Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #include <limits.h>
36 #ifndef CHAR_BIT
37 #define CHAR_BIT 8
38 #endif
39
40 /* This struct is used to pass information to routines called via
41 elf_link_hash_traverse which must return failure. */
42
43 struct elf_info_failed
44 {
45 struct bfd_link_info *info;
46 bool failed;
47 };
48
49 /* This structure is used to pass information to
50 _bfd_elf_link_find_version_dependencies. */
51
52 struct elf_find_verdep_info
53 {
54 /* General link information. */
55 struct bfd_link_info *info;
56 /* The number of dependencies. */
57 unsigned int vers;
58 /* Whether we had a failure. */
59 bool failed;
60 };
61
62 static bool _bfd_elf_fix_symbol_flags
63 (struct elf_link_hash_entry *, struct elf_info_failed *);
64
65 asection *
66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
67 unsigned long r_symndx,
68 bool discard)
69 {
70 if (r_symndx >= cookie->locsymcount
71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
72 {
73 struct elf_link_hash_entry *h;
74
75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
76
77 while (h->root.type == bfd_link_hash_indirect
78 || h->root.type == bfd_link_hash_warning)
79 h = (struct elf_link_hash_entry *) h->root.u.i.link;
80
81 if ((h->root.type == bfd_link_hash_defined
82 || h->root.type == bfd_link_hash_defweak)
83 && discarded_section (h->root.u.def.section))
84 return h->root.u.def.section;
85 else
86 return NULL;
87 }
88 else
89 {
90 /* It's not a relocation against a global symbol,
91 but it could be a relocation against a local
92 symbol for a discarded section. */
93 asection *isec;
94 Elf_Internal_Sym *isym;
95
96 /* Need to: get the symbol; get the section. */
97 isym = &cookie->locsyms[r_symndx];
98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
99 if (isec != NULL
100 && discard ? discarded_section (isec) : 1)
101 return isec;
102 }
103 return NULL;
104 }
105
106 /* Define a symbol in a dynamic linkage section. */
107
108 struct elf_link_hash_entry *
109 _bfd_elf_define_linkage_sym (bfd *abfd,
110 struct bfd_link_info *info,
111 asection *sec,
112 const char *name)
113 {
114 struct elf_link_hash_entry *h;
115 struct bfd_link_hash_entry *bh;
116 const struct elf_backend_data *bed;
117
118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false);
119 if (h != NULL)
120 {
121 /* Zap symbol defined in an as-needed lib that wasn't linked.
122 This is a symptom of a larger problem: Absolute symbols
123 defined in shared libraries can't be overridden, because we
124 lose the link to the bfd which is via the symbol section. */
125 h->root.type = bfd_link_hash_new;
126 bh = &h->root;
127 }
128 else
129 bh = NULL;
130
131 bed = get_elf_backend_data (abfd);
132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
133 sec, 0, NULL, false, bed->collect,
134 &bh))
135 return NULL;
136 h = (struct elf_link_hash_entry *) bh;
137 BFD_ASSERT (h != NULL);
138 h->def_regular = 1;
139 h->non_elf = 0;
140 h->root.linker_def = 1;
141 h->type = STT_OBJECT;
142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
144
145 (*bed->elf_backend_hide_symbol) (info, h, true);
146 return h;
147 }
148
149 bool
150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
151 {
152 flagword flags;
153 asection *s;
154 struct elf_link_hash_entry *h;
155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
156 struct elf_link_hash_table *htab = elf_hash_table (info);
157
158 /* This function may be called more than once. */
159 if (htab->sgot != NULL)
160 return true;
161
162 flags = bed->dynamic_sec_flags;
163
164 s = bfd_make_section_anyway_with_flags (abfd,
165 (bed->rela_plts_and_copies_p
166 ? ".rela.got" : ".rel.got"),
167 (bed->dynamic_sec_flags
168 | SEC_READONLY));
169 if (s == NULL
170 || !bfd_set_section_alignment (s, bed->s->log_file_align))
171 return false;
172 htab->srelgot = s;
173
174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
175 if (s == NULL
176 || !bfd_set_section_alignment (s, bed->s->log_file_align))
177 return false;
178 htab->sgot = s;
179
180 if (bed->want_got_plt)
181 {
182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
183 if (s == NULL
184 || !bfd_set_section_alignment (s, bed->s->log_file_align))
185 return false;
186 htab->sgotplt = s;
187 }
188
189 /* The first bit of the global offset table is the header. */
190 s->size += bed->got_header_size;
191
192 if (bed->want_got_sym)
193 {
194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
195 (or .got.plt) section. We don't do this in the linker script
196 because we don't want to define the symbol if we are not creating
197 a global offset table. */
198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
199 "_GLOBAL_OFFSET_TABLE_");
200 elf_hash_table (info)->hgot = h;
201 if (h == NULL)
202 return false;
203 }
204
205 return true;
206 }
207 \f
208 /* Create a strtab to hold the dynamic symbol names. */
209 static bool
210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
211 {
212 struct elf_link_hash_table *hash_table;
213
214 hash_table = elf_hash_table (info);
215 if (hash_table->dynobj == NULL)
216 {
217 /* We may not set dynobj, an input file holding linker created
218 dynamic sections to abfd, which may be a dynamic object with
219 its own dynamic sections. We need to find a normal input file
220 to hold linker created sections if possible. */
221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
222 {
223 bfd *ibfd;
224 asection *s;
225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
226 if ((ibfd->flags
227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
230 && !((s = ibfd->sections) != NULL
231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
232 {
233 abfd = ibfd;
234 break;
235 }
236 }
237 hash_table->dynobj = abfd;
238 }
239
240 if (hash_table->dynstr == NULL)
241 {
242 hash_table->dynstr = _bfd_elf_strtab_init ();
243 if (hash_table->dynstr == NULL)
244 return false;
245 }
246 return true;
247 }
248
249 /* Create some sections which will be filled in with dynamic linking
250 information. ABFD is an input file which requires dynamic sections
251 to be created. The dynamic sections take up virtual memory space
252 when the final executable is run, so we need to create them before
253 addresses are assigned to the output sections. We work out the
254 actual contents and size of these sections later. */
255
256 bool
257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
258 {
259 flagword flags;
260 asection *s;
261 const struct elf_backend_data *bed;
262 struct elf_link_hash_entry *h;
263
264 if (! is_elf_hash_table (info->hash))
265 return false;
266
267 if (elf_hash_table (info)->dynamic_sections_created)
268 return true;
269
270 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
271 return false;
272
273 abfd = elf_hash_table (info)->dynobj;
274 bed = get_elf_backend_data (abfd);
275
276 flags = bed->dynamic_sec_flags;
277
278 /* A dynamically linked executable has a .interp section, but a
279 shared library does not. */
280 if (bfd_link_executable (info) && !info->nointerp)
281 {
282 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
283 flags | SEC_READONLY);
284 if (s == NULL)
285 return false;
286 }
287
288 /* Create sections to hold version informations. These are removed
289 if they are not needed. */
290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
291 flags | SEC_READONLY);
292 if (s == NULL
293 || !bfd_set_section_alignment (s, bed->s->log_file_align))
294 return false;
295
296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
297 flags | SEC_READONLY);
298 if (s == NULL
299 || !bfd_set_section_alignment (s, 1))
300 return false;
301
302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
303 flags | SEC_READONLY);
304 if (s == NULL
305 || !bfd_set_section_alignment (s, bed->s->log_file_align))
306 return false;
307
308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
309 flags | SEC_READONLY);
310 if (s == NULL
311 || !bfd_set_section_alignment (s, bed->s->log_file_align))
312 return false;
313 elf_hash_table (info)->dynsym = s;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
316 flags | SEC_READONLY);
317 if (s == NULL)
318 return false;
319
320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
321 if (s == NULL
322 || !bfd_set_section_alignment (s, bed->s->log_file_align))
323 return false;
324
325 /* The special symbol _DYNAMIC is always set to the start of the
326 .dynamic section. We could set _DYNAMIC in a linker script, but we
327 only want to define it if we are, in fact, creating a .dynamic
328 section. We don't want to define it if there is no .dynamic
329 section, since on some ELF platforms the start up code examines it
330 to decide how to initialize the process. */
331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
332 elf_hash_table (info)->hdynamic = h;
333 if (h == NULL)
334 return false;
335
336 if (info->emit_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || !bfd_set_section_alignment (s, bed->s->log_file_align))
342 return false;
343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
344 }
345
346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
347 {
348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
349 flags | SEC_READONLY);
350 if (s == NULL
351 || !bfd_set_section_alignment (s, bed->s->log_file_align))
352 return false;
353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
354 4 32-bit words followed by variable count of 64-bit words, then
355 variable count of 32-bit words. */
356 if (bed->s->arch_size == 64)
357 elf_section_data (s)->this_hdr.sh_entsize = 0;
358 else
359 elf_section_data (s)->this_hdr.sh_entsize = 4;
360 }
361
362 /* Let the backend create the rest of the sections. This lets the
363 backend set the right flags. The backend will normally create
364 the .got and .plt sections. */
365 if (bed->elf_backend_create_dynamic_sections == NULL
366 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
367 return false;
368
369 elf_hash_table (info)->dynamic_sections_created = true;
370
371 return true;
372 }
373
374 /* Create dynamic sections when linking against a dynamic object. */
375
376 bool
377 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
378 {
379 flagword flags, pltflags;
380 struct elf_link_hash_entry *h;
381 asection *s;
382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
383 struct elf_link_hash_table *htab = elf_hash_table (info);
384
385 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
386 .rel[a].bss sections. */
387 flags = bed->dynamic_sec_flags;
388
389 pltflags = flags;
390 if (bed->plt_not_loaded)
391 /* We do not clear SEC_ALLOC here because we still want the OS to
392 allocate space for the section; it's just that there's nothing
393 to read in from the object file. */
394 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
395 else
396 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
397 if (bed->plt_readonly)
398 pltflags |= SEC_READONLY;
399
400 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
401 if (s == NULL
402 || !bfd_set_section_alignment (s, bed->plt_alignment))
403 return false;
404 htab->splt = s;
405
406 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
407 .plt section. */
408 if (bed->want_plt_sym)
409 {
410 h = _bfd_elf_define_linkage_sym (abfd, info, s,
411 "_PROCEDURE_LINKAGE_TABLE_");
412 elf_hash_table (info)->hplt = h;
413 if (h == NULL)
414 return false;
415 }
416
417 s = bfd_make_section_anyway_with_flags (abfd,
418 (bed->rela_plts_and_copies_p
419 ? ".rela.plt" : ".rel.plt"),
420 flags | SEC_READONLY);
421 if (s == NULL
422 || !bfd_set_section_alignment (s, bed->s->log_file_align))
423 return false;
424 htab->srelplt = s;
425
426 if (! _bfd_elf_create_got_section (abfd, info))
427 return false;
428
429 if (bed->want_dynbss)
430 {
431 /* The .dynbss section is a place to put symbols which are defined
432 by dynamic objects, are referenced by regular objects, and are
433 not functions. We must allocate space for them in the process
434 image and use a R_*_COPY reloc to tell the dynamic linker to
435 initialize them at run time. The linker script puts the .dynbss
436 section into the .bss section of the final image. */
437 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
438 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (s == NULL)
440 return false;
441 htab->sdynbss = s;
442
443 if (bed->want_dynrelro)
444 {
445 /* Similarly, but for symbols that were originally in read-only
446 sections. This section doesn't really need to have contents,
447 but make it like other .data.rel.ro sections. */
448 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
449 flags);
450 if (s == NULL)
451 return false;
452 htab->sdynrelro = s;
453 }
454
455 /* The .rel[a].bss section holds copy relocs. This section is not
456 normally needed. We need to create it here, though, so that the
457 linker will map it to an output section. We can't just create it
458 only if we need it, because we will not know whether we need it
459 until we have seen all the input files, and the first time the
460 main linker code calls BFD after examining all the input files
461 (size_dynamic_sections) the input sections have already been
462 mapped to the output sections. If the section turns out not to
463 be needed, we can discard it later. We will never need this
464 section when generating a shared object, since they do not use
465 copy relocs. */
466 if (bfd_link_executable (info))
467 {
468 s = bfd_make_section_anyway_with_flags (abfd,
469 (bed->rela_plts_and_copies_p
470 ? ".rela.bss" : ".rel.bss"),
471 flags | SEC_READONLY);
472 if (s == NULL
473 || !bfd_set_section_alignment (s, bed->s->log_file_align))
474 return false;
475 htab->srelbss = s;
476
477 if (bed->want_dynrelro)
478 {
479 s = (bfd_make_section_anyway_with_flags
480 (abfd, (bed->rela_plts_and_copies_p
481 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
482 flags | SEC_READONLY));
483 if (s == NULL
484 || !bfd_set_section_alignment (s, bed->s->log_file_align))
485 return false;
486 htab->sreldynrelro = s;
487 }
488 }
489 }
490
491 return true;
492 }
493 \f
494 /* Record a new dynamic symbol. We record the dynamic symbols as we
495 read the input files, since we need to have a list of all of them
496 before we can determine the final sizes of the output sections.
497 Note that we may actually call this function even though we are not
498 going to output any dynamic symbols; in some cases we know that a
499 symbol should be in the dynamic symbol table, but only if there is
500 one. */
501
502 bool
503 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
504 struct elf_link_hash_entry *h)
505 {
506 if (h->dynindx == -1)
507 {
508 struct elf_strtab_hash *dynstr;
509 char *p;
510 const char *name;
511 size_t indx;
512
513 if (h->root.type == bfd_link_hash_defined
514 || h->root.type == bfd_link_hash_defweak)
515 {
516 /* An IR symbol should not be made dynamic. */
517 if (h->root.u.def.section != NULL
518 && h->root.u.def.section->owner != NULL
519 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
520 return true;
521 }
522
523 /* XXX: The ABI draft says the linker must turn hidden and
524 internal symbols into STB_LOCAL symbols when producing the
525 DSO. However, if ld.so honors st_other in the dynamic table,
526 this would not be necessary. */
527 switch (ELF_ST_VISIBILITY (h->other))
528 {
529 case STV_INTERNAL:
530 case STV_HIDDEN:
531 if (h->root.type != bfd_link_hash_undefined
532 && h->root.type != bfd_link_hash_undefweak)
533 {
534 h->forced_local = 1;
535 if (!elf_hash_table (info)->is_relocatable_executable
536 || ((h->root.type == bfd_link_hash_defined
537 || h->root.type == bfd_link_hash_defweak)
538 && h->root.u.def.section->owner != NULL
539 && h->root.u.def.section->owner->no_export)
540 || (h->root.type == bfd_link_hash_common
541 && h->root.u.c.p->section->owner != NULL
542 && h->root.u.c.p->section->owner->no_export))
543 return true;
544 }
545
546 default:
547 break;
548 }
549
550 h->dynindx = elf_hash_table (info)->dynsymcount;
551 ++elf_hash_table (info)->dynsymcount;
552
553 dynstr = elf_hash_table (info)->dynstr;
554 if (dynstr == NULL)
555 {
556 /* Create a strtab to hold the dynamic symbol names. */
557 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
558 if (dynstr == NULL)
559 return false;
560 }
561
562 /* We don't put any version information in the dynamic string
563 table. */
564 name = h->root.root.string;
565 p = strchr (name, ELF_VER_CHR);
566 if (p != NULL)
567 /* We know that the p points into writable memory. In fact,
568 there are only a few symbols that have read-only names, being
569 those like _GLOBAL_OFFSET_TABLE_ that are created specially
570 by the backends. Most symbols will have names pointing into
571 an ELF string table read from a file, or to objalloc memory. */
572 *p = 0;
573
574 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
575
576 if (p != NULL)
577 *p = ELF_VER_CHR;
578
579 if (indx == (size_t) -1)
580 return false;
581 h->dynstr_index = indx;
582 }
583
584 return true;
585 }
586 \f
587 /* Mark a symbol dynamic. */
588
589 static void
590 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
591 struct elf_link_hash_entry *h,
592 Elf_Internal_Sym *sym)
593 {
594 struct bfd_elf_dynamic_list *d = info->dynamic_list;
595
596 /* It may be called more than once on the same H. */
597 if(h->dynamic || bfd_link_relocatable (info))
598 return;
599
600 if ((info->dynamic_data
601 && (h->type == STT_OBJECT
602 || h->type == STT_COMMON
603 || (sym != NULL
604 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
605 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
606 || (d != NULL
607 && h->non_elf
608 && (*d->match) (&d->head, NULL, h->root.root.string)))
609 {
610 h->dynamic = 1;
611 /* NB: If a symbol is made dynamic by --dynamic-list, it has
612 non-IR reference. */
613 h->root.non_ir_ref_dynamic = 1;
614 }
615 }
616
617 /* Record an assignment to a symbol made by a linker script. We need
618 this in case some dynamic object refers to this symbol. */
619
620 bool
621 bfd_elf_record_link_assignment (bfd *output_bfd,
622 struct bfd_link_info *info,
623 const char *name,
624 bool provide,
625 bool hidden)
626 {
627 struct elf_link_hash_entry *h, *hv;
628 struct elf_link_hash_table *htab;
629 const struct elf_backend_data *bed;
630
631 if (!is_elf_hash_table (info->hash))
632 return true;
633
634 htab = elf_hash_table (info);
635 h = elf_link_hash_lookup (htab, name, !provide, true, false);
636 if (h == NULL)
637 return provide;
638
639 if (h->root.type == bfd_link_hash_warning)
640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
641
642 if (h->versioned == unknown)
643 {
644 /* Set versioned if symbol version is unknown. */
645 char *version = strrchr (name, ELF_VER_CHR);
646 if (version)
647 {
648 if (version > name && version[-1] != ELF_VER_CHR)
649 h->versioned = versioned_hidden;
650 else
651 h->versioned = versioned;
652 }
653 }
654
655 /* Symbols defined in a linker script but not referenced anywhere
656 else will have non_elf set. */
657 if (h->non_elf)
658 {
659 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
660 h->non_elf = 0;
661 }
662
663 switch (h->root.type)
664 {
665 case bfd_link_hash_defined:
666 case bfd_link_hash_defweak:
667 case bfd_link_hash_common:
668 break;
669 case bfd_link_hash_undefweak:
670 case bfd_link_hash_undefined:
671 /* Since we're defining the symbol, don't let it seem to have not
672 been defined. record_dynamic_symbol and size_dynamic_sections
673 may depend on this. */
674 h->root.type = bfd_link_hash_new;
675 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
676 bfd_link_repair_undef_list (&htab->root);
677 break;
678 case bfd_link_hash_new:
679 break;
680 case bfd_link_hash_indirect:
681 /* We had a versioned symbol in a dynamic library. We make the
682 the versioned symbol point to this one. */
683 bed = get_elf_backend_data (output_bfd);
684 hv = h;
685 while (hv->root.type == bfd_link_hash_indirect
686 || hv->root.type == bfd_link_hash_warning)
687 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
688 /* We don't need to update h->root.u since linker will set them
689 later. */
690 h->root.type = bfd_link_hash_undefined;
691 hv->root.type = bfd_link_hash_indirect;
692 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
693 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
694 break;
695 default:
696 BFD_FAIL ();
697 return false;
698 }
699
700 /* If this symbol is being provided by the linker script, and it is
701 currently defined by a dynamic object, but not by a regular
702 object, then mark it as undefined so that the generic linker will
703 force the correct value. */
704 if (provide
705 && h->def_dynamic
706 && !h->def_regular)
707 h->root.type = bfd_link_hash_undefined;
708
709 /* If this symbol is currently defined by a dynamic object, but not
710 by a regular object, then clear out any version information because
711 the symbol will not be associated with the dynamic object any
712 more. */
713 if (h->def_dynamic && !h->def_regular)
714 h->verinfo.verdef = NULL;
715
716 /* Make sure this symbol is not garbage collected. */
717 h->mark = 1;
718
719 h->def_regular = 1;
720
721 if (hidden)
722 {
723 bed = get_elf_backend_data (output_bfd);
724 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
725 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
726 (*bed->elf_backend_hide_symbol) (info, h, true);
727 }
728
729 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
730 and executables. */
731 if (!bfd_link_relocatable (info)
732 && h->dynindx != -1
733 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
734 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
735 h->forced_local = 1;
736
737 if ((h->def_dynamic
738 || h->ref_dynamic
739 || bfd_link_dll (info)
740 || elf_hash_table (info)->is_relocatable_executable)
741 && !h->forced_local
742 && h->dynindx == -1)
743 {
744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
745 return false;
746
747 /* If this is a weak defined symbol, and we know a corresponding
748 real symbol from the same dynamic object, make sure the real
749 symbol is also made into a dynamic symbol. */
750 if (h->is_weakalias)
751 {
752 struct elf_link_hash_entry *def = weakdef (h);
753
754 if (def->dynindx == -1
755 && !bfd_elf_link_record_dynamic_symbol (info, def))
756 return false;
757 }
758 }
759
760 return true;
761 }
762
763 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
764 success, and 2 on a failure caused by attempting to record a symbol
765 in a discarded section, eg. a discarded link-once section symbol. */
766
767 int
768 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
769 bfd *input_bfd,
770 long input_indx)
771 {
772 size_t amt;
773 struct elf_link_local_dynamic_entry *entry;
774 struct elf_link_hash_table *eht;
775 struct elf_strtab_hash *dynstr;
776 size_t dynstr_index;
777 char *name;
778 Elf_External_Sym_Shndx eshndx;
779 char esym[sizeof (Elf64_External_Sym)];
780
781 if (! is_elf_hash_table (info->hash))
782 return 0;
783
784 /* See if the entry exists already. */
785 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
786 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
787 return 1;
788
789 amt = sizeof (*entry);
790 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
791 if (entry == NULL)
792 return 0;
793
794 /* Go find the symbol, so that we can find it's name. */
795 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
796 1, input_indx, &entry->isym, esym, &eshndx))
797 {
798 bfd_release (input_bfd, entry);
799 return 0;
800 }
801
802 if (entry->isym.st_shndx != SHN_UNDEF
803 && entry->isym.st_shndx < SHN_LORESERVE)
804 {
805 asection *s;
806
807 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
808 if (s == NULL || bfd_is_abs_section (s->output_section))
809 {
810 /* We can still bfd_release here as nothing has done another
811 bfd_alloc. We can't do this later in this function. */
812 bfd_release (input_bfd, entry);
813 return 2;
814 }
815 }
816
817 name = (bfd_elf_string_from_elf_section
818 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
819 entry->isym.st_name));
820
821 dynstr = elf_hash_table (info)->dynstr;
822 if (dynstr == NULL)
823 {
824 /* Create a strtab to hold the dynamic symbol names. */
825 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
826 if (dynstr == NULL)
827 return 0;
828 }
829
830 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
831 if (dynstr_index == (size_t) -1)
832 return 0;
833 entry->isym.st_name = dynstr_index;
834
835 eht = elf_hash_table (info);
836
837 entry->next = eht->dynlocal;
838 eht->dynlocal = entry;
839 entry->input_bfd = input_bfd;
840 entry->input_indx = input_indx;
841 eht->dynsymcount++;
842
843 /* Whatever binding the symbol had before, it's now local. */
844 entry->isym.st_info
845 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
846
847 /* The dynindx will be set at the end of size_dynamic_sections. */
848
849 return 1;
850 }
851
852 /* Return the dynindex of a local dynamic symbol. */
853
854 long
855 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
856 bfd *input_bfd,
857 long input_indx)
858 {
859 struct elf_link_local_dynamic_entry *e;
860
861 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
862 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
863 return e->dynindx;
864 return -1;
865 }
866
867 /* This function is used to renumber the dynamic symbols, if some of
868 them are removed because they are marked as local. This is called
869 via elf_link_hash_traverse. */
870
871 static bool
872 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
873 void *data)
874 {
875 size_t *count = (size_t *) data;
876
877 if (h->forced_local)
878 return true;
879
880 if (h->dynindx != -1)
881 h->dynindx = ++(*count);
882
883 return true;
884 }
885
886
887 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
888 STB_LOCAL binding. */
889
890 static bool
891 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
892 void *data)
893 {
894 size_t *count = (size_t *) data;
895
896 if (!h->forced_local)
897 return true;
898
899 if (h->dynindx != -1)
900 h->dynindx = ++(*count);
901
902 return true;
903 }
904
905 /* Return true if the dynamic symbol for a given section should be
906 omitted when creating a shared library. */
907 bool
908 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
909 struct bfd_link_info *info,
910 asection *p)
911 {
912 struct elf_link_hash_table *htab;
913 asection *ip;
914
915 switch (elf_section_data (p)->this_hdr.sh_type)
916 {
917 case SHT_PROGBITS:
918 case SHT_NOBITS:
919 /* If sh_type is yet undecided, assume it could be
920 SHT_PROGBITS/SHT_NOBITS. */
921 case SHT_NULL:
922 htab = elf_hash_table (info);
923 if (htab->text_index_section != NULL)
924 return p != htab->text_index_section && p != htab->data_index_section;
925
926 return (htab->dynobj != NULL
927 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
928 && ip->output_section == p);
929
930 /* There shouldn't be section relative relocations
931 against any other section. */
932 default:
933 return true;
934 }
935 }
936
937 bool
938 _bfd_elf_omit_section_dynsym_all
939 (bfd *output_bfd ATTRIBUTE_UNUSED,
940 struct bfd_link_info *info ATTRIBUTE_UNUSED,
941 asection *p ATTRIBUTE_UNUSED)
942 {
943 return true;
944 }
945
946 /* Assign dynsym indices. In a shared library we generate a section
947 symbol for each output section, which come first. Next come symbols
948 which have been forced to local binding. Then all of the back-end
949 allocated local dynamic syms, followed by the rest of the global
950 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
951 (This prevents the early call before elf_backend_init_index_section
952 and strip_excluded_output_sections setting dynindx for sections
953 that are stripped.) */
954
955 static unsigned long
956 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
957 struct bfd_link_info *info,
958 unsigned long *section_sym_count)
959 {
960 unsigned long dynsymcount = 0;
961 bool do_sec = section_sym_count != NULL;
962
963 if (bfd_link_pic (info)
964 || elf_hash_table (info)->is_relocatable_executable)
965 {
966 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
967 asection *p;
968 for (p = output_bfd->sections; p ; p = p->next)
969 if ((p->flags & SEC_EXCLUDE) == 0
970 && (p->flags & SEC_ALLOC) != 0
971 && elf_hash_table (info)->dynamic_relocs
972 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
973 {
974 ++dynsymcount;
975 if (do_sec)
976 elf_section_data (p)->dynindx = dynsymcount;
977 }
978 else if (do_sec)
979 elf_section_data (p)->dynindx = 0;
980 }
981 if (do_sec)
982 *section_sym_count = dynsymcount;
983
984 elf_link_hash_traverse (elf_hash_table (info),
985 elf_link_renumber_local_hash_table_dynsyms,
986 &dynsymcount);
987
988 if (elf_hash_table (info)->dynlocal)
989 {
990 struct elf_link_local_dynamic_entry *p;
991 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
992 p->dynindx = ++dynsymcount;
993 }
994 elf_hash_table (info)->local_dynsymcount = dynsymcount;
995
996 elf_link_hash_traverse (elf_hash_table (info),
997 elf_link_renumber_hash_table_dynsyms,
998 &dynsymcount);
999
1000 /* There is an unused NULL entry at the head of the table which we
1001 must account for in our count even if the table is empty since it
1002 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1003 .dynamic section. */
1004 dynsymcount++;
1005
1006 elf_hash_table (info)->dynsymcount = dynsymcount;
1007 return dynsymcount;
1008 }
1009
1010 /* Merge st_other field. */
1011
1012 static void
1013 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1014 unsigned int st_other, asection *sec,
1015 bool definition, bool dynamic)
1016 {
1017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1018
1019 /* If st_other has a processor-specific meaning, specific
1020 code might be needed here. */
1021 if (bed->elf_backend_merge_symbol_attribute)
1022 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1023 dynamic);
1024
1025 if (!dynamic)
1026 {
1027 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1028 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1029
1030 /* Keep the most constraining visibility. Leave the remainder
1031 of the st_other field to elf_backend_merge_symbol_attribute. */
1032 if (symvis - 1 < hvis - 1)
1033 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1034 }
1035 else if (definition
1036 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1037 && (sec->flags & SEC_READONLY) == 0)
1038 h->protected_def = 1;
1039 }
1040
1041 /* This function is called when we want to merge a new symbol with an
1042 existing symbol. It handles the various cases which arise when we
1043 find a definition in a dynamic object, or when there is already a
1044 definition in a dynamic object. The new symbol is described by
1045 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1046 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1047 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1048 of an old common symbol. We set OVERRIDE if the old symbol is
1049 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1050 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1051 to change. By OK to change, we mean that we shouldn't warn if the
1052 type or size does change. */
1053
1054 static bool
1055 _bfd_elf_merge_symbol (bfd *abfd,
1056 struct bfd_link_info *info,
1057 const char *name,
1058 Elf_Internal_Sym *sym,
1059 asection **psec,
1060 bfd_vma *pvalue,
1061 struct elf_link_hash_entry **sym_hash,
1062 bfd **poldbfd,
1063 bool *pold_weak,
1064 unsigned int *pold_alignment,
1065 bool *skip,
1066 bfd **override,
1067 bool *type_change_ok,
1068 bool *size_change_ok,
1069 bool *matched)
1070 {
1071 asection *sec, *oldsec;
1072 struct elf_link_hash_entry *h;
1073 struct elf_link_hash_entry *hi;
1074 struct elf_link_hash_entry *flip;
1075 int bind;
1076 bfd *oldbfd;
1077 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1078 bool newweak, oldweak, newfunc, oldfunc;
1079 const struct elf_backend_data *bed;
1080 char *new_version;
1081 bool default_sym = *matched;
1082
1083 *skip = false;
1084 *override = NULL;
1085
1086 sec = *psec;
1087 bind = ELF_ST_BIND (sym->st_info);
1088
1089 if (! bfd_is_und_section (sec))
1090 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
1091 else
1092 h = ((struct elf_link_hash_entry *)
1093 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
1094 if (h == NULL)
1095 return false;
1096 *sym_hash = h;
1097
1098 bed = get_elf_backend_data (abfd);
1099
1100 /* NEW_VERSION is the symbol version of the new symbol. */
1101 if (h->versioned != unversioned)
1102 {
1103 /* Symbol version is unknown or versioned. */
1104 new_version = strrchr (name, ELF_VER_CHR);
1105 if (new_version)
1106 {
1107 if (h->versioned == unknown)
1108 {
1109 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1110 h->versioned = versioned_hidden;
1111 else
1112 h->versioned = versioned;
1113 }
1114 new_version += 1;
1115 if (new_version[0] == '\0')
1116 new_version = NULL;
1117 }
1118 else
1119 h->versioned = unversioned;
1120 }
1121 else
1122 new_version = NULL;
1123
1124 /* For merging, we only care about real symbols. But we need to make
1125 sure that indirect symbol dynamic flags are updated. */
1126 hi = h;
1127 while (h->root.type == bfd_link_hash_indirect
1128 || h->root.type == bfd_link_hash_warning)
1129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1130
1131 if (!*matched)
1132 {
1133 if (hi == h || h->root.type == bfd_link_hash_new)
1134 *matched = true;
1135 else
1136 {
1137 /* OLD_HIDDEN is true if the existing symbol is only visible
1138 to the symbol with the same symbol version. NEW_HIDDEN is
1139 true if the new symbol is only visible to the symbol with
1140 the same symbol version. */
1141 bool old_hidden = h->versioned == versioned_hidden;
1142 bool new_hidden = hi->versioned == versioned_hidden;
1143 if (!old_hidden && !new_hidden)
1144 /* The new symbol matches the existing symbol if both
1145 aren't hidden. */
1146 *matched = true;
1147 else
1148 {
1149 /* OLD_VERSION is the symbol version of the existing
1150 symbol. */
1151 char *old_version;
1152
1153 if (h->versioned >= versioned)
1154 old_version = strrchr (h->root.root.string,
1155 ELF_VER_CHR) + 1;
1156 else
1157 old_version = NULL;
1158
1159 /* The new symbol matches the existing symbol if they
1160 have the same symbol version. */
1161 *matched = (old_version == new_version
1162 || (old_version != NULL
1163 && new_version != NULL
1164 && strcmp (old_version, new_version) == 0));
1165 }
1166 }
1167 }
1168
1169 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1170 existing symbol. */
1171
1172 oldbfd = NULL;
1173 oldsec = NULL;
1174 switch (h->root.type)
1175 {
1176 default:
1177 break;
1178
1179 case bfd_link_hash_undefined:
1180 case bfd_link_hash_undefweak:
1181 oldbfd = h->root.u.undef.abfd;
1182 break;
1183
1184 case bfd_link_hash_defined:
1185 case bfd_link_hash_defweak:
1186 oldbfd = h->root.u.def.section->owner;
1187 oldsec = h->root.u.def.section;
1188 break;
1189
1190 case bfd_link_hash_common:
1191 oldbfd = h->root.u.c.p->section->owner;
1192 oldsec = h->root.u.c.p->section;
1193 if (pold_alignment)
1194 *pold_alignment = h->root.u.c.p->alignment_power;
1195 break;
1196 }
1197 if (poldbfd && *poldbfd == NULL)
1198 *poldbfd = oldbfd;
1199
1200 /* Differentiate strong and weak symbols. */
1201 newweak = bind == STB_WEAK;
1202 oldweak = (h->root.type == bfd_link_hash_defweak
1203 || h->root.type == bfd_link_hash_undefweak);
1204 if (pold_weak)
1205 *pold_weak = oldweak;
1206
1207 /* We have to check it for every instance since the first few may be
1208 references and not all compilers emit symbol type for undefined
1209 symbols. */
1210 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1211
1212 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1213 respectively, is from a dynamic object. */
1214
1215 newdyn = (abfd->flags & DYNAMIC) != 0;
1216
1217 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1218 syms and defined syms in dynamic libraries respectively.
1219 ref_dynamic on the other hand can be set for a symbol defined in
1220 a dynamic library, and def_dynamic may not be set; When the
1221 definition in a dynamic lib is overridden by a definition in the
1222 executable use of the symbol in the dynamic lib becomes a
1223 reference to the executable symbol. */
1224 if (newdyn)
1225 {
1226 if (bfd_is_und_section (sec))
1227 {
1228 if (bind != STB_WEAK)
1229 {
1230 h->ref_dynamic_nonweak = 1;
1231 hi->ref_dynamic_nonweak = 1;
1232 }
1233 }
1234 else
1235 {
1236 /* Update the existing symbol only if they match. */
1237 if (*matched)
1238 h->dynamic_def = 1;
1239 hi->dynamic_def = 1;
1240 }
1241 }
1242
1243 /* If we just created the symbol, mark it as being an ELF symbol.
1244 Other than that, there is nothing to do--there is no merge issue
1245 with a newly defined symbol--so we just return. */
1246
1247 if (h->root.type == bfd_link_hash_new)
1248 {
1249 h->non_elf = 0;
1250 return true;
1251 }
1252
1253 /* In cases involving weak versioned symbols, we may wind up trying
1254 to merge a symbol with itself. Catch that here, to avoid the
1255 confusion that results if we try to override a symbol with
1256 itself. The additional tests catch cases like
1257 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1258 dynamic object, which we do want to handle here. */
1259 if (abfd == oldbfd
1260 && (newweak || oldweak)
1261 && ((abfd->flags & DYNAMIC) == 0
1262 || !h->def_regular))
1263 return true;
1264
1265 olddyn = false;
1266 if (oldbfd != NULL)
1267 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1268 else if (oldsec != NULL)
1269 {
1270 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1271 indices used by MIPS ELF. */
1272 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1273 }
1274
1275 /* Handle a case where plugin_notice won't be called and thus won't
1276 set the non_ir_ref flags on the first pass over symbols. */
1277 if (oldbfd != NULL
1278 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1279 && newdyn != olddyn)
1280 {
1281 h->root.non_ir_ref_dynamic = true;
1282 hi->root.non_ir_ref_dynamic = true;
1283 }
1284
1285 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1286 respectively, appear to be a definition rather than reference. */
1287
1288 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1289
1290 olddef = (h->root.type != bfd_link_hash_undefined
1291 && h->root.type != bfd_link_hash_undefweak
1292 && h->root.type != bfd_link_hash_common);
1293
1294 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1295 respectively, appear to be a function. */
1296
1297 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1298 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1299
1300 oldfunc = (h->type != STT_NOTYPE
1301 && bed->is_function_type (h->type));
1302
1303 if (!(newfunc && oldfunc)
1304 && ELF_ST_TYPE (sym->st_info) != h->type
1305 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1306 && h->type != STT_NOTYPE
1307 && (newdef || bfd_is_com_section (sec))
1308 && (olddef || h->root.type == bfd_link_hash_common))
1309 {
1310 /* If creating a default indirect symbol ("foo" or "foo@") from
1311 a dynamic versioned definition ("foo@@") skip doing so if
1312 there is an existing regular definition with a different
1313 type. We don't want, for example, a "time" variable in the
1314 executable overriding a "time" function in a shared library. */
1315 if (newdyn
1316 && !olddyn)
1317 {
1318 *skip = true;
1319 return true;
1320 }
1321
1322 /* When adding a symbol from a regular object file after we have
1323 created indirect symbols, undo the indirection and any
1324 dynamic state. */
1325 if (hi != h
1326 && !newdyn
1327 && olddyn)
1328 {
1329 h = hi;
1330 (*bed->elf_backend_hide_symbol) (info, h, true);
1331 h->forced_local = 0;
1332 h->ref_dynamic = 0;
1333 h->def_dynamic = 0;
1334 h->dynamic_def = 0;
1335 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1336 {
1337 h->root.type = bfd_link_hash_undefined;
1338 h->root.u.undef.abfd = abfd;
1339 }
1340 else
1341 {
1342 h->root.type = bfd_link_hash_new;
1343 h->root.u.undef.abfd = NULL;
1344 }
1345 return true;
1346 }
1347 }
1348
1349 /* Check TLS symbols. We don't check undefined symbols introduced
1350 by "ld -u" which have no type (and oldbfd NULL), and we don't
1351 check symbols from plugins because they also have no type. */
1352 if (oldbfd != NULL
1353 && (oldbfd->flags & BFD_PLUGIN) == 0
1354 && (abfd->flags & BFD_PLUGIN) == 0
1355 && ELF_ST_TYPE (sym->st_info) != h->type
1356 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1357 {
1358 bfd *ntbfd, *tbfd;
1359 bool ntdef, tdef;
1360 asection *ntsec, *tsec;
1361
1362 if (h->type == STT_TLS)
1363 {
1364 ntbfd = abfd;
1365 ntsec = sec;
1366 ntdef = newdef;
1367 tbfd = oldbfd;
1368 tsec = oldsec;
1369 tdef = olddef;
1370 }
1371 else
1372 {
1373 ntbfd = oldbfd;
1374 ntsec = oldsec;
1375 ntdef = olddef;
1376 tbfd = abfd;
1377 tsec = sec;
1378 tdef = newdef;
1379 }
1380
1381 if (tdef && ntdef)
1382 _bfd_error_handler
1383 /* xgettext:c-format */
1384 (_("%s: TLS definition in %pB section %pA "
1385 "mismatches non-TLS definition in %pB section %pA"),
1386 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1387 else if (!tdef && !ntdef)
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%s: TLS reference in %pB "
1391 "mismatches non-TLS reference in %pB"),
1392 h->root.root.string, tbfd, ntbfd);
1393 else if (tdef)
1394 _bfd_error_handler
1395 /* xgettext:c-format */
1396 (_("%s: TLS definition in %pB section %pA "
1397 "mismatches non-TLS reference in %pB"),
1398 h->root.root.string, tbfd, tsec, ntbfd);
1399 else
1400 _bfd_error_handler
1401 /* xgettext:c-format */
1402 (_("%s: TLS reference in %pB "
1403 "mismatches non-TLS definition in %pB section %pA"),
1404 h->root.root.string, tbfd, ntbfd, ntsec);
1405
1406 bfd_set_error (bfd_error_bad_value);
1407 return false;
1408 }
1409
1410 /* If the old symbol has non-default visibility, we ignore the new
1411 definition from a dynamic object. */
1412 if (newdyn
1413 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1414 && !bfd_is_und_section (sec))
1415 {
1416 *skip = true;
1417 /* Make sure this symbol is dynamic. */
1418 h->ref_dynamic = 1;
1419 hi->ref_dynamic = 1;
1420 /* A protected symbol has external availability. Make sure it is
1421 recorded as dynamic.
