568 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2569 return FALSE;
2570
2571 /* If this is a final link, and the symbol was defined as a common
2572 symbol in a regular object file, and there was no definition in
2573 any dynamic object, then the linker will have allocated space for
2574 the symbol in a common section but the DEF_REGULAR
2575 flag will not have been set. */
2576 if (h->root.type == bfd_link_hash_defined
2577 && !h->def_regular
2578 && h->ref_regular
2579 && !h->def_dynamic
2580 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2581 h->def_regular = 1;
2582
2583 /* If -Bsymbolic was used (which means to bind references to global
2584 symbols to the definition within the shared object), and this
2585 symbol was defined in a regular object, then it actually doesn't
2586 need a PLT entry. Likewise, if the symbol has non-default
2587 visibility. If the symbol has hidden or internal visibility, we
2588 will force it local. */
2589 if (h->needs_plt
2590 && bfd_link_pic (eif->info)
2591 && is_elf_hash_table (eif->info->hash)
2592 && (SYMBOLIC_BIND (eif->info, h)
2593 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2594 && h->def_regular)
2595 {
2596 bfd_boolean force_local;
2597
2598 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2599 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2600 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2601 }
2602
2603 /* If a weak undefined symbol has non-default visibility, we also
2604 hide it from the dynamic linker. */
2605 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2606 && h->root.type == bfd_link_hash_undefweak)
2607 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2608
2609 /* If this is a weak defined symbol in a dynamic object, and we know
2610 the real definition in the dynamic object, copy interesting flags
2611 over to the real definition. */
2612 if (h->u.weakdef != NULL)
2613 {
2614 /* If the real definition is defined by a regular object file,
2615 don't do anything special. See the longer description in
2616 _bfd_elf_adjust_dynamic_symbol, below. */
2617 if (h->u.weakdef->def_regular)
2618 h->u.weakdef = NULL;
2619 else
2620 {
2621 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2622
2623 while (h->root.type == bfd_link_hash_indirect)
2624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2625
2626 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2627 || h->root.type == bfd_link_hash_defweak);
2628 BFD_ASSERT (weakdef->def_dynamic);
2629 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2630 || weakdef->root.type == bfd_link_hash_defweak);
2631 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2632 }
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Make the backend pick a good value for a dynamic symbol. This is
2639 called via elf_link_hash_traverse, and also calls itself
2640 recursively. */
2641
2642 static bfd_boolean
2643 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2644 {
2645 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2646 bfd *dynobj;
2647 const struct elf_backend_data *bed;
2648
2649 if (! is_elf_hash_table (eif->info->hash))
2650 return FALSE;
2651
2652 /* Ignore indirect symbols. These are added by the versioning code. */
2653 if (h->root.type == bfd_link_hash_indirect)
2654 return TRUE;
2655
2656 /* Fix the symbol flags. */
2657 if (! _bfd_elf_fix_symbol_flags (h, eif))
2658 return FALSE;
2659
2660 /* If this symbol does not require a PLT entry, and it is not
2661 defined by a dynamic object, or is not referenced by a regular
2662 object, ignore it. We do have to handle a weak defined symbol,
2663 even if no regular object refers to it, if we decided to add it
2664 to the dynamic symbol table. FIXME: Do we normally need to worry
2665 about symbols which are defined by one dynamic object and
2666 referenced by another one? */
2667 if (!h->needs_plt
2668 && h->type != STT_GNU_IFUNC
2669 && (h->def_regular
2670 || !h->def_dynamic
2671 || (!h->ref_regular
2672 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2673 {
2674 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2675 return TRUE;
2676 }
2677
2678 /* If we've already adjusted this symbol, don't do it again. This
2679 can happen via a recursive call. */
2680 if (h->dynamic_adjusted)
2681 return TRUE;
2682
2683 /* Don't look at this symbol again. Note that we must set this
2684 after checking the above conditions, because we may look at a
2685 symbol once, decide not to do anything, and then get called
2686 recursively later after REF_REGULAR is set below. */
2687 h->dynamic_adjusted = 1;
2688
2689 /* If this is a weak definition, and we know a real definition, and
2690 the real symbol is not itself defined by a regular object file,
2691 then get a good value for the real definition. We handle the
2692 real symbol first, for the convenience of the backend routine.
2693
2694 Note that there is a confusing case here. If the real definition
2695 is defined by a regular object file, we don't get the real symbol
2696 from the dynamic object, but we do get the weak symbol. If the
2697 processor backend uses a COPY reloc, then if some routine in the
2698 dynamic object changes the real symbol, we will not see that
2699 change in the corresponding weak symbol. This is the way other
2700 ELF linkers work as well, and seems to be a result of the shared
2701 library model.
2702
2703 I will clarify this issue. Most SVR4 shared libraries define the
2704 variable _timezone and define timezone as a weak synonym. The
2705 tzset call changes _timezone. If you write
2706 extern int timezone;
2707 int _timezone = 5;
2708 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2709 you might expect that, since timezone is a synonym for _timezone,
2710 the same number will print both times. However, if the processor
2711 backend uses a COPY reloc, then actually timezone will be copied
2712 into your process image, and, since you define _timezone
2713 yourself, _timezone will not. Thus timezone and _timezone will
2714 wind up at different memory locations. The tzset call will set
2715 _timezone, leaving timezone unchanged. */
2716
2717 if (h->u.weakdef != NULL)
2718 {
2719 /* If we get to this point, there is an implicit reference to
2720 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2721 h->u.weakdef->ref_regular = 1;
2722
2723 /* Ensure that the backend adjust_dynamic_symbol function sees
2724 H->U.WEAKDEF before H by recursively calling ourselves. */
2725 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2726 return FALSE;
2727 }
2728
2729 /* If a symbol has no type and no size and does not require a PLT
2730 entry, then we are probably about to do the wrong thing here: we
2731 are probably going to create a COPY reloc for an empty object.
2732 This case can arise when a shared object is built with assembly
2733 code, and the assembly code fails to set the symbol type. */
2734 if (h->size == 0
2735 && h->type == STT_NOTYPE
2736 && !h->needs_plt)
2737 (*_bfd_error_handler)
2738 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2739 h->root.root.string);
2740
2741 dynobj = elf_hash_table (eif->info)->dynobj;
2742 bed = get_elf_backend_data (dynobj);
2743
2744 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2745 {
2746 eif->failed = TRUE;
2747 return FALSE;
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2754 DYNBSS. */
2755
2756 bfd_boolean
2757 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2758 struct elf_link_hash_entry *h,
2759 asection *dynbss)
2760 {
2761 unsigned int power_of_two;
2762 bfd_vma mask;
2763 asection *sec = h->root.u.def.section;
2764
2765 /* The section aligment of definition is the maximum alignment
2766 requirement of symbols defined in the section. Since we don't
2767 know the symbol alignment requirement, we start with the
2768 maximum alignment and check low bits of the symbol address
2769 for the minimum alignment. */
2770 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2771 mask = ((bfd_vma) 1 << power_of_two) - 1;
2772 while ((h->root.u.def.value & mask) != 0)
2773 {
2774 mask >>= 1;
2775 --power_of_two;
2776 }
2777
2778 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2779 dynbss))
2780 {
2781 /* Adjust the section alignment if needed. */
2782 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2783 power_of_two))
2784 return FALSE;
2785 }
2786
2787 /* We make sure that the symbol will be aligned properly. */
2788 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2789
2790 /* Define the symbol as being at this point in DYNBSS. */
2791 h->root.u.def.section = dynbss;
2792 h->root.u.def.value = dynbss->size;
2793
2794 /* Increment the size of DYNBSS to make room for the symbol. */
2795 dynbss->size += h->size;
2796
2797 /* No error if extern_protected_data is true. */
2798 if (h->protected_def
2799 && (!info->extern_protected_data
2800 || (info->extern_protected_data < 0
2801 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2802 info->callbacks->einfo
2803 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2804 h->root.root.string);
2805
2806 return TRUE;
2807 }
2808
2809 /* Adjust all external symbols pointing into SEC_MERGE sections
2810 to reflect the object merging within the sections. */
2811
2812 static bfd_boolean
2813 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2814 {
2815 asection *sec;
2816
2817 if ((h->root.type == bfd_link_hash_defined
2818 || h->root.type == bfd_link_hash_defweak)
2819 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2820 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2821 {
2822 bfd *output_bfd = (bfd *) data;
2823
2824 h->root.u.def.value =
2825 _bfd_merged_section_offset (output_bfd,
2826 &h->root.u.def.section,
2827 elf_section_data (sec)->sec_info,
2828 h->root.u.def.value);
2829 }
2830
2831 return TRUE;
2832 }
2833
2834 /* Returns false if the symbol referred to by H should be considered
2835 to resolve local to the current module, and true if it should be
2836 considered to bind dynamically. */
2837
2838 bfd_boolean
2839 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2840 struct bfd_link_info *info,
2841 bfd_boolean not_local_protected)
2842 {
2843 bfd_boolean binding_stays_local_p;
2844 const struct elf_backend_data *bed;
2845 struct elf_link_hash_table *hash_table;
2846
2847 if (h == NULL)
2848 return FALSE;
2849
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 /* If it was forced local, then clearly it's not dynamic. */
2855 if (h->dynindx == -1)
2856 return FALSE;
2857 if (h->forced_local)
2858 return FALSE;
2859
2860 /* Identify the cases where name binding rules say that a
2861 visible symbol resolves locally. */
2862 binding_stays_local_p = (bfd_link_executable (info)
2863 || SYMBOLIC_BIND (info, h));
2864
2865 switch (ELF_ST_VISIBILITY (h->other))
2866 {
2867 case STV_INTERNAL:
2868 case STV_HIDDEN:
2869 return FALSE;
2870
2871 case STV_PROTECTED:
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return FALSE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!not_local_protected || !bed->is_function_type (h->type))
2882 binding_stays_local_p = TRUE;
2883 break;
2884
2885 default:
2886 break;
2887 }
2888
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2891 return TRUE;
2892
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p;
2896 }
2897
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols. The two functions are virtually identical except
2902 for the place where forced_local and dynindx == -1 are tested. If
2903 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2904 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2905 the symbol is local only for defined symbols.
2906 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2907 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2908 treatment of undefined weak symbols. For those that do not make
2909 undefined weak symbols dynamic, both functions may return false. */
2910
2911 bfd_boolean
2912 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2913 struct bfd_link_info *info,
2914 bfd_boolean local_protected)
2915 {
2916 const struct elf_backend_data *bed;
2917 struct elf_link_hash_table *hash_table;
2918
2919 /* If it's a local sym, of course we resolve locally. */
2920 if (h == NULL)
2921 return TRUE;
2922
2923 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2924 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2925 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2926 return TRUE;
2927
2928 /* Common symbols that become definitions don't get the DEF_REGULAR
2929 flag set, so test it first, and don't bail out. */
2930 if (ELF_COMMON_DEF_P (h))
2931 /* Do nothing. */;
2932 /* If we don't have a definition in a regular file, then we can't
2933 resolve locally. The sym is either undefined or dynamic. */
2934 else if (!h->def_regular)
2935 return FALSE;
2936
2937 /* Forced local symbols resolve locally. */
2938 if (h->forced_local)
2939 return TRUE;
2940
2941 /* As do non-dynamic symbols. */
2942 if (h->dynindx == -1)
2943 return TRUE;
2944
2945 /* At this point, we know the symbol is defined and dynamic. In an
2946 executable it must resolve locally, likewise when building symbolic
2947 shared libraries. */
2948 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2949 return TRUE;
2950
2951 /* Now deal with defined dynamic symbols in shared libraries. Ones
2952 with default visibility might not resolve locally. */
2953 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2954 return FALSE;
2955
2956 hash_table = elf_hash_table (info);
2957 if (!is_elf_hash_table (hash_table))
2958 return TRUE;
2959
2960 bed = get_elf_backend_data (hash_table->dynobj);
2961
2962 /* If extern_protected_data is false, STV_PROTECTED non-function
2963 symbols are local. */
2964 if ((!info->extern_protected_data
2965 || (info->extern_protected_data < 0
2966 && !bed->extern_protected_data))
2967 && !bed->is_function_type (h->type))
2968 return TRUE;
2969
2970 /* Function pointer equality tests may require that STV_PROTECTED
2971 symbols be treated as dynamic symbols. If the address of a
2972 function not defined in an executable is set to that function's
2973 plt entry in the executable, then the address of the function in
2974 a shared library must also be the plt entry in the executable. */
2975 return local_protected;
2976 }
2977
2978 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2979 aligned. Returns the first TLS output section. */
2980
2981 struct bfd_section *
2982 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2983 {
2984 struct bfd_section *sec, *tls;
2985 unsigned int align = 0;
2986
2987 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2988 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2989 break;
2990 tls = sec;
2991
2992 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2993 if (sec->alignment_power > align)
2994 align = sec->alignment_power;
2995
2996 elf_hash_table (info)->tls_sec = tls;
2997
2998 /* Ensure the alignment of the first section is the largest alignment,
2999 so that the tls segment starts aligned. */
3000 if (tls != NULL)
3001 tls->alignment_power = align;
3002
3003 return tls;
3004 }
3005
3006 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3007 static bfd_boolean
3008 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3009 Elf_Internal_Sym *sym)
3010 {
3011 const struct elf_backend_data *bed;
3012
3013 /* Local symbols do not count, but target specific ones might. */
3014 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3015 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3016 return FALSE;
3017
3018 bed = get_elf_backend_data (abfd);
3019 /* Function symbols do not count. */
3020 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3021 return FALSE;
3022
3023 /* If the section is undefined, then so is the symbol. */
3024 if (sym->st_shndx == SHN_UNDEF)
3025 return FALSE;
3026
3027 /* If the symbol is defined in the common section, then
3028 it is a common definition and so does not count. */
3029 if (bed->common_definition (sym))
3030 return FALSE;
3031
3032 /* If the symbol is in a target specific section then we
3033 must rely upon the backend to tell us what it is. */
3034 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3035 /* FIXME - this function is not coded yet:
3036
3037 return _bfd_is_global_symbol_definition (abfd, sym);
3038
3039 Instead for now assume that the definition is not global,
3040 Even if this is wrong, at least the linker will behave
3041 in the same way that it used to do. */
3042 return FALSE;
3043
3044 return TRUE;
3045 }
3046
3047 /* Search the symbol table of the archive element of the archive ABFD
3048 whose archive map contains a mention of SYMDEF, and determine if
3049 the symbol is defined in this element. */
3050 static bfd_boolean
3051 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3052 {
3053 Elf_Internal_Shdr * hdr;
3054 bfd_size_type symcount;
3055 bfd_size_type extsymcount;
3056 bfd_size_type extsymoff;
3057 Elf_Internal_Sym *isymbuf;
3058 Elf_Internal_Sym *isym;
3059 Elf_Internal_Sym *isymend;
3060 bfd_boolean result;
3061
3062 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3063 if (abfd == NULL)
3064 return FALSE;
3065
3066 /* Return FALSE if the object has been claimed by plugin. */
3067 if (abfd->plugin_format == bfd_plugin_yes)
3068 return FALSE;
3069
3070 if (! bfd_check_format (abfd, bfd_object))
3071 return FALSE;
3072
3073 /* Select the appropriate symbol table. */
3074 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3075 hdr = &elf_tdata (abfd)->symtab_hdr;
3076 else
3077 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3078
3079 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3080
3081 /* The sh_info field of the symtab header tells us where the
3082 external symbols start. We don't care about the local symbols. */
3083 if (elf_bad_symtab (abfd))
3084 {
3085 extsymcount = symcount;
3086 extsymoff = 0;
3087 }
3088 else
3089 {
3090 extsymcount = symcount - hdr->sh_info;
3091 extsymoff = hdr->sh_info;
3092 }
3093
3094 if (extsymcount == 0)
3095 return FALSE;
3096
3097 /* Read in the symbol table. */
3098 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3099 NULL, NULL, NULL);
3100 if (isymbuf == NULL)
3101 return FALSE;
3102
3103 /* Scan the symbol table looking for SYMDEF. */
3104 result = FALSE;
3105 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3106 {
3107 const char *name;
3108
3109 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3110 isym->st_name);
3111 if (name == NULL)
3112 break;
3113
3114 if (strcmp (name, symdef->name) == 0)
3115 {
3116 result = is_global_data_symbol_definition (abfd, isym);
3117 break;
3118 }
3119 }
3120
3121 free (isymbuf);
3122
3123 return result;
3124 }
3125 \f
3126 /* Add an entry to the .dynamic table. */
3127
3128 bfd_boolean
3129 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3130 bfd_vma tag,
3131 bfd_vma val)
3132 {
3133 struct elf_link_hash_table *hash_table;
3134 const struct elf_backend_data *bed;
3135 asection *s;
3136 bfd_size_type newsize;
3137 bfd_byte *newcontents;
3138 Elf_Internal_Dyn dyn;
3139
3140 hash_table = elf_hash_table (info);
3141 if (! is_elf_hash_table (hash_table))
3142 return FALSE;
3143
3144 bed = get_elf_backend_data (hash_table->dynobj);
3145 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3146 BFD_ASSERT (s != NULL);
3147
3148 newsize = s->size + bed->s->sizeof_dyn;
3149 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3150 if (newcontents == NULL)
3151 return FALSE;
3152
3153 dyn.d_tag = tag;
3154 dyn.d_un.d_val = val;
3155 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3156
3157 s->size = newsize;
3158 s->contents = newcontents;
3159
3160 return TRUE;
3161 }
3162
3163 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3164 otherwise just check whether one already exists. Returns -1 on error,
3165 1 if a DT_NEEDED tag already exists, and 0 on success. */
3166
3167 static int
3168 elf_add_dt_needed_tag (bfd *abfd,
3169 struct bfd_link_info *info,
3170 const char *soname,
3171 bfd_boolean do_it)
3172 {
3173 struct elf_link_hash_table *hash_table;
3174 bfd_size_type strindex;
3175
3176 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3177 return -1;
3178
3179 hash_table = elf_hash_table (info);
3180 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3181 if (strindex == (bfd_size_type) -1)
3182 return -1;
3183
3184 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3185 {
3186 asection *sdyn;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 bed = get_elf_backend_data (hash_table->dynobj);
3191 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3192 if (sdyn != NULL)
3193 for (extdyn = sdyn->contents;
3194 extdyn < sdyn->contents + sdyn->size;
3195 extdyn += bed->s->sizeof_dyn)
3196 {
3197 Elf_Internal_Dyn dyn;
3198
3199 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3200 if (dyn.d_tag == DT_NEEDED
3201 && dyn.d_un.d_val == strindex)
3202 {
3203 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3204 return 1;
3205 }
3206 }
3207 }
3208
3209 if (do_it)
3210 {
3211 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3212 return -1;
3213
3214 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3215 return -1;
3216 }
3217 else
3218 /* We were just checking for existence of the tag. */
3219 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3220
3221 return 0;
3222 }
3223
3224 static bfd_boolean
3225 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3226 {
3227 for (; needed != NULL; needed = needed->next)
3228 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3229 && strcmp (soname, needed->name) == 0)
3230 return TRUE;
3231
3232 return FALSE;
3233 }
3234
3235 /* Sort symbol by value, section, and size. */
3236 static int
3237 elf_sort_symbol (const void *arg1, const void *arg2)
3238 {
3239 const struct elf_link_hash_entry *h1;
3240 const struct elf_link_hash_entry *h2;
3241 bfd_signed_vma vdiff;
3242
3243 h1 = *(const struct elf_link_hash_entry **) arg1;
3244 h2 = *(const struct elf_link_hash_entry **) arg2;
3245 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3246 if (vdiff != 0)
3247 return vdiff > 0 ? 1 : -1;
3248 else
3249 {
3250 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3251 if (sdiff != 0)
3252 return sdiff > 0 ? 1 : -1;
3253 }
3254 vdiff = h1->size - h2->size;
3255 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3256 }
3257
3258 /* This function is used to adjust offsets into .dynstr for
3259 dynamic symbols. This is called via elf_link_hash_traverse. */
3260
3261 static bfd_boolean
3262 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3263 {
3264 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3265
3266 if (h->dynindx != -1)
3267 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3268 return TRUE;
3269 }
3270
3271 /* Assign string offsets in .dynstr, update all structures referencing
3272 them. */
3273
3274 static bfd_boolean
3275 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3276 {
3277 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3278 struct elf_link_local_dynamic_entry *entry;
3279 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3280 bfd *dynobj = hash_table->dynobj;
3281 asection *sdyn;
3282 bfd_size_type size;
3283 const struct elf_backend_data *bed;
3284 bfd_byte *extdyn;
3285
3286 _bfd_elf_strtab_finalize (dynstr);
3287 size = _bfd_elf_strtab_size (dynstr);
3288
3289 bed = get_elf_backend_data (dynobj);
3290 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3291 BFD_ASSERT (sdyn != NULL);
3292
3293 /* Update all .dynamic entries referencing .dynstr strings. */
3294 for (extdyn = sdyn->contents;
3295 extdyn < sdyn->contents + sdyn->size;
3296 extdyn += bed->s->sizeof_dyn)
3297 {
3298 Elf_Internal_Dyn dyn;
3299
3300 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3301 switch (dyn.d_tag)
3302 {
3303 case DT_STRSZ:
3304 dyn.d_un.d_val = size;
3305 break;
3306 case DT_NEEDED:
3307 case DT_SONAME:
3308 case DT_RPATH:
3309 case DT_RUNPATH:
3310 case DT_FILTER:
3311 case DT_AUXILIARY:
3312 case DT_AUDIT:
3313 case DT_DEPAUDIT:
3314 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3315 break;
3316 default:
3317 continue;
3318 }
3319 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3320 }
3321
3322 /* Now update local dynamic symbols. */
3323 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3324 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3325 entry->isym.st_name);
3326
3327 /* And the rest of dynamic symbols. */
3328 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3329
3330 /* Adjust version definitions. */
3331 if (elf_tdata (output_bfd)->cverdefs)
3332 {
3333 asection *s;
3334 bfd_byte *p;
3335 bfd_size_type i;
3336 Elf_Internal_Verdef def;
3337 Elf_Internal_Verdaux defaux;
3338
3339 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3340 p = s->contents;
3341 do
3342 {
3343 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3344 &def);
3345 p += sizeof (Elf_External_Verdef);
3346 if (def.vd_aux != sizeof (Elf_External_Verdef))
3347 continue;
3348 for (i = 0; i < def.vd_cnt; ++i)
3349 {
3350 _bfd_elf_swap_verdaux_in (output_bfd,
3351 (Elf_External_Verdaux *) p, &defaux);
3352 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3353 defaux.vda_name);
3354 _bfd_elf_swap_verdaux_out (output_bfd,
3355 &defaux, (Elf_External_Verdaux *) p);
3356 p += sizeof (Elf_External_Verdaux);
3357 }
3358 }
3359 while (def.vd_next);
3360 }
3361
3362 /* Adjust version references. */
3363 if (elf_tdata (output_bfd)->verref)
3364 {
3365 asection *s;
3366 bfd_byte *p;
3367 bfd_size_type i;
3368 Elf_Internal_Verneed need;
3369 Elf_Internal_Vernaux needaux;
3370
3371 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3372 p = s->contents;
3373 do
3374 {
3375 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3376 &need);
3377 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3378 _bfd_elf_swap_verneed_out (output_bfd, &need,
3379 (Elf_External_Verneed *) p);
3380 p += sizeof (Elf_External_Verneed);
3381 for (i = 0; i < need.vn_cnt; ++i)
3382 {
3383 _bfd_elf_swap_vernaux_in (output_bfd,
3384 (Elf_External_Vernaux *) p, &needaux);
3385 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3386 needaux.vna_name);
3387 _bfd_elf_swap_vernaux_out (output_bfd,
3388 &needaux,
3389 (Elf_External_Vernaux *) p);
3390 p += sizeof (Elf_External_Vernaux);
3391 }
3392 }
3393 while (need.vn_next);
3394 }
3395
3396 return TRUE;
3397 }
3398 \f
3399 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3400 The default is to only match when the INPUT and OUTPUT are exactly
3401 the same target. */
3402
3403 bfd_boolean
3404 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3405 const bfd_target *output)
3406 {
3407 return input == output;
3408 }
3409
3410 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3411 This version is used when different targets for the same architecture
3412 are virtually identical. */
3413
3414 bfd_boolean
3415 _bfd_elf_relocs_compatible (const bfd_target *input,
3416 const bfd_target *output)
3417 {
3418 const struct elf_backend_data *obed, *ibed;
3419
3420 if (input == output)
3421 return TRUE;
3422
3423 ibed = xvec_get_elf_backend_data (input);
3424 obed = xvec_get_elf_backend_data (output);
3425
3426 if (ibed->arch != obed->arch)
3427 return FALSE;
3428
3429 /* If both backends are using this function, deem them compatible. */
3430 return ibed->relocs_compatible == obed->relocs_compatible;
3431 }
3432
3433 /* Make a special call to the linker "notice" function to tell it that
3434 we are about to handle an as-needed lib, or have finished
3435 processing the lib. */
3436
3437 bfd_boolean
3438 _bfd_elf_notice_as_needed (bfd *ibfd,
3439 struct bfd_link_info *info,
3440 enum notice_asneeded_action act)
3441 {
3442 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3443 }
3444
3445 /* Add symbols from an ELF object file to the linker hash table. */
3446
3447 static bfd_boolean
3448 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3449 {
3450 Elf_Internal_Ehdr *ehdr;
3451 Elf_Internal_Shdr *hdr;
3452 bfd_size_type symcount;
3453 bfd_size_type extsymcount;
3454 bfd_size_type extsymoff;
3455 struct elf_link_hash_entry **sym_hash;
3456 bfd_boolean dynamic;
3457 Elf_External_Versym *extversym = NULL;
3458 Elf_External_Versym *ever;
3459 struct elf_link_hash_entry *weaks;
3460 struct elf_link_hash_entry **nondeflt_vers = NULL;
3461 bfd_size_type nondeflt_vers_cnt = 0;
3462 Elf_Internal_Sym *isymbuf = NULL;
3463 Elf_Internal_Sym *isym;
3464 Elf_Internal_Sym *isymend;
3465 const struct elf_backend_data *bed;
3466 bfd_boolean add_needed;
3467 struct elf_link_hash_table *htab;
3468 bfd_size_type amt;
3469 void *alloc_mark = NULL;
3470 struct bfd_hash_entry **old_table = NULL;
3471 unsigned int old_size = 0;
3472 unsigned int old_count = 0;
3473 void *old_tab = NULL;
3474 void *old_ent;
3475 struct bfd_link_hash_entry *old_undefs = NULL;
3476 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3477 long old_dynsymcount = 0;
3478 bfd_size_type old_dynstr_size = 0;
3479 size_t tabsize = 0;
3480 asection *s;
3481 bfd_boolean just_syms;
3482
3483 htab = elf_hash_table (info);
3484 bed = get_elf_backend_data (abfd);
3485
3486 if ((abfd->flags & DYNAMIC) == 0)
3487 dynamic = FALSE;
3488 else
3489 {
3490 dynamic = TRUE;
3491
3492 /* You can't use -r against a dynamic object. Also, there's no
3493 hope of using a dynamic object which does not exactly match
3494 the format of the output file. */
3495 if (bfd_link_relocatable (info)
3496 || !is_elf_hash_table (htab)
3497 || info->output_bfd->xvec != abfd->xvec)
3498 {
3499 if (bfd_link_relocatable (info))
3500 bfd_set_error (bfd_error_invalid_operation);
3501 else
3502 bfd_set_error (bfd_error_wrong_format);
3503 goto error_return;
3504 }
3505 }
3506
3507 ehdr = elf_elfheader (abfd);
3508 if (info->warn_alternate_em
3509 && bed->elf_machine_code != ehdr->e_machine
3510 && ((bed->elf_machine_alt1 != 0
3511 && ehdr->e_machine == bed->elf_machine_alt1)
3512 || (bed->elf_machine_alt2 != 0
3513 && ehdr->e_machine == bed->elf_machine_alt2)))
3514 info->callbacks->einfo
3515 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3516 ehdr->e_machine, abfd, bed->elf_machine_code);
3517
3518 /* As a GNU extension, any input sections which are named
3519 .gnu.warning.SYMBOL are treated as warning symbols for the given
3520 symbol. This differs from .gnu.warning sections, which generate
3521 warnings when they are included in an output file. */
3522 /* PR 12761: Also generate this warning when building shared libraries. */
3523 for (s = abfd->sections; s != NULL; s = s->next)
3524 {
3525 const char *name;
3526
3527 name = bfd_get_section_name (abfd, s);
3528 if (CONST_STRNEQ (name, ".gnu.warning."))
3529 {
3530 char *msg;
3531 bfd_size_type sz;
3532
3533 name += sizeof ".gnu.warning." - 1;
3534
3535 /* If this is a shared object, then look up the symbol
3536 in the hash table. If it is there, and it is already
3537 been defined, then we will not be using the entry
3538 from this shared object, so we don't need to warn.
3539 FIXME: If we see the definition in a regular object
3540 later on, we will warn, but we shouldn't. The only
3541 fix is to keep track of what warnings we are supposed
3542 to emit, and then handle them all at the end of the
3543 link. */
3544 if (dynamic)
3545 {
3546 struct elf_link_hash_entry *h;
3547
3548 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3549
3550 /* FIXME: What about bfd_link_hash_common? */
3551 if (h != NULL
3552 && (h->root.type == bfd_link_hash_defined
3553 || h->root.type == bfd_link_hash_defweak))
3554 continue;
3555 }
3556
3557 sz = s->size;
3558 msg = (char *) bfd_alloc (abfd, sz + 1);
3559 if (msg == NULL)
3560 goto error_return;
3561
3562 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3563 goto error_return;
3564
3565 msg[sz] = '\0';
3566
3567 if (! (_bfd_generic_link_add_one_symbol
3568 (info, abfd, name, BSF_WARNING, s, 0, msg,
3569 FALSE, bed->collect, NULL)))
3570 goto error_return;
3571
3572 if (bfd_link_executable (info))
3573 {
3574 /* Clobber the section size so that the warning does
3575 not get copied into the output file. */
3576 s->size = 0;
3577
3578 /* Also set SEC_EXCLUDE, so that symbols defined in
3579 the warning section don't get copied to the output. */
3580 s->flags |= SEC_EXCLUDE;
3581 }
3582 }
3583 }
3584
3585 just_syms = ((s = abfd->sections) != NULL
3586 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3587
3588 add_needed = TRUE;
3589 if (! dynamic)
3590 {
3591 /* If we are creating a shared library, create all the dynamic
3592 sections immediately. We need to attach them to something,
3593 so we attach them to this BFD, provided it is the right
3594 format and is not from ld --just-symbols. FIXME: If there
3595 are no input BFD's of the same format as the output, we can't
3596 make a shared library. */
3597 if (!just_syms
3598 && bfd_link_pic (info)
3599 && is_elf_hash_table (htab)
3600 && info->output_bfd->xvec == abfd->xvec
3601 && !htab->dynamic_sections_created)
3602 {
3603 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3604 goto error_return;
3605 }
3606 }
3607 else if (!is_elf_hash_table (htab))
3608 goto error_return;
3609 else
3610 {
3611 const char *soname = NULL;
3612 char *audit = NULL;
3613 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3614 int ret;
3615
3616 /* ld --just-symbols and dynamic objects don't mix very well.
3617 ld shouldn't allow it. */
3618 if (just_syms)
3619 abort ();
3620
3621 /* If this dynamic lib was specified on the command line with
3622 --as-needed in effect, then we don't want to add a DT_NEEDED
3623 tag unless the lib is actually used. Similary for libs brought
3624 in by another lib's DT_NEEDED. When --no-add-needed is used
3625 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3626 any dynamic library in DT_NEEDED tags in the dynamic lib at
3627 all. */
3628 add_needed = (elf_dyn_lib_class (abfd)
3629 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3630 | DYN_NO_NEEDED)) == 0;
3631
3632 s = bfd_get_section_by_name (abfd, ".dynamic");
3633 if (s != NULL)
3634 {
3635 bfd_byte *dynbuf;
3636 bfd_byte *extdyn;
3637 unsigned int elfsec;
3638 unsigned long shlink;
3639
3640 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3641 {
3642 error_free_dyn:
3643 free (dynbuf);
3644 goto error_return;
3645 }
3646
3647 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3648 if (elfsec == SHN_BAD)
3649 goto error_free_dyn;
3650 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3651
3652 for (extdyn = dynbuf;
3653 extdyn < dynbuf + s->size;
3654 extdyn += bed->s->sizeof_dyn)
3655 {
3656 Elf_Internal_Dyn dyn;
3657
3658 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3659 if (dyn.d_tag == DT_SONAME)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 if (soname == NULL)
3664 goto error_free_dyn;
3665 }
3666 if (dyn.d_tag == DT_NEEDED)
3667 {
3668 struct bfd_link_needed_list *n, **pn;
3669 char *fnm, *anm;
3670 unsigned int tagv = dyn.d_un.d_val;
3671
3672 amt = sizeof (struct bfd_link_needed_list);
3673 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3674 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3675 if (n == NULL || fnm == NULL)
3676 goto error_free_dyn;
3677 amt = strlen (fnm) + 1;
3678 anm = (char *) bfd_alloc (abfd, amt);
3679 if (anm == NULL)
3680 goto error_free_dyn;
3681 memcpy (anm, fnm, amt);
3682 n->name = anm;
3683 n->by = abfd;
3684 n->next = NULL;
3685 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3686 ;
3687 *pn = n;
3688 }
3689 if (dyn.d_tag == DT_RUNPATH)
3690 {
3691 struct bfd_link_needed_list *n, **pn;
3692 char *fnm, *anm;
3693 unsigned int tagv = dyn.d_un.d_val;
3694
3695 amt = sizeof (struct bfd_link_needed_list);
3696 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3697 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3698 if (n == NULL || fnm == NULL)
3699 goto error_free_dyn;
3700 amt = strlen (fnm) + 1;
3701 anm = (char *) bfd_alloc (abfd, amt);
3702 if (anm == NULL)
3703 goto error_free_dyn;
3704 memcpy (anm, fnm, amt);
3705 n->name = anm;
3706 n->by = abfd;
3707 n->next = NULL;
3708 for (pn = & runpath;
3709 *pn != NULL;
3710 pn = &(*pn)->next)
3711 ;
3712 *pn = n;
3713 }
3714 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3715 if (!runpath && dyn.d_tag == DT_RPATH)
3716 {
3717 struct bfd_link_needed_list *n, **pn;
3718 char *fnm, *anm;
3719 unsigned int tagv = dyn.d_un.d_val;
3720
3721 amt = sizeof (struct bfd_link_needed_list);
3722 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3723 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3724 if (n == NULL || fnm == NULL)
3725 goto error_free_dyn;
3726 amt = strlen (fnm) + 1;
3727 anm = (char *) bfd_alloc (abfd, amt);
3728 if (anm == NULL)
3729 goto error_free_dyn;
3730 memcpy (anm, fnm, amt);
3731 n->name = anm;
3732 n->by = abfd;
3733 n->next = NULL;
3734 for (pn = & rpath;
3735 *pn != NULL;
3736 pn = &(*pn)->next)
3737 ;
3738 *pn = n;
3739 }
3740 if (dyn.d_tag == DT_AUDIT)
3741 {
3742 unsigned int tagv = dyn.d_un.d_val;
3743 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3744 }
3745 }
3746
3747 free (dynbuf);
3748 }
3749
3750 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3751 frees all more recently bfd_alloc'd blocks as well. */
3752 if (runpath)
3753 rpath = runpath;
3754
3755 if (rpath)
3756 {
3757 struct bfd_link_needed_list **pn;
3758 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3759 ;
3760 *pn = rpath;
3761 }
3762
3763 /* We do not want to include any of the sections in a dynamic
3764 object in the output file. We hack by simply clobbering the
3765 list of sections in the BFD. This could be handled more
3766 cleanly by, say, a new section flag; the existing
3767 SEC_NEVER_LOAD flag is not the one we want, because that one
3768 still implies that the section takes up space in the output
3769 file. */
3770 bfd_section_list_clear (abfd);
3771
3772 /* Find the name to use in a DT_NEEDED entry that refers to this
3773 object. If the object has a DT_SONAME entry, we use it.
3774 Otherwise, if the generic linker stuck something in
3775 elf_dt_name, we use that. Otherwise, we just use the file
3776 name. */
3777 if (soname == NULL || *soname == '\0')
3778 {
3779 soname = elf_dt_name (abfd);
3780 if (soname == NULL || *soname == '\0')
3781 soname = bfd_get_filename (abfd);
3782 }
3783
3784 /* Save the SONAME because sometimes the linker emulation code
3785 will need to know it. */
3786 elf_dt_name (abfd) = soname;
3787
3788 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3789 if (ret < 0)
3790 goto error_return;
3791
3792 /* If we have already included this dynamic object in the
3793 link, just ignore it. There is no reason to include a
3794 particular dynamic object more than once. */
3795 if (ret > 0)
3796 return TRUE;
3797
3798 /* Save the DT_AUDIT entry for the linker emulation code. */
3799 elf_dt_audit (abfd) = audit;
3800 }
3801
3802 /* If this is a dynamic object, we always link against the .dynsym
3803 symbol table, not the .symtab symbol table. The dynamic linker
3804 will only see the .dynsym symbol table, so there is no reason to
3805 look at .symtab for a dynamic object. */
3806
3807 if (! dynamic || elf_dynsymtab (abfd) == 0)
3808 hdr = &elf_tdata (abfd)->symtab_hdr;
3809 else
3810 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3811
3812 symcount = hdr->sh_size / bed->s->sizeof_sym;
3813
3814 /* The sh_info field of the symtab header tells us where the
3815 external symbols start. We don't care about the local symbols at
3816 this point. */
3817 if (elf_bad_symtab (abfd))
3818 {
3819 extsymcount = symcount;
3820 extsymoff = 0;
3821 }
3822 else
3823 {
3824 extsymcount = symcount - hdr->sh_info;
3825 extsymoff = hdr->sh_info;
3826 }
3827
3828 sym_hash = elf_sym_hashes (abfd);
3829 if (extsymcount != 0)
3830 {
3831 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3832 NULL, NULL, NULL);
3833 if (isymbuf == NULL)
3834 goto error_return;
3835
3836 if (sym_hash == NULL)
3837 {
3838 /* We store a pointer to the hash table entry for each
3839 external symbol. */
3840 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3841 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3842 if (sym_hash == NULL)
3843 goto error_free_sym;
3844 elf_sym_hashes (abfd) = sym_hash;
3845 }
3846 }
3847
3848 if (dynamic)
3849 {
3850 /* Read in any version definitions. */
3851 if (!_bfd_elf_slurp_version_tables (abfd,
3852 info->default_imported_symver))
3853 goto error_free_sym;
3854
3855 /* Read in the symbol versions, but don't bother to convert them
3856 to internal format. */
3857 if (elf_dynversym (abfd) != 0)
3858 {
3859 Elf_Internal_Shdr *versymhdr;
3860
3861 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3862 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3863 if (extversym == NULL)
3864 goto error_free_sym;
3865 amt = versymhdr->sh_size;
3866 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3867 || bfd_bread (extversym, amt, abfd) != amt)
3868 goto error_free_vers;
3869 }
3870 }
3871
3872 /* If we are loading an as-needed shared lib, save the symbol table
3873 state before we start adding symbols. If the lib turns out
3874 to be unneeded, restore the state. */
3875 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3876 {
3877 unsigned int i;
3878 size_t entsize;
3879
3880 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3881 {
3882 struct bfd_hash_entry *p;
3883 struct elf_link_hash_entry *h;
3884
3885 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3886 {
3887 h = (struct elf_link_hash_entry *) p;
3888 entsize += htab->root.table.entsize;
3889 if (h->root.type == bfd_link_hash_warning)
3890 entsize += htab->root.table.entsize;
3891 }
3892 }
3893
3894 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3895 old_tab = bfd_malloc (tabsize + entsize);
3896 if (old_tab == NULL)
3897 goto error_free_vers;
3898
3899 /* Remember the current objalloc pointer, so that all mem for
3900 symbols added can later be reclaimed. */
3901 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3902 if (alloc_mark == NULL)
3903 goto error_free_vers;
3904
3905 /* Make a special call to the linker "notice" function to
3906 tell it that we are about to handle an as-needed lib. */
3907 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3908 goto error_free_vers;
3909
3910 /* Clone the symbol table. Remember some pointers into the
3911 symbol table, and dynamic symbol count. */
3912 old_ent = (char *) old_tab + tabsize;
3913 memcpy (old_tab, htab->root.table.table, tabsize);
3914 old_undefs = htab->root.undefs;
3915 old_undefs_tail = htab->root.undefs_tail;
3916 old_table = htab->root.table.table;
3917 old_size = htab->root.table.size;
3918 old_count = htab->root.table.count;
3919 old_dynsymcount = htab->dynsymcount;
3920 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3921
3922 for (i = 0; i < htab->root.table.size; i++)
3923 {
3924 struct bfd_hash_entry *p;
3925 struct elf_link_hash_entry *h;
3926
3927 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3928 {
3929 memcpy (old_ent, p, htab->root.table.entsize);
3930 old_ent = (char *) old_ent + htab->root.table.entsize;
3931 h = (struct elf_link_hash_entry *) p;
3932 if (h->root.type == bfd_link_hash_warning)
3933 {
3934 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3935 old_ent = (char *) old_ent + htab->root.table.entsize;
3936 }
3937 }
3938 }
3939 }
3940
3941 weaks = NULL;
3942 ever = extversym != NULL ? extversym + extsymoff : NULL;
3943 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3944 isym < isymend;
3945 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3946 {
3947 int bind;
3948 bfd_vma value;
3949 asection *sec, *new_sec;
3950 flagword flags;
3951 const char *name;
3952 struct elf_link_hash_entry *h;
3953 struct elf_link_hash_entry *hi;
3954 bfd_boolean definition;
3955 bfd_boolean size_change_ok;
3956 bfd_boolean type_change_ok;
3957 bfd_boolean new_weakdef;
3958 bfd_boolean new_weak;
3959 bfd_boolean old_weak;
3960 bfd_boolean override;
3961 bfd_boolean common;
3962 unsigned int old_alignment;
3963 bfd *old_bfd;
3964 bfd_boolean matched;
3965
3966 override = FALSE;
3967
3968 flags = BSF_NO_FLAGS;
3969 sec = NULL;
3970 value = isym->st_value;
3971 common = bed->common_definition (isym);
3972
3973 bind = ELF_ST_BIND (isym->st_info);
3974 switch (bind)
3975 {
3976 case STB_LOCAL:
3977 /* This should be impossible, since ELF requires that all
3978 global symbols follow all local symbols, and that sh_info
3979 point to the first global symbol. Unfortunately, Irix 5
3980 screws this up. */
3981 continue;
3982
3983 case STB_GLOBAL:
3984 if (isym->st_shndx != SHN_UNDEF && !common)
3985 flags = BSF_GLOBAL;
3986 break;
3987
3988 case STB_WEAK:
3989 flags = BSF_WEAK;
3990 break;
3991
3992 case STB_GNU_UNIQUE:
3993 flags = BSF_GNU_UNIQUE;
3994 break;
3995
3996 default:
3997 /* Leave it up to the processor backend. */
3998 break;
3999 }
4000
4001 if (isym->st_shndx == SHN_UNDEF)
4002 sec = bfd_und_section_ptr;
4003 else if (isym->st_shndx == SHN_ABS)
4004 sec = bfd_abs_section_ptr;
4005 else if (isym->st_shndx == SHN_COMMON)
4006 {
4007 sec = bfd_com_section_ptr;
4008 /* What ELF calls the size we call the value. What ELF
4009 calls the value we call the alignment. */
4010 value = isym->st_size;
4011 }
4012 else
4013 {
4014 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4015 if (sec == NULL)
4016 sec = bfd_abs_section_ptr;
4017 else if (discarded_section (sec))
4018 {
4019 /* Symbols from discarded section are undefined. We keep
4020 its visibility. */
4021 sec = bfd_und_section_ptr;
4022 isym->st_shndx = SHN_UNDEF;
4023 }
4024 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4025 value -= sec->vma;
4026 }
4027
4028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4029 isym->st_name);
4030 if (name == NULL)
4031 goto error_free_vers;
4032
4033 if (isym->st_shndx == SHN_COMMON
4034 && (abfd->flags & BFD_PLUGIN) != 0)
4035 {
4036 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4037
4038 if (xc == NULL)
4039 {
4040 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4041 | SEC_EXCLUDE);
4042 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4043 if (xc == NULL)
4044 goto error_free_vers;
4045 }
4046 sec = xc;
4047 }
4048 else if (isym->st_shndx == SHN_COMMON
4049 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4050 && !bfd_link_relocatable (info))
4051 {
4052 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4053
4054 if (tcomm == NULL)
4055 {
4056 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4057 | SEC_LINKER_CREATED);
4058 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4059 if (tcomm == NULL)
4060 goto error_free_vers;
4061 }
4062 sec = tcomm;
4063 }
4064 else if (bed->elf_add_symbol_hook)
4065 {
4066 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4067 &sec, &value))
4068 goto error_free_vers;
4069
4070 /* The hook function sets the name to NULL if this symbol
4071 should be skipped for some reason. */
4072 if (name == NULL)
4073 continue;
4074 }
4075
4076 /* Sanity check that all possibilities were handled. */
4077 if (sec == NULL)
4078 {
4079 bfd_set_error (bfd_error_bad_value);
4080 goto error_free_vers;
4081 }
4082
4083 /* Silently discard TLS symbols from --just-syms. There's
4084 no way to combine a static TLS block with a new TLS block
4085 for this executable. */
4086 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4087 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4088 continue;
4089
4090 if (bfd_is_und_section (sec)
4091 || bfd_is_com_section (sec))
4092 definition = FALSE;
4093 else
4094 definition = TRUE;
4095
4096 size_change_ok = FALSE;
4097 type_change_ok = bed->type_change_ok;
4098 old_weak = FALSE;
4099 matched = FALSE;
4100 old_alignment = 0;
4101 old_bfd = NULL;
4102 new_sec = sec;
4103
4104 if (is_elf_hash_table (htab))
4105 {
4106 Elf_Internal_Versym iver;
4107 unsigned int vernum = 0;
4108 bfd_boolean skip;
4109
4110 if (ever == NULL)
4111 {
4112 if (info->default_imported_symver)
4113 /* Use the default symbol version created earlier. */
4114 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4115 else
4116 iver.vs_vers = 0;
4117 }
4118 else
4119 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4120
4121 vernum = iver.vs_vers & VERSYM_VERSION;
4122
4123 /* If this is a hidden symbol, or if it is not version
4124 1, we append the version name to the symbol name.
