* cache.c (cache_bread): Set bfd_error_file_truncated if EOF
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2800
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2804
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2808
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2814
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2819
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3258
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3262 {
3263 return input == output;
3264 }
3265
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3269
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3273 {
3274 const struct elf_backend_data *obed, *ibed;
3275
3276 if (input == output)
3277 return TRUE;
3278
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3281
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3284
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3287 }
3288
3289 /* Add symbols from an ELF object file to the linker hash table. */
3290
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3293 {
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3324
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3327
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3331 {
3332 dynamic = TRUE;
3333
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || htab->root.creator != abfd->xvec)
3340 {
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3346 }
3347 }
3348
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3354 {
3355 asection *s;
3356
3357 for (s = abfd->sections; s != NULL; s = s->next)
3358 {
3359 const char *name;
3360
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3363 {
3364 char *msg;
3365 bfd_size_type sz;
3366
3367 name += sizeof ".gnu.warning." - 1;
3368
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3379 {
3380 struct elf_link_hash_entry *h;
3381
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3383
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3388 {
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3394 }
3395 }
3396
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3401
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3404
3405 msg[sz] = '\0';
3406
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3411
3412 if (! info->relocatable)
3413 {
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3417
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3421 }
3422 }
3423 }
3424 }
3425
3426 add_needed = TRUE;
3427 if (! dynamic)
3428 {
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && htab->root.creator == abfd->xvec
3437 && !htab->dynamic_sections_created)
3438 {
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3441 }
3442 }
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3446 {
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3451
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3457
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3468
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3471 {
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 int elfsec;
3475 unsigned long shlink;
3476
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3479
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == -1)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3484
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3488 {
3489 Elf_Internal_Dyn dyn;
3490
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3493 {
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3498 }
3499 if (dyn.d_tag == DT_NEEDED)
3500 {
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3504
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3519 ;
3520 *pn = n;
3521 }
3522 if (dyn.d_tag == DT_RUNPATH)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3544 ;
3545 *pn = n;
3546 }
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 {
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3566 }
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 }
3578
3579 free (dynbuf);
3580 }
3581
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3586
3587 if (rpath)
3588 {
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3591 ;
3592 *pn = rpath;
3593 }
3594
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3603
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3610 {
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3614 }
3615
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3619
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3623
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3629 }
3630
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3635
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3640
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3642
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3647 {
3648 extsymcount = symcount;
3649 extsymoff = 0;
3650 }
3651 else
3652 {
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3655 }
3656
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3659 {
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3664
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3672 }
3673
3674 if (dynamic)
3675 {
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3680
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3684 {
3685 Elf_Internal_Shdr *versymhdr;
3686
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3695 }
3696 }
3697
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3702 {
3703 unsigned int i;
3704 size_t entsize;
3705
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3707 {
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3710
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3712 {
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3717 }
3718 }
3719
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3725
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3731
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3737
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3750
3751 for (i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3762 {
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3765 }
3766 }
3767 }
3768 }
3769
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3775 {
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3790
3791 override = FALSE;
3792
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3798
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3801 {
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3807 }
3808 else if (bind == STB_GLOBAL)
3809 {
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3812 }
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3816 {
3817 /* Leave it up to the processor backend. */
3818 }
3819
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx < SHN_LORESERVE
3823 || isym->st_shndx > SHN_HIRESERVE)
3824 {
3825 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3826 if (sec == NULL)
3827 sec = bfd_abs_section_ptr;
3828 else if (sec->kept_section)
3829 {
3830 /* Symbols from discarded section are undefined. We keep
3831 its visibility. */
3832 sec = bfd_und_section_ptr;
3833 isym->st_shndx = SHN_UNDEF;
3834 }
3835 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3836 value -= sec->vma;
3837 }
3838 else if (isym->st_shndx == SHN_ABS)
3839 sec = bfd_abs_section_ptr;
3840 else if (isym->st_shndx == SHN_COMMON)
3841 {
3842 sec = bfd_com_section_ptr;
3843 /* What ELF calls the size we call the value. What ELF
3844 calls the value we call the alignment. */
3845 value = isym->st_size;
3846 }
3847 else
3848 {
3849 /* Leave it up to the processor backend. */
3850 }
3851
3852 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3853 isym->st_name);
3854 if (name == NULL)
3855 goto error_free_vers;
3856
3857 if (isym->st_shndx == SHN_COMMON
3858 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3859 && !info->relocatable)
3860 {
3861 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3862
3863 if (tcomm == NULL)
3864 {
3865 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3866 (SEC_ALLOC
3867 | SEC_IS_COMMON
3868 | SEC_LINKER_CREATED
3869 | SEC_THREAD_LOCAL));
3870 if (tcomm == NULL)
3871 goto error_free_vers;
3872 }
3873 sec = tcomm;
3874 }
3875 else if (bed->elf_add_symbol_hook)
3876 {
3877 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3878 &sec, &value))
3879 goto error_free_vers;
3880
3881 /* The hook function sets the name to NULL if this symbol
3882 should be skipped for some reason. */
3883 if (name == NULL)
3884 continue;
3885 }
3886
3887 /* Sanity check that all possibilities were handled. */
3888 if (sec == NULL)
3889 {
3890 bfd_set_error (bfd_error_bad_value);
3891 goto error_free_vers;
3892 }
3893
3894 if (bfd_is_und_section (sec)
3895 || bfd_is_com_section (sec))
3896 definition = FALSE;
3897 else
3898 definition = TRUE;
3899
3900 size_change_ok = FALSE;
3901 type_change_ok = bed->type_change_ok;
3902 old_alignment = 0;
3903 old_bfd = NULL;
3904 new_sec = sec;
3905
3906 if (is_elf_hash_table (htab))
3907 {
3908 Elf_Internal_Versym iver;
3909 unsigned int vernum = 0;
3910 bfd_boolean skip;
3911
3912 if (ever == NULL)
3913 {
3914 if (info->default_imported_symver)
3915 /* Use the default symbol version created earlier. */
3916 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3917 else
3918 iver.vs_vers = 0;
3919 }
3920 else
3921 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3922
3923 vernum = iver.vs_vers & VERSYM_VERSION;
3924
3925 /* If this is a hidden symbol, or if it is not version
3926 1, we append the version name to the symbol name.
3927 However, we do not modify a non-hidden absolute symbol
3928 if it is not a function, because it might be the version
3929 symbol itself. FIXME: What if it isn't? */
3930 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3931 || (vernum > 1
3932 && (!bfd_is_abs_section (sec)
3933 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3934 {
3935 const char *verstr;
3936 size_t namelen, verlen, newlen;
3937 char *newname, *p;
3938
3939 if (isym->st_shndx != SHN_UNDEF)
3940 {
3941 if (vernum > elf_tdata (abfd)->cverdefs)
3942 verstr = NULL;
3943 else if (vernum > 1)
3944 verstr =
3945 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3946 else
3947 verstr = "";
3948
3949 if (verstr == NULL)
3950 {
3951 (*_bfd_error_handler)
3952 (_("%B: %s: invalid version %u (max %d)"),
3953 abfd, name, vernum,
3954 elf_tdata (abfd)->cverdefs);
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3957 }
3958 }
3959 else
3960 {
3961 /* We cannot simply test for the number of
3962 entries in the VERNEED section since the
3963 numbers for the needed versions do not start
3964 at 0. */
3965 Elf_Internal_Verneed *t;
3966
3967 verstr = NULL;
3968 for (t = elf_tdata (abfd)->verref;
3969 t != NULL;
3970 t = t->vn_nextref)
3971 {
3972 Elf_Internal_Vernaux *a;
3973
3974 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3975 {
3976 if (a->vna_other == vernum)
3977 {
3978 verstr = a->vna_nodename;
3979 break;
3980 }
3981 }
3982 if (a != NULL)
3983 break;
3984 }
3985 if (verstr == NULL)
3986 {
3987 (*_bfd_error_handler)
3988 (_("%B: %s: invalid needed version %d"),
3989 abfd, name, vernum);
3990 bfd_set_error (bfd_error_bad_value);
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 namelen = strlen (name);
3996 verlen = strlen (verstr);
3997 newlen = namelen + verlen + 2;
3998 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3999 && isym->st_shndx != SHN_UNDEF)
4000 ++newlen;
4001
4002 newname = bfd_hash_allocate (&htab->root.table, newlen);
4003 if (newname == NULL)
4004 goto error_free_vers;
4005 memcpy (newname, name, namelen);
4006 p = newname + namelen;
4007 *p++ = ELF_VER_CHR;
4008 /* If this is a defined non-hidden version symbol,
4009 we add another @ to the name. This indicates the
4010 default version of the symbol. */
4011 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4012 && isym->st_shndx != SHN_UNDEF)
4013 *p++ = ELF_VER_CHR;
4014 memcpy (p, verstr, verlen + 1);
4015
4016 name = newname;
4017 }
4018
4019 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4020 &value, &old_alignment,
4021 sym_hash, &skip, &override,
4022 &type_change_ok, &size_change_ok))
4023 goto error_free_vers;
4024
4025 if (skip)
4026 continue;
4027
4028 if (override)
4029 definition = FALSE;
4030
4031 h = *sym_hash;
4032 while (h->root.type == bfd_link_hash_indirect
4033 || h->root.type == bfd_link_hash_warning)
4034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4035
4036 /* Remember the old alignment if this is a common symbol, so
4037 that we don't reduce the alignment later on. We can't
4038 check later, because _bfd_generic_link_add_one_symbol
4039 will set a default for the alignment which we want to
4040 override. We also remember the old bfd where the existing
4041 definition comes from. */
4042 switch (h->root.type)
4043 {
4044 default:
4045 break;
4046
4047 case bfd_link_hash_defined:
4048 case bfd_link_hash_defweak:
4049 old_bfd = h->root.u.def.section->owner;
4050 break;
4051
4052 case bfd_link_hash_common:
4053 old_bfd = h->root.u.c.p->section->owner;
4054 old_alignment = h->root.u.c.p->alignment_power;
4055 break;
4056 }
4057
4058 if (elf_tdata (abfd)->verdef != NULL
4059 && ! override
4060 && vernum > 1
4061 && definition)
4062 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4063 }
4064
4065 if (! (_bfd_generic_link_add_one_symbol
4066 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4067 (struct bfd_link_hash_entry **) sym_hash)))
4068 goto error_free_vers;
4069
4070 h = *sym_hash;
4071 while (h->root.type == bfd_link_hash_indirect
4072 || h->root.type == bfd_link_hash_warning)
4073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4074 *sym_hash = h;
4075
4076 new_weakdef = FALSE;
4077 if (dynamic
4078 && definition
4079 && (flags & BSF_WEAK) != 0
4080 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4081 && is_elf_hash_table (htab)
4082 && h->u.weakdef == NULL)
4083 {
4084 /* Keep a list of all weak defined non function symbols from
4085 a dynamic object, using the weakdef field. Later in this
4086 function we will set the weakdef field to the correct
4087 value. We only put non-function symbols from dynamic
4088 objects on this list, because that happens to be the only
4089 time we need to know the normal symbol corresponding to a
4090 weak symbol, and the information is time consuming to
4091 figure out. If the weakdef field is not already NULL,
4092 then this symbol was already defined by some previous
4093 dynamic object, and we will be using that previous
4094 definition anyhow. */
4095
4096 h->u.weakdef = weaks;
4097 weaks = h;
4098 new_weakdef = TRUE;
4099 }
4100
4101 /* Set the alignment of a common symbol. */
4102 if ((common || bfd_is_com_section (sec))
4103 && h->root.type == bfd_link_hash_common)
4104 {
4105 unsigned int align;
4106
4107 if (common)
4108 align = bfd_log2 (isym->st_value);
4109 else
4110 {
4111 /* The new symbol is a common symbol in a shared object.
4112 We need to get the alignment from the section. */
4113 align = new_sec->alignment_power;
4114 }
4115 if (align > old_alignment
4116 /* Permit an alignment power of zero if an alignment of one
4117 is specified and no other alignments have been specified. */
4118 || (isym->st_value == 1 && old_alignment == 0))
4119 h->root.u.c.p->alignment_power = align;
4120 else
4121 h->root.u.c.p->alignment_power = old_alignment;
4122 }
4123
4124 if (is_elf_hash_table (htab))
4125 {
4126 bfd_boolean dynsym;
4127
4128 /* Check the alignment when a common symbol is involved. This
4129 can change when a common symbol is overridden by a normal
4130 definition or a common symbol is ignored due to the old
4131 normal definition. We need to make sure the maximum
4132 alignment is maintained. */
4133 if ((old_alignment || common)
4134 && h->root.type != bfd_link_hash_common)
4135 {
4136 unsigned int common_align;
4137 unsigned int normal_align;
4138 unsigned int symbol_align;
4139 bfd *normal_bfd;
4140 bfd *common_bfd;
4141
4142 symbol_align = ffs (h->root.u.def.value) - 1;
4143 if (h->root.u.def.section->owner != NULL
4144 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4145 {
4146 normal_align = h->root.u.def.section->alignment_power;
4147 if (normal_align > symbol_align)
4148 normal_align = symbol_align;
4149 }
4150 else
4151 normal_align = symbol_align;
4152
4153 if (old_alignment)
4154 {
4155 common_align = old_alignment;
4156 common_bfd = old_bfd;
4157 normal_bfd = abfd;
4158 }
4159 else
4160 {
4161 common_align = bfd_log2 (isym->st_value);
4162 common_bfd = abfd;
4163 normal_bfd = old_bfd;
4164 }
4165
4166 if (normal_align < common_align)
4167 {
4168 /* PR binutils/2735 */
4169 if (normal_bfd == NULL)
4170 (*_bfd_error_handler)
4171 (_("Warning: alignment %u of common symbol `%s' in %B"
4172 " is greater than the alignment (%u) of its section %A"),
4173 common_bfd, h->root.u.def.section,
4174 1 << common_align, name, 1 << normal_align);
4175 else
4176 (*_bfd_error_handler)
4177 (_("Warning: alignment %u of symbol `%s' in %B"
4178 " is smaller than %u in %B"),
4179 normal_bfd, common_bfd,
4180 1 << normal_align, name, 1 << common_align);
4181 }
4182 }
4183
4184 /* Remember the symbol size if it isn't undefined. */
4185 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4186 && (definition || h->size == 0))
4187 {
4188 if (h->size != 0
4189 && h->size != isym->st_size
4190 && ! size_change_ok)
4191 (*_bfd_error_handler)
4192 (_("Warning: size of symbol `%s' changed"
4193 " from %lu in %B to %lu in %B"),
4194 old_bfd, abfd,
4195 name, (unsigned long) h->size,
4196 (unsigned long) isym->st_size);
4197
4198 h->size = isym->st_size;
4199 }
4200
4201 /* If this is a common symbol, then we always want H->SIZE
4202 to be the size of the common symbol. The code just above
4203 won't fix the size if a common symbol becomes larger. We
4204 don't warn about a size change here, because that is
4205 covered by --warn-common. Allow changed between different
4206 function types. */
4207 if (h->root.type == bfd_link_hash_common)
4208 h->size = h->root.u.c.size;
4209
4210 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4211 && (definition || h->type == STT_NOTYPE))
4212 {
4213 if (h->type != STT_NOTYPE
4214 && h->type != ELF_ST_TYPE (isym->st_info)
4215 && ! type_change_ok)
4216 (*_bfd_error_handler)
4217 (_("Warning: type of symbol `%s' changed"
4218 " from %d to %d in %B"),
4219 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4220
4221 h->type = ELF_ST_TYPE (isym->st_info);
4222 }
4223
4224 /* If st_other has a processor-specific meaning, specific
4225 code might be needed here. We never merge the visibility
4226 attribute with the one from a dynamic object. */
4227 if (bed->elf_backend_merge_symbol_attribute)
4228 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4229 dynamic);
4230
4231 /* If this symbol has default visibility and the user has requested
4232 we not re-export it, then mark it as hidden. */
4233 if (definition && !dynamic
4234 && (abfd->no_export
4235 || (abfd->my_archive && abfd->my_archive->no_export))
4236 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4237 isym->st_other = (STV_HIDDEN
4238 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4239
4240 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4241 {
4242 unsigned char hvis, symvis, other, nvis;
4243
4244 /* Only merge the visibility. Leave the remainder of the
4245 st_other field to elf_backend_merge_symbol_attribute. */
4246 other = h->other & ~ELF_ST_VISIBILITY (-1);
4247
4248 /* Combine visibilities, using the most constraining one. */
4249 hvis = ELF_ST_VISIBILITY (h->other);
4250 symvis = ELF_ST_VISIBILITY (isym->st_other);
4251 if (! hvis)
4252 nvis = symvis;
4253 else if (! symvis)
4254 nvis = hvis;
4255 else
4256 nvis = hvis < symvis ? hvis : symvis;
4257
4258 h->other = other | nvis;
4259 }
4260
4261 /* Set a flag in the hash table entry indicating the type of
4262 reference or definition we just found. Keep a count of
4263 the number of dynamic symbols we find. A dynamic symbol
4264 is one which is referenced or defined by both a regular
4265 object and a shared object. */
4266 dynsym = FALSE;
4267 if (! dynamic)
4268 {
4269 if (! definition)
4270 {
4271 h->ref_regular = 1;
4272 if (bind != STB_WEAK)
4273 h->ref_regular_nonweak = 1;
4274 }
4275 else
4276 h->def_regular = 1;
4277 if (! info->executable
4278 || h->def_dynamic
4279 || h->ref_dynamic)
4280 dynsym = TRUE;
4281 }
4282 else
4283 {
4284 if (! definition)
4285 h->ref_dynamic = 1;
4286 else
4287 h->def_dynamic = 1;
4288 if (h->def_regular
4289 || h->ref_regular
4290 || (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx != -1))
4293 dynsym = TRUE;
4294 }
4295
4296 if (definition && (sec->flags & SEC_DEBUGGING))
4297 {
4298 /* We don't want to make debug symbol dynamic. */
4299 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4300 dynsym = FALSE;
4301 }
4302
4303 /* Check to see if we need to add an indirect symbol for
4304 the default name. */
4305 if (definition || h->root.type == bfd_link_hash_common)
4306 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4307 &sec, &value, &dynsym,
4308 override))
4309 goto error_free_vers;
4310
4311 if (definition && !dynamic)
4312 {
4313 char *p = strchr (name, ELF_VER_CHR);
4314 if (p != NULL && p[1] != ELF_VER_CHR)
4315 {
4316 /* Queue non-default versions so that .symver x, x@FOO
4317 aliases can be checked. */
4318 if (!nondeflt_vers)
4319 {
4320 amt = ((isymend - isym + 1)
4321 * sizeof (struct elf_link_hash_entry *));
4322 nondeflt_vers = bfd_malloc (amt);
4323 if (!nondeflt_vers)
4324 goto error_free_vers;
4325 }
4326 nondeflt_vers[nondeflt_vers_cnt++] = h;
4327 }
4328 }
4329
4330 if (dynsym && h->dynindx == -1)
4331 {
4332 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4333 goto error_free_vers;
4334 if (h->u.weakdef != NULL
4335 && ! new_weakdef
4336 && h->u.weakdef->dynindx == -1)
4337 {
4338 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4339 goto error_free_vers;
4340 }
4341 }
4342 else if (dynsym && h->dynindx != -1)
4343 /* If the symbol already has a dynamic index, but
4344 visibility says it should not be visible, turn it into
4345 a local symbol. */
4346 switch (ELF_ST_VISIBILITY (h->other))
4347 {
4348 case STV_INTERNAL:
4349 case STV_HIDDEN:
4350 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4351 dynsym = FALSE;
4352 break;
4353 }
4354
4355 if (!add_needed
4356 && definition
4357 && dynsym
4358 && h->ref_regular)
4359 {
4360 int ret;
4361 const char *soname = elf_dt_name (abfd);
4362
4363 /* A symbol from a library loaded via DT_NEEDED of some
4364 other library is referenced by a regular object.
4365 Add a DT_NEEDED entry for it. Issue an error if
4366 --no-add-needed is used. */
4367 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4368 {
4369 (*_bfd_error_handler)
4370 (_("%s: invalid DSO for symbol `%s' definition"),
4371 abfd, name);
4372 bfd_set_error (bfd_error_bad_value);
4373 goto error_free_vers;
4374 }
4375
4376 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4377
4378 add_needed = TRUE;
4379 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4380 if (ret < 0)
4381 goto error_free_vers;
4382
4383 BFD_ASSERT (ret == 0);
4384 }
4385 }
4386 }
4387
4388 if (extversym != NULL)
4389 {
4390 free (extversym);
4391 extversym = NULL;
4392 }
4393
4394 if (isymbuf != NULL)
4395 {
4396 free (isymbuf);
4397 isymbuf = NULL;
4398 }
4399
4400 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4401 {
4402 unsigned int i;
4403
4404 /* Restore the symbol table. */
4405 if (bed->as_needed_cleanup)
4406 (*bed->as_needed_cleanup) (abfd, info);
4407 old_hash = (char *) old_tab + tabsize;
4408 old_ent = (char *) old_hash + hashsize;
4409 sym_hash = elf_sym_hashes (abfd);
4410 htab->root.table.table = old_table;
4411 htab->root.table.size = old_size;
4412 htab->root.table.count = old_count;
4413 memcpy (htab->root.table.table, old_tab, tabsize);
4414 memcpy (sym_hash, old_hash, hashsize);
4415 htab->root.undefs = old_undefs;
4416 htab->root.undefs_tail = old_undefs_tail;
4417 for (i = 0; i < htab->root.table.size; i++)
4418 {
4419 struct bfd_hash_entry *p;
4420 struct elf_link_hash_entry *h;
4421
4422 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4423 {
4424 h = (struct elf_link_hash_entry *) p;
4425 if (h->root.type == bfd_link_hash_warning)
4426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4427 if (h->dynindx >= old_dynsymcount)
4428 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4429
4430 memcpy (p, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 h = (struct elf_link_hash_entry *) p;
4433 if (h->root.type == bfd_link_hash_warning)
4434 {
4435 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4436 old_ent = (char *) old_ent + htab->root.table.entsize;
4437 }
4438 }
4439 }
4440
4441 /* Make a special call to the linker "notice" function to
4442 tell it that symbols added for crefs may need to be removed. */
4443 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4444 notice_not_needed))
4445 goto error_free_vers;
4446
4447 free (old_tab);
4448 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4449 alloc_mark);
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 return TRUE;
4453 }
4454
4455 if (old_tab != NULL)
4456 {
4457 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4458 notice_needed))
4459 goto error_free_vers;
4460 free (old_tab);
4461 old_tab = NULL;
4462 }
4463
4464 /* Now that all the symbols from this input file are created, handle
4465 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4466 if (nondeflt_vers != NULL)
4467 {
4468 bfd_size_type cnt, symidx;
4469
4470 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4471 {
4472 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4473 char *shortname, *p;
4474
4475 p = strchr (h->root.root.string, ELF_VER_CHR);
4476 if (p == NULL
4477 || (h->root.type != bfd_link_hash_defined
4478 && h->root.type != bfd_link_hash_defweak))
4479 continue;
4480
4481 amt = p - h->root.root.string;
4482 shortname = bfd_malloc (amt + 1);
4483 if (!shortname)
4484 goto error_free_vers;
4485 memcpy (shortname, h->root.root.string, amt);
4486 shortname[amt] = '\0';
4487
4488 hi = (struct elf_link_hash_entry *)
4489 bfd_link_hash_lookup (&htab->root, shortname,
4490 FALSE, FALSE, FALSE);
4491 if (hi != NULL
4492 && hi->root.type == h->root.type
4493 && hi->root.u.def.value == h->root.u.def.value
4494 && hi->root.u.def.section == h->root.u.def.section)
4495 {
4496 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4497 hi->root.type = bfd_link_hash_indirect;
4498 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4499 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4500 sym_hash = elf_sym_hashes (abfd);
4501 if (sym_hash)
4502 for (symidx = 0; symidx < extsymcount; ++symidx)
4503 if (sym_hash[symidx] == hi)
4504 {
4505 sym_hash[symidx] = h;
4506 break;
4507 }
4508 }
4509 free (shortname);
4510 }
4511 free (nondeflt_vers);
4512 nondeflt_vers = NULL;
4513 }
4514
4515 /* Now set the weakdefs field correctly for all the weak defined
4516 symbols we found. The only way to do this is to search all the
4517 symbols. Since we only need the information for non functions in
4518 dynamic objects, that's the only time we actually put anything on
4519 the list WEAKS. We need this information so that if a regular
4520 object refers to a symbol defined weakly in a dynamic object, the
4521 real symbol in the dynamic object is also put in the dynamic
4522 symbols; we also must arrange for both symbols to point to the
4523 same memory location. We could handle the general case of symbol
4524 aliasing, but a general symbol alias can only be generated in
4525 assembler code, handling it correctly would be very time
4526 consuming, and other ELF linkers don't handle general aliasing
4527 either. */
4528 if (weaks != NULL)
4529 {
4530 struct elf_link_hash_entry **hpp;
4531 struct elf_link_hash_entry **hppend;
4532 struct elf_link_hash_entry **sorted_sym_hash;
4533 struct elf_link_hash_entry *h;
4534 size_t sym_count;
4535
4536 /* Since we have to search the whole symbol list for each weak
4537 defined symbol, search time for N weak defined symbols will be
4538 O(N^2). Binary search will cut it down to O(NlogN). */
4539 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4540 sorted_sym_hash = bfd_malloc (amt);
4541 if (sorted_sym_hash == NULL)
4542 goto error_return;
4543 sym_hash = sorted_sym_hash;
4544 hpp = elf_sym_hashes (abfd);
4545 hppend = hpp + extsymcount;
4546 sym_count = 0;
4547 for (; hpp < hppend; hpp++)
4548 {
4549 h = *hpp;
4550 if (h != NULL
4551 && h->root.type == bfd_link_hash_defined
4552 && !bed->is_function_type (h->type))
4553 {
4554 *sym_hash = h;
4555 sym_hash++;
4556 sym_count++;
4557 }
4558 }
4559
4560 qsort (sorted_sym_hash, sym_count,
4561 sizeof (struct elf_link_hash_entry *),
4562 elf_sort_symbol);
4563
4564 while (weaks != NULL)
4565 {
4566 struct elf_link_hash_entry *hlook;
4567 asection *slook;
4568 bfd_vma vlook;
4569 long ilook;
4570 size_t i, j, idx;
4571
4572 hlook = weaks;
4573 weaks = hlook->u.weakdef;
4574 hlook->u.weakdef = NULL;
4575
4576 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4577 || hlook->root.type == bfd_link_hash_defweak
4578 || hlook->root.type == bfd_link_hash_common
4579 || hlook->root.type == bfd_link_hash_indirect);
4580 slook = hlook->root.u.def.section;
4581 vlook = hlook->root.u.def.value;
4582
4583 ilook = -1;
4584 i = 0;
4585 j = sym_count;
4586 while (i < j)
4587 {
4588 bfd_signed_vma vdiff;
4589 idx = (i + j) / 2;
4590 h = sorted_sym_hash [idx];
4591 vdiff = vlook - h->root.u.def.value;
4592 if (vdiff < 0)
4593 j = idx;
4594 else if (vdiff > 0)
4595 i = idx + 1;
4596 else
4597 {
4598 long sdiff = slook->id - h->root.u.def.section->id;
4599 if (sdiff < 0)
4600 j = idx;
4601 else if (sdiff > 0)
4602 i = idx + 1;
4603 else
4604 {
4605 ilook = idx;
4606 break;
4607 }
4608 }
4609 }
4610
4611 /* We didn't find a value/section match. */
4612 if (ilook == -1)
4613 continue;
4614
4615 for (i = ilook; i < sym_count; i++)
4616 {
4617 h = sorted_sym_hash [i];
4618
4619 /* Stop if value or section doesn't match. */
4620 if (h->root.u.def.value != vlook
4621 || h->root.u.def.section != slook)
4622 break;
4623 else if (h != hlook)
4624 {
4625 hlook->u.weakdef = h;
4626
4627 /* If the weak definition is in the list of dynamic
4628 symbols, make sure the real definition is put
4629 there as well. */
4630 if (hlook->dynindx != -1 && h->dynindx == -1)
4631 {
4632 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4633 goto error_return;
4634 }
4635
4636 /* If the real definition is in the list of dynamic
4637 symbols, make sure the weak definition is put
4638 there as well. If we don't do this, then the
4639 dynamic loader might not merge the entries for the
4640 real definition and the weak definition. */
4641 if (h->dynindx != -1 && hlook->dynindx == -1)
4642 {
4643 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4644 goto error_return;
4645 }
4646 break;
4647 }
4648 }
4649 }
4650
4651 free (sorted_sym_hash);
4652 }
4653
4654 if (bed->check_directives)
4655 (*bed->check_directives) (abfd, info);
4656
4657 /* If this object is the same format as the output object, and it is
4658 not a shared library, then let the backend look through the
4659 relocs.
4660
4661 This is required to build global offset table entries and to
4662 arrange for dynamic relocs. It is not required for the
4663 particular common case of linking non PIC code, even when linking
4664 against shared libraries, but unfortunately there is no way of
4665 knowing whether an object file has been compiled PIC or not.
4666 Looking through the relocs is not particularly time consuming.
4667 The problem is that we must either (1) keep the relocs in memory,
4668 which causes the linker to require additional runtime memory or
4669 (2) read the relocs twice from the input file, which wastes time.
4670 This would be a good case for using mmap.
4671
4672 I have no idea how to handle linking PIC code into a file of a
4673 different format. It probably can't be done. */
4674 if (! dynamic
4675 && is_elf_hash_table (htab)
4676 && bed->check_relocs != NULL
4677 && (*bed->relocs_compatible) (abfd->xvec, htab->root.creator))
4678 {
4679 asection *o;
4680
4681 for (o = abfd->sections; o != NULL; o = o->next)
4682 {
4683 Elf_Internal_Rela *internal_relocs;
4684 bfd_boolean ok;
4685
4686 if ((o->flags & SEC_RELOC) == 0
4687 || o->reloc_count == 0
4688 || ((info->strip == strip_all || info->strip == strip_debugger)
4689 && (o->flags & SEC_DEBUGGING) != 0)
4690 || bfd_is_abs_section (o->output_section))
4691 continue;
4692
4693 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4694 info->keep_memory);
4695 if (internal_relocs == NULL)
4696 goto error_return;
4697
4698 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4699
4700 if (elf_section_data (o)->relocs != internal_relocs)
4701 free (internal_relocs);
4702
4703 if (! ok)
4704 goto error_return;
4705 }
4706 }
4707
4708 /* If this is a non-traditional link, try to optimize the handling
4709 of the .stab/.stabstr sections. */
4710 if (! dynamic
4711 && ! info->traditional_format
4712 && is_elf_hash_table (htab)
4713 && (info->strip != strip_all && info->strip != strip_debugger))
4714 {
4715 asection *stabstr;
4716
4717 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4718 if (stabstr != NULL)
4719 {
4720 bfd_size_type string_offset = 0;
4721 asection *stab;
4722
4723 for (stab = abfd->sections; stab; stab = stab->next)
4724 if (CONST_STRNEQ (stab->name, ".stab")
4725 && (!stab->name[5] ||
4726 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4727 && (stab->flags & SEC_MERGE) == 0
4728 && !bfd_is_abs_section (stab->output_section))
4729 {
4730 struct bfd_elf_section_data *secdata;
4731
4732 secdata = elf_section_data (stab);
4733 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4734 stabstr, &secdata->sec_info,
4735 &string_offset))
4736 goto error_return;
4737 if (secdata->sec_info)
4738 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4739 }
4740 }
4741 }
4742
4743 if (is_elf_hash_table (htab) && add_needed)
4744 {
4745 /* Add this bfd to the loaded list. */
4746 struct elf_link_loaded_list *n;
4747
4748 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4749 if (n == NULL)
4750 goto error_return;
4751 n->abfd = abfd;
4752 n->next = htab->loaded;
4753 htab->loaded = n;
4754 }
4755
4756 return TRUE;
4757
4758 error_free_vers:
4759 if (old_tab != NULL)
4760 free (old_tab);
4761 if (nondeflt_vers != NULL)
4762 free (nondeflt_vers);
4763 if (extversym != NULL)
4764 free (extversym);
4765 error_free_sym:
4766 if (isymbuf != NULL)
4767 free (isymbuf);
4768 error_return:
4769 return FALSE;
4770 }
4771
4772 /* Return the linker hash table entry of a symbol that might be
4773 satisfied by an archive symbol. Return -1 on error. */
4774
4775 struct elf_link_hash_entry *
4776 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4777 struct bfd_link_info *info,
4778 const char *name)
4779 {
4780 struct elf_link_hash_entry *h;
4781 char *p, *copy;
4782 size_t len, first;
4783
4784 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4785 if (h != NULL)
4786 return h;
4787
4788 /* If this is a default version (the name contains @@), look up the
4789 symbol again with only one `@' as well as without the version.