1422
1423 FIXME: Should we check type and size for protected symbol? */
1424 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1425 return bfd_elf_link_record_dynamic_symbol (info, h);
1426 else
1427 return true;
1428 }
1429 else if (!newdyn
1430 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1431 && h->def_dynamic)
1432 {
1433 /* If the new symbol with non-default visibility comes from a
1434 relocatable file and the old definition comes from a dynamic
1435 object, we remove the old definition. */
1436 if (hi->root.type == bfd_link_hash_indirect)
1437 {
1438 /* Handle the case where the old dynamic definition is
1439 default versioned. We need to copy the symbol info from
1440 the symbol with default version to the normal one if it
1441 was referenced before. */
1442 if (h->ref_regular)
1443 {
1444 hi->root.type = h->root.type;
1445 h->root.type = bfd_link_hash_indirect;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1447
1448 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1449 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1450 {
1451 /* If the new symbol is hidden or internal, completely undo
1452 any dynamic link state. */
1453 (*bed->elf_backend_hide_symbol) (info, h, true);
1454 h->forced_local = 0;
1455 h->ref_dynamic = 0;
1456 }
1457 else
1458 h->ref_dynamic = 1;
1459
1460 h->def_dynamic = 0;
1461 /* FIXME: Should we check type and size for protected symbol? */
1462 h->size = 0;
1463 h->type = 0;
1464
1465 h = hi;
1466 }
1467 else
1468 h = hi;
1469 }
1470
1471 /* If the old symbol was undefined before, then it will still be
1472 on the undefs list. If the new symbol is undefined or
1473 common, we can't make it bfd_link_hash_new here, because new
1474 undefined or common symbols will be added to the undefs list
1475 by _bfd_generic_link_add_one_symbol. Symbols may not be
1476 added twice to the undefs list. Also, if the new symbol is
1477 undefweak then we don't want to lose the strong undef. */
1478 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1479 {
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = abfd;
1482 }
1483 else
1484 {
1485 h->root.type = bfd_link_hash_new;
1486 h->root.u.undef.abfd = NULL;
1487 }
1488
1489 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1490 {
1491 /* If the new symbol is hidden or internal, completely undo
1492 any dynamic link state. */
1493 (*bed->elf_backend_hide_symbol) (info, h, true);
1494 h->forced_local = 0;
1495 h->ref_dynamic = 0;
1496 }
1497 else
1498 h->ref_dynamic = 1;
1499 h->def_dynamic = 0;
1500 /* FIXME: Should we check type and size for protected symbol? */
1501 h->size = 0;
1502 h->type = 0;
1503 return true;
1504 }
1505
1506 /* If a new weak symbol definition comes from a regular file and the
1507 old symbol comes from a dynamic library, we treat the new one as
1508 strong. Similarly, an old weak symbol definition from a regular
1509 file is treated as strong when the new symbol comes from a dynamic
1510 library. Further, an old weak symbol from a dynamic library is
1511 treated as strong if the new symbol is from a dynamic library.
1512 This reflects the way glibc's ld.so works.
1513
1514 Also allow a weak symbol to override a linker script symbol
1515 defined by an early pass over the script. This is done so the
1516 linker knows the symbol is defined in an object file, for the
1517 DEFINED script function.
1518
1519 Do this before setting *type_change_ok or *size_change_ok so that
1520 we warn properly when dynamic library symbols are overridden. */
1521
1522 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1523 newweak = false;
1524 if (olddef && newdyn)
1525 oldweak = false;
1526
1527 /* Allow changes between different types of function symbol. */
1528 if (newfunc && oldfunc)
1529 *type_change_ok = true;
1530
1531 /* It's OK to change the type if either the existing symbol or the
1532 new symbol is weak. A type change is also OK if the old symbol
1533 is undefined and the new symbol is defined. */
1534
1535 if (oldweak
1536 || newweak
1537 || (newdef
1538 && h->root.type == bfd_link_hash_undefined))
1539 *type_change_ok = true;
1540
1541 /* It's OK to change the size if either the existing symbol or the
1542 new symbol is weak, or if the old symbol is undefined. */
1543
1544 if (*type_change_ok
1545 || h->root.type == bfd_link_hash_undefined)
1546 *size_change_ok = true;
1547
1548 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1549 symbol, respectively, appears to be a common symbol in a dynamic
1550 object. If a symbol appears in an uninitialized section, and is
1551 not weak, and is not a function, then it may be a common symbol
1552 which was resolved when the dynamic object was created. We want
1553 to treat such symbols specially, because they raise special
1554 considerations when setting the symbol size: if the symbol
1555 appears as a common symbol in a regular object, and the size in
1556 the regular object is larger, we must make sure that we use the
1557 larger size. This problematic case can always be avoided in C,
1558 but it must be handled correctly when using Fortran shared
1559 libraries.
1560
1561 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1562 likewise for OLDDYNCOMMON and OLDDEF.
1563
1564 Note that this test is just a heuristic, and that it is quite
1565 possible to have an uninitialized symbol in a shared object which
1566 is really a definition, rather than a common symbol. This could
1567 lead to some minor confusion when the symbol really is a common
1568 symbol in some regular object. However, I think it will be
1569 harmless. */
1570
1571 if (newdyn
1572 && newdef
1573 && !newweak
1574 && (sec->flags & SEC_ALLOC) != 0
1575 && (sec->flags & SEC_LOAD) == 0
1576 && sym->st_size > 0
1577 && !newfunc)
1578 newdyncommon = true;
1579 else
1580 newdyncommon = false;
1581
1582 if (olddyn
1583 && olddef
1584 && h->root.type == bfd_link_hash_defined
1585 && h->def_dynamic
1586 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1587 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1588 && h->size > 0
1589 && !oldfunc)
1590 olddyncommon = true;
1591 else
1592 olddyncommon = false;
1593
1594 /* We now know everything about the old and new symbols. We ask the
1595 backend to check if we can merge them. */
1596 if (bed->merge_symbol != NULL)
1597 {
1598 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1599 return false;
1600 sec = *psec;
1601 }
1602
1603 /* There are multiple definitions of a normal symbol. Skip the
1604 default symbol as well as definition from an IR object. */
1605 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1606 && !default_sym && h->def_regular
1607 && !(oldbfd != NULL
1608 && (oldbfd->flags & BFD_PLUGIN) != 0
1609 && (abfd->flags & BFD_PLUGIN) == 0))
1610 {
1611 /* Handle a multiple definition. */
1612 (*info->callbacks->multiple_definition) (info, &h->root,
1613 abfd, sec, *pvalue);
1614 *skip = true;
1615 return true;
1616 }
1617
1618 /* If both the old and the new symbols look like common symbols in a
1619 dynamic object, set the size of the symbol to the larger of the
1620 two. */
1621
1622 if (olddyncommon
1623 && newdyncommon
1624 && sym->st_size != h->size)
1625 {
1626 /* Since we think we have two common symbols, issue a multiple
1627 common warning if desired. Note that we only warn if the
1628 size is different. If the size is the same, we simply let
1629 the old symbol override the new one as normally happens with
1630 symbols defined in dynamic objects. */
1631
1632 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1633 bfd_link_hash_common, sym->st_size);
1634 if (sym->st_size > h->size)
1635 h->size = sym->st_size;
1636
1637 *size_change_ok = true;
1638 }
1639
1640 /* If we are looking at a dynamic object, and we have found a
1641 definition, we need to see if the symbol was already defined by
1642 some other object. If so, we want to use the existing
1643 definition, and we do not want to report a multiple symbol
1644 definition error; we do this by clobbering *PSEC to be
1645 bfd_und_section_ptr.
1646
1647 We treat a common symbol as a definition if the symbol in the
1648 shared library is a function, since common symbols always
1649 represent variables; this can cause confusion in principle, but
1650 any such confusion would seem to indicate an erroneous program or
1651 shared library. We also permit a common symbol in a regular
1652 object to override a weak symbol in a shared object. */
1653
1654 if (newdyn
1655 && newdef
1656 && (olddef
1657 || (h->root.type == bfd_link_hash_common
1658 && (newweak || newfunc))))
1659 {
1660 *override = abfd;
1661 newdef = false;
1662 newdyncommon = false;
1663
1664 *psec = sec = bfd_und_section_ptr;
1665 *size_change_ok = true;
1666
1667 /* If we get here when the old symbol is a common symbol, then
1668 we are explicitly letting it override a weak symbol or
1669 function in a dynamic object, and we don't want to warn about
1670 a type change. If the old symbol is a defined symbol, a type
1671 change warning may still be appropriate. */
1672
1673 if (h->root.type == bfd_link_hash_common)
1674 *type_change_ok = true;
1675 }
1676
1677 /* Handle the special case of an old common symbol merging with a
1678 new symbol which looks like a common symbol in a shared object.
1679 We change *PSEC and *PVALUE to make the new symbol look like a
1680 common symbol, and let _bfd_generic_link_add_one_symbol do the
1681 right thing. */
1682
1683 if (newdyncommon
1684 && h->root.type == bfd_link_hash_common)
1685 {
1686 *override = oldbfd;
1687 newdef = false;
1688 newdyncommon = false;
1689 *pvalue = sym->st_size;
1690 *psec = sec = bed->common_section (oldsec);
1691 *size_change_ok = true;
1692 }
1693
1694 /* Skip weak definitions of symbols that are already defined. */
1695 if (newdef && olddef && newweak)
1696 {
1697 /* Don't skip new non-IR weak syms. */
1698 if (!(oldbfd != NULL
1699 && (oldbfd->flags & BFD_PLUGIN) != 0
1700 && (abfd->flags & BFD_PLUGIN) == 0))
1701 {
1702 newdef = false;
1703 *skip = true;
1704 }
1705
1706 /* Merge st_other. If the symbol already has a dynamic index,
1707 but visibility says it should not be visible, turn it into a
1708 local symbol. */
1709 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1710 if (h->dynindx != -1)
1711 switch (ELF_ST_VISIBILITY (h->other))
1712 {
1713 case STV_INTERNAL:
1714 case STV_HIDDEN:
1715 (*bed->elf_backend_hide_symbol) (info, h, true);
1716 break;
1717 }
1718 }
1719
1720 /* If the old symbol is from a dynamic object, and the new symbol is
1721 a definition which is not from a dynamic object, then the new
1722 symbol overrides the old symbol. Symbols from regular files
1723 always take precedence over symbols from dynamic objects, even if
1724 they are defined after the dynamic object in the link.
1725
1726 As above, we again permit a common symbol in a regular object to
1727 override a definition in a shared object if the shared object
1728 symbol is a function or is weak. */
1729
1730 flip = NULL;
1731 if (!newdyn
1732 && (newdef
1733 || (bfd_is_com_section (sec)
1734 && (oldweak || oldfunc)))
1735 && olddyn
1736 && olddef
1737 && h->def_dynamic)
1738 {
1739 /* Change the hash table entry to undefined, and let
1740 _bfd_generic_link_add_one_symbol do the right thing with the
1741 new definition. */
1742
1743 h->root.type = bfd_link_hash_undefined;
1744 h->root.u.undef.abfd = h->root.u.def.section->owner;
1745 *size_change_ok = true;
1746
1747 olddef = false;
1748 olddyncommon = false;
1749
1750 /* We again permit a type change when a common symbol may be
1751 overriding a function. */
1752
1753 if (bfd_is_com_section (sec))
1754 {
1755 if (oldfunc)
1756 {
1757 /* If a common symbol overrides a function, make sure
1758 that it isn't defined dynamically nor has type
1759 function. */
1760 h->def_dynamic = 0;
1761 h->type = STT_NOTYPE;
1762 }
1763 *type_change_ok = true;
1764 }
1765
1766 if (hi->root.type == bfd_link_hash_indirect)
1767 flip = hi;
1768 else
1769 /* This union may have been set to be non-NULL when this symbol
1770 was seen in a dynamic object. We must force the union to be
1771 NULL, so that it is correct for a regular symbol. */
1772 h->verinfo.vertree = NULL;
1773 }
1774
1775 /* Handle the special case of a new common symbol merging with an
1776 old symbol that looks like it might be a common symbol defined in
1777 a shared object. Note that we have already handled the case in
1778 which a new common symbol should simply override the definition
1779 in the shared library. */
1780
1781 if (! newdyn
1782 && bfd_is_com_section (sec)
1783 && olddyncommon)
1784 {
1785 /* It would be best if we could set the hash table entry to a
1786 common symbol, but we don't know what to use for the section
1787 or the alignment. */
1788 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1789 bfd_link_hash_common, sym->st_size);
1790
1791 /* If the presumed common symbol in the dynamic object is
1792 larger, pretend that the new symbol has its size. */
1793
1794 if (h->size > *pvalue)
1795 *pvalue = h->size;
1796
1797 /* We need to remember the alignment required by the symbol
1798 in the dynamic object. */
1799 BFD_ASSERT (pold_alignment);
1800 *pold_alignment = h->root.u.def.section->alignment_power;
1801
1802 olddef = false;
1803 olddyncommon = false;
1804
1805 h->root.type = bfd_link_hash_undefined;
1806 h->root.u.undef.abfd = h->root.u.def.section->owner;
1807
1808 *size_change_ok = true;
1809 *type_change_ok = true;
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 flip = hi;
1813 else
1814 h->verinfo.vertree = NULL;
1815 }
1816
1817 if (flip != NULL)
1818 {
1819 /* Handle the case where we had a versioned symbol in a dynamic
1820 library and now find a definition in a normal object. In this
1821 case, we make the versioned symbol point to the normal one. */
1822 flip->root.type = h->root.type;
1823 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1824 h->root.type = bfd_link_hash_indirect;
1825 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1826 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 flip->ref_dynamic = 1;
1831 }
1832 }
1833
1834 return true;
1835 }
1836
1837 /* This function is called to create an indirect symbol from the
1838 default for the symbol with the default version if needed. The
1839 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1840 set DYNSYM if the new indirect symbol is dynamic. */
1841
1842 static bool
1843 _bfd_elf_add_default_symbol (bfd *abfd,
1844 struct bfd_link_info *info,
1845 struct elf_link_hash_entry *h,
1846 const char *name,
1847 Elf_Internal_Sym *sym,
1848 asection *sec,
1849 bfd_vma value,
1850 bfd **poldbfd,
1851 bool *dynsym)
1852 {
1853 bool type_change_ok;
1854 bool size_change_ok;
1855 bool skip;
1856 char *shortname;
1857 struct elf_link_hash_entry *hi;
1858 struct bfd_link_hash_entry *bh;
1859 const struct elf_backend_data *bed;
1860 bool collect;
1861 bool dynamic;
1862 bfd *override;
1863 char *p;
1864 size_t len, shortlen;
1865 asection *tmp_sec;
1866 bool matched;
1867
1868 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1869 return true;
1870
1871 /* If this symbol has a version, and it is the default version, we
1872 create an indirect symbol from the default name to the fully
1873 decorated name. This will cause external references which do not
1874 specify a version to be bound to this version of the symbol. */
1875 p = strchr (name, ELF_VER_CHR);
1876 if (h->versioned == unknown)
1877 {
1878 if (p == NULL)
1879 {
1880 h->versioned = unversioned;
1881 return true;
1882 }
1883 else
1884 {
1885 if (p[1] != ELF_VER_CHR)
1886 {
1887 h->versioned = versioned_hidden;
1888 return true;
1889 }
1890 else
1891 h->versioned = versioned;
1892 }
1893 }
1894 else
1895 {
1896 /* PR ld/19073: We may see an unversioned definition after the
1897 default version. */
1898 if (p == NULL)
1899 return true;
1900 }
1901
1902 bed = get_elf_backend_data (abfd);
1903 collect = bed->collect;
1904 dynamic = (abfd->flags & DYNAMIC) != 0;
1905
1906 shortlen = p - name;
1907 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1908 if (shortname == NULL)
1909 return false;
1910 memcpy (shortname, name, shortlen);
1911 shortname[shortlen] = '\0';
1912
1913 /* We are going to create a new symbol. Merge it with any existing
1914 symbol with this name. For the purposes of the merge, act as
1915 though we were defining the symbol we just defined, although we
1916 actually going to define an indirect symbol. */
1917 type_change_ok = false;
1918 size_change_ok = false;
1919 matched = true;
1920 tmp_sec = sec;
1921 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1922 &hi, poldbfd, NULL, NULL, &skip, &override,
1923 &type_change_ok, &size_change_ok, &matched))
1924 return false;
1925
1926 if (skip)
1927 goto nondefault;
1928
1929 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1930 {
1931 /* If the undecorated symbol will have a version added by a
1932 script different to H, then don't indirect to/from the
1933 undecorated symbol. This isn't ideal because we may not yet
1934 have seen symbol versions, if given by a script on the
1935 command line rather than via --version-script. */
1936 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1937 {
1938 bool hide;
1939
1940 hi->verinfo.vertree
1941 = bfd_find_version_for_sym (info->version_info,
1942 hi->root.root.string, &hide);
1943 if (hi->verinfo.vertree != NULL && hide)
1944 {
1945 (*bed->elf_backend_hide_symbol) (info, hi, true);
1946 goto nondefault;
1947 }
1948 }
1949 if (hi->verinfo.vertree != NULL
1950 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1951 goto nondefault;
1952 }
1953
1954 if (! override)
1955 {
1956 /* Add the default symbol if not performing a relocatable link. */
1957 if (! bfd_link_relocatable (info))
1958 {
1959 bh = &hi->root;
1960 if (bh->type == bfd_link_hash_defined
1961 && bh->u.def.section->owner != NULL
1962 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1963 {
1964 /* Mark the previous definition from IR object as
1965 undefined so that the generic linker will override
1966 it. */
1967 bh->type = bfd_link_hash_undefined;
1968 bh->u.undef.abfd = bh->u.def.section->owner;
1969 }
1970 if (! (_bfd_generic_link_add_one_symbol
1971 (info, abfd, shortname, BSF_INDIRECT,
1972 bfd_ind_section_ptr,
1973 0, name, false, collect, &bh)))
1974 return false;
1975 hi = (struct elf_link_hash_entry *) bh;
1976 }
1977 }
1978 else
1979 {
1980 /* In this case the symbol named SHORTNAME is overriding the
1981 indirect symbol we want to add. We were planning on making
1982 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1983 is the name without a version. NAME is the fully versioned
1984 name, and it is the default version.
1985
1986 Overriding means that we already saw a definition for the
1987 symbol SHORTNAME in a regular object, and it is overriding
1988 the symbol defined in the dynamic object.
1989
1990 When this happens, we actually want to change NAME, the
1991 symbol we just added, to refer to SHORTNAME. This will cause
1992 references to NAME in the shared object to become references
1993 to SHORTNAME in the regular object. This is what we expect
1994 when we override a function in a shared object: that the
1995 references in the shared object will be mapped to the
1996 definition in the regular object. */
1997
1998 while (hi->root.type == bfd_link_hash_indirect
1999 || hi->root.type == bfd_link_hash_warning)
2000 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2001
2002 h->root.type = bfd_link_hash_indirect;
2003 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2004 if (h->def_dynamic)
2005 {
2006 h->def_dynamic = 0;
2007 hi->ref_dynamic = 1;
2008 if (hi->ref_regular
2009 || hi->def_regular)
2010 {
2011 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2012 return false;
2013 }
2014 }
2015
2016 /* Now set HI to H, so that the following code will set the
2017 other fields correctly. */
2018 hi = h;
2019 }
2020
2021 /* Check if HI is a warning symbol. */
2022 if (hi->root.type == bfd_link_hash_warning)
2023 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2024
2025 /* If there is a duplicate definition somewhere, then HI may not
2026 point to an indirect symbol. We will have reported an error to
2027 the user in that case. */
2028
2029 if (hi->root.type == bfd_link_hash_indirect)
2030 {
2031 struct elf_link_hash_entry *ht;
2032
2033 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2034 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2035
2036 /* If we first saw a reference to SHORTNAME with non-default
2037 visibility, merge that visibility to the @@VER symbol. */
2038 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic);
2039
2040 /* A reference to the SHORTNAME symbol from a dynamic library
2041 will be satisfied by the versioned symbol at runtime. In
2042 effect, we have a reference to the versioned symbol. */
2043 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2044 hi->dynamic_def |= ht->dynamic_def;
2045
2046 /* See if the new flags lead us to realize that the symbol must
2047 be dynamic. */
2048 if (! *dynsym)
2049 {
2050 if (! dynamic)
2051 {
2052 if (! bfd_link_executable (info)
2053 || hi->def_dynamic
2054 || hi->ref_dynamic)
2055 *dynsym = true;
2056 }
2057 else
2058 {
2059 if (hi->ref_regular)
2060 *dynsym = true;
2061 }
2062 }
2063 }
2064
2065 /* We also need to define an indirection from the nondefault version
2066 of the symbol. */
2067
2068 nondefault:
2069 len = strlen (name);
2070 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2071 if (shortname == NULL)
2072 return false;
2073 memcpy (shortname, name, shortlen);
2074 memcpy (shortname + shortlen, p + 1, len - shortlen);
2075
2076 /* Once again, merge with any existing symbol. */
2077 type_change_ok = false;
2078 size_change_ok = false;
2079 tmp_sec = sec;
2080 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2081 &hi, poldbfd, NULL, NULL, &skip, &override,
2082 &type_change_ok, &size_change_ok, &matched))
2083 return false;
2084
2085 if (skip)
2086 {
2087 if (!dynamic
2088 && h->root.type == bfd_link_hash_defweak
2089 && hi->root.type == bfd_link_hash_defined)
2090 {
2091 /* We are handling a weak sym@@ver and attempting to define
2092 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2093 new weak sym@ver because there is already a strong sym@ver.
2094 However, sym@ver and sym@@ver are really the same symbol.
2095 The existing strong sym@ver ought to override sym@@ver. */
2096 h->root.type = bfd_link_hash_defined;
2097 h->root.u.def.section = hi->root.u.def.section;
2098 h->root.u.def.value = hi->root.u.def.value;
2099 hi->root.type = bfd_link_hash_indirect;
2100 hi->root.u.i.link = &h->root;
2101 }
2102 else
2103 return true;
2104 }
2105 else if (override)
2106 {
2107 /* Here SHORTNAME is a versioned name, so we don't expect to see
2108 the type of override we do in the case above unless it is
2109 overridden by a versioned definition. */
2110 if (hi->root.type != bfd_link_hash_defined
2111 && hi->root.type != bfd_link_hash_defweak)
2112 _bfd_error_handler
2113 /* xgettext:c-format */
2114 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2115 abfd, shortname);
2116 return true;
2117 }
2118 else
2119 {
2120 bh = &hi->root;
2121 if (! (_bfd_generic_link_add_one_symbol
2122 (info, abfd, shortname, BSF_INDIRECT,
2123 bfd_ind_section_ptr, 0, name, false, collect, &bh)))
2124 return false;
2125 hi = (struct elf_link_hash_entry *) bh;
2126 }
2127
2128 /* If there is a duplicate definition somewhere, then HI may not
2129 point to an indirect symbol. We will have reported an error
2130 to the user in that case. */
2131 if (hi->root.type == bfd_link_hash_indirect)
2132 {
2133 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2134 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2135 hi->dynamic_def |= h->dynamic_def;
2136
2137 /* If we first saw a reference to @VER symbol with
2138 non-default visibility, merge that visibility to the
2139 @@VER symbol. */
2140 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic);
2141
2142 /* See if the new flags lead us to realize that the symbol
2143 must be dynamic. */
2144 if (! *dynsym)
2145 {
2146 if (! dynamic)
2147 {
2148 if (! bfd_link_executable (info)
2149 || hi->ref_dynamic)
2150 *dynsym = true;
2151 }
2152 else
2153 {
2154 if (hi->ref_regular)
2155 *dynsym = true;
2156 }
2157 }
2158 }
2159
2160 return true;
2161 }
2162 \f
2163 /* This routine is used to export all defined symbols into the dynamic
2164 symbol table. It is called via elf_link_hash_traverse. */
2165
2166 static bool
2167 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2168 {
2169 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2170
2171 /* Ignore indirect symbols. These are added by the versioning code. */
2172 if (h->root.type == bfd_link_hash_indirect)
2173 return true;
2174
2175 /* Ignore this if we won't export it. */
2176 if (!eif->info->export_dynamic && !h->dynamic)
2177 return true;
2178
2179 if (h->dynindx == -1
2180 && (h->def_regular || h->ref_regular)
2181 && ! bfd_hide_sym_by_version (eif->info->version_info,
2182 h->root.root.string))
2183 {
2184 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2185 {
2186 eif->failed = true;
2187 return false;
2188 }
2189 }
2190
2191 return true;
2192 }
2193 \f
2194 /* Look through the symbols which are defined in other shared
2195 libraries and referenced here. Update the list of version
2196 dependencies. This will be put into the .gnu.version_r section.
2197 This function is called via elf_link_hash_traverse. */
2198
2199 static bool
2200 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2201 void *data)
2202 {
2203 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2204 Elf_Internal_Verneed *t;
2205 Elf_Internal_Vernaux *a;
2206 size_t amt;
2207
2208 /* We only care about symbols defined in shared objects with version
2209 information. */
2210 if (!h->def_dynamic
2211 || h->def_regular
2212 || h->dynindx == -1
2213 || h->verinfo.verdef == NULL
2214 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2215 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2216 return true;
2217
2218 /* See if we already know about this version. */
2219 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2220 t != NULL;
2221 t = t->vn_nextref)
2222 {
2223 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2224 continue;
2225
2226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2227 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2228 return true;
2229
2230 break;
2231 }
2232
2233 /* This is a new version. Add it to tree we are building. */
2234
2235 if (t == NULL)
2236 {
2237 amt = sizeof *t;
2238 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2239 if (t == NULL)
2240 {
2241 rinfo->failed = true;
2242 return false;
2243 }
2244
2245 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2246 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2247 elf_tdata (rinfo->info->output_bfd)->verref = t;
2248 }
2249
2250 amt = sizeof *a;
2251 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2252 if (a == NULL)
2253 {
2254 rinfo->failed = true;
2255 return false;
2256 }
2257
2258 /* Note that we are copying a string pointer here, and testing it
2259 above. If bfd_elf_string_from_elf_section is ever changed to
2260 discard the string data when low in memory, this will have to be
2261 fixed. */
2262 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2263
2264 a->vna_flags = h->verinfo.verdef->vd_flags;
2265 a->vna_nextptr = t->vn_auxptr;
2266
2267 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2268 ++rinfo->vers;
2269
2270 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2271
2272 t->vn_auxptr = a;
2273
2274 return true;
2275 }
2276
2277 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2278 hidden. Set *T_P to NULL if there is no match. */
2279
2280 static bool
2281 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2282 struct elf_link_hash_entry *h,
2283 const char *version_p,
2284 struct bfd_elf_version_tree **t_p,
2285 bool *hide)
2286 {
2287 struct bfd_elf_version_tree *t;
2288
2289 /* Look for the version. If we find it, it is no longer weak. */
2290 for (t = info->version_info; t != NULL; t = t->next)
2291 {
2292 if (strcmp (t->name, version_p) == 0)
2293 {
2294 size_t len;
2295 char *alc;
2296 struct bfd_elf_version_expr *d;
2297
2298 len = version_p - h->root.root.string;
2299 alc = (char *) bfd_malloc (len);
2300 if (alc == NULL)
2301 return false;
2302 memcpy (alc, h->root.root.string, len - 1);
2303 alc[len - 1] = '\0';
2304 if (alc[len - 2] == ELF_VER_CHR)
2305 alc[len - 2] = '\0';
2306
2307 h->verinfo.vertree = t;
2308 t->used = true;
2309 d = NULL;
2310
2311 if (t->globals.list != NULL)
2312 d = (*t->match) (&t->globals, NULL, alc);
2313
2314 /* See if there is anything to force this symbol to
2315 local scope. */
2316 if (d == NULL && t->locals.list != NULL)
2317 {
2318 d = (*t->match) (&t->locals, NULL, alc);
2319 if (d != NULL
2320 && h->dynindx != -1
2321 && ! info->export_dynamic)
2322 *hide = true;
2323 }
2324
2325 free (alc);
2326 break;
2327 }
2328 }
2329
2330 *t_p = t;
2331
2332 return true;
2333 }
2334
2335 /* Return TRUE if the symbol H is hidden by version script. */
2336
2337 bool
2338 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2339 struct elf_link_hash_entry *h)
2340 {
2341 const char *p;
2342 bool hide = false;
2343 const struct elf_backend_data *bed
2344 = get_elf_backend_data (info->output_bfd);
2345
2346 /* Version script only hides symbols defined in regular objects. */
2347 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2348 return true;
2349
2350 p = strchr (h->root.root.string, ELF_VER_CHR);
2351 if (p != NULL && h->verinfo.vertree == NULL)
2352 {
2353 struct bfd_elf_version_tree *t;
2354
2355 ++p;
2356 if (*p == ELF_VER_CHR)
2357 ++p;
2358
2359 if (*p != '\0'
2360 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2361 && hide)
2362 {
2363 if (hide)
2364 (*bed->elf_backend_hide_symbol) (info, h, true);
2365 return true;
2366 }
2367 }
2368
2369 /* If we don't have a version for this symbol, see if we can find
2370 something. */
2371 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2372 {
2373 h->verinfo.vertree
2374 = bfd_find_version_for_sym (info->version_info,
2375 h->root.root.string, &hide);
2376 if (h->verinfo.vertree != NULL && hide)
2377 {
2378 (*bed->elf_backend_hide_symbol) (info, h, true);
2379 return true;
2380 }
2381 }
2382
2383 return false;
2384 }
2385
2386 /* Figure out appropriate versions for all the symbols. We may not
2387 have the version number script until we have read all of the input
2388 files, so until that point we don't know which symbols should be
2389 local. This function is called via elf_link_hash_traverse. */
2390
2391 static bool
2392 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2393 {
2394 struct elf_info_failed *sinfo;
2395 struct bfd_link_info *info;
2396 const struct elf_backend_data *bed;
2397 struct elf_info_failed eif;
2398 char *p;
2399 bool hide;
2400
2401 sinfo = (struct elf_info_failed *) data;
2402 info = sinfo->info;
2403
2404 /* Fix the symbol flags. */
2405 eif.failed = false;
2406 eif.info = info;
2407 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2408 {
2409 if (eif.failed)
2410 sinfo->failed = true;
2411 return false;
2412 }
2413
2414 bed = get_elf_backend_data (info->output_bfd);
2415
2416 /* We only need version numbers for symbols defined in regular
2417 objects. */
2418 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2419 {
2420 /* Hide symbols defined in discarded input sections. */
2421 if ((h->root.type == bfd_link_hash_defined
2422 || h->root.type == bfd_link_hash_defweak)
2423 && discarded_section (h->root.u.def.section))
2424 (*bed->elf_backend_hide_symbol) (info, h, true);
2425 return true;
2426 }
2427
2428 hide = false;
2429 p = strchr (h->root.root.string, ELF_VER_CHR);
2430 if (p != NULL && h->verinfo.vertree == NULL)
2431 {
2432 struct bfd_elf_version_tree *t;
2433
2434 ++p;
2435 if (*p == ELF_VER_CHR)
2436 ++p;
2437
2438 /* If there is no version string, we can just return out. */
2439 if (*p == '\0')
2440 return true;
2441
2442 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2443 {
2444 sinfo->failed = true;
2445 return false;
2446 }
2447
2448 if (hide)
2449 (*bed->elf_backend_hide_symbol) (info, h, true);
2450
2451 /* If we are building an application, we need to create a
2452 version node for this version. */
2453 if (t == NULL && bfd_link_executable (info))
2454 {
2455 struct bfd_elf_version_tree **pp;
2456 int version_index;
2457
2458 /* If we aren't going to export this symbol, we don't need
2459 to worry about it. */
2460 if (h->dynindx == -1)
2461 return true;
2462
2463 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2464 sizeof *t);
2465 if (t == NULL)
2466 {
2467 sinfo->failed = true;
2468 return false;
2469 }
2470
2471 t->name = p;
2472 t->name_indx = (unsigned int) -1;
2473 t->used = true;
2474
2475 version_index = 1;
2476 /* Don't count anonymous version tag. */
2477 if (sinfo->info->version_info != NULL
2478 && sinfo->info->version_info->vernum == 0)
2479 version_index = 0;
2480 for (pp = &sinfo->info->version_info;
2481 *pp != NULL;
2482 pp = &(*pp)->next)
2483 ++version_index;
2484 t->vernum = version_index;
2485
2486 *pp = t;
2487
2488 h->verinfo.vertree = t;
2489 }
2490 else if (t == NULL)
2491 {
2492 /* We could not find the version for a symbol when
2493 generating a shared archive. Return an error. */
2494 _bfd_error_handler
2495 /* xgettext:c-format */
2496 (_("%pB: version node not found for symbol %s"),
2497 info->output_bfd, h->root.root.string);
2498 bfd_set_error (bfd_error_bad_value);
2499 sinfo->failed = true;
2500 return false;
2501 }
2502 }
2503
2504 /* If we don't have a version for this symbol, see if we can find
2505 something. */
2506 if (!hide
2507 && h->verinfo.vertree == NULL
2508 && sinfo->info->version_info != NULL)
2509 {
2510 h->verinfo.vertree
2511 = bfd_find_version_for_sym (sinfo->info->version_info,
2512 h->root.root.string, &hide);
2513 if (h->verinfo.vertree != NULL && hide)
2514 (*bed->elf_backend_hide_symbol) (info, h, true);
2515 }
2516
2517 return true;
2518 }
2519 \f
2520 /* Read and swap the relocs from the section indicated by SHDR. This
2521 may be either a REL or a RELA section. The relocations are
2522 translated into RELA relocations and stored in INTERNAL_RELOCS,
2523 which should have already been allocated to contain enough space.
2524 The EXTERNAL_RELOCS are a buffer where the external form of the
2525 relocations should be stored.
2526
2527 Returns FALSE if something goes wrong. */
2528
2529 static bool
2530 elf_link_read_relocs_from_section (bfd *abfd,
2531 asection *sec,
2532 Elf_Internal_Shdr *shdr,
2533 void *external_relocs,
2534 Elf_Internal_Rela *internal_relocs)
2535 {
2536 const struct elf_backend_data *bed;
2537 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2538 const bfd_byte *erela;
2539 const bfd_byte *erelaend;
2540 Elf_Internal_Rela *irela;
2541 Elf_Internal_Shdr *symtab_hdr;
2542 size_t nsyms;
2543
2544 /* Position ourselves at the start of the section. */
2545 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2546 return false;
2547
2548 /* Read the relocations. */
2549 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2550 return false;
2551
2552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2553 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2554
2555 bed = get_elf_backend_data (abfd);
2556
2557 /* Convert the external relocations to the internal format. */
2558 if (shdr->sh_entsize == bed->s->sizeof_rel)
2559 swap_in = bed->s->swap_reloc_in;
2560 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2561 swap_in = bed->s->swap_reloca_in;
2562 else
2563 {
2564 bfd_set_error (bfd_error_wrong_format);
2565 return false;
2566 }
2567
2568 erela = (const bfd_byte *) external_relocs;
2569 /* Setting erelaend like this and comparing with <= handles case of
2570 a fuzzed object with sh_size not a multiple of sh_entsize. */
2571 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2572 irela = internal_relocs;
2573 while (erela <= erelaend)
2574 {
2575 bfd_vma r_symndx;
2576
2577 (*swap_in) (abfd, erela, irela);
2578 r_symndx = ELF32_R_SYM (irela->r_info);
2579 if (bed->s->arch_size == 64)
2580 r_symndx >>= 24;
2581 if (nsyms > 0)
2582 {
2583 if ((size_t) r_symndx >= nsyms)
2584 {
2585 _bfd_error_handler
2586 /* xgettext:c-format */
2587 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2588 " for offset %#" PRIx64 " in section `%pA'"),
2589 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2590 (uint64_t) irela->r_offset, sec);
2591 bfd_set_error (bfd_error_bad_value);
2592 return false;
2593 }
2594 }
2595 else if (r_symndx != STN_UNDEF)
2596 {
2597 _bfd_error_handler
2598 /* xgettext:c-format */
2599 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2600 " for offset %#" PRIx64 " in section `%pA'"
2601 " when the object file has no symbol table"),
2602 abfd, (uint64_t) r_symndx,
2603 (uint64_t) irela->r_offset, sec);
2604 bfd_set_error (bfd_error_bad_value);
2605 return false;
2606 }
2607 irela += bed->s->int_rels_per_ext_rel;
2608 erela += shdr->sh_entsize;
2609 }
2610
2611 return true;
2612 }
2613
2614 /* Read and swap the relocs for a section O. They may have been
2615 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2616 not NULL, they are used as buffers to read into. They are known to
2617 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2618 the return value is allocated using either malloc or bfd_alloc,
2619 according to the KEEP_MEMORY argument. If O has two relocation
2620 sections (both REL and RELA relocations), then the REL_HDR
2621 relocations will appear first in INTERNAL_RELOCS, followed by the
2622 RELA_HDR relocations. */
2623
2624 Elf_Internal_Rela *
2625 _bfd_elf_link_read_relocs (bfd *abfd,
2626 asection *o,
2627 void *external_relocs,
2628 Elf_Internal_Rela *internal_relocs,
2629 bool keep_memory)
2630 {
2631 void *alloc1 = NULL;
2632 Elf_Internal_Rela *alloc2 = NULL;
2633 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2634 struct bfd_elf_section_data *esdo = elf_section_data (o);
2635 Elf_Internal_Rela *internal_rela_relocs;
2636
2637 if (esdo->relocs != NULL)
2638 return esdo->relocs;
2639
2640 if (o->reloc_count == 0)
2641 return NULL;
2642
2643 if (internal_relocs == NULL)
2644 {
2645 bfd_size_type size;
2646
2647 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2648 if (keep_memory)
2649 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2650 else
2651 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2652 if (internal_relocs == NULL)
2653 goto error_return;
2654 }
2655
2656 if (external_relocs == NULL)
2657 {
2658 bfd_size_type size = 0;
2659
2660 if (esdo->rel.hdr)
2661 size += esdo->rel.hdr->sh_size;
2662 if (esdo->rela.hdr)
2663 size += esdo->rela.hdr->sh_size;
2664
2665 alloc1 = bfd_malloc (size);
2666 if (alloc1 == NULL)
2667 goto error_return;
2668 external_relocs = alloc1;
2669 }
2670
2671 internal_rela_relocs = internal_relocs;
2672 if (esdo->rel.hdr)
2673 {
2674 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2675 external_relocs,
2676 internal_relocs))
2677 goto error_return;
2678 external_relocs = (((bfd_byte *) external_relocs)
2679 + esdo->rel.hdr->sh_size);
2680 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2681 * bed->s->int_rels_per_ext_rel);
2682 }
2683
2684 if (esdo->rela.hdr
2685 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2686 external_relocs,
2687 internal_rela_relocs)))
2688 goto error_return;
2689
2690 /* Cache the results for next time, if we can. */
2691 if (keep_memory)
2692 esdo->relocs = internal_relocs;
2693
2694 free (alloc1);
2695
2696 /* Don't free alloc2, since if it was allocated we are passing it
2697 back (under the name of internal_relocs). */
2698
2699 return internal_relocs;
2700
2701 error_return:
2702 free (alloc1);
2703 if (alloc2 != NULL)
2704 {
2705 if (keep_memory)
2706 bfd_release (abfd, alloc2);
2707 else
2708 free (alloc2);
2709 }
2710 return NULL;
2711 }
2712
2713 /* Compute the size of, and allocate space for, REL_HDR which is the
2714 section header for a section containing relocations for O. */
2715
2716 static bool
2717 _bfd_elf_link_size_reloc_section (bfd *abfd,
2718 struct bfd_elf_section_reloc_data *reldata)
2719 {
2720 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2721
2722 /* That allows us to calculate the size of the section. */
2723 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2724
2725 /* The contents field must last into write_object_contents, so we
2726 allocate it with bfd_alloc rather than malloc. Also since we
2727 cannot be sure that the contents will actually be filled in,
2728 we zero the allocated space. */
2729 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2730 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2731 return false;
2732
2733 if (reldata->hashes == NULL && reldata->count)
2734 {
2735 struct elf_link_hash_entry **p;
2736
2737 p = ((struct elf_link_hash_entry **)
2738 bfd_zmalloc (reldata->count * sizeof (*p)));
2739 if (p == NULL)
2740 return false;
2741
2742 reldata->hashes = p;
2743 }
2744
2745 return true;
2746 }
2747
2748 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2749 originated from the section given by INPUT_REL_HDR) to the
2750 OUTPUT_BFD. */
2751
2752 bool
2753 _bfd_elf_link_output_relocs (bfd *output_bfd,
2754 asection *input_section,
2755 Elf_Internal_Shdr *input_rel_hdr,
2756 Elf_Internal_Rela *internal_relocs,
2757 struct elf_link_hash_entry **rel_hash
2758 ATTRIBUTE_UNUSED)
2759 {
2760 Elf_Internal_Rela *irela;
2761 Elf_Internal_Rela *irelaend;
2762 bfd_byte *erel;
2763 struct bfd_elf_section_reloc_data *output_reldata;
2764 asection *output_section;
2765 const struct elf_backend_data *bed;
2766 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2767 struct bfd_elf_section_data *esdo;
2768
2769 output_section = input_section->output_section;
2770
2771 bed = get_elf_backend_data (output_bfd);
2772 esdo = elf_section_data (output_section);
2773 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2774 {
2775 output_reldata = &esdo->rel;
2776 swap_out = bed->s->swap_reloc_out;
2777 }
2778 else if (esdo->rela.hdr
2779 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2780 {
2781 output_reldata = &esdo->rela;
2782 swap_out = bed->s->swap_reloca_out;
2783 }
2784 else
2785 {
2786 _bfd_error_handler
2787 /* xgettext:c-format */
2788 (_("%pB: relocation size mismatch in %pB section %pA"),
2789 output_bfd, input_section->owner, input_section);
2790 bfd_set_error (bfd_error_wrong_format);
2791 return false;
2792 }
2793
2794 erel = output_reldata->hdr->contents;
2795 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2796 irela = internal_relocs;
2797 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2798 * bed->s->int_rels_per_ext_rel);
2799 while (irela < irelaend)
2800 {
2801 (*swap_out) (output_bfd, irela, erel);
2802 irela += bed->s->int_rels_per_ext_rel;
2803 erel += input_rel_hdr->sh_entsize;
2804 }
2805
2806 /* Bump the counter, so that we know where to add the next set of
2807 relocations. */
2808 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2809
2810 return true;
2811 }
2812 \f
2813 /* Make weak undefined symbols in PIE dynamic. */
2814
2815 bool
2816 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2817 struct elf_link_hash_entry *h)
2818 {
2819 if (bfd_link_pie (info)
2820 && h->dynindx == -1
2821 && h->root.type == bfd_link_hash_undefweak)
2822 return bfd_elf_link_record_dynamic_symbol (info, h);
2823
2824 return true;
2825 }
2826
2827 /* Fix up the flags for a symbol. This handles various cases which
2828 can only be fixed after all the input files are seen. This is
2829 currently called by both adjust_dynamic_symbol and
2830 assign_sym_version, which is unnecessary but perhaps more robust in
2831 the face of future changes. */
2832
2833 static bool
2834 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2835 struct elf_info_failed *eif)
2836 {
2837 const struct elf_backend_data *bed;
2838
2839 /* If this symbol was mentioned in a non-ELF file, try to set
2840 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2841 permit a non-ELF file to correctly refer to a symbol defined in
2842 an ELF dynamic object. */
2843 if (h->non_elf)
2844 {
2845 while (h->root.type == bfd_link_hash_indirect)
2846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2847
2848 if (h->root.type != bfd_link_hash_defined
2849 && h->root.type != bfd_link_hash_defweak)
2850 {
2851 h->ref_regular = 1;
2852 h->ref_regular_nonweak = 1;
2853 }
2854 else
2855 {
2856 if (h->root.u.def.section->owner != NULL
2857 && (bfd_get_flavour (h->root.u.def.section->owner)
2858 == bfd_target_elf_flavour))
2859 {
2860 h->ref_regular = 1;
2861 h->ref_regular_nonweak = 1;
2862 }
2863 else
2864 h->def_regular = 1;
2865 }
2866
2867 if (h->dynindx == -1
2868 && (h->def_dynamic
2869 || h->ref_dynamic))
2870 {
2871 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2872 {
2873 eif->failed = true;
2874 return false;
2875 }
2876 }
2877 }
2878 else
2879 {
2880 /* Unfortunately, NON_ELF is only correct if the symbol
2881 was first seen in a non-ELF file. Fortunately, if the symbol
2882 was first seen in an ELF file, we're probably OK unless the
2883 symbol was defined in a non-ELF file. Catch that case here.