4125 However, we do not modify a non-hidden absolute symbol
4126 if it is not a function, because it might be the version
4127 symbol itself. FIXME: What if it isn't? */
4128 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4129 || (vernum > 1
4130 && (!bfd_is_abs_section (sec)
4131 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4132 {
4133 const char *verstr;
4134 size_t namelen, verlen, newlen;
4135 char *newname, *p;
4136
4137 if (isym->st_shndx != SHN_UNDEF)
4138 {
4139 if (vernum > elf_tdata (abfd)->cverdefs)
4140 verstr = NULL;
4141 else if (vernum > 1)
4142 verstr =
4143 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4144 else
4145 verstr = "";
4146
4147 if (verstr == NULL)
4148 {
4149 (*_bfd_error_handler)
4150 (_("%B: %s: invalid version %u (max %d)"),
4151 abfd, name, vernum,
4152 elf_tdata (abfd)->cverdefs);
4153 bfd_set_error (bfd_error_bad_value);
4154 goto error_free_vers;
4155 }
4156 }
4157 else
4158 {
4159 /* We cannot simply test for the number of
4160 entries in the VERNEED section since the
4161 numbers for the needed versions do not start
4162 at 0. */
4163 Elf_Internal_Verneed *t;
4164
4165 verstr = NULL;
4166 for (t = elf_tdata (abfd)->verref;
4167 t != NULL;
4168 t = t->vn_nextref)
4169 {
4170 Elf_Internal_Vernaux *a;
4171
4172 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4173 {
4174 if (a->vna_other == vernum)
4175 {
4176 verstr = a->vna_nodename;
4177 break;
4178 }
4179 }
4180 if (a != NULL)
4181 break;
4182 }
4183 if (verstr == NULL)
4184 {
4185 (*_bfd_error_handler)
4186 (_("%B: %s: invalid needed version %d"),
4187 abfd, name, vernum);
4188 bfd_set_error (bfd_error_bad_value);
4189 goto error_free_vers;
4190 }
4191 }
4192
4193 namelen = strlen (name);
4194 verlen = strlen (verstr);
4195 newlen = namelen + verlen + 2;
4196 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4197 && isym->st_shndx != SHN_UNDEF)
4198 ++newlen;
4199
4200 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4201 if (newname == NULL)
4202 goto error_free_vers;
4203 memcpy (newname, name, namelen);
4204 p = newname + namelen;
4205 *p++ = ELF_VER_CHR;
4206 /* If this is a defined non-hidden version symbol,
4207 we add another @ to the name. This indicates the
4208 default version of the symbol. */
4209 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4210 && isym->st_shndx != SHN_UNDEF)
4211 *p++ = ELF_VER_CHR;
4212 memcpy (p, verstr, verlen + 1);
4213
4214 name = newname;
4215 }
4216
4217 /* If this symbol has default visibility and the user has
4218 requested we not re-export it, then mark it as hidden. */
4219 if (definition
4220 && !dynamic
4221 && abfd->no_export
4222 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4223 isym->st_other = (STV_HIDDEN
4224 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4225
4226 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4227 sym_hash, &old_bfd, &old_weak,
4228 &old_alignment, &skip, &override,
4229 &type_change_ok, &size_change_ok,
4230 &matched))
4231 goto error_free_vers;
4232
4233 if (skip)
4234 continue;
4235
4236 /* Override a definition only if the new symbol matches the
4237 existing one. */
4238 if (override && matched)
4239 definition = FALSE;
4240
4241 h = *sym_hash;
4242 while (h->root.type == bfd_link_hash_indirect
4243 || h->root.type == bfd_link_hash_warning)
4244 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4245
4246 if (elf_tdata (abfd)->verdef != NULL
4247 && vernum > 1
4248 && definition)
4249 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4250 }
4251
4252 if (! (_bfd_generic_link_add_one_symbol
4253 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4254 (struct bfd_link_hash_entry **) sym_hash)))
4255 goto error_free_vers;
4256
4257 h = *sym_hash;
4258 /* We need to make sure that indirect symbol dynamic flags are
4259 updated. */
4260 hi = h;
4261 while (h->root.type == bfd_link_hash_indirect
4262 || h->root.type == bfd_link_hash_warning)
4263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4264
4265 *sym_hash = h;
4266
4267 new_weak = (flags & BSF_WEAK) != 0;
4268 new_weakdef = FALSE;
4269 if (dynamic
4270 && definition
4271 && new_weak
4272 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4273 && is_elf_hash_table (htab)
4274 && h->u.weakdef == NULL)
4275 {
4276 /* Keep a list of all weak defined non function symbols from
4277 a dynamic object, using the weakdef field. Later in this
4278 function we will set the weakdef field to the correct
4279 value. We only put non-function symbols from dynamic
4280 objects on this list, because that happens to be the only
4281 time we need to know the normal symbol corresponding to a
4282 weak symbol, and the information is time consuming to
4283 figure out. If the weakdef field is not already NULL,
4284 then this symbol was already defined by some previous
4285 dynamic object, and we will be using that previous
4286 definition anyhow. */
4287
4288 h->u.weakdef = weaks;
4289 weaks = h;
4290 new_weakdef = TRUE;
4291 }
4292
4293 /* Set the alignment of a common symbol. */
4294 if ((common || bfd_is_com_section (sec))
4295 && h->root.type == bfd_link_hash_common)
4296 {
4297 unsigned int align;
4298
4299 if (common)
4300 align = bfd_log2 (isym->st_value);
4301 else
4302 {
4303 /* The new symbol is a common symbol in a shared object.
4304 We need to get the alignment from the section. */
4305 align = new_sec->alignment_power;
4306 }
4307 if (align > old_alignment)
4308 h->root.u.c.p->alignment_power = align;
4309 else
4310 h->root.u.c.p->alignment_power = old_alignment;
4311 }
4312
4313 if (is_elf_hash_table (htab))
4314 {
4315 /* Set a flag in the hash table entry indicating the type of
4316 reference or definition we just found. A dynamic symbol
4317 is one which is referenced or defined by both a regular
4318 object and a shared object. */
4319 bfd_boolean dynsym = FALSE;
4320
4321 /* Plugin symbols aren't normal. Don't set def_regular or
4322 ref_regular for them, or make them dynamic. */
4323 if ((abfd->flags & BFD_PLUGIN) != 0)
4324 ;
4325 else if (! dynamic)
4326 {
4327 if (! definition)
4328 {
4329 h->ref_regular = 1;
4330 if (bind != STB_WEAK)
4331 h->ref_regular_nonweak = 1;
4332 }
4333 else
4334 {
4335 h->def_regular = 1;
4336 if (h->def_dynamic)
4337 {
4338 h->def_dynamic = 0;
4339 h->ref_dynamic = 1;
4340 }
4341 }
4342
4343 /* If the indirect symbol has been forced local, don't
4344 make the real symbol dynamic. */
4345 if ((h == hi || !hi->forced_local)
4346 && (bfd_link_dll (info)
4347 || h->def_dynamic
4348 || h->ref_dynamic))
4349 dynsym = TRUE;
4350 }
4351 else
4352 {
4353 if (! definition)
4354 {
4355 h->ref_dynamic = 1;
4356 hi->ref_dynamic = 1;
4357 }
4358 else
4359 {
4360 h->def_dynamic = 1;
4361 hi->def_dynamic = 1;
4362 }
4363
4364 /* If the indirect symbol has been forced local, don't
4365 make the real symbol dynamic. */
4366 if ((h == hi || !hi->forced_local)
4367 && (h->def_regular
4368 || h->ref_regular
4369 || (h->u.weakdef != NULL
4370 && ! new_weakdef
4371 && h->u.weakdef->dynindx != -1)))
4372 dynsym = TRUE;
4373 }
4374
4375 /* Check to see if we need to add an indirect symbol for
4376 the default name. */
4377 if (definition
4378 || (!override && h->root.type == bfd_link_hash_common))
4379 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4380 sec, value, &old_bfd, &dynsym))
4381 goto error_free_vers;
4382
4383 /* Check the alignment when a common symbol is involved. This
4384 can change when a common symbol is overridden by a normal
4385 definition or a common symbol is ignored due to the old
4386 normal definition. We need to make sure the maximum
4387 alignment is maintained. */
4388 if ((old_alignment || common)
4389 && h->root.type != bfd_link_hash_common)
4390 {
4391 unsigned int common_align;
4392 unsigned int normal_align;
4393 unsigned int symbol_align;
4394 bfd *normal_bfd;
4395 bfd *common_bfd;
4396
4397 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4398 || h->root.type == bfd_link_hash_defweak);
4399
4400 symbol_align = ffs (h->root.u.def.value) - 1;
4401 if (h->root.u.def.section->owner != NULL
4402 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4403 {
4404 normal_align = h->root.u.def.section->alignment_power;
4405 if (normal_align > symbol_align)
4406 normal_align = symbol_align;
4407 }
4408 else
4409 normal_align = symbol_align;
4410
4411 if (old_alignment)
4412 {
4413 common_align = old_alignment;
4414 common_bfd = old_bfd;
4415 normal_bfd = abfd;
4416 }
4417 else
4418 {
4419 common_align = bfd_log2 (isym->st_value);
4420 common_bfd = abfd;
4421 normal_bfd = old_bfd;
4422 }
4423
4424 if (normal_align < common_align)
4425 {
4426 /* PR binutils/2735 */
4427 if (normal_bfd == NULL)
4428 (*_bfd_error_handler)
4429 (_("Warning: alignment %u of common symbol `%s' in %B is"
4430 " greater than the alignment (%u) of its section %A"),
4431 common_bfd, h->root.u.def.section,
4432 1 << common_align, name, 1 << normal_align);
4433 else
4434 (*_bfd_error_handler)
4435 (_("Warning: alignment %u of symbol `%s' in %B"
4436 " is smaller than %u in %B"),
4437 normal_bfd, common_bfd,
4438 1 << normal_align, name, 1 << common_align);
4439 }
4440 }
4441
4442 /* Remember the symbol size if it isn't undefined. */
4443 if (isym->st_size != 0
4444 && isym->st_shndx != SHN_UNDEF
4445 && (definition || h->size == 0))
4446 {
4447 if (h->size != 0
4448 && h->size != isym->st_size
4449 && ! size_change_ok)
4450 (*_bfd_error_handler)
4451 (_("Warning: size of symbol `%s' changed"
4452 " from %lu in %B to %lu in %B"),
4453 old_bfd, abfd,
4454 name, (unsigned long) h->size,
4455 (unsigned long) isym->st_size);
4456
4457 h->size = isym->st_size;
4458 }
4459
4460 /* If this is a common symbol, then we always want H->SIZE
4461 to be the size of the common symbol. The code just above
4462 won't fix the size if a common symbol becomes larger. We
4463 don't warn about a size change here, because that is
4464 covered by --warn-common. Allow changes between different
4465 function types. */
4466 if (h->root.type == bfd_link_hash_common)
4467 h->size = h->root.u.c.size;
4468
4469 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4470 && ((definition && !new_weak)
4471 || (old_weak && h->root.type == bfd_link_hash_common)
4472 || h->type == STT_NOTYPE))
4473 {
4474 unsigned int type = ELF_ST_TYPE (isym->st_info);
4475
4476 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4477 symbol. */
4478 if (type == STT_GNU_IFUNC
4479 && (abfd->flags & DYNAMIC) != 0)
4480 type = STT_FUNC;
4481
4482 if (h->type != type)
4483 {
4484 if (h->type != STT_NOTYPE && ! type_change_ok)
4485 (*_bfd_error_handler)
4486 (_("Warning: type of symbol `%s' changed"
4487 " from %d to %d in %B"),
4488 abfd, name, h->type, type);
4489
4490 h->type = type;
4491 }
4492 }
4493
4494 /* Merge st_other field. */
4495 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4496
4497 /* We don't want to make debug symbol dynamic. */
4498 if (definition
4499 && (sec->flags & SEC_DEBUGGING)
4500 && !bfd_link_relocatable (info))
4501 dynsym = FALSE;
4502
4503 /* Nor should we make plugin symbols dynamic. */
4504 if ((abfd->flags & BFD_PLUGIN) != 0)
4505 dynsym = FALSE;
4506
4507 if (definition)
4508 {
4509 h->target_internal = isym->st_target_internal;
4510 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4511 }
4512
4513 if (definition && !dynamic)
4514 {
4515 char *p = strchr (name, ELF_VER_CHR);
4516 if (p != NULL && p[1] != ELF_VER_CHR)
4517 {
4518 /* Queue non-default versions so that .symver x, x@FOO
4519 aliases can be checked. */
4520 if (!nondeflt_vers)
4521 {
4522 amt = ((isymend - isym + 1)
4523 * sizeof (struct elf_link_hash_entry *));
4524 nondeflt_vers
4525 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4526 if (!nondeflt_vers)
4527 goto error_free_vers;
4528 }
4529 nondeflt_vers[nondeflt_vers_cnt++] = h;
4530 }
4531 }
4532
4533 if (dynsym && h->dynindx == -1)
4534 {
4535 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4536 goto error_free_vers;
4537 if (h->u.weakdef != NULL
4538 && ! new_weakdef
4539 && h->u.weakdef->dynindx == -1)
4540 {
4541 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4542 goto error_free_vers;
4543 }
4544 }
4545 else if (dynsym && h->dynindx != -1)
4546 /* If the symbol already has a dynamic index, but
4547 visibility says it should not be visible, turn it into
4548 a local symbol. */
4549 switch (ELF_ST_VISIBILITY (h->other))
4550 {
4551 case STV_INTERNAL:
4552 case STV_HIDDEN:
4553 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4554 dynsym = FALSE;
4555 break;
4556 }
4557
4558 /* Don't add DT_NEEDED for references from the dummy bfd. */
4559 if (!add_needed
4560 && definition
4561 && ((dynsym
4562 && h->ref_regular_nonweak
4563 && (old_bfd == NULL
4564 || (old_bfd->flags & BFD_PLUGIN) == 0))
4565 || (h->ref_dynamic_nonweak
4566 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4567 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4568 {
4569 int ret;
4570 const char *soname = elf_dt_name (abfd);
4571
4572 info->callbacks->minfo ("%!", soname, old_bfd,
4573 h->root.root.string);
4574
4575 /* A symbol from a library loaded via DT_NEEDED of some
4576 other library is referenced by a regular object.
4577 Add a DT_NEEDED entry for it. Issue an error if
4578 --no-add-needed is used and the reference was not
4579 a weak one. */
4580 if (old_bfd != NULL
4581 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4582 {
4583 (*_bfd_error_handler)
4584 (_("%B: undefined reference to symbol '%s'"),
4585 old_bfd, name);
4586 bfd_set_error (bfd_error_missing_dso);
4587 goto error_free_vers;
4588 }
4589
4590 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4591 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4592
4593 add_needed = TRUE;
4594 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4595 if (ret < 0)
4596 goto error_free_vers;
4597
4598 BFD_ASSERT (ret == 0);
4599 }
4600 }
4601 }
4602
4603 if (extversym != NULL)
4604 {
4605 free (extversym);
4606 extversym = NULL;
4607 }
4608
4609 if (isymbuf != NULL)
4610 {
4611 free (isymbuf);
4612 isymbuf = NULL;
4613 }
4614
4615 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4616 {
4617 unsigned int i;
4618
4619 /* Restore the symbol table. */
4620 old_ent = (char *) old_tab + tabsize;
4621 memset (elf_sym_hashes (abfd), 0,
4622 extsymcount * sizeof (struct elf_link_hash_entry *));
4623 htab->root.table.table = old_table;
4624 htab->root.table.size = old_size;
4625 htab->root.table.count = old_count;
4626 memcpy (htab->root.table.table, old_tab, tabsize);
4627 htab->root.undefs = old_undefs;
4628 htab->root.undefs_tail = old_undefs_tail;
4629 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4630 for (i = 0; i < htab->root.table.size; i++)
4631 {
4632 struct bfd_hash_entry *p;
4633 struct elf_link_hash_entry *h;
4634 bfd_size_type size;
4635 unsigned int alignment_power;
4636
4637 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4638 {
4639 h = (struct elf_link_hash_entry *) p;
4640 if (h->root.type == bfd_link_hash_warning)
4641 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4642 if (h->dynindx >= old_dynsymcount
4643 && h->dynstr_index < old_dynstr_size)
4644 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4645
4646 /* Preserve the maximum alignment and size for common
4647 symbols even if this dynamic lib isn't on DT_NEEDED
4648 since it can still be loaded at run time by another
4649 dynamic lib. */
4650 if (h->root.type == bfd_link_hash_common)
4651 {
4652 size = h->root.u.c.size;
4653 alignment_power = h->root.u.c.p->alignment_power;
4654 }
4655 else
4656 {
4657 size = 0;
4658 alignment_power = 0;
4659 }
4660 memcpy (p, old_ent, htab->root.table.entsize);
4661 old_ent = (char *) old_ent + htab->root.table.entsize;
4662 h = (struct elf_link_hash_entry *) p;
4663 if (h->root.type == bfd_link_hash_warning)
4664 {
4665 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4666 old_ent = (char *) old_ent + htab->root.table.entsize;
4667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4668 }
4669 if (h->root.type == bfd_link_hash_common)
4670 {
4671 if (size > h->root.u.c.size)
4672 h->root.u.c.size = size;
4673 if (alignment_power > h->root.u.c.p->alignment_power)
4674 h->root.u.c.p->alignment_power = alignment_power;
4675 }
4676 }
4677 }
4678
4679 /* Make a special call to the linker "notice" function to
4680 tell it that symbols added for crefs may need to be removed. */
4681 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4682 goto error_free_vers;
4683
4684 free (old_tab);
4685 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4686 alloc_mark);
4687 if (nondeflt_vers != NULL)
4688 free (nondeflt_vers);
4689 return TRUE;
4690 }
4691
4692 if (old_tab != NULL)
4693 {
4694 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4695 goto error_free_vers;
4696 free (old_tab);
4697 old_tab = NULL;
4698 }
4699
4700 /* Now that all the symbols from this input file are created, if
4701 not performing a relocatable link, handle .symver foo, foo@BAR
4702 such that any relocs against foo become foo@BAR. */
4703 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4704 {
4705 bfd_size_type cnt, symidx;
4706
4707 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4708 {
4709 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4710 char *shortname, *p;
4711
4712 p = strchr (h->root.root.string, ELF_VER_CHR);
4713 if (p == NULL
4714 || (h->root.type != bfd_link_hash_defined
4715 && h->root.type != bfd_link_hash_defweak))
4716 continue;
4717
4718 amt = p - h->root.root.string;
4719 shortname = (char *) bfd_malloc (amt + 1);
4720 if (!shortname)
4721 goto error_free_vers;
4722 memcpy (shortname, h->root.root.string, amt);
4723 shortname[amt] = '\0';
4724
4725 hi = (struct elf_link_hash_entry *)
4726 bfd_link_hash_lookup (&htab->root, shortname,
4727 FALSE, FALSE, FALSE);
4728 if (hi != NULL
4729 && hi->root.type == h->root.type
4730 && hi->root.u.def.value == h->root.u.def.value
4731 && hi->root.u.def.section == h->root.u.def.section)
4732 {
4733 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4734 hi->root.type = bfd_link_hash_indirect;
4735 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4736 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4737 sym_hash = elf_sym_hashes (abfd);
4738 if (sym_hash)
4739 for (symidx = 0; symidx < extsymcount; ++symidx)
4740 if (sym_hash[symidx] == hi)
4741 {
4742 sym_hash[symidx] = h;
4743 break;
4744 }
4745 }
4746 free (shortname);
4747 }
4748 free (nondeflt_vers);
4749 nondeflt_vers = NULL;
4750 }
4751
4752 /* Now set the weakdefs field correctly for all the weak defined
4753 symbols we found. The only way to do this is to search all the
4754 symbols. Since we only need the information for non functions in
4755 dynamic objects, that's the only time we actually put anything on
4756 the list WEAKS. We need this information so that if a regular
4757 object refers to a symbol defined weakly in a dynamic object, the
4758 real symbol in the dynamic object is also put in the dynamic
4759 symbols; we also must arrange for both symbols to point to the
4760 same memory location. We could handle the general case of symbol
4761 aliasing, but a general symbol alias can only be generated in
4762 assembler code, handling it correctly would be very time
4763 consuming, and other ELF linkers don't handle general aliasing
4764 either. */
4765 if (weaks != NULL)
4766 {
4767 struct elf_link_hash_entry **hpp;
4768 struct elf_link_hash_entry **hppend;
4769 struct elf_link_hash_entry **sorted_sym_hash;
4770 struct elf_link_hash_entry *h;
4771 size_t sym_count;
4772
4773 /* Since we have to search the whole symbol list for each weak
4774 defined symbol, search time for N weak defined symbols will be
4775 O(N^2). Binary search will cut it down to O(NlogN). */
4776 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4777 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4778 if (sorted_sym_hash == NULL)
4779 goto error_return;
4780 sym_hash = sorted_sym_hash;
4781 hpp = elf_sym_hashes (abfd);
4782 hppend = hpp + extsymcount;
4783 sym_count = 0;
4784 for (; hpp < hppend; hpp++)
4785 {
4786 h = *hpp;
4787 if (h != NULL
4788 && h->root.type == bfd_link_hash_defined
4789 && !bed->is_function_type (h->type))
4790 {
4791 *sym_hash = h;
4792 sym_hash++;
4793 sym_count++;
4794 }
4795 }
4796
4797 qsort (sorted_sym_hash, sym_count,
4798 sizeof (struct elf_link_hash_entry *),
4799 elf_sort_symbol);
4800
4801 while (weaks != NULL)
4802 {
4803 struct elf_link_hash_entry *hlook;
4804 asection *slook;
4805 bfd_vma vlook;
4806 size_t i, j, idx = 0;
4807
4808 hlook = weaks;
4809 weaks = hlook->u.weakdef;
4810 hlook->u.weakdef = NULL;
4811
4812 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4813 || hlook->root.type == bfd_link_hash_defweak
4814 || hlook->root.type == bfd_link_hash_common
4815 || hlook->root.type == bfd_link_hash_indirect);
4816 slook = hlook->root.u.def.section;
4817 vlook = hlook->root.u.def.value;
4818
4819 i = 0;
4820 j = sym_count;
4821 while (i != j)
4822 {
4823 bfd_signed_vma vdiff;
4824 idx = (i + j) / 2;
4825 h = sorted_sym_hash[idx];
4826 vdiff = vlook - h->root.u.def.value;
4827 if (vdiff < 0)
4828 j = idx;
4829 else if (vdiff > 0)
4830 i = idx + 1;
4831 else
4832 {
4833 int sdiff = slook->id - h->root.u.def.section->id;
4834 if (sdiff < 0)
4835 j = idx;
4836 else if (sdiff > 0)
4837 i = idx + 1;
4838 else
4839 break;
4840 }
4841 }
4842
4843 /* We didn't find a value/section match. */
4844 if (i == j)
4845 continue;
4846
4847 /* With multiple aliases, or when the weak symbol is already
4848 strongly defined, we have multiple matching symbols and
4849 the binary search above may land on any of them. Step
4850 one past the matching symbol(s). */
4851 while (++idx != j)
4852 {
4853 h = sorted_sym_hash[idx];
4854 if (h->root.u.def.section != slook
4855 || h->root.u.def.value != vlook)
4856 break;
4857 }
4858
4859 /* Now look back over the aliases. Since we sorted by size
4860 as well as value and section, we'll choose the one with
4861 the largest size. */
4862 while (idx-- != i)
4863 {
4864 h = sorted_sym_hash[idx];
4865
4866 /* Stop if value or section doesn't match. */
4867 if (h->root.u.def.section != slook
4868 || h->root.u.def.value != vlook)
4869 break;
4870 else if (h != hlook)
4871 {
4872 hlook->u.weakdef = h;
4873
4874 /* If the weak definition is in the list of dynamic
4875 symbols, make sure the real definition is put
4876 there as well. */
4877 if (hlook->dynindx != -1 && h->dynindx == -1)
4878 {
4879 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4880 {
4881 err_free_sym_hash:
4882 free (sorted_sym_hash);
4883 goto error_return;
4884 }
4885 }
4886
4887 /* If the real definition is in the list of dynamic
4888 symbols, make sure the weak definition is put
4889 there as well. If we don't do this, then the
4890 dynamic loader might not merge the entries for the
4891 real definition and the weak definition. */
4892 if (h->dynindx != -1 && hlook->dynindx == -1)
4893 {
4894 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4895 goto err_free_sym_hash;
4896 }
4897 break;
4898 }
4899 }
4900 }
4901
4902 free (sorted_sym_hash);
4903 }
4904
4905 if (bed->check_directives
4906 && !(*bed->check_directives) (abfd, info))
4907 return FALSE;
4908
4909 /* If this object is the same format as the output object, and it is
4910 not a shared library, then let the backend look through the
4911 relocs.
4912
4913 This is required to build global offset table entries and to
4914 arrange for dynamic relocs. It is not required for the
4915 particular common case of linking non PIC code, even when linking
4916 against shared libraries, but unfortunately there is no way of
4917 knowing whether an object file has been compiled PIC or not.
4918 Looking through the relocs is not particularly time consuming.
4919 The problem is that we must either (1) keep the relocs in memory,
4920 which causes the linker to require additional runtime memory or
4921 (2) read the relocs twice from the input file, which wastes time.
4922 This would be a good case for using mmap.
4923
4924 I have no idea how to handle linking PIC code into a file of a
4925 different format. It probably can't be done. */
4926 if (! dynamic
4927 && is_elf_hash_table (htab)
4928 && bed->check_relocs != NULL
4929 && elf_object_id (abfd) == elf_hash_table_id (htab)
4930 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4931 {
4932 asection *o;
4933
4934 for (o = abfd->sections; o != NULL; o = o->next)
4935 {
4936 Elf_Internal_Rela *internal_relocs;
4937 bfd_boolean ok;
4938
4939 if ((o->flags & SEC_RELOC) == 0
4940 || o->reloc_count == 0
4941 || ((info->strip == strip_all || info->strip == strip_debugger)
4942 && (o->flags & SEC_DEBUGGING) != 0)
4943 || bfd_is_abs_section (o->output_section))
4944 continue;
4945
4946 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4947 info->keep_memory);
4948 if (internal_relocs == NULL)
4949 goto error_return;
4950
4951 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4952
4953 if (elf_section_data (o)->relocs != internal_relocs)
4954 free (internal_relocs);
4955
4956 if (! ok)
4957 goto error_return;
4958 }
4959 }
4960
4961 /* If this is a non-traditional link, try to optimize the handling
4962 of the .stab/.stabstr sections. */
4963 if (! dynamic
4964 && ! info->traditional_format
4965 && is_elf_hash_table (htab)
4966 && (info->strip != strip_all && info->strip != strip_debugger))
4967 {
4968 asection *stabstr;
4969
4970 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4971 if (stabstr != NULL)
4972 {
4973 bfd_size_type string_offset = 0;
4974 asection *stab;
4975
4976 for (stab = abfd->sections; stab; stab = stab->next)
4977 if (CONST_STRNEQ (stab->name, ".stab")
4978 && (!stab->name[5] ||
4979 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4980 && (stab->flags & SEC_MERGE) == 0
4981 && !bfd_is_abs_section (stab->output_section))
4982 {
4983 struct bfd_elf_section_data *secdata;
4984
4985 secdata = elf_section_data (stab);
4986 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4987 stabstr, &secdata->sec_info,
4988 &string_offset))
4989 goto error_return;
4990 if (secdata->sec_info)
4991 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4992 }
4993 }
4994 }
4995
4996 if (is_elf_hash_table (htab) && add_needed)
4997 {
4998 /* Add this bfd to the loaded list. */
4999 struct elf_link_loaded_list *n;
5000
5001 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5002 if (n == NULL)
5003 goto error_return;
5004 n->abfd = abfd;
5005 n->next = htab->loaded;
5006 htab->loaded = n;
5007 }
5008
5009 return TRUE;
5010
5011 error_free_vers:
5012 if (old_tab != NULL)
5013 free (old_tab);
5014 if (nondeflt_vers != NULL)
5015 free (nondeflt_vers);
5016 if (extversym != NULL)
5017 free (extversym);
5018 error_free_sym:
5019 if (isymbuf != NULL)
5020 free (isymbuf);
5021 error_return:
5022 return FALSE;
5023 }
5024
5025 /* Return the linker hash table entry of a symbol that might be
5026 satisfied by an archive symbol. Return -1 on error. */
5027
5028 struct elf_link_hash_entry *
5029 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5030 struct bfd_link_info *info,
5031 const char *name)
5032 {
5033 struct elf_link_hash_entry *h;
5034 char *p, *copy;
5035 size_t len, first;
5036
5037 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5038 if (h != NULL)
5039 return h;
5040
5041 /* If this is a default version (the name contains @@), look up the
5042 symbol again with only one `@' as well as without the version.
5043 The effect is that references to the symbol with and without the
5044 version will be matched by the default symbol in the archive. */
5045
5046 p = strchr (name, ELF_VER_CHR);
5047 if (p == NULL || p[1] != ELF_VER_CHR)
5048 return h;
5049
5050 /* First check with only one `@'. */
5051 len = strlen (name);
5052 copy = (char *) bfd_alloc (abfd, len);
5053 if (copy == NULL)
5054 return (struct elf_link_hash_entry *) 0 - 1;
5055
5056 first = p - name + 1;
5057 memcpy (copy, name, first);
5058 memcpy (copy + first, name + first + 1, len - first);
5059
5060 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5061 if (h == NULL)
5062 {
5063 /* We also need to check references to the symbol without the
5064 version. */
5065 copy[first - 1] = '\0';
5066 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5067 FALSE, FALSE, TRUE);
5068 }
5069
5070 bfd_release (abfd, copy);
5071 return h;
5072 }
5073
5074 /* Add symbols from an ELF archive file to the linker hash table. We
5075 don't use _bfd_generic_link_add_archive_symbols because we need to
5076 handle versioned symbols.
5077
5078 Fortunately, ELF archive handling is simpler than that done by
5079 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5080 oddities. In ELF, if we find a symbol in the archive map, and the
5081 symbol is currently undefined, we know that we must pull in that
5082 object file.
5083
5084 Unfortunately, we do have to make multiple passes over the symbol
5085 table until nothing further is resolved. */
5086
5087 static bfd_boolean
5088 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5089 {
5090 symindex c;
5091 unsigned char *included = NULL;
5092 carsym *symdefs;
5093 bfd_boolean loop;
5094 bfd_size_type amt;
5095 const struct elf_backend_data *bed;
5096 struct elf_link_hash_entry * (*archive_symbol_lookup)
5097 (bfd *, struct bfd_link_info *, const char *);
5098
5099 if (! bfd_has_map (abfd))
5100 {
5101 /* An empty archive is a special case. */
5102 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5103 return TRUE;
5104 bfd_set_error (bfd_error_no_armap);
5105 return FALSE;
5106 }
5107
5108 /* Keep track of all symbols we know to be already defined, and all
5109 files we know to be already included. This is to speed up the
5110 second and subsequent passes. */
5111 c = bfd_ardata (abfd)->symdef_count;
5112 if (c == 0)
5113 return TRUE;
5114 amt = c;
5115 amt *= sizeof (*included);
5116 included = (unsigned char *) bfd_zmalloc (amt);
5117 if (included == NULL)
5118 return FALSE;
5119
5120 symdefs = bfd_ardata (abfd)->symdefs;
5121 bed = get_elf_backend_data (abfd);
5122 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5123
5124 do
5125 {
5126 file_ptr last;
5127 symindex i;
5128 carsym *symdef;
5129 carsym *symdefend;
5130
5131 loop = FALSE;
5132 last = -1;
5133
5134 symdef = symdefs;
5135 symdefend = symdef + c;
5136 for (i = 0; symdef < symdefend; symdef++, i++)
5137 {
5138 struct elf_link_hash_entry *h;
5139 bfd *element;
5140 struct bfd_link_hash_entry *undefs_tail;
5141 symindex mark;
5142
5143 if (included[i])
5144 continue;
5145 if (symdef->file_offset == last)
5146 {
5147 included[i] = TRUE;
5148 continue;
5149 }
5150
5151 h = archive_symbol_lookup (abfd, info, symdef->name);
5152 if (h == (struct elf_link_hash_entry *) 0 - 1)
5153 goto error_return;
5154
5155 if (h == NULL)
5156 continue;
5157
5158 if (h->root.type == bfd_link_hash_common)
5159 {
5160 /* We currently have a common symbol. The archive map contains
5161 a reference to this symbol, so we may want to include it. We
5162 only want to include it however, if this archive element
5163 contains a definition of the symbol, not just another common
5164 declaration of it.