4790 The effect is that references to the symbol with and without the
4791 version will be matched by the default symbol in the archive. */
4792
4793 p = strchr (name, ELF_VER_CHR);
4794 if (p == NULL || p[1] != ELF_VER_CHR)
4795 return h;
4796
4797 /* First check with only one `@'. */
4798 len = strlen (name);
4799 copy = bfd_alloc (abfd, len);
4800 if (copy == NULL)
4801 return (struct elf_link_hash_entry *) 0 - 1;
4802
4803 first = p - name + 1;
4804 memcpy (copy, name, first);
4805 memcpy (copy + first, name + first + 1, len - first);
4806
4807 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4808 if (h == NULL)
4809 {
4810 /* We also need to check references to the symbol without the
4811 version. */
4812 copy[first - 1] = '\0';
4813 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4814 FALSE, FALSE, FALSE);
4815 }
4816
4817 bfd_release (abfd, copy);
4818 return h;
4819 }
4820
4821 /* Add symbols from an ELF archive file to the linker hash table. We
4822 don't use _bfd_generic_link_add_archive_symbols because of a
4823 problem which arises on UnixWare. The UnixWare libc.so is an
4824 archive which includes an entry libc.so.1 which defines a bunch of
4825 symbols. The libc.so archive also includes a number of other
4826 object files, which also define symbols, some of which are the same
4827 as those defined in libc.so.1. Correct linking requires that we
4828 consider each object file in turn, and include it if it defines any
4829 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4830 this; it looks through the list of undefined symbols, and includes
4831 any object file which defines them. When this algorithm is used on
4832 UnixWare, it winds up pulling in libc.so.1 early and defining a
4833 bunch of symbols. This means that some of the other objects in the
4834 archive are not included in the link, which is incorrect since they
4835 precede libc.so.1 in the archive.
4836
4837 Fortunately, ELF archive handling is simpler than that done by
4838 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4839 oddities. In ELF, if we find a symbol in the archive map, and the
4840 symbol is currently undefined, we know that we must pull in that
4841 object file.
4842
4843 Unfortunately, we do have to make multiple passes over the symbol
4844 table until nothing further is resolved. */
4845
4846 static bfd_boolean
4847 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4848 {
4849 symindex c;
4850 bfd_boolean *defined = NULL;
4851 bfd_boolean *included = NULL;
4852 carsym *symdefs;
4853 bfd_boolean loop;
4854 bfd_size_type amt;
4855 const struct elf_backend_data *bed;
4856 struct elf_link_hash_entry * (*archive_symbol_lookup)
4857 (bfd *, struct bfd_link_info *, const char *);
4858
4859 if (! bfd_has_map (abfd))
4860 {
4861 /* An empty archive is a special case. */
4862 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4863 return TRUE;
4864 bfd_set_error (bfd_error_no_armap);
4865 return FALSE;
4866 }
4867
4868 /* Keep track of all symbols we know to be already defined, and all
4869 files we know to be already included. This is to speed up the
4870 second and subsequent passes. */
4871 c = bfd_ardata (abfd)->symdef_count;
4872 if (c == 0)
4873 return TRUE;
4874 amt = c;
4875 amt *= sizeof (bfd_boolean);
4876 defined = bfd_zmalloc (amt);
4877 included = bfd_zmalloc (amt);
4878 if (defined == NULL || included == NULL)
4879 goto error_return;
4880
4881 symdefs = bfd_ardata (abfd)->symdefs;
4882 bed = get_elf_backend_data (abfd);
4883 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4884
4885 do
4886 {
4887 file_ptr last;
4888 symindex i;
4889 carsym *symdef;
4890 carsym *symdefend;
4891
4892 loop = FALSE;
4893 last = -1;
4894
4895 symdef = symdefs;
4896 symdefend = symdef + c;
4897 for (i = 0; symdef < symdefend; symdef++, i++)
4898 {
4899 struct elf_link_hash_entry *h;
4900 bfd *element;
4901 struct bfd_link_hash_entry *undefs_tail;
4902 symindex mark;
4903
4904 if (defined[i] || included[i])
4905 continue;
4906 if (symdef->file_offset == last)
4907 {
4908 included[i] = TRUE;
4909 continue;
4910 }
4911
4912 h = archive_symbol_lookup (abfd, info, symdef->name);
4913 if (h == (struct elf_link_hash_entry *) 0 - 1)
4914 goto error_return;
4915
4916 if (h == NULL)
4917 continue;
4918
4919 if (h->root.type == bfd_link_hash_common)
4920 {
4921 /* We currently have a common symbol. The archive map contains
4922 a reference to this symbol, so we may want to include it. We
4923 only want to include it however, if this archive element
4924 contains a definition of the symbol, not just another common
4925 declaration of it.
4926
4927 Unfortunately some archivers (including GNU ar) will put
4928 declarations of common symbols into their archive maps, as
4929 well as real definitions, so we cannot just go by the archive
4930 map alone. Instead we must read in the element's symbol
4931 table and check that to see what kind of symbol definition
4932 this is. */
4933 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4934 continue;
4935 }
4936 else if (h->root.type != bfd_link_hash_undefined)
4937 {
4938 if (h->root.type != bfd_link_hash_undefweak)
4939 defined[i] = TRUE;
4940 continue;
4941 }
4942
4943 /* We need to include this archive member. */
4944 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4945 if (element == NULL)
4946 goto error_return;
4947
4948 if (! bfd_check_format (element, bfd_object))
4949 goto error_return;
4950
4951 /* Doublecheck that we have not included this object
4952 already--it should be impossible, but there may be
4953 something wrong with the archive. */
4954 if (element->archive_pass != 0)
4955 {
4956 bfd_set_error (bfd_error_bad_value);
4957 goto error_return;
4958 }
4959 element->archive_pass = 1;
4960
4961 undefs_tail = info->hash->undefs_tail;
4962
4963 if (! (*info->callbacks->add_archive_element) (info, element,
4964 symdef->name))
4965 goto error_return;
4966 if (! bfd_link_add_symbols (element, info))
4967 goto error_return;
4968
4969 /* If there are any new undefined symbols, we need to make
4970 another pass through the archive in order to see whether
4971 they can be defined. FIXME: This isn't perfect, because
4972 common symbols wind up on undefs_tail and because an
4973 undefined symbol which is defined later on in this pass
4974 does not require another pass. This isn't a bug, but it
4975 does make the code less efficient than it could be. */
4976 if (undefs_tail != info->hash->undefs_tail)
4977 loop = TRUE;
4978
4979 /* Look backward to mark all symbols from this object file
4980 which we have already seen in this pass. */
4981 mark = i;
4982 do
4983 {
4984 included[mark] = TRUE;
4985 if (mark == 0)
4986 break;
4987 --mark;
4988 }
4989 while (symdefs[mark].file_offset == symdef->file_offset);
4990
4991 /* We mark subsequent symbols from this object file as we go
4992 on through the loop. */
4993 last = symdef->file_offset;
4994 }
4995 }
4996 while (loop);
4997
4998 free (defined);
4999 free (included);
5000
5001 return TRUE;
5002
5003 error_return:
5004 if (defined != NULL)
5005 free (defined);
5006 if (included != NULL)
5007 free (included);
5008 return FALSE;
5009 }
5010
5011 /* Given an ELF BFD, add symbols to the global hash table as
5012 appropriate. */
5013
5014 bfd_boolean
5015 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5016 {
5017 switch (bfd_get_format (abfd))
5018 {
5019 case bfd_object:
5020 return elf_link_add_object_symbols (abfd, info);
5021 case bfd_archive:
5022 return elf_link_add_archive_symbols (abfd, info);
5023 default:
5024 bfd_set_error (bfd_error_wrong_format);
5025 return FALSE;
5026 }
5027 }
5028 \f
5029 struct hash_codes_info
5030 {
5031 unsigned long *hashcodes;
5032 bfd_boolean error;
5033 };
5034
5035 /* This function will be called though elf_link_hash_traverse to store
5036 all hash value of the exported symbols in an array. */
5037
5038 static bfd_boolean
5039 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5040 {
5041 struct hash_codes_info *inf = data;
5042 const char *name;
5043 char *p;
5044 unsigned long ha;
5045 char *alc = NULL;
5046
5047 if (h->root.type == bfd_link_hash_warning)
5048 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5049
5050 /* Ignore indirect symbols. These are added by the versioning code. */
5051 if (h->dynindx == -1)
5052 return TRUE;
5053
5054 name = h->root.root.string;
5055 p = strchr (name, ELF_VER_CHR);
5056 if (p != NULL)
5057 {
5058 alc = bfd_malloc (p - name + 1);
5059 if (alc == NULL)
5060 {
5061 inf->error = TRUE;
5062 return FALSE;
5063 }
5064 memcpy (alc, name, p - name);
5065 alc[p - name] = '\0';
5066 name = alc;
5067 }
5068
5069 /* Compute the hash value. */
5070 ha = bfd_elf_hash (name);
5071
5072 /* Store the found hash value in the array given as the argument. */
5073 *(inf->hashcodes)++ = ha;
5074
5075 /* And store it in the struct so that we can put it in the hash table
5076 later. */
5077 h->u.elf_hash_value = ha;
5078
5079 if (alc != NULL)
5080 free (alc);
5081
5082 return TRUE;
5083 }
5084
5085 struct collect_gnu_hash_codes
5086 {
5087 bfd *output_bfd;
5088 const struct elf_backend_data *bed;
5089 unsigned long int nsyms;
5090 unsigned long int maskbits;
5091 unsigned long int *hashcodes;
5092 unsigned long int *hashval;
5093 unsigned long int *indx;
5094 unsigned long int *counts;
5095 bfd_vma *bitmask;
5096 bfd_byte *contents;
5097 long int min_dynindx;
5098 unsigned long int bucketcount;
5099 unsigned long int symindx;
5100 long int local_indx;
5101 long int shift1, shift2;
5102 unsigned long int mask;
5103 bfd_boolean error;
5104 };
5105
5106 /* This function will be called though elf_link_hash_traverse to store
5107 all hash value of the exported symbols in an array. */
5108
5109 static bfd_boolean
5110 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5111 {
5112 struct collect_gnu_hash_codes *s = data;
5113 const char *name;
5114 char *p;
5115 unsigned long ha;
5116 char *alc = NULL;
5117
5118 if (h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5120
5121 /* Ignore indirect symbols. These are added by the versioning code. */
5122 if (h->dynindx == -1)
5123 return TRUE;
5124
5125 /* Ignore also local symbols and undefined symbols. */
5126 if (! (*s->bed->elf_hash_symbol) (h))
5127 return TRUE;
5128
5129 name = h->root.root.string;
5130 p = strchr (name, ELF_VER_CHR);
5131 if (p != NULL)
5132 {
5133 alc = bfd_malloc (p - name + 1);
5134 if (alc == NULL)
5135 {
5136 s->error = TRUE;
5137 return FALSE;
5138 }
5139 memcpy (alc, name, p - name);
5140 alc[p - name] = '\0';
5141 name = alc;
5142 }
5143
5144 /* Compute the hash value. */
5145 ha = bfd_elf_gnu_hash (name);
5146
5147 /* Store the found hash value in the array for compute_bucket_count,
5148 and also for .dynsym reordering purposes. */
5149 s->hashcodes[s->nsyms] = ha;
5150 s->hashval[h->dynindx] = ha;
5151 ++s->nsyms;
5152 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5153 s->min_dynindx = h->dynindx;
5154
5155 if (alc != NULL)
5156 free (alc);
5157
5158 return TRUE;
5159 }
5160
5161 /* This function will be called though elf_link_hash_traverse to do
5162 final dynaminc symbol renumbering. */
5163
5164 static bfd_boolean
5165 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5166 {
5167 struct collect_gnu_hash_codes *s = data;
5168 unsigned long int bucket;
5169 unsigned long int val;
5170
5171 if (h->root.type == bfd_link_hash_warning)
5172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5173
5174 /* Ignore indirect symbols. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s->bed->elf_hash_symbol) (h))
5180 {
5181 if (h->dynindx >= s->min_dynindx)
5182 h->dynindx = s->local_indx++;
5183 return TRUE;
5184 }
5185
5186 bucket = s->hashval[h->dynindx] % s->bucketcount;
5187 val = (s->hashval[h->dynindx] >> s->shift1)
5188 & ((s->maskbits >> s->shift1) - 1);
5189 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5190 s->bitmask[val]
5191 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5192 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5193 if (s->counts[bucket] == 1)
5194 /* Last element terminates the chain. */
5195 val |= 1;
5196 bfd_put_32 (s->output_bfd, val,
5197 s->contents + (s->indx[bucket] - s->symindx) * 4);
5198 --s->counts[bucket];
5199 h->dynindx = s->indx[bucket]++;
5200 return TRUE;
5201 }
5202
5203 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5204
5205 bfd_boolean
5206 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5207 {
5208 return !(h->forced_local
5209 || h->root.type == bfd_link_hash_undefined
5210 || h->root.type == bfd_link_hash_undefweak
5211 || ((h->root.type == bfd_link_hash_defined
5212 || h->root.type == bfd_link_hash_defweak)
5213 && h->root.u.def.section->output_section == NULL));
5214 }
5215
5216 /* Array used to determine the number of hash table buckets to use
5217 based on the number of symbols there are. If there are fewer than
5218 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5219 fewer than 37 we use 17 buckets, and so forth. We never use more
5220 than 32771 buckets. */
5221
5222 static const size_t elf_buckets[] =
5223 {
5224 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5225 16411, 32771, 0
5226 };
5227
5228 /* Compute bucket count for hashing table. We do not use a static set
5229 of possible tables sizes anymore. Instead we determine for all
5230 possible reasonable sizes of the table the outcome (i.e., the
5231 number of collisions etc) and choose the best solution. The
5232 weighting functions are not too simple to allow the table to grow
5233 without bounds. Instead one of the weighting factors is the size.
5234 Therefore the result is always a good payoff between few collisions
5235 (= short chain lengths) and table size. */
5236 static size_t
5237 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5238 unsigned long int nsyms, int gnu_hash)
5239 {
5240 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5241 size_t best_size = 0;
5242 unsigned long int i;
5243 bfd_size_type amt;
5244
5245 /* We have a problem here. The following code to optimize the table
5246 size requires an integer type with more the 32 bits. If
5247 BFD_HOST_U_64_BIT is set we know about such a type. */
5248 #ifdef BFD_HOST_U_64_BIT
5249 if (info->optimize)
5250 {
5251 size_t minsize;
5252 size_t maxsize;
5253 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5254 bfd *dynobj = elf_hash_table (info)->dynobj;
5255 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5256 unsigned long int *counts;
5257
5258 /* Possible optimization parameters: if we have NSYMS symbols we say
5259 that the hashing table must at least have NSYMS/4 and at most
5260 2*NSYMS buckets. */
5261 minsize = nsyms / 4;
5262 if (minsize == 0)
5263 minsize = 1;
5264 best_size = maxsize = nsyms * 2;
5265 if (gnu_hash)
5266 {
5267 if (minsize < 2)
5268 minsize = 2;
5269 if ((best_size & 31) == 0)
5270 ++best_size;
5271 }
5272
5273 /* Create array where we count the collisions in. We must use bfd_malloc
5274 since the size could be large. */
5275 amt = maxsize;
5276 amt *= sizeof (unsigned long int);
5277 counts = bfd_malloc (amt);
5278 if (counts == NULL)
5279 return 0;
5280
5281 /* Compute the "optimal" size for the hash table. The criteria is a
5282 minimal chain length. The minor criteria is (of course) the size
5283 of the table. */
5284 for (i = minsize; i < maxsize; ++i)
5285 {
5286 /* Walk through the array of hashcodes and count the collisions. */
5287 BFD_HOST_U_64_BIT max;
5288 unsigned long int j;
5289 unsigned long int fact;
5290
5291 if (gnu_hash && (i & 31) == 0)
5292 continue;
5293
5294 memset (counts, '\0', i * sizeof (unsigned long int));
5295
5296 /* Determine how often each hash bucket is used. */
5297 for (j = 0; j < nsyms; ++j)
5298 ++counts[hashcodes[j] % i];
5299
5300 /* For the weight function we need some information about the
5301 pagesize on the target. This is information need not be 100%
5302 accurate. Since this information is not available (so far) we
5303 define it here to a reasonable default value. If it is crucial
5304 to have a better value some day simply define this value. */
5305 # ifndef BFD_TARGET_PAGESIZE
5306 # define BFD_TARGET_PAGESIZE (4096)
5307 # endif
5308
5309 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5310 and the chains. */
5311 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5312
5313 # if 1
5314 /* Variant 1: optimize for short chains. We add the squares
5315 of all the chain lengths (which favors many small chain
5316 over a few long chains). */
5317 for (j = 0; j < i; ++j)
5318 max += counts[j] * counts[j];
5319
5320 /* This adds penalties for the overall size of the table. */
5321 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5322 max *= fact * fact;
5323 # else
5324 /* Variant 2: Optimize a lot more for small table. Here we
5325 also add squares of the size but we also add penalties for
5326 empty slots (the +1 term). */
5327 for (j = 0; j < i; ++j)
5328 max += (1 + counts[j]) * (1 + counts[j]);
5329
5330 /* The overall size of the table is considered, but not as
5331 strong as in variant 1, where it is squared. */
5332 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5333 max *= fact;
5334 # endif
5335
5336 /* Compare with current best results. */
5337 if (max < best_chlen)
5338 {
5339 best_chlen = max;
5340 best_size = i;
5341 }
5342 }
5343
5344 free (counts);
5345 }
5346 else
5347 #endif /* defined (BFD_HOST_U_64_BIT) */
5348 {
5349 /* This is the fallback solution if no 64bit type is available or if we
5350 are not supposed to spend much time on optimizations. We select the
5351 bucket count using a fixed set of numbers. */
5352 for (i = 0; elf_buckets[i] != 0; i++)
5353 {
5354 best_size = elf_buckets[i];
5355 if (nsyms < elf_buckets[i + 1])
5356 break;
5357 }
5358 if (gnu_hash && best_size < 2)
5359 best_size = 2;
5360 }
5361
5362 return best_size;
5363 }
5364
5365 /* Set up the sizes and contents of the ELF dynamic sections. This is
5366 called by the ELF linker emulation before_allocation routine. We
5367 must set the sizes of the sections before the linker sets the
5368 addresses of the various sections. */
5369
5370 bfd_boolean
5371 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5372 const char *soname,
5373 const char *rpath,
5374 const char *filter_shlib,
5375 const char * const *auxiliary_filters,
5376 struct bfd_link_info *info,
5377 asection **sinterpptr,
5378 struct bfd_elf_version_tree *verdefs)
5379 {
5380 bfd_size_type soname_indx;
5381 bfd *dynobj;
5382 const struct elf_backend_data *bed;
5383 struct elf_assign_sym_version_info asvinfo;
5384
5385 *sinterpptr = NULL;
5386
5387 soname_indx = (bfd_size_type) -1;
5388
5389 if (!is_elf_hash_table (info->hash))
5390 return TRUE;
5391
5392 bed = get_elf_backend_data (output_bfd);
5393 if (info->execstack)
5394 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5395 else if (info->noexecstack)
5396 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5397 else
5398 {
5399 bfd *inputobj;
5400 asection *notesec = NULL;
5401 int exec = 0;
5402
5403 for (inputobj = info->input_bfds;
5404 inputobj;
5405 inputobj = inputobj->link_next)
5406 {
5407 asection *s;
5408
5409 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5410 continue;
5411 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5412 if (s)
5413 {
5414 if (s->flags & SEC_CODE)
5415 exec = PF_X;
5416 notesec = s;
5417 }
5418 else if (bed->default_execstack)
5419 exec = PF_X;
5420 }
5421 if (notesec)
5422 {
5423 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5424 if (exec && info->relocatable
5425 && notesec->output_section != bfd_abs_section_ptr)
5426 notesec->output_section->flags |= SEC_CODE;
5427 }
5428 }
5429
5430 /* Any syms created from now on start with -1 in
5431 got.refcount/offset and plt.refcount/offset. */
5432 elf_hash_table (info)->init_got_refcount
5433 = elf_hash_table (info)->init_got_offset;
5434 elf_hash_table (info)->init_plt_refcount
5435 = elf_hash_table (info)->init_plt_offset;
5436
5437 /* The backend may have to create some sections regardless of whether
5438 we're dynamic or not. */
5439 if (bed->elf_backend_always_size_sections
5440 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5441 return FALSE;
5442
5443 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5444 return FALSE;
5445
5446 dynobj = elf_hash_table (info)->dynobj;
5447
5448 /* If there were no dynamic objects in the link, there is nothing to
5449 do here. */
5450 if (dynobj == NULL)
5451 return TRUE;
5452
5453 if (elf_hash_table (info)->dynamic_sections_created)
5454 {
5455 struct elf_info_failed eif;
5456 struct elf_link_hash_entry *h;
5457 asection *dynstr;
5458 struct bfd_elf_version_tree *t;
5459 struct bfd_elf_version_expr *d;
5460 asection *s;
5461 bfd_boolean all_defined;
5462
5463 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5464 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5465
5466 if (soname != NULL)
5467 {
5468 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5469 soname, TRUE);
5470 if (soname_indx == (bfd_size_type) -1
5471 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5472 return FALSE;
5473 }
5474
5475 if (info->symbolic)
5476 {
5477 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5478 return FALSE;
5479 info->flags |= DF_SYMBOLIC;
5480 }
5481
5482 if (rpath != NULL)
5483 {
5484 bfd_size_type indx;
5485
5486 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5487 TRUE);
5488 if (indx == (bfd_size_type) -1
5489 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5490 return FALSE;
5491
5492 if (info->new_dtags)
5493 {
5494 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5495 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5496 return FALSE;
5497 }
5498 }
5499
5500 if (filter_shlib != NULL)
5501 {
5502 bfd_size_type indx;
5503
5504 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5505 filter_shlib, TRUE);
5506 if (indx == (bfd_size_type) -1
5507 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5508 return FALSE;
5509 }
5510
5511 if (auxiliary_filters != NULL)
5512 {
5513 const char * const *p;
5514
5515 for (p = auxiliary_filters; *p != NULL; p++)
5516 {
5517 bfd_size_type indx;
5518
5519 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5520 *p, TRUE);
5521 if (indx == (bfd_size_type) -1
5522 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5523 return FALSE;
5524 }
5525 }
5526
5527 eif.info = info;
5528 eif.verdefs = verdefs;
5529 eif.failed = FALSE;
5530
5531 /* If we are supposed to export all symbols into the dynamic symbol
5532 table (this is not the normal case), then do so. */
5533 if (info->export_dynamic
5534 || (info->executable && info->dynamic))
5535 {
5536 elf_link_hash_traverse (elf_hash_table (info),
5537 _bfd_elf_export_symbol,
5538 &eif);
5539 if (eif.failed)
5540 return FALSE;
5541 }
5542
5543 /* Make all global versions with definition. */
5544 for (t = verdefs; t != NULL; t = t->next)
5545 for (d = t->globals.list; d != NULL; d = d->next)
5546 if (!d->symver && d->symbol)
5547 {
5548 const char *verstr, *name;
5549 size_t namelen, verlen, newlen;
5550 char *newname, *p;
5551 struct elf_link_hash_entry *newh;
5552
5553 name = d->symbol;
5554 namelen = strlen (name);
5555 verstr = t->name;
5556 verlen = strlen (verstr);
5557 newlen = namelen + verlen + 3;
5558
5559 newname = bfd_malloc (newlen);
5560 if (newname == NULL)
5561 return FALSE;
5562 memcpy (newname, name, namelen);
5563
5564 /* Check the hidden versioned definition. */
5565 p = newname + namelen;
5566 *p++ = ELF_VER_CHR;
5567 memcpy (p, verstr, verlen + 1);
5568 newh = elf_link_hash_lookup (elf_hash_table (info),
5569 newname, FALSE, FALSE,
5570 FALSE);
5571 if (newh == NULL
5572 || (newh->root.type != bfd_link_hash_defined
5573 && newh->root.type != bfd_link_hash_defweak))
5574 {
5575 /* Check the default versioned definition. */
5576 *p++ = ELF_VER_CHR;
5577 memcpy (p, verstr, verlen + 1);
5578 newh = elf_link_hash_lookup (elf_hash_table (info),
5579 newname, FALSE, FALSE,
5580 FALSE);
5581 }
5582 free (newname);
5583
5584 /* Mark this version if there is a definition and it is
5585 not defined in a shared object. */
5586 if (newh != NULL
5587 && !newh->def_dynamic
5588 && (newh->root.type == bfd_link_hash_defined
5589 || newh->root.type == bfd_link_hash_defweak))
5590 d->symver = 1;
5591 }
5592
5593 /* Attach all the symbols to their version information. */
5594 asvinfo.output_bfd = output_bfd;
5595 asvinfo.info = info;
5596 asvinfo.verdefs = verdefs;
5597 asvinfo.failed = FALSE;
5598
5599 elf_link_hash_traverse (elf_hash_table (info),
5600 _bfd_elf_link_assign_sym_version,
5601 &asvinfo);
5602 if (asvinfo.failed)
5603 return FALSE;
5604
5605 if (!info->allow_undefined_version)
5606 {
5607 /* Check if all global versions have a definition. */
5608 all_defined = TRUE;
5609 for (t = verdefs; t != NULL; t = t->next)
5610 for (d = t->globals.list; d != NULL; d = d->next)
5611 if (!d->symver && !d->script)
5612 {
5613 (*_bfd_error_handler)
5614 (_("%s: undefined version: %s"),
5615 d->pattern, t->name);
5616 all_defined = FALSE;
5617 }
5618
5619 if (!all_defined)
5620 {
5621 bfd_set_error (bfd_error_bad_value);
5622 return FALSE;
5623 }
5624 }
5625
5626 /* Find all symbols which were defined in a dynamic object and make
5627 the backend pick a reasonable value for them. */
5628 elf_link_hash_traverse (elf_hash_table (info),
5629 _bfd_elf_adjust_dynamic_symbol,
5630 &eif);
5631 if (eif.failed)
5632 return FALSE;
5633
5634 /* Add some entries to the .dynamic section. We fill in some of the
5635 values later, in bfd_elf_final_link, but we must add the entries
5636 now so that we know the final size of the .dynamic section. */
5637
5638 /* If there are initialization and/or finalization functions to
5639 call then add the corresponding DT_INIT/DT_FINI entries. */
5640 h = (info->init_function
5641 ? elf_link_hash_lookup (elf_hash_table (info),
5642 info->init_function, FALSE,
5643 FALSE, FALSE)
5644 : NULL);
5645 if (h != NULL
5646 && (h->ref_regular
5647 || h->def_regular))
5648 {
5649 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5650 return FALSE;
5651 }
5652 h = (info->fini_function
5653 ? elf_link_hash_lookup (elf_hash_table (info),
5654 info->fini_function, FALSE,
5655 FALSE, FALSE)
5656 : NULL);
5657 if (h != NULL
5658 && (h->ref_regular
5659 || h->def_regular))
5660 {
5661 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5662 return FALSE;
5663 }
5664
5665 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5666 if (s != NULL && s->linker_has_input)
5667 {
5668 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5669 if (! info->executable)
5670 {
5671 bfd *sub;
5672 asection *o;
5673
5674 for (sub = info->input_bfds; sub != NULL;
5675 sub = sub->link_next)
5676 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5677 for (o = sub->sections; o != NULL; o = o->next)
5678 if (elf_section_data (o)->this_hdr.sh_type
5679 == SHT_PREINIT_ARRAY)
5680 {
5681 (*_bfd_error_handler)