2884 FIXME: We're still in trouble if the symbol was first seen in
2885 a dynamic object, and then later in a non-ELF regular object. */
2886 if ((h->root.type == bfd_link_hash_defined
2887 || h->root.type == bfd_link_hash_defweak)
2888 && !h->def_regular
2889 && (h->root.u.def.section->owner != NULL
2890 ? (bfd_get_flavour (h->root.u.def.section->owner)
2891 != bfd_target_elf_flavour)
2892 : (bfd_is_abs_section (h->root.u.def.section)
2893 && !h->def_dynamic)))
2894 h->def_regular = 1;
2895 }
2896
2897 /* Backend specific symbol fixup. */
2898 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2899 if (bed->elf_backend_fixup_symbol
2900 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2901 return false;
2902
2903 /* If this is a final link, and the symbol was defined as a common
2904 symbol in a regular object file, and there was no definition in
2905 any dynamic object, then the linker will have allocated space for
2906 the symbol in a common section but the DEF_REGULAR
2907 flag will not have been set. */
2908 if (h->root.type == bfd_link_hash_defined
2909 && !h->def_regular
2910 && h->ref_regular
2911 && !h->def_dynamic
2912 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2913 h->def_regular = 1;
2914
2915 /* Symbols defined in discarded sections shouldn't be dynamic. */
2916 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2917 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2918
2919 /* If a weak undefined symbol has non-default visibility, we also
2920 hide it from the dynamic linker. */
2921 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2922 && h->root.type == bfd_link_hash_undefweak)
2923 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2924
2925 /* A hidden versioned symbol in executable should be forced local if
2926 it is is locally defined, not referenced by shared library and not
2927 exported. */
2928 else if (bfd_link_executable (eif->info)
2929 && h->versioned == versioned_hidden
2930 && !eif->info->export_dynamic
2931 && !h->dynamic
2932 && !h->ref_dynamic
2933 && h->def_regular)
2934 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
2935
2936 /* If -Bsymbolic was used (which means to bind references to global
2937 symbols to the definition within the shared object), and this
2938 symbol was defined in a regular object, then it actually doesn't
2939 need a PLT entry. Likewise, if the symbol has non-default
2940 visibility. If the symbol has hidden or internal visibility, we
2941 will force it local. */
2942 else if (h->needs_plt
2943 && bfd_link_pic (eif->info)
2944 && is_elf_hash_table (eif->info->hash)
2945 && (SYMBOLIC_BIND (eif->info, h)
2946 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2947 && h->def_regular)
2948 {
2949 bool force_local;
2950
2951 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2952 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2953 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2954 }
2955
2956 /* If this is a weak defined symbol in a dynamic object, and we know
2957 the real definition in the dynamic object, copy interesting flags
2958 over to the real definition. */
2959 if (h->is_weakalias)
2960 {
2961 struct elf_link_hash_entry *def = weakdef (h);
2962
2963 /* If the real definition is defined by a regular object file,
2964 don't do anything special. See the longer description in
2965 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2966 bfd_link_hash_defined as it was when put on the alias list
2967 then it must have originally been a versioned symbol (for
2968 which a non-versioned indirect symbol is created) and later
2969 a definition for the non-versioned symbol is found. In that
2970 case the indirection is flipped with the versioned symbol
2971 becoming an indirect pointing at the non-versioned symbol.
2972 Thus, not an alias any more. */
2973 if (def->def_regular
2974 || def->root.type != bfd_link_hash_defined)
2975 {
2976 h = def;
2977 while ((h = h->u.alias) != def)
2978 h->is_weakalias = 0;
2979 }
2980 else
2981 {
2982 while (h->root.type == bfd_link_hash_indirect)
2983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2984 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2985 || h->root.type == bfd_link_hash_defweak);
2986 BFD_ASSERT (def->def_dynamic);
2987 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2988 }
2989 }
2990
2991 return true;
2992 }
2993
2994 /* Make the backend pick a good value for a dynamic symbol. This is
2995 called via elf_link_hash_traverse, and also calls itself
2996 recursively. */
2997
2998 static bool
2999 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3000 {
3001 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3002 struct elf_link_hash_table *htab;
3003 const struct elf_backend_data *bed;
3004
3005 if (! is_elf_hash_table (eif->info->hash))
3006 return false;
3007
3008 /* Ignore indirect symbols. These are added by the versioning code. */
3009 if (h->root.type == bfd_link_hash_indirect)
3010 return true;
3011
3012 /* Fix the symbol flags. */
3013 if (! _bfd_elf_fix_symbol_flags (h, eif))
3014 return false;
3015
3016 htab = elf_hash_table (eif->info);
3017 bed = get_elf_backend_data (htab->dynobj);
3018
3019 if (h->root.type == bfd_link_hash_undefweak)
3020 {
3021 if (eif->info->dynamic_undefined_weak == 0)
3022 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3023 else if (eif->info->dynamic_undefined_weak > 0
3024 && h->ref_regular
3025 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3026 && !bfd_hide_sym_by_version (eif->info->version_info,
3027 h->root.root.string))
3028 {
3029 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3030 {
3031 eif->failed = true;
3032 return false;
3033 }
3034 }
3035 }
3036
3037 /* If this symbol does not require a PLT entry, and it is not
3038 defined by a dynamic object, or is not referenced by a regular
3039 object, ignore it. We do have to handle a weak defined symbol,
3040 even if no regular object refers to it, if we decided to add it
3041 to the dynamic symbol table. FIXME: Do we normally need to worry
3042 about symbols which are defined by one dynamic object and
3043 referenced by another one? */
3044 if (!h->needs_plt
3045 && h->type != STT_GNU_IFUNC
3046 && (h->def_regular
3047 || !h->def_dynamic
3048 || (!h->ref_regular
3049 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3050 {
3051 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3052 return true;
3053 }
3054
3055 /* If we've already adjusted this symbol, don't do it again. This
3056 can happen via a recursive call. */
3057 if (h->dynamic_adjusted)
3058 return true;
3059
3060 /* Don't look at this symbol again. Note that we must set this
3061 after checking the above conditions, because we may look at a
3062 symbol once, decide not to do anything, and then get called
3063 recursively later after REF_REGULAR is set below. */
3064 h->dynamic_adjusted = 1;
3065
3066 /* If this is a weak definition, and we know a real definition, and
3067 the real symbol is not itself defined by a regular object file,
3068 then get a good value for the real definition. We handle the
3069 real symbol first, for the convenience of the backend routine.
3070
3071 Note that there is a confusing case here. If the real definition
3072 is defined by a regular object file, we don't get the real symbol
3073 from the dynamic object, but we do get the weak symbol. If the
3074 processor backend uses a COPY reloc, then if some routine in the
3075 dynamic object changes the real symbol, we will not see that
3076 change in the corresponding weak symbol. This is the way other
3077 ELF linkers work as well, and seems to be a result of the shared
3078 library model.
3079
3080 I will clarify this issue. Most SVR4 shared libraries define the
3081 variable _timezone and define timezone as a weak synonym. The
3082 tzset call changes _timezone. If you write
3083 extern int timezone;
3084 int _timezone = 5;
3085 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3086 you might expect that, since timezone is a synonym for _timezone,
3087 the same number will print both times. However, if the processor
3088 backend uses a COPY reloc, then actually timezone will be copied
3089 into your process image, and, since you define _timezone
3090 yourself, _timezone will not. Thus timezone and _timezone will
3091 wind up at different memory locations. The tzset call will set
3092 _timezone, leaving timezone unchanged. */
3093
3094 if (h->is_weakalias)
3095 {
3096 struct elf_link_hash_entry *def = weakdef (h);
3097
3098 /* If we get to this point, there is an implicit reference to
3099 the alias by a regular object file via the weak symbol H. */
3100 def->ref_regular = 1;
3101
3102 /* Ensure that the backend adjust_dynamic_symbol function sees
3103 the strong alias before H by recursively calling ourselves. */
3104 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3105 return false;
3106 }
3107
3108 /* If a symbol has no type and no size and does not require a PLT
3109 entry, then we are probably about to do the wrong thing here: we
3110 are probably going to create a COPY reloc for an empty object.
3111 This case can arise when a shared object is built with assembly
3112 code, and the assembly code fails to set the symbol type. */
3113 if (h->size == 0
3114 && h->type == STT_NOTYPE
3115 && !h->needs_plt)
3116 _bfd_error_handler
3117 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3118 h->root.root.string);
3119
3120 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3121 {
3122 eif->failed = true;
3123 return false;
3124 }
3125
3126 return true;
3127 }
3128
3129 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3130 DYNBSS. */
3131
3132 bool
3133 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3134 struct elf_link_hash_entry *h,
3135 asection *dynbss)
3136 {
3137 unsigned int power_of_two;
3138 bfd_vma mask;
3139 asection *sec = h->root.u.def.section;
3140
3141 /* The section alignment of the definition is the maximum alignment
3142 requirement of symbols defined in the section. Since we don't
3143 know the symbol alignment requirement, we start with the
3144 maximum alignment and check low bits of the symbol address
3145 for the minimum alignment. */
3146 power_of_two = bfd_section_alignment (sec);
3147 mask = ((bfd_vma) 1 << power_of_two) - 1;
3148 while ((h->root.u.def.value & mask) != 0)
3149 {
3150 mask >>= 1;
3151 --power_of_two;
3152 }
3153
3154 if (power_of_two > bfd_section_alignment (dynbss))
3155 {
3156 /* Adjust the section alignment if needed. */
3157 if (!bfd_set_section_alignment (dynbss, power_of_two))
3158 return false;
3159 }
3160
3161 /* We make sure that the symbol will be aligned properly. */
3162 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3163
3164 /* Define the symbol as being at this point in DYNBSS. */
3165 h->root.u.def.section = dynbss;
3166 h->root.u.def.value = dynbss->size;
3167
3168 /* Increment the size of DYNBSS to make room for the symbol. */
3169 dynbss->size += h->size;
3170
3171 /* No error if extern_protected_data is true. */
3172 if (h->protected_def
3173 && (!info->extern_protected_data
3174 || (info->extern_protected_data < 0
3175 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3176 info->callbacks->einfo
3177 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3178 h->root.root.string);
3179
3180 return true;
3181 }
3182
3183 /* Adjust all external symbols pointing into SEC_MERGE sections
3184 to reflect the object merging within the sections. */
3185
3186 static bool
3187 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3188 {
3189 asection *sec;
3190
3191 if ((h->root.type == bfd_link_hash_defined
3192 || h->root.type == bfd_link_hash_defweak)
3193 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3194 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3195 {
3196 bfd *output_bfd = (bfd *) data;
3197
3198 h->root.u.def.value =
3199 _bfd_merged_section_offset (output_bfd,
3200 &h->root.u.def.section,
3201 elf_section_data (sec)->sec_info,
3202 h->root.u.def.value);
3203 }
3204
3205 return true;
3206 }
3207
3208 /* Returns false if the symbol referred to by H should be considered
3209 to resolve local to the current module, and true if it should be
3210 considered to bind dynamically. */
3211
3212 bool
3213 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3214 struct bfd_link_info *info,
3215 bool not_local_protected)
3216 {
3217 bool binding_stays_local_p;
3218 const struct elf_backend_data *bed;
3219 struct elf_link_hash_table *hash_table;
3220
3221 if (h == NULL)
3222 return false;
3223
3224 while (h->root.type == bfd_link_hash_indirect
3225 || h->root.type == bfd_link_hash_warning)
3226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3227
3228 /* If it was forced local, then clearly it's not dynamic. */
3229 if (h->dynindx == -1)
3230 return false;
3231 if (h->forced_local)
3232 return false;
3233
3234 /* Identify the cases where name binding rules say that a
3235 visible symbol resolves locally. */
3236 binding_stays_local_p = (bfd_link_executable (info)
3237 || SYMBOLIC_BIND (info, h));
3238
3239 switch (ELF_ST_VISIBILITY (h->other))
3240 {
3241 case STV_INTERNAL:
3242 case STV_HIDDEN:
3243 return false;
3244
3245 case STV_PROTECTED:
3246 hash_table = elf_hash_table (info);
3247 if (!is_elf_hash_table (&hash_table->root))
3248 return false;
3249
3250 bed = get_elf_backend_data (hash_table->dynobj);
3251
3252 /* Proper resolution for function pointer equality may require
3253 that these symbols perhaps be resolved dynamically, even though
3254 we should be resolving them to the current module. */
3255 if (!not_local_protected || !bed->is_function_type (h->type))
3256 binding_stays_local_p = true;
3257 break;
3258
3259 default:
3260 break;
3261 }
3262
3263 /* If it isn't defined locally, then clearly it's dynamic. */
3264 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3265 return true;
3266
3267 /* Otherwise, the symbol is dynamic if binding rules don't tell
3268 us that it remains local. */
3269 return !binding_stays_local_p;
3270 }
3271
3272 /* Return true if the symbol referred to by H should be considered
3273 to resolve local to the current module, and false otherwise. Differs
3274 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3275 undefined symbols. The two functions are virtually identical except
3276 for the place where dynindx == -1 is tested. If that test is true,
3277 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3278 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3279 defined symbols.
3280 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3281 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3282 treatment of undefined weak symbols. For those that do not make
3283 undefined weak symbols dynamic, both functions may return false. */
3284
3285 bool
3286 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3287 struct bfd_link_info *info,
3288 bool local_protected)
3289 {
3290 const struct elf_backend_data *bed;
3291 struct elf_link_hash_table *hash_table;
3292
3293 /* If it's a local sym, of course we resolve locally. */
3294 if (h == NULL)
3295 return true;
3296
3297 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3298 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3299 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3300 return true;
3301
3302 /* Forced local symbols resolve locally. */
3303 if (h->forced_local)
3304 return true;
3305
3306 /* Common symbols that become definitions don't get the DEF_REGULAR
3307 flag set, so test it first, and don't bail out. */
3308 if (ELF_COMMON_DEF_P (h))
3309 /* Do nothing. */;
3310 /* If we don't have a definition in a regular file, then we can't
3311 resolve locally. The sym is either undefined or dynamic. */
3312 else if (!h->def_regular)
3313 return false;
3314
3315 /* Non-dynamic symbols resolve locally. */
3316 if (h->dynindx == -1)
3317 return true;
3318
3319 /* At this point, we know the symbol is defined and dynamic. In an
3320 executable it must resolve locally, likewise when building symbolic
3321 shared libraries. */
3322 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3323 return true;
3324
3325 /* Now deal with defined dynamic symbols in shared libraries. Ones
3326 with default visibility might not resolve locally. */
3327 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3328 return false;
3329
3330 hash_table = elf_hash_table (info);
3331 if (!is_elf_hash_table (&hash_table->root))
3332 return true;
3333
3334 bed = get_elf_backend_data (hash_table->dynobj);
3335
3336 /* If extern_protected_data is false, STV_PROTECTED non-function
3337 symbols are local. */
3338 if ((!info->extern_protected_data
3339 || (info->extern_protected_data < 0
3340 && !bed->extern_protected_data))
3341 && !bed->is_function_type (h->type))
3342 return true;
3343
3344 /* Function pointer equality tests may require that STV_PROTECTED
3345 symbols be treated as dynamic symbols. If the address of a
3346 function not defined in an executable is set to that function's
3347 plt entry in the executable, then the address of the function in
3348 a shared library must also be the plt entry in the executable. */
3349 return local_protected;
3350 }
3351
3352 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3353 aligned. Returns the first TLS output section. */
3354
3355 struct bfd_section *
3356 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3357 {
3358 struct bfd_section *sec, *tls;
3359 unsigned int align = 0;
3360
3361 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3362 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3363 break;
3364 tls = sec;
3365
3366 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3367 if (sec->alignment_power > align)
3368 align = sec->alignment_power;
3369
3370 elf_hash_table (info)->tls_sec = tls;
3371
3372 /* Ensure the alignment of the first section (usually .tdata) is the largest
3373 alignment, so that the tls segment starts aligned. */
3374 if (tls != NULL)
3375 tls->alignment_power = align;
3376
3377 return tls;
3378 }
3379
3380 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3381 static bool
3382 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3383 Elf_Internal_Sym *sym)
3384 {
3385 const struct elf_backend_data *bed;
3386
3387 /* Local symbols do not count, but target specific ones might. */
3388 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3389 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3390 return false;
3391
3392 bed = get_elf_backend_data (abfd);
3393 /* Function symbols do not count. */
3394 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3395 return false;
3396
3397 /* If the section is undefined, then so is the symbol. */
3398 if (sym->st_shndx == SHN_UNDEF)
3399 return false;
3400
3401 /* If the symbol is defined in the common section, then
3402 it is a common definition and so does not count. */
3403 if (bed->common_definition (sym))
3404 return false;
3405
3406 /* If the symbol is in a target specific section then we
3407 must rely upon the backend to tell us what it is. */
3408 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3409 /* FIXME - this function is not coded yet:
3410
3411 return _bfd_is_global_symbol_definition (abfd, sym);
3412
3413 Instead for now assume that the definition is not global,
3414 Even if this is wrong, at least the linker will behave
3415 in the same way that it used to do. */
3416 return false;
3417
3418 return true;
3419 }
3420
3421 /* Search the symbol table of the archive element of the archive ABFD
3422 whose archive map contains a mention of SYMDEF, and determine if
3423 the symbol is defined in this element. */
3424 static bool
3425 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3426 {
3427 Elf_Internal_Shdr * hdr;
3428 size_t symcount;
3429 size_t extsymcount;
3430 size_t extsymoff;
3431 Elf_Internal_Sym *isymbuf;
3432 Elf_Internal_Sym *isym;
3433 Elf_Internal_Sym *isymend;
3434 bool result;
3435
3436 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3437 if (abfd == NULL)
3438 return false;
3439
3440 if (! bfd_check_format (abfd, bfd_object))
3441 return false;
3442
3443 /* Select the appropriate symbol table. If we don't know if the
3444 object file is an IR object, give linker LTO plugin a chance to
3445 get the correct symbol table. */
3446 if (abfd->plugin_format == bfd_plugin_yes
3447 #if BFD_SUPPORTS_PLUGINS
3448 || (abfd->plugin_format == bfd_plugin_unknown
3449 && bfd_link_plugin_object_p (abfd))
3450 #endif
3451 )
3452 {
3453 /* Use the IR symbol table if the object has been claimed by
3454 plugin. */
3455 abfd = abfd->plugin_dummy_bfd;
3456 hdr = &elf_tdata (abfd)->symtab_hdr;
3457 }
3458 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3459 hdr = &elf_tdata (abfd)->symtab_hdr;
3460 else
3461 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3462
3463 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3464
3465 /* The sh_info field of the symtab header tells us where the
3466 external symbols start. We don't care about the local symbols. */
3467 if (elf_bad_symtab (abfd))
3468 {
3469 extsymcount = symcount;
3470 extsymoff = 0;
3471 }
3472 else
3473 {
3474 extsymcount = symcount - hdr->sh_info;
3475 extsymoff = hdr->sh_info;
3476 }
3477
3478 if (extsymcount == 0)
3479 return false;
3480
3481 /* Read in the symbol table. */
3482 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3483 NULL, NULL, NULL);
3484 if (isymbuf == NULL)
3485 return false;
3486
3487 /* Scan the symbol table looking for SYMDEF. */
3488 result = false;
3489 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3490 {
3491 const char *name;
3492
3493 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3494 isym->st_name);
3495 if (name == NULL)
3496 break;
3497
3498 if (strcmp (name, symdef->name) == 0)
3499 {
3500 result = is_global_data_symbol_definition (abfd, isym);
3501 break;
3502 }
3503 }
3504
3505 free (isymbuf);
3506
3507 return result;
3508 }
3509 \f
3510 /* Add an entry to the .dynamic table. */
3511
3512 bool
3513 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3514 bfd_vma tag,
3515 bfd_vma val)
3516 {
3517 struct elf_link_hash_table *hash_table;
3518 const struct elf_backend_data *bed;
3519 asection *s;
3520 bfd_size_type newsize;
3521 bfd_byte *newcontents;
3522 Elf_Internal_Dyn dyn;
3523
3524 hash_table = elf_hash_table (info);
3525 if (! is_elf_hash_table (&hash_table->root))
3526 return false;
3527
3528 if (tag == DT_RELA || tag == DT_REL)
3529 hash_table->dynamic_relocs = true;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 BFD_ASSERT (s != NULL);
3534
3535 newsize = s->size + bed->s->sizeof_dyn;
3536 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3537 if (newcontents == NULL)
3538 return false;
3539
3540 dyn.d_tag = tag;
3541 dyn.d_un.d_val = val;
3542 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3543
3544 s->size = newsize;
3545 s->contents = newcontents;
3546
3547 return true;
3548 }
3549
3550 /* Strip zero-sized dynamic sections. */
3551
3552 bool
3553 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3554 {
3555 struct elf_link_hash_table *hash_table;
3556 const struct elf_backend_data *bed;
3557 asection *s, *sdynamic, **pp;
3558 asection *rela_dyn, *rel_dyn;
3559 Elf_Internal_Dyn dyn;
3560 bfd_byte *extdyn, *next;
3561 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3562 bool strip_zero_sized;
3563 bool strip_zero_sized_plt;
3564
3565 if (bfd_link_relocatable (info))
3566 return true;
3567
3568 hash_table = elf_hash_table (info);
3569 if (!is_elf_hash_table (&hash_table->root))
3570 return false;
3571
3572 if (!hash_table->dynobj)
3573 return true;
3574
3575 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3576 if (!sdynamic)
3577 return true;
3578
3579 bed = get_elf_backend_data (hash_table->dynobj);
3580 swap_dyn_in = bed->s->swap_dyn_in;
3581
3582 strip_zero_sized = false;
3583 strip_zero_sized_plt = false;
3584
3585 /* Strip zero-sized dynamic sections. */
3586 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3587 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3588 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3589 if (s->size == 0
3590 && (s == rela_dyn
3591 || s == rel_dyn
3592 || s == hash_table->srelplt->output_section
3593 || s == hash_table->splt->output_section))
3594 {
3595 *pp = s->next;
3596 info->output_bfd->section_count--;
3597 strip_zero_sized = true;
3598 if (s == rela_dyn)
3599 s = rela_dyn;
3600 if (s == rel_dyn)
3601 s = rel_dyn;
3602 else if (s == hash_table->splt->output_section)
3603 {
3604 s = hash_table->splt;
3605 strip_zero_sized_plt = true;
3606 }
3607 else
3608 s = hash_table->srelplt;
3609 s->flags |= SEC_EXCLUDE;
3610 s->output_section = bfd_abs_section_ptr;
3611 }
3612 else
3613 pp = &s->next;
3614
3615 if (strip_zero_sized_plt)
3616 for (extdyn = sdynamic->contents;
3617 extdyn < sdynamic->contents + sdynamic->size;
3618 extdyn = next)
3619 {
3620 next = extdyn + bed->s->sizeof_dyn;
3621 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3622 switch (dyn.d_tag)
3623 {
3624 default:
3625 break;
3626 case DT_JMPREL:
3627 case DT_PLTRELSZ:
3628 case DT_PLTREL:
3629 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3630 the procedure linkage table (the .plt section) has been
3631 removed. */
3632 memmove (extdyn, next,
3633 sdynamic->size - (next - sdynamic->contents));
3634 next = extdyn;
3635 }
3636 }
3637
3638 if (strip_zero_sized)
3639 {
3640 /* Regenerate program headers. */
3641 elf_seg_map (info->output_bfd) = NULL;
3642 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3643 }
3644
3645 return true;
3646 }
3647
3648 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3649 1 if a DT_NEEDED tag already exists, and 0 on success. */
3650
3651 int
3652 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3653 {
3654 struct elf_link_hash_table *hash_table;
3655 size_t strindex;
3656 const char *soname;
3657
3658 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3659 return -1;
3660
3661 hash_table = elf_hash_table (info);
3662 soname = elf_dt_name (abfd);
3663 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false);
3664 if (strindex == (size_t) -1)
3665 return -1;
3666
3667 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3668 {
3669 asection *sdyn;
3670 const struct elf_backend_data *bed;
3671 bfd_byte *extdyn;
3672
3673 bed = get_elf_backend_data (hash_table->dynobj);
3674 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3675 if (sdyn != NULL)
3676 for (extdyn = sdyn->contents;
3677 extdyn < sdyn->contents + sdyn->size;
3678 extdyn += bed->s->sizeof_dyn)
3679 {
3680 Elf_Internal_Dyn dyn;
3681
3682 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3683 if (dyn.d_tag == DT_NEEDED
3684 && dyn.d_un.d_val == strindex)
3685 {
3686 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3687 return 1;
3688 }
3689 }
3690 }
3691
3692 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3693 return -1;
3694
3695 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3696 return -1;
3697
3698 return 0;
3699 }
3700
3701 /* Return true if SONAME is on the needed list between NEEDED and STOP
3702 (or the end of list if STOP is NULL), and needed by a library that
3703 will be loaded. */
3704
3705 static bool
3706 on_needed_list (const char *soname,
3707 struct bfd_link_needed_list *needed,
3708 struct bfd_link_needed_list *stop)
3709 {
3710 struct bfd_link_needed_list *look;
3711 for (look = needed; look != stop; look = look->next)
3712 if (strcmp (soname, look->name) == 0
3713 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3714 /* If needed by a library that itself is not directly
3715 needed, recursively check whether that library is
3716 indirectly needed. Since we add DT_NEEDED entries to
3717 the end of the list, library dependencies appear after
3718 the library. Therefore search prior to the current
3719 LOOK, preventing possible infinite recursion. */
3720 || on_needed_list (elf_dt_name (look->by), needed, look)))
3721 return true;
3722
3723 return false;
3724 }
3725
3726 /* Sort symbol by value, section, size, and type. */
3727 static int
3728 elf_sort_symbol (const void *arg1, const void *arg2)
3729 {
3730 const struct elf_link_hash_entry *h1;
3731 const struct elf_link_hash_entry *h2;
3732 bfd_signed_vma vdiff;
3733 int sdiff;
3734 const char *n1;
3735 const char *n2;
3736
3737 h1 = *(const struct elf_link_hash_entry **) arg1;
3738 h2 = *(const struct elf_link_hash_entry **) arg2;
3739 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3740 if (vdiff != 0)
3741 return vdiff > 0 ? 1 : -1;
3742
3743 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3744 if (sdiff != 0)
3745 return sdiff;
3746
3747 /* Sort so that sized symbols are selected over zero size symbols. */
3748 vdiff = h1->size - h2->size;
3749 if (vdiff != 0)
3750 return vdiff > 0 ? 1 : -1;
3751
3752 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3753 if (h1->type != h2->type)
3754 return h1->type - h2->type;
3755
3756 /* If symbols are properly sized and typed, and multiple strong
3757 aliases are not defined in a shared library by the user we
3758 shouldn't get here. Unfortunately linker script symbols like
3759 __bss_start sometimes match a user symbol defined at the start of
3760 .bss without proper size and type. We'd like to preference the
3761 user symbol over reserved system symbols. Sort on leading
3762 underscores. */
3763 n1 = h1->root.root.string;
3764 n2 = h2->root.root.string;
3765 while (*n1 == *n2)
3766 {
3767 if (*n1 == 0)
3768 break;
3769 ++n1;
3770 ++n2;
3771 }
3772 if (*n1 == '_')
3773 return -1;
3774 if (*n2 == '_')
3775 return 1;
3776
3777 /* Final sort on name selects user symbols like '_u' over reserved
3778 system symbols like '_Z' and also will avoid qsort instability. */
3779 return *n1 - *n2;
3780 }
3781
3782 /* This function is used to adjust offsets into .dynstr for
3783 dynamic symbols. This is called via elf_link_hash_traverse. */
3784
3785 static bool
3786 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3787 {
3788 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3789
3790 if (h->dynindx != -1)
3791 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3792 return true;
3793 }
3794
3795 /* Assign string offsets in .dynstr, update all structures referencing
3796 them. */
3797
3798 static bool
3799 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3800 {
3801 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3802 struct elf_link_local_dynamic_entry *entry;
3803 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3804 bfd *dynobj = hash_table->dynobj;
3805 asection *sdyn;
3806 bfd_size_type size;
3807 const struct elf_backend_data *bed;
3808 bfd_byte *extdyn;
3809
3810 _bfd_elf_strtab_finalize (dynstr);
3811 size = _bfd_elf_strtab_size (dynstr);
3812
3813 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3814
3815 if (info->callbacks->examine_strtab)
3816 info->callbacks->examine_strtab (dynstr);
3817
3818 bed = get_elf_backend_data (dynobj);
3819 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3820 BFD_ASSERT (sdyn != NULL);
3821
3822 /* Update all .dynamic entries referencing .dynstr strings. */
3823 for (extdyn = sdyn->contents;
3824 extdyn < sdyn->contents + sdyn->size;
3825 extdyn += bed->s->sizeof_dyn)
3826 {
3827 Elf_Internal_Dyn dyn;
3828
3829 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3830 switch (dyn.d_tag)
3831 {
3832 case DT_STRSZ:
3833 dyn.d_un.d_val = size;
3834 break;
3835 case DT_NEEDED:
3836 case DT_SONAME:
3837 case DT_RPATH:
3838 case DT_RUNPATH:
3839 case DT_FILTER:
3840 case DT_AUXILIARY:
3841 case DT_AUDIT:
3842 case DT_DEPAUDIT:
3843 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3844 break;
3845 default:
3846 continue;
3847 }
3848 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3849 }
3850
3851 /* Now update local dynamic symbols. */
3852 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3853 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3854 entry->isym.st_name);
3855
3856 /* And the rest of dynamic symbols. */
3857 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3858
3859 /* Adjust version definitions. */
3860 if (elf_tdata (output_bfd)->cverdefs)
3861 {
3862 asection *s;
3863 bfd_byte *p;
3864 size_t i;
3865 Elf_Internal_Verdef def;
3866 Elf_Internal_Verdaux defaux;
3867
3868 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3869 p = s->contents;
3870 do
3871 {
3872 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3873 &def);
3874 p += sizeof (Elf_External_Verdef);
3875 if (def.vd_aux != sizeof (Elf_External_Verdef))
3876 continue;
3877 for (i = 0; i < def.vd_cnt; ++i)
3878 {
3879 _bfd_elf_swap_verdaux_in (output_bfd,
3880 (Elf_External_Verdaux *) p, &defaux);
3881 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3882 defaux.vda_name);
3883 _bfd_elf_swap_verdaux_out (output_bfd,
3884 &defaux, (Elf_External_Verdaux *) p);
3885 p += sizeof (Elf_External_Verdaux);
3886 }
3887 }
3888 while (def.vd_next);
3889 }
3890
3891 /* Adjust version references. */
3892 if (elf_tdata (output_bfd)->verref)
3893 {
3894 asection *s;
3895 bfd_byte *p;
3896 size_t i;
3897 Elf_Internal_Verneed need;
3898 Elf_Internal_Vernaux needaux;
3899
3900 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3901 p = s->contents;
3902 do
3903 {
3904 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3905 &need);
3906 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3907 _bfd_elf_swap_verneed_out (output_bfd, &need,
3908 (Elf_External_Verneed *) p);
3909 p += sizeof (Elf_External_Verneed);
3910 for (i = 0; i < need.vn_cnt; ++i)
3911 {
3912 _bfd_elf_swap_vernaux_in (output_bfd,
3913 (Elf_External_Vernaux *) p, &needaux);
3914 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3915 needaux.vna_name);
3916 _bfd_elf_swap_vernaux_out (output_bfd,
3917 &needaux,
3918 (Elf_External_Vernaux *) p);
3919 p += sizeof (Elf_External_Vernaux);
3920 }
3921 }
3922 while (need.vn_next);
3923 }
3924
3925 return true;
3926 }
3927 \f
3928 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3929 The default is to only match when the INPUT and OUTPUT are exactly
3930 the same target. */
3931
3932 bool
3933 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3934 const bfd_target *output)
3935 {
3936 return input == output;
3937 }
3938
3939 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3940 This version is used when different targets for the same architecture
3941 are virtually identical. */
3942
3943 bool
3944 _bfd_elf_relocs_compatible (const bfd_target *input,
3945 const bfd_target *output)
3946 {
3947 const struct elf_backend_data *obed, *ibed;
3948
3949 if (input == output)
3950 return true;
3951
3952 ibed = xvec_get_elf_backend_data (input);
3953 obed = xvec_get_elf_backend_data (output);
3954
3955 if (ibed->arch != obed->arch)
3956 return false;
3957
3958 /* If both backends are using this function, deem them compatible. */
3959 return ibed->relocs_compatible == obed->relocs_compatible;
3960 }
3961
3962 /* Make a special call to the linker "notice" function to tell it that
3963 we are about to handle an as-needed lib, or have finished
3964 processing the lib. */
3965
3966 bool
3967 _bfd_elf_notice_as_needed (bfd *ibfd,
3968 struct bfd_link_info *info,
3969 enum notice_asneeded_action act)
3970 {
3971 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3972 }
3973
3974 /* Check relocations an ELF object file. */
3975
3976 bool
3977 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3978 {
3979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3980 struct elf_link_hash_table *htab = elf_hash_table (info);
3981
3982 /* If this object is the same format as the output object, and it is
3983 not a shared library, then let the backend look through the
3984 relocs.
3985
3986 This is required to build global offset table entries and to
3987 arrange for dynamic relocs. It is not required for the
3988 particular common case of linking non PIC code, even when linking
3989 against shared libraries, but unfortunately there is no way of
3990 knowing whether an object file has been compiled PIC or not.
3991 Looking through the relocs is not particularly time consuming.
3992 The problem is that we must either (1) keep the relocs in memory,
3993 which causes the linker to require additional runtime memory or
3994 (2) read the relocs twice from the input file, which wastes time.
3995 This would be a good case for using mmap.
3996
3997 I have no idea how to handle linking PIC code into a file of a
3998 different format. It probably can't be done. */
3999 if ((abfd->flags & DYNAMIC) == 0
4000 && is_elf_hash_table (&htab->root)
4001 && bed->check_relocs != NULL
4002 && elf_object_id (abfd) == elf_hash_table_id (htab)
4003 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4004 {
4005 asection *o;
4006
4007 for (o = abfd->sections; o != NULL; o = o->next)
4008 {
4009 Elf_Internal_Rela *internal_relocs;
4010 bool ok;
4011
4012 /* Don't check relocations in excluded sections. Don't do
4013 anything special with non-loaded, non-alloced sections.
4014 In particular, any relocs in such sections should not
4015 affect GOT and PLT reference counting (ie. we don't
4016 allow them to create GOT or PLT entries), there's no
4017 possibility or desire to optimize TLS relocs, and
4018 there's not much point in propagating relocs to shared
4019 libs that the dynamic linker won't relocate. */
4020 if ((o->flags & SEC_ALLOC) == 0
4021 || (o->flags & SEC_RELOC) == 0
4022 || (o->flags & SEC_EXCLUDE) != 0
4023 || o->reloc_count == 0
4024 || ((info->strip == strip_all || info->strip == strip_debugger)
4025 && (o->flags & SEC_DEBUGGING) != 0)
4026 || bfd_is_abs_section (o->output_section))
4027 continue;
4028
4029 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4030 info->keep_memory);
4031 if (internal_relocs == NULL)
4032 return false;
4033
4034 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4035
4036 if (elf_section_data (o)->relocs != internal_relocs)
4037 free (internal_relocs);
4038
4039 if (! ok)
4040 return false;
4041 }
4042 }
4043
4044 return true;
4045 }
4046
4047 /* Add symbols from an ELF object file to the linker hash table. */
4048
4049 static bool
4050 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4051 {
4052 Elf_Internal_Ehdr *ehdr;
4053 Elf_Internal_Shdr *hdr;
4054 size_t symcount;
4055 size_t extsymcount;
4056 size_t extsymoff;
4057 struct elf_link_hash_entry **sym_hash;
4058 bool dynamic;
4059 Elf_External_Versym *extversym = NULL;
4060 Elf_External_Versym *extversym_end = NULL;
4061 Elf_External_Versym *ever;
4062 struct elf_link_hash_entry *weaks;
4063 struct elf_link_hash_entry **nondeflt_vers = NULL;
4064 size_t nondeflt_vers_cnt = 0;
4065 Elf_Internal_Sym *isymbuf = NULL;
4066 Elf_Internal_Sym *isym;
4067 Elf_Internal_Sym *isymend;
4068 const struct elf_backend_data *bed;
4069 bool add_needed;
4070 struct elf_link_hash_table *htab;
4071 void *alloc_mark = NULL;
4072 struct bfd_hash_entry **old_table = NULL;
4073 unsigned int old_size = 0;
4074 unsigned int old_count = 0;
4075 void *old_tab = NULL;
4076 void *old_ent;
4077 struct bfd_link_hash_entry *old_undefs = NULL;
4078 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4079 void *old_strtab = NULL;
4080 size_t tabsize = 0;
4081 asection *s;
4082 bool just_syms;
4083
4084 htab = elf_hash_table (info);
4085 bed = get_elf_backend_data (abfd);
4086
4087 if ((abfd->flags & DYNAMIC) == 0)
4088 dynamic = false;
4089 else
4090 {
4091 dynamic = true;
4092
4093 /* You can't use -r against a dynamic object. Also, there's no
4094 hope of using a dynamic object which does not exactly match
4095 the format of the output file. */
4096 if (bfd_link_relocatable (info)
4097 || !is_elf_hash_table (&htab->root)
4098 || info->output_bfd->xvec != abfd->xvec)
4099 {
4100 if (bfd_link_relocatable (info))
4101 bfd_set_error (bfd_error_invalid_operation);
4102 else
4103 bfd_set_error (bfd_error_wrong_format);
4104 goto error_return;
4105 }
4106 }
4107
4108 ehdr = elf_elfheader (abfd);
4109 if (info->warn_alternate_em
4110 && bed->elf_machine_code != ehdr->e_machine
4111 && ((bed->elf_machine_alt1 != 0
4112 && ehdr->e_machine == bed->elf_machine_alt1)
4113 || (bed->elf_machine_alt2 != 0
4114 && ehdr->e_machine == bed->elf_machine_alt2)))
4115 _bfd_error_handler
4116 /* xgettext:c-format */
4117 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4118 ehdr->e_machine, abfd, bed->elf_machine_code);
4119
4120 /* As a GNU extension, any input sections which are named
4121 .gnu.warning.SYMBOL are treated as warning symbols for the given
4122 symbol. This differs from .gnu.warning sections, which generate
4123 warnings when they are included in an output file. */
4124 /* PR 12761: Also generate this warning when building shared libraries. */
4125 for (s = abfd->sections; s != NULL; s = s->next)
4126 {
4127 const char *name;
4128
4129 name = bfd_section_name (s);
4130 if (startswith (name, ".gnu.warning."))
4131 {
4132 char *msg;
4133 bfd_size_type sz;
4134
4135 name += sizeof ".gnu.warning." - 1;
4136
4137 /* If this is a shared object, then look up the symbol
4138 in the hash table. If it is there, and it is already
4139 been defined, then we will not be using the entry
4140 from this shared object, so we don't need to warn.