5165
5166 Unfortunately some archivers (including GNU ar) will put
5167 declarations of common symbols into their archive maps, as
5168 well as real definitions, so we cannot just go by the archive
5169 map alone. Instead we must read in the element's symbol
5170 table and check that to see what kind of symbol definition
5171 this is. */
5172 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5173 continue;
5174 }
5175 else if (h->root.type != bfd_link_hash_undefined)
5176 {
5177 if (h->root.type != bfd_link_hash_undefweak)
5178 /* Symbol must be defined. Don't check it again. */
5179 included[i] = TRUE;
5180 continue;
5181 }
5182
5183 /* We need to include this archive member. */
5184 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5185 if (element == NULL)
5186 goto error_return;
5187
5188 if (! bfd_check_format (element, bfd_object))
5189 goto error_return;
5190
5191 undefs_tail = info->hash->undefs_tail;
5192
5193 if (!(*info->callbacks
5194 ->add_archive_element) (info, element, symdef->name, &element))
5195 goto error_return;
5196 if (!bfd_link_add_symbols (element, info))
5197 goto error_return;
5198
5199 /* If there are any new undefined symbols, we need to make
5200 another pass through the archive in order to see whether
5201 they can be defined. FIXME: This isn't perfect, because
5202 common symbols wind up on undefs_tail and because an
5203 undefined symbol which is defined later on in this pass
5204 does not require another pass. This isn't a bug, but it
5205 does make the code less efficient than it could be. */
5206 if (undefs_tail != info->hash->undefs_tail)
5207 loop = TRUE;
5208
5209 /* Look backward to mark all symbols from this object file
5210 which we have already seen in this pass. */
5211 mark = i;
5212 do
5213 {
5214 included[mark] = TRUE;
5215 if (mark == 0)
5216 break;
5217 --mark;
5218 }
5219 while (symdefs[mark].file_offset == symdef->file_offset);
5220
5221 /* We mark subsequent symbols from this object file as we go
5222 on through the loop. */
5223 last = symdef->file_offset;
5224 }
5225 }
5226 while (loop);
5227
5228 free (included);
5229
5230 return TRUE;
5231
5232 error_return:
5233 if (included != NULL)
5234 free (included);
5235 return FALSE;
5236 }
5237
5238 /* Given an ELF BFD, add symbols to the global hash table as
5239 appropriate. */
5240
5241 bfd_boolean
5242 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5243 {
5244 switch (bfd_get_format (abfd))
5245 {
5246 case bfd_object:
5247 return elf_link_add_object_symbols (abfd, info);
5248 case bfd_archive:
5249 return elf_link_add_archive_symbols (abfd, info);
5250 default:
5251 bfd_set_error (bfd_error_wrong_format);
5252 return FALSE;
5253 }
5254 }
5255 \f
5256 struct hash_codes_info
5257 {
5258 unsigned long *hashcodes;
5259 bfd_boolean error;
5260 };
5261
5262 /* This function will be called though elf_link_hash_traverse to store
5263 all hash value of the exported symbols in an array. */
5264
5265 static bfd_boolean
5266 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5267 {
5268 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5269 const char *name;
5270 unsigned long ha;
5271 char *alc = NULL;
5272
5273 /* Ignore indirect symbols. These are added by the versioning code. */
5274 if (h->dynindx == -1)
5275 return TRUE;
5276
5277 name = h->root.root.string;
5278 if (h->versioned >= versioned)
5279 {
5280 char *p = strchr (name, ELF_VER_CHR);
5281 if (p != NULL)
5282 {
5283 alc = (char *) bfd_malloc (p - name + 1);
5284 if (alc == NULL)
5285 {
5286 inf->error = TRUE;
5287 return FALSE;
5288 }
5289 memcpy (alc, name, p - name);
5290 alc[p - name] = '\0';
5291 name = alc;
5292 }
5293 }
5294
5295 /* Compute the hash value. */
5296 ha = bfd_elf_hash (name);
5297
5298 /* Store the found hash value in the array given as the argument. */
5299 *(inf->hashcodes)++ = ha;
5300
5301 /* And store it in the struct so that we can put it in the hash table
5302 later. */
5303 h->u.elf_hash_value = ha;
5304
5305 if (alc != NULL)
5306 free (alc);
5307
5308 return TRUE;
5309 }
5310
5311 struct collect_gnu_hash_codes
5312 {
5313 bfd *output_bfd;
5314 const struct elf_backend_data *bed;
5315 unsigned long int nsyms;
5316 unsigned long int maskbits;
5317 unsigned long int *hashcodes;
5318 unsigned long int *hashval;
5319 unsigned long int *indx;
5320 unsigned long int *counts;
5321 bfd_vma *bitmask;
5322 bfd_byte *contents;
5323 long int min_dynindx;
5324 unsigned long int bucketcount;
5325 unsigned long int symindx;
5326 long int local_indx;
5327 long int shift1, shift2;
5328 unsigned long int mask;
5329 bfd_boolean error;
5330 };
5331
5332 /* This function will be called though elf_link_hash_traverse to store
5333 all hash value of the exported symbols in an array. */
5334
5335 static bfd_boolean
5336 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 const char *name;
5340 unsigned long ha;
5341 char *alc = NULL;
5342
5343 /* Ignore indirect symbols. These are added by the versioning code. */
5344 if (h->dynindx == -1)
5345 return TRUE;
5346
5347 /* Ignore also local symbols and undefined symbols. */
5348 if (! (*s->bed->elf_hash_symbol) (h))
5349 return TRUE;
5350
5351 name = h->root.root.string;
5352 if (h->versioned >= versioned)
5353 {
5354 char *p = strchr (name, ELF_VER_CHR);
5355 if (p != NULL)
5356 {
5357 alc = (char *) bfd_malloc (p - name + 1);
5358 if (alc == NULL)
5359 {
5360 s->error = TRUE;
5361 return FALSE;
5362 }
5363 memcpy (alc, name, p - name);
5364 alc[p - name] = '\0';
5365 name = alc;
5366 }
5367 }
5368
5369 /* Compute the hash value. */
5370 ha = bfd_elf_gnu_hash (name);
5371
5372 /* Store the found hash value in the array for compute_bucket_count,
5373 and also for .dynsym reordering purposes. */
5374 s->hashcodes[s->nsyms] = ha;
5375 s->hashval[h->dynindx] = ha;
5376 ++s->nsyms;
5377 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5378 s->min_dynindx = h->dynindx;
5379
5380 if (alc != NULL)
5381 free (alc);
5382
5383 return TRUE;
5384 }
5385
5386 /* This function will be called though elf_link_hash_traverse to do
5387 final dynaminc symbol renumbering. */
5388
5389 static bfd_boolean
5390 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5391 {
5392 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5393 unsigned long int bucket;
5394 unsigned long int val;
5395
5396 /* Ignore indirect symbols. */
5397 if (h->dynindx == -1)
5398 return TRUE;
5399
5400 /* Ignore also local symbols and undefined symbols. */
5401 if (! (*s->bed->elf_hash_symbol) (h))
5402 {
5403 if (h->dynindx >= s->min_dynindx)
5404 h->dynindx = s->local_indx++;
5405 return TRUE;
5406 }
5407
5408 bucket = s->hashval[h->dynindx] % s->bucketcount;
5409 val = (s->hashval[h->dynindx] >> s->shift1)
5410 & ((s->maskbits >> s->shift1) - 1);
5411 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5412 s->bitmask[val]
5413 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5414 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5415 if (s->counts[bucket] == 1)
5416 /* Last element terminates the chain. */
5417 val |= 1;
5418 bfd_put_32 (s->output_bfd, val,
5419 s->contents + (s->indx[bucket] - s->symindx) * 4);
5420 --s->counts[bucket];
5421 h->dynindx = s->indx[bucket]++;
5422 return TRUE;
5423 }
5424
5425 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5426
5427 bfd_boolean
5428 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5429 {
5430 return !(h->forced_local
5431 || h->root.type == bfd_link_hash_undefined
5432 || h->root.type == bfd_link_hash_undefweak
5433 || ((h->root.type == bfd_link_hash_defined
5434 || h->root.type == bfd_link_hash_defweak)
5435 && h->root.u.def.section->output_section == NULL));
5436 }
5437
5438 /* Array used to determine the number of hash table buckets to use
5439 based on the number of symbols there are. If there are fewer than
5440 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5441 fewer than 37 we use 17 buckets, and so forth. We never use more
5442 than 32771 buckets. */
5443
5444 static const size_t elf_buckets[] =
5445 {
5446 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5447 16411, 32771, 0
5448 };
5449
5450 /* Compute bucket count for hashing table. We do not use a static set
5451 of possible tables sizes anymore. Instead we determine for all
5452 possible reasonable sizes of the table the outcome (i.e., the
5453 number of collisions etc) and choose the best solution. The
5454 weighting functions are not too simple to allow the table to grow
5455 without bounds. Instead one of the weighting factors is the size.
5456 Therefore the result is always a good payoff between few collisions
5457 (= short chain lengths) and table size. */
5458 static size_t
5459 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5460 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5461 unsigned long int nsyms,
5462 int gnu_hash)
5463 {
5464 size_t best_size = 0;
5465 unsigned long int i;
5466
5467 /* We have a problem here. The following code to optimize the table
5468 size requires an integer type with more the 32 bits. If
5469 BFD_HOST_U_64_BIT is set we know about such a type. */
5470 #ifdef BFD_HOST_U_64_BIT
5471 if (info->optimize)
5472 {
5473 size_t minsize;
5474 size_t maxsize;
5475 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5476 bfd *dynobj = elf_hash_table (info)->dynobj;
5477 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5478 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5479 unsigned long int *counts;
5480 bfd_size_type amt;
5481 unsigned int no_improvement_count = 0;
5482
5483 /* Possible optimization parameters: if we have NSYMS symbols we say
5484 that the hashing table must at least have NSYMS/4 and at most
5485 2*NSYMS buckets. */
5486 minsize = nsyms / 4;
5487 if (minsize == 0)
5488 minsize = 1;
5489 best_size = maxsize = nsyms * 2;
5490 if (gnu_hash)
5491 {
5492 if (minsize < 2)
5493 minsize = 2;
5494 if ((best_size & 31) == 0)
5495 ++best_size;
5496 }
5497
5498 /* Create array where we count the collisions in. We must use bfd_malloc
5499 since the size could be large. */
5500 amt = maxsize;
5501 amt *= sizeof (unsigned long int);
5502 counts = (unsigned long int *) bfd_malloc (amt);
5503 if (counts == NULL)
5504 return 0;
5505
5506 /* Compute the "optimal" size for the hash table. The criteria is a
5507 minimal chain length. The minor criteria is (of course) the size
5508 of the table. */
5509 for (i = minsize; i < maxsize; ++i)
5510 {
5511 /* Walk through the array of hashcodes and count the collisions. */
5512 BFD_HOST_U_64_BIT max;
5513 unsigned long int j;
5514 unsigned long int fact;
5515
5516 if (gnu_hash && (i & 31) == 0)
5517 continue;
5518
5519 memset (counts, '\0', i * sizeof (unsigned long int));
5520
5521 /* Determine how often each hash bucket is used. */
5522 for (j = 0; j < nsyms; ++j)
5523 ++counts[hashcodes[j] % i];
5524
5525 /* For the weight function we need some information about the
5526 pagesize on the target. This is information need not be 100%
5527 accurate. Since this information is not available (so far) we
5528 define it here to a reasonable default value. If it is crucial
5529 to have a better value some day simply define this value. */
5530 # ifndef BFD_TARGET_PAGESIZE
5531 # define BFD_TARGET_PAGESIZE (4096)
5532 # endif
5533
5534 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5535 and the chains. */
5536 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5537
5538 # if 1
5539 /* Variant 1: optimize for short chains. We add the squares
5540 of all the chain lengths (which favors many small chain
5541 over a few long chains). */
5542 for (j = 0; j < i; ++j)
5543 max += counts[j] * counts[j];
5544
5545 /* This adds penalties for the overall size of the table. */
5546 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5547 max *= fact * fact;
5548 # else
5549 /* Variant 2: Optimize a lot more for small table. Here we
5550 also add squares of the size but we also add penalties for
5551 empty slots (the +1 term). */
5552 for (j = 0; j < i; ++j)
5553 max += (1 + counts[j]) * (1 + counts[j]);
5554
5555 /* The overall size of the table is considered, but not as
5556 strong as in variant 1, where it is squared. */
5557 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5558 max *= fact;
5559 # endif
5560
5561 /* Compare with current best results. */
5562 if (max < best_chlen)
5563 {
5564 best_chlen = max;
5565 best_size = i;
5566 no_improvement_count = 0;
5567 }
5568 /* PR 11843: Avoid futile long searches for the best bucket size
5569 when there are a large number of symbols. */
5570 else if (++no_improvement_count == 100)
5571 break;
5572 }
5573
5574 free (counts);
5575 }
5576 else
5577 #endif /* defined (BFD_HOST_U_64_BIT) */
5578 {
5579 /* This is the fallback solution if no 64bit type is available or if we
5580 are not supposed to spend much time on optimizations. We select the
5581 bucket count using a fixed set of numbers. */
5582 for (i = 0; elf_buckets[i] != 0; i++)
5583 {
5584 best_size = elf_buckets[i];
5585 if (nsyms < elf_buckets[i + 1])
5586 break;
5587 }
5588 if (gnu_hash && best_size < 2)
5589 best_size = 2;
5590 }
5591
5592 return best_size;
5593 }
5594
5595 /* Size any SHT_GROUP section for ld -r. */
5596
5597 bfd_boolean
5598 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5599 {
5600 bfd *ibfd;
5601
5602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5603 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5604 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5605 return FALSE;
5606 return TRUE;
5607 }
5608
5609 /* Set a default stack segment size. The value in INFO wins. If it
5610 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5611 undefined it is initialized. */
5612
5613 bfd_boolean
5614 bfd_elf_stack_segment_size (bfd *output_bfd,
5615 struct bfd_link_info *info,
5616 const char *legacy_symbol,
5617 bfd_vma default_size)
5618 {
5619 struct elf_link_hash_entry *h = NULL;
5620
5621 /* Look for legacy symbol. */
5622 if (legacy_symbol)
5623 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5624 FALSE, FALSE, FALSE);
5625 if (h && (h->root.type == bfd_link_hash_defined
5626 || h->root.type == bfd_link_hash_defweak)
5627 && h->def_regular
5628 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5629 {
5630 /* The symbol has no type if specified on the command line. */
5631 h->type = STT_OBJECT;
5632 if (info->stacksize)
5633 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5634 output_bfd, legacy_symbol);
5635 else if (h->root.u.def.section != bfd_abs_section_ptr)
5636 (*_bfd_error_handler) (_("%B: %s not absolute"),
5637 output_bfd, legacy_symbol);
5638 else
5639 info->stacksize = h->root.u.def.value;
5640 }
5641
5642 if (!info->stacksize)
5643 /* If the user didn't set a size, or explicitly inhibit the
5644 size, set it now. */
5645 info->stacksize = default_size;
5646
5647 /* Provide the legacy symbol, if it is referenced. */
5648 if (h && (h->root.type == bfd_link_hash_undefined
5649 || h->root.type == bfd_link_hash_undefweak))
5650 {
5651 struct bfd_link_hash_entry *bh = NULL;
5652
5653 if (!(_bfd_generic_link_add_one_symbol
5654 (info, output_bfd, legacy_symbol,
5655 BSF_GLOBAL, bfd_abs_section_ptr,
5656 info->stacksize >= 0 ? info->stacksize : 0,
5657 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5658 return FALSE;
5659
5660 h = (struct elf_link_hash_entry *) bh;
5661 h->def_regular = 1;
5662 h->type = STT_OBJECT;
5663 }
5664
5665 return TRUE;
5666 }
5667
5668 /* Set up the sizes and contents of the ELF dynamic sections. This is
5669 called by the ELF linker emulation before_allocation routine. We
5670 must set the sizes of the sections before the linker sets the
5671 addresses of the various sections. */
5672
5673 bfd_boolean
5674 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5675 const char *soname,
5676 const char *rpath,
5677 const char *filter_shlib,
5678 const char *audit,
5679 const char *depaudit,
5680 const char * const *auxiliary_filters,
5681 struct bfd_link_info *info,
5682 asection **sinterpptr)
5683 {
5684 bfd_size_type soname_indx;
5685 bfd *dynobj;
5686 const struct elf_backend_data *bed;
5687 struct elf_info_failed asvinfo;
5688
5689 *sinterpptr = NULL;
5690
5691 soname_indx = (bfd_size_type) -1;
5692
5693 if (!is_elf_hash_table (info->hash))
5694 return TRUE;
5695
5696 bed = get_elf_backend_data (output_bfd);
5697
5698 /* Any syms created from now on start with -1 in
5699 got.refcount/offset and plt.refcount/offset. */
5700 elf_hash_table (info)->init_got_refcount
5701 = elf_hash_table (info)->init_got_offset;
5702 elf_hash_table (info)->init_plt_refcount
5703 = elf_hash_table (info)->init_plt_offset;
5704
5705 if (bfd_link_relocatable (info)
5706 && !_bfd_elf_size_group_sections (info))
5707 return FALSE;
5708
5709 /* The backend may have to create some sections regardless of whether
5710 we're dynamic or not. */
5711 if (bed->elf_backend_always_size_sections
5712 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5713 return FALSE;
5714
5715 /* Determine any GNU_STACK segment requirements, after the backend
5716 has had a chance to set a default segment size. */
5717 if (info->execstack)
5718 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5719 else if (info->noexecstack)
5720 elf_stack_flags (output_bfd) = PF_R | PF_W;
5721 else
5722 {
5723 bfd *inputobj;
5724 asection *notesec = NULL;
5725 int exec = 0;
5726
5727 for (inputobj = info->input_bfds;
5728 inputobj;
5729 inputobj = inputobj->link.next)
5730 {
5731 asection *s;
5732
5733 if (inputobj->flags
5734 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5735 continue;
5736 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5737 if (s)
5738 {
5739 if (s->flags & SEC_CODE)
5740 exec = PF_X;
5741 notesec = s;
5742 }
5743 else if (bed->default_execstack)
5744 exec = PF_X;
5745 }
5746 if (notesec || info->stacksize > 0)
5747 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5748 if (notesec && exec && bfd_link_relocatable (info)
5749 && notesec->output_section != bfd_abs_section_ptr)
5750 notesec->output_section->flags |= SEC_CODE;
5751 }
5752
5753 dynobj = elf_hash_table (info)->dynobj;
5754
5755 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5756 {
5757 struct elf_info_failed eif;
5758 struct elf_link_hash_entry *h;
5759 asection *dynstr;
5760 struct bfd_elf_version_tree *t;
5761 struct bfd_elf_version_expr *d;
5762 asection *s;
5763 bfd_boolean all_defined;
5764
5765 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5766 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5767
5768 if (soname != NULL)
5769 {
5770 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5771 soname, TRUE);
5772 if (soname_indx == (bfd_size_type) -1
5773 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5774 return FALSE;
5775 }
5776
5777 if (info->symbolic)
5778 {
5779 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5780 return FALSE;
5781 info->flags |= DF_SYMBOLIC;
5782 }
5783
5784 if (rpath != NULL)
5785 {
5786 bfd_size_type indx;
5787 bfd_vma tag;
5788
5789 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5790 TRUE);
5791 if (indx == (bfd_size_type) -1)
5792 return FALSE;
5793
5794 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5795 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5796 return FALSE;
5797 }
5798
5799 if (filter_shlib != NULL)
5800 {
5801 bfd_size_type indx;
5802
5803 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5804 filter_shlib, TRUE);
5805 if (indx == (bfd_size_type) -1
5806 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5807 return FALSE;
5808 }
5809
5810 if (auxiliary_filters != NULL)
5811 {
5812 const char * const *p;
5813
5814 for (p = auxiliary_filters; *p != NULL; p++)
5815 {
5816 bfd_size_type indx;
5817
5818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5819 *p, TRUE);
5820 if (indx == (bfd_size_type) -1
5821 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5822 return FALSE;
5823 }
5824 }
5825
5826 if (audit != NULL)
5827 {
5828 bfd_size_type indx;
5829
5830 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5831 TRUE);
5832 if (indx == (bfd_size_type) -1
5833 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5834 return FALSE;
5835 }
5836
5837 if (depaudit != NULL)
5838 {
5839 bfd_size_type indx;
5840
5841 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5842 TRUE);
5843 if (indx == (bfd_size_type) -1
5844 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5845 return FALSE;
5846 }
5847
5848 eif.info = info;
5849 eif.failed = FALSE;
5850
5851 /* If we are supposed to export all symbols into the dynamic symbol
5852 table (this is not the normal case), then do so. */
5853 if (info->export_dynamic
5854 || (bfd_link_executable (info) && info->dynamic))
5855 {
5856 elf_link_hash_traverse (elf_hash_table (info),
5857 _bfd_elf_export_symbol,
5858 &eif);
5859 if (eif.failed)
5860 return FALSE;
5861 }
5862
5863 /* Make all global versions with definition. */
5864 for (t = info->version_info; t != NULL; t = t->next)
5865 for (d = t->globals.list; d != NULL; d = d->next)
5866 if (!d->symver && d->literal)
5867 {
5868 const char *verstr, *name;
5869 size_t namelen, verlen, newlen;
5870 char *newname, *p, leading_char;
5871 struct elf_link_hash_entry *newh;
5872
5873 leading_char = bfd_get_symbol_leading_char (output_bfd);
5874 name = d->pattern;
5875 namelen = strlen (name) + (leading_char != '\0');
5876 verstr = t->name;
5877 verlen = strlen (verstr);
5878 newlen = namelen + verlen + 3;
5879
5880 newname = (char *) bfd_malloc (newlen);
5881 if (newname == NULL)
5882 return FALSE;
5883 newname[0] = leading_char;
5884 memcpy (newname + (leading_char != '\0'), name, namelen);
5885
5886 /* Check the hidden versioned definition. */
5887 p = newname + namelen;
5888 *p++ = ELF_VER_CHR;
5889 memcpy (p, verstr, verlen + 1);
5890 newh = elf_link_hash_lookup (elf_hash_table (info),
5891 newname, FALSE, FALSE,
5892 FALSE);
5893 if (newh == NULL
5894 || (newh->root.type != bfd_link_hash_defined
5895 && newh->root.type != bfd_link_hash_defweak))
5896 {
5897 /* Check the default versioned definition. */
5898 *p++ = ELF_VER_CHR;
5899 memcpy (p, verstr, verlen + 1);
5900 newh = elf_link_hash_lookup (elf_hash_table (info),
5901 newname, FALSE, FALSE,
5902 FALSE);
5903 }
5904 free (newname);
5905
5906 /* Mark this version if there is a definition and it is
5907 not defined in a shared object. */
5908 if (newh != NULL
5909 && !newh->def_dynamic
5910 && (newh->root.type == bfd_link_hash_defined
5911 || newh->root.type == bfd_link_hash_defweak))
5912 d->symver = 1;
5913 }
5914
5915 /* Attach all the symbols to their version information. */
5916 asvinfo.info = info;
5917 asvinfo.failed = FALSE;
5918
5919 elf_link_hash_traverse (elf_hash_table (info),
5920 _bfd_elf_link_assign_sym_version,
5921 &asvinfo);
5922 if (asvinfo.failed)
5923 return FALSE;
5924
5925 if (!info->allow_undefined_version)
5926 {
5927 /* Check if all global versions have a definition. */
5928 all_defined = TRUE;
5929 for (t = info->version_info; t != NULL; t = t->next)
5930 for (d = t->globals.list; d != NULL; d = d->next)
5931 if (d->literal && !d->symver && !d->script)
5932 {
5933 (*_bfd_error_handler)
5934 (_("%s: undefined version: %s"),
5935 d->pattern, t->name);
5936 all_defined = FALSE;
5937 }
5938
5939 if (!all_defined)
5940 {
5941 bfd_set_error (bfd_error_bad_value);
5942 return FALSE;
5943 }
5944 }
5945
5946 /* Find all symbols which were defined in a dynamic object and make
5947 the backend pick a reasonable value for them. */
5948 elf_link_hash_traverse (elf_hash_table (info),
5949 _bfd_elf_adjust_dynamic_symbol,
5950 &eif);
5951 if (eif.failed)
5952 return FALSE;
5953
5954 /* Add some entries to the .dynamic section. We fill in some of the
5955 values later, in bfd_elf_final_link, but we must add the entries
5956 now so that we know the final size of the .dynamic section. */
5957
5958 /* If there are initialization and/or finalization functions to
5959 call then add the corresponding DT_INIT/DT_FINI entries. */
5960 h = (info->init_function
5961 ? elf_link_hash_lookup (elf_hash_table (info),
5962 info->init_function, FALSE,
5963 FALSE, FALSE)
5964 : NULL);
5965 if (h != NULL
5966 && (h->ref_regular
5967 || h->def_regular))
5968 {
5969 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5970 return FALSE;
5971 }
5972 h = (info->fini_function
5973 ? elf_link_hash_lookup (elf_hash_table (info),
5974 info->fini_function, FALSE,
5975 FALSE, FALSE)
5976 : NULL);
5977 if (h != NULL
5978 && (h->ref_regular
5979 || h->def_regular))
5980 {
5981 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5982 return FALSE;
5983 }
5984
5985 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5986 if (s != NULL && s->linker_has_input)
5987 {
5988 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5989 if (! bfd_link_executable (info))
5990 {
5991 bfd *sub;
5992 asection *o;
5993
5994 for (sub = info->input_bfds; sub != NULL;
5995 sub = sub->link.next)
5996 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5997 for (o = sub->sections; o != NULL; o = o->next)
5998 if (elf_section_data (o)->this_hdr.sh_type
5999 == SHT_PREINIT_ARRAY)
6000 {
6001 (*_bfd_error_handler)
6002 (_("%B: .preinit_array section is not allowed in DSO"),
6003 sub);
6004 break;
6005 }
6006
6007 bfd_set_error (bfd_error_nonrepresentable_section);
6008 return FALSE;
6009 }
6010
6011 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6012 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6013 return FALSE;
6014 }
6015 s = bfd_get_section_by_name (output_bfd, ".init_array");
6016 if (s != NULL && s->linker_has_input)
6017 {
6018 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6019 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6020 return FALSE;
6021 }
6022 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6023 if (s != NULL && s->linker_has_input)
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6027 return FALSE;
6028 }
6029
6030 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6031 /* If .dynstr is excluded from the link, we don't want any of
6032 these tags. Strictly, we should be checking each section
6033 individually; This quick check covers for the case where
6034 someone does a /DISCARD/ : { *(*) }. */
6035 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6036 {
6037 bfd_size_type strsize;
6038
6039 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6040 if ((info->emit_hash
6041 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6042 || (info->emit_gnu_hash
6043 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6044 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6045 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6046 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6047 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6048 bed->s->sizeof_sym))
6049 return FALSE;
6050 }
6051 }
6052
6053 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6054 return FALSE;
6055
6056 /* The backend must work out the sizes of all the other dynamic
6057 sections. */
6058 if (dynobj != NULL
6059 && bed->elf_backend_size_dynamic_sections != NULL
6060 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6061 return FALSE;
6062
6063 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6064 {
6065 unsigned long section_sym_count;
6066 struct bfd_elf_version_tree *verdefs;
6067 asection *s;
6068
6069 /* Set up the version definition section. */
6070 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6071 BFD_ASSERT (s != NULL);
6072
6073 /* We may have created additional version definitions if we are
6074 just linking a regular application. */
6075 verdefs = info->version_info;
6076
6077 /* Skip anonymous version tag. */
6078 if (verdefs != NULL && verdefs->vernum == 0)
6079 verdefs = verdefs->next;
6080
6081 if (verdefs == NULL && !info->create_default_symver)
6082 s->flags |= SEC_EXCLUDE;
6083 else
6084 {
6085 unsigned int cdefs;
6086 bfd_size_type size;
6087 struct bfd_elf_version_tree *t;
6088 bfd_byte *p;
6089 Elf_Internal_Verdef def;
6090 Elf_Internal_Verdaux defaux;
6091 struct bfd_link_hash_entry *bh;
6092 struct elf_link_hash_entry *h;
6093 const char *name;
6094
6095 cdefs = 0;
6096 size = 0;
6097
6098 /* Make space for the base version. */
6099 size += sizeof (Elf_External_Verdef);
6100 size += sizeof (Elf_External_Verdaux);
6101 ++cdefs;
6102
6103 /* Make space for the default version. */
6104 if (info->create_default_symver)
6105 {
6106 size += sizeof (Elf_External_Verdef);
6107 ++cdefs;
6108 }
6109
6110 for (t = verdefs; t != NULL; t = t->next)
6111 {
6112 struct bfd_elf_version_deps *n;
6113
6114 /* Don't emit base version twice. */
6115 if (t->vernum == 0)
6116 continue;
6117
6118 size += sizeof (Elf_External_Verdef);
6119 size += sizeof (Elf_External_Verdaux);
6120 ++cdefs;
6121
6122 for (n = t->deps; n != NULL; n = n->next)
6123 size += sizeof (Elf_External_Verdaux);
6124 }
6125
6126 s->size = size;
6127 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6128 if (s->contents == NULL && s->size != 0)
6129 return FALSE;
6130
6131 /* Fill in the version definition section. */
6132
6133 p = s->contents;
6134
6135 def.vd_version = VER_DEF_CURRENT;
6136 def.vd_flags = VER_FLG_BASE;
6137 def.vd_ndx = 1;
6138 def.vd_cnt = 1;
6139 if (info->create_default_symver)
6140 {
6141 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6142 def.vd_next = sizeof (Elf_External_Verdef);
6143 }
6144 else
6145 {
6146 def.vd_aux = sizeof (Elf_External_Verdef);
6147 def.vd_next = (sizeof (Elf_External_Verdef)
6148 + sizeof (Elf_External_Verdaux));
6149 }
6150
6151 if (soname_indx != (bfd_size_type) -1)
6152 {
6153 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6154 soname_indx);
6155 def.vd_hash = bfd_elf_hash (soname);
6156 defaux.vda_name = soname_indx;
6157 name = soname;
6158 }
6159 else
6160 {
6161 bfd_size_type indx;
6162
6163 name = lbasename (output_bfd->filename);
6164 def.vd_hash = bfd_elf_hash (name);
6165 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6166 name, FALSE);
6167 if (indx == (bfd_size_type) -1)
6168 return FALSE;
6169 defaux.vda_name = indx;
6170 }
6171 defaux.vda_next = 0;
6172
6173 _bfd_elf_swap_verdef_out (output_bfd, &def,
6174 (Elf_External_Verdef *) p);
6175 p += sizeof (Elf_External_Verdef);
6176 if (info->create_default_symver)
6177 {
6178 /* Add a symbol representing this version. */
6179 bh = NULL;
6180 if (! (_bfd_generic_link_add_one_symbol
6181 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6182 0, NULL, FALSE,
6183 get_elf_backend_data (dynobj)->collect, &bh)))
6184 return FALSE;
6185 h = (struct elf_link_hash_entry *) bh;
6186 h->non_elf = 0;
6187 h->def_regular = 1;
6188 h->type = STT_OBJECT;
6189 h->verinfo.vertree = NULL;
6190
6191 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6192 return FALSE;
6193
6194 /* Create a duplicate of the base version with the same
6195 aux block, but different flags. */
6196 def.vd_flags = 0;
6197 def.vd_ndx = 2;
6198 def.vd_aux = sizeof (Elf_External_Verdef);
6199 if (verdefs)
6200 def.vd_next = (sizeof (Elf_External_Verdef)
6201 + sizeof (Elf_External_Verdaux));
6202 else
6203 def.vd_next = 0;
6204 _bfd_elf_swap_verdef_out (output_bfd, &def,
6205 (Elf_External_Verdef *) p);
6206 p += sizeof (Elf_External_Verdef);
6207 }
6208 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6209 (Elf_External_Verdaux *) p);
6210 p += sizeof (Elf_External_Verdaux);
6211
6212 for (t = verdefs; t != NULL; t = t->next)
6213 {
6214 unsigned int cdeps;
6215 struct bfd_elf_version_deps *n;
6216
6217 /* Don't emit the base version twice. */
6218 if (t->vernum == 0)
6219 continue;
6220
6221 cdeps = 0;
6222 for (n = t->deps; n != NULL; n = n->next)
6223 ++cdeps;
6224
6225 /* Add a symbol representing this version. */
6226 bh = NULL;
6227 if (! (_bfd_generic_link_add_one_symbol
6228 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6229 0, NULL, FALSE,
6230 get_elf_backend_data (dynobj)->collect, &bh)))
6231 return FALSE;
6232 h = (struct elf_link_hash_entry *) bh;
6233 h->non_elf = 0;
6234 h->def_regular = 1;
6235 h->type = STT_OBJECT;
6236 h->verinfo.vertree = t;
6237
6238 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6239 return FALSE;
6240
6241 def.vd_version = VER_DEF_CURRENT;
6242 def.vd_flags = 0;
6243 if (t->globals.list == NULL
6244 && t->locals.list == NULL
6245 && ! t->used)
6246 def.vd_flags |= VER_FLG_WEAK;
6247 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6248 def.vd_cnt = cdeps + 1;
6249 def.vd_hash = bfd_elf_hash (t->name);
6250 def.vd_aux = sizeof (Elf_External_Verdef);
6251 def.vd_next = 0;
6252
6253 /* If a basever node is next, it *must* be the last node in
6254 the chain, otherwise Verdef construction breaks. */
6255 if (t->next != NULL && t->next->vernum == 0)
6256 BFD_ASSERT (t->next->next == NULL);
6257
6258 if (t->next != NULL && t->next->vernum != 0)
6259 def.vd_next = (sizeof (Elf_External_Verdef)
6260 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6261
6262 _bfd_elf_swap_verdef_out (output_bfd, &def,
6263 (Elf_External_Verdef *) p);
6264 p += sizeof (Elf_External_Verdef);
6265
6266 defaux.vda_name = h->dynstr_index;
6267 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6268 h->dynstr_index);
6269 defaux.vda_next = 0;
6270 if (t->deps != NULL)
6271 defaux.vda_next = sizeof (Elf_External_Verdaux);
6272 t->name_indx = defaux.vda_name;
6273
6274 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6275 (Elf_External_Verdaux *) p);
6276 p += sizeof (Elf_External_Verdaux);
6277
6278 for (n = t->deps; n != NULL; n = n->next)
6279 {
6280 if (n->version_needed == NULL)
6281 {
6282 /* This can happen if there was an error in the
6283 version script. */
6284 defaux.vda_name = 0;
6285 }
6286 else
6287 {
6288 defaux.vda_name = n->version_needed->name_indx;
6289 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6290 defaux.vda_name);
6291 }
6292 if (n->next == NULL)
6293 defaux.vda_next = 0;
6294 else
6295 defaux.vda_next = sizeof (Elf_External_Verdaux);
6296
6297 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6298 (Elf_External_Verdaux *) p);
6299 p += sizeof (Elf_External_Verdaux);
6300 }
6301 }
6302
6303 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6304 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6305 return FALSE;
6306
6307 elf_tdata (output_bfd)->cverdefs = cdefs;
6308 }
6309
6310 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6311 {
6312 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6313 return FALSE;
6314 }
6315 else if (info->flags & DF_BIND_NOW)
6316 {
6317 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6318 return FALSE;
6319 }
6320
6321 if (info->flags_1)
6322 {
6323 if (bfd_link_executable (info))
6324 info->flags_1 &= ~ (DF_1_INITFIRST
6325 | DF_1_NODELETE
6326 | DF_1_NOOPEN);
6327 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6328 return FALSE;
6329 }
6330
6331 /* Work out the size of the version reference section. */
6332
6333 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6334 BFD_ASSERT (s != NULL);
6335 {
6336 struct elf_find_verdep_info sinfo;
6337
6338 sinfo.info = info;
6339 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6340 if (sinfo.vers == 0)
6341 sinfo.vers = 1;
6342 sinfo.failed = FALSE;
6343
6344 elf_link_hash_traverse (elf_hash_table (info),
6345 _bfd_elf_link_find_version_dependencies,
6346 &sinfo);
6347 if (sinfo.failed)
6348 return FALSE;
6349
6350 if (elf_tdata (output_bfd)->verref == NULL)
6351 s->flags |= SEC_EXCLUDE;
6352 else
6353 {
6354 Elf_Internal_Verneed *t;
6355 unsigned int size;
6356 unsigned int crefs;
6357 bfd_byte *p;
6358
6359 /* Build the version dependency section. */
6360 size = 0;
6361 crefs = 0;
6362 for (t = elf_tdata (output_bfd)->verref;
6363 t != NULL;
6364 t = t->vn_nextref)
6365 {
6366 Elf_Internal_Vernaux *a;
6367
6368 size += sizeof (Elf_External_Verneed);
6369 ++crefs;
6370 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6371 size += sizeof (Elf_External_Vernaux);
6372 }
6373
6374 s->size = size;
6375 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6376 if (s->contents == NULL)
6377 return FALSE;
6378
6379 p = s->contents;
6380 for (t = elf_tdata (output_bfd)->verref;
6381 t != NULL;
6382 t = t->vn_nextref)
6383 {
6384 unsigned int caux;
6385 Elf_Internal_Vernaux *a;
6386 bfd_size_type indx;
6387
6388 caux = 0;
6389 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6390 ++caux;
6391
6392 t->vn_version = VER_NEED_CURRENT;
6393 t->vn_cnt = caux;
6394 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6395 elf_dt_name (t->vn_bfd) != NULL
6396 ? elf_dt_name (t->vn_bfd)
6397 : lbasename (t->vn_bfd->filename),
6398 FALSE);
6399 if (indx == (bfd_size_type) -1)
6400 return FALSE;
6401 t->vn_file = indx;
6402 t->vn_aux = sizeof (Elf_External_Verneed);
6403 if (t->vn_nextref == NULL)
6404 t->vn_next = 0;
6405 else
6406 t->vn_next = (sizeof (Elf_External_Verneed)
6407 + caux * sizeof (Elf_External_Vernaux));
6408
6409 _bfd_elf_swap_verneed_out (output_bfd, t,
6410 (Elf_External_Verneed *) p);
6411 p += sizeof (Elf_External_Verneed);
6412
6413 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6414 {
6415 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6416 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6417 a->vna_nodename, FALSE);
6418 if (indx == (bfd_size_type) -1)
6419 return FALSE;
6420 a->vna_name = indx;
6421 if (a->vna_nextptr == NULL)
6422 a->vna_next = 0;
6423 else
6424 a->vna_next = sizeof (Elf_External_Vernaux);
6425
6426 _bfd_elf_swap_vernaux_out (output_bfd, a,
6427 (Elf_External_Vernaux *) p);
6428 p += sizeof (Elf_External_Vernaux);
6429 }
6430 }
6431
6432 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6433 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6434 return FALSE;
6435
6436 elf_tdata (output_bfd)->cverrefs = crefs;
6437 }
6438 }
6439
6440 if ((elf_tdata (output_bfd)->cverrefs == 0
6441 && elf_tdata (output_bfd)->cverdefs == 0)
6442 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6443 &section_sym_count) == 0)
6444 {
6445 s = bfd_get_linker_section (dynobj, ".gnu.version");
6446 s->flags |= SEC_EXCLUDE;
6447 }
6448 }
6449 return TRUE;
6450 }
6451
6452 /* Find the first non-excluded output section. We'll use its
6453 section symbol for some emitted relocs. */
6454 void
6455 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6456 {
6457 asection *s;
6458
6459 for (s = output_bfd->sections; s != NULL; s = s->next)
6460 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6461 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6462 {
6463 elf_hash_table (info)->text_index_section = s;
6464 break;
6465 }
6466 }
6467
6468 /* Find two non-excluded output sections, one for code, one for data.
6469 We'll use their section symbols for some emitted relocs. */
6470 void
6471 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6472 {
6473 asection *s;
6474
6475 /* Data first, since setting text_index_section changes
6476 _bfd_elf_link_omit_section_dynsym. */
6477 for (s = output_bfd->sections; s != NULL; s = s->next)
6478 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6479 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6480 {
6481 elf_hash_table (info)->data_index_section = s;
6482 break;
6483 }
6484
6485 for (s = output_bfd->sections; s != NULL; s = s->next)
6486 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6487 == (SEC_ALLOC | SEC_READONLY))
6488 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6489 {
6490 elf_hash_table (info)->text_index_section = s;
6491 break;
6492 }
6493
6494 if (elf_hash_table (info)->text_index_section == NULL)
6495 elf_hash_table (info)->text_index_section
6496 = elf_hash_table (info)->data_index_section;
6497 }
6498
6499 bfd_boolean
6500 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6501 {
6502 const struct elf_backend_data *bed;
6503
6504 if (!is_elf_hash_table (info->hash))
6505 return TRUE;
6506
6507 bed = get_elf_backend_data (output_bfd);
6508 (*bed->elf_backend_init_index_section) (output_bfd, info);
6509
6510 if (elf_hash_table (info)->dynamic_sections_created)
6511 {
6512 bfd *dynobj;
6513 asection *s;
6514 bfd_size_type dynsymcount;
6515 unsigned long section_sym_count;
6516 unsigned int dtagcount;
6517
6518 dynobj = elf_hash_table (info)->dynobj;
6519
6520 /* Assign dynsym indicies. In a shared library we generate a
6521 section symbol for each output section, which come first.
6522 Next come all of the back-end allocated local dynamic syms,
6523 followed by the rest of the global symbols. */
6524
6525 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6526 &section_sym_count);
6527
6528 /* Work out the size of the symbol version section. */
6529 s = bfd_get_linker_section (dynobj, ".gnu.version");
6530 BFD_ASSERT (s != NULL);
6531 if (dynsymcount != 0
6532 && (s->flags & SEC_EXCLUDE) == 0)
6533 {
6534 s->size = dynsymcount * sizeof (Elf_External_Versym);
6535 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6536 if (s->contents == NULL)
6537 return FALSE;
6538
6539 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6540 return FALSE;
6541 }
6542
6543 /* Set the size of the .dynsym and .hash sections. We counted
6544 the number of dynamic symbols in elf_link_add_object_symbols.
6545 We will build the contents of .dynsym and .hash when we build
6546 the final symbol table, because until then we do not know the
6547 correct value to give the symbols. We built the .dynstr
6548 section as we went along in elf_link_add_object_symbols. */
6549 s = elf_hash_table (info)->dynsym;
6550 BFD_ASSERT (s != NULL);
6551 s->size = dynsymcount * bed->s->sizeof_sym;
6552
6553 if (dynsymcount != 0)
6554 {
6555 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6556 if (s->contents == NULL)
6557 return FALSE;
6558
6559 /* The first entry in .dynsym is a dummy symbol.