5682 (_("%B: .preinit_array section is not allowed in DSO"),
5683 sub);
5684 break;
5685 }
5686
5687 bfd_set_error (bfd_error_nonrepresentable_section);
5688 return FALSE;
5689 }
5690
5691 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5692 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5693 return FALSE;
5694 }
5695 s = bfd_get_section_by_name (output_bfd, ".init_array");
5696 if (s != NULL && s->linker_has_input)
5697 {
5698 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5699 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5700 return FALSE;
5701 }
5702 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5703 if (s != NULL && s->linker_has_input)
5704 {
5705 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5706 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5707 return FALSE;
5708 }
5709
5710 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5711 /* If .dynstr is excluded from the link, we don't want any of
5712 these tags. Strictly, we should be checking each section
5713 individually; This quick check covers for the case where
5714 someone does a /DISCARD/ : { *(*) }. */
5715 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5716 {
5717 bfd_size_type strsize;
5718
5719 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5720 if ((info->emit_hash
5721 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5722 || (info->emit_gnu_hash
5723 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5724 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5725 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5726 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5727 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5728 bed->s->sizeof_sym))
5729 return FALSE;
5730 }
5731 }
5732
5733 /* The backend must work out the sizes of all the other dynamic
5734 sections. */
5735 if (bed->elf_backend_size_dynamic_sections
5736 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5737 return FALSE;
5738
5739 if (elf_hash_table (info)->dynamic_sections_created)
5740 {
5741 unsigned long section_sym_count;
5742 asection *s;
5743
5744 /* Set up the version definition section. */
5745 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5746 BFD_ASSERT (s != NULL);
5747
5748 /* We may have created additional version definitions if we are
5749 just linking a regular application. */
5750 verdefs = asvinfo.verdefs;
5751
5752 /* Skip anonymous version tag. */
5753 if (verdefs != NULL && verdefs->vernum == 0)
5754 verdefs = verdefs->next;
5755
5756 if (verdefs == NULL && !info->create_default_symver)
5757 s->flags |= SEC_EXCLUDE;
5758 else
5759 {
5760 unsigned int cdefs;
5761 bfd_size_type size;
5762 struct bfd_elf_version_tree *t;
5763 bfd_byte *p;
5764 Elf_Internal_Verdef def;
5765 Elf_Internal_Verdaux defaux;
5766 struct bfd_link_hash_entry *bh;
5767 struct elf_link_hash_entry *h;
5768 const char *name;
5769
5770 cdefs = 0;
5771 size = 0;
5772
5773 /* Make space for the base version. */
5774 size += sizeof (Elf_External_Verdef);
5775 size += sizeof (Elf_External_Verdaux);
5776 ++cdefs;
5777
5778 /* Make space for the default version. */
5779 if (info->create_default_symver)
5780 {
5781 size += sizeof (Elf_External_Verdef);
5782 ++cdefs;
5783 }
5784
5785 for (t = verdefs; t != NULL; t = t->next)
5786 {
5787 struct bfd_elf_version_deps *n;
5788
5789 size += sizeof (Elf_External_Verdef);
5790 size += sizeof (Elf_External_Verdaux);
5791 ++cdefs;
5792
5793 for (n = t->deps; n != NULL; n = n->next)
5794 size += sizeof (Elf_External_Verdaux);
5795 }
5796
5797 s->size = size;
5798 s->contents = bfd_alloc (output_bfd, s->size);
5799 if (s->contents == NULL && s->size != 0)
5800 return FALSE;
5801
5802 /* Fill in the version definition section. */
5803
5804 p = s->contents;
5805
5806 def.vd_version = VER_DEF_CURRENT;
5807 def.vd_flags = VER_FLG_BASE;
5808 def.vd_ndx = 1;
5809 def.vd_cnt = 1;
5810 if (info->create_default_symver)
5811 {
5812 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5813 def.vd_next = sizeof (Elf_External_Verdef);
5814 }
5815 else
5816 {
5817 def.vd_aux = sizeof (Elf_External_Verdef);
5818 def.vd_next = (sizeof (Elf_External_Verdef)
5819 + sizeof (Elf_External_Verdaux));
5820 }
5821
5822 if (soname_indx != (bfd_size_type) -1)
5823 {
5824 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5825 soname_indx);
5826 def.vd_hash = bfd_elf_hash (soname);
5827 defaux.vda_name = soname_indx;
5828 name = soname;
5829 }
5830 else
5831 {
5832 bfd_size_type indx;
5833
5834 name = lbasename (output_bfd->filename);
5835 def.vd_hash = bfd_elf_hash (name);
5836 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5837 name, FALSE);
5838 if (indx == (bfd_size_type) -1)
5839 return FALSE;
5840 defaux.vda_name = indx;
5841 }
5842 defaux.vda_next = 0;
5843
5844 _bfd_elf_swap_verdef_out (output_bfd, &def,
5845 (Elf_External_Verdef *) p);
5846 p += sizeof (Elf_External_Verdef);
5847 if (info->create_default_symver)
5848 {
5849 /* Add a symbol representing this version. */
5850 bh = NULL;
5851 if (! (_bfd_generic_link_add_one_symbol
5852 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5853 0, NULL, FALSE,
5854 get_elf_backend_data (dynobj)->collect, &bh)))
5855 return FALSE;
5856 h = (struct elf_link_hash_entry *) bh;
5857 h->non_elf = 0;
5858 h->def_regular = 1;
5859 h->type = STT_OBJECT;
5860 h->verinfo.vertree = NULL;
5861
5862 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5863 return FALSE;
5864
5865 /* Create a duplicate of the base version with the same
5866 aux block, but different flags. */
5867 def.vd_flags = 0;
5868 def.vd_ndx = 2;
5869 def.vd_aux = sizeof (Elf_External_Verdef);
5870 if (verdefs)
5871 def.vd_next = (sizeof (Elf_External_Verdef)
5872 + sizeof (Elf_External_Verdaux));
5873 else
5874 def.vd_next = 0;
5875 _bfd_elf_swap_verdef_out (output_bfd, &def,
5876 (Elf_External_Verdef *) p);
5877 p += sizeof (Elf_External_Verdef);
5878 }
5879 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5880 (Elf_External_Verdaux *) p);
5881 p += sizeof (Elf_External_Verdaux);
5882
5883 for (t = verdefs; t != NULL; t = t->next)
5884 {
5885 unsigned int cdeps;
5886 struct bfd_elf_version_deps *n;
5887
5888 cdeps = 0;
5889 for (n = t->deps; n != NULL; n = n->next)
5890 ++cdeps;
5891
5892 /* Add a symbol representing this version. */
5893 bh = NULL;
5894 if (! (_bfd_generic_link_add_one_symbol
5895 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5896 0, NULL, FALSE,
5897 get_elf_backend_data (dynobj)->collect, &bh)))
5898 return FALSE;
5899 h = (struct elf_link_hash_entry *) bh;
5900 h->non_elf = 0;
5901 h->def_regular = 1;
5902 h->type = STT_OBJECT;
5903 h->verinfo.vertree = t;
5904
5905 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5906 return FALSE;
5907
5908 def.vd_version = VER_DEF_CURRENT;
5909 def.vd_flags = 0;
5910 if (t->globals.list == NULL
5911 && t->locals.list == NULL
5912 && ! t->used)
5913 def.vd_flags |= VER_FLG_WEAK;
5914 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5915 def.vd_cnt = cdeps + 1;
5916 def.vd_hash = bfd_elf_hash (t->name);
5917 def.vd_aux = sizeof (Elf_External_Verdef);
5918 def.vd_next = 0;
5919 if (t->next != NULL)
5920 def.vd_next = (sizeof (Elf_External_Verdef)
5921 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5922
5923 _bfd_elf_swap_verdef_out (output_bfd, &def,
5924 (Elf_External_Verdef *) p);
5925 p += sizeof (Elf_External_Verdef);
5926
5927 defaux.vda_name = h->dynstr_index;
5928 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5929 h->dynstr_index);
5930 defaux.vda_next = 0;
5931 if (t->deps != NULL)
5932 defaux.vda_next = sizeof (Elf_External_Verdaux);
5933 t->name_indx = defaux.vda_name;
5934
5935 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5936 (Elf_External_Verdaux *) p);
5937 p += sizeof (Elf_External_Verdaux);
5938
5939 for (n = t->deps; n != NULL; n = n->next)
5940 {
5941 if (n->version_needed == NULL)
5942 {
5943 /* This can happen if there was an error in the
5944 version script. */
5945 defaux.vda_name = 0;
5946 }
5947 else
5948 {
5949 defaux.vda_name = n->version_needed->name_indx;
5950 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5951 defaux.vda_name);
5952 }
5953 if (n->next == NULL)
5954 defaux.vda_next = 0;
5955 else
5956 defaux.vda_next = sizeof (Elf_External_Verdaux);
5957
5958 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5959 (Elf_External_Verdaux *) p);
5960 p += sizeof (Elf_External_Verdaux);
5961 }
5962 }
5963
5964 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5965 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5966 return FALSE;
5967
5968 elf_tdata (output_bfd)->cverdefs = cdefs;
5969 }
5970
5971 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5972 {
5973 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5974 return FALSE;
5975 }
5976 else if (info->flags & DF_BIND_NOW)
5977 {
5978 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5979 return FALSE;
5980 }
5981
5982 if (info->flags_1)
5983 {
5984 if (info->executable)
5985 info->flags_1 &= ~ (DF_1_INITFIRST
5986 | DF_1_NODELETE
5987 | DF_1_NOOPEN);
5988 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5989 return FALSE;
5990 }
5991
5992 /* Work out the size of the version reference section. */
5993
5994 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5995 BFD_ASSERT (s != NULL);
5996 {
5997 struct elf_find_verdep_info sinfo;
5998
5999 sinfo.output_bfd = output_bfd;
6000 sinfo.info = info;
6001 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6002 if (sinfo.vers == 0)
6003 sinfo.vers = 1;
6004 sinfo.failed = FALSE;
6005
6006 elf_link_hash_traverse (elf_hash_table (info),
6007 _bfd_elf_link_find_version_dependencies,
6008 &sinfo);
6009 if (sinfo.failed)
6010 return FALSE;
6011
6012 if (elf_tdata (output_bfd)->verref == NULL)
6013 s->flags |= SEC_EXCLUDE;
6014 else
6015 {
6016 Elf_Internal_Verneed *t;
6017 unsigned int size;
6018 unsigned int crefs;
6019 bfd_byte *p;
6020
6021 /* Build the version definition section. */
6022 size = 0;
6023 crefs = 0;
6024 for (t = elf_tdata (output_bfd)->verref;
6025 t != NULL;
6026 t = t->vn_nextref)
6027 {
6028 Elf_Internal_Vernaux *a;
6029
6030 size += sizeof (Elf_External_Verneed);
6031 ++crefs;
6032 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6033 size += sizeof (Elf_External_Vernaux);
6034 }
6035
6036 s->size = size;
6037 s->contents = bfd_alloc (output_bfd, s->size);
6038 if (s->contents == NULL)
6039 return FALSE;
6040
6041 p = s->contents;
6042 for (t = elf_tdata (output_bfd)->verref;
6043 t != NULL;
6044 t = t->vn_nextref)
6045 {
6046 unsigned int caux;
6047 Elf_Internal_Vernaux *a;
6048 bfd_size_type indx;
6049
6050 caux = 0;
6051 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6052 ++caux;
6053
6054 t->vn_version = VER_NEED_CURRENT;
6055 t->vn_cnt = caux;
6056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6057 elf_dt_name (t->vn_bfd) != NULL
6058 ? elf_dt_name (t->vn_bfd)
6059 : lbasename (t->vn_bfd->filename),
6060 FALSE);
6061 if (indx == (bfd_size_type) -1)
6062 return FALSE;
6063 t->vn_file = indx;
6064 t->vn_aux = sizeof (Elf_External_Verneed);
6065 if (t->vn_nextref == NULL)
6066 t->vn_next = 0;
6067 else
6068 t->vn_next = (sizeof (Elf_External_Verneed)
6069 + caux * sizeof (Elf_External_Vernaux));
6070
6071 _bfd_elf_swap_verneed_out (output_bfd, t,
6072 (Elf_External_Verneed *) p);
6073 p += sizeof (Elf_External_Verneed);
6074
6075 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6076 {
6077 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6078 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6079 a->vna_nodename, FALSE);
6080 if (indx == (bfd_size_type) -1)
6081 return FALSE;
6082 a->vna_name = indx;
6083 if (a->vna_nextptr == NULL)
6084 a->vna_next = 0;
6085 else
6086 a->vna_next = sizeof (Elf_External_Vernaux);
6087
6088 _bfd_elf_swap_vernaux_out (output_bfd, a,
6089 (Elf_External_Vernaux *) p);
6090 p += sizeof (Elf_External_Vernaux);
6091 }
6092 }
6093
6094 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6095 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6096 return FALSE;
6097
6098 elf_tdata (output_bfd)->cverrefs = crefs;
6099 }
6100 }
6101
6102 if ((elf_tdata (output_bfd)->cverrefs == 0
6103 && elf_tdata (output_bfd)->cverdefs == 0)
6104 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6105 &section_sym_count) == 0)
6106 {
6107 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6108 s->flags |= SEC_EXCLUDE;
6109 }
6110 }
6111 return TRUE;
6112 }
6113
6114 /* Find the first non-excluded output section. We'll use its
6115 section symbol for some emitted relocs. */
6116 void
6117 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6118 {
6119 asection *s;
6120
6121 for (s = output_bfd->sections; s != NULL; s = s->next)
6122 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6123 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6124 {
6125 elf_hash_table (info)->text_index_section = s;
6126 break;
6127 }
6128 }
6129
6130 /* Find two non-excluded output sections, one for code, one for data.
6131 We'll use their section symbols for some emitted relocs. */
6132 void
6133 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6134 {
6135 asection *s;
6136
6137 for (s = output_bfd->sections; s != NULL; s = s->next)
6138 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6139 == (SEC_ALLOC | SEC_READONLY))
6140 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6141 {
6142 elf_hash_table (info)->text_index_section = s;
6143 break;
6144 }
6145
6146 for (s = output_bfd->sections; s != NULL; s = s->next)
6147 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6148 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6149 {
6150 elf_hash_table (info)->data_index_section = s;
6151 break;
6152 }
6153
6154 if (elf_hash_table (info)->text_index_section == NULL)
6155 elf_hash_table (info)->text_index_section
6156 = elf_hash_table (info)->data_index_section;
6157 }
6158
6159 bfd_boolean
6160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6161 {
6162 const struct elf_backend_data *bed;
6163
6164 if (!is_elf_hash_table (info->hash))
6165 return TRUE;
6166
6167 bed = get_elf_backend_data (output_bfd);
6168 (*bed->elf_backend_init_index_section) (output_bfd, info);
6169
6170 if (elf_hash_table (info)->dynamic_sections_created)
6171 {
6172 bfd *dynobj;
6173 asection *s;
6174 bfd_size_type dynsymcount;
6175 unsigned long section_sym_count;
6176 unsigned int dtagcount;
6177
6178 dynobj = elf_hash_table (info)->dynobj;
6179
6180 /* Assign dynsym indicies. In a shared library we generate a
6181 section symbol for each output section, which come first.
6182 Next come all of the back-end allocated local dynamic syms,
6183 followed by the rest of the global symbols. */
6184
6185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6186 &section_sym_count);
6187
6188 /* Work out the size of the symbol version section. */
6189 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6190 BFD_ASSERT (s != NULL);
6191 if (dynsymcount != 0
6192 && (s->flags & SEC_EXCLUDE) == 0)
6193 {
6194 s->size = dynsymcount * sizeof (Elf_External_Versym);
6195 s->contents = bfd_zalloc (output_bfd, s->size);
6196 if (s->contents == NULL)
6197 return FALSE;
6198
6199 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6200 return FALSE;
6201 }
6202
6203 /* Set the size of the .dynsym and .hash sections. We counted
6204 the number of dynamic symbols in elf_link_add_object_symbols.
6205 We will build the contents of .dynsym and .hash when we build
6206 the final symbol table, because until then we do not know the
6207 correct value to give the symbols. We built the .dynstr
6208 section as we went along in elf_link_add_object_symbols. */
6209 s = bfd_get_section_by_name (dynobj, ".dynsym");
6210 BFD_ASSERT (s != NULL);
6211 s->size = dynsymcount * bed->s->sizeof_sym;
6212
6213 if (dynsymcount != 0)
6214 {
6215 s->contents = bfd_alloc (output_bfd, s->size);
6216 if (s->contents == NULL)
6217 return FALSE;
6218
6219 /* The first entry in .dynsym is a dummy symbol.
6220 Clear all the section syms, in case we don't output them all. */
6221 ++section_sym_count;
6222 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6223 }
6224
6225 elf_hash_table (info)->bucketcount = 0;
6226
6227 /* Compute the size of the hashing table. As a side effect this
6228 computes the hash values for all the names we export. */
6229 if (info->emit_hash)
6230 {
6231 unsigned long int *hashcodes;
6232 struct hash_codes_info hashinf;
6233 bfd_size_type amt;
6234 unsigned long int nsyms;
6235 size_t bucketcount;
6236 size_t hash_entry_size;
6237
6238 /* Compute the hash values for all exported symbols. At the same
6239 time store the values in an array so that we could use them for
6240 optimizations. */
6241 amt = dynsymcount * sizeof (unsigned long int);
6242 hashcodes = bfd_malloc (amt);
6243 if (hashcodes == NULL)
6244 return FALSE;
6245 hashinf.hashcodes = hashcodes;
6246 hashinf.error = FALSE;
6247
6248 /* Put all hash values in HASHCODES. */
6249 elf_link_hash_traverse (elf_hash_table (info),
6250 elf_collect_hash_codes, &hashinf);
6251 if (hashinf.error)
6252 return FALSE;
6253
6254 nsyms = hashinf.hashcodes - hashcodes;
6255 bucketcount
6256 = compute_bucket_count (info, hashcodes, nsyms, 0);
6257 free (hashcodes);
6258
6259 if (bucketcount == 0)
6260 return FALSE;
6261
6262 elf_hash_table (info)->bucketcount = bucketcount;
6263
6264 s = bfd_get_section_by_name (dynobj, ".hash");
6265 BFD_ASSERT (s != NULL);
6266 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6267 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6268 s->contents = bfd_zalloc (output_bfd, s->size);
6269 if (s->contents == NULL)
6270 return FALSE;
6271
6272 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6273 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6274 s->contents + hash_entry_size);
6275 }
6276
6277 if (info->emit_gnu_hash)
6278 {
6279 size_t i, cnt;
6280 unsigned char *contents;
6281 struct collect_gnu_hash_codes cinfo;
6282 bfd_size_type amt;
6283 size_t bucketcount;
6284
6285 memset (&cinfo, 0, sizeof (cinfo));
6286
6287 /* Compute the hash values for all exported symbols. At the same
6288 time store the values in an array so that we could use them for
6289 optimizations. */
6290 amt = dynsymcount * 2 * sizeof (unsigned long int);
6291 cinfo.hashcodes = bfd_malloc (amt);
6292 if (cinfo.hashcodes == NULL)
6293 return FALSE;
6294
6295 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6296 cinfo.min_dynindx = -1;
6297 cinfo.output_bfd = output_bfd;
6298 cinfo.bed = bed;
6299
6300 /* Put all hash values in HASHCODES. */
6301 elf_link_hash_traverse (elf_hash_table (info),
6302 elf_collect_gnu_hash_codes, &cinfo);
6303 if (cinfo.error)
6304 return FALSE;
6305
6306 bucketcount
6307 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6308
6309 if (bucketcount == 0)
6310 {
6311 free (cinfo.hashcodes);
6312 return FALSE;
6313 }
6314
6315 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6316 BFD_ASSERT (s != NULL);
6317
6318 if (cinfo.nsyms == 0)
6319 {
6320 /* Empty .gnu.hash section is special. */
6321 BFD_ASSERT (cinfo.min_dynindx == -1);
6322 free (cinfo.hashcodes);
6323 s->size = 5 * 4 + bed->s->arch_size / 8;
6324 contents = bfd_zalloc (output_bfd, s->size);
6325 if (contents == NULL)
6326 return FALSE;
6327 s->contents = contents;
6328 /* 1 empty bucket. */
6329 bfd_put_32 (output_bfd, 1, contents);
6330 /* SYMIDX above the special symbol 0. */
6331 bfd_put_32 (output_bfd, 1, contents + 4);
6332 /* Just one word for bitmask. */
6333 bfd_put_32 (output_bfd, 1, contents + 8);
6334 /* Only hash fn bloom filter. */
6335 bfd_put_32 (output_bfd, 0, contents + 12);
6336 /* No hashes are valid - empty bitmask. */
6337 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6338 /* No hashes in the only bucket. */
6339 bfd_put_32 (output_bfd, 0,
6340 contents + 16 + bed->s->arch_size / 8);
6341 }
6342 else
6343 {
6344 unsigned long int maskwords, maskbitslog2;
6345 BFD_ASSERT (cinfo.min_dynindx != -1);
6346
6347 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6348 if (maskbitslog2 < 3)
6349 maskbitslog2 = 5;
6350 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6351 maskbitslog2 = maskbitslog2 + 3;
6352 else
6353 maskbitslog2 = maskbitslog2 + 2;
6354 if (bed->s->arch_size == 64)
6355 {
6356 if (maskbitslog2 == 5)
6357 maskbitslog2 = 6;
6358 cinfo.shift1 = 6;
6359 }
6360 else
6361 cinfo.shift1 = 5;
6362 cinfo.mask = (1 << cinfo.shift1) - 1;
6363 cinfo.shift2 = maskbitslog2;
6364 cinfo.maskbits = 1 << maskbitslog2;
6365 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6366 amt = bucketcount * sizeof (unsigned long int) * 2;
6367 amt += maskwords * sizeof (bfd_vma);
6368 cinfo.bitmask = bfd_malloc (amt);
6369 if (cinfo.bitmask == NULL)
6370 {
6371 free (cinfo.hashcodes);
6372 return FALSE;
6373 }
6374
6375 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6376 cinfo.indx = cinfo.counts + bucketcount;
6377 cinfo.symindx = dynsymcount - cinfo.nsyms;
6378 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6379
6380 /* Determine how often each hash bucket is used. */
6381 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6382 for (i = 0; i < cinfo.nsyms; ++i)
6383 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6384
6385 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6386 if (cinfo.counts[i] != 0)
6387 {
6388 cinfo.indx[i] = cnt;
6389 cnt += cinfo.counts[i];
6390 }
6391 BFD_ASSERT (cnt == dynsymcount);
6392 cinfo.bucketcount = bucketcount;
6393 cinfo.local_indx = cinfo.min_dynindx;
6394
6395 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6396 s->size += cinfo.maskbits / 8;
6397 contents = bfd_zalloc (output_bfd, s->size);
6398 if (contents == NULL)
6399 {
6400 free (cinfo.bitmask);
6401 free (cinfo.hashcodes);
6402 return FALSE;
6403 }
6404
6405 s->contents = contents;
6406 bfd_put_32 (output_bfd, bucketcount, contents);
6407 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6408 bfd_put_32 (output_bfd, maskwords, contents + 8);
6409 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6410 contents += 16 + cinfo.maskbits / 8;
6411
6412 for (i = 0; i < bucketcount; ++i)
6413 {
6414 if (cinfo.counts[i] == 0)
6415 bfd_put_32 (output_bfd, 0, contents);
6416 else
6417 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6418 contents += 4;
6419 }
6420
6421 cinfo.contents = contents;
6422
6423 /* Renumber dynamic symbols, populate .gnu.hash section. */
6424 elf_link_hash_traverse (elf_hash_table (info),
6425 elf_renumber_gnu_hash_syms, &cinfo);
6426
6427 contents = s->contents + 16;
6428 for (i = 0; i < maskwords; ++i)
6429 {
6430 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6431 contents);
6432 contents += bed->s->arch_size / 8;
6433 }
6434
6435 free (cinfo.bitmask);
6436 free (cinfo.hashcodes);
6437 }
6438 }
6439
6440 s = bfd_get_section_by_name (dynobj, ".dynstr");
6441 BFD_ASSERT (s != NULL);
6442
6443 elf_finalize_dynstr (output_bfd, info);
6444
6445 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6446
6447 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6448 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6449 return FALSE;
6450 }
6451
6452 return TRUE;
6453 }
6454 \f
6455 /* Indicate that we are only retrieving symbol values from this
6456 section. */
6457
6458 void
6459 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6460 {
6461 if (is_elf_hash_table (info->hash))
6462 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6463 _bfd_generic_link_just_syms (sec, info);
6464 }
6465
6466 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6467
6468 static void
6469 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6470 asection *sec)
6471 {
6472 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6473 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6474 }
6475
6476 /* Finish SHF_MERGE section merging. */
6477
6478 bfd_boolean
6479 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6480 {
6481 bfd *ibfd;
6482 asection *sec;
6483
6484 if (!is_elf_hash_table (info->hash))
6485 return FALSE;
6486
6487 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6488 if ((ibfd->flags & DYNAMIC) == 0)
6489 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6490 if ((sec->flags & SEC_MERGE) != 0
6491 && !bfd_is_abs_section (sec->output_section))
6492 {
6493 struct bfd_elf_section_data *secdata;
6494
6495 secdata = elf_section_data (sec);
6496 if (! _bfd_add_merge_section (abfd,
6497 &elf_hash_table (info)->merge_info,
6498 sec, &secdata->sec_info))
6499 return FALSE;
6500 else if (secdata->sec_info)
6501 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6502 }
6503
6504 if (elf_hash_table (info)->merge_info != NULL)
6505 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6506 merge_sections_remove_hook);
6507 return TRUE;
6508 }
6509
6510 /* Create an entry in an ELF linker hash table. */
6511
6512 struct bfd_hash_entry *
6513 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6514 struct bfd_hash_table *table,
6515 const char *string)
6516 {
6517 /* Allocate the structure if it has not already been allocated by a
6518 subclass. */
6519 if (entry == NULL)
6520 {
6521 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6522 if (entry == NULL)
6523 return entry;
6524 }
6525
6526 /* Call the allocation method of the superclass. */
6527 entry = _bfd_link_hash_newfunc (entry, table, string);
6528 if (entry != NULL)
6529 {
6530 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6531 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6532
6533 /* Set local fields. */
6534 ret->indx = -1;
6535 ret->dynindx = -1;
6536 ret->got = htab->init_got_refcount;
6537 ret->plt = htab->init_plt_refcount;
6538 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6539 - offsetof (struct elf_link_hash_entry, size)));
6540 /* Assume that we have been called by a non-ELF symbol reader.
6541 This flag is then reset by the code which reads an ELF input
6542 file. This ensures that a symbol created by a non-ELF symbol
6543 reader will have the flag set correctly. */
6544 ret->non_elf = 1;
6545 }
6546
6547 return entry;
6548 }
6549
6550 /* Copy data from an indirect symbol to its direct symbol, hiding the
6551 old indirect symbol. Also used for copying flags to a weakdef. */
6552
6553 void
6554 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6555 struct elf_link_hash_entry *dir,
6556 struct elf_link_hash_entry *ind)
6557 {
6558 struct elf_link_hash_table *htab;
6559
6560 /* Copy down any references that we may have already seen to the
6561 symbol which just became indirect. */
6562
6563 dir->ref_dynamic |= ind->ref_dynamic;
6564 dir->ref_regular |= ind->ref_regular;
6565 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6566 dir->non_got_ref |= ind->non_got_ref;
6567 dir->needs_plt |= ind->needs_plt;
6568 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6569
6570 if (ind->root.type != bfd_link_hash_indirect)
6571 return;
6572
6573 /* Copy over the global and procedure linkage table refcount entries.