4141 FIXME: If we see the definition in a regular object
4142 later on, we will warn, but we shouldn't. The only
4143 fix is to keep track of what warnings we are supposed
4144 to emit, and then handle them all at the end of the
4145 link. */
4146 if (dynamic)
4147 {
4148 struct elf_link_hash_entry *h;
4149
4150 h = elf_link_hash_lookup (htab, name, false, false, true);
4151
4152 /* FIXME: What about bfd_link_hash_common? */
4153 if (h != NULL
4154 && (h->root.type == bfd_link_hash_defined
4155 || h->root.type == bfd_link_hash_defweak))
4156 continue;
4157 }
4158
4159 sz = s->size;
4160 msg = (char *) bfd_alloc (abfd, sz + 1);
4161 if (msg == NULL)
4162 goto error_return;
4163
4164 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4165 goto error_return;
4166
4167 msg[sz] = '\0';
4168
4169 if (! (_bfd_generic_link_add_one_symbol
4170 (info, abfd, name, BSF_WARNING, s, 0, msg,
4171 false, bed->collect, NULL)))
4172 goto error_return;
4173
4174 if (bfd_link_executable (info))
4175 {
4176 /* Clobber the section size so that the warning does
4177 not get copied into the output file. */
4178 s->size = 0;
4179
4180 /* Also set SEC_EXCLUDE, so that symbols defined in
4181 the warning section don't get copied to the output. */
4182 s->flags |= SEC_EXCLUDE;
4183 }
4184 }
4185 }
4186
4187 just_syms = ((s = abfd->sections) != NULL
4188 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4189
4190 add_needed = true;
4191 if (! dynamic)
4192 {
4193 /* If we are creating a shared library, create all the dynamic
4194 sections immediately. We need to attach them to something,
4195 so we attach them to this BFD, provided it is the right
4196 format and is not from ld --just-symbols. Always create the
4197 dynamic sections for -E/--dynamic-list. FIXME: If there
4198 are no input BFD's of the same format as the output, we can't
4199 make a shared library. */
4200 if (!just_syms
4201 && (bfd_link_pic (info)
4202 || (!bfd_link_relocatable (info)
4203 && info->nointerp
4204 && (info->export_dynamic || info->dynamic)))
4205 && is_elf_hash_table (&htab->root)
4206 && info->output_bfd->xvec == abfd->xvec
4207 && !htab->dynamic_sections_created)
4208 {
4209 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4210 goto error_return;
4211 }
4212 }
4213 else if (!is_elf_hash_table (&htab->root))
4214 goto error_return;
4215 else
4216 {
4217 const char *soname = NULL;
4218 char *audit = NULL;
4219 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4220 const Elf_Internal_Phdr *phdr;
4221 struct elf_link_loaded_list *loaded_lib;
4222
4223 /* ld --just-symbols and dynamic objects don't mix very well.
4224 ld shouldn't allow it. */
4225 if (just_syms)
4226 abort ();
4227
4228 /* If this dynamic lib was specified on the command line with
4229 --as-needed in effect, then we don't want to add a DT_NEEDED
4230 tag unless the lib is actually used. Similary for libs brought
4231 in by another lib's DT_NEEDED. When --no-add-needed is used
4232 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4233 any dynamic library in DT_NEEDED tags in the dynamic lib at
4234 all. */
4235 add_needed = (elf_dyn_lib_class (abfd)
4236 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4237 | DYN_NO_NEEDED)) == 0;
4238
4239 s = bfd_get_section_by_name (abfd, ".dynamic");
4240 if (s != NULL)
4241 {
4242 bfd_byte *dynbuf;
4243 bfd_byte *extdyn;
4244 unsigned int elfsec;
4245 unsigned long shlink;
4246
4247 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4248 {
4249 error_free_dyn:
4250 free (dynbuf);
4251 goto error_return;
4252 }
4253
4254 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4255 if (elfsec == SHN_BAD)
4256 goto error_free_dyn;
4257 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4258
4259 for (extdyn = dynbuf;
4260 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4261 extdyn += bed->s->sizeof_dyn)
4262 {
4263 Elf_Internal_Dyn dyn;
4264
4265 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4266 if (dyn.d_tag == DT_SONAME)
4267 {
4268 unsigned int tagv = dyn.d_un.d_val;
4269 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4270 if (soname == NULL)
4271 goto error_free_dyn;
4272 }
4273 if (dyn.d_tag == DT_NEEDED)
4274 {
4275 struct bfd_link_needed_list *n, **pn;
4276 char *fnm, *anm;
4277 unsigned int tagv = dyn.d_un.d_val;
4278 size_t amt = sizeof (struct bfd_link_needed_list);
4279
4280 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4281 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4282 if (n == NULL || fnm == NULL)
4283 goto error_free_dyn;
4284 amt = strlen (fnm) + 1;
4285 anm = (char *) bfd_alloc (abfd, amt);
4286 if (anm == NULL)
4287 goto error_free_dyn;
4288 memcpy (anm, fnm, amt);
4289 n->name = anm;
4290 n->by = abfd;
4291 n->next = NULL;
4292 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4293 ;
4294 *pn = n;
4295 }
4296 if (dyn.d_tag == DT_RUNPATH)
4297 {
4298 struct bfd_link_needed_list *n, **pn;
4299 char *fnm, *anm;
4300 unsigned int tagv = dyn.d_un.d_val;
4301 size_t amt = sizeof (struct bfd_link_needed_list);
4302
4303 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4304 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4305 if (n == NULL || fnm == NULL)
4306 goto error_free_dyn;
4307 amt = strlen (fnm) + 1;
4308 anm = (char *) bfd_alloc (abfd, amt);
4309 if (anm == NULL)
4310 goto error_free_dyn;
4311 memcpy (anm, fnm, amt);
4312 n->name = anm;
4313 n->by = abfd;
4314 n->next = NULL;
4315 for (pn = & runpath;
4316 *pn != NULL;
4317 pn = &(*pn)->next)
4318 ;
4319 *pn = n;
4320 }
4321 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4322 if (!runpath && dyn.d_tag == DT_RPATH)
4323 {
4324 struct bfd_link_needed_list *n, **pn;
4325 char *fnm, *anm;
4326 unsigned int tagv = dyn.d_un.d_val;
4327 size_t amt = sizeof (struct bfd_link_needed_list);
4328
4329 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4330 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4331 if (n == NULL || fnm == NULL)
4332 goto error_free_dyn;
4333 amt = strlen (fnm) + 1;
4334 anm = (char *) bfd_alloc (abfd, amt);
4335 if (anm == NULL)
4336 goto error_free_dyn;
4337 memcpy (anm, fnm, amt);
4338 n->name = anm;
4339 n->by = abfd;
4340 n->next = NULL;
4341 for (pn = & rpath;
4342 *pn != NULL;
4343 pn = &(*pn)->next)
4344 ;
4345 *pn = n;
4346 }
4347 if (dyn.d_tag == DT_AUDIT)
4348 {
4349 unsigned int tagv = dyn.d_un.d_val;
4350 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4351 }
4352 }
4353
4354 free (dynbuf);
4355 }
4356
4357 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4358 frees all more recently bfd_alloc'd blocks as well. */
4359 if (runpath)
4360 rpath = runpath;
4361
4362 if (rpath)
4363 {
4364 struct bfd_link_needed_list **pn;
4365 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4366 ;
4367 *pn = rpath;
4368 }
4369
4370 /* If we have a PT_GNU_RELRO program header, mark as read-only
4371 all sections contained fully therein. This makes relro
4372 shared library sections appear as they will at run-time. */
4373 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4374 while (phdr-- > elf_tdata (abfd)->phdr)
4375 if (phdr->p_type == PT_GNU_RELRO)
4376 {
4377 for (s = abfd->sections; s != NULL; s = s->next)
4378 {
4379 unsigned int opb = bfd_octets_per_byte (abfd, s);
4380
4381 if ((s->flags & SEC_ALLOC) != 0
4382 && s->vma * opb >= phdr->p_vaddr
4383 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4384 s->flags |= SEC_READONLY;
4385 }
4386 break;
4387 }
4388
4389 /* We do not want to include any of the sections in a dynamic
4390 object in the output file. We hack by simply clobbering the
4391 list of sections in the BFD. This could be handled more
4392 cleanly by, say, a new section flag; the existing
4393 SEC_NEVER_LOAD flag is not the one we want, because that one
4394 still implies that the section takes up space in the output
4395 file. */
4396 bfd_section_list_clear (abfd);
4397
4398 /* Find the name to use in a DT_NEEDED entry that refers to this
4399 object. If the object has a DT_SONAME entry, we use it.
4400 Otherwise, if the generic linker stuck something in
4401 elf_dt_name, we use that. Otherwise, we just use the file
4402 name. */
4403 if (soname == NULL || *soname == '\0')
4404 {
4405 soname = elf_dt_name (abfd);
4406 if (soname == NULL || *soname == '\0')
4407 soname = bfd_get_filename (abfd);
4408 }
4409
4410 /* Save the SONAME because sometimes the linker emulation code
4411 will need to know it. */
4412 elf_dt_name (abfd) = soname;
4413
4414 /* If we have already included this dynamic object in the
4415 link, just ignore it. There is no reason to include a
4416 particular dynamic object more than once. */
4417 for (loaded_lib = htab->dyn_loaded;
4418 loaded_lib != NULL;
4419 loaded_lib = loaded_lib->next)
4420 {
4421 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4422 return true;
4423 }
4424
4425 /* Create dynamic sections for backends that require that be done
4426 before setup_gnu_properties. */
4427 if (add_needed
4428 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4429 return false;
4430
4431 /* Save the DT_AUDIT entry for the linker emulation code. */
4432 elf_dt_audit (abfd) = audit;
4433 }
4434
4435 /* If this is a dynamic object, we always link against the .dynsym
4436 symbol table, not the .symtab symbol table. The dynamic linker
4437 will only see the .dynsym symbol table, so there is no reason to
4438 look at .symtab for a dynamic object. */
4439
4440 if (! dynamic || elf_dynsymtab (abfd) == 0)
4441 hdr = &elf_tdata (abfd)->symtab_hdr;
4442 else
4443 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4444
4445 symcount = hdr->sh_size / bed->s->sizeof_sym;
4446
4447 /* The sh_info field of the symtab header tells us where the
4448 external symbols start. We don't care about the local symbols at
4449 this point. */
4450 if (elf_bad_symtab (abfd))
4451 {
4452 extsymcount = symcount;
4453 extsymoff = 0;
4454 }
4455 else
4456 {
4457 extsymcount = symcount - hdr->sh_info;
4458 extsymoff = hdr->sh_info;
4459 }
4460
4461 sym_hash = elf_sym_hashes (abfd);
4462 if (extsymcount != 0)
4463 {
4464 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4465 NULL, NULL, NULL);
4466 if (isymbuf == NULL)
4467 goto error_return;
4468
4469 if (sym_hash == NULL)
4470 {
4471 /* We store a pointer to the hash table entry for each
4472 external symbol. */
4473 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4474 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4475 if (sym_hash == NULL)
4476 goto error_free_sym;
4477 elf_sym_hashes (abfd) = sym_hash;
4478 }
4479 }
4480
4481 if (dynamic)
4482 {
4483 /* Read in any version definitions. */
4484 if (!_bfd_elf_slurp_version_tables (abfd,
4485 info->default_imported_symver))
4486 goto error_free_sym;
4487
4488 /* Read in the symbol versions, but don't bother to convert them
4489 to internal format. */
4490 if (elf_dynversym (abfd) != 0)
4491 {
4492 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4493 bfd_size_type amt = versymhdr->sh_size;
4494
4495 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4496 goto error_free_sym;
4497 extversym = (Elf_External_Versym *)
4498 _bfd_malloc_and_read (abfd, amt, amt);
4499 if (extversym == NULL)
4500 goto error_free_sym;
4501 extversym_end = extversym + amt / sizeof (*extversym);
4502 }
4503 }
4504
4505 /* If we are loading an as-needed shared lib, save the symbol table
4506 state before we start adding symbols. If the lib turns out
4507 to be unneeded, restore the state. */
4508 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4509 {
4510 unsigned int i;
4511 size_t entsize;
4512
4513 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4514 {
4515 struct bfd_hash_entry *p;
4516 struct elf_link_hash_entry *h;
4517
4518 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4519 {
4520 h = (struct elf_link_hash_entry *) p;
4521 entsize += htab->root.table.entsize;
4522 if (h->root.type == bfd_link_hash_warning)
4523 {
4524 entsize += htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 }
4527 if (h->root.type == bfd_link_hash_common)
4528 entsize += sizeof (*h->root.u.c.p);
4529 }
4530 }
4531
4532 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4533 old_tab = bfd_malloc (tabsize + entsize);
4534 if (old_tab == NULL)
4535 goto error_free_vers;
4536
4537 /* Remember the current objalloc pointer, so that all mem for
4538 symbols added can later be reclaimed. */
4539 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4540 if (alloc_mark == NULL)
4541 goto error_free_vers;
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that we are about to handle an as-needed lib. */
4545 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4546 goto error_free_vers;
4547
4548 /* Clone the symbol table. Remember some pointers into the
4549 symbol table, and dynamic symbol count. */
4550 old_ent = (char *) old_tab + tabsize;
4551 memcpy (old_tab, htab->root.table.table, tabsize);
4552 old_undefs = htab->root.undefs;
4553 old_undefs_tail = htab->root.undefs_tail;
4554 old_table = htab->root.table.table;
4555 old_size = htab->root.table.size;
4556 old_count = htab->root.table.count;
4557 old_strtab = NULL;
4558 if (htab->dynstr != NULL)
4559 {
4560 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4561 if (old_strtab == NULL)
4562 goto error_free_vers;
4563 }
4564
4565 for (i = 0; i < htab->root.table.size; i++)
4566 {
4567 struct bfd_hash_entry *p;
4568 struct elf_link_hash_entry *h;
4569
4570 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4571 {
4572 h = (struct elf_link_hash_entry *) p;
4573 memcpy (old_ent, h, htab->root.table.entsize);
4574 old_ent = (char *) old_ent + htab->root.table.entsize;
4575 if (h->root.type == bfd_link_hash_warning)
4576 {
4577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4578 memcpy (old_ent, h, htab->root.table.entsize);
4579 old_ent = (char *) old_ent + htab->root.table.entsize;
4580 }
4581 if (h->root.type == bfd_link_hash_common)
4582 {
4583 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4584 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4585 }
4586 }
4587 }
4588 }
4589
4590 weaks = NULL;
4591 if (extversym == NULL)
4592 ever = NULL;
4593 else if (extversym + extsymoff < extversym_end)
4594 ever = extversym + extsymoff;
4595 else
4596 {
4597 /* xgettext:c-format */
4598 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4599 abfd, (long) extsymoff,
4600 (long) (extversym_end - extversym) / sizeof (* extversym));
4601 bfd_set_error (bfd_error_bad_value);
4602 goto error_free_vers;
4603 }
4604
4605 if (!bfd_link_relocatable (info)
4606 && abfd->lto_slim_object)
4607 {
4608 _bfd_error_handler
4609 (_("%pB: plugin needed to handle lto object"), abfd);
4610 }
4611
4612 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4613 isym < isymend;
4614 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4615 {
4616 int bind;
4617 bfd_vma value;
4618 asection *sec, *new_sec;
4619 flagword flags;
4620 const char *name;
4621 struct elf_link_hash_entry *h;
4622 struct elf_link_hash_entry *hi;
4623 bool definition;
4624 bool size_change_ok;
4625 bool type_change_ok;
4626 bool new_weak;
4627 bool old_weak;
4628 bfd *override;
4629 bool common;
4630 bool discarded;
4631 unsigned int old_alignment;
4632 unsigned int shindex;
4633 bfd *old_bfd;
4634 bool matched;
4635
4636 override = NULL;
4637
4638 flags = BSF_NO_FLAGS;
4639 sec = NULL;
4640 value = isym->st_value;
4641 common = bed->common_definition (isym);
4642 if (common && info->inhibit_common_definition)
4643 {
4644 /* Treat common symbol as undefined for --no-define-common. */
4645 isym->st_shndx = SHN_UNDEF;
4646 common = false;
4647 }
4648 discarded = false;
4649
4650 bind = ELF_ST_BIND (isym->st_info);
4651 switch (bind)
4652 {
4653 case STB_LOCAL:
4654 /* This should be impossible, since ELF requires that all
4655 global symbols follow all local symbols, and that sh_info
4656 point to the first global symbol. Unfortunately, Irix 5
4657 screws this up. */
4658 if (elf_bad_symtab (abfd))
4659 continue;
4660
4661 /* If we aren't prepared to handle locals within the globals
4662 then we'll likely segfault on a NULL symbol hash if the
4663 symbol is ever referenced in relocations. */
4664 shindex = elf_elfheader (abfd)->e_shstrndx;
4665 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4666 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4667 " (>= sh_info of %lu)"),
4668 abfd, name, (long) (isym - isymbuf + extsymoff),
4669 (long) extsymoff);
4670
4671 /* Dynamic object relocations are not processed by ld, so
4672 ld won't run into the problem mentioned above. */
4673 if (dynamic)
4674 continue;
4675 bfd_set_error (bfd_error_bad_value);
4676 goto error_free_vers;
4677
4678 case STB_GLOBAL:
4679 if (isym->st_shndx != SHN_UNDEF && !common)
4680 flags = BSF_GLOBAL;
4681 break;
4682
4683 case STB_WEAK:
4684 flags = BSF_WEAK;
4685 break;
4686
4687 case STB_GNU_UNIQUE:
4688 flags = BSF_GNU_UNIQUE;
4689 break;
4690
4691 default:
4692 /* Leave it up to the processor backend. */
4693 break;
4694 }
4695
4696 if (isym->st_shndx == SHN_UNDEF)
4697 sec = bfd_und_section_ptr;
4698 else if (isym->st_shndx == SHN_ABS)
4699 sec = bfd_abs_section_ptr;
4700 else if (isym->st_shndx == SHN_COMMON)
4701 {
4702 sec = bfd_com_section_ptr;
4703 /* What ELF calls the size we call the value. What ELF
4704 calls the value we call the alignment. */
4705 value = isym->st_size;
4706 }
4707 else
4708 {
4709 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4710 if (sec == NULL)
4711 sec = bfd_abs_section_ptr;
4712 else if (discarded_section (sec))
4713 {
4714 /* Symbols from discarded section are undefined. We keep
4715 its visibility. */
4716 sec = bfd_und_section_ptr;
4717 discarded = true;
4718 isym->st_shndx = SHN_UNDEF;
4719 }
4720 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4721 value -= sec->vma;
4722 }
4723
4724 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4725 isym->st_name);
4726 if (name == NULL)
4727 goto error_free_vers;
4728
4729 if (isym->st_shndx == SHN_COMMON
4730 && (abfd->flags & BFD_PLUGIN) != 0)
4731 {
4732 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4733
4734 if (xc == NULL)
4735 {
4736 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4737 | SEC_EXCLUDE);
4738 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4739 if (xc == NULL)
4740 goto error_free_vers;
4741 }
4742 sec = xc;
4743 }
4744 else if (isym->st_shndx == SHN_COMMON
4745 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4746 && !bfd_link_relocatable (info))
4747 {
4748 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4749
4750 if (tcomm == NULL)
4751 {
4752 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4753 | SEC_LINKER_CREATED);
4754 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4755 if (tcomm == NULL)
4756 goto error_free_vers;
4757 }
4758 sec = tcomm;
4759 }
4760 else if (bed->elf_add_symbol_hook)
4761 {
4762 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4763 &sec, &value))
4764 goto error_free_vers;
4765
4766 /* The hook function sets the name to NULL if this symbol
4767 should be skipped for some reason. */
4768 if (name == NULL)
4769 continue;
4770 }
4771
4772 /* Sanity check that all possibilities were handled. */
4773 if (sec == NULL)
4774 abort ();
4775
4776 /* Silently discard TLS symbols from --just-syms. There's
4777 no way to combine a static TLS block with a new TLS block
4778 for this executable. */
4779 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4780 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4781 continue;
4782
4783 if (bfd_is_und_section (sec)
4784 || bfd_is_com_section (sec))
4785 definition = false;
4786 else
4787 definition = true;
4788
4789 size_change_ok = false;
4790 type_change_ok = bed->type_change_ok;
4791 old_weak = false;
4792 matched = false;
4793 old_alignment = 0;
4794 old_bfd = NULL;
4795 new_sec = sec;
4796
4797 if (is_elf_hash_table (&htab->root))
4798 {
4799 Elf_Internal_Versym iver;
4800 unsigned int vernum = 0;
4801 bool skip;
4802
4803 if (ever == NULL)
4804 {
4805 if (info->default_imported_symver)
4806 /* Use the default symbol version created earlier. */
4807 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4808 else
4809 iver.vs_vers = 0;
4810 }
4811 else if (ever >= extversym_end)
4812 {
4813 /* xgettext:c-format */
4814 _bfd_error_handler (_("%pB: not enough version information"),
4815 abfd);
4816 bfd_set_error (bfd_error_bad_value);
4817 goto error_free_vers;
4818 }
4819 else
4820 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4821
4822 vernum = iver.vs_vers & VERSYM_VERSION;
4823
4824 /* If this is a hidden symbol, or if it is not version
4825 1, we append the version name to the symbol name.
4826 However, we do not modify a non-hidden absolute symbol
4827 if it is not a function, because it might be the version
4828 symbol itself. FIXME: What if it isn't? */
4829 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4830 || (vernum > 1
4831 && (!bfd_is_abs_section (sec)
4832 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4833 {
4834 const char *verstr;
4835 size_t namelen, verlen, newlen;
4836 char *newname, *p;
4837
4838 if (isym->st_shndx != SHN_UNDEF)
4839 {
4840 if (vernum > elf_tdata (abfd)->cverdefs)
4841 verstr = NULL;
4842 else if (vernum > 1)
4843 verstr =
4844 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4845 else
4846 verstr = "";
4847
4848 if (verstr == NULL)
4849 {
4850 _bfd_error_handler
4851 /* xgettext:c-format */
4852 (_("%pB: %s: invalid version %u (max %d)"),
4853 abfd, name, vernum,
4854 elf_tdata (abfd)->cverdefs);
4855 bfd_set_error (bfd_error_bad_value);
4856 goto error_free_vers;
4857 }
4858 }
4859 else
4860 {
4861 /* We cannot simply test for the number of
4862 entries in the VERNEED section since the
4863 numbers for the needed versions do not start
4864 at 0. */
4865 Elf_Internal_Verneed *t;
4866
4867 verstr = NULL;
4868 for (t = elf_tdata (abfd)->verref;
4869 t != NULL;
4870 t = t->vn_nextref)
4871 {
4872 Elf_Internal_Vernaux *a;
4873
4874 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4875 {
4876 if (a->vna_other == vernum)
4877 {
4878 verstr = a->vna_nodename;
4879 break;
4880 }
4881 }
4882 if (a != NULL)
4883 break;
4884 }
4885 if (verstr == NULL)
4886 {
4887 _bfd_error_handler
4888 /* xgettext:c-format */
4889 (_("%pB: %s: invalid needed version %d"),
4890 abfd, name, vernum);
4891 bfd_set_error (bfd_error_bad_value);
4892 goto error_free_vers;
4893 }
4894 }
4895
4896 namelen = strlen (name);
4897 verlen = strlen (verstr);
4898 newlen = namelen + verlen + 2;
4899 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4900 && isym->st_shndx != SHN_UNDEF)
4901 ++newlen;
4902
4903 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4904 if (newname == NULL)
4905 goto error_free_vers;
4906 memcpy (newname, name, namelen);
4907 p = newname + namelen;
4908 *p++ = ELF_VER_CHR;
4909 /* If this is a defined non-hidden version symbol,
4910 we add another @ to the name. This indicates the
4911 default version of the symbol. */
4912 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4913 && isym->st_shndx != SHN_UNDEF)
4914 *p++ = ELF_VER_CHR;
4915 memcpy (p, verstr, verlen + 1);
4916
4917 name = newname;
4918 }
4919
4920 /* If this symbol has default visibility and the user has
4921 requested we not re-export it, then mark it as hidden. */
4922 if (!bfd_is_und_section (sec)
4923 && !dynamic
4924 && abfd->no_export
4925 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4926 isym->st_other = (STV_HIDDEN
4927 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4928
4929 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4930 sym_hash, &old_bfd, &old_weak,
4931 &old_alignment, &skip, &override,
4932 &type_change_ok, &size_change_ok,
4933 &matched))
4934 goto error_free_vers;
4935
4936 if (skip)
4937 continue;
4938
4939 /* Override a definition only if the new symbol matches the
4940 existing one. */
4941 if (override && matched)
4942 definition = false;
4943
4944 h = *sym_hash;
4945 while (h->root.type == bfd_link_hash_indirect
4946 || h->root.type == bfd_link_hash_warning)
4947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4948
4949 if (elf_tdata (abfd)->verdef != NULL
4950 && vernum > 1
4951 && definition)
4952 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4953 }
4954
4955 if (! (_bfd_generic_link_add_one_symbol
4956 (info, override ? override : abfd, name, flags, sec, value,
4957 NULL, false, bed->collect,
4958 (struct bfd_link_hash_entry **) sym_hash)))
4959 goto error_free_vers;
4960
4961 h = *sym_hash;
4962 /* We need to make sure that indirect symbol dynamic flags are
4963 updated. */
4964 hi = h;
4965 while (h->root.type == bfd_link_hash_indirect
4966 || h->root.type == bfd_link_hash_warning)
4967 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4968
4969 *sym_hash = h;
4970
4971 /* Setting the index to -3 tells elf_link_output_extsym that
4972 this symbol is defined in a discarded section. */
4973 if (discarded && is_elf_hash_table (&htab->root))
4974 h->indx = -3;
4975
4976 new_weak = (flags & BSF_WEAK) != 0;
4977 if (dynamic
4978 && definition
4979 && new_weak
4980 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4981 && is_elf_hash_table (&htab->root)
4982 && h->u.alias == NULL)
4983 {
4984 /* Keep a list of all weak defined non function symbols from
4985 a dynamic object, using the alias field. Later in this
4986 function we will set the alias field to the correct
4987 value. We only put non-function symbols from dynamic
4988 objects on this list, because that happens to be the only
4989 time we need to know the normal symbol corresponding to a
4990 weak symbol, and the information is time consuming to
4991 figure out. If the alias field is not already NULL,
4992 then this symbol was already defined by some previous
4993 dynamic object, and we will be using that previous
4994 definition anyhow. */
4995
4996 h->u.alias = weaks;
4997 weaks = h;
4998 }
4999
5000 /* Set the alignment of a common symbol. */
5001 if ((common || bfd_is_com_section (sec))
5002 && h->root.type == bfd_link_hash_common)
5003 {
5004 unsigned int align;
5005
5006 if (common)
5007 align = bfd_log2 (isym->st_value);
5008 else
5009 {
5010 /* The new symbol is a common symbol in a shared object.
5011 We need to get the alignment from the section. */
5012 align = new_sec->alignment_power;
5013 }
5014 if (align > old_alignment)
5015 h->root.u.c.p->alignment_power = align;
5016 else
5017 h->root.u.c.p->alignment_power = old_alignment;
5018 }
5019
5020 if (is_elf_hash_table (&htab->root))
5021 {
5022 /* Set a flag in the hash table entry indicating the type of
5023 reference or definition we just found. A dynamic symbol
5024 is one which is referenced or defined by both a regular
5025 object and a shared object. */
5026 bool dynsym = false;
5027
5028 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5029 if ((abfd->flags & BFD_PLUGIN) != 0)
5030 {
5031 /* Except for this flag to track nonweak references. */
5032 if (!definition
5033 && bind != STB_WEAK)
5034 h->ref_ir_nonweak = 1;
5035 }
5036 else if (!dynamic)
5037 {
5038 if (! definition)
5039 {
5040 h->ref_regular = 1;
5041 if (bind != STB_WEAK)
5042 h->ref_regular_nonweak = 1;
5043 }
5044 else
5045 {
5046 h->def_regular = 1;
5047 if (h->def_dynamic)
5048 {
5049 h->def_dynamic = 0;
5050 h->ref_dynamic = 1;
5051 }
5052 }
5053 }
5054 else
5055 {
5056 if (! definition)
5057 {
5058 h->ref_dynamic = 1;
5059 hi->ref_dynamic = 1;
5060 }
5061 else
5062 {
5063 h->def_dynamic = 1;
5064 hi->def_dynamic = 1;
5065 }
5066 }
5067
5068 /* If an indirect symbol has been forced local, don't
5069 make the real symbol dynamic. */
5070 if (h != hi && hi->forced_local)
5071 ;
5072 else if (!dynamic)
5073 {
5074 if (bfd_link_dll (info)
5075 || h->def_dynamic
5076 || h->ref_dynamic)
5077 dynsym = true;
5078 }
5079 else
5080 {
5081 if (h->def_regular
5082 || h->ref_regular
5083 || (h->is_weakalias
5084 && weakdef (h)->dynindx != -1))
5085 dynsym = true;
5086 }
5087
5088 /* Check to see if we need to add an indirect symbol for
5089 the default name. */
5090 if ((definition
5091 || (!override && h->root.type == bfd_link_hash_common))
5092 && !(hi != h
5093 && hi->versioned == versioned_hidden))
5094 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5095 sec, value, &old_bfd, &dynsym))
5096 goto error_free_vers;
5097
5098 /* Check the alignment when a common symbol is involved. This
5099 can change when a common symbol is overridden by a normal
5100 definition or a common symbol is ignored due to the old
5101 normal definition. We need to make sure the maximum
5102 alignment is maintained. */
5103 if ((old_alignment || common)
5104 && h->root.type != bfd_link_hash_common)
5105 {
5106 unsigned int common_align;
5107 unsigned int normal_align;
5108 unsigned int symbol_align;
5109 bfd *normal_bfd;
5110 bfd *common_bfd;
5111
5112 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5113 || h->root.type == bfd_link_hash_defweak);
5114
5115 symbol_align = ffs (h->root.u.def.value) - 1;
5116 if (h->root.u.def.section->owner != NULL
5117 && (h->root.u.def.section->owner->flags
5118 & (DYNAMIC | BFD_PLUGIN)) == 0)
5119 {
5120 normal_align = h->root.u.def.section->alignment_power;
5121 if (normal_align > symbol_align)
5122 normal_align = symbol_align;
5123 }
5124 else
5125 normal_align = symbol_align;
5126
5127 if (old_alignment)
5128 {
5129 common_align = old_alignment;
5130 common_bfd = old_bfd;
5131 normal_bfd = abfd;
5132 }
5133 else
5134 {
5135 common_align = bfd_log2 (isym->st_value);
5136 common_bfd = abfd;
5137 normal_bfd = old_bfd;
5138 }
5139
5140 if (normal_align < common_align)
5141 {
5142 /* PR binutils/2735 */
5143 if (normal_bfd == NULL)
5144 _bfd_error_handler
5145 /* xgettext:c-format */
5146 (_("warning: alignment %u of common symbol `%s' in %pB is"
5147 " greater than the alignment (%u) of its section %pA"),
5148 1 << common_align, name, common_bfd,
5149 1 << normal_align, h->root.u.def.section);
5150 else
5151 _bfd_error_handler
5152 /* xgettext:c-format */
5153 (_("warning: alignment %u of symbol `%s' in %pB"
5154 " is smaller than %u in %pB"),
5155 1 << normal_align, name, normal_bfd,
5156 1 << common_align, common_bfd);
5157 }
5158 }
5159
5160 /* Remember the symbol size if it isn't undefined. */
5161 if (isym->st_size != 0
5162 && isym->st_shndx != SHN_UNDEF
5163 && (definition || h->size == 0))
5164 {
5165 if (h->size != 0
5166 && h->size != isym->st_size
5167 && ! size_change_ok)
5168 _bfd_error_handler
5169 /* xgettext:c-format */
5170 (_("warning: size of symbol `%s' changed"
5171 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5172 name, (uint64_t) h->size, old_bfd,
5173 (uint64_t) isym->st_size, abfd);
5174
5175 h->size = isym->st_size;
5176 }
5177
5178 /* If this is a common symbol, then we always want H->SIZE
5179 to be the size of the common symbol. The code just above
5180 won't fix the size if a common symbol becomes larger. We
5181 don't warn about a size change here, because that is
5182 covered by --warn-common. Allow changes between different
5183 function types. */
5184 if (h->root.type == bfd_link_hash_common)
5185 h->size = h->root.u.c.size;
5186
5187 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5188 && ((definition && !new_weak)
5189 || (old_weak && h->root.type == bfd_link_hash_common)
5190 || h->type == STT_NOTYPE))
5191 {
5192 unsigned int type = ELF_ST_TYPE (isym->st_info);
5193
5194 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5195 symbol. */
5196 if (type == STT_GNU_IFUNC
5197 && (abfd->flags & DYNAMIC) != 0)
5198 type = STT_FUNC;
5199
5200 if (h->type != type)
5201 {
5202 if (h->type != STT_NOTYPE && ! type_change_ok)
5203 /* xgettext:c-format */
5204 _bfd_error_handler
5205 (_("warning: type of symbol `%s' changed"
5206 " from %d to %d in %pB"),
5207 name, h->type, type, abfd);
5208
5209 h->type = type;
5210 }
5211 }
5212
5213 /* Merge st_other field. */
5214 elf_merge_st_other (abfd, h, isym->st_other, sec,
5215 definition, dynamic);
5216
5217 /* We don't want to make debug symbol dynamic. */
5218 if (definition
5219 && (sec->flags & SEC_DEBUGGING)
5220 && !bfd_link_relocatable (info))
5221 dynsym = false;
5222
5223 /* Nor should we make plugin symbols dynamic. */
5224 if ((abfd->flags & BFD_PLUGIN) != 0)
5225 dynsym = false;
5226
5227 if (definition)
5228 {
5229 h->target_internal = isym->st_target_internal;
5230 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5231 }
5232
5233 if (definition && !dynamic)
5234 {
5235 char *p = strchr (name, ELF_VER_CHR);
5236 if (p != NULL && p[1] != ELF_VER_CHR)
5237 {
5238 /* Queue non-default versions so that .symver x, x@FOO
5239 aliases can be checked. */
5240 if (!nondeflt_vers)
5241 {
5242 size_t amt = ((isymend - isym + 1)
5243 * sizeof (struct elf_link_hash_entry *));
5244 nondeflt_vers
5245 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5246 if (!nondeflt_vers)
5247 goto error_free_vers;
5248 }
5249 nondeflt_vers[nondeflt_vers_cnt++] = h;
5250 }
5251 }
5252
5253 if (dynsym && h->dynindx == -1)
5254 {
5255 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5256 goto error_free_vers;
5257 if (h->is_weakalias
5258 && weakdef (h)->dynindx == -1)
5259 {
5260 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5261 goto error_free_vers;
5262 }
5263 }
5264 else if (h->dynindx != -1)
5265 /* If the symbol already has a dynamic index, but
5266 visibility says it should not be visible, turn it into
5267 a local symbol. */
5268 switch (ELF_ST_VISIBILITY (h->other))
5269 {
5270 case STV_INTERNAL:
5271 case STV_HIDDEN:
5272 (*bed->elf_backend_hide_symbol) (info, h, true);
5273 dynsym = false;
5274 break;
5275 }
5276
5277 if (!add_needed
5278 && matched
5279 && definition
5280 && h->root.type != bfd_link_hash_indirect
5281 && ((dynsym
5282 && h->ref_regular_nonweak)
5283 || (old_bfd != NULL
5284 && (old_bfd->flags & BFD_PLUGIN) != 0
5285 && h->ref_ir_nonweak
5286 && !info->lto_all_symbols_read)
5287 || (h->ref_dynamic_nonweak
5288 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5289 && !on_needed_list (elf_dt_name (abfd),
5290 htab->needed, NULL))))
5291 {
5292 const char *soname = elf_dt_name (abfd);
5293
5294 info->callbacks->minfo ("%!", soname, old_bfd,
5295 h->root.root.string);
5296
5297 /* A symbol from a library loaded via DT_NEEDED of some
5298 other library is referenced by a regular object.
