Preserve a verbose error message of xfer functions if they return -3.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 /* If a new weak symbol definition comes from a regular file and the
1266 old symbol comes from a dynamic library, we treat the new one as
1267 strong. Similarly, an old weak symbol definition from a regular
1268 file is treated as strong when the new symbol comes from a dynamic
1269 library. Further, an old weak symbol from a dynamic library is
1270 treated as strong if the new symbol is from a dynamic library.
1271 This reflects the way glibc's ld.so works.
1272
1273 Do this before setting *type_change_ok or *size_change_ok so that
1274 we warn properly when dynamic library symbols are overridden. */
1275
1276 if (newdef && !newdyn && olddyn)
1277 newweak = FALSE;
1278 if (olddef && newdyn)
1279 oldweak = FALSE;
1280
1281 /* Allow changes between different types of function symbol. */
1282 if (newfunc && oldfunc)
1283 *type_change_ok = TRUE;
1284
1285 /* It's OK to change the type if either the existing symbol or the
1286 new symbol is weak. A type change is also OK if the old symbol
1287 is undefined and the new symbol is defined. */
1288
1289 if (oldweak
1290 || newweak
1291 || (newdef
1292 && h->root.type == bfd_link_hash_undefined))
1293 *type_change_ok = TRUE;
1294
1295 /* It's OK to change the size if either the existing symbol or the
1296 new symbol is weak, or if the old symbol is undefined. */
1297
1298 if (*type_change_ok
1299 || h->root.type == bfd_link_hash_undefined)
1300 *size_change_ok = TRUE;
1301
1302 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1303 symbol, respectively, appears to be a common symbol in a dynamic
1304 object. If a symbol appears in an uninitialized section, and is
1305 not weak, and is not a function, then it may be a common symbol
1306 which was resolved when the dynamic object was created. We want
1307 to treat such symbols specially, because they raise special
1308 considerations when setting the symbol size: if the symbol
1309 appears as a common symbol in a regular object, and the size in
1310 the regular object is larger, we must make sure that we use the
1311 larger size. This problematic case can always be avoided in C,
1312 but it must be handled correctly when using Fortran shared
1313 libraries.
1314
1315 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1316 likewise for OLDDYNCOMMON and OLDDEF.
1317
1318 Note that this test is just a heuristic, and that it is quite
1319 possible to have an uninitialized symbol in a shared object which
1320 is really a definition, rather than a common symbol. This could
1321 lead to some minor confusion when the symbol really is a common
1322 symbol in some regular object. However, I think it will be
1323 harmless. */
1324
1325 if (newdyn
1326 && newdef
1327 && !newweak
1328 && (sec->flags & SEC_ALLOC) != 0
1329 && (sec->flags & SEC_LOAD) == 0
1330 && sym->st_size > 0
1331 && !newfunc)
1332 newdyncommon = TRUE;
1333 else
1334 newdyncommon = FALSE;
1335
1336 if (olddyn
1337 && olddef
1338 && h->root.type == bfd_link_hash_defined
1339 && h->def_dynamic
1340 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1341 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1342 && h->size > 0
1343 && !oldfunc)
1344 olddyncommon = TRUE;
1345 else
1346 olddyncommon = FALSE;
1347
1348 /* We now know everything about the old and new symbols. We ask the
1349 backend to check if we can merge them. */
1350 if (bed->merge_symbol
1351 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1352 pold_alignment, skip, override,
1353 type_change_ok, size_change_ok,
1354 &newdyn, &newdef, &newdyncommon, &newweak,
1355 abfd, &sec,
1356 &olddyn, &olddef, &olddyncommon, &oldweak,
1357 oldbfd, &oldsec))
1358 return FALSE;
1359
1360 /* If both the old and the new symbols look like common symbols in a
1361 dynamic object, set the size of the symbol to the larger of the
1362 two. */
1363
1364 if (olddyncommon
1365 && newdyncommon
1366 && sym->st_size != h->size)
1367 {
1368 /* Since we think we have two common symbols, issue a multiple
1369 common warning if desired. Note that we only warn if the
1370 size is different. If the size is the same, we simply let
1371 the old symbol override the new one as normally happens with
1372 symbols defined in dynamic objects. */
1373
1374 if (! ((*info->callbacks->multiple_common)
1375 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1376 return FALSE;
1377
1378 if (sym->st_size > h->size)
1379 h->size = sym->st_size;
1380
1381 *size_change_ok = TRUE;
1382 }
1383
1384 /* If we are looking at a dynamic object, and we have found a
1385 definition, we need to see if the symbol was already defined by
1386 some other object. If so, we want to use the existing
1387 definition, and we do not want to report a multiple symbol
1388 definition error; we do this by clobbering *PSEC to be
1389 bfd_und_section_ptr.
1390
1391 We treat a common symbol as a definition if the symbol in the
1392 shared library is a function, since common symbols always
1393 represent variables; this can cause confusion in principle, but
1394 any such confusion would seem to indicate an erroneous program or
1395 shared library. We also permit a common symbol in a regular
1396 object to override a weak symbol in a shared object. */
1397
1398 if (newdyn
1399 && newdef
1400 && (olddef
1401 || (h->root.type == bfd_link_hash_common
1402 && (newweak || newfunc))))
1403 {
1404 *override = TRUE;
1405 newdef = FALSE;
1406 newdyncommon = FALSE;
1407
1408 *psec = sec = bfd_und_section_ptr;
1409 *size_change_ok = TRUE;
1410
1411 /* If we get here when the old symbol is a common symbol, then
1412 we are explicitly letting it override a weak symbol or
1413 function in a dynamic object, and we don't want to warn about
1414 a type change. If the old symbol is a defined symbol, a type
1415 change warning may still be appropriate. */
1416
1417 if (h->root.type == bfd_link_hash_common)
1418 *type_change_ok = TRUE;
1419 }
1420
1421 /* Handle the special case of an old common symbol merging with a
1422 new symbol which looks like a common symbol in a shared object.
1423 We change *PSEC and *PVALUE to make the new symbol look like a
1424 common symbol, and let _bfd_generic_link_add_one_symbol do the
1425 right thing. */
1426
1427 if (newdyncommon
1428 && h->root.type == bfd_link_hash_common)
1429 {
1430 *override = TRUE;
1431 newdef = FALSE;
1432 newdyncommon = FALSE;
1433 *pvalue = sym->st_size;
1434 *psec = sec = bed->common_section (oldsec);
1435 *size_change_ok = TRUE;
1436 }
1437
1438 /* Skip weak definitions of symbols that are already defined. */
1439 if (newdef && olddef && newweak)
1440 {
1441 /* Don't skip new non-IR weak syms. */
1442 if (!(oldbfd != NULL
1443 && (oldbfd->flags & BFD_PLUGIN) != 0
1444 && (abfd->flags & BFD_PLUGIN) == 0))
1445 *skip = TRUE;
1446
1447 /* Merge st_other. If the symbol already has a dynamic index,
1448 but visibility says it should not be visible, turn it into a
1449 local symbol. */
1450 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1451 if (h->dynindx != -1)
1452 switch (ELF_ST_VISIBILITY (h->other))
1453 {
1454 case STV_INTERNAL:
1455 case STV_HIDDEN:
1456 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1457 break;
1458 }
1459 }
1460
1461 /* If the old symbol is from a dynamic object, and the new symbol is
1462 a definition which is not from a dynamic object, then the new
1463 symbol overrides the old symbol. Symbols from regular files
1464 always take precedence over symbols from dynamic objects, even if
1465 they are defined after the dynamic object in the link.
1466
1467 As above, we again permit a common symbol in a regular object to
1468 override a definition in a shared object if the shared object
1469 symbol is a function or is weak. */
1470
1471 flip = NULL;
1472 if (!newdyn
1473 && (newdef
1474 || (bfd_is_com_section (sec)
1475 && (oldweak || oldfunc)))
1476 && olddyn
1477 && olddef
1478 && h->def_dynamic)
1479 {
1480 /* Change the hash table entry to undefined, and let
1481 _bfd_generic_link_add_one_symbol do the right thing with the
1482 new definition. */
1483
1484 h->root.type = bfd_link_hash_undefined;
1485 h->root.u.undef.abfd = h->root.u.def.section->owner;
1486 *size_change_ok = TRUE;
1487
1488 olddef = FALSE;
1489 olddyncommon = FALSE;
1490
1491 /* We again permit a type change when a common symbol may be
1492 overriding a function. */
1493
1494 if (bfd_is_com_section (sec))
1495 {
1496 if (oldfunc)
1497 {
1498 /* If a common symbol overrides a function, make sure
1499 that it isn't defined dynamically nor has type
1500 function. */
1501 h->def_dynamic = 0;
1502 h->type = STT_NOTYPE;
1503 }
1504 *type_change_ok = TRUE;
1505 }
1506
1507 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1508 flip = *sym_hash;
1509 else
1510 /* This union may have been set to be non-NULL when this symbol
1511 was seen in a dynamic object. We must force the union to be
1512 NULL, so that it is correct for a regular symbol. */
1513 h->verinfo.vertree = NULL;
1514 }
1515
1516 /* Handle the special case of a new common symbol merging with an
1517 old symbol that looks like it might be a common symbol defined in
1518 a shared object. Note that we have already handled the case in
1519 which a new common symbol should simply override the definition
1520 in the shared library. */
1521
1522 if (! newdyn
1523 && bfd_is_com_section (sec)
1524 && olddyncommon)
1525 {
1526 /* It would be best if we could set the hash table entry to a
1527 common symbol, but we don't know what to use for the section
1528 or the alignment. */
1529 if (! ((*info->callbacks->multiple_common)
1530 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1531 return FALSE;
1532
1533 /* If the presumed common symbol in the dynamic object is
1534 larger, pretend that the new symbol has its size. */
1535
1536 if (h->size > *pvalue)
1537 *pvalue = h->size;
1538
1539 /* We need to remember the alignment required by the symbol
1540 in the dynamic object. */
1541 BFD_ASSERT (pold_alignment);
1542 *pold_alignment = h->root.u.def.section->alignment_power;
1543
1544 olddef = FALSE;
1545 olddyncommon = FALSE;
1546
1547 h->root.type = bfd_link_hash_undefined;
1548 h->root.u.undef.abfd = h->root.u.def.section->owner;
1549
1550 *size_change_ok = TRUE;
1551 *type_change_ok = TRUE;
1552
1553 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1554 flip = *sym_hash;
1555 else
1556 h->verinfo.vertree = NULL;
1557 }
1558
1559 if (flip != NULL)
1560 {
1561 /* Handle the case where we had a versioned symbol in a dynamic
1562 library and now find a definition in a normal object. In this
1563 case, we make the versioned symbol point to the normal one. */
1564 flip->root.type = h->root.type;
1565 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1566 h->root.type = bfd_link_hash_indirect;
1567 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1568 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1569 if (h->def_dynamic)
1570 {
1571 h->def_dynamic = 0;
1572 flip->ref_dynamic = 1;
1573 }
1574 }
1575
1576 return TRUE;
1577 }
1578
1579 /* This function is called to create an indirect symbol from the
1580 default for the symbol with the default version if needed. The
1581 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1582 set DYNSYM if the new indirect symbol is dynamic. */
1583
1584 static bfd_boolean
1585 _bfd_elf_add_default_symbol (bfd *abfd,
1586 struct bfd_link_info *info,
1587 struct elf_link_hash_entry *h,
1588 const char *name,
1589 Elf_Internal_Sym *sym,
1590 asection **psec,
1591 bfd_vma *value,
1592 bfd_boolean *dynsym,
1593 bfd_boolean override)
1594 {
1595 bfd_boolean type_change_ok;
1596 bfd_boolean size_change_ok;
1597 bfd_boolean skip;
1598 char *shortname;
1599 struct elf_link_hash_entry *hi;
1600 struct bfd_link_hash_entry *bh;
1601 const struct elf_backend_data *bed;
1602 bfd_boolean collect;
1603 bfd_boolean dynamic;
1604 char *p;
1605 size_t len, shortlen;
1606 asection *sec;
1607
1608 /* If this symbol has a version, and it is the default version, we
1609 create an indirect symbol from the default name to the fully
1610 decorated name. This will cause external references which do not
1611 specify a version to be bound to this version of the symbol. */
1612 p = strchr (name, ELF_VER_CHR);
1613 if (p == NULL || p[1] != ELF_VER_CHR)
1614 return TRUE;
1615
1616 if (override)
1617 {
1618 /* We are overridden by an old definition. We need to check if we
1619 need to create the indirect symbol from the default name. */
1620 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1621 FALSE, FALSE);
1622 BFD_ASSERT (hi != NULL);
1623 if (hi == h)
1624 return TRUE;
1625 while (hi->root.type == bfd_link_hash_indirect
1626 || hi->root.type == bfd_link_hash_warning)
1627 {
1628 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1629 if (hi == h)
1630 return TRUE;
1631 }
1632 }
1633
1634 bed = get_elf_backend_data (abfd);
1635 collect = bed->collect;
1636 dynamic = (abfd->flags & DYNAMIC) != 0;
1637
1638 shortlen = p - name;
1639 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1640 if (shortname == NULL)
1641 return FALSE;
1642 memcpy (shortname, name, shortlen);
1643 shortname[shortlen] = '\0';
1644
1645 /* We are going to create a new symbol. Merge it with any existing
1646 symbol with this name. For the purposes of the merge, act as
1647 though we were defining the symbol we just defined, although we
1648 actually going to define an indirect symbol. */
1649 type_change_ok = FALSE;
1650 size_change_ok = FALSE;
1651 sec = *psec;
1652 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1653 NULL, NULL, &hi, &skip, &override,
1654 &type_change_ok, &size_change_ok))
1655 return FALSE;
1656
1657 if (skip)
1658 goto nondefault;
1659
1660 if (! override)
1661 {
1662 bh = &hi->root;
1663 if (! (_bfd_generic_link_add_one_symbol
1664 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1665 0, name, FALSE, collect, &bh)))
1666 return FALSE;
1667 hi = (struct elf_link_hash_entry *) bh;
1668 }
1669 else
1670 {
1671 /* In this case the symbol named SHORTNAME is overriding the
1672 indirect symbol we want to add. We were planning on making
1673 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1674 is the name without a version. NAME is the fully versioned
1675 name, and it is the default version.
1676
1677 Overriding means that we already saw a definition for the
1678 symbol SHORTNAME in a regular object, and it is overriding
1679 the symbol defined in the dynamic object.
1680
1681 When this happens, we actually want to change NAME, the
1682 symbol we just added, to refer to SHORTNAME. This will cause
1683 references to NAME in the shared object to become references
1684 to SHORTNAME in the regular object. This is what we expect
1685 when we override a function in a shared object: that the
1686 references in the shared object will be mapped to the
1687 definition in the regular object. */
1688
1689 while (hi->root.type == bfd_link_hash_indirect
1690 || hi->root.type == bfd_link_hash_warning)
1691 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1692
1693 h->root.type = bfd_link_hash_indirect;
1694 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1695 if (h->def_dynamic)
1696 {
1697 h->def_dynamic = 0;
1698 hi->ref_dynamic = 1;
1699 if (hi->ref_regular
1700 || hi->def_regular)
1701 {
1702 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1703 return FALSE;
1704 }
1705 }
1706
1707 /* Now set HI to H, so that the following code will set the
1708 other fields correctly. */
1709 hi = h;
1710 }
1711
1712 /* Check if HI is a warning symbol. */
1713 if (hi->root.type == bfd_link_hash_warning)
1714 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1715
1716 /* If there is a duplicate definition somewhere, then HI may not
1717 point to an indirect symbol. We will have reported an error to
1718 the user in that case. */
1719
1720 if (hi->root.type == bfd_link_hash_indirect)
1721 {
1722 struct elf_link_hash_entry *ht;
1723
1724 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1725 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1726
1727 /* See if the new flags lead us to realize that the symbol must
1728 be dynamic. */
1729 if (! *dynsym)
1730 {
1731 if (! dynamic)
1732 {
1733 if (! info->executable
1734 || hi->def_dynamic
1735 || hi->ref_dynamic)
1736 *dynsym = TRUE;
1737 }
1738 else
1739 {
1740 if (hi->ref_regular)
1741 *dynsym = TRUE;
1742 }
1743 }
1744 }
1745
1746 /* We also need to define an indirection from the nondefault version
1747 of the symbol. */
1748
1749 nondefault:
1750 len = strlen (name);
1751 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1752 if (shortname == NULL)
1753 return FALSE;
1754 memcpy (shortname, name, shortlen);
1755 memcpy (shortname + shortlen, p + 1, len - shortlen);
1756
1757 /* Once again, merge with any existing symbol. */
1758 type_change_ok = FALSE;
1759 size_change_ok = FALSE;
1760 sec = *psec;
1761 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1762 NULL, NULL, &hi, &skip, &override,
1763 &type_change_ok, &size_change_ok))
1764 return FALSE;
1765
1766 if (skip)
1767 return TRUE;
1768
1769 if (override)
1770 {
1771 /* Here SHORTNAME is a versioned name, so we don't expect to see
1772 the type of override we do in the case above unless it is
1773 overridden by a versioned definition. */
1774 if (hi->root.type != bfd_link_hash_defined
1775 && hi->root.type != bfd_link_hash_defweak)
1776 (*_bfd_error_handler)
1777 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1778 abfd, shortname);
1779 }
1780 else
1781 {
1782 bh = &hi->root;
1783 if (! (_bfd_generic_link_add_one_symbol
1784 (info, abfd, shortname, BSF_INDIRECT,
1785 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1786 return FALSE;
1787 hi = (struct elf_link_hash_entry *) bh;
1788
1789 /* If there is a duplicate definition somewhere, then HI may not
1790 point to an indirect symbol. We will have reported an error
1791 to the user in that case. */
1792
1793 if (hi->root.type == bfd_link_hash_indirect)
1794 {
1795 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1796
1797 /* See if the new flags lead us to realize that the symbol
1798 must be dynamic. */
1799 if (! *dynsym)
1800 {
1801 if (! dynamic)
1802 {
1803 if (! info->executable
1804 || hi->ref_dynamic)
1805 *dynsym = TRUE;
1806 }
1807 else
1808 {
1809 if (hi->ref_regular)
1810 *dynsym = TRUE;
1811 }
1812 }
1813 }
1814 }
1815
1816 return TRUE;
1817 }
1818 \f
1819 /* This routine is used to export all defined symbols into the dynamic
1820 symbol table. It is called via elf_link_hash_traverse. */
1821
1822 static bfd_boolean
1823 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1824 {
1825 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1826
1827 /* Ignore indirect symbols. These are added by the versioning code. */
1828 if (h->root.type == bfd_link_hash_indirect)
1829 return TRUE;
1830
1831 /* Ignore this if we won't export it. */
1832 if (!eif->info->export_dynamic && !h->dynamic)
1833 return TRUE;
1834
1835 if (h->dynindx == -1
1836 && (h->def_regular || h->ref_regular)
1837 && ! bfd_hide_sym_by_version (eif->info->version_info,
1838 h->root.root.string))
1839 {
1840 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1841 {
1842 eif->failed = TRUE;
1843 return FALSE;
1844 }
1845 }
1846
1847 return TRUE;
1848 }
1849 \f
1850 /* Look through the symbols which are defined in other shared
1851 libraries and referenced here. Update the list of version
1852 dependencies. This will be put into the .gnu.version_r section.
1853 This function is called via elf_link_hash_traverse. */
1854
1855 static bfd_boolean
1856 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1857 void *data)
1858 {
1859 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1860 Elf_Internal_Verneed *t;
1861 Elf_Internal_Vernaux *a;
1862 bfd_size_type amt;
1863
1864 /* We only care about symbols defined in shared objects with version
1865 information. */
1866 if (!h->def_dynamic
1867 || h->def_regular
1868 || h->dynindx == -1
1869 || h->verinfo.verdef == NULL)
1870 return TRUE;
1871
1872 /* See if we already know about this version. */
1873 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1874 t != NULL;
1875 t = t->vn_nextref)
1876 {
1877 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1878 continue;
1879
1880 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1881 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1882 return TRUE;
1883
1884 break;
1885 }
1886
1887 /* This is a new version. Add it to tree we are building. */
1888
1889 if (t == NULL)
1890 {
1891 amt = sizeof *t;
1892 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893 if (t == NULL)
1894 {
1895 rinfo->failed = TRUE;
1896 return FALSE;
1897 }
1898
1899 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1900 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1901 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 }
1903
1904 amt = sizeof *a;
1905 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1906 if (a == NULL)
1907 {
1908 rinfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 /* Note that we are copying a string pointer here, and testing it
1913 above. If bfd_elf_string_from_elf_section is ever changed to
1914 discard the string data when low in memory, this will have to be
1915 fixed. */
1916 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917
1918 a->vna_flags = h->verinfo.verdef->vd_flags;
1919 a->vna_nextptr = t->vn_auxptr;
1920
1921 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1922 ++rinfo->vers;
1923
1924 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1925
1926 t->vn_auxptr = a;
1927
1928 return TRUE;
1929 }
1930
1931 /* Figure out appropriate versions for all the symbols. We may not
1932 have the version number script until we have read all of the input
1933 files, so until that point we don't know which symbols should be
1934 local. This function is called via elf_link_hash_traverse. */
1935
1936 static bfd_boolean
1937 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 {
1939 struct elf_info_failed *sinfo;
1940 struct bfd_link_info *info;
1941 const struct elf_backend_data *bed;
1942 struct elf_info_failed eif;
1943 char *p;
1944 bfd_size_type amt;
1945
1946 sinfo = (struct elf_info_failed *) data;
1947 info = sinfo->info;
1948
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953 {
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1957 }
1958
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
1961 if (!h->def_regular)
1962 return TRUE;
1963
1964 bed = get_elf_backend_data (info->output_bfd);
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1967 {
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1970
1971 hidden = TRUE;
1972
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1977 {
1978 hidden = FALSE;
1979 ++p;
1980 }
1981
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1984 {
1985 if (hidden)
1986 h->hidden = 1;
1987 return TRUE;
1988 }
1989
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1992 {
1993 if (strcmp (t->name, p) == 0)
1994 {
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1998
1999 len = p - h->root.root.string;
2000 alc = (char *) bfd_malloc (len);
2001 if (alc == NULL)
2002 {
2003 sinfo->failed = TRUE;
2004 return FALSE;
2005 }
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2010
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2014
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
2017
2018 /* See if there is anything to force this symbol to
2019 local scope. */
2020 if (d == NULL && t->locals.list != NULL)
2021 {
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2027 }
2028
2029 free (alc);
2030 break;
2031 }
2032 }
2033
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t == NULL && info->executable)
2037 {
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2040
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2045
2046 amt = sizeof *t;
2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 if (t == NULL)
2049 {
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 t->name = p;
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2057
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->info->version_info != NULL
2061 && sinfo->info->version_info->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->info->version_info;
2064 *pp != NULL;
2065 pp = &(*pp)->next)
2066 ++version_index;
2067 t->vernum = version_index;
2068
2069 *pp = t;
2070
2071 h->verinfo.vertree = t;
2072 }
2073 else if (t == NULL)
2074 {
2075 /* We could not find the version for a symbol when
2076 generating a shared archive. Return an error. */
2077 (*_bfd_error_handler)
2078 (_("%B: version node not found for symbol %s"),
2079 info->output_bfd, h->root.root.string);
2080 bfd_set_error (bfd_error_bad_value);
2081 sinfo->failed = TRUE;
2082 return FALSE;
2083 }
2084
2085 if (hidden)
2086 h->hidden = 1;
2087 }
2088
2089 /* If we don't have a version for this symbol, see if we can find
2090 something. */
2091 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2092 {
2093 bfd_boolean hide;
2094
2095 h->verinfo.vertree
2096 = bfd_find_version_for_sym (sinfo->info->version_info,
2097 h->root.root.string, &hide);
2098 if (h->verinfo.vertree != NULL && hide)
2099 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 }
2101
2102 return TRUE;
2103 }
2104 \f
2105 /* Read and swap the relocs from the section indicated by SHDR. This
2106 may be either a REL or a RELA section. The relocations are
2107 translated into RELA relocations and stored in INTERNAL_RELOCS,
2108 which should have already been allocated to contain enough space.
2109 The EXTERNAL_RELOCS are a buffer where the external form of the
2110 relocations should be stored.
2111
2112 Returns FALSE if something goes wrong. */
2113
2114 static bfd_boolean
2115 elf_link_read_relocs_from_section (bfd *abfd,
2116 asection *sec,
2117 Elf_Internal_Shdr *shdr,
2118 void *external_relocs,
2119 Elf_Internal_Rela *internal_relocs)
2120 {
2121 const struct elf_backend_data *bed;
2122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2123 const bfd_byte *erela;
2124 const bfd_byte *erelaend;
2125 Elf_Internal_Rela *irela;
2126 Elf_Internal_Shdr *symtab_hdr;
2127 size_t nsyms;
2128
2129 /* Position ourselves at the start of the section. */
2130 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2131 return FALSE;
2132
2133 /* Read the relocations. */
2134 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2135 return FALSE;
2136
2137 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2138 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2139
2140 bed = get_elf_backend_data (abfd);
2141
2142 /* Convert the external relocations to the internal format. */
2143 if (shdr->sh_entsize == bed->s->sizeof_rel)
2144 swap_in = bed->s->swap_reloc_in;
2145 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2146 swap_in = bed->s->swap_reloca_in;
2147 else
2148 {
2149 bfd_set_error (bfd_error_wrong_format);
2150 return FALSE;
2151 }
2152
2153 erela = (const bfd_byte *) external_relocs;
2154 erelaend = erela + shdr->sh_size;
2155 irela = internal_relocs;
2156 while (erela < erelaend)
2157 {
2158 bfd_vma r_symndx;
2159
2160 (*swap_in) (abfd, erela, irela);
2161 r_symndx = ELF32_R_SYM (irela->r_info);
2162 if (bed->s->arch_size == 64)
2163 r_symndx >>= 24;
2164 if (nsyms > 0)
2165 {
2166 if ((size_t) r_symndx >= nsyms)
2167 {
2168 (*_bfd_error_handler)
2169 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2170 " for offset 0x%lx in section `%A'"),
2171 abfd, sec,
2172 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173 bfd_set_error (bfd_error_bad_value);
2174 return FALSE;
2175 }
2176 }
2177 else if (r_symndx != STN_UNDEF)
2178 {
2179 (*_bfd_error_handler)
2180 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2181 " when the object file has no symbol table"),
2182 abfd, sec,
2183 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2184 bfd_set_error (bfd_error_bad_value);
2185 return FALSE;
2186 }
2187 irela += bed->s->int_rels_per_ext_rel;
2188 erela += shdr->sh_entsize;
2189 }
2190
2191 return TRUE;
2192 }
2193
2194 /* Read and swap the relocs for a section O. They may have been
2195 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2196 not NULL, they are used as buffers to read into. They are known to
2197 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2198 the return value is allocated using either malloc or bfd_alloc,
2199 according to the KEEP_MEMORY argument. If O has two relocation
2200 sections (both REL and RELA relocations), then the REL_HDR
2201 relocations will appear first in INTERNAL_RELOCS, followed by the
2202 RELA_HDR relocations. */
2203
2204 Elf_Internal_Rela *
2205 _bfd_elf_link_read_relocs (bfd *abfd,
2206 asection *o,
2207 void *external_relocs,
2208 Elf_Internal_Rela *internal_relocs,
2209 bfd_boolean keep_memory)
2210 {
2211 void *alloc1 = NULL;
2212 Elf_Internal_Rela *alloc2 = NULL;
2213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2214 struct bfd_elf_section_data *esdo = elf_section_data (o);
2215 Elf_Internal_Rela *internal_rela_relocs;
2216
2217 if (esdo->relocs != NULL)
2218 return esdo->relocs;
2219
2220 if (o->reloc_count == 0)
2221 return NULL;
2222
2223 if (internal_relocs == NULL)
2224 {
2225 bfd_size_type size;
2226
2227 size = o->reloc_count;
2228 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2229 if (keep_memory)
2230 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2231 else
2232 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2233 if (internal_relocs == NULL)
2234 goto error_return;
2235 }
2236
2237 if (external_relocs == NULL)
2238 {
2239 bfd_size_type size = 0;
2240
2241 if (esdo->rel.hdr)
2242 size += esdo->rel.hdr->sh_size;
2243 if (esdo->rela.hdr)
2244 size += esdo->rela.hdr->sh_size;
2245
2246 alloc1 = bfd_malloc (size);
2247 if (alloc1 == NULL)
2248 goto error_return;
2249 external_relocs = alloc1;
2250 }
2251
2252 internal_rela_relocs = internal_relocs;
2253 if (esdo->rel.hdr)
2254 {
2255 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2256 external_relocs,
2257 internal_relocs))
2258 goto error_return;
2259 external_relocs = (((bfd_byte *) external_relocs)
2260 + esdo->rel.hdr->sh_size);
2261 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2262 * bed->s->int_rels_per_ext_rel);
2263 }
2264
2265 if (esdo->rela.hdr
2266 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2267 external_relocs,
2268 internal_rela_relocs)))
2269 goto error_return;
2270
2271 /* Cache the results for next time, if we can. */
2272 if (keep_memory)
2273 esdo->relocs = internal_relocs;
2274
2275 if (alloc1 != NULL)
2276 free (alloc1);
2277
2278 /* Don't free alloc2, since if it was allocated we are passing it
2279 back (under the name of internal_relocs). */
2280
2281 return internal_relocs;
2282
2283 error_return:
2284 if (alloc1 != NULL)
2285 free (alloc1);
2286 if (alloc2 != NULL)
2287 {
2288 if (keep_memory)
2289 bfd_release (abfd, alloc2);
2290 else
2291 free (alloc2);
2292 }
2293 return NULL;
2294 }
2295
2296 /* Compute the size of, and allocate space for, REL_HDR which is the
2297 section header for a section containing relocations for O. */
2298
2299 static bfd_boolean
2300 _bfd_elf_link_size_reloc_section (bfd *abfd,
2301 struct bfd_elf_section_reloc_data *reldata)
2302 {
2303 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2304
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2307
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2315
2316 if (reldata->hashes == NULL && reldata->count)
2317 {
2318 struct elf_link_hash_entry **p;
2319
2320 p = (struct elf_link_hash_entry **)
2321 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2322 if (p == NULL)
2323 return FALSE;
2324
2325 reldata->hashes = p;
2326 }
2327
2328 return TRUE;
2329 }
2330
2331 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2332 originated from the section given by INPUT_REL_HDR) to the
2333 OUTPUT_BFD. */
2334
2335 bfd_boolean
2336 _bfd_elf_link_output_relocs (bfd *output_bfd,
2337 asection *input_section,
2338 Elf_Internal_Shdr *input_rel_hdr,
2339 Elf_Internal_Rela *internal_relocs,
2340 struct elf_link_hash_entry **rel_hash
2341 ATTRIBUTE_UNUSED)
2342 {
2343 Elf_Internal_Rela *irela;
2344 Elf_Internal_Rela *irelaend;
2345 bfd_byte *erel;
2346 struct bfd_elf_section_reloc_data *output_reldata;
2347 asection *output_section;
2348 const struct elf_backend_data *bed;
2349 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2350 struct bfd_elf_section_data *esdo;
2351
2352 output_section = input_section->output_section;
2353
2354 bed = get_elf_backend_data (output_bfd);
2355 esdo = elf_section_data (output_section);
2356 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2357 {
2358 output_reldata = &esdo->rel;
2359 swap_out = bed->s->swap_reloc_out;
2360 }
2361 else if (esdo->rela.hdr
2362 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2363 {
2364 output_reldata = &esdo->rela;
2365 swap_out = bed->s->swap_reloca_out;
2366 }
2367 else
2368 {
2369 (*_bfd_error_handler)
2370 (_("%B: relocation size mismatch in %B section %A"),
2371 output_bfd, input_section->owner, input_section);
2372 bfd_set_error (bfd_error_wrong_format);
2373 return FALSE;
2374 }
2375
2376 erel = output_reldata->hdr->contents;
2377 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2378 irela = internal_relocs;
2379 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2380 * bed->s->int_rels_per_ext_rel);
2381 while (irela < irelaend)
2382 {
2383 (*swap_out) (output_bfd, irela, erel);
2384 irela += bed->s->int_rels_per_ext_rel;
2385 erel += input_rel_hdr->sh_entsize;
2386 }
2387
2388 /* Bump the counter, so that we know where to add the next set of
2389 relocations. */
2390 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2391
2392 return TRUE;
2393 }
2394 \f
2395 /* Make weak undefined symbols in PIE dynamic. */
2396
2397 bfd_boolean
2398 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2399 struct elf_link_hash_entry *h)
2400 {
2401 if (info->pie
2402 && h->dynindx == -1
2403 && h->root.type == bfd_link_hash_undefweak)
2404 return bfd_elf_link_record_dynamic_symbol (info, h);
2405
2406 return TRUE;
2407 }
2408
2409 /* Fix up the flags for a symbol. This handles various cases which
2410 can only be fixed after all the input files are seen. This is
2411 currently called by both adjust_dynamic_symbol and
2412 assign_sym_version, which is unnecessary but perhaps more robust in
2413 the face of future changes. */
2414
2415 static bfd_boolean
2416 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2417 struct elf_info_failed *eif)
2418 {
2419 const struct elf_backend_data *bed;
2420
2421 /* If this symbol was mentioned in a non-ELF file, try to set
2422 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2423 permit a non-ELF file to correctly refer to a symbol defined in
2424 an ELF dynamic object. */
2425 if (h->non_elf)
2426 {
2427 while (h->root.type == bfd_link_hash_indirect)
2428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2429
2430 if (h->root.type != bfd_link_hash_defined
2431 && h->root.type != bfd_link_hash_defweak)
2432 {
2433 h->ref_regular = 1;
2434 h->ref_regular_nonweak = 1;
2435 }
2436 else
2437 {
2438 if (h->root.u.def.section->owner != NULL
2439 && (bfd_get_flavour (h->root.u.def.section->owner)
2440 == bfd_target_elf_flavour))
2441 {
2442 h->ref_regular = 1;
2443 h->ref_regular_nonweak = 1;
2444 }
2445 else
2446 h->def_regular = 1;
2447 }
2448
2449 if (h->dynindx == -1
2450 && (h->def_dynamic
2451 || h->ref_dynamic))
2452 {
2453 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2454 {
2455 eif->failed = TRUE;
2456 return FALSE;
2457 }
2458 }
2459 }
2460 else
2461 {
2462 /* Unfortunately, NON_ELF is only correct if the symbol
2463 was first seen in a non-ELF file. Fortunately, if the symbol
2464 was first seen in an ELF file, we're probably OK unless the
2465 symbol was defined in a non-ELF file. Catch that case here.
2466 FIXME: We're still in trouble if the symbol was first seen in
2467 a dynamic object, and then later in a non-ELF regular object. */
2468 if ((h->root.type == bfd_link_hash_defined
2469 || h->root.type == bfd_link_hash_defweak)
2470 && !h->def_regular
2471 && (h->root.u.def.section->owner != NULL
2472 ? (bfd_get_flavour (h->root.u.def.section->owner)
2473 != bfd_target_elf_flavour)
2474 : (bfd_is_abs_section (h->root.u.def.section)
2475 && !h->def_dynamic)))
2476 h->def_regular = 1;
2477 }
2478
2479 /* Backend specific symbol fixup. */
2480 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2481 if (bed->elf_backend_fixup_symbol
2482 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2483 return FALSE;
2484
2485 /* If this is a final link, and the symbol was defined as a common
2486 symbol in a regular object file, and there was no definition in
2487 any dynamic object, then the linker will have allocated space for
2488 the symbol in a common section but the DEF_REGULAR
2489 flag will not have been set. */
2490 if (h->root.type == bfd_link_hash_defined
2491 && !h->def_regular
2492 && h->ref_regular
2493 && !h->def_dynamic
2494 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2495 h->def_regular = 1;
2496
2497 /* If -Bsymbolic was used (which means to bind references to global
2498 symbols to the definition within the shared object), and this
2499 symbol was defined in a regular object, then it actually doesn't
2500 need a PLT entry. Likewise, if the symbol has non-default
2501 visibility. If the symbol has hidden or internal visibility, we
2502 will force it local. */
2503 if (h->needs_plt
2504 && eif->info->shared
2505 && is_elf_hash_table (eif->info->hash)
2506 && (SYMBOLIC_BIND (eif->info, h)
2507 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2508 && h->def_regular)
2509 {
2510 bfd_boolean force_local;
2511
2512 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2513 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2514 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2515 }
2516
2517 /* If a weak undefined symbol has non-default visibility, we also
2518 hide it from the dynamic linker. */
2519 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2520 && h->root.type == bfd_link_hash_undefweak)
2521 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2522
2523 /* If this is a weak defined symbol in a dynamic object, and we know
2524 the real definition in the dynamic object, copy interesting flags
2525 over to the real definition. */
2526 if (h->u.weakdef != NULL)
2527 {
2528 /* If the real definition is defined by a regular object file,
2529 don't do anything special. See the longer description in
2530 _bfd_elf_adjust_dynamic_symbol, below. */
2531 if (h->u.weakdef->def_regular)
2532 h->u.weakdef = NULL;
2533 else
2534 {
2535 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2536
2537 while (h->root.type == bfd_link_hash_indirect)
2538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539
2540 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2541 || h->root.type == bfd_link_hash_defweak);
2542 BFD_ASSERT (weakdef->def_dynamic);
2543 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2544 || weakdef->root.type == bfd_link_hash_defweak);
2545 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2546 }
2547 }
2548
2549 return TRUE;
2550 }
2551
2552 /* Make the backend pick a good value for a dynamic symbol. This is
2553 called via elf_link_hash_traverse, and also calls itself
2554 recursively. */
2555
2556 static bfd_boolean
2557 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2558 {
2559 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2560 bfd *dynobj;
2561 const struct elf_backend_data *bed;
2562
2563 if (! is_elf_hash_table (eif->info->hash))
2564 return FALSE;
2565
2566 /* Ignore indirect symbols. These are added by the versioning code. */
2567 if (h->root.type == bfd_link_hash_indirect)
2568 return TRUE;
2569
2570 /* Fix the symbol flags. */
2571 if (! _bfd_elf_fix_symbol_flags (h, eif))
2572 return FALSE;
2573
2574 /* If this symbol does not require a PLT entry, and it is not
2575 defined by a dynamic object, or is not referenced by a regular
2576 object, ignore it. We do have to handle a weak defined symbol,
2577 even if no regular object refers to it, if we decided to add it
2578 to the dynamic symbol table. FIXME: Do we normally need to worry
2579 about symbols which are defined by one dynamic object and
2580 referenced by another one? */
2581 if (!h->needs_plt
2582 && h->type != STT_GNU_IFUNC
2583 && (h->def_regular
2584 || !h->def_dynamic
2585 || (!h->ref_regular
2586 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2587 {
2588 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2589 return TRUE;
2590 }
2591
2592 /* If we've already adjusted this symbol, don't do it again. This
2593 can happen via a recursive call. */
2594 if (h->dynamic_adjusted)
2595 return TRUE;
2596
2597 /* Don't look at this symbol again. Note that we must set this
2598 after checking the above conditions, because we may look at a
2599 symbol once, decide not to do anything, and then get called
2600 recursively later after REF_REGULAR is set below. */
2601 h->dynamic_adjusted = 1;
2602
2603 /* If this is a weak definition, and we know a real definition, and
2604 the real symbol is not itself defined by a regular object file,
2605 then get a good value for the real definition. We handle the
2606 real symbol first, for the convenience of the backend routine.
2607
2608 Note that there is a confusing case here. If the real definition
2609 is defined by a regular object file, we don't get the real symbol
2610 from the dynamic object, but we do get the weak symbol. If the
2611 processor backend uses a COPY reloc, then if some routine in the
2612 dynamic object changes the real symbol, we will not see that
2613 change in the corresponding weak symbol. This is the way other
2614 ELF linkers work as well, and seems to be a result of the shared
2615 library model.
2616
2617 I will clarify this issue. Most SVR4 shared libraries define the
2618 variable _timezone and define timezone as a weak synonym. The
2619 tzset call changes _timezone. If you write
2620 extern int timezone;
2621 int _timezone = 5;
2622 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2623 you might expect that, since timezone is a synonym for _timezone,
2624 the same number will print both times. However, if the processor
2625 backend uses a COPY reloc, then actually timezone will be copied
2626 into your process image, and, since you define _timezone
2627 yourself, _timezone will not. Thus timezone and _timezone will
2628 wind up at different memory locations. The tzset call will set
2629 _timezone, leaving timezone unchanged. */
2630
2631 if (h->u.weakdef != NULL)
2632 {
2633 /* If we get to this point, there is an implicit reference to
2634 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2635 h->u.weakdef->ref_regular = 1;
2636
2637 /* Ensure that the backend adjust_dynamic_symbol function sees
2638 H->U.WEAKDEF before H by recursively calling ourselves. */
2639 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2640 return FALSE;
2641 }
2642
2643 /* If a symbol has no type and no size and does not require a PLT
2644 entry, then we are probably about to do the wrong thing here: we
2645 are probably going to create a COPY reloc for an empty object.
2646 This case can arise when a shared object is built with assembly
2647 code, and the assembly code fails to set the symbol type. */
2648 if (h->size == 0
2649 && h->type == STT_NOTYPE
2650 && !h->needs_plt)
2651 (*_bfd_error_handler)
2652 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2653 h->root.root.string);
2654
2655 dynobj = elf_hash_table (eif->info)->dynobj;
2656 bed = get_elf_backend_data (dynobj);
2657
2658 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2659 {
2660 eif->failed = TRUE;
2661 return FALSE;
2662 }
2663
2664 return TRUE;
2665 }
2666
2667 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2668 DYNBSS. */
2669
2670 bfd_boolean
2671 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2672 asection *dynbss)
2673 {
2674 unsigned int power_of_two;
2675 bfd_vma mask;
2676 asection *sec = h->root.u.def.section;
2677
2678 /* The section aligment of definition is the maximum alignment
2679 requirement of symbols defined in the section. Since we don't
2680 know the symbol alignment requirement, we start with the
2681 maximum alignment and check low bits of the symbol address
2682 for the minimum alignment. */
2683 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2684 mask = ((bfd_vma) 1 << power_of_two) - 1;
2685 while ((h->root.u.def.value & mask) != 0)
2686 {
2687 mask >>= 1;
2688 --power_of_two;
2689 }
2690
2691 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2692 dynbss))
2693 {
2694 /* Adjust the section alignment if needed. */
2695 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2696 power_of_two))
2697 return FALSE;
2698 }
2699
2700 /* We make sure that the symbol will be aligned properly. */
2701 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2702
2703 /* Define the symbol as being at this point in DYNBSS. */
2704 h->root.u.def.section = dynbss;
2705 h->root.u.def.value = dynbss->size;
2706
2707 /* Increment the size of DYNBSS to make room for the symbol. */
2708 dynbss->size += h->size;
2709
2710 return TRUE;
2711 }
2712
2713 /* Adjust all external symbols pointing into SEC_MERGE sections
2714 to reflect the object merging within the sections. */
2715
2716 static bfd_boolean
2717 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2718 {
2719 asection *sec;
2720
2721 if ((h->root.type == bfd_link_hash_defined
2722 || h->root.type == bfd_link_hash_defweak)
2723 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2724 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2725 {
2726 bfd *output_bfd = (bfd *) data;
2727
2728 h->root.u.def.value =
2729 _bfd_merged_section_offset (output_bfd,
2730 &h->root.u.def.section,
2731 elf_section_data (sec)->sec_info,
2732 h->root.u.def.value);
2733 }
2734
2735 return TRUE;
2736 }
2737
2738 /* Returns false if the symbol referred to by H should be considered
2739 to resolve local to the current module, and true if it should be
2740 considered to bind dynamically. */
2741
2742 bfd_boolean
2743 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2744 struct bfd_link_info *info,
2745 bfd_boolean not_local_protected)
2746 {
2747 bfd_boolean binding_stays_local_p;
2748 const struct elf_backend_data *bed;
2749 struct elf_link_hash_table *hash_table;
2750
2751 if (h == NULL)
2752 return FALSE;
2753
2754 while (h->root.type == bfd_link_hash_indirect
2755 || h->root.type == bfd_link_hash_warning)
2756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2757
2758 /* If it was forced local, then clearly it's not dynamic. */
2759 if (h->dynindx == -1)
2760 return FALSE;
2761 if (h->forced_local)
2762 return FALSE;
2763
2764 /* Identify the cases where name binding rules say that a
2765 visible symbol resolves locally. */
2766 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2767
2768 switch (ELF_ST_VISIBILITY (h->other))
2769 {
2770 case STV_INTERNAL:
2771 case STV_HIDDEN:
2772 return FALSE;
2773
2774 case STV_PROTECTED:
2775 hash_table = elf_hash_table (info);
2776 if (!is_elf_hash_table (hash_table))
2777 return FALSE;
2778
2779 bed = get_elf_backend_data (hash_table->dynobj);
2780
2781 /* Proper resolution for function pointer equality may require
2782 that these symbols perhaps be resolved dynamically, even though
2783 we should be resolving them to the current module. */
2784 if (!not_local_protected || !bed->is_function_type (h->type))
2785 binding_stays_local_p = TRUE;
2786 break;
2787
2788 default:
2789 break;
2790 }
2791
2792 /* If it isn't defined locally, then clearly it's dynamic. */
2793 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2794 return TRUE;
2795
2796 /* Otherwise, the symbol is dynamic if binding rules don't tell
2797 us that it remains local. */
2798 return !binding_stays_local_p;
2799 }
2800
2801 /* Return true if the symbol referred to by H should be considered
2802 to resolve local to the current module, and false otherwise. Differs
2803 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2804 undefined symbols. The two functions are virtually identical except
2805 for the place where forced_local and dynindx == -1 are tested. If
2806 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2807 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2808 the symbol is local only for defined symbols.