6560 Clear all the section syms, in case we don't output them all. */
6561 ++section_sym_count;
6562 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6563 }
6564
6565 elf_hash_table (info)->bucketcount = 0;
6566
6567 /* Compute the size of the hashing table. As a side effect this
6568 computes the hash values for all the names we export. */
6569 if (info->emit_hash)
6570 {
6571 unsigned long int *hashcodes;
6572 struct hash_codes_info hashinf;
6573 bfd_size_type amt;
6574 unsigned long int nsyms;
6575 size_t bucketcount;
6576 size_t hash_entry_size;
6577
6578 /* Compute the hash values for all exported symbols. At the same
6579 time store the values in an array so that we could use them for
6580 optimizations. */
6581 amt = dynsymcount * sizeof (unsigned long int);
6582 hashcodes = (unsigned long int *) bfd_malloc (amt);
6583 if (hashcodes == NULL)
6584 return FALSE;
6585 hashinf.hashcodes = hashcodes;
6586 hashinf.error = FALSE;
6587
6588 /* Put all hash values in HASHCODES. */
6589 elf_link_hash_traverse (elf_hash_table (info),
6590 elf_collect_hash_codes, &hashinf);
6591 if (hashinf.error)
6592 {
6593 free (hashcodes);
6594 return FALSE;
6595 }
6596
6597 nsyms = hashinf.hashcodes - hashcodes;
6598 bucketcount
6599 = compute_bucket_count (info, hashcodes, nsyms, 0);
6600 free (hashcodes);
6601
6602 if (bucketcount == 0)
6603 return FALSE;
6604
6605 elf_hash_table (info)->bucketcount = bucketcount;
6606
6607 s = bfd_get_linker_section (dynobj, ".hash");
6608 BFD_ASSERT (s != NULL);
6609 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6610 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6611 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6612 if (s->contents == NULL)
6613 return FALSE;
6614
6615 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6616 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6617 s->contents + hash_entry_size);
6618 }
6619
6620 if (info->emit_gnu_hash)
6621 {
6622 size_t i, cnt;
6623 unsigned char *contents;
6624 struct collect_gnu_hash_codes cinfo;
6625 bfd_size_type amt;
6626 size_t bucketcount;
6627
6628 memset (&cinfo, 0, sizeof (cinfo));
6629
6630 /* Compute the hash values for all exported symbols. At the same
6631 time store the values in an array so that we could use them for
6632 optimizations. */
6633 amt = dynsymcount * 2 * sizeof (unsigned long int);
6634 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6635 if (cinfo.hashcodes == NULL)
6636 return FALSE;
6637
6638 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6639 cinfo.min_dynindx = -1;
6640 cinfo.output_bfd = output_bfd;
6641 cinfo.bed = bed;
6642
6643 /* Put all hash values in HASHCODES. */
6644 elf_link_hash_traverse (elf_hash_table (info),
6645 elf_collect_gnu_hash_codes, &cinfo);
6646 if (cinfo.error)
6647 {
6648 free (cinfo.hashcodes);
6649 return FALSE;
6650 }
6651
6652 bucketcount
6653 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6654
6655 if (bucketcount == 0)
6656 {
6657 free (cinfo.hashcodes);
6658 return FALSE;
6659 }
6660
6661 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6662 BFD_ASSERT (s != NULL);
6663
6664 if (cinfo.nsyms == 0)
6665 {
6666 /* Empty .gnu.hash section is special. */
6667 BFD_ASSERT (cinfo.min_dynindx == -1);
6668 free (cinfo.hashcodes);
6669 s->size = 5 * 4 + bed->s->arch_size / 8;
6670 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6671 if (contents == NULL)
6672 return FALSE;
6673 s->contents = contents;
6674 /* 1 empty bucket. */
6675 bfd_put_32 (output_bfd, 1, contents);
6676 /* SYMIDX above the special symbol 0. */
6677 bfd_put_32 (output_bfd, 1, contents + 4);
6678 /* Just one word for bitmask. */
6679 bfd_put_32 (output_bfd, 1, contents + 8);
6680 /* Only hash fn bloom filter. */
6681 bfd_put_32 (output_bfd, 0, contents + 12);
6682 /* No hashes are valid - empty bitmask. */
6683 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6684 /* No hashes in the only bucket. */
6685 bfd_put_32 (output_bfd, 0,
6686 contents + 16 + bed->s->arch_size / 8);
6687 }
6688 else
6689 {
6690 unsigned long int maskwords, maskbitslog2, x;
6691 BFD_ASSERT (cinfo.min_dynindx != -1);
6692
6693 x = cinfo.nsyms;
6694 maskbitslog2 = 1;
6695 while ((x >>= 1) != 0)
6696 ++maskbitslog2;
6697 if (maskbitslog2 < 3)
6698 maskbitslog2 = 5;
6699 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6700 maskbitslog2 = maskbitslog2 + 3;
6701 else
6702 maskbitslog2 = maskbitslog2 + 2;
6703 if (bed->s->arch_size == 64)
6704 {
6705 if (maskbitslog2 == 5)
6706 maskbitslog2 = 6;
6707 cinfo.shift1 = 6;
6708 }
6709 else
6710 cinfo.shift1 = 5;
6711 cinfo.mask = (1 << cinfo.shift1) - 1;
6712 cinfo.shift2 = maskbitslog2;
6713 cinfo.maskbits = 1 << maskbitslog2;
6714 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6715 amt = bucketcount * sizeof (unsigned long int) * 2;
6716 amt += maskwords * sizeof (bfd_vma);
6717 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6718 if (cinfo.bitmask == NULL)
6719 {
6720 free (cinfo.hashcodes);
6721 return FALSE;
6722 }
6723
6724 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6725 cinfo.indx = cinfo.counts + bucketcount;
6726 cinfo.symindx = dynsymcount - cinfo.nsyms;
6727 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6728
6729 /* Determine how often each hash bucket is used. */
6730 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6731 for (i = 0; i < cinfo.nsyms; ++i)
6732 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6733
6734 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6735 if (cinfo.counts[i] != 0)
6736 {
6737 cinfo.indx[i] = cnt;
6738 cnt += cinfo.counts[i];
6739 }
6740 BFD_ASSERT (cnt == dynsymcount);
6741 cinfo.bucketcount = bucketcount;
6742 cinfo.local_indx = cinfo.min_dynindx;
6743
6744 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6745 s->size += cinfo.maskbits / 8;
6746 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6747 if (contents == NULL)
6748 {
6749 free (cinfo.bitmask);
6750 free (cinfo.hashcodes);
6751 return FALSE;
6752 }
6753
6754 s->contents = contents;
6755 bfd_put_32 (output_bfd, bucketcount, contents);
6756 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6757 bfd_put_32 (output_bfd, maskwords, contents + 8);
6758 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6759 contents += 16 + cinfo.maskbits / 8;
6760
6761 for (i = 0; i < bucketcount; ++i)
6762 {
6763 if (cinfo.counts[i] == 0)
6764 bfd_put_32 (output_bfd, 0, contents);
6765 else
6766 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6767 contents += 4;
6768 }
6769
6770 cinfo.contents = contents;
6771
6772 /* Renumber dynamic symbols, populate .gnu.hash section. */
6773 elf_link_hash_traverse (elf_hash_table (info),
6774 elf_renumber_gnu_hash_syms, &cinfo);
6775
6776 contents = s->contents + 16;
6777 for (i = 0; i < maskwords; ++i)
6778 {
6779 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6780 contents);
6781 contents += bed->s->arch_size / 8;
6782 }
6783
6784 free (cinfo.bitmask);
6785 free (cinfo.hashcodes);
6786 }
6787 }
6788
6789 s = bfd_get_linker_section (dynobj, ".dynstr");
6790 BFD_ASSERT (s != NULL);
6791
6792 elf_finalize_dynstr (output_bfd, info);
6793
6794 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6795
6796 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6797 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6798 return FALSE;
6799 }
6800
6801 return TRUE;
6802 }
6803 \f
6804 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6805
6806 static void
6807 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6808 asection *sec)
6809 {
6810 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6811 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6812 }
6813
6814 /* Finish SHF_MERGE section merging. */
6815
6816 bfd_boolean
6817 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6818 {
6819 bfd *ibfd;
6820 asection *sec;
6821
6822 if (!is_elf_hash_table (info->hash))
6823 return FALSE;
6824
6825 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6826 if ((ibfd->flags & DYNAMIC) == 0)
6827 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6828 if ((sec->flags & SEC_MERGE) != 0
6829 && !bfd_is_abs_section (sec->output_section))
6830 {
6831 struct bfd_elf_section_data *secdata;
6832
6833 secdata = elf_section_data (sec);
6834 if (! _bfd_add_merge_section (abfd,
6835 &elf_hash_table (info)->merge_info,
6836 sec, &secdata->sec_info))
6837 return FALSE;
6838 else if (secdata->sec_info)
6839 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6840 }
6841
6842 if (elf_hash_table (info)->merge_info != NULL)
6843 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6844 merge_sections_remove_hook);
6845 return TRUE;
6846 }
6847
6848 /* Create an entry in an ELF linker hash table. */
6849
6850 struct bfd_hash_entry *
6851 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6852 struct bfd_hash_table *table,
6853 const char *string)
6854 {
6855 /* Allocate the structure if it has not already been allocated by a
6856 subclass. */
6857 if (entry == NULL)
6858 {
6859 entry = (struct bfd_hash_entry *)
6860 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6861 if (entry == NULL)
6862 return entry;
6863 }
6864
6865 /* Call the allocation method of the superclass. */
6866 entry = _bfd_link_hash_newfunc (entry, table, string);
6867 if (entry != NULL)
6868 {
6869 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6870 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6871
6872 /* Set local fields. */
6873 ret->indx = -1;
6874 ret->dynindx = -1;
6875 ret->got = htab->init_got_refcount;
6876 ret->plt = htab->init_plt_refcount;
6877 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6878 - offsetof (struct elf_link_hash_entry, size)));
6879 /* Assume that we have been called by a non-ELF symbol reader.
6880 This flag is then reset by the code which reads an ELF input
6881 file. This ensures that a symbol created by a non-ELF symbol
6882 reader will have the flag set correctly. */
6883 ret->non_elf = 1;
6884 }
6885
6886 return entry;
6887 }
6888
6889 /* Copy data from an indirect symbol to its direct symbol, hiding the
6890 old indirect symbol. Also used for copying flags to a weakdef. */
6891
6892 void
6893 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6894 struct elf_link_hash_entry *dir,
6895 struct elf_link_hash_entry *ind)
6896 {
6897 struct elf_link_hash_table *htab;
6898
6899 /* Copy down any references that we may have already seen to the
6900 symbol which just became indirect if DIR isn't a hidden versioned
6901 symbol. */
6902
6903 if (dir->versioned != versioned_hidden)
6904 {
6905 dir->ref_dynamic |= ind->ref_dynamic;
6906 dir->ref_regular |= ind->ref_regular;
6907 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6908 dir->non_got_ref |= ind->non_got_ref;
6909 dir->needs_plt |= ind->needs_plt;
6910 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6911 }
6912
6913 if (ind->root.type != bfd_link_hash_indirect)
6914 return;
6915
6916 /* Copy over the global and procedure linkage table refcount entries.
6917 These may have been already set up by a check_relocs routine. */
6918 htab = elf_hash_table (info);
6919 if (ind->got.refcount > htab->init_got_refcount.refcount)
6920 {
6921 if (dir->got.refcount < 0)
6922 dir->got.refcount = 0;
6923 dir->got.refcount += ind->got.refcount;
6924 ind->got.refcount = htab->init_got_refcount.refcount;
6925 }
6926
6927 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6928 {
6929 if (dir->plt.refcount < 0)
6930 dir->plt.refcount = 0;
6931 dir->plt.refcount += ind->plt.refcount;
6932 ind->plt.refcount = htab->init_plt_refcount.refcount;
6933 }
6934
6935 if (ind->dynindx != -1)
6936 {
6937 if (dir->dynindx != -1)
6938 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6939 dir->dynindx = ind->dynindx;
6940 dir->dynstr_index = ind->dynstr_index;
6941 ind->dynindx = -1;
6942 ind->dynstr_index = 0;
6943 }
6944 }
6945
6946 void
6947 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6948 struct elf_link_hash_entry *h,
6949 bfd_boolean force_local)
6950 {
6951 /* STT_GNU_IFUNC symbol must go through PLT. */
6952 if (h->type != STT_GNU_IFUNC)
6953 {
6954 h->plt = elf_hash_table (info)->init_plt_offset;
6955 h->needs_plt = 0;
6956 }
6957 if (force_local)
6958 {
6959 h->forced_local = 1;
6960 if (h->dynindx != -1)
6961 {
6962 h->dynindx = -1;
6963 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6964 h->dynstr_index);
6965 }
6966 }
6967 }
6968
6969 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6970 caller. */
6971
6972 bfd_boolean
6973 _bfd_elf_link_hash_table_init
6974 (struct elf_link_hash_table *table,
6975 bfd *abfd,
6976 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6977 struct bfd_hash_table *,
6978 const char *),
6979 unsigned int entsize,
6980 enum elf_target_id target_id)
6981 {
6982 bfd_boolean ret;
6983 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6984
6985 table->init_got_refcount.refcount = can_refcount - 1;
6986 table->init_plt_refcount.refcount = can_refcount - 1;
6987 table->init_got_offset.offset = -(bfd_vma) 1;
6988 table->init_plt_offset.offset = -(bfd_vma) 1;
6989 /* The first dynamic symbol is a dummy. */
6990 table->dynsymcount = 1;
6991
6992 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6993
6994 table->root.type = bfd_link_elf_hash_table;
6995 table->hash_table_id = target_id;
6996
6997 return ret;
6998 }
6999
7000 /* Create an ELF linker hash table. */
7001
7002 struct bfd_link_hash_table *
7003 _bfd_elf_link_hash_table_create (bfd *abfd)
7004 {
7005 struct elf_link_hash_table *ret;
7006 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7007
7008 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7009 if (ret == NULL)
7010 return NULL;
7011
7012 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7013 sizeof (struct elf_link_hash_entry),
7014 GENERIC_ELF_DATA))
7015 {
7016 free (ret);
7017 return NULL;
7018 }
7019 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7020
7021 return &ret->root;
7022 }
7023
7024 /* Destroy an ELF linker hash table. */
7025
7026 void
7027 _bfd_elf_link_hash_table_free (bfd *obfd)
7028 {
7029 struct elf_link_hash_table *htab;
7030
7031 htab = (struct elf_link_hash_table *) obfd->link.hash;
7032 if (htab->dynstr != NULL)
7033 _bfd_elf_strtab_free (htab->dynstr);
7034 _bfd_merge_sections_free (htab->merge_info);
7035 _bfd_generic_link_hash_table_free (obfd);
7036 }
7037
7038 /* This is a hook for the ELF emulation code in the generic linker to
7039 tell the backend linker what file name to use for the DT_NEEDED
7040 entry for a dynamic object. */
7041
7042 void
7043 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7044 {
7045 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7046 && bfd_get_format (abfd) == bfd_object)
7047 elf_dt_name (abfd) = name;
7048 }
7049
7050 int
7051 bfd_elf_get_dyn_lib_class (bfd *abfd)
7052 {
7053 int lib_class;
7054 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7055 && bfd_get_format (abfd) == bfd_object)
7056 lib_class = elf_dyn_lib_class (abfd);
7057 else
7058 lib_class = 0;
7059 return lib_class;
7060 }
7061
7062 void
7063 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7064 {
7065 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7066 && bfd_get_format (abfd) == bfd_object)
7067 elf_dyn_lib_class (abfd) = lib_class;
7068 }
7069
7070 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7071 the linker ELF emulation code. */
7072
7073 struct bfd_link_needed_list *
7074 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7075 struct bfd_link_info *info)
7076 {
7077 if (! is_elf_hash_table (info->hash))
7078 return NULL;
7079 return elf_hash_table (info)->needed;
7080 }
7081
7082 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7083 hook for the linker ELF emulation code. */
7084
7085 struct bfd_link_needed_list *
7086 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7087 struct bfd_link_info *info)
7088 {
7089 if (! is_elf_hash_table (info->hash))
7090 return NULL;
7091 return elf_hash_table (info)->runpath;
7092 }
7093
7094 /* Get the name actually used for a dynamic object for a link. This
7095 is the SONAME entry if there is one. Otherwise, it is the string
7096 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7097
7098 const char *
7099 bfd_elf_get_dt_soname (bfd *abfd)
7100 {
7101 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7102 && bfd_get_format (abfd) == bfd_object)
7103 return elf_dt_name (abfd);
7104 return NULL;
7105 }
7106
7107 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7108 the ELF linker emulation code. */
7109
7110 bfd_boolean
7111 bfd_elf_get_bfd_needed_list (bfd *abfd,
7112 struct bfd_link_needed_list **pneeded)
7113 {
7114 asection *s;
7115 bfd_byte *dynbuf = NULL;
7116 unsigned int elfsec;
7117 unsigned long shlink;
7118 bfd_byte *extdyn, *extdynend;
7119 size_t extdynsize;
7120 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7121
7122 *pneeded = NULL;
7123
7124 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7125 || bfd_get_format (abfd) != bfd_object)
7126 return TRUE;
7127
7128 s = bfd_get_section_by_name (abfd, ".dynamic");
7129 if (s == NULL || s->size == 0)
7130 return TRUE;
7131
7132 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7133 goto error_return;
7134
7135 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7136 if (elfsec == SHN_BAD)
7137 goto error_return;
7138
7139 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7140
7141 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7142 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7143
7144 extdyn = dynbuf;
7145 extdynend = extdyn + s->size;
7146 for (; extdyn < extdynend; extdyn += extdynsize)
7147 {
7148 Elf_Internal_Dyn dyn;
7149
7150 (*swap_dyn_in) (abfd, extdyn, &dyn);
7151
7152 if (dyn.d_tag == DT_NULL)
7153 break;
7154
7155 if (dyn.d_tag == DT_NEEDED)
7156 {
7157 const char *string;
7158 struct bfd_link_needed_list *l;
7159 unsigned int tagv = dyn.d_un.d_val;
7160 bfd_size_type amt;
7161
7162 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7163 if (string == NULL)
7164 goto error_return;
7165
7166 amt = sizeof *l;
7167 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7168 if (l == NULL)
7169 goto error_return;
7170
7171 l->by = abfd;
7172 l->name = string;
7173 l->next = *pneeded;
7174 *pneeded = l;
7175 }
7176 }
7177
7178 free (dynbuf);
7179
7180 return TRUE;
7181
7182 error_return:
7183 if (dynbuf != NULL)
7184 free (dynbuf);
7185 return FALSE;
7186 }
7187
7188 struct elf_symbuf_symbol
7189 {
7190 unsigned long st_name; /* Symbol name, index in string tbl */
7191 unsigned char st_info; /* Type and binding attributes */
7192 unsigned char st_other; /* Visibilty, and target specific */
7193 };
7194
7195 struct elf_symbuf_head
7196 {
7197 struct elf_symbuf_symbol *ssym;
7198 bfd_size_type count;
7199 unsigned int st_shndx;
7200 };
7201
7202 struct elf_symbol
7203 {
7204 union
7205 {
7206 Elf_Internal_Sym *isym;
7207 struct elf_symbuf_symbol *ssym;
7208 } u;
7209 const char *name;
7210 };
7211
7212 /* Sort references to symbols by ascending section number. */
7213
7214 static int
7215 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7216 {
7217 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7218 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7219
7220 return s1->st_shndx - s2->st_shndx;
7221 }
7222
7223 static int
7224 elf_sym_name_compare (const void *arg1, const void *arg2)
7225 {
7226 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7227 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7228 return strcmp (s1->name, s2->name);
7229 }
7230
7231 static struct elf_symbuf_head *
7232 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7233 {
7234 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7235 struct elf_symbuf_symbol *ssym;
7236 struct elf_symbuf_head *ssymbuf, *ssymhead;
7237 bfd_size_type i, shndx_count, total_size;
7238
7239 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7240 if (indbuf == NULL)
7241 return NULL;
7242
7243 for (ind = indbuf, i = 0; i < symcount; i++)
7244 if (isymbuf[i].st_shndx != SHN_UNDEF)
7245 *ind++ = &isymbuf[i];
7246 indbufend = ind;
7247
7248 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7249 elf_sort_elf_symbol);
7250
7251 shndx_count = 0;
7252 if (indbufend > indbuf)
7253 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7254 if (ind[0]->st_shndx != ind[1]->st_shndx)
7255 shndx_count++;
7256
7257 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7258 + (indbufend - indbuf) * sizeof (*ssym));
7259 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7260 if (ssymbuf == NULL)
7261 {
7262 free (indbuf);
7263 return NULL;
7264 }
7265
7266 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7267 ssymbuf->ssym = NULL;
7268 ssymbuf->count = shndx_count;
7269 ssymbuf->st_shndx = 0;
7270 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7271 {
7272 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7273 {
7274 ssymhead++;
7275 ssymhead->ssym = ssym;
7276 ssymhead->count = 0;
7277 ssymhead->st_shndx = (*ind)->st_shndx;
7278 }
7279 ssym->st_name = (*ind)->st_name;
7280 ssym->st_info = (*ind)->st_info;
7281 ssym->st_other = (*ind)->st_other;
7282 ssymhead->count++;
7283 }
7284 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7285 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7286 == total_size));
7287
7288 free (indbuf);
7289 return ssymbuf;
7290 }
7291
7292 /* Check if 2 sections define the same set of local and global
7293 symbols. */
7294
7295 static bfd_boolean
7296 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7297 struct bfd_link_info *info)
7298 {
7299 bfd *bfd1, *bfd2;
7300 const struct elf_backend_data *bed1, *bed2;
7301 Elf_Internal_Shdr *hdr1, *hdr2;
7302 bfd_size_type symcount1, symcount2;
7303 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7304 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7305 Elf_Internal_Sym *isym, *isymend;
7306 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7307 bfd_size_type count1, count2, i;
7308 unsigned int shndx1, shndx2;
7309 bfd_boolean result;
7310
7311 bfd1 = sec1->owner;
7312 bfd2 = sec2->owner;
7313
7314 /* Both sections have to be in ELF. */
7315 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7316 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7317 return FALSE;
7318
7319 if (elf_section_type (sec1) != elf_section_type (sec2))
7320 return FALSE;
7321
7322 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7323 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7324 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7325 return FALSE;
7326
7327 bed1 = get_elf_backend_data (bfd1);
7328 bed2 = get_elf_backend_data (bfd2);
7329 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7330 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7331 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7332 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7333
7334 if (symcount1 == 0 || symcount2 == 0)
7335 return FALSE;
7336
7337 result = FALSE;
7338 isymbuf1 = NULL;
7339 isymbuf2 = NULL;
7340 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7341 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7342
7343 if (ssymbuf1 == NULL)
7344 {
7345 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7346 NULL, NULL, NULL);
7347 if (isymbuf1 == NULL)
7348 goto done;
7349
7350 if (!info->reduce_memory_overheads)
7351 elf_tdata (bfd1)->symbuf = ssymbuf1
7352 = elf_create_symbuf (symcount1, isymbuf1);
7353 }
7354
7355 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7356 {
7357 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7358 NULL, NULL, NULL);
7359 if (isymbuf2 == NULL)
7360 goto done;
7361
7362 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7363 elf_tdata (bfd2)->symbuf = ssymbuf2
7364 = elf_create_symbuf (symcount2, isymbuf2);
7365 }
7366
7367 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7368 {
7369 /* Optimized faster version. */
7370 bfd_size_type lo, hi, mid;
7371 struct elf_symbol *symp;
7372 struct elf_symbuf_symbol *ssym, *ssymend;
7373
7374 lo = 0;
7375 hi = ssymbuf1->count;
7376 ssymbuf1++;
7377 count1 = 0;
7378 while (lo < hi)
7379 {
7380 mid = (lo + hi) / 2;
7381 if (shndx1 < ssymbuf1[mid].st_shndx)
7382 hi = mid;
7383 else if (shndx1 > ssymbuf1[mid].st_shndx)
7384 lo = mid + 1;
7385 else
7386 {
7387 count1 = ssymbuf1[mid].count;
7388 ssymbuf1 += mid;
7389 break;
7390 }
7391 }
7392
7393 lo = 0;
7394 hi = ssymbuf2->count;
7395 ssymbuf2++;
7396 count2 = 0;
7397 while (lo < hi)
7398 {
7399 mid = (lo + hi) / 2;
7400 if (shndx2 < ssymbuf2[mid].st_shndx)
7401 hi = mid;
7402 else if (shndx2 > ssymbuf2[mid].st_shndx)
7403 lo = mid + 1;
7404 else
7405 {
7406 count2 = ssymbuf2[mid].count;
7407 ssymbuf2 += mid;
7408 break;
7409 }
7410 }
7411
7412 if (count1 == 0 || count2 == 0 || count1 != count2)
7413 goto done;
7414
7415 symtable1
7416 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7417 symtable2
7418 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7419 if (symtable1 == NULL || symtable2 == NULL)
7420 goto done;
7421
7422 symp = symtable1;
7423 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7424 ssym < ssymend; ssym++, symp++)
7425 {
7426 symp->u.ssym = ssym;
7427 symp->name = bfd_elf_string_from_elf_section (bfd1,
7428 hdr1->sh_link,
7429 ssym->st_name);
7430 }
7431
7432 symp = symtable2;
7433 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7434 ssym < ssymend; ssym++, symp++)
7435 {
7436 symp->u.ssym = ssym;
7437 symp->name = bfd_elf_string_from_elf_section (bfd2,
7438 hdr2->sh_link,
7439 ssym->st_name);
7440 }
7441
7442 /* Sort symbol by name. */
7443 qsort (symtable1, count1, sizeof (struct elf_symbol),
7444 elf_sym_name_compare);
7445 qsort (symtable2, count1, sizeof (struct elf_symbol),
7446 elf_sym_name_compare);
7447
7448 for (i = 0; i < count1; i++)
7449 /* Two symbols must have the same binding, type and name. */
7450 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7451 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7452 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7453 goto done;
7454
7455 result = TRUE;
7456 goto done;
7457 }
7458
7459 symtable1 = (struct elf_symbol *)
7460 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7461 symtable2 = (struct elf_symbol *)
7462 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7463 if (symtable1 == NULL || symtable2 == NULL)
7464 goto done;
7465
7466 /* Count definitions in the section. */
7467 count1 = 0;
7468 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7469 if (isym->st_shndx == shndx1)
7470 symtable1[count1++].u.isym = isym;
7471
7472 count2 = 0;
7473 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7474 if (isym->st_shndx == shndx2)
7475 symtable2[count2++].u.isym = isym;
7476
7477 if (count1 == 0 || count2 == 0 || count1 != count2)
7478 goto done;
7479
7480 for (i = 0; i < count1; i++)
7481 symtable1[i].name
7482 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7483 symtable1[i].u.isym->st_name);
7484
7485 for (i = 0; i < count2; i++)
7486 symtable2[i].name
7487 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7488 symtable2[i].u.isym->st_name);
7489
7490 /* Sort symbol by name. */
7491 qsort (symtable1, count1, sizeof (struct elf_symbol),
7492 elf_sym_name_compare);
7493 qsort (symtable2, count1, sizeof (struct elf_symbol),
7494 elf_sym_name_compare);
7495
7496 for (i = 0; i < count1; i++)
7497 /* Two symbols must have the same binding, type and name. */
7498 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7499 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7500 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7501 goto done;
7502
7503 result = TRUE;
7504
7505 done:
7506 if (symtable1)
7507 free (symtable1);
7508 if (symtable2)
7509 free (symtable2);
7510 if (isymbuf1)
7511 free (isymbuf1);
7512 if (isymbuf2)
7513 free (isymbuf2);
7514
7515 return result;
7516 }
7517
7518 /* Return TRUE if 2 section types are compatible. */
7519
7520 bfd_boolean
7521 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7522 bfd *bbfd, const asection *bsec)
7523 {
7524 if (asec == NULL
7525 || bsec == NULL
7526 || abfd->xvec->flavour != bfd_target_elf_flavour
7527 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7528 return TRUE;
7529
7530 return elf_section_type (asec) == elf_section_type (bsec);
7531 }
7532 \f
7533 /* Final phase of ELF linker. */
7534
7535 /* A structure we use to avoid passing large numbers of arguments. */
7536
7537 struct elf_final_link_info
7538 {
7539 /* General link information. */
7540 struct bfd_link_info *info;
7541 /* Output BFD. */
7542 bfd *output_bfd;
7543 /* Symbol string table. */
7544 struct elf_strtab_hash *symstrtab;
7545 /* .hash section. */
7546 asection *hash_sec;
7547 /* symbol version section (.gnu.version). */
7548 asection *symver_sec;
7549 /* Buffer large enough to hold contents of any section. */
7550 bfd_byte *contents;
7551 /* Buffer large enough to hold external relocs of any section. */
7552 void *external_relocs;
7553 /* Buffer large enough to hold internal relocs of any section. */
7554 Elf_Internal_Rela *internal_relocs;
7555 /* Buffer large enough to hold external local symbols of any input
7556 BFD. */
7557 bfd_byte *external_syms;
7558 /* And a buffer for symbol section indices. */
7559 Elf_External_Sym_Shndx *locsym_shndx;
7560 /* Buffer large enough to hold internal local symbols of any input
7561 BFD. */
7562 Elf_Internal_Sym *internal_syms;
7563 /* Array large enough to hold a symbol index for each local symbol
7564 of any input BFD. */
7565 long *indices;
7566 /* Array large enough to hold a section pointer for each local
7567 symbol of any input BFD. */
7568 asection **sections;
7569 /* Buffer for SHT_SYMTAB_SHNDX section. */
7570 Elf_External_Sym_Shndx *symshndxbuf;
7571 /* Number of STT_FILE syms seen. */
7572 size_t filesym_count;
7573 };
7574
7575 /* This struct is used to pass information to elf_link_output_extsym. */
7576
7577 struct elf_outext_info
7578 {
7579 bfd_boolean failed;
7580 bfd_boolean localsyms;
7581 bfd_boolean file_sym_done;
7582 struct elf_final_link_info *flinfo;
7583 };
7584
7585
7586 /* Support for evaluating a complex relocation.
7587
7588 Complex relocations are generalized, self-describing relocations. The
7589 implementation of them consists of two parts: complex symbols, and the
7590 relocations themselves.
7591
7592 The relocations are use a reserved elf-wide relocation type code (R_RELC
7593 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7594 information (start bit, end bit, word width, etc) into the addend. This
7595 information is extracted from CGEN-generated operand tables within gas.
7596
7597 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7598 internal) representing prefix-notation expressions, including but not
7599 limited to those sorts of expressions normally encoded as addends in the
7600 addend field. The symbol mangling format is:
7601
7602 <node> := <literal>
7603 | <unary-operator> ':' <node>
7604 | <binary-operator> ':' <node> ':' <node>
7605 ;
7606
7607 <literal> := 's' <digits=N> ':' <N character symbol name>
7608 | 'S' <digits=N> ':' <N character section name>
7609 | '#' <hexdigits>
7610 ;
7611
7612 <binary-operator> := as in C
7613 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7614
7615 static void
7616 set_symbol_value (bfd *bfd_with_globals,
7617 Elf_Internal_Sym *isymbuf,
7618 size_t locsymcount,
7619 size_t symidx,
7620 bfd_vma val)
7621 {
7622 struct elf_link_hash_entry **sym_hashes;
7623 struct elf_link_hash_entry *h;
7624 size_t extsymoff = locsymcount;
7625
7626 if (symidx < locsymcount)
7627 {
7628 Elf_Internal_Sym *sym;
7629
7630 sym = isymbuf + symidx;
7631 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7632 {
7633 /* It is a local symbol: move it to the
7634 "absolute" section and give it a value. */
7635 sym->st_shndx = SHN_ABS;
7636 sym->st_value = val;
7637 return;
7638 }
7639 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7640 extsymoff = 0;
7641 }
7642
7643 /* It is a global symbol: set its link type
7644 to "defined" and give it a value. */
7645
7646 sym_hashes = elf_sym_hashes (bfd_with_globals);
7647 h = sym_hashes [symidx - extsymoff];
7648 while (h->root.type == bfd_link_hash_indirect
7649 || h->root.type == bfd_link_hash_warning)
7650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7651 h->root.type = bfd_link_hash_defined;
7652 h->root.u.def.value = val;
7653 h->root.u.def.section = bfd_abs_section_ptr;
7654 }
7655
7656 static bfd_boolean
7657 resolve_symbol (const char *name,
7658 bfd *input_bfd,
7659 struct elf_final_link_info *flinfo,
7660 bfd_vma *result,
7661 Elf_Internal_Sym *isymbuf,
7662 size_t locsymcount)
7663 {
7664 Elf_Internal_Sym *sym;
7665 struct bfd_link_hash_entry *global_entry;
7666 const char *candidate = NULL;
7667 Elf_Internal_Shdr *symtab_hdr;
7668 size_t i;
7669
7670 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7671
7672 for (i = 0; i < locsymcount; ++ i)
7673 {
7674 sym = isymbuf + i;
7675
7676 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7677 continue;
7678
7679 candidate = bfd_elf_string_from_elf_section (input_bfd,
7680 symtab_hdr->sh_link,
7681 sym->st_name);
7682 #ifdef DEBUG
7683 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7684 name, candidate, (unsigned long) sym->st_value);
7685 #endif
7686 if (candidate && strcmp (candidate, name) == 0)
7687 {
7688 asection *sec = flinfo->sections [i];
7689
7690 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7691 *result += sec->output_offset + sec->output_section->vma;
7692 #ifdef DEBUG
7693 printf ("Found symbol with value %8.8lx\n",
7694 (unsigned long) *result);
7695 #endif
7696 return TRUE;
7697 }
7698 }
7699
7700 /* Hmm, haven't found it yet. perhaps it is a global. */
7701 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7702 FALSE, FALSE, TRUE);
7703 if (!global_entry)
7704 return FALSE;
7705
7706 if (global_entry->type == bfd_link_hash_defined
7707 || global_entry->type == bfd_link_hash_defweak)
7708 {
7709 *result = (global_entry->u.def.value
7710 + global_entry->u.def.section->output_section->vma
7711 + global_entry->u.def.section->output_offset);
7712 #ifdef DEBUG
7713 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7714 global_entry->root.string, (unsigned long) *result);
7715 #endif
7716 return TRUE;
7717 }
7718
7719 return FALSE;
7720 }
7721
7722 static bfd_boolean
7723 resolve_section (const char *name,
7724 asection *sections,
7725 bfd_vma *result)
7726 {
7727 asection *curr;
7728 unsigned int len;
7729
7730 for (curr = sections; curr; curr = curr->next)
7731 if (strcmp (curr->name, name) == 0)
7732 {
7733 *result = curr->vma;
7734 return TRUE;
7735 }
7736
7737 /* Hmm. still haven't found it. try pseudo-section names. */
7738 for (curr = sections; curr; curr = curr->next)
7739 {
7740 len = strlen (curr->name);
7741 if (len > strlen (name))
7742 continue;
7743
7744 if (strncmp (curr->name, name, len) == 0)
7745 {
7746 if (strncmp (".end", name + len, 4) == 0)
7747 {
7748 *result = curr->vma + curr->size;
7749 return TRUE;
7750 }
7751
7752 /* Insert more pseudo-section names here, if you like. */
7753 }
7754 }
7755
7756 return FALSE;
7757 }
7758
7759 static void
7760 undefined_reference (const char *reftype, const char *name)
7761 {
7762 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7763 reftype, name);
7764 }
7765
7766 static bfd_boolean
7767 eval_symbol (bfd_vma *result,
7768 const char **symp,
7769 bfd *input_bfd,
7770 struct elf_final_link_info *flinfo,
7771 bfd_vma dot,
7772 Elf_Internal_Sym *isymbuf,
7773 size_t locsymcount,
7774 int signed_p)
7775 {
7776 size_t len;
7777 size_t symlen;
7778 bfd_vma a;
7779 bfd_vma b;
7780 char symbuf[4096];
7781 const char *sym = *symp;
7782 const char *symend;
7783 bfd_boolean symbol_is_section = FALSE;
7784
7785 len = strlen (sym);
7786 symend = sym + len;
7787
7788 if (len < 1 || len > sizeof (symbuf))
7789 {
7790 bfd_set_error (bfd_error_invalid_operation);
7791 return FALSE;
7792 }
7793
7794 switch (* sym)
7795 {
7796 case '.':
7797 *result = dot;
7798 *symp = sym + 1;
7799 return TRUE;
7800
7801 case '#':
7802 ++sym;
7803 *result = strtoul (sym, (char **) symp, 16);
7804 return TRUE;
7805
7806 case 'S':
7807 symbol_is_section = TRUE;
7808 case 's':
7809 ++sym;
7810 symlen = strtol (sym, (char **) symp, 10);
7811 sym = *symp + 1; /* Skip the trailing ':'. */
7812
7813 if (symend < sym || symlen + 1 > sizeof (symbuf))
7814 {
7815 bfd_set_error (bfd_error_invalid_operation);
7816 return FALSE;
7817 }
7818
7819 memcpy (symbuf, sym, symlen);
7820 symbuf[symlen] = '\0';
7821 *symp = sym + symlen;
7822
7823 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7824 the symbol as a section, or vice-versa. so we're pretty liberal in our
7825 interpretation here; section means "try section first", not "must be a
7826 section", and likewise with symbol. */
7827
7828 if (symbol_is_section)
7829 {
7830 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7831 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7832 isymbuf, locsymcount))
7833 {
7834 undefined_reference ("section", symbuf);
7835 return FALSE;
7836 }
7837 }
7838 else
7839 {
7840 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7841 isymbuf, locsymcount)
7842 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7843 result))
7844 {
7845 undefined_reference ("symbol", symbuf);
7846 return FALSE;
7847 }
7848 }
7849
7850 return TRUE;
7851
7852 /* All that remains are operators. */
7853
7854 #define UNARY_OP(op) \
7855 if (strncmp (sym, #op, strlen (#op)) == 0) \
7856 { \
7857 sym += strlen (#op); \
7858 if (*sym == ':') \
7859 ++sym; \
7860 *symp = sym; \
7861 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7862 isymbuf, locsymcount, signed_p)) \
7863 return FALSE; \
7864 if (signed_p) \
7865 *result = op ((bfd_signed_vma) a); \
7866 else \
7867 *result = op a; \
7868 return TRUE; \
7869 }
7870
7871 #define BINARY_OP(op) \
7872 if (strncmp (sym, #op, strlen (#op)) == 0) \
7873 { \
7874 sym += strlen (#op); \
7875 if (*sym == ':') \
7876 ++sym; \
7877 *symp = sym; \
7878 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7879 isymbuf, locsymcount, signed_p)) \
7880 return FALSE; \
7881 ++*symp; \
7882 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7883 isymbuf, locsymcount, signed_p)) \
7884 return FALSE; \
7885 if (signed_p) \
7886 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7887 else \
7888 *result = a op b; \
7889 return TRUE; \
7890 }
7891
7892 default:
7893 UNARY_OP (0-);
7894 BINARY_OP (<<);
7895 BINARY_OP (>>);
7896 BINARY_OP (==);
7897 BINARY_OP (!=);
7898 BINARY_OP (<=);
7899 BINARY_OP (>=);
7900 BINARY_OP (&&);
7901 BINARY_OP (||);
7902 UNARY_OP (~);
7903 UNARY_OP (!);
7904 BINARY_OP (*);
7905 BINARY_OP (/);
7906 BINARY_OP (%);
7907 BINARY_OP (^);
7908 BINARY_OP (|);
7909 BINARY_OP (&);
7910 BINARY_OP (+);
7911 BINARY_OP (-);
7912 BINARY_OP (<);
7913 BINARY_OP (>);
7914 #undef UNARY_OP
7915 #undef BINARY_OP
7916 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7917 bfd_set_error (bfd_error_invalid_operation);
7918 return FALSE;
7919 }
7920 }
7921
7922 static void
7923 put_value (bfd_vma size,
7924 unsigned long chunksz,
7925 bfd *input_bfd,
7926 bfd_vma x,
7927 bfd_byte *location)
7928 {
7929 location += (size - chunksz);
7930
7931 for (; size; size -= chunksz, location -= chunksz)
7932 {
7933 switch (chunksz)
7934 {
7935 case 1:
7936 bfd_put_8 (input_bfd, x, location);
7937 x >>= 8;
7938 break;
7939 case 2:
7940 bfd_put_16 (input_bfd, x, location);
7941 x >>= 16;
7942 break;
7943 case 4:
7944 bfd_put_32 (input_bfd, x, location);
7945 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7946 x >>= 16;
7947 x >>= 16;
7948 break;
7949 #ifdef BFD64
7950 case 8:
7951 bfd_put_64 (input_bfd, x, location);
7952 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7953 x >>= 32;
7954 x >>= 32;
7955 break;
7956 #endif
7957 default:
7958 abort ();
7959 break;
7960 }
7961 }
7962 }
7963
7964 static bfd_vma
7965 get_value (bfd_vma size,
7966 unsigned long chunksz,
7967 bfd *input_bfd,
7968 bfd_byte *location)
7969 {
7970 int shift;
7971 bfd_vma x = 0;
7972
7973 /* Sanity checks. */
7974 BFD_ASSERT (chunksz <= sizeof (x)
7975 && size >= chunksz
7976 && chunksz != 0
7977 && (size % chunksz) == 0
7978 && input_bfd != NULL
7979 && location != NULL);
7980
7981 if (chunksz == sizeof (x))
7982 {
7983 BFD_ASSERT (size == chunksz);
7984
7985 /* Make sure that we do not perform an undefined shift operation.
7986 We know that size == chunksz so there will only be one iteration
7987 of the loop below. */
7988 shift = 0;
7989 }
7990 else
7991 shift = 8 * chunksz;
7992
7993 for (; size; size -= chunksz, location += chunksz)
7994 {
7995 switch (chunksz)
7996 {
7997 case 1:
7998 x = (x << shift) | bfd_get_8 (input_bfd, location);
7999 break;
8000 case 2:
8001 x = (x << shift) | bfd_get_16 (input_bfd, location);
8002 break;
8003 case 4:
8004 x = (x << shift) | bfd_get_32 (input_bfd, location);
8005 break;
8006 #ifdef BFD64
8007 case 8:
8008 x = (x << shift) | bfd_get_64 (input_bfd, location);
8009 break;
8010 #endif
8011 default:
8012 abort ();
8013 }
8014 }
8015 return x;
8016 }
8017
8018 static void
8019 decode_complex_addend (unsigned long *start, /* in bits */
8020 unsigned long *oplen, /* in bits */
8021 unsigned long *len, /* in bits */
8022 unsigned long *wordsz, /* in bytes */
8023 unsigned long *chunksz, /* in bytes */
8024 unsigned long *lsb0_p,
8025 unsigned long *signed_p,
8026 unsigned long *trunc_p,
8027 unsigned long encoded)
8028 {
8029 * start = encoded & 0x3F;
8030 * len = (encoded >> 6) & 0x3F;
8031 * oplen = (encoded >> 12) & 0x3F;
8032 * wordsz = (encoded >> 18) & 0xF;
8033 * chunksz = (encoded >> 22) & 0xF;
8034 * lsb0_p = (encoded >> 27) & 1;
8035 * signed_p = (encoded >> 28) & 1;
8036 * trunc_p = (encoded >> 29) & 1;
8037 }
8038
8039 bfd_reloc_status_type
8040 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8041 asection *input_section ATTRIBUTE_UNUSED,
8042 bfd_byte *contents,
8043 Elf_Internal_Rela *rel,
8044 bfd_vma relocation)
8045 {
8046 bfd_vma shift, x, mask;
8047 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8048 bfd_reloc_status_type r;
8049
8050 /* Perform this reloc, since it is complex.
8051 (this is not to say that it necessarily refers to a complex
8052 symbol; merely that it is a self-describing CGEN based reloc.