5299 Add a DT_NEEDED entry for it. Issue an error if
5300 --no-add-needed is used and the reference was not
5301 a weak one. */
5302 if (old_bfd != NULL
5303 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5304 {
5305 _bfd_error_handler
5306 /* xgettext:c-format */
5307 (_("%pB: undefined reference to symbol '%s'"),
5308 old_bfd, name);
5309 bfd_set_error (bfd_error_missing_dso);
5310 goto error_free_vers;
5311 }
5312
5313 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5314 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5315
5316 /* Create dynamic sections for backends that require
5317 that be done before setup_gnu_properties. */
5318 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5319 return false;
5320 add_needed = true;
5321 }
5322 }
5323 }
5324
5325 if (info->lto_plugin_active
5326 && !bfd_link_relocatable (info)
5327 && (abfd->flags & BFD_PLUGIN) == 0
5328 && !just_syms
5329 && extsymcount)
5330 {
5331 int r_sym_shift;
5332
5333 if (bed->s->arch_size == 32)
5334 r_sym_shift = 8;
5335 else
5336 r_sym_shift = 32;
5337
5338 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5339 referenced in regular objects so that linker plugin will get
5340 the correct symbol resolution. */
5341
5342 sym_hash = elf_sym_hashes (abfd);
5343 for (s = abfd->sections; s != NULL; s = s->next)
5344 {
5345 Elf_Internal_Rela *internal_relocs;
5346 Elf_Internal_Rela *rel, *relend;
5347
5348 /* Don't check relocations in excluded sections. */
5349 if ((s->flags & SEC_RELOC) == 0
5350 || s->reloc_count == 0
5351 || (s->flags & SEC_EXCLUDE) != 0
5352 || ((info->strip == strip_all
5353 || info->strip == strip_debugger)
5354 && (s->flags & SEC_DEBUGGING) != 0))
5355 continue;
5356
5357 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5358 NULL,
5359 info->keep_memory);
5360 if (internal_relocs == NULL)
5361 goto error_free_vers;
5362
5363 rel = internal_relocs;
5364 relend = rel + s->reloc_count;
5365 for ( ; rel < relend; rel++)
5366 {
5367 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5368 struct elf_link_hash_entry *h;
5369
5370 /* Skip local symbols. */
5371 if (r_symndx < extsymoff)
5372 continue;
5373
5374 h = sym_hash[r_symndx - extsymoff];
5375 if (h != NULL)
5376 h->root.non_ir_ref_regular = 1;
5377 }
5378
5379 if (elf_section_data (s)->relocs != internal_relocs)
5380 free (internal_relocs);
5381 }
5382 }
5383
5384 free (extversym);
5385 extversym = NULL;
5386 free (isymbuf);
5387 isymbuf = NULL;
5388
5389 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5390 {
5391 unsigned int i;
5392
5393 /* Restore the symbol table. */
5394 old_ent = (char *) old_tab + tabsize;
5395 memset (elf_sym_hashes (abfd), 0,
5396 extsymcount * sizeof (struct elf_link_hash_entry *));
5397 htab->root.table.table = old_table;
5398 htab->root.table.size = old_size;
5399 htab->root.table.count = old_count;
5400 memcpy (htab->root.table.table, old_tab, tabsize);
5401 htab->root.undefs = old_undefs;
5402 htab->root.undefs_tail = old_undefs_tail;
5403 if (htab->dynstr != NULL)
5404 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5405 free (old_strtab);
5406 old_strtab = NULL;
5407 for (i = 0; i < htab->root.table.size; i++)
5408 {
5409 struct bfd_hash_entry *p;
5410 struct elf_link_hash_entry *h;
5411 unsigned int non_ir_ref_dynamic;
5412
5413 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5414 {
5415 /* Preserve non_ir_ref_dynamic so that this symbol
5416 will be exported when the dynamic lib becomes needed
5417 in the second pass. */
5418 h = (struct elf_link_hash_entry *) p;
5419 if (h->root.type == bfd_link_hash_warning)
5420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5421 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5422
5423 h = (struct elf_link_hash_entry *) p;
5424 memcpy (h, old_ent, htab->root.table.entsize);
5425 old_ent = (char *) old_ent + htab->root.table.entsize;
5426 if (h->root.type == bfd_link_hash_warning)
5427 {
5428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5429 memcpy (h, old_ent, htab->root.table.entsize);
5430 old_ent = (char *) old_ent + htab->root.table.entsize;
5431 }
5432 if (h->root.type == bfd_link_hash_common)
5433 {
5434 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5435 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5436 }
5437 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5438 }
5439 }
5440
5441 /* Make a special call to the linker "notice" function to
5442 tell it that symbols added for crefs may need to be removed. */
5443 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5444 goto error_free_vers;
5445
5446 free (old_tab);
5447 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5448 alloc_mark);
5449 free (nondeflt_vers);
5450 return true;
5451 }
5452
5453 if (old_tab != NULL)
5454 {
5455 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5456 goto error_free_vers;
5457 free (old_tab);
5458 old_tab = NULL;
5459 }
5460
5461 /* Now that all the symbols from this input file are created, if
5462 not performing a relocatable link, handle .symver foo, foo@BAR
5463 such that any relocs against foo become foo@BAR. */
5464 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5465 {
5466 size_t cnt, symidx;
5467
5468 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5469 {
5470 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5471 char *shortname, *p;
5472 size_t amt;
5473
5474 p = strchr (h->root.root.string, ELF_VER_CHR);
5475 if (p == NULL
5476 || (h->root.type != bfd_link_hash_defined
5477 && h->root.type != bfd_link_hash_defweak))
5478 continue;
5479
5480 amt = p - h->root.root.string;
5481 shortname = (char *) bfd_malloc (amt + 1);
5482 if (!shortname)
5483 goto error_free_vers;
5484 memcpy (shortname, h->root.root.string, amt);
5485 shortname[amt] = '\0';
5486
5487 hi = (struct elf_link_hash_entry *)
5488 bfd_link_hash_lookup (&htab->root, shortname,
5489 false, false, false);
5490 if (hi != NULL
5491 && hi->root.type == h->root.type
5492 && hi->root.u.def.value == h->root.u.def.value
5493 && hi->root.u.def.section == h->root.u.def.section)
5494 {
5495 (*bed->elf_backend_hide_symbol) (info, hi, true);
5496 hi->root.type = bfd_link_hash_indirect;
5497 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5498 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5499 sym_hash = elf_sym_hashes (abfd);
5500 if (sym_hash)
5501 for (symidx = 0; symidx < extsymcount; ++symidx)
5502 if (sym_hash[symidx] == hi)
5503 {
5504 sym_hash[symidx] = h;
5505 break;
5506 }
5507 }
5508 free (shortname);
5509 }
5510 free (nondeflt_vers);
5511 nondeflt_vers = NULL;
5512 }
5513
5514 /* Now set the alias field correctly for all the weak defined
5515 symbols we found. The only way to do this is to search all the
5516 symbols. Since we only need the information for non functions in
5517 dynamic objects, that's the only time we actually put anything on
5518 the list WEAKS. We need this information so that if a regular
5519 object refers to a symbol defined weakly in a dynamic object, the
5520 real symbol in the dynamic object is also put in the dynamic
5521 symbols; we also must arrange for both symbols to point to the
5522 same memory location. We could handle the general case of symbol
5523 aliasing, but a general symbol alias can only be generated in
5524 assembler code, handling it correctly would be very time
5525 consuming, and other ELF linkers don't handle general aliasing
5526 either. */
5527 if (weaks != NULL)
5528 {
5529 struct elf_link_hash_entry **hpp;
5530 struct elf_link_hash_entry **hppend;
5531 struct elf_link_hash_entry **sorted_sym_hash;
5532 struct elf_link_hash_entry *h;
5533 size_t sym_count, amt;
5534
5535 /* Since we have to search the whole symbol list for each weak
5536 defined symbol, search time for N weak defined symbols will be
5537 O(N^2). Binary search will cut it down to O(NlogN). */
5538 amt = extsymcount * sizeof (*sorted_sym_hash);
5539 sorted_sym_hash = bfd_malloc (amt);
5540 if (sorted_sym_hash == NULL)
5541 goto error_return;
5542 sym_hash = sorted_sym_hash;
5543 hpp = elf_sym_hashes (abfd);
5544 hppend = hpp + extsymcount;
5545 sym_count = 0;
5546 for (; hpp < hppend; hpp++)
5547 {
5548 h = *hpp;
5549 if (h != NULL
5550 && h->root.type == bfd_link_hash_defined
5551 && !bed->is_function_type (h->type))
5552 {
5553 *sym_hash = h;
5554 sym_hash++;
5555 sym_count++;
5556 }
5557 }
5558
5559 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5560 elf_sort_symbol);
5561
5562 while (weaks != NULL)
5563 {
5564 struct elf_link_hash_entry *hlook;
5565 asection *slook;
5566 bfd_vma vlook;
5567 size_t i, j, idx = 0;
5568
5569 hlook = weaks;
5570 weaks = hlook->u.alias;
5571 hlook->u.alias = NULL;
5572
5573 if (hlook->root.type != bfd_link_hash_defined
5574 && hlook->root.type != bfd_link_hash_defweak)
5575 continue;
5576
5577 slook = hlook->root.u.def.section;
5578 vlook = hlook->root.u.def.value;
5579
5580 i = 0;
5581 j = sym_count;
5582 while (i != j)
5583 {
5584 bfd_signed_vma vdiff;
5585 idx = (i + j) / 2;
5586 h = sorted_sym_hash[idx];
5587 vdiff = vlook - h->root.u.def.value;
5588 if (vdiff < 0)
5589 j = idx;
5590 else if (vdiff > 0)
5591 i = idx + 1;
5592 else
5593 {
5594 int sdiff = slook->id - h->root.u.def.section->id;
5595 if (sdiff < 0)
5596 j = idx;
5597 else if (sdiff > 0)
5598 i = idx + 1;
5599 else
5600 break;
5601 }
5602 }
5603
5604 /* We didn't find a value/section match. */
5605 if (i == j)
5606 continue;
5607
5608 /* With multiple aliases, or when the weak symbol is already
5609 strongly defined, we have multiple matching symbols and
5610 the binary search above may land on any of them. Step
5611 one past the matching symbol(s). */
5612 while (++idx != j)
5613 {
5614 h = sorted_sym_hash[idx];
5615 if (h->root.u.def.section != slook
5616 || h->root.u.def.value != vlook)
5617 break;
5618 }
5619
5620 /* Now look back over the aliases. Since we sorted by size
5621 as well as value and section, we'll choose the one with
5622 the largest size. */
5623 while (idx-- != i)
5624 {
5625 h = sorted_sym_hash[idx];
5626
5627 /* Stop if value or section doesn't match. */
5628 if (h->root.u.def.section != slook
5629 || h->root.u.def.value != vlook)
5630 break;
5631 else if (h != hlook)
5632 {
5633 struct elf_link_hash_entry *t;
5634
5635 hlook->u.alias = h;
5636 hlook->is_weakalias = 1;
5637 t = h;
5638 if (t->u.alias != NULL)
5639 while (t->u.alias != h)
5640 t = t->u.alias;
5641 t->u.alias = hlook;
5642
5643 /* If the weak definition is in the list of dynamic
5644 symbols, make sure the real definition is put
5645 there as well. */
5646 if (hlook->dynindx != -1 && h->dynindx == -1)
5647 {
5648 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5649 {
5650 err_free_sym_hash:
5651 free (sorted_sym_hash);
5652 goto error_return;
5653 }
5654 }
5655
5656 /* If the real definition is in the list of dynamic
5657 symbols, make sure the weak definition is put
5658 there as well. If we don't do this, then the
5659 dynamic loader might not merge the entries for the
5660 real definition and the weak definition. */
5661 if (h->dynindx != -1 && hlook->dynindx == -1)
5662 {
5663 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5664 goto err_free_sym_hash;
5665 }
5666 break;
5667 }
5668 }
5669 }
5670
5671 free (sorted_sym_hash);
5672 }
5673
5674 if (bed->check_directives
5675 && !(*bed->check_directives) (abfd, info))
5676 return false;
5677
5678 /* If this is a non-traditional link, try to optimize the handling
5679 of the .stab/.stabstr sections. */
5680 if (! dynamic
5681 && ! info->traditional_format
5682 && is_elf_hash_table (&htab->root)
5683 && (info->strip != strip_all && info->strip != strip_debugger))
5684 {
5685 asection *stabstr;
5686
5687 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5688 if (stabstr != NULL)
5689 {
5690 bfd_size_type string_offset = 0;
5691 asection *stab;
5692
5693 for (stab = abfd->sections; stab; stab = stab->next)
5694 if (startswith (stab->name, ".stab")
5695 && (!stab->name[5] ||
5696 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5697 && (stab->flags & SEC_MERGE) == 0
5698 && !bfd_is_abs_section (stab->output_section))
5699 {
5700 struct bfd_elf_section_data *secdata;
5701
5702 secdata = elf_section_data (stab);
5703 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5704 stabstr, &secdata->sec_info,
5705 &string_offset))
5706 goto error_return;
5707 if (secdata->sec_info)
5708 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5709 }
5710 }
5711 }
5712
5713 if (dynamic && add_needed)
5714 {
5715 /* Add this bfd to the loaded list. */
5716 struct elf_link_loaded_list *n;
5717
5718 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5719 if (n == NULL)
5720 goto error_return;
5721 n->abfd = abfd;
5722 n->next = htab->dyn_loaded;
5723 htab->dyn_loaded = n;
5724 }
5725 if (dynamic && !add_needed
5726 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5727 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5728
5729 return true;
5730
5731 error_free_vers:
5732 free (old_tab);
5733 free (old_strtab);
5734 free (nondeflt_vers);
5735 free (extversym);
5736 error_free_sym:
5737 free (isymbuf);
5738 error_return:
5739 return false;
5740 }
5741
5742 /* Return the linker hash table entry of a symbol that might be
5743 satisfied by an archive symbol. Return -1 on error. */
5744
5745 struct bfd_link_hash_entry *
5746 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5747 struct bfd_link_info *info,
5748 const char *name)
5749 {
5750 struct bfd_link_hash_entry *h;
5751 char *p, *copy;
5752 size_t len, first;
5753
5754 h = bfd_link_hash_lookup (info->hash, name, false, false, true);
5755 if (h != NULL)
5756 return h;
5757
5758 /* If this is a default version (the name contains @@), look up the
5759 symbol again with only one `@' as well as without the version.
5760 The effect is that references to the symbol with and without the
5761 version will be matched by the default symbol in the archive. */
5762
5763 p = strchr (name, ELF_VER_CHR);
5764 if (p == NULL || p[1] != ELF_VER_CHR)
5765 return h;
5766
5767 /* First check with only one `@'. */
5768 len = strlen (name);
5769 copy = (char *) bfd_alloc (abfd, len);
5770 if (copy == NULL)
5771 return (struct bfd_link_hash_entry *) -1;
5772
5773 first = p - name + 1;
5774 memcpy (copy, name, first);
5775 memcpy (copy + first, name + first + 1, len - first);
5776
5777 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5778 if (h == NULL)
5779 {
5780 /* We also need to check references to the symbol without the
5781 version. */
5782 copy[first - 1] = '\0';
5783 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5784 }
5785
5786 bfd_release (abfd, copy);
5787 return h;
5788 }
5789
5790 /* Add symbols from an ELF archive file to the linker hash table. We
5791 don't use _bfd_generic_link_add_archive_symbols because we need to
5792 handle versioned symbols.
5793
5794 Fortunately, ELF archive handling is simpler than that done by
5795 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5796 oddities. In ELF, if we find a symbol in the archive map, and the
5797 symbol is currently undefined, we know that we must pull in that
5798 object file.
5799
5800 Unfortunately, we do have to make multiple passes over the symbol
5801 table until nothing further is resolved. */
5802
5803 static bool
5804 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5805 {
5806 symindex c;
5807 unsigned char *included = NULL;
5808 carsym *symdefs;
5809 bool loop;
5810 size_t amt;
5811 const struct elf_backend_data *bed;
5812 struct bfd_link_hash_entry * (*archive_symbol_lookup)
5813 (bfd *, struct bfd_link_info *, const char *);
5814
5815 if (! bfd_has_map (abfd))
5816 {
5817 /* An empty archive is a special case. */
5818 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5819 return true;
5820 bfd_set_error (bfd_error_no_armap);
5821 return false;
5822 }
5823
5824 /* Keep track of all symbols we know to be already defined, and all
5825 files we know to be already included. This is to speed up the
5826 second and subsequent passes. */
5827 c = bfd_ardata (abfd)->symdef_count;
5828 if (c == 0)
5829 return true;
5830 amt = c * sizeof (*included);
5831 included = (unsigned char *) bfd_zmalloc (amt);
5832 if (included == NULL)
5833 return false;
5834
5835 symdefs = bfd_ardata (abfd)->symdefs;
5836 bed = get_elf_backend_data (abfd);
5837 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5838
5839 do
5840 {
5841 file_ptr last;
5842 symindex i;
5843 carsym *symdef;
5844 carsym *symdefend;
5845
5846 loop = false;
5847 last = -1;
5848
5849 symdef = symdefs;
5850 symdefend = symdef + c;
5851 for (i = 0; symdef < symdefend; symdef++, i++)
5852 {
5853 struct bfd_link_hash_entry *h;
5854 bfd *element;
5855 struct bfd_link_hash_entry *undefs_tail;
5856 symindex mark;
5857
5858 if (included[i])
5859 continue;
5860 if (symdef->file_offset == last)
5861 {
5862 included[i] = true;
5863 continue;
5864 }
5865
5866 h = archive_symbol_lookup (abfd, info, symdef->name);
5867 if (h == (struct bfd_link_hash_entry *) -1)
5868 goto error_return;
5869
5870 if (h == NULL)
5871 continue;
5872
5873 if (h->type == bfd_link_hash_undefined)
5874 {
5875 /* If the archive element has already been loaded then one
5876 of the symbols defined by that element might have been
5877 made undefined due to being in a discarded section. */
5878 if (is_elf_hash_table (info->hash)
5879 && ((struct elf_link_hash_entry *) h)->indx == -3)
5880 continue;
5881 }
5882 else if (h->type == bfd_link_hash_common)
5883 {
5884 /* We currently have a common symbol. The archive map contains
5885 a reference to this symbol, so we may want to include it. We
5886 only want to include it however, if this archive element
5887 contains a definition of the symbol, not just another common
5888 declaration of it.
5889
5890 Unfortunately some archivers (including GNU ar) will put
5891 declarations of common symbols into their archive maps, as
5892 well as real definitions, so we cannot just go by the archive
5893 map alone. Instead we must read in the element's symbol
5894 table and check that to see what kind of symbol definition
5895 this is. */
5896 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5897 continue;
5898 }
5899 else
5900 {
5901 if (h->type != bfd_link_hash_undefweak)
5902 /* Symbol must be defined. Don't check it again. */
5903 included[i] = true;
5904 continue;
5905 }
5906
5907 /* We need to include this archive member. */
5908 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5909 if (element == NULL)
5910 goto error_return;
5911
5912 if (! bfd_check_format (element, bfd_object))
5913 goto error_return;
5914
5915 undefs_tail = info->hash->undefs_tail;
5916
5917 if (!(*info->callbacks
5918 ->add_archive_element) (info, element, symdef->name, &element))
5919 continue;
5920 if (!bfd_link_add_symbols (element, info))
5921 goto error_return;
5922
5923 /* If there are any new undefined symbols, we need to make
5924 another pass through the archive in order to see whether
5925 they can be defined. FIXME: This isn't perfect, because
5926 common symbols wind up on undefs_tail and because an
5927 undefined symbol which is defined later on in this pass
5928 does not require another pass. This isn't a bug, but it
5929 does make the code less efficient than it could be. */
5930 if (undefs_tail != info->hash->undefs_tail)
5931 loop = true;
5932
5933 /* Look backward to mark all symbols from this object file
5934 which we have already seen in this pass. */
5935 mark = i;
5936 do
5937 {
5938 included[mark] = true;
5939 if (mark == 0)
5940 break;
5941 --mark;
5942 }
5943 while (symdefs[mark].file_offset == symdef->file_offset);
5944
5945 /* We mark subsequent symbols from this object file as we go
5946 on through the loop. */
5947 last = symdef->file_offset;
5948 }
5949 }
5950 while (loop);
5951
5952 free (included);
5953 return true;
5954
5955 error_return:
5956 free (included);
5957 return false;
5958 }
5959
5960 /* Given an ELF BFD, add symbols to the global hash table as
5961 appropriate. */
5962
5963 bool
5964 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5965 {
5966 switch (bfd_get_format (abfd))
5967 {
5968 case bfd_object:
5969 return elf_link_add_object_symbols (abfd, info);
5970 case bfd_archive:
5971 return elf_link_add_archive_symbols (abfd, info);
5972 default:
5973 bfd_set_error (bfd_error_wrong_format);
5974 return false;
5975 }
5976 }
5977 \f
5978 struct hash_codes_info
5979 {
5980 unsigned long *hashcodes;
5981 bool error;
5982 };
5983
5984 /* This function will be called though elf_link_hash_traverse to store
5985 all hash value of the exported symbols in an array. */
5986
5987 static bool
5988 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5989 {
5990 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5991 const char *name;
5992 unsigned long ha;
5993 char *alc = NULL;
5994
5995 /* Ignore indirect symbols. These are added by the versioning code. */
5996 if (h->dynindx == -1)
5997 return true;
5998
5999 name = h->root.root.string;
6000 if (h->versioned >= versioned)
6001 {
6002 char *p = strchr (name, ELF_VER_CHR);
6003 if (p != NULL)
6004 {
6005 alc = (char *) bfd_malloc (p - name + 1);
6006 if (alc == NULL)
6007 {
6008 inf->error = true;
6009 return false;
6010 }
6011 memcpy (alc, name, p - name);
6012 alc[p - name] = '\0';
6013 name = alc;
6014 }
6015 }
6016
6017 /* Compute the hash value. */
6018 ha = bfd_elf_hash (name);
6019
6020 /* Store the found hash value in the array given as the argument. */
6021 *(inf->hashcodes)++ = ha;
6022
6023 /* And store it in the struct so that we can put it in the hash table
6024 later. */
6025 h->u.elf_hash_value = ha;
6026
6027 free (alc);
6028 return true;
6029 }
6030
6031 struct collect_gnu_hash_codes
6032 {
6033 bfd *output_bfd;
6034 const struct elf_backend_data *bed;
6035 unsigned long int nsyms;
6036 unsigned long int maskbits;
6037 unsigned long int *hashcodes;
6038 unsigned long int *hashval;
6039 unsigned long int *indx;
6040 unsigned long int *counts;
6041 bfd_vma *bitmask;
6042 bfd_byte *contents;
6043 bfd_size_type xlat;
6044 long int min_dynindx;
6045 unsigned long int bucketcount;
6046 unsigned long int symindx;
6047 long int local_indx;
6048 long int shift1, shift2;
6049 unsigned long int mask;
6050 bool error;
6051 };
6052
6053 /* This function will be called though elf_link_hash_traverse to store
6054 all hash value of the exported symbols in an array. */
6055
6056 static bool
6057 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6058 {
6059 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6060 const char *name;
6061 unsigned long ha;
6062 char *alc = NULL;
6063
6064 /* Ignore indirect symbols. These are added by the versioning code. */
6065 if (h->dynindx == -1)
6066 return true;
6067
6068 /* Ignore also local symbols and undefined symbols. */
6069 if (! (*s->bed->elf_hash_symbol) (h))
6070 return true;
6071
6072 name = h->root.root.string;
6073 if (h->versioned >= versioned)
6074 {
6075 char *p = strchr (name, ELF_VER_CHR);
6076 if (p != NULL)
6077 {
6078 alc = (char *) bfd_malloc (p - name + 1);
6079 if (alc == NULL)
6080 {
6081 s->error = true;
6082 return false;
6083 }
6084 memcpy (alc, name, p - name);
6085 alc[p - name] = '\0';
6086 name = alc;
6087 }
6088 }
6089
6090 /* Compute the hash value. */
6091 ha = bfd_elf_gnu_hash (name);
6092
6093 /* Store the found hash value in the array for compute_bucket_count,
6094 and also for .dynsym reordering purposes. */
6095 s->hashcodes[s->nsyms] = ha;
6096 s->hashval[h->dynindx] = ha;
6097 ++s->nsyms;
6098 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6099 s->min_dynindx = h->dynindx;
6100
6101 free (alc);
6102 return true;
6103 }
6104
6105 /* This function will be called though elf_link_hash_traverse to do
6106 final dynamic symbol renumbering in case of .gnu.hash.
6107 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6108 to the translation table. */
6109
6110 static bool
6111 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6112 {
6113 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6114 unsigned long int bucket;
6115 unsigned long int val;
6116
6117 /* Ignore indirect symbols. */
6118 if (h->dynindx == -1)
6119 return true;
6120
6121 /* Ignore also local symbols and undefined symbols. */
6122 if (! (*s->bed->elf_hash_symbol) (h))
6123 {
6124 if (h->dynindx >= s->min_dynindx)
6125 {
6126 if (s->bed->record_xhash_symbol != NULL)
6127 {
6128 (*s->bed->record_xhash_symbol) (h, 0);
6129 s->local_indx++;
6130 }
6131 else
6132 h->dynindx = s->local_indx++;
6133 }
6134 return true;
6135 }
6136
6137 bucket = s->hashval[h->dynindx] % s->bucketcount;
6138 val = (s->hashval[h->dynindx] >> s->shift1)
6139 & ((s->maskbits >> s->shift1) - 1);
6140 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6141 s->bitmask[val]
6142 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6143 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6144 if (s->counts[bucket] == 1)
6145 /* Last element terminates the chain. */
6146 val |= 1;
6147 bfd_put_32 (s->output_bfd, val,
6148 s->contents + (s->indx[bucket] - s->symindx) * 4);
6149 --s->counts[bucket];
6150 if (s->bed->record_xhash_symbol != NULL)
6151 {
6152 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6153
6154 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6155 }
6156 else
6157 h->dynindx = s->indx[bucket]++;
6158 return true;
6159 }
6160
6161 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6162
6163 bool
6164 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6165 {
6166 return !(h->forced_local
6167 || h->root.type == bfd_link_hash_undefined
6168 || h->root.type == bfd_link_hash_undefweak
6169 || ((h->root.type == bfd_link_hash_defined
6170 || h->root.type == bfd_link_hash_defweak)
6171 && h->root.u.def.section->output_section == NULL));
6172 }
6173
6174 /* Array used to determine the number of hash table buckets to use
6175 based on the number of symbols there are. If there are fewer than
6176 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6177 fewer than 37 we use 17 buckets, and so forth. We never use more
6178 than 32771 buckets. */
6179
6180 static const size_t elf_buckets[] =
6181 {
6182 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6183 16411, 32771, 0
6184 };
6185
6186 /* Compute bucket count for hashing table. We do not use a static set
6187 of possible tables sizes anymore. Instead we determine for all
6188 possible reasonable sizes of the table the outcome (i.e., the
6189 number of collisions etc) and choose the best solution. The
6190 weighting functions are not too simple to allow the table to grow
6191 without bounds. Instead one of the weighting factors is the size.
6192 Therefore the result is always a good payoff between few collisions
6193 (= short chain lengths) and table size. */
6194 static size_t
6195 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6196 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6197 unsigned long int nsyms,
6198 int gnu_hash)
6199 {
6200 size_t best_size = 0;
6201 unsigned long int i;
6202
6203 /* We have a problem here. The following code to optimize the table
6204 size requires an integer type with more the 32 bits. If
6205 BFD_HOST_U_64_BIT is set we know about such a type. */
6206 #ifdef BFD_HOST_U_64_BIT
6207 if (info->optimize)
6208 {
6209 size_t minsize;
6210 size_t maxsize;
6211 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6212 bfd *dynobj = elf_hash_table (info)->dynobj;
6213 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6214 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6215 unsigned long int *counts;
6216 bfd_size_type amt;
6217 unsigned int no_improvement_count = 0;
6218
6219 /* Possible optimization parameters: if we have NSYMS symbols we say
6220 that the hashing table must at least have NSYMS/4 and at most
6221 2*NSYMS buckets. */
6222 minsize = nsyms / 4;
6223 if (minsize == 0)
6224 minsize = 1;
6225 best_size = maxsize = nsyms * 2;
6226 if (gnu_hash)
6227 {
6228 if (minsize < 2)
6229 minsize = 2;
6230 if ((best_size & 31) == 0)
6231 ++best_size;
6232 }
6233
6234 /* Create array where we count the collisions in. We must use bfd_malloc
6235 since the size could be large. */
6236 amt = maxsize;
6237 amt *= sizeof (unsigned long int);
6238 counts = (unsigned long int *) bfd_malloc (amt);
6239 if (counts == NULL)
6240 return 0;
6241
6242 /* Compute the "optimal" size for the hash table. The criteria is a
6243 minimal chain length. The minor criteria is (of course) the size
6244 of the table. */
6245 for (i = minsize; i < maxsize; ++i)
6246 {
6247 /* Walk through the array of hashcodes and count the collisions. */
6248 BFD_HOST_U_64_BIT max;
6249 unsigned long int j;
6250 unsigned long int fact;
6251
6252 if (gnu_hash && (i & 31) == 0)
6253 continue;
6254
6255 memset (counts, '\0', i * sizeof (unsigned long int));
6256
6257 /* Determine how often each hash bucket is used. */
6258 for (j = 0; j < nsyms; ++j)
6259 ++counts[hashcodes[j] % i];
6260
6261 /* For the weight function we need some information about the
6262 pagesize on the target. This is information need not be 100%
6263 accurate. Since this information is not available (so far) we
6264 define it here to a reasonable default value. If it is crucial
6265 to have a better value some day simply define this value. */
6266 # ifndef BFD_TARGET_PAGESIZE
6267 # define BFD_TARGET_PAGESIZE (4096)
6268 # endif
6269
6270 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6271 and the chains. */
6272 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6273
6274 # if 1
6275 /* Variant 1: optimize for short chains. We add the squares
6276 of all the chain lengths (which favors many small chain
6277 over a few long chains). */
6278 for (j = 0; j < i; ++j)
6279 max += counts[j] * counts[j];
6280
6281 /* This adds penalties for the overall size of the table. */
6282 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6283 max *= fact * fact;
6284 # else
6285 /* Variant 2: Optimize a lot more for small table. Here we
6286 also add squares of the size but we also add penalties for
6287 empty slots (the +1 term). */
6288 for (j = 0; j < i; ++j)
6289 max += (1 + counts[j]) * (1 + counts[j]);
6290
6291 /* The overall size of the table is considered, but not as
6292 strong as in variant 1, where it is squared. */
6293 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6294 max *= fact;
6295 # endif
6296
6297 /* Compare with current best results. */
6298 if (max < best_chlen)
6299 {
6300 best_chlen = max;
6301 best_size = i;
6302 no_improvement_count = 0;
6303 }
6304 /* PR 11843: Avoid futile long searches for the best bucket size
6305 when there are a large number of symbols. */
6306 else if (++no_improvement_count == 100)
6307 break;
6308 }
6309
6310 free (counts);
6311 }
6312 else
6313 #endif /* defined (BFD_HOST_U_64_BIT) */
6314 {
6315 /* This is the fallback solution if no 64bit type is available or if we
6316 are not supposed to spend much time on optimizations. We select the
6317 bucket count using a fixed set of numbers. */
6318 for (i = 0; elf_buckets[i] != 0; i++)
6319 {
6320 best_size = elf_buckets[i];
6321 if (nsyms < elf_buckets[i + 1])
6322 break;
6323 }
6324 if (gnu_hash && best_size < 2)
6325 best_size = 2;
6326 }
6327
6328 return best_size;
6329 }
6330
6331 /* Size any SHT_GROUP section for ld -r. */
6332
6333 bool
6334 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6335 {
6336 bfd *ibfd;
6337 asection *s;
6338
6339 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6340 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6341 && (s = ibfd->sections) != NULL
6342 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6343 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6344 return false;
6345 return true;
6346 }
6347
6348 /* Set a default stack segment size. The value in INFO wins. If it
6349 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6350 undefined it is initialized. */
6351
6352 bool
6353 bfd_elf_stack_segment_size (bfd *output_bfd,
6354 struct bfd_link_info *info,
6355 const char *legacy_symbol,
6356 bfd_vma default_size)
6357 {
6358 struct elf_link_hash_entry *h = NULL;
6359
6360 /* Look for legacy symbol. */
6361 if (legacy_symbol)
6362 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6363 false, false, false);
6364 if (h && (h->root.type == bfd_link_hash_defined
6365 || h->root.type == bfd_link_hash_defweak)
6366 && h->def_regular
6367 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6368 {
6369 /* The symbol has no type if specified on the command line. */
6370 h->type = STT_OBJECT;
6371 if (info->stacksize)
6372 /* xgettext:c-format */
6373 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6374 output_bfd, legacy_symbol);
6375 else if (h->root.u.def.section != bfd_abs_section_ptr)
6376 /* xgettext:c-format */
6377 _bfd_error_handler (_("%pB: %s not absolute"),
6378 output_bfd, legacy_symbol);
6379 else
6380 info->stacksize = h->root.u.def.value;
6381 }
6382
6383 if (!info->stacksize)
6384 /* If the user didn't set a size, or explicitly inhibit the
6385 size, set it now. */
6386 info->stacksize = default_size;
6387
6388 /* Provide the legacy symbol, if it is referenced. */
6389 if (h && (h->root.type == bfd_link_hash_undefined
6390 || h->root.type == bfd_link_hash_undefweak))
6391 {
6392 struct bfd_link_hash_entry *bh = NULL;
6393
6394 if (!(_bfd_generic_link_add_one_symbol
6395 (info, output_bfd, legacy_symbol,
6396 BSF_GLOBAL, bfd_abs_section_ptr,
6397 info->stacksize >= 0 ? info->stacksize : 0,
6398 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh)))
6399 return false;
6400
6401 h = (struct elf_link_hash_entry *) bh;
6402 h->def_regular = 1;
6403 h->type = STT_OBJECT;
6404 }
6405
6406 return true;
6407 }
6408
6409 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6410
6411 struct elf_gc_sweep_symbol_info
6412 {
6413 struct bfd_link_info *info;
6414 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6415 bool);
6416 };
6417
6418 static bool
6419 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6420 {
6421 if (!h->mark
6422 && (((h->root.type == bfd_link_hash_defined
6423 || h->root.type == bfd_link_hash_defweak)
6424 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6425 && h->root.u.def.section->gc_mark))
6426 || h->root.type == bfd_link_hash_undefined
6427 || h->root.type == bfd_link_hash_undefweak))
6428 {
6429 struct elf_gc_sweep_symbol_info *inf;
6430
6431 inf = (struct elf_gc_sweep_symbol_info *) data;
6432 (*inf->hide_symbol) (inf->info, h, true);
6433 h->def_regular = 0;
6434 h->ref_regular = 0;
6435 h->ref_regular_nonweak = 0;
6436 }
6437
6438 return true;
6439 }
6440
6441 /* Set up the sizes and contents of the ELF dynamic sections. This is
6442 called by the ELF linker emulation before_allocation routine. We
6443 must set the sizes of the sections before the linker sets the
6444 addresses of the various sections. */
6445
6446 bool
6447 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6448 const char *soname,
6449 const char *rpath,
6450 const char *filter_shlib,
6451 const char *audit,
6452 const char *depaudit,
6453 const char * const *auxiliary_filters,
6454 struct bfd_link_info *info,
6455 asection **sinterpptr)
6456 {
6457 bfd *dynobj;
6458 const struct elf_backend_data *bed;
6459
6460 *sinterpptr = NULL;
6461
6462 if (!is_elf_hash_table (info->hash))
6463 return true;
6464
6465 dynobj = elf_hash_table (info)->dynobj;
6466
6467 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6468 {
6469 struct bfd_elf_version_tree *verdefs;
6470 struct elf_info_failed asvinfo;
6471 struct bfd_elf_version_tree *t;
6472 struct bfd_elf_version_expr *d;
6473 asection *s;
6474 size_t soname_indx;
6475
6476 /* If we are supposed to export all symbols into the dynamic symbol
6477 table (this is not the normal case), then do so. */
6478 if (info->export_dynamic
6479 || (bfd_link_executable (info) && info->dynamic))
6480 {
6481 struct elf_info_failed eif;
6482
6483 eif.info = info;
6484 eif.failed = false;
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 _bfd_elf_export_symbol,
6487 &eif);
6488 if (eif.failed)
6489 return false;
6490 }
6491
6492 if (soname != NULL)
6493 {
6494 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6495 soname, true);
6496 if (soname_indx == (size_t) -1
6497 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6498 return false;
6499 }
6500 else
6501 soname_indx = (size_t) -1;
6502
6503 /* Make all global versions with definition. */
6504 for (t = info->version_info; t != NULL; t = t->next)
6505 for (d = t->globals.list; d != NULL; d = d->next)
6506 if (!d->symver && d->literal)
6507 {
6508 const char *verstr, *name;
6509 size_t namelen, verlen, newlen;
6510 char *newname, *p, leading_char;
6511 struct elf_link_hash_entry *newh;
6512
6513 leading_char = bfd_get_symbol_leading_char (output_bfd);
6514 name = d->pattern;
6515 namelen = strlen (name) + (leading_char != '\0');
6516 verstr = t->name;
6517 verlen = strlen (verstr);
6518 newlen = namelen + verlen + 3;
6519
6520 newname = (char *) bfd_malloc (newlen);
6521 if (newname == NULL)
6522 return false;
6523 newname[0] = leading_char;
6524 memcpy (newname + (leading_char != '\0'), name, namelen);
6525
6526 /* Check the hidden versioned definition. */
6527 p = newname + namelen;
6528 *p++ = ELF_VER_CHR;
6529 memcpy (p, verstr, verlen + 1);
6530 newh = elf_link_hash_lookup (elf_hash_table (info),
6531 newname, false, false,
6532 false);
6533 if (newh == NULL
6534 || (newh->root.type != bfd_link_hash_defined
6535 && newh->root.type != bfd_link_hash_defweak))
6536 {
6537 /* Check the default versioned definition. */
6538 *p++ = ELF_VER_CHR;
6539 memcpy (p, verstr, verlen + 1);
6540 newh = elf_link_hash_lookup (elf_hash_table (info),
6541 newname, false, false,
6542 false);
6543 }
6544 free (newname);
6545
6546 /* Mark this version if there is a definition and it is
6547 not defined in a shared object. */
6548 if (newh != NULL
6549 && !newh->def_dynamic
6550 && (newh->root.type == bfd_link_hash_defined
6551 || newh->root.type == bfd_link_hash_defweak))
6552 d->symver = 1;
6553 }
6554
6555 /* Attach all the symbols to their version information. */
6556 asvinfo.info = info;
6557 asvinfo.failed = false;
6558
6559 elf_link_hash_traverse (elf_hash_table (info),
6560 _bfd_elf_link_assign_sym_version,
6561 &asvinfo);
6562 if (asvinfo.failed)
6563 return false;
6564
6565 if (!info->allow_undefined_version)
6566 {
6567 /* Check if all global versions have a definition. */
6568 bool all_defined = true;
6569 for (t = info->version_info; t != NULL; t = t->next)
6570 for (d = t->globals.list; d != NULL; d = d->next)
6571 if (d->literal && !d->symver && !d->script)
6572 {
6573 _bfd_error_handler
6574 (_("%s: undefined version: %s"),
6575 d->pattern, t->name);
6576 all_defined = false;
6577 }
6578
6579 if (!all_defined)
6580 {
6581 bfd_set_error (bfd_error_bad_value);
6582 return false;
6583 }
6584 }
6585
6586 /* Set up the version definition section. */
6587 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6588 BFD_ASSERT (s != NULL);
6589
6590 /* We may have created additional version definitions if we are
6591 just linking a regular application. */
6592 verdefs = info->version_info;
6593
6594 /* Skip anonymous version tag. */
6595 if (verdefs != NULL && verdefs->vernum == 0)
6596 verdefs = verdefs->next;
6597
6598 if (verdefs == NULL && !info->create_default_symver)
6599 s->flags |= SEC_EXCLUDE;
6600 else
6601 {
6602 unsigned int cdefs;
6603 bfd_size_type size;
6604 bfd_byte *p;
6605 Elf_Internal_Verdef def;
6606 Elf_Internal_Verdaux defaux;
6607 struct bfd_link_hash_entry *bh;
6608 struct elf_link_hash_entry *h;
6609 const char *name;
6610
6611 cdefs = 0;
6612 size = 0;
6613
6614 /* Make space for the base version. */
6615 size += sizeof (Elf_External_Verdef);
6616 size += sizeof (Elf_External_Verdaux);
6617 ++cdefs;
6618
6619 /* Make space for the default version. */
6620 if (info->create_default_symver)
6621 {
6622 size += sizeof (Elf_External_Verdef);
6623 ++cdefs;
6624 }
6625
6626 for (t = verdefs; t != NULL; t = t->next)
6627 {
6628 struct bfd_elf_version_deps *n;
6629
6630 /* Don't emit base version twice. */
6631 if (t->vernum == 0)
6632 continue;
6633
6634 size += sizeof (Elf_External_Verdef);
6635 size += sizeof (Elf_External_Verdaux);
6636 ++cdefs;
6637
6638 for (n = t->deps; n != NULL; n = n->next)
6639 size += sizeof (Elf_External_Verdaux);
6640 }
6641
6642 s->size = size;
6643 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6644 if (s->contents == NULL && s->size != 0)
6645 return false;
6646
6647 /* Fill in the version definition section. */
6648
6649 p = s->contents;
6650
6651 def.vd_version = VER_DEF_CURRENT;
6652 def.vd_flags = VER_FLG_BASE;
6653 def.vd_ndx = 1;
6654 def.vd_cnt = 1;
6655 if (info->create_default_symver)
6656 {
6657 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6658 def.vd_next = sizeof (Elf_External_Verdef);
6659 }
6660 else
6661 {
6662 def.vd_aux = sizeof (Elf_External_Verdef);
6663 def.vd_next = (sizeof (Elf_External_Verdef)
6664 + sizeof (Elf_External_Verdaux));
6665 }
6666
6667 if (soname_indx != (size_t) -1)
6668 {
6669 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6670 soname_indx);
6671 def.vd_hash = bfd_elf_hash (soname);
6672 defaux.vda_name = soname_indx;
6673 name = soname;
6674 }
6675 else
6676 {
6677 size_t indx;
6678
6679 name = lbasename (bfd_get_filename (output_bfd));
6680 def.vd_hash = bfd_elf_hash (name);
6681 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6682 name, false);
6683 if (indx == (size_t) -1)
6684 return false;
6685 defaux.vda_name = indx;
6686 }
6687 defaux.vda_next = 0;
6688
6689 _bfd_elf_swap_verdef_out (output_bfd, &def,
6690 (Elf_External_Verdef *) p);
6691 p += sizeof (Elf_External_Verdef);
6692 if (info->create_default_symver)
6693 {
6694 /* Add a symbol representing this version. */
6695 bh = NULL;
6696 if (! (_bfd_generic_link_add_one_symbol
6697 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6698 0, NULL, false,
6699 get_elf_backend_data (dynobj)->collect, &bh)))
6700 return false;
6701 h = (struct elf_link_hash_entry *) bh;
6702 h->non_elf = 0;
6703 h->def_regular = 1;
6704 h->type = STT_OBJECT;
6705 h->verinfo.vertree = NULL;
6706
6707 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6708 return false;
6709
6710 /* Create a duplicate of the base version with the same
6711 aux block, but different flags. */
6712 def.vd_flags = 0;
6713 def.vd_ndx = 2;
6714 def.vd_aux = sizeof (Elf_External_Verdef);
6715 if (verdefs)
6716 def.vd_next = (sizeof (Elf_External_Verdef)
6717 + sizeof (Elf_External_Verdaux));
6718 else
6719 def.vd_next = 0;
6720 _bfd_elf_swap_verdef_out (output_bfd, &def,
6721 (Elf_External_Verdef *) p);
6722 p += sizeof (Elf_External_Verdef);
6723 }
6724 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6725 (Elf_External_Verdaux *) p);
6726 p += sizeof (Elf_External_Verdaux);
6727
6728 for (t = verdefs; t != NULL; t = t->next)
6729 {
6730 unsigned int cdeps;
6731 struct bfd_elf_version_deps *n;
6732
6733 /* Don't emit the base version twice. */
6734 if (t->vernum == 0)
6735 continue;
6736
6737 cdeps = 0;
6738 for (n = t->deps; n != NULL; n = n->next)
6739 ++cdeps;
6740
6741 /* Add a symbol representing this version. */
6742 bh = NULL;
6743 if (! (_bfd_generic_link_add_one_symbol
6744 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6745 0, NULL, false,
6746 get_elf_backend_data (dynobj)->collect, &bh)))
6747 return false;
6748 h = (struct elf_link_hash_entry *) bh;
6749 h->non_elf = 0;
6750 h->def_regular = 1;
6751 h->type = STT_OBJECT;
6752 h->verinfo.vertree = t;
6753
6754 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6755 return false;
6756
6757 def.vd_version = VER_DEF_CURRENT;
6758 def.vd_flags = 0;
6759 if (t->globals.list == NULL
6760 && t->locals.list == NULL
6761 && ! t->used)
6762 def.vd_flags |= VER_FLG_WEAK;
6763 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6764 def.vd_cnt = cdeps + 1;
6765 def.vd_hash = bfd_elf_hash (t->name);
6766 def.vd_aux = sizeof (Elf_External_Verdef);
6767 def.vd_next = 0;
6768
6769 /* If a basever node is next, it *must* be the last node in
6770 the chain, otherwise Verdef construction breaks. */
6771 if (t->next != NULL && t->next->vernum == 0)
6772 BFD_ASSERT (t->next->next == NULL);
6773
6774 if (t->next != NULL && t->next->vernum != 0)
6775 def.vd_next = (sizeof (Elf_External_Verdef)
6776 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6777
6778 _bfd_elf_swap_verdef_out (output_bfd, &def,
6779 (Elf_External_Verdef *) p);
6780 p += sizeof (Elf_External_Verdef);
6781
6782 defaux.vda_name = h->dynstr_index;
6783 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6784 h->dynstr_index);
6785 defaux.vda_next = 0;
6786 if (t->deps != NULL)
6787 defaux.vda_next = sizeof (Elf_External_Verdaux);
6788 t->name_indx = defaux.vda_name;
6789
6790 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6791 (Elf_External_Verdaux *) p);
6792 p += sizeof (Elf_External_Verdaux);
6793
6794 for (n = t->deps; n != NULL; n = n->next)
6795 {
6796 if (n->version_needed == NULL)
6797 {
6798 /* This can happen if there was an error in the
6799 version script. */
6800 defaux.vda_name = 0;
6801 }
6802 else
6803 {
6804 defaux.vda_name = n->version_needed->name_indx;
6805 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6806 defaux.vda_name);
6807 }
6808 if (n->next == NULL)
6809 defaux.vda_next = 0;
6810 else
6811 defaux.vda_next = sizeof (Elf_External_Verdaux);
6812
6813 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6814 (Elf_External_Verdaux *) p);
6815 p += sizeof (Elf_External_Verdaux);
6816 }
6817 }
6818
6819 elf_tdata (output_bfd)->cverdefs = cdefs;
6820 }
6821 }
6822
6823 bed = get_elf_backend_data (output_bfd);
6824
6825 if (info->gc_sections && bed->can_gc_sections)
6826 {
6827 struct elf_gc_sweep_symbol_info sweep_info;
6828
6829 /* Remove the symbols that were in the swept sections from the
6830 dynamic symbol table. */
6831 sweep_info.info = info;
6832 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6833 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6834 &sweep_info);
6835 }
6836
6837 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6838 {
6839 asection *s;
6840 struct elf_find_verdep_info sinfo;
6841
6842 /* Work out the size of the version reference section. */
6843
6844 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6845 BFD_ASSERT (s != NULL);
6846
6847 sinfo.info = info;
6848 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6849 if (sinfo.vers == 0)
6850 sinfo.vers = 1;
6851 sinfo.failed = false;
6852
6853 elf_link_hash_traverse (elf_hash_table (info),
6854 _bfd_elf_link_find_version_dependencies,
6855 &sinfo);
6856 if (sinfo.failed)
6857 return false;
6858
6859 if (elf_tdata (output_bfd)->verref == NULL)
6860 s->flags |= SEC_EXCLUDE;
6861 else
6862 {
6863 Elf_Internal_Verneed *vn;
6864 unsigned int size;
6865 unsigned int crefs;
6866 bfd_byte *p;
6867
6868 /* Build the version dependency section. */
6869 size = 0;
6870 crefs = 0;
6871 for (vn = elf_tdata (output_bfd)->verref;
6872 vn != NULL;
6873 vn = vn->vn_nextref)
6874 {
6875 Elf_Internal_Vernaux *a;
6876
6877 size += sizeof (Elf_External_Verneed);
6878 ++crefs;
6879 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6880 size += sizeof (Elf_External_Vernaux);
6881 }
6882
6883 s->size = size;
6884 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6885 if (s->contents == NULL)
6886 return false;
6887
6888 p = s->contents;
6889 for (vn = elf_tdata (output_bfd)->verref;
6890 vn != NULL;
6891 vn = vn->vn_nextref)
6892 {
6893 unsigned int caux;
6894 Elf_Internal_Vernaux *a;
6895 size_t indx;
6896
6897 caux = 0;
6898 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6899 ++caux;
6900
6901 vn->vn_version = VER_NEED_CURRENT;
6902 vn->vn_cnt = caux;
6903 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6904 elf_dt_name (vn->vn_bfd) != NULL
6905 ? elf_dt_name (vn->vn_bfd)
6906 : lbasename (bfd_get_filename
6907 (vn->vn_bfd)),
6908 false);
6909 if (indx == (size_t) -1)
6910 return false;
6911 vn->vn_file = indx;
6912 vn->vn_aux = sizeof (Elf_External_Verneed);
6913 if (vn->vn_nextref == NULL)
6914 vn->vn_next = 0;
6915 else
6916 vn->vn_next = (sizeof (Elf_External_Verneed)
6917 + caux * sizeof (Elf_External_Vernaux));
6918
6919 _bfd_elf_swap_verneed_out (output_bfd, vn,
6920 (Elf_External_Verneed *) p);
6921 p += sizeof (Elf_External_Verneed);
6922
6923 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6924 {
6925 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6926 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6927 a->vna_nodename, false);
6928 if (indx == (size_t) -1)
6929 return false;
6930 a->vna_name = indx;
6931 if (a->vna_nextptr == NULL)
6932 a->vna_next = 0;
6933 else
6934 a->vna_next = sizeof (Elf_External_Vernaux);
6935
6936 _bfd_elf_swap_vernaux_out (output_bfd, a,
6937 (Elf_External_Vernaux *) p);
6938 p += sizeof (Elf_External_Vernaux);
6939 }
6940 }
6941
6942 elf_tdata (output_bfd)->cverrefs = crefs;
6943 }
6944 }
6945
6946 /* Any syms created from now on start with -1 in
6947 got.refcount/offset and plt.refcount/offset. */
6948 elf_hash_table (info)->init_got_refcount
6949 = elf_hash_table (info)->init_got_offset;
6950 elf_hash_table (info)->init_plt_refcount
6951 = elf_hash_table (info)->init_plt_offset;
6952
6953 if (bfd_link_relocatable (info)
6954 && !_bfd_elf_size_group_sections (info))
6955 return false;
6956
6957 /* The backend may have to create some sections regardless of whether
6958 we're dynamic or not. */
6959 if (bed->elf_backend_always_size_sections
6960 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6961 return false;
6962
6963 /* Determine any GNU_STACK segment requirements, after the backend
6964 has had a chance to set a default segment size. */
6965 if (info->execstack)
6966 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6967 else if (info->noexecstack)
6968 elf_stack_flags (output_bfd) = PF_R | PF_W;
6969 else
6970 {
6971 bfd *inputobj;
6972 asection *notesec = NULL;
6973 int exec = 0;
6974
6975 for (inputobj = info->input_bfds;
6976 inputobj;
6977 inputobj = inputobj->link.next)
6978 {
6979 asection *s;
6980
6981 if (inputobj->flags
6982 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6983 continue;
6984 s = inputobj->sections;
6985 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6986 continue;
6987
6988 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6989 if (s)
6990 {
6991 if (s->flags & SEC_CODE)
6992 exec = PF_X;
6993 notesec = s;
6994 }
6995 else if (bed->default_execstack)
6996 exec = PF_X;
6997 }
6998 if (notesec || info->stacksize > 0)
6999 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
7000 if (notesec && exec && bfd_link_relocatable (info)
7001 && notesec->output_section != bfd_abs_section_ptr)
7002 notesec->output_section->flags |= SEC_CODE;
7003 }
7004
7005 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7006 {
7007 struct elf_info_failed eif;
7008 struct elf_link_hash_entry *h;
7009 asection *dynstr;
7010 asection *s;
7011
7012 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7013 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7014
7015 if (info->symbolic)
7016 {
7017 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7018 return false;
7019 info->flags |= DF_SYMBOLIC;
7020 }
7021
7022 if (rpath != NULL)
7023 {
7024 size_t indx;
7025 bfd_vma tag;
7026
7027 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7028 true);
7029 if (indx == (size_t) -1)
7030 return false;
7031
7032 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7033 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7034 return false;
7035 }
7036
7037 if (filter_shlib != NULL)
7038 {
7039 size_t indx;
7040
7041 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7042 filter_shlib, true);
7043 if (indx == (size_t) -1
7044 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7045 return false;
7046 }
7047
7048 if (auxiliary_filters != NULL)
7049 {
7050 const char * const *p;
7051
7052 for (p = auxiliary_filters; *p != NULL; p++)
7053 {
7054 size_t indx;
7055
7056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7057 *p, true);
7058 if (indx == (size_t) -1
7059 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7060 return false;
7061 }
7062 }
7063
7064 if (audit != NULL)
7065 {
7066 size_t indx;
7067
7068 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7069 true);
7070 if (indx == (size_t) -1
7071 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7072 return false;
7073 }
7074
7075 if (depaudit != NULL)
7076 {
7077 size_t indx;
7078
7079 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7080 true);
7081 if (indx == (size_t) -1
7082 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7083 return false;
7084 }
7085
7086 eif.info = info;
7087 eif.failed = false;
7088
7089 /* Find all symbols which were defined in a dynamic object and make
7090 the backend pick a reasonable value for them. */
7091 elf_link_hash_traverse (elf_hash_table (info),
7092 _bfd_elf_adjust_dynamic_symbol,
7093 &eif);
7094 if (eif.failed)
7095 return false;
7096
7097 /* Add some entries to the .dynamic section. We fill in some of the
7098 values later, in bfd_elf_final_link, but we must add the entries
7099 now so that we know the final size of the .dynamic section. */
7100
7101 /* If there are initialization and/or finalization functions to
7102 call then add the corresponding DT_INIT/DT_FINI entries. */
7103 h = (info->init_function
7104 ? elf_link_hash_lookup (elf_hash_table (info),
7105 info->init_function, false,
7106 false, false)
7107 : NULL);
7108 if (h != NULL
7109 && (h->ref_regular
7110 || h->def_regular))
7111 {
7112 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7113 return false;
7114 }
7115 h = (info->fini_function
7116 ? elf_link_hash_lookup (elf_hash_table (info),
7117 info->fini_function, false,
7118 false, false)
7119 : NULL);
7120 if (h != NULL
7121 && (h->ref_regular
7122 || h->def_regular))
7123 {
7124 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7125 return false;
7126 }
7127
7128 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7129 if (s != NULL && s->linker_has_input)
7130 {
7131 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7132 if (! bfd_link_executable (info))
7133 {
7134 bfd *sub;
7135 asection *o;
7136
7137 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7138 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7139 && (o = sub->sections) != NULL
7140 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7141 for (o = sub->sections; o != NULL; o = o->next)
7142 if (elf_section_data (o)->this_hdr.sh_type
7143 == SHT_PREINIT_ARRAY)
7144 {
7145 _bfd_error_handler
7146 (_("%pB: .preinit_array section is not allowed in DSO"),
7147 sub);
7148 break;
7149 }
7150
7151 bfd_set_error (bfd_error_nonrepresentable_section);
7152 return false;
7153 }
7154
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7156 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7157 return false;
7158 }
7159 s = bfd_get_section_by_name (output_bfd, ".init_array");
7160 if (s != NULL && s->linker_has_input)
7161 {
7162 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7163 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7164 return false;
7165 }
7166 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7167 if (s != NULL && s->linker_has_input)
7168 {
7169 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7170 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7171 return false;
7172 }
7173
7174 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7175 /* If .dynstr is excluded from the link, we don't want any of
7176 these tags. Strictly, we should be checking each section
7177 individually; This quick check covers for the case where
7178 someone does a /DISCARD/ : { *(*) }. */
7179 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7180 {
7181 bfd_size_type strsize;
7182
7183 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7184 if ((info->emit_hash
7185 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7186 || (info->emit_gnu_hash
7187 && (bed->record_xhash_symbol == NULL
7188 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7189 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7190 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7191 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7192 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7193 bed->s->sizeof_sym)
7194 || (info->gnu_flags_1
7195 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7196 info->gnu_flags_1)))
7197 return false;
7198 }
7199 }
7200
7201 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7202 return false;
7203
7204 /* The backend must work out the sizes of all the other dynamic
7205 sections. */
7206 if (dynobj != NULL
7207 && bed->elf_backend_size_dynamic_sections != NULL
7208 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7209 return false;
7210
7211 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7212 {
7213 if (elf_tdata (output_bfd)->cverdefs)
7214 {
7215 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7216
7217 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7218 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7219 return false;
7220 }
7221
7222 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7223 {
7224 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7225 return false;
7226 }
7227 else if (info->flags & DF_BIND_NOW)
7228 {
7229 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7230 return false;
7231 }
7232
7233 if (info->flags_1)
7234 {
7235 if (bfd_link_executable (info))
7236 info->flags_1 &= ~ (DF_1_INITFIRST
7237 | DF_1_NODELETE
7238 | DF_1_NOOPEN);
7239 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7240 return false;
7241 }
7242
7243 if (elf_tdata (output_bfd)->cverrefs)
7244 {
7245 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7246
7247 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7248 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7249 return false;
7250 }
7251
7252 if ((elf_tdata (output_bfd)->cverrefs == 0
7253 && elf_tdata (output_bfd)->cverdefs == 0)
7254 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7255 {
7256 asection *s;
7257
7258 s = bfd_get_linker_section (dynobj, ".gnu.version");
7259 s->flags |= SEC_EXCLUDE;
7260 }
7261 }
7262 return true;
7263 }
7264
7265 /* Find the first non-excluded output section. We'll use its
7266 section symbol for some emitted relocs. */
7267 void
7268 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7269 {
7270 asection *s;
7271 asection *found = NULL;
7272
7273 for (s = output_bfd->sections; s != NULL; s = s->next)
7274 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7275 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7276 {
7277 found = s;
7278 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7279 break;
7280 }
7281 elf_hash_table (info)->text_index_section = found;
7282 }
7283
7284 /* Find two non-excluded output sections, one for code, one for data.