2809 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2810 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2811 treatment of undefined weak symbols. For those that do not make
2812 undefined weak symbols dynamic, both functions may return false. */
2813
2814 bfd_boolean
2815 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2816 struct bfd_link_info *info,
2817 bfd_boolean local_protected)
2818 {
2819 const struct elf_backend_data *bed;
2820 struct elf_link_hash_table *hash_table;
2821
2822 /* If it's a local sym, of course we resolve locally. */
2823 if (h == NULL)
2824 return TRUE;
2825
2826 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2827 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2828 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2829 return TRUE;
2830
2831 /* Common symbols that become definitions don't get the DEF_REGULAR
2832 flag set, so test it first, and don't bail out. */
2833 if (ELF_COMMON_DEF_P (h))
2834 /* Do nothing. */;
2835 /* If we don't have a definition in a regular file, then we can't
2836 resolve locally. The sym is either undefined or dynamic. */
2837 else if (!h->def_regular)
2838 return FALSE;
2839
2840 /* Forced local symbols resolve locally. */
2841 if (h->forced_local)
2842 return TRUE;
2843
2844 /* As do non-dynamic symbols. */
2845 if (h->dynindx == -1)
2846 return TRUE;
2847
2848 /* At this point, we know the symbol is defined and dynamic. In an
2849 executable it must resolve locally, likewise when building symbolic
2850 shared libraries. */
2851 if (info->executable || SYMBOLIC_BIND (info, h))
2852 return TRUE;
2853
2854 /* Now deal with defined dynamic symbols in shared libraries. Ones
2855 with default visibility might not resolve locally. */
2856 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2857 return FALSE;
2858
2859 hash_table = elf_hash_table (info);
2860 if (!is_elf_hash_table (hash_table))
2861 return TRUE;
2862
2863 bed = get_elf_backend_data (hash_table->dynobj);
2864
2865 /* STV_PROTECTED non-function symbols are local. */
2866 if (!bed->is_function_type (h->type))
2867 return TRUE;
2868
2869 /* Function pointer equality tests may require that STV_PROTECTED
2870 symbols be treated as dynamic symbols. If the address of a
2871 function not defined in an executable is set to that function's
2872 plt entry in the executable, then the address of the function in
2873 a shared library must also be the plt entry in the executable. */
2874 return local_protected;
2875 }
2876
2877 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2878 aligned. Returns the first TLS output section. */
2879
2880 struct bfd_section *
2881 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2882 {
2883 struct bfd_section *sec, *tls;
2884 unsigned int align = 0;
2885
2886 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2887 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2888 break;
2889 tls = sec;
2890
2891 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2892 if (sec->alignment_power > align)
2893 align = sec->alignment_power;
2894
2895 elf_hash_table (info)->tls_sec = tls;
2896
2897 /* Ensure the alignment of the first section is the largest alignment,
2898 so that the tls segment starts aligned. */
2899 if (tls != NULL)
2900 tls->alignment_power = align;
2901
2902 return tls;
2903 }
2904
2905 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2906 static bfd_boolean
2907 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2908 Elf_Internal_Sym *sym)
2909 {
2910 const struct elf_backend_data *bed;
2911
2912 /* Local symbols do not count, but target specific ones might. */
2913 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2914 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2915 return FALSE;
2916
2917 bed = get_elf_backend_data (abfd);
2918 /* Function symbols do not count. */
2919 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2920 return FALSE;
2921
2922 /* If the section is undefined, then so is the symbol. */
2923 if (sym->st_shndx == SHN_UNDEF)
2924 return FALSE;
2925
2926 /* If the symbol is defined in the common section, then
2927 it is a common definition and so does not count. */
2928 if (bed->common_definition (sym))
2929 return FALSE;
2930
2931 /* If the symbol is in a target specific section then we
2932 must rely upon the backend to tell us what it is. */
2933 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2934 /* FIXME - this function is not coded yet:
2935
2936 return _bfd_is_global_symbol_definition (abfd, sym);
2937
2938 Instead for now assume that the definition is not global,
2939 Even if this is wrong, at least the linker will behave
2940 in the same way that it used to do. */
2941 return FALSE;
2942
2943 return TRUE;
2944 }
2945
2946 /* Search the symbol table of the archive element of the archive ABFD
2947 whose archive map contains a mention of SYMDEF, and determine if
2948 the symbol is defined in this element. */
2949 static bfd_boolean
2950 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2951 {
2952 Elf_Internal_Shdr * hdr;
2953 bfd_size_type symcount;
2954 bfd_size_type extsymcount;
2955 bfd_size_type extsymoff;
2956 Elf_Internal_Sym *isymbuf;
2957 Elf_Internal_Sym *isym;
2958 Elf_Internal_Sym *isymend;
2959 bfd_boolean result;
2960
2961 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2962 if (abfd == NULL)
2963 return FALSE;
2964
2965 if (! bfd_check_format (abfd, bfd_object))
2966 return FALSE;
2967
2968 /* If we have already included the element containing this symbol in the
2969 link then we do not need to include it again. Just claim that any symbol
2970 it contains is not a definition, so that our caller will not decide to
2971 (re)include this element. */
2972 if (abfd->archive_pass)
2973 return FALSE;
2974
2975 /* Select the appropriate symbol table. */
2976 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2977 hdr = &elf_tdata (abfd)->symtab_hdr;
2978 else
2979 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2980
2981 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2982
2983 /* The sh_info field of the symtab header tells us where the
2984 external symbols start. We don't care about the local symbols. */
2985 if (elf_bad_symtab (abfd))
2986 {
2987 extsymcount = symcount;
2988 extsymoff = 0;
2989 }
2990 else
2991 {
2992 extsymcount = symcount - hdr->sh_info;
2993 extsymoff = hdr->sh_info;
2994 }
2995
2996 if (extsymcount == 0)
2997 return FALSE;
2998
2999 /* Read in the symbol table. */
3000 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3001 NULL, NULL, NULL);
3002 if (isymbuf == NULL)
3003 return FALSE;
3004
3005 /* Scan the symbol table looking for SYMDEF. */
3006 result = FALSE;
3007 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3008 {
3009 const char *name;
3010
3011 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3012 isym->st_name);
3013 if (name == NULL)
3014 break;
3015
3016 if (strcmp (name, symdef->name) == 0)
3017 {
3018 result = is_global_data_symbol_definition (abfd, isym);
3019 break;
3020 }
3021 }
3022
3023 free (isymbuf);
3024
3025 return result;
3026 }
3027 \f
3028 /* Add an entry to the .dynamic table. */
3029
3030 bfd_boolean
3031 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3032 bfd_vma tag,
3033 bfd_vma val)
3034 {
3035 struct elf_link_hash_table *hash_table;
3036 const struct elf_backend_data *bed;
3037 asection *s;
3038 bfd_size_type newsize;
3039 bfd_byte *newcontents;
3040 Elf_Internal_Dyn dyn;
3041
3042 hash_table = elf_hash_table (info);
3043 if (! is_elf_hash_table (hash_table))
3044 return FALSE;
3045
3046 bed = get_elf_backend_data (hash_table->dynobj);
3047 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3048 BFD_ASSERT (s != NULL);
3049
3050 newsize = s->size + bed->s->sizeof_dyn;
3051 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3052 if (newcontents == NULL)
3053 return FALSE;
3054
3055 dyn.d_tag = tag;
3056 dyn.d_un.d_val = val;
3057 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3058
3059 s->size = newsize;
3060 s->contents = newcontents;
3061
3062 return TRUE;
3063 }
3064
3065 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3066 otherwise just check whether one already exists. Returns -1 on error,
3067 1 if a DT_NEEDED tag already exists, and 0 on success. */
3068
3069 static int
3070 elf_add_dt_needed_tag (bfd *abfd,
3071 struct bfd_link_info *info,
3072 const char *soname,
3073 bfd_boolean do_it)
3074 {
3075 struct elf_link_hash_table *hash_table;
3076 bfd_size_type strindex;
3077
3078 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3079 return -1;
3080
3081 hash_table = elf_hash_table (info);
3082 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3083 if (strindex == (bfd_size_type) -1)
3084 return -1;
3085
3086 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3087 {
3088 asection *sdyn;
3089 const struct elf_backend_data *bed;
3090 bfd_byte *extdyn;
3091
3092 bed = get_elf_backend_data (hash_table->dynobj);
3093 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3094 if (sdyn != NULL)
3095 for (extdyn = sdyn->contents;
3096 extdyn < sdyn->contents + sdyn->size;
3097 extdyn += bed->s->sizeof_dyn)
3098 {
3099 Elf_Internal_Dyn dyn;
3100
3101 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3102 if (dyn.d_tag == DT_NEEDED
3103 && dyn.d_un.d_val == strindex)
3104 {
3105 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3106 return 1;
3107 }
3108 }
3109 }
3110
3111 if (do_it)
3112 {
3113 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3114 return -1;
3115
3116 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3117 return -1;
3118 }
3119 else
3120 /* We were just checking for existence of the tag. */
3121 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3122
3123 return 0;
3124 }
3125
3126 static bfd_boolean
3127 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3128 {
3129 for (; needed != NULL; needed = needed->next)
3130 if (strcmp (soname, needed->name) == 0)
3131 return TRUE;
3132
3133 return FALSE;
3134 }
3135
3136 /* Sort symbol by value, section, and size. */
3137 static int
3138 elf_sort_symbol (const void *arg1, const void *arg2)
3139 {
3140 const struct elf_link_hash_entry *h1;
3141 const struct elf_link_hash_entry *h2;
3142 bfd_signed_vma vdiff;
3143
3144 h1 = *(const struct elf_link_hash_entry **) arg1;
3145 h2 = *(const struct elf_link_hash_entry **) arg2;
3146 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3147 if (vdiff != 0)
3148 return vdiff > 0 ? 1 : -1;
3149 else
3150 {
3151 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3152 if (sdiff != 0)
3153 return sdiff > 0 ? 1 : -1;
3154 }
3155 vdiff = h1->size - h2->size;
3156 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3157 }
3158
3159 /* This function is used to adjust offsets into .dynstr for
3160 dynamic symbols. This is called via elf_link_hash_traverse. */
3161
3162 static bfd_boolean
3163 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3164 {
3165 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3166
3167 if (h->dynindx != -1)
3168 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3169 return TRUE;
3170 }
3171
3172 /* Assign string offsets in .dynstr, update all structures referencing
3173 them. */
3174
3175 static bfd_boolean
3176 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3177 {
3178 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3179 struct elf_link_local_dynamic_entry *entry;
3180 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3181 bfd *dynobj = hash_table->dynobj;
3182 asection *sdyn;
3183 bfd_size_type size;
3184 const struct elf_backend_data *bed;
3185 bfd_byte *extdyn;
3186
3187 _bfd_elf_strtab_finalize (dynstr);
3188 size = _bfd_elf_strtab_size (dynstr);
3189
3190 bed = get_elf_backend_data (dynobj);
3191 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3192 BFD_ASSERT (sdyn != NULL);
3193
3194 /* Update all .dynamic entries referencing .dynstr strings. */
3195 for (extdyn = sdyn->contents;
3196 extdyn < sdyn->contents + sdyn->size;
3197 extdyn += bed->s->sizeof_dyn)
3198 {
3199 Elf_Internal_Dyn dyn;
3200
3201 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3202 switch (dyn.d_tag)
3203 {
3204 case DT_STRSZ:
3205 dyn.d_un.d_val = size;
3206 break;
3207 case DT_NEEDED:
3208 case DT_SONAME:
3209 case DT_RPATH:
3210 case DT_RUNPATH:
3211 case DT_FILTER:
3212 case DT_AUXILIARY:
3213 case DT_AUDIT:
3214 case DT_DEPAUDIT:
3215 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3216 break;
3217 default:
3218 continue;
3219 }
3220 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3221 }
3222
3223 /* Now update local dynamic symbols. */
3224 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3225 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3226 entry->isym.st_name);
3227
3228 /* And the rest of dynamic symbols. */
3229 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3230
3231 /* Adjust version definitions. */
3232 if (elf_tdata (output_bfd)->cverdefs)
3233 {
3234 asection *s;
3235 bfd_byte *p;
3236 bfd_size_type i;
3237 Elf_Internal_Verdef def;
3238 Elf_Internal_Verdaux defaux;
3239
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3241 p = s->contents;
3242 do
3243 {
3244 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3245 &def);
3246 p += sizeof (Elf_External_Verdef);
3247 if (def.vd_aux != sizeof (Elf_External_Verdef))
3248 continue;
3249 for (i = 0; i < def.vd_cnt; ++i)
3250 {
3251 _bfd_elf_swap_verdaux_in (output_bfd,
3252 (Elf_External_Verdaux *) p, &defaux);
3253 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3254 defaux.vda_name);
3255 _bfd_elf_swap_verdaux_out (output_bfd,
3256 &defaux, (Elf_External_Verdaux *) p);
3257 p += sizeof (Elf_External_Verdaux);
3258 }
3259 }
3260 while (def.vd_next);
3261 }
3262
3263 /* Adjust version references. */
3264 if (elf_tdata (output_bfd)->verref)
3265 {
3266 asection *s;
3267 bfd_byte *p;
3268 bfd_size_type i;
3269 Elf_Internal_Verneed need;
3270 Elf_Internal_Vernaux needaux;
3271
3272 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3273 p = s->contents;
3274 do
3275 {
3276 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3277 &need);
3278 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3279 _bfd_elf_swap_verneed_out (output_bfd, &need,
3280 (Elf_External_Verneed *) p);
3281 p += sizeof (Elf_External_Verneed);
3282 for (i = 0; i < need.vn_cnt; ++i)
3283 {
3284 _bfd_elf_swap_vernaux_in (output_bfd,
3285 (Elf_External_Vernaux *) p, &needaux);
3286 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3287 needaux.vna_name);
3288 _bfd_elf_swap_vernaux_out (output_bfd,
3289 &needaux,
3290 (Elf_External_Vernaux *) p);
3291 p += sizeof (Elf_External_Vernaux);
3292 }
3293 }
3294 while (need.vn_next);
3295 }
3296
3297 return TRUE;
3298 }
3299 \f
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301 The default is to only match when the INPUT and OUTPUT are exactly
3302 the same target. */
3303
3304 bfd_boolean
3305 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3306 const bfd_target *output)
3307 {
3308 return input == output;
3309 }
3310
3311 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3312 This version is used when different targets for the same architecture
3313 are virtually identical. */
3314
3315 bfd_boolean
3316 _bfd_elf_relocs_compatible (const bfd_target *input,
3317 const bfd_target *output)
3318 {
3319 const struct elf_backend_data *obed, *ibed;
3320
3321 if (input == output)
3322 return TRUE;
3323
3324 ibed = xvec_get_elf_backend_data (input);
3325 obed = xvec_get_elf_backend_data (output);
3326
3327 if (ibed->arch != obed->arch)
3328 return FALSE;
3329
3330 /* If both backends are using this function, deem them compatible. */
3331 return ibed->relocs_compatible == obed->relocs_compatible;
3332 }
3333
3334 /* Add symbols from an ELF object file to the linker hash table. */
3335
3336 static bfd_boolean
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 Elf_Internal_Ehdr *ehdr;
3340 Elf_Internal_Shdr *hdr;
3341 bfd_size_type symcount;
3342 bfd_size_type extsymcount;
3343 bfd_size_type extsymoff;
3344 struct elf_link_hash_entry **sym_hash;
3345 bfd_boolean dynamic;
3346 Elf_External_Versym *extversym = NULL;
3347 Elf_External_Versym *ever;
3348 struct elf_link_hash_entry *weaks;
3349 struct elf_link_hash_entry **nondeflt_vers = NULL;
3350 bfd_size_type nondeflt_vers_cnt = 0;
3351 Elf_Internal_Sym *isymbuf = NULL;
3352 Elf_Internal_Sym *isym;
3353 Elf_Internal_Sym *isymend;
3354 const struct elf_backend_data *bed;
3355 bfd_boolean add_needed;
3356 struct elf_link_hash_table *htab;
3357 bfd_size_type amt;
3358 void *alloc_mark = NULL;
3359 struct bfd_hash_entry **old_table = NULL;
3360 unsigned int old_size = 0;
3361 unsigned int old_count = 0;
3362 void *old_tab = NULL;
3363 void *old_hash;
3364 void *old_ent;
3365 struct bfd_link_hash_entry *old_undefs = NULL;
3366 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3367 long old_dynsymcount = 0;
3368 bfd_size_type old_dynstr_size = 0;
3369 size_t tabsize = 0;
3370 size_t hashsize = 0;
3371
3372 htab = elf_hash_table (info);
3373 bed = get_elf_backend_data (abfd);
3374
3375 if ((abfd->flags & DYNAMIC) == 0)
3376 dynamic = FALSE;
3377 else
3378 {
3379 dynamic = TRUE;
3380
3381 /* You can't use -r against a dynamic object. Also, there's no
3382 hope of using a dynamic object which does not exactly match
3383 the format of the output file. */
3384 if (info->relocatable
3385 || !is_elf_hash_table (htab)
3386 || info->output_bfd->xvec != abfd->xvec)
3387 {
3388 if (info->relocatable)
3389 bfd_set_error (bfd_error_invalid_operation);
3390 else
3391 bfd_set_error (bfd_error_wrong_format);
3392 goto error_return;
3393 }
3394 }
3395
3396 ehdr = elf_elfheader (abfd);
3397 if (info->warn_alternate_em
3398 && bed->elf_machine_code != ehdr->e_machine
3399 && ((bed->elf_machine_alt1 != 0
3400 && ehdr->e_machine == bed->elf_machine_alt1)
3401 || (bed->elf_machine_alt2 != 0
3402 && ehdr->e_machine == bed->elf_machine_alt2)))
3403 info->callbacks->einfo
3404 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3405 ehdr->e_machine, abfd, bed->elf_machine_code);
3406
3407 /* As a GNU extension, any input sections which are named
3408 .gnu.warning.SYMBOL are treated as warning symbols for the given
3409 symbol. This differs from .gnu.warning sections, which generate
3410 warnings when they are included in an output file. */
3411 /* PR 12761: Also generate this warning when building shared libraries. */
3412 if (info->executable || info->shared)
3413 {
3414 asection *s;
3415
3416 for (s = abfd->sections; s != NULL; s = s->next)
3417 {
3418 const char *name;
3419
3420 name = bfd_get_section_name (abfd, s);
3421 if (CONST_STRNEQ (name, ".gnu.warning."))
3422 {
3423 char *msg;
3424 bfd_size_type sz;
3425
3426 name += sizeof ".gnu.warning." - 1;
3427
3428 /* If this is a shared object, then look up the symbol
3429 in the hash table. If it is there, and it is already
3430 been defined, then we will not be using the entry
3431 from this shared object, so we don't need to warn.
3432 FIXME: If we see the definition in a regular object
3433 later on, we will warn, but we shouldn't. The only
3434 fix is to keep track of what warnings we are supposed
3435 to emit, and then handle them all at the end of the
3436 link. */
3437 if (dynamic)
3438 {
3439 struct elf_link_hash_entry *h;
3440
3441 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3442
3443 /* FIXME: What about bfd_link_hash_common? */
3444 if (h != NULL
3445 && (h->root.type == bfd_link_hash_defined
3446 || h->root.type == bfd_link_hash_defweak))
3447 {
3448 /* We don't want to issue this warning. Clobber
3449 the section size so that the warning does not
3450 get copied into the output file. */
3451 s->size = 0;
3452 continue;
3453 }
3454 }
3455
3456 sz = s->size;
3457 msg = (char *) bfd_alloc (abfd, sz + 1);
3458 if (msg == NULL)
3459 goto error_return;
3460
3461 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3462 goto error_return;
3463
3464 msg[sz] = '\0';
3465
3466 if (! (_bfd_generic_link_add_one_symbol
3467 (info, abfd, name, BSF_WARNING, s, 0, msg,
3468 FALSE, bed->collect, NULL)))
3469 goto error_return;
3470
3471 if (! info->relocatable)
3472 {
3473 /* Clobber the section size so that the warning does
3474 not get copied into the output file. */
3475 s->size = 0;
3476
3477 /* Also set SEC_EXCLUDE, so that symbols defined in
3478 the warning section don't get copied to the output. */
3479 s->flags |= SEC_EXCLUDE;
3480 }
3481 }
3482 }
3483 }
3484
3485 add_needed = TRUE;
3486 if (! dynamic)
3487 {
3488 /* If we are creating a shared library, create all the dynamic
3489 sections immediately. We need to attach them to something,
3490 so we attach them to this BFD, provided it is the right
3491 format. FIXME: If there are no input BFD's of the same
3492 format as the output, we can't make a shared library. */
3493 if (info->shared
3494 && is_elf_hash_table (htab)
3495 && info->output_bfd->xvec == abfd->xvec
3496 && !htab->dynamic_sections_created)
3497 {
3498 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3499 goto error_return;
3500 }
3501 }
3502 else if (!is_elf_hash_table (htab))
3503 goto error_return;
3504 else
3505 {
3506 asection *s;
3507 const char *soname = NULL;
3508 char *audit = NULL;
3509 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3510 int ret;
3511
3512 /* ld --just-symbols and dynamic objects don't mix very well.
3513 ld shouldn't allow it. */
3514 if ((s = abfd->sections) != NULL
3515 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3516 abort ();
3517
3518 /* If this dynamic lib was specified on the command line with
3519 --as-needed in effect, then we don't want to add a DT_NEEDED
3520 tag unless the lib is actually used. Similary for libs brought
3521 in by another lib's DT_NEEDED. When --no-add-needed is used
3522 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3523 any dynamic library in DT_NEEDED tags in the dynamic lib at
3524 all. */
3525 add_needed = (elf_dyn_lib_class (abfd)
3526 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3527 | DYN_NO_NEEDED)) == 0;
3528
3529 s = bfd_get_section_by_name (abfd, ".dynamic");
3530 if (s != NULL)
3531 {
3532 bfd_byte *dynbuf;
3533 bfd_byte *extdyn;
3534 unsigned int elfsec;
3535 unsigned long shlink;
3536
3537 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3538 {
3539 error_free_dyn:
3540 free (dynbuf);
3541 goto error_return;
3542 }
3543
3544 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3545 if (elfsec == SHN_BAD)
3546 goto error_free_dyn;
3547 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3548
3549 for (extdyn = dynbuf;
3550 extdyn < dynbuf + s->size;
3551 extdyn += bed->s->sizeof_dyn)
3552 {
3553 Elf_Internal_Dyn dyn;
3554
3555 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3556 if (dyn.d_tag == DT_SONAME)
3557 {
3558 unsigned int tagv = dyn.d_un.d_val;
3559 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 if (soname == NULL)
3561 goto error_free_dyn;
3562 }
3563 if (dyn.d_tag == DT_NEEDED)
3564 {
3565 struct bfd_link_needed_list *n, **pn;
3566 char *fnm, *anm;
3567 unsigned int tagv = dyn.d_un.d_val;
3568
3569 amt = sizeof (struct bfd_link_needed_list);
3570 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3571 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3572 if (n == NULL || fnm == NULL)
3573 goto error_free_dyn;
3574 amt = strlen (fnm) + 1;
3575 anm = (char *) bfd_alloc (abfd, amt);
3576 if (anm == NULL)
3577 goto error_free_dyn;
3578 memcpy (anm, fnm, amt);
3579 n->name = anm;
3580 n->by = abfd;
3581 n->next = NULL;
3582 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3583 ;
3584 *pn = n;
3585 }
3586 if (dyn.d_tag == DT_RUNPATH)
3587 {
3588 struct bfd_link_needed_list *n, **pn;
3589 char *fnm, *anm;
3590 unsigned int tagv = dyn.d_un.d_val;
3591
3592 amt = sizeof (struct bfd_link_needed_list);
3593 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 if (n == NULL || fnm == NULL)
3596 goto error_free_dyn;
3597 amt = strlen (fnm) + 1;
3598 anm = (char *) bfd_alloc (abfd, amt);
3599 if (anm == NULL)
3600 goto error_free_dyn;
3601 memcpy (anm, fnm, amt);
3602 n->name = anm;
3603 n->by = abfd;
3604 n->next = NULL;
3605 for (pn = & runpath;
3606 *pn != NULL;
3607 pn = &(*pn)->next)
3608 ;
3609 *pn = n;
3610 }
3611 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3612 if (!runpath && dyn.d_tag == DT_RPATH)
3613 {
3614 struct bfd_link_needed_list *n, **pn;
3615 char *fnm, *anm;
3616 unsigned int tagv = dyn.d_un.d_val;
3617
3618 amt = sizeof (struct bfd_link_needed_list);
3619 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3620 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3621 if (n == NULL || fnm == NULL)
3622 goto error_free_dyn;
3623 amt = strlen (fnm) + 1;
3624 anm = (char *) bfd_alloc (abfd, amt);
3625 if (anm == NULL)
3626 goto error_free_dyn;
3627 memcpy (anm, fnm, amt);
3628 n->name = anm;
3629 n->by = abfd;
3630 n->next = NULL;
3631 for (pn = & rpath;
3632 *pn != NULL;
3633 pn = &(*pn)->next)
3634 ;
3635 *pn = n;
3636 }
3637 if (dyn.d_tag == DT_AUDIT)
3638 {
3639 unsigned int tagv = dyn.d_un.d_val;
3640 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 }
3642 }
3643
3644 free (dynbuf);
3645 }
3646
3647 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3648 frees all more recently bfd_alloc'd blocks as well. */
3649 if (runpath)
3650 rpath = runpath;
3651
3652 if (rpath)
3653 {
3654 struct bfd_link_needed_list **pn;
3655 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3656 ;
3657 *pn = rpath;
3658 }
3659
3660 /* We do not want to include any of the sections in a dynamic
3661 object in the output file. We hack by simply clobbering the
3662 list of sections in the BFD. This could be handled more
3663 cleanly by, say, a new section flag; the existing
3664 SEC_NEVER_LOAD flag is not the one we want, because that one
3665 still implies that the section takes up space in the output
3666 file. */
3667 bfd_section_list_clear (abfd);
3668
3669 /* Find the name to use in a DT_NEEDED entry that refers to this
3670 object. If the object has a DT_SONAME entry, we use it.
3671 Otherwise, if the generic linker stuck something in
3672 elf_dt_name, we use that. Otherwise, we just use the file
3673 name. */
3674 if (soname == NULL || *soname == '\0')
3675 {
3676 soname = elf_dt_name (abfd);
3677 if (soname == NULL || *soname == '\0')
3678 soname = bfd_get_filename (abfd);
3679 }
3680
3681 /* Save the SONAME because sometimes the linker emulation code
3682 will need to know it. */
3683 elf_dt_name (abfd) = soname;
3684
3685 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3686 if (ret < 0)
3687 goto error_return;
3688
3689 /* If we have already included this dynamic object in the
3690 link, just ignore it. There is no reason to include a
3691 particular dynamic object more than once. */
3692 if (ret > 0)
3693 return TRUE;
3694
3695 /* Save the DT_AUDIT entry for the linker emulation code. */
3696 elf_dt_audit (abfd) = audit;
3697 }
3698
3699 /* If this is a dynamic object, we always link against the .dynsym
3700 symbol table, not the .symtab symbol table. The dynamic linker
3701 will only see the .dynsym symbol table, so there is no reason to
3702 look at .symtab for a dynamic object. */
3703
3704 if (! dynamic || elf_dynsymtab (abfd) == 0)
3705 hdr = &elf_tdata (abfd)->symtab_hdr;
3706 else
3707 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3708
3709 symcount = hdr->sh_size / bed->s->sizeof_sym;
3710
3711 /* The sh_info field of the symtab header tells us where the
3712 external symbols start. We don't care about the local symbols at
3713 this point. */
3714 if (elf_bad_symtab (abfd))
3715 {
3716 extsymcount = symcount;
3717 extsymoff = 0;
3718 }
3719 else
3720 {
3721 extsymcount = symcount - hdr->sh_info;
3722 extsymoff = hdr->sh_info;
3723 }
3724
3725 sym_hash = NULL;
3726 if (extsymcount != 0)
3727 {
3728 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3729 NULL, NULL, NULL);
3730 if (isymbuf == NULL)
3731 goto error_return;
3732
3733 /* We store a pointer to the hash table entry for each external
3734 symbol. */
3735 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3736 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3737 if (sym_hash == NULL)
3738 goto error_free_sym;
3739 elf_sym_hashes (abfd) = sym_hash;
3740 }
3741
3742 if (dynamic)
3743 {
3744 /* Read in any version definitions. */
3745 if (!_bfd_elf_slurp_version_tables (abfd,
3746 info->default_imported_symver))
3747 goto error_free_sym;
3748
3749 /* Read in the symbol versions, but don't bother to convert them
3750 to internal format. */
3751 if (elf_dynversym (abfd) != 0)
3752 {
3753 Elf_Internal_Shdr *versymhdr;
3754
3755 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3756 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3757 if (extversym == NULL)
3758 goto error_free_sym;
3759 amt = versymhdr->sh_size;
3760 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3761 || bfd_bread (extversym, amt, abfd) != amt)
3762 goto error_free_vers;
3763 }
3764 }
3765
3766 /* If we are loading an as-needed shared lib, save the symbol table
3767 state before we start adding symbols. If the lib turns out
3768 to be unneeded, restore the state. */
3769 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3770 {
3771 unsigned int i;
3772 size_t entsize;
3773
3774 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3775 {
3776 struct bfd_hash_entry *p;
3777 struct elf_link_hash_entry *h;
3778
3779 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3780 {
3781 h = (struct elf_link_hash_entry *) p;
3782 entsize += htab->root.table.entsize;
3783 if (h->root.type == bfd_link_hash_warning)
3784 entsize += htab->root.table.entsize;
3785 }
3786 }
3787
3788 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3789 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3790 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3791 if (old_tab == NULL)
3792 goto error_free_vers;
3793
3794 /* Remember the current objalloc pointer, so that all mem for
3795 symbols added can later be reclaimed. */
3796 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3797 if (alloc_mark == NULL)
3798 goto error_free_vers;
3799
3800 /* Make a special call to the linker "notice" function to
3801 tell it that we are about to handle an as-needed lib. */
3802 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3803 notice_as_needed, 0, NULL))
3804 goto error_free_vers;
3805
3806 /* Clone the symbol table and sym hashes. Remember some
3807 pointers into the symbol table, and dynamic symbol count. */
3808 old_hash = (char *) old_tab + tabsize;
3809 old_ent = (char *) old_hash + hashsize;
3810 memcpy (old_tab, htab->root.table.table, tabsize);
3811 memcpy (old_hash, sym_hash, hashsize);
3812 old_undefs = htab->root.undefs;
3813 old_undefs_tail = htab->root.undefs_tail;
3814 old_table = htab->root.table.table;
3815 old_size = htab->root.table.size;
3816 old_count = htab->root.table.count;
3817 old_dynsymcount = htab->dynsymcount;
3818 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3819
3820 for (i = 0; i < htab->root.table.size; i++)
3821 {
3822 struct bfd_hash_entry *p;
3823 struct elf_link_hash_entry *h;
3824
3825 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3826 {
3827 memcpy (old_ent, p, htab->root.table.entsize);
3828 old_ent = (char *) old_ent + htab->root.table.entsize;
3829 h = (struct elf_link_hash_entry *) p;
3830 if (h->root.type == bfd_link_hash_warning)
3831 {
3832 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 }
3835 }
3836 }
3837 }
3838
3839 weaks = NULL;
3840 ever = extversym != NULL ? extversym + extsymoff : NULL;
3841 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3842 isym < isymend;
3843 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3844 {
3845 int bind;
3846 bfd_vma value;
3847 asection *sec, *new_sec;
3848 flagword flags;
3849 const char *name;
3850 struct elf_link_hash_entry *h;
3851 struct elf_link_hash_entry *hi;
3852 bfd_boolean definition;
3853 bfd_boolean size_change_ok;
3854 bfd_boolean type_change_ok;
3855 bfd_boolean new_weakdef;
3856 bfd_boolean new_weak;
3857 bfd_boolean old_weak;
3858 bfd_boolean override;
3859 bfd_boolean common;
3860 unsigned int old_alignment;
3861 bfd *old_bfd;
3862 bfd * undef_bfd = NULL;
3863
3864 override = FALSE;
3865
3866 flags = BSF_NO_FLAGS;
3867 sec = NULL;
3868 value = isym->st_value;
3869 *sym_hash = NULL;
3870 common = bed->common_definition (isym);
3871
3872 bind = ELF_ST_BIND (isym->st_info);
3873 switch (bind)
3874 {
3875 case STB_LOCAL:
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3879 screws this up. */
3880 continue;
3881
3882 case STB_GLOBAL:
3883 if (isym->st_shndx != SHN_UNDEF && !common)
3884 flags = BSF_GLOBAL;
3885 break;
3886
3887 case STB_WEAK:
3888 flags = BSF_WEAK;
3889 break;
3890
3891 case STB_GNU_UNIQUE:
3892 flags = BSF_GNU_UNIQUE;
3893 break;
3894
3895 default:
3896 /* Leave it up to the processor backend. */
3897 break;
3898 }
3899
3900 if (isym->st_shndx == SHN_UNDEF)
3901 sec = bfd_und_section_ptr;
3902 else if (isym->st_shndx == SHN_ABS)
3903 sec = bfd_abs_section_ptr;
3904 else if (isym->st_shndx == SHN_COMMON)
3905 {
3906 sec = bfd_com_section_ptr;
3907 /* What ELF calls the size we call the value. What ELF
3908 calls the value we call the alignment. */
3909 value = isym->st_size;
3910 }
3911 else
3912 {
3913 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3914 if (sec == NULL)
3915 sec = bfd_abs_section_ptr;
3916 else if (discarded_section (sec))
3917 {
3918 /* Symbols from discarded section are undefined. We keep
3919 its visibility. */
3920 sec = bfd_und_section_ptr;
3921 isym->st_shndx = SHN_UNDEF;
3922 }
3923 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3924 value -= sec->vma;
3925 }
3926
3927 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3928 isym->st_name);
3929 if (name == NULL)
3930 goto error_free_vers;
3931
3932 if (isym->st_shndx == SHN_COMMON
3933 && (abfd->flags & BFD_PLUGIN) != 0)
3934 {
3935 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3936
3937 if (xc == NULL)
3938 {
3939 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3940 | SEC_EXCLUDE);
3941 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3942 if (xc == NULL)
3943 goto error_free_vers;
3944 }
3945 sec = xc;
3946 }
3947 else if (isym->st_shndx == SHN_COMMON
3948 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && !info->relocatable)
3950 {
3951 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952
3953 if (tcomm == NULL)
3954 {
3955 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3956 | SEC_LINKER_CREATED);
3957 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3958 if (tcomm == NULL)
3959 goto error_free_vers;
3960 }
3961 sec = tcomm;
3962 }
3963 else if (bed->elf_add_symbol_hook)
3964 {
3965 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3966 &sec, &value))
3967 goto error_free_vers;
3968
3969 /* The hook function sets the name to NULL if this symbol
3970 should be skipped for some reason. */
3971 if (name == NULL)
3972 continue;
3973 }
3974
3975 /* Sanity check that all possibilities were handled. */
3976 if (sec == NULL)
3977 {
3978 bfd_set_error (bfd_error_bad_value);
3979 goto error_free_vers;
3980 }
3981
3982 if (bfd_is_und_section (sec)
3983 || bfd_is_com_section (sec))
3984 definition = FALSE;
3985 else
3986 definition = TRUE;
3987
3988 size_change_ok = FALSE;
3989 type_change_ok = bed->type_change_ok;
3990 old_weak = FALSE;
3991 old_alignment = 0;
3992 old_bfd = NULL;
3993 new_sec = sec;
3994
3995 if (is_elf_hash_table (htab))
3996 {
3997 Elf_Internal_Versym iver;
3998 unsigned int vernum = 0;
3999 bfd_boolean skip;
4000
4001 /* If this is a definition of a symbol which was previously
4002 referenced, then make a note of the bfd that contained the
4003 reference. This is used if we need to refer to the source
4004 of the reference later on. */
4005 if (! bfd_is_und_section (sec))
4006 {
4007 h = elf_link_hash_lookup (elf_hash_table (info), name,
4008 FALSE, FALSE, FALSE);
4009
4010 if (h != NULL
4011 && (h->root.type == bfd_link_hash_undefined
4012 || h->root.type == bfd_link_hash_undefweak)
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4015 }
4016
4017 if (ever == NULL)
4018 {
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4024 }
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4029
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4039 {
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4043
4044 if (isym->st_shndx != SHN_UNDEF)
4045 {
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4053
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064 else
4065 {
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4071
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4076 {
4077 Elf_Internal_Vernaux *a;
4078
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 {
4081 if (a->vna_other == vernum)
4082 {
4083 verstr = a->vna_nodename;
4084 break;
4085 }
4086 }
4087 if (a != NULL)
4088 break;
4089 }
4090 if (verstr == NULL)
4091 {
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4097 }
4098 }
4099
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4106
4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4120
4121 name = newname;
4122 }
4123
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved reference to the current symbol. */
4126 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 {
4128 h = elf_link_hash_lookup (elf_hash_table (info), name,
4129 FALSE, FALSE, FALSE);
4130
4131 if (h != NULL
4132 && (h->root.type == bfd_link_hash_undefined
4133 || h->root.type == bfd_link_hash_undefweak)
4134 && h->root.u.undef.abfd)
4135 undef_bfd = h->root.u.undef.abfd;
4136 }
4137
4138 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 &value, &old_weak, &old_alignment,
4140 sym_hash, &skip, &override,
4141 &type_change_ok, &size_change_ok))
4142 goto error_free_vers;
4143
4144 if (skip)
4145 continue;
4146
4147 if (override)
4148 definition = FALSE;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 /* Remember the old alignment if this is a common symbol, so
4156 that we don't reduce the alignment later on. We can't
4157 check later, because _bfd_generic_link_add_one_symbol
4158 will set a default for the alignment which we want to
4159 override. We also remember the old bfd where the existing
4160 definition comes from. */
4161 switch (h->root.type)
4162 {
4163 default:
4164 break;
4165
4166 case bfd_link_hash_defined:
4167 case bfd_link_hash_defweak:
4168 old_bfd = h->root.u.def.section->owner;
4169 break;
4170
4171 case bfd_link_hash_common:
4172 old_bfd = h->root.u.c.p->section->owner;
4173 old_alignment = h->root.u.c.p->alignment_power;
4174 break;
4175 }
4176
4177 if (elf_tdata (abfd)->verdef != NULL
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 /* We need to make sure that indirect symbol dynamic flags are
4190 updated. */
4191 hi = h;
4192 while (h->root.type == bfd_link_hash_indirect
4193 || h->root.type == bfd_link_hash_warning)
4194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195
4196 *sym_hash = h;
4197
4198 new_weak = (flags & BSF_WEAK) != 0;
4199 new_weakdef = FALSE;
4200 if (dynamic
4201 && definition
4202 && new_weak
4203 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4204 && is_elf_hash_table (htab)
4205 && h->u.weakdef == NULL)
4206 {
4207 /* Keep a list of all weak defined non function symbols from
4208 a dynamic object, using the weakdef field. Later in this
4209 function we will set the weakdef field to the correct
4210 value. We only put non-function symbols from dynamic
4211 objects on this list, because that happens to be the only
4212 time we need to know the normal symbol corresponding to a
4213 weak symbol, and the information is time consuming to
4214 figure out. If the weakdef field is not already NULL,
4215 then this symbol was already defined by some previous
4216 dynamic object, and we will be using that previous
4217 definition anyhow. */
4218
4219 h->u.weakdef = weaks;
4220 weaks = h;
4221 new_weakdef = TRUE;
4222 }
4223
4224 /* Set the alignment of a common symbol. */
4225 if ((common || bfd_is_com_section (sec))
4226 && h->root.type == bfd_link_hash_common)
4227 {
4228 unsigned int align;
4229
4230 if (common)
4231 align = bfd_log2 (isym->st_value);
4232 else
4233 {
4234 /* The new symbol is a common symbol in a shared object.