8053 i.e. the addend has the complete reloc information (bit start, end,
8054 word size, etc) encoded within it.). */
8055
8056 decode_complex_addend (&start, &oplen, &len, &wordsz,
8057 &chunksz, &lsb0_p, &signed_p,
8058 &trunc_p, rel->r_addend);
8059
8060 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8061
8062 if (lsb0_p)
8063 shift = (start + 1) - len;
8064 else
8065 shift = (8 * wordsz) - (start + len);
8066
8067 /* FIXME: octets_per_byte. */
8068 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8069
8070 #ifdef DEBUG
8071 printf ("Doing complex reloc: "
8072 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8073 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8074 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8075 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8076 oplen, (unsigned long) x, (unsigned long) mask,
8077 (unsigned long) relocation);
8078 #endif
8079
8080 r = bfd_reloc_ok;
8081 if (! trunc_p)
8082 /* Now do an overflow check. */
8083 r = bfd_check_overflow ((signed_p
8084 ? complain_overflow_signed
8085 : complain_overflow_unsigned),
8086 len, 0, (8 * wordsz),
8087 relocation);
8088
8089 /* Do the deed. */
8090 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8091
8092 #ifdef DEBUG
8093 printf (" relocation: %8.8lx\n"
8094 " shifted mask: %8.8lx\n"
8095 " shifted/masked reloc: %8.8lx\n"
8096 " result: %8.8lx\n",
8097 (unsigned long) relocation, (unsigned long) (mask << shift),
8098 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8099 #endif
8100 /* FIXME: octets_per_byte. */
8101 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8102 return r;
8103 }
8104
8105 /* Functions to read r_offset from external (target order) reloc
8106 entry. Faster than bfd_getl32 et al, because we let the compiler
8107 know the value is aligned. */
8108
8109 static bfd_vma
8110 ext32l_r_offset (const void *p)
8111 {
8112 union aligned32
8113 {
8114 uint32_t v;
8115 unsigned char c[4];
8116 };
8117 const union aligned32 *a
8118 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8119
8120 uint32_t aval = ( (uint32_t) a->c[0]
8121 | (uint32_t) a->c[1] << 8
8122 | (uint32_t) a->c[2] << 16
8123 | (uint32_t) a->c[3] << 24);
8124 return aval;
8125 }
8126
8127 static bfd_vma
8128 ext32b_r_offset (const void *p)
8129 {
8130 union aligned32
8131 {
8132 uint32_t v;
8133 unsigned char c[4];
8134 };
8135 const union aligned32 *a
8136 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8137
8138 uint32_t aval = ( (uint32_t) a->c[0] << 24
8139 | (uint32_t) a->c[1] << 16
8140 | (uint32_t) a->c[2] << 8
8141 | (uint32_t) a->c[3]);
8142 return aval;
8143 }
8144
8145 #ifdef BFD_HOST_64_BIT
8146 static bfd_vma
8147 ext64l_r_offset (const void *p)
8148 {
8149 union aligned64
8150 {
8151 uint64_t v;
8152 unsigned char c[8];
8153 };
8154 const union aligned64 *a
8155 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8156
8157 uint64_t aval = ( (uint64_t) a->c[0]
8158 | (uint64_t) a->c[1] << 8
8159 | (uint64_t) a->c[2] << 16
8160 | (uint64_t) a->c[3] << 24
8161 | (uint64_t) a->c[4] << 32
8162 | (uint64_t) a->c[5] << 40
8163 | (uint64_t) a->c[6] << 48
8164 | (uint64_t) a->c[7] << 56);
8165 return aval;
8166 }
8167
8168 static bfd_vma
8169 ext64b_r_offset (const void *p)
8170 {
8171 union aligned64
8172 {
8173 uint64_t v;
8174 unsigned char c[8];
8175 };
8176 const union aligned64 *a
8177 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8178
8179 uint64_t aval = ( (uint64_t) a->c[0] << 56
8180 | (uint64_t) a->c[1] << 48
8181 | (uint64_t) a->c[2] << 40
8182 | (uint64_t) a->c[3] << 32
8183 | (uint64_t) a->c[4] << 24
8184 | (uint64_t) a->c[5] << 16
8185 | (uint64_t) a->c[6] << 8
8186 | (uint64_t) a->c[7]);
8187 return aval;
8188 }
8189 #endif
8190
8191 /* When performing a relocatable link, the input relocations are
8192 preserved. But, if they reference global symbols, the indices
8193 referenced must be updated. Update all the relocations found in
8194 RELDATA. */
8195
8196 static bfd_boolean
8197 elf_link_adjust_relocs (bfd *abfd,
8198 struct bfd_elf_section_reloc_data *reldata,
8199 bfd_boolean sort)
8200 {
8201 unsigned int i;
8202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8203 bfd_byte *erela;
8204 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8205 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8206 bfd_vma r_type_mask;
8207 int r_sym_shift;
8208 unsigned int count = reldata->count;
8209 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8210
8211 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8212 {
8213 swap_in = bed->s->swap_reloc_in;
8214 swap_out = bed->s->swap_reloc_out;
8215 }
8216 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8217 {
8218 swap_in = bed->s->swap_reloca_in;
8219 swap_out = bed->s->swap_reloca_out;
8220 }
8221 else
8222 abort ();
8223
8224 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8225 abort ();
8226
8227 if (bed->s->arch_size == 32)
8228 {
8229 r_type_mask = 0xff;
8230 r_sym_shift = 8;
8231 }
8232 else
8233 {
8234 r_type_mask = 0xffffffff;
8235 r_sym_shift = 32;
8236 }
8237
8238 erela = reldata->hdr->contents;
8239 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8240 {
8241 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8242 unsigned int j;
8243
8244 if (*rel_hash == NULL)
8245 continue;
8246
8247 BFD_ASSERT ((*rel_hash)->indx >= 0);
8248
8249 (*swap_in) (abfd, erela, irela);
8250 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8251 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8252 | (irela[j].r_info & r_type_mask));
8253 (*swap_out) (abfd, irela, erela);
8254 }
8255
8256 if (sort && count != 0)
8257 {
8258 bfd_vma (*ext_r_off) (const void *);
8259 bfd_vma r_off;
8260 size_t elt_size;
8261 bfd_byte *base, *end, *p, *loc;
8262 bfd_byte *buf = NULL;
8263
8264 if (bed->s->arch_size == 32)
8265 {
8266 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8267 ext_r_off = ext32l_r_offset;
8268 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8269 ext_r_off = ext32b_r_offset;
8270 else
8271 abort ();
8272 }
8273 else
8274 {
8275 #ifdef BFD_HOST_64_BIT
8276 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8277 ext_r_off = ext64l_r_offset;
8278 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8279 ext_r_off = ext64b_r_offset;
8280 else
8281 #endif
8282 abort ();
8283 }
8284
8285 /* Must use a stable sort here. A modified insertion sort,
8286 since the relocs are mostly sorted already. */
8287 elt_size = reldata->hdr->sh_entsize;
8288 base = reldata->hdr->contents;
8289 end = base + count * elt_size;
8290 if (elt_size > sizeof (Elf64_External_Rela))
8291 abort ();
8292
8293 /* Ensure the first element is lowest. This acts as a sentinel,
8294 speeding the main loop below. */
8295 r_off = (*ext_r_off) (base);
8296 for (p = loc = base; (p += elt_size) < end; )
8297 {
8298 bfd_vma r_off2 = (*ext_r_off) (p);
8299 if (r_off > r_off2)
8300 {
8301 r_off = r_off2;
8302 loc = p;
8303 }
8304 }
8305 if (loc != base)
8306 {
8307 /* Don't just swap *base and *loc as that changes the order
8308 of the original base[0] and base[1] if they happen to
8309 have the same r_offset. */
8310 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8311 memcpy (onebuf, loc, elt_size);
8312 memmove (base + elt_size, base, loc - base);
8313 memcpy (base, onebuf, elt_size);
8314 }
8315
8316 for (p = base + elt_size; (p += elt_size) < end; )
8317 {
8318 /* base to p is sorted, *p is next to insert. */
8319 r_off = (*ext_r_off) (p);
8320 /* Search the sorted region for location to insert. */
8321 loc = p - elt_size;
8322 while (r_off < (*ext_r_off) (loc))
8323 loc -= elt_size;
8324 loc += elt_size;
8325 if (loc != p)
8326 {
8327 /* Chances are there is a run of relocs to insert here,
8328 from one of more input files. Files are not always
8329 linked in order due to the way elf_link_input_bfd is
8330 called. See pr17666. */
8331 size_t sortlen = p - loc;
8332 bfd_vma r_off2 = (*ext_r_off) (loc);
8333 size_t runlen = elt_size;
8334 size_t buf_size = 96 * 1024;
8335 while (p + runlen < end
8336 && (sortlen <= buf_size
8337 || runlen + elt_size <= buf_size)
8338 && r_off2 > (*ext_r_off) (p + runlen))
8339 runlen += elt_size;
8340 if (buf == NULL)
8341 {
8342 buf = bfd_malloc (buf_size);
8343 if (buf == NULL)
8344 return FALSE;
8345 }
8346 if (runlen < sortlen)
8347 {
8348 memcpy (buf, p, runlen);
8349 memmove (loc + runlen, loc, sortlen);
8350 memcpy (loc, buf, runlen);
8351 }
8352 else
8353 {
8354 memcpy (buf, loc, sortlen);
8355 memmove (loc, p, runlen);
8356 memcpy (loc + runlen, buf, sortlen);
8357 }
8358 p += runlen - elt_size;
8359 }
8360 }
8361 /* Hashes are no longer valid. */
8362 free (reldata->hashes);
8363 reldata->hashes = NULL;
8364 free (buf);
8365 }
8366 return TRUE;
8367 }
8368
8369 struct elf_link_sort_rela
8370 {
8371 union {
8372 bfd_vma offset;
8373 bfd_vma sym_mask;
8374 } u;
8375 enum elf_reloc_type_class type;
8376 /* We use this as an array of size int_rels_per_ext_rel. */
8377 Elf_Internal_Rela rela[1];
8378 };
8379
8380 static int
8381 elf_link_sort_cmp1 (const void *A, const void *B)
8382 {
8383 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8384 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8385 int relativea, relativeb;
8386
8387 relativea = a->type == reloc_class_relative;
8388 relativeb = b->type == reloc_class_relative;
8389
8390 if (relativea < relativeb)
8391 return 1;
8392 if (relativea > relativeb)
8393 return -1;
8394 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8395 return -1;
8396 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8397 return 1;
8398 if (a->rela->r_offset < b->rela->r_offset)
8399 return -1;
8400 if (a->rela->r_offset > b->rela->r_offset)
8401 return 1;
8402 return 0;
8403 }
8404
8405 static int
8406 elf_link_sort_cmp2 (const void *A, const void *B)
8407 {
8408 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8409 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8410
8411 if (a->type < b->type)
8412 return -1;
8413 if (a->type > b->type)
8414 return 1;
8415 if (a->u.offset < b->u.offset)
8416 return -1;
8417 if (a->u.offset > b->u.offset)
8418 return 1;
8419 if (a->rela->r_offset < b->rela->r_offset)
8420 return -1;
8421 if (a->rela->r_offset > b->rela->r_offset)
8422 return 1;
8423 return 0;
8424 }
8425
8426 static size_t
8427 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8428 {
8429 asection *dynamic_relocs;
8430 asection *rela_dyn;
8431 asection *rel_dyn;
8432 bfd_size_type count, size;
8433 size_t i, ret, sort_elt, ext_size;
8434 bfd_byte *sort, *s_non_relative, *p;
8435 struct elf_link_sort_rela *sq;
8436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8437 int i2e = bed->s->int_rels_per_ext_rel;
8438 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8439 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8440 struct bfd_link_order *lo;
8441 bfd_vma r_sym_mask;
8442 bfd_boolean use_rela;
8443
8444 /* Find a dynamic reloc section. */
8445 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8446 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8447 if (rela_dyn != NULL && rela_dyn->size > 0
8448 && rel_dyn != NULL && rel_dyn->size > 0)
8449 {
8450 bfd_boolean use_rela_initialised = FALSE;
8451
8452 /* This is just here to stop gcc from complaining.
8453 It's initialization checking code is not perfect. */
8454 use_rela = TRUE;
8455
8456 /* Both sections are present. Examine the sizes
8457 of the indirect sections to help us choose. */
8458 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8459 if (lo->type == bfd_indirect_link_order)
8460 {
8461 asection *o = lo->u.indirect.section;
8462
8463 if ((o->size % bed->s->sizeof_rela) == 0)
8464 {
8465 if ((o->size % bed->s->sizeof_rel) == 0)
8466 /* Section size is divisible by both rel and rela sizes.
8467 It is of no help to us. */
8468 ;
8469 else
8470 {
8471 /* Section size is only divisible by rela. */
8472 if (use_rela_initialised && (use_rela == FALSE))
8473 {
8474 _bfd_error_handler
8475 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8476 bfd_set_error (bfd_error_invalid_operation);
8477 return 0;
8478 }
8479 else
8480 {
8481 use_rela = TRUE;
8482 use_rela_initialised = TRUE;
8483 }
8484 }
8485 }
8486 else if ((o->size % bed->s->sizeof_rel) == 0)
8487 {
8488 /* Section size is only divisible by rel. */
8489 if (use_rela_initialised && (use_rela == TRUE))
8490 {
8491 _bfd_error_handler
8492 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8493 bfd_set_error (bfd_error_invalid_operation);
8494 return 0;
8495 }
8496 else
8497 {
8498 use_rela = FALSE;
8499 use_rela_initialised = TRUE;
8500 }
8501 }
8502 else
8503 {
8504 /* The section size is not divisible by either - something is wrong. */
8505 _bfd_error_handler
8506 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8507 bfd_set_error (bfd_error_invalid_operation);
8508 return 0;
8509 }
8510 }
8511
8512 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8513 if (lo->type == bfd_indirect_link_order)
8514 {
8515 asection *o = lo->u.indirect.section;
8516
8517 if ((o->size % bed->s->sizeof_rela) == 0)
8518 {
8519 if ((o->size % bed->s->sizeof_rel) == 0)
8520 /* Section size is divisible by both rel and rela sizes.
8521 It is of no help to us. */
8522 ;
8523 else
8524 {
8525 /* Section size is only divisible by rela. */
8526 if (use_rela_initialised && (use_rela == FALSE))
8527 {
8528 _bfd_error_handler
8529 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8530 bfd_set_error (bfd_error_invalid_operation);
8531 return 0;
8532 }
8533 else
8534 {
8535 use_rela = TRUE;
8536 use_rela_initialised = TRUE;
8537 }
8538 }
8539 }
8540 else if ((o->size % bed->s->sizeof_rel) == 0)
8541 {
8542 /* Section size is only divisible by rel. */
8543 if (use_rela_initialised && (use_rela == TRUE))
8544 {
8545 _bfd_error_handler
8546 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8547 bfd_set_error (bfd_error_invalid_operation);
8548 return 0;
8549 }
8550 else
8551 {
8552 use_rela = FALSE;
8553 use_rela_initialised = TRUE;
8554 }
8555 }
8556 else
8557 {
8558 /* The section size is not divisible by either - something is wrong. */
8559 _bfd_error_handler
8560 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8561 bfd_set_error (bfd_error_invalid_operation);
8562 return 0;
8563 }
8564 }
8565
8566 if (! use_rela_initialised)
8567 /* Make a guess. */
8568 use_rela = TRUE;
8569 }
8570 else if (rela_dyn != NULL && rela_dyn->size > 0)
8571 use_rela = TRUE;
8572 else if (rel_dyn != NULL && rel_dyn->size > 0)
8573 use_rela = FALSE;
8574 else
8575 return 0;
8576
8577 if (use_rela)
8578 {
8579 dynamic_relocs = rela_dyn;
8580 ext_size = bed->s->sizeof_rela;
8581 swap_in = bed->s->swap_reloca_in;
8582 swap_out = bed->s->swap_reloca_out;
8583 }
8584 else
8585 {
8586 dynamic_relocs = rel_dyn;
8587 ext_size = bed->s->sizeof_rel;
8588 swap_in = bed->s->swap_reloc_in;
8589 swap_out = bed->s->swap_reloc_out;
8590 }
8591
8592 size = 0;
8593 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8594 if (lo->type == bfd_indirect_link_order)
8595 size += lo->u.indirect.section->size;
8596
8597 if (size != dynamic_relocs->size)
8598 return 0;
8599
8600 sort_elt = (sizeof (struct elf_link_sort_rela)
8601 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8602
8603 count = dynamic_relocs->size / ext_size;
8604 if (count == 0)
8605 return 0;
8606 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8607
8608 if (sort == NULL)
8609 {
8610 (*info->callbacks->warning)
8611 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8612 return 0;
8613 }
8614
8615 if (bed->s->arch_size == 32)
8616 r_sym_mask = ~(bfd_vma) 0xff;
8617 else
8618 r_sym_mask = ~(bfd_vma) 0xffffffff;
8619
8620 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8621 if (lo->type == bfd_indirect_link_order)
8622 {
8623 bfd_byte *erel, *erelend;
8624 asection *o = lo->u.indirect.section;
8625
8626 if (o->contents == NULL && o->size != 0)
8627 {
8628 /* This is a reloc section that is being handled as a normal
8629 section. See bfd_section_from_shdr. We can't combine
8630 relocs in this case. */
8631 free (sort);
8632 return 0;
8633 }
8634 erel = o->contents;
8635 erelend = o->contents + o->size;
8636 /* FIXME: octets_per_byte. */
8637 p = sort + o->output_offset / ext_size * sort_elt;
8638
8639 while (erel < erelend)
8640 {
8641 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8642
8643 (*swap_in) (abfd, erel, s->rela);
8644 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8645 s->u.sym_mask = r_sym_mask;
8646 p += sort_elt;
8647 erel += ext_size;
8648 }
8649 }
8650
8651 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8652
8653 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8654 {
8655 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8656 if (s->type != reloc_class_relative)
8657 break;
8658 }
8659 ret = i;
8660 s_non_relative = p;
8661
8662 sq = (struct elf_link_sort_rela *) s_non_relative;
8663 for (; i < count; i++, p += sort_elt)
8664 {
8665 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8666 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8667 sq = sp;
8668 sp->u.offset = sq->rela->r_offset;
8669 }
8670
8671 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8672
8673 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8674 if (lo->type == bfd_indirect_link_order)
8675 {
8676 bfd_byte *erel, *erelend;
8677 asection *o = lo->u.indirect.section;
8678
8679 erel = o->contents;
8680 erelend = o->contents + o->size;
8681 /* FIXME: octets_per_byte. */
8682 p = sort + o->output_offset / ext_size * sort_elt;
8683 while (erel < erelend)
8684 {
8685 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8686 (*swap_out) (abfd, s->rela, erel);
8687 p += sort_elt;
8688 erel += ext_size;
8689 }
8690 }
8691
8692 free (sort);
8693 *psec = dynamic_relocs;
8694 return ret;
8695 }
8696
8697 /* Add a symbol to the output symbol string table. */
8698
8699 static int
8700 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8701 const char *name,
8702 Elf_Internal_Sym *elfsym,
8703 asection *input_sec,
8704 struct elf_link_hash_entry *h)
8705 {
8706 int (*output_symbol_hook)
8707 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8708 struct elf_link_hash_entry *);
8709 struct elf_link_hash_table *hash_table;
8710 const struct elf_backend_data *bed;
8711 bfd_size_type strtabsize;
8712
8713 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8714
8715 bed = get_elf_backend_data (flinfo->output_bfd);
8716 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8717 if (output_symbol_hook != NULL)
8718 {
8719 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8720 if (ret != 1)
8721 return ret;
8722 }
8723
8724 if (name == NULL
8725 || *name == '\0'
8726 || (input_sec->flags & SEC_EXCLUDE))
8727 elfsym->st_name = (unsigned long) -1;
8728 else
8729 {
8730 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8731 to get the final offset for st_name. */
8732 elfsym->st_name
8733 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8734 name, FALSE);
8735 if (elfsym->st_name == (unsigned long) -1)
8736 return 0;
8737 }
8738
8739 hash_table = elf_hash_table (flinfo->info);
8740 strtabsize = hash_table->strtabsize;
8741 if (strtabsize <= hash_table->strtabcount)
8742 {
8743 strtabsize += strtabsize;
8744 hash_table->strtabsize = strtabsize;
8745 strtabsize *= sizeof (*hash_table->strtab);
8746 hash_table->strtab
8747 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8748 strtabsize);
8749 if (hash_table->strtab == NULL)
8750 return 0;
8751 }
8752 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8753 hash_table->strtab[hash_table->strtabcount].dest_index
8754 = hash_table->strtabcount;
8755 hash_table->strtab[hash_table->strtabcount].destshndx_index
8756 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8757
8758 bfd_get_symcount (flinfo->output_bfd) += 1;
8759 hash_table->strtabcount += 1;
8760
8761 return 1;
8762 }
8763
8764 /* Swap symbols out to the symbol table and flush the output symbols to
8765 the file. */
8766
8767 static bfd_boolean
8768 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8769 {
8770 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8771 bfd_size_type amt, i;
8772 const struct elf_backend_data *bed;
8773 bfd_byte *symbuf;
8774 Elf_Internal_Shdr *hdr;
8775 file_ptr pos;
8776 bfd_boolean ret;
8777
8778 if (!hash_table->strtabcount)
8779 return TRUE;
8780
8781 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8782
8783 bed = get_elf_backend_data (flinfo->output_bfd);
8784
8785 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8786 symbuf = (bfd_byte *) bfd_malloc (amt);
8787 if (symbuf == NULL)
8788 return FALSE;
8789
8790 if (flinfo->symshndxbuf)
8791 {
8792 amt = (sizeof (Elf_External_Sym_Shndx)
8793 * (bfd_get_symcount (flinfo->output_bfd)));
8794 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8795 if (flinfo->symshndxbuf == NULL)
8796 {
8797 free (symbuf);
8798 return FALSE;
8799 }
8800 }
8801
8802 for (i = 0; i < hash_table->strtabcount; i++)
8803 {
8804 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8805 if (elfsym->sym.st_name == (unsigned long) -1)
8806 elfsym->sym.st_name = 0;
8807 else
8808 elfsym->sym.st_name
8809 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8810 elfsym->sym.st_name);
8811 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8812 ((bfd_byte *) symbuf
8813 + (elfsym->dest_index
8814 * bed->s->sizeof_sym)),
8815 (flinfo->symshndxbuf
8816 + elfsym->destshndx_index));
8817 }
8818
8819 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8820 pos = hdr->sh_offset + hdr->sh_size;
8821 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8822 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8823 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8824 {
8825 hdr->sh_size += amt;
8826 ret = TRUE;
8827 }
8828 else
8829 ret = FALSE;
8830
8831 free (symbuf);
8832
8833 free (hash_table->strtab);
8834 hash_table->strtab = NULL;
8835
8836 return ret;
8837 }
8838
8839 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8840
8841 static bfd_boolean
8842 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8843 {
8844 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8845 && sym->st_shndx < SHN_LORESERVE)
8846 {
8847 /* The gABI doesn't support dynamic symbols in output sections
8848 beyond 64k. */
8849 (*_bfd_error_handler)
8850 (_("%B: Too many sections: %d (>= %d)"),
8851 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8852 bfd_set_error (bfd_error_nonrepresentable_section);
8853 return FALSE;
8854 }
8855 return TRUE;
8856 }
8857
8858 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8859 allowing an unsatisfied unversioned symbol in the DSO to match a
8860 versioned symbol that would normally require an explicit version.
8861 We also handle the case that a DSO references a hidden symbol
8862 which may be satisfied by a versioned symbol in another DSO. */
8863
8864 static bfd_boolean
8865 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8866 const struct elf_backend_data *bed,
8867 struct elf_link_hash_entry *h)
8868 {
8869 bfd *abfd;
8870 struct elf_link_loaded_list *loaded;
8871
8872 if (!is_elf_hash_table (info->hash))
8873 return FALSE;
8874
8875 /* Check indirect symbol. */
8876 while (h->root.type == bfd_link_hash_indirect)
8877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8878
8879 switch (h->root.type)
8880 {
8881 default:
8882 abfd = NULL;
8883 break;
8884
8885 case bfd_link_hash_undefined:
8886 case bfd_link_hash_undefweak:
8887 abfd = h->root.u.undef.abfd;
8888 if ((abfd->flags & DYNAMIC) == 0
8889 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8890 return FALSE;
8891 break;
8892
8893 case bfd_link_hash_defined:
8894 case bfd_link_hash_defweak:
8895 abfd = h->root.u.def.section->owner;
8896 break;
8897
8898 case bfd_link_hash_common:
8899 abfd = h->root.u.c.p->section->owner;
8900 break;
8901 }
8902 BFD_ASSERT (abfd != NULL);
8903
8904 for (loaded = elf_hash_table (info)->loaded;
8905 loaded != NULL;
8906 loaded = loaded->next)
8907 {
8908 bfd *input;
8909 Elf_Internal_Shdr *hdr;
8910 bfd_size_type symcount;
8911 bfd_size_type extsymcount;
8912 bfd_size_type extsymoff;
8913 Elf_Internal_Shdr *versymhdr;
8914 Elf_Internal_Sym *isym;
8915 Elf_Internal_Sym *isymend;
8916 Elf_Internal_Sym *isymbuf;
8917 Elf_External_Versym *ever;
8918 Elf_External_Versym *extversym;
8919
8920 input = loaded->abfd;
8921
8922 /* We check each DSO for a possible hidden versioned definition. */
8923 if (input == abfd
8924 || (input->flags & DYNAMIC) == 0
8925 || elf_dynversym (input) == 0)
8926 continue;
8927
8928 hdr = &elf_tdata (input)->dynsymtab_hdr;
8929
8930 symcount = hdr->sh_size / bed->s->sizeof_sym;
8931 if (elf_bad_symtab (input))
8932 {
8933 extsymcount = symcount;
8934 extsymoff = 0;
8935 }
8936 else
8937 {
8938 extsymcount = symcount - hdr->sh_info;
8939 extsymoff = hdr->sh_info;
8940 }
8941
8942 if (extsymcount == 0)
8943 continue;
8944
8945 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8946 NULL, NULL, NULL);
8947 if (isymbuf == NULL)
8948 return FALSE;
8949
8950 /* Read in any version definitions. */
8951 versymhdr = &elf_tdata (input)->dynversym_hdr;
8952 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8953 if (extversym == NULL)
8954 goto error_ret;
8955
8956 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8957 || (bfd_bread (extversym, versymhdr->sh_size, input)
8958 != versymhdr->sh_size))
8959 {
8960 free (extversym);
8961 error_ret:
8962 free (isymbuf);
8963 return FALSE;
8964 }
8965
8966 ever = extversym + extsymoff;
8967 isymend = isymbuf + extsymcount;
8968 for (isym = isymbuf; isym < isymend; isym++, ever++)
8969 {
8970 const char *name;
8971 Elf_Internal_Versym iver;
8972 unsigned short version_index;
8973
8974 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8975 || isym->st_shndx == SHN_UNDEF)
8976 continue;
8977
8978 name = bfd_elf_string_from_elf_section (input,
8979 hdr->sh_link,
8980 isym->st_name);
8981 if (strcmp (name, h->root.root.string) != 0)
8982 continue;
8983
8984 _bfd_elf_swap_versym_in (input, ever, &iver);
8985
8986 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8987 && !(h->def_regular
8988 && h->forced_local))
8989 {
8990 /* If we have a non-hidden versioned sym, then it should
8991 have provided a definition for the undefined sym unless
8992 it is defined in a non-shared object and forced local.
8993 */
8994 abort ();
8995 }
8996
8997 version_index = iver.vs_vers & VERSYM_VERSION;
8998 if (version_index == 1 || version_index == 2)
8999 {
9000 /* This is the base or first version. We can use it. */
9001 free (extversym);
9002 free (isymbuf);
9003 return TRUE;
9004 }
9005 }
9006
9007 free (extversym);
9008 free (isymbuf);
9009 }
9010
9011 return FALSE;
9012 }
9013
9014 /* Add an external symbol to the symbol table. This is called from
9015 the hash table traversal routine. When generating a shared object,
9016 we go through the symbol table twice. The first time we output
9017 anything that might have been forced to local scope in a version
9018 script. The second time we output the symbols that are still
9019 global symbols. */
9020
9021 static bfd_boolean
9022 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9023 {
9024 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9025 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9026 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9027 bfd_boolean strip;
9028 Elf_Internal_Sym sym;
9029 asection *input_sec;
9030 const struct elf_backend_data *bed;
9031 long indx;
9032 int ret;
9033 /* A symbol is bound locally if it is forced local or it is locally
9034 defined, hidden versioned, not referenced by shared library and
9035 not exported when linking executable. */
9036 bfd_boolean local_bind = (h->forced_local
9037 || (bfd_link_executable (flinfo->info)
9038 && !flinfo->info->export_dynamic
9039 && !h->dynamic
9040 && !h->ref_dynamic
9041 && h->def_regular
9042 && h->versioned == versioned_hidden));
9043
9044 if (h->root.type == bfd_link_hash_warning)
9045 {
9046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9047 if (h->root.type == bfd_link_hash_new)
9048 return TRUE;
9049 }
9050
9051 /* Decide whether to output this symbol in this pass. */
9052 if (eoinfo->localsyms)
9053 {
9054 if (!local_bind)
9055 return TRUE;
9056 }
9057 else
9058 {
9059 if (local_bind)
9060 return TRUE;
9061 }
9062
9063 bed = get_elf_backend_data (flinfo->output_bfd);
9064
9065 if (h->root.type == bfd_link_hash_undefined)
9066 {
9067 /* If we have an undefined symbol reference here then it must have
9068 come from a shared library that is being linked in. (Undefined
9069 references in regular files have already been handled unless
9070 they are in unreferenced sections which are removed by garbage
9071 collection). */
9072 bfd_boolean ignore_undef = FALSE;
9073
9074 /* Some symbols may be special in that the fact that they're
9075 undefined can be safely ignored - let backend determine that. */
9076 if (bed->elf_backend_ignore_undef_symbol)
9077 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9078
9079 /* If we are reporting errors for this situation then do so now. */
9080 if (!ignore_undef
9081 && h->ref_dynamic
9082 && (!h->ref_regular || flinfo->info->gc_sections)
9083 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9084 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9085 {
9086 if (!(flinfo->info->callbacks->undefined_symbol
9087 (flinfo->info, h->root.root.string,
9088 h->ref_regular ? NULL : h->root.u.undef.abfd,
9089 NULL, 0,
9090 (flinfo->info->unresolved_syms_in_shared_libs
9091 == RM_GENERATE_ERROR))))
9092 {
9093 bfd_set_error (bfd_error_bad_value);
9094 eoinfo->failed = TRUE;
9095 return FALSE;
9096 }
9097 }
9098 }
9099
9100 /* We should also warn if a forced local symbol is referenced from
9101 shared libraries. */
9102 if (bfd_link_executable (flinfo->info)
9103 && h->forced_local
9104 && h->ref_dynamic
9105 && h->def_regular
9106 && !h->dynamic_def
9107 && h->ref_dynamic_nonweak
9108 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9109 {
9110 bfd *def_bfd;
9111 const char *msg;
9112 struct elf_link_hash_entry *hi = h;
9113
9114 /* Check indirect symbol. */
9115 while (hi->root.type == bfd_link_hash_indirect)
9116 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9117
9118 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9119 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9120 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9121 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9122 else
9123 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9124 def_bfd = flinfo->output_bfd;
9125 if (hi->root.u.def.section != bfd_abs_section_ptr)
9126 def_bfd = hi->root.u.def.section->owner;
9127 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9128 h->root.root.string);
9129 bfd_set_error (bfd_error_bad_value);
9130 eoinfo->failed = TRUE;
9131 return FALSE;
9132 }
9133
9134 /* We don't want to output symbols that have never been mentioned by
9135 a regular file, or that we have been told to strip. However, if
9136 h->indx is set to -2, the symbol is used by a reloc and we must
9137 output it. */
9138 strip = FALSE;
9139 if (h->indx == -2)
9140 ;
9141 else if ((h->def_dynamic
9142 || h->ref_dynamic
9143 || h->root.type == bfd_link_hash_new)
9144 && !h->def_regular
9145 && !h->ref_regular)
9146 strip = TRUE;
9147 else if (flinfo->info->strip == strip_all)
9148 strip = TRUE;
9149 else if (flinfo->info->strip == strip_some
9150 && bfd_hash_lookup (flinfo->info->keep_hash,
9151 h->root.root.string, FALSE, FALSE) == NULL)
9152 strip = TRUE;
9153 else if ((h->root.type == bfd_link_hash_defined
9154 || h->root.type == bfd_link_hash_defweak)
9155 && ((flinfo->info->strip_discarded
9156 && discarded_section (h->root.u.def.section))
9157 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9158 && h->root.u.def.section->owner != NULL
9159 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9160 strip = TRUE;
9161 else if ((h->root.type == bfd_link_hash_undefined
9162 || h->root.type == bfd_link_hash_undefweak)
9163 && h->root.u.undef.abfd != NULL
9164 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9165 strip = TRUE;
9166
9167 /* If we're stripping it, and it's not a dynamic symbol, there's
9168 nothing else to do. However, if it is a forced local symbol or
9169 an ifunc symbol we need to give the backend finish_dynamic_symbol
9170 function a chance to make it dynamic. */
9171 if (strip
9172 && h->dynindx == -1
9173 && h->type != STT_GNU_IFUNC
9174 && !h->forced_local)
9175 return TRUE;
9176
9177 sym.st_value = 0;
9178 sym.st_size = h->size;
9179 sym.st_other = h->other;
9180 if (local_bind)
9181 {
9182 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9183 /* Turn off visibility on local symbol. */
9184 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9185 }
9186 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9187 else if (h->unique_global && h->def_regular)
9188 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9189 else if (h->root.type == bfd_link_hash_undefweak
9190 || h->root.type == bfd_link_hash_defweak)
9191 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9192 else
9193 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9194 sym.st_target_internal = h->target_internal;
9195
9196 switch (h->root.type)
9197 {
9198 default:
9199 case bfd_link_hash_new:
9200 case bfd_link_hash_warning:
9201 abort ();
9202 return FALSE;
9203
9204 case bfd_link_hash_undefined:
9205 case bfd_link_hash_undefweak:
9206 input_sec = bfd_und_section_ptr;
9207 sym.st_shndx = SHN_UNDEF;
9208 break;
9209
9210 case bfd_link_hash_defined:
9211 case bfd_link_hash_defweak:
9212 {
9213 input_sec = h->root.u.def.section;
9214 if (input_sec->output_section != NULL)
9215 {
9216 sym.st_shndx =
9217 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9218 input_sec->output_section);
9219 if (sym.st_shndx == SHN_BAD)
9220 {
9221 (*_bfd_error_handler)
9222 (_("%B: could not find output section %A for input section %A"),
9223 flinfo->output_bfd, input_sec->output_section, input_sec);
9224 bfd_set_error (bfd_error_nonrepresentable_section);
9225 eoinfo->failed = TRUE;
9226 return FALSE;
9227 }
9228
9229 /* ELF symbols in relocatable files are section relative,
9230 but in nonrelocatable files they are virtual
9231 addresses. */
9232 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9233 if (!bfd_link_relocatable (flinfo->info))
9234 {
9235 sym.st_value += input_sec->output_section->vma;
9236 if (h->type == STT_TLS)
9237 {
9238 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9239 if (tls_sec != NULL)
9240 sym.st_value -= tls_sec->vma;
9241 }
9242 }
9243 }
9244 else
9245 {
9246 BFD_ASSERT (input_sec->owner == NULL
9247 || (input_sec->owner->flags & DYNAMIC) != 0);
9248 sym.st_shndx = SHN_UNDEF;
9249 input_sec = bfd_und_section_ptr;
9250 }
9251 }
9252 break;
9253
9254 case bfd_link_hash_common:
9255 input_sec = h->root.u.c.p->section;
9256 sym.st_shndx = bed->common_section_index (input_sec);
9257 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9258 break;
9259
9260 case bfd_link_hash_indirect:
9261 /* These symbols are created by symbol versioning. They point
9262 to the decorated version of the name. For example, if the
9263 symbol foo@@GNU_1.2 is the default, which should be used when
9264 foo is used with no version, then we add an indirect symbol
9265 foo which points to foo@@GNU_1.2. We ignore these symbols,
9266 since the indirected symbol is already in the hash table. */
9267 return TRUE;
9268 }
9269
9270 /* Give the processor backend a chance to tweak the symbol value,
9271 and also to finish up anything that needs to be done for this
9272 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9273 forced local syms when non-shared is due to a historical quirk.
9274 STT_GNU_IFUNC symbol must go through PLT. */
9275 if ((h->type == STT_GNU_IFUNC
9276 && h->def_regular
9277 && !bfd_link_relocatable (flinfo->info))
9278 || ((h->dynindx != -1
9279 || h->forced_local)
9280 && ((bfd_link_pic (flinfo->info)
9281 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9282 || h->root.type != bfd_link_hash_undefweak))
9283 || !h->forced_local)
9284 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9285 {
9286 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9287 (flinfo->output_bfd, flinfo->info, h, &sym)))
9288 {
9289 eoinfo->failed = TRUE;
9290 return FALSE;
9291 }
9292 }
9293
9294 /* If we are marking the symbol as undefined, and there are no
9295 non-weak references to this symbol from a regular object, then
9296 mark the symbol as weak undefined; if there are non-weak
9297 references, mark the symbol as strong. We can't do this earlier,
9298 because it might not be marked as undefined until the
9299 finish_dynamic_symbol routine gets through with it. */
9300 if (sym.st_shndx == SHN_UNDEF
9301 && h->ref_regular
9302 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9303 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9304 {
9305 int bindtype;
9306 unsigned int type = ELF_ST_TYPE (sym.st_info);
9307
9308 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9309 if (type == STT_GNU_IFUNC)
9310 type = STT_FUNC;
9311
9312 if (h->ref_regular_nonweak)
9313 bindtype = STB_GLOBAL;
9314 else
9315 bindtype = STB_WEAK;
9316 sym.st_info = ELF_ST_INFO (bindtype, type);
9317 }
9318
9319 /* If this is a symbol defined in a dynamic library, don't use the
9320 symbol size from the dynamic library. Relinking an executable
9321 against a new library may introduce gratuitous changes in the
9322 executable's symbols if we keep the size. */
9323 if (sym.st_shndx == SHN_UNDEF
9324 && !h->def_regular
9325 && h->def_dynamic)
9326 sym.st_size = 0;
9327
9328 /* If a non-weak symbol with non-default visibility is not defined
9329 locally, it is a fatal error. */
9330 if (!bfd_link_relocatable (flinfo->info)
9331 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9332 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9333 && h->root.type == bfd_link_hash_undefined
9334 && !h->def_regular)
9335 {
9336 const char *msg;
9337
9338 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9339 msg = _("%B: protected symbol `%s' isn't defined");
9340 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9341 msg = _("%B: internal symbol `%s' isn't defined");
9342 else
9343 msg = _("%B: hidden symbol `%s' isn't defined");
9344 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9345 bfd_set_error (bfd_error_bad_value);
9346 eoinfo->failed = TRUE;
9347 return FALSE;
9348 }
9349
9350 /* If this symbol should be put in the .dynsym section, then put it
9351 there now. We already know the symbol index. We also fill in
9352 the entry in the .hash section. */
9353 if (elf_hash_table (flinfo->info)->dynsym != NULL
9354 && h->dynindx != -1
9355 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9356 {
9357 bfd_byte *esym;
9358
9359 /* Since there is no version information in the dynamic string,
9360 if there is no version info in symbol version section, we will
9361 have a run-time problem if not linking executable, referenced
9362 by shared library, not locally defined, or not bound locally.