7285 We'll use their section symbols for some emitted relocs. */
7286 void
7287 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7288 {
7289 asection *s;
7290 asection *found = NULL;
7291
7292 /* Data first, since setting text_index_section changes
7293 _bfd_elf_omit_section_dynsym_default. */
7294 for (s = output_bfd->sections; s != NULL; s = s->next)
7295 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7296 && !(s->flags & SEC_READONLY)
7297 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7298 {
7299 found = s;
7300 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7301 break;
7302 }
7303 elf_hash_table (info)->data_index_section = found;
7304
7305 for (s = output_bfd->sections; s != NULL; s = s->next)
7306 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7307 && (s->flags & SEC_READONLY)
7308 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7309 {
7310 found = s;
7311 break;
7312 }
7313 elf_hash_table (info)->text_index_section = found;
7314 }
7315
7316 #define GNU_HASH_SECTION_NAME(bed) \
7317 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7318
7319 bool
7320 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7321 {
7322 const struct elf_backend_data *bed;
7323 unsigned long section_sym_count;
7324 bfd_size_type dynsymcount = 0;
7325
7326 if (!is_elf_hash_table (info->hash))
7327 return true;
7328
7329 bed = get_elf_backend_data (output_bfd);
7330 (*bed->elf_backend_init_index_section) (output_bfd, info);
7331
7332 /* Assign dynsym indices. In a shared library we generate a section
7333 symbol for each output section, which come first. Next come all
7334 of the back-end allocated local dynamic syms, followed by the rest
7335 of the global symbols.
7336
7337 This is usually not needed for static binaries, however backends
7338 can request to always do it, e.g. the MIPS backend uses dynamic
7339 symbol counts to lay out GOT, which will be produced in the
7340 presence of GOT relocations even in static binaries (holding fixed
7341 data in that case, to satisfy those relocations). */
7342
7343 if (elf_hash_table (info)->dynamic_sections_created
7344 || bed->always_renumber_dynsyms)
7345 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7346 &section_sym_count);
7347
7348 if (elf_hash_table (info)->dynamic_sections_created)
7349 {
7350 bfd *dynobj;
7351 asection *s;
7352 unsigned int dtagcount;
7353
7354 dynobj = elf_hash_table (info)->dynobj;
7355
7356 /* Work out the size of the symbol version section. */
7357 s = bfd_get_linker_section (dynobj, ".gnu.version");
7358 BFD_ASSERT (s != NULL);
7359 if ((s->flags & SEC_EXCLUDE) == 0)
7360 {
7361 s->size = dynsymcount * sizeof (Elf_External_Versym);
7362 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7363 if (s->contents == NULL)
7364 return false;
7365
7366 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7367 return false;
7368 }
7369
7370 /* Set the size of the .dynsym and .hash sections. We counted
7371 the number of dynamic symbols in elf_link_add_object_symbols.
7372 We will build the contents of .dynsym and .hash when we build
7373 the final symbol table, because until then we do not know the
7374 correct value to give the symbols. We built the .dynstr
7375 section as we went along in elf_link_add_object_symbols. */
7376 s = elf_hash_table (info)->dynsym;
7377 BFD_ASSERT (s != NULL);
7378 s->size = dynsymcount * bed->s->sizeof_sym;
7379
7380 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7381 if (s->contents == NULL)
7382 return false;
7383
7384 /* The first entry in .dynsym is a dummy symbol. Clear all the
7385 section syms, in case we don't output them all. */
7386 ++section_sym_count;
7387 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7388
7389 elf_hash_table (info)->bucketcount = 0;
7390
7391 /* Compute the size of the hashing table. As a side effect this
7392 computes the hash values for all the names we export. */
7393 if (info->emit_hash)
7394 {
7395 unsigned long int *hashcodes;
7396 struct hash_codes_info hashinf;
7397 bfd_size_type amt;
7398 unsigned long int nsyms;
7399 size_t bucketcount;
7400 size_t hash_entry_size;
7401
7402 /* Compute the hash values for all exported symbols. At the same
7403 time store the values in an array so that we could use them for
7404 optimizations. */
7405 amt = dynsymcount * sizeof (unsigned long int);
7406 hashcodes = (unsigned long int *) bfd_malloc (amt);
7407 if (hashcodes == NULL)
7408 return false;
7409 hashinf.hashcodes = hashcodes;
7410 hashinf.error = false;
7411
7412 /* Put all hash values in HASHCODES. */
7413 elf_link_hash_traverse (elf_hash_table (info),
7414 elf_collect_hash_codes, &hashinf);
7415 if (hashinf.error)
7416 {
7417 free (hashcodes);
7418 return false;
7419 }
7420
7421 nsyms = hashinf.hashcodes - hashcodes;
7422 bucketcount
7423 = compute_bucket_count (info, hashcodes, nsyms, 0);
7424 free (hashcodes);
7425
7426 if (bucketcount == 0 && nsyms > 0)
7427 return false;
7428
7429 elf_hash_table (info)->bucketcount = bucketcount;
7430
7431 s = bfd_get_linker_section (dynobj, ".hash");
7432 BFD_ASSERT (s != NULL);
7433 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7434 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7435 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7436 if (s->contents == NULL)
7437 return false;
7438
7439 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7440 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7441 s->contents + hash_entry_size);
7442 }
7443
7444 if (info->emit_gnu_hash)
7445 {
7446 size_t i, cnt;
7447 unsigned char *contents;
7448 struct collect_gnu_hash_codes cinfo;
7449 bfd_size_type amt;
7450 size_t bucketcount;
7451
7452 memset (&cinfo, 0, sizeof (cinfo));
7453
7454 /* Compute the hash values for all exported symbols. At the same
7455 time store the values in an array so that we could use them for
7456 optimizations. */
7457 amt = dynsymcount * 2 * sizeof (unsigned long int);
7458 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7459 if (cinfo.hashcodes == NULL)
7460 return false;
7461
7462 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7463 cinfo.min_dynindx = -1;
7464 cinfo.output_bfd = output_bfd;
7465 cinfo.bed = bed;
7466
7467 /* Put all hash values in HASHCODES. */
7468 elf_link_hash_traverse (elf_hash_table (info),
7469 elf_collect_gnu_hash_codes, &cinfo);
7470 if (cinfo.error)
7471 {
7472 free (cinfo.hashcodes);
7473 return false;
7474 }
7475
7476 bucketcount
7477 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7478
7479 if (bucketcount == 0)
7480 {
7481 free (cinfo.hashcodes);
7482 return false;
7483 }
7484
7485 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7486 BFD_ASSERT (s != NULL);
7487
7488 if (cinfo.nsyms == 0)
7489 {
7490 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7491 BFD_ASSERT (cinfo.min_dynindx == -1);
7492 free (cinfo.hashcodes);
7493 s->size = 5 * 4 + bed->s->arch_size / 8;
7494 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7495 if (contents == NULL)
7496 return false;
7497 s->contents = contents;
7498 /* 1 empty bucket. */
7499 bfd_put_32 (output_bfd, 1, contents);
7500 /* SYMIDX above the special symbol 0. */
7501 bfd_put_32 (output_bfd, 1, contents + 4);
7502 /* Just one word for bitmask. */
7503 bfd_put_32 (output_bfd, 1, contents + 8);
7504 /* Only hash fn bloom filter. */
7505 bfd_put_32 (output_bfd, 0, contents + 12);
7506 /* No hashes are valid - empty bitmask. */
7507 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7508 /* No hashes in the only bucket. */
7509 bfd_put_32 (output_bfd, 0,
7510 contents + 16 + bed->s->arch_size / 8);
7511 }
7512 else
7513 {
7514 unsigned long int maskwords, maskbitslog2, x;
7515 BFD_ASSERT (cinfo.min_dynindx != -1);
7516
7517 x = cinfo.nsyms;
7518 maskbitslog2 = 1;
7519 while ((x >>= 1) != 0)
7520 ++maskbitslog2;
7521 if (maskbitslog2 < 3)
7522 maskbitslog2 = 5;
7523 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7524 maskbitslog2 = maskbitslog2 + 3;
7525 else
7526 maskbitslog2 = maskbitslog2 + 2;
7527 if (bed->s->arch_size == 64)
7528 {
7529 if (maskbitslog2 == 5)
7530 maskbitslog2 = 6;
7531 cinfo.shift1 = 6;
7532 }
7533 else
7534 cinfo.shift1 = 5;
7535 cinfo.mask = (1 << cinfo.shift1) - 1;
7536 cinfo.shift2 = maskbitslog2;
7537 cinfo.maskbits = 1 << maskbitslog2;
7538 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7539 amt = bucketcount * sizeof (unsigned long int) * 2;
7540 amt += maskwords * sizeof (bfd_vma);
7541 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7542 if (cinfo.bitmask == NULL)
7543 {
7544 free (cinfo.hashcodes);
7545 return false;
7546 }
7547
7548 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7549 cinfo.indx = cinfo.counts + bucketcount;
7550 cinfo.symindx = dynsymcount - cinfo.nsyms;
7551 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7552
7553 /* Determine how often each hash bucket is used. */
7554 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7555 for (i = 0; i < cinfo.nsyms; ++i)
7556 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7557
7558 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7559 if (cinfo.counts[i] != 0)
7560 {
7561 cinfo.indx[i] = cnt;
7562 cnt += cinfo.counts[i];
7563 }
7564 BFD_ASSERT (cnt == dynsymcount);
7565 cinfo.bucketcount = bucketcount;
7566 cinfo.local_indx = cinfo.min_dynindx;
7567
7568 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7569 s->size += cinfo.maskbits / 8;
7570 if (bed->record_xhash_symbol != NULL)
7571 s->size += cinfo.nsyms * 4;
7572 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7573 if (contents == NULL)
7574 {
7575 free (cinfo.bitmask);
7576 free (cinfo.hashcodes);
7577 return false;
7578 }
7579
7580 s->contents = contents;
7581 bfd_put_32 (output_bfd, bucketcount, contents);
7582 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7583 bfd_put_32 (output_bfd, maskwords, contents + 8);
7584 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7585 contents += 16 + cinfo.maskbits / 8;
7586
7587 for (i = 0; i < bucketcount; ++i)
7588 {
7589 if (cinfo.counts[i] == 0)
7590 bfd_put_32 (output_bfd, 0, contents);
7591 else
7592 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7593 contents += 4;
7594 }
7595
7596 cinfo.contents = contents;
7597
7598 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7599 /* Renumber dynamic symbols, if populating .gnu.hash section.
7600 If using .MIPS.xhash, populate the translation table. */
7601 elf_link_hash_traverse (elf_hash_table (info),
7602 elf_gnu_hash_process_symidx, &cinfo);
7603
7604 contents = s->contents + 16;
7605 for (i = 0; i < maskwords; ++i)
7606 {
7607 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7608 contents);
7609 contents += bed->s->arch_size / 8;
7610 }
7611
7612 free (cinfo.bitmask);
7613 free (cinfo.hashcodes);
7614 }
7615 }
7616
7617 s = bfd_get_linker_section (dynobj, ".dynstr");
7618 BFD_ASSERT (s != NULL);
7619
7620 elf_finalize_dynstr (output_bfd, info);
7621
7622 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7623
7624 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7625 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7626 return false;
7627 }
7628
7629 return true;
7630 }
7631 \f
7632 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7633
7634 static void
7635 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7636 asection *sec)
7637 {
7638 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7639 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7640 }
7641
7642 /* Finish SHF_MERGE section merging. */
7643
7644 bool
7645 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7646 {
7647 bfd *ibfd;
7648 asection *sec;
7649
7650 if (!is_elf_hash_table (info->hash))
7651 return false;
7652
7653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7654 if ((ibfd->flags & DYNAMIC) == 0
7655 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7656 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7657 == get_elf_backend_data (obfd)->s->elfclass))
7658 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7659 if ((sec->flags & SEC_MERGE) != 0
7660 && !bfd_is_abs_section (sec->output_section))
7661 {
7662 struct bfd_elf_section_data *secdata;
7663
7664 secdata = elf_section_data (sec);
7665 if (! _bfd_add_merge_section (obfd,
7666 &elf_hash_table (info)->merge_info,
7667 sec, &secdata->sec_info))
7668 return false;
7669 else if (secdata->sec_info)
7670 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7671 }
7672
7673 if (elf_hash_table (info)->merge_info != NULL)
7674 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7675 merge_sections_remove_hook);
7676 return true;
7677 }
7678
7679 /* Create an entry in an ELF linker hash table. */
7680
7681 struct bfd_hash_entry *
7682 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7683 struct bfd_hash_table *table,
7684 const char *string)
7685 {
7686 /* Allocate the structure if it has not already been allocated by a
7687 subclass. */
7688 if (entry == NULL)
7689 {
7690 entry = (struct bfd_hash_entry *)
7691 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7692 if (entry == NULL)
7693 return entry;
7694 }
7695
7696 /* Call the allocation method of the superclass. */
7697 entry = _bfd_link_hash_newfunc (entry, table, string);
7698 if (entry != NULL)
7699 {
7700 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7701 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7702
7703 /* Set local fields. */
7704 ret->indx = -1;
7705 ret->dynindx = -1;
7706 ret->got = htab->init_got_refcount;
7707 ret->plt = htab->init_plt_refcount;
7708 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7709 - offsetof (struct elf_link_hash_entry, size)));
7710 /* Assume that we have been called by a non-ELF symbol reader.
7711 This flag is then reset by the code which reads an ELF input
7712 file. This ensures that a symbol created by a non-ELF symbol
7713 reader will have the flag set correctly. */
7714 ret->non_elf = 1;
7715 }
7716
7717 return entry;
7718 }
7719
7720 /* Copy data from an indirect symbol to its direct symbol, hiding the
7721 old indirect symbol. Also used for copying flags to a weakdef. */
7722
7723 void
7724 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7725 struct elf_link_hash_entry *dir,
7726 struct elf_link_hash_entry *ind)
7727 {
7728 struct elf_link_hash_table *htab;
7729
7730 if (ind->dyn_relocs != NULL)
7731 {
7732 if (dir->dyn_relocs != NULL)
7733 {
7734 struct elf_dyn_relocs **pp;
7735 struct elf_dyn_relocs *p;
7736
7737 /* Add reloc counts against the indirect sym to the direct sym
7738 list. Merge any entries against the same section. */
7739 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7740 {
7741 struct elf_dyn_relocs *q;
7742
7743 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7744 if (q->sec == p->sec)
7745 {
7746 q->pc_count += p->pc_count;
7747 q->count += p->count;
7748 *pp = p->next;
7749 break;
7750 }
7751 if (q == NULL)
7752 pp = &p->next;
7753 }
7754 *pp = dir->dyn_relocs;
7755 }
7756
7757 dir->dyn_relocs = ind->dyn_relocs;
7758 ind->dyn_relocs = NULL;
7759 }
7760
7761 /* Copy down any references that we may have already seen to the
7762 symbol which just became indirect. */
7763
7764 if (dir->versioned != versioned_hidden)
7765 dir->ref_dynamic |= ind->ref_dynamic;
7766 dir->ref_regular |= ind->ref_regular;
7767 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7768 dir->non_got_ref |= ind->non_got_ref;
7769 dir->needs_plt |= ind->needs_plt;
7770 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7771
7772 if (ind->root.type != bfd_link_hash_indirect)
7773 return;
7774
7775 /* Copy over the global and procedure linkage table refcount entries.
7776 These may have been already set up by a check_relocs routine. */
7777 htab = elf_hash_table (info);
7778 if (ind->got.refcount > htab->init_got_refcount.refcount)
7779 {
7780 if (dir->got.refcount < 0)
7781 dir->got.refcount = 0;
7782 dir->got.refcount += ind->got.refcount;
7783 ind->got.refcount = htab->init_got_refcount.refcount;
7784 }
7785
7786 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7787 {
7788 if (dir->plt.refcount < 0)
7789 dir->plt.refcount = 0;
7790 dir->plt.refcount += ind->plt.refcount;
7791 ind->plt.refcount = htab->init_plt_refcount.refcount;
7792 }
7793
7794 if (ind->dynindx != -1)
7795 {
7796 if (dir->dynindx != -1)
7797 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7798 dir->dynindx = ind->dynindx;
7799 dir->dynstr_index = ind->dynstr_index;
7800 ind->dynindx = -1;
7801 ind->dynstr_index = 0;
7802 }
7803 }
7804
7805 void
7806 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7807 struct elf_link_hash_entry *h,
7808 bool force_local)
7809 {
7810 /* STT_GNU_IFUNC symbol must go through PLT. */
7811 if (h->type != STT_GNU_IFUNC)
7812 {
7813 h->plt = elf_hash_table (info)->init_plt_offset;
7814 h->needs_plt = 0;
7815 }
7816 if (force_local)
7817 {
7818 h->forced_local = 1;
7819 if (h->dynindx != -1)
7820 {
7821 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7822 h->dynstr_index);
7823 h->dynindx = -1;
7824 h->dynstr_index = 0;
7825 }
7826 }
7827 }
7828
7829 /* Hide a symbol. */
7830
7831 void
7832 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7833 struct bfd_link_info *info,
7834 struct bfd_link_hash_entry *h)
7835 {
7836 if (is_elf_hash_table (info->hash))
7837 {
7838 const struct elf_backend_data *bed
7839 = get_elf_backend_data (output_bfd);
7840 struct elf_link_hash_entry *eh
7841 = (struct elf_link_hash_entry *) h;
7842 bed->elf_backend_hide_symbol (info, eh, true);
7843 eh->def_dynamic = 0;
7844 eh->ref_dynamic = 0;
7845 eh->dynamic_def = 0;
7846 }
7847 }
7848
7849 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7850 caller. */
7851
7852 bool
7853 _bfd_elf_link_hash_table_init
7854 (struct elf_link_hash_table *table,
7855 bfd *abfd,
7856 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7857 struct bfd_hash_table *,
7858 const char *),
7859 unsigned int entsize,
7860 enum elf_target_id target_id)
7861 {
7862 bool ret;
7863 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7864
7865 table->init_got_refcount.refcount = can_refcount - 1;
7866 table->init_plt_refcount.refcount = can_refcount - 1;
7867 table->init_got_offset.offset = -(bfd_vma) 1;
7868 table->init_plt_offset.offset = -(bfd_vma) 1;
7869 /* The first dynamic symbol is a dummy. */
7870 table->dynsymcount = 1;
7871
7872 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7873
7874 table->root.type = bfd_link_elf_hash_table;
7875 table->hash_table_id = target_id;
7876 table->target_os = get_elf_backend_data (abfd)->target_os;
7877
7878 return ret;
7879 }
7880
7881 /* Create an ELF linker hash table. */
7882
7883 struct bfd_link_hash_table *
7884 _bfd_elf_link_hash_table_create (bfd *abfd)
7885 {
7886 struct elf_link_hash_table *ret;
7887 size_t amt = sizeof (struct elf_link_hash_table);
7888
7889 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7890 if (ret == NULL)
7891 return NULL;
7892
7893 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7894 sizeof (struct elf_link_hash_entry),
7895 GENERIC_ELF_DATA))
7896 {
7897 free (ret);
7898 return NULL;
7899 }
7900 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7901
7902 return &ret->root;
7903 }
7904
7905 /* Destroy an ELF linker hash table. */
7906
7907 void
7908 _bfd_elf_link_hash_table_free (bfd *obfd)
7909 {
7910 struct elf_link_hash_table *htab;
7911
7912 htab = (struct elf_link_hash_table *) obfd->link.hash;
7913 if (htab->dynstr != NULL)
7914 _bfd_elf_strtab_free (htab->dynstr);
7915 _bfd_merge_sections_free (htab->merge_info);
7916 _bfd_generic_link_hash_table_free (obfd);
7917 }
7918
7919 /* This is a hook for the ELF emulation code in the generic linker to
7920 tell the backend linker what file name to use for the DT_NEEDED
7921 entry for a dynamic object. */
7922
7923 void
7924 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7925 {
7926 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7927 && bfd_get_format (abfd) == bfd_object)
7928 elf_dt_name (abfd) = name;
7929 }
7930
7931 int
7932 bfd_elf_get_dyn_lib_class (bfd *abfd)
7933 {
7934 int lib_class;
7935 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7936 && bfd_get_format (abfd) == bfd_object)
7937 lib_class = elf_dyn_lib_class (abfd);
7938 else
7939 lib_class = 0;
7940 return lib_class;
7941 }
7942
7943 void
7944 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7945 {
7946 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7947 && bfd_get_format (abfd) == bfd_object)
7948 elf_dyn_lib_class (abfd) = lib_class;
7949 }
7950
7951 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7952 the linker ELF emulation code. */
7953
7954 struct bfd_link_needed_list *
7955 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7956 struct bfd_link_info *info)
7957 {
7958 if (! is_elf_hash_table (info->hash))
7959 return NULL;
7960 return elf_hash_table (info)->needed;
7961 }
7962
7963 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7964 hook for the linker ELF emulation code. */
7965
7966 struct bfd_link_needed_list *
7967 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7968 struct bfd_link_info *info)
7969 {
7970 if (! is_elf_hash_table (info->hash))
7971 return NULL;
7972 return elf_hash_table (info)->runpath;
7973 }
7974
7975 /* Get the name actually used for a dynamic object for a link. This
7976 is the SONAME entry if there is one. Otherwise, it is the string
7977 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7978
7979 const char *
7980 bfd_elf_get_dt_soname (bfd *abfd)
7981 {
7982 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7983 && bfd_get_format (abfd) == bfd_object)
7984 return elf_dt_name (abfd);
7985 return NULL;
7986 }
7987
7988 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7989 the ELF linker emulation code. */
7990
7991 bool
7992 bfd_elf_get_bfd_needed_list (bfd *abfd,
7993 struct bfd_link_needed_list **pneeded)
7994 {
7995 asection *s;
7996 bfd_byte *dynbuf = NULL;
7997 unsigned int elfsec;
7998 unsigned long shlink;
7999 bfd_byte *extdyn, *extdynend;
8000 size_t extdynsize;
8001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
8002
8003 *pneeded = NULL;
8004
8005 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8006 || bfd_get_format (abfd) != bfd_object)
8007 return true;
8008
8009 s = bfd_get_section_by_name (abfd, ".dynamic");
8010 if (s == NULL || s->size == 0)
8011 return true;
8012
8013 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8014 goto error_return;
8015
8016 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8017 if (elfsec == SHN_BAD)
8018 goto error_return;
8019
8020 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8021
8022 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8023 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8024
8025 extdyn = dynbuf;
8026 extdynend = extdyn + s->size;
8027 for (; extdyn < extdynend; extdyn += extdynsize)
8028 {
8029 Elf_Internal_Dyn dyn;
8030
8031 (*swap_dyn_in) (abfd, extdyn, &dyn);
8032
8033 if (dyn.d_tag == DT_NULL)
8034 break;
8035
8036 if (dyn.d_tag == DT_NEEDED)
8037 {
8038 const char *string;
8039 struct bfd_link_needed_list *l;
8040 unsigned int tagv = dyn.d_un.d_val;
8041 size_t amt;
8042
8043 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8044 if (string == NULL)
8045 goto error_return;
8046
8047 amt = sizeof *l;
8048 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8049 if (l == NULL)
8050 goto error_return;
8051
8052 l->by = abfd;
8053 l->name = string;
8054 l->next = *pneeded;
8055 *pneeded = l;
8056 }
8057 }
8058
8059 free (dynbuf);
8060
8061 return true;
8062
8063 error_return:
8064 free (dynbuf);
8065 return false;
8066 }
8067
8068 struct elf_symbuf_symbol
8069 {
8070 unsigned long st_name; /* Symbol name, index in string tbl */
8071 unsigned char st_info; /* Type and binding attributes */
8072 unsigned char st_other; /* Visibilty, and target specific */
8073 };
8074
8075 struct elf_symbuf_head
8076 {
8077 struct elf_symbuf_symbol *ssym;
8078 size_t count;
8079 unsigned int st_shndx;
8080 };
8081
8082 struct elf_symbol
8083 {
8084 union
8085 {
8086 Elf_Internal_Sym *isym;
8087 struct elf_symbuf_symbol *ssym;
8088 void *p;
8089 } u;
8090 const char *name;
8091 };
8092
8093 /* Sort references to symbols by ascending section number. */
8094
8095 static int
8096 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8097 {
8098 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8099 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8100
8101 if (s1->st_shndx != s2->st_shndx)
8102 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8103 /* Final sort by the address of the sym in the symbuf ensures
8104 a stable sort. */
8105 if (s1 != s2)
8106 return s1 > s2 ? 1 : -1;
8107 return 0;
8108 }
8109
8110 static int
8111 elf_sym_name_compare (const void *arg1, const void *arg2)
8112 {
8113 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8114 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8115 int ret = strcmp (s1->name, s2->name);
8116 if (ret != 0)
8117 return ret;
8118 if (s1->u.p != s2->u.p)
8119 return s1->u.p > s2->u.p ? 1 : -1;
8120 return 0;
8121 }
8122
8123 static struct elf_symbuf_head *
8124 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8125 {
8126 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8127 struct elf_symbuf_symbol *ssym;
8128 struct elf_symbuf_head *ssymbuf, *ssymhead;
8129 size_t i, shndx_count, total_size, amt;
8130
8131 amt = symcount * sizeof (*indbuf);
8132 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8133 if (indbuf == NULL)
8134 return NULL;
8135
8136 for (ind = indbuf, i = 0; i < symcount; i++)
8137 if (isymbuf[i].st_shndx != SHN_UNDEF)
8138 *ind++ = &isymbuf[i];
8139 indbufend = ind;
8140
8141 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8142 elf_sort_elf_symbol);
8143
8144 shndx_count = 0;
8145 if (indbufend > indbuf)
8146 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8147 if (ind[0]->st_shndx != ind[1]->st_shndx)
8148 shndx_count++;
8149
8150 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8151 + (indbufend - indbuf) * sizeof (*ssym));
8152 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8153 if (ssymbuf == NULL)
8154 {
8155 free (indbuf);
8156 return NULL;
8157 }
8158
8159 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8160 ssymbuf->ssym = NULL;
8161 ssymbuf->count = shndx_count;
8162 ssymbuf->st_shndx = 0;
8163 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8164 {
8165 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8166 {
8167 ssymhead++;
8168 ssymhead->ssym = ssym;
8169 ssymhead->count = 0;
8170 ssymhead->st_shndx = (*ind)->st_shndx;
8171 }
8172 ssym->st_name = (*ind)->st_name;
8173 ssym->st_info = (*ind)->st_info;
8174 ssym->st_other = (*ind)->st_other;
8175 ssymhead->count++;
8176 }
8177 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8178 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8179 == total_size));
8180
8181 free (indbuf);
8182 return ssymbuf;
8183 }
8184
8185 /* Check if 2 sections define the same set of local and global
8186 symbols. */
8187
8188 static bool
8189 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8190 struct bfd_link_info *info)
8191 {
8192 bfd *bfd1, *bfd2;
8193 const struct elf_backend_data *bed1, *bed2;
8194 Elf_Internal_Shdr *hdr1, *hdr2;
8195 size_t symcount1, symcount2;
8196 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8197 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8198 Elf_Internal_Sym *isym, *isymend;
8199 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8200 size_t count1, count2, sec_count1, sec_count2, i;
8201 unsigned int shndx1, shndx2;
8202 bool result;
8203 bool ignore_section_symbol_p;
8204
8205 bfd1 = sec1->owner;
8206 bfd2 = sec2->owner;
8207
8208 /* Both sections have to be in ELF. */
8209 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8210 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8211 return false;
8212
8213 if (elf_section_type (sec1) != elf_section_type (sec2))
8214 return false;
8215
8216 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8217 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8218 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8219 return false;
8220
8221 bed1 = get_elf_backend_data (bfd1);
8222 bed2 = get_elf_backend_data (bfd2);
8223 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8224 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8225 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8226 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8227
8228 if (symcount1 == 0 || symcount2 == 0)
8229 return false;
8230
8231 result = false;
8232 isymbuf1 = NULL;
8233 isymbuf2 = NULL;
8234 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8235 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8236
8237 /* Ignore section symbols only when matching non-debugging sections
8238 or linkonce section with comdat section. */
8239 ignore_section_symbol_p
8240 = ((sec1->flags & SEC_DEBUGGING) == 0
8241 || ((elf_section_flags (sec1) & SHF_GROUP)
8242 != (elf_section_flags (sec2) & SHF_GROUP)));
8243
8244 if (ssymbuf1 == NULL)
8245 {
8246 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8247 NULL, NULL, NULL);
8248 if (isymbuf1 == NULL)
8249 goto done;
8250
8251 if (info != NULL && !info->reduce_memory_overheads)
8252 {
8253 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8254 elf_tdata (bfd1)->symbuf = ssymbuf1;
8255 }
8256 }
8257
8258 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8259 {
8260 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8261 NULL, NULL, NULL);
8262 if (isymbuf2 == NULL)
8263 goto done;
8264
8265 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8266 {
8267 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8268 elf_tdata (bfd2)->symbuf = ssymbuf2;
8269 }
8270 }
8271
8272 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8273 {
8274 /* Optimized faster version. */
8275 size_t lo, hi, mid;
8276 struct elf_symbol *symp;
8277 struct elf_symbuf_symbol *ssym, *ssymend;
8278
8279 lo = 0;
8280 hi = ssymbuf1->count;
8281 ssymbuf1++;
8282 count1 = 0;
8283 sec_count1 = 0;
8284 while (lo < hi)
8285 {
8286 mid = (lo + hi) / 2;
8287 if (shndx1 < ssymbuf1[mid].st_shndx)
8288 hi = mid;
8289 else if (shndx1 > ssymbuf1[mid].st_shndx)
8290 lo = mid + 1;
8291 else
8292 {
8293 count1 = ssymbuf1[mid].count;
8294 ssymbuf1 += mid;
8295 break;
8296 }
8297 }
8298 if (ignore_section_symbol_p)
8299 {
8300 for (i = 0; i < count1; i++)
8301 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION)
8302 sec_count1++;
8303 count1 -= sec_count1;
8304 }
8305
8306 lo = 0;
8307 hi = ssymbuf2->count;
8308 ssymbuf2++;
8309 count2 = 0;
8310 sec_count2 = 0;
8311 while (lo < hi)
8312 {
8313 mid = (lo + hi) / 2;
8314 if (shndx2 < ssymbuf2[mid].st_shndx)
8315 hi = mid;
8316 else if (shndx2 > ssymbuf2[mid].st_shndx)
8317 lo = mid + 1;
8318 else
8319 {
8320 count2 = ssymbuf2[mid].count;
8321 ssymbuf2 += mid;
8322 break;
8323 }
8324 }
8325 if (ignore_section_symbol_p)
8326 {
8327 for (i = 0; i < count2; i++)
8328 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION)
8329 sec_count2++;
8330 count2 -= sec_count2;
8331 }
8332
8333 if (count1 == 0 || count2 == 0 || count1 != count2)
8334 goto done;
8335
8336 symtable1
8337 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8338 symtable2
8339 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8340 if (symtable1 == NULL || symtable2 == NULL)
8341 goto done;
8342
8343 symp = symtable1;
8344 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1;
8345 ssym < ssymend; ssym++)
8346 if (sec_count1 == 0
8347 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8348 {
8349 symp->u.ssym = ssym;
8350 symp->name = bfd_elf_string_from_elf_section (bfd1,
8351 hdr1->sh_link,
8352 ssym->st_name);
8353 symp++;
8354 }
8355
8356 symp = symtable2;
8357 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2;
8358 ssym < ssymend; ssym++)
8359 if (sec_count2 == 0
8360 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8361 {
8362 symp->u.ssym = ssym;
8363 symp->name = bfd_elf_string_from_elf_section (bfd2,
8364 hdr2->sh_link,
8365 ssym->st_name);
8366 symp++;
8367 }
8368
8369 /* Sort symbol by name. */
8370 qsort (symtable1, count1, sizeof (struct elf_symbol),
8371 elf_sym_name_compare);
8372 qsort (symtable2, count1, sizeof (struct elf_symbol),
8373 elf_sym_name_compare);
8374
8375 for (i = 0; i < count1; i++)
8376 /* Two symbols must have the same binding, type and name. */
8377 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8378 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8379 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8380 goto done;
8381
8382 result = true;
8383 goto done;
8384 }
8385
8386 symtable1 = (struct elf_symbol *)
8387 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8388 symtable2 = (struct elf_symbol *)
8389 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8390 if (symtable1 == NULL || symtable2 == NULL)
8391 goto done;
8392
8393 /* Count definitions in the section. */
8394 count1 = 0;
8395 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8396 if (isym->st_shndx == shndx1
8397 && (!ignore_section_symbol_p
8398 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8399 symtable1[count1++].u.isym = isym;
8400
8401 count2 = 0;
8402 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8403 if (isym->st_shndx == shndx2
8404 && (!ignore_section_symbol_p
8405 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8406 symtable2[count2++].u.isym = isym;
8407
8408 if (count1 == 0 || count2 == 0 || count1 != count2)
8409 goto done;
8410
8411 for (i = 0; i < count1; i++)
8412 symtable1[i].name
8413 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8414 symtable1[i].u.isym->st_name);
8415
8416 for (i = 0; i < count2; i++)
8417 symtable2[i].name
8418 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8419 symtable2[i].u.isym->st_name);
8420
8421 /* Sort symbol by name. */
8422 qsort (symtable1, count1, sizeof (struct elf_symbol),
8423 elf_sym_name_compare);
8424 qsort (symtable2, count1, sizeof (struct elf_symbol),
8425 elf_sym_name_compare);
8426
8427 for (i = 0; i < count1; i++)
8428 /* Two symbols must have the same binding, type and name. */
8429 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8430 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8431 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8432 goto done;
8433
8434 result = true;
8435
8436 done:
8437 free (symtable1);
8438 free (symtable2);
8439 free (isymbuf1);
8440 free (isymbuf2);
8441
8442 return result;
8443 }
8444
8445 /* Return TRUE if 2 section types are compatible. */
8446
8447 bool
8448 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8449 bfd *bbfd, const asection *bsec)
8450 {
8451 if (asec == NULL
8452 || bsec == NULL
8453 || abfd->xvec->flavour != bfd_target_elf_flavour
8454 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8455 return true;
8456
8457 return elf_section_type (asec) == elf_section_type (bsec);
8458 }
8459 \f
8460 /* Final phase of ELF linker. */
8461
8462 /* A structure we use to avoid passing large numbers of arguments. */
8463
8464 struct elf_final_link_info
8465 {
8466 /* General link information. */
8467 struct bfd_link_info *info;
8468 /* Output BFD. */
8469 bfd *output_bfd;
8470 /* Symbol string table. */
8471 struct elf_strtab_hash *symstrtab;
8472 /* .hash section. */
8473 asection *hash_sec;
8474 /* symbol version section (.gnu.version). */
8475 asection *symver_sec;
8476 /* Buffer large enough to hold contents of any section. */
8477 bfd_byte *contents;
8478 /* Buffer large enough to hold external relocs of any section. */
8479 void *external_relocs;
8480 /* Buffer large enough to hold internal relocs of any section. */
8481 Elf_Internal_Rela *internal_relocs;
8482 /* Buffer large enough to hold external local symbols of any input
8483 BFD. */
8484 bfd_byte *external_syms;
8485 /* And a buffer for symbol section indices. */
8486 Elf_External_Sym_Shndx *locsym_shndx;
8487 /* Buffer large enough to hold internal local symbols of any input
8488 BFD. */
8489 Elf_Internal_Sym *internal_syms;
8490 /* Array large enough to hold a symbol index for each local symbol
8491 of any input BFD. */
8492 long *indices;
8493 /* Array large enough to hold a section pointer for each local
8494 symbol of any input BFD. */
8495 asection **sections;
8496 /* Buffer for SHT_SYMTAB_SHNDX section. */
8497 Elf_External_Sym_Shndx *symshndxbuf;
8498 /* Number of STT_FILE syms seen. */
8499 size_t filesym_count;
8500 /* Local symbol hash table. */
8501 struct bfd_hash_table local_hash_table;
8502 };
8503
8504 struct local_hash_entry
8505 {
8506 /* Base hash table entry structure. */
8507 struct bfd_hash_entry root;
8508 /* Size of the local symbol name. */
8509 size_t size;
8510 /* Number of the duplicated local symbol names. */
8511 long count;
8512 };
8513
8514 /* Create an entry in the local symbol hash table. */
8515
8516 static struct bfd_hash_entry *
8517 local_hash_newfunc (struct bfd_hash_entry *entry,
8518 struct bfd_hash_table *table,
8519 const char *string)
8520 {
8521
8522 /* Allocate the structure if it has not already been allocated by a
8523 subclass. */
8524 if (entry == NULL)
8525 {
8526 entry = bfd_hash_allocate (table,
8527 sizeof (struct local_hash_entry));
8528 if (entry == NULL)
8529 return entry;
8530 }
8531
8532 /* Call the allocation method of the superclass. */
8533 entry = bfd_hash_newfunc (entry, table, string);
8534 if (entry != NULL)
8535 {
8536 ((struct local_hash_entry *) entry)->count = 0;
8537 ((struct local_hash_entry *) entry)->size = 0;
8538 }
8539
8540 return entry;
8541 }
8542
8543 /* This struct is used to pass information to elf_link_output_extsym. */
8544
8545 struct elf_outext_info
8546 {
8547 bool failed;
8548 bool localsyms;
8549 bool file_sym_done;
8550 struct elf_final_link_info *flinfo;
8551 };
8552
8553
8554 /* Support for evaluating a complex relocation.