6574 These may have been already set up by a check_relocs routine. */
6575 htab = elf_hash_table (info);
6576 if (ind->got.refcount > htab->init_got_refcount.refcount)
6577 {
6578 if (dir->got.refcount < 0)
6579 dir->got.refcount = 0;
6580 dir->got.refcount += ind->got.refcount;
6581 ind->got.refcount = htab->init_got_refcount.refcount;
6582 }
6583
6584 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6585 {
6586 if (dir->plt.refcount < 0)
6587 dir->plt.refcount = 0;
6588 dir->plt.refcount += ind->plt.refcount;
6589 ind->plt.refcount = htab->init_plt_refcount.refcount;
6590 }
6591
6592 if (ind->dynindx != -1)
6593 {
6594 if (dir->dynindx != -1)
6595 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6596 dir->dynindx = ind->dynindx;
6597 dir->dynstr_index = ind->dynstr_index;
6598 ind->dynindx = -1;
6599 ind->dynstr_index = 0;
6600 }
6601 }
6602
6603 void
6604 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6605 struct elf_link_hash_entry *h,
6606 bfd_boolean force_local)
6607 {
6608 h->plt = elf_hash_table (info)->init_plt_offset;
6609 h->needs_plt = 0;
6610 if (force_local)
6611 {
6612 h->forced_local = 1;
6613 if (h->dynindx != -1)
6614 {
6615 h->dynindx = -1;
6616 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6617 h->dynstr_index);
6618 }
6619 }
6620 }
6621
6622 /* Initialize an ELF linker hash table. */
6623
6624 bfd_boolean
6625 _bfd_elf_link_hash_table_init
6626 (struct elf_link_hash_table *table,
6627 bfd *abfd,
6628 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6629 struct bfd_hash_table *,
6630 const char *),
6631 unsigned int entsize)
6632 {
6633 bfd_boolean ret;
6634 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6635
6636 memset (table, 0, sizeof * table);
6637 table->init_got_refcount.refcount = can_refcount - 1;
6638 table->init_plt_refcount.refcount = can_refcount - 1;
6639 table->init_got_offset.offset = -(bfd_vma) 1;
6640 table->init_plt_offset.offset = -(bfd_vma) 1;
6641 /* The first dynamic symbol is a dummy. */
6642 table->dynsymcount = 1;
6643
6644 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6645 table->root.type = bfd_link_elf_hash_table;
6646
6647 return ret;
6648 }
6649
6650 /* Create an ELF linker hash table. */
6651
6652 struct bfd_link_hash_table *
6653 _bfd_elf_link_hash_table_create (bfd *abfd)
6654 {
6655 struct elf_link_hash_table *ret;
6656 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6657
6658 ret = bfd_malloc (amt);
6659 if (ret == NULL)
6660 return NULL;
6661
6662 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6663 sizeof (struct elf_link_hash_entry)))
6664 {
6665 free (ret);
6666 return NULL;
6667 }
6668
6669 return &ret->root;
6670 }
6671
6672 /* This is a hook for the ELF emulation code in the generic linker to
6673 tell the backend linker what file name to use for the DT_NEEDED
6674 entry for a dynamic object. */
6675
6676 void
6677 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6678 {
6679 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6680 && bfd_get_format (abfd) == bfd_object)
6681 elf_dt_name (abfd) = name;
6682 }
6683
6684 int
6685 bfd_elf_get_dyn_lib_class (bfd *abfd)
6686 {
6687 int lib_class;
6688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6689 && bfd_get_format (abfd) == bfd_object)
6690 lib_class = elf_dyn_lib_class (abfd);
6691 else
6692 lib_class = 0;
6693 return lib_class;
6694 }
6695
6696 void
6697 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6698 {
6699 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6700 && bfd_get_format (abfd) == bfd_object)
6701 elf_dyn_lib_class (abfd) = lib_class;
6702 }
6703
6704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6705 the linker ELF emulation code. */
6706
6707 struct bfd_link_needed_list *
6708 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6709 struct bfd_link_info *info)
6710 {
6711 if (! is_elf_hash_table (info->hash))
6712 return NULL;
6713 return elf_hash_table (info)->needed;
6714 }
6715
6716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6717 hook for the linker ELF emulation code. */
6718
6719 struct bfd_link_needed_list *
6720 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6721 struct bfd_link_info *info)
6722 {
6723 if (! is_elf_hash_table (info->hash))
6724 return NULL;
6725 return elf_hash_table (info)->runpath;
6726 }
6727
6728 /* Get the name actually used for a dynamic object for a link. This
6729 is the SONAME entry if there is one. Otherwise, it is the string
6730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6731
6732 const char *
6733 bfd_elf_get_dt_soname (bfd *abfd)
6734 {
6735 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6736 && bfd_get_format (abfd) == bfd_object)
6737 return elf_dt_name (abfd);
6738 return NULL;
6739 }
6740
6741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6742 the ELF linker emulation code. */
6743
6744 bfd_boolean
6745 bfd_elf_get_bfd_needed_list (bfd *abfd,
6746 struct bfd_link_needed_list **pneeded)
6747 {
6748 asection *s;
6749 bfd_byte *dynbuf = NULL;
6750 int elfsec;
6751 unsigned long shlink;
6752 bfd_byte *extdyn, *extdynend;
6753 size_t extdynsize;
6754 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6755
6756 *pneeded = NULL;
6757
6758 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6759 || bfd_get_format (abfd) != bfd_object)
6760 return TRUE;
6761
6762 s = bfd_get_section_by_name (abfd, ".dynamic");
6763 if (s == NULL || s->size == 0)
6764 return TRUE;
6765
6766 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6767 goto error_return;
6768
6769 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6770 if (elfsec == -1)
6771 goto error_return;
6772
6773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6774
6775 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6776 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6777
6778 extdyn = dynbuf;
6779 extdynend = extdyn + s->size;
6780 for (; extdyn < extdynend; extdyn += extdynsize)
6781 {
6782 Elf_Internal_Dyn dyn;
6783
6784 (*swap_dyn_in) (abfd, extdyn, &dyn);
6785
6786 if (dyn.d_tag == DT_NULL)
6787 break;
6788
6789 if (dyn.d_tag == DT_NEEDED)
6790 {
6791 const char *string;
6792 struct bfd_link_needed_list *l;
6793 unsigned int tagv = dyn.d_un.d_val;
6794 bfd_size_type amt;
6795
6796 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6797 if (string == NULL)
6798 goto error_return;
6799
6800 amt = sizeof *l;
6801 l = bfd_alloc (abfd, amt);
6802 if (l == NULL)
6803 goto error_return;
6804
6805 l->by = abfd;
6806 l->name = string;
6807 l->next = *pneeded;
6808 *pneeded = l;
6809 }
6810 }
6811
6812 free (dynbuf);
6813
6814 return TRUE;
6815
6816 error_return:
6817 if (dynbuf != NULL)
6818 free (dynbuf);
6819 return FALSE;
6820 }
6821
6822 struct elf_symbuf_symbol
6823 {
6824 unsigned long st_name; /* Symbol name, index in string tbl */
6825 unsigned char st_info; /* Type and binding attributes */
6826 unsigned char st_other; /* Visibilty, and target specific */
6827 };
6828
6829 struct elf_symbuf_head
6830 {
6831 struct elf_symbuf_symbol *ssym;
6832 bfd_size_type count;
6833 unsigned int st_shndx;
6834 };
6835
6836 struct elf_symbol
6837 {
6838 union
6839 {
6840 Elf_Internal_Sym *isym;
6841 struct elf_symbuf_symbol *ssym;
6842 } u;
6843 const char *name;
6844 };
6845
6846 /* Sort references to symbols by ascending section number. */
6847
6848 static int
6849 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6850 {
6851 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6852 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6853
6854 return s1->st_shndx - s2->st_shndx;
6855 }
6856
6857 static int
6858 elf_sym_name_compare (const void *arg1, const void *arg2)
6859 {
6860 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6861 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6862 return strcmp (s1->name, s2->name);
6863 }
6864
6865 static struct elf_symbuf_head *
6866 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6867 {
6868 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6869 struct elf_symbuf_symbol *ssym;
6870 struct elf_symbuf_head *ssymbuf, *ssymhead;
6871 bfd_size_type i, shndx_count;
6872
6873 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6874 if (indbuf == NULL)
6875 return NULL;
6876
6877 for (ind = indbuf, i = 0; i < symcount; i++)
6878 if (isymbuf[i].st_shndx != SHN_UNDEF)
6879 *ind++ = &isymbuf[i];
6880 indbufend = ind;
6881
6882 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6883 elf_sort_elf_symbol);
6884
6885 shndx_count = 0;
6886 if (indbufend > indbuf)
6887 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6888 if (ind[0]->st_shndx != ind[1]->st_shndx)
6889 shndx_count++;
6890
6891 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6892 + (indbufend - indbuf) * sizeof (*ssymbuf));
6893 if (ssymbuf == NULL)
6894 {
6895 free (indbuf);
6896 return NULL;
6897 }
6898
6899 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6900 ssymbuf->ssym = NULL;
6901 ssymbuf->count = shndx_count;
6902 ssymbuf->st_shndx = 0;
6903 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6904 {
6905 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6906 {
6907 ssymhead++;
6908 ssymhead->ssym = ssym;
6909 ssymhead->count = 0;
6910 ssymhead->st_shndx = (*ind)->st_shndx;
6911 }
6912 ssym->st_name = (*ind)->st_name;
6913 ssym->st_info = (*ind)->st_info;
6914 ssym->st_other = (*ind)->st_other;
6915 ssymhead->count++;
6916 }
6917 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6918
6919 free (indbuf);
6920 return ssymbuf;
6921 }
6922
6923 /* Check if 2 sections define the same set of local and global
6924 symbols. */
6925
6926 static bfd_boolean
6927 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6928 struct bfd_link_info *info)
6929 {
6930 bfd *bfd1, *bfd2;
6931 const struct elf_backend_data *bed1, *bed2;
6932 Elf_Internal_Shdr *hdr1, *hdr2;
6933 bfd_size_type symcount1, symcount2;
6934 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6935 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6936 Elf_Internal_Sym *isym, *isymend;
6937 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6938 bfd_size_type count1, count2, i;
6939 int shndx1, shndx2;
6940 bfd_boolean result;
6941
6942 bfd1 = sec1->owner;
6943 bfd2 = sec2->owner;
6944
6945 /* Both sections have to be in ELF. */
6946 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6947 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6948 return FALSE;
6949
6950 if (elf_section_type (sec1) != elf_section_type (sec2))
6951 return FALSE;
6952
6953 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6954 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6955 if (shndx1 == -1 || shndx2 == -1)
6956 return FALSE;
6957
6958 bed1 = get_elf_backend_data (bfd1);
6959 bed2 = get_elf_backend_data (bfd2);
6960 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6961 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6962 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6963 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6964
6965 if (symcount1 == 0 || symcount2 == 0)
6966 return FALSE;
6967
6968 result = FALSE;
6969 isymbuf1 = NULL;
6970 isymbuf2 = NULL;
6971 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6972 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6973
6974 if (ssymbuf1 == NULL)
6975 {
6976 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6977 NULL, NULL, NULL);
6978 if (isymbuf1 == NULL)
6979 goto done;
6980
6981 if (!info->reduce_memory_overheads)
6982 elf_tdata (bfd1)->symbuf = ssymbuf1
6983 = elf_create_symbuf (symcount1, isymbuf1);
6984 }
6985
6986 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6987 {
6988 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6989 NULL, NULL, NULL);
6990 if (isymbuf2 == NULL)
6991 goto done;
6992
6993 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6994 elf_tdata (bfd2)->symbuf = ssymbuf2
6995 = elf_create_symbuf (symcount2, isymbuf2);
6996 }
6997
6998 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6999 {
7000 /* Optimized faster version. */
7001 bfd_size_type lo, hi, mid;
7002 struct elf_symbol *symp;
7003 struct elf_symbuf_symbol *ssym, *ssymend;
7004
7005 lo = 0;
7006 hi = ssymbuf1->count;
7007 ssymbuf1++;
7008 count1 = 0;
7009 while (lo < hi)
7010 {
7011 mid = (lo + hi) / 2;
7012 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
7013 hi = mid;
7014 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
7015 lo = mid + 1;
7016 else
7017 {
7018 count1 = ssymbuf1[mid].count;
7019 ssymbuf1 += mid;
7020 break;
7021 }
7022 }
7023
7024 lo = 0;
7025 hi = ssymbuf2->count;
7026 ssymbuf2++;
7027 count2 = 0;
7028 while (lo < hi)
7029 {
7030 mid = (lo + hi) / 2;
7031 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7032 hi = mid;
7033 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7034 lo = mid + 1;
7035 else
7036 {
7037 count2 = ssymbuf2[mid].count;
7038 ssymbuf2 += mid;
7039 break;
7040 }
7041 }
7042
7043 if (count1 == 0 || count2 == 0 || count1 != count2)
7044 goto done;
7045
7046 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7047 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7048 if (symtable1 == NULL || symtable2 == NULL)
7049 goto done;
7050
7051 symp = symtable1;
7052 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7053 ssym < ssymend; ssym++, symp++)
7054 {
7055 symp->u.ssym = ssym;
7056 symp->name = bfd_elf_string_from_elf_section (bfd1,
7057 hdr1->sh_link,
7058 ssym->st_name);
7059 }
7060
7061 symp = symtable2;
7062 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7063 ssym < ssymend; ssym++, symp++)
7064 {
7065 symp->u.ssym = ssym;
7066 symp->name = bfd_elf_string_from_elf_section (bfd2,
7067 hdr2->sh_link,
7068 ssym->st_name);
7069 }
7070
7071 /* Sort symbol by name. */
7072 qsort (symtable1, count1, sizeof (struct elf_symbol),
7073 elf_sym_name_compare);
7074 qsort (symtable2, count1, sizeof (struct elf_symbol),
7075 elf_sym_name_compare);
7076
7077 for (i = 0; i < count1; i++)
7078 /* Two symbols must have the same binding, type and name. */
7079 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7080 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7081 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7082 goto done;
7083
7084 result = TRUE;
7085 goto done;
7086 }
7087
7088 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7089 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7090 if (symtable1 == NULL || symtable2 == NULL)
7091 goto done;
7092
7093 /* Count definitions in the section. */
7094 count1 = 0;
7095 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7096 if (isym->st_shndx == (unsigned int) shndx1)
7097 symtable1[count1++].u.isym = isym;
7098
7099 count2 = 0;
7100 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7101 if (isym->st_shndx == (unsigned int) shndx2)
7102 symtable2[count2++].u.isym = isym;
7103
7104 if (count1 == 0 || count2 == 0 || count1 != count2)
7105 goto done;
7106
7107 for (i = 0; i < count1; i++)
7108 symtable1[i].name
7109 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7110 symtable1[i].u.isym->st_name);
7111
7112 for (i = 0; i < count2; i++)
7113 symtable2[i].name
7114 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7115 symtable2[i].u.isym->st_name);
7116
7117 /* Sort symbol by name. */
7118 qsort (symtable1, count1, sizeof (struct elf_symbol),
7119 elf_sym_name_compare);
7120 qsort (symtable2, count1, sizeof (struct elf_symbol),
7121 elf_sym_name_compare);
7122
7123 for (i = 0; i < count1; i++)
7124 /* Two symbols must have the same binding, type and name. */
7125 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7126 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7127 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7128 goto done;
7129
7130 result = TRUE;
7131
7132 done:
7133 if (symtable1)
7134 free (symtable1);
7135 if (symtable2)
7136 free (symtable2);
7137 if (isymbuf1)
7138 free (isymbuf1);
7139 if (isymbuf2)
7140 free (isymbuf2);
7141
7142 return result;
7143 }
7144
7145 /* Return TRUE if 2 section types are compatible. */
7146
7147 bfd_boolean
7148 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7149 bfd *bbfd, const asection *bsec)
7150 {
7151 if (asec == NULL
7152 || bsec == NULL
7153 || abfd->xvec->flavour != bfd_target_elf_flavour
7154 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7155 return TRUE;
7156
7157 return elf_section_type (asec) == elf_section_type (bsec);
7158 }
7159 \f
7160 /* Final phase of ELF linker. */
7161
7162 /* A structure we use to avoid passing large numbers of arguments. */
7163
7164 struct elf_final_link_info
7165 {
7166 /* General link information. */
7167 struct bfd_link_info *info;
7168 /* Output BFD. */
7169 bfd *output_bfd;
7170 /* Symbol string table. */
7171 struct bfd_strtab_hash *symstrtab;
7172 /* .dynsym section. */
7173 asection *dynsym_sec;
7174 /* .hash section. */
7175 asection *hash_sec;
7176 /* symbol version section (.gnu.version). */
7177 asection *symver_sec;
7178 /* Buffer large enough to hold contents of any section. */
7179 bfd_byte *contents;
7180 /* Buffer large enough to hold external relocs of any section. */
7181 void *external_relocs;
7182 /* Buffer large enough to hold internal relocs of any section. */
7183 Elf_Internal_Rela *internal_relocs;
7184 /* Buffer large enough to hold external local symbols of any input
7185 BFD. */
7186 bfd_byte *external_syms;
7187 /* And a buffer for symbol section indices. */
7188 Elf_External_Sym_Shndx *locsym_shndx;
7189 /* Buffer large enough to hold internal local symbols of any input
7190 BFD. */
7191 Elf_Internal_Sym *internal_syms;
7192 /* Array large enough to hold a symbol index for each local symbol
7193 of any input BFD. */
7194 long *indices;
7195 /* Array large enough to hold a section pointer for each local
7196 symbol of any input BFD. */
7197 asection **sections;
7198 /* Buffer to hold swapped out symbols. */
7199 bfd_byte *symbuf;
7200 /* And one for symbol section indices. */
7201 Elf_External_Sym_Shndx *symshndxbuf;
7202 /* Number of swapped out symbols in buffer. */
7203 size_t symbuf_count;
7204 /* Number of symbols which fit in symbuf. */
7205 size_t symbuf_size;
7206 /* And same for symshndxbuf. */
7207 size_t shndxbuf_size;
7208 };
7209
7210 /* This struct is used to pass information to elf_link_output_extsym. */
7211
7212 struct elf_outext_info
7213 {
7214 bfd_boolean failed;
7215 bfd_boolean localsyms;
7216 struct elf_final_link_info *finfo;
7217 };
7218
7219
7220 /* Support for evaluating a complex relocation.
7221
7222 Complex relocations are generalized, self-describing relocations. The
7223 implementation of them consists of two parts: complex symbols, and the
7224 relocations themselves.
7225
7226 The relocations are use a reserved elf-wide relocation type code (R_RELC
7227 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7228 information (start bit, end bit, word width, etc) into the addend. This
7229 information is extracted from CGEN-generated operand tables within gas.
7230
7231 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7232 internal) representing prefix-notation expressions, including but not
7233 limited to those sorts of expressions normally encoded as addends in the
7234 addend field. The symbol mangling format is:
7235
7236 <node> := <literal>
7237 | <unary-operator> ':' <node>
7238 | <binary-operator> ':' <node> ':' <node>
7239 ;
7240
7241 <literal> := 's' <digits=N> ':' <N character symbol name>
7242 | 'S' <digits=N> ':' <N character section name>
7243 | '#' <hexdigits>
7244 ;
7245
7246 <binary-operator> := as in C
7247 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7248
7249 static void
7250 set_symbol_value (bfd *bfd_with_globals,
7251 Elf_Internal_Sym *isymbuf,
7252 size_t locsymcount,
7253 size_t symidx,
7254 bfd_vma val)
7255 {
7256 struct elf_link_hash_entry **sym_hashes;
7257 struct elf_link_hash_entry *h;
7258 size_t extsymoff = locsymcount;
7259
7260 if (symidx < locsymcount)
7261 {
7262 Elf_Internal_Sym *sym;
7263
7264 sym = isymbuf + symidx;
7265 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7266 {
7267 /* It is a local symbol: move it to the
7268 "absolute" section and give it a value. */
7269 sym->st_shndx = SHN_ABS;
7270 sym->st_value = val;
7271 return;
7272 }
7273 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7274 extsymoff = 0;
7275 }
7276
7277 /* It is a global symbol: set its link type
7278 to "defined" and give it a value. */
7279
7280 sym_hashes = elf_sym_hashes (bfd_with_globals);
7281 h = sym_hashes [symidx - extsymoff];
7282 while (h->root.type == bfd_link_hash_indirect
7283 || h->root.type == bfd_link_hash_warning)
7284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7285 h->root.type = bfd_link_hash_defined;
7286 h->root.u.def.value = val;
7287 h->root.u.def.section = bfd_abs_section_ptr;
7288 }
7289
7290 static bfd_boolean
7291 resolve_symbol (const char *name,
7292 bfd *input_bfd,
7293 struct elf_final_link_info *finfo,
7294 bfd_vma *result,
7295 Elf_Internal_Sym *isymbuf,
7296 size_t locsymcount)
7297 {
7298 Elf_Internal_Sym *sym;
7299 struct bfd_link_hash_entry *global_entry;
7300 const char *candidate = NULL;
7301 Elf_Internal_Shdr *symtab_hdr;
7302 size_t i;
7303
7304 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7305
7306 for (i = 0; i < locsymcount; ++ i)
7307 {
7308 sym = isymbuf + i;
7309
7310 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7311 continue;
7312
7313 candidate = bfd_elf_string_from_elf_section (input_bfd,
7314 symtab_hdr->sh_link,
7315 sym->st_name);
7316 #ifdef DEBUG
7317 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7318 name, candidate, (unsigned long) sym->st_value);
7319 #endif
7320 if (candidate && strcmp (candidate, name) == 0)
7321 {
7322 asection *sec = finfo->sections [i];
7323
7324 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7325 *result += sec->output_offset + sec->output_section->vma;
7326 #ifdef DEBUG
7327 printf ("Found symbol with value %8.8lx\n",
7328 (unsigned long) *result);
7329 #endif
7330 return TRUE;
7331 }
7332 }
7333
7334 /* Hmm, haven't found it yet. perhaps it is a global. */
7335 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7336 FALSE, FALSE, TRUE);
7337 if (!global_entry)
7338 return FALSE;
7339
7340 if (global_entry->type == bfd_link_hash_defined
7341 || global_entry->type == bfd_link_hash_defweak)
7342 {
7343 *result = (global_entry->u.def.value
7344 + global_entry->u.def.section->output_section->vma
7345 + global_entry->u.def.section->output_offset);
7346 #ifdef DEBUG
7347 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7348 global_entry->root.string, (unsigned long) *result);
7349 #endif
7350 return TRUE;
7351 }
7352
7353 return FALSE;
7354 }
7355
7356 static bfd_boolean
7357 resolve_section (const char *name,
7358 asection *sections,
7359 bfd_vma *result)
7360 {
7361 asection *curr;
7362 unsigned int len;
7363
7364 for (curr = sections; curr; curr = curr->next)
7365 if (strcmp (curr->name, name) == 0)
7366 {
7367 *result = curr->vma;
7368 return TRUE;
7369 }
7370
7371 /* Hmm. still haven't found it. try pseudo-section names. */
7372 for (curr = sections; curr; curr = curr->next)
7373 {
7374 len = strlen (curr->name);
7375 if (len > strlen (name))
7376 continue;
7377
7378 if (strncmp (curr->name, name, len) == 0)
7379 {
7380 if (strncmp (".end", name + len, 4) == 0)
7381 {
7382 *result = curr->vma + curr->size;
7383 return TRUE;
7384 }
7385
7386 /* Insert more pseudo-section names here, if you like. */
7387 }
7388 }
7389
7390 return FALSE;
7391 }
7392
7393 static void
7394 undefined_reference (const char *reftype, const char *name)
7395 {
7396 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7397 reftype, name);
7398 }
7399
7400 static bfd_boolean
7401 eval_symbol (bfd_vma *result,
7402 const char **symp,
7403 bfd *input_bfd,
7404 struct elf_final_link_info *finfo,
7405 bfd_vma dot,
7406 Elf_Internal_Sym *isymbuf,
7407 size_t locsymcount,
7408 int signed_p)
7409 {
7410 size_t len;
7411 size_t symlen;
7412 bfd_vma a;
7413 bfd_vma b;
7414 char symbuf[4096];
7415 const char *sym = *symp;
7416 const char *symend;
7417 bfd_boolean symbol_is_section = FALSE;
7418
7419 len = strlen (sym);
7420 symend = sym + len;
7421
7422 if (len < 1 || len > sizeof (symbuf))
7423 {
7424 bfd_set_error (bfd_error_invalid_operation);
7425 return FALSE;
7426 }
7427
7428 switch (* sym)
7429 {
7430 case '.':
7431 *result = dot;
7432 *symp = sym + 1;
7433 return TRUE;
7434
7435 case '#':
7436 ++sym;
7437 *result = strtoul (sym, (char **) symp, 16);
7438 return TRUE;
7439
7440 case 'S':
7441 symbol_is_section = TRUE;
7442 case 's':
7443 ++sym;
7444 symlen = strtol (sym, (char **) symp, 10);
7445 sym = *symp + 1; /* Skip the trailing ':'. */
7446
7447 if (symend < sym || symlen + 1 > sizeof (symbuf))
7448 {
7449 bfd_set_error (bfd_error_invalid_operation);
7450 return FALSE;
7451 }
7452
7453 memcpy (symbuf, sym, symlen);
7454 symbuf[symlen] = '\0';
7455 *symp = sym + symlen;
7456
7457 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7458 the symbol as a section, or vice-versa. so we're pretty liberal in our
7459 interpretation here; section means "try section first", not "must be a
7460 section", and likewise with symbol. */
7461
7462 if (symbol_is_section)
7463 {
7464 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7465 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7466 isymbuf, locsymcount))
7467 {
7468 undefined_reference ("section", symbuf);
7469 return FALSE;
7470 }
7471 }
7472 else
7473 {
7474 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7475 isymbuf, locsymcount)
7476 && !resolve_section (symbuf, finfo->output_bfd->sections,
7477 result))
7478 {
7479 undefined_reference ("symbol", symbuf);
7480 return FALSE;
7481 }
7482 }
7483
7484 return TRUE;
7485
7486 /* All that remains are operators. */
7487
7488 #define UNARY_OP(op) \
7489 if (strncmp (sym, #op, strlen (#op)) == 0) \
7490 { \
7491 sym += strlen (#op); \
7492 if (*sym == ':') \
7493 ++sym; \
7494 *symp = sym; \
7495 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7496 isymbuf, locsymcount, signed_p)) \
7497 return FALSE; \
7498 if (signed_p) \
7499 *result = op ((bfd_signed_vma) a); \
7500 else \
7501 *result = op a; \
7502 return TRUE; \
7503 }
7504
7505 #define BINARY_OP(op) \
7506 if (strncmp (sym, #op, strlen (#op)) == 0) \
7507 { \
7508 sym += strlen (#op); \
7509 if (*sym == ':') \
7510 ++sym; \
7511 *symp = sym; \
7512 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7513 isymbuf, locsymcount, signed_p)) \
7514 return FALSE; \
7515 ++*symp; \
7516 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7517 isymbuf, locsymcount, signed_p)) \
7518 return FALSE; \
7519 if (signed_p) \
7520 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7521 else \
7522 *result = a op b; \
7523 return TRUE; \
7524 }
7525
7526 default:
7527 UNARY_OP (0-);
7528 BINARY_OP (<<);
7529 BINARY_OP (>>);
7530 BINARY_OP (==);
7531 BINARY_OP (!=);
7532 BINARY_OP (<=);
7533 BINARY_OP (>=);
7534 BINARY_OP (&&);
7535 BINARY_OP (||);
7536 UNARY_OP (~);
7537 UNARY_OP (!);
7538 BINARY_OP (*);
7539 BINARY_OP (/);
7540 BINARY_OP (%);
7541 BINARY_OP (^);
7542 BINARY_OP (|);
7543 BINARY_OP (&);
7544 BINARY_OP (+);
7545 BINARY_OP (-);
7546 BINARY_OP (<);
7547 BINARY_OP (>);
7548 #undef UNARY_OP
7549 #undef BINARY_OP
7550 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7551 bfd_set_error (bfd_error_invalid_operation);
7552 return FALSE;
7553 }
7554 }
7555
7556 static void
7557 put_value (bfd_vma size,
7558 unsigned long chunksz,
7559 bfd *input_bfd,
7560 bfd_vma x,
7561 bfd_byte *location)
7562 {
7563 location += (size - chunksz);
7564
7565 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7566 {
7567 switch (chunksz)
7568 {
7569 default:
7570 case 0:
7571 abort ();
7572 case 1:
7573 bfd_put_8 (input_bfd, x, location);
7574 break;
7575 case 2:
7576 bfd_put_16 (input_bfd, x, location);
7577 break;
7578 case 4:
7579 bfd_put_32 (input_bfd, x, location);
7580 break;
7581 case 8:
7582 #ifdef BFD64
7583 bfd_put_64 (input_bfd, x, location);
7584 #else
7585 abort ();
7586 #endif
7587 break;
7588 }
7589 }
7590 }
7591
7592 static bfd_vma
7593 get_value (bfd_vma size,
7594 unsigned long chunksz,
7595 bfd *input_bfd,
7596 bfd_byte *location)
7597 {
7598 bfd_vma x = 0;
7599
7600 for (; size; size -= chunksz, location += chunksz)
7601 {
7602 switch (chunksz)
7603 {
7604 default:
7605 case 0:
7606 abort ();
7607 case 1:
7608 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7609 break;
7610 case 2:
7611 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7612 break;
7613 case 4:
7614 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7615 break;
7616 case 8:
7617 #ifdef BFD64
7618 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7619 #else
7620 abort ();
7621 #endif
7622 break;
7623 }
7624 }
7625 return x;
7626 }
7627
7628 static void
7629 decode_complex_addend (unsigned long *start, /* in bits */
7630 unsigned long *oplen, /* in bits */
7631 unsigned long *len, /* in bits */
7632 unsigned long *wordsz, /* in bytes */
7633 unsigned long *chunksz, /* in bytes */
7634 unsigned long *lsb0_p,
7635 unsigned long *signed_p,
7636 unsigned long *trunc_p,
7637 unsigned long encoded)
7638 {
7639 * start = encoded & 0x3F;
7640 * len = (encoded >> 6) & 0x3F;
7641 * oplen = (encoded >> 12) & 0x3F;
7642 * wordsz = (encoded >> 18) & 0xF;
7643 * chunksz = (encoded >> 22) & 0xF;
7644 * lsb0_p = (encoded >> 27) & 1;
7645 * signed_p = (encoded >> 28) & 1;
7646 * trunc_p = (encoded >> 29) & 1;
7647 }
7648
7649 bfd_reloc_status_type
7650 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7651 asection *input_section ATTRIBUTE_UNUSED,
7652 bfd_byte *contents,
7653 Elf_Internal_Rela *rel,
7654 bfd_vma relocation)
7655 {
7656 bfd_vma shift, x, mask;
7657 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7658 bfd_reloc_status_type r;
7659
7660 /* Perform this reloc, since it is complex.
7661 (this is not to say that it necessarily refers to a complex
7662 symbol; merely that it is a self-describing CGEN based reloc.
7663 i.e. the addend has the complete reloc information (bit start, end,
7664 word size, etc) encoded within it.). */
7665
7666 decode_complex_addend (&start, &oplen, &len, &wordsz,
7667 &chunksz, &lsb0_p, &signed_p,
7668 &trunc_p, rel->r_addend);
7669
7670 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7671
7672 if (lsb0_p)
7673 shift = (start + 1) - len;
7674 else
7675 shift = (8 * wordsz) - (start + len);
7676
7677 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7678
7679 #ifdef DEBUG
7680 printf ("Doing complex reloc: "
7681 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7682 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7683 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7684 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7685 oplen, x, mask, relocation);
7686 #endif
7687
7688 r = bfd_reloc_ok;
7689 if (! trunc_p)
7690 /* Now do an overflow check. */
7691 r = bfd_check_overflow ((signed_p
7692 ? complain_overflow_signed
7693 : complain_overflow_unsigned),
7694 len, 0, (8 * wordsz),
7695 relocation);
7696
7697 /* Do the deed. */
7698 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7699
7700 #ifdef DEBUG
7701 printf (" relocation: %8.8lx\n"
7702 " shifted mask: %8.8lx\n"
7703 " shifted/masked reloc: %8.8lx\n"
7704 " result: %8.8lx\n",
7705 relocation, (mask << shift),
7706 ((relocation & mask) << shift), x);
7707 #endif
7708 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7709 return r;
7710 }
7711
7712 /* When performing a relocatable link, the input relocations are
7713 preserved. But, if they reference global symbols, the indices
7714 referenced must be updated. Update all the relocations in
7715 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7716
7717 static void
7718 elf_link_adjust_relocs (bfd *abfd,
7719 Elf_Internal_Shdr *rel_hdr,
7720 unsigned int count,
7721 struct elf_link_hash_entry **rel_hash)
7722 {
7723 unsigned int i;
7724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7725 bfd_byte *erela;
7726 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7727 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7728 bfd_vma r_type_mask;
7729 int r_sym_shift;
7730
7731 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7732 {
7733 swap_in = bed->s->swap_reloc_in;
7734 swap_out = bed->s->swap_reloc_out;
7735 }
7736 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7737 {
7738 swap_in = bed->s->swap_reloca_in;
7739 swap_out = bed->s->swap_reloca_out;
7740 }
7741 else
7742 abort ();
7743
7744 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7745 abort ();
7746
7747 if (bed->s->arch_size == 32)
7748 {
7749 r_type_mask = 0xff;
7750 r_sym_shift = 8;
7751 }
7752 else
7753 {
7754 r_type_mask = 0xffffffff;
7755 r_sym_shift = 32;
7756 }
7757
7758 erela = rel_hdr->contents;
7759 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7760 {
7761 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7762 unsigned int j;
7763
7764 if (*rel_hash == NULL)
7765 continue;
7766
7767 BFD_ASSERT ((*rel_hash)->indx >= 0);
7768
7769 (*swap_in) (abfd, erela, irela);
7770 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7771 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7772 | (irela[j].r_info & r_type_mask));
7773 (*swap_out) (abfd, irela, erela);
7774 }
7775 }
7776
7777 struct elf_link_sort_rela
7778 {
7779 union {
7780 bfd_vma offset;
7781 bfd_vma sym_mask;
7782 } u;
7783 enum elf_reloc_type_class type;
7784 /* We use this as an array of size int_rels_per_ext_rel. */
7785 Elf_Internal_Rela rela[1];
7786 };
7787
7788 static int
7789 elf_link_sort_cmp1 (const void *A, const void *B)
7790 {
7791 const struct elf_link_sort_rela *a = A;
7792 const struct elf_link_sort_rela *b = B;
7793 int relativea, relativeb;
7794
7795 relativea = a->type == reloc_class_relative;
7796 relativeb = b->type == reloc_class_relative;
7797
7798 if (relativea < relativeb)
7799 return 1;
7800 if (relativea > relativeb)
7801 return -1;
7802 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7803 return -1;
7804 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7805 return 1;
7806 if (a->rela->r_offset < b->rela->r_offset)
7807 return -1;
7808 if (a->rela->r_offset > b->rela->r_offset)
7809 return 1;
7810 return 0;
7811 }
7812
7813 static int
7814 elf_link_sort_cmp2 (const void *A, const void *B)
7815 {
7816 const struct elf_link_sort_rela *a = A;
7817 const struct elf_link_sort_rela *b = B;
7818 int copya, copyb;
7819
7820 if (a->u.offset < b->u.offset)
7821 return -1;
7822 if (a->u.offset > b->u.offset)
7823 return 1;
7824 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7825 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7826 if (copya < copyb)
7827 return -1;
7828 if (copya > copyb)
7829 return 1;
7830 if (a->rela->r_offset < b->rela->r_offset)
7831 return -1;
7832 if (a->rela->r_offset > b->rela->r_offset)
7833 return 1;
7834 return 0;
7835 }
7836
7837 static size_t
7838 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7839 {
7840 asection *dynamic_relocs;
7841 asection *rela_dyn;
7842 asection *rel_dyn;
7843 bfd_size_type count, size;
7844 size_t i, ret, sort_elt, ext_size;
7845 bfd_byte *sort, *s_non_relative, *p;
7846 struct elf_link_sort_rela *sq;
7847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7848 int i2e = bed->s->int_rels_per_ext_rel;
7849 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7850 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7851 struct bfd_link_order *lo;
7852 bfd_vma r_sym_mask;
7853 bfd_boolean use_rela;
7854
7855 /* Find a dynamic reloc section. */
7856 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7857 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7858 if (rela_dyn != NULL && rela_dyn->size > 0
7859 && rel_dyn != NULL && rel_dyn->size > 0)
7860 {
7861 bfd_boolean use_rela_initialised = FALSE;
7862
7863 /* This is just here to stop gcc from complaining.
7864 It's initialization checking code is not perfect. */
7865 use_rela = TRUE;
7866
7867 /* Both sections are present. Examine the sizes
7868 of the indirect sections to help us choose. */
7869 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7870 if (lo->type == bfd_indirect_link_order)
7871 {
7872 asection *o = lo->u.indirect.section;
7873
7874 if ((o->size % bed->s->sizeof_rela) == 0)
7875 {
7876 if ((o->size % bed->s->sizeof_rel) == 0)
7877 /* Section size is divisible by both rel and rela sizes.
7878 It is of no help to us. */
7879 ;
7880 else
7881 {
7882 /* Section size is only divisible by rela. */
7883 if (use_rela_initialised && (use_rela == FALSE))
7884 {
7885 _bfd_error_handler
7886 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7887 bfd_set_error (bfd_error_invalid_operation);
7888 return 0;
7889 }
7890 else
7891 {
7892 use_rela = TRUE;
7893 use_rela_initialised = TRUE;
7894 }
7895 }
7896 }
7897 else if ((o->size % bed->s->sizeof_rel) == 0)
7898 {
7899 /* Section size is only divisible by rel. */
7900 if (use_rela_initialised && (use_rela == TRUE))
7901 {
7902 _bfd_error_handler
7903 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7904 bfd_set_error (bfd_error_invalid_operation);
7905 return 0;
7906 }
7907 else
7908 {
7909 use_rela = FALSE;
7910 use_rela_initialised = TRUE;
7911 }
7912 }
7913 else
7914 {
7915 /* The section size is not divisible by either - something is wrong. */
7916 _bfd_error_handler
7917 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7918 bfd_set_error (bfd_error_invalid_operation);
7919 return 0;
7920 }
7921 }
7922
7923 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7924 if (lo->type == bfd_indirect_link_order)
7925 {
7926 asection *o = lo->u.indirect.section;
7927
7928 if ((o->size % bed->s->sizeof_rela) == 0)
7929 {
7930 if ((o->size % bed->s->sizeof_rel) == 0)
7931 /* Section size is divisible by both rel and rela sizes.