4235 We need to get the alignment from the section. */
4236 align = new_sec->alignment_power;
4237 }
4238 if (align > old_alignment)
4239 h->root.u.c.p->alignment_power = align;
4240 else
4241 h->root.u.c.p->alignment_power = old_alignment;
4242 }
4243
4244 if (is_elf_hash_table (htab))
4245 {
4246 bfd_boolean dynsym;
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 symbol_align = ffs (h->root.u.def.value) - 1;
4263 if (h->root.u.def.section->owner != NULL
4264 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 {
4266 normal_align = h->root.u.def.section->alignment_power;
4267 if (normal_align > symbol_align)
4268 normal_align = symbol_align;
4269 }
4270 else
4271 normal_align = symbol_align;
4272
4273 if (old_alignment)
4274 {
4275 common_align = old_alignment;
4276 common_bfd = old_bfd;
4277 normal_bfd = abfd;
4278 }
4279 else
4280 {
4281 common_align = bfd_log2 (isym->st_value);
4282 common_bfd = abfd;
4283 normal_bfd = old_bfd;
4284 }
4285
4286 if (normal_align < common_align)
4287 {
4288 /* PR binutils/2735 */
4289 if (normal_bfd == NULL)
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of common symbol `%s' in %B"
4292 " is greater than the alignment (%u) of its section %A"),
4293 common_bfd, h->root.u.def.section,
4294 1 << common_align, name, 1 << normal_align);
4295 else
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of symbol `%s' in %B"
4298 " is smaller than %u in %B"),
4299 normal_bfd, common_bfd,
4300 1 << normal_align, name, 1 << common_align);
4301 }
4302 }
4303
4304 /* Remember the symbol size if it isn't undefined. */
4305 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4306 && (definition || h->size == 0))
4307 {
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changed between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && ((definition && !new_weak)
4332 || (old_weak && h->root.type == bfd_link_hash_common)
4333 || h->type == STT_NOTYPE))
4334 {
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 symbol. */
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4341 type = STT_FUNC;
4342
4343 if (h->type != type)
4344 {
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4350
4351 h->type = type;
4352 }
4353 }
4354
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357
4358 /* Set a flag in the hash table entry indicating the type of
4359 reference or definition we just found. Keep a count of
4360 the number of dynamic symbols we find. A dynamic symbol
4361 is one which is referenced or defined by both a regular
4362 object and a shared object. */
4363 dynsym = FALSE;
4364 if (! dynamic)
4365 {
4366 if (! definition)
4367 {
4368 h->ref_regular = 1;
4369 if (bind != STB_WEAK)
4370 h->ref_regular_nonweak = 1;
4371 }
4372 else
4373 {
4374 h->def_regular = 1;
4375 if (h->def_dynamic)
4376 {
4377 h->def_dynamic = 0;
4378 h->ref_dynamic = 1;
4379 }
4380 }
4381
4382 /* If the indirect symbol has been forced local, don't
4383 make the real symbol dynamic. */
4384 if ((h == hi || !hi->forced_local)
4385 && (! info->executable
4386 || h->def_dynamic
4387 || h->ref_dynamic))
4388 dynsym = TRUE;
4389 }
4390 else
4391 {
4392 if (! definition)
4393 {
4394 h->ref_dynamic = 1;
4395 hi->ref_dynamic = 1;
4396 }
4397 else
4398 {
4399 h->def_dynamic = 1;
4400 hi->def_dynamic = 1;
4401 }
4402
4403 /* If the indirect symbol has been forced local, don't
4404 make the real symbol dynamic. */
4405 if ((h == hi || !hi->forced_local)
4406 && (h->def_regular
4407 || h->ref_regular
4408 || (h->u.weakdef != NULL
4409 && ! new_weakdef
4410 && h->u.weakdef->dynindx != -1)))
4411 dynsym = TRUE;
4412 }
4413
4414 /* We don't want to make debug symbol dynamic. */
4415 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4416 dynsym = FALSE;
4417
4418 /* Nor should we make plugin symbols dynamic. */
4419 if ((abfd->flags & BFD_PLUGIN) != 0)
4420 dynsym = FALSE;
4421
4422 if (definition)
4423 {
4424 h->target_internal = isym->st_target_internal;
4425 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4426 }
4427
4428 /* Check to see if we need to add an indirect symbol for
4429 the default name. */
4430 if (definition || h->root.type == bfd_link_hash_common)
4431 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4432 &sec, &value, &dynsym,
4433 override))
4434 goto error_free_vers;
4435
4436 if (definition && !dynamic)
4437 {
4438 char *p = strchr (name, ELF_VER_CHR);
4439 if (p != NULL && p[1] != ELF_VER_CHR)
4440 {
4441 /* Queue non-default versions so that .symver x, x@FOO
4442 aliases can be checked. */
4443 if (!nondeflt_vers)
4444 {
4445 amt = ((isymend - isym + 1)
4446 * sizeof (struct elf_link_hash_entry *));
4447 nondeflt_vers =
4448 (struct elf_link_hash_entry **) bfd_malloc (amt);
4449 if (!nondeflt_vers)
4450 goto error_free_vers;
4451 }
4452 nondeflt_vers[nondeflt_vers_cnt++] = h;
4453 }
4454 }
4455
4456 if (dynsym && h->dynindx == -1)
4457 {
4458 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4459 goto error_free_vers;
4460 if (h->u.weakdef != NULL
4461 && ! new_weakdef
4462 && h->u.weakdef->dynindx == -1)
4463 {
4464 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4465 goto error_free_vers;
4466 }
4467 }
4468 else if (dynsym && h->dynindx != -1)
4469 /* If the symbol already has a dynamic index, but
4470 visibility says it should not be visible, turn it into
4471 a local symbol. */
4472 switch (ELF_ST_VISIBILITY (h->other))
4473 {
4474 case STV_INTERNAL:
4475 case STV_HIDDEN:
4476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4477 dynsym = FALSE;
4478 break;
4479 }
4480
4481 /* Don't add DT_NEEDED for references from the dummy bfd. */
4482 if (!add_needed
4483 && definition
4484 && ((dynsym
4485 && h->ref_regular
4486 && (undef_bfd == NULL
4487 || (undef_bfd->flags & BFD_PLUGIN) == 0))
4488 || (h->ref_dynamic
4489 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4490 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4491 {
4492 int ret;
4493 const char *soname = elf_dt_name (abfd);
4494
4495 /* A symbol from a library loaded via DT_NEEDED of some
4496 other library is referenced by a regular object.
4497 Add a DT_NEEDED entry for it. Issue an error if
4498 --no-add-needed is used and the reference was not
4499 a weak one. */
4500 if (undef_bfd != NULL
4501 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4502 {
4503 (*_bfd_error_handler)
4504 (_("%B: undefined reference to symbol '%s'"),
4505 undef_bfd, name);
4506 (*_bfd_error_handler)
4507 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4508 abfd, name);
4509 bfd_set_error (bfd_error_invalid_operation);
4510 goto error_free_vers;
4511 }
4512
4513 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4514 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4515
4516 add_needed = TRUE;
4517 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4518 if (ret < 0)
4519 goto error_free_vers;
4520
4521 BFD_ASSERT (ret == 0);
4522 }
4523 }
4524 }
4525
4526 if (extversym != NULL)
4527 {
4528 free (extversym);
4529 extversym = NULL;
4530 }
4531
4532 if (isymbuf != NULL)
4533 {
4534 free (isymbuf);
4535 isymbuf = NULL;
4536 }
4537
4538 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4539 {
4540 unsigned int i;
4541
4542 /* Restore the symbol table. */
4543 if (bed->as_needed_cleanup)
4544 (*bed->as_needed_cleanup) (abfd, info);
4545 old_hash = (char *) old_tab + tabsize;
4546 old_ent = (char *) old_hash + hashsize;
4547 sym_hash = elf_sym_hashes (abfd);
4548 htab->root.table.table = old_table;
4549 htab->root.table.size = old_size;
4550 htab->root.table.count = old_count;
4551 memcpy (htab->root.table.table, old_tab, tabsize);
4552 memcpy (sym_hash, old_hash, hashsize);
4553 htab->root.undefs = old_undefs;
4554 htab->root.undefs_tail = old_undefs_tail;
4555 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4556 for (i = 0; i < htab->root.table.size; i++)
4557 {
4558 struct bfd_hash_entry *p;
4559 struct elf_link_hash_entry *h;
4560 bfd_size_type size;
4561 unsigned int alignment_power;
4562
4563 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4564 {
4565 h = (struct elf_link_hash_entry *) p;
4566 if (h->root.type == bfd_link_hash_warning)
4567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4568 if (h->dynindx >= old_dynsymcount
4569 && h->dynstr_index < old_dynstr_size)
4570 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4571
4572 /* Preserve the maximum alignment and size for common
4573 symbols even if this dynamic lib isn't on DT_NEEDED
4574 since it can still be loaded at run time by another
4575 dynamic lib. */
4576 if (h->root.type == bfd_link_hash_common)
4577 {
4578 size = h->root.u.c.size;
4579 alignment_power = h->root.u.c.p->alignment_power;
4580 }
4581 else
4582 {
4583 size = 0;
4584 alignment_power = 0;
4585 }
4586 memcpy (p, old_ent, htab->root.table.entsize);
4587 old_ent = (char *) old_ent + htab->root.table.entsize;
4588 h = (struct elf_link_hash_entry *) p;
4589 if (h->root.type == bfd_link_hash_warning)
4590 {
4591 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4592 old_ent = (char *) old_ent + htab->root.table.entsize;
4593 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4594 }
4595 if (h->root.type == bfd_link_hash_common)
4596 {
4597 if (size > h->root.u.c.size)
4598 h->root.u.c.size = size;
4599 if (alignment_power > h->root.u.c.p->alignment_power)
4600 h->root.u.c.p->alignment_power = alignment_power;
4601 }
4602 }
4603 }
4604
4605 /* Make a special call to the linker "notice" function to
4606 tell it that symbols added for crefs may need to be removed. */
4607 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4608 notice_not_needed, 0, NULL))
4609 goto error_free_vers;
4610
4611 free (old_tab);
4612 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4613 alloc_mark);
4614 if (nondeflt_vers != NULL)
4615 free (nondeflt_vers);
4616 return TRUE;
4617 }
4618
4619 if (old_tab != NULL)
4620 {
4621 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4622 notice_needed, 0, NULL))
4623 goto error_free_vers;
4624 free (old_tab);
4625 old_tab = NULL;
4626 }
4627
4628 /* Now that all the symbols from this input file are created, handle
4629 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4630 if (nondeflt_vers != NULL)
4631 {
4632 bfd_size_type cnt, symidx;
4633
4634 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4635 {
4636 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4637 char *shortname, *p;
4638
4639 p = strchr (h->root.root.string, ELF_VER_CHR);
4640 if (p == NULL
4641 || (h->root.type != bfd_link_hash_defined
4642 && h->root.type != bfd_link_hash_defweak))
4643 continue;
4644
4645 amt = p - h->root.root.string;
4646 shortname = (char *) bfd_malloc (amt + 1);
4647 if (!shortname)
4648 goto error_free_vers;
4649 memcpy (shortname, h->root.root.string, amt);
4650 shortname[amt] = '\0';
4651
4652 hi = (struct elf_link_hash_entry *)
4653 bfd_link_hash_lookup (&htab->root, shortname,
4654 FALSE, FALSE, FALSE);
4655 if (hi != NULL
4656 && hi->root.type == h->root.type
4657 && hi->root.u.def.value == h->root.u.def.value
4658 && hi->root.u.def.section == h->root.u.def.section)
4659 {
4660 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4661 hi->root.type = bfd_link_hash_indirect;
4662 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4663 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4664 sym_hash = elf_sym_hashes (abfd);
4665 if (sym_hash)
4666 for (symidx = 0; symidx < extsymcount; ++symidx)
4667 if (sym_hash[symidx] == hi)
4668 {
4669 sym_hash[symidx] = h;
4670 break;
4671 }
4672 }
4673 free (shortname);
4674 }
4675 free (nondeflt_vers);
4676 nondeflt_vers = NULL;
4677 }
4678
4679 /* Now set the weakdefs field correctly for all the weak defined
4680 symbols we found. The only way to do this is to search all the
4681 symbols. Since we only need the information for non functions in
4682 dynamic objects, that's the only time we actually put anything on
4683 the list WEAKS. We need this information so that if a regular
4684 object refers to a symbol defined weakly in a dynamic object, the
4685 real symbol in the dynamic object is also put in the dynamic
4686 symbols; we also must arrange for both symbols to point to the
4687 same memory location. We could handle the general case of symbol
4688 aliasing, but a general symbol alias can only be generated in
4689 assembler code, handling it correctly would be very time
4690 consuming, and other ELF linkers don't handle general aliasing
4691 either. */
4692 if (weaks != NULL)
4693 {
4694 struct elf_link_hash_entry **hpp;
4695 struct elf_link_hash_entry **hppend;
4696 struct elf_link_hash_entry **sorted_sym_hash;
4697 struct elf_link_hash_entry *h;
4698 size_t sym_count;
4699
4700 /* Since we have to search the whole symbol list for each weak
4701 defined symbol, search time for N weak defined symbols will be
4702 O(N^2). Binary search will cut it down to O(NlogN). */
4703 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4704 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4705 if (sorted_sym_hash == NULL)
4706 goto error_return;
4707 sym_hash = sorted_sym_hash;
4708 hpp = elf_sym_hashes (abfd);
4709 hppend = hpp + extsymcount;
4710 sym_count = 0;
4711 for (; hpp < hppend; hpp++)
4712 {
4713 h = *hpp;
4714 if (h != NULL
4715 && h->root.type == bfd_link_hash_defined
4716 && !bed->is_function_type (h->type))
4717 {
4718 *sym_hash = h;
4719 sym_hash++;
4720 sym_count++;
4721 }
4722 }
4723
4724 qsort (sorted_sym_hash, sym_count,
4725 sizeof (struct elf_link_hash_entry *),
4726 elf_sort_symbol);
4727
4728 while (weaks != NULL)
4729 {
4730 struct elf_link_hash_entry *hlook;
4731 asection *slook;
4732 bfd_vma vlook;
4733 size_t i, j, idx;
4734
4735 hlook = weaks;
4736 weaks = hlook->u.weakdef;
4737 hlook->u.weakdef = NULL;
4738
4739 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4740 || hlook->root.type == bfd_link_hash_defweak
4741 || hlook->root.type == bfd_link_hash_common
4742 || hlook->root.type == bfd_link_hash_indirect);
4743 slook = hlook->root.u.def.section;
4744 vlook = hlook->root.u.def.value;
4745
4746 i = 0;
4747 j = sym_count;
4748 while (i != j)
4749 {
4750 bfd_signed_vma vdiff;
4751 idx = (i + j) / 2;
4752 h = sorted_sym_hash[idx];
4753 vdiff = vlook - h->root.u.def.value;
4754 if (vdiff < 0)
4755 j = idx;
4756 else if (vdiff > 0)
4757 i = idx + 1;
4758 else
4759 {
4760 long sdiff = slook->id - h->root.u.def.section->id;
4761 if (sdiff < 0)
4762 j = idx;
4763 else if (sdiff > 0)
4764 i = idx + 1;
4765 else
4766 break;
4767 }
4768 }
4769
4770 /* We didn't find a value/section match. */
4771 if (i == j)
4772 continue;
4773
4774 /* With multiple aliases, or when the weak symbol is already
4775 strongly defined, we have multiple matching symbols and
4776 the binary search above may land on any of them. Step
4777 one past the matching symbol(s). */
4778 while (++idx != j)
4779 {
4780 h = sorted_sym_hash[idx];
4781 if (h->root.u.def.section != slook
4782 || h->root.u.def.value != vlook)
4783 break;
4784 }
4785
4786 /* Now look back over the aliases. Since we sorted by size
4787 as well as value and section, we'll choose the one with
4788 the largest size. */
4789 while (idx-- != i)
4790 {
4791 h = sorted_sym_hash[idx];
4792
4793 /* Stop if value or section doesn't match. */
4794 if (h->root.u.def.section != slook
4795 || h->root.u.def.value != vlook)
4796 break;
4797 else if (h != hlook)
4798 {
4799 hlook->u.weakdef = h;
4800
4801 /* If the weak definition is in the list of dynamic
4802 symbols, make sure the real definition is put
4803 there as well. */
4804 if (hlook->dynindx != -1 && h->dynindx == -1)
4805 {
4806 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4807 {
4808 err_free_sym_hash:
4809 free (sorted_sym_hash);
4810 goto error_return;
4811 }
4812 }
4813
4814 /* If the real definition is in the list of dynamic
4815 symbols, make sure the weak definition is put
4816 there as well. If we don't do this, then the
4817 dynamic loader might not merge the entries for the
4818 real definition and the weak definition. */
4819 if (h->dynindx != -1 && hlook->dynindx == -1)
4820 {
4821 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4822 goto err_free_sym_hash;
4823 }
4824 break;
4825 }
4826 }
4827 }
4828
4829 free (sorted_sym_hash);
4830 }
4831
4832 if (bed->check_directives
4833 && !(*bed->check_directives) (abfd, info))
4834 return FALSE;
4835
4836 /* If this object is the same format as the output object, and it is
4837 not a shared library, then let the backend look through the
4838 relocs.
4839
4840 This is required to build global offset table entries and to
4841 arrange for dynamic relocs. It is not required for the
4842 particular common case of linking non PIC code, even when linking
4843 against shared libraries, but unfortunately there is no way of
4844 knowing whether an object file has been compiled PIC or not.
4845 Looking through the relocs is not particularly time consuming.
4846 The problem is that we must either (1) keep the relocs in memory,
4847 which causes the linker to require additional runtime memory or
4848 (2) read the relocs twice from the input file, which wastes time.
4849 This would be a good case for using mmap.
4850
4851 I have no idea how to handle linking PIC code into a file of a
4852 different format. It probably can't be done. */
4853 if (! dynamic
4854 && is_elf_hash_table (htab)
4855 && bed->check_relocs != NULL
4856 && elf_object_id (abfd) == elf_hash_table_id (htab)
4857 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4858 {
4859 asection *o;
4860
4861 for (o = abfd->sections; o != NULL; o = o->next)
4862 {
4863 Elf_Internal_Rela *internal_relocs;
4864 bfd_boolean ok;
4865
4866 if ((o->flags & SEC_RELOC) == 0
4867 || o->reloc_count == 0
4868 || ((info->strip == strip_all || info->strip == strip_debugger)
4869 && (o->flags & SEC_DEBUGGING) != 0)
4870 || bfd_is_abs_section (o->output_section))
4871 continue;
4872
4873 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4874 info->keep_memory);
4875 if (internal_relocs == NULL)
4876 goto error_return;
4877
4878 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4879
4880 if (elf_section_data (o)->relocs != internal_relocs)
4881 free (internal_relocs);
4882
4883 if (! ok)
4884 goto error_return;
4885 }
4886 }
4887
4888 /* If this is a non-traditional link, try to optimize the handling
4889 of the .stab/.stabstr sections. */
4890 if (! dynamic
4891 && ! info->traditional_format
4892 && is_elf_hash_table (htab)
4893 && (info->strip != strip_all && info->strip != strip_debugger))
4894 {
4895 asection *stabstr;
4896
4897 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4898 if (stabstr != NULL)
4899 {
4900 bfd_size_type string_offset = 0;
4901 asection *stab;
4902
4903 for (stab = abfd->sections; stab; stab = stab->next)
4904 if (CONST_STRNEQ (stab->name, ".stab")
4905 && (!stab->name[5] ||
4906 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4907 && (stab->flags & SEC_MERGE) == 0
4908 && !bfd_is_abs_section (stab->output_section))
4909 {
4910 struct bfd_elf_section_data *secdata;
4911
4912 secdata = elf_section_data (stab);
4913 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4914 stabstr, &secdata->sec_info,
4915 &string_offset))
4916 goto error_return;
4917 if (secdata->sec_info)
4918 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4919 }
4920 }
4921 }
4922
4923 if (is_elf_hash_table (htab) && add_needed)
4924 {
4925 /* Add this bfd to the loaded list. */
4926 struct elf_link_loaded_list *n;
4927
4928 n = (struct elf_link_loaded_list *)
4929 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4930 if (n == NULL)
4931 goto error_return;
4932 n->abfd = abfd;
4933 n->next = htab->loaded;
4934 htab->loaded = n;
4935 }
4936
4937 return TRUE;
4938
4939 error_free_vers:
4940 if (old_tab != NULL)
4941 free (old_tab);
4942 if (nondeflt_vers != NULL)
4943 free (nondeflt_vers);
4944 if (extversym != NULL)
4945 free (extversym);
4946 error_free_sym:
4947 if (isymbuf != NULL)
4948 free (isymbuf);
4949 error_return:
4950 return FALSE;
4951 }
4952
4953 /* Return the linker hash table entry of a symbol that might be
4954 satisfied by an archive symbol. Return -1 on error. */
4955
4956 struct elf_link_hash_entry *
4957 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4958 struct bfd_link_info *info,
4959 const char *name)
4960 {
4961 struct elf_link_hash_entry *h;
4962 char *p, *copy;
4963 size_t len, first;
4964
4965 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4966 if (h != NULL)
4967 return h;
4968
4969 /* If this is a default version (the name contains @@), look up the
4970 symbol again with only one `@' as well as without the version.
4971 The effect is that references to the symbol with and without the
4972 version will be matched by the default symbol in the archive. */
4973
4974 p = strchr (name, ELF_VER_CHR);
4975 if (p == NULL || p[1] != ELF_VER_CHR)
4976 return h;
4977
4978 /* First check with only one `@'. */
4979 len = strlen (name);
4980 copy = (char *) bfd_alloc (abfd, len);
4981 if (copy == NULL)
4982 return (struct elf_link_hash_entry *) 0 - 1;
4983
4984 first = p - name + 1;
4985 memcpy (copy, name, first);
4986 memcpy (copy + first, name + first + 1, len - first);
4987
4988 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4989 if (h == NULL)
4990 {
4991 /* We also need to check references to the symbol without the
4992 version. */
4993 copy[first - 1] = '\0';
4994 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4995 FALSE, FALSE, TRUE);
4996 }
4997
4998 bfd_release (abfd, copy);
4999 return h;
5000 }
5001
5002 /* Add symbols from an ELF archive file to the linker hash table. We
5003 don't use _bfd_generic_link_add_archive_symbols because of a
5004 problem which arises on UnixWare. The UnixWare libc.so is an
5005 archive which includes an entry libc.so.1 which defines a bunch of
5006 symbols. The libc.so archive also includes a number of other
5007 object files, which also define symbols, some of which are the same
5008 as those defined in libc.so.1. Correct linking requires that we
5009 consider each object file in turn, and include it if it defines any
5010 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5011 this; it looks through the list of undefined symbols, and includes
5012 any object file which defines them. When this algorithm is used on
5013 UnixWare, it winds up pulling in libc.so.1 early and defining a
5014 bunch of symbols. This means that some of the other objects in the
5015 archive are not included in the link, which is incorrect since they
5016 precede libc.so.1 in the archive.
5017
5018 Fortunately, ELF archive handling is simpler than that done by
5019 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5020 oddities. In ELF, if we find a symbol in the archive map, and the
5021 symbol is currently undefined, we know that we must pull in that
5022 object file.
5023
5024 Unfortunately, we do have to make multiple passes over the symbol
5025 table until nothing further is resolved. */
5026
5027 static bfd_boolean
5028 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5029 {
5030 symindex c;
5031 bfd_boolean *defined = NULL;
5032 bfd_boolean *included = NULL;
5033 carsym *symdefs;
5034 bfd_boolean loop;
5035 bfd_size_type amt;
5036 const struct elf_backend_data *bed;
5037 struct elf_link_hash_entry * (*archive_symbol_lookup)
5038 (bfd *, struct bfd_link_info *, const char *);
5039
5040 if (! bfd_has_map (abfd))
5041 {
5042 /* An empty archive is a special case. */
5043 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5044 return TRUE;
5045 bfd_set_error (bfd_error_no_armap);
5046 return FALSE;
5047 }
5048
5049 /* Keep track of all symbols we know to be already defined, and all
5050 files we know to be already included. This is to speed up the
5051 second and subsequent passes. */
5052 c = bfd_ardata (abfd)->symdef_count;
5053 if (c == 0)
5054 return TRUE;
5055 amt = c;
5056 amt *= sizeof (bfd_boolean);
5057 defined = (bfd_boolean *) bfd_zmalloc (amt);
5058 included = (bfd_boolean *) bfd_zmalloc (amt);
5059 if (defined == NULL || included == NULL)
5060 goto error_return;
5061
5062 symdefs = bfd_ardata (abfd)->symdefs;
5063 bed = get_elf_backend_data (abfd);
5064 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5065
5066 do
5067 {
5068 file_ptr last;
5069 symindex i;
5070 carsym *symdef;
5071 carsym *symdefend;
5072
5073 loop = FALSE;
5074 last = -1;
5075
5076 symdef = symdefs;
5077 symdefend = symdef + c;
5078 for (i = 0; symdef < symdefend; symdef++, i++)
5079 {
5080 struct elf_link_hash_entry *h;
5081 bfd *element;
5082 struct bfd_link_hash_entry *undefs_tail;
5083 symindex mark;
5084
5085 if (defined[i] || included[i])
5086 continue;
5087 if (symdef->file_offset == last)
5088 {
5089 included[i] = TRUE;
5090 continue;
5091 }
5092
5093 h = archive_symbol_lookup (abfd, info, symdef->name);
5094 if (h == (struct elf_link_hash_entry *) 0 - 1)
5095 goto error_return;
5096
5097 if (h == NULL)
5098 continue;
5099
5100 if (h->root.type == bfd_link_hash_common)
5101 {
5102 /* We currently have a common symbol. The archive map contains
5103 a reference to this symbol, so we may want to include it. We
5104 only want to include it however, if this archive element
5105 contains a definition of the symbol, not just another common
5106 declaration of it.
5107
5108 Unfortunately some archivers (including GNU ar) will put
5109 declarations of common symbols into their archive maps, as
5110 well as real definitions, so we cannot just go by the archive
5111 map alone. Instead we must read in the element's symbol
5112 table and check that to see what kind of symbol definition
5113 this is. */
5114 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5115 continue;
5116 }
5117 else if (h->root.type != bfd_link_hash_undefined)
5118 {
5119 if (h->root.type != bfd_link_hash_undefweak)
5120 defined[i] = TRUE;
5121 continue;
5122 }
5123
5124 /* We need to include this archive member. */
5125 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5126 if (element == NULL)
5127 goto error_return;
5128
5129 if (! bfd_check_format (element, bfd_object))
5130 goto error_return;
5131
5132 /* Doublecheck that we have not included this object
5133 already--it should be impossible, but there may be
5134 something wrong with the archive. */
5135 if (element->archive_pass != 0)
5136 {
5137 bfd_set_error (bfd_error_bad_value);
5138 goto error_return;
5139 }
5140 element->archive_pass = 1;
5141
5142 undefs_tail = info->hash->undefs_tail;
5143
5144 if (!(*info->callbacks
5145 ->add_archive_element) (info, element, symdef->name, &element))
5146 goto error_return;
5147 if (!bfd_link_add_symbols (element, info))
5148 goto error_return;
5149
5150 /* If there are any new undefined symbols, we need to make
5151 another pass through the archive in order to see whether
5152 they can be defined. FIXME: This isn't perfect, because
5153 common symbols wind up on undefs_tail and because an
5154 undefined symbol which is defined later on in this pass
5155 does not require another pass. This isn't a bug, but it
5156 does make the code less efficient than it could be. */
5157 if (undefs_tail != info->hash->undefs_tail)
5158 loop = TRUE;
5159
5160 /* Look backward to mark all symbols from this object file
5161 which we have already seen in this pass. */
5162 mark = i;
5163 do
5164 {
5165 included[mark] = TRUE;
5166 if (mark == 0)
5167 break;
5168 --mark;
5169 }
5170 while (symdefs[mark].file_offset == symdef->file_offset);
5171
5172 /* We mark subsequent symbols from this object file as we go
5173 on through the loop. */
5174 last = symdef->file_offset;
5175 }
5176 }
5177 while (loop);
5178
5179 free (defined);
5180 free (included);
5181
5182 return TRUE;
5183
5184 error_return:
5185 if (defined != NULL)
5186 free (defined);
5187 if (included != NULL)
5188 free (included);
5189 return FALSE;
5190 }
5191
5192 /* Given an ELF BFD, add symbols to the global hash table as
5193 appropriate. */
5194
5195 bfd_boolean
5196 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 switch (bfd_get_format (abfd))
5199 {
5200 case bfd_object:
5201 return elf_link_add_object_symbols (abfd, info);
5202 case bfd_archive:
5203 return elf_link_add_archive_symbols (abfd, info);
5204 default:
5205 bfd_set_error (bfd_error_wrong_format);
5206 return FALSE;
5207 }
5208 }
5209 \f
5210 struct hash_codes_info
5211 {
5212 unsigned long *hashcodes;
5213 bfd_boolean error;
5214 };
5215
5216 /* This function will be called though elf_link_hash_traverse to store
5217 all hash value of the exported symbols in an array. */
5218
5219 static bfd_boolean
5220 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5221 {
5222 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5223 const char *name;
5224 char *p;
5225 unsigned long ha;
5226 char *alc = NULL;
5227
5228 /* Ignore indirect symbols. These are added by the versioning code. */
5229 if (h->dynindx == -1)
5230 return TRUE;
5231
5232 name = h->root.root.string;
5233 p = strchr (name, ELF_VER_CHR);
5234 if (p != NULL)
5235 {
5236 alc = (char *) bfd_malloc (p - name + 1);
5237 if (alc == NULL)
5238 {
5239 inf->error = TRUE;
5240 return FALSE;
5241 }
5242 memcpy (alc, name, p - name);
5243 alc[p - name] = '\0';
5244 name = alc;
5245 }
5246
5247 /* Compute the hash value. */
5248 ha = bfd_elf_hash (name);
5249
5250 /* Store the found hash value in the array given as the argument. */
5251 *(inf->hashcodes)++ = ha;
5252
5253 /* And store it in the struct so that we can put it in the hash table
5254 later. */
5255 h->u.elf_hash_value = ha;
5256
5257 if (alc != NULL)
5258 free (alc);
5259
5260 return TRUE;
5261 }
5262
5263 struct collect_gnu_hash_codes
5264 {
5265 bfd *output_bfd;
5266 const struct elf_backend_data *bed;
5267 unsigned long int nsyms;
5268 unsigned long int maskbits;
5269 unsigned long int *hashcodes;
5270 unsigned long int *hashval;
5271 unsigned long int *indx;
5272 unsigned long int *counts;
5273 bfd_vma *bitmask;
5274 bfd_byte *contents;
5275 long int min_dynindx;
5276 unsigned long int bucketcount;
5277 unsigned long int symindx;
5278 long int local_indx;
5279 long int shift1, shift2;
5280 unsigned long int mask;
5281 bfd_boolean error;
5282 };
5283
5284 /* This function will be called though elf_link_hash_traverse to store
5285 all hash value of the exported symbols in an array. */
5286
5287 static bfd_boolean
5288 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5289 {
5290 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5291 const char *name;
5292 char *p;
5293 unsigned long ha;
5294 char *alc = NULL;
5295
5296 /* Ignore indirect symbols. These are added by the versioning code. */
5297 if (h->dynindx == -1)
5298 return TRUE;
5299
5300 /* Ignore also local symbols and undefined symbols. */
5301 if (! (*s->bed->elf_hash_symbol) (h))
5302 return TRUE;
5303
5304 name = h->root.root.string;
5305 p = strchr (name, ELF_VER_CHR);
5306 if (p != NULL)
5307 {
5308 alc = (char *) bfd_malloc (p - name + 1);
5309 if (alc == NULL)
5310 {
5311 s->error = TRUE;
5312 return FALSE;
5313 }
5314 memcpy (alc, name, p - name);
5315 alc[p - name] = '\0';
5316 name = alc;
5317 }
5318
5319 /* Compute the hash value. */
5320 ha = bfd_elf_gnu_hash (name);
5321
5322 /* Store the found hash value in the array for compute_bucket_count,
5323 and also for .dynsym reordering purposes. */
5324 s->hashcodes[s->nsyms] = ha;
5325 s->hashval[h->dynindx] = ha;
5326 ++s->nsyms;
5327 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5328 s->min_dynindx = h->dynindx;
5329
5330 if (alc != NULL)
5331 free (alc);
5332
5333 return TRUE;
5334 }
5335
5336 /* This function will be called though elf_link_hash_traverse to do
5337 final dynaminc symbol renumbering. */
5338
5339 static bfd_boolean
5340 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5341 {
5342 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5343 unsigned long int bucket;
5344 unsigned long int val;
5345
5346 /* Ignore indirect symbols. */
5347 if (h->dynindx == -1)
5348 return TRUE;
5349
5350 /* Ignore also local symbols and undefined symbols. */
5351 if (! (*s->bed->elf_hash_symbol) (h))
5352 {
5353 if (h->dynindx >= s->min_dynindx)
5354 h->dynindx = s->local_indx++;
5355 return TRUE;
5356 }
5357
5358 bucket = s->hashval[h->dynindx] % s->bucketcount;
5359 val = (s->hashval[h->dynindx] >> s->shift1)
5360 & ((s->maskbits >> s->shift1) - 1);
5361 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5362 s->bitmask[val]
5363 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5364 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5365 if (s->counts[bucket] == 1)
5366 /* Last element terminates the chain. */
5367 val |= 1;
5368 bfd_put_32 (s->output_bfd, val,
5369 s->contents + (s->indx[bucket] - s->symindx) * 4);
5370 --s->counts[bucket];
5371 h->dynindx = s->indx[bucket]++;
5372 return TRUE;
5373 }
5374
5375 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5376
5377 bfd_boolean
5378 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5379 {
5380 return !(h->forced_local
5381 || h->root.type == bfd_link_hash_undefined
5382 || h->root.type == bfd_link_hash_undefweak
5383 || ((h->root.type == bfd_link_hash_defined
5384 || h->root.type == bfd_link_hash_defweak)
5385 && h->root.u.def.section->output_section == NULL));
5386 }
5387
5388 /* Array used to determine the number of hash table buckets to use
5389 based on the number of symbols there are. If there are fewer than
5390 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5391 fewer than 37 we use 17 buckets, and so forth. We never use more
5392 than 32771 buckets. */
5393
5394 static const size_t elf_buckets[] =
5395 {
5396 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5397 16411, 32771, 0
5398 };
5399
5400 /* Compute bucket count for hashing table. We do not use a static set
5401 of possible tables sizes anymore. Instead we determine for all
5402 possible reasonable sizes of the table the outcome (i.e., the
5403 number of collisions etc) and choose the best solution. The
5404 weighting functions are not too simple to allow the table to grow
5405 without bounds. Instead one of the weighting factors is the size.