9363 */
9364 if (h->verinfo.verdef == NULL
9365 && !local_bind
9366 && (!bfd_link_executable (flinfo->info)
9367 || h->ref_dynamic
9368 || !h->def_regular))
9369 {
9370 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9371
9372 if (p && p [1] != '\0')
9373 {
9374 (*_bfd_error_handler)
9375 (_("%B: No symbol version section for versioned symbol `%s'"),
9376 flinfo->output_bfd, h->root.root.string);
9377 eoinfo->failed = TRUE;
9378 return FALSE;
9379 }
9380 }
9381
9382 sym.st_name = h->dynstr_index;
9383 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9384 + h->dynindx * bed->s->sizeof_sym);
9385 if (!check_dynsym (flinfo->output_bfd, &sym))
9386 {
9387 eoinfo->failed = TRUE;
9388 return FALSE;
9389 }
9390 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9391
9392 if (flinfo->hash_sec != NULL)
9393 {
9394 size_t hash_entry_size;
9395 bfd_byte *bucketpos;
9396 bfd_vma chain;
9397 size_t bucketcount;
9398 size_t bucket;
9399
9400 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9401 bucket = h->u.elf_hash_value % bucketcount;
9402
9403 hash_entry_size
9404 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9405 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9406 + (bucket + 2) * hash_entry_size);
9407 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9408 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9409 bucketpos);
9410 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9411 ((bfd_byte *) flinfo->hash_sec->contents
9412 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9413 }
9414
9415 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9416 {
9417 Elf_Internal_Versym iversym;
9418 Elf_External_Versym *eversym;
9419
9420 if (!h->def_regular)
9421 {
9422 if (h->verinfo.verdef == NULL
9423 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9424 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9425 iversym.vs_vers = 0;
9426 else
9427 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9428 }
9429 else
9430 {
9431 if (h->verinfo.vertree == NULL)
9432 iversym.vs_vers = 1;
9433 else
9434 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9435 if (flinfo->info->create_default_symver)
9436 iversym.vs_vers++;
9437 }
9438
9439 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9440 defined locally. */
9441 if (h->versioned == versioned_hidden && h->def_regular)
9442 iversym.vs_vers |= VERSYM_HIDDEN;
9443
9444 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9445 eversym += h->dynindx;
9446 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9447 }
9448 }
9449
9450 /* If the symbol is undefined, and we didn't output it to .dynsym,
9451 strip it from .symtab too. Obviously we can't do this for
9452 relocatable output or when needed for --emit-relocs. */
9453 else if (input_sec == bfd_und_section_ptr
9454 && h->indx != -2
9455 && !bfd_link_relocatable (flinfo->info))
9456 return TRUE;
9457 /* Also strip others that we couldn't earlier due to dynamic symbol
9458 processing. */
9459 if (strip)
9460 return TRUE;
9461 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9462 return TRUE;
9463
9464 /* Output a FILE symbol so that following locals are not associated
9465 with the wrong input file. We need one for forced local symbols
9466 if we've seen more than one FILE symbol or when we have exactly
9467 one FILE symbol but global symbols are present in a file other
9468 than the one with the FILE symbol. We also need one if linker
9469 defined symbols are present. In practice these conditions are
9470 always met, so just emit the FILE symbol unconditionally. */
9471 if (eoinfo->localsyms
9472 && !eoinfo->file_sym_done
9473 && eoinfo->flinfo->filesym_count != 0)
9474 {
9475 Elf_Internal_Sym fsym;
9476
9477 memset (&fsym, 0, sizeof (fsym));
9478 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9479 fsym.st_shndx = SHN_ABS;
9480 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9481 bfd_und_section_ptr, NULL))
9482 return FALSE;
9483
9484 eoinfo->file_sym_done = TRUE;
9485 }
9486
9487 indx = bfd_get_symcount (flinfo->output_bfd);
9488 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9489 input_sec, h);
9490 if (ret == 0)
9491 {
9492 eoinfo->failed = TRUE;
9493 return FALSE;
9494 }
9495 else if (ret == 1)
9496 h->indx = indx;
9497 else if (h->indx == -2)
9498 abort();
9499
9500 return TRUE;
9501 }
9502
9503 /* Return TRUE if special handling is done for relocs in SEC against
9504 symbols defined in discarded sections. */
9505
9506 static bfd_boolean
9507 elf_section_ignore_discarded_relocs (asection *sec)
9508 {
9509 const struct elf_backend_data *bed;
9510
9511 switch (sec->sec_info_type)
9512 {
9513 case SEC_INFO_TYPE_STABS:
9514 case SEC_INFO_TYPE_EH_FRAME:
9515 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9516 return TRUE;
9517 default:
9518 break;
9519 }
9520
9521 bed = get_elf_backend_data (sec->owner);
9522 if (bed->elf_backend_ignore_discarded_relocs != NULL
9523 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9524 return TRUE;
9525
9526 return FALSE;
9527 }
9528
9529 /* Return a mask saying how ld should treat relocations in SEC against
9530 symbols defined in discarded sections. If this function returns
9531 COMPLAIN set, ld will issue a warning message. If this function
9532 returns PRETEND set, and the discarded section was link-once and the
9533 same size as the kept link-once section, ld will pretend that the
9534 symbol was actually defined in the kept section. Otherwise ld will
9535 zero the reloc (at least that is the intent, but some cooperation by
9536 the target dependent code is needed, particularly for REL targets). */
9537
9538 unsigned int
9539 _bfd_elf_default_action_discarded (asection *sec)
9540 {
9541 if (sec->flags & SEC_DEBUGGING)
9542 return PRETEND;
9543
9544 if (strcmp (".eh_frame", sec->name) == 0)
9545 return 0;
9546
9547 if (strcmp (".gcc_except_table", sec->name) == 0)
9548 return 0;
9549
9550 return COMPLAIN | PRETEND;
9551 }
9552
9553 /* Find a match between a section and a member of a section group. */
9554
9555 static asection *
9556 match_group_member (asection *sec, asection *group,
9557 struct bfd_link_info *info)
9558 {
9559 asection *first = elf_next_in_group (group);
9560 asection *s = first;
9561
9562 while (s != NULL)
9563 {
9564 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9565 return s;
9566
9567 s = elf_next_in_group (s);
9568 if (s == first)
9569 break;
9570 }
9571
9572 return NULL;
9573 }
9574
9575 /* Check if the kept section of a discarded section SEC can be used
9576 to replace it. Return the replacement if it is OK. Otherwise return
9577 NULL. */
9578
9579 asection *
9580 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9581 {
9582 asection *kept;
9583
9584 kept = sec->kept_section;
9585 if (kept != NULL)
9586 {
9587 if ((kept->flags & SEC_GROUP) != 0)
9588 kept = match_group_member (sec, kept, info);
9589 if (kept != NULL
9590 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9591 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9592 kept = NULL;
9593 sec->kept_section = kept;
9594 }
9595 return kept;
9596 }
9597
9598 /* Link an input file into the linker output file. This function
9599 handles all the sections and relocations of the input file at once.
9600 This is so that we only have to read the local symbols once, and
9601 don't have to keep them in memory. */
9602
9603 static bfd_boolean
9604 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9605 {
9606 int (*relocate_section)
9607 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9608 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9609 bfd *output_bfd;
9610 Elf_Internal_Shdr *symtab_hdr;
9611 size_t locsymcount;
9612 size_t extsymoff;
9613 Elf_Internal_Sym *isymbuf;
9614 Elf_Internal_Sym *isym;
9615 Elf_Internal_Sym *isymend;
9616 long *pindex;
9617 asection **ppsection;
9618 asection *o;
9619 const struct elf_backend_data *bed;
9620 struct elf_link_hash_entry **sym_hashes;
9621 bfd_size_type address_size;
9622 bfd_vma r_type_mask;
9623 int r_sym_shift;
9624 bfd_boolean have_file_sym = FALSE;
9625
9626 output_bfd = flinfo->output_bfd;
9627 bed = get_elf_backend_data (output_bfd);
9628 relocate_section = bed->elf_backend_relocate_section;
9629
9630 /* If this is a dynamic object, we don't want to do anything here:
9631 we don't want the local symbols, and we don't want the section
9632 contents. */
9633 if ((input_bfd->flags & DYNAMIC) != 0)
9634 return TRUE;
9635
9636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9637 if (elf_bad_symtab (input_bfd))
9638 {
9639 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9640 extsymoff = 0;
9641 }
9642 else
9643 {
9644 locsymcount = symtab_hdr->sh_info;
9645 extsymoff = symtab_hdr->sh_info;
9646 }
9647
9648 /* Read the local symbols. */
9649 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9650 if (isymbuf == NULL && locsymcount != 0)
9651 {
9652 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9653 flinfo->internal_syms,
9654 flinfo->external_syms,
9655 flinfo->locsym_shndx);
9656 if (isymbuf == NULL)
9657 return FALSE;
9658 }
9659
9660 /* Find local symbol sections and adjust values of symbols in
9661 SEC_MERGE sections. Write out those local symbols we know are
9662 going into the output file. */
9663 isymend = isymbuf + locsymcount;
9664 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9665 isym < isymend;
9666 isym++, pindex++, ppsection++)
9667 {
9668 asection *isec;
9669 const char *name;
9670 Elf_Internal_Sym osym;
9671 long indx;
9672 int ret;
9673
9674 *pindex = -1;
9675
9676 if (elf_bad_symtab (input_bfd))
9677 {
9678 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9679 {
9680 *ppsection = NULL;
9681 continue;
9682 }
9683 }
9684
9685 if (isym->st_shndx == SHN_UNDEF)
9686 isec = bfd_und_section_ptr;
9687 else if (isym->st_shndx == SHN_ABS)
9688 isec = bfd_abs_section_ptr;
9689 else if (isym->st_shndx == SHN_COMMON)
9690 isec = bfd_com_section_ptr;
9691 else
9692 {
9693 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9694 if (isec == NULL)
9695 {
9696 /* Don't attempt to output symbols with st_shnx in the
9697 reserved range other than SHN_ABS and SHN_COMMON. */
9698 *ppsection = NULL;
9699 continue;
9700 }
9701 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9702 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9703 isym->st_value =
9704 _bfd_merged_section_offset (output_bfd, &isec,
9705 elf_section_data (isec)->sec_info,
9706 isym->st_value);
9707 }
9708
9709 *ppsection = isec;
9710
9711 /* Don't output the first, undefined, symbol. In fact, don't
9712 output any undefined local symbol. */
9713 if (isec == bfd_und_section_ptr)
9714 continue;
9715
9716 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9717 {
9718 /* We never output section symbols. Instead, we use the
9719 section symbol of the corresponding section in the output
9720 file. */
9721 continue;
9722 }
9723
9724 /* If we are stripping all symbols, we don't want to output this
9725 one. */
9726 if (flinfo->info->strip == strip_all)
9727 continue;
9728
9729 /* If we are discarding all local symbols, we don't want to
9730 output this one. If we are generating a relocatable output
9731 file, then some of the local symbols may be required by
9732 relocs; we output them below as we discover that they are
9733 needed. */
9734 if (flinfo->info->discard == discard_all)
9735 continue;
9736
9737 /* If this symbol is defined in a section which we are
9738 discarding, we don't need to keep it. */
9739 if (isym->st_shndx != SHN_UNDEF
9740 && isym->st_shndx < SHN_LORESERVE
9741 && bfd_section_removed_from_list (output_bfd,
9742 isec->output_section))
9743 continue;
9744
9745 /* Get the name of the symbol. */
9746 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9747 isym->st_name);
9748 if (name == NULL)
9749 return FALSE;
9750
9751 /* See if we are discarding symbols with this name. */
9752 if ((flinfo->info->strip == strip_some
9753 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9754 == NULL))
9755 || (((flinfo->info->discard == discard_sec_merge
9756 && (isec->flags & SEC_MERGE)
9757 && !bfd_link_relocatable (flinfo->info))
9758 || flinfo->info->discard == discard_l)
9759 && bfd_is_local_label_name (input_bfd, name)))
9760 continue;
9761
9762 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9763 {
9764 if (input_bfd->lto_output)
9765 /* -flto puts a temp file name here. This means builds
9766 are not reproducible. Discard the symbol. */
9767 continue;
9768 have_file_sym = TRUE;
9769 flinfo->filesym_count += 1;
9770 }
9771 if (!have_file_sym)
9772 {
9773 /* In the absence of debug info, bfd_find_nearest_line uses
9774 FILE symbols to determine the source file for local
9775 function symbols. Provide a FILE symbol here if input
9776 files lack such, so that their symbols won't be
9777 associated with a previous input file. It's not the
9778 source file, but the best we can do. */
9779 have_file_sym = TRUE;
9780 flinfo->filesym_count += 1;
9781 memset (&osym, 0, sizeof (osym));
9782 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9783 osym.st_shndx = SHN_ABS;
9784 if (!elf_link_output_symstrtab (flinfo,
9785 (input_bfd->lto_output ? NULL
9786 : input_bfd->filename),
9787 &osym, bfd_abs_section_ptr,
9788 NULL))
9789 return FALSE;
9790 }
9791
9792 osym = *isym;
9793
9794 /* Adjust the section index for the output file. */
9795 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9796 isec->output_section);
9797 if (osym.st_shndx == SHN_BAD)
9798 return FALSE;
9799
9800 /* ELF symbols in relocatable files are section relative, but
9801 in executable files they are virtual addresses. Note that
9802 this code assumes that all ELF sections have an associated
9803 BFD section with a reasonable value for output_offset; below
9804 we assume that they also have a reasonable value for
9805 output_section. Any special sections must be set up to meet
9806 these requirements. */
9807 osym.st_value += isec->output_offset;
9808 if (!bfd_link_relocatable (flinfo->info))
9809 {
9810 osym.st_value += isec->output_section->vma;
9811 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9812 {
9813 /* STT_TLS symbols are relative to PT_TLS segment base. */
9814 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9815 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9816 }
9817 }
9818
9819 indx = bfd_get_symcount (output_bfd);
9820 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9821 if (ret == 0)
9822 return FALSE;
9823 else if (ret == 1)
9824 *pindex = indx;
9825 }
9826
9827 if (bed->s->arch_size == 32)
9828 {
9829 r_type_mask = 0xff;
9830 r_sym_shift = 8;
9831 address_size = 4;
9832 }
9833 else
9834 {
9835 r_type_mask = 0xffffffff;
9836 r_sym_shift = 32;
9837 address_size = 8;
9838 }
9839
9840 /* Relocate the contents of each section. */
9841 sym_hashes = elf_sym_hashes (input_bfd);
9842 for (o = input_bfd->sections; o != NULL; o = o->next)
9843 {
9844 bfd_byte *contents;
9845
9846 if (! o->linker_mark)
9847 {
9848 /* This section was omitted from the link. */
9849 continue;
9850 }
9851
9852 if (bfd_link_relocatable (flinfo->info)
9853 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9854 {
9855 /* Deal with the group signature symbol. */
9856 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9857 unsigned long symndx = sec_data->this_hdr.sh_info;
9858 asection *osec = o->output_section;
9859
9860 if (symndx >= locsymcount
9861 || (elf_bad_symtab (input_bfd)
9862 && flinfo->sections[symndx] == NULL))
9863 {
9864 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9865 while (h->root.type == bfd_link_hash_indirect
9866 || h->root.type == bfd_link_hash_warning)
9867 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9868 /* Arrange for symbol to be output. */
9869 h->indx = -2;
9870 elf_section_data (osec)->this_hdr.sh_info = -2;
9871 }
9872 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9873 {
9874 /* We'll use the output section target_index. */
9875 asection *sec = flinfo->sections[symndx]->output_section;
9876 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9877 }
9878 else
9879 {
9880 if (flinfo->indices[symndx] == -1)
9881 {
9882 /* Otherwise output the local symbol now. */
9883 Elf_Internal_Sym sym = isymbuf[symndx];
9884 asection *sec = flinfo->sections[symndx]->output_section;
9885 const char *name;
9886 long indx;
9887 int ret;
9888
9889 name = bfd_elf_string_from_elf_section (input_bfd,
9890 symtab_hdr->sh_link,
9891 sym.st_name);
9892 if (name == NULL)
9893 return FALSE;
9894
9895 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9896 sec);
9897 if (sym.st_shndx == SHN_BAD)
9898 return FALSE;
9899
9900 sym.st_value += o->output_offset;
9901
9902 indx = bfd_get_symcount (output_bfd);
9903 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9904 NULL);
9905 if (ret == 0)
9906 return FALSE;
9907 else if (ret == 1)
9908 flinfo->indices[symndx] = indx;
9909 else
9910 abort ();
9911 }
9912 elf_section_data (osec)->this_hdr.sh_info
9913 = flinfo->indices[symndx];
9914 }
9915 }
9916
9917 if ((o->flags & SEC_HAS_CONTENTS) == 0
9918 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9919 continue;
9920
9921 if ((o->flags & SEC_LINKER_CREATED) != 0)
9922 {
9923 /* Section was created by _bfd_elf_link_create_dynamic_sections
9924 or somesuch. */
9925 continue;
9926 }
9927
9928 /* Get the contents of the section. They have been cached by a
9929 relaxation routine. Note that o is a section in an input
9930 file, so the contents field will not have been set by any of
9931 the routines which work on output files. */
9932 if (elf_section_data (o)->this_hdr.contents != NULL)
9933 {
9934 contents = elf_section_data (o)->this_hdr.contents;
9935 if (bed->caches_rawsize
9936 && o->rawsize != 0
9937 && o->rawsize < o->size)
9938 {
9939 memcpy (flinfo->contents, contents, o->rawsize);
9940 contents = flinfo->contents;
9941 }
9942 }
9943 else
9944 {
9945 contents = flinfo->contents;
9946 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9947 return FALSE;
9948 }
9949
9950 if ((o->flags & SEC_RELOC) != 0)
9951 {
9952 Elf_Internal_Rela *internal_relocs;
9953 Elf_Internal_Rela *rel, *relend;
9954 int action_discarded;
9955 int ret;
9956
9957 /* Get the swapped relocs. */
9958 internal_relocs
9959 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9960 flinfo->internal_relocs, FALSE);
9961 if (internal_relocs == NULL
9962 && o->reloc_count > 0)
9963 return FALSE;
9964
9965 /* We need to reverse-copy input .ctors/.dtors sections if
9966 they are placed in .init_array/.finit_array for output. */
9967 if (o->size > address_size
9968 && ((strncmp (o->name, ".ctors", 6) == 0
9969 && strcmp (o->output_section->name,
9970 ".init_array") == 0)
9971 || (strncmp (o->name, ".dtors", 6) == 0
9972 && strcmp (o->output_section->name,
9973 ".fini_array") == 0))
9974 && (o->name[6] == 0 || o->name[6] == '.'))
9975 {
9976 if (o->size != o->reloc_count * address_size)
9977 {
9978 (*_bfd_error_handler)
9979 (_("error: %B: size of section %A is not "
9980 "multiple of address size"),
9981 input_bfd, o);
9982 bfd_set_error (bfd_error_on_input);
9983 return FALSE;
9984 }
9985 o->flags |= SEC_ELF_REVERSE_COPY;
9986 }
9987
9988 action_discarded = -1;
9989 if (!elf_section_ignore_discarded_relocs (o))
9990 action_discarded = (*bed->action_discarded) (o);
9991
9992 /* Run through the relocs evaluating complex reloc symbols and
9993 looking for relocs against symbols from discarded sections
9994 or section symbols from removed link-once sections.
9995 Complain about relocs against discarded sections. Zero
9996 relocs against removed link-once sections. */
9997
9998 rel = internal_relocs;
9999 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10000 for ( ; rel < relend; rel++)
10001 {
10002 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10003 unsigned int s_type;
10004 asection **ps, *sec;
10005 struct elf_link_hash_entry *h = NULL;
10006 const char *sym_name;
10007
10008 if (r_symndx == STN_UNDEF)
10009 continue;
10010
10011 if (r_symndx >= locsymcount
10012 || (elf_bad_symtab (input_bfd)
10013 && flinfo->sections[r_symndx] == NULL))
10014 {
10015 h = sym_hashes[r_symndx - extsymoff];
10016
10017 /* Badly formatted input files can contain relocs that
10018 reference non-existant symbols. Check here so that
10019 we do not seg fault. */
10020 if (h == NULL)
10021 {
10022 char buffer [32];
10023
10024 sprintf_vma (buffer, rel->r_info);
10025 (*_bfd_error_handler)
10026 (_("error: %B contains a reloc (0x%s) for section %A "
10027 "that references a non-existent global symbol"),
10028 input_bfd, o, buffer);
10029 bfd_set_error (bfd_error_bad_value);
10030 return FALSE;
10031 }
10032
10033 while (h->root.type == bfd_link_hash_indirect
10034 || h->root.type == bfd_link_hash_warning)
10035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10036
10037 s_type = h->type;
10038
10039 /* If a plugin symbol is referenced from a non-IR file,
10040 mark the symbol as undefined. Note that the
10041 linker may attach linker created dynamic sections
10042 to the plugin bfd. Symbols defined in linker
10043 created sections are not plugin symbols. */
10044 if (h->root.non_ir_ref
10045 && (h->root.type == bfd_link_hash_defined
10046 || h->root.type == bfd_link_hash_defweak)
10047 && (h->root.u.def.section->flags
10048 & SEC_LINKER_CREATED) == 0
10049 && h->root.u.def.section->owner != NULL
10050 && (h->root.u.def.section->owner->flags
10051 & BFD_PLUGIN) != 0)
10052 {
10053 h->root.type = bfd_link_hash_undefined;
10054 h->root.u.undef.abfd = h->root.u.def.section->owner;
10055 }
10056
10057 ps = NULL;
10058 if (h->root.type == bfd_link_hash_defined
10059 || h->root.type == bfd_link_hash_defweak)
10060 ps = &h->root.u.def.section;
10061
10062 sym_name = h->root.root.string;
10063 }
10064 else
10065 {
10066 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10067
10068 s_type = ELF_ST_TYPE (sym->st_info);
10069 ps = &flinfo->sections[r_symndx];
10070 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10071 sym, *ps);
10072 }
10073
10074 if ((s_type == STT_RELC || s_type == STT_SRELC)
10075 && !bfd_link_relocatable (flinfo->info))
10076 {
10077 bfd_vma val;
10078 bfd_vma dot = (rel->r_offset
10079 + o->output_offset + o->output_section->vma);
10080 #ifdef DEBUG
10081 printf ("Encountered a complex symbol!");
10082 printf (" (input_bfd %s, section %s, reloc %ld\n",
10083 input_bfd->filename, o->name,
10084 (long) (rel - internal_relocs));
10085 printf (" symbol: idx %8.8lx, name %s\n",
10086 r_symndx, sym_name);
10087 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10088 (unsigned long) rel->r_info,
10089 (unsigned long) rel->r_offset);
10090 #endif
10091 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10092 isymbuf, locsymcount, s_type == STT_SRELC))
10093 return FALSE;
10094
10095 /* Symbol evaluated OK. Update to absolute value. */
10096 set_symbol_value (input_bfd, isymbuf, locsymcount,
10097 r_symndx, val);
10098 continue;
10099 }
10100
10101 if (action_discarded != -1 && ps != NULL)
10102 {
10103 /* Complain if the definition comes from a
10104 discarded section. */
10105 if ((sec = *ps) != NULL && discarded_section (sec))
10106 {
10107 BFD_ASSERT (r_symndx != STN_UNDEF);
10108 if (action_discarded & COMPLAIN)
10109 (*flinfo->info->callbacks->einfo)
10110 (_("%X`%s' referenced in section `%A' of %B: "
10111 "defined in discarded section `%A' of %B\n"),
10112 sym_name, o, input_bfd, sec, sec->owner);
10113
10114 /* Try to do the best we can to support buggy old
10115 versions of gcc. Pretend that the symbol is
10116 really defined in the kept linkonce section.
10117 FIXME: This is quite broken. Modifying the
10118 symbol here means we will be changing all later
10119 uses of the symbol, not just in this section. */
10120 if (action_discarded & PRETEND)
10121 {
10122 asection *kept;
10123
10124 kept = _bfd_elf_check_kept_section (sec,
10125 flinfo->info);
10126 if (kept != NULL)
10127 {
10128 *ps = kept;
10129 continue;
10130 }
10131 }
10132 }
10133 }
10134 }
10135
10136 /* Relocate the section by invoking a back end routine.
10137
10138 The back end routine is responsible for adjusting the
10139 section contents as necessary, and (if using Rela relocs
10140 and generating a relocatable output file) adjusting the
10141 reloc addend as necessary.
10142
10143 The back end routine does not have to worry about setting
10144 the reloc address or the reloc symbol index.
10145
10146 The back end routine is given a pointer to the swapped in
10147 internal symbols, and can access the hash table entries
10148 for the external symbols via elf_sym_hashes (input_bfd).
10149
10150 When generating relocatable output, the back end routine
10151 must handle STB_LOCAL/STT_SECTION symbols specially. The
10152 output symbol is going to be a section symbol
10153 corresponding to the output section, which will require
10154 the addend to be adjusted. */
10155
10156 ret = (*relocate_section) (output_bfd, flinfo->info,
10157 input_bfd, o, contents,
10158 internal_relocs,
10159 isymbuf,
10160 flinfo->sections);
10161 if (!ret)
10162 return FALSE;
10163
10164 if (ret == 2
10165 || bfd_link_relocatable (flinfo->info)
10166 || flinfo->info->emitrelocations)
10167 {
10168 Elf_Internal_Rela *irela;
10169 Elf_Internal_Rela *irelaend, *irelamid;
10170 bfd_vma last_offset;
10171 struct elf_link_hash_entry **rel_hash;
10172 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10173 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10174 unsigned int next_erel;
10175 bfd_boolean rela_normal;
10176 struct bfd_elf_section_data *esdi, *esdo;
10177
10178 esdi = elf_section_data (o);
10179 esdo = elf_section_data (o->output_section);
10180 rela_normal = FALSE;
10181
10182 /* Adjust the reloc addresses and symbol indices. */
10183
10184 irela = internal_relocs;
10185 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10186 rel_hash = esdo->rel.hashes + esdo->rel.count;
10187 /* We start processing the REL relocs, if any. When we reach
10188 IRELAMID in the loop, we switch to the RELA relocs. */
10189 irelamid = irela;
10190 if (esdi->rel.hdr != NULL)
10191 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10192 * bed->s->int_rels_per_ext_rel);
10193 rel_hash_list = rel_hash;
10194 rela_hash_list = NULL;
10195 last_offset = o->output_offset;
10196 if (!bfd_link_relocatable (flinfo->info))
10197 last_offset += o->output_section->vma;
10198 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10199 {
10200 unsigned long r_symndx;
10201 asection *sec;
10202 Elf_Internal_Sym sym;
10203
10204 if (next_erel == bed->s->int_rels_per_ext_rel)
10205 {
10206 rel_hash++;
10207 next_erel = 0;
10208 }
10209
10210 if (irela == irelamid)
10211 {
10212 rel_hash = esdo->rela.hashes + esdo->rela.count;
10213 rela_hash_list = rel_hash;
10214 rela_normal = bed->rela_normal;
10215 }
10216
10217 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10218 flinfo->info, o,
10219 irela->r_offset);
10220 if (irela->r_offset >= (bfd_vma) -2)
10221 {
10222 /* This is a reloc for a deleted entry or somesuch.
10223 Turn it into an R_*_NONE reloc, at the same
10224 offset as the last reloc. elf_eh_frame.c and
10225 bfd_elf_discard_info rely on reloc offsets
10226 being ordered. */
10227 irela->r_offset = last_offset;
10228 irela->r_info = 0;
10229 irela->r_addend = 0;
10230 continue;
10231 }
10232
10233 irela->r_offset += o->output_offset;
10234
10235 /* Relocs in an executable have to be virtual addresses. */
10236 if (!bfd_link_relocatable (flinfo->info))
10237 irela->r_offset += o->output_section->vma;
10238
10239 last_offset = irela->r_offset;
10240
10241 r_symndx = irela->r_info >> r_sym_shift;
10242 if (r_symndx == STN_UNDEF)
10243 continue;
10244
10245 if (r_symndx >= locsymcount
10246 || (elf_bad_symtab (input_bfd)
10247 && flinfo->sections[r_symndx] == NULL))
10248 {
10249 struct elf_link_hash_entry *rh;
10250 unsigned long indx;
10251
10252 /* This is a reloc against a global symbol. We
10253 have not yet output all the local symbols, so
10254 we do not know the symbol index of any global
10255 symbol. We set the rel_hash entry for this
10256 reloc to point to the global hash table entry
10257 for this symbol. The symbol index is then
10258 set at the end of bfd_elf_final_link. */
10259 indx = r_symndx - extsymoff;
10260 rh = elf_sym_hashes (input_bfd)[indx];
10261 while (rh->root.type == bfd_link_hash_indirect
10262 || rh->root.type == bfd_link_hash_warning)
10263 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10264
10265 /* Setting the index to -2 tells
10266 elf_link_output_extsym that this symbol is
10267 used by a reloc. */
10268 BFD_ASSERT (rh->indx < 0);
10269 rh->indx = -2;
10270
10271 *rel_hash = rh;
10272
10273 continue;
10274 }
10275
10276 /* This is a reloc against a local symbol. */
10277
10278 *rel_hash = NULL;
10279 sym = isymbuf[r_symndx];
10280 sec = flinfo->sections[r_symndx];
10281 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10282 {
10283 /* I suppose the backend ought to fill in the
10284 section of any STT_SECTION symbol against a
10285 processor specific section. */
10286 r_symndx = STN_UNDEF;
10287 if (bfd_is_abs_section (sec))
10288 ;
10289 else if (sec == NULL || sec->owner == NULL)
10290 {
10291 bfd_set_error (bfd_error_bad_value);
10292 return FALSE;
10293 }
10294 else
10295 {
10296 asection *osec = sec->output_section;
10297
10298 /* If we have discarded a section, the output
10299 section will be the absolute section. In
10300 case of discarded SEC_MERGE sections, use
10301 the kept section. relocate_section should
10302 have already handled discarded linkonce
10303 sections. */
10304 if (bfd_is_abs_section (osec)
10305 && sec->kept_section != NULL
10306 && sec->kept_section->output_section != NULL)
10307 {
10308 osec = sec->kept_section->output_section;
10309 irela->r_addend -= osec->vma;
10310 }
10311
10312 if (!bfd_is_abs_section (osec))
10313 {
10314 r_symndx = osec->target_index;
10315 if (r_symndx == STN_UNDEF)
10316 {
10317 irela->r_addend += osec->vma;
10318 osec = _bfd_nearby_section (output_bfd, osec,
10319 osec->vma);
10320 irela->r_addend -= osec->vma;
10321 r_symndx = osec->target_index;
10322 }
10323 }
10324 }
10325
10326 /* Adjust the addend according to where the
10327 section winds up in the output section. */
10328 if (rela_normal)
10329 irela->r_addend += sec->output_offset;
10330 }
10331 else
10332 {
10333 if (flinfo->indices[r_symndx] == -1)
10334 {
10335 unsigned long shlink;
10336 const char *name;
10337 asection *osec;
10338 long indx;
10339
10340 if (flinfo->info->strip == strip_all)
10341 {
10342 /* You can't do ld -r -s. */
10343 bfd_set_error (bfd_error_invalid_operation);
10344 return FALSE;
10345 }
10346
10347 /* This symbol was skipped earlier, but
10348 since it is needed by a reloc, we
10349 must output it now. */
10350 shlink = symtab_hdr->sh_link;
10351 name = (bfd_elf_string_from_elf_section
10352 (input_bfd, shlink, sym.st_name));
10353 if (name == NULL)
10354 return FALSE;
10355
10356 osec = sec->output_section;
10357 sym.st_shndx =
10358 _bfd_elf_section_from_bfd_section (output_bfd,
10359 osec);
10360 if (sym.st_shndx == SHN_BAD)
10361 return FALSE;
10362
10363 sym.st_value += sec->output_offset;
10364 if (!bfd_link_relocatable (flinfo->info))
10365 {
10366 sym.st_value += osec->vma;
10367 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10368 {
10369 /* STT_TLS symbols are relative to PT_TLS
10370 segment base. */
10371 BFD_ASSERT (elf_hash_table (flinfo->info)
10372 ->tls_sec != NULL);
10373 sym.st_value -= (elf_hash_table (flinfo->info)
10374 ->tls_sec->vma);
10375 }
10376 }
10377
10378 indx = bfd_get_symcount (output_bfd);
10379 ret = elf_link_output_symstrtab (flinfo, name,
10380 &sym, sec,
10381 NULL);
10382 if (ret == 0)
10383 return FALSE;
10384 else if (ret == 1)
10385 flinfo->indices[r_symndx] = indx;
10386 else
10387 abort ();
10388 }
10389
10390 r_symndx = flinfo->indices[r_symndx];
10391 }
10392
10393 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10394 | (irela->r_info & r_type_mask));
10395 }
10396
10397 /* Swap out the relocs. */
10398 input_rel_hdr = esdi->rel.hdr;
10399 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10400 {
10401 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10402 input_rel_hdr,
10403 internal_relocs,
10404 rel_hash_list))
10405 return FALSE;
10406 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10407 * bed->s->int_rels_per_ext_rel);
10408 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10409 }
10410
10411 input_rela_hdr = esdi->rela.hdr;
10412 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10413 {
10414 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10415 input_rela_hdr,
10416 internal_relocs,
10417 rela_hash_list))
10418 return FALSE;
10419 }
10420 }
10421 }
10422
10423 /* Write out the modified section contents. */
10424 if (bed->elf_backend_write_section
10425 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10426 contents))
10427 {
10428 /* Section written out. */
10429 }
10430 else switch (o->sec_info_type)
10431 {
10432 case SEC_INFO_TYPE_STABS:
10433 if (! (_bfd_write_section_stabs
10434 (output_bfd,
10435 &elf_hash_table (flinfo->info)->stab_info,
10436 o, &elf_section_data (o)->sec_info, contents)))
10437 return FALSE;
10438 break;
10439 case SEC_INFO_TYPE_MERGE:
10440 if (! _bfd_write_merged_section (output_bfd, o,
10441 elf_section_data (o)->sec_info))
10442 return FALSE;
10443 break;
10444 case SEC_INFO_TYPE_EH_FRAME:
10445 {
10446 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10447 o, contents))
10448 return FALSE;
10449 }
10450 break;
10451 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10452 {
10453 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10454 flinfo->info,
10455 o, contents))
10456 return FALSE;
10457 }
10458 break;
10459 default:
10460 {
10461 /* FIXME: octets_per_byte. */
10462 if (! (o->flags & SEC_EXCLUDE))
10463 {
10464 file_ptr offset = (file_ptr) o->output_offset;
10465 bfd_size_type todo = o->size;
10466 if ((o->flags & SEC_ELF_REVERSE_COPY))
10467 {
10468 /* Reverse-copy input section to output. */
10469 do
10470 {
10471 todo -= address_size;
10472 if (! bfd_set_section_contents (output_bfd,
10473 o->output_section,
10474 contents + todo,
10475 offset,
10476 address_size))
10477 return FALSE;
10478 if (todo == 0)
10479 break;
10480 offset += address_size;
10481 }
10482 while (1);
10483 }
10484 else if (! bfd_set_section_contents (output_bfd,
10485 o->output_section,
10486 contents,
10487 offset, todo))
10488 return FALSE;
10489 }
10490 }
10491 break;
10492 }
10493 }
10494
10495 return TRUE;
10496 }
10497
10498 /* Generate a reloc when linking an ELF file. This is a reloc
10499 requested by the linker, and does not come from any input file. This
10500 is used to build constructor and destructor tables when linking
10501 with -Ur. */
10502
10503 static bfd_boolean
10504 elf_reloc_link_order (bfd *output_bfd,
10505 struct bfd_link_info *info,
10506 asection *output_section,
10507 struct bfd_link_order *link_order)
10508 {
10509 reloc_howto_type *howto;
10510 long indx;
10511 bfd_vma offset;
10512 bfd_vma addend;
10513 struct bfd_elf_section_reloc_data *reldata;
10514 struct elf_link_hash_entry **rel_hash_ptr;
10515 Elf_Internal_Shdr *rel_hdr;
10516 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10517 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10518 bfd_byte *erel;
10519 unsigned int i;
10520 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10521
10522 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10523 if (howto == NULL)
10524 {
10525 bfd_set_error (bfd_error_bad_value);
10526 return FALSE;
10527 }
10528
10529 addend = link_order->u.reloc.p->addend;
10530
10531 if (esdo->rel.hdr)
10532 reldata = &esdo->rel;
10533 else if (esdo->rela.hdr)
10534 reldata = &esdo->rela;
10535 else
10536 {
10537 reldata = NULL;
10538 BFD_ASSERT (0);
10539 }
10540
10541 /* Figure out the symbol index. */
10542 rel_hash_ptr = reldata->hashes + reldata->count;
10543 if (link_order->type == bfd_section_reloc_link_order)
10544 {
10545 indx = link_order->u.reloc.p->u.section->target_index;
10546 BFD_ASSERT (indx != 0);
10547 *rel_hash_ptr = NULL;
10548 }
10549 else
10550 {
10551 struct elf_link_hash_entry *h;
10552
10553 /* Treat a reloc against a defined symbol as though it were
10554 actually against the section. */
10555 h = ((struct elf_link_hash_entry *)
10556 bfd_wrapped_link_hash_lookup (output_bfd, info,
10557 link_order->u.reloc.p->u.name,
10558 FALSE, FALSE, TRUE));
10559 if (h != NULL
10560 && (h->root.type == bfd_link_hash_defined
10561 || h->root.type == bfd_link_hash_defweak))
10562 {
10563 asection *section;
10564
10565 section = h->root.u.def.section;
10566 indx = section->output_section->target_index;
10567 *rel_hash_ptr = NULL;
10568 /* It seems that we ought to add the symbol value to the
10569 addend here, but in practice it has already been added
10570 because it was passed to constructor_callback. */
10571 addend += section->output_section->vma + section->output_offset;
10572 }
10573 else if (h != NULL)
10574 {
10575 /* Setting the index to -2 tells elf_link_output_extsym that
10576 this symbol is used by a reloc. */
10577 h->indx = -2;
10578 *rel_hash_ptr = h;
10579 indx = 0;
10580 }
10581 else
10582 {
10583 if (! ((*info->callbacks->unattached_reloc)
10584 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10585 return FALSE;
10586 indx = 0;
10587 }
10588 }
10589
10590 /* If this is an inplace reloc, we must write the addend into the
10591 object file. */
10592 if (howto->partial_inplace && addend != 0)
10593 {
10594 bfd_size_type size;
10595 bfd_reloc_status_type rstat;
10596 bfd_byte *buf;
10597 bfd_boolean ok;
10598 const char *sym_name;
10599
10600 size = (bfd_size_type) bfd_get_reloc_size (howto);
10601 buf = (bfd_byte *) bfd_zmalloc (size);
10602 if (buf == NULL && size != 0)
10603 return FALSE;
10604 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10605 switch (rstat)
10606 {
10607 case bfd_reloc_ok:
10608 break;
10609
10610 default:
10611 case bfd_reloc_outofrange:
10612 abort ();
10613
10614 case bfd_reloc_overflow:
10615 if (link_order->type == bfd_section_reloc_link_order)
10616 sym_name = bfd_section_name (output_bfd,
10617 link_order->u.reloc.p->u.section);
10618 else
10619 sym_name = link_order->u.reloc.p->u.name;
10620 if (! ((*info->callbacks->reloc_overflow)
10621 (info, NULL, sym_name, howto->name, addend, NULL,
10622 NULL, (bfd_vma) 0)))
10623 {
10624 free (buf);
10625 return FALSE;
10626 }
10627 break;
10628 }
10629 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10630 link_order->offset, size);
10631 free (buf);
10632 if (! ok)
10633 return FALSE;
10634 }
10635
10636 /* The address of a reloc is relative to the section in a
10637 relocatable file, and is a virtual address in an executable
10638 file. */
10639 offset = link_order->offset;
10640 if (! bfd_link_relocatable (info))
10641 offset += output_section->vma;
10642
10643 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10644 {
10645 irel[i].r_offset = offset;
10646 irel[i].r_info = 0;
10647 irel[i].r_addend = 0;
10648 }
10649 if (bed->s->arch_size == 32)
10650 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10651 else
10652 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10653
10654 rel_hdr = reldata->hdr;
10655 erel = rel_hdr->contents;
10656 if (rel_hdr->sh_type == SHT_REL)
10657 {
10658 erel += reldata->count * bed->s->sizeof_rel;
10659 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10660 }
10661 else
10662 {
10663 irel[0].r_addend = addend;
10664 erel += reldata->count * bed->s->sizeof_rela;
10665 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10666 }
10667
10668 ++reldata->count;
10669
10670 return TRUE;
10671 }
10672
10673
10674 /* Get the output vma of the section pointed to by the sh_link field. */
10675
10676 static bfd_vma
10677 elf_get_linked_section_vma (struct bfd_link_order *p)
10678 {
10679 Elf_Internal_Shdr **elf_shdrp;
10680 asection *s;
10681 int elfsec;
10682
10683 s = p->u.indirect.section;
10684 elf_shdrp = elf_elfsections (s->owner);
10685 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10686 elfsec = elf_shdrp[elfsec]->sh_link;
10687 /* PR 290:
10688 The Intel C compiler generates SHT_IA_64_UNWIND with
10689 SHF_LINK_ORDER. But it doesn't set the sh_link or
10690 sh_info fields. Hence we could get the situation
10691 where elfsec is 0. */
10692 if (elfsec == 0)
10693 {
10694 const struct elf_backend_data *bed
10695 = get_elf_backend_data (s->owner);
10696 if (bed->link_order_error_handler)
10697 bed->link_order_error_handler
10698 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10699 return 0;
10700 }
10701 else
10702 {
10703 s = elf_shdrp[elfsec]->bfd_section;
10704 return s->output_section->vma + s->output_offset;
10705 }
10706 }
10707
10708
10709 /* Compare two sections based on the locations of the sections they are
10710 linked to. Used by elf_fixup_link_order. */
10711
10712 static int
10713 compare_link_order (const void * a, const void * b)
10714 {
10715 bfd_vma apos;
10716 bfd_vma bpos;
10717
10718 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10719 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10720 if (apos < bpos)
10721 return -1;
10722 return apos > bpos;
10723 }
10724
10725
10726 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10727 order as their linked sections. Returns false if this could not be done
10728 because an output section includes both ordered and unordered
10729 sections. Ideally we'd do this in the linker proper. */
10730
10731 static bfd_boolean
10732 elf_fixup_link_order (bfd *abfd, asection *o)
10733 {
10734 int seen_linkorder;
10735 int seen_other;
10736 int n;
10737 struct bfd_link_order *p;
10738 bfd *sub;
10739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10740 unsigned elfsec;
10741 struct bfd_link_order **sections;
10742 asection *s, *other_sec, *linkorder_sec;
10743 bfd_vma offset;
10744
10745 other_sec = NULL;
10746 linkorder_sec = NULL;
10747 seen_other = 0;
10748 seen_linkorder = 0;
10749 for (p = o->map_head.link_order; p != NULL; p = p->next)
10750 {
10751 if (p->type == bfd_indirect_link_order)
10752 {
10753 s = p->u.indirect.section;
10754 sub = s->owner;
10755 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10756 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10757 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10758 && elfsec < elf_numsections (sub)
10759 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10760 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10761 {
10762 seen_linkorder++;
10763 linkorder_sec = s;
10764 }
10765 else
10766 {
10767 seen_other++;
10768 other_sec = s;
10769 }
10770 }
10771 else
10772 seen_other++;
10773
10774 if (seen_other && seen_linkorder)
10775 {
10776 if (other_sec && linkorder_sec)
10777 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10778 o, linkorder_sec,
10779 linkorder_sec->owner, other_sec,
10780 other_sec->owner);
10781 else
10782 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10783 o);
10784 bfd_set_error (bfd_error_bad_value);
10785 return FALSE;
10786 }
10787 }
10788
10789 if (!seen_linkorder)
10790 return TRUE;
10791
10792 sections = (struct bfd_link_order **)
10793 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10794 if (sections == NULL)
10795 return FALSE;
10796 seen_linkorder = 0;
10797
10798 for (p = o->map_head.link_order; p != NULL; p = p->next)
10799 {
10800 sections[seen_linkorder++] = p;
10801 }
10802 /* Sort the input sections in the order of their linked section. */
10803 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10804 compare_link_order);
10805
10806 /* Change the offsets of the sections. */
10807 offset = 0;
10808 for (n = 0; n < seen_linkorder; n++)
10809 {
10810 s = sections[n]->u.indirect.section;
10811 offset &= ~(bfd_vma) 0 << s->alignment_power;
10812 s->output_offset = offset;
10813 sections[n]->offset = offset;
10814 /* FIXME: octets_per_byte. */
10815 offset += sections[n]->size;
10816 }
10817
10818 free (sections);
10819 return TRUE;
10820 }
10821
10822 static void
10823 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10824 {
10825 asection *o;
10826
10827 if (flinfo->symstrtab != NULL)
10828 _bfd_elf_strtab_free (flinfo->symstrtab);
10829 if (flinfo->contents != NULL)
10830 free (flinfo->contents);
10831 if (flinfo->external_relocs != NULL)
10832 free (flinfo->external_relocs);
10833 if (flinfo->internal_relocs != NULL)
10834 free (flinfo->internal_relocs);
10835 if (flinfo->external_syms != NULL)
10836 free (flinfo->external_syms);
10837 if (flinfo->locsym_shndx != NULL)
10838 free (flinfo->locsym_shndx);
10839 if (flinfo->internal_syms != NULL)
10840 free (flinfo->internal_syms);
10841 if (flinfo->indices != NULL)
10842 free (flinfo->indices);
10843 if (flinfo->sections != NULL)
10844 free (flinfo->sections);
10845 if (flinfo->symshndxbuf != NULL)
10846 free (flinfo->symshndxbuf);
10847 for (o = obfd->sections; o != NULL; o = o->next)
10848 {
10849 struct bfd_elf_section_data *esdo = elf_section_data (o);
10850 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10851 free (esdo->rel.hashes);