7932 It is of no help to us. */
7933 ;
7934 else
7935 {
7936 /* Section size is only divisible by rela. */
7937 if (use_rela_initialised && (use_rela == FALSE))
7938 {
7939 _bfd_error_handler
7940 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7941 bfd_set_error (bfd_error_invalid_operation);
7942 return 0;
7943 }
7944 else
7945 {
7946 use_rela = TRUE;
7947 use_rela_initialised = TRUE;
7948 }
7949 }
7950 }
7951 else if ((o->size % bed->s->sizeof_rel) == 0)
7952 {
7953 /* Section size is only divisible by rel. */
7954 if (use_rela_initialised && (use_rela == TRUE))
7955 {
7956 _bfd_error_handler
7957 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7958 bfd_set_error (bfd_error_invalid_operation);
7959 return 0;
7960 }
7961 else
7962 {
7963 use_rela = FALSE;
7964 use_rela_initialised = TRUE;
7965 }
7966 }
7967 else
7968 {
7969 /* The section size is not divisible by either - something is wrong. */
7970 _bfd_error_handler
7971 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7972 bfd_set_error (bfd_error_invalid_operation);
7973 return 0;
7974 }
7975 }
7976
7977 if (! use_rela_initialised)
7978 /* Make a guess. */
7979 use_rela = TRUE;
7980 }
7981 else if (rela_dyn != NULL && rela_dyn->size > 0)
7982 use_rela = TRUE;
7983 else if (rel_dyn != NULL && rel_dyn->size > 0)
7984 use_rela = FALSE;
7985 else
7986 return 0;
7987
7988 if (use_rela)
7989 {
7990 dynamic_relocs = rela_dyn;
7991 ext_size = bed->s->sizeof_rela;
7992 swap_in = bed->s->swap_reloca_in;
7993 swap_out = bed->s->swap_reloca_out;
7994 }
7995 else
7996 {
7997 dynamic_relocs = rel_dyn;
7998 ext_size = bed->s->sizeof_rel;
7999 swap_in = bed->s->swap_reloc_in;
8000 swap_out = bed->s->swap_reloc_out;
8001 }
8002
8003 size = 0;
8004 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8005 if (lo->type == bfd_indirect_link_order)
8006 size += lo->u.indirect.section->size;
8007
8008 if (size != dynamic_relocs->size)
8009 return 0;
8010
8011 sort_elt = (sizeof (struct elf_link_sort_rela)
8012 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8013
8014 count = dynamic_relocs->size / ext_size;
8015 sort = bfd_zmalloc (sort_elt * count);
8016
8017 if (sort == NULL)
8018 {
8019 (*info->callbacks->warning)
8020 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8021 return 0;
8022 }
8023
8024 if (bed->s->arch_size == 32)
8025 r_sym_mask = ~(bfd_vma) 0xff;
8026 else
8027 r_sym_mask = ~(bfd_vma) 0xffffffff;
8028
8029 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8030 if (lo->type == bfd_indirect_link_order)
8031 {
8032 bfd_byte *erel, *erelend;
8033 asection *o = lo->u.indirect.section;
8034
8035 if (o->contents == NULL && o->size != 0)
8036 {
8037 /* This is a reloc section that is being handled as a normal
8038 section. See bfd_section_from_shdr. We can't combine
8039 relocs in this case. */
8040 free (sort);
8041 return 0;
8042 }
8043 erel = o->contents;
8044 erelend = o->contents + o->size;
8045 p = sort + o->output_offset / ext_size * sort_elt;
8046
8047 while (erel < erelend)
8048 {
8049 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8050
8051 (*swap_in) (abfd, erel, s->rela);
8052 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8053 s->u.sym_mask = r_sym_mask;
8054 p += sort_elt;
8055 erel += ext_size;
8056 }
8057 }
8058
8059 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8060
8061 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8062 {
8063 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8064 if (s->type != reloc_class_relative)
8065 break;
8066 }
8067 ret = i;
8068 s_non_relative = p;
8069
8070 sq = (struct elf_link_sort_rela *) s_non_relative;
8071 for (; i < count; i++, p += sort_elt)
8072 {
8073 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8074 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8075 sq = sp;
8076 sp->u.offset = sq->rela->r_offset;
8077 }
8078
8079 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8080
8081 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8082 if (lo->type == bfd_indirect_link_order)
8083 {
8084 bfd_byte *erel, *erelend;
8085 asection *o = lo->u.indirect.section;
8086
8087 erel = o->contents;
8088 erelend = o->contents + o->size;
8089 p = sort + o->output_offset / ext_size * sort_elt;
8090 while (erel < erelend)
8091 {
8092 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8093 (*swap_out) (abfd, s->rela, erel);
8094 p += sort_elt;
8095 erel += ext_size;
8096 }
8097 }
8098
8099 free (sort);
8100 *psec = dynamic_relocs;
8101 return ret;
8102 }
8103
8104 /* Flush the output symbols to the file. */
8105
8106 static bfd_boolean
8107 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8108 const struct elf_backend_data *bed)
8109 {
8110 if (finfo->symbuf_count > 0)
8111 {
8112 Elf_Internal_Shdr *hdr;
8113 file_ptr pos;
8114 bfd_size_type amt;
8115
8116 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8117 pos = hdr->sh_offset + hdr->sh_size;
8118 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8119 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8120 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8121 return FALSE;
8122
8123 hdr->sh_size += amt;
8124 finfo->symbuf_count = 0;
8125 }
8126
8127 return TRUE;
8128 }
8129
8130 /* Add a symbol to the output symbol table. */
8131
8132 static bfd_boolean
8133 elf_link_output_sym (struct elf_final_link_info *finfo,
8134 const char *name,
8135 Elf_Internal_Sym *elfsym,
8136 asection *input_sec,
8137 struct elf_link_hash_entry *h)
8138 {
8139 bfd_byte *dest;
8140 Elf_External_Sym_Shndx *destshndx;
8141 bfd_boolean (*output_symbol_hook)
8142 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8143 struct elf_link_hash_entry *);
8144 const struct elf_backend_data *bed;
8145
8146 bed = get_elf_backend_data (finfo->output_bfd);
8147 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8148 if (output_symbol_hook != NULL)
8149 {
8150 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8151 return FALSE;
8152 }
8153
8154 if (name == NULL || *name == '\0')
8155 elfsym->st_name = 0;
8156 else if (input_sec->flags & SEC_EXCLUDE)
8157 elfsym->st_name = 0;
8158 else
8159 {
8160 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8161 name, TRUE, FALSE);
8162 if (elfsym->st_name == (unsigned long) -1)
8163 return FALSE;
8164 }
8165
8166 if (finfo->symbuf_count >= finfo->symbuf_size)
8167 {
8168 if (! elf_link_flush_output_syms (finfo, bed))
8169 return FALSE;
8170 }
8171
8172 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8173 destshndx = finfo->symshndxbuf;
8174 if (destshndx != NULL)
8175 {
8176 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8177 {
8178 bfd_size_type amt;
8179
8180 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8181 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8182 if (destshndx == NULL)
8183 return FALSE;
8184 memset ((char *) destshndx + amt, 0, amt);
8185 finfo->shndxbuf_size *= 2;
8186 }
8187 destshndx += bfd_get_symcount (finfo->output_bfd);
8188 }
8189
8190 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8191 finfo->symbuf_count += 1;
8192 bfd_get_symcount (finfo->output_bfd) += 1;
8193
8194 return TRUE;
8195 }
8196
8197 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8198
8199 static bfd_boolean
8200 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8201 {
8202 if (sym->st_shndx > SHN_HIRESERVE)
8203 {
8204 /* The gABI doesn't support dynamic symbols in output sections
8205 beyond 64k. */
8206 (*_bfd_error_handler)
8207 (_("%B: Too many sections: %d (>= %d)"),
8208 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8209 bfd_set_error (bfd_error_nonrepresentable_section);
8210 return FALSE;
8211 }
8212 return TRUE;
8213 }
8214
8215 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8216 allowing an unsatisfied unversioned symbol in the DSO to match a
8217 versioned symbol that would normally require an explicit version.
8218 We also handle the case that a DSO references a hidden symbol
8219 which may be satisfied by a versioned symbol in another DSO. */
8220
8221 static bfd_boolean
8222 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8223 const struct elf_backend_data *bed,
8224 struct elf_link_hash_entry *h)
8225 {
8226 bfd *abfd;
8227 struct elf_link_loaded_list *loaded;
8228
8229 if (!is_elf_hash_table (info->hash))
8230 return FALSE;
8231
8232 switch (h->root.type)
8233 {
8234 default:
8235 abfd = NULL;
8236 break;
8237
8238 case bfd_link_hash_undefined:
8239 case bfd_link_hash_undefweak:
8240 abfd = h->root.u.undef.abfd;
8241 if ((abfd->flags & DYNAMIC) == 0
8242 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8243 return FALSE;
8244 break;
8245
8246 case bfd_link_hash_defined:
8247 case bfd_link_hash_defweak:
8248 abfd = h->root.u.def.section->owner;
8249 break;
8250
8251 case bfd_link_hash_common:
8252 abfd = h->root.u.c.p->section->owner;
8253 break;
8254 }
8255 BFD_ASSERT (abfd != NULL);
8256
8257 for (loaded = elf_hash_table (info)->loaded;
8258 loaded != NULL;
8259 loaded = loaded->next)
8260 {
8261 bfd *input;
8262 Elf_Internal_Shdr *hdr;
8263 bfd_size_type symcount;
8264 bfd_size_type extsymcount;
8265 bfd_size_type extsymoff;
8266 Elf_Internal_Shdr *versymhdr;
8267 Elf_Internal_Sym *isym;
8268 Elf_Internal_Sym *isymend;
8269 Elf_Internal_Sym *isymbuf;
8270 Elf_External_Versym *ever;
8271 Elf_External_Versym *extversym;
8272
8273 input = loaded->abfd;
8274
8275 /* We check each DSO for a possible hidden versioned definition. */
8276 if (input == abfd
8277 || (input->flags & DYNAMIC) == 0
8278 || elf_dynversym (input) == 0)
8279 continue;
8280
8281 hdr = &elf_tdata (input)->dynsymtab_hdr;
8282
8283 symcount = hdr->sh_size / bed->s->sizeof_sym;
8284 if (elf_bad_symtab (input))
8285 {
8286 extsymcount = symcount;
8287 extsymoff = 0;
8288 }
8289 else
8290 {
8291 extsymcount = symcount - hdr->sh_info;
8292 extsymoff = hdr->sh_info;
8293 }
8294
8295 if (extsymcount == 0)
8296 continue;
8297
8298 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8299 NULL, NULL, NULL);
8300 if (isymbuf == NULL)
8301 return FALSE;
8302
8303 /* Read in any version definitions. */
8304 versymhdr = &elf_tdata (input)->dynversym_hdr;
8305 extversym = bfd_malloc (versymhdr->sh_size);
8306 if (extversym == NULL)
8307 goto error_ret;
8308
8309 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8310 || (bfd_bread (extversym, versymhdr->sh_size, input)
8311 != versymhdr->sh_size))
8312 {
8313 free (extversym);
8314 error_ret:
8315 free (isymbuf);
8316 return FALSE;
8317 }
8318
8319 ever = extversym + extsymoff;
8320 isymend = isymbuf + extsymcount;
8321 for (isym = isymbuf; isym < isymend; isym++, ever++)
8322 {
8323 const char *name;
8324 Elf_Internal_Versym iver;
8325 unsigned short version_index;
8326
8327 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8328 || isym->st_shndx == SHN_UNDEF)
8329 continue;
8330
8331 name = bfd_elf_string_from_elf_section (input,
8332 hdr->sh_link,
8333 isym->st_name);
8334 if (strcmp (name, h->root.root.string) != 0)
8335 continue;
8336
8337 _bfd_elf_swap_versym_in (input, ever, &iver);
8338
8339 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8340 {
8341 /* If we have a non-hidden versioned sym, then it should
8342 have provided a definition for the undefined sym. */
8343 abort ();
8344 }
8345
8346 version_index = iver.vs_vers & VERSYM_VERSION;
8347 if (version_index == 1 || version_index == 2)
8348 {
8349 /* This is the base or first version. We can use it. */
8350 free (extversym);
8351 free (isymbuf);
8352 return TRUE;
8353 }
8354 }
8355
8356 free (extversym);
8357 free (isymbuf);
8358 }
8359
8360 return FALSE;
8361 }
8362
8363 /* Add an external symbol to the symbol table. This is called from
8364 the hash table traversal routine. When generating a shared object,
8365 we go through the symbol table twice. The first time we output
8366 anything that might have been forced to local scope in a version
8367 script. The second time we output the symbols that are still
8368 global symbols. */
8369
8370 static bfd_boolean
8371 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8372 {
8373 struct elf_outext_info *eoinfo = data;
8374 struct elf_final_link_info *finfo = eoinfo->finfo;
8375 bfd_boolean strip;
8376 Elf_Internal_Sym sym;
8377 asection *input_sec;
8378 const struct elf_backend_data *bed;
8379
8380 if (h->root.type == bfd_link_hash_warning)
8381 {
8382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8383 if (h->root.type == bfd_link_hash_new)
8384 return TRUE;
8385 }
8386
8387 /* Decide whether to output this symbol in this pass. */
8388 if (eoinfo->localsyms)
8389 {
8390 if (!h->forced_local)
8391 return TRUE;
8392 }
8393 else
8394 {
8395 if (h->forced_local)
8396 return TRUE;
8397 }
8398
8399 bed = get_elf_backend_data (finfo->output_bfd);
8400
8401 if (h->root.type == bfd_link_hash_undefined)
8402 {
8403 /* If we have an undefined symbol reference here then it must have
8404 come from a shared library that is being linked in. (Undefined
8405 references in regular files have already been handled). */
8406 bfd_boolean ignore_undef = FALSE;
8407
8408 /* Some symbols may be special in that the fact that they're
8409 undefined can be safely ignored - let backend determine that. */
8410 if (bed->elf_backend_ignore_undef_symbol)
8411 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8412
8413 /* If we are reporting errors for this situation then do so now. */
8414 if (ignore_undef == FALSE
8415 && h->ref_dynamic
8416 && ! h->ref_regular
8417 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8418 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8419 {
8420 if (! (finfo->info->callbacks->undefined_symbol
8421 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8422 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8423 {
8424 eoinfo->failed = TRUE;
8425 return FALSE;
8426 }
8427 }
8428 }
8429
8430 /* We should also warn if a forced local symbol is referenced from
8431 shared libraries. */
8432 if (! finfo->info->relocatable
8433 && (! finfo->info->shared)
8434 && h->forced_local
8435 && h->ref_dynamic
8436 && !h->dynamic_def
8437 && !h->dynamic_weak
8438 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8439 {
8440 (*_bfd_error_handler)
8441 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8442 finfo->output_bfd,
8443 h->root.u.def.section == bfd_abs_section_ptr
8444 ? finfo->output_bfd : h->root.u.def.section->owner,
8445 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8446 ? "internal"
8447 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8448 ? "hidden" : "local",
8449 h->root.root.string);
8450 eoinfo->failed = TRUE;
8451 return FALSE;
8452 }
8453
8454 /* We don't want to output symbols that have never been mentioned by
8455 a regular file, or that we have been told to strip. However, if
8456 h->indx is set to -2, the symbol is used by a reloc and we must
8457 output it. */
8458 if (h->indx == -2)
8459 strip = FALSE;
8460 else if ((h->def_dynamic
8461 || h->ref_dynamic
8462 || h->root.type == bfd_link_hash_new)
8463 && !h->def_regular
8464 && !h->ref_regular)
8465 strip = TRUE;
8466 else if (finfo->info->strip == strip_all)
8467 strip = TRUE;
8468 else if (finfo->info->strip == strip_some
8469 && bfd_hash_lookup (finfo->info->keep_hash,
8470 h->root.root.string, FALSE, FALSE) == NULL)
8471 strip = TRUE;
8472 else if (finfo->info->strip_discarded
8473 && (h->root.type == bfd_link_hash_defined
8474 || h->root.type == bfd_link_hash_defweak)
8475 && elf_discarded_section (h->root.u.def.section))
8476 strip = TRUE;
8477 else
8478 strip = FALSE;
8479
8480 /* If we're stripping it, and it's not a dynamic symbol, there's
8481 nothing else to do unless it is a forced local symbol. */
8482 if (strip
8483 && h->dynindx == -1
8484 && !h->forced_local)
8485 return TRUE;
8486
8487 sym.st_value = 0;
8488 sym.st_size = h->size;
8489 sym.st_other = h->other;
8490 if (h->forced_local)
8491 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8492 else if (h->root.type == bfd_link_hash_undefweak
8493 || h->root.type == bfd_link_hash_defweak)
8494 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8495 else
8496 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8497
8498 switch (h->root.type)
8499 {
8500 default:
8501 case bfd_link_hash_new:
8502 case bfd_link_hash_warning:
8503 abort ();
8504 return FALSE;
8505
8506 case bfd_link_hash_undefined:
8507 case bfd_link_hash_undefweak:
8508 input_sec = bfd_und_section_ptr;
8509 sym.st_shndx = SHN_UNDEF;
8510 break;
8511
8512 case bfd_link_hash_defined:
8513 case bfd_link_hash_defweak:
8514 {
8515 input_sec = h->root.u.def.section;
8516 if (input_sec->output_section != NULL)
8517 {
8518 sym.st_shndx =
8519 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8520 input_sec->output_section);
8521 if (sym.st_shndx == SHN_BAD)
8522 {
8523 (*_bfd_error_handler)
8524 (_("%B: could not find output section %A for input section %A"),
8525 finfo->output_bfd, input_sec->output_section, input_sec);
8526 eoinfo->failed = TRUE;
8527 return FALSE;
8528 }
8529
8530 /* ELF symbols in relocatable files are section relative,
8531 but in nonrelocatable files they are virtual
8532 addresses. */
8533 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8534 if (! finfo->info->relocatable)
8535 {
8536 sym.st_value += input_sec->output_section->vma;
8537 if (h->type == STT_TLS)
8538 {
8539 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8540 if (tls_sec != NULL)
8541 sym.st_value -= tls_sec->vma;
8542 else
8543 {
8544 /* The TLS section may have been garbage collected. */
8545 BFD_ASSERT (finfo->info->gc_sections
8546 && !input_sec->gc_mark);
8547 }
8548 }
8549 }
8550 }
8551 else
8552 {
8553 BFD_ASSERT (input_sec->owner == NULL
8554 || (input_sec->owner->flags & DYNAMIC) != 0);
8555 sym.st_shndx = SHN_UNDEF;
8556 input_sec = bfd_und_section_ptr;
8557 }
8558 }
8559 break;
8560
8561 case bfd_link_hash_common:
8562 input_sec = h->root.u.c.p->section;
8563 sym.st_shndx = bed->common_section_index (input_sec);
8564 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8565 break;
8566
8567 case bfd_link_hash_indirect:
8568 /* These symbols are created by symbol versioning. They point
8569 to the decorated version of the name. For example, if the
8570 symbol foo@@GNU_1.2 is the default, which should be used when
8571 foo is used with no version, then we add an indirect symbol
8572 foo which points to foo@@GNU_1.2. We ignore these symbols,
8573 since the indirected symbol is already in the hash table. */
8574 return TRUE;
8575 }
8576
8577 /* Give the processor backend a chance to tweak the symbol value,
8578 and also to finish up anything that needs to be done for this
8579 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8580 forced local syms when non-shared is due to a historical quirk. */
8581 if ((h->dynindx != -1
8582 || h->forced_local)
8583 && ((finfo->info->shared
8584 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8585 || h->root.type != bfd_link_hash_undefweak))
8586 || !h->forced_local)
8587 && elf_hash_table (finfo->info)->dynamic_sections_created)
8588 {
8589 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8590 (finfo->output_bfd, finfo->info, h, &sym)))
8591 {
8592 eoinfo->failed = TRUE;
8593 return FALSE;
8594 }
8595 }
8596
8597 /* If we are marking the symbol as undefined, and there are no
8598 non-weak references to this symbol from a regular object, then
8599 mark the symbol as weak undefined; if there are non-weak
8600 references, mark the symbol as strong. We can't do this earlier,
8601 because it might not be marked as undefined until the
8602 finish_dynamic_symbol routine gets through with it. */
8603 if (sym.st_shndx == SHN_UNDEF
8604 && h->ref_regular
8605 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8606 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8607 {
8608 int bindtype;
8609
8610 if (h->ref_regular_nonweak)
8611 bindtype = STB_GLOBAL;
8612 else
8613 bindtype = STB_WEAK;
8614 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8615 }
8616
8617 /* If a non-weak symbol with non-default visibility is not defined
8618 locally, it is a fatal error. */
8619 if (! finfo->info->relocatable
8620 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8621 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8622 && h->root.type == bfd_link_hash_undefined
8623 && !h->def_regular)
8624 {
8625 (*_bfd_error_handler)
8626 (_("%B: %s symbol `%s' isn't defined"),
8627 finfo->output_bfd,
8628 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8629 ? "protected"
8630 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8631 ? "internal" : "hidden",
8632 h->root.root.string);
8633 eoinfo->failed = TRUE;
8634 return FALSE;
8635 }
8636
8637 /* If this symbol should be put in the .dynsym section, then put it
8638 there now. We already know the symbol index. We also fill in
8639 the entry in the .hash section. */
8640 if (h->dynindx != -1
8641 && elf_hash_table (finfo->info)->dynamic_sections_created)
8642 {
8643 bfd_byte *esym;
8644
8645 sym.st_name = h->dynstr_index;
8646 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8647 if (! check_dynsym (finfo->output_bfd, &sym))
8648 {
8649 eoinfo->failed = TRUE;
8650 return FALSE;
8651 }
8652 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8653
8654 if (finfo->hash_sec != NULL)
8655 {
8656 size_t hash_entry_size;
8657 bfd_byte *bucketpos;
8658 bfd_vma chain;
8659 size_t bucketcount;
8660 size_t bucket;
8661
8662 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8663 bucket = h->u.elf_hash_value % bucketcount;
8664
8665 hash_entry_size
8666 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8667 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8668 + (bucket + 2) * hash_entry_size);
8669 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8670 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8671 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8672 ((bfd_byte *) finfo->hash_sec->contents
8673 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8674 }
8675
8676 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8677 {
8678 Elf_Internal_Versym iversym;
8679 Elf_External_Versym *eversym;
8680
8681 if (!h->def_regular)
8682 {
8683 if (h->verinfo.verdef == NULL)
8684 iversym.vs_vers = 0;
8685 else
8686 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8687 }
8688 else
8689 {
8690 if (h->verinfo.vertree == NULL)
8691 iversym.vs_vers = 1;
8692 else
8693 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8694 if (finfo->info->create_default_symver)
8695 iversym.vs_vers++;
8696 }
8697
8698 if (h->hidden)
8699 iversym.vs_vers |= VERSYM_HIDDEN;
8700
8701 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8702 eversym += h->dynindx;
8703 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8704 }
8705 }
8706
8707 /* If we're stripping it, then it was just a dynamic symbol, and
8708 there's nothing else to do. */
8709 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8710 return TRUE;
8711
8712 h->indx = bfd_get_symcount (finfo->output_bfd);
8713
8714 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8715 {
8716 eoinfo->failed = TRUE;
8717 return FALSE;
8718 }
8719
8720 return TRUE;
8721 }
8722
8723 /* Return TRUE if special handling is done for relocs in SEC against
8724 symbols defined in discarded sections. */
8725
8726 static bfd_boolean
8727 elf_section_ignore_discarded_relocs (asection *sec)
8728 {
8729 const struct elf_backend_data *bed;
8730
8731 switch (sec->sec_info_type)
8732 {
8733 case ELF_INFO_TYPE_STABS:
8734 case ELF_INFO_TYPE_EH_FRAME:
8735 return TRUE;
8736 default:
8737 break;
8738 }
8739
8740 bed = get_elf_backend_data (sec->owner);
8741 if (bed->elf_backend_ignore_discarded_relocs != NULL
8742 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8743 return TRUE;
8744
8745 return FALSE;
8746 }
8747
8748 /* Return a mask saying how ld should treat relocations in SEC against
8749 symbols defined in discarded sections. If this function returns
8750 COMPLAIN set, ld will issue a warning message. If this function
8751 returns PRETEND set, and the discarded section was link-once and the
8752 same size as the kept link-once section, ld will pretend that the
8753 symbol was actually defined in the kept section. Otherwise ld will
8754 zero the reloc (at least that is the intent, but some cooperation by
8755 the target dependent code is needed, particularly for REL targets). */
8756
8757 unsigned int
8758 _bfd_elf_default_action_discarded (asection *sec)
8759 {
8760 if (sec->flags & SEC_DEBUGGING)
8761 return PRETEND;
8762
8763 if (strcmp (".eh_frame", sec->name) == 0)
8764 return 0;
8765
8766 if (strcmp (".gcc_except_table", sec->name) == 0)
8767 return 0;
8768
8769 return COMPLAIN | PRETEND;
8770 }
8771
8772 /* Find a match between a section and a member of a section group. */
8773
8774 static asection *
8775 match_group_member (asection *sec, asection *group,
8776 struct bfd_link_info *info)
8777 {
8778 asection *first = elf_next_in_group (group);
8779 asection *s = first;
8780
8781 while (s != NULL)
8782 {
8783 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8784 return s;
8785
8786 s = elf_next_in_group (s);
8787 if (s == first)
8788 break;
8789 }
8790
8791 return NULL;
8792 }
8793
8794 /* Check if the kept section of a discarded section SEC can be used
8795 to replace it. Return the replacement if it is OK. Otherwise return
8796 NULL. */
8797
8798 asection *
8799 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8800 {
8801 asection *kept;
8802
8803 kept = sec->kept_section;
8804 if (kept != NULL)
8805 {
8806 if ((kept->flags & SEC_GROUP) != 0)
8807 kept = match_group_member (sec, kept, info);
8808 if (kept != NULL
8809 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8810 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8811 kept = NULL;
8812 sec->kept_section = kept;
8813 }
8814 return kept;
8815 }
8816
8817 /* Link an input file into the linker output file. This function
8818 handles all the sections and relocations of the input file at once.
8819 This is so that we only have to read the local symbols once, and
8820 don't have to keep them in memory. */
8821
8822 static bfd_boolean
8823 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8824 {
8825 int (*relocate_section)
8826 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8827 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8828 bfd *output_bfd;
8829 Elf_Internal_Shdr *symtab_hdr;
8830 size_t locsymcount;
8831 size_t extsymoff;
8832 Elf_Internal_Sym *isymbuf;
8833 Elf_Internal_Sym *isym;
8834 Elf_Internal_Sym *isymend;
8835 long *pindex;
8836 asection **ppsection;
8837 asection *o;
8838 const struct elf_backend_data *bed;
8839 struct elf_link_hash_entry **sym_hashes;
8840
8841 output_bfd = finfo->output_bfd;
8842 bed = get_elf_backend_data (output_bfd);
8843 relocate_section = bed->elf_backend_relocate_section;
8844
8845 /* If this is a dynamic object, we don't want to do anything here:
8846 we don't want the local symbols, and we don't want the section
8847 contents. */
8848 if ((input_bfd->flags & DYNAMIC) != 0)
8849 return TRUE;
8850
8851 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8852 if (elf_bad_symtab (input_bfd))
8853 {
8854 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8855 extsymoff = 0;
8856 }
8857 else
8858 {
8859 locsymcount = symtab_hdr->sh_info;
8860 extsymoff = symtab_hdr->sh_info;
8861 }
8862
8863 /* Read the local symbols. */
8864 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8865 if (isymbuf == NULL && locsymcount != 0)
8866 {
8867 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8868 finfo->internal_syms,
8869 finfo->external_syms,
8870 finfo->locsym_shndx);
8871 if (isymbuf == NULL)
8872 return FALSE;
8873 }
8874
8875 /* Find local symbol sections and adjust values of symbols in
8876 SEC_MERGE sections. Write out those local symbols we know are
8877 going into the output file. */
8878 isymend = isymbuf + locsymcount;
8879 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8880 isym < isymend;
8881 isym++, pindex++, ppsection++)
8882 {
8883 asection *isec;
8884 const char *name;
8885 Elf_Internal_Sym osym;
8886
8887 *pindex = -1;
8888
8889 if (elf_bad_symtab (input_bfd))
8890 {
8891 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8892 {
8893 *ppsection = NULL;
8894 continue;
8895 }
8896 }
8897
8898 if (isym->st_shndx == SHN_UNDEF)
8899 isec = bfd_und_section_ptr;
8900 else if (isym->st_shndx < SHN_LORESERVE
8901 || isym->st_shndx > SHN_HIRESERVE)
8902 {
8903 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8904 if (isec
8905 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8906 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8907 isym->st_value =
8908 _bfd_merged_section_offset (output_bfd, &isec,
8909 elf_section_data (isec)->sec_info,
8910 isym->st_value);
8911 }
8912 else if (isym->st_shndx == SHN_ABS)
8913 isec = bfd_abs_section_ptr;
8914 else if (isym->st_shndx == SHN_COMMON)
8915 isec = bfd_com_section_ptr;
8916 else
8917 {
8918 /* Don't attempt to output symbols with st_shnx in the
8919 reserved range other than SHN_ABS and SHN_COMMON. */
8920 *ppsection = NULL;
8921 continue;
8922 }
8923
8924 *ppsection = isec;
8925
8926 /* Don't output the first, undefined, symbol. */
8927 if (ppsection == finfo->sections)
8928 continue;
8929
8930 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8931 {
8932 /* We never output section symbols. Instead, we use the
8933 section symbol of the corresponding section in the output
8934 file. */
8935 continue;
8936 }
8937
8938 /* If we are stripping all symbols, we don't want to output this
8939 one. */
8940 if (finfo->info->strip == strip_all)
8941 continue;
8942
8943 /* If we are discarding all local symbols, we don't want to
8944 output this one. If we are generating a relocatable output
8945 file, then some of the local symbols may be required by
8946 relocs; we output them below as we discover that they are
8947 needed. */
8948 if (finfo->info->discard == discard_all)
8949 continue;
8950
8951 /* If this symbol is defined in a section which we are
8952 discarding, we don't need to keep it. */
8953 if (isym->st_shndx != SHN_UNDEF
8954 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8955 && (isec == NULL
8956 || bfd_section_removed_from_list (output_bfd,
8957 isec->output_section)))
8958 continue;
8959
8960 /* Get the name of the symbol. */
8961 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8962 isym->st_name);
8963 if (name == NULL)
8964 return FALSE;
8965
8966 /* See if we are discarding symbols with this name. */
8967 if ((finfo->info->strip == strip_some
8968 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8969 == NULL))
8970 || (((finfo->info->discard == discard_sec_merge
8971 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8972 || finfo->info->discard == discard_l)
8973 && bfd_is_local_label_name (input_bfd, name)))
8974 continue;
8975
8976 /* If we get here, we are going to output this symbol. */
8977
8978 osym = *isym;
8979
8980 /* Adjust the section index for the output file. */
8981 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8982 isec->output_section);
8983 if (osym.st_shndx == SHN_BAD)
8984 return FALSE;
8985
8986 *pindex = bfd_get_symcount (output_bfd);
8987
8988 /* ELF symbols in relocatable files are section relative, but
8989 in executable files they are virtual addresses. Note that
8990 this code assumes that all ELF sections have an associated
8991 BFD section with a reasonable value for output_offset; below
8992 we assume that they also have a reasonable value for
8993 output_section. Any special sections must be set up to meet
8994 these requirements. */
8995 osym.st_value += isec->output_offset;
8996 if (! finfo->info->relocatable)
8997 {
8998 osym.st_value += isec->output_section->vma;
8999 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9000 {
9001 /* STT_TLS symbols are relative to PT_TLS segment base. */
9002 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9003 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9004 }
9005 }
9006
9007 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9008 return FALSE;
9009 }
9010
9011 /* Relocate the contents of each section. */
9012 sym_hashes = elf_sym_hashes (input_bfd);
9013 for (o = input_bfd->sections; o != NULL; o = o->next)
9014 {
9015 bfd_byte *contents;
9016
9017 if (! o->linker_mark)
9018 {
9019 /* This section was omitted from the link. */
9020 continue;
9021 }
9022
9023 if ((o->flags & SEC_HAS_CONTENTS) == 0
9024 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9025 continue;
9026
9027 if ((o->flags & SEC_LINKER_CREATED) != 0)
9028 {
9029 /* Section was created by _bfd_elf_link_create_dynamic_sections
9030 or somesuch. */
9031 continue;
9032 }
9033
9034 /* Get the contents of the section. They have been cached by a
9035 relaxation routine. Note that o is a section in an input
9036 file, so the contents field will not have been set by any of
9037 the routines which work on output files. */
9038 if (elf_section_data (o)->this_hdr.contents != NULL)
9039 contents = elf_section_data (o)->this_hdr.contents;
9040 else
9041 {
9042 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9043
9044 contents = finfo->contents;
9045 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9046 return FALSE;
9047 }
9048
9049 if ((o->flags & SEC_RELOC) != 0)
9050 {
9051 Elf_Internal_Rela *internal_relocs;
9052 Elf_Internal_Rela *rel, *relend;
9053 bfd_vma r_type_mask;
9054 int r_sym_shift;
9055 int action_discarded;
9056 int ret;
9057
9058 /* Get the swapped relocs. */
9059 internal_relocs
9060 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9061 finfo->internal_relocs, FALSE);
9062 if (internal_relocs == NULL
9063 && o->reloc_count > 0)
9064 return FALSE;
9065
9066 if (bed->s->arch_size == 32)
9067 {
9068 r_type_mask = 0xff;
9069 r_sym_shift = 8;
9070 }
9071 else
9072 {
9073 r_type_mask = 0xffffffff;
9074 r_sym_shift = 32;
9075 }
9076
9077 action_discarded = -1;
9078 if (!elf_section_ignore_discarded_relocs (o))
9079 action_discarded = (*bed->action_discarded) (o);
9080
9081 /* Run through the relocs evaluating complex reloc symbols and
9082 looking for relocs against symbols from discarded sections
9083 or section symbols from removed link-once sections.