5406 Therefore the result is always a good payoff between few collisions
5407 (= short chain lengths) and table size. */
5408 static size_t
5409 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5410 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5411 unsigned long int nsyms,
5412 int gnu_hash)
5413 {
5414 size_t best_size = 0;
5415 unsigned long int i;
5416
5417 /* We have a problem here. The following code to optimize the table
5418 size requires an integer type with more the 32 bits. If
5419 BFD_HOST_U_64_BIT is set we know about such a type. */
5420 #ifdef BFD_HOST_U_64_BIT
5421 if (info->optimize)
5422 {
5423 size_t minsize;
5424 size_t maxsize;
5425 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5426 bfd *dynobj = elf_hash_table (info)->dynobj;
5427 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5428 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5429 unsigned long int *counts;
5430 bfd_size_type amt;
5431 unsigned int no_improvement_count = 0;
5432
5433 /* Possible optimization parameters: if we have NSYMS symbols we say
5434 that the hashing table must at least have NSYMS/4 and at most
5435 2*NSYMS buckets. */
5436 minsize = nsyms / 4;
5437 if (minsize == 0)
5438 minsize = 1;
5439 best_size = maxsize = nsyms * 2;
5440 if (gnu_hash)
5441 {
5442 if (minsize < 2)
5443 minsize = 2;
5444 if ((best_size & 31) == 0)
5445 ++best_size;
5446 }
5447
5448 /* Create array where we count the collisions in. We must use bfd_malloc
5449 since the size could be large. */
5450 amt = maxsize;
5451 amt *= sizeof (unsigned long int);
5452 counts = (unsigned long int *) bfd_malloc (amt);
5453 if (counts == NULL)
5454 return 0;
5455
5456 /* Compute the "optimal" size for the hash table. The criteria is a
5457 minimal chain length. The minor criteria is (of course) the size
5458 of the table. */
5459 for (i = minsize; i < maxsize; ++i)
5460 {
5461 /* Walk through the array of hashcodes and count the collisions. */
5462 BFD_HOST_U_64_BIT max;
5463 unsigned long int j;
5464 unsigned long int fact;
5465
5466 if (gnu_hash && (i & 31) == 0)
5467 continue;
5468
5469 memset (counts, '\0', i * sizeof (unsigned long int));
5470
5471 /* Determine how often each hash bucket is used. */
5472 for (j = 0; j < nsyms; ++j)
5473 ++counts[hashcodes[j] % i];
5474
5475 /* For the weight function we need some information about the
5476 pagesize on the target. This is information need not be 100%
5477 accurate. Since this information is not available (so far) we
5478 define it here to a reasonable default value. If it is crucial
5479 to have a better value some day simply define this value. */
5480 # ifndef BFD_TARGET_PAGESIZE
5481 # define BFD_TARGET_PAGESIZE (4096)
5482 # endif
5483
5484 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5485 and the chains. */
5486 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5487
5488 # if 1
5489 /* Variant 1: optimize for short chains. We add the squares
5490 of all the chain lengths (which favors many small chain
5491 over a few long chains). */
5492 for (j = 0; j < i; ++j)
5493 max += counts[j] * counts[j];
5494
5495 /* This adds penalties for the overall size of the table. */
5496 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5497 max *= fact * fact;
5498 # else
5499 /* Variant 2: Optimize a lot more for small table. Here we
5500 also add squares of the size but we also add penalties for
5501 empty slots (the +1 term). */
5502 for (j = 0; j < i; ++j)
5503 max += (1 + counts[j]) * (1 + counts[j]);
5504
5505 /* The overall size of the table is considered, but not as
5506 strong as in variant 1, where it is squared. */
5507 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5508 max *= fact;
5509 # endif
5510
5511 /* Compare with current best results. */
5512 if (max < best_chlen)
5513 {
5514 best_chlen = max;
5515 best_size = i;
5516 no_improvement_count = 0;
5517 }
5518 /* PR 11843: Avoid futile long searches for the best bucket size
5519 when there are a large number of symbols. */
5520 else if (++no_improvement_count == 100)
5521 break;
5522 }
5523
5524 free (counts);
5525 }
5526 else
5527 #endif /* defined (BFD_HOST_U_64_BIT) */
5528 {
5529 /* This is the fallback solution if no 64bit type is available or if we
5530 are not supposed to spend much time on optimizations. We select the
5531 bucket count using a fixed set of numbers. */
5532 for (i = 0; elf_buckets[i] != 0; i++)
5533 {
5534 best_size = elf_buckets[i];
5535 if (nsyms < elf_buckets[i + 1])
5536 break;
5537 }
5538 if (gnu_hash && best_size < 2)
5539 best_size = 2;
5540 }
5541
5542 return best_size;
5543 }
5544
5545 /* Size any SHT_GROUP section for ld -r. */
5546
5547 bfd_boolean
5548 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5549 {
5550 bfd *ibfd;
5551
5552 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5553 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5554 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5555 return FALSE;
5556 return TRUE;
5557 }
5558
5559 /* Set a default stack segment size. The value in INFO wins. If it
5560 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5561 undefined it is initialized. */
5562
5563 bfd_boolean
5564 bfd_elf_stack_segment_size (bfd *output_bfd,
5565 struct bfd_link_info *info,
5566 const char *legacy_symbol,
5567 bfd_vma default_size)
5568 {
5569 struct elf_link_hash_entry *h = NULL;
5570
5571 /* Look for legacy symbol. */
5572 if (legacy_symbol)
5573 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5574 FALSE, FALSE, FALSE);
5575 if (h && (h->root.type == bfd_link_hash_defined
5576 || h->root.type == bfd_link_hash_defweak)
5577 && h->def_regular
5578 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5579 {
5580 /* The symbol has no type if specified on the command line. */
5581 h->type = STT_OBJECT;
5582 if (info->stacksize)
5583 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5584 output_bfd, legacy_symbol);
5585 else if (h->root.u.def.section != bfd_abs_section_ptr)
5586 (*_bfd_error_handler) (_("%B: %s not absolute"),
5587 output_bfd, legacy_symbol);
5588 else
5589 info->stacksize = h->root.u.def.value;
5590 }
5591
5592 if (!info->stacksize)
5593 /* If the user didn't set a size, or explicitly inhibit the
5594 size, set it now. */
5595 info->stacksize = default_size;
5596
5597 /* Provide the legacy symbol, if it is referenced. */
5598 if (h && (h->root.type == bfd_link_hash_undefined
5599 || h->root.type == bfd_link_hash_undefweak))
5600 {
5601 struct bfd_link_hash_entry *bh = NULL;
5602
5603 if (!(_bfd_generic_link_add_one_symbol
5604 (info, output_bfd, legacy_symbol,
5605 BSF_GLOBAL, bfd_abs_section_ptr,
5606 info->stacksize >= 0 ? info->stacksize : 0,
5607 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5608 return FALSE;
5609
5610 h = (struct elf_link_hash_entry *) bh;
5611 h->def_regular = 1;
5612 h->type = STT_OBJECT;
5613 }
5614
5615 return TRUE;
5616 }
5617
5618 /* Set up the sizes and contents of the ELF dynamic sections. This is
5619 called by the ELF linker emulation before_allocation routine. We
5620 must set the sizes of the sections before the linker sets the
5621 addresses of the various sections. */
5622
5623 bfd_boolean
5624 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5625 const char *soname,
5626 const char *rpath,
5627 const char *filter_shlib,
5628 const char *audit,
5629 const char *depaudit,
5630 const char * const *auxiliary_filters,
5631 struct bfd_link_info *info,
5632 asection **sinterpptr)
5633 {
5634 bfd_size_type soname_indx;
5635 bfd *dynobj;
5636 const struct elf_backend_data *bed;
5637 struct elf_info_failed asvinfo;
5638
5639 *sinterpptr = NULL;
5640
5641 soname_indx = (bfd_size_type) -1;
5642
5643 if (!is_elf_hash_table (info->hash))
5644 return TRUE;
5645
5646 bed = get_elf_backend_data (output_bfd);
5647
5648 /* Any syms created from now on start with -1 in
5649 got.refcount/offset and plt.refcount/offset. */
5650 elf_hash_table (info)->init_got_refcount
5651 = elf_hash_table (info)->init_got_offset;
5652 elf_hash_table (info)->init_plt_refcount
5653 = elf_hash_table (info)->init_plt_offset;
5654
5655 if (info->relocatable
5656 && !_bfd_elf_size_group_sections (info))
5657 return FALSE;
5658
5659 /* The backend may have to create some sections regardless of whether
5660 we're dynamic or not. */
5661 if (bed->elf_backend_always_size_sections
5662 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5663 return FALSE;
5664
5665 /* Determine any GNU_STACK segment requirements, after the backend
5666 has had a chance to set a default segment size. */
5667 if (info->execstack)
5668 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5669 else if (info->noexecstack)
5670 elf_stack_flags (output_bfd) = PF_R | PF_W;
5671 else
5672 {
5673 bfd *inputobj;
5674 asection *notesec = NULL;
5675 int exec = 0;
5676
5677 for (inputobj = info->input_bfds;
5678 inputobj;
5679 inputobj = inputobj->link_next)
5680 {
5681 asection *s;
5682
5683 if (inputobj->flags
5684 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5685 continue;
5686 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5687 if (s)
5688 {
5689 if (s->flags & SEC_CODE)
5690 exec = PF_X;
5691 notesec = s;
5692 }
5693 else if (bed->default_execstack)
5694 exec = PF_X;
5695 }
5696 if (notesec || info->stacksize > 0)
5697 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5698 if (notesec && exec && info->relocatable
5699 && notesec->output_section != bfd_abs_section_ptr)
5700 notesec->output_section->flags |= SEC_CODE;
5701 }
5702
5703 dynobj = elf_hash_table (info)->dynobj;
5704
5705 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5706 {
5707 struct elf_info_failed eif;
5708 struct elf_link_hash_entry *h;
5709 asection *dynstr;
5710 struct bfd_elf_version_tree *t;
5711 struct bfd_elf_version_expr *d;
5712 asection *s;
5713 bfd_boolean all_defined;
5714
5715 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5716 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5717
5718 if (soname != NULL)
5719 {
5720 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5721 soname, TRUE);
5722 if (soname_indx == (bfd_size_type) -1
5723 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5724 return FALSE;
5725 }
5726
5727 if (info->symbolic)
5728 {
5729 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5730 return FALSE;
5731 info->flags |= DF_SYMBOLIC;
5732 }
5733
5734 if (rpath != NULL)
5735 {
5736 bfd_size_type indx;
5737 bfd_vma tag;
5738
5739 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5740 TRUE);
5741 if (indx == (bfd_size_type) -1)
5742 return FALSE;
5743
5744 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5745 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5746 return FALSE;
5747 }
5748
5749 if (filter_shlib != NULL)
5750 {
5751 bfd_size_type indx;
5752
5753 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5754 filter_shlib, TRUE);
5755 if (indx == (bfd_size_type) -1
5756 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5757 return FALSE;
5758 }
5759
5760 if (auxiliary_filters != NULL)
5761 {
5762 const char * const *p;
5763
5764 for (p = auxiliary_filters; *p != NULL; p++)
5765 {
5766 bfd_size_type indx;
5767
5768 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5769 *p, TRUE);
5770 if (indx == (bfd_size_type) -1
5771 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5772 return FALSE;
5773 }
5774 }
5775
5776 if (audit != NULL)
5777 {
5778 bfd_size_type indx;
5779
5780 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5781 TRUE);
5782 if (indx == (bfd_size_type) -1
5783 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5784 return FALSE;
5785 }
5786
5787 if (depaudit != NULL)
5788 {
5789 bfd_size_type indx;
5790
5791 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5792 TRUE);
5793 if (indx == (bfd_size_type) -1
5794 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5795 return FALSE;
5796 }
5797
5798 eif.info = info;
5799 eif.failed = FALSE;
5800
5801 /* If we are supposed to export all symbols into the dynamic symbol
5802 table (this is not the normal case), then do so. */
5803 if (info->export_dynamic
5804 || (info->executable && info->dynamic))
5805 {
5806 elf_link_hash_traverse (elf_hash_table (info),
5807 _bfd_elf_export_symbol,
5808 &eif);
5809 if (eif.failed)
5810 return FALSE;
5811 }
5812
5813 /* Make all global versions with definition. */
5814 for (t = info->version_info; t != NULL; t = t->next)
5815 for (d = t->globals.list; d != NULL; d = d->next)
5816 if (!d->symver && d->literal)
5817 {
5818 const char *verstr, *name;
5819 size_t namelen, verlen, newlen;
5820 char *newname, *p, leading_char;
5821 struct elf_link_hash_entry *newh;
5822
5823 leading_char = bfd_get_symbol_leading_char (output_bfd);
5824 name = d->pattern;
5825 namelen = strlen (name) + (leading_char != '\0');
5826 verstr = t->name;
5827 verlen = strlen (verstr);
5828 newlen = namelen + verlen + 3;
5829
5830 newname = (char *) bfd_malloc (newlen);
5831 if (newname == NULL)
5832 return FALSE;
5833 newname[0] = leading_char;
5834 memcpy (newname + (leading_char != '\0'), name, namelen);
5835
5836 /* Check the hidden versioned definition. */
5837 p = newname + namelen;
5838 *p++ = ELF_VER_CHR;
5839 memcpy (p, verstr, verlen + 1);
5840 newh = elf_link_hash_lookup (elf_hash_table (info),
5841 newname, FALSE, FALSE,
5842 FALSE);
5843 if (newh == NULL
5844 || (newh->root.type != bfd_link_hash_defined
5845 && newh->root.type != bfd_link_hash_defweak))
5846 {
5847 /* Check the default versioned definition. */
5848 *p++ = ELF_VER_CHR;
5849 memcpy (p, verstr, verlen + 1);
5850 newh = elf_link_hash_lookup (elf_hash_table (info),
5851 newname, FALSE, FALSE,
5852 FALSE);
5853 }
5854 free (newname);
5855
5856 /* Mark this version if there is a definition and it is
5857 not defined in a shared object. */
5858 if (newh != NULL
5859 && !newh->def_dynamic
5860 && (newh->root.type == bfd_link_hash_defined
5861 || newh->root.type == bfd_link_hash_defweak))
5862 d->symver = 1;
5863 }
5864
5865 /* Attach all the symbols to their version information. */
5866 asvinfo.info = info;
5867 asvinfo.failed = FALSE;
5868
5869 elf_link_hash_traverse (elf_hash_table (info),
5870 _bfd_elf_link_assign_sym_version,
5871 &asvinfo);
5872 if (asvinfo.failed)
5873 return FALSE;
5874
5875 if (!info->allow_undefined_version)
5876 {
5877 /* Check if all global versions have a definition. */
5878 all_defined = TRUE;
5879 for (t = info->version_info; t != NULL; t = t->next)
5880 for (d = t->globals.list; d != NULL; d = d->next)
5881 if (d->literal && !d->symver && !d->script)
5882 {
5883 (*_bfd_error_handler)
5884 (_("%s: undefined version: %s"),
5885 d->pattern, t->name);
5886 all_defined = FALSE;
5887 }
5888
5889 if (!all_defined)
5890 {
5891 bfd_set_error (bfd_error_bad_value);
5892 return FALSE;
5893 }
5894 }
5895
5896 /* Find all symbols which were defined in a dynamic object and make
5897 the backend pick a reasonable value for them. */
5898 elf_link_hash_traverse (elf_hash_table (info),
5899 _bfd_elf_adjust_dynamic_symbol,
5900 &eif);
5901 if (eif.failed)
5902 return FALSE;
5903
5904 /* Add some entries to the .dynamic section. We fill in some of the
5905 values later, in bfd_elf_final_link, but we must add the entries
5906 now so that we know the final size of the .dynamic section. */
5907
5908 /* If there are initialization and/or finalization functions to
5909 call then add the corresponding DT_INIT/DT_FINI entries. */
5910 h = (info->init_function
5911 ? elf_link_hash_lookup (elf_hash_table (info),
5912 info->init_function, FALSE,
5913 FALSE, FALSE)
5914 : NULL);
5915 if (h != NULL
5916 && (h->ref_regular
5917 || h->def_regular))
5918 {
5919 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5920 return FALSE;
5921 }
5922 h = (info->fini_function
5923 ? elf_link_hash_lookup (elf_hash_table (info),
5924 info->fini_function, FALSE,
5925 FALSE, FALSE)
5926 : NULL);
5927 if (h != NULL
5928 && (h->ref_regular
5929 || h->def_regular))
5930 {
5931 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5932 return FALSE;
5933 }
5934
5935 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5936 if (s != NULL && s->linker_has_input)
5937 {
5938 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5939 if (! info->executable)
5940 {
5941 bfd *sub;
5942 asection *o;
5943
5944 for (sub = info->input_bfds; sub != NULL;
5945 sub = sub->link_next)
5946 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5947 for (o = sub->sections; o != NULL; o = o->next)
5948 if (elf_section_data (o)->this_hdr.sh_type
5949 == SHT_PREINIT_ARRAY)
5950 {
5951 (*_bfd_error_handler)
5952 (_("%B: .preinit_array section is not allowed in DSO"),
5953 sub);
5954 break;
5955 }
5956
5957 bfd_set_error (bfd_error_nonrepresentable_section);
5958 return FALSE;
5959 }
5960
5961 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5962 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5963 return FALSE;
5964 }
5965 s = bfd_get_section_by_name (output_bfd, ".init_array");
5966 if (s != NULL && s->linker_has_input)
5967 {
5968 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5969 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5970 return FALSE;
5971 }
5972 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5973 if (s != NULL && s->linker_has_input)
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5976 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5977 return FALSE;
5978 }
5979
5980 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5981 /* If .dynstr is excluded from the link, we don't want any of
5982 these tags. Strictly, we should be checking each section
5983 individually; This quick check covers for the case where
5984 someone does a /DISCARD/ : { *(*) }. */
5985 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5986 {
5987 bfd_size_type strsize;
5988
5989 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5990 if ((info->emit_hash
5991 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5992 || (info->emit_gnu_hash
5993 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5994 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5997 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5998 bed->s->sizeof_sym))
5999 return FALSE;
6000 }
6001 }
6002
6003 /* The backend must work out the sizes of all the other dynamic
6004 sections. */
6005 if (dynobj != NULL
6006 && bed->elf_backend_size_dynamic_sections != NULL
6007 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6008 return FALSE;
6009
6010 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6011 return FALSE;
6012
6013 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6014 {
6015 unsigned long section_sym_count;
6016 struct bfd_elf_version_tree *verdefs;
6017 asection *s;
6018
6019 /* Set up the version definition section. */
6020 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6021 BFD_ASSERT (s != NULL);
6022
6023 /* We may have created additional version definitions if we are
6024 just linking a regular application. */
6025 verdefs = info->version_info;
6026
6027 /* Skip anonymous version tag. */
6028 if (verdefs != NULL && verdefs->vernum == 0)
6029 verdefs = verdefs->next;
6030
6031 if (verdefs == NULL && !info->create_default_symver)
6032 s->flags |= SEC_EXCLUDE;
6033 else
6034 {
6035 unsigned int cdefs;
6036 bfd_size_type size;
6037 struct bfd_elf_version_tree *t;
6038 bfd_byte *p;
6039 Elf_Internal_Verdef def;
6040 Elf_Internal_Verdaux defaux;
6041 struct bfd_link_hash_entry *bh;
6042 struct elf_link_hash_entry *h;
6043 const char *name;
6044
6045 cdefs = 0;
6046 size = 0;
6047
6048 /* Make space for the base version. */
6049 size += sizeof (Elf_External_Verdef);
6050 size += sizeof (Elf_External_Verdaux);
6051 ++cdefs;
6052
6053 /* Make space for the default version. */
6054 if (info->create_default_symver)
6055 {
6056 size += sizeof (Elf_External_Verdef);
6057 ++cdefs;
6058 }
6059
6060 for (t = verdefs; t != NULL; t = t->next)
6061 {
6062 struct bfd_elf_version_deps *n;
6063
6064 /* Don't emit base version twice. */
6065 if (t->vernum == 0)
6066 continue;
6067
6068 size += sizeof (Elf_External_Verdef);
6069 size += sizeof (Elf_External_Verdaux);
6070 ++cdefs;
6071
6072 for (n = t->deps; n != NULL; n = n->next)
6073 size += sizeof (Elf_External_Verdaux);
6074 }
6075
6076 s->size = size;
6077 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6078 if (s->contents == NULL && s->size != 0)
6079 return FALSE;
6080
6081 /* Fill in the version definition section. */
6082
6083 p = s->contents;
6084
6085 def.vd_version = VER_DEF_CURRENT;
6086 def.vd_flags = VER_FLG_BASE;
6087 def.vd_ndx = 1;
6088 def.vd_cnt = 1;
6089 if (info->create_default_symver)
6090 {
6091 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6092 def.vd_next = sizeof (Elf_External_Verdef);
6093 }
6094 else
6095 {
6096 def.vd_aux = sizeof (Elf_External_Verdef);
6097 def.vd_next = (sizeof (Elf_External_Verdef)
6098 + sizeof (Elf_External_Verdaux));
6099 }
6100
6101 if (soname_indx != (bfd_size_type) -1)
6102 {
6103 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6104 soname_indx);
6105 def.vd_hash = bfd_elf_hash (soname);
6106 defaux.vda_name = soname_indx;
6107 name = soname;
6108 }
6109 else
6110 {
6111 bfd_size_type indx;
6112
6113 name = lbasename (output_bfd->filename);
6114 def.vd_hash = bfd_elf_hash (name);
6115 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6116 name, FALSE);
6117 if (indx == (bfd_size_type) -1)
6118 return FALSE;
6119 defaux.vda_name = indx;
6120 }
6121 defaux.vda_next = 0;
6122
6123 _bfd_elf_swap_verdef_out (output_bfd, &def,
6124 (Elf_External_Verdef *) p);
6125 p += sizeof (Elf_External_Verdef);
6126 if (info->create_default_symver)
6127 {
6128 /* Add a symbol representing this version. */
6129 bh = NULL;
6130 if (! (_bfd_generic_link_add_one_symbol
6131 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6132 0, NULL, FALSE,
6133 get_elf_backend_data (dynobj)->collect, &bh)))
6134 return FALSE;
6135 h = (struct elf_link_hash_entry *) bh;
6136 h->non_elf = 0;
6137 h->def_regular = 1;
6138 h->type = STT_OBJECT;
6139 h->verinfo.vertree = NULL;
6140
6141 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6142 return FALSE;
6143
6144 /* Create a duplicate of the base version with the same
6145 aux block, but different flags. */
6146 def.vd_flags = 0;
6147 def.vd_ndx = 2;
6148 def.vd_aux = sizeof (Elf_External_Verdef);
6149 if (verdefs)
6150 def.vd_next = (sizeof (Elf_External_Verdef)
6151 + sizeof (Elf_External_Verdaux));
6152 else
6153 def.vd_next = 0;
6154 _bfd_elf_swap_verdef_out (output_bfd, &def,
6155 (Elf_External_Verdef *) p);
6156 p += sizeof (Elf_External_Verdef);
6157 }
6158 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6159 (Elf_External_Verdaux *) p);
6160 p += sizeof (Elf_External_Verdaux);
6161
6162 for (t = verdefs; t != NULL; t = t->next)
6163 {
6164 unsigned int cdeps;
6165 struct bfd_elf_version_deps *n;
6166
6167 /* Don't emit the base version twice. */
6168 if (t->vernum == 0)
6169 continue;
6170
6171 cdeps = 0;
6172 for (n = t->deps; n != NULL; n = n->next)
6173 ++cdeps;
6174
6175 /* Add a symbol representing this version. */
6176 bh = NULL;
6177 if (! (_bfd_generic_link_add_one_symbol
6178 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6179 0, NULL, FALSE,
6180 get_elf_backend_data (dynobj)->collect, &bh)))
6181 return FALSE;
6182 h = (struct elf_link_hash_entry *) bh;
6183 h->non_elf = 0;
6184 h->def_regular = 1;
6185 h->type = STT_OBJECT;
6186 h->verinfo.vertree = t;
6187
6188 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6189 return FALSE;
6190
6191 def.vd_version = VER_DEF_CURRENT;
6192 def.vd_flags = 0;
6193 if (t->globals.list == NULL
6194 && t->locals.list == NULL
6195 && ! t->used)
6196 def.vd_flags |= VER_FLG_WEAK;
6197 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6198 def.vd_cnt = cdeps + 1;
6199 def.vd_hash = bfd_elf_hash (t->name);
6200 def.vd_aux = sizeof (Elf_External_Verdef);
6201 def.vd_next = 0;
6202
6203 /* If a basever node is next, it *must* be the last node in
6204 the chain, otherwise Verdef construction breaks. */
6205 if (t->next != NULL && t->next->vernum == 0)
6206 BFD_ASSERT (t->next->next == NULL);
6207
6208 if (t->next != NULL && t->next->vernum != 0)
6209 def.vd_next = (sizeof (Elf_External_Verdef)
6210 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6211
6212 _bfd_elf_swap_verdef_out (output_bfd, &def,
6213 (Elf_External_Verdef *) p);
6214 p += sizeof (Elf_External_Verdef);
6215
6216 defaux.vda_name = h->dynstr_index;
6217 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6218 h->dynstr_index);
6219 defaux.vda_next = 0;
6220 if (t->deps != NULL)
6221 defaux.vda_next = sizeof (Elf_External_Verdaux);
6222 t->name_indx = defaux.vda_name;
6223
6224 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6225 (Elf_External_Verdaux *) p);
6226 p += sizeof (Elf_External_Verdaux);
6227
6228 for (n = t->deps; n != NULL; n = n->next)
6229 {
6230 if (n->version_needed == NULL)
6231 {
6232 /* This can happen if there was an error in the
6233 version script. */
6234 defaux.vda_name = 0;
6235 }
6236 else
6237 {
6238 defaux.vda_name = n->version_needed->name_indx;
6239 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6240 defaux.vda_name);
6241 }
6242 if (n->next == NULL)
6243 defaux.vda_next = 0;
6244 else
6245 defaux.vda_next = sizeof (Elf_External_Verdaux);
6246
6247 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6248 (Elf_External_Verdaux *) p);
6249 p += sizeof (Elf_External_Verdaux);
6250 }
6251 }
6252
6253 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6254 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6255 return FALSE;
6256
6257 elf_tdata (output_bfd)->cverdefs = cdefs;
6258 }
6259
6260 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6261 {
6262 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6263 return FALSE;
6264 }
6265 else if (info->flags & DF_BIND_NOW)
6266 {
6267 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6268 return FALSE;
6269 }
6270
6271 if (info->flags_1)
6272 {
6273 if (info->executable)
6274 info->flags_1 &= ~ (DF_1_INITFIRST
6275 | DF_1_NODELETE
6276 | DF_1_NOOPEN);
6277 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6278 return FALSE;
6279 }
6280
6281 /* Work out the size of the version reference section. */
6282
6283 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6284 BFD_ASSERT (s != NULL);
6285 {
6286 struct elf_find_verdep_info sinfo;
6287
6288 sinfo.info = info;
6289 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6290 if (sinfo.vers == 0)
6291 sinfo.vers = 1;
6292 sinfo.failed = FALSE;
6293
6294 elf_link_hash_traverse (elf_hash_table (info),
6295 _bfd_elf_link_find_version_dependencies,
6296 &sinfo);
6297 if (sinfo.failed)
6298 return FALSE;
6299
6300 if (elf_tdata (output_bfd)->verref == NULL)
6301 s->flags |= SEC_EXCLUDE;
6302 else
6303 {
6304 Elf_Internal_Verneed *t;
6305 unsigned int size;
6306 unsigned int crefs;
6307 bfd_byte *p;
6308
6309 /* Build the version dependency section. */
6310 size = 0;
6311 crefs = 0;
6312 for (t = elf_tdata (output_bfd)->verref;
6313 t != NULL;
6314 t = t->vn_nextref)
6315 {
6316 Elf_Internal_Vernaux *a;
6317
6318 size += sizeof (Elf_External_Verneed);
6319 ++crefs;
6320 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 size += sizeof (Elf_External_Vernaux);
6322 }
6323
6324 s->size = size;
6325 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6326 if (s->contents == NULL)
6327 return FALSE;
6328
6329 p = s->contents;
6330 for (t = elf_tdata (output_bfd)->verref;
6331 t != NULL;
6332 t = t->vn_nextref)
6333 {
6334 unsigned int caux;
6335 Elf_Internal_Vernaux *a;
6336 bfd_size_type indx;
6337
6338 caux = 0;
6339 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 ++caux;
6341
6342 t->vn_version = VER_NEED_CURRENT;
6343 t->vn_cnt = caux;
6344 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6345 elf_dt_name (t->vn_bfd) != NULL
6346 ? elf_dt_name (t->vn_bfd)
6347 : lbasename (t->vn_bfd->filename),
6348 FALSE);
6349 if (indx == (bfd_size_type) -1)
6350 return FALSE;
6351 t->vn_file = indx;
6352 t->vn_aux = sizeof (Elf_External_Verneed);
6353 if (t->vn_nextref == NULL)
6354 t->vn_next = 0;
6355 else
6356 t->vn_next = (sizeof (Elf_External_Verneed)
6357 + caux * sizeof (Elf_External_Vernaux));
6358
6359 _bfd_elf_swap_verneed_out (output_bfd, t,
6360 (Elf_External_Verneed *) p);
6361 p += sizeof (Elf_External_Verneed);
6362
6363 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6364 {
6365 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6366 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6367 a->vna_nodename, FALSE);
6368 if (indx == (bfd_size_type) -1)
6369 return FALSE;
6370 a->vna_name = indx;
6371 if (a->vna_nextptr == NULL)
6372 a->vna_next = 0;
6373 else
6374 a->vna_next = sizeof (Elf_External_Vernaux);
6375
6376 _bfd_elf_swap_vernaux_out (output_bfd, a,
6377 (Elf_External_Vernaux *) p);
6378 p += sizeof (Elf_External_Vernaux);
6379 }
6380 }
6381
6382 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6383 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6384 return FALSE;
6385
6386 elf_tdata (output_bfd)->cverrefs = crefs;
6387 }
6388 }
6389
6390 if ((elf_tdata (output_bfd)->cverrefs == 0
6391 && elf_tdata (output_bfd)->cverdefs == 0)
6392 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6393 &section_sym_count) == 0)
6394 {
6395 s = bfd_get_linker_section (dynobj, ".gnu.version");
6396 s->flags |= SEC_EXCLUDE;
6397 }
6398 }
6399 return TRUE;
6400 }
6401
6402 /* Find the first non-excluded output section. We'll use its
6403 section symbol for some emitted relocs. */
6404 void
6405 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6406 {
6407 asection *s;
6408
6409 for (s = output_bfd->sections; s != NULL; s = s->next)
6410 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6411 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6412 {
6413 elf_hash_table (info)->text_index_section = s;
6414 break;
6415 }
6416 }
6417
6418 /* Find two non-excluded output sections, one for code, one for data.
6419 We'll use their section symbols for some emitted relocs. */
6420 void
6421 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6422 {
6423 asection *s;
6424
6425 /* Data first, since setting text_index_section changes
6426 _bfd_elf_link_omit_section_dynsym. */
6427 for (s = output_bfd->sections; s != NULL; s = s->next)
6428 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6429 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6430 {
6431 elf_hash_table (info)->data_index_section = s;
6432 break;
6433 }
6434
6435 for (s = output_bfd->sections; s != NULL; s = s->next)
6436 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6437 == (SEC_ALLOC | SEC_READONLY))
6438 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6439 {
6440 elf_hash_table (info)->text_index_section = s;
6441 break;
6442 }
6443
6444 if (elf_hash_table (info)->text_index_section == NULL)
6445 elf_hash_table (info)->text_index_section
6446 = elf_hash_table (info)->data_index_section;
6447 }
6448
6449 bfd_boolean
6450 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6451 {
6452 const struct elf_backend_data *bed;
6453
6454 if (!is_elf_hash_table (info->hash))
6455 return TRUE;
6456
6457 bed = get_elf_backend_data (output_bfd);
6458 (*bed->elf_backend_init_index_section) (output_bfd, info);
6459
6460 if (elf_hash_table (info)->dynamic_sections_created)
6461 {
6462 bfd *dynobj;
6463 asection *s;
6464 bfd_size_type dynsymcount;
6465 unsigned long section_sym_count;
6466 unsigned int dtagcount;
6467
6468 dynobj = elf_hash_table (info)->dynobj;
6469
6470 /* Assign dynsym indicies. In a shared library we generate a
6471 section symbol for each output section, which come first.
6472 Next come all of the back-end allocated local dynamic syms,
6473 followed by the rest of the global symbols. */
6474
6475 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6476 &section_sym_count);
6477
6478 /* Work out the size of the symbol version section. */
6479 s = bfd_get_linker_section (dynobj, ".gnu.version");
6480 BFD_ASSERT (s != NULL);
6481 if (dynsymcount != 0
6482 && (s->flags & SEC_EXCLUDE) == 0)
6483 {
6484 s->size = dynsymcount * sizeof (Elf_External_Versym);
6485 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6486 if (s->contents == NULL)
6487 return FALSE;
6488
6489 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6490 return FALSE;
6491 }
6492
6493 /* Set the size of the .dynsym and .hash sections. We counted
6494 the number of dynamic symbols in elf_link_add_object_symbols.
6495 We will build the contents of .dynsym and .hash when we build
6496 the final symbol table, because until then we do not know the
6497 correct value to give the symbols. We built the .dynstr
6498 section as we went along in elf_link_add_object_symbols. */
6499 s = bfd_get_linker_section (dynobj, ".dynsym");
6500 BFD_ASSERT (s != NULL);
6501 s->size = dynsymcount * bed->s->sizeof_sym;
6502
6503 if (dynsymcount != 0)
6504 {
6505 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6506 if (s->contents == NULL)
6507 return FALSE;
6508
6509 /* The first entry in .dynsym is a dummy symbol.
6510 Clear all the section syms, in case we don't output them all. */
6511 ++section_sym_count;
6512 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6513 }
6514
6515 elf_hash_table (info)->bucketcount = 0;
6516
6517 /* Compute the size of the hashing table. As a side effect this
6518 computes the hash values for all the names we export. */
6519 if (info->emit_hash)
6520 {
6521 unsigned long int *hashcodes;
6522 struct hash_codes_info hashinf;
6523 bfd_size_type amt;
6524 unsigned long int nsyms;
6525 size_t bucketcount;
6526 size_t hash_entry_size;
6527
6528 /* Compute the hash values for all exported symbols. At the same
6529 time store the values in an array so that we could use them for
6530 optimizations. */
6531 amt = dynsymcount * sizeof (unsigned long int);
6532 hashcodes = (unsigned long int *) bfd_malloc (amt);
6533 if (hashcodes == NULL)
6534 return FALSE;
6535 hashinf.hashcodes = hashcodes;
6536 hashinf.error = FALSE;
6537
6538 /* Put all hash values in HASHCODES. */
6539 elf_link_hash_traverse (elf_hash_table (info),
6540 elf_collect_hash_codes, &hashinf);
6541 if (hashinf.error)
6542 {
6543 free (hashcodes);
6544 return FALSE;
6545 }
6546
6547 nsyms = hashinf.hashcodes - hashcodes;
6548 bucketcount
6549 = compute_bucket_count (info, hashcodes, nsyms, 0);
6550 free (hashcodes);
6551
6552 if (bucketcount == 0)
6553 return FALSE;
6554
6555 elf_hash_table (info)->bucketcount = bucketcount;
6556
6557 s = bfd_get_linker_section (dynobj, ".hash");
6558 BFD_ASSERT (s != NULL);
6559 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6560 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6561 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6562 if (s->contents == NULL)
6563 return FALSE;
6564
6565 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6566 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6567 s->contents + hash_entry_size);
6568 }
6569
6570 if (info->emit_gnu_hash)
6571 {
6572 size_t i, cnt;
6573 unsigned char *contents;
6574 struct collect_gnu_hash_codes cinfo;
6575 bfd_size_type amt;
6576 size_t bucketcount;
6577
6578 memset (&cinfo, 0, sizeof (cinfo));
6579
6580 /* Compute the hash values for all exported symbols. At the same
6581 time store the values in an array so that we could use them for
6582 optimizations. */
6583 amt = dynsymcount * 2 * sizeof (unsigned long int);
6584 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6585 if (cinfo.hashcodes == NULL)
6586 return FALSE;
6587
6588 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6589 cinfo.min_dynindx = -1;
6590 cinfo.output_bfd = output_bfd;
6591 cinfo.bed = bed;
6592
6593 /* Put all hash values in HASHCODES. */
6594 elf_link_hash_traverse (elf_hash_table (info),
6595 elf_collect_gnu_hash_codes, &cinfo);
6596 if (cinfo.error)
6597 {
6598 free (cinfo.hashcodes);
6599 return FALSE;
6600 }
6601
6602 bucketcount
6603 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6604
6605 if (bucketcount == 0)
6606 {
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6612 BFD_ASSERT (s != NULL);
6613
6614 if (cinfo.nsyms == 0)
6615 {
6616 /* Empty .gnu.hash section is special. */
6617 BFD_ASSERT (cinfo.min_dynindx == -1);
6618 free (cinfo.hashcodes);
6619 s->size = 5 * 4 + bed->s->arch_size / 8;
6620 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6621 if (contents == NULL)
6622 return FALSE;
6623 s->contents = contents;
6624 /* 1 empty bucket. */
6625 bfd_put_32 (output_bfd, 1, contents);
6626 /* SYMIDX above the special symbol 0. */
6627 bfd_put_32 (output_bfd, 1, contents + 4);
6628 /* Just one word for bitmask. */
6629 bfd_put_32 (output_bfd, 1, contents + 8);
6630 /* Only hash fn bloom filter. */
6631 bfd_put_32 (output_bfd, 0, contents + 12);
6632 /* No hashes are valid - empty bitmask. */
6633 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6634 /* No hashes in the only bucket. */
6635 bfd_put_32 (output_bfd, 0,
6636 contents + 16 + bed->s->arch_size / 8);
6637 }
6638 else
6639 {
6640 unsigned long int maskwords, maskbitslog2, x;
6641 BFD_ASSERT (cinfo.min_dynindx != -1);
6642
6643 x = cinfo.nsyms;
6644 maskbitslog2 = 1;
6645 while ((x >>= 1) != 0)
6646 ++maskbitslog2;
6647 if (maskbitslog2 < 3)
6648 maskbitslog2 = 5;
6649 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6650 maskbitslog2 = maskbitslog2 + 3;
6651 else
6652 maskbitslog2 = maskbitslog2 + 2;
6653 if (bed->s->arch_size == 64)
6654 {
6655 if (maskbitslog2 == 5)
6656 maskbitslog2 = 6;
6657 cinfo.shift1 = 6;
6658 }
6659 else
6660 cinfo.shift1 = 5;
6661 cinfo.mask = (1 << cinfo.shift1) - 1;
6662 cinfo.shift2 = maskbitslog2;
6663 cinfo.maskbits = 1 << maskbitslog2;
6664 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6665 amt = bucketcount * sizeof (unsigned long int) * 2;
6666 amt += maskwords * sizeof (bfd_vma);
6667 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6668 if (cinfo.bitmask == NULL)
6669 {
6670 free (cinfo.hashcodes);
6671 return FALSE;
6672 }
6673
6674 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6675 cinfo.indx = cinfo.counts + bucketcount;
6676 cinfo.symindx = dynsymcount - cinfo.nsyms;
6677 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6678
6679 /* Determine how often each hash bucket is used. */
6680 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6681 for (i = 0; i < cinfo.nsyms; ++i)
6682 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6683
6684 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6685 if (cinfo.counts[i] != 0)
6686 {
6687 cinfo.indx[i] = cnt;
6688 cnt += cinfo.counts[i];
6689 }
6690 BFD_ASSERT (cnt == dynsymcount);
6691 cinfo.bucketcount = bucketcount;
6692 cinfo.local_indx = cinfo.min_dynindx;
6693
6694 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6695 s->size += cinfo.maskbits / 8;
6696 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6697 if (contents == NULL)
6698 {
6699 free (cinfo.bitmask);
6700 free (cinfo.hashcodes);
6701 return FALSE;
6702 }
6703
6704 s->contents = contents;
6705 bfd_put_32 (output_bfd, bucketcount, contents);
6706 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6707 bfd_put_32 (output_bfd, maskwords, contents + 8);
6708 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6709 contents += 16 + cinfo.maskbits / 8;
6710
6711 for (i = 0; i < bucketcount; ++i)
6712 {
6713 if (cinfo.counts[i] == 0)
6714 bfd_put_32 (output_bfd, 0, contents);
6715 else
6716 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6717 contents += 4;
6718 }
6719
6720 cinfo.contents = contents;
6721
6722 /* Renumber dynamic symbols, populate .gnu.hash section. */
6723 elf_link_hash_traverse (elf_hash_table (info),
6724 elf_renumber_gnu_hash_syms, &cinfo);
6725
6726 contents = s->contents + 16;
6727 for (i = 0; i < maskwords; ++i)
6728 {
6729 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6730 contents);
6731 contents += bed->s->arch_size / 8;
6732 }
6733
6734 free (cinfo.bitmask);
6735 free (cinfo.hashcodes);
6736 }
6737 }
6738
6739 s = bfd_get_linker_section (dynobj, ".dynstr");
6740 BFD_ASSERT (s != NULL);
6741
6742 elf_finalize_dynstr (output_bfd, info);
6743
6744 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6745
6746 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6747 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6748 return FALSE;
6749 }
6750
6751 return TRUE;
6752 }
6753 \f
6754 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6755
6756 static void
6757 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6758 asection *sec)
6759 {
6760 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6761 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6762 }
6763
6764 /* Finish SHF_MERGE section merging. */
6765
6766 bfd_boolean
6767 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6768 {
6769 bfd *ibfd;
6770 asection *sec;
6771
6772 if (!is_elf_hash_table (info->hash))
6773 return FALSE;
6774
6775 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6776 if ((ibfd->flags & DYNAMIC) == 0)
6777 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6778 if ((sec->flags & SEC_MERGE) != 0
6779 && !bfd_is_abs_section (sec->output_section))
6780 {
6781 struct bfd_elf_section_data *secdata;
6782
6783 secdata = elf_section_data (sec);
6784 if (! _bfd_add_merge_section (abfd,
6785 &elf_hash_table (info)->merge_info,
6786 sec, &secdata->sec_info))
6787 return FALSE;
6788 else if (secdata->sec_info)
6789 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6790 }
6791
6792 if (elf_hash_table (info)->merge_info != NULL)
6793 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6794 merge_sections_remove_hook);
6795 return TRUE;
6796 }
6797
6798 /* Create an entry in an ELF linker hash table. */
6799
6800 struct bfd_hash_entry *
6801 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6802 struct bfd_hash_table *table,
6803 const char *string)
6804 {
6805 /* Allocate the structure if it has not already been allocated by a
6806 subclass. */
6807 if (entry == NULL)
6808 {
6809 entry = (struct bfd_hash_entry *)
6810 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6811 if (entry == NULL)
6812 return entry;
6813 }
6814
6815 /* Call the allocation method of the superclass. */
6816 entry = _bfd_link_hash_newfunc (entry, table, string);
6817 if (entry != NULL)
6818 {
6819 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6820 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6821
6822 /* Set local fields. */
6823 ret->indx = -1;
6824 ret->dynindx = -1;
6825 ret->got = htab->init_got_refcount;
6826 ret->plt = htab->init_plt_refcount;
6827 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6828 - offsetof (struct elf_link_hash_entry, size)));
6829 /* Assume that we have been called by a non-ELF symbol reader.
6830 This flag is then reset by the code which reads an ELF input
6831 file. This ensures that a symbol created by a non-ELF symbol
6832 reader will have the flag set correctly. */
6833 ret->non_elf = 1;
6834 }
6835
6836 return entry;
6837 }
6838
6839 /* Copy data from an indirect symbol to its direct symbol, hiding the
6840 old indirect symbol. Also used for copying flags to a weakdef. */
6841
6842 void
6843 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6844 struct elf_link_hash_entry *dir,
6845 struct elf_link_hash_entry *ind)
6846 {
6847 struct elf_link_hash_table *htab;
6848
6849 /* Copy down any references that we may have already seen to the
6850 symbol which just became indirect. */
6851
6852 dir->ref_dynamic |= ind->ref_dynamic;
6853 dir->ref_regular |= ind->ref_regular;
6854 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6855 dir->non_got_ref |= ind->non_got_ref;
6856 dir->needs_plt |= ind->needs_plt;
6857 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6858
6859 if (ind->root.type != bfd_link_hash_indirect)
6860 return;
6861
6862 /* Copy over the global and procedure linkage table refcount entries.