8555
8556 Complex relocations are generalized, self-describing relocations. The
8557 implementation of them consists of two parts: complex symbols, and the
8558 relocations themselves.
8559
8560 The relocations use a reserved elf-wide relocation type code (R_RELC
8561 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8562 information (start bit, end bit, word width, etc) into the addend. This
8563 information is extracted from CGEN-generated operand tables within gas.
8564
8565 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8566 internal) representing prefix-notation expressions, including but not
8567 limited to those sorts of expressions normally encoded as addends in the
8568 addend field. The symbol mangling format is:
8569
8570 <node> := <literal>
8571 | <unary-operator> ':' <node>
8572 | <binary-operator> ':' <node> ':' <node>
8573 ;
8574
8575 <literal> := 's' <digits=N> ':' <N character symbol name>
8576 | 'S' <digits=N> ':' <N character section name>
8577 | '#' <hexdigits>
8578 ;
8579
8580 <binary-operator> := as in C
8581 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8582
8583 static void
8584 set_symbol_value (bfd *bfd_with_globals,
8585 Elf_Internal_Sym *isymbuf,
8586 size_t locsymcount,
8587 size_t symidx,
8588 bfd_vma val)
8589 {
8590 struct elf_link_hash_entry **sym_hashes;
8591 struct elf_link_hash_entry *h;
8592 size_t extsymoff = locsymcount;
8593
8594 if (symidx < locsymcount)
8595 {
8596 Elf_Internal_Sym *sym;
8597
8598 sym = isymbuf + symidx;
8599 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8600 {
8601 /* It is a local symbol: move it to the
8602 "absolute" section and give it a value. */
8603 sym->st_shndx = SHN_ABS;
8604 sym->st_value = val;
8605 return;
8606 }
8607 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8608 extsymoff = 0;
8609 }
8610
8611 /* It is a global symbol: set its link type
8612 to "defined" and give it a value. */
8613
8614 sym_hashes = elf_sym_hashes (bfd_with_globals);
8615 h = sym_hashes [symidx - extsymoff];
8616 while (h->root.type == bfd_link_hash_indirect
8617 || h->root.type == bfd_link_hash_warning)
8618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8619 h->root.type = bfd_link_hash_defined;
8620 h->root.u.def.value = val;
8621 h->root.u.def.section = bfd_abs_section_ptr;
8622 }
8623
8624 static bool
8625 resolve_symbol (const char *name,
8626 bfd *input_bfd,
8627 struct elf_final_link_info *flinfo,
8628 bfd_vma *result,
8629 Elf_Internal_Sym *isymbuf,
8630 size_t locsymcount)
8631 {
8632 Elf_Internal_Sym *sym;
8633 struct bfd_link_hash_entry *global_entry;
8634 const char *candidate = NULL;
8635 Elf_Internal_Shdr *symtab_hdr;
8636 size_t i;
8637
8638 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8639
8640 for (i = 0; i < locsymcount; ++ i)
8641 {
8642 sym = isymbuf + i;
8643
8644 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8645 continue;
8646
8647 candidate = bfd_elf_string_from_elf_section (input_bfd,
8648 symtab_hdr->sh_link,
8649 sym->st_name);
8650 #ifdef DEBUG
8651 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8652 name, candidate, (unsigned long) sym->st_value);
8653 #endif
8654 if (candidate && strcmp (candidate, name) == 0)
8655 {
8656 asection *sec = flinfo->sections [i];
8657
8658 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8659 *result += sec->output_offset + sec->output_section->vma;
8660 #ifdef DEBUG
8661 printf ("Found symbol with value %8.8lx\n",
8662 (unsigned long) *result);
8663 #endif
8664 return true;
8665 }
8666 }
8667
8668 /* Hmm, haven't found it yet. perhaps it is a global. */
8669 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8670 false, false, true);
8671 if (!global_entry)
8672 return false;
8673
8674 if (global_entry->type == bfd_link_hash_defined
8675 || global_entry->type == bfd_link_hash_defweak)
8676 {
8677 *result = (global_entry->u.def.value
8678 + global_entry->u.def.section->output_section->vma
8679 + global_entry->u.def.section->output_offset);
8680 #ifdef DEBUG
8681 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8682 global_entry->root.string, (unsigned long) *result);
8683 #endif
8684 return true;
8685 }
8686
8687 return false;
8688 }
8689
8690 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8691 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8692 names like "foo.end" which is the end address of section "foo". */
8693
8694 static bool
8695 resolve_section (const char *name,
8696 asection *sections,
8697 bfd_vma *result,
8698 bfd * abfd)
8699 {
8700 asection *curr;
8701 unsigned int len;
8702
8703 for (curr = sections; curr; curr = curr->next)
8704 if (strcmp (curr->name, name) == 0)
8705 {
8706 *result = curr->vma;
8707 return true;
8708 }
8709
8710 /* Hmm. still haven't found it. try pseudo-section names. */
8711 /* FIXME: This could be coded more efficiently... */
8712 for (curr = sections; curr; curr = curr->next)
8713 {
8714 len = strlen (curr->name);
8715 if (len > strlen (name))
8716 continue;
8717
8718 if (strncmp (curr->name, name, len) == 0)
8719 {
8720 if (startswith (name + len, ".end"))
8721 {
8722 *result = (curr->vma
8723 + curr->size / bfd_octets_per_byte (abfd, curr));
8724 return true;
8725 }
8726
8727 /* Insert more pseudo-section names here, if you like. */
8728 }
8729 }
8730
8731 return false;
8732 }
8733
8734 static void
8735 undefined_reference (const char *reftype, const char *name)
8736 {
8737 /* xgettext:c-format */
8738 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8739 reftype, name);
8740 bfd_set_error (bfd_error_bad_value);
8741 }
8742
8743 static bool
8744 eval_symbol (bfd_vma *result,
8745 const char **symp,
8746 bfd *input_bfd,
8747 struct elf_final_link_info *flinfo,
8748 bfd_vma dot,
8749 Elf_Internal_Sym *isymbuf,
8750 size_t locsymcount,
8751 int signed_p)
8752 {
8753 size_t len;
8754 size_t symlen;
8755 bfd_vma a;
8756 bfd_vma b;
8757 char symbuf[4096];
8758 const char *sym = *symp;
8759 const char *symend;
8760 bool symbol_is_section = false;
8761
8762 len = strlen (sym);
8763 symend = sym + len;
8764
8765 if (len < 1 || len > sizeof (symbuf))
8766 {
8767 bfd_set_error (bfd_error_invalid_operation);
8768 return false;
8769 }
8770
8771 switch (* sym)
8772 {
8773 case '.':
8774 *result = dot;
8775 *symp = sym + 1;
8776 return true;
8777
8778 case '#':
8779 ++sym;
8780 *result = strtoul (sym, (char **) symp, 16);
8781 return true;
8782
8783 case 'S':
8784 symbol_is_section = true;
8785 /* Fall through. */
8786 case 's':
8787 ++sym;
8788 symlen = strtol (sym, (char **) symp, 10);
8789 sym = *symp + 1; /* Skip the trailing ':'. */
8790
8791 if (symend < sym || symlen + 1 > sizeof (symbuf))
8792 {
8793 bfd_set_error (bfd_error_invalid_operation);
8794 return false;
8795 }
8796
8797 memcpy (symbuf, sym, symlen);
8798 symbuf[symlen] = '\0';
8799 *symp = sym + symlen;
8800
8801 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8802 the symbol as a section, or vice-versa. so we're pretty liberal in our
8803 interpretation here; section means "try section first", not "must be a
8804 section", and likewise with symbol. */
8805
8806 if (symbol_is_section)
8807 {
8808 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8809 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8810 isymbuf, locsymcount))
8811 {
8812 undefined_reference ("section", symbuf);
8813 return false;
8814 }
8815 }
8816 else
8817 {
8818 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8819 isymbuf, locsymcount)
8820 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8821 result, input_bfd))
8822 {
8823 undefined_reference ("symbol", symbuf);
8824 return false;
8825 }
8826 }
8827
8828 return true;
8829
8830 /* All that remains are operators. */
8831
8832 #define UNARY_OP(op) \
8833 if (startswith (sym, #op)) \
8834 { \
8835 sym += strlen (#op); \
8836 if (*sym == ':') \
8837 ++sym; \
8838 *symp = sym; \
8839 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8840 isymbuf, locsymcount, signed_p)) \
8841 return false; \
8842 if (signed_p) \
8843 *result = op ((bfd_signed_vma) a); \
8844 else \
8845 *result = op a; \
8846 return true; \
8847 }
8848
8849 #define BINARY_OP_HEAD(op) \
8850 if (startswith (sym, #op)) \
8851 { \
8852 sym += strlen (#op); \
8853 if (*sym == ':') \
8854 ++sym; \
8855 *symp = sym; \
8856 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8857 isymbuf, locsymcount, signed_p)) \
8858 return false; \
8859 ++*symp; \
8860 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8861 isymbuf, locsymcount, signed_p)) \
8862 return false;
8863 #define BINARY_OP_TAIL(op) \
8864 if (signed_p) \
8865 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8866 else \
8867 *result = a op b; \
8868 return true; \
8869 }
8870 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8871
8872 default:
8873 UNARY_OP (0-);
8874 BINARY_OP_HEAD (<<);
8875 if (b >= sizeof (a) * CHAR_BIT)
8876 {
8877 *result = 0;
8878 return true;
8879 }
8880 signed_p = 0;
8881 BINARY_OP_TAIL (<<);
8882 BINARY_OP_HEAD (>>);
8883 if (b >= sizeof (a) * CHAR_BIT)
8884 {
8885 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8886 return true;
8887 }
8888 BINARY_OP_TAIL (>>);
8889 BINARY_OP (==);
8890 BINARY_OP (!=);
8891 BINARY_OP (<=);
8892 BINARY_OP (>=);
8893 BINARY_OP (&&);
8894 BINARY_OP (||);
8895 UNARY_OP (~);
8896 UNARY_OP (!);
8897 BINARY_OP (*);
8898 BINARY_OP_HEAD (/);
8899 if (b == 0)
8900 {
8901 _bfd_error_handler (_("division by zero"));
8902 bfd_set_error (bfd_error_bad_value);
8903 return false;
8904 }
8905 BINARY_OP_TAIL (/);
8906 BINARY_OP_HEAD (%);
8907 if (b == 0)
8908 {
8909 _bfd_error_handler (_("division by zero"));
8910 bfd_set_error (bfd_error_bad_value);
8911 return false;
8912 }
8913 BINARY_OP_TAIL (%);
8914 BINARY_OP (^);
8915 BINARY_OP (|);
8916 BINARY_OP (&);
8917 BINARY_OP (+);
8918 BINARY_OP (-);
8919 BINARY_OP (<);
8920 BINARY_OP (>);
8921 #undef UNARY_OP
8922 #undef BINARY_OP
8923 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8924 bfd_set_error (bfd_error_invalid_operation);
8925 return false;
8926 }
8927 }
8928
8929 static void
8930 put_value (bfd_vma size,
8931 unsigned long chunksz,
8932 bfd *input_bfd,
8933 bfd_vma x,
8934 bfd_byte *location)
8935 {
8936 location += (size - chunksz);
8937
8938 for (; size; size -= chunksz, location -= chunksz)
8939 {
8940 switch (chunksz)
8941 {
8942 case 1:
8943 bfd_put_8 (input_bfd, x, location);
8944 x >>= 8;
8945 break;
8946 case 2:
8947 bfd_put_16 (input_bfd, x, location);
8948 x >>= 16;
8949 break;
8950 case 4:
8951 bfd_put_32 (input_bfd, x, location);
8952 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8953 x >>= 16;
8954 x >>= 16;
8955 break;
8956 #ifdef BFD64
8957 case 8:
8958 bfd_put_64 (input_bfd, x, location);
8959 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8960 x >>= 32;
8961 x >>= 32;
8962 break;
8963 #endif
8964 default:
8965 abort ();
8966 break;
8967 }
8968 }
8969 }
8970
8971 static bfd_vma
8972 get_value (bfd_vma size,
8973 unsigned long chunksz,
8974 bfd *input_bfd,
8975 bfd_byte *location)
8976 {
8977 int shift;
8978 bfd_vma x = 0;
8979
8980 /* Sanity checks. */
8981 BFD_ASSERT (chunksz <= sizeof (x)
8982 && size >= chunksz
8983 && chunksz != 0
8984 && (size % chunksz) == 0
8985 && input_bfd != NULL
8986 && location != NULL);
8987
8988 if (chunksz == sizeof (x))
8989 {
8990 BFD_ASSERT (size == chunksz);
8991
8992 /* Make sure that we do not perform an undefined shift operation.
8993 We know that size == chunksz so there will only be one iteration
8994 of the loop below. */
8995 shift = 0;
8996 }
8997 else
8998 shift = 8 * chunksz;
8999
9000 for (; size; size -= chunksz, location += chunksz)
9001 {
9002 switch (chunksz)
9003 {
9004 case 1:
9005 x = (x << shift) | bfd_get_8 (input_bfd, location);
9006 break;
9007 case 2:
9008 x = (x << shift) | bfd_get_16 (input_bfd, location);
9009 break;
9010 case 4:
9011 x = (x << shift) | bfd_get_32 (input_bfd, location);
9012 break;
9013 #ifdef BFD64
9014 case 8:
9015 x = (x << shift) | bfd_get_64 (input_bfd, location);
9016 break;
9017 #endif
9018 default:
9019 abort ();
9020 }
9021 }
9022 return x;
9023 }
9024
9025 static void
9026 decode_complex_addend (unsigned long *start, /* in bits */
9027 unsigned long *oplen, /* in bits */
9028 unsigned long *len, /* in bits */
9029 unsigned long *wordsz, /* in bytes */
9030 unsigned long *chunksz, /* in bytes */
9031 unsigned long *lsb0_p,
9032 unsigned long *signed_p,
9033 unsigned long *trunc_p,
9034 unsigned long encoded)
9035 {
9036 * start = encoded & 0x3F;
9037 * len = (encoded >> 6) & 0x3F;
9038 * oplen = (encoded >> 12) & 0x3F;
9039 * wordsz = (encoded >> 18) & 0xF;
9040 * chunksz = (encoded >> 22) & 0xF;
9041 * lsb0_p = (encoded >> 27) & 1;
9042 * signed_p = (encoded >> 28) & 1;
9043 * trunc_p = (encoded >> 29) & 1;
9044 }
9045
9046 bfd_reloc_status_type
9047 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9048 asection *input_section,
9049 bfd_byte *contents,
9050 Elf_Internal_Rela *rel,
9051 bfd_vma relocation)
9052 {
9053 bfd_vma shift, x, mask;
9054 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9055 bfd_reloc_status_type r;
9056 bfd_size_type octets;
9057
9058 /* Perform this reloc, since it is complex.
9059 (this is not to say that it necessarily refers to a complex
9060 symbol; merely that it is a self-describing CGEN based reloc.
9061 i.e. the addend has the complete reloc information (bit start, end,
9062 word size, etc) encoded within it.). */
9063
9064 decode_complex_addend (&start, &oplen, &len, &wordsz,
9065 &chunksz, &lsb0_p, &signed_p,
9066 &trunc_p, rel->r_addend);
9067
9068 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9069
9070 if (lsb0_p)
9071 shift = (start + 1) - len;
9072 else
9073 shift = (8 * wordsz) - (start + len);
9074
9075 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9076 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9077
9078 #ifdef DEBUG
9079 printf ("Doing complex reloc: "
9080 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9081 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9082 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9083 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9084 oplen, (unsigned long) x, (unsigned long) mask,
9085 (unsigned long) relocation);
9086 #endif
9087
9088 r = bfd_reloc_ok;
9089 if (! trunc_p)
9090 /* Now do an overflow check. */
9091 r = bfd_check_overflow ((signed_p
9092 ? complain_overflow_signed
9093 : complain_overflow_unsigned),
9094 len, 0, (8 * wordsz),
9095 relocation);
9096
9097 /* Do the deed. */
9098 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9099
9100 #ifdef DEBUG
9101 printf (" relocation: %8.8lx\n"
9102 " shifted mask: %8.8lx\n"
9103 " shifted/masked reloc: %8.8lx\n"
9104 " result: %8.8lx\n",
9105 (unsigned long) relocation, (unsigned long) (mask << shift),
9106 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9107 #endif
9108 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9109 return r;
9110 }
9111
9112 /* Functions to read r_offset from external (target order) reloc
9113 entry. Faster than bfd_getl32 et al, because we let the compiler
9114 know the value is aligned. */
9115
9116 static bfd_vma
9117 ext32l_r_offset (const void *p)
9118 {
9119 union aligned32
9120 {
9121 uint32_t v;
9122 unsigned char c[4];
9123 };
9124 const union aligned32 *a
9125 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9126
9127 uint32_t aval = ( (uint32_t) a->c[0]
9128 | (uint32_t) a->c[1] << 8
9129 | (uint32_t) a->c[2] << 16
9130 | (uint32_t) a->c[3] << 24);
9131 return aval;
9132 }
9133
9134 static bfd_vma
9135 ext32b_r_offset (const void *p)
9136 {
9137 union aligned32
9138 {
9139 uint32_t v;
9140 unsigned char c[4];
9141 };
9142 const union aligned32 *a
9143 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9144
9145 uint32_t aval = ( (uint32_t) a->c[0] << 24
9146 | (uint32_t) a->c[1] << 16
9147 | (uint32_t) a->c[2] << 8
9148 | (uint32_t) a->c[3]);
9149 return aval;
9150 }
9151
9152 #ifdef BFD_HOST_64_BIT
9153 static bfd_vma
9154 ext64l_r_offset (const void *p)
9155 {
9156 union aligned64
9157 {
9158 uint64_t v;
9159 unsigned char c[8];
9160 };
9161 const union aligned64 *a
9162 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9163
9164 uint64_t aval = ( (uint64_t) a->c[0]
9165 | (uint64_t) a->c[1] << 8
9166 | (uint64_t) a->c[2] << 16
9167 | (uint64_t) a->c[3] << 24
9168 | (uint64_t) a->c[4] << 32
9169 | (uint64_t) a->c[5] << 40
9170 | (uint64_t) a->c[6] << 48
9171 | (uint64_t) a->c[7] << 56);
9172 return aval;
9173 }
9174
9175 static bfd_vma
9176 ext64b_r_offset (const void *p)
9177 {
9178 union aligned64
9179 {
9180 uint64_t v;
9181 unsigned char c[8];
9182 };
9183 const union aligned64 *a
9184 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9185
9186 uint64_t aval = ( (uint64_t) a->c[0] << 56
9187 | (uint64_t) a->c[1] << 48
9188 | (uint64_t) a->c[2] << 40
9189 | (uint64_t) a->c[3] << 32
9190 | (uint64_t) a->c[4] << 24
9191 | (uint64_t) a->c[5] << 16
9192 | (uint64_t) a->c[6] << 8
9193 | (uint64_t) a->c[7]);
9194 return aval;
9195 }
9196 #endif
9197
9198 /* When performing a relocatable link, the input relocations are
9199 preserved. But, if they reference global symbols, the indices
9200 referenced must be updated. Update all the relocations found in
9201 RELDATA. */
9202
9203 static bool
9204 elf_link_adjust_relocs (bfd *abfd,
9205 asection *sec,
9206 struct bfd_elf_section_reloc_data *reldata,
9207 bool sort,
9208 struct bfd_link_info *info)
9209 {
9210 unsigned int i;
9211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9212 bfd_byte *erela;
9213 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9214 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9215 bfd_vma r_type_mask;
9216 int r_sym_shift;
9217 unsigned int count = reldata->count;
9218 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9219
9220 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9221 {
9222 swap_in = bed->s->swap_reloc_in;
9223 swap_out = bed->s->swap_reloc_out;
9224 }
9225 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9226 {
9227 swap_in = bed->s->swap_reloca_in;
9228 swap_out = bed->s->swap_reloca_out;
9229 }
9230 else
9231 abort ();
9232
9233 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9234 abort ();
9235
9236 if (bed->s->arch_size == 32)
9237 {
9238 r_type_mask = 0xff;
9239 r_sym_shift = 8;
9240 }
9241 else
9242 {
9243 r_type_mask = 0xffffffff;
9244 r_sym_shift = 32;
9245 }
9246
9247 erela = reldata->hdr->contents;
9248 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9249 {
9250 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9251 unsigned int j;
9252
9253 if (*rel_hash == NULL)
9254 continue;
9255
9256 if ((*rel_hash)->indx == -2
9257 && info->gc_sections
9258 && ! info->gc_keep_exported)
9259 {
9260 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9261 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9262 abfd, sec,
9263 (*rel_hash)->root.root.string);
9264 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9265 abfd, sec);
9266 bfd_set_error (bfd_error_invalid_operation);
9267 return false;
9268 }
9269 BFD_ASSERT ((*rel_hash)->indx >= 0);
9270
9271 (*swap_in) (abfd, erela, irela);
9272 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9273 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9274 | (irela[j].r_info & r_type_mask));
9275 (*swap_out) (abfd, irela, erela);
9276 }
9277
9278 if (bed->elf_backend_update_relocs)
9279 (*bed->elf_backend_update_relocs) (sec, reldata);
9280
9281 if (sort && count != 0)
9282 {
9283 bfd_vma (*ext_r_off) (const void *);
9284 bfd_vma r_off;
9285 size_t elt_size;
9286 bfd_byte *base, *end, *p, *loc;
9287 bfd_byte *buf = NULL;
9288
9289 if (bed->s->arch_size == 32)
9290 {
9291 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9292 ext_r_off = ext32l_r_offset;
9293 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9294 ext_r_off = ext32b_r_offset;
9295 else
9296 abort ();
9297 }
9298 else
9299 {
9300 #ifdef BFD_HOST_64_BIT
9301 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9302 ext_r_off = ext64l_r_offset;
9303 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9304 ext_r_off = ext64b_r_offset;
9305 else
9306 #endif
9307 abort ();
9308 }
9309
9310 /* Must use a stable sort here. A modified insertion sort,
9311 since the relocs are mostly sorted already. */
9312 elt_size = reldata->hdr->sh_entsize;
9313 base = reldata->hdr->contents;
9314 end = base + count * elt_size;
9315 if (elt_size > sizeof (Elf64_External_Rela))
9316 abort ();
9317
9318 /* Ensure the first element is lowest. This acts as a sentinel,
9319 speeding the main loop below. */
9320 r_off = (*ext_r_off) (base);
9321 for (p = loc = base; (p += elt_size) < end; )
9322 {
9323 bfd_vma r_off2 = (*ext_r_off) (p);
9324 if (r_off > r_off2)
9325 {
9326 r_off = r_off2;
9327 loc = p;
9328 }
9329 }
9330 if (loc != base)
9331 {
9332 /* Don't just swap *base and *loc as that changes the order
9333 of the original base[0] and base[1] if they happen to
9334 have the same r_offset. */
9335 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9336 memcpy (onebuf, loc, elt_size);
9337 memmove (base + elt_size, base, loc - base);
9338 memcpy (base, onebuf, elt_size);
9339 }
9340
9341 for (p = base + elt_size; (p += elt_size) < end; )
9342 {
9343 /* base to p is sorted, *p is next to insert. */
9344 r_off = (*ext_r_off) (p);
9345 /* Search the sorted region for location to insert. */
9346 loc = p - elt_size;
9347 while (r_off < (*ext_r_off) (loc))
9348 loc -= elt_size;
9349 loc += elt_size;
9350 if (loc != p)
9351 {
9352 /* Chances are there is a run of relocs to insert here,
9353 from one of more input files. Files are not always
9354 linked in order due to the way elf_link_input_bfd is
9355 called. See pr17666. */
9356 size_t sortlen = p - loc;
9357 bfd_vma r_off2 = (*ext_r_off) (loc);
9358 size_t runlen = elt_size;
9359 size_t buf_size = 96 * 1024;
9360 while (p + runlen < end
9361 && (sortlen <= buf_size
9362 || runlen + elt_size <= buf_size)
9363 && r_off2 > (*ext_r_off) (p + runlen))
9364 runlen += elt_size;
9365 if (buf == NULL)
9366 {
9367 buf = bfd_malloc (buf_size);
9368 if (buf == NULL)
9369 return false;
9370 }
9371 if (runlen < sortlen)
9372 {
9373 memcpy (buf, p, runlen);
9374 memmove (loc + runlen, loc, sortlen);
9375 memcpy (loc, buf, runlen);
9376 }
9377 else
9378 {
9379 memcpy (buf, loc, sortlen);
9380 memmove (loc, p, runlen);
9381 memcpy (loc + runlen, buf, sortlen);
9382 }
9383 p += runlen - elt_size;
9384 }
9385 }
9386 /* Hashes are no longer valid. */
9387 free (reldata->hashes);
9388 reldata->hashes = NULL;
9389 free (buf);
9390 }
9391 return true;
9392 }
9393
9394 struct elf_link_sort_rela
9395 {
9396 union {
9397 bfd_vma offset;
9398 bfd_vma sym_mask;
9399 } u;
9400 enum elf_reloc_type_class type;
9401 /* We use this as an array of size int_rels_per_ext_rel. */
9402 Elf_Internal_Rela rela[1];
9403 };
9404
9405 /* qsort stability here and for cmp2 is only an issue if multiple
9406 dynamic relocations are emitted at the same address. But targets
9407 that apply a series of dynamic relocations each operating on the
9408 result of the prior relocation can't use -z combreloc as
9409 implemented anyway. Such schemes tend to be broken by sorting on
9410 symbol index. That leaves dynamic NONE relocs as the only other
9411 case where ld might emit multiple relocs at the same address, and
9412 those are only emitted due to target bugs. */
9413
9414 static int
9415 elf_link_sort_cmp1 (const void *A, const void *B)
9416 {
9417 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9418 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9419 int relativea, relativeb;
9420
9421 relativea = a->type == reloc_class_relative;
9422 relativeb = b->type == reloc_class_relative;
9423
9424 if (relativea < relativeb)
9425 return 1;
9426 if (relativea > relativeb)
9427 return -1;
9428 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9429 return -1;
9430 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9431 return 1;
9432 if (a->rela->r_offset < b->rela->r_offset)
9433 return -1;
9434 if (a->rela->r_offset > b->rela->r_offset)
9435 return 1;
9436 return 0;
9437 }
9438
9439 static int
9440 elf_link_sort_cmp2 (const void *A, const void *B)
9441 {
9442 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9443 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9444
9445 if (a->type < b->type)
9446 return -1;
9447 if (a->type > b->type)
9448 return 1;
9449 if (a->u.offset < b->u.offset)
9450 return -1;
9451 if (a->u.offset > b->u.offset)
9452 return 1;
9453 if (a->rela->r_offset < b->rela->r_offset)
9454 return -1;
9455 if (a->rela->r_offset > b->rela->r_offset)
9456 return 1;
9457 return 0;
9458 }
9459
9460 static size_t
9461 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9462 {
9463 asection *dynamic_relocs;
9464 asection *rela_dyn;
9465 asection *rel_dyn;
9466 bfd_size_type count, size;
9467 size_t i, ret, sort_elt, ext_size;
9468 bfd_byte *sort, *s_non_relative, *p;
9469 struct elf_link_sort_rela *sq;
9470 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9471 int i2e = bed->s->int_rels_per_ext_rel;
9472 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9473 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9474 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9475 struct bfd_link_order *lo;
9476 bfd_vma r_sym_mask;
9477 bool use_rela;
9478
9479 /* Find a dynamic reloc section. */
9480 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9481 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9482 if (rela_dyn != NULL && rela_dyn->size > 0
9483 && rel_dyn != NULL && rel_dyn->size > 0)
9484 {
9485 bool use_rela_initialised = false;
9486
9487 /* This is just here to stop gcc from complaining.
9488 Its initialization checking code is not perfect. */
9489 use_rela = true;
9490
9491 /* Both sections are present. Examine the sizes
9492 of the indirect sections to help us choose. */
9493 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9494 if (lo->type == bfd_indirect_link_order)
9495 {
9496 asection *o = lo->u.indirect.section;
9497
9498 if ((o->size % bed->s->sizeof_rela) == 0)
9499 {
9500 if ((o->size % bed->s->sizeof_rel) == 0)
9501 /* Section size is divisible by both rel and rela sizes.
9502 It is of no help to us. */
9503 ;
9504 else
9505 {
9506 /* Section size is only divisible by rela. */
9507 if (use_rela_initialised && !use_rela)
9508 {
9509 _bfd_error_handler (_("%pB: unable to sort relocs - "
9510 "they are in more than one size"),
9511 abfd);
9512 bfd_set_error (bfd_error_invalid_operation);
9513 return 0;
9514 }
9515 else
9516 {
9517 use_rela = true;
9518 use_rela_initialised = true;
9519 }
9520 }
9521 }
9522 else if ((o->size % bed->s->sizeof_rel) == 0)
9523 {
9524 /* Section size is only divisible by rel. */
9525 if (use_rela_initialised && use_rela)
9526 {
9527 _bfd_error_handler (_("%pB: unable to sort relocs - "
9528 "they are in more than one size"),
9529 abfd);
9530 bfd_set_error (bfd_error_invalid_operation);
9531 return 0;
9532 }
9533 else
9534 {
9535 use_rela = false;
9536 use_rela_initialised = true;
9537 }
9538 }
9539 else
9540 {
9541 /* The section size is not divisible by either -
9542 something is wrong. */
9543 _bfd_error_handler (_("%pB: unable to sort relocs - "
9544 "they are of an unknown size"), abfd);
9545 bfd_set_error (bfd_error_invalid_operation);
9546 return 0;
9547 }
9548 }
9549
9550 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9551 if (lo->type == bfd_indirect_link_order)
9552 {
9553 asection *o = lo->u.indirect.section;
9554
9555 if ((o->size % bed->s->sizeof_rela) == 0)
9556 {
9557 if ((o->size % bed->s->sizeof_rel) == 0)
9558 /* Section size is divisible by both rel and rela sizes.