9084 Complain about relocs against discarded sections. Zero
9085 relocs against removed link-once sections. */
9086
9087 rel = internal_relocs;
9088 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9089 for ( ; rel < relend; rel++)
9090 {
9091 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9092 unsigned int s_type;
9093 asection **ps, *sec;
9094 struct elf_link_hash_entry *h = NULL;
9095 const char *sym_name;
9096
9097 if (r_symndx == STN_UNDEF)
9098 continue;
9099
9100 if (r_symndx >= locsymcount
9101 || (elf_bad_symtab (input_bfd)
9102 && finfo->sections[r_symndx] == NULL))
9103 {
9104 h = sym_hashes[r_symndx - extsymoff];
9105
9106 /* Badly formatted input files can contain relocs that
9107 reference non-existant symbols. Check here so that
9108 we do not seg fault. */
9109 if (h == NULL)
9110 {
9111 char buffer [32];
9112
9113 sprintf_vma (buffer, rel->r_info);
9114 (*_bfd_error_handler)
9115 (_("error: %B contains a reloc (0x%s) for section %A "
9116 "that references a non-existent global symbol"),
9117 input_bfd, o, buffer);
9118 bfd_set_error (bfd_error_bad_value);
9119 return FALSE;
9120 }
9121
9122 while (h->root.type == bfd_link_hash_indirect
9123 || h->root.type == bfd_link_hash_warning)
9124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9125
9126 s_type = h->type;
9127
9128 ps = NULL;
9129 if (h->root.type == bfd_link_hash_defined
9130 || h->root.type == bfd_link_hash_defweak)
9131 ps = &h->root.u.def.section;
9132
9133 sym_name = h->root.root.string;
9134 }
9135 else
9136 {
9137 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9138
9139 s_type = ELF_ST_TYPE (sym->st_info);
9140 ps = &finfo->sections[r_symndx];
9141 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9142 sym, *ps);
9143 }
9144
9145 if (s_type == STT_RELC || s_type == STT_SRELC)
9146 {
9147 bfd_vma val;
9148 bfd_vma dot = (rel->r_offset
9149 + o->output_offset + o->output_section->vma);
9150 #ifdef DEBUG
9151 printf ("Encountered a complex symbol!");
9152 printf (" (input_bfd %s, section %s, reloc %ld\n",
9153 input_bfd->filename, o->name, rel - internal_relocs);
9154 printf (" symbol: idx %8.8lx, name %s\n",
9155 r_symndx, sym_name);
9156 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9157 (unsigned long) rel->r_info,
9158 (unsigned long) rel->r_offset);
9159 #endif
9160 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9161 isymbuf, locsymcount, s_type == STT_SRELC))
9162 return FALSE;
9163
9164 /* Symbol evaluated OK. Update to absolute value. */
9165 set_symbol_value (input_bfd, isymbuf, locsymcount,
9166 r_symndx, val);
9167 continue;
9168 }
9169
9170 if (action_discarded != -1 && ps != NULL)
9171 {
9172 /* Complain if the definition comes from a
9173 discarded section. */
9174 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9175 {
9176 BFD_ASSERT (r_symndx != 0);
9177 if (action_discarded & COMPLAIN)
9178 (*finfo->info->callbacks->einfo)
9179 (_("%X`%s' referenced in section `%A' of %B: "
9180 "defined in discarded section `%A' of %B\n"),
9181 sym_name, o, input_bfd, sec, sec->owner);
9182
9183 /* Try to do the best we can to support buggy old
9184 versions of gcc. Pretend that the symbol is
9185 really defined in the kept linkonce section.
9186 FIXME: This is quite broken. Modifying the
9187 symbol here means we will be changing all later
9188 uses of the symbol, not just in this section. */
9189 if (action_discarded & PRETEND)
9190 {
9191 asection *kept;
9192
9193 kept = _bfd_elf_check_kept_section (sec,
9194 finfo->info);
9195 if (kept != NULL)
9196 {
9197 *ps = kept;
9198 continue;
9199 }
9200 }
9201 }
9202 }
9203 }
9204
9205 /* Relocate the section by invoking a back end routine.
9206
9207 The back end routine is responsible for adjusting the
9208 section contents as necessary, and (if using Rela relocs
9209 and generating a relocatable output file) adjusting the
9210 reloc addend as necessary.
9211
9212 The back end routine does not have to worry about setting
9213 the reloc address or the reloc symbol index.
9214
9215 The back end routine is given a pointer to the swapped in
9216 internal symbols, and can access the hash table entries
9217 for the external symbols via elf_sym_hashes (input_bfd).
9218
9219 When generating relocatable output, the back end routine
9220 must handle STB_LOCAL/STT_SECTION symbols specially. The
9221 output symbol is going to be a section symbol
9222 corresponding to the output section, which will require
9223 the addend to be adjusted. */
9224
9225 ret = (*relocate_section) (output_bfd, finfo->info,
9226 input_bfd, o, contents,
9227 internal_relocs,
9228 isymbuf,
9229 finfo->sections);
9230 if (!ret)
9231 return FALSE;
9232
9233 if (ret == 2
9234 || finfo->info->relocatable
9235 || finfo->info->emitrelocations)
9236 {
9237 Elf_Internal_Rela *irela;
9238 Elf_Internal_Rela *irelaend;
9239 bfd_vma last_offset;
9240 struct elf_link_hash_entry **rel_hash;
9241 struct elf_link_hash_entry **rel_hash_list;
9242 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9243 unsigned int next_erel;
9244 bfd_boolean rela_normal;
9245
9246 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9247 rela_normal = (bed->rela_normal
9248 && (input_rel_hdr->sh_entsize
9249 == bed->s->sizeof_rela));
9250
9251 /* Adjust the reloc addresses and symbol indices. */
9252
9253 irela = internal_relocs;
9254 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9255 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9256 + elf_section_data (o->output_section)->rel_count
9257 + elf_section_data (o->output_section)->rel_count2);
9258 rel_hash_list = rel_hash;
9259 last_offset = o->output_offset;
9260 if (!finfo->info->relocatable)
9261 last_offset += o->output_section->vma;
9262 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9263 {
9264 unsigned long r_symndx;
9265 asection *sec;
9266 Elf_Internal_Sym sym;
9267
9268 if (next_erel == bed->s->int_rels_per_ext_rel)
9269 {
9270 rel_hash++;
9271 next_erel = 0;
9272 }
9273
9274 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9275 finfo->info, o,
9276 irela->r_offset);
9277 if (irela->r_offset >= (bfd_vma) -2)
9278 {
9279 /* This is a reloc for a deleted entry or somesuch.
9280 Turn it into an R_*_NONE reloc, at the same
9281 offset as the last reloc. elf_eh_frame.c and
9282 bfd_elf_discard_info rely on reloc offsets
9283 being ordered. */
9284 irela->r_offset = last_offset;
9285 irela->r_info = 0;
9286 irela->r_addend = 0;
9287 continue;
9288 }
9289
9290 irela->r_offset += o->output_offset;
9291
9292 /* Relocs in an executable have to be virtual addresses. */
9293 if (!finfo->info->relocatable)
9294 irela->r_offset += o->output_section->vma;
9295
9296 last_offset = irela->r_offset;
9297
9298 r_symndx = irela->r_info >> r_sym_shift;
9299 if (r_symndx == STN_UNDEF)
9300 continue;
9301
9302 if (r_symndx >= locsymcount
9303 || (elf_bad_symtab (input_bfd)
9304 && finfo->sections[r_symndx] == NULL))
9305 {
9306 struct elf_link_hash_entry *rh;
9307 unsigned long indx;
9308
9309 /* This is a reloc against a global symbol. We
9310 have not yet output all the local symbols, so
9311 we do not know the symbol index of any global
9312 symbol. We set the rel_hash entry for this
9313 reloc to point to the global hash table entry
9314 for this symbol. The symbol index is then
9315 set at the end of bfd_elf_final_link. */
9316 indx = r_symndx - extsymoff;
9317 rh = elf_sym_hashes (input_bfd)[indx];
9318 while (rh->root.type == bfd_link_hash_indirect
9319 || rh->root.type == bfd_link_hash_warning)
9320 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9321
9322 /* Setting the index to -2 tells
9323 elf_link_output_extsym that this symbol is
9324 used by a reloc. */
9325 BFD_ASSERT (rh->indx < 0);
9326 rh->indx = -2;
9327
9328 *rel_hash = rh;
9329
9330 continue;
9331 }
9332
9333 /* This is a reloc against a local symbol. */
9334
9335 *rel_hash = NULL;
9336 sym = isymbuf[r_symndx];
9337 sec = finfo->sections[r_symndx];
9338 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9339 {
9340 /* I suppose the backend ought to fill in the
9341 section of any STT_SECTION symbol against a
9342 processor specific section. */
9343 r_symndx = 0;
9344 if (bfd_is_abs_section (sec))
9345 ;
9346 else if (sec == NULL || sec->owner == NULL)
9347 {
9348 bfd_set_error (bfd_error_bad_value);
9349 return FALSE;
9350 }
9351 else
9352 {
9353 asection *osec = sec->output_section;
9354
9355 /* If we have discarded a section, the output
9356 section will be the absolute section. In
9357 case of discarded SEC_MERGE sections, use
9358 the kept section. relocate_section should
9359 have already handled discarded linkonce
9360 sections. */
9361 if (bfd_is_abs_section (osec)
9362 && sec->kept_section != NULL
9363 && sec->kept_section->output_section != NULL)
9364 {
9365 osec = sec->kept_section->output_section;
9366 irela->r_addend -= osec->vma;
9367 }
9368
9369 if (!bfd_is_abs_section (osec))
9370 {
9371 r_symndx = osec->target_index;
9372 if (r_symndx == 0)
9373 {
9374 struct elf_link_hash_table *htab;
9375 asection *oi;
9376
9377 htab = elf_hash_table (finfo->info);
9378 oi = htab->text_index_section;
9379 if ((osec->flags & SEC_READONLY) == 0
9380 && htab->data_index_section != NULL)
9381 oi = htab->data_index_section;
9382
9383 if (oi != NULL)
9384 {
9385 irela->r_addend += osec->vma - oi->vma;
9386 r_symndx = oi->target_index;
9387 }
9388 }
9389
9390 BFD_ASSERT (r_symndx != 0);
9391 }
9392 }
9393
9394 /* Adjust the addend according to where the
9395 section winds up in the output section. */
9396 if (rela_normal)
9397 irela->r_addend += sec->output_offset;
9398 }
9399 else
9400 {
9401 if (finfo->indices[r_symndx] == -1)
9402 {
9403 unsigned long shlink;
9404 const char *name;
9405 asection *osec;
9406
9407 if (finfo->info->strip == strip_all)
9408 {
9409 /* You can't do ld -r -s. */
9410 bfd_set_error (bfd_error_invalid_operation);
9411 return FALSE;
9412 }
9413
9414 /* This symbol was skipped earlier, but
9415 since it is needed by a reloc, we
9416 must output it now. */
9417 shlink = symtab_hdr->sh_link;
9418 name = (bfd_elf_string_from_elf_section
9419 (input_bfd, shlink, sym.st_name));
9420 if (name == NULL)
9421 return FALSE;
9422
9423 osec = sec->output_section;
9424 sym.st_shndx =
9425 _bfd_elf_section_from_bfd_section (output_bfd,
9426 osec);
9427 if (sym.st_shndx == SHN_BAD)
9428 return FALSE;
9429
9430 sym.st_value += sec->output_offset;
9431 if (! finfo->info->relocatable)
9432 {
9433 sym.st_value += osec->vma;
9434 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9435 {
9436 /* STT_TLS symbols are relative to PT_TLS
9437 segment base. */
9438 BFD_ASSERT (elf_hash_table (finfo->info)
9439 ->tls_sec != NULL);
9440 sym.st_value -= (elf_hash_table (finfo->info)
9441 ->tls_sec->vma);
9442 }
9443 }
9444
9445 finfo->indices[r_symndx]
9446 = bfd_get_symcount (output_bfd);
9447
9448 if (! elf_link_output_sym (finfo, name, &sym, sec,
9449 NULL))
9450 return FALSE;
9451 }
9452
9453 r_symndx = finfo->indices[r_symndx];
9454 }
9455
9456 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9457 | (irela->r_info & r_type_mask));
9458 }
9459
9460 /* Swap out the relocs. */
9461 if (input_rel_hdr->sh_size != 0
9462 && !bed->elf_backend_emit_relocs (output_bfd, o,
9463 input_rel_hdr,
9464 internal_relocs,
9465 rel_hash_list))
9466 return FALSE;
9467
9468 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9469 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9470 {
9471 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9472 * bed->s->int_rels_per_ext_rel);
9473 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9474 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9475 input_rel_hdr2,
9476 internal_relocs,
9477 rel_hash_list))
9478 return FALSE;
9479 }
9480 }
9481 }
9482
9483 /* Write out the modified section contents. */
9484 if (bed->elf_backend_write_section
9485 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9486 contents))
9487 {
9488 /* Section written out. */
9489 }
9490 else switch (o->sec_info_type)
9491 {
9492 case ELF_INFO_TYPE_STABS:
9493 if (! (_bfd_write_section_stabs
9494 (output_bfd,
9495 &elf_hash_table (finfo->info)->stab_info,
9496 o, &elf_section_data (o)->sec_info, contents)))
9497 return FALSE;
9498 break;
9499 case ELF_INFO_TYPE_MERGE:
9500 if (! _bfd_write_merged_section (output_bfd, o,
9501 elf_section_data (o)->sec_info))
9502 return FALSE;
9503 break;
9504 case ELF_INFO_TYPE_EH_FRAME:
9505 {
9506 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9507 o, contents))
9508 return FALSE;
9509 }
9510 break;
9511 default:
9512 {
9513 if (! (o->flags & SEC_EXCLUDE)
9514 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9515 && ! bfd_set_section_contents (output_bfd, o->output_section,
9516 contents,
9517 (file_ptr) o->output_offset,
9518 o->size))
9519 return FALSE;
9520 }
9521 break;
9522 }
9523 }
9524
9525 return TRUE;
9526 }
9527
9528 /* Generate a reloc when linking an ELF file. This is a reloc
9529 requested by the linker, and does not come from any input file. This
9530 is used to build constructor and destructor tables when linking
9531 with -Ur. */
9532
9533 static bfd_boolean
9534 elf_reloc_link_order (bfd *output_bfd,
9535 struct bfd_link_info *info,
9536 asection *output_section,
9537 struct bfd_link_order *link_order)
9538 {
9539 reloc_howto_type *howto;
9540 long indx;
9541 bfd_vma offset;
9542 bfd_vma addend;
9543 struct elf_link_hash_entry **rel_hash_ptr;
9544 Elf_Internal_Shdr *rel_hdr;
9545 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9546 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9547 bfd_byte *erel;
9548 unsigned int i;
9549
9550 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9551 if (howto == NULL)
9552 {
9553 bfd_set_error (bfd_error_bad_value);
9554 return FALSE;
9555 }
9556
9557 addend = link_order->u.reloc.p->addend;
9558
9559 /* Figure out the symbol index. */
9560 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9561 + elf_section_data (output_section)->rel_count
9562 + elf_section_data (output_section)->rel_count2);
9563 if (link_order->type == bfd_section_reloc_link_order)
9564 {
9565 indx = link_order->u.reloc.p->u.section->target_index;
9566 BFD_ASSERT (indx != 0);
9567 *rel_hash_ptr = NULL;
9568 }
9569 else
9570 {
9571 struct elf_link_hash_entry *h;
9572
9573 /* Treat a reloc against a defined symbol as though it were
9574 actually against the section. */
9575 h = ((struct elf_link_hash_entry *)
9576 bfd_wrapped_link_hash_lookup (output_bfd, info,
9577 link_order->u.reloc.p->u.name,
9578 FALSE, FALSE, TRUE));
9579 if (h != NULL
9580 && (h->root.type == bfd_link_hash_defined
9581 || h->root.type == bfd_link_hash_defweak))
9582 {
9583 asection *section;
9584
9585 section = h->root.u.def.section;
9586 indx = section->output_section->target_index;
9587 *rel_hash_ptr = NULL;
9588 /* It seems that we ought to add the symbol value to the
9589 addend here, but in practice it has already been added
9590 because it was passed to constructor_callback. */
9591 addend += section->output_section->vma + section->output_offset;
9592 }
9593 else if (h != NULL)
9594 {
9595 /* Setting the index to -2 tells elf_link_output_extsym that
9596 this symbol is used by a reloc. */
9597 h->indx = -2;
9598 *rel_hash_ptr = h;
9599 indx = 0;
9600 }
9601 else
9602 {
9603 if (! ((*info->callbacks->unattached_reloc)
9604 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9605 return FALSE;
9606 indx = 0;
9607 }
9608 }
9609
9610 /* If this is an inplace reloc, we must write the addend into the
9611 object file. */
9612 if (howto->partial_inplace && addend != 0)
9613 {
9614 bfd_size_type size;
9615 bfd_reloc_status_type rstat;
9616 bfd_byte *buf;
9617 bfd_boolean ok;
9618 const char *sym_name;
9619
9620 size = bfd_get_reloc_size (howto);
9621 buf = bfd_zmalloc (size);
9622 if (buf == NULL)
9623 return FALSE;
9624 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9625 switch (rstat)
9626 {
9627 case bfd_reloc_ok:
9628 break;
9629
9630 default:
9631 case bfd_reloc_outofrange:
9632 abort ();
9633
9634 case bfd_reloc_overflow:
9635 if (link_order->type == bfd_section_reloc_link_order)
9636 sym_name = bfd_section_name (output_bfd,
9637 link_order->u.reloc.p->u.section);
9638 else
9639 sym_name = link_order->u.reloc.p->u.name;
9640 if (! ((*info->callbacks->reloc_overflow)
9641 (info, NULL, sym_name, howto->name, addend, NULL,
9642 NULL, (bfd_vma) 0)))
9643 {
9644 free (buf);
9645 return FALSE;
9646 }
9647 break;
9648 }
9649 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9650 link_order->offset, size);
9651 free (buf);
9652 if (! ok)
9653 return FALSE;
9654 }
9655
9656 /* The address of a reloc is relative to the section in a
9657 relocatable file, and is a virtual address in an executable
9658 file. */
9659 offset = link_order->offset;
9660 if (! info->relocatable)
9661 offset += output_section->vma;
9662
9663 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9664 {
9665 irel[i].r_offset = offset;
9666 irel[i].r_info = 0;
9667 irel[i].r_addend = 0;
9668 }
9669 if (bed->s->arch_size == 32)
9670 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9671 else
9672 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9673
9674 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9675 erel = rel_hdr->contents;
9676 if (rel_hdr->sh_type == SHT_REL)
9677 {
9678 erel += (elf_section_data (output_section)->rel_count
9679 * bed->s->sizeof_rel);
9680 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9681 }
9682 else
9683 {
9684 irel[0].r_addend = addend;
9685 erel += (elf_section_data (output_section)->rel_count
9686 * bed->s->sizeof_rela);
9687 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9688 }
9689
9690 ++elf_section_data (output_section)->rel_count;
9691
9692 return TRUE;
9693 }
9694
9695
9696 /* Get the output vma of the section pointed to by the sh_link field. */
9697
9698 static bfd_vma
9699 elf_get_linked_section_vma (struct bfd_link_order *p)
9700 {
9701 Elf_Internal_Shdr **elf_shdrp;
9702 asection *s;
9703 int elfsec;
9704
9705 s = p->u.indirect.section;
9706 elf_shdrp = elf_elfsections (s->owner);
9707 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9708 elfsec = elf_shdrp[elfsec]->sh_link;
9709 /* PR 290:
9710 The Intel C compiler generates SHT_IA_64_UNWIND with
9711 SHF_LINK_ORDER. But it doesn't set the sh_link or
9712 sh_info fields. Hence we could get the situation
9713 where elfsec is 0. */
9714 if (elfsec == 0)
9715 {
9716 const struct elf_backend_data *bed
9717 = get_elf_backend_data (s->owner);
9718 if (bed->link_order_error_handler)
9719 bed->link_order_error_handler
9720 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9721 return 0;
9722 }
9723 else
9724 {
9725 s = elf_shdrp[elfsec]->bfd_section;
9726 return s->output_section->vma + s->output_offset;
9727 }
9728 }
9729
9730
9731 /* Compare two sections based on the locations of the sections they are
9732 linked to. Used by elf_fixup_link_order. */
9733
9734 static int
9735 compare_link_order (const void * a, const void * b)
9736 {
9737 bfd_vma apos;
9738 bfd_vma bpos;
9739
9740 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9741 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9742 if (apos < bpos)
9743 return -1;
9744 return apos > bpos;
9745 }
9746
9747
9748 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9749 order as their linked sections. Returns false if this could not be done
9750 because an output section includes both ordered and unordered
9751 sections. Ideally we'd do this in the linker proper. */
9752
9753 static bfd_boolean
9754 elf_fixup_link_order (bfd *abfd, asection *o)
9755 {
9756 int seen_linkorder;
9757 int seen_other;
9758 int n;
9759 struct bfd_link_order *p;
9760 bfd *sub;
9761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9762 unsigned elfsec;
9763 struct bfd_link_order **sections;
9764 asection *s, *other_sec, *linkorder_sec;
9765 bfd_vma offset;
9766
9767 other_sec = NULL;
9768 linkorder_sec = NULL;
9769 seen_other = 0;
9770 seen_linkorder = 0;
9771 for (p = o->map_head.link_order; p != NULL; p = p->next)
9772 {
9773 if (p->type == bfd_indirect_link_order)
9774 {
9775 s = p->u.indirect.section;
9776 sub = s->owner;
9777 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9778 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9779 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9780 && elfsec < elf_numsections (sub)
9781 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9782 {
9783 seen_linkorder++;
9784 linkorder_sec = s;
9785 }
9786 else
9787 {
9788 seen_other++;
9789 other_sec = s;
9790 }
9791 }
9792 else
9793 seen_other++;
9794
9795 if (seen_other && seen_linkorder)
9796 {
9797 if (other_sec && linkorder_sec)
9798 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9799 o, linkorder_sec,
9800 linkorder_sec->owner, other_sec,
9801 other_sec->owner);
9802 else
9803 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9804 o);
9805 bfd_set_error (bfd_error_bad_value);
9806 return FALSE;
9807 }
9808 }
9809
9810 if (!seen_linkorder)
9811 return TRUE;
9812
9813 sections = (struct bfd_link_order **)
9814 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9815 if (sections == NULL)
9816 return FALSE;
9817 seen_linkorder = 0;
9818
9819 for (p = o->map_head.link_order; p != NULL; p = p->next)
9820 {
9821 sections[seen_linkorder++] = p;
9822 }
9823 /* Sort the input sections in the order of their linked section. */
9824 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9825 compare_link_order);
9826
9827 /* Change the offsets of the sections. */
9828 offset = 0;
9829 for (n = 0; n < seen_linkorder; n++)
9830 {
9831 s = sections[n]->u.indirect.section;
9832 offset &= ~(bfd_vma) 0 << s->alignment_power;
9833 s->output_offset = offset;
9834 sections[n]->offset = offset;
9835 offset += sections[n]->size;
9836 }
9837
9838 return TRUE;
9839 }
9840
9841
9842 /* Do the final step of an ELF link. */
9843
9844 bfd_boolean
9845 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9846 {
9847 bfd_boolean dynamic;
9848 bfd_boolean emit_relocs;
9849 bfd *dynobj;
9850 struct elf_final_link_info finfo;
9851 register asection *o;
9852 register struct bfd_link_order *p;
9853 register bfd *sub;
9854 bfd_size_type max_contents_size;
9855 bfd_size_type max_external_reloc_size;
9856 bfd_size_type max_internal_reloc_count;
9857 bfd_size_type max_sym_count;
9858 bfd_size_type max_sym_shndx_count;
9859 file_ptr off;
9860 Elf_Internal_Sym elfsym;
9861 unsigned int i;
9862 Elf_Internal_Shdr *symtab_hdr;
9863 Elf_Internal_Shdr *symtab_shndx_hdr;
9864 Elf_Internal_Shdr *symstrtab_hdr;
9865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9866 struct elf_outext_info eoinfo;
9867 bfd_boolean merged;
9868 size_t relativecount = 0;
9869 asection *reldyn = 0;
9870 bfd_size_type amt;
9871 asection *attr_section = NULL;
9872 bfd_vma attr_size = 0;
9873 const char *std_attrs_section;
9874
9875 if (! is_elf_hash_table (info->hash))
9876 return FALSE;
9877
9878 if (info->shared)
9879 abfd->flags |= DYNAMIC;
9880
9881 dynamic = elf_hash_table (info)->dynamic_sections_created;
9882 dynobj = elf_hash_table (info)->dynobj;
9883
9884 emit_relocs = (info->relocatable
9885 || info->emitrelocations);
9886
9887 finfo.info = info;
9888 finfo.output_bfd = abfd;
9889 finfo.symstrtab = _bfd_elf_stringtab_init ();
9890 if (finfo.symstrtab == NULL)
9891 return FALSE;
9892
9893 if (! dynamic)
9894 {
9895 finfo.dynsym_sec = NULL;
9896 finfo.hash_sec = NULL;
9897 finfo.symver_sec = NULL;
9898 }
9899 else
9900 {
9901 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9902 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9903 BFD_ASSERT (finfo.dynsym_sec != NULL);
9904 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9905 /* Note that it is OK if symver_sec is NULL. */
9906 }
9907
9908 finfo.contents = NULL;
9909 finfo.external_relocs = NULL;
9910 finfo.internal_relocs = NULL;
9911 finfo.external_syms = NULL;
9912 finfo.locsym_shndx = NULL;
9913 finfo.internal_syms = NULL;
9914 finfo.indices = NULL;
9915 finfo.sections = NULL;
9916 finfo.symbuf = NULL;
9917 finfo.symshndxbuf = NULL;
9918 finfo.symbuf_count = 0;
9919 finfo.shndxbuf_size = 0;
9920
9921 /* The object attributes have been merged. Remove the input
9922 sections from the link, and set the contents of the output
9923 secton. */
9924 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9925 for (o = abfd->sections; o != NULL; o = o->next)
9926 {
9927 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9928 || strcmp (o->name, ".gnu.attributes") == 0)
9929 {
9930 for (p = o->map_head.link_order; p != NULL; p = p->next)
9931 {
9932 asection *input_section;
9933
9934 if (p->type != bfd_indirect_link_order)
9935 continue;
9936 input_section = p->u.indirect.section;
9937 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9938 elf_link_input_bfd ignores this section. */
9939 input_section->flags &= ~SEC_HAS_CONTENTS;
9940 }
9941
9942 attr_size = bfd_elf_obj_attr_size (abfd);
9943 if (attr_size)
9944 {
9945 bfd_set_section_size (abfd, o, attr_size);
9946 attr_section = o;
9947 /* Skip this section later on. */
9948 o->map_head.link_order = NULL;
9949 }
9950 else
9951 o->flags |= SEC_EXCLUDE;
9952 }
9953 }
9954
9955 /* Count up the number of relocations we will output for each output
9956 section, so that we know the sizes of the reloc sections. We
9957 also figure out some maximum sizes. */
9958 max_contents_size = 0;
9959 max_external_reloc_size = 0;
9960 max_internal_reloc_count = 0;
9961 max_sym_count = 0;
9962 max_sym_shndx_count = 0;
9963 merged = FALSE;
9964 for (o = abfd->sections; o != NULL; o = o->next)
9965 {
9966 struct bfd_elf_section_data *esdo = elf_section_data (o);
9967 o->reloc_count = 0;
9968
9969 for (p = o->map_head.link_order; p != NULL; p = p->next)
9970 {
9971 unsigned int reloc_count = 0;
9972 struct bfd_elf_section_data *esdi = NULL;
9973 unsigned int *rel_count1;
9974
9975 if (p->type == bfd_section_reloc_link_order
9976 || p->type == bfd_symbol_reloc_link_order)
9977 reloc_count = 1;
9978 else if (p->type == bfd_indirect_link_order)
9979 {
9980 asection *sec;
9981
9982 sec = p->u.indirect.section;
9983 esdi = elf_section_data (sec);
9984
9985 /* Mark all sections which are to be included in the
9986 link. This will normally be every section. We need
9987 to do this so that we can identify any sections which
9988 the linker has decided to not include. */
9989 sec->linker_mark = TRUE;
9990
9991 if (sec->flags & SEC_MERGE)
9992 merged = TRUE;
9993
9994 if (info->relocatable || info->emitrelocations)
9995 reloc_count = sec->reloc_count;
9996 else if (bed->elf_backend_count_relocs)
9997 {
9998 Elf_Internal_Rela * relocs;
9999
10000 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10001 NULL, NULL,
10002 info->keep_memory);
10003
10004 if (relocs != NULL)
10005 {
10006 reloc_count
10007 = (*bed->elf_backend_count_relocs) (sec, relocs);
10008
10009 if (elf_section_data (sec)->relocs != relocs)
10010 free (relocs);
10011 }
10012 }
10013
10014 if (sec->rawsize > max_contents_size)
10015 max_contents_size = sec->rawsize;
10016 if (sec->size > max_contents_size)
10017 max_contents_size = sec->size;
10018
10019 /* We are interested in just local symbols, not all
10020 symbols. */
10021 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10022 && (sec->owner->flags & DYNAMIC) == 0)
10023 {
10024 size_t sym_count;
10025
10026 if (elf_bad_symtab (sec->owner))
10027 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10028 / bed->s->sizeof_sym);
10029 else
10030 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10031
10032 if (sym_count > max_sym_count)
10033 max_sym_count = sym_count;
10034
10035 if (sym_count > max_sym_shndx_count
10036 && elf_symtab_shndx (sec->owner) != 0)
10037 max_sym_shndx_count = sym_count;
10038
10039 if ((sec->flags & SEC_RELOC) != 0)
10040 {
10041 size_t ext_size;
10042
10043 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10044 if (ext_size > max_external_reloc_size)
10045 max_external_reloc_size = ext_size;
10046 if (sec->reloc_count > max_internal_reloc_count)
10047 max_internal_reloc_count = sec->reloc_count;
10048 }
10049 }
10050 }
10051
10052 if (reloc_count == 0)
10053 continue;
10054
10055 o->reloc_count += reloc_count;
10056
10057 /* MIPS may have a mix of REL and RELA relocs on sections.