10852 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10853 free (esdo->rela.hashes);
10854 }
10855 }
10856
10857 /* Do the final step of an ELF link. */
10858
10859 bfd_boolean
10860 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10861 {
10862 bfd_boolean dynamic;
10863 bfd_boolean emit_relocs;
10864 bfd *dynobj;
10865 struct elf_final_link_info flinfo;
10866 asection *o;
10867 struct bfd_link_order *p;
10868 bfd *sub;
10869 bfd_size_type max_contents_size;
10870 bfd_size_type max_external_reloc_size;
10871 bfd_size_type max_internal_reloc_count;
10872 bfd_size_type max_sym_count;
10873 bfd_size_type max_sym_shndx_count;
10874 Elf_Internal_Sym elfsym;
10875 unsigned int i;
10876 Elf_Internal_Shdr *symtab_hdr;
10877 Elf_Internal_Shdr *symtab_shndx_hdr;
10878 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10879 struct elf_outext_info eoinfo;
10880 bfd_boolean merged;
10881 size_t relativecount = 0;
10882 asection *reldyn = 0;
10883 bfd_size_type amt;
10884 asection *attr_section = NULL;
10885 bfd_vma attr_size = 0;
10886 const char *std_attrs_section;
10887
10888 if (! is_elf_hash_table (info->hash))
10889 return FALSE;
10890
10891 if (bfd_link_pic (info))
10892 abfd->flags |= DYNAMIC;
10893
10894 dynamic = elf_hash_table (info)->dynamic_sections_created;
10895 dynobj = elf_hash_table (info)->dynobj;
10896
10897 emit_relocs = (bfd_link_relocatable (info)
10898 || info->emitrelocations);
10899
10900 flinfo.info = info;
10901 flinfo.output_bfd = abfd;
10902 flinfo.symstrtab = _bfd_elf_strtab_init ();
10903 if (flinfo.symstrtab == NULL)
10904 return FALSE;
10905
10906 if (! dynamic)
10907 {
10908 flinfo.hash_sec = NULL;
10909 flinfo.symver_sec = NULL;
10910 }
10911 else
10912 {
10913 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10914 /* Note that dynsym_sec can be NULL (on VMS). */
10915 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10916 /* Note that it is OK if symver_sec is NULL. */
10917 }
10918
10919 flinfo.contents = NULL;
10920 flinfo.external_relocs = NULL;
10921 flinfo.internal_relocs = NULL;
10922 flinfo.external_syms = NULL;
10923 flinfo.locsym_shndx = NULL;
10924 flinfo.internal_syms = NULL;
10925 flinfo.indices = NULL;
10926 flinfo.sections = NULL;
10927 flinfo.symshndxbuf = NULL;
10928 flinfo.filesym_count = 0;
10929
10930 /* The object attributes have been merged. Remove the input
10931 sections from the link, and set the contents of the output
10932 secton. */
10933 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10934 for (o = abfd->sections; o != NULL; o = o->next)
10935 {
10936 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10937 || strcmp (o->name, ".gnu.attributes") == 0)
10938 {
10939 for (p = o->map_head.link_order; p != NULL; p = p->next)
10940 {
10941 asection *input_section;
10942
10943 if (p->type != bfd_indirect_link_order)
10944 continue;
10945 input_section = p->u.indirect.section;
10946 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10947 elf_link_input_bfd ignores this section. */
10948 input_section->flags &= ~SEC_HAS_CONTENTS;
10949 }
10950
10951 attr_size = bfd_elf_obj_attr_size (abfd);
10952 if (attr_size)
10953 {
10954 bfd_set_section_size (abfd, o, attr_size);
10955 attr_section = o;
10956 /* Skip this section later on. */
10957 o->map_head.link_order = NULL;
10958 }
10959 else
10960 o->flags |= SEC_EXCLUDE;
10961 }
10962 }
10963
10964 /* Count up the number of relocations we will output for each output
10965 section, so that we know the sizes of the reloc sections. We
10966 also figure out some maximum sizes. */
10967 max_contents_size = 0;
10968 max_external_reloc_size = 0;
10969 max_internal_reloc_count = 0;
10970 max_sym_count = 0;
10971 max_sym_shndx_count = 0;
10972 merged = FALSE;
10973 for (o = abfd->sections; o != NULL; o = o->next)
10974 {
10975 struct bfd_elf_section_data *esdo = elf_section_data (o);
10976 o->reloc_count = 0;
10977
10978 for (p = o->map_head.link_order; p != NULL; p = p->next)
10979 {
10980 unsigned int reloc_count = 0;
10981 struct bfd_elf_section_data *esdi = NULL;
10982
10983 if (p->type == bfd_section_reloc_link_order
10984 || p->type == bfd_symbol_reloc_link_order)
10985 reloc_count = 1;
10986 else if (p->type == bfd_indirect_link_order)
10987 {
10988 asection *sec;
10989
10990 sec = p->u.indirect.section;
10991 esdi = elf_section_data (sec);
10992
10993 /* Mark all sections which are to be included in the
10994 link. This will normally be every section. We need
10995 to do this so that we can identify any sections which
10996 the linker has decided to not include. */
10997 sec->linker_mark = TRUE;
10998
10999 if (sec->flags & SEC_MERGE)
11000 merged = TRUE;
11001
11002 if (esdo->this_hdr.sh_type == SHT_REL
11003 || esdo->this_hdr.sh_type == SHT_RELA)
11004 /* Some backends use reloc_count in relocation sections
11005 to count particular types of relocs. Of course,
11006 reloc sections themselves can't have relocations. */
11007 reloc_count = 0;
11008 else if (emit_relocs)
11009 reloc_count = sec->reloc_count;
11010 else if (bed->elf_backend_count_relocs)
11011 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11012
11013 if (sec->rawsize > max_contents_size)
11014 max_contents_size = sec->rawsize;
11015 if (sec->size > max_contents_size)
11016 max_contents_size = sec->size;
11017
11018 /* We are interested in just local symbols, not all
11019 symbols. */
11020 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11021 && (sec->owner->flags & DYNAMIC) == 0)
11022 {
11023 size_t sym_count;
11024
11025 if (elf_bad_symtab (sec->owner))
11026 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11027 / bed->s->sizeof_sym);
11028 else
11029 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11030
11031 if (sym_count > max_sym_count)
11032 max_sym_count = sym_count;
11033
11034 if (sym_count > max_sym_shndx_count
11035 && elf_symtab_shndx (sec->owner) != 0)
11036 max_sym_shndx_count = sym_count;
11037
11038 if ((sec->flags & SEC_RELOC) != 0)
11039 {
11040 size_t ext_size = 0;
11041
11042 if (esdi->rel.hdr != NULL)
11043 ext_size = esdi->rel.hdr->sh_size;
11044 if (esdi->rela.hdr != NULL)
11045 ext_size += esdi->rela.hdr->sh_size;
11046
11047 if (ext_size > max_external_reloc_size)
11048 max_external_reloc_size = ext_size;
11049 if (sec->reloc_count > max_internal_reloc_count)
11050 max_internal_reloc_count = sec->reloc_count;
11051 }
11052 }
11053 }
11054
11055 if (reloc_count == 0)
11056 continue;
11057
11058 o->reloc_count += reloc_count;
11059
11060 if (p->type == bfd_indirect_link_order && emit_relocs)
11061 {
11062 if (esdi->rel.hdr)
11063 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11064 if (esdi->rela.hdr)
11065 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11066 }
11067 else
11068 {
11069 if (o->use_rela_p)
11070 esdo->rela.count += reloc_count;
11071 else
11072 esdo->rel.count += reloc_count;
11073 }
11074 }
11075
11076 if (o->reloc_count > 0)
11077 o->flags |= SEC_RELOC;
11078 else
11079 {
11080 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11081 set it (this is probably a bug) and if it is set
11082 assign_section_numbers will create a reloc section. */
11083 o->flags &=~ SEC_RELOC;
11084 }
11085
11086 /* If the SEC_ALLOC flag is not set, force the section VMA to
11087 zero. This is done in elf_fake_sections as well, but forcing
11088 the VMA to 0 here will ensure that relocs against these
11089 sections are handled correctly. */
11090 if ((o->flags & SEC_ALLOC) == 0
11091 && ! o->user_set_vma)
11092 o->vma = 0;
11093 }
11094
11095 if (! bfd_link_relocatable (info) && merged)
11096 elf_link_hash_traverse (elf_hash_table (info),
11097 _bfd_elf_link_sec_merge_syms, abfd);
11098
11099 /* Figure out the file positions for everything but the symbol table
11100 and the relocs. We set symcount to force assign_section_numbers
11101 to create a symbol table. */
11102 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11103 BFD_ASSERT (! abfd->output_has_begun);
11104 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11105 goto error_return;
11106
11107 /* Set sizes, and assign file positions for reloc sections. */
11108 for (o = abfd->sections; o != NULL; o = o->next)
11109 {
11110 struct bfd_elf_section_data *esdo = elf_section_data (o);
11111 if ((o->flags & SEC_RELOC) != 0)
11112 {
11113 if (esdo->rel.hdr
11114 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11115 goto error_return;
11116
11117 if (esdo->rela.hdr
11118 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11119 goto error_return;
11120 }
11121
11122 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11123 to count upwards while actually outputting the relocations. */
11124 esdo->rel.count = 0;
11125 esdo->rela.count = 0;
11126
11127 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11128 {
11129 /* Cache the section contents so that they can be compressed
11130 later. Use bfd_malloc since it will be freed by
11131 bfd_compress_section_contents. */
11132 unsigned char *contents = esdo->this_hdr.contents;
11133 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11134 abort ();
11135 contents
11136 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11137 if (contents == NULL)
11138 goto error_return;
11139 esdo->this_hdr.contents = contents;
11140 }
11141 }
11142
11143 /* We have now assigned file positions for all the sections except
11144 .symtab, .strtab, and non-loaded reloc sections. We start the
11145 .symtab section at the current file position, and write directly
11146 to it. We build the .strtab section in memory. */
11147 bfd_get_symcount (abfd) = 0;
11148 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11149 /* sh_name is set in prep_headers. */
11150 symtab_hdr->sh_type = SHT_SYMTAB;
11151 /* sh_flags, sh_addr and sh_size all start off zero. */
11152 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11153 /* sh_link is set in assign_section_numbers. */
11154 /* sh_info is set below. */
11155 /* sh_offset is set just below. */
11156 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11157
11158 if (max_sym_count < 20)
11159 max_sym_count = 20;
11160 elf_hash_table (info)->strtabsize = max_sym_count;
11161 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11162 elf_hash_table (info)->strtab
11163 = (struct elf_sym_strtab *) bfd_malloc (amt);
11164 if (elf_hash_table (info)->strtab == NULL)
11165 goto error_return;
11166 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11167 flinfo.symshndxbuf
11168 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11169 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11170
11171 if (info->strip != strip_all || emit_relocs)
11172 {
11173 file_ptr off = elf_next_file_pos (abfd);
11174
11175 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11176
11177 /* Note that at this point elf_next_file_pos (abfd) is
11178 incorrect. We do not yet know the size of the .symtab section.
11179 We correct next_file_pos below, after we do know the size. */
11180
11181 /* Start writing out the symbol table. The first symbol is always a
11182 dummy symbol. */
11183 elfsym.st_value = 0;
11184 elfsym.st_size = 0;
11185 elfsym.st_info = 0;
11186 elfsym.st_other = 0;
11187 elfsym.st_shndx = SHN_UNDEF;
11188 elfsym.st_target_internal = 0;
11189 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11190 bfd_und_section_ptr, NULL) != 1)
11191 goto error_return;
11192
11193 /* Output a symbol for each section. We output these even if we are
11194 discarding local symbols, since they are used for relocs. These
11195 symbols have no names. We store the index of each one in the
11196 index field of the section, so that we can find it again when
11197 outputting relocs. */
11198
11199 elfsym.st_size = 0;
11200 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11201 elfsym.st_other = 0;
11202 elfsym.st_value = 0;
11203 elfsym.st_target_internal = 0;
11204 for (i = 1; i < elf_numsections (abfd); i++)
11205 {
11206 o = bfd_section_from_elf_index (abfd, i);
11207 if (o != NULL)
11208 {
11209 o->target_index = bfd_get_symcount (abfd);
11210 elfsym.st_shndx = i;
11211 if (!bfd_link_relocatable (info))
11212 elfsym.st_value = o->vma;
11213 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11214 NULL) != 1)
11215 goto error_return;
11216 }
11217 }
11218 }
11219
11220 /* Allocate some memory to hold information read in from the input
11221 files. */
11222 if (max_contents_size != 0)
11223 {
11224 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11225 if (flinfo.contents == NULL)
11226 goto error_return;
11227 }
11228
11229 if (max_external_reloc_size != 0)
11230 {
11231 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11232 if (flinfo.external_relocs == NULL)
11233 goto error_return;
11234 }
11235
11236 if (max_internal_reloc_count != 0)
11237 {
11238 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11239 amt *= sizeof (Elf_Internal_Rela);
11240 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11241 if (flinfo.internal_relocs == NULL)
11242 goto error_return;
11243 }
11244
11245 if (max_sym_count != 0)
11246 {
11247 amt = max_sym_count * bed->s->sizeof_sym;
11248 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11249 if (flinfo.external_syms == NULL)
11250 goto error_return;
11251
11252 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11253 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11254 if (flinfo.internal_syms == NULL)
11255 goto error_return;
11256
11257 amt = max_sym_count * sizeof (long);
11258 flinfo.indices = (long int *) bfd_malloc (amt);
11259 if (flinfo.indices == NULL)
11260 goto error_return;
11261
11262 amt = max_sym_count * sizeof (asection *);
11263 flinfo.sections = (asection **) bfd_malloc (amt);
11264 if (flinfo.sections == NULL)
11265 goto error_return;
11266 }
11267
11268 if (max_sym_shndx_count != 0)
11269 {
11270 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11271 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11272 if (flinfo.locsym_shndx == NULL)
11273 goto error_return;
11274 }
11275
11276 if (elf_hash_table (info)->tls_sec)
11277 {
11278 bfd_vma base, end = 0;
11279 asection *sec;
11280
11281 for (sec = elf_hash_table (info)->tls_sec;
11282 sec && (sec->flags & SEC_THREAD_LOCAL);
11283 sec = sec->next)
11284 {
11285 bfd_size_type size = sec->size;
11286
11287 if (size == 0
11288 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11289 {
11290 struct bfd_link_order *ord = sec->map_tail.link_order;
11291
11292 if (ord != NULL)
11293 size = ord->offset + ord->size;
11294 }
11295 end = sec->vma + size;
11296 }
11297 base = elf_hash_table (info)->tls_sec->vma;
11298 /* Only align end of TLS section if static TLS doesn't have special
11299 alignment requirements. */
11300 if (bed->static_tls_alignment == 1)
11301 end = align_power (end,
11302 elf_hash_table (info)->tls_sec->alignment_power);
11303 elf_hash_table (info)->tls_size = end - base;
11304 }
11305
11306 /* Reorder SHF_LINK_ORDER sections. */
11307 for (o = abfd->sections; o != NULL; o = o->next)
11308 {
11309 if (!elf_fixup_link_order (abfd, o))
11310 return FALSE;
11311 }
11312
11313 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11314 return FALSE;
11315
11316 /* Since ELF permits relocations to be against local symbols, we
11317 must have the local symbols available when we do the relocations.
11318 Since we would rather only read the local symbols once, and we
11319 would rather not keep them in memory, we handle all the
11320 relocations for a single input file at the same time.
11321
11322 Unfortunately, there is no way to know the total number of local
11323 symbols until we have seen all of them, and the local symbol
11324 indices precede the global symbol indices. This means that when
11325 we are generating relocatable output, and we see a reloc against
11326 a global symbol, we can not know the symbol index until we have
11327 finished examining all the local symbols to see which ones we are
11328 going to output. To deal with this, we keep the relocations in
11329 memory, and don't output them until the end of the link. This is
11330 an unfortunate waste of memory, but I don't see a good way around
11331 it. Fortunately, it only happens when performing a relocatable
11332 link, which is not the common case. FIXME: If keep_memory is set
11333 we could write the relocs out and then read them again; I don't
11334 know how bad the memory loss will be. */
11335
11336 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11337 sub->output_has_begun = FALSE;
11338 for (o = abfd->sections; o != NULL; o = o->next)
11339 {
11340 for (p = o->map_head.link_order; p != NULL; p = p->next)
11341 {
11342 if (p->type == bfd_indirect_link_order
11343 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11344 == bfd_target_elf_flavour)
11345 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11346 {
11347 if (! sub->output_has_begun)
11348 {
11349 if (! elf_link_input_bfd (&flinfo, sub))
11350 goto error_return;
11351 sub->output_has_begun = TRUE;
11352 }
11353 }
11354 else if (p->type == bfd_section_reloc_link_order
11355 || p->type == bfd_symbol_reloc_link_order)
11356 {
11357 if (! elf_reloc_link_order (abfd, info, o, p))
11358 goto error_return;
11359 }
11360 else
11361 {
11362 if (! _bfd_default_link_order (abfd, info, o, p))
11363 {
11364 if (p->type == bfd_indirect_link_order
11365 && (bfd_get_flavour (sub)
11366 == bfd_target_elf_flavour)
11367 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11368 != bed->s->elfclass))
11369 {
11370 const char *iclass, *oclass;
11371
11372 if (bed->s->elfclass == ELFCLASS64)
11373 {
11374 iclass = "ELFCLASS32";
11375 oclass = "ELFCLASS64";
11376 }
11377 else
11378 {
11379 iclass = "ELFCLASS64";
11380 oclass = "ELFCLASS32";
11381 }
11382
11383 bfd_set_error (bfd_error_wrong_format);
11384 (*_bfd_error_handler)
11385 (_("%B: file class %s incompatible with %s"),
11386 sub, iclass, oclass);
11387 }
11388
11389 goto error_return;
11390 }
11391 }
11392 }
11393 }
11394
11395 /* Free symbol buffer if needed. */
11396 if (!info->reduce_memory_overheads)
11397 {
11398 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11399 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11400 && elf_tdata (sub)->symbuf)
11401 {
11402 free (elf_tdata (sub)->symbuf);
11403 elf_tdata (sub)->symbuf = NULL;
11404 }
11405 }
11406
11407 /* Output any global symbols that got converted to local in a
11408 version script or due to symbol visibility. We do this in a
11409 separate step since ELF requires all local symbols to appear
11410 prior to any global symbols. FIXME: We should only do this if
11411 some global symbols were, in fact, converted to become local.
11412 FIXME: Will this work correctly with the Irix 5 linker? */
11413 eoinfo.failed = FALSE;
11414 eoinfo.flinfo = &flinfo;
11415 eoinfo.localsyms = TRUE;
11416 eoinfo.file_sym_done = FALSE;
11417 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11418 if (eoinfo.failed)
11419 return FALSE;
11420
11421 /* If backend needs to output some local symbols not present in the hash
11422 table, do it now. */
11423 if (bed->elf_backend_output_arch_local_syms
11424 && (info->strip != strip_all || emit_relocs))
11425 {
11426 typedef int (*out_sym_func)
11427 (void *, const char *, Elf_Internal_Sym *, asection *,
11428 struct elf_link_hash_entry *);
11429
11430 if (! ((*bed->elf_backend_output_arch_local_syms)
11431 (abfd, info, &flinfo,
11432 (out_sym_func) elf_link_output_symstrtab)))
11433 return FALSE;
11434 }
11435
11436 /* That wrote out all the local symbols. Finish up the symbol table
11437 with the global symbols. Even if we want to strip everything we
11438 can, we still need to deal with those global symbols that got
11439 converted to local in a version script. */
11440
11441 /* The sh_info field records the index of the first non local symbol. */
11442 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11443
11444 if (dynamic
11445 && elf_hash_table (info)->dynsym != NULL
11446 && (elf_hash_table (info)->dynsym->output_section
11447 != bfd_abs_section_ptr))
11448 {
11449 Elf_Internal_Sym sym;
11450 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11451 long last_local = 0;
11452
11453 /* Write out the section symbols for the output sections. */
11454 if (bfd_link_pic (info)
11455 || elf_hash_table (info)->is_relocatable_executable)
11456 {
11457 asection *s;
11458
11459 sym.st_size = 0;
11460 sym.st_name = 0;
11461 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11462 sym.st_other = 0;
11463 sym.st_target_internal = 0;
11464
11465 for (s = abfd->sections; s != NULL; s = s->next)
11466 {
11467 int indx;
11468 bfd_byte *dest;
11469 long dynindx;
11470
11471 dynindx = elf_section_data (s)->dynindx;
11472 if (dynindx <= 0)
11473 continue;
11474 indx = elf_section_data (s)->this_idx;
11475 BFD_ASSERT (indx > 0);
11476 sym.st_shndx = indx;
11477 if (! check_dynsym (abfd, &sym))
11478 return FALSE;
11479 sym.st_value = s->vma;
11480 dest = dynsym + dynindx * bed->s->sizeof_sym;
11481 if (last_local < dynindx)
11482 last_local = dynindx;
11483 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11484 }
11485 }
11486
11487 /* Write out the local dynsyms. */
11488 if (elf_hash_table (info)->dynlocal)
11489 {
11490 struct elf_link_local_dynamic_entry *e;
11491 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11492 {
11493 asection *s;
11494 bfd_byte *dest;
11495
11496 /* Copy the internal symbol and turn off visibility.
11497 Note that we saved a word of storage and overwrote
11498 the original st_name with the dynstr_index. */
11499 sym = e->isym;
11500 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11501
11502 s = bfd_section_from_elf_index (e->input_bfd,
11503 e->isym.st_shndx);
11504 if (s != NULL)
11505 {
11506 sym.st_shndx =
11507 elf_section_data (s->output_section)->this_idx;
11508 if (! check_dynsym (abfd, &sym))
11509 return FALSE;
11510 sym.st_value = (s->output_section->vma
11511 + s->output_offset
11512 + e->isym.st_value);
11513 }
11514
11515 if (last_local < e->dynindx)
11516 last_local = e->dynindx;
11517
11518 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11519 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11520 }
11521 }
11522
11523 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11524 last_local + 1;
11525 }
11526
11527 /* We get the global symbols from the hash table. */
11528 eoinfo.failed = FALSE;
11529 eoinfo.localsyms = FALSE;
11530 eoinfo.flinfo = &flinfo;
11531 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11532 if (eoinfo.failed)
11533 return FALSE;
11534
11535 /* If backend needs to output some symbols not present in the hash
11536 table, do it now. */
11537 if (bed->elf_backend_output_arch_syms
11538 && (info->strip != strip_all || emit_relocs))
11539 {
11540 typedef int (*out_sym_func)
11541 (void *, const char *, Elf_Internal_Sym *, asection *,
11542 struct elf_link_hash_entry *);
11543
11544 if (! ((*bed->elf_backend_output_arch_syms)
11545 (abfd, info, &flinfo,
11546 (out_sym_func) elf_link_output_symstrtab)))
11547 return FALSE;
11548 }
11549
11550 /* Finalize the .strtab section. */
11551 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11552
11553 /* Swap out the .strtab section. */
11554 if (!elf_link_swap_symbols_out (&flinfo))
11555 return FALSE;
11556
11557 /* Now we know the size of the symtab section. */
11558 if (bfd_get_symcount (abfd) > 0)
11559 {
11560 /* Finish up and write out the symbol string table (.strtab)
11561 section. */
11562 Elf_Internal_Shdr *symstrtab_hdr;
11563 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11564
11565 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11566 if (symtab_shndx_hdr->sh_name != 0)
11567 {
11568 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11569 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11570 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11571 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11572 symtab_shndx_hdr->sh_size = amt;
11573
11574 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11575 off, TRUE);
11576
11577 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11578 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11579 return FALSE;
11580 }
11581
11582 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11583 /* sh_name was set in prep_headers. */
11584 symstrtab_hdr->sh_type = SHT_STRTAB;
11585 symstrtab_hdr->sh_flags = 0;
11586 symstrtab_hdr->sh_addr = 0;
11587 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11588 symstrtab_hdr->sh_entsize = 0;
11589 symstrtab_hdr->sh_link = 0;
11590 symstrtab_hdr->sh_info = 0;
11591 /* sh_offset is set just below. */
11592 symstrtab_hdr->sh_addralign = 1;
11593
11594 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11595 off, TRUE);
11596 elf_next_file_pos (abfd) = off;
11597
11598 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11599 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11600 return FALSE;
11601 }
11602
11603 /* Adjust the relocs to have the correct symbol indices. */
11604 for (o = abfd->sections; o != NULL; o = o->next)
11605 {
11606 struct bfd_elf_section_data *esdo = elf_section_data (o);
11607 bfd_boolean sort;
11608 if ((o->flags & SEC_RELOC) == 0)
11609 continue;
11610
11611 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11612 if (esdo->rel.hdr != NULL
11613 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11614 return FALSE;
11615 if (esdo->rela.hdr != NULL
11616 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11617 return FALSE;
11618
11619 /* Set the reloc_count field to 0 to prevent write_relocs from
11620 trying to swap the relocs out itself. */
11621 o->reloc_count = 0;
11622 }
11623
11624 if (dynamic && info->combreloc && dynobj != NULL)
11625 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11626
11627 /* If we are linking against a dynamic object, or generating a
11628 shared library, finish up the dynamic linking information. */
11629 if (dynamic)
11630 {
11631 bfd_byte *dyncon, *dynconend;
11632
11633 /* Fix up .dynamic entries. */
11634 o = bfd_get_linker_section (dynobj, ".dynamic");
11635 BFD_ASSERT (o != NULL);
11636
11637 dyncon = o->contents;
11638 dynconend = o->contents + o->size;
11639 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11640 {
11641 Elf_Internal_Dyn dyn;
11642 const char *name;
11643 unsigned int type;
11644
11645 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11646
11647 switch (dyn.d_tag)
11648 {
11649 default:
11650 continue;
11651 case DT_NULL:
11652 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11653 {
11654 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11655 {
11656 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11657 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11658 default: continue;
11659 }
11660 dyn.d_un.d_val = relativecount;
11661 relativecount = 0;
11662 break;
11663 }
11664 continue;
11665
11666 case DT_INIT:
11667 name = info->init_function;
11668 goto get_sym;
11669 case DT_FINI:
11670 name = info->fini_function;
11671 get_sym:
11672 {
11673 struct elf_link_hash_entry *h;
11674
11675 h = elf_link_hash_lookup (elf_hash_table (info), name,
11676 FALSE, FALSE, TRUE);
11677 if (h != NULL
11678 && (h->root.type == bfd_link_hash_defined
11679 || h->root.type == bfd_link_hash_defweak))
11680 {
11681 dyn.d_un.d_ptr = h->root.u.def.value;
11682 o = h->root.u.def.section;
11683 if (o->output_section != NULL)
11684 dyn.d_un.d_ptr += (o->output_section->vma
11685 + o->output_offset);
11686 else
11687 {
11688 /* The symbol is imported from another shared
11689 library and does not apply to this one. */
11690 dyn.d_un.d_ptr = 0;
11691 }
11692 break;
11693 }
11694 }
11695 continue;
11696
11697 case DT_PREINIT_ARRAYSZ:
11698 name = ".preinit_array";
11699 goto get_size;
11700 case DT_INIT_ARRAYSZ:
11701 name = ".init_array";
11702 goto get_size;
11703 case DT_FINI_ARRAYSZ:
11704 name = ".fini_array";
11705 get_size:
11706 o = bfd_get_section_by_name (abfd, name);
11707 if (o == NULL)
11708 {
11709 (*_bfd_error_handler)
11710 (_("%B: could not find output section %s"), abfd, name);
11711 goto error_return;
11712 }
11713 if (o->size == 0)
11714 (*_bfd_error_handler)
11715 (_("warning: %s section has zero size"), name);
11716 dyn.d_un.d_val = o->size;
11717 break;
11718
11719 case DT_PREINIT_ARRAY:
11720 name = ".preinit_array";
11721 goto get_vma;
11722 case DT_INIT_ARRAY:
11723 name = ".init_array";
11724 goto get_vma;
11725 case DT_FINI_ARRAY:
11726 name = ".fini_array";
11727 goto get_vma;
11728
11729 case DT_HASH:
11730 name = ".hash";
11731 goto get_vma;
11732 case DT_GNU_HASH:
11733 name = ".gnu.hash";
11734 goto get_vma;
11735 case DT_STRTAB:
11736 name = ".dynstr";
11737 goto get_vma;
11738 case DT_SYMTAB:
11739 name = ".dynsym";
11740 goto get_vma;
11741 case DT_VERDEF:
11742 name = ".gnu.version_d";
11743 goto get_vma;
11744 case DT_VERNEED:
11745 name = ".gnu.version_r";
11746 goto get_vma;
11747 case DT_VERSYM:
11748 name = ".gnu.version";
11749 get_vma:
11750 o = bfd_get_section_by_name (abfd, name);
11751 if (o == NULL)
11752 {
11753 (*_bfd_error_handler)
11754 (_("%B: could not find output section %s"), abfd, name);
11755 goto error_return;
11756 }
11757 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11758 {
11759 (*_bfd_error_handler)
11760 (_("warning: section '%s' is being made into a note"), name);
11761 bfd_set_error (bfd_error_nonrepresentable_section);
11762 goto error_return;
11763 }
11764 dyn.d_un.d_ptr = o->vma;
11765 break;
11766
11767 case DT_REL:
11768 case DT_RELA:
11769 case DT_RELSZ:
11770 case DT_RELASZ:
11771 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11772 type = SHT_REL;
11773 else
11774 type = SHT_RELA;
11775 dyn.d_un.d_val = 0;
11776 dyn.d_un.d_ptr = 0;
11777 for (i = 1; i < elf_numsections (abfd); i++)
11778 {
11779 Elf_Internal_Shdr *hdr;
11780
11781 hdr = elf_elfsections (abfd)[i];
11782 if (hdr->sh_type == type
11783 && (hdr->sh_flags & SHF_ALLOC) != 0)
11784 {
11785 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11786 dyn.d_un.d_val += hdr->sh_size;
11787 else
11788 {
11789 if (dyn.d_un.d_ptr == 0
11790 || hdr->sh_addr < dyn.d_un.d_ptr)
11791 dyn.d_un.d_ptr = hdr->sh_addr;
11792 }
11793 }
11794 }
11795 break;
11796 }
11797 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11798 }
11799 }
11800
11801 /* If we have created any dynamic sections, then output them. */
11802 if (dynobj != NULL)
11803 {
11804 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11805 goto error_return;
11806
11807 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11808 if (((info->warn_shared_textrel && bfd_link_pic (info))
11809 || info->error_textrel)
11810 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11811 {
11812 bfd_byte *dyncon, *dynconend;
11813
11814 dyncon = o->contents;
11815 dynconend = o->contents + o->size;
11816 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11817 {
11818 Elf_Internal_Dyn dyn;
11819
11820 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11821
11822 if (dyn.d_tag == DT_TEXTREL)
11823 {
11824 if (info->error_textrel)
11825 info->callbacks->einfo
11826 (_("%P%X: read-only segment has dynamic relocations.\n"));
11827 else
11828 info->callbacks->einfo
11829 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11830 break;
11831 }
11832 }
11833 }
11834
11835 for (o = dynobj->sections; o != NULL; o = o->next)
11836 {
11837 if ((o->flags & SEC_HAS_CONTENTS) == 0
11838 || o->size == 0
11839 || o->output_section == bfd_abs_section_ptr)
11840 continue;
11841 if ((o->flags & SEC_LINKER_CREATED) == 0)
11842 {
11843 /* At this point, we are only interested in sections
11844 created by _bfd_elf_link_create_dynamic_sections. */
11845 continue;
11846 }
11847 if (elf_hash_table (info)->stab_info.stabstr == o)
11848 continue;
11849 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11850 continue;
11851 if (strcmp (o->name, ".dynstr") != 0)
11852 {
11853 /* FIXME: octets_per_byte. */
11854 if (! bfd_set_section_contents (abfd, o->output_section,
11855 o->contents,
11856 (file_ptr) o->output_offset,
11857 o->size))
11858 goto error_return;
11859 }
11860 else
11861 {
11862 /* The contents of the .dynstr section are actually in a
11863 stringtab. */
11864 file_ptr off;
11865
11866 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11867 if (bfd_seek (abfd, off, SEEK_SET) != 0
11868 || ! _bfd_elf_strtab_emit (abfd,
11869 elf_hash_table (info)->dynstr))
11870 goto error_return;
11871 }
11872 }
11873 }
11874
11875 if (bfd_link_relocatable (info))
11876 {
11877 bfd_boolean failed = FALSE;
11878
11879 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11880 if (failed)
11881 goto error_return;
11882 }
11883
11884 /* If we have optimized stabs strings, output them. */
11885 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11886 {
11887 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11888 goto error_return;
11889 }
11890
11891 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11892 goto error_return;
11893
11894 elf_final_link_free (abfd, &flinfo);
11895
11896 elf_linker (abfd) = TRUE;
11897
11898 if (attr_section)
11899 {
11900 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11901 if (contents == NULL)
11902 return FALSE; /* Bail out and fail. */
11903 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11904 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11905 free (contents);
11906 }
11907
11908 return TRUE;
11909
11910 error_return:
11911 elf_final_link_free (abfd, &flinfo);
11912 return FALSE;
11913 }
11914 \f
11915 /* Initialize COOKIE for input bfd ABFD. */
11916
11917 static bfd_boolean
11918 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11919 struct bfd_link_info *info, bfd *abfd)
11920 {
11921 Elf_Internal_Shdr *symtab_hdr;
11922 const struct elf_backend_data *bed;
11923
11924 bed = get_elf_backend_data (abfd);
11925 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11926
11927 cookie->abfd = abfd;
11928 cookie->sym_hashes = elf_sym_hashes (abfd);
11929 cookie->bad_symtab = elf_bad_symtab (abfd);
11930 if (cookie->bad_symtab)
11931 {
11932 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11933 cookie->extsymoff = 0;
11934 }
11935 else
11936 {
11937 cookie->locsymcount = symtab_hdr->sh_info;
11938 cookie->extsymoff = symtab_hdr->sh_info;
11939 }
11940
11941 if (bed->s->arch_size == 32)
11942 cookie->r_sym_shift = 8;
11943 else
11944 cookie->r_sym_shift = 32;
11945
11946 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11947 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11948 {
11949 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11950 cookie->locsymcount, 0,
11951 NULL, NULL, NULL);
11952 if (cookie->locsyms == NULL)
11953 {
11954 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11955 return FALSE;
11956 }
11957 if (info->keep_memory)
11958 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11959 }
11960 return TRUE;
11961 }
11962
11963 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11964
11965 static void
11966 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11967 {
11968 Elf_Internal_Shdr *symtab_hdr;
11969
11970 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11971 if (cookie->locsyms != NULL
11972 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11973 free (cookie->locsyms);
11974 }
11975
11976 /* Initialize the relocation information in COOKIE for input section SEC
11977 of input bfd ABFD. */
11978
11979 static bfd_boolean
11980 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11981 struct bfd_link_info *info, bfd *abfd,
11982 asection *sec)
11983 {
11984 const struct elf_backend_data *bed;
11985
11986 if (sec->reloc_count == 0)
11987 {
11988 cookie->rels = NULL;
11989 cookie->relend = NULL;
11990 }
11991 else
11992 {
11993 bed = get_elf_backend_data (abfd);
11994
11995 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11996 info->keep_memory);
11997 if (cookie->rels == NULL)
11998 return FALSE;
11999 cookie->rel = cookie->rels;
12000 cookie->relend = (cookie->rels
12001 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12002 }
12003 cookie->rel = cookie->rels;
12004 return TRUE;
12005 }
12006
12007 /* Free the memory allocated by init_reloc_cookie_rels,
12008 if appropriate. */
12009
12010 static void
12011 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12012 asection *sec)
12013 {
12014 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12015 free (cookie->rels);
12016 }
12017
12018 /* Initialize the whole of COOKIE for input section SEC. */
12019
12020 static bfd_boolean
12021 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12022 struct bfd_link_info *info,
12023 asection *sec)
12024 {
12025 if (!init_reloc_cookie (cookie, info, sec->owner))
12026 goto error1;
12027 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12028 goto error2;
12029 return TRUE;
12030
12031 error2:
12032 fini_reloc_cookie (cookie, sec->owner);
12033 error1:
12034 return FALSE;
12035 }
12036
12037 /* Free the memory allocated by init_reloc_cookie_for_section,
12038 if appropriate. */
12039
12040 static void
12041 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12042 asection *sec)
12043 {
12044 fini_reloc_cookie_rels (cookie, sec);
12045 fini_reloc_cookie (cookie, sec->owner);
12046 }
12047 \f
12048 /* Garbage collect unused sections. */
12049
12050 /* Default gc_mark_hook. */
12051
12052 asection *
12053 _bfd_elf_gc_mark_hook (asection *sec,
12054 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12055 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12056 struct elf_link_hash_entry *h,
12057 Elf_Internal_Sym *sym)
12058 {
12059 const char *sec_name;
12060
12061 if (h != NULL)
12062 {
12063 switch (h->root.type)
12064 {
12065 case bfd_link_hash_defined:
12066 case bfd_link_hash_defweak:
12067 return h->root.u.def.section;
12068
12069 case bfd_link_hash_common:
12070 return h->root.u.c.p->section;
12071
12072 case bfd_link_hash_undefined:
12073 case bfd_link_hash_undefweak:
12074 /* To work around a glibc bug, keep all XXX input sections
12075 when there is an as yet undefined reference to __start_XXX
12076 or __stop_XXX symbols. The linker will later define such
12077 symbols for orphan input sections that have a name
12078 representable as a C identifier. */
12079 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12080 sec_name = h->root.root.string + 8;
12081 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12082 sec_name = h->root.root.string + 7;
12083 else
12084 sec_name = NULL;
12085
12086 if (sec_name && *sec_name != '\0')
12087 {
12088 bfd *i;
12089
12090 for (i = info->input_bfds; i; i = i->link.next)
12091 {
12092 sec = bfd_get_section_by_name (i, sec_name);
12093 if (sec)
12094 sec->flags |= SEC_KEEP;
12095 }
12096 }
12097 break;
12098
12099 default:
12100 break;
12101 }
12102 }
12103 else
12104 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12105
12106 return NULL;
12107 }
12108
12109 /* COOKIE->rel describes a relocation against section SEC, which is
12110 a section we've decided to keep. Return the section that contains
12111 the relocation symbol, or NULL if no section contains it. */
12112
12113 asection *
12114 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12115 elf_gc_mark_hook_fn gc_mark_hook,
12116 struct elf_reloc_cookie *cookie)
12117 {
12118 unsigned long r_symndx;
12119 struct elf_link_hash_entry *h;
12120
12121 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12122 if (r_symndx == STN_UNDEF)
12123 return NULL;
12124
12125 if (r_symndx >= cookie->locsymcount
12126 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12127 {
12128 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12129 if (h == NULL)
12130 {
12131 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12132 sec->owner);
12133 return NULL;
12134 }
12135 while (h->root.type == bfd_link_hash_indirect
12136 || h->root.type == bfd_link_hash_warning)
12137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12138 h->mark = 1;
12139 /* If this symbol is weak and there is a non-weak definition, we
12140 keep the non-weak definition because many backends put
12141 dynamic reloc info on the non-weak definition for code
12142 handling copy relocs. */
12143 if (h->u.weakdef != NULL)
12144 h->u.weakdef->mark = 1;
12145 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12146 }
12147
12148 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12149 &cookie->locsyms[r_symndx]);
12150 }
12151
12152 /* COOKIE->rel describes a relocation against section SEC, which is
12153 a section we've decided to keep. Mark the section that contains
12154 the relocation symbol. */
12155
12156 bfd_boolean
12157 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12158 asection *sec,
12159 elf_gc_mark_hook_fn gc_mark_hook,
12160 struct elf_reloc_cookie *cookie)
12161 {
12162 asection *rsec;
12163
12164 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12165 if (rsec && !rsec->gc_mark)
12166 {
12167 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12168 || (rsec->owner->flags & DYNAMIC) != 0)
12169 rsec->gc_mark = 1;
12170 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12171 return FALSE;
12172 }
12173 return TRUE;
12174 }
12175
12176 /* The mark phase of garbage collection. For a given section, mark
12177 it and any sections in this section's group, and all the sections
12178 which define symbols to which it refers. */
12179
12180 bfd_boolean
12181 _bfd_elf_gc_mark (struct bfd_link_info *info,
12182 asection *sec,
12183 elf_gc_mark_hook_fn gc_mark_hook)
12184 {
12185 bfd_boolean ret;
12186 asection *group_sec, *eh_frame;
12187
12188 sec->gc_mark = 1;
12189
12190 /* Mark all the sections in the group. */
12191 group_sec = elf_section_data (sec)->next_in_group;
12192 if (group_sec && !group_sec->gc_mark)
12193 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12194 return FALSE;
12195
12196 /* Look through the section relocs. */
12197 ret = TRUE;
12198 eh_frame = elf_eh_frame_section (sec->owner);
12199 if ((sec->flags & SEC_RELOC) != 0
12200 && sec->reloc_count > 0
12201 && sec != eh_frame)
12202 {
12203 struct elf_reloc_cookie cookie;
12204
12205 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12206 ret = FALSE;
12207 else
12208 {
12209 for (; cookie.rel < cookie.relend; cookie.rel++)
12210 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12211 {
12212 ret = FALSE;
12213 break;
12214 }
12215 fini_reloc_cookie_for_section (&cookie, sec);
12216 }
12217 }
12218
12219 if (ret && eh_frame && elf_fde_list (sec))
12220 {
12221 struct elf_reloc_cookie cookie;
12222
12223 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12224 ret = FALSE;
12225 else
12226 {
12227 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12228 gc_mark_hook, &cookie))
12229 ret = FALSE;
12230 fini_reloc_cookie_for_section (&cookie, eh_frame);
12231 }
12232 }
12233
12234 eh_frame = elf_section_eh_frame_entry (sec);
12235 if (ret && eh_frame && !eh_frame->gc_mark)
12236 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12237 ret = FALSE;
12238
12239 return ret;
12240 }
12241
12242 /* Scan and mark sections in a special or debug section group. */
12243
12244 static void
12245 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12246 {
12247 /* Point to first section of section group. */
12248 asection *ssec;
12249 /* Used to iterate the section group. */
12250 asection *msec;
12251
12252 bfd_boolean is_special_grp = TRUE;
12253 bfd_boolean is_debug_grp = TRUE;
12254
12255 /* First scan to see if group contains any section other than debug
12256 and special section. */
12257 ssec = msec = elf_next_in_group (grp);
12258 do
12259 {
12260 if ((msec->flags & SEC_DEBUGGING) == 0)
12261 is_debug_grp = FALSE;
12262
12263 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12264 is_special_grp = FALSE;
12265
12266 msec = elf_next_in_group (msec);
12267 }
12268 while (msec != ssec);
12269
12270 /* If this is a pure debug section group or pure special section group,
12271 keep all sections in this group. */
12272 if (is_debug_grp || is_special_grp)
12273 {
12274 do
12275 {
12276 msec->gc_mark = 1;
12277 msec = elf_next_in_group (msec);
12278 }
12279 while (msec != ssec);
12280 }
12281 }
12282
12283 /* Keep debug and special sections. */
12284
12285 bfd_boolean
12286 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12287 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12288 {
12289 bfd *ibfd;
12290
12291 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12292 {
12293 asection *isec;
12294 bfd_boolean some_kept;
12295 bfd_boolean debug_frag_seen;
12296
12297 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12298 continue;
12299
12300 /* Ensure all linker created sections are kept,
12301 see if any other section is already marked,
12302 and note if we have any fragmented debug sections. */
12303 debug_frag_seen = some_kept = FALSE;
12304 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12305 {
12306 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12307 isec->gc_mark = 1;
12308 else if (isec->gc_mark)
12309 some_kept = TRUE;
12310
12311 if (debug_frag_seen == FALSE
12312 && (isec->flags & SEC_DEBUGGING)
12313 && CONST_STRNEQ (isec->name, ".debug_line."))