6863 These may have been already set up by a check_relocs routine. */
6864 htab = elf_hash_table (info);
6865 if (ind->got.refcount > htab->init_got_refcount.refcount)
6866 {
6867 if (dir->got.refcount < 0)
6868 dir->got.refcount = 0;
6869 dir->got.refcount += ind->got.refcount;
6870 ind->got.refcount = htab->init_got_refcount.refcount;
6871 }
6872
6873 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6874 {
6875 if (dir->plt.refcount < 0)
6876 dir->plt.refcount = 0;
6877 dir->plt.refcount += ind->plt.refcount;
6878 ind->plt.refcount = htab->init_plt_refcount.refcount;
6879 }
6880
6881 if (ind->dynindx != -1)
6882 {
6883 if (dir->dynindx != -1)
6884 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6885 dir->dynindx = ind->dynindx;
6886 dir->dynstr_index = ind->dynstr_index;
6887 ind->dynindx = -1;
6888 ind->dynstr_index = 0;
6889 }
6890 }
6891
6892 void
6893 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6894 struct elf_link_hash_entry *h,
6895 bfd_boolean force_local)
6896 {
6897 /* STT_GNU_IFUNC symbol must go through PLT. */
6898 if (h->type != STT_GNU_IFUNC)
6899 {
6900 h->plt = elf_hash_table (info)->init_plt_offset;
6901 h->needs_plt = 0;
6902 }
6903 if (force_local)
6904 {
6905 h->forced_local = 1;
6906 if (h->dynindx != -1)
6907 {
6908 h->dynindx = -1;
6909 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6910 h->dynstr_index);
6911 }
6912 }
6913 }
6914
6915 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6916 caller. */
6917
6918 bfd_boolean
6919 _bfd_elf_link_hash_table_init
6920 (struct elf_link_hash_table *table,
6921 bfd *abfd,
6922 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6923 struct bfd_hash_table *,
6924 const char *),
6925 unsigned int entsize,
6926 enum elf_target_id target_id)
6927 {
6928 bfd_boolean ret;
6929 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6930
6931 table->init_got_refcount.refcount = can_refcount - 1;
6932 table->init_plt_refcount.refcount = can_refcount - 1;
6933 table->init_got_offset.offset = -(bfd_vma) 1;
6934 table->init_plt_offset.offset = -(bfd_vma) 1;
6935 /* The first dynamic symbol is a dummy. */
6936 table->dynsymcount = 1;
6937
6938 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6939
6940 table->root.type = bfd_link_elf_hash_table;
6941 table->hash_table_id = target_id;
6942
6943 return ret;
6944 }
6945
6946 /* Create an ELF linker hash table. */
6947
6948 struct bfd_link_hash_table *
6949 _bfd_elf_link_hash_table_create (bfd *abfd)
6950 {
6951 struct elf_link_hash_table *ret;
6952 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6953
6954 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6955 if (ret == NULL)
6956 return NULL;
6957
6958 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6959 sizeof (struct elf_link_hash_entry),
6960 GENERIC_ELF_DATA))
6961 {
6962 free (ret);
6963 return NULL;
6964 }
6965
6966 return &ret->root;
6967 }
6968
6969 /* Destroy an ELF linker hash table. */
6970
6971 void
6972 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6973 {
6974 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6975 if (htab->dynstr != NULL)
6976 _bfd_elf_strtab_free (htab->dynstr);
6977 _bfd_merge_sections_free (htab->merge_info);
6978 _bfd_generic_link_hash_table_free (hash);
6979 }
6980
6981 /* This is a hook for the ELF emulation code in the generic linker to
6982 tell the backend linker what file name to use for the DT_NEEDED
6983 entry for a dynamic object. */
6984
6985 void
6986 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6987 {
6988 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6989 && bfd_get_format (abfd) == bfd_object)
6990 elf_dt_name (abfd) = name;
6991 }
6992
6993 int
6994 bfd_elf_get_dyn_lib_class (bfd *abfd)
6995 {
6996 int lib_class;
6997 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6998 && bfd_get_format (abfd) == bfd_object)
6999 lib_class = elf_dyn_lib_class (abfd);
7000 else
7001 lib_class = 0;
7002 return lib_class;
7003 }
7004
7005 void
7006 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7007 {
7008 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7009 && bfd_get_format (abfd) == bfd_object)
7010 elf_dyn_lib_class (abfd) = lib_class;
7011 }
7012
7013 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7014 the linker ELF emulation code. */
7015
7016 struct bfd_link_needed_list *
7017 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7018 struct bfd_link_info *info)
7019 {
7020 if (! is_elf_hash_table (info->hash))
7021 return NULL;
7022 return elf_hash_table (info)->needed;
7023 }
7024
7025 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7026 hook for the linker ELF emulation code. */
7027
7028 struct bfd_link_needed_list *
7029 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7030 struct bfd_link_info *info)
7031 {
7032 if (! is_elf_hash_table (info->hash))
7033 return NULL;
7034 return elf_hash_table (info)->runpath;
7035 }
7036
7037 /* Get the name actually used for a dynamic object for a link. This
7038 is the SONAME entry if there is one. Otherwise, it is the string
7039 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7040
7041 const char *
7042 bfd_elf_get_dt_soname (bfd *abfd)
7043 {
7044 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7045 && bfd_get_format (abfd) == bfd_object)
7046 return elf_dt_name (abfd);
7047 return NULL;
7048 }
7049
7050 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7051 the ELF linker emulation code. */
7052
7053 bfd_boolean
7054 bfd_elf_get_bfd_needed_list (bfd *abfd,
7055 struct bfd_link_needed_list **pneeded)
7056 {
7057 asection *s;
7058 bfd_byte *dynbuf = NULL;
7059 unsigned int elfsec;
7060 unsigned long shlink;
7061 bfd_byte *extdyn, *extdynend;
7062 size_t extdynsize;
7063 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7064
7065 *pneeded = NULL;
7066
7067 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7068 || bfd_get_format (abfd) != bfd_object)
7069 return TRUE;
7070
7071 s = bfd_get_section_by_name (abfd, ".dynamic");
7072 if (s == NULL || s->size == 0)
7073 return TRUE;
7074
7075 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7076 goto error_return;
7077
7078 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7079 if (elfsec == SHN_BAD)
7080 goto error_return;
7081
7082 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7083
7084 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7085 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7086
7087 extdyn = dynbuf;
7088 extdynend = extdyn + s->size;
7089 for (; extdyn < extdynend; extdyn += extdynsize)
7090 {
7091 Elf_Internal_Dyn dyn;
7092
7093 (*swap_dyn_in) (abfd, extdyn, &dyn);
7094
7095 if (dyn.d_tag == DT_NULL)
7096 break;
7097
7098 if (dyn.d_tag == DT_NEEDED)
7099 {
7100 const char *string;
7101 struct bfd_link_needed_list *l;
7102 unsigned int tagv = dyn.d_un.d_val;
7103 bfd_size_type amt;
7104
7105 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7106 if (string == NULL)
7107 goto error_return;
7108
7109 amt = sizeof *l;
7110 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7111 if (l == NULL)
7112 goto error_return;
7113
7114 l->by = abfd;
7115 l->name = string;
7116 l->next = *pneeded;
7117 *pneeded = l;
7118 }
7119 }
7120
7121 free (dynbuf);
7122
7123 return TRUE;
7124
7125 error_return:
7126 if (dynbuf != NULL)
7127 free (dynbuf);
7128 return FALSE;
7129 }
7130
7131 struct elf_symbuf_symbol
7132 {
7133 unsigned long st_name; /* Symbol name, index in string tbl */
7134 unsigned char st_info; /* Type and binding attributes */
7135 unsigned char st_other; /* Visibilty, and target specific */
7136 };
7137
7138 struct elf_symbuf_head
7139 {
7140 struct elf_symbuf_symbol *ssym;
7141 bfd_size_type count;
7142 unsigned int st_shndx;
7143 };
7144
7145 struct elf_symbol
7146 {
7147 union
7148 {
7149 Elf_Internal_Sym *isym;
7150 struct elf_symbuf_symbol *ssym;
7151 } u;
7152 const char *name;
7153 };
7154
7155 /* Sort references to symbols by ascending section number. */
7156
7157 static int
7158 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7159 {
7160 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7161 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7162
7163 return s1->st_shndx - s2->st_shndx;
7164 }
7165
7166 static int
7167 elf_sym_name_compare (const void *arg1, const void *arg2)
7168 {
7169 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7170 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7171 return strcmp (s1->name, s2->name);
7172 }
7173
7174 static struct elf_symbuf_head *
7175 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7176 {
7177 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7178 struct elf_symbuf_symbol *ssym;
7179 struct elf_symbuf_head *ssymbuf, *ssymhead;
7180 bfd_size_type i, shndx_count, total_size;
7181
7182 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7183 if (indbuf == NULL)
7184 return NULL;
7185
7186 for (ind = indbuf, i = 0; i < symcount; i++)
7187 if (isymbuf[i].st_shndx != SHN_UNDEF)
7188 *ind++ = &isymbuf[i];
7189 indbufend = ind;
7190
7191 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7192 elf_sort_elf_symbol);
7193
7194 shndx_count = 0;
7195 if (indbufend > indbuf)
7196 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7197 if (ind[0]->st_shndx != ind[1]->st_shndx)
7198 shndx_count++;
7199
7200 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7201 + (indbufend - indbuf) * sizeof (*ssym));
7202 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7203 if (ssymbuf == NULL)
7204 {
7205 free (indbuf);
7206 return NULL;
7207 }
7208
7209 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7210 ssymbuf->ssym = NULL;
7211 ssymbuf->count = shndx_count;
7212 ssymbuf->st_shndx = 0;
7213 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7214 {
7215 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7216 {
7217 ssymhead++;
7218 ssymhead->ssym = ssym;
7219 ssymhead->count = 0;
7220 ssymhead->st_shndx = (*ind)->st_shndx;
7221 }
7222 ssym->st_name = (*ind)->st_name;
7223 ssym->st_info = (*ind)->st_info;
7224 ssym->st_other = (*ind)->st_other;
7225 ssymhead->count++;
7226 }
7227 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7228 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7229 == total_size));
7230
7231 free (indbuf);
7232 return ssymbuf;
7233 }
7234
7235 /* Check if 2 sections define the same set of local and global
7236 symbols. */
7237
7238 static bfd_boolean
7239 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7240 struct bfd_link_info *info)
7241 {
7242 bfd *bfd1, *bfd2;
7243 const struct elf_backend_data *bed1, *bed2;
7244 Elf_Internal_Shdr *hdr1, *hdr2;
7245 bfd_size_type symcount1, symcount2;
7246 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7247 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7248 Elf_Internal_Sym *isym, *isymend;
7249 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7250 bfd_size_type count1, count2, i;
7251 unsigned int shndx1, shndx2;
7252 bfd_boolean result;
7253
7254 bfd1 = sec1->owner;
7255 bfd2 = sec2->owner;
7256
7257 /* Both sections have to be in ELF. */
7258 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7259 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7260 return FALSE;
7261
7262 if (elf_section_type (sec1) != elf_section_type (sec2))
7263 return FALSE;
7264
7265 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7266 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7267 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7268 return FALSE;
7269
7270 bed1 = get_elf_backend_data (bfd1);
7271 bed2 = get_elf_backend_data (bfd2);
7272 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7273 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7274 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7275 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7276
7277 if (symcount1 == 0 || symcount2 == 0)
7278 return FALSE;
7279
7280 result = FALSE;
7281 isymbuf1 = NULL;
7282 isymbuf2 = NULL;
7283 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7284 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7285
7286 if (ssymbuf1 == NULL)
7287 {
7288 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7289 NULL, NULL, NULL);
7290 if (isymbuf1 == NULL)
7291 goto done;
7292
7293 if (!info->reduce_memory_overheads)
7294 elf_tdata (bfd1)->symbuf = ssymbuf1
7295 = elf_create_symbuf (symcount1, isymbuf1);
7296 }
7297
7298 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7299 {
7300 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7301 NULL, NULL, NULL);
7302 if (isymbuf2 == NULL)
7303 goto done;
7304
7305 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7306 elf_tdata (bfd2)->symbuf = ssymbuf2
7307 = elf_create_symbuf (symcount2, isymbuf2);
7308 }
7309
7310 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7311 {
7312 /* Optimized faster version. */
7313 bfd_size_type lo, hi, mid;
7314 struct elf_symbol *symp;
7315 struct elf_symbuf_symbol *ssym, *ssymend;
7316
7317 lo = 0;
7318 hi = ssymbuf1->count;
7319 ssymbuf1++;
7320 count1 = 0;
7321 while (lo < hi)
7322 {
7323 mid = (lo + hi) / 2;
7324 if (shndx1 < ssymbuf1[mid].st_shndx)
7325 hi = mid;
7326 else if (shndx1 > ssymbuf1[mid].st_shndx)
7327 lo = mid + 1;
7328 else
7329 {
7330 count1 = ssymbuf1[mid].count;
7331 ssymbuf1 += mid;
7332 break;
7333 }
7334 }
7335
7336 lo = 0;
7337 hi = ssymbuf2->count;
7338 ssymbuf2++;
7339 count2 = 0;
7340 while (lo < hi)
7341 {
7342 mid = (lo + hi) / 2;
7343 if (shndx2 < ssymbuf2[mid].st_shndx)
7344 hi = mid;
7345 else if (shndx2 > ssymbuf2[mid].st_shndx)
7346 lo = mid + 1;
7347 else
7348 {
7349 count2 = ssymbuf2[mid].count;
7350 ssymbuf2 += mid;
7351 break;
7352 }
7353 }
7354
7355 if (count1 == 0 || count2 == 0 || count1 != count2)
7356 goto done;
7357
7358 symtable1 = (struct elf_symbol *)
7359 bfd_malloc (count1 * sizeof (struct elf_symbol));
7360 symtable2 = (struct elf_symbol *)
7361 bfd_malloc (count2 * sizeof (struct elf_symbol));
7362 if (symtable1 == NULL || symtable2 == NULL)
7363 goto done;
7364
7365 symp = symtable1;
7366 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7367 ssym < ssymend; ssym++, symp++)
7368 {
7369 symp->u.ssym = ssym;
7370 symp->name = bfd_elf_string_from_elf_section (bfd1,
7371 hdr1->sh_link,
7372 ssym->st_name);
7373 }
7374
7375 symp = symtable2;
7376 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7377 ssym < ssymend; ssym++, symp++)
7378 {
7379 symp->u.ssym = ssym;
7380 symp->name = bfd_elf_string_from_elf_section (bfd2,
7381 hdr2->sh_link,
7382 ssym->st_name);
7383 }
7384
7385 /* Sort symbol by name. */
7386 qsort (symtable1, count1, sizeof (struct elf_symbol),
7387 elf_sym_name_compare);
7388 qsort (symtable2, count1, sizeof (struct elf_symbol),
7389 elf_sym_name_compare);
7390
7391 for (i = 0; i < count1; i++)
7392 /* Two symbols must have the same binding, type and name. */
7393 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7394 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7395 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7396 goto done;
7397
7398 result = TRUE;
7399 goto done;
7400 }
7401
7402 symtable1 = (struct elf_symbol *)
7403 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7404 symtable2 = (struct elf_symbol *)
7405 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7406 if (symtable1 == NULL || symtable2 == NULL)
7407 goto done;
7408
7409 /* Count definitions in the section. */
7410 count1 = 0;
7411 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7412 if (isym->st_shndx == shndx1)
7413 symtable1[count1++].u.isym = isym;
7414
7415 count2 = 0;
7416 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7417 if (isym->st_shndx == shndx2)
7418 symtable2[count2++].u.isym = isym;
7419
7420 if (count1 == 0 || count2 == 0 || count1 != count2)
7421 goto done;
7422
7423 for (i = 0; i < count1; i++)
7424 symtable1[i].name
7425 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7426 symtable1[i].u.isym->st_name);
7427
7428 for (i = 0; i < count2; i++)
7429 symtable2[i].name
7430 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7431 symtable2[i].u.isym->st_name);
7432
7433 /* Sort symbol by name. */
7434 qsort (symtable1, count1, sizeof (struct elf_symbol),
7435 elf_sym_name_compare);
7436 qsort (symtable2, count1, sizeof (struct elf_symbol),
7437 elf_sym_name_compare);
7438
7439 for (i = 0; i < count1; i++)
7440 /* Two symbols must have the same binding, type and name. */
7441 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7442 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7443 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7444 goto done;
7445
7446 result = TRUE;
7447
7448 done:
7449 if (symtable1)
7450 free (symtable1);
7451 if (symtable2)
7452 free (symtable2);
7453 if (isymbuf1)
7454 free (isymbuf1);
7455 if (isymbuf2)
7456 free (isymbuf2);
7457
7458 return result;
7459 }
7460
7461 /* Return TRUE if 2 section types are compatible. */
7462
7463 bfd_boolean
7464 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7465 bfd *bbfd, const asection *bsec)
7466 {
7467 if (asec == NULL
7468 || bsec == NULL
7469 || abfd->xvec->flavour != bfd_target_elf_flavour
7470 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7471 return TRUE;
7472
7473 return elf_section_type (asec) == elf_section_type (bsec);
7474 }
7475 \f
7476 /* Final phase of ELF linker. */
7477
7478 /* A structure we use to avoid passing large numbers of arguments. */
7479
7480 struct elf_final_link_info
7481 {
7482 /* General link information. */
7483 struct bfd_link_info *info;
7484 /* Output BFD. */
7485 bfd *output_bfd;
7486 /* Symbol string table. */
7487 struct bfd_strtab_hash *symstrtab;
7488 /* .dynsym section. */
7489 asection *dynsym_sec;
7490 /* .hash section. */
7491 asection *hash_sec;
7492 /* symbol version section (.gnu.version). */
7493 asection *symver_sec;
7494 /* Buffer large enough to hold contents of any section. */
7495 bfd_byte *contents;
7496 /* Buffer large enough to hold external relocs of any section. */
7497 void *external_relocs;
7498 /* Buffer large enough to hold internal relocs of any section. */
7499 Elf_Internal_Rela *internal_relocs;
7500 /* Buffer large enough to hold external local symbols of any input
7501 BFD. */
7502 bfd_byte *external_syms;
7503 /* And a buffer for symbol section indices. */
7504 Elf_External_Sym_Shndx *locsym_shndx;
7505 /* Buffer large enough to hold internal local symbols of any input
7506 BFD. */
7507 Elf_Internal_Sym *internal_syms;
7508 /* Array large enough to hold a symbol index for each local symbol
7509 of any input BFD. */
7510 long *indices;
7511 /* Array large enough to hold a section pointer for each local
7512 symbol of any input BFD. */
7513 asection **sections;
7514 /* Buffer to hold swapped out symbols. */
7515 bfd_byte *symbuf;
7516 /* And one for symbol section indices. */
7517 Elf_External_Sym_Shndx *symshndxbuf;
7518 /* Number of swapped out symbols in buffer. */
7519 size_t symbuf_count;
7520 /* Number of symbols which fit in symbuf. */
7521 size_t symbuf_size;
7522 /* And same for symshndxbuf. */
7523 size_t shndxbuf_size;
7524 /* Number of STT_FILE syms seen. */
7525 size_t filesym_count;
7526 };
7527
7528 /* This struct is used to pass information to elf_link_output_extsym. */
7529
7530 struct elf_outext_info
7531 {
7532 bfd_boolean failed;
7533 bfd_boolean localsyms;
7534 bfd_boolean need_second_pass;
7535 bfd_boolean second_pass;
7536 struct elf_final_link_info *flinfo;
7537 };
7538
7539
7540 /* Support for evaluating a complex relocation.
7541
7542 Complex relocations are generalized, self-describing relocations. The
7543 implementation of them consists of two parts: complex symbols, and the
7544 relocations themselves.
7545
7546 The relocations are use a reserved elf-wide relocation type code (R_RELC
7547 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7548 information (start bit, end bit, word width, etc) into the addend. This
7549 information is extracted from CGEN-generated operand tables within gas.
7550
7551 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7552 internal) representing prefix-notation expressions, including but not
7553 limited to those sorts of expressions normally encoded as addends in the
7554 addend field. The symbol mangling format is:
7555
7556 <node> := <literal>
7557 | <unary-operator> ':' <node>
7558 | <binary-operator> ':' <node> ':' <node>
7559 ;
7560
7561 <literal> := 's' <digits=N> ':' <N character symbol name>
7562 | 'S' <digits=N> ':' <N character section name>
7563 | '#' <hexdigits>
7564 ;
7565
7566 <binary-operator> := as in C
7567 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7568
7569 static void
7570 set_symbol_value (bfd *bfd_with_globals,
7571 Elf_Internal_Sym *isymbuf,
7572 size_t locsymcount,
7573 size_t symidx,
7574 bfd_vma val)
7575 {
7576 struct elf_link_hash_entry **sym_hashes;
7577 struct elf_link_hash_entry *h;
7578 size_t extsymoff = locsymcount;
7579
7580 if (symidx < locsymcount)
7581 {
7582 Elf_Internal_Sym *sym;
7583
7584 sym = isymbuf + symidx;
7585 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7586 {
7587 /* It is a local symbol: move it to the
7588 "absolute" section and give it a value. */
7589 sym->st_shndx = SHN_ABS;
7590 sym->st_value = val;
7591 return;
7592 }
7593 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7594 extsymoff = 0;
7595 }
7596
7597 /* It is a global symbol: set its link type
7598 to "defined" and give it a value. */
7599
7600 sym_hashes = elf_sym_hashes (bfd_with_globals);
7601 h = sym_hashes [symidx - extsymoff];
7602 while (h->root.type == bfd_link_hash_indirect
7603 || h->root.type == bfd_link_hash_warning)
7604 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7605 h->root.type = bfd_link_hash_defined;
7606 h->root.u.def.value = val;
7607 h->root.u.def.section = bfd_abs_section_ptr;
7608 }
7609
7610 static bfd_boolean
7611 resolve_symbol (const char *name,
7612 bfd *input_bfd,
7613 struct elf_final_link_info *flinfo,
7614 bfd_vma *result,
7615 Elf_Internal_Sym *isymbuf,
7616 size_t locsymcount)
7617 {
7618 Elf_Internal_Sym *sym;
7619 struct bfd_link_hash_entry *global_entry;
7620 const char *candidate = NULL;
7621 Elf_Internal_Shdr *symtab_hdr;
7622 size_t i;
7623
7624 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7625
7626 for (i = 0; i < locsymcount; ++ i)
7627 {
7628 sym = isymbuf + i;
7629
7630 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7631 continue;
7632
7633 candidate = bfd_elf_string_from_elf_section (input_bfd,
7634 symtab_hdr->sh_link,
7635 sym->st_name);
7636 #ifdef DEBUG
7637 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7638 name, candidate, (unsigned long) sym->st_value);
7639 #endif
7640 if (candidate && strcmp (candidate, name) == 0)
7641 {
7642 asection *sec = flinfo->sections [i];
7643
7644 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7645 *result += sec->output_offset + sec->output_section->vma;
7646 #ifdef DEBUG
7647 printf ("Found symbol with value %8.8lx\n",
7648 (unsigned long) *result);
7649 #endif
7650 return TRUE;
7651 }
7652 }
7653
7654 /* Hmm, haven't found it yet. perhaps it is a global. */
7655 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7656 FALSE, FALSE, TRUE);
7657 if (!global_entry)
7658 return FALSE;
7659
7660 if (global_entry->type == bfd_link_hash_defined
7661 || global_entry->type == bfd_link_hash_defweak)
7662 {
7663 *result = (global_entry->u.def.value
7664 + global_entry->u.def.section->output_section->vma
7665 + global_entry->u.def.section->output_offset);
7666 #ifdef DEBUG
7667 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7668 global_entry->root.string, (unsigned long) *result);
7669 #endif
7670 return TRUE;
7671 }
7672
7673 return FALSE;
7674 }
7675
7676 static bfd_boolean
7677 resolve_section (const char *name,
7678 asection *sections,
7679 bfd_vma *result)
7680 {
7681 asection *curr;
7682 unsigned int len;
7683
7684 for (curr = sections; curr; curr = curr->next)
7685 if (strcmp (curr->name, name) == 0)
7686 {
7687 *result = curr->vma;
7688 return TRUE;
7689 }
7690
7691 /* Hmm. still haven't found it. try pseudo-section names. */
7692 for (curr = sections; curr; curr = curr->next)
7693 {
7694 len = strlen (curr->name);
7695 if (len > strlen (name))
7696 continue;
7697
7698 if (strncmp (curr->name, name, len) == 0)
7699 {
7700 if (strncmp (".end", name + len, 4) == 0)
7701 {
7702 *result = curr->vma + curr->size;
7703 return TRUE;
7704 }
7705
7706 /* Insert more pseudo-section names here, if you like. */
7707 }
7708 }
7709
7710 return FALSE;
7711 }
7712
7713 static void
7714 undefined_reference (const char *reftype, const char *name)
7715 {
7716 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7717 reftype, name);
7718 }
7719
7720 static bfd_boolean
7721 eval_symbol (bfd_vma *result,
7722 const char **symp,
7723 bfd *input_bfd,
7724 struct elf_final_link_info *flinfo,
7725 bfd_vma dot,
7726 Elf_Internal_Sym *isymbuf,
7727 size_t locsymcount,
7728 int signed_p)
7729 {
7730 size_t len;
7731 size_t symlen;
7732 bfd_vma a;
7733 bfd_vma b;
7734 char symbuf[4096];
7735 const char *sym = *symp;
7736 const char *symend;
7737 bfd_boolean symbol_is_section = FALSE;
7738
7739 len = strlen (sym);
7740 symend = sym + len;
7741
7742 if (len < 1 || len > sizeof (symbuf))
7743 {
7744 bfd_set_error (bfd_error_invalid_operation);
7745 return FALSE;
7746 }
7747
7748 switch (* sym)
7749 {
7750 case '.':
7751 *result = dot;
7752 *symp = sym + 1;
7753 return TRUE;
7754
7755 case '#':
7756 ++sym;
7757 *result = strtoul (sym, (char **) symp, 16);
7758 return TRUE;
7759
7760 case 'S':
7761 symbol_is_section = TRUE;
7762 case 's':
7763 ++sym;
7764 symlen = strtol (sym, (char **) symp, 10);
7765 sym = *symp + 1; /* Skip the trailing ':'. */
7766
7767 if (symend < sym || symlen + 1 > sizeof (symbuf))
7768 {
7769 bfd_set_error (bfd_error_invalid_operation);
7770 return FALSE;
7771 }
7772
7773 memcpy (symbuf, sym, symlen);
7774 symbuf[symlen] = '\0';
7775 *symp = sym + symlen;
7776
7777 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7778 the symbol as a section, or vice-versa. so we're pretty liberal in our
7779 interpretation here; section means "try section first", not "must be a
7780 section", and likewise with symbol. */
7781
7782 if (symbol_is_section)
7783 {
7784 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7785 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7786 isymbuf, locsymcount))
7787 {
7788 undefined_reference ("section", symbuf);
7789 return FALSE;
7790 }
7791 }
7792 else
7793 {
7794 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7795 isymbuf, locsymcount)
7796 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7797 result))
7798 {
7799 undefined_reference ("symbol", symbuf);
7800 return FALSE;
7801 }
7802 }
7803
7804 return TRUE;
7805
7806 /* All that remains are operators. */
7807
7808 #define UNARY_OP(op) \
7809 if (strncmp (sym, #op, strlen (#op)) == 0) \
7810 { \
7811 sym += strlen (#op); \
7812 if (*sym == ':') \
7813 ++sym; \
7814 *symp = sym; \
7815 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7816 isymbuf, locsymcount, signed_p)) \
7817 return FALSE; \
7818 if (signed_p) \
7819 *result = op ((bfd_signed_vma) a); \
7820 else \
7821 *result = op a; \
7822 return TRUE; \
7823 }
7824
7825 #define BINARY_OP(op) \
7826 if (strncmp (sym, #op, strlen (#op)) == 0) \
7827 { \
7828 sym += strlen (#op); \
7829 if (*sym == ':') \
7830 ++sym; \
7831 *symp = sym; \
7832 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7833 isymbuf, locsymcount, signed_p)) \
7834 return FALSE; \
7835 ++*symp; \
7836 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7837 isymbuf, locsymcount, signed_p)) \
7838 return FALSE; \
7839 if (signed_p) \
7840 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7841 else \
7842 *result = a op b; \
7843 return TRUE; \
7844 }
7845
7846 default:
7847 UNARY_OP (0-);
7848 BINARY_OP (<<);
7849 BINARY_OP (>>);
7850 BINARY_OP (==);
7851 BINARY_OP (!=);
7852 BINARY_OP (<=);
7853 BINARY_OP (>=);
7854 BINARY_OP (&&);
7855 BINARY_OP (||);
7856 UNARY_OP (~);
7857 UNARY_OP (!);
7858 BINARY_OP (*);
7859 BINARY_OP (/);
7860 BINARY_OP (%);
7861 BINARY_OP (^);
7862 BINARY_OP (|);
7863 BINARY_OP (&);
7864 BINARY_OP (+);
7865 BINARY_OP (-);
7866 BINARY_OP (<);
7867 BINARY_OP (>);
7868 #undef UNARY_OP
7869 #undef BINARY_OP
7870 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7871 bfd_set_error (bfd_error_invalid_operation);
7872 return FALSE;
7873 }
7874 }
7875
7876 static void
7877 put_value (bfd_vma size,
7878 unsigned long chunksz,
7879 bfd *input_bfd,
7880 bfd_vma x,
7881 bfd_byte *location)
7882 {
7883 location += (size - chunksz);
7884
7885 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7886 {
7887 switch (chunksz)
7888 {
7889 default:
7890 case 0:
7891 abort ();
7892 case 1:
7893 bfd_put_8 (input_bfd, x, location);
7894 break;
7895 case 2:
7896 bfd_put_16 (input_bfd, x, location);
7897 break;
7898 case 4:
7899 bfd_put_32 (input_bfd, x, location);
7900 break;
7901 case 8:
7902 #ifdef BFD64
7903 bfd_put_64 (input_bfd, x, location);
7904 #else
7905 abort ();
7906 #endif
7907 break;
7908 }
7909 }
7910 }
7911
7912 static bfd_vma
7913 get_value (bfd_vma size,
7914 unsigned long chunksz,
7915 bfd *input_bfd,
7916 bfd_byte *location)
7917 {
7918 int shift;
7919 bfd_vma x = 0;
7920
7921 /* Sanity checks. */
7922 BFD_ASSERT (chunksz <= sizeof (x)
7923 && size >= chunksz
7924 && chunksz != 0
7925 && (size % chunksz) == 0
7926 && input_bfd != NULL
7927 && location != NULL);
7928
7929 if (chunksz == sizeof (x))
7930 {
7931 BFD_ASSERT (size == chunksz);
7932
7933 /* Make sure that we do not perform an undefined shift operation.
7934 We know that size == chunksz so there will only be one iteration
7935 of the loop below. */
7936 shift = 0;
7937 }
7938 else
7939 shift = 8 * chunksz;
7940
7941 for (; size; size -= chunksz, location += chunksz)
7942 {
7943 switch (chunksz)
7944 {
7945 case 1:
7946 x = (x << shift) | bfd_get_8 (input_bfd, location);
7947 break;
7948 case 2:
7949 x = (x << shift) | bfd_get_16 (input_bfd, location);
7950 break;
7951 case 4:
7952 x = (x << shift) | bfd_get_32 (input_bfd, location);
7953 break;
7954 #ifdef BFD64
7955 case 8:
7956 x = (x << shift) | bfd_get_64 (input_bfd, location);
7957 break;
7958 #endif
7959 default:
7960 abort ();
7961 }
7962 }
7963 return x;
7964 }
7965
7966 static void
7967 decode_complex_addend (unsigned long *start, /* in bits */
7968 unsigned long *oplen, /* in bits */
7969 unsigned long *len, /* in bits */
7970 unsigned long *wordsz, /* in bytes */
7971 unsigned long *chunksz, /* in bytes */
7972 unsigned long *lsb0_p,
7973 unsigned long *signed_p,
7974 unsigned long *trunc_p,
7975 unsigned long encoded)
7976 {
7977 * start = encoded & 0x3F;
7978 * len = (encoded >> 6) & 0x3F;
7979 * oplen = (encoded >> 12) & 0x3F;
7980 * wordsz = (encoded >> 18) & 0xF;
7981 * chunksz = (encoded >> 22) & 0xF;
7982 * lsb0_p = (encoded >> 27) & 1;
7983 * signed_p = (encoded >> 28) & 1;
7984 * trunc_p = (encoded >> 29) & 1;
7985 }
7986
7987 bfd_reloc_status_type
7988 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7989 asection *input_section ATTRIBUTE_UNUSED,
7990 bfd_byte *contents,
7991 Elf_Internal_Rela *rel,
7992 bfd_vma relocation)
7993 {
7994 bfd_vma shift, x, mask;
7995 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7996 bfd_reloc_status_type r;
7997
7998 /* Perform this reloc, since it is complex.
7999 (this is not to say that it necessarily refers to a complex
8000 symbol; merely that it is a self-describing CGEN based reloc.
8001 i.e. the addend has the complete reloc information (bit start, end,
8002 word size, etc) encoded within it.). */
8003
8004 decode_complex_addend (&start, &oplen, &len, &wordsz,
8005 &chunksz, &lsb0_p, &signed_p,
8006 &trunc_p, rel->r_addend);
8007
8008 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8009
8010 if (lsb0_p)
8011 shift = (start + 1) - len;
8012 else
8013 shift = (8 * wordsz) - (start + len);
8014
8015 /* FIXME: octets_per_byte. */
8016 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8017
8018 #ifdef DEBUG
8019 printf ("Doing complex reloc: "
8020 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8021 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8022 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8023 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8024 oplen, (unsigned long) x, (unsigned long) mask,
8025 (unsigned long) relocation);
8026 #endif
8027
8028 r = bfd_reloc_ok;
8029 if (! trunc_p)
8030 /* Now do an overflow check. */
8031 r = bfd_check_overflow ((signed_p
8032 ? complain_overflow_signed
8033 : complain_overflow_unsigned),
8034 len, 0, (8 * wordsz),
8035 relocation);
8036
8037 /* Do the deed. */
8038 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8039
8040 #ifdef DEBUG
8041 printf (" relocation: %8.8lx\n"
8042 " shifted mask: %8.8lx\n"
8043 " shifted/masked reloc: %8.8lx\n"
8044 " result: %8.8lx\n",
8045 (unsigned long) relocation, (unsigned long) (mask << shift),
8046 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8047 #endif
8048 /* FIXME: octets_per_byte. */
8049 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8050 return r;
8051 }
8052
8053 /* When performing a relocatable link, the input relocations are
8054 preserved. But, if they reference global symbols, the indices
8055 referenced must be updated. Update all the relocations found in
8056 RELDATA. */
8057
8058 static void
8059 elf_link_adjust_relocs (bfd *abfd,
8060 struct bfd_elf_section_reloc_data *reldata)
8061 {
8062 unsigned int i;
8063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8064 bfd_byte *erela;
8065 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8066 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8067 bfd_vma r_type_mask;
8068 int r_sym_shift;
8069 unsigned int count = reldata->count;
8070 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8071
8072 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8073 {
8074 swap_in = bed->s->swap_reloc_in;
8075 swap_out = bed->s->swap_reloc_out;
8076 }
8077 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8078 {
8079 swap_in = bed->s->swap_reloca_in;
8080 swap_out = bed->s->swap_reloca_out;
8081 }
8082 else
8083 abort ();
8084
8085 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8086 abort ();
8087
8088 if (bed->s->arch_size == 32)
8089 {
8090 r_type_mask = 0xff;
8091 r_sym_shift = 8;
8092 }
8093 else
8094 {
8095 r_type_mask = 0xffffffff;
8096 r_sym_shift = 32;
8097 }
8098
8099 erela = reldata->hdr->contents;
8100 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8101 {
8102 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8103 unsigned int j;
8104
8105 if (*rel_hash == NULL)
8106 continue;
8107
8108 BFD_ASSERT ((*rel_hash)->indx >= 0);
8109
8110 (*swap_in) (abfd, erela, irela);
8111 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8112 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8113 | (irela[j].r_info & r_type_mask));
8114 (*swap_out) (abfd, irela, erela);
8115 }
8116 }
8117
8118 struct elf_link_sort_rela
8119 {
8120 union {
8121 bfd_vma offset;
8122 bfd_vma sym_mask;
8123 } u;
8124 enum elf_reloc_type_class type;
8125 /* We use this as an array of size int_rels_per_ext_rel. */
8126 Elf_Internal_Rela rela[1];
8127 };
8128
8129 static int
8130 elf_link_sort_cmp1 (const void *A, const void *B)
8131 {
8132 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8133 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8134 int relativea, relativeb;
8135
8136 relativea = a->type == reloc_class_relative;
8137 relativeb = b->type == reloc_class_relative;
8138
8139 if (relativea < relativeb)
8140 return 1;
8141 if (relativea > relativeb)
8142 return -1;
8143 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8144 return -1;
8145 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8146 return 1;
8147 if (a->rela->r_offset < b->rela->r_offset)
8148 return -1;
8149 if (a->rela->r_offset > b->rela->r_offset)
8150 return 1;
8151 return 0;
8152 }
8153
8154 static int
8155 elf_link_sort_cmp2 (const void *A, const void *B)
8156 {
8157 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8158 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8159 int copya, copyb;
8160
8161 if (a->u.offset < b->u.offset)
8162 return -1;
8163 if (a->u.offset > b->u.offset)
8164 return 1;
8165 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8166 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8167 if (copya < copyb)
8168 return -1;
8169 if (copya > copyb)
8170 return 1;
8171 if (a->rela->r_offset < b->rela->r_offset)
8172 return -1;
8173 if (a->rela->r_offset > b->rela->r_offset)
8174 return 1;
8175 return 0;
8176 }
8177
8178 static size_t
8179 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8180 {
8181 asection *dynamic_relocs;
8182 asection *rela_dyn;
8183 asection *rel_dyn;
8184 bfd_size_type count, size;
8185 size_t i, ret, sort_elt, ext_size;
8186 bfd_byte *sort, *s_non_relative, *p;
8187 struct elf_link_sort_rela *sq;
8188 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8189 int i2e = bed->s->int_rels_per_ext_rel;
8190 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8191 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8192 struct bfd_link_order *lo;
8193 bfd_vma r_sym_mask;
8194 bfd_boolean use_rela;
8195
8196 /* Find a dynamic reloc section. */
8197 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8198 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8199 if (rela_dyn != NULL && rela_dyn->size > 0
8200 && rel_dyn != NULL && rel_dyn->size > 0)
8201 {
8202 bfd_boolean use_rela_initialised = FALSE;
8203
8204 /* This is just here to stop gcc from complaining.
8205 It's initialization checking code is not perfect. */
8206 use_rela = TRUE;
8207
8208 /* Both sections are present. Examine the sizes
8209 of the indirect sections to help us choose. */
8210 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8211 if (lo->type == bfd_indirect_link_order)
8212 {
8213 asection *o = lo->u.indirect.section;
8214
8215 if ((o->size % bed->s->sizeof_rela) == 0)
8216 {
8217 if ((o->size % bed->s->sizeof_rel) == 0)
8218 /* Section size is divisible by both rel and rela sizes.
8219 It is of no help to us. */
8220 ;
8221 else
8222 {
8223 /* Section size is only divisible by rela. */
8224 if (use_rela_initialised && (use_rela == FALSE))
8225 {
8226 _bfd_error_handler
8227 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8228 bfd_set_error (bfd_error_invalid_operation);
8229 return 0;
8230 }
8231 else
8232 {
8233 use_rela = TRUE;
8234 use_rela_initialised = TRUE;
8235 }
8236 }
8237 }
8238 else if ((o->size % bed->s->sizeof_rel) == 0)
8239 {
8240 /* Section size is only divisible by rel. */
8241 if (use_rela_initialised && (use_rela == TRUE))
8242 {
8243 _bfd_error_handler
8244 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8245 bfd_set_error (bfd_error_invalid_operation);
8246 return 0;
8247 }
8248 else
8249 {
8250 use_rela = FALSE;
8251 use_rela_initialised = TRUE;
8252 }
8253 }
8254 else
8255 {
8256 /* The section size is not divisible by either - something is wrong. */
8257 _bfd_error_handler
8258 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8259 bfd_set_error (bfd_error_invalid_operation);
8260 return 0;
8261 }
8262 }
8263
8264 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8265 if (lo->type == bfd_indirect_link_order)
8266 {
8267 asection *o = lo->u.indirect.section;
8268
8269 if ((o->size % bed->s->sizeof_rela) == 0)
8270 {
8271 if ((o->size % bed->s->sizeof_rel) == 0)
8272 /* Section size is divisible by both rel and rela sizes.
8273 It is of no help to us. */
8274 ;
8275 else
8276 {
8277 /* Section size is only divisible by rela. */
8278 if (use_rela_initialised && (use_rela == FALSE))
8279 {
8280 _bfd_error_handler
8281 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8282 bfd_set_error (bfd_error_invalid_operation);
8283 return 0;
8284 }
8285 else
8286 {
8287 use_rela = TRUE;
8288 use_rela_initialised = TRUE;
8289 }
8290 }
8291 }
8292 else if ((o->size % bed->s->sizeof_rel) == 0)
8293 {
8294 /* Section size is only divisible by rel. */
8295 if (use_rela_initialised && (use_rela == TRUE))
8296 {
8297 _bfd_error_handler
8298 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8299 bfd_set_error (bfd_error_invalid_operation);
8300 return 0;
8301 }
8302 else
8303 {
8304 use_rela = FALSE;
8305 use_rela_initialised = TRUE;
8306 }
8307 }
8308 else
8309 {
8310 /* The section size is not divisible by either - something is wrong. */
8311 _bfd_error_handler
8312 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8313 bfd_set_error (bfd_error_invalid_operation);
8314 return 0;
8315 }
8316 }
8317
8318 if (! use_rela_initialised)
8319 /* Make a guess. */
8320 use_rela = TRUE;
8321 }
8322 else if (rela_dyn != NULL && rela_dyn->size > 0)
8323 use_rela = TRUE;
8324 else if (rel_dyn != NULL && rel_dyn->size > 0)
8325 use_rela = FALSE;
8326 else
8327 return 0;
8328
8329 if (use_rela)
8330 {
8331 dynamic_relocs = rela_dyn;
8332 ext_size = bed->s->sizeof_rela;
8333 swap_in = bed->s->swap_reloca_in;
8334 swap_out = bed->s->swap_reloca_out;
8335 }
8336 else
8337 {
8338 dynamic_relocs = rel_dyn;
8339 ext_size = bed->s->sizeof_rel;
8340 swap_in = bed->s->swap_reloc_in;
8341 swap_out = bed->s->swap_reloc_out;
8342 }
8343
8344 size = 0;
8345 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8346 if (lo->type == bfd_indirect_link_order)
8347 size += lo->u.indirect.section->size;
8348
8349 if (size != dynamic_relocs->size)
8350 return 0;
8351
8352 sort_elt = (sizeof (struct elf_link_sort_rela)
8353 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8354
8355 count = dynamic_relocs->size / ext_size;
8356 if (count == 0)
8357 return 0;
8358 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8359
8360 if (sort == NULL)
8361 {
8362 (*info->callbacks->warning)
8363 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8364 return 0;
8365 }
8366
8367 if (bed->s->arch_size == 32)
8368 r_sym_mask = ~(bfd_vma) 0xff;
8369 else
8370 r_sym_mask = ~(bfd_vma) 0xffffffff;
8371
8372 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8373 if (lo->type == bfd_indirect_link_order)
8374 {
8375 bfd_byte *erel, *erelend;
8376 asection *o = lo->u.indirect.section;
8377
8378 if (o->contents == NULL && o->size != 0)
8379 {
8380 /* This is a reloc section that is being handled as a normal
8381 section. See bfd_section_from_shdr. We can't combine
8382 relocs in this case. */
8383 free (sort);
8384 return 0;
8385 }
8386 erel = o->contents;
8387 erelend = o->contents + o->size;
8388 /* FIXME: octets_per_byte. */
8389 p = sort + o->output_offset / ext_size * sort_elt;
8390
8391 while (erel < erelend)
8392 {
8393 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8394
8395 (*swap_in) (abfd, erel, s->rela);
8396 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8397 s->u.sym_mask = r_sym_mask;
8398 p += sort_elt;
8399 erel += ext_size;
8400 }
8401 }
8402
8403 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8404
8405 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8406 {
8407 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8408 if (s->type != reloc_class_relative)
8409 break;
8410 }
8411 ret = i;
8412 s_non_relative = p;
8413
8414 sq = (struct elf_link_sort_rela *) s_non_relative;
8415 for (; i < count; i++, p += sort_elt)
8416 {
8417 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8418 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8419 sq = sp;
8420 sp->u.offset = sq->rela->r_offset;
8421 }
8422
8423 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8424
8425 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8426 if (lo->type == bfd_indirect_link_order)
8427 {
8428 bfd_byte *erel, *erelend;
8429 asection *o = lo->u.indirect.section;
8430
8431 erel = o->contents;
8432 erelend = o->contents + o->size;
8433 /* FIXME: octets_per_byte. */
8434 p = sort + o->output_offset / ext_size * sort_elt;
8435 while (erel < erelend)
8436 {
8437 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8438 (*swap_out) (abfd, s->rela, erel);
8439 p += sort_elt;
8440 erel += ext_size;
8441 }
8442 }
8443
8444 free (sort);
8445 *psec = dynamic_relocs;
8446 return ret;
8447 }
8448
8449 /* Flush the output symbols to the file. */
8450
8451 static bfd_boolean
8452 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8453 const struct elf_backend_data *bed)
8454 {
8455 if (flinfo->symbuf_count > 0)
8456 {
8457 Elf_Internal_Shdr *hdr;
8458 file_ptr pos;
8459 bfd_size_type amt;
8460
8461 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8462 pos = hdr->sh_offset + hdr->sh_size;
8463 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8464 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8465 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8466 return FALSE;
8467
8468 hdr->sh_size += amt;
8469 flinfo->symbuf_count = 0;
8470 }
8471
8472 return TRUE;
8473 }
8474
8475 /* Add a symbol to the output symbol table. */
8476
8477 static int
8478 elf_link_output_sym (struct elf_final_link_info *flinfo,
8479 const char *name,
8480 Elf_Internal_Sym *elfsym,
8481 asection *input_sec,
8482 struct elf_link_hash_entry *h)
8483 {
8484 bfd_byte *dest;
8485 Elf_External_Sym_Shndx *destshndx;
8486 int (*output_symbol_hook)
8487 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8488 struct elf_link_hash_entry *);
8489 const struct elf_backend_data *bed;
8490
8491 bed = get_elf_backend_data (flinfo->output_bfd);
8492 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8493 if (output_symbol_hook != NULL)
8494 {
8495 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8496 if (ret != 1)
8497 return ret;
8498 }
8499
8500 if (name == NULL || *name == '\0')
8501 elfsym->st_name = 0;
8502 else if (input_sec->flags & SEC_EXCLUDE)
8503 elfsym->st_name = 0;
8504 else
8505 {
8506 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8507 name, TRUE, FALSE);
8508 if (elfsym->st_name == (unsigned long) -1)
8509 return 0;
8510 }
8511
8512 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8513 {
8514 if (! elf_link_flush_output_syms (flinfo, bed))
8515 return 0;
8516 }
8517
8518 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8519 destshndx = flinfo->symshndxbuf;
8520 if (destshndx != NULL)
8521 {
8522 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8523 {
8524 bfd_size_type amt;
8525
8526 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8527 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8528 amt * 2);
8529 if (destshndx == NULL)
8530 return 0;
8531 flinfo->symshndxbuf = destshndx;
8532 memset ((char *) destshndx + amt, 0, amt);
8533 flinfo->shndxbuf_size *= 2;
8534 }
8535 destshndx += bfd_get_symcount (flinfo->output_bfd);
8536 }
8537
8538 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8539 flinfo->symbuf_count += 1;
8540 bfd_get_symcount (flinfo->output_bfd) += 1;
8541
8542 return 1;
8543 }
8544
8545 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8546
8547 static bfd_boolean
8548 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8549 {
8550 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8551 && sym->st_shndx < SHN_LORESERVE)
8552 {
8553 /* The gABI doesn't support dynamic symbols in output sections
8554 beyond 64k. */
8555 (*_bfd_error_handler)
8556 (_("%B: Too many sections: %d (>= %d)"),
8557 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8558 bfd_set_error (bfd_error_nonrepresentable_section);
8559 return FALSE;
8560 }
8561 return TRUE;
8562 }
8563
8564 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8565 allowing an unsatisfied unversioned symbol in the DSO to match a
8566 versioned symbol that would normally require an explicit version.
8567 We also handle the case that a DSO references a hidden symbol
8568 which may be satisfied by a versioned symbol in another DSO. */
8569
8570 static bfd_boolean
8571 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8572 const struct elf_backend_data *bed,
8573 struct elf_link_hash_entry *h)
8574 {
8575 bfd *abfd;
8576 struct elf_link_loaded_list *loaded;
8577
8578 if (!is_elf_hash_table (info->hash))
8579 return FALSE;
8580
8581 /* Check indirect symbol. */
8582 while (h->root.type == bfd_link_hash_indirect)
8583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8584
8585 switch (h->root.type)
8586 {
8587 default:
8588 abfd = NULL;
8589 break;
8590
8591 case bfd_link_hash_undefined:
8592 case bfd_link_hash_undefweak:
8593 abfd = h->root.u.undef.abfd;
8594 if ((abfd->flags & DYNAMIC) == 0
8595 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8596 return FALSE;
8597 break;
8598
8599 case bfd_link_hash_defined:
8600 case bfd_link_hash_defweak:
8601 abfd = h->root.u.def.section->owner;
8602 break;
8603
8604 case bfd_link_hash_common:
8605 abfd = h->root.u.c.p->section->owner;
8606 break;
8607 }
8608 BFD_ASSERT (abfd != NULL);
8609
8610 for (loaded = elf_hash_table (info)->loaded;
8611 loaded != NULL;
8612 loaded = loaded->next)
8613 {
8614 bfd *input;
8615 Elf_Internal_Shdr *hdr;
8616 bfd_size_type symcount;
8617 bfd_size_type extsymcount;
8618 bfd_size_type extsymoff;
8619 Elf_Internal_Shdr *versymhdr;
8620 Elf_Internal_Sym *isym;
8621 Elf_Internal_Sym *isymend;
8622 Elf_Internal_Sym *isymbuf;
8623 Elf_External_Versym *ever;
8624 Elf_External_Versym *extversym;
8625
8626 input = loaded->abfd;
8627
8628 /* We check each DSO for a possible hidden versioned definition. */
8629 if (input == abfd
8630 || (input->flags & DYNAMIC) == 0
8631 || elf_dynversym (input) == 0)
8632 continue;
8633
8634 hdr = &elf_tdata (input)->dynsymtab_hdr;
8635
8636 symcount = hdr->sh_size / bed->s->sizeof_sym;
8637 if (elf_bad_symtab (input))
8638 {
8639 extsymcount = symcount;
8640 extsymoff = 0;
8641 }
8642 else
8643 {
8644 extsymcount = symcount - hdr->sh_info;
8645 extsymoff = hdr->sh_info;
8646 }
8647
8648 if (extsymcount == 0)
8649 continue;
8650
8651 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8652 NULL, NULL, NULL);
8653 if (isymbuf == NULL)
8654 return FALSE;
8655
8656 /* Read in any version definitions. */
8657 versymhdr = &elf_tdata (input)->dynversym_hdr;
8658 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8659 if (extversym == NULL)
8660 goto error_ret;
8661
8662 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8663 || (bfd_bread (extversym, versymhdr->sh_size, input)
8664 != versymhdr->sh_size))
8665 {
8666 free (extversym);
8667 error_ret:
8668 free (isymbuf);
8669 return FALSE;
8670 }
8671
8672 ever = extversym + extsymoff;
8673 isymend = isymbuf + extsymcount;
8674 for (isym = isymbuf; isym < isymend; isym++, ever++)
8675 {
8676 const char *name;
8677 Elf_Internal_Versym iver;
8678 unsigned short version_index;
8679
8680 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8681 || isym->st_shndx == SHN_UNDEF)
8682 continue;
8683
8684 name = bfd_elf_string_from_elf_section (input,
8685 hdr->sh_link,
8686 isym->st_name);
8687 if (strcmp (name, h->root.root.string) != 0)
8688 continue;
8689
8690 _bfd_elf_swap_versym_in (input, ever, &iver);
8691
8692 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8693 && !(h->def_regular
8694 && h->forced_local))
8695 {
8696 /* If we have a non-hidden versioned sym, then it should
8697 have provided a definition for the undefined sym unless
8698 it is defined in a non-shared object and forced local.