10058 To support this curious ABI we keep reloc counts in
10059 elf_section_data too. We must be careful to add the
10060 relocations from the input section to the right output
10061 count. FIXME: Get rid of one count. We have
10062 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10063 rel_count1 = &esdo->rel_count;
10064 if (esdi != NULL)
10065 {
10066 bfd_boolean same_size;
10067 bfd_size_type entsize1;
10068
10069 entsize1 = esdi->rel_hdr.sh_entsize;
10070 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10071 || entsize1 == bed->s->sizeof_rela);
10072 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10073
10074 if (!same_size)
10075 rel_count1 = &esdo->rel_count2;
10076
10077 if (esdi->rel_hdr2 != NULL)
10078 {
10079 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10080 unsigned int alt_count;
10081 unsigned int *rel_count2;
10082
10083 BFD_ASSERT (entsize2 != entsize1
10084 && (entsize2 == bed->s->sizeof_rel
10085 || entsize2 == bed->s->sizeof_rela));
10086
10087 rel_count2 = &esdo->rel_count2;
10088 if (!same_size)
10089 rel_count2 = &esdo->rel_count;
10090
10091 /* The following is probably too simplistic if the
10092 backend counts output relocs unusually. */
10093 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10094 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10095 *rel_count2 += alt_count;
10096 reloc_count -= alt_count;
10097 }
10098 }
10099 *rel_count1 += reloc_count;
10100 }
10101
10102 if (o->reloc_count > 0)
10103 o->flags |= SEC_RELOC;
10104 else
10105 {
10106 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10107 set it (this is probably a bug) and if it is set
10108 assign_section_numbers will create a reloc section. */
10109 o->flags &=~ SEC_RELOC;
10110 }
10111
10112 /* If the SEC_ALLOC flag is not set, force the section VMA to
10113 zero. This is done in elf_fake_sections as well, but forcing
10114 the VMA to 0 here will ensure that relocs against these
10115 sections are handled correctly. */
10116 if ((o->flags & SEC_ALLOC) == 0
10117 && ! o->user_set_vma)
10118 o->vma = 0;
10119 }
10120
10121 if (! info->relocatable && merged)
10122 elf_link_hash_traverse (elf_hash_table (info),
10123 _bfd_elf_link_sec_merge_syms, abfd);
10124
10125 /* Figure out the file positions for everything but the symbol table
10126 and the relocs. We set symcount to force assign_section_numbers
10127 to create a symbol table. */
10128 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10129 BFD_ASSERT (! abfd->output_has_begun);
10130 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10131 goto error_return;
10132
10133 /* Set sizes, and assign file positions for reloc sections. */
10134 for (o = abfd->sections; o != NULL; o = o->next)
10135 {
10136 if ((o->flags & SEC_RELOC) != 0)
10137 {
10138 if (!(_bfd_elf_link_size_reloc_section
10139 (abfd, &elf_section_data (o)->rel_hdr, o)))
10140 goto error_return;
10141
10142 if (elf_section_data (o)->rel_hdr2
10143 && !(_bfd_elf_link_size_reloc_section
10144 (abfd, elf_section_data (o)->rel_hdr2, o)))
10145 goto error_return;
10146 }
10147
10148 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10149 to count upwards while actually outputting the relocations. */
10150 elf_section_data (o)->rel_count = 0;
10151 elf_section_data (o)->rel_count2 = 0;
10152 }
10153
10154 _bfd_elf_assign_file_positions_for_relocs (abfd);
10155
10156 /* We have now assigned file positions for all the sections except
10157 .symtab and .strtab. We start the .symtab section at the current
10158 file position, and write directly to it. We build the .strtab
10159 section in memory. */
10160 bfd_get_symcount (abfd) = 0;
10161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10162 /* sh_name is set in prep_headers. */
10163 symtab_hdr->sh_type = SHT_SYMTAB;
10164 /* sh_flags, sh_addr and sh_size all start off zero. */
10165 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10166 /* sh_link is set in assign_section_numbers. */
10167 /* sh_info is set below. */
10168 /* sh_offset is set just below. */
10169 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10170
10171 off = elf_tdata (abfd)->next_file_pos;
10172 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10173
10174 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10175 incorrect. We do not yet know the size of the .symtab section.
10176 We correct next_file_pos below, after we do know the size. */
10177
10178 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10179 continuously seeking to the right position in the file. */
10180 if (! info->keep_memory || max_sym_count < 20)
10181 finfo.symbuf_size = 20;
10182 else
10183 finfo.symbuf_size = max_sym_count;
10184 amt = finfo.symbuf_size;
10185 amt *= bed->s->sizeof_sym;
10186 finfo.symbuf = bfd_malloc (amt);
10187 if (finfo.symbuf == NULL)
10188 goto error_return;
10189 if (elf_numsections (abfd) > SHN_LORESERVE)
10190 {
10191 /* Wild guess at number of output symbols. realloc'd as needed. */
10192 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10193 finfo.shndxbuf_size = amt;
10194 amt *= sizeof (Elf_External_Sym_Shndx);
10195 finfo.symshndxbuf = bfd_zmalloc (amt);
10196 if (finfo.symshndxbuf == NULL)
10197 goto error_return;
10198 }
10199
10200 /* Start writing out the symbol table. The first symbol is always a
10201 dummy symbol. */
10202 if (info->strip != strip_all
10203 || emit_relocs)
10204 {
10205 elfsym.st_value = 0;
10206 elfsym.st_size = 0;
10207 elfsym.st_info = 0;
10208 elfsym.st_other = 0;
10209 elfsym.st_shndx = SHN_UNDEF;
10210 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10211 NULL))
10212 goto error_return;
10213 }
10214
10215 /* Output a symbol for each section. We output these even if we are
10216 discarding local symbols, since they are used for relocs. These
10217 symbols have no names. We store the index of each one in the
10218 index field of the section, so that we can find it again when
10219 outputting relocs. */
10220 if (info->strip != strip_all
10221 || emit_relocs)
10222 {
10223 elfsym.st_size = 0;
10224 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10225 elfsym.st_other = 0;
10226 elfsym.st_value = 0;
10227 for (i = 1; i < elf_numsections (abfd); i++)
10228 {
10229 o = bfd_section_from_elf_index (abfd, i);
10230 if (o != NULL)
10231 {
10232 o->target_index = bfd_get_symcount (abfd);
10233 elfsym.st_shndx = i;
10234 if (!info->relocatable)
10235 elfsym.st_value = o->vma;
10236 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10237 goto error_return;
10238 }
10239 if (i == SHN_LORESERVE - 1)
10240 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10241 }
10242 }
10243
10244 /* Allocate some memory to hold information read in from the input
10245 files. */
10246 if (max_contents_size != 0)
10247 {
10248 finfo.contents = bfd_malloc (max_contents_size);
10249 if (finfo.contents == NULL)
10250 goto error_return;
10251 }
10252
10253 if (max_external_reloc_size != 0)
10254 {
10255 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10256 if (finfo.external_relocs == NULL)
10257 goto error_return;
10258 }
10259
10260 if (max_internal_reloc_count != 0)
10261 {
10262 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10263 amt *= sizeof (Elf_Internal_Rela);
10264 finfo.internal_relocs = bfd_malloc (amt);
10265 if (finfo.internal_relocs == NULL)
10266 goto error_return;
10267 }
10268
10269 if (max_sym_count != 0)
10270 {
10271 amt = max_sym_count * bed->s->sizeof_sym;
10272 finfo.external_syms = bfd_malloc (amt);
10273 if (finfo.external_syms == NULL)
10274 goto error_return;
10275
10276 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10277 finfo.internal_syms = bfd_malloc (amt);
10278 if (finfo.internal_syms == NULL)
10279 goto error_return;
10280
10281 amt = max_sym_count * sizeof (long);
10282 finfo.indices = bfd_malloc (amt);
10283 if (finfo.indices == NULL)
10284 goto error_return;
10285
10286 amt = max_sym_count * sizeof (asection *);
10287 finfo.sections = bfd_malloc (amt);
10288 if (finfo.sections == NULL)
10289 goto error_return;
10290 }
10291
10292 if (max_sym_shndx_count != 0)
10293 {
10294 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10295 finfo.locsym_shndx = bfd_malloc (amt);
10296 if (finfo.locsym_shndx == NULL)
10297 goto error_return;
10298 }
10299
10300 if (elf_hash_table (info)->tls_sec)
10301 {
10302 bfd_vma base, end = 0;
10303 asection *sec;
10304
10305 for (sec = elf_hash_table (info)->tls_sec;
10306 sec && (sec->flags & SEC_THREAD_LOCAL);
10307 sec = sec->next)
10308 {
10309 bfd_size_type size = sec->size;
10310
10311 if (size == 0
10312 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10313 {
10314 struct bfd_link_order *o = sec->map_tail.link_order;
10315 if (o != NULL)
10316 size = o->offset + o->size;
10317 }
10318 end = sec->vma + size;
10319 }
10320 base = elf_hash_table (info)->tls_sec->vma;
10321 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10322 elf_hash_table (info)->tls_size = end - base;
10323 }
10324
10325 /* Reorder SHF_LINK_ORDER sections. */
10326 for (o = abfd->sections; o != NULL; o = o->next)
10327 {
10328 if (!elf_fixup_link_order (abfd, o))
10329 return FALSE;
10330 }
10331
10332 /* Since ELF permits relocations to be against local symbols, we
10333 must have the local symbols available when we do the relocations.
10334 Since we would rather only read the local symbols once, and we
10335 would rather not keep them in memory, we handle all the
10336 relocations for a single input file at the same time.
10337
10338 Unfortunately, there is no way to know the total number of local
10339 symbols until we have seen all of them, and the local symbol
10340 indices precede the global symbol indices. This means that when
10341 we are generating relocatable output, and we see a reloc against
10342 a global symbol, we can not know the symbol index until we have
10343 finished examining all the local symbols to see which ones we are
10344 going to output. To deal with this, we keep the relocations in
10345 memory, and don't output them until the end of the link. This is
10346 an unfortunate waste of memory, but I don't see a good way around
10347 it. Fortunately, it only happens when performing a relocatable
10348 link, which is not the common case. FIXME: If keep_memory is set
10349 we could write the relocs out and then read them again; I don't
10350 know how bad the memory loss will be. */
10351
10352 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10353 sub->output_has_begun = FALSE;
10354 for (o = abfd->sections; o != NULL; o = o->next)
10355 {
10356 for (p = o->map_head.link_order; p != NULL; p = p->next)
10357 {
10358 if (p->type == bfd_indirect_link_order
10359 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10360 == bfd_target_elf_flavour)
10361 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10362 {
10363 if (! sub->output_has_begun)
10364 {
10365 if (! elf_link_input_bfd (&finfo, sub))
10366 goto error_return;
10367 sub->output_has_begun = TRUE;
10368 }
10369 }
10370 else if (p->type == bfd_section_reloc_link_order
10371 || p->type == bfd_symbol_reloc_link_order)
10372 {
10373 if (! elf_reloc_link_order (abfd, info, o, p))
10374 goto error_return;
10375 }
10376 else
10377 {
10378 if (! _bfd_default_link_order (abfd, info, o, p))
10379 goto error_return;
10380 }
10381 }
10382 }
10383
10384 /* Free symbol buffer if needed. */
10385 if (!info->reduce_memory_overheads)
10386 {
10387 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10388 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10389 && elf_tdata (sub)->symbuf)
10390 {
10391 free (elf_tdata (sub)->symbuf);
10392 elf_tdata (sub)->symbuf = NULL;
10393 }
10394 }
10395
10396 /* Output any global symbols that got converted to local in a
10397 version script or due to symbol visibility. We do this in a
10398 separate step since ELF requires all local symbols to appear
10399 prior to any global symbols. FIXME: We should only do this if
10400 some global symbols were, in fact, converted to become local.
10401 FIXME: Will this work correctly with the Irix 5 linker? */
10402 eoinfo.failed = FALSE;
10403 eoinfo.finfo = &finfo;
10404 eoinfo.localsyms = TRUE;
10405 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10406 &eoinfo);
10407 if (eoinfo.failed)
10408 return FALSE;
10409
10410 /* If backend needs to output some local symbols not present in the hash
10411 table, do it now. */
10412 if (bed->elf_backend_output_arch_local_syms)
10413 {
10414 typedef bfd_boolean (*out_sym_func)
10415 (void *, const char *, Elf_Internal_Sym *, asection *,
10416 struct elf_link_hash_entry *);
10417
10418 if (! ((*bed->elf_backend_output_arch_local_syms)
10419 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10420 return FALSE;
10421 }
10422
10423 /* That wrote out all the local symbols. Finish up the symbol table
10424 with the global symbols. Even if we want to strip everything we
10425 can, we still need to deal with those global symbols that got
10426 converted to local in a version script. */
10427
10428 /* The sh_info field records the index of the first non local symbol. */
10429 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10430
10431 if (dynamic
10432 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10433 {
10434 Elf_Internal_Sym sym;
10435 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10436 long last_local = 0;
10437
10438 /* Write out the section symbols for the output sections. */
10439 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10440 {
10441 asection *s;
10442
10443 sym.st_size = 0;
10444 sym.st_name = 0;
10445 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10446 sym.st_other = 0;
10447
10448 for (s = abfd->sections; s != NULL; s = s->next)
10449 {
10450 int indx;
10451 bfd_byte *dest;
10452 long dynindx;
10453
10454 dynindx = elf_section_data (s)->dynindx;
10455 if (dynindx <= 0)
10456 continue;
10457 indx = elf_section_data (s)->this_idx;
10458 BFD_ASSERT (indx > 0);
10459 sym.st_shndx = indx;
10460 if (! check_dynsym (abfd, &sym))
10461 return FALSE;
10462 sym.st_value = s->vma;
10463 dest = dynsym + dynindx * bed->s->sizeof_sym;
10464 if (last_local < dynindx)
10465 last_local = dynindx;
10466 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10467 }
10468 }
10469
10470 /* Write out the local dynsyms. */
10471 if (elf_hash_table (info)->dynlocal)
10472 {
10473 struct elf_link_local_dynamic_entry *e;
10474 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10475 {
10476 asection *s;
10477 bfd_byte *dest;
10478
10479 sym.st_size = e->isym.st_size;
10480 sym.st_other = e->isym.st_other;
10481
10482 /* Copy the internal symbol as is.
10483 Note that we saved a word of storage and overwrote
10484 the original st_name with the dynstr_index. */
10485 sym = e->isym;
10486
10487 if (e->isym.st_shndx != SHN_UNDEF
10488 && (e->isym.st_shndx < SHN_LORESERVE
10489 || e->isym.st_shndx > SHN_HIRESERVE))
10490 {
10491 s = bfd_section_from_elf_index (e->input_bfd,
10492 e->isym.st_shndx);
10493
10494 sym.st_shndx =
10495 elf_section_data (s->output_section)->this_idx;
10496 if (! check_dynsym (abfd, &sym))
10497 return FALSE;
10498 sym.st_value = (s->output_section->vma
10499 + s->output_offset
10500 + e->isym.st_value);
10501 }
10502
10503 if (last_local < e->dynindx)
10504 last_local = e->dynindx;
10505
10506 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10507 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10508 }
10509 }
10510
10511 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10512 last_local + 1;
10513 }
10514
10515 /* We get the global symbols from the hash table. */
10516 eoinfo.failed = FALSE;
10517 eoinfo.localsyms = FALSE;
10518 eoinfo.finfo = &finfo;
10519 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10520 &eoinfo);
10521 if (eoinfo.failed)
10522 return FALSE;
10523
10524 /* If backend needs to output some symbols not present in the hash
10525 table, do it now. */
10526 if (bed->elf_backend_output_arch_syms)
10527 {
10528 typedef bfd_boolean (*out_sym_func)
10529 (void *, const char *, Elf_Internal_Sym *, asection *,
10530 struct elf_link_hash_entry *);
10531
10532 if (! ((*bed->elf_backend_output_arch_syms)
10533 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10534 return FALSE;
10535 }
10536
10537 /* Flush all symbols to the file. */
10538 if (! elf_link_flush_output_syms (&finfo, bed))
10539 return FALSE;
10540
10541 /* Now we know the size of the symtab section. */
10542 off += symtab_hdr->sh_size;
10543
10544 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10545 if (symtab_shndx_hdr->sh_name != 0)
10546 {
10547 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10548 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10549 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10550 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10551 symtab_shndx_hdr->sh_size = amt;
10552
10553 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10554 off, TRUE);
10555
10556 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10557 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10558 return FALSE;
10559 }
10560
10561
10562 /* Finish up and write out the symbol string table (.strtab)
10563 section. */
10564 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10565 /* sh_name was set in prep_headers. */
10566 symstrtab_hdr->sh_type = SHT_STRTAB;
10567 symstrtab_hdr->sh_flags = 0;
10568 symstrtab_hdr->sh_addr = 0;
10569 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10570 symstrtab_hdr->sh_entsize = 0;
10571 symstrtab_hdr->sh_link = 0;
10572 symstrtab_hdr->sh_info = 0;
10573 /* sh_offset is set just below. */
10574 symstrtab_hdr->sh_addralign = 1;
10575
10576 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10577 elf_tdata (abfd)->next_file_pos = off;
10578
10579 if (bfd_get_symcount (abfd) > 0)
10580 {
10581 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10582 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10583 return FALSE;
10584 }
10585
10586 /* Adjust the relocs to have the correct symbol indices. */
10587 for (o = abfd->sections; o != NULL; o = o->next)
10588 {
10589 if ((o->flags & SEC_RELOC) == 0)
10590 continue;
10591
10592 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10593 elf_section_data (o)->rel_count,
10594 elf_section_data (o)->rel_hashes);
10595 if (elf_section_data (o)->rel_hdr2 != NULL)
10596 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10597 elf_section_data (o)->rel_count2,
10598 (elf_section_data (o)->rel_hashes
10599 + elf_section_data (o)->rel_count));
10600
10601 /* Set the reloc_count field to 0 to prevent write_relocs from
10602 trying to swap the relocs out itself. */
10603 o->reloc_count = 0;
10604 }
10605
10606 if (dynamic && info->combreloc && dynobj != NULL)
10607 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10608
10609 /* If we are linking against a dynamic object, or generating a
10610 shared library, finish up the dynamic linking information. */
10611 if (dynamic)
10612 {
10613 bfd_byte *dyncon, *dynconend;
10614
10615 /* Fix up .dynamic entries. */
10616 o = bfd_get_section_by_name (dynobj, ".dynamic");
10617 BFD_ASSERT (o != NULL);
10618
10619 dyncon = o->contents;
10620 dynconend = o->contents + o->size;
10621 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10622 {
10623 Elf_Internal_Dyn dyn;
10624 const char *name;
10625 unsigned int type;
10626
10627 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10628
10629 switch (dyn.d_tag)
10630 {
10631 default:
10632 continue;
10633 case DT_NULL:
10634 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10635 {
10636 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10637 {
10638 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10639 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10640 default: continue;
10641 }
10642 dyn.d_un.d_val = relativecount;
10643 relativecount = 0;
10644 break;
10645 }
10646 continue;
10647
10648 case DT_INIT:
10649 name = info->init_function;
10650 goto get_sym;
10651 case DT_FINI:
10652 name = info->fini_function;
10653 get_sym:
10654 {
10655 struct elf_link_hash_entry *h;
10656
10657 h = elf_link_hash_lookup (elf_hash_table (info), name,
10658 FALSE, FALSE, TRUE);
10659 if (h != NULL
10660 && (h->root.type == bfd_link_hash_defined
10661 || h->root.type == bfd_link_hash_defweak))
10662 {
10663 dyn.d_un.d_val = h->root.u.def.value;
10664 o = h->root.u.def.section;
10665 if (o->output_section != NULL)
10666 dyn.d_un.d_val += (o->output_section->vma
10667 + o->output_offset);
10668 else
10669 {
10670 /* The symbol is imported from another shared
10671 library and does not apply to this one. */
10672 dyn.d_un.d_val = 0;
10673 }
10674 break;
10675 }
10676 }
10677 continue;
10678
10679 case DT_PREINIT_ARRAYSZ:
10680 name = ".preinit_array";
10681 goto get_size;
10682 case DT_INIT_ARRAYSZ:
10683 name = ".init_array";
10684 goto get_size;
10685 case DT_FINI_ARRAYSZ:
10686 name = ".fini_array";
10687 get_size:
10688 o = bfd_get_section_by_name (abfd, name);
10689 if (o == NULL)
10690 {
10691 (*_bfd_error_handler)
10692 (_("%B: could not find output section %s"), abfd, name);
10693 goto error_return;
10694 }
10695 if (o->size == 0)
10696 (*_bfd_error_handler)
10697 (_("warning: %s section has zero size"), name);
10698 dyn.d_un.d_val = o->size;
10699 break;
10700
10701 case DT_PREINIT_ARRAY:
10702 name = ".preinit_array";
10703 goto get_vma;
10704 case DT_INIT_ARRAY:
10705 name = ".init_array";
10706 goto get_vma;
10707 case DT_FINI_ARRAY:
10708 name = ".fini_array";
10709 goto get_vma;
10710
10711 case DT_HASH:
10712 name = ".hash";
10713 goto get_vma;
10714 case DT_GNU_HASH:
10715 name = ".gnu.hash";
10716 goto get_vma;
10717 case DT_STRTAB:
10718 name = ".dynstr";
10719 goto get_vma;
10720 case DT_SYMTAB:
10721 name = ".dynsym";
10722 goto get_vma;
10723 case DT_VERDEF:
10724 name = ".gnu.version_d";
10725 goto get_vma;
10726 case DT_VERNEED:
10727 name = ".gnu.version_r";
10728 goto get_vma;
10729 case DT_VERSYM:
10730 name = ".gnu.version";
10731 get_vma:
10732 o = bfd_get_section_by_name (abfd, name);
10733 if (o == NULL)
10734 {
10735 (*_bfd_error_handler)
10736 (_("%B: could not find output section %s"), abfd, name);
10737 goto error_return;
10738 }
10739 dyn.d_un.d_ptr = o->vma;
10740 break;
10741
10742 case DT_REL:
10743 case DT_RELA:
10744 case DT_RELSZ:
10745 case DT_RELASZ:
10746 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10747 type = SHT_REL;
10748 else
10749 type = SHT_RELA;
10750 dyn.d_un.d_val = 0;
10751 for (i = 1; i < elf_numsections (abfd); i++)
10752 {
10753 Elf_Internal_Shdr *hdr;
10754
10755 hdr = elf_elfsections (abfd)[i];
10756 if (hdr->sh_type == type
10757 && (hdr->sh_flags & SHF_ALLOC) != 0)
10758 {
10759 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10760 dyn.d_un.d_val += hdr->sh_size;
10761 else
10762 {
10763 if (dyn.d_un.d_val == 0
10764 || hdr->sh_addr < dyn.d_un.d_val)
10765 dyn.d_un.d_val = hdr->sh_addr;
10766 }
10767 }
10768 }
10769 break;
10770 }
10771 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10772 }
10773 }
10774
10775 /* If we have created any dynamic sections, then output them. */
10776 if (dynobj != NULL)
10777 {
10778 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10779 goto error_return;
10780
10781 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10782 if (info->warn_shared_textrel && info->shared)
10783 {
10784 bfd_byte *dyncon, *dynconend;
10785
10786 /* Fix up .dynamic entries. */
10787 o = bfd_get_section_by_name (dynobj, ".dynamic");
10788 BFD_ASSERT (o != NULL);
10789
10790 dyncon = o->contents;
10791 dynconend = o->contents + o->size;
10792 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10793 {
10794 Elf_Internal_Dyn dyn;
10795
10796 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10797
10798 if (dyn.d_tag == DT_TEXTREL)
10799 {
10800 info->callbacks->einfo
10801 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10802 break;
10803 }
10804 }
10805 }
10806
10807 for (o = dynobj->sections; o != NULL; o = o->next)
10808 {
10809 if ((o->flags & SEC_HAS_CONTENTS) == 0
10810 || o->size == 0
10811 || o->output_section == bfd_abs_section_ptr)
10812 continue;
10813 if ((o->flags & SEC_LINKER_CREATED) == 0)
10814 {
10815 /* At this point, we are only interested in sections
10816 created by _bfd_elf_link_create_dynamic_sections. */
10817 continue;
10818 }
10819 if (elf_hash_table (info)->stab_info.stabstr == o)
10820 continue;
10821 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10822 continue;
10823 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10824 != SHT_STRTAB)
10825 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10826 {
10827 if (! bfd_set_section_contents (abfd, o->output_section,
10828 o->contents,
10829 (file_ptr) o->output_offset,
10830 o->size))
10831 goto error_return;
10832 }
10833 else
10834 {
10835 /* The contents of the .dynstr section are actually in a
10836 stringtab. */
10837 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10838 if (bfd_seek (abfd, off, SEEK_SET) != 0
10839 || ! _bfd_elf_strtab_emit (abfd,
10840 elf_hash_table (info)->dynstr))
10841 goto error_return;
10842 }
10843 }
10844 }
10845
10846 if (info->relocatable)
10847 {
10848 bfd_boolean failed = FALSE;
10849
10850 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10851 if (failed)
10852 goto error_return;
10853 }
10854
10855 /* If we have optimized stabs strings, output them. */
10856 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10857 {
10858 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10859 goto error_return;
10860 }
10861
10862 if (info->eh_frame_hdr)
10863 {
10864 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10865 goto error_return;
10866 }
10867
10868 if (finfo.symstrtab != NULL)
10869 _bfd_stringtab_free (finfo.symstrtab);
10870 if (finfo.contents != NULL)
10871 free (finfo.contents);
10872 if (finfo.external_relocs != NULL)
10873 free (finfo.external_relocs);
10874 if (finfo.internal_relocs != NULL)
10875 free (finfo.internal_relocs);
10876 if (finfo.external_syms != NULL)
10877 free (finfo.external_syms);
10878 if (finfo.locsym_shndx != NULL)
10879 free (finfo.locsym_shndx);
10880 if (finfo.internal_syms != NULL)
10881 free (finfo.internal_syms);
10882 if (finfo.indices != NULL)
10883 free (finfo.indices);
10884 if (finfo.sections != NULL)
10885 free (finfo.sections);
10886 if (finfo.symbuf != NULL)
10887 free (finfo.symbuf);
10888 if (finfo.symshndxbuf != NULL)
10889 free (finfo.symshndxbuf);
10890 for (o = abfd->sections; o != NULL; o = o->next)
10891 {
10892 if ((o->flags & SEC_RELOC) != 0
10893 && elf_section_data (o)->rel_hashes != NULL)
10894 free (elf_section_data (o)->rel_hashes);
10895 }
10896
10897 elf_tdata (abfd)->linker = TRUE;
10898
10899 if (attr_section)
10900 {
10901 bfd_byte *contents = bfd_malloc (attr_size);
10902 if (contents == NULL)
10903 return FALSE; /* Bail out and fail. */
10904 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10905 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10906 free (contents);
10907 }
10908
10909 return TRUE;
10910
10911 error_return:
10912 if (finfo.symstrtab != NULL)
10913 _bfd_stringtab_free (finfo.symstrtab);
10914 if (finfo.contents != NULL)
10915 free (finfo.contents);
10916 if (finfo.external_relocs != NULL)
10917 free (finfo.external_relocs);
10918 if (finfo.internal_relocs != NULL)
10919 free (finfo.internal_relocs);
10920 if (finfo.external_syms != NULL)
10921 free (finfo.external_syms);
10922 if (finfo.locsym_shndx != NULL)
10923 free (finfo.locsym_shndx);
10924 if (finfo.internal_syms != NULL)
10925 free (finfo.internal_syms);
10926 if (finfo.indices != NULL)
10927 free (finfo.indices);
10928 if (finfo.sections != NULL)
10929 free (finfo.sections);
10930 if (finfo.symbuf != NULL)
10931 free (finfo.symbuf);
10932 if (finfo.symshndxbuf != NULL)
10933 free (finfo.symshndxbuf);
10934 for (o = abfd->sections; o != NULL; o = o->next)
10935 {
10936 if ((o->flags & SEC_RELOC) != 0
10937 && elf_section_data (o)->rel_hashes != NULL)
10938 free (elf_section_data (o)->rel_hashes);
10939 }
10940
10941 return FALSE;
10942 }
10943 \f
10944 /* Initialize COOKIE for input bfd ABFD. */
10945
10946 static bfd_boolean
10947 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10948 struct bfd_link_info *info, bfd *abfd)
10949 {
10950 Elf_Internal_Shdr *symtab_hdr;
10951 const struct elf_backend_data *bed;
10952
10953 bed = get_elf_backend_data (abfd);
10954 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10955
10956 cookie->abfd = abfd;
10957 cookie->sym_hashes = elf_sym_hashes (abfd);
10958 cookie->bad_symtab = elf_bad_symtab (abfd);
10959 if (cookie->bad_symtab)
10960 {
10961 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10962 cookie->extsymoff = 0;
10963 }
10964 else
10965 {
10966 cookie->locsymcount = symtab_hdr->sh_info;
10967 cookie->extsymoff = symtab_hdr->sh_info;
10968 }
10969
10970 if (bed->s->arch_size == 32)
10971 cookie->r_sym_shift = 8;
10972 else
10973 cookie->r_sym_shift = 32;
10974
10975 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10976 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10977 {
10978 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10979 cookie->locsymcount, 0,
10980 NULL, NULL, NULL);
10981 if (cookie->locsyms == NULL)
10982 {
10983 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10984 return FALSE;
10985 }
10986 if (info->keep_memory)
10987 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10988 }
10989 return TRUE;
10990 }
10991
10992 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10993
10994 static void
10995 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
10996 {
10997 Elf_Internal_Shdr *symtab_hdr;
10998
10999 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11000 if (cookie->locsyms != NULL
11001 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11002 free (cookie->locsyms);
11003 }
11004
11005 /* Initialize the relocation information in COOKIE for input section SEC
11006 of input bfd ABFD. */
11007
11008 static bfd_boolean
11009 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11010 struct bfd_link_info *info, bfd *abfd,
11011 asection *sec)
11012 {
11013 const struct elf_backend_data *bed;
11014
11015 if (sec->reloc_count == 0)
11016 {
11017 cookie->rels = NULL;
11018 cookie->relend = NULL;
11019 }
11020 else
11021 {
11022 bed = get_elf_backend_data (abfd);
11023
11024 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11025 info->keep_memory);
11026 if (cookie->rels == NULL)
11027 return FALSE;
11028 cookie->rel = cookie->rels;
11029 cookie->relend = (cookie->rels
11030 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11031 }
11032 cookie->rel = cookie->rels;
11033 return TRUE;
11034 }
11035
11036 /* Free the memory allocated by init_reloc_cookie_rels,
11037 if appropriate. */
11038
11039 static void
11040 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11041 asection *sec)
11042 {
11043 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11044 free (cookie->rels);
11045 }
11046
11047 /* Initialize the whole of COOKIE for input section SEC. */
11048
11049 static bfd_boolean
11050 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11051 struct bfd_link_info *info,
11052 asection *sec)
11053 {
11054 if (!init_reloc_cookie (cookie, info, sec->owner))
11055 goto error1;
11056 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11057 goto error2;
11058 return TRUE;
11059
11060 error2:
11061 fini_reloc_cookie (cookie, sec->owner);
11062 error1:
11063 return FALSE;
11064 }
11065
11066 /* Free the memory allocated by init_reloc_cookie_for_section,
11067 if appropriate. */
11068
11069 static void
11070 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11071 asection *sec)
11072 {
11073 fini_reloc_cookie_rels (cookie, sec);
11074 fini_reloc_cookie (cookie, sec->owner);
11075 }
11076 \f
11077 /* Garbage collect unused sections. */
11078
11079 /* Default gc_mark_hook. */
11080
11081 asection *
11082 _bfd_elf_gc_mark_hook (asection *sec,
11083 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11084 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11085 struct elf_link_hash_entry *h,
11086 Elf_Internal_Sym *sym)
11087 {
11088 if (h != NULL)
11089 {
11090 switch (h->root.type)
11091 {
11092 case bfd_link_hash_defined:
11093 case bfd_link_hash_defweak:
11094 return h->root.u.def.section;
11095
11096 case bfd_link_hash_common:
11097 return h->root.u.c.p->section;
11098
11099 default:
11100 break;
11101 }
11102 }
11103 else