12314 debug_frag_seen = TRUE;
12315 }
12316
12317 /* If no section in this file will be kept, then we can
12318 toss out the debug and special sections. */
12319 if (!some_kept)
12320 continue;
12321
12322 /* Keep debug and special sections like .comment when they are
12323 not part of a group. Also keep section groups that contain
12324 just debug sections or special sections. */
12325 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12326 {
12327 if ((isec->flags & SEC_GROUP) != 0)
12328 _bfd_elf_gc_mark_debug_special_section_group (isec);
12329 else if (((isec->flags & SEC_DEBUGGING) != 0
12330 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12331 && elf_next_in_group (isec) == NULL)
12332 isec->gc_mark = 1;
12333 }
12334
12335 if (! debug_frag_seen)
12336 continue;
12337
12338 /* Look for CODE sections which are going to be discarded,
12339 and find and discard any fragmented debug sections which
12340 are associated with that code section. */
12341 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12342 if ((isec->flags & SEC_CODE) != 0
12343 && isec->gc_mark == 0)
12344 {
12345 unsigned int ilen;
12346 asection *dsec;
12347
12348 ilen = strlen (isec->name);
12349
12350 /* Association is determined by the name of the debug section
12351 containing the name of the code section as a suffix. For
12352 example .debug_line.text.foo is a debug section associated
12353 with .text.foo. */
12354 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12355 {
12356 unsigned int dlen;
12357
12358 if (dsec->gc_mark == 0
12359 || (dsec->flags & SEC_DEBUGGING) == 0)
12360 continue;
12361
12362 dlen = strlen (dsec->name);
12363
12364 if (dlen > ilen
12365 && strncmp (dsec->name + (dlen - ilen),
12366 isec->name, ilen) == 0)
12367 {
12368 dsec->gc_mark = 0;
12369 }
12370 }
12371 }
12372 }
12373 return TRUE;
12374 }
12375
12376 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12377
12378 struct elf_gc_sweep_symbol_info
12379 {
12380 struct bfd_link_info *info;
12381 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12382 bfd_boolean);
12383 };
12384
12385 static bfd_boolean
12386 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12387 {
12388 if (!h->mark
12389 && (((h->root.type == bfd_link_hash_defined
12390 || h->root.type == bfd_link_hash_defweak)
12391 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12392 && h->root.u.def.section->gc_mark))
12393 || h->root.type == bfd_link_hash_undefined
12394 || h->root.type == bfd_link_hash_undefweak))
12395 {
12396 struct elf_gc_sweep_symbol_info *inf;
12397
12398 inf = (struct elf_gc_sweep_symbol_info *) data;
12399 (*inf->hide_symbol) (inf->info, h, TRUE);
12400 h->def_regular = 0;
12401 h->ref_regular = 0;
12402 h->ref_regular_nonweak = 0;
12403 }
12404
12405 return TRUE;
12406 }
12407
12408 /* The sweep phase of garbage collection. Remove all garbage sections. */
12409
12410 typedef bfd_boolean (*gc_sweep_hook_fn)
12411 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12412
12413 static bfd_boolean
12414 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12415 {
12416 bfd *sub;
12417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12418 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12419 unsigned long section_sym_count;
12420 struct elf_gc_sweep_symbol_info sweep_info;
12421
12422 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12423 {
12424 asection *o;
12425
12426 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12427 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12428 continue;
12429
12430 for (o = sub->sections; o != NULL; o = o->next)
12431 {
12432 /* When any section in a section group is kept, we keep all
12433 sections in the section group. If the first member of
12434 the section group is excluded, we will also exclude the
12435 group section. */
12436 if (o->flags & SEC_GROUP)
12437 {
12438 asection *first = elf_next_in_group (o);
12439 o->gc_mark = first->gc_mark;
12440 }
12441
12442 if (o->gc_mark)
12443 continue;
12444
12445 /* Skip sweeping sections already excluded. */
12446 if (o->flags & SEC_EXCLUDE)
12447 continue;
12448
12449 /* Since this is early in the link process, it is simple
12450 to remove a section from the output. */
12451 o->flags |= SEC_EXCLUDE;
12452
12453 if (info->print_gc_sections && o->size != 0)
12454 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12455
12456 /* But we also have to update some of the relocation
12457 info we collected before. */
12458 if (gc_sweep_hook
12459 && (o->flags & SEC_RELOC) != 0
12460 && o->reloc_count != 0
12461 && !((info->strip == strip_all || info->strip == strip_debugger)
12462 && (o->flags & SEC_DEBUGGING) != 0)
12463 && !bfd_is_abs_section (o->output_section))
12464 {
12465 Elf_Internal_Rela *internal_relocs;
12466 bfd_boolean r;
12467
12468 internal_relocs
12469 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12470 info->keep_memory);
12471 if (internal_relocs == NULL)
12472 return FALSE;
12473
12474 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12475
12476 if (elf_section_data (o)->relocs != internal_relocs)
12477 free (internal_relocs);
12478
12479 if (!r)
12480 return FALSE;
12481 }
12482 }
12483 }
12484
12485 /* Remove the symbols that were in the swept sections from the dynamic
12486 symbol table. GCFIXME: Anyone know how to get them out of the
12487 static symbol table as well? */
12488 sweep_info.info = info;
12489 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12490 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12491 &sweep_info);
12492
12493 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12494 return TRUE;
12495 }
12496
12497 /* Propagate collected vtable information. This is called through
12498 elf_link_hash_traverse. */
12499
12500 static bfd_boolean
12501 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12502 {
12503 /* Those that are not vtables. */
12504 if (h->vtable == NULL || h->vtable->parent == NULL)
12505 return TRUE;
12506
12507 /* Those vtables that do not have parents, we cannot merge. */
12508 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12509 return TRUE;
12510
12511 /* If we've already been done, exit. */
12512 if (h->vtable->used && h->vtable->used[-1])
12513 return TRUE;
12514
12515 /* Make sure the parent's table is up to date. */
12516 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12517
12518 if (h->vtable->used == NULL)
12519 {
12520 /* None of this table's entries were referenced. Re-use the
12521 parent's table. */
12522 h->vtable->used = h->vtable->parent->vtable->used;
12523 h->vtable->size = h->vtable->parent->vtable->size;
12524 }
12525 else
12526 {
12527 size_t n;
12528 bfd_boolean *cu, *pu;
12529
12530 /* Or the parent's entries into ours. */
12531 cu = h->vtable->used;
12532 cu[-1] = TRUE;
12533 pu = h->vtable->parent->vtable->used;
12534 if (pu != NULL)
12535 {
12536 const struct elf_backend_data *bed;
12537 unsigned int log_file_align;
12538
12539 bed = get_elf_backend_data (h->root.u.def.section->owner);
12540 log_file_align = bed->s->log_file_align;
12541 n = h->vtable->parent->vtable->size >> log_file_align;
12542 while (n--)
12543 {
12544 if (*pu)
12545 *cu = TRUE;
12546 pu++;
12547 cu++;
12548 }
12549 }
12550 }
12551
12552 return TRUE;
12553 }
12554
12555 static bfd_boolean
12556 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12557 {
12558 asection *sec;
12559 bfd_vma hstart, hend;
12560 Elf_Internal_Rela *relstart, *relend, *rel;
12561 const struct elf_backend_data *bed;
12562 unsigned int log_file_align;
12563
12564 /* Take care of both those symbols that do not describe vtables as
12565 well as those that are not loaded. */
12566 if (h->vtable == NULL || h->vtable->parent == NULL)
12567 return TRUE;
12568
12569 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12570 || h->root.type == bfd_link_hash_defweak);
12571
12572 sec = h->root.u.def.section;
12573 hstart = h->root.u.def.value;
12574 hend = hstart + h->size;
12575
12576 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12577 if (!relstart)
12578 return *(bfd_boolean *) okp = FALSE;
12579 bed = get_elf_backend_data (sec->owner);
12580 log_file_align = bed->s->log_file_align;
12581
12582 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12583
12584 for (rel = relstart; rel < relend; ++rel)
12585 if (rel->r_offset >= hstart && rel->r_offset < hend)
12586 {
12587 /* If the entry is in use, do nothing. */
12588 if (h->vtable->used
12589 && (rel->r_offset - hstart) < h->vtable->size)
12590 {
12591 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12592 if (h->vtable->used[entry])
12593 continue;
12594 }
12595 /* Otherwise, kill it. */
12596 rel->r_offset = rel->r_info = rel->r_addend = 0;
12597 }
12598
12599 return TRUE;
12600 }
12601
12602 /* Mark sections containing dynamically referenced symbols. When
12603 building shared libraries, we must assume that any visible symbol is
12604 referenced. */
12605
12606 bfd_boolean
12607 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12608 {
12609 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12610 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12611
12612 if ((h->root.type == bfd_link_hash_defined
12613 || h->root.type == bfd_link_hash_defweak)
12614 && (h->ref_dynamic
12615 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12616 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12617 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12618 && (!bfd_link_executable (info)
12619 || info->export_dynamic
12620 || (h->dynamic
12621 && d != NULL
12622 && (*d->match) (&d->head, NULL, h->root.root.string)))
12623 && (h->versioned >= versioned
12624 || !bfd_hide_sym_by_version (info->version_info,
12625 h->root.root.string)))))
12626 h->root.u.def.section->flags |= SEC_KEEP;
12627
12628 return TRUE;
12629 }
12630
12631 /* Keep all sections containing symbols undefined on the command-line,
12632 and the section containing the entry symbol. */
12633
12634 void
12635 _bfd_elf_gc_keep (struct bfd_link_info *info)
12636 {
12637 struct bfd_sym_chain *sym;
12638
12639 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12640 {
12641 struct elf_link_hash_entry *h;
12642
12643 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12644 FALSE, FALSE, FALSE);
12645
12646 if (h != NULL
12647 && (h->root.type == bfd_link_hash_defined
12648 || h->root.type == bfd_link_hash_defweak)
12649 && !bfd_is_abs_section (h->root.u.def.section))
12650 h->root.u.def.section->flags |= SEC_KEEP;
12651 }
12652 }
12653
12654 bfd_boolean
12655 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12656 struct bfd_link_info *info)
12657 {
12658 bfd *ibfd = info->input_bfds;
12659
12660 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12661 {
12662 asection *sec;
12663 struct elf_reloc_cookie cookie;
12664
12665 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12666 continue;
12667
12668 if (!init_reloc_cookie (&cookie, info, ibfd))
12669 return FALSE;
12670
12671 for (sec = ibfd->sections; sec; sec = sec->next)
12672 {
12673 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12674 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12675 {
12676 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12677 fini_reloc_cookie_rels (&cookie, sec);
12678 }
12679 }
12680 }
12681 return TRUE;
12682 }
12683
12684 /* Do mark and sweep of unused sections. */
12685
12686 bfd_boolean
12687 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12688 {
12689 bfd_boolean ok = TRUE;
12690 bfd *sub;
12691 elf_gc_mark_hook_fn gc_mark_hook;
12692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12693 struct elf_link_hash_table *htab;
12694
12695 if (!bed->can_gc_sections
12696 || !is_elf_hash_table (info->hash))
12697 {
12698 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12699 return TRUE;
12700 }
12701
12702 bed->gc_keep (info);
12703 htab = elf_hash_table (info);
12704
12705 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12706 at the .eh_frame section if we can mark the FDEs individually. */
12707 for (sub = info->input_bfds;
12708 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12709 sub = sub->link.next)
12710 {
12711 asection *sec;
12712 struct elf_reloc_cookie cookie;
12713
12714 sec = bfd_get_section_by_name (sub, ".eh_frame");
12715 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12716 {
12717 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12718 if (elf_section_data (sec)->sec_info
12719 && (sec->flags & SEC_LINKER_CREATED) == 0)
12720 elf_eh_frame_section (sub) = sec;
12721 fini_reloc_cookie_for_section (&cookie, sec);
12722 sec = bfd_get_next_section_by_name (sec);
12723 }
12724 }
12725
12726 /* Apply transitive closure to the vtable entry usage info. */
12727 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12728 if (!ok)
12729 return FALSE;
12730
12731 /* Kill the vtable relocations that were not used. */
12732 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12733 if (!ok)
12734 return FALSE;
12735
12736 /* Mark dynamically referenced symbols. */
12737 if (htab->dynamic_sections_created)
12738 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12739
12740 /* Grovel through relocs to find out who stays ... */
12741 gc_mark_hook = bed->gc_mark_hook;
12742 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12743 {
12744 asection *o;
12745
12746 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12747 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12748 continue;
12749
12750 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12751 Also treat note sections as a root, if the section is not part
12752 of a group. */
12753 for (o = sub->sections; o != NULL; o = o->next)
12754 if (!o->gc_mark
12755 && (o->flags & SEC_EXCLUDE) == 0
12756 && ((o->flags & SEC_KEEP) != 0
12757 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12758 && elf_next_in_group (o) == NULL )))
12759 {
12760 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12761 return FALSE;
12762 }
12763 }
12764
12765 /* Allow the backend to mark additional target specific sections. */
12766 bed->gc_mark_extra_sections (info, gc_mark_hook);
12767
12768 /* ... and mark SEC_EXCLUDE for those that go. */
12769 return elf_gc_sweep (abfd, info);
12770 }
12771 \f
12772 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12773
12774 bfd_boolean
12775 bfd_elf_gc_record_vtinherit (bfd *abfd,
12776 asection *sec,
12777 struct elf_link_hash_entry *h,
12778 bfd_vma offset)
12779 {
12780 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12781 struct elf_link_hash_entry **search, *child;
12782 bfd_size_type extsymcount;
12783 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12784
12785 /* The sh_info field of the symtab header tells us where the
12786 external symbols start. We don't care about the local symbols at
12787 this point. */
12788 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12789 if (!elf_bad_symtab (abfd))
12790 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12791
12792 sym_hashes = elf_sym_hashes (abfd);
12793 sym_hashes_end = sym_hashes + extsymcount;
12794
12795 /* Hunt down the child symbol, which is in this section at the same
12796 offset as the relocation. */
12797 for (search = sym_hashes; search != sym_hashes_end; ++search)
12798 {
12799 if ((child = *search) != NULL
12800 && (child->root.type == bfd_link_hash_defined
12801 || child->root.type == bfd_link_hash_defweak)
12802 && child->root.u.def.section == sec
12803 && child->root.u.def.value == offset)
12804 goto win;
12805 }
12806
12807 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12808 abfd, sec, (unsigned long) offset);
12809 bfd_set_error (bfd_error_invalid_operation);
12810 return FALSE;
12811
12812 win:
12813 if (!child->vtable)
12814 {
12815 child->vtable = ((struct elf_link_virtual_table_entry *)
12816 bfd_zalloc (abfd, sizeof (*child->vtable)));
12817 if (!child->vtable)
12818 return FALSE;
12819 }
12820 if (!h)
12821 {
12822 /* This *should* only be the absolute section. It could potentially
12823 be that someone has defined a non-global vtable though, which
12824 would be bad. It isn't worth paging in the local symbols to be
12825 sure though; that case should simply be handled by the assembler. */
12826
12827 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12828 }
12829 else
12830 child->vtable->parent = h;
12831
12832 return TRUE;
12833 }
12834
12835 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12836
12837 bfd_boolean
12838 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12839 asection *sec ATTRIBUTE_UNUSED,
12840 struct elf_link_hash_entry *h,
12841 bfd_vma addend)
12842 {
12843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12844 unsigned int log_file_align = bed->s->log_file_align;
12845
12846 if (!h->vtable)
12847 {
12848 h->vtable = ((struct elf_link_virtual_table_entry *)
12849 bfd_zalloc (abfd, sizeof (*h->vtable)));
12850 if (!h->vtable)
12851 return FALSE;
12852 }
12853
12854 if (addend >= h->vtable->size)
12855 {
12856 size_t size, bytes, file_align;
12857 bfd_boolean *ptr = h->vtable->used;
12858
12859 /* While the symbol is undefined, we have to be prepared to handle
12860 a zero size. */
12861 file_align = 1 << log_file_align;
12862 if (h->root.type == bfd_link_hash_undefined)
12863 size = addend + file_align;
12864 else
12865 {
12866 size = h->size;
12867 if (addend >= size)
12868 {
12869 /* Oops! We've got a reference past the defined end of
12870 the table. This is probably a bug -- shall we warn? */
12871 size = addend + file_align;
12872 }
12873 }
12874 size = (size + file_align - 1) & -file_align;
12875
12876 /* Allocate one extra entry for use as a "done" flag for the
12877 consolidation pass. */
12878 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12879
12880 if (ptr)
12881 {
12882 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12883
12884 if (ptr != NULL)
12885 {
12886 size_t oldbytes;
12887
12888 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12889 * sizeof (bfd_boolean));
12890 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12891 }
12892 }
12893 else
12894 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12895
12896 if (ptr == NULL)
12897 return FALSE;
12898
12899 /* And arrange for that done flag to be at index -1. */
12900 h->vtable->used = ptr + 1;
12901 h->vtable->size = size;
12902 }
12903
12904 h->vtable->used[addend >> log_file_align] = TRUE;
12905
12906 return TRUE;
12907 }
12908
12909 /* Map an ELF section header flag to its corresponding string. */
12910 typedef struct
12911 {
12912 char *flag_name;
12913 flagword flag_value;
12914 } elf_flags_to_name_table;
12915
12916 static elf_flags_to_name_table elf_flags_to_names [] =
12917 {
12918 { "SHF_WRITE", SHF_WRITE },
12919 { "SHF_ALLOC", SHF_ALLOC },
12920 { "SHF_EXECINSTR", SHF_EXECINSTR },
12921 { "SHF_MERGE", SHF_MERGE },
12922 { "SHF_STRINGS", SHF_STRINGS },
12923 { "SHF_INFO_LINK", SHF_INFO_LINK},
12924 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12925 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12926 { "SHF_GROUP", SHF_GROUP },
12927 { "SHF_TLS", SHF_TLS },
12928 { "SHF_MASKOS", SHF_MASKOS },
12929 { "SHF_EXCLUDE", SHF_EXCLUDE },
12930 };
12931
12932 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12933 bfd_boolean
12934 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12935 struct flag_info *flaginfo,
12936 asection *section)
12937 {
12938 const bfd_vma sh_flags = elf_section_flags (section);
12939
12940 if (!flaginfo->flags_initialized)
12941 {
12942 bfd *obfd = info->output_bfd;
12943 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12944 struct flag_info_list *tf = flaginfo->flag_list;
12945 int with_hex = 0;
12946 int without_hex = 0;
12947
12948 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12949 {
12950 unsigned i;
12951 flagword (*lookup) (char *);
12952
12953 lookup = bed->elf_backend_lookup_section_flags_hook;
12954 if (lookup != NULL)
12955 {
12956 flagword hexval = (*lookup) ((char *) tf->name);
12957
12958 if (hexval != 0)
12959 {
12960 if (tf->with == with_flags)
12961 with_hex |= hexval;
12962 else if (tf->with == without_flags)
12963 without_hex |= hexval;
12964 tf->valid = TRUE;
12965 continue;
12966 }
12967 }
12968 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12969 {
12970 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12971 {
12972 if (tf->with == with_flags)
12973 with_hex |= elf_flags_to_names[i].flag_value;
12974 else if (tf->with == without_flags)
12975 without_hex |= elf_flags_to_names[i].flag_value;
12976 tf->valid = TRUE;
12977 break;
12978 }
12979 }
12980 if (!tf->valid)
12981 {
12982 info->callbacks->einfo
12983 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12984 return FALSE;
12985 }
12986 }
12987 flaginfo->flags_initialized = TRUE;
12988 flaginfo->only_with_flags |= with_hex;
12989 flaginfo->not_with_flags |= without_hex;
12990 }
12991
12992 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12993 return FALSE;
12994
12995 if ((flaginfo->not_with_flags & sh_flags) != 0)
12996 return FALSE;
12997
12998 return TRUE;
12999 }
13000
13001 struct alloc_got_off_arg {
13002 bfd_vma gotoff;
13003 struct bfd_link_info *info;
13004 };
13005
13006 /* We need a special top-level link routine to convert got reference counts
13007 to real got offsets. */
13008
13009 static bfd_boolean
13010 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13011 {
13012 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13013 bfd *obfd = gofarg->info->output_bfd;
13014 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13015
13016 if (h->got.refcount > 0)
13017 {
13018 h->got.offset = gofarg->gotoff;
13019 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13020 }
13021 else
13022 h->got.offset = (bfd_vma) -1;
13023
13024 return TRUE;
13025 }
13026
13027 /* And an accompanying bit to work out final got entry offsets once
13028 we're done. Should be called from final_link. */
13029
13030 bfd_boolean
13031 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13032 struct bfd_link_info *info)
13033 {
13034 bfd *i;
13035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13036 bfd_vma gotoff;
13037 struct alloc_got_off_arg gofarg;
13038
13039 BFD_ASSERT (abfd == info->output_bfd);
13040
13041 if (! is_elf_hash_table (info->hash))
13042 return FALSE;
13043
13044 /* The GOT offset is relative to the .got section, but the GOT header is
13045 put into the .got.plt section, if the backend uses it. */
13046 if (bed->want_got_plt)
13047 gotoff = 0;
13048 else
13049 gotoff = bed->got_header_size;
13050
13051 /* Do the local .got entries first. */
13052 for (i = info->input_bfds; i; i = i->link.next)
13053 {
13054 bfd_signed_vma *local_got;
13055 bfd_size_type j, locsymcount;
13056 Elf_Internal_Shdr *symtab_hdr;
13057
13058 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13059 continue;
13060
13061 local_got = elf_local_got_refcounts (i);
13062 if (!local_got)
13063 continue;
13064
13065 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13066 if (elf_bad_symtab (i))
13067 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13068 else
13069 locsymcount = symtab_hdr->sh_info;
13070
13071 for (j = 0; j < locsymcount; ++j)
13072 {
13073 if (local_got[j] > 0)
13074 {
13075 local_got[j] = gotoff;
13076 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13077 }
13078 else
13079 local_got[j] = (bfd_vma) -1;
13080 }
13081 }
13082
13083 /* Then the global .got entries. .plt refcounts are handled by
13084 adjust_dynamic_symbol */
13085 gofarg.gotoff = gotoff;
13086 gofarg.info = info;
13087 elf_link_hash_traverse (elf_hash_table (info),
13088 elf_gc_allocate_got_offsets,
13089 &gofarg);
13090 return TRUE;
13091 }
13092
13093 /* Many folk need no more in the way of final link than this, once
13094 got entry reference counting is enabled. */
13095
13096 bfd_boolean
13097 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13098 {
13099 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13100 return FALSE;
13101
13102 /* Invoke the regular ELF backend linker to do all the work. */
13103 return bfd_elf_final_link (abfd, info);
13104 }
13105
13106 bfd_boolean
13107 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13108 {
13109 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13110
13111 if (rcookie->bad_symtab)
13112 rcookie->rel = rcookie->rels;
13113
13114 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13115 {
13116 unsigned long r_symndx;
13117
13118 if (! rcookie->bad_symtab)
13119 if (rcookie->rel->r_offset > offset)
13120 return FALSE;
13121 if (rcookie->rel->r_offset != offset)
13122 continue;
13123
13124 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13125 if (r_symndx == STN_UNDEF)
13126 return TRUE;
13127
13128 if (r_symndx >= rcookie->locsymcount
13129 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13130 {
13131 struct elf_link_hash_entry *h;
13132
13133 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13134
13135 while (h->root.type == bfd_link_hash_indirect
13136 || h->root.type == bfd_link_hash_warning)
13137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13138
13139 if ((h->root.type == bfd_link_hash_defined
13140 || h->root.type == bfd_link_hash_defweak)
13141 && (h->root.u.def.section->owner != rcookie->abfd
13142 || h->root.u.def.section->kept_section != NULL
13143 || discarded_section (h->root.u.def.section)))
13144 return TRUE;
13145 }
13146 else
13147 {
13148 /* It's not a relocation against a global symbol,
13149 but it could be a relocation against a local
13150 symbol for a discarded section. */
13151 asection *isec;
13152 Elf_Internal_Sym *isym;
13153
13154 /* Need to: get the symbol; get the section. */
13155 isym = &rcookie->locsyms[r_symndx];
13156 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13157 if (isec != NULL
13158 && (isec->kept_section != NULL
13159 || discarded_section (isec)))
13160 return TRUE;
13161 }
13162 return FALSE;
13163 }
13164 return FALSE;
13165 }
13166
13167 /* Discard unneeded references to discarded sections.
13168 Returns -1 on error, 1 if any section's size was changed, 0 if
13169 nothing changed. This function assumes that the relocations are in
13170 sorted order, which is true for all known assemblers. */
13171
13172 int
13173 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13174 {
13175 struct elf_reloc_cookie cookie;
13176 asection *o;
13177 bfd *abfd;
13178 int changed = 0;
13179
13180 if (info->traditional_format
13181 || !is_elf_hash_table (info->hash))
13182 return 0;
13183
13184 o = bfd_get_section_by_name (output_bfd, ".stab");
13185 if (o != NULL)
13186 {
13187 asection *i;
13188
13189 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13190 {
13191 if (i->size == 0
13192 || i->reloc_count == 0
13193 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13194 continue;
13195
13196 abfd = i->owner;
13197 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13198 continue;
13199
13200 if (!init_reloc_cookie_for_section (&cookie, info, i))
13201 return -1;
13202
13203 if (_bfd_discard_section_stabs (abfd, i,
13204 elf_section_data (i)->sec_info,
13205 bfd_elf_reloc_symbol_deleted_p,
13206 &cookie))
13207 changed = 1;
13208
13209 fini_reloc_cookie_for_section (&cookie, i);
13210 }
13211 }
13212
13213 o = NULL;
13214 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13215 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13216 if (o != NULL)
13217 {
13218 asection *i;
13219
13220 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13221 {
13222 if (i->size == 0)
13223 continue;
13224
13225 abfd = i->owner;
13226 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13227 continue;
13228
13229 if (!init_reloc_cookie_for_section (&cookie, info, i))
13230 return -1;
13231
13232 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13233 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13234 bfd_elf_reloc_symbol_deleted_p,
13235 &cookie))
13236 changed = 1;
13237
13238 fini_reloc_cookie_for_section (&cookie, i);
13239 }
13240 }
13241
13242 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13243 {
13244 const struct elf_backend_data *bed;
13245
13246 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13247 continue;
13248
13249 bed = get_elf_backend_data (abfd);
13250
13251 if (bed->elf_backend_discard_info != NULL)
13252 {
13253 if (!init_reloc_cookie (&cookie, info, abfd))
13254 return -1;
13255
13256 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13257 changed = 1;
13258
13259 fini_reloc_cookie (&cookie, abfd);
13260 }
13261 }
13262
13263 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13264 _bfd_elf_end_eh_frame_parsing (info);
13265
13266 if (info->eh_frame_hdr_type
13267 && !bfd_link_relocatable (info)
13268 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13269 changed = 1;
13270
13271 return changed;
13272 }
13273
13274 bfd_boolean
13275 _bfd_elf_section_already_linked (bfd *abfd,
13276 asection *sec,
13277 struct bfd_link_info *info)
13278 {
13279 flagword flags;
13280 const char *name, *key;
13281 struct bfd_section_already_linked *l;
13282 struct bfd_section_already_linked_hash_entry *already_linked_list;
13283
13284 if (sec->output_section == bfd_abs_section_ptr)
13285 return FALSE;
13286
13287 flags = sec->flags;
13288
13289 /* Return if it isn't a linkonce section. A comdat group section
13290 also has SEC_LINK_ONCE set. */
13291 if ((flags & SEC_LINK_ONCE) == 0)
13292 return FALSE;
13293
13294 /* Don't put group member sections on our list of already linked
13295 sections. They are handled as a group via their group section. */
13296 if (elf_sec_group (sec) != NULL)
13297 return FALSE;
13298
13299 /* For a SHT_GROUP section, use the group signature as the key. */
13300 name = sec->name;
13301 if ((flags & SEC_GROUP) != 0
13302 && elf_next_in_group (sec) != NULL
13303 && elf_group_name (elf_next_in_group (sec)) != NULL)
13304 key = elf_group_name (elf_next_in_group (sec));
13305 else
13306 {
13307 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13308 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13309 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13310 key++;
13311 else
13312 /* Must be a user linkonce section that doesn't follow gcc's
13313 naming convention. In this case we won't be matching
13314 single member groups. */
13315 key = name;
13316 }
13317
13318 already_linked_list = bfd_section_already_linked_table_lookup (key);
13319
13320 for (l = already_linked_list->entry; l != NULL; l = l->next)
13321 {
13322 /* We may have 2 different types of sections on the list: group
13323 sections with a signature of <key> (<key> is some string),
13324 and linkonce sections named .gnu.linkonce.<type>.<key>.
13325 Match like sections. LTO plugin sections are an exception.
13326 They are always named .gnu.linkonce.t.<key> and match either
13327 type of section. */
13328 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13329 && ((flags & SEC_GROUP) != 0
13330 || strcmp (name, l->sec->name) == 0))
13331 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13332 {
13333 /* The section has already been linked. See if we should
13334 issue a warning. */
13335 if (!_bfd_handle_already_linked (sec, l, info))
13336 return FALSE;
13337
13338 if (flags & SEC_GROUP)
13339 {
13340 asection *first = elf_next_in_group (sec);
13341 asection *s = first;
13342
13343 while (s != NULL)
13344 {
13345 s->output_section = bfd_abs_section_ptr;
13346 /* Record which group discards it. */
13347 s->kept_section = l->sec;
13348 s = elf_next_in_group (s);
13349 /* These lists are circular. */
13350 if (s == first)
13351 break;
13352 }
13353 }
13354
13355 return TRUE;
13356 }
13357 }
13358
13359 /* A single member comdat group section may be discarded by a
13360 linkonce section and vice versa. */
13361 if ((flags & SEC_GROUP) != 0)
13362 {
13363 asection *first = elf_next_in_group (sec);
13364
13365 if (first != NULL && elf_next_in_group (first) == first)
13366 /* Check this single member group against linkonce sections. */
13367 for (l = already_linked_list->entry; l != NULL; l = l->next)
13368 if ((l->sec->flags & SEC_GROUP) == 0
13369 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13370 {
13371 first->output_section = bfd_abs_section_ptr;
13372 first->kept_section = l->sec;
13373 sec->output_section = bfd_abs_section_ptr;
13374 break;
13375 }
13376 }
13377 else
13378 /* Check this linkonce section against single member groups. */
13379 for (l = already_linked_list->entry; l != NULL; l = l->next)
13380 if (l->sec->flags & SEC_GROUP)
13381 {
13382 asection *first = elf_next_in_group (l->sec);
13383
13384 if (first != NULL
13385 && elf_next_in_group (first) == first
13386 && bfd_elf_match_symbols_in_sections (first, sec, info))
13387 {
13388 sec->output_section = bfd_abs_section_ptr;
13389 sec->kept_section = first;
13390 break;
13391 }
13392 }
13393
13394 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13395 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13396 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13397 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13398 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13399 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13400 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13401 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13402 The reverse order cannot happen as there is never a bfd with only the
13403 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13404 matter as here were are looking only for cross-bfd sections. */
13405
13406 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13407 for (l = already_linked_list->entry; l != NULL; l = l->next)
13408 if ((l->sec->flags & SEC_GROUP) == 0
13409 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13410 {
13411 if (abfd != l->sec->owner)
13412 sec->output_section = bfd_abs_section_ptr;
13413 break;
13414 }
13415
13416 /* This is the first section with this name. Record it. */
13417 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13418 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13419 return sec->output_section == bfd_abs_section_ptr;
13420 }
13421
13422 bfd_boolean
13423 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13424 {
13425 return sym->st_shndx == SHN_COMMON;
13426 }
13427
13428 unsigned int
13429 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13430 {
13431 return SHN_COMMON;
13432 }
13433
13434 asection *
13435 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13436 {
13437 return bfd_com_section_ptr;
13438 }
13439
13440 bfd_vma
13441 _bfd_elf_default_got_elt_size (bfd *abfd,
13442 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13443 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13444 bfd *ibfd ATTRIBUTE_UNUSED,
13445 unsigned long symndx ATTRIBUTE_UNUSED)
13446 {
13447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13448 return bed->s->arch_size / 8;
13449 }
13450
13451 /* Routines to support the creation of dynamic relocs. */
13452
13453 /* Returns the name of the dynamic reloc section associated with SEC. */
13454
13455 static const char *
13456 get_dynamic_reloc_section_name (bfd * abfd,
13457 asection * sec,
13458 bfd_boolean is_rela)
13459 {
13460 char *name;
13461 const char *old_name = bfd_get_section_name (NULL, sec);
13462 const char *prefix = is_rela ? ".rela" : ".rel";
13463
13464 if (old_name == NULL)
13465 return NULL;
13466
13467 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13468 sprintf (name, "%s%s", prefix, old_name);
13469
13470 return name;
13471 }
13472
13473 /* Returns the dynamic reloc section associated with SEC.
13474 If necessary compute the name of the dynamic reloc section based
13475 on SEC's name (looked up in ABFD's string table) and the setting
13476 of IS_RELA. */
13477
13478 asection *
13479 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13480 asection * sec,
13481 bfd_boolean is_rela)
13482 {
13483 asection * reloc_sec = elf_section_data (sec)->sreloc;
13484
13485 if (reloc_sec == NULL)
13486 {
13487 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13488
13489 if (name != NULL)
13490 {
13491 reloc_sec = bfd_get_linker_section (abfd, name);
13492
13493 if (reloc_sec != NULL)
13494 elf_section_data (sec)->sreloc = reloc_sec;
13495 }
13496 }
13497
13498 return reloc_sec;
13499 }
13500
13501 /* Returns the dynamic reloc section associated with SEC. If the
13502 section does not exist it is created and attached to the DYNOBJ
13503 bfd and stored in the SRELOC field of SEC's elf_section_data
13504 structure.
13505
13506 ALIGNMENT is the alignment for the newly created section and
13507 IS_RELA defines whether the name should be .rela.<SEC's name>
13508 or .rel.<SEC's name>. The section name is looked up in the
13509 string table associated with ABFD. */
13510
13511 asection *
13512 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13513 bfd *dynobj,
13514 unsigned int alignment,
13515 bfd *abfd,
13516 bfd_boolean is_rela)
13517 {
13518 asection * reloc_sec = elf_section_data (sec)->sreloc;
13519
13520 if (reloc_sec == NULL)
13521 {
13522 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13523
13524 if (name == NULL)
13525 return NULL;
13526
13527 reloc_sec = bfd_get_linker_section (dynobj, name);
13528
13529 if (reloc_sec == NULL)
13530 {
13531 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13532 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13533 if ((sec->flags & SEC_ALLOC) != 0)
13534 flags |= SEC_ALLOC | SEC_LOAD;
13535
13536 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13537 if (reloc_sec != NULL)
13538 {
13539 /* _bfd_elf_get_sec_type_attr chooses a section type by
13540 name. Override as it may be wrong, eg. for a user
13541 section named "auto" we'll get ".relauto" which is
13542 seen to be a .rela section. */
13543 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13544 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13545 reloc_sec = NULL;
13546 }
13547 }
13548
13549 elf_section_data (sec)->sreloc = reloc_sec;
13550 }
13551
13552 return reloc_sec;
13553 }
13554
13555 /* Copy the ELF symbol type and other attributes for a linker script
13556 assignment from HSRC to HDEST. Generally this should be treated as
13557 if we found a strong non-dynamic definition for HDEST (except that
13558 ld ignores multiple definition errors). */
13559 void
13560 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13561 struct bfd_link_hash_entry *hdest,
13562 struct bfd_link_hash_entry *hsrc)
13563 {
13564 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13565 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13566 Elf_Internal_Sym isym;
13567
13568 ehdest->type = ehsrc->type;
13569 ehdest->target_internal = ehsrc->target_internal;
13570
13571 isym.st_other = ehsrc->other;
13572 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13573 }
13574
13575 /* Append a RELA relocation REL to section S in BFD. */
13576
13577 void
13578 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13579 {
13580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13581 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13582 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13583 bed->s->swap_reloca_out (abfd, rel, loc);
13584 }
13585
13586 /* Append a REL relocation REL to section S in BFD. */
13587
13588 void
13589 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13590 {
13591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13592 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13593 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13594 bed->s->swap_reloc_out (abfd, rel, loc);
13595 }
This page took 0.330122 seconds and 4 git commands to generate.