8699 */
8700 abort ();
8701 }
8702
8703 version_index = iver.vs_vers & VERSYM_VERSION;
8704 if (version_index == 1 || version_index == 2)
8705 {
8706 /* This is the base or first version. We can use it. */
8707 free (extversym);
8708 free (isymbuf);
8709 return TRUE;
8710 }
8711 }
8712
8713 free (extversym);
8714 free (isymbuf);
8715 }
8716
8717 return FALSE;
8718 }
8719
8720 /* Add an external symbol to the symbol table. This is called from
8721 the hash table traversal routine. When generating a shared object,
8722 we go through the symbol table twice. The first time we output
8723 anything that might have been forced to local scope in a version
8724 script. The second time we output the symbols that are still
8725 global symbols. */
8726
8727 static bfd_boolean
8728 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8729 {
8730 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8731 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8732 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8733 bfd_boolean strip;
8734 Elf_Internal_Sym sym;
8735 asection *input_sec;
8736 const struct elf_backend_data *bed;
8737 long indx;
8738 int ret;
8739
8740 if (h->root.type == bfd_link_hash_warning)
8741 {
8742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8743 if (h->root.type == bfd_link_hash_new)
8744 return TRUE;
8745 }
8746
8747 /* Decide whether to output this symbol in this pass. */
8748 if (eoinfo->localsyms)
8749 {
8750 if (!h->forced_local)
8751 return TRUE;
8752 if (eoinfo->second_pass
8753 && !((h->root.type == bfd_link_hash_defined
8754 || h->root.type == bfd_link_hash_defweak)
8755 && h->root.u.def.section->output_section != NULL))
8756 return TRUE;
8757 }
8758 else
8759 {
8760 if (h->forced_local)
8761 return TRUE;
8762 }
8763
8764 bed = get_elf_backend_data (flinfo->output_bfd);
8765
8766 if (h->root.type == bfd_link_hash_undefined)
8767 {
8768 /* If we have an undefined symbol reference here then it must have
8769 come from a shared library that is being linked in. (Undefined
8770 references in regular files have already been handled unless
8771 they are in unreferenced sections which are removed by garbage
8772 collection). */
8773 bfd_boolean ignore_undef = FALSE;
8774
8775 /* Some symbols may be special in that the fact that they're
8776 undefined can be safely ignored - let backend determine that. */
8777 if (bed->elf_backend_ignore_undef_symbol)
8778 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8779
8780 /* If we are reporting errors for this situation then do so now. */
8781 if (!ignore_undef
8782 && h->ref_dynamic
8783 && (!h->ref_regular || flinfo->info->gc_sections)
8784 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8785 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8786 {
8787 if (!(flinfo->info->callbacks->undefined_symbol
8788 (flinfo->info, h->root.root.string,
8789 h->ref_regular ? NULL : h->root.u.undef.abfd,
8790 NULL, 0,
8791 (flinfo->info->unresolved_syms_in_shared_libs
8792 == RM_GENERATE_ERROR))))
8793 {
8794 bfd_set_error (bfd_error_bad_value);
8795 eoinfo->failed = TRUE;
8796 return FALSE;
8797 }
8798 }
8799 }
8800
8801 /* We should also warn if a forced local symbol is referenced from
8802 shared libraries. */
8803 if (!flinfo->info->relocatable
8804 && flinfo->info->executable
8805 && h->forced_local
8806 && h->ref_dynamic
8807 && h->def_regular
8808 && !h->dynamic_def
8809 && h->ref_dynamic_nonweak
8810 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8811 {
8812 bfd *def_bfd;
8813 const char *msg;
8814 struct elf_link_hash_entry *hi = h;
8815
8816 /* Check indirect symbol. */
8817 while (hi->root.type == bfd_link_hash_indirect)
8818 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8819
8820 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8821 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8822 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8823 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8824 else
8825 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8826 def_bfd = flinfo->output_bfd;
8827 if (hi->root.u.def.section != bfd_abs_section_ptr)
8828 def_bfd = hi->root.u.def.section->owner;
8829 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8830 h->root.root.string);
8831 bfd_set_error (bfd_error_bad_value);
8832 eoinfo->failed = TRUE;
8833 return FALSE;
8834 }
8835
8836 /* We don't want to output symbols that have never been mentioned by
8837 a regular file, or that we have been told to strip. However, if
8838 h->indx is set to -2, the symbol is used by a reloc and we must
8839 output it. */
8840 if (h->indx == -2)
8841 strip = FALSE;
8842 else if ((h->def_dynamic
8843 || h->ref_dynamic
8844 || h->root.type == bfd_link_hash_new)
8845 && !h->def_regular
8846 && !h->ref_regular)
8847 strip = TRUE;
8848 else if (flinfo->info->strip == strip_all)
8849 strip = TRUE;
8850 else if (flinfo->info->strip == strip_some
8851 && bfd_hash_lookup (flinfo->info->keep_hash,
8852 h->root.root.string, FALSE, FALSE) == NULL)
8853 strip = TRUE;
8854 else if ((h->root.type == bfd_link_hash_defined
8855 || h->root.type == bfd_link_hash_defweak)
8856 && ((flinfo->info->strip_discarded
8857 && discarded_section (h->root.u.def.section))
8858 || (h->root.u.def.section->owner != NULL
8859 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8860 strip = TRUE;
8861 else if ((h->root.type == bfd_link_hash_undefined
8862 || h->root.type == bfd_link_hash_undefweak)
8863 && h->root.u.undef.abfd != NULL
8864 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8865 strip = TRUE;
8866 else
8867 strip = FALSE;
8868
8869 /* If we're stripping it, and it's not a dynamic symbol, there's
8870 nothing else to do unless it is a forced local symbol or a
8871 STT_GNU_IFUNC symbol. */
8872 if (strip
8873 && h->dynindx == -1
8874 && h->type != STT_GNU_IFUNC
8875 && !h->forced_local)
8876 return TRUE;
8877
8878 sym.st_value = 0;
8879 sym.st_size = h->size;
8880 sym.st_other = h->other;
8881 if (h->forced_local)
8882 {
8883 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8884 /* Turn off visibility on local symbol. */
8885 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8886 }
8887 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8888 else if (h->unique_global && h->def_regular)
8889 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8890 else if (h->root.type == bfd_link_hash_undefweak
8891 || h->root.type == bfd_link_hash_defweak)
8892 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8893 else
8894 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8895 sym.st_target_internal = h->target_internal;
8896
8897 switch (h->root.type)
8898 {
8899 default:
8900 case bfd_link_hash_new:
8901 case bfd_link_hash_warning:
8902 abort ();
8903 return FALSE;
8904
8905 case bfd_link_hash_undefined:
8906 case bfd_link_hash_undefweak:
8907 input_sec = bfd_und_section_ptr;
8908 sym.st_shndx = SHN_UNDEF;
8909 break;
8910
8911 case bfd_link_hash_defined:
8912 case bfd_link_hash_defweak:
8913 {
8914 input_sec = h->root.u.def.section;
8915 if (input_sec->output_section != NULL)
8916 {
8917 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8918 {
8919 bfd_boolean second_pass_sym
8920 = (input_sec->owner == flinfo->output_bfd
8921 || input_sec->owner == NULL
8922 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8923 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8924
8925 eoinfo->need_second_pass |= second_pass_sym;
8926 if (eoinfo->second_pass != second_pass_sym)
8927 return TRUE;
8928 }
8929
8930 sym.st_shndx =
8931 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8932 input_sec->output_section);
8933 if (sym.st_shndx == SHN_BAD)
8934 {
8935 (*_bfd_error_handler)
8936 (_("%B: could not find output section %A for input section %A"),
8937 flinfo->output_bfd, input_sec->output_section, input_sec);
8938 bfd_set_error (bfd_error_nonrepresentable_section);
8939 eoinfo->failed = TRUE;
8940 return FALSE;
8941 }
8942
8943 /* ELF symbols in relocatable files are section relative,
8944 but in nonrelocatable files they are virtual
8945 addresses. */
8946 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8947 if (!flinfo->info->relocatable)
8948 {
8949 sym.st_value += input_sec->output_section->vma;
8950 if (h->type == STT_TLS)
8951 {
8952 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8953 if (tls_sec != NULL)
8954 sym.st_value -= tls_sec->vma;
8955 else
8956 {
8957 /* The TLS section may have been garbage collected. */
8958 BFD_ASSERT (flinfo->info->gc_sections
8959 && !input_sec->gc_mark);
8960 }
8961 }
8962 }
8963 }
8964 else
8965 {
8966 BFD_ASSERT (input_sec->owner == NULL
8967 || (input_sec->owner->flags & DYNAMIC) != 0);
8968 sym.st_shndx = SHN_UNDEF;
8969 input_sec = bfd_und_section_ptr;
8970 }
8971 }
8972 break;
8973
8974 case bfd_link_hash_common:
8975 input_sec = h->root.u.c.p->section;
8976 sym.st_shndx = bed->common_section_index (input_sec);
8977 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8978 break;
8979
8980 case bfd_link_hash_indirect:
8981 /* These symbols are created by symbol versioning. They point
8982 to the decorated version of the name. For example, if the
8983 symbol foo@@GNU_1.2 is the default, which should be used when
8984 foo is used with no version, then we add an indirect symbol
8985 foo which points to foo@@GNU_1.2. We ignore these symbols,
8986 since the indirected symbol is already in the hash table. */
8987 return TRUE;
8988 }
8989
8990 /* Give the processor backend a chance to tweak the symbol value,
8991 and also to finish up anything that needs to be done for this
8992 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8993 forced local syms when non-shared is due to a historical quirk.
8994 STT_GNU_IFUNC symbol must go through PLT. */
8995 if ((h->type == STT_GNU_IFUNC
8996 && h->def_regular
8997 && !flinfo->info->relocatable)
8998 || ((h->dynindx != -1
8999 || h->forced_local)
9000 && ((flinfo->info->shared
9001 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9002 || h->root.type != bfd_link_hash_undefweak))
9003 || !h->forced_local)
9004 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9005 {
9006 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9007 (flinfo->output_bfd, flinfo->info, h, &sym)))
9008 {
9009 eoinfo->failed = TRUE;
9010 return FALSE;
9011 }
9012 }
9013
9014 /* If we are marking the symbol as undefined, and there are no
9015 non-weak references to this symbol from a regular object, then
9016 mark the symbol as weak undefined; if there are non-weak
9017 references, mark the symbol as strong. We can't do this earlier,
9018 because it might not be marked as undefined until the
9019 finish_dynamic_symbol routine gets through with it. */
9020 if (sym.st_shndx == SHN_UNDEF
9021 && h->ref_regular
9022 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9023 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9024 {
9025 int bindtype;
9026 unsigned int type = ELF_ST_TYPE (sym.st_info);
9027
9028 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9029 if (type == STT_GNU_IFUNC)
9030 type = STT_FUNC;
9031
9032 if (h->ref_regular_nonweak)
9033 bindtype = STB_GLOBAL;
9034 else
9035 bindtype = STB_WEAK;
9036 sym.st_info = ELF_ST_INFO (bindtype, type);
9037 }
9038
9039 /* If this is a symbol defined in a dynamic library, don't use the
9040 symbol size from the dynamic library. Relinking an executable
9041 against a new library may introduce gratuitous changes in the
9042 executable's symbols if we keep the size. */
9043 if (sym.st_shndx == SHN_UNDEF
9044 && !h->def_regular
9045 && h->def_dynamic)
9046 sym.st_size = 0;
9047
9048 /* If a non-weak symbol with non-default visibility is not defined
9049 locally, it is a fatal error. */
9050 if (!flinfo->info->relocatable
9051 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9052 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9053 && h->root.type == bfd_link_hash_undefined
9054 && !h->def_regular)
9055 {
9056 const char *msg;
9057
9058 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9059 msg = _("%B: protected symbol `%s' isn't defined");
9060 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9061 msg = _("%B: internal symbol `%s' isn't defined");
9062 else
9063 msg = _("%B: hidden symbol `%s' isn't defined");
9064 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9065 bfd_set_error (bfd_error_bad_value);
9066 eoinfo->failed = TRUE;
9067 return FALSE;
9068 }
9069
9070 /* If this symbol should be put in the .dynsym section, then put it
9071 there now. We already know the symbol index. We also fill in
9072 the entry in the .hash section. */
9073 if (flinfo->dynsym_sec != NULL
9074 && h->dynindx != -1
9075 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9076 {
9077 bfd_byte *esym;
9078
9079 /* Since there is no version information in the dynamic string,
9080 if there is no version info in symbol version section, we will
9081 have a run-time problem. */
9082 if (h->verinfo.verdef == NULL)
9083 {
9084 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9085
9086 if (p && p [1] != '\0')
9087 {
9088 (*_bfd_error_handler)
9089 (_("%B: No symbol version section for versioned symbol `%s'"),
9090 flinfo->output_bfd, h->root.root.string);
9091 eoinfo->failed = TRUE;
9092 return FALSE;
9093 }
9094 }
9095
9096 sym.st_name = h->dynstr_index;
9097 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9098 if (!check_dynsym (flinfo->output_bfd, &sym))
9099 {
9100 eoinfo->failed = TRUE;
9101 return FALSE;
9102 }
9103 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9104
9105 if (flinfo->hash_sec != NULL)
9106 {
9107 size_t hash_entry_size;
9108 bfd_byte *bucketpos;
9109 bfd_vma chain;
9110 size_t bucketcount;
9111 size_t bucket;
9112
9113 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9114 bucket = h->u.elf_hash_value % bucketcount;
9115
9116 hash_entry_size
9117 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9118 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9119 + (bucket + 2) * hash_entry_size);
9120 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9121 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9122 bucketpos);
9123 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9124 ((bfd_byte *) flinfo->hash_sec->contents
9125 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9126 }
9127
9128 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9129 {
9130 Elf_Internal_Versym iversym;
9131 Elf_External_Versym *eversym;
9132
9133 if (!h->def_regular)
9134 {
9135 if (h->verinfo.verdef == NULL)
9136 iversym.vs_vers = 0;
9137 else
9138 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9139 }
9140 else
9141 {
9142 if (h->verinfo.vertree == NULL)
9143 iversym.vs_vers = 1;
9144 else
9145 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9146 if (flinfo->info->create_default_symver)
9147 iversym.vs_vers++;
9148 }
9149
9150 if (h->hidden)
9151 iversym.vs_vers |= VERSYM_HIDDEN;
9152
9153 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9154 eversym += h->dynindx;
9155 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9156 }
9157 }
9158
9159 /* If we're stripping it, then it was just a dynamic symbol, and
9160 there's nothing else to do. */
9161 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9162 return TRUE;
9163
9164 indx = bfd_get_symcount (flinfo->output_bfd);
9165 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9166 if (ret == 0)
9167 {
9168 eoinfo->failed = TRUE;
9169 return FALSE;
9170 }
9171 else if (ret == 1)
9172 h->indx = indx;
9173 else if (h->indx == -2)
9174 abort();
9175
9176 return TRUE;
9177 }
9178
9179 /* Return TRUE if special handling is done for relocs in SEC against
9180 symbols defined in discarded sections. */
9181
9182 static bfd_boolean
9183 elf_section_ignore_discarded_relocs (asection *sec)
9184 {
9185 const struct elf_backend_data *bed;
9186
9187 switch (sec->sec_info_type)
9188 {
9189 case SEC_INFO_TYPE_STABS:
9190 case SEC_INFO_TYPE_EH_FRAME:
9191 return TRUE;
9192 default:
9193 break;
9194 }
9195
9196 bed = get_elf_backend_data (sec->owner);
9197 if (bed->elf_backend_ignore_discarded_relocs != NULL
9198 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9199 return TRUE;
9200
9201 return FALSE;
9202 }
9203
9204 /* Return a mask saying how ld should treat relocations in SEC against
9205 symbols defined in discarded sections. If this function returns
9206 COMPLAIN set, ld will issue a warning message. If this function
9207 returns PRETEND set, and the discarded section was link-once and the
9208 same size as the kept link-once section, ld will pretend that the
9209 symbol was actually defined in the kept section. Otherwise ld will
9210 zero the reloc (at least that is the intent, but some cooperation by
9211 the target dependent code is needed, particularly for REL targets). */
9212
9213 unsigned int
9214 _bfd_elf_default_action_discarded (asection *sec)
9215 {
9216 if (sec->flags & SEC_DEBUGGING)
9217 return PRETEND;
9218
9219 if (strcmp (".eh_frame", sec->name) == 0)
9220 return 0;
9221
9222 if (strcmp (".gcc_except_table", sec->name) == 0)
9223 return 0;
9224
9225 return COMPLAIN | PRETEND;
9226 }
9227
9228 /* Find a match between a section and a member of a section group. */
9229
9230 static asection *
9231 match_group_member (asection *sec, asection *group,
9232 struct bfd_link_info *info)
9233 {
9234 asection *first = elf_next_in_group (group);
9235 asection *s = first;
9236
9237 while (s != NULL)
9238 {
9239 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9240 return s;
9241
9242 s = elf_next_in_group (s);
9243 if (s == first)
9244 break;
9245 }
9246
9247 return NULL;
9248 }
9249
9250 /* Check if the kept section of a discarded section SEC can be used
9251 to replace it. Return the replacement if it is OK. Otherwise return
9252 NULL. */
9253
9254 asection *
9255 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9256 {
9257 asection *kept;
9258
9259 kept = sec->kept_section;
9260 if (kept != NULL)
9261 {
9262 if ((kept->flags & SEC_GROUP) != 0)
9263 kept = match_group_member (sec, kept, info);
9264 if (kept != NULL
9265 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9266 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9267 kept = NULL;
9268 sec->kept_section = kept;
9269 }
9270 return kept;
9271 }
9272
9273 /* Link an input file into the linker output file. This function
9274 handles all the sections and relocations of the input file at once.
9275 This is so that we only have to read the local symbols once, and
9276 don't have to keep them in memory. */
9277
9278 static bfd_boolean
9279 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9280 {
9281 int (*relocate_section)
9282 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9283 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9284 bfd *output_bfd;
9285 Elf_Internal_Shdr *symtab_hdr;
9286 size_t locsymcount;
9287 size_t extsymoff;
9288 Elf_Internal_Sym *isymbuf;
9289 Elf_Internal_Sym *isym;
9290 Elf_Internal_Sym *isymend;
9291 long *pindex;
9292 asection **ppsection;
9293 asection *o;
9294 const struct elf_backend_data *bed;
9295 struct elf_link_hash_entry **sym_hashes;
9296 bfd_size_type address_size;
9297 bfd_vma r_type_mask;
9298 int r_sym_shift;
9299 bfd_boolean have_file_sym = FALSE;
9300
9301 output_bfd = flinfo->output_bfd;
9302 bed = get_elf_backend_data (output_bfd);
9303 relocate_section = bed->elf_backend_relocate_section;
9304
9305 /* If this is a dynamic object, we don't want to do anything here:
9306 we don't want the local symbols, and we don't want the section
9307 contents. */
9308 if ((input_bfd->flags & DYNAMIC) != 0)
9309 return TRUE;
9310
9311 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9312 if (elf_bad_symtab (input_bfd))
9313 {
9314 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9315 extsymoff = 0;
9316 }
9317 else
9318 {
9319 locsymcount = symtab_hdr->sh_info;
9320 extsymoff = symtab_hdr->sh_info;
9321 }
9322
9323 /* Read the local symbols. */
9324 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9325 if (isymbuf == NULL && locsymcount != 0)
9326 {
9327 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9328 flinfo->internal_syms,
9329 flinfo->external_syms,
9330 flinfo->locsym_shndx);
9331 if (isymbuf == NULL)
9332 return FALSE;
9333 }
9334
9335 /* Find local symbol sections and adjust values of symbols in
9336 SEC_MERGE sections. Write out those local symbols we know are
9337 going into the output file. */
9338 isymend = isymbuf + locsymcount;
9339 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9340 isym < isymend;
9341 isym++, pindex++, ppsection++)
9342 {
9343 asection *isec;
9344 const char *name;
9345 Elf_Internal_Sym osym;
9346 long indx;
9347 int ret;
9348
9349 *pindex = -1;
9350
9351 if (elf_bad_symtab (input_bfd))
9352 {
9353 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9354 {
9355 *ppsection = NULL;
9356 continue;
9357 }
9358 }
9359
9360 if (isym->st_shndx == SHN_UNDEF)
9361 isec = bfd_und_section_ptr;
9362 else if (isym->st_shndx == SHN_ABS)
9363 isec = bfd_abs_section_ptr;
9364 else if (isym->st_shndx == SHN_COMMON)
9365 isec = bfd_com_section_ptr;
9366 else
9367 {
9368 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9369 if (isec == NULL)
9370 {
9371 /* Don't attempt to output symbols with st_shnx in the
9372 reserved range other than SHN_ABS and SHN_COMMON. */
9373 *ppsection = NULL;
9374 continue;
9375 }
9376 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9377 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9378 isym->st_value =
9379 _bfd_merged_section_offset (output_bfd, &isec,
9380 elf_section_data (isec)->sec_info,
9381 isym->st_value);
9382 }
9383
9384 *ppsection = isec;
9385
9386 /* Don't output the first, undefined, symbol. */
9387 if (ppsection == flinfo->sections)
9388 continue;
9389
9390 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9391 {
9392 /* We never output section symbols. Instead, we use the
9393 section symbol of the corresponding section in the output
9394 file. */
9395 continue;
9396 }
9397
9398 /* If we are stripping all symbols, we don't want to output this
9399 one. */
9400 if (flinfo->info->strip == strip_all)
9401 continue;
9402
9403 /* If we are discarding all local symbols, we don't want to
9404 output this one. If we are generating a relocatable output
9405 file, then some of the local symbols may be required by
9406 relocs; we output them below as we discover that they are
9407 needed. */
9408 if (flinfo->info->discard == discard_all)
9409 continue;
9410
9411 /* If this symbol is defined in a section which we are
9412 discarding, we don't need to keep it. */
9413 if (isym->st_shndx != SHN_UNDEF
9414 && isym->st_shndx < SHN_LORESERVE
9415 && bfd_section_removed_from_list (output_bfd,
9416 isec->output_section))
9417 continue;
9418
9419 /* Get the name of the symbol. */
9420 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9421 isym->st_name);
9422 if (name == NULL)
9423 return FALSE;
9424
9425 /* See if we are discarding symbols with this name. */
9426 if ((flinfo->info->strip == strip_some
9427 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9428 == NULL))
9429 || (((flinfo->info->discard == discard_sec_merge
9430 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9431 || flinfo->info->discard == discard_l)
9432 && bfd_is_local_label_name (input_bfd, name)))
9433 continue;
9434
9435 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9436 {
9437 have_file_sym = TRUE;
9438 flinfo->filesym_count += 1;
9439 }
9440 if (!have_file_sym)
9441 {
9442 /* In the absence of debug info, bfd_find_nearest_line uses
9443 FILE symbols to determine the source file for local
9444 function symbols. Provide a FILE symbol here if input
9445 files lack such, so that their symbols won't be
9446 associated with a previous input file. It's not the
9447 source file, but the best we can do. */
9448 have_file_sym = TRUE;
9449 flinfo->filesym_count += 1;
9450 memset (&osym, 0, sizeof (osym));
9451 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9452 osym.st_shndx = SHN_ABS;
9453 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9454 bfd_abs_section_ptr, NULL))
9455 return FALSE;
9456 }
9457
9458 osym = *isym;
9459
9460 /* Adjust the section index for the output file. */
9461 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9462 isec->output_section);
9463 if (osym.st_shndx == SHN_BAD)
9464 return FALSE;
9465
9466 /* ELF symbols in relocatable files are section relative, but
9467 in executable files they are virtual addresses. Note that
9468 this code assumes that all ELF sections have an associated
9469 BFD section with a reasonable value for output_offset; below
9470 we assume that they also have a reasonable value for
9471 output_section. Any special sections must be set up to meet
9472 these requirements. */
9473 osym.st_value += isec->output_offset;
9474 if (!flinfo->info->relocatable)
9475 {
9476 osym.st_value += isec->output_section->vma;
9477 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9478 {
9479 /* STT_TLS symbols are relative to PT_TLS segment base. */
9480 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9481 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9482 }
9483 }
9484
9485 indx = bfd_get_symcount (output_bfd);
9486 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9487 if (ret == 0)
9488 return FALSE;
9489 else if (ret == 1)
9490 *pindex = indx;
9491 }
9492
9493 if (bed->s->arch_size == 32)
9494 {
9495 r_type_mask = 0xff;
9496 r_sym_shift = 8;
9497 address_size = 4;
9498 }
9499 else
9500 {
9501 r_type_mask = 0xffffffff;
9502 r_sym_shift = 32;
9503 address_size = 8;
9504 }
9505
9506 /* Relocate the contents of each section. */
9507 sym_hashes = elf_sym_hashes (input_bfd);
9508 for (o = input_bfd->sections; o != NULL; o = o->next)
9509 {
9510 bfd_byte *contents;
9511
9512 if (! o->linker_mark)
9513 {
9514 /* This section was omitted from the link. */
9515 continue;
9516 }
9517
9518 if (flinfo->info->relocatable
9519 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9520 {
9521 /* Deal with the group signature symbol. */
9522 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9523 unsigned long symndx = sec_data->this_hdr.sh_info;
9524 asection *osec = o->output_section;
9525
9526 if (symndx >= locsymcount
9527 || (elf_bad_symtab (input_bfd)
9528 && flinfo->sections[symndx] == NULL))
9529 {
9530 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9531 while (h->root.type == bfd_link_hash_indirect
9532 || h->root.type == bfd_link_hash_warning)
9533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9534 /* Arrange for symbol to be output. */
9535 h->indx = -2;
9536 elf_section_data (osec)->this_hdr.sh_info = -2;
9537 }
9538 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9539 {
9540 /* We'll use the output section target_index. */
9541 asection *sec = flinfo->sections[symndx]->output_section;
9542 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9543 }
9544 else
9545 {
9546 if (flinfo->indices[symndx] == -1)
9547 {
9548 /* Otherwise output the local symbol now. */
9549 Elf_Internal_Sym sym = isymbuf[symndx];
9550 asection *sec = flinfo->sections[symndx]->output_section;
9551 const char *name;
9552 long indx;
9553 int ret;
9554
9555 name = bfd_elf_string_from_elf_section (input_bfd,
9556 symtab_hdr->sh_link,
9557 sym.st_name);
9558 if (name == NULL)
9559 return FALSE;
9560
9561 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9562 sec);
9563 if (sym.st_shndx == SHN_BAD)
9564 return FALSE;
9565
9566 sym.st_value += o->output_offset;
9567
9568 indx = bfd_get_symcount (output_bfd);
9569 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9570 if (ret == 0)
9571 return FALSE;
9572 else if (ret == 1)
9573 flinfo->indices[symndx] = indx;
9574 else
9575 abort ();
9576 }
9577 elf_section_data (osec)->this_hdr.sh_info
9578 = flinfo->indices[symndx];
9579 }
9580 }
9581
9582 if ((o->flags & SEC_HAS_CONTENTS) == 0
9583 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9584 continue;
9585
9586 if ((o->flags & SEC_LINKER_CREATED) != 0)
9587 {
9588 /* Section was created by _bfd_elf_link_create_dynamic_sections
9589 or somesuch. */
9590 continue;
9591 }
9592
9593 /* Get the contents of the section. They have been cached by a
9594 relaxation routine. Note that o is a section in an input
9595 file, so the contents field will not have been set by any of
9596 the routines which work on output files. */
9597 if (elf_section_data (o)->this_hdr.contents != NULL)
9598 contents = elf_section_data (o)->this_hdr.contents;
9599 else
9600 {
9601 contents = flinfo->contents;
9602 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9603 return FALSE;
9604 }
9605
9606 if ((o->flags & SEC_RELOC) != 0)
9607 {
9608 Elf_Internal_Rela *internal_relocs;
9609 Elf_Internal_Rela *rel, *relend;
9610 int action_discarded;
9611 int ret;
9612
9613 /* Get the swapped relocs. */
9614 internal_relocs
9615 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9616 flinfo->internal_relocs, FALSE);
9617 if (internal_relocs == NULL
9618 && o->reloc_count > 0)
9619 return FALSE;
9620
9621 /* We need to reverse-copy input .ctors/.dtors sections if
9622 they are placed in .init_array/.finit_array for output. */
9623 if (o->size > address_size
9624 && ((strncmp (o->name, ".ctors", 6) == 0
9625 && strcmp (o->output_section->name,
9626 ".init_array") == 0)
9627 || (strncmp (o->name, ".dtors", 6) == 0
9628 && strcmp (o->output_section->name,
9629 ".fini_array") == 0))
9630 && (o->name[6] == 0 || o->name[6] == '.'))
9631 {
9632 if (o->size != o->reloc_count * address_size)
9633 {
9634 (*_bfd_error_handler)
9635 (_("error: %B: size of section %A is not "
9636 "multiple of address size"),
9637 input_bfd, o);
9638 bfd_set_error (bfd_error_on_input);
9639 return FALSE;
9640 }
9641 o->flags |= SEC_ELF_REVERSE_COPY;
9642 }
9643
9644 action_discarded = -1;
9645 if (!elf_section_ignore_discarded_relocs (o))
9646 action_discarded = (*bed->action_discarded) (o);
9647
9648 /* Run through the relocs evaluating complex reloc symbols and
9649 looking for relocs against symbols from discarded sections
9650 or section symbols from removed link-once sections.
9651 Complain about relocs against discarded sections. Zero
9652 relocs against removed link-once sections. */
9653
9654 rel = internal_relocs;
9655 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9656 for ( ; rel < relend; rel++)
9657 {
9658 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9659 unsigned int s_type;
9660 asection **ps, *sec;
9661 struct elf_link_hash_entry *h = NULL;
9662 const char *sym_name;
9663
9664 if (r_symndx == STN_UNDEF)
9665 continue;
9666
9667 if (r_symndx >= locsymcount
9668 || (elf_bad_symtab (input_bfd)
9669 && flinfo->sections[r_symndx] == NULL))
9670 {
9671 h = sym_hashes[r_symndx - extsymoff];
9672
9673 /* Badly formatted input files can contain relocs that
9674 reference non-existant symbols. Check here so that
9675 we do not seg fault. */
9676 if (h == NULL)
9677 {
9678 char buffer [32];
9679
9680 sprintf_vma (buffer, rel->r_info);
9681 (*_bfd_error_handler)
9682 (_("error: %B contains a reloc (0x%s) for section %A "
9683 "that references a non-existent global symbol"),
9684 input_bfd, o, buffer);
9685 bfd_set_error (bfd_error_bad_value);
9686 return FALSE;
9687 }
9688
9689 while (h->root.type == bfd_link_hash_indirect
9690 || h->root.type == bfd_link_hash_warning)
9691 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9692
9693 s_type = h->type;
9694
9695 ps = NULL;
9696 if (h->root.type == bfd_link_hash_defined
9697 || h->root.type == bfd_link_hash_defweak)
9698 ps = &h->root.u.def.section;
9699
9700 sym_name = h->root.root.string;
9701 }
9702 else
9703 {
9704 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9705
9706 s_type = ELF_ST_TYPE (sym->st_info);
9707 ps = &flinfo->sections[r_symndx];
9708 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9709 sym, *ps);
9710 }
9711
9712 if ((s_type == STT_RELC || s_type == STT_SRELC)
9713 && !flinfo->info->relocatable)
9714 {
9715 bfd_vma val;
9716 bfd_vma dot = (rel->r_offset
9717 + o->output_offset + o->output_section->vma);
9718 #ifdef DEBUG
9719 printf ("Encountered a complex symbol!");
9720 printf (" (input_bfd %s, section %s, reloc %ld\n",
9721 input_bfd->filename, o->name,
9722 (long) (rel - internal_relocs));
9723 printf (" symbol: idx %8.8lx, name %s\n",
9724 r_symndx, sym_name);
9725 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9726 (unsigned long) rel->r_info,
9727 (unsigned long) rel->r_offset);
9728 #endif
9729 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9730 isymbuf, locsymcount, s_type == STT_SRELC))
9731 return FALSE;
9732
9733 /* Symbol evaluated OK. Update to absolute value. */
9734 set_symbol_value (input_bfd, isymbuf, locsymcount,
9735 r_symndx, val);
9736 continue;
9737 }
9738
9739 if (action_discarded != -1 && ps != NULL)
9740 {
9741 /* Complain if the definition comes from a
9742 discarded section. */
9743 if ((sec = *ps) != NULL && discarded_section (sec))
9744 {
9745 BFD_ASSERT (r_symndx != STN_UNDEF);
9746 if (action_discarded & COMPLAIN)
9747 (*flinfo->info->callbacks->einfo)
9748 (_("%X`%s' referenced in section `%A' of %B: "
9749 "defined in discarded section `%A' of %B\n"),
9750 sym_name, o, input_bfd, sec, sec->owner);
9751
9752 /* Try to do the best we can to support buggy old
9753 versions of gcc. Pretend that the symbol is
9754 really defined in the kept linkonce section.
9755 FIXME: This is quite broken. Modifying the
9756 symbol here means we will be changing all later
9757 uses of the symbol, not just in this section. */
9758 if (action_discarded & PRETEND)
9759 {
9760 asection *kept;
9761
9762 kept = _bfd_elf_check_kept_section (sec,
9763 flinfo->info);
9764 if (kept != NULL)
9765 {
9766 *ps = kept;
9767 continue;
9768 }
9769 }
9770 }
9771 }
9772 }
9773
9774 /* Relocate the section by invoking a back end routine.
9775
9776 The back end routine is responsible for adjusting the
9777 section contents as necessary, and (if using Rela relocs
9778 and generating a relocatable output file) adjusting the
9779 reloc addend as necessary.
9780
9781 The back end routine does not have to worry about setting
9782 the reloc address or the reloc symbol index.
9783
9784 The back end routine is given a pointer to the swapped in
9785 internal symbols, and can access the hash table entries
9786 for the external symbols via elf_sym_hashes (input_bfd).
9787
9788 When generating relocatable output, the back end routine
9789 must handle STB_LOCAL/STT_SECTION symbols specially. The
9790 output symbol is going to be a section symbol
9791 corresponding to the output section, which will require
9792 the addend to be adjusted. */
9793
9794 ret = (*relocate_section) (output_bfd, flinfo->info,
9795 input_bfd, o, contents,
9796 internal_relocs,
9797 isymbuf,
9798 flinfo->sections);
9799 if (!ret)
9800 return FALSE;
9801
9802 if (ret == 2
9803 || flinfo->info->relocatable
9804 || flinfo->info->emitrelocations)
9805 {
9806 Elf_Internal_Rela *irela;
9807 Elf_Internal_Rela *irelaend, *irelamid;
9808 bfd_vma last_offset;
9809 struct elf_link_hash_entry **rel_hash;
9810 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9811 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9812 unsigned int next_erel;
9813 bfd_boolean rela_normal;
9814 struct bfd_elf_section_data *esdi, *esdo;
9815
9816 esdi = elf_section_data (o);
9817 esdo = elf_section_data (o->output_section);
9818 rela_normal = FALSE;
9819
9820 /* Adjust the reloc addresses and symbol indices. */
9821
9822 irela = internal_relocs;
9823 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9824 rel_hash = esdo->rel.hashes + esdo->rel.count;
9825 /* We start processing the REL relocs, if any. When we reach
9826 IRELAMID in the loop, we switch to the RELA relocs. */
9827 irelamid = irela;
9828 if (esdi->rel.hdr != NULL)
9829 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9830 * bed->s->int_rels_per_ext_rel);
9831 rel_hash_list = rel_hash;
9832 rela_hash_list = NULL;
9833 last_offset = o->output_offset;
9834 if (!flinfo->info->relocatable)
9835 last_offset += o->output_section->vma;
9836 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9837 {
9838 unsigned long r_symndx;
9839 asection *sec;
9840 Elf_Internal_Sym sym;
9841
9842 if (next_erel == bed->s->int_rels_per_ext_rel)
9843 {
9844 rel_hash++;
9845 next_erel = 0;
9846 }
9847
9848 if (irela == irelamid)
9849 {
9850 rel_hash = esdo->rela.hashes + esdo->rela.count;
9851 rela_hash_list = rel_hash;
9852 rela_normal = bed->rela_normal;
9853 }
9854
9855 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9856 flinfo->info, o,
9857 irela->r_offset);
9858 if (irela->r_offset >= (bfd_vma) -2)
9859 {
9860 /* This is a reloc for a deleted entry or somesuch.