11104 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11105
11106 return NULL;
11107 }
11108
11109 /* COOKIE->rel describes a relocation against section SEC, which is
11110 a section we've decided to keep. Return the section that contains
11111 the relocation symbol, or NULL if no section contains it. */
11112
11113 asection *
11114 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11115 elf_gc_mark_hook_fn gc_mark_hook,
11116 struct elf_reloc_cookie *cookie)
11117 {
11118 unsigned long r_symndx;
11119 struct elf_link_hash_entry *h;
11120
11121 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11122 if (r_symndx == 0)
11123 return NULL;
11124
11125 if (r_symndx >= cookie->locsymcount
11126 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11127 {
11128 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11129 while (h->root.type == bfd_link_hash_indirect
11130 || h->root.type == bfd_link_hash_warning)
11131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11132 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11133 }
11134
11135 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11136 &cookie->locsyms[r_symndx]);
11137 }
11138
11139 /* COOKIE->rel describes a relocation against section SEC, which is
11140 a section we've decided to keep. Mark the section that contains
11141 the relocation symbol. */
11142
11143 bfd_boolean
11144 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11145 asection *sec,
11146 elf_gc_mark_hook_fn gc_mark_hook,
11147 struct elf_reloc_cookie *cookie)
11148 {
11149 asection *rsec;
11150
11151 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11152 if (rsec && !rsec->gc_mark)
11153 {
11154 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11155 rsec->gc_mark = 1;
11156 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11157 return FALSE;
11158 }
11159 return TRUE;
11160 }
11161
11162 /* The mark phase of garbage collection. For a given section, mark
11163 it and any sections in this section's group, and all the sections
11164 which define symbols to which it refers. */
11165
11166 bfd_boolean
11167 _bfd_elf_gc_mark (struct bfd_link_info *info,
11168 asection *sec,
11169 elf_gc_mark_hook_fn gc_mark_hook)
11170 {
11171 bfd_boolean ret;
11172 asection *group_sec, *eh_frame;
11173
11174 sec->gc_mark = 1;
11175
11176 /* Mark all the sections in the group. */
11177 group_sec = elf_section_data (sec)->next_in_group;
11178 if (group_sec && !group_sec->gc_mark)
11179 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11180 return FALSE;
11181
11182 /* Look through the section relocs. */
11183 ret = TRUE;
11184 eh_frame = elf_eh_frame_section (sec->owner);
11185 if ((sec->flags & SEC_RELOC) != 0
11186 && sec->reloc_count > 0
11187 && sec != eh_frame)
11188 {
11189 struct elf_reloc_cookie cookie;
11190
11191 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11192 ret = FALSE;
11193 else
11194 {
11195 for (; cookie.rel < cookie.relend; cookie.rel++)
11196 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11197 {
11198 ret = FALSE;
11199 break;
11200 }
11201 fini_reloc_cookie_for_section (&cookie, sec);
11202 }
11203 }
11204
11205 if (ret && eh_frame && elf_fde_list (sec))
11206 {
11207 struct elf_reloc_cookie cookie;
11208
11209 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11210 ret = FALSE;
11211 else
11212 {
11213 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11214 gc_mark_hook, &cookie))
11215 ret = FALSE;
11216 fini_reloc_cookie_for_section (&cookie, eh_frame);
11217 }
11218 }
11219
11220 return ret;
11221 }
11222
11223 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11224
11225 struct elf_gc_sweep_symbol_info
11226 {
11227 struct bfd_link_info *info;
11228 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11229 bfd_boolean);
11230 };
11231
11232 static bfd_boolean
11233 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11234 {
11235 if (h->root.type == bfd_link_hash_warning)
11236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11237
11238 if ((h->root.type == bfd_link_hash_defined
11239 || h->root.type == bfd_link_hash_defweak)
11240 && !h->root.u.def.section->gc_mark
11241 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11242 {
11243 struct elf_gc_sweep_symbol_info *inf = data;
11244 (*inf->hide_symbol) (inf->info, h, TRUE);
11245 }
11246
11247 return TRUE;
11248 }
11249
11250 /* The sweep phase of garbage collection. Remove all garbage sections. */
11251
11252 typedef bfd_boolean (*gc_sweep_hook_fn)
11253 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11254
11255 static bfd_boolean
11256 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11257 {
11258 bfd *sub;
11259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11260 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11261 unsigned long section_sym_count;
11262 struct elf_gc_sweep_symbol_info sweep_info;
11263
11264 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11265 {
11266 asection *o;
11267
11268 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11269 continue;
11270
11271 for (o = sub->sections; o != NULL; o = o->next)
11272 {
11273 /* Keep debug and special sections. */
11274 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11275 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11276 o->gc_mark = 1;
11277
11278 if (o->gc_mark)
11279 continue;
11280
11281 /* Skip sweeping sections already excluded. */
11282 if (o->flags & SEC_EXCLUDE)
11283 continue;
11284
11285 /* Since this is early in the link process, it is simple
11286 to remove a section from the output. */
11287 o->flags |= SEC_EXCLUDE;
11288
11289 if (info->print_gc_sections && o->size != 0)
11290 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11291
11292 /* But we also have to update some of the relocation
11293 info we collected before. */
11294 if (gc_sweep_hook
11295 && (o->flags & SEC_RELOC) != 0
11296 && o->reloc_count > 0
11297 && !bfd_is_abs_section (o->output_section))
11298 {
11299 Elf_Internal_Rela *internal_relocs;
11300 bfd_boolean r;
11301
11302 internal_relocs
11303 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11304 info->keep_memory);
11305 if (internal_relocs == NULL)
11306 return FALSE;
11307
11308 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11309
11310 if (elf_section_data (o)->relocs != internal_relocs)
11311 free (internal_relocs);
11312
11313 if (!r)
11314 return FALSE;
11315 }
11316 }
11317 }
11318
11319 /* Remove the symbols that were in the swept sections from the dynamic
11320 symbol table. GCFIXME: Anyone know how to get them out of the
11321 static symbol table as well? */
11322 sweep_info.info = info;
11323 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11324 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11325 &sweep_info);
11326
11327 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11328 return TRUE;
11329 }
11330
11331 /* Propagate collected vtable information. This is called through
11332 elf_link_hash_traverse. */
11333
11334 static bfd_boolean
11335 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11336 {
11337 if (h->root.type == bfd_link_hash_warning)
11338 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11339
11340 /* Those that are not vtables. */
11341 if (h->vtable == NULL || h->vtable->parent == NULL)
11342 return TRUE;
11343
11344 /* Those vtables that do not have parents, we cannot merge. */
11345 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11346 return TRUE;
11347
11348 /* If we've already been done, exit. */
11349 if (h->vtable->used && h->vtable->used[-1])
11350 return TRUE;
11351
11352 /* Make sure the parent's table is up to date. */
11353 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11354
11355 if (h->vtable->used == NULL)
11356 {
11357 /* None of this table's entries were referenced. Re-use the
11358 parent's table. */
11359 h->vtable->used = h->vtable->parent->vtable->used;
11360 h->vtable->size = h->vtable->parent->vtable->size;
11361 }
11362 else
11363 {
11364 size_t n;
11365 bfd_boolean *cu, *pu;
11366
11367 /* Or the parent's entries into ours. */
11368 cu = h->vtable->used;
11369 cu[-1] = TRUE;
11370 pu = h->vtable->parent->vtable->used;
11371 if (pu != NULL)
11372 {
11373 const struct elf_backend_data *bed;
11374 unsigned int log_file_align;
11375
11376 bed = get_elf_backend_data (h->root.u.def.section->owner);
11377 log_file_align = bed->s->log_file_align;
11378 n = h->vtable->parent->vtable->size >> log_file_align;
11379 while (n--)
11380 {
11381 if (*pu)
11382 *cu = TRUE;
11383 pu++;
11384 cu++;
11385 }
11386 }
11387 }
11388
11389 return TRUE;
11390 }
11391
11392 static bfd_boolean
11393 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11394 {
11395 asection *sec;
11396 bfd_vma hstart, hend;
11397 Elf_Internal_Rela *relstart, *relend, *rel;
11398 const struct elf_backend_data *bed;
11399 unsigned int log_file_align;
11400
11401 if (h->root.type == bfd_link_hash_warning)
11402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11403
11404 /* Take care of both those symbols that do not describe vtables as
11405 well as those that are not loaded. */
11406 if (h->vtable == NULL || h->vtable->parent == NULL)
11407 return TRUE;
11408
11409 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11410 || h->root.type == bfd_link_hash_defweak);
11411
11412 sec = h->root.u.def.section;
11413 hstart = h->root.u.def.value;
11414 hend = hstart + h->size;
11415
11416 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11417 if (!relstart)
11418 return *(bfd_boolean *) okp = FALSE;
11419 bed = get_elf_backend_data (sec->owner);
11420 log_file_align = bed->s->log_file_align;
11421
11422 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11423
11424 for (rel = relstart; rel < relend; ++rel)
11425 if (rel->r_offset >= hstart && rel->r_offset < hend)
11426 {
11427 /* If the entry is in use, do nothing. */
11428 if (h->vtable->used
11429 && (rel->r_offset - hstart) < h->vtable->size)
11430 {
11431 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11432 if (h->vtable->used[entry])
11433 continue;
11434 }
11435 /* Otherwise, kill it. */
11436 rel->r_offset = rel->r_info = rel->r_addend = 0;
11437 }
11438
11439 return TRUE;
11440 }
11441
11442 /* Mark sections containing dynamically referenced symbols. When
11443 building shared libraries, we must assume that any visible symbol is
11444 referenced. */
11445
11446 bfd_boolean
11447 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11448 {
11449 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11450
11451 if (h->root.type == bfd_link_hash_warning)
11452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11453
11454 if ((h->root.type == bfd_link_hash_defined
11455 || h->root.type == bfd_link_hash_defweak)
11456 && (h->ref_dynamic
11457 || (!info->executable
11458 && h->def_regular
11459 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11460 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11461 h->root.u.def.section->flags |= SEC_KEEP;
11462
11463 return TRUE;
11464 }
11465
11466 /* Keep all sections containing symbols undefined on the command-line,
11467 and the section containing the entry symbol. */
11468
11469 void
11470 _bfd_elf_gc_keep (struct bfd_link_info *info)
11471 {
11472 struct bfd_sym_chain *sym;
11473
11474 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11475 {
11476 struct elf_link_hash_entry *h;
11477
11478 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11479 FALSE, FALSE, FALSE);
11480
11481 if (h != NULL
11482 && (h->root.type == bfd_link_hash_defined
11483 || h->root.type == bfd_link_hash_defweak)
11484 && !bfd_is_abs_section (h->root.u.def.section))
11485 h->root.u.def.section->flags |= SEC_KEEP;
11486 }
11487 }
11488
11489 /* Do mark and sweep of unused sections. */
11490
11491 bfd_boolean
11492 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11493 {
11494 bfd_boolean ok = TRUE;
11495 bfd *sub;
11496 elf_gc_mark_hook_fn gc_mark_hook;
11497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11498
11499 if (!bed->can_gc_sections
11500 || !is_elf_hash_table (info->hash))
11501 {
11502 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11503 return TRUE;
11504 }
11505
11506 bed->gc_keep (info);
11507
11508 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11509 at the .eh_frame section if we can mark the FDEs individually. */
11510 _bfd_elf_begin_eh_frame_parsing (info);
11511 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11512 {
11513 asection *sec;
11514 struct elf_reloc_cookie cookie;
11515
11516 sec = bfd_get_section_by_name (sub, ".eh_frame");
11517 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11518 {
11519 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11520 if (elf_section_data (sec)->sec_info)
11521 elf_eh_frame_section (sub) = sec;
11522 fini_reloc_cookie_for_section (&cookie, sec);
11523 }
11524 }
11525 _bfd_elf_end_eh_frame_parsing (info);
11526
11527 /* Apply transitive closure to the vtable entry usage info. */
11528 elf_link_hash_traverse (elf_hash_table (info),
11529 elf_gc_propagate_vtable_entries_used,
11530 &ok);
11531 if (!ok)
11532 return FALSE;
11533
11534 /* Kill the vtable relocations that were not used. */
11535 elf_link_hash_traverse (elf_hash_table (info),
11536 elf_gc_smash_unused_vtentry_relocs,
11537 &ok);
11538 if (!ok)
11539 return FALSE;
11540
11541 /* Mark dynamically referenced symbols. */
11542 if (elf_hash_table (info)->dynamic_sections_created)
11543 elf_link_hash_traverse (elf_hash_table (info),
11544 bed->gc_mark_dynamic_ref,
11545 info);
11546
11547 /* Grovel through relocs to find out who stays ... */
11548 gc_mark_hook = bed->gc_mark_hook;
11549 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11550 {
11551 asection *o;
11552
11553 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11554 continue;
11555
11556 for (o = sub->sections; o != NULL; o = o->next)
11557 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11558 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11559 return FALSE;
11560 }
11561
11562 /* Allow the backend to mark additional target specific sections. */
11563 if (bed->gc_mark_extra_sections)
11564 bed->gc_mark_extra_sections (info, gc_mark_hook);
11565
11566 /* ... and mark SEC_EXCLUDE for those that go. */
11567 return elf_gc_sweep (abfd, info);
11568 }
11569 \f
11570 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11571
11572 bfd_boolean
11573 bfd_elf_gc_record_vtinherit (bfd *abfd,
11574 asection *sec,
11575 struct elf_link_hash_entry *h,
11576 bfd_vma offset)
11577 {
11578 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11579 struct elf_link_hash_entry **search, *child;
11580 bfd_size_type extsymcount;
11581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11582
11583 /* The sh_info field of the symtab header tells us where the
11584 external symbols start. We don't care about the local symbols at
11585 this point. */
11586 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11587 if (!elf_bad_symtab (abfd))
11588 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11589
11590 sym_hashes = elf_sym_hashes (abfd);
11591 sym_hashes_end = sym_hashes + extsymcount;
11592
11593 /* Hunt down the child symbol, which is in this section at the same
11594 offset as the relocation. */
11595 for (search = sym_hashes; search != sym_hashes_end; ++search)
11596 {
11597 if ((child = *search) != NULL
11598 && (child->root.type == bfd_link_hash_defined
11599 || child->root.type == bfd_link_hash_defweak)
11600 && child->root.u.def.section == sec
11601 && child->root.u.def.value == offset)
11602 goto win;
11603 }
11604
11605 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11606 abfd, sec, (unsigned long) offset);
11607 bfd_set_error (bfd_error_invalid_operation);
11608 return FALSE;
11609
11610 win:
11611 if (!child->vtable)
11612 {
11613 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11614 if (!child->vtable)
11615 return FALSE;
11616 }
11617 if (!h)
11618 {
11619 /* This *should* only be the absolute section. It could potentially
11620 be that someone has defined a non-global vtable though, which
11621 would be bad. It isn't worth paging in the local symbols to be
11622 sure though; that case should simply be handled by the assembler. */
11623
11624 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11625 }
11626 else
11627 child->vtable->parent = h;
11628
11629 return TRUE;
11630 }
11631
11632 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11633
11634 bfd_boolean
11635 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11636 asection *sec ATTRIBUTE_UNUSED,
11637 struct elf_link_hash_entry *h,
11638 bfd_vma addend)
11639 {
11640 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11641 unsigned int log_file_align = bed->s->log_file_align;
11642
11643 if (!h->vtable)
11644 {
11645 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11646 if (!h->vtable)
11647 return FALSE;
11648 }
11649
11650 if (addend >= h->vtable->size)
11651 {
11652 size_t size, bytes, file_align;
11653 bfd_boolean *ptr = h->vtable->used;
11654
11655 /* While the symbol is undefined, we have to be prepared to handle
11656 a zero size. */
11657 file_align = 1 << log_file_align;
11658 if (h->root.type == bfd_link_hash_undefined)
11659 size = addend + file_align;
11660 else
11661 {
11662 size = h->size;
11663 if (addend >= size)
11664 {
11665 /* Oops! We've got a reference past the defined end of
11666 the table. This is probably a bug -- shall we warn? */
11667 size = addend + file_align;
11668 }
11669 }
11670 size = (size + file_align - 1) & -file_align;
11671
11672 /* Allocate one extra entry for use as a "done" flag for the
11673 consolidation pass. */
11674 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11675
11676 if (ptr)
11677 {
11678 ptr = bfd_realloc (ptr - 1, bytes);
11679
11680 if (ptr != NULL)
11681 {
11682 size_t oldbytes;
11683
11684 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11685 * sizeof (bfd_boolean));
11686 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11687 }
11688 }
11689 else
11690 ptr = bfd_zmalloc (bytes);
11691
11692 if (ptr == NULL)
11693 return FALSE;
11694
11695 /* And arrange for that done flag to be at index -1. */
11696 h->vtable->used = ptr + 1;
11697 h->vtable->size = size;
11698 }
11699
11700 h->vtable->used[addend >> log_file_align] = TRUE;
11701
11702 return TRUE;
11703 }
11704
11705 struct alloc_got_off_arg {
11706 bfd_vma gotoff;
11707 unsigned int got_elt_size;
11708 };
11709
11710 /* We need a special top-level link routine to convert got reference counts
11711 to real got offsets. */
11712
11713 static bfd_boolean
11714 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11715 {
11716 struct alloc_got_off_arg *gofarg = arg;
11717
11718 if (h->root.type == bfd_link_hash_warning)
11719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11720
11721 if (h->got.refcount > 0)
11722 {
11723 h->got.offset = gofarg->gotoff;
11724 gofarg->gotoff += gofarg->got_elt_size;
11725 }
11726 else
11727 h->got.offset = (bfd_vma) -1;
11728
11729 return TRUE;
11730 }
11731
11732 /* And an accompanying bit to work out final got entry offsets once
11733 we're done. Should be called from final_link. */
11734
11735 bfd_boolean
11736 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11737 struct bfd_link_info *info)
11738 {
11739 bfd *i;
11740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11741 bfd_vma gotoff;
11742 unsigned int got_elt_size = bed->s->arch_size / 8;
11743 struct alloc_got_off_arg gofarg;
11744
11745 if (! is_elf_hash_table (info->hash))
11746 return FALSE;
11747
11748 /* The GOT offset is relative to the .got section, but the GOT header is
11749 put into the .got.plt section, if the backend uses it. */
11750 if (bed->want_got_plt)
11751 gotoff = 0;
11752 else
11753 gotoff = bed->got_header_size;
11754
11755 /* Do the local .got entries first. */
11756 for (i = info->input_bfds; i; i = i->link_next)
11757 {
11758 bfd_signed_vma *local_got;
11759 bfd_size_type j, locsymcount;
11760 Elf_Internal_Shdr *symtab_hdr;
11761
11762 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11763 continue;
11764
11765 local_got = elf_local_got_refcounts (i);
11766 if (!local_got)
11767 continue;
11768
11769 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11770 if (elf_bad_symtab (i))
11771 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11772 else
11773 locsymcount = symtab_hdr->sh_info;
11774
11775 for (j = 0; j < locsymcount; ++j)
11776 {
11777 if (local_got[j] > 0)
11778 {
11779 local_got[j] = gotoff;
11780 gotoff += got_elt_size;
11781 }
11782 else
11783 local_got[j] = (bfd_vma) -1;
11784 }
11785 }
11786
11787 /* Then the global .got entries. .plt refcounts are handled by
11788 adjust_dynamic_symbol */
11789 gofarg.gotoff = gotoff;
11790 gofarg.got_elt_size = got_elt_size;
11791 elf_link_hash_traverse (elf_hash_table (info),
11792 elf_gc_allocate_got_offsets,
11793 &gofarg);
11794 return TRUE;
11795 }
11796
11797 /* Many folk need no more in the way of final link than this, once
11798 got entry reference counting is enabled. */
11799
11800 bfd_boolean
11801 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11802 {
11803 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11804 return FALSE;
11805
11806 /* Invoke the regular ELF backend linker to do all the work. */
11807 return bfd_elf_final_link (abfd, info);
11808 }
11809
11810 bfd_boolean
11811 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11812 {
11813 struct elf_reloc_cookie *rcookie = cookie;
11814
11815 if (rcookie->bad_symtab)
11816 rcookie->rel = rcookie->rels;
11817
11818 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11819 {
11820 unsigned long r_symndx;
11821
11822 if (! rcookie->bad_symtab)
11823 if (rcookie->rel->r_offset > offset)
11824 return FALSE;
11825 if (rcookie->rel->r_offset != offset)
11826 continue;
11827
11828 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11829 if (r_symndx == SHN_UNDEF)
11830 return TRUE;
11831
11832 if (r_symndx >= rcookie->locsymcount
11833 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11834 {
11835 struct elf_link_hash_entry *h;
11836
11837 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11838
11839 while (h->root.type == bfd_link_hash_indirect
11840 || h->root.type == bfd_link_hash_warning)
11841 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11842
11843 if ((h->root.type == bfd_link_hash_defined
11844 || h->root.type == bfd_link_hash_defweak)
11845 && elf_discarded_section (h->root.u.def.section))
11846 return TRUE;
11847 else
11848 return FALSE;
11849 }
11850 else
11851 {
11852 /* It's not a relocation against a global symbol,
11853 but it could be a relocation against a local
11854 symbol for a discarded section. */
11855 asection *isec;
11856 Elf_Internal_Sym *isym;
11857
11858 /* Need to: get the symbol; get the section. */
11859 isym = &rcookie->locsyms[r_symndx];
11860 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11861 {
11862 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11863 if (isec != NULL && elf_discarded_section (isec))
11864 return TRUE;
11865 }
11866 }
11867 return FALSE;
11868 }
11869 return FALSE;
11870 }
11871
11872 /* Discard unneeded references to discarded sections.
11873 Returns TRUE if any section's size was changed. */
11874 /* This function assumes that the relocations are in sorted order,
11875 which is true for all known assemblers. */
11876
11877 bfd_boolean
11878 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11879 {
11880 struct elf_reloc_cookie cookie;
11881 asection *stab, *eh;
11882 const struct elf_backend_data *bed;
11883 bfd *abfd;
11884 bfd_boolean ret = FALSE;
11885
11886 if (info->traditional_format
11887 || !is_elf_hash_table (info->hash))
11888 return FALSE;
11889
11890 _bfd_elf_begin_eh_frame_parsing (info);
11891 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11892 {
11893 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11894 continue;
11895
11896 bed = get_elf_backend_data (abfd);
11897
11898 if ((abfd->flags & DYNAMIC) != 0)
11899 continue;
11900
11901 eh = NULL;
11902 if (!info->relocatable)
11903 {
11904 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11905 if (eh != NULL
11906 && (eh->size == 0
11907 || bfd_is_abs_section (eh->output_section)))
11908 eh = NULL;
11909 }
11910
11911 stab = bfd_get_section_by_name (abfd, ".stab");
11912 if (stab != NULL
11913 && (stab->size == 0
11914 || bfd_is_abs_section (stab->output_section)
11915 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11916 stab = NULL;
11917
11918 if (stab == NULL
11919 && eh == NULL
11920 && bed->elf_backend_discard_info == NULL)
11921 continue;
11922
11923 if (!init_reloc_cookie (&cookie, info, abfd))
11924 return FALSE;
11925
11926 if (stab != NULL
11927 && stab->reloc_count > 0
11928 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11929 {
11930 if (_bfd_discard_section_stabs (abfd, stab,
11931 elf_section_data (stab)->sec_info,
11932 bfd_elf_reloc_symbol_deleted_p,
11933 &cookie))
11934 ret = TRUE;
11935 fini_reloc_cookie_rels (&cookie, stab);
11936 }
11937
11938 if (eh != NULL
11939 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11940 {
11941 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11942 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11943 bfd_elf_reloc_symbol_deleted_p,
11944 &cookie))
11945 ret = TRUE;
11946 fini_reloc_cookie_rels (&cookie, eh);
11947 }
11948
11949 if (bed->elf_backend_discard_info != NULL
11950 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11951 ret = TRUE;
11952
11953 fini_reloc_cookie (&cookie, abfd);
11954 }
11955 _bfd_elf_end_eh_frame_parsing (info);
11956
11957 if (info->eh_frame_hdr
11958 && !info->relocatable
11959 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11960 ret = TRUE;
11961
11962 return ret;
11963 }
11964
11965 void
11966 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11967 struct bfd_link_info *info)
11968 {
11969 flagword flags;
11970 const char *name, *p;
11971 struct bfd_section_already_linked *l;
11972 struct bfd_section_already_linked_hash_entry *already_linked_list;
11973
11974 if (sec->output_section == bfd_abs_section_ptr)
11975 return;
11976
11977 flags = sec->flags;
11978
11979 /* Return if it isn't a linkonce section. A comdat group section
11980 also has SEC_LINK_ONCE set. */
11981 if ((flags & SEC_LINK_ONCE) == 0)
11982 return;
11983
11984 /* Don't put group member sections on our list of already linked
11985 sections. They are handled as a group via their group section. */
11986 if (elf_sec_group (sec) != NULL)
11987 return;
11988
11989 /* FIXME: When doing a relocatable link, we may have trouble
11990 copying relocations in other sections that refer to local symbols
11991 in the section being discarded. Those relocations will have to
11992 be converted somehow; as of this writing I'm not sure that any of
11993 the backends handle that correctly.
11994
11995 It is tempting to instead not discard link once sections when
11996 doing a relocatable link (technically, they should be discarded
11997 whenever we are building constructors). However, that fails,
11998 because the linker winds up combining all the link once sections
11999 into a single large link once section, which defeats the purpose
12000 of having link once sections in the first place.
12001
12002 Also, not merging link once sections in a relocatable link
12003 causes trouble for MIPS ELF, which relies on link once semantics
12004 to handle the .reginfo section correctly. */
12005
12006 name = bfd_get_section_name (abfd, sec);
12007
12008 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12009 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12010 p++;
12011 else
12012 p = name;
12013
12014 already_linked_list = bfd_section_already_linked_table_lookup (p);
12015
12016 for (l = already_linked_list->entry; l != NULL; l = l->next)
12017 {
12018 /* We may have 2 different types of sections on the list: group
12019 sections and linkonce sections. Match like sections. */
12020 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12021 && strcmp (name, l->sec->name) == 0
12022 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12023 {
12024 /* The section has already been linked. See if we should
12025 issue a warning. */
12026 switch (flags & SEC_LINK_DUPLICATES)
12027 {
12028 default:
12029 abort ();
12030
12031 case SEC_LINK_DUPLICATES_DISCARD:
12032 break;
12033
12034 case SEC_LINK_DUPLICATES_ONE_ONLY:
12035 (*_bfd_error_handler)
12036 (_("%B: ignoring duplicate section `%A'"),
12037 abfd, sec);
12038 break;
12039
12040 case SEC_LINK_DUPLICATES_SAME_SIZE:
12041 if (sec->size != l->sec->size)
12042 (*_bfd_error_handler)
12043 (_("%B: duplicate section `%A' has different size"),
12044 abfd, sec);
12045 break;
12046
12047 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12048 if (sec->size != l->sec->size)
12049 (*_bfd_error_handler)
12050 (_("%B: duplicate section `%A' has different size"),
12051 abfd, sec);
12052 else if (sec->size != 0)
12053 {
12054 bfd_byte *sec_contents, *l_sec_contents;
12055
12056 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12057 (*_bfd_error_handler)
12058 (_("%B: warning: could not read contents of section `%A'"),
12059 abfd, sec);
12060 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12061 &l_sec_contents))
12062 (*_bfd_error_handler)
12063 (_("%B: warning: could not read contents of section `%A'"),
12064 l->sec->owner, l->sec);
12065 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12066 (*_bfd_error_handler)
12067 (_("%B: warning: duplicate section `%A' has different contents"),
12068 abfd, sec);
12069
12070 if (sec_contents)
12071 free (sec_contents);
12072 if (l_sec_contents)
12073 free (l_sec_contents);
12074 }
12075 break;
12076 }
12077
12078 /* Set the output_section field so that lang_add_section
12079 does not create a lang_input_section structure for this
12080 section. Since there might be a symbol in the section
12081 being discarded, we must retain a pointer to the section
12082 which we are really going to use. */
12083 sec->output_section = bfd_abs_section_ptr;
12084 sec->kept_section = l->sec;
12085
12086 if (flags & SEC_GROUP)
12087 {
12088 asection *first = elf_next_in_group (sec);
12089 asection *s = first;
12090
12091 while (s != NULL)
12092 {
12093 s->output_section = bfd_abs_section_ptr;
12094 /* Record which group discards it. */
12095 s->kept_section = l->sec;
12096 s = elf_next_in_group (s);
12097 /* These lists are circular. */
12098 if (s == first)
12099 break;
12100 }
12101 }
12102
12103 return;
12104 }
12105 }
12106
12107 /* A single member comdat group section may be discarded by a
12108 linkonce section and vice versa. */
12109
12110 if ((flags & SEC_GROUP) != 0)
12111 {
12112 asection *first = elf_next_in_group (sec);
12113
12114 if (first != NULL && elf_next_in_group (first) == first)
12115 /* Check this single member group against linkonce sections. */
12116 for (l = already_linked_list->entry; l != NULL; l = l->next)
12117 if ((l->sec->flags & SEC_GROUP) == 0
12118 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12119 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12120 {
12121 first->output_section = bfd_abs_section_ptr;
12122 first->kept_section = l->sec;
12123 sec->output_section = bfd_abs_section_ptr;
12124 break;
12125 }
12126 }
12127 else
12128 /* Check this linkonce section against single member groups. */
12129 for (l = already_linked_list->entry; l != NULL; l = l->next)
12130 if (l->sec->flags & SEC_GROUP)
12131 {
12132 asection *first = elf_next_in_group (l->sec);
12133
12134 if (first != NULL
12135 && elf_next_in_group (first) == first
12136 && bfd_elf_match_symbols_in_sections (first, sec, info))
12137 {
12138 sec->output_section = bfd_abs_section_ptr;
12139 sec->kept_section = first;
12140 break;
12141 }
12142 }
12143
12144 /* This is the first section with this name. Record it. */
12145 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12146 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12147 }
12148
12149 bfd_boolean
12150 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12151 {
12152 return sym->st_shndx == SHN_COMMON;
12153 }
12154
12155 unsigned int
12156 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12157 {
12158 return SHN_COMMON;
12159 }
12160
12161 asection *
12162 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12163 {
12164 return bfd_com_section_ptr;
12165 }
This page took 0.302094 seconds and 4 git commands to generate.