9861 Turn it into an R_*_NONE reloc, at the same
9862 offset as the last reloc. elf_eh_frame.c and
9863 bfd_elf_discard_info rely on reloc offsets
9864 being ordered. */
9865 irela->r_offset = last_offset;
9866 irela->r_info = 0;
9867 irela->r_addend = 0;
9868 continue;
9869 }
9870
9871 irela->r_offset += o->output_offset;
9872
9873 /* Relocs in an executable have to be virtual addresses. */
9874 if (!flinfo->info->relocatable)
9875 irela->r_offset += o->output_section->vma;
9876
9877 last_offset = irela->r_offset;
9878
9879 r_symndx = irela->r_info >> r_sym_shift;
9880 if (r_symndx == STN_UNDEF)
9881 continue;
9882
9883 if (r_symndx >= locsymcount
9884 || (elf_bad_symtab (input_bfd)
9885 && flinfo->sections[r_symndx] == NULL))
9886 {
9887 struct elf_link_hash_entry *rh;
9888 unsigned long indx;
9889
9890 /* This is a reloc against a global symbol. We
9891 have not yet output all the local symbols, so
9892 we do not know the symbol index of any global
9893 symbol. We set the rel_hash entry for this
9894 reloc to point to the global hash table entry
9895 for this symbol. The symbol index is then
9896 set at the end of bfd_elf_final_link. */
9897 indx = r_symndx - extsymoff;
9898 rh = elf_sym_hashes (input_bfd)[indx];
9899 while (rh->root.type == bfd_link_hash_indirect
9900 || rh->root.type == bfd_link_hash_warning)
9901 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9902
9903 /* Setting the index to -2 tells
9904 elf_link_output_extsym that this symbol is
9905 used by a reloc. */
9906 BFD_ASSERT (rh->indx < 0);
9907 rh->indx = -2;
9908
9909 *rel_hash = rh;
9910
9911 continue;
9912 }
9913
9914 /* This is a reloc against a local symbol. */
9915
9916 *rel_hash = NULL;
9917 sym = isymbuf[r_symndx];
9918 sec = flinfo->sections[r_symndx];
9919 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9920 {
9921 /* I suppose the backend ought to fill in the
9922 section of any STT_SECTION symbol against a
9923 processor specific section. */
9924 r_symndx = STN_UNDEF;
9925 if (bfd_is_abs_section (sec))
9926 ;
9927 else if (sec == NULL || sec->owner == NULL)
9928 {
9929 bfd_set_error (bfd_error_bad_value);
9930 return FALSE;
9931 }
9932 else
9933 {
9934 asection *osec = sec->output_section;
9935
9936 /* If we have discarded a section, the output
9937 section will be the absolute section. In
9938 case of discarded SEC_MERGE sections, use
9939 the kept section. relocate_section should
9940 have already handled discarded linkonce
9941 sections. */
9942 if (bfd_is_abs_section (osec)
9943 && sec->kept_section != NULL
9944 && sec->kept_section->output_section != NULL)
9945 {
9946 osec = sec->kept_section->output_section;
9947 irela->r_addend -= osec->vma;
9948 }
9949
9950 if (!bfd_is_abs_section (osec))
9951 {
9952 r_symndx = osec->target_index;
9953 if (r_symndx == STN_UNDEF)
9954 {
9955 irela->r_addend += osec->vma;
9956 osec = _bfd_nearby_section (output_bfd, osec,
9957 osec->vma);
9958 irela->r_addend -= osec->vma;
9959 r_symndx = osec->target_index;
9960 }
9961 }
9962 }
9963
9964 /* Adjust the addend according to where the
9965 section winds up in the output section. */
9966 if (rela_normal)
9967 irela->r_addend += sec->output_offset;
9968 }
9969 else
9970 {
9971 if (flinfo->indices[r_symndx] == -1)
9972 {
9973 unsigned long shlink;
9974 const char *name;
9975 asection *osec;
9976 long indx;
9977
9978 if (flinfo->info->strip == strip_all)
9979 {
9980 /* You can't do ld -r -s. */
9981 bfd_set_error (bfd_error_invalid_operation);
9982 return FALSE;
9983 }
9984
9985 /* This symbol was skipped earlier, but
9986 since it is needed by a reloc, we
9987 must output it now. */
9988 shlink = symtab_hdr->sh_link;
9989 name = (bfd_elf_string_from_elf_section
9990 (input_bfd, shlink, sym.st_name));
9991 if (name == NULL)
9992 return FALSE;
9993
9994 osec = sec->output_section;
9995 sym.st_shndx =
9996 _bfd_elf_section_from_bfd_section (output_bfd,
9997 osec);
9998 if (sym.st_shndx == SHN_BAD)
9999 return FALSE;
10000
10001 sym.st_value += sec->output_offset;
10002 if (!flinfo->info->relocatable)
10003 {
10004 sym.st_value += osec->vma;
10005 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10006 {
10007 /* STT_TLS symbols are relative to PT_TLS
10008 segment base. */
10009 BFD_ASSERT (elf_hash_table (flinfo->info)
10010 ->tls_sec != NULL);
10011 sym.st_value -= (elf_hash_table (flinfo->info)
10012 ->tls_sec->vma);
10013 }
10014 }
10015
10016 indx = bfd_get_symcount (output_bfd);
10017 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10018 NULL);
10019 if (ret == 0)
10020 return FALSE;
10021 else if (ret == 1)
10022 flinfo->indices[r_symndx] = indx;
10023 else
10024 abort ();
10025 }
10026
10027 r_symndx = flinfo->indices[r_symndx];
10028 }
10029
10030 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10031 | (irela->r_info & r_type_mask));
10032 }
10033
10034 /* Swap out the relocs. */
10035 input_rel_hdr = esdi->rel.hdr;
10036 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10037 {
10038 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10039 input_rel_hdr,
10040 internal_relocs,
10041 rel_hash_list))
10042 return FALSE;
10043 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10044 * bed->s->int_rels_per_ext_rel);
10045 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10046 }
10047
10048 input_rela_hdr = esdi->rela.hdr;
10049 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10050 {
10051 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10052 input_rela_hdr,
10053 internal_relocs,
10054 rela_hash_list))
10055 return FALSE;
10056 }
10057 }
10058 }
10059
10060 /* Write out the modified section contents. */
10061 if (bed->elf_backend_write_section
10062 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10063 contents))
10064 {
10065 /* Section written out. */
10066 }
10067 else switch (o->sec_info_type)
10068 {
10069 case SEC_INFO_TYPE_STABS:
10070 if (! (_bfd_write_section_stabs
10071 (output_bfd,
10072 &elf_hash_table (flinfo->info)->stab_info,
10073 o, &elf_section_data (o)->sec_info, contents)))
10074 return FALSE;
10075 break;
10076 case SEC_INFO_TYPE_MERGE:
10077 if (! _bfd_write_merged_section (output_bfd, o,
10078 elf_section_data (o)->sec_info))
10079 return FALSE;
10080 break;
10081 case SEC_INFO_TYPE_EH_FRAME:
10082 {
10083 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10084 o, contents))
10085 return FALSE;
10086 }
10087 break;
10088 default:
10089 {
10090 /* FIXME: octets_per_byte. */
10091 if (! (o->flags & SEC_EXCLUDE))
10092 {
10093 file_ptr offset = (file_ptr) o->output_offset;
10094 bfd_size_type todo = o->size;
10095 if ((o->flags & SEC_ELF_REVERSE_COPY))
10096 {
10097 /* Reverse-copy input section to output. */
10098 do
10099 {
10100 todo -= address_size;
10101 if (! bfd_set_section_contents (output_bfd,
10102 o->output_section,
10103 contents + todo,
10104 offset,
10105 address_size))
10106 return FALSE;
10107 if (todo == 0)
10108 break;
10109 offset += address_size;
10110 }
10111 while (1);
10112 }
10113 else if (! bfd_set_section_contents (output_bfd,
10114 o->output_section,
10115 contents,
10116 offset, todo))
10117 return FALSE;
10118 }
10119 }
10120 break;
10121 }
10122 }
10123
10124 return TRUE;
10125 }
10126
10127 /* Generate a reloc when linking an ELF file. This is a reloc
10128 requested by the linker, and does not come from any input file. This
10129 is used to build constructor and destructor tables when linking
10130 with -Ur. */
10131
10132 static bfd_boolean
10133 elf_reloc_link_order (bfd *output_bfd,
10134 struct bfd_link_info *info,
10135 asection *output_section,
10136 struct bfd_link_order *link_order)
10137 {
10138 reloc_howto_type *howto;
10139 long indx;
10140 bfd_vma offset;
10141 bfd_vma addend;
10142 struct bfd_elf_section_reloc_data *reldata;
10143 struct elf_link_hash_entry **rel_hash_ptr;
10144 Elf_Internal_Shdr *rel_hdr;
10145 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10146 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10147 bfd_byte *erel;
10148 unsigned int i;
10149 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10150
10151 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10152 if (howto == NULL)
10153 {
10154 bfd_set_error (bfd_error_bad_value);
10155 return FALSE;
10156 }
10157
10158 addend = link_order->u.reloc.p->addend;
10159
10160 if (esdo->rel.hdr)
10161 reldata = &esdo->rel;
10162 else if (esdo->rela.hdr)
10163 reldata = &esdo->rela;
10164 else
10165 {
10166 reldata = NULL;
10167 BFD_ASSERT (0);
10168 }
10169
10170 /* Figure out the symbol index. */
10171 rel_hash_ptr = reldata->hashes + reldata->count;
10172 if (link_order->type == bfd_section_reloc_link_order)
10173 {
10174 indx = link_order->u.reloc.p->u.section->target_index;
10175 BFD_ASSERT (indx != 0);
10176 *rel_hash_ptr = NULL;
10177 }
10178 else
10179 {
10180 struct elf_link_hash_entry *h;
10181
10182 /* Treat a reloc against a defined symbol as though it were
10183 actually against the section. */
10184 h = ((struct elf_link_hash_entry *)
10185 bfd_wrapped_link_hash_lookup (output_bfd, info,
10186 link_order->u.reloc.p->u.name,
10187 FALSE, FALSE, TRUE));
10188 if (h != NULL
10189 && (h->root.type == bfd_link_hash_defined
10190 || h->root.type == bfd_link_hash_defweak))
10191 {
10192 asection *section;
10193
10194 section = h->root.u.def.section;
10195 indx = section->output_section->target_index;
10196 *rel_hash_ptr = NULL;
10197 /* It seems that we ought to add the symbol value to the
10198 addend here, but in practice it has already been added
10199 because it was passed to constructor_callback. */
10200 addend += section->output_section->vma + section->output_offset;
10201 }
10202 else if (h != NULL)
10203 {
10204 /* Setting the index to -2 tells elf_link_output_extsym that
10205 this symbol is used by a reloc. */
10206 h->indx = -2;
10207 *rel_hash_ptr = h;
10208 indx = 0;
10209 }
10210 else
10211 {
10212 if (! ((*info->callbacks->unattached_reloc)
10213 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10214 return FALSE;
10215 indx = 0;
10216 }
10217 }
10218
10219 /* If this is an inplace reloc, we must write the addend into the
10220 object file. */
10221 if (howto->partial_inplace && addend != 0)
10222 {
10223 bfd_size_type size;
10224 bfd_reloc_status_type rstat;
10225 bfd_byte *buf;
10226 bfd_boolean ok;
10227 const char *sym_name;
10228
10229 size = (bfd_size_type) bfd_get_reloc_size (howto);
10230 buf = (bfd_byte *) bfd_zmalloc (size);
10231 if (buf == NULL)
10232 return FALSE;
10233 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10234 switch (rstat)
10235 {
10236 case bfd_reloc_ok:
10237 break;
10238
10239 default:
10240 case bfd_reloc_outofrange:
10241 abort ();
10242
10243 case bfd_reloc_overflow:
10244 if (link_order->type == bfd_section_reloc_link_order)
10245 sym_name = bfd_section_name (output_bfd,
10246 link_order->u.reloc.p->u.section);
10247 else
10248 sym_name = link_order->u.reloc.p->u.name;
10249 if (! ((*info->callbacks->reloc_overflow)
10250 (info, NULL, sym_name, howto->name, addend, NULL,
10251 NULL, (bfd_vma) 0)))
10252 {
10253 free (buf);
10254 return FALSE;
10255 }
10256 break;
10257 }
10258 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10259 link_order->offset, size);
10260 free (buf);
10261 if (! ok)
10262 return FALSE;
10263 }
10264
10265 /* The address of a reloc is relative to the section in a
10266 relocatable file, and is a virtual address in an executable
10267 file. */
10268 offset = link_order->offset;
10269 if (! info->relocatable)
10270 offset += output_section->vma;
10271
10272 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10273 {
10274 irel[i].r_offset = offset;
10275 irel[i].r_info = 0;
10276 irel[i].r_addend = 0;
10277 }
10278 if (bed->s->arch_size == 32)
10279 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10280 else
10281 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10282
10283 rel_hdr = reldata->hdr;
10284 erel = rel_hdr->contents;
10285 if (rel_hdr->sh_type == SHT_REL)
10286 {
10287 erel += reldata->count * bed->s->sizeof_rel;
10288 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10289 }
10290 else
10291 {
10292 irel[0].r_addend = addend;
10293 erel += reldata->count * bed->s->sizeof_rela;
10294 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10295 }
10296
10297 ++reldata->count;
10298
10299 return TRUE;
10300 }
10301
10302
10303 /* Get the output vma of the section pointed to by the sh_link field. */
10304
10305 static bfd_vma
10306 elf_get_linked_section_vma (struct bfd_link_order *p)
10307 {
10308 Elf_Internal_Shdr **elf_shdrp;
10309 asection *s;
10310 int elfsec;
10311
10312 s = p->u.indirect.section;
10313 elf_shdrp = elf_elfsections (s->owner);
10314 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10315 elfsec = elf_shdrp[elfsec]->sh_link;
10316 /* PR 290:
10317 The Intel C compiler generates SHT_IA_64_UNWIND with
10318 SHF_LINK_ORDER. But it doesn't set the sh_link or
10319 sh_info fields. Hence we could get the situation
10320 where elfsec is 0. */
10321 if (elfsec == 0)
10322 {
10323 const struct elf_backend_data *bed
10324 = get_elf_backend_data (s->owner);
10325 if (bed->link_order_error_handler)
10326 bed->link_order_error_handler
10327 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10328 return 0;
10329 }
10330 else
10331 {
10332 s = elf_shdrp[elfsec]->bfd_section;
10333 return s->output_section->vma + s->output_offset;
10334 }
10335 }
10336
10337
10338 /* Compare two sections based on the locations of the sections they are
10339 linked to. Used by elf_fixup_link_order. */
10340
10341 static int
10342 compare_link_order (const void * a, const void * b)
10343 {
10344 bfd_vma apos;
10345 bfd_vma bpos;
10346
10347 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10348 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10349 if (apos < bpos)
10350 return -1;
10351 return apos > bpos;
10352 }
10353
10354
10355 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10356 order as their linked sections. Returns false if this could not be done
10357 because an output section includes both ordered and unordered
10358 sections. Ideally we'd do this in the linker proper. */
10359
10360 static bfd_boolean
10361 elf_fixup_link_order (bfd *abfd, asection *o)
10362 {
10363 int seen_linkorder;
10364 int seen_other;
10365 int n;
10366 struct bfd_link_order *p;
10367 bfd *sub;
10368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10369 unsigned elfsec;
10370 struct bfd_link_order **sections;
10371 asection *s, *other_sec, *linkorder_sec;
10372 bfd_vma offset;
10373
10374 other_sec = NULL;
10375 linkorder_sec = NULL;
10376 seen_other = 0;
10377 seen_linkorder = 0;
10378 for (p = o->map_head.link_order; p != NULL; p = p->next)
10379 {
10380 if (p->type == bfd_indirect_link_order)
10381 {
10382 s = p->u.indirect.section;
10383 sub = s->owner;
10384 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10385 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10386 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10387 && elfsec < elf_numsections (sub)
10388 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10389 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10390 {
10391 seen_linkorder++;
10392 linkorder_sec = s;
10393 }
10394 else
10395 {
10396 seen_other++;
10397 other_sec = s;
10398 }
10399 }
10400 else
10401 seen_other++;
10402
10403 if (seen_other && seen_linkorder)
10404 {
10405 if (other_sec && linkorder_sec)
10406 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10407 o, linkorder_sec,
10408 linkorder_sec->owner, other_sec,
10409 other_sec->owner);
10410 else
10411 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10412 o);
10413 bfd_set_error (bfd_error_bad_value);
10414 return FALSE;
10415 }
10416 }
10417
10418 if (!seen_linkorder)
10419 return TRUE;
10420
10421 sections = (struct bfd_link_order **)
10422 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10423 if (sections == NULL)
10424 return FALSE;
10425 seen_linkorder = 0;
10426
10427 for (p = o->map_head.link_order; p != NULL; p = p->next)
10428 {
10429 sections[seen_linkorder++] = p;
10430 }
10431 /* Sort the input sections in the order of their linked section. */
10432 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10433 compare_link_order);
10434
10435 /* Change the offsets of the sections. */
10436 offset = 0;
10437 for (n = 0; n < seen_linkorder; n++)
10438 {
10439 s = sections[n]->u.indirect.section;
10440 offset &= ~(bfd_vma) 0 << s->alignment_power;
10441 s->output_offset = offset;
10442 sections[n]->offset = offset;
10443 /* FIXME: octets_per_byte. */
10444 offset += sections[n]->size;
10445 }
10446
10447 free (sections);
10448 return TRUE;
10449 }
10450
10451 static void
10452 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10453 {
10454 asection *o;
10455
10456 if (flinfo->symstrtab != NULL)
10457 _bfd_stringtab_free (flinfo->symstrtab);
10458 if (flinfo->contents != NULL)
10459 free (flinfo->contents);
10460 if (flinfo->external_relocs != NULL)
10461 free (flinfo->external_relocs);
10462 if (flinfo->internal_relocs != NULL)
10463 free (flinfo->internal_relocs);
10464 if (flinfo->external_syms != NULL)
10465 free (flinfo->external_syms);
10466 if (flinfo->locsym_shndx != NULL)
10467 free (flinfo->locsym_shndx);
10468 if (flinfo->internal_syms != NULL)
10469 free (flinfo->internal_syms);
10470 if (flinfo->indices != NULL)
10471 free (flinfo->indices);
10472 if (flinfo->sections != NULL)
10473 free (flinfo->sections);
10474 if (flinfo->symbuf != NULL)
10475 free (flinfo->symbuf);
10476 if (flinfo->symshndxbuf != NULL)
10477 free (flinfo->symshndxbuf);
10478 for (o = obfd->sections; o != NULL; o = o->next)
10479 {
10480 struct bfd_elf_section_data *esdo = elf_section_data (o);
10481 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10482 free (esdo->rel.hashes);
10483 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10484 free (esdo->rela.hashes);
10485 }
10486 }
10487
10488 /* Do the final step of an ELF link. */
10489
10490 bfd_boolean
10491 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10492 {
10493 bfd_boolean dynamic;
10494 bfd_boolean emit_relocs;
10495 bfd *dynobj;
10496 struct elf_final_link_info flinfo;
10497 asection *o;
10498 struct bfd_link_order *p;
10499 bfd *sub;
10500 bfd_size_type max_contents_size;
10501 bfd_size_type max_external_reloc_size;
10502 bfd_size_type max_internal_reloc_count;
10503 bfd_size_type max_sym_count;
10504 bfd_size_type max_sym_shndx_count;
10505 file_ptr off;
10506 Elf_Internal_Sym elfsym;
10507 unsigned int i;
10508 Elf_Internal_Shdr *symtab_hdr;
10509 Elf_Internal_Shdr *symtab_shndx_hdr;
10510 Elf_Internal_Shdr *symstrtab_hdr;
10511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10512 struct elf_outext_info eoinfo;
10513 bfd_boolean merged;
10514 size_t relativecount = 0;
10515 asection *reldyn = 0;
10516 bfd_size_type amt;
10517 asection *attr_section = NULL;
10518 bfd_vma attr_size = 0;
10519 const char *std_attrs_section;
10520
10521 if (! is_elf_hash_table (info->hash))
10522 return FALSE;
10523
10524 if (info->shared)
10525 abfd->flags |= DYNAMIC;
10526
10527 dynamic = elf_hash_table (info)->dynamic_sections_created;
10528 dynobj = elf_hash_table (info)->dynobj;
10529
10530 emit_relocs = (info->relocatable
10531 || info->emitrelocations);
10532
10533 flinfo.info = info;
10534 flinfo.output_bfd = abfd;
10535 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10536 if (flinfo.symstrtab == NULL)
10537 return FALSE;
10538
10539 if (! dynamic)
10540 {
10541 flinfo.dynsym_sec = NULL;
10542 flinfo.hash_sec = NULL;
10543 flinfo.symver_sec = NULL;
10544 }
10545 else
10546 {
10547 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10548 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10549 /* Note that dynsym_sec can be NULL (on VMS). */
10550 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10551 /* Note that it is OK if symver_sec is NULL. */
10552 }
10553
10554 flinfo.contents = NULL;
10555 flinfo.external_relocs = NULL;
10556 flinfo.internal_relocs = NULL;
10557 flinfo.external_syms = NULL;
10558 flinfo.locsym_shndx = NULL;
10559 flinfo.internal_syms = NULL;
10560 flinfo.indices = NULL;
10561 flinfo.sections = NULL;
10562 flinfo.symbuf = NULL;
10563 flinfo.symshndxbuf = NULL;
10564 flinfo.symbuf_count = 0;
10565 flinfo.shndxbuf_size = 0;
10566 flinfo.filesym_count = 0;
10567
10568 /* The object attributes have been merged. Remove the input
10569 sections from the link, and set the contents of the output
10570 secton. */
10571 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10572 for (o = abfd->sections; o != NULL; o = o->next)
10573 {
10574 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10575 || strcmp (o->name, ".gnu.attributes") == 0)
10576 {
10577 for (p = o->map_head.link_order; p != NULL; p = p->next)
10578 {
10579 asection *input_section;
10580
10581 if (p->type != bfd_indirect_link_order)
10582 continue;
10583 input_section = p->u.indirect.section;
10584 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10585 elf_link_input_bfd ignores this section. */
10586 input_section->flags &= ~SEC_HAS_CONTENTS;
10587 }
10588
10589 attr_size = bfd_elf_obj_attr_size (abfd);
10590 if (attr_size)
10591 {
10592 bfd_set_section_size (abfd, o, attr_size);
10593 attr_section = o;
10594 /* Skip this section later on. */
10595 o->map_head.link_order = NULL;
10596 }
10597 else
10598 o->flags |= SEC_EXCLUDE;
10599 }
10600 }
10601
10602 /* Count up the number of relocations we will output for each output
10603 section, so that we know the sizes of the reloc sections. We
10604 also figure out some maximum sizes. */
10605 max_contents_size = 0;
10606 max_external_reloc_size = 0;
10607 max_internal_reloc_count = 0;
10608 max_sym_count = 0;
10609 max_sym_shndx_count = 0;
10610 merged = FALSE;
10611 for (o = abfd->sections; o != NULL; o = o->next)
10612 {
10613 struct bfd_elf_section_data *esdo = elf_section_data (o);
10614 o->reloc_count = 0;
10615
10616 for (p = o->map_head.link_order; p != NULL; p = p->next)
10617 {
10618 unsigned int reloc_count = 0;
10619 struct bfd_elf_section_data *esdi = NULL;
10620
10621 if (p->type == bfd_section_reloc_link_order
10622 || p->type == bfd_symbol_reloc_link_order)
10623 reloc_count = 1;
10624 else if (p->type == bfd_indirect_link_order)
10625 {
10626 asection *sec;
10627
10628 sec = p->u.indirect.section;
10629 esdi = elf_section_data (sec);
10630
10631 /* Mark all sections which are to be included in the
10632 link. This will normally be every section. We need
10633 to do this so that we can identify any sections which
10634 the linker has decided to not include. */
10635 sec->linker_mark = TRUE;
10636
10637 if (sec->flags & SEC_MERGE)
10638 merged = TRUE;
10639
10640 if (esdo->this_hdr.sh_type == SHT_REL
10641 || esdo->this_hdr.sh_type == SHT_RELA)
10642 /* Some backends use reloc_count in relocation sections
10643 to count particular types of relocs. Of course,
10644 reloc sections themselves can't have relocations. */
10645 reloc_count = 0;
10646 else if (info->relocatable || info->emitrelocations)
10647 reloc_count = sec->reloc_count;
10648 else if (bed->elf_backend_count_relocs)
10649 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10650
10651 if (sec->rawsize > max_contents_size)
10652 max_contents_size = sec->rawsize;
10653 if (sec->size > max_contents_size)
10654 max_contents_size = sec->size;
10655
10656 /* We are interested in just local symbols, not all
10657 symbols. */
10658 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10659 && (sec->owner->flags & DYNAMIC) == 0)
10660 {
10661 size_t sym_count;
10662
10663 if (elf_bad_symtab (sec->owner))
10664 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10665 / bed->s->sizeof_sym);
10666 else
10667 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10668
10669 if (sym_count > max_sym_count)
10670 max_sym_count = sym_count;
10671
10672 if (sym_count > max_sym_shndx_count
10673 && elf_symtab_shndx (sec->owner) != 0)
10674 max_sym_shndx_count = sym_count;
10675
10676 if ((sec->flags & SEC_RELOC) != 0)
10677 {
10678 size_t ext_size = 0;
10679
10680 if (esdi->rel.hdr != NULL)
10681 ext_size = esdi->rel.hdr->sh_size;
10682 if (esdi->rela.hdr != NULL)
10683 ext_size += esdi->rela.hdr->sh_size;
10684
10685 if (ext_size > max_external_reloc_size)
10686 max_external_reloc_size = ext_size;
10687 if (sec->reloc_count > max_internal_reloc_count)
10688 max_internal_reloc_count = sec->reloc_count;
10689 }
10690 }
10691 }
10692
10693 if (reloc_count == 0)
10694 continue;
10695
10696 o->reloc_count += reloc_count;
10697
10698 if (p->type == bfd_indirect_link_order
10699 && (info->relocatable || info->emitrelocations))
10700 {
10701 if (esdi->rel.hdr)
10702 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10703 if (esdi->rela.hdr)
10704 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10705 }
10706 else
10707 {
10708 if (o->use_rela_p)
10709 esdo->rela.count += reloc_count;
10710 else
10711 esdo->rel.count += reloc_count;
10712 }
10713 }
10714
10715 if (o->reloc_count > 0)
10716 o->flags |= SEC_RELOC;
10717 else
10718 {
10719 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10720 set it (this is probably a bug) and if it is set
10721 assign_section_numbers will create a reloc section. */
10722 o->flags &=~ SEC_RELOC;
10723 }
10724
10725 /* If the SEC_ALLOC flag is not set, force the section VMA to
10726 zero. This is done in elf_fake_sections as well, but forcing
10727 the VMA to 0 here will ensure that relocs against these
10728 sections are handled correctly. */
10729 if ((o->flags & SEC_ALLOC) == 0
10730 && ! o->user_set_vma)
10731 o->vma = 0;
10732 }
10733
10734 if (! info->relocatable && merged)
10735 elf_link_hash_traverse (elf_hash_table (info),
10736 _bfd_elf_link_sec_merge_syms, abfd);
10737
10738 /* Figure out the file positions for everything but the symbol table
10739 and the relocs. We set symcount to force assign_section_numbers
10740 to create a symbol table. */
10741 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10742 BFD_ASSERT (! abfd->output_has_begun);
10743 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10744 goto error_return;
10745
10746 /* Set sizes, and assign file positions for reloc sections. */
10747 for (o = abfd->sections; o != NULL; o = o->next)
10748 {
10749 struct bfd_elf_section_data *esdo = elf_section_data (o);
10750 if ((o->flags & SEC_RELOC) != 0)
10751 {
10752 if (esdo->rel.hdr
10753 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10754 goto error_return;
10755
10756 if (esdo->rela.hdr
10757 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10758 goto error_return;
10759 }
10760
10761 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10762 to count upwards while actually outputting the relocations. */
10763 esdo->rel.count = 0;
10764 esdo->rela.count = 0;
10765 }
10766
10767 _bfd_elf_assign_file_positions_for_relocs (abfd);
10768
10769 /* We have now assigned file positions for all the sections except
10770 .symtab and .strtab. We start the .symtab section at the current
10771 file position, and write directly to it. We build the .strtab
10772 section in memory. */
10773 bfd_get_symcount (abfd) = 0;
10774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10775 /* sh_name is set in prep_headers. */
10776 symtab_hdr->sh_type = SHT_SYMTAB;
10777 /* sh_flags, sh_addr and sh_size all start off zero. */
10778 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10779 /* sh_link is set in assign_section_numbers. */
10780 /* sh_info is set below. */
10781 /* sh_offset is set just below. */
10782 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10783
10784 off = elf_next_file_pos (abfd);
10785 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10786
10787 /* Note that at this point elf_next_file_pos (abfd) is
10788 incorrect. We do not yet know the size of the .symtab section.
10789 We correct next_file_pos below, after we do know the size. */
10790
10791 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10792 continuously seeking to the right position in the file. */
10793 if (! info->keep_memory || max_sym_count < 20)
10794 flinfo.symbuf_size = 20;
10795 else
10796 flinfo.symbuf_size = max_sym_count;
10797 amt = flinfo.symbuf_size;
10798 amt *= bed->s->sizeof_sym;
10799 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10800 if (flinfo.symbuf == NULL)
10801 goto error_return;
10802 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10803 {
10804 /* Wild guess at number of output symbols. realloc'd as needed. */
10805 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10806 flinfo.shndxbuf_size = amt;
10807 amt *= sizeof (Elf_External_Sym_Shndx);
10808 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10809 if (flinfo.symshndxbuf == NULL)
10810 goto error_return;
10811 }
10812
10813 /* Start writing out the symbol table. The first symbol is always a
10814 dummy symbol. */
10815 if (info->strip != strip_all
10816 || emit_relocs)
10817 {
10818 elfsym.st_value = 0;
10819 elfsym.st_size = 0;
10820 elfsym.st_info = 0;
10821 elfsym.st_other = 0;
10822 elfsym.st_shndx = SHN_UNDEF;
10823 elfsym.st_target_internal = 0;
10824 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10825 NULL) != 1)
10826 goto error_return;
10827 }
10828
10829 /* Output a symbol for each section. We output these even if we are
10830 discarding local symbols, since they are used for relocs. These
10831 symbols have no names. We store the index of each one in the
10832 index field of the section, so that we can find it again when
10833 outputting relocs. */
10834 if (info->strip != strip_all
10835 || emit_relocs)
10836 {
10837 elfsym.st_size = 0;
10838 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10839 elfsym.st_other = 0;
10840 elfsym.st_value = 0;
10841 elfsym.st_target_internal = 0;
10842 for (i = 1; i < elf_numsections (abfd); i++)
10843 {
10844 o = bfd_section_from_elf_index (abfd, i);
10845 if (o != NULL)
10846 {
10847 o->target_index = bfd_get_symcount (abfd);
10848 elfsym.st_shndx = i;
10849 if (!info->relocatable)
10850 elfsym.st_value = o->vma;
10851 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10852 goto error_return;
10853 }
10854 }
10855 }
10856
10857 /* Allocate some memory to hold information read in from the input
10858 files. */
10859 if (max_contents_size != 0)
10860 {
10861 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10862 if (flinfo.contents == NULL)
10863 goto error_return;
10864 }
10865
10866 if (max_external_reloc_size != 0)
10867 {
10868 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10869 if (flinfo.external_relocs == NULL)
10870 goto error_return;
10871 }
10872
10873 if (max_internal_reloc_count != 0)
10874 {
10875 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10876 amt *= sizeof (Elf_Internal_Rela);
10877 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10878 if (flinfo.internal_relocs == NULL)
10879 goto error_return;
10880 }
10881
10882 if (max_sym_count != 0)
10883 {
10884 amt = max_sym_count * bed->s->sizeof_sym;
10885 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10886 if (flinfo.external_syms == NULL)
10887 goto error_return;
10888
10889 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10890 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10891 if (flinfo.internal_syms == NULL)
10892 goto error_return;
10893
10894 amt = max_sym_count * sizeof (long);
10895 flinfo.indices = (long int *) bfd_malloc (amt);
10896 if (flinfo.indices == NULL)
10897 goto error_return;
10898
10899 amt = max_sym_count * sizeof (asection *);
10900 flinfo.sections = (asection **) bfd_malloc (amt);
10901 if (flinfo.sections == NULL)
10902 goto error_return;
10903 }
10904
10905 if (max_sym_shndx_count != 0)
10906 {
10907 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10908 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10909 if (flinfo.locsym_shndx == NULL)
10910 goto error_return;
10911 }
10912
10913 if (elf_hash_table (info)->tls_sec)
10914 {
10915 bfd_vma base, end = 0;
10916 asection *sec;
10917
10918 for (sec = elf_hash_table (info)->tls_sec;
10919 sec && (sec->flags & SEC_THREAD_LOCAL);
10920 sec = sec->next)
10921 {
10922 bfd_size_type size = sec->size;
10923
10924 if (size == 0
10925 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10926 {
10927 struct bfd_link_order *ord = sec->map_tail.link_order;
10928
10929 if (ord != NULL)
10930 size = ord->offset + ord->size;
10931 }
10932 end = sec->vma + size;
10933 }
10934 base = elf_hash_table (info)->tls_sec->vma;
10935 /* Only align end of TLS section if static TLS doesn't have special
10936 alignment requirements. */
10937 if (bed->static_tls_alignment == 1)
10938 end = align_power (end,
10939 elf_hash_table (info)->tls_sec->alignment_power);
10940 elf_hash_table (info)->tls_size = end - base;
10941 }
10942
10943 /* Reorder SHF_LINK_ORDER sections. */
10944 for (o = abfd->sections; o != NULL; o = o->next)
10945 {
10946 if (!elf_fixup_link_order (abfd, o))
10947 return FALSE;
10948 }
10949
10950 /* Since ELF permits relocations to be against local symbols, we
10951 must have the local symbols available when we do the relocations.
10952 Since we would rather only read the local symbols once, and we
10953 would rather not keep them in memory, we handle all the
10954 relocations for a single input file at the same time.
10955
10956 Unfortunately, there is no way to know the total number of local
10957 symbols until we have seen all of them, and the local symbol
10958 indices precede the global symbol indices. This means that when
10959 we are generating relocatable output, and we see a reloc against
10960 a global symbol, we can not know the symbol index until we have
10961 finished examining all the local symbols to see which ones we are
10962 going to output. To deal with this, we keep the relocations in
10963 memory, and don't output them until the end of the link. This is
10964 an unfortunate waste of memory, but I don't see a good way around
10965 it. Fortunately, it only happens when performing a relocatable
10966 link, which is not the common case. FIXME: If keep_memory is set
10967 we could write the relocs out and then read them again; I don't
10968 know how bad the memory loss will be. */
10969
10970 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10971 sub->output_has_begun = FALSE;
10972 for (o = abfd->sections; o != NULL; o = o->next)
10973 {
10974 for (p = o->map_head.link_order; p != NULL; p = p->next)
10975 {
10976 if (p->type == bfd_indirect_link_order
10977 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10978 == bfd_target_elf_flavour)
10979 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10980 {
10981 if (! sub->output_has_begun)
10982 {
10983 if (! elf_link_input_bfd (&flinfo, sub))
10984 goto error_return;
10985 sub->output_has_begun = TRUE;
10986 }
10987 }
10988 else if (p->type == bfd_section_reloc_link_order
10989 || p->type == bfd_symbol_reloc_link_order)
10990 {
10991 if (! elf_reloc_link_order (abfd, info, o, p))
10992 goto error_return;
10993 }
10994 else
10995 {
10996 if (! _bfd_default_link_order (abfd, info, o, p))
10997 {
10998 if (p->type == bfd_indirect_link_order
10999 && (bfd_get_flavour (sub)
11000 == bfd_target_elf_flavour)
11001 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11002 != bed->s->elfclass))
11003 {
11004 const char *iclass, *oclass;
11005
11006 if (bed->s->elfclass == ELFCLASS64)
11007 {
11008 iclass = "ELFCLASS32";
11009 oclass = "ELFCLASS64";
11010 }
11011 else
11012 {
11013 iclass = "ELFCLASS64";
11014 oclass = "ELFCLASS32";
11015 }
11016
11017 bfd_set_error (bfd_error_wrong_format);
11018 (*_bfd_error_handler)
11019 (_("%B: file class %s incompatible with %s"),
11020 sub, iclass, oclass);
11021 }
11022
11023 goto error_return;
11024 }
11025 }
11026 }
11027 }
11028
11029 /* Free symbol buffer if needed. */
11030 if (!info->reduce_memory_overheads)
11031 {
11032 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11033 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11034 && elf_tdata (sub)->symbuf)
11035 {
11036 free (elf_tdata (sub)->symbuf);
11037 elf_tdata (sub)->symbuf = NULL;
11038 }
11039 }
11040
11041 /* Output a FILE symbol so that following locals are not associated
11042 with the wrong input file. */
11043 memset (&elfsym, 0, sizeof (elfsym));
11044 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11045 elfsym.st_shndx = SHN_ABS;
11046
11047 if (flinfo.filesym_count > 1
11048 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11049 bfd_und_section_ptr, NULL))
11050 return FALSE;
11051
11052 /* Output any global symbols that got converted to local in a
11053 version script or due to symbol visibility. We do this in a
11054 separate step since ELF requires all local symbols to appear
11055 prior to any global symbols. FIXME: We should only do this if
11056 some global symbols were, in fact, converted to become local.
11057 FIXME: Will this work correctly with the Irix 5 linker? */
11058 eoinfo.failed = FALSE;
11059 eoinfo.flinfo = &flinfo;
11060 eoinfo.localsyms = TRUE;
11061 eoinfo.need_second_pass = FALSE;
11062 eoinfo.second_pass = FALSE;
11063 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11064 if (eoinfo.failed)
11065 return FALSE;
11066
11067 if (flinfo.filesym_count == 1
11068 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11069 bfd_und_section_ptr, NULL))
11070 return FALSE;
11071
11072 if (eoinfo.need_second_pass)
11073 {
11074 eoinfo.second_pass = TRUE;
11075 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11076 if (eoinfo.failed)
11077 return FALSE;
11078 }
11079
11080 /* If backend needs to output some local symbols not present in the hash
11081 table, do it now. */
11082 if (bed->elf_backend_output_arch_local_syms)
11083 {
11084 typedef int (*out_sym_func)
11085 (void *, const char *, Elf_Internal_Sym *, asection *,
11086 struct elf_link_hash_entry *);
11087
11088 if (! ((*bed->elf_backend_output_arch_local_syms)
11089 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11090 return FALSE;
11091 }
11092
11093 /* That wrote out all the local symbols. Finish up the symbol table
11094 with the global symbols. Even if we want to strip everything we
11095 can, we still need to deal with those global symbols that got
11096 converted to local in a version script. */
11097
11098 /* The sh_info field records the index of the first non local symbol. */
11099 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11100
11101 if (dynamic
11102 && flinfo.dynsym_sec != NULL
11103 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11104 {
11105 Elf_Internal_Sym sym;
11106 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11107 long last_local = 0;
11108
11109 /* Write out the section symbols for the output sections. */
11110 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11111 {
11112 asection *s;
11113
11114 sym.st_size = 0;
11115 sym.st_name = 0;
11116 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11117 sym.st_other = 0;
11118 sym.st_target_internal = 0;
11119
11120 for (s = abfd->sections; s != NULL; s = s->next)
11121 {
11122 int indx;
11123 bfd_byte *dest;
11124 long dynindx;
11125
11126 dynindx = elf_section_data (s)->dynindx;
11127 if (dynindx <= 0)
11128 continue;
11129 indx = elf_section_data (s)->this_idx;
11130 BFD_ASSERT (indx > 0);
11131 sym.st_shndx = indx;
11132 if (! check_dynsym (abfd, &sym))
11133 return FALSE;
11134 sym.st_value = s->vma;
11135 dest = dynsym + dynindx * bed->s->sizeof_sym;
11136 if (last_local < dynindx)
11137 last_local = dynindx;
11138 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11139 }
11140 }
11141
11142 /* Write out the local dynsyms. */
11143 if (elf_hash_table (info)->dynlocal)
11144 {
11145 struct elf_link_local_dynamic_entry *e;
11146 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11147 {
11148 asection *s;
11149 bfd_byte *dest;
11150
11151 /* Copy the internal symbol and turn off visibility.
11152 Note that we saved a word of storage and overwrote
11153 the original st_name with the dynstr_index. */
11154 sym = e->isym;
11155 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11156
11157 s = bfd_section_from_elf_index (e->input_bfd,
11158 e->isym.st_shndx);
11159 if (s != NULL)
11160 {
11161 sym.st_shndx =
11162 elf_section_data (s->output_section)->this_idx;
11163 if (! check_dynsym (abfd, &sym))
11164 return FALSE;
11165 sym.st_value = (s->output_section->vma
11166 + s->output_offset
11167 + e->isym.st_value);
11168 }
11169
11170 if (last_local < e->dynindx)
11171 last_local = e->dynindx;
11172
11173 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11174 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11175 }
11176 }
11177
11178 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11179 last_local + 1;
11180 }
11181
11182 /* We get the global symbols from the hash table. */
11183 eoinfo.failed = FALSE;
11184 eoinfo.localsyms = FALSE;
11185 eoinfo.flinfo = &flinfo;
11186 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11187 if (eoinfo.failed)
11188 return FALSE;
11189
11190 /* If backend needs to output some symbols not present in the hash
11191 table, do it now. */
11192 if (bed->elf_backend_output_arch_syms)
11193 {
11194 typedef int (*out_sym_func)
11195 (void *, const char *, Elf_Internal_Sym *, asection *,
11196 struct elf_link_hash_entry *);
11197
11198 if (! ((*bed->elf_backend_output_arch_syms)
11199 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11200 return FALSE;
11201 }
11202
11203 /* Flush all symbols to the file. */
11204 if (! elf_link_flush_output_syms (&flinfo, bed))
11205 return FALSE;
11206
11207 /* Now we know the size of the symtab section. */
11208 off += symtab_hdr->sh_size;
11209
11210 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11211 if (symtab_shndx_hdr->sh_name != 0)
11212 {
11213 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11214 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11215 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11216 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11217 symtab_shndx_hdr->sh_size = amt;
11218
11219 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11220 off, TRUE);
11221
11222 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11223 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11224 return FALSE;
11225 }
11226
11227
11228 /* Finish up and write out the symbol string table (.strtab)
11229 section. */
11230 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11231 /* sh_name was set in prep_headers. */
11232 symstrtab_hdr->sh_type = SHT_STRTAB;
11233 symstrtab_hdr->sh_flags = 0;
11234 symstrtab_hdr->sh_addr = 0;
11235 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11236 symstrtab_hdr->sh_entsize = 0;
11237 symstrtab_hdr->sh_link = 0;
11238 symstrtab_hdr->sh_info = 0;
11239 /* sh_offset is set just below. */
11240 symstrtab_hdr->sh_addralign = 1;
11241
11242 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11243 elf_next_file_pos (abfd) = off;
11244
11245 if (bfd_get_symcount (abfd) > 0)
11246 {
11247 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11248 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11249 return FALSE;
11250 }
11251
11252 /* Adjust the relocs to have the correct symbol indices. */
11253 for (o = abfd->sections; o != NULL; o = o->next)
11254 {
11255 struct bfd_elf_section_data *esdo = elf_section_data (o);
11256 if ((o->flags & SEC_RELOC) == 0)
11257 continue;
11258
11259 if (esdo->rel.hdr != NULL)
11260 elf_link_adjust_relocs (abfd, &esdo->rel);
11261 if (esdo->rela.hdr != NULL)
11262 elf_link_adjust_relocs (abfd, &esdo->rela);
11263
11264 /* Set the reloc_count field to 0 to prevent write_relocs from
11265 trying to swap the relocs out itself. */
11266 o->reloc_count = 0;
11267 }
11268
11269 if (dynamic && info->combreloc && dynobj != NULL)
11270 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11271
11272 /* If we are linking against a dynamic object, or generating a
11273 shared library, finish up the dynamic linking information. */
11274 if (dynamic)
11275 {
11276 bfd_byte *dyncon, *dynconend;
11277
11278 /* Fix up .dynamic entries. */
11279 o = bfd_get_linker_section (dynobj, ".dynamic");
11280 BFD_ASSERT (o != NULL);
11281
11282 dyncon = o->contents;
11283 dynconend = o->contents + o->size;
11284 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11285 {
11286 Elf_Internal_Dyn dyn;
11287 const char *name;
11288 unsigned int type;
11289
11290 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11291
11292 switch (dyn.d_tag)
11293 {
11294 default:
11295 continue;
11296 case DT_NULL:
11297 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11298 {
11299 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11300 {
11301 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11302 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11303 default: continue;
11304 }
11305 dyn.d_un.d_val = relativecount;
11306 relativecount = 0;
11307 break;
11308 }
11309 continue;
11310
11311 case DT_INIT:
11312 name = info->init_function;
11313 goto get_sym;
11314 case DT_FINI:
11315 name = info->fini_function;
11316 get_sym:
11317 {
11318 struct elf_link_hash_entry *h;
11319
11320 h = elf_link_hash_lookup (elf_hash_table (info), name,
11321 FALSE, FALSE, TRUE);
11322 if (h != NULL
11323 && (h->root.type == bfd_link_hash_defined
11324 || h->root.type == bfd_link_hash_defweak))
11325 {
11326 dyn.d_un.d_ptr = h->root.u.def.value;
11327 o = h->root.u.def.section;
11328 if (o->output_section != NULL)
11329 dyn.d_un.d_ptr += (o->output_section->vma
11330 + o->output_offset);
11331 else
11332 {
11333 /* The symbol is imported from another shared
11334 library and does not apply to this one. */
11335 dyn.d_un.d_ptr = 0;
11336 }
11337 break;
11338 }
11339 }
11340 continue;
11341
11342 case DT_PREINIT_ARRAYSZ:
11343 name = ".preinit_array";
11344 goto get_size;
11345 case DT_INIT_ARRAYSZ:
11346 name = ".init_array";
11347 goto get_size;
11348 case DT_FINI_ARRAYSZ:
11349 name = ".fini_array";
11350 get_size:
11351 o = bfd_get_section_by_name (abfd, name);
11352 if (o == NULL)
11353 {
11354 (*_bfd_error_handler)
11355 (_("%B: could not find output section %s"), abfd, name);
11356 goto error_return;
11357 }
11358 if (o->size == 0)
11359 (*_bfd_error_handler)
11360 (_("warning: %s section has zero size"), name);
11361 dyn.d_un.d_val = o->size;
11362 break;
11363
11364 case DT_PREINIT_ARRAY:
11365 name = ".preinit_array";
11366 goto get_vma;
11367 case DT_INIT_ARRAY:
11368 name = ".init_array";
11369 goto get_vma;
11370 case DT_FINI_ARRAY:
11371 name = ".fini_array";
11372 goto get_vma;
11373
11374 case DT_HASH:
11375 name = ".hash";
11376 goto get_vma;
11377 case DT_GNU_HASH:
11378 name = ".gnu.hash";
11379 goto get_vma;
11380 case DT_STRTAB:
11381 name = ".dynstr";
11382 goto get_vma;
11383 case DT_SYMTAB:
11384 name = ".dynsym";
11385 goto get_vma;
11386 case DT_VERDEF:
11387 name = ".gnu.version_d";
11388 goto get_vma;
11389 case DT_VERNEED:
11390 name = ".gnu.version_r";
11391 goto get_vma;
11392 case DT_VERSYM:
11393 name = ".gnu.version";
11394 get_vma:
11395 o = bfd_get_section_by_name (abfd, name);
11396 if (o == NULL)
11397 {
11398 (*_bfd_error_handler)
11399 (_("%B: could not find output section %s"), abfd, name);
11400 goto error_return;
11401 }
11402 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11403 {
11404 (*_bfd_error_handler)
11405 (_("warning: section '%s' is being made into a note"), name);
11406 bfd_set_error (bfd_error_nonrepresentable_section);
11407 goto error_return;
11408 }
11409 dyn.d_un.d_ptr = o->vma;
11410 break;
11411
11412 case DT_REL:
11413 case DT_RELA:
11414 case DT_RELSZ:
11415 case DT_RELASZ:
11416 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11417 type = SHT_REL;
11418 else
11419 type = SHT_RELA;
11420 dyn.d_un.d_val = 0;
11421 dyn.d_un.d_ptr = 0;
11422 for (i = 1; i < elf_numsections (abfd); i++)
11423 {
11424 Elf_Internal_Shdr *hdr;
11425
11426 hdr = elf_elfsections (abfd)[i];
11427 if (hdr->sh_type == type
11428 && (hdr->sh_flags & SHF_ALLOC) != 0)
11429 {
11430 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11431 dyn.d_un.d_val += hdr->sh_size;
11432 else
11433 {
11434 if (dyn.d_un.d_ptr == 0
11435 || hdr->sh_addr < dyn.d_un.d_ptr)
11436 dyn.d_un.d_ptr = hdr->sh_addr;
11437 }
11438 }
11439 }
11440 break;
11441 }
11442 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11443 }
11444 }
11445
11446 /* If we have created any dynamic sections, then output them. */
11447 if (dynobj != NULL)
11448 {
11449 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11450 goto error_return;
11451
11452 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11453 if (((info->warn_shared_textrel && info->shared)
11454 || info->error_textrel)
11455 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11456 {
11457 bfd_byte *dyncon, *dynconend;
11458
11459 dyncon = o->contents;
11460 dynconend = o->contents + o->size;
11461 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11462 {
11463 Elf_Internal_Dyn dyn;
11464
11465 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11466
11467 if (dyn.d_tag == DT_TEXTREL)
11468 {
11469 if (info->error_textrel)
11470 info->callbacks->einfo
11471 (_("%P%X: read-only segment has dynamic relocations.\n"));
11472 else
11473 info->callbacks->einfo
11474 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11475 break;
11476 }
11477 }
11478 }
11479
11480 for (o = dynobj->sections; o != NULL; o = o->next)
11481 {
11482 if ((o->flags & SEC_HAS_CONTENTS) == 0
11483 || o->size == 0
11484 || o->output_section == bfd_abs_section_ptr)
11485 continue;
11486 if ((o->flags & SEC_LINKER_CREATED) == 0)
11487 {
11488 /* At this point, we are only interested in sections
11489 created by _bfd_elf_link_create_dynamic_sections. */
11490 continue;
11491 }
11492 if (elf_hash_table (info)->stab_info.stabstr == o)
11493 continue;
11494 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11495 continue;
11496 if (strcmp (o->name, ".dynstr") != 0)
11497 {
11498 /* FIXME: octets_per_byte. */
11499 if (! bfd_set_section_contents (abfd, o->output_section,
11500 o->contents,
11501 (file_ptr) o->output_offset,
11502 o->size))
11503 goto error_return;
11504 }
11505 else
11506 {
11507 /* The contents of the .dynstr section are actually in a
11508 stringtab. */
11509 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11510 if (bfd_seek (abfd, off, SEEK_SET) != 0
11511 || ! _bfd_elf_strtab_emit (abfd,
11512 elf_hash_table (info)->dynstr))
11513 goto error_return;
11514 }
11515 }
11516 }
11517
11518 if (info->relocatable)
11519 {
11520 bfd_boolean failed = FALSE;
11521
11522 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11523 if (failed)
11524 goto error_return;
11525 }
11526
11527 /* If we have optimized stabs strings, output them. */
11528 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11529 {
11530 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11531 goto error_return;
11532 }
11533
11534 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11535 goto error_return;
11536
11537 elf_final_link_free (abfd, &flinfo);
11538
11539 elf_linker (abfd) = TRUE;
11540
11541 if (attr_section)
11542 {
11543 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11544 if (contents == NULL)
11545 return FALSE; /* Bail out and fail. */
11546 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11547 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11548 free (contents);
11549 }
11550
11551 return TRUE;
11552
11553 error_return:
11554 elf_final_link_free (abfd, &flinfo);
11555 return FALSE;
11556 }
11557 \f
11558 /* Initialize COOKIE for input bfd ABFD. */
11559
11560 static bfd_boolean
11561 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11562 struct bfd_link_info *info, bfd *abfd)
11563 {
11564 Elf_Internal_Shdr *symtab_hdr;
11565 const struct elf_backend_data *bed;
11566
11567 bed = get_elf_backend_data (abfd);
11568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11569
11570 cookie->abfd = abfd;
11571 cookie->sym_hashes = elf_sym_hashes (abfd);
11572 cookie->bad_symtab = elf_bad_symtab (abfd);
11573 if (cookie->bad_symtab)
11574 {
11575 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11576 cookie->extsymoff = 0;
11577 }
11578 else
11579 {
11580 cookie->locsymcount = symtab_hdr->sh_info;
11581 cookie->extsymoff = symtab_hdr->sh_info;
11582 }
11583
11584 if (bed->s->arch_size == 32)
11585 cookie->r_sym_shift = 8;
11586 else
11587 cookie->r_sym_shift = 32;
11588
11589 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11590 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11591 {
11592 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11593 cookie->locsymcount, 0,
11594 NULL, NULL, NULL);
11595 if (cookie->locsyms == NULL)
11596 {
11597 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11598 return FALSE;
11599 }
11600 if (info->keep_memory)
11601 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11602 }
11603 return TRUE;
11604 }
11605
11606 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11607
11608 static void
11609 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11610 {
11611 Elf_Internal_Shdr *symtab_hdr;
11612
11613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11614 if (cookie->locsyms != NULL
11615 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11616 free (cookie->locsyms);
11617 }
11618
11619 /* Initialize the relocation information in COOKIE for input section SEC
11620 of input bfd ABFD. */
11621
11622 static bfd_boolean
11623 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11624 struct bfd_link_info *info, bfd *abfd,
11625 asection *sec)
11626 {
11627 const struct elf_backend_data *bed;
11628
11629 if (sec->reloc_count == 0)
11630 {
11631 cookie->rels = NULL;
11632 cookie->relend = NULL;
11633 }
11634 else
11635 {
11636 bed = get_elf_backend_data (abfd);
11637
11638 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11639 info->keep_memory);
11640 if (cookie->rels == NULL)
11641 return FALSE;
11642 cookie->rel = cookie->rels;
11643 cookie->relend = (cookie->rels
11644 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11645 }
11646 cookie->rel = cookie->rels;
11647 return TRUE;
11648 }
11649
11650 /* Free the memory allocated by init_reloc_cookie_rels,
11651 if appropriate. */
11652
11653 static void
11654 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11655 asection *sec)
11656 {
11657 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11658 free (cookie->rels);
11659 }
11660
11661 /* Initialize the whole of COOKIE for input section SEC. */
11662
11663 static bfd_boolean
11664 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11665 struct bfd_link_info *info,
11666 asection *sec)
11667 {
11668 if (!init_reloc_cookie (cookie, info, sec->owner))
11669 goto error1;
11670 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11671 goto error2;
11672 return TRUE;
11673
11674 error2:
11675 fini_reloc_cookie (cookie, sec->owner);
11676 error1:
11677 return FALSE;
11678 }
11679
11680 /* Free the memory allocated by init_reloc_cookie_for_section,
11681 if appropriate. */
11682
11683 static void
11684 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11685 asection *sec)
11686 {
11687 fini_reloc_cookie_rels (cookie, sec);
11688 fini_reloc_cookie (cookie, sec->owner);
11689 }
11690 \f
11691 /* Garbage collect unused sections. */
11692
11693 /* Default gc_mark_hook. */
11694
11695 asection *
11696 _bfd_elf_gc_mark_hook (asection *sec,
11697 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11698 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11699 struct elf_link_hash_entry *h,
11700 Elf_Internal_Sym *sym)
11701 {
11702 const char *sec_name;
11703
11704 if (h != NULL)
11705 {
11706 switch (h->root.type)
11707 {
11708 case bfd_link_hash_defined:
11709 case bfd_link_hash_defweak:
11710 return h->root.u.def.section;
11711
11712 case bfd_link_hash_common:
11713 return h->root.u.c.p->section;
11714
11715 case bfd_link_hash_undefined:
11716 case bfd_link_hash_undefweak:
11717 /* To work around a glibc bug, keep all XXX input sections
11718 when there is an as yet undefined reference to __start_XXX
11719 or __stop_XXX symbols. The linker will later define such
11720 symbols for orphan input sections that have a name
11721 representable as a C identifier. */
11722 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11723 sec_name = h->root.root.string + 8;
11724 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11725 sec_name = h->root.root.string + 7;
11726 else
11727 sec_name = NULL;
11728
11729 if (sec_name && *sec_name != '\0')
11730 {
11731 bfd *i;
11732
11733 for (i = info->input_bfds; i; i = i->link_next)
11734 {
11735 sec = bfd_get_section_by_name (i, sec_name);
11736 if (sec)
11737 sec->flags |= SEC_KEEP;
11738 }
11739 }
11740 break;
11741
11742 default:
11743 break;
11744 }
11745 }
11746 else
11747 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11748
11749 return NULL;
11750 }
11751
11752 /* COOKIE->rel describes a relocation against section SEC, which is
11753 a section we've decided to keep. Return the section that contains
11754 the relocation symbol, or NULL if no section contains it. */
11755
11756 asection *
11757 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11758 elf_gc_mark_hook_fn gc_mark_hook,
11759 struct elf_reloc_cookie *cookie)
11760 {
11761 unsigned long r_symndx;
11762 struct elf_link_hash_entry *h;
11763
11764 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11765 if (r_symndx == STN_UNDEF)
11766 return NULL;
11767
11768 if (r_symndx >= cookie->locsymcount
11769 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11770 {
11771 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11772 while (h->root.type == bfd_link_hash_indirect
11773 || h->root.type == bfd_link_hash_warning)
11774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11775 h->mark = 1;
11776 /* If this symbol is weak and there is a non-weak definition, we
11777 keep the non-weak definition because many backends put
11778 dynamic reloc info on the non-weak definition for code
11779 handling copy relocs. */
11780 if (h->u.weakdef != NULL)
11781 h->u.weakdef->mark = 1;
11782 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11783 }
11784
11785 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11786 &cookie->locsyms[r_symndx]);
11787 }
11788
11789 /* COOKIE->rel describes a relocation against section SEC, which is
11790 a section we've decided to keep. Mark the section that contains
11791 the relocation symbol. */
11792
11793 bfd_boolean
11794 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11795 asection *sec,
11796 elf_gc_mark_hook_fn gc_mark_hook,
11797 struct elf_reloc_cookie *cookie)
11798 {
11799 asection *rsec;
11800
11801 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11802 if (rsec && !rsec->gc_mark)
11803 {
11804 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11805 || (rsec->owner->flags & DYNAMIC) != 0)
11806 rsec->gc_mark = 1;
11807 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11808 return FALSE;
11809 }
11810 return TRUE;
11811 }
11812
11813 /* The mark phase of garbage collection. For a given section, mark
11814 it and any sections in this section's group, and all the sections
11815 which define symbols to which it refers. */
11816
11817 bfd_boolean
11818 _bfd_elf_gc_mark (struct bfd_link_info *info,
11819 asection *sec,
11820 elf_gc_mark_hook_fn gc_mark_hook)
11821 {
11822 bfd_boolean ret;
11823 asection *group_sec, *eh_frame;
11824
11825 sec->gc_mark = 1;
11826
11827 /* Mark all the sections in the group. */
11828 group_sec = elf_section_data (sec)->next_in_group;
11829 if (group_sec && !group_sec->gc_mark)
11830 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11831 return FALSE;
11832
11833 /* Look through the section relocs. */
11834 ret = TRUE;
11835 eh_frame = elf_eh_frame_section (sec->owner);
11836 if ((sec->flags & SEC_RELOC) != 0
11837 && sec->reloc_count > 0
11838 && sec != eh_frame)
11839 {
11840 struct elf_reloc_cookie cookie;
11841
11842 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11843 ret = FALSE;
11844 else
11845 {
11846 for (; cookie.rel < cookie.relend; cookie.rel++)
11847 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11848 {
11849 ret = FALSE;
11850 break;
11851 }
11852 fini_reloc_cookie_for_section (&cookie, sec);
11853 }
11854 }
11855
11856 if (ret && eh_frame && elf_fde_list (sec))
11857 {
11858 struct elf_reloc_cookie cookie;
11859
11860 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11861 ret = FALSE;
11862 else
11863 {
11864 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11865 gc_mark_hook, &cookie))
11866 ret = FALSE;
11867 fini_reloc_cookie_for_section (&cookie, eh_frame);
11868 }
11869 }
11870
11871 return ret;
11872 }
11873
11874 /* Keep debug and special sections. */
11875
11876 bfd_boolean
11877 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11878 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11879 {
11880 bfd *ibfd;
11881
11882 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11883 {
11884 asection *isec;
11885 bfd_boolean some_kept;
11886
11887 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11888 continue;
11889
11890 /* Ensure all linker created sections are kept, and see whether
11891 any other section is already marked. */
11892 some_kept = FALSE;
11893 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11894 {
11895 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11896 isec->gc_mark = 1;
11897 else if (isec->gc_mark)
11898 some_kept = TRUE;
11899 }
11900
11901 /* If no section in this file will be kept, then we can
11902 toss out debug sections. */
11903 if (!some_kept)
11904 continue;
11905
11906 /* Keep debug and special sections like .comment when they are
11907 not part of a group, or when we have single-member groups. */
11908 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11909 if ((elf_next_in_group (isec) == NULL
11910 || elf_next_in_group (isec) == isec)
11911 && ((isec->flags & SEC_DEBUGGING) != 0
11912 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11913 isec->gc_mark = 1;
11914 }
11915 return TRUE;
11916 }
11917
11918 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11919
11920 struct elf_gc_sweep_symbol_info
11921 {
11922 struct bfd_link_info *info;
11923 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11924 bfd_boolean);
11925 };
11926
11927 static bfd_boolean
11928 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11929 {
11930 if (!h->mark
11931 && (((h->root.type == bfd_link_hash_defined
11932 || h->root.type == bfd_link_hash_defweak)
11933 && !(h->def_regular
11934 && h->root.u.def.section->gc_mark))
11935 || h->root.type == bfd_link_hash_undefined
11936 || h->root.type == bfd_link_hash_undefweak))
11937 {
11938 struct elf_gc_sweep_symbol_info *inf;
11939
11940 inf = (struct elf_gc_sweep_symbol_info *) data;
11941 (*inf->hide_symbol) (inf->info, h, TRUE);
11942 h->def_regular = 0;
11943 h->ref_regular = 0;
11944 h->ref_regular_nonweak = 0;
11945 }
11946
11947 return TRUE;
11948 }
11949
11950 /* The sweep phase of garbage collection. Remove all garbage sections. */
11951
11952 typedef bfd_boolean (*gc_sweep_hook_fn)
11953 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11954
11955 static bfd_boolean
11956 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11957 {
11958 bfd *sub;
11959 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11960 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11961 unsigned long section_sym_count;
11962 struct elf_gc_sweep_symbol_info sweep_info;
11963
11964 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11965 {
11966 asection *o;
11967
11968 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11969 continue;
11970
11971 for (o = sub->sections; o != NULL; o = o->next)
11972 {
11973 /* When any section in a section group is kept, we keep all
11974 sections in the section group. If the first member of
11975 the section group is excluded, we will also exclude the
11976 group section. */
11977 if (o->flags & SEC_GROUP)
11978 {
11979 asection *first = elf_next_in_group (o);
11980 o->gc_mark = first->gc_mark;
11981 }
11982
11983 if (o->gc_mark)
11984 continue;
11985
11986 /* Skip sweeping sections already excluded. */
11987 if (o->flags & SEC_EXCLUDE)
11988 continue;
11989
11990 /* Since this is early in the link process, it is simple
11991 to remove a section from the output. */
11992 o->flags |= SEC_EXCLUDE;
11993
11994 if (info->print_gc_sections && o->size != 0)
11995 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11996
11997 /* But we also have to update some of the relocation
11998 info we collected before. */
11999 if (gc_sweep_hook
12000 && (o->flags & SEC_RELOC) != 0
12001 && o->reloc_count > 0
12002 && !bfd_is_abs_section (o->output_section))
12003 {
12004 Elf_Internal_Rela *internal_relocs;
12005 bfd_boolean r;
12006
12007 internal_relocs
12008 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12009 info->keep_memory);
12010 if (internal_relocs == NULL)
12011 return FALSE;
12012
12013 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12014
12015 if (elf_section_data (o)->relocs != internal_relocs)
12016 free (internal_relocs);
12017
12018 if (!r)
12019 return FALSE;
12020 }
12021 }
12022 }
12023
12024 /* Remove the symbols that were in the swept sections from the dynamic
12025 symbol table. GCFIXME: Anyone know how to get them out of the
12026 static symbol table as well? */
12027 sweep_info.info = info;
12028 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12029 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12030 &sweep_info);
12031
12032 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12033 return TRUE;
12034 }
12035
12036 /* Propagate collected vtable information. This is called through
12037 elf_link_hash_traverse. */
12038
12039 static bfd_boolean
12040 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12041 {
12042 /* Those that are not vtables. */
12043 if (h->vtable == NULL || h->vtable->parent == NULL)
12044 return TRUE;
12045
12046 /* Those vtables that do not have parents, we cannot merge. */
12047 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12048 return TRUE;
12049
12050 /* If we've already been done, exit. */
12051 if (h->vtable->used && h->vtable->used[-1])
12052 return TRUE;
12053
12054 /* Make sure the parent's table is up to date. */
12055 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12056
12057 if (h->vtable->used == NULL)
12058 {
12059 /* None of this table's entries were referenced. Re-use the
12060 parent's table. */
12061 h->vtable->used = h->vtable->parent->vtable->used;
12062 h->vtable->size = h->vtable->parent->vtable->size;
12063 }
12064 else
12065 {
12066 size_t n;
12067 bfd_boolean *cu, *pu;
12068
12069 /* Or the parent's entries into ours. */
12070 cu = h->vtable->used;
12071 cu[-1] = TRUE;
12072 pu = h->vtable->parent->vtable->used;
12073 if (pu != NULL)
12074 {
12075 const struct elf_backend_data *bed;
12076 unsigned int log_file_align;
12077
12078 bed = get_elf_backend_data (h->root.u.def.section->owner);
12079 log_file_align = bed->s->log_file_align;
12080 n = h->vtable->parent->vtable->size >> log_file_align;
12081 while (n--)
12082 {
12083 if (*pu)
12084 *cu = TRUE;
12085 pu++;
12086 cu++;
12087 }
12088 }
12089 }
12090
12091 return TRUE;
12092 }
12093
12094 static bfd_boolean
12095 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12096 {
12097 asection *sec;
12098 bfd_vma hstart, hend;
12099 Elf_Internal_Rela *relstart, *relend, *rel;
12100 const struct elf_backend_data *bed;
12101 unsigned int log_file_align;
12102
12103 /* Take care of both those symbols that do not describe vtables as
12104 well as those that are not loaded. */
12105 if (h->vtable == NULL || h->vtable->parent == NULL)
12106 return TRUE;
12107
12108 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12109 || h->root.type == bfd_link_hash_defweak);
12110
12111 sec = h->root.u.def.section;
12112 hstart = h->root.u.def.value;
12113 hend = hstart + h->size;
12114
12115 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12116 if (!relstart)
12117 return *(bfd_boolean *) okp = FALSE;
12118 bed = get_elf_backend_data (sec->owner);
12119 log_file_align = bed->s->log_file_align;
12120
12121 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12122
12123 for (rel = relstart; rel < relend; ++rel)
12124 if (rel->r_offset >= hstart && rel->r_offset < hend)
12125 {
12126 /* If the entry is in use, do nothing. */
12127 if (h->vtable->used
12128 && (rel->r_offset - hstart) < h->vtable->size)
12129 {
12130 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12131 if (h->vtable->used[entry])
12132 continue;
12133 }
12134 /* Otherwise, kill it. */
12135 rel->r_offset = rel->r_info = rel->r_addend = 0;
12136 }
12137
12138 return TRUE;
12139 }
12140
12141 /* Mark sections containing dynamically referenced symbols. When
12142 building shared libraries, we must assume that any visible symbol is
12143 referenced. */
12144
12145 bfd_boolean
12146 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12147 {
12148 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12149
12150 if ((h->root.type == bfd_link_hash_defined
12151 || h->root.type == bfd_link_hash_defweak)
12152 && (h->ref_dynamic
12153 || ((!info->executable || info->export_dynamic)
12154 && h->def_regular
12155 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12156 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12157 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12158 || !bfd_hide_sym_by_version (info->version_info,
12159 h->root.root.string)))))
12160 h->root.u.def.section->flags |= SEC_KEEP;
12161
12162 return TRUE;
12163 }
12164
12165 /* Keep all sections containing symbols undefined on the command-line,
12166 and the section containing the entry symbol. */
12167
12168 void
12169 _bfd_elf_gc_keep (struct bfd_link_info *info)
12170 {
12171 struct bfd_sym_chain *sym;
12172
12173 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12174 {
12175 struct elf_link_hash_entry *h;
12176
12177 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12178 FALSE, FALSE, FALSE);
12179
12180 if (h != NULL
12181 && (h->root.type == bfd_link_hash_defined
12182 || h->root.type == bfd_link_hash_defweak)
12183 && !bfd_is_abs_section (h->root.u.def.section))
12184 h->root.u.def.section->flags |= SEC_KEEP;
12185 }
12186 }
12187
12188 /* Do mark and sweep of unused sections. */
12189
12190 bfd_boolean
12191 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12192 {
12193 bfd_boolean ok = TRUE;
12194 bfd *sub;
12195 elf_gc_mark_hook_fn gc_mark_hook;
12196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12197
12198 if (!bed->can_gc_sections
12199 || !is_elf_hash_table (info->hash))
12200 {
12201 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12202 return TRUE;
12203 }
12204
12205 bed->gc_keep (info);
12206
12207 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12208 at the .eh_frame section if we can mark the FDEs individually. */
12209 _bfd_elf_begin_eh_frame_parsing (info);
12210 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12211 {
12212 asection *sec;
12213 struct elf_reloc_cookie cookie;
12214
12215 sec = bfd_get_section_by_name (sub, ".eh_frame");
12216 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12217 {
12218 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12219 if (elf_section_data (sec)->sec_info
12220 && (sec->flags & SEC_LINKER_CREATED) == 0)
12221 elf_eh_frame_section (sub) = sec;
12222 fini_reloc_cookie_for_section (&cookie, sec);
12223 sec = bfd_get_next_section_by_name (sec);
12224 }
12225 }
12226 _bfd_elf_end_eh_frame_parsing (info);
12227
12228 /* Apply transitive closure to the vtable entry usage info. */
12229 elf_link_hash_traverse (elf_hash_table (info),
12230 elf_gc_propagate_vtable_entries_used,
12231 &ok);
12232 if (!ok)
12233 return FALSE;
12234
12235 /* Kill the vtable relocations that were not used. */
12236 elf_link_hash_traverse (elf_hash_table (info),
12237 elf_gc_smash_unused_vtentry_relocs,
12238 &ok);
12239 if (!ok)
12240 return FALSE;
12241
12242 /* Mark dynamically referenced symbols. */
12243 if (elf_hash_table (info)->dynamic_sections_created)
12244 elf_link_hash_traverse (elf_hash_table (info),
12245 bed->gc_mark_dynamic_ref,
12246 info);
12247
12248 /* Grovel through relocs to find out who stays ... */
12249 gc_mark_hook = bed->gc_mark_hook;
12250 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12251 {
12252 asection *o;
12253
12254 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12255 continue;
12256
12257 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12258 Also treat note sections as a root, if the section is not part
12259 of a group. */
12260 for (o = sub->sections; o != NULL; o = o->next)
12261 if (!o->gc_mark
12262 && (o->flags & SEC_EXCLUDE) == 0
12263 && ((o->flags & SEC_KEEP) != 0
12264 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12265 && elf_next_in_group (o) == NULL )))
12266 {
12267 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12268 return FALSE;
12269 }
12270 }
12271
12272 /* Allow the backend to mark additional target specific sections. */
12273 bed->gc_mark_extra_sections (info, gc_mark_hook);
12274
12275 /* ... and mark SEC_EXCLUDE for those that go. */
12276 return elf_gc_sweep (abfd, info);
12277 }
12278 \f
12279 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12280
12281 bfd_boolean
12282 bfd_elf_gc_record_vtinherit (bfd *abfd,
12283 asection *sec,
12284 struct elf_link_hash_entry *h,
12285 bfd_vma offset)
12286 {
12287 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12288 struct elf_link_hash_entry **search, *child;
12289 bfd_size_type extsymcount;
12290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12291
12292 /* The sh_info field of the symtab header tells us where the
12293 external symbols start. We don't care about the local symbols at
12294 this point. */
12295 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12296 if (!elf_bad_symtab (abfd))
12297 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12298
12299 sym_hashes = elf_sym_hashes (abfd);
12300 sym_hashes_end = sym_hashes + extsymcount;
12301
12302 /* Hunt down the child symbol, which is in this section at the same
12303 offset as the relocation. */
12304 for (search = sym_hashes; search != sym_hashes_end; ++search)
12305 {
12306 if ((child = *search) != NULL
12307 && (child->root.type == bfd_link_hash_defined
12308 || child->root.type == bfd_link_hash_defweak)
12309 && child->root.u.def.section == sec
12310 && child->root.u.def.value == offset)
12311 goto win;
12312 }
12313
12314 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12315 abfd, sec, (unsigned long) offset);
12316 bfd_set_error (bfd_error_invalid_operation);
12317 return FALSE;
12318
12319 win:
12320 if (!child->vtable)
12321 {
12322 child->vtable = (struct elf_link_virtual_table_entry *)
12323 bfd_zalloc (abfd, sizeof (*child->vtable));
12324 if (!child->vtable)
12325 return FALSE;
12326 }
12327 if (!h)
12328 {
12329 /* This *should* only be the absolute section. It could potentially
12330 be that someone has defined a non-global vtable though, which
12331 would be bad. It isn't worth paging in the local symbols to be
12332 sure though; that case should simply be handled by the assembler. */
12333
12334 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12335 }
12336 else
12337 child->vtable->parent = h;
12338
12339 return TRUE;
12340 }
12341
12342 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12343
12344 bfd_boolean
12345 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12346 asection *sec ATTRIBUTE_UNUSED,
12347 struct elf_link_hash_entry *h,
12348 bfd_vma addend)
12349 {
12350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12351 unsigned int log_file_align = bed->s->log_file_align;
12352
12353 if (!h->vtable)
12354 {
12355 h->vtable = (struct elf_link_virtual_table_entry *)
12356 bfd_zalloc (abfd, sizeof (*h->vtable));
12357 if (!h->vtable)
12358 return FALSE;
12359 }
12360
12361 if (addend >= h->vtable->size)
12362 {
12363 size_t size, bytes, file_align;
12364 bfd_boolean *ptr = h->vtable->used;
12365
12366 /* While the symbol is undefined, we have to be prepared to handle
12367 a zero size. */
12368 file_align = 1 << log_file_align;
12369 if (h->root.type == bfd_link_hash_undefined)
12370 size = addend + file_align;
12371 else
12372 {
12373 size = h->size;
12374 if (addend >= size)
12375 {
12376 /* Oops! We've got a reference past the defined end of
12377 the table. This is probably a bug -- shall we warn? */
12378 size = addend + file_align;
12379 }
12380 }
12381 size = (size + file_align - 1) & -file_align;
12382
12383 /* Allocate one extra entry for use as a "done" flag for the
12384 consolidation pass. */
12385 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12386
12387 if (ptr)
12388 {
12389 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12390
12391 if (ptr != NULL)
12392 {
12393 size_t oldbytes;
12394
12395 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12396 * sizeof (bfd_boolean));
12397 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12398 }
12399 }
12400 else
12401 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12402
12403 if (ptr == NULL)
12404 return FALSE;
12405
12406 /* And arrange for that done flag to be at index -1. */
12407 h->vtable->used = ptr + 1;
12408 h->vtable->size = size;
12409 }
12410
12411 h->vtable->used[addend >> log_file_align] = TRUE;
12412
12413 return TRUE;
12414 }
12415
12416 /* Map an ELF section header flag to its corresponding string. */
12417 typedef struct
12418 {
12419 char *flag_name;
12420 flagword flag_value;
12421 } elf_flags_to_name_table;
12422
12423 static elf_flags_to_name_table elf_flags_to_names [] =
12424 {
12425 { "SHF_WRITE", SHF_WRITE },
12426 { "SHF_ALLOC", SHF_ALLOC },
12427 { "SHF_EXECINSTR", SHF_EXECINSTR },
12428 { "SHF_MERGE", SHF_MERGE },
12429 { "SHF_STRINGS", SHF_STRINGS },
12430 { "SHF_INFO_LINK", SHF_INFO_LINK},
12431 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12432 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12433 { "SHF_GROUP", SHF_GROUP },
12434 { "SHF_TLS", SHF_TLS },
12435 { "SHF_MASKOS", SHF_MASKOS },
12436 { "SHF_EXCLUDE", SHF_EXCLUDE },
12437 };
12438
12439 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12440 bfd_boolean
12441 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12442 struct flag_info *flaginfo,
12443 asection *section)
12444 {
12445 const bfd_vma sh_flags = elf_section_flags (section);
12446
12447 if (!flaginfo->flags_initialized)
12448 {
12449 bfd *obfd = info->output_bfd;
12450 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12451 struct flag_info_list *tf = flaginfo->flag_list;
12452 int with_hex = 0;
12453 int without_hex = 0;
12454
12455 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12456 {
12457 unsigned i;
12458 flagword (*lookup) (char *);
12459
12460 lookup = bed->elf_backend_lookup_section_flags_hook;
12461 if (lookup != NULL)
12462 {
12463 flagword hexval = (*lookup) ((char *) tf->name);
12464
12465 if (hexval != 0)
12466 {
12467 if (tf->with == with_flags)
12468 with_hex |= hexval;
12469 else if (tf->with == without_flags)
12470 without_hex |= hexval;
12471 tf->valid = TRUE;
12472 continue;
12473 }
12474 }
12475 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12476 {
12477 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12478 {
12479 if (tf->with == with_flags)
12480 with_hex |= elf_flags_to_names[i].flag_value;
12481 else if (tf->with == without_flags)
12482 without_hex |= elf_flags_to_names[i].flag_value;
12483 tf->valid = TRUE;
12484 break;
12485 }
12486 }
12487 if (!tf->valid)
12488 {
12489 info->callbacks->einfo
12490 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12491 return FALSE;
12492 }
12493 }
12494 flaginfo->flags_initialized = TRUE;
12495 flaginfo->only_with_flags |= with_hex;
12496 flaginfo->not_with_flags |= without_hex;
12497 }
12498
12499 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12500 return FALSE;
12501
12502 if ((flaginfo->not_with_flags & sh_flags) != 0)
12503 return FALSE;
12504
12505 return TRUE;
12506 }
12507
12508 struct alloc_got_off_arg {
12509 bfd_vma gotoff;
12510 struct bfd_link_info *info;
12511 };
12512
12513 /* We need a special top-level link routine to convert got reference counts
12514 to real got offsets. */
12515
12516 static bfd_boolean
12517 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12518 {
12519 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12520 bfd *obfd = gofarg->info->output_bfd;
12521 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12522
12523 if (h->got.refcount > 0)
12524 {
12525 h->got.offset = gofarg->gotoff;
12526 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12527 }
12528 else
12529 h->got.offset = (bfd_vma) -1;
12530
12531 return TRUE;
12532 }
12533
12534 /* And an accompanying bit to work out final got entry offsets once
12535 we're done. Should be called from final_link. */
12536
12537 bfd_boolean
12538 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12539 struct bfd_link_info *info)
12540 {
12541 bfd *i;
12542 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12543 bfd_vma gotoff;
12544 struct alloc_got_off_arg gofarg;
12545
12546 BFD_ASSERT (abfd == info->output_bfd);
12547
12548 if (! is_elf_hash_table (info->hash))
12549 return FALSE;
12550
12551 /* The GOT offset is relative to the .got section, but the GOT header is
12552 put into the .got.plt section, if the backend uses it. */
12553 if (bed->want_got_plt)
12554 gotoff = 0;
12555 else
12556 gotoff = bed->got_header_size;
12557
12558 /* Do the local .got entries first. */
12559 for (i = info->input_bfds; i; i = i->link_next)
12560 {
12561 bfd_signed_vma *local_got;
12562 bfd_size_type j, locsymcount;
12563 Elf_Internal_Shdr *symtab_hdr;
12564
12565 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12566 continue;
12567
12568 local_got = elf_local_got_refcounts (i);
12569 if (!local_got)
12570 continue;
12571
12572 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12573 if (elf_bad_symtab (i))
12574 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12575 else
12576 locsymcount = symtab_hdr->sh_info;
12577
12578 for (j = 0; j < locsymcount; ++j)
12579 {
12580 if (local_got[j] > 0)
12581 {
12582 local_got[j] = gotoff;
12583 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12584 }
12585 else
12586 local_got[j] = (bfd_vma) -1;
12587 }
12588 }
12589
12590 /* Then the global .got entries. .plt refcounts are handled by
12591 adjust_dynamic_symbol */
12592 gofarg.gotoff = gotoff;
12593 gofarg.info = info;
12594 elf_link_hash_traverse (elf_hash_table (info),
12595 elf_gc_allocate_got_offsets,
12596 &gofarg);
12597 return TRUE;
12598 }
12599
12600 /* Many folk need no more in the way of final link than this, once
12601 got entry reference counting is enabled. */
12602
12603 bfd_boolean
12604 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12605 {
12606 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12607 return FALSE;
12608
12609 /* Invoke the regular ELF backend linker to do all the work. */
12610 return bfd_elf_final_link (abfd, info);
12611 }
12612
12613 bfd_boolean
12614 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12615 {
12616 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12617
12618 if (rcookie->bad_symtab)
12619 rcookie->rel = rcookie->rels;
12620
12621 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12622 {
12623 unsigned long r_symndx;
12624
12625 if (! rcookie->bad_symtab)
12626 if (rcookie->rel->r_offset > offset)
12627 return FALSE;
12628 if (rcookie->rel->r_offset != offset)
12629 continue;
12630
12631 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12632 if (r_symndx == STN_UNDEF)
12633 return TRUE;
12634
12635 if (r_symndx >= rcookie->locsymcount
12636 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12637 {
12638 struct elf_link_hash_entry *h;
12639
12640 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12641
12642 while (h->root.type == bfd_link_hash_indirect
12643 || h->root.type == bfd_link_hash_warning)
12644 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12645
12646 if ((h->root.type == bfd_link_hash_defined
12647 || h->root.type == bfd_link_hash_defweak)
12648 && discarded_section (h->root.u.def.section))
12649 return TRUE;
12650 else
12651 return FALSE;
12652 }
12653 else
12654 {
12655 /* It's not a relocation against a global symbol,
12656 but it could be a relocation against a local
12657 symbol for a discarded section. */
12658 asection *isec;
12659 Elf_Internal_Sym *isym;
12660
12661 /* Need to: get the symbol; get the section. */
12662 isym = &rcookie->locsyms[r_symndx];
12663 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12664 if (isec != NULL && discarded_section (isec))
12665 return TRUE;
12666 }
12667 return FALSE;
12668 }
12669 return FALSE;
12670 }
12671
12672 /* Discard unneeded references to discarded sections.
12673 Returns TRUE if any section's size was changed. */
12674 /* This function assumes that the relocations are in sorted order,
12675 which is true for all known assemblers. */
12676
12677 bfd_boolean
12678 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12679 {
12680 struct elf_reloc_cookie cookie;
12681 asection *stab, *eh;
12682 const struct elf_backend_data *bed;
12683 bfd *abfd;
12684 bfd_boolean ret = FALSE;
12685
12686 if (info->traditional_format
12687 || !is_elf_hash_table (info->hash))
12688 return FALSE;
12689
12690 _bfd_elf_begin_eh_frame_parsing (info);
12691 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12692 {
12693 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12694 continue;
12695
12696 bed = get_elf_backend_data (abfd);
12697
12698 eh = NULL;
12699 if (!info->relocatable)
12700 {
12701 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12702 while (eh != NULL
12703 && (eh->size == 0
12704 || bfd_is_abs_section (eh->output_section)))
12705 eh = bfd_get_next_section_by_name (eh);
12706 }
12707
12708 stab = bfd_get_section_by_name (abfd, ".stab");
12709 if (stab != NULL
12710 && (stab->size == 0
12711 || bfd_is_abs_section (stab->output_section)
12712 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12713 stab = NULL;
12714
12715 if (stab == NULL
12716 && eh == NULL
12717 && bed->elf_backend_discard_info == NULL)
12718 continue;
12719
12720 if (!init_reloc_cookie (&cookie, info, abfd))
12721 return FALSE;
12722
12723 if (stab != NULL
12724 && stab->reloc_count > 0
12725 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12726 {
12727 if (_bfd_discard_section_stabs (abfd, stab,
12728 elf_section_data (stab)->sec_info,
12729 bfd_elf_reloc_symbol_deleted_p,
12730 &cookie))
12731 ret = TRUE;
12732 fini_reloc_cookie_rels (&cookie, stab);
12733 }
12734
12735 while (eh != NULL
12736 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12737 {
12738 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12739 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12740 bfd_elf_reloc_symbol_deleted_p,
12741 &cookie))
12742 ret = TRUE;
12743 fini_reloc_cookie_rels (&cookie, eh);
12744 eh = bfd_get_next_section_by_name (eh);
12745 }
12746
12747 if (bed->elf_backend_discard_info != NULL
12748 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12749 ret = TRUE;
12750
12751 fini_reloc_cookie (&cookie, abfd);
12752 }
12753 _bfd_elf_end_eh_frame_parsing (info);
12754
12755 if (info->eh_frame_hdr
12756 && !info->relocatable
12757 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12758 ret = TRUE;
12759
12760 return ret;
12761 }
12762
12763 bfd_boolean
12764 _bfd_elf_section_already_linked (bfd *abfd,
12765 asection *sec,
12766 struct bfd_link_info *info)
12767 {
12768 flagword flags;
12769 const char *name, *key;
12770 struct bfd_section_already_linked *l;
12771 struct bfd_section_already_linked_hash_entry *already_linked_list;
12772
12773 if (sec->output_section == bfd_abs_section_ptr)
12774 return FALSE;
12775
12776 flags = sec->flags;
12777
12778 /* Return if it isn't a linkonce section. A comdat group section
12779 also has SEC_LINK_ONCE set. */
12780 if ((flags & SEC_LINK_ONCE) == 0)
12781 return FALSE;
12782
12783 /* Don't put group member sections on our list of already linked
12784 sections. They are handled as a group via their group section. */
12785 if (elf_sec_group (sec) != NULL)
12786 return FALSE;
12787
12788 /* For a SHT_GROUP section, use the group signature as the key. */
12789 name = sec->name;
12790 if ((flags & SEC_GROUP) != 0
12791 && elf_next_in_group (sec) != NULL
12792 && elf_group_name (elf_next_in_group (sec)) != NULL)
12793 key = elf_group_name (elf_next_in_group (sec));
12794 else
12795 {
12796 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12797 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12798 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12799 key++;
12800 else
12801 /* Must be a user linkonce section that doesn't follow gcc's
12802 naming convention. In this case we won't be matching
12803 single member groups. */
12804 key = name;
12805 }
12806
12807 already_linked_list = bfd_section_already_linked_table_lookup (key);
12808
12809 for (l = already_linked_list->entry; l != NULL; l = l->next)
12810 {
12811 /* We may have 2 different types of sections on the list: group
12812 sections with a signature of <key> (<key> is some string),
12813 and linkonce sections named .gnu.linkonce.<type>.<key>.
12814 Match like sections. LTO plugin sections are an exception.
12815 They are always named .gnu.linkonce.t.<key> and match either
12816 type of section. */
12817 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12818 && ((flags & SEC_GROUP) != 0
12819 || strcmp (name, l->sec->name) == 0))
12820 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12821 {
12822 /* The section has already been linked. See if we should
12823 issue a warning. */
12824 if (!_bfd_handle_already_linked (sec, l, info))
12825 return FALSE;
12826
12827 if (flags & SEC_GROUP)
12828 {
12829 asection *first = elf_next_in_group (sec);
12830 asection *s = first;
12831
12832 while (s != NULL)
12833 {
12834 s->output_section = bfd_abs_section_ptr;
12835 /* Record which group discards it. */
12836 s->kept_section = l->sec;
12837 s = elf_next_in_group (s);
12838 /* These lists are circular. */
12839 if (s == first)
12840 break;
12841 }
12842 }
12843
12844 return TRUE;
12845 }
12846 }
12847
12848 /* A single member comdat group section may be discarded by a
12849 linkonce section and vice versa. */
12850 if ((flags & SEC_GROUP) != 0)
12851 {
12852 asection *first = elf_next_in_group (sec);
12853
12854 if (first != NULL && elf_next_in_group (first) == first)
12855 /* Check this single member group against linkonce sections. */
12856 for (l = already_linked_list->entry; l != NULL; l = l->next)
12857 if ((l->sec->flags & SEC_GROUP) == 0
12858 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12859 {
12860 first->output_section = bfd_abs_section_ptr;
12861 first->kept_section = l->sec;
12862 sec->output_section = bfd_abs_section_ptr;
12863 break;
12864 }
12865 }
12866 else
12867 /* Check this linkonce section against single member groups. */
12868 for (l = already_linked_list->entry; l != NULL; l = l->next)
12869 if (l->sec->flags & SEC_GROUP)
12870 {
12871 asection *first = elf_next_in_group (l->sec);
12872
12873 if (first != NULL
12874 && elf_next_in_group (first) == first
12875 && bfd_elf_match_symbols_in_sections (first, sec, info))
12876 {
12877 sec->output_section = bfd_abs_section_ptr;
12878 sec->kept_section = first;
12879 break;
12880 }
12881 }
12882
12883 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12884 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12885 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12886 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12887 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12888 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12889 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12890 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12891 The reverse order cannot happen as there is never a bfd with only the
12892 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12893 matter as here were are looking only for cross-bfd sections. */
12894
12895 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12896 for (l = already_linked_list->entry; l != NULL; l = l->next)
12897 if ((l->sec->flags & SEC_GROUP) == 0
12898 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12899 {
12900 if (abfd != l->sec->owner)
12901 sec->output_section = bfd_abs_section_ptr;
12902 break;
12903 }
12904
12905 /* This is the first section with this name. Record it. */
12906 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12907 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12908 return sec->output_section == bfd_abs_section_ptr;
12909 }
12910
12911 bfd_boolean
12912 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12913 {
12914 return sym->st_shndx == SHN_COMMON;
12915 }
12916
12917 unsigned int
12918 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12919 {
12920 return SHN_COMMON;
12921 }
12922
12923 asection *
12924 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12925 {
12926 return bfd_com_section_ptr;
12927 }
12928
12929 bfd_vma
12930 _bfd_elf_default_got_elt_size (bfd *abfd,
12931 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12932 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12933 bfd *ibfd ATTRIBUTE_UNUSED,
12934 unsigned long symndx ATTRIBUTE_UNUSED)
12935 {
12936 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12937 return bed->s->arch_size / 8;
12938 }
12939
12940 /* Routines to support the creation of dynamic relocs. */
12941
12942 /* Returns the name of the dynamic reloc section associated with SEC. */
12943
12944 static const char *
12945 get_dynamic_reloc_section_name (bfd * abfd,
12946 asection * sec,
12947 bfd_boolean is_rela)
12948 {
12949 char *name;
12950 const char *old_name = bfd_get_section_name (NULL, sec);
12951 const char *prefix = is_rela ? ".rela" : ".rel";
12952
12953 if (old_name == NULL)
12954 return NULL;
12955
12956 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12957 sprintf (name, "%s%s", prefix, old_name);
12958
12959 return name;
12960 }
12961
12962 /* Returns the dynamic reloc section associated with SEC.
12963 If necessary compute the name of the dynamic reloc section based
12964 on SEC's name (looked up in ABFD's string table) and the setting
12965 of IS_RELA. */
12966
12967 asection *
12968 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12969 asection * sec,
12970 bfd_boolean is_rela)
12971 {
12972 asection * reloc_sec = elf_section_data (sec)->sreloc;
12973
12974 if (reloc_sec == NULL)
12975 {
12976 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12977
12978 if (name != NULL)
12979 {
12980 reloc_sec = bfd_get_linker_section (abfd, name);
12981
12982 if (reloc_sec != NULL)
12983 elf_section_data (sec)->sreloc = reloc_sec;
12984 }
12985 }
12986
12987 return reloc_sec;
12988 }
12989
12990 /* Returns the dynamic reloc section associated with SEC. If the
12991 section does not exist it is created and attached to the DYNOBJ
12992 bfd and stored in the SRELOC field of SEC's elf_section_data
12993 structure.
12994
12995 ALIGNMENT is the alignment for the newly created section and
12996 IS_RELA defines whether the name should be .rela.<SEC's name>
12997 or .rel.<SEC's name>. The section name is looked up in the
12998 string table associated with ABFD. */
12999
13000 asection *
13001 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13002 bfd * dynobj,
13003 unsigned int alignment,
13004 bfd * abfd,
13005 bfd_boolean is_rela)
13006 {
13007 asection * reloc_sec = elf_section_data (sec)->sreloc;
13008
13009 if (reloc_sec == NULL)
13010 {
13011 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13012
13013 if (name == NULL)
13014 return NULL;
13015
13016 reloc_sec = bfd_get_linker_section (dynobj, name);
13017
13018 if (reloc_sec == NULL)
13019 {
13020 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13021 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13022 if ((sec->flags & SEC_ALLOC) != 0)
13023 flags |= SEC_ALLOC | SEC_LOAD;
13024
13025 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13026 if (reloc_sec != NULL)
13027 {
13028 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13029 reloc_sec = NULL;
13030 }
13031 }
13032
13033 elf_section_data (sec)->sreloc = reloc_sec;
13034 }
13035
13036 return reloc_sec;
13037 }
13038
13039 /* Copy the ELF symbol type associated with a linker hash entry. */
13040 void
13041 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13042 struct bfd_link_hash_entry * hdest,
13043 struct bfd_link_hash_entry * hsrc)
13044 {
13045 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13046 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13047
13048 ehdest->type = ehsrc->type;
13049 ehdest->target_internal = ehsrc->target_internal;
13050 }
13051
13052 /* Append a RELA relocation REL to section S in BFD. */
13053
13054 void
13055 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13056 {
13057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13058 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13059 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13060 bed->s->swap_reloca_out (abfd, rel, loc);
13061 }
13062
13063 /* Append a REL relocation REL to section S in BFD. */
13064
13065 void
13066 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13067 {
13068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13069 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13070 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13071 bed->s->swap_reloc_out (abfd, rel, loc);
13072 }
This page took 0.305303 seconds and 4 git commands to generate.