9559 It is of no help to us. */
9560 ;
9561 else
9562 {
9563 /* Section size is only divisible by rela. */
9564 if (use_rela_initialised && !use_rela)
9565 {
9566 _bfd_error_handler (_("%pB: unable to sort relocs - "
9567 "they are in more than one size"),
9568 abfd);
9569 bfd_set_error (bfd_error_invalid_operation);
9570 return 0;
9571 }
9572 else
9573 {
9574 use_rela = true;
9575 use_rela_initialised = true;
9576 }
9577 }
9578 }
9579 else if ((o->size % bed->s->sizeof_rel) == 0)
9580 {
9581 /* Section size is only divisible by rel. */
9582 if (use_rela_initialised && use_rela)
9583 {
9584 _bfd_error_handler (_("%pB: unable to sort relocs - "
9585 "they are in more than one size"),
9586 abfd);
9587 bfd_set_error (bfd_error_invalid_operation);
9588 return 0;
9589 }
9590 else
9591 {
9592 use_rela = false;
9593 use_rela_initialised = true;
9594 }
9595 }
9596 else
9597 {
9598 /* The section size is not divisible by either -
9599 something is wrong. */
9600 _bfd_error_handler (_("%pB: unable to sort relocs - "
9601 "they are of an unknown size"), abfd);
9602 bfd_set_error (bfd_error_invalid_operation);
9603 return 0;
9604 }
9605 }
9606
9607 if (! use_rela_initialised)
9608 /* Make a guess. */
9609 use_rela = true;
9610 }
9611 else if (rela_dyn != NULL && rela_dyn->size > 0)
9612 use_rela = true;
9613 else if (rel_dyn != NULL && rel_dyn->size > 0)
9614 use_rela = false;
9615 else
9616 return 0;
9617
9618 if (use_rela)
9619 {
9620 dynamic_relocs = rela_dyn;
9621 ext_size = bed->s->sizeof_rela;
9622 swap_in = bed->s->swap_reloca_in;
9623 swap_out = bed->s->swap_reloca_out;
9624 }
9625 else
9626 {
9627 dynamic_relocs = rel_dyn;
9628 ext_size = bed->s->sizeof_rel;
9629 swap_in = bed->s->swap_reloc_in;
9630 swap_out = bed->s->swap_reloc_out;
9631 }
9632
9633 size = 0;
9634 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9635 if (lo->type == bfd_indirect_link_order)
9636 size += lo->u.indirect.section->size;
9637
9638 if (size != dynamic_relocs->size)
9639 return 0;
9640
9641 sort_elt = (sizeof (struct elf_link_sort_rela)
9642 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9643
9644 count = dynamic_relocs->size / ext_size;
9645 if (count == 0)
9646 return 0;
9647 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9648
9649 if (sort == NULL)
9650 {
9651 (*info->callbacks->warning)
9652 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9653 return 0;
9654 }
9655
9656 if (bed->s->arch_size == 32)
9657 r_sym_mask = ~(bfd_vma) 0xff;
9658 else
9659 r_sym_mask = ~(bfd_vma) 0xffffffff;
9660
9661 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9662 if (lo->type == bfd_indirect_link_order)
9663 {
9664 bfd_byte *erel, *erelend;
9665 asection *o = lo->u.indirect.section;
9666
9667 if (o->contents == NULL && o->size != 0)
9668 {
9669 /* This is a reloc section that is being handled as a normal
9670 section. See bfd_section_from_shdr. We can't combine
9671 relocs in this case. */
9672 free (sort);
9673 return 0;
9674 }
9675 erel = o->contents;
9676 erelend = o->contents + o->size;
9677 p = sort + o->output_offset * opb / ext_size * sort_elt;
9678
9679 while (erel < erelend)
9680 {
9681 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9682
9683 (*swap_in) (abfd, erel, s->rela);
9684 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9685 s->u.sym_mask = r_sym_mask;
9686 p += sort_elt;
9687 erel += ext_size;
9688 }
9689 }
9690
9691 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9692
9693 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9694 {
9695 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9696 if (s->type != reloc_class_relative)
9697 break;
9698 }
9699 ret = i;
9700 s_non_relative = p;
9701
9702 sq = (struct elf_link_sort_rela *) s_non_relative;
9703 for (; i < count; i++, p += sort_elt)
9704 {
9705 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9706 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9707 sq = sp;
9708 sp->u.offset = sq->rela->r_offset;
9709 }
9710
9711 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9712
9713 struct elf_link_hash_table *htab = elf_hash_table (info);
9714 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9715 {
9716 /* We have plt relocs in .rela.dyn. */
9717 sq = (struct elf_link_sort_rela *) sort;
9718 for (i = 0; i < count; i++)
9719 if (sq[count - i - 1].type != reloc_class_plt)
9720 break;
9721 if (i != 0 && htab->srelplt->size == i * ext_size)
9722 {
9723 struct bfd_link_order **plo;
9724 /* Put srelplt link_order last. This is so the output_offset
9725 set in the next loop is correct for DT_JMPREL. */
9726 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9727 if ((*plo)->type == bfd_indirect_link_order
9728 && (*plo)->u.indirect.section == htab->srelplt)
9729 {
9730 lo = *plo;
9731 *plo = lo->next;
9732 }
9733 else
9734 plo = &(*plo)->next;
9735 *plo = lo;
9736 lo->next = NULL;
9737 dynamic_relocs->map_tail.link_order = lo;
9738 }
9739 }
9740
9741 p = sort;
9742 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9743 if (lo->type == bfd_indirect_link_order)
9744 {
9745 bfd_byte *erel, *erelend;
9746 asection *o = lo->u.indirect.section;
9747
9748 erel = o->contents;
9749 erelend = o->contents + o->size;
9750 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9751 while (erel < erelend)
9752 {
9753 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9754 (*swap_out) (abfd, s->rela, erel);
9755 p += sort_elt;
9756 erel += ext_size;
9757 }
9758 }
9759
9760 free (sort);
9761 *psec = dynamic_relocs;
9762 return ret;
9763 }
9764
9765 /* Add a symbol to the output symbol string table. */
9766
9767 static int
9768 elf_link_output_symstrtab (void *finf,
9769 const char *name,
9770 Elf_Internal_Sym *elfsym,
9771 asection *input_sec,
9772 struct elf_link_hash_entry *h)
9773 {
9774 struct elf_final_link_info *flinfo = finf;
9775 int (*output_symbol_hook)
9776 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9777 struct elf_link_hash_entry *);
9778 struct elf_link_hash_table *hash_table;
9779 const struct elf_backend_data *bed;
9780 bfd_size_type strtabsize;
9781
9782 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9783
9784 bed = get_elf_backend_data (flinfo->output_bfd);
9785 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9786 if (output_symbol_hook != NULL)
9787 {
9788 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9789 if (ret != 1)
9790 return ret;
9791 }
9792
9793 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9794 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9795 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9796 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9797
9798 if (name == NULL
9799 || *name == '\0'
9800 || (input_sec->flags & SEC_EXCLUDE))
9801 elfsym->st_name = (unsigned long) -1;
9802 else
9803 {
9804 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9805 to get the final offset for st_name. */
9806 char *versioned_name = (char *) name;
9807 if (h != NULL)
9808 {
9809 if (h->versioned == versioned && h->def_dynamic)
9810 {
9811 /* Keep only one '@' for versioned symbols defined in
9812 shared objects. */
9813 char *version = strrchr (name, ELF_VER_CHR);
9814 char *base_end = strchr (name, ELF_VER_CHR);
9815 if (version != base_end)
9816 {
9817 size_t base_len;
9818 size_t len = strlen (name);
9819 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9820 if (versioned_name == NULL)
9821 return 0;
9822 base_len = base_end - name;
9823 memcpy (versioned_name, name, base_len);
9824 memcpy (versioned_name + base_len, version,
9825 len - base_len);
9826 }
9827 }
9828 }
9829 else if (flinfo->info->unique_symbol
9830 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
9831 {
9832 struct local_hash_entry *lh;
9833 switch (ELF_ST_TYPE (elfsym->st_info))
9834 {
9835 case STT_FILE:
9836 case STT_SECTION:
9837 break;
9838 default:
9839 lh = (struct local_hash_entry *) bfd_hash_lookup
9840 (&flinfo->local_hash_table, name, true, false);
9841 if (lh == NULL)
9842 return 0;
9843 if (lh->count)
9844 {
9845 /* Append ".COUNT" to duplicated local symbols. */
9846 size_t count_len;
9847 size_t base_len = lh->size;
9848 char buf[30];
9849 sprintf (buf, "%lx", lh->count);
9850 if (!base_len)
9851 {
9852 base_len = strlen (name);
9853 lh->size = base_len;
9854 }
9855 count_len = strlen (buf);
9856 versioned_name = bfd_alloc (flinfo->output_bfd,
9857 base_len + count_len + 2);
9858 if (versioned_name == NULL)
9859 return 0;
9860 memcpy (versioned_name, name, base_len);
9861 versioned_name[base_len] = '.';
9862 memcpy (versioned_name + base_len + 1, buf,
9863 count_len + 1);
9864 }
9865 lh->count++;
9866 break;
9867 }
9868 }
9869 elfsym->st_name
9870 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9871 versioned_name, false);
9872 if (elfsym->st_name == (unsigned long) -1)
9873 return 0;
9874 }
9875
9876 hash_table = elf_hash_table (flinfo->info);
9877 strtabsize = hash_table->strtabsize;
9878 if (strtabsize <= hash_table->strtabcount)
9879 {
9880 strtabsize += strtabsize;
9881 hash_table->strtabsize = strtabsize;
9882 strtabsize *= sizeof (*hash_table->strtab);
9883 hash_table->strtab
9884 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9885 strtabsize);
9886 if (hash_table->strtab == NULL)
9887 return 0;
9888 }
9889 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9890 hash_table->strtab[hash_table->strtabcount].dest_index
9891 = hash_table->strtabcount;
9892 hash_table->strtab[hash_table->strtabcount].destshndx_index
9893 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9894
9895 flinfo->output_bfd->symcount += 1;
9896 hash_table->strtabcount += 1;
9897
9898 return 1;
9899 }
9900
9901 /* Swap symbols out to the symbol table and flush the output symbols to
9902 the file. */
9903
9904 static bool
9905 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9906 {
9907 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9908 size_t amt;
9909 size_t i;
9910 const struct elf_backend_data *bed;
9911 bfd_byte *symbuf;
9912 Elf_Internal_Shdr *hdr;
9913 file_ptr pos;
9914 bool ret;
9915
9916 if (!hash_table->strtabcount)
9917 return true;
9918
9919 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9920
9921 bed = get_elf_backend_data (flinfo->output_bfd);
9922
9923 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9924 symbuf = (bfd_byte *) bfd_malloc (amt);
9925 if (symbuf == NULL)
9926 return false;
9927
9928 if (flinfo->symshndxbuf)
9929 {
9930 amt = sizeof (Elf_External_Sym_Shndx);
9931 amt *= bfd_get_symcount (flinfo->output_bfd);
9932 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9933 if (flinfo->symshndxbuf == NULL)
9934 {
9935 free (symbuf);
9936 return false;
9937 }
9938 }
9939
9940 /* Now swap out the symbols. */
9941 for (i = 0; i < hash_table->strtabcount; i++)
9942 {
9943 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9944 if (elfsym->sym.st_name == (unsigned long) -1)
9945 elfsym->sym.st_name = 0;
9946 else
9947 elfsym->sym.st_name
9948 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9949 elfsym->sym.st_name);
9950
9951 /* Inform the linker of the addition of this symbol. */
9952
9953 if (flinfo->info->callbacks->ctf_new_symbol)
9954 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
9955 &elfsym->sym);
9956
9957 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9958 ((bfd_byte *) symbuf
9959 + (elfsym->dest_index
9960 * bed->s->sizeof_sym)),
9961 (flinfo->symshndxbuf
9962 + elfsym->destshndx_index));
9963 }
9964
9965 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9966 pos = hdr->sh_offset + hdr->sh_size;
9967 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9968 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9969 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9970 {
9971 hdr->sh_size += amt;
9972 ret = true;
9973 }
9974 else
9975 ret = false;
9976
9977 free (symbuf);
9978
9979 free (hash_table->strtab);
9980 hash_table->strtab = NULL;
9981
9982 return ret;
9983 }
9984
9985 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9986
9987 static bool
9988 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9989 {
9990 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9991 && sym->st_shndx < SHN_LORESERVE)
9992 {
9993 /* The gABI doesn't support dynamic symbols in output sections
9994 beyond 64k. */
9995 _bfd_error_handler
9996 /* xgettext:c-format */
9997 (_("%pB: too many sections: %d (>= %d)"),
9998 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9999 bfd_set_error (bfd_error_nonrepresentable_section);
10000 return false;
10001 }
10002 return true;
10003 }
10004
10005 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
10006 allowing an unsatisfied unversioned symbol in the DSO to match a
10007 versioned symbol that would normally require an explicit version.
10008 We also handle the case that a DSO references a hidden symbol
10009 which may be satisfied by a versioned symbol in another DSO. */
10010
10011 static bool
10012 elf_link_check_versioned_symbol (struct bfd_link_info *info,
10013 const struct elf_backend_data *bed,
10014 struct elf_link_hash_entry *h)
10015 {
10016 bfd *abfd;
10017 struct elf_link_loaded_list *loaded;
10018
10019 if (!is_elf_hash_table (info->hash))
10020 return false;
10021
10022 /* Check indirect symbol. */
10023 while (h->root.type == bfd_link_hash_indirect)
10024 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10025
10026 switch (h->root.type)
10027 {
10028 default:
10029 abfd = NULL;
10030 break;
10031
10032 case bfd_link_hash_undefined:
10033 case bfd_link_hash_undefweak:
10034 abfd = h->root.u.undef.abfd;
10035 if (abfd == NULL
10036 || (abfd->flags & DYNAMIC) == 0
10037 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10038 return false;
10039 break;
10040
10041 case bfd_link_hash_defined:
10042 case bfd_link_hash_defweak:
10043 abfd = h->root.u.def.section->owner;
10044 break;
10045
10046 case bfd_link_hash_common:
10047 abfd = h->root.u.c.p->section->owner;
10048 break;
10049 }
10050 BFD_ASSERT (abfd != NULL);
10051
10052 for (loaded = elf_hash_table (info)->dyn_loaded;
10053 loaded != NULL;
10054 loaded = loaded->next)
10055 {
10056 bfd *input;
10057 Elf_Internal_Shdr *hdr;
10058 size_t symcount;
10059 size_t extsymcount;
10060 size_t extsymoff;
10061 Elf_Internal_Shdr *versymhdr;
10062 Elf_Internal_Sym *isym;
10063 Elf_Internal_Sym *isymend;
10064 Elf_Internal_Sym *isymbuf;
10065 Elf_External_Versym *ever;
10066 Elf_External_Versym *extversym;
10067
10068 input = loaded->abfd;
10069
10070 /* We check each DSO for a possible hidden versioned definition. */
10071 if (input == abfd
10072 || elf_dynversym (input) == 0)
10073 continue;
10074
10075 hdr = &elf_tdata (input)->dynsymtab_hdr;
10076
10077 symcount = hdr->sh_size / bed->s->sizeof_sym;
10078 if (elf_bad_symtab (input))
10079 {
10080 extsymcount = symcount;
10081 extsymoff = 0;
10082 }
10083 else
10084 {
10085 extsymcount = symcount - hdr->sh_info;
10086 extsymoff = hdr->sh_info;
10087 }
10088
10089 if (extsymcount == 0)
10090 continue;
10091
10092 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10093 NULL, NULL, NULL);
10094 if (isymbuf == NULL)
10095 return false;
10096
10097 /* Read in any version definitions. */
10098 versymhdr = &elf_tdata (input)->dynversym_hdr;
10099 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10100 || (extversym = (Elf_External_Versym *)
10101 _bfd_malloc_and_read (input, versymhdr->sh_size,
10102 versymhdr->sh_size)) == NULL)
10103 {
10104 free (isymbuf);
10105 return false;
10106 }
10107
10108 ever = extversym + extsymoff;
10109 isymend = isymbuf + extsymcount;
10110 for (isym = isymbuf; isym < isymend; isym++, ever++)
10111 {
10112 const char *name;
10113 Elf_Internal_Versym iver;
10114 unsigned short version_index;
10115
10116 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10117 || isym->st_shndx == SHN_UNDEF)
10118 continue;
10119
10120 name = bfd_elf_string_from_elf_section (input,
10121 hdr->sh_link,
10122 isym->st_name);
10123 if (strcmp (name, h->root.root.string) != 0)
10124 continue;
10125
10126 _bfd_elf_swap_versym_in (input, ever, &iver);
10127
10128 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10129 && !(h->def_regular
10130 && h->forced_local))
10131 {
10132 /* If we have a non-hidden versioned sym, then it should
10133 have provided a definition for the undefined sym unless
10134 it is defined in a non-shared object and forced local.
10135 */
10136 abort ();
10137 }
10138
10139 version_index = iver.vs_vers & VERSYM_VERSION;
10140 if (version_index == 1 || version_index == 2)
10141 {
10142 /* This is the base or first version. We can use it. */
10143 free (extversym);
10144 free (isymbuf);
10145 return true;
10146 }
10147 }
10148
10149 free (extversym);
10150 free (isymbuf);
10151 }
10152
10153 return false;
10154 }
10155
10156 /* Convert ELF common symbol TYPE. */
10157
10158 static int
10159 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10160 {
10161 /* Commom symbol can only appear in relocatable link. */
10162 if (!bfd_link_relocatable (info))
10163 abort ();
10164 switch (info->elf_stt_common)
10165 {
10166 case unchanged:
10167 break;
10168 case elf_stt_common:
10169 type = STT_COMMON;
10170 break;
10171 case no_elf_stt_common:
10172 type = STT_OBJECT;
10173 break;
10174 }
10175 return type;
10176 }
10177
10178 /* Add an external symbol to the symbol table. This is called from
10179 the hash table traversal routine. When generating a shared object,
10180 we go through the symbol table twice. The first time we output
10181 anything that might have been forced to local scope in a version
10182 script. The second time we output the symbols that are still
10183 global symbols. */
10184
10185 static bool
10186 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10187 {
10188 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10189 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10190 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10191 bool strip;
10192 Elf_Internal_Sym sym;
10193 asection *input_sec;
10194 const struct elf_backend_data *bed;
10195 long indx;
10196 int ret;
10197 unsigned int type;
10198
10199 if (h->root.type == bfd_link_hash_warning)
10200 {
10201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10202 if (h->root.type == bfd_link_hash_new)
10203 return true;
10204 }
10205
10206 /* Decide whether to output this symbol in this pass. */
10207 if (eoinfo->localsyms)
10208 {
10209 if (!h->forced_local)
10210 return true;
10211 }
10212 else
10213 {
10214 if (h->forced_local)
10215 return true;
10216 }
10217
10218 bed = get_elf_backend_data (flinfo->output_bfd);
10219
10220 if (h->root.type == bfd_link_hash_undefined)
10221 {
10222 /* If we have an undefined symbol reference here then it must have
10223 come from a shared library that is being linked in. (Undefined
10224 references in regular files have already been handled unless
10225 they are in unreferenced sections which are removed by garbage
10226 collection). */
10227 bool ignore_undef = false;
10228
10229 /* Some symbols may be special in that the fact that they're
10230 undefined can be safely ignored - let backend determine that. */
10231 if (bed->elf_backend_ignore_undef_symbol)
10232 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10233
10234 /* If we are reporting errors for this situation then do so now. */
10235 if (!ignore_undef
10236 && h->ref_dynamic_nonweak
10237 && (!h->ref_regular || flinfo->info->gc_sections)
10238 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10239 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10240 {
10241 flinfo->info->callbacks->undefined_symbol
10242 (flinfo->info, h->root.root.string,
10243 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10244 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10245 && !flinfo->info->warn_unresolved_syms);
10246 }
10247
10248 /* Strip a global symbol defined in a discarded section. */
10249 if (h->indx == -3)
10250 return true;
10251 }
10252
10253 /* We should also warn if a forced local symbol is referenced from
10254 shared libraries. */
10255 if (bfd_link_executable (flinfo->info)
10256 && h->forced_local
10257 && h->ref_dynamic
10258 && h->def_regular
10259 && !h->dynamic_def
10260 && h->ref_dynamic_nonweak
10261 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10262 {
10263 bfd *def_bfd;
10264 const char *msg;
10265 struct elf_link_hash_entry *hi = h;
10266
10267 /* Check indirect symbol. */
10268 while (hi->root.type == bfd_link_hash_indirect)
10269 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10270
10271 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10272 /* xgettext:c-format */
10273 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10274 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10275 /* xgettext:c-format */
10276 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10277 else
10278 /* xgettext:c-format */
10279 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10280 def_bfd = flinfo->output_bfd;
10281 if (hi->root.u.def.section != bfd_abs_section_ptr)
10282 def_bfd = hi->root.u.def.section->owner;
10283 _bfd_error_handler (msg, flinfo->output_bfd,
10284 h->root.root.string, def_bfd);
10285 bfd_set_error (bfd_error_bad_value);
10286 eoinfo->failed = true;
10287 return false;
10288 }
10289
10290 /* We don't want to output symbols that have never been mentioned by
10291 a regular file, or that we have been told to strip. However, if
10292 h->indx is set to -2, the symbol is used by a reloc and we must
10293 output it. */
10294 strip = false;
10295 if (h->indx == -2)
10296 ;
10297 else if ((h->def_dynamic
10298 || h->ref_dynamic
10299 || h->root.type == bfd_link_hash_new)
10300 && !h->def_regular
10301 && !h->ref_regular)
10302 strip = true;
10303 else if (flinfo->info->strip == strip_all)
10304 strip = true;
10305 else if (flinfo->info->strip == strip_some
10306 && bfd_hash_lookup (flinfo->info->keep_hash,
10307 h->root.root.string, false, false) == NULL)
10308 strip = true;
10309 else if ((h->root.type == bfd_link_hash_defined
10310 || h->root.type == bfd_link_hash_defweak)
10311 && ((flinfo->info->strip_discarded
10312 && discarded_section (h->root.u.def.section))
10313 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10314 && h->root.u.def.section->owner != NULL
10315 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10316 strip = true;
10317 else if ((h->root.type == bfd_link_hash_undefined
10318 || h->root.type == bfd_link_hash_undefweak)
10319 && h->root.u.undef.abfd != NULL
10320 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10321 strip = true;
10322
10323 type = h->type;
10324
10325 /* If we're stripping it, and it's not a dynamic symbol, there's
10326 nothing else to do. However, if it is a forced local symbol or
10327 an ifunc symbol we need to give the backend finish_dynamic_symbol
10328 function a chance to make it dynamic. */
10329 if (strip
10330 && h->dynindx == -1
10331 && type != STT_GNU_IFUNC
10332 && !h->forced_local)
10333 return true;
10334
10335 sym.st_value = 0;
10336 sym.st_size = h->size;
10337 sym.st_other = h->other;
10338 switch (h->root.type)
10339 {
10340 default:
10341 case bfd_link_hash_new:
10342 case bfd_link_hash_warning:
10343 abort ();
10344 return false;
10345
10346 case bfd_link_hash_undefined:
10347 case bfd_link_hash_undefweak:
10348 input_sec = bfd_und_section_ptr;
10349 sym.st_shndx = SHN_UNDEF;
10350 break;
10351
10352 case bfd_link_hash_defined:
10353 case bfd_link_hash_defweak:
10354 {
10355 input_sec = h->root.u.def.section;
10356 if (input_sec->output_section != NULL)
10357 {
10358 sym.st_shndx =
10359 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10360 input_sec->output_section);
10361 if (sym.st_shndx == SHN_BAD)
10362 {
10363 _bfd_error_handler
10364 /* xgettext:c-format */
10365 (_("%pB: could not find output section %pA for input section %pA"),
10366 flinfo->output_bfd, input_sec->output_section, input_sec);
10367 bfd_set_error (bfd_error_nonrepresentable_section);
10368 eoinfo->failed = true;
10369 return false;
10370 }
10371
10372 /* ELF symbols in relocatable files are section relative,
10373 but in nonrelocatable files they are virtual
10374 addresses. */
10375 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10376 if (!bfd_link_relocatable (flinfo->info))
10377 {
10378 sym.st_value += input_sec->output_section->vma;
10379 if (h->type == STT_TLS)
10380 {
10381 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10382 if (tls_sec != NULL)
10383 sym.st_value -= tls_sec->vma;
10384 }
10385 }
10386 }
10387 else
10388 {
10389 BFD_ASSERT (input_sec->owner == NULL
10390 || (input_sec->owner->flags & DYNAMIC) != 0);
10391 sym.st_shndx = SHN_UNDEF;
10392 input_sec = bfd_und_section_ptr;
10393 }
10394 }
10395 break;
10396
10397 case bfd_link_hash_common:
10398 input_sec = h->root.u.c.p->section;
10399 sym.st_shndx = bed->common_section_index (input_sec);
10400 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10401 break;
10402
10403 case bfd_link_hash_indirect:
10404 /* These symbols are created by symbol versioning. They point
10405 to the decorated version of the name. For example, if the
10406 symbol foo@@GNU_1.2 is the default, which should be used when
10407 foo is used with no version, then we add an indirect symbol
10408 foo which points to foo@@GNU_1.2. We ignore these symbols,
10409 since the indirected symbol is already in the hash table. */
10410 return true;
10411 }
10412
10413 if (type == STT_COMMON || type == STT_OBJECT)
10414 switch (h->root.type)
10415 {
10416 case bfd_link_hash_common:
10417 type = elf_link_convert_common_type (flinfo->info, type);
10418 break;
10419 case bfd_link_hash_defined:
10420 case bfd_link_hash_defweak:
10421 if (bed->common_definition (&sym))
10422 type = elf_link_convert_common_type (flinfo->info, type);
10423 else
10424 type = STT_OBJECT;
10425 break;
10426 case bfd_link_hash_undefined:
10427 case bfd_link_hash_undefweak:
10428 break;
10429 default:
10430 abort ();
10431 }
10432
10433 if (h->forced_local)
10434 {
10435 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10436 /* Turn off visibility on local symbol. */
10437 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10438 }
10439 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10440 else if (h->unique_global && h->def_regular)
10441 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10442 else if (h->root.type == bfd_link_hash_undefweak
10443 || h->root.type == bfd_link_hash_defweak)
10444 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10445 else
10446 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10447 sym.st_target_internal = h->target_internal;
10448
10449 /* Give the processor backend a chance to tweak the symbol value,
10450 and also to finish up anything that needs to be done for this
10451 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10452 forced local syms when non-shared is due to a historical quirk.
10453 STT_GNU_IFUNC symbol must go through PLT. */
10454 if ((h->type == STT_GNU_IFUNC
10455 && h->def_regular
10456 && !bfd_link_relocatable (flinfo->info))
10457 || ((h->dynindx != -1
10458 || h->forced_local)
10459 && ((bfd_link_pic (flinfo->info)
10460 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10461 || h->root.type != bfd_link_hash_undefweak))
10462 || !h->forced_local)
10463 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10464 {
10465 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10466 (flinfo->output_bfd, flinfo->info, h, &sym)))
10467 {
10468 eoinfo->failed = true;
10469 return false;
10470 }
10471 }
10472
10473 /* If we are marking the symbol as undefined, and there are no
10474 non-weak references to this symbol from a regular object, then
10475 mark the symbol as weak undefined; if there are non-weak
10476 references, mark the symbol as strong. We can't do this earlier,
10477 because it might not be marked as undefined until the
10478 finish_dynamic_symbol routine gets through with it. */
10479 if (sym.st_shndx == SHN_UNDEF
10480 && h->ref_regular
10481 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10482 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10483 {
10484 int bindtype;
10485 type = ELF_ST_TYPE (sym.st_info);
10486
10487 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10488 if (type == STT_GNU_IFUNC)
10489 type = STT_FUNC;
10490
10491 if (h->ref_regular_nonweak)
10492 bindtype = STB_GLOBAL;
10493 else
10494 bindtype = STB_WEAK;
10495 sym.st_info = ELF_ST_INFO (bindtype, type);
10496 }
10497
10498 /* If this is a symbol defined in a dynamic library, don't use the
10499 symbol size from the dynamic library. Relinking an executable
10500 against a new library may introduce gratuitous changes in the
10501 executable's symbols if we keep the size. */
10502 if (sym.st_shndx == SHN_UNDEF
10503 && !h->def_regular
10504 && h->def_dynamic)
10505 sym.st_size = 0;
10506
10507 /* If a non-weak symbol with non-default visibility is not defined
10508 locally, it is a fatal error. */
10509 if (!bfd_link_relocatable (flinfo->info)
10510 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10511 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10512 && h->root.type == bfd_link_hash_undefined
10513 && !h->def_regular)
10514 {
10515 const char *msg;
10516
10517 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10518 /* xgettext:c-format */
10519 msg = _("%pB: protected symbol `%s' isn't defined");
10520 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10521 /* xgettext:c-format */
10522 msg = _("%pB: internal symbol `%s' isn't defined");
10523 else
10524 /* xgettext:c-format */
10525 msg = _("%pB: hidden symbol `%s' isn't defined");
10526 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10527 bfd_set_error (bfd_error_bad_value);
10528 eoinfo->failed = true;
10529 return false;
10530 }
10531
10532 /* If this symbol should be put in the .dynsym section, then put it
10533 there now. We already know the symbol index. We also fill in
10534 the entry in the .hash section. */
10535 if (h->dynindx != -1
10536 && elf_hash_table (flinfo->info)->dynamic_sections_created
10537 && elf_hash_table (flinfo->info)->dynsym != NULL
10538 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10539 {
10540 bfd_byte *esym;
10541
10542 /* Since there is no version information in the dynamic string,
10543 if there is no version info in symbol version section, we will
10544 have a run-time problem if not linking executable, referenced
10545 by shared library, or not bound locally. */
10546 if (h->verinfo.verdef == NULL
10547 && (!bfd_link_executable (flinfo->info)
10548 || h->ref_dynamic
10549 || !h->def_regular))
10550 {
10551 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10552
10553 if (p && p [1] != '\0')
10554 {
10555 _bfd_error_handler
10556 /* xgettext:c-format */
10557 (_("%pB: no symbol version section for versioned symbol `%s'"),
10558 flinfo->output_bfd, h->root.root.string);
10559 eoinfo->failed = true;
10560 return false;
10561 }
10562 }
10563
10564 sym.st_name = h->dynstr_index;
10565 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10566 + h->dynindx * bed->s->sizeof_sym);
10567 if (!check_dynsym (flinfo->output_bfd, &sym))
10568 {
10569 eoinfo->failed = true;
10570 return false;
10571 }
10572
10573 /* Inform the linker of the addition of this symbol. */
10574
10575 if (flinfo->info->callbacks->ctf_new_dynsym)
10576 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10577
10578 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10579
10580 if (flinfo->hash_sec != NULL)
10581 {
10582 size_t hash_entry_size;
10583 bfd_byte *bucketpos;
10584 bfd_vma chain;
10585 size_t bucketcount;
10586 size_t bucket;
10587
10588 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10589 bucket = h->u.elf_hash_value % bucketcount;
10590
10591 hash_entry_size
10592 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10593 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10594 + (bucket + 2) * hash_entry_size);
10595 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10596 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10597 bucketpos);
10598 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10599 ((bfd_byte *) flinfo->hash_sec->contents
10600 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10601 }
10602
10603 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10604 {
10605 Elf_Internal_Versym iversym;
10606 Elf_External_Versym *eversym;
10607
10608 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10609 {
10610 if (h->verinfo.verdef == NULL
10611 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10612 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10613 iversym.vs_vers = 1;
10614 else
10615 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10616 }
10617 else
10618 {
10619 if (h->verinfo.vertree == NULL)
10620 iversym.vs_vers = 1;
10621 else
10622 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10623 if (flinfo->info->create_default_symver)
10624 iversym.vs_vers++;
10625 }
10626
10627 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10628 defined locally. */
10629 if (h->versioned == versioned_hidden && h->def_regular)
10630 iversym.vs_vers |= VERSYM_HIDDEN;
10631
10632 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10633 eversym += h->dynindx;
10634 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10635 }
10636 }
10637
10638 /* If the symbol is undefined, and we didn't output it to .dynsym,
10639 strip it from .symtab too. Obviously we can't do this for
10640 relocatable output or when needed for --emit-relocs. */
10641 else if (input_sec == bfd_und_section_ptr
10642 && h->indx != -2
10643 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10644 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10645 && !bfd_link_relocatable (flinfo->info))
10646 return true;
10647
10648 /* Also strip others that we couldn't earlier due to dynamic symbol
10649 processing. */
10650 if (strip)
10651 return true;
10652 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10653 return true;
10654
10655 /* Output a FILE symbol so that following locals are not associated
10656 with the wrong input file. We need one for forced local symbols
10657 if we've seen more than one FILE symbol or when we have exactly
10658 one FILE symbol but global symbols are present in a file other
10659 than the one with the FILE symbol. We also need one if linker
10660 defined symbols are present. In practice these conditions are
10661 always met, so just emit the FILE symbol unconditionally. */
10662 if (eoinfo->localsyms
10663 && !eoinfo->file_sym_done
10664 && eoinfo->flinfo->filesym_count != 0)
10665 {
10666 Elf_Internal_Sym fsym;
10667
10668 memset (&fsym, 0, sizeof (fsym));
10669 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10670 fsym.st_shndx = SHN_ABS;
10671 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10672 bfd_und_section_ptr, NULL))
10673 return false;
10674
10675 eoinfo->file_sym_done = true;
10676 }
10677
10678 indx = bfd_get_symcount (flinfo->output_bfd);
10679 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10680 input_sec, h);
10681 if (ret == 0)
10682 {
10683 eoinfo->failed = true;
10684 return false;
10685 }
10686 else if (ret == 1)
10687 h->indx = indx;
10688 else if (h->indx == -2)
10689 abort();
10690
10691 return true;
10692 }
10693
10694 /* Return TRUE if special handling is done for relocs in SEC against
10695 symbols defined in discarded sections. */
10696
10697 static bool
10698 elf_section_ignore_discarded_relocs (asection *sec)
10699 {
10700 const struct elf_backend_data *bed;
10701
10702 switch (sec->sec_info_type)
10703 {
10704 case SEC_INFO_TYPE_STABS:
10705 case SEC_INFO_TYPE_EH_FRAME:
10706 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10707 return true;
10708 default:
10709 break;
10710 }
10711
10712 bed = get_elf_backend_data (sec->owner);
10713 if (bed->elf_backend_ignore_discarded_relocs != NULL
10714 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10715 return true;
10716
10717 return false;
10718 }
10719
10720 /* Return a mask saying how ld should treat relocations in SEC against
10721 symbols defined in discarded sections. If this function returns
10722 COMPLAIN set, ld will issue a warning message. If this function
10723 returns PRETEND set, and the discarded section was link-once and the
10724 same size as the kept link-once section, ld will pretend that the
10725 symbol was actually defined in the kept section. Otherwise ld will
10726 zero the reloc (at least that is the intent, but some cooperation by
10727 the target dependent code is needed, particularly for REL targets). */
10728
10729 unsigned int
10730 _bfd_elf_default_action_discarded (asection *sec)
10731 {
10732 if (sec->flags & SEC_DEBUGGING)
10733 return PRETEND;
10734
10735 if (strcmp (".eh_frame", sec->name) == 0)
10736 return 0;
10737
10738 if (strcmp (".gcc_except_table", sec->name) == 0)
10739 return 0;
10740
10741 return COMPLAIN | PRETEND;
10742 }
10743
10744 /* Find a match between a section and a member of a section group. */
10745
10746 static asection *
10747 match_group_member (asection *sec, asection *group,
10748 struct bfd_link_info *info)
10749 {
10750 asection *first = elf_next_in_group (group);
10751 asection *s = first;
10752
10753 while (s != NULL)
10754 {
10755 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10756 return s;
10757
10758 s = elf_next_in_group (s);
10759 if (s == first)
10760 break;
10761 }
10762
10763 return NULL;
10764 }
10765
10766 /* Check if the kept section of a discarded section SEC can be used
10767 to replace it. Return the replacement if it is OK. Otherwise return
10768 NULL. */
10769
10770 asection *
10771 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10772 {
10773 asection *kept;
10774
10775 kept = sec->kept_section;
10776 if (kept != NULL)
10777 {
10778 if ((kept->flags & SEC_GROUP) != 0)
10779 kept = match_group_member (sec, kept, info);
10780 if (kept != NULL)
10781 {
10782 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10783 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10784 kept = NULL;
10785 else
10786 {
10787 /* Get the real kept section. */
10788 asection *next;
10789 for (next = kept->kept_section;
10790 next != NULL;
10791 next = next->kept_section)
10792 kept = next;
10793 }
10794 }
10795 sec->kept_section = kept;
10796 }
10797 return kept;
10798 }
10799
10800 /* Link an input file into the linker output file. This function
10801 handles all the sections and relocations of the input file at once.
10802 This is so that we only have to read the local symbols once, and
10803 don't have to keep them in memory. */
10804
10805 static bool
10806 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10807 {
10808 int (*relocate_section)
10809 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10810 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10811 bfd *output_bfd;
10812 Elf_Internal_Shdr *symtab_hdr;
10813 size_t locsymcount;
10814 size_t extsymoff;
10815 Elf_Internal_Sym *isymbuf;
10816 Elf_Internal_Sym *isym;
10817 Elf_Internal_Sym *isymend;
10818 long *pindex;
10819 asection **ppsection;
10820 asection *o;
10821 const struct elf_backend_data *bed;
10822 struct elf_link_hash_entry **sym_hashes;
10823 bfd_size_type address_size;
10824 bfd_vma r_type_mask;
10825 int r_sym_shift;
10826 bool have_file_sym = false;
10827
10828 output_bfd = flinfo->output_bfd;
10829 bed = get_elf_backend_data (output_bfd);
10830 relocate_section = bed->elf_backend_relocate_section;
10831
10832 /* If this is a dynamic object, we don't want to do anything here:
10833 we don't want the local symbols, and we don't want the section
10834 contents. */
10835 if ((input_bfd->flags & DYNAMIC) != 0)
10836 return true;
10837
10838 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10839 if (elf_bad_symtab (input_bfd))
10840 {
10841 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10842 extsymoff = 0;
10843 }
10844 else
10845 {
10846 locsymcount = symtab_hdr->sh_info;
10847 extsymoff = symtab_hdr->sh_info;
10848 }
10849
10850 /* Enable GNU OSABI features in the output BFD that are used in the input
10851 BFD. */
10852 if (bed->elf_osabi == ELFOSABI_NONE
10853 || bed->elf_osabi == ELFOSABI_GNU
10854 || bed->elf_osabi == ELFOSABI_FREEBSD)
10855 elf_tdata (output_bfd)->has_gnu_osabi
10856 |= (elf_tdata (input_bfd)->has_gnu_osabi
10857 & (bfd_link_relocatable (flinfo->info)
10858 ? -1 : ~elf_gnu_osabi_retain));
10859
10860 /* Read the local symbols. */
10861 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10862 if (isymbuf == NULL && locsymcount != 0)
10863 {
10864 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10865 flinfo->internal_syms,
10866 flinfo->external_syms,
10867 flinfo->locsym_shndx);
10868 if (isymbuf == NULL)
10869 return false;
10870 }
10871
10872 /* Find local symbol sections and adjust values of symbols in
10873 SEC_MERGE sections. Write out those local symbols we know are
10874 going into the output file. */
10875 isymend = isymbuf + locsymcount;
10876 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10877 isym < isymend;
10878 isym++, pindex++, ppsection++)
10879 {
10880 asection *isec;
10881 const char *name;
10882 Elf_Internal_Sym osym;
10883 long indx;
10884 int ret;
10885
10886 *pindex = -1;
10887
10888 if (elf_bad_symtab (input_bfd))
10889 {
10890 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10891 {
10892 *ppsection = NULL;
10893 continue;
10894 }
10895 }
10896
10897 if (isym->st_shndx == SHN_UNDEF)
10898 isec = bfd_und_section_ptr;
10899 else if (isym->st_shndx == SHN_ABS)
10900 isec = bfd_abs_section_ptr;
10901 else if (isym->st_shndx == SHN_COMMON)
10902 isec = bfd_com_section_ptr;
10903 else
10904 {
10905 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10906 if (isec == NULL)
10907 {
10908 /* Don't attempt to output symbols with st_shnx in the
10909 reserved range other than SHN_ABS and SHN_COMMON. */
10910 isec = bfd_und_section_ptr;
10911 }
10912 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10913 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10914 isym->st_value =
10915 _bfd_merged_section_offset (output_bfd, &isec,
10916 elf_section_data (isec)->sec_info,
10917 isym->st_value);
10918 }
10919
10920 *ppsection = isec;
10921
10922 /* Don't output the first, undefined, symbol. In fact, don't
10923 output any undefined local symbol. */
10924 if (isec == bfd_und_section_ptr)
10925 continue;
10926
10927 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10928 {
10929 /* We never output section symbols. Instead, we use the
10930 section symbol of the corresponding section in the output
10931 file. */
10932 continue;
10933 }
10934
10935 /* If we are stripping all symbols, we don't want to output this
10936 one. */
10937 if (flinfo->info->strip == strip_all)
10938 continue;
10939
10940 /* If we are discarding all local symbols, we don't want to
10941 output this one. If we are generating a relocatable output
10942 file, then some of the local symbols may be required by
10943 relocs; we output them below as we discover that they are
10944 needed. */
10945 if (flinfo->info->discard == discard_all)
10946 continue;
10947
10948 /* If this symbol is defined in a section which we are
10949 discarding, we don't need to keep it. */
10950 if (isym->st_shndx != SHN_UNDEF
10951 && isym->st_shndx < SHN_LORESERVE
10952 && isec->output_section == NULL
10953 && flinfo->info->non_contiguous_regions
10954 && flinfo->info->non_contiguous_regions_warnings)
10955 {
10956 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10957 "discards section `%s' from '%s'\n"),
10958 isec->name, bfd_get_filename (isec->owner));
10959 continue;
10960 }
10961
10962 if (isym->st_shndx != SHN_UNDEF
10963 && isym->st_shndx < SHN_LORESERVE
10964 && bfd_section_removed_from_list (output_bfd,
10965 isec->output_section))
10966 continue;
10967
10968 /* Get the name of the symbol. */
10969 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10970 isym->st_name);
10971 if (name == NULL)
10972 return false;
10973
10974 /* See if we are discarding symbols with this name. */
10975 if ((flinfo->info->strip == strip_some
10976 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false)
10977 == NULL))
10978 || (((flinfo->info->discard == discard_sec_merge
10979 && (isec->flags & SEC_MERGE)
10980 && !bfd_link_relocatable (flinfo->info))
10981 || flinfo->info->discard == discard_l)
10982 && bfd_is_local_label_name (input_bfd, name)))
10983 continue;
10984
10985 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10986 {
10987 if (input_bfd->lto_output)
10988 /* -flto puts a temp file name here. This means builds
10989 are not reproducible. Discard the symbol. */
10990 continue;
10991 have_file_sym = true;
10992 flinfo->filesym_count += 1;
10993 }
10994 if (!have_file_sym)
10995 {
10996 /* In the absence of debug info, bfd_find_nearest_line uses
10997 FILE symbols to determine the source file for local
10998 function symbols. Provide a FILE symbol here if input
10999 files lack such, so that their symbols won't be
11000 associated with a previous input file. It's not the
11001 source file, but the best we can do. */
11002 const char *filename;
11003 have_file_sym = true;
11004 flinfo->filesym_count += 1;
11005 memset (&osym, 0, sizeof (osym));
11006 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11007 osym.st_shndx = SHN_ABS;
11008 if (input_bfd->lto_output)
11009 filename = NULL;
11010 else
11011 filename = lbasename (bfd_get_filename (input_bfd));
11012 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
11013 bfd_abs_section_ptr, NULL))
11014 return false;
11015 }
11016
11017 osym = *isym;
11018
11019 /* Adjust the section index for the output file. */
11020 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11021 isec->output_section);
11022 if (osym.st_shndx == SHN_BAD)
11023 return false;
11024
11025 /* ELF symbols in relocatable files are section relative, but
11026 in executable files they are virtual addresses. Note that
11027 this code assumes that all ELF sections have an associated
11028 BFD section with a reasonable value for output_offset; below
11029 we assume that they also have a reasonable value for
11030 output_section. Any special sections must be set up to meet
11031 these requirements. */
11032 osym.st_value += isec->output_offset;
11033 if (!bfd_link_relocatable (flinfo->info))
11034 {
11035 osym.st_value += isec->output_section->vma;
11036 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11037 {
11038 /* STT_TLS symbols are relative to PT_TLS segment base. */
11039 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11040 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11041 else
11042 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11043 STT_NOTYPE);
11044 }
11045 }
11046
11047 indx = bfd_get_symcount (output_bfd);
11048 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11049 if (ret == 0)
11050 return false;
11051 else if (ret == 1)
11052 *pindex = indx;
11053 }
11054
11055 if (bed->s->arch_size == 32)
11056 {
11057 r_type_mask = 0xff;
11058 r_sym_shift = 8;
11059 address_size = 4;
11060 }
11061 else
11062 {
11063 r_type_mask = 0xffffffff;
11064 r_sym_shift = 32;
11065 address_size = 8;
11066 }
11067
11068 /* Relocate the contents of each section. */
11069 sym_hashes = elf_sym_hashes (input_bfd);
11070 for (o = input_bfd->sections; o != NULL; o = o->next)
11071 {
11072 bfd_byte *contents;
11073
11074 if (! o->linker_mark)
11075 {
11076 /* This section was omitted from the link. */
11077 continue;
11078 }
11079
11080 if (!flinfo->info->resolve_section_groups
11081 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11082 {
11083 /* Deal with the group signature symbol. */
11084 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11085 unsigned long symndx = sec_data->this_hdr.sh_info;
11086 asection *osec = o->output_section;
11087
11088 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11089 if (symndx >= locsymcount
11090 || (elf_bad_symtab (input_bfd)
11091 && flinfo->sections[symndx] == NULL))
11092 {
11093 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11094 while (h->root.type == bfd_link_hash_indirect
11095 || h->root.type == bfd_link_hash_warning)
11096 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11097 /* Arrange for symbol to be output. */
11098 h->indx = -2;
11099 elf_section_data (osec)->this_hdr.sh_info = -2;
11100 }
11101 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11102 {
11103 /* We'll use the output section target_index. */
11104 asection *sec = flinfo->sections[symndx]->output_section;
11105 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11106 }
11107 else
11108 {
11109 if (flinfo->indices[symndx] == -1)
11110 {
11111 /* Otherwise output the local symbol now. */
11112 Elf_Internal_Sym sym = isymbuf[symndx];
11113 asection *sec = flinfo->sections[symndx]->output_section;
11114 const char *name;
11115 long indx;
11116 int ret;
11117
11118 name = bfd_elf_string_from_elf_section (input_bfd,
11119 symtab_hdr->sh_link,
11120 sym.st_name);
11121 if (name == NULL)
11122 return false;
11123
11124 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11125 sec);
11126 if (sym.st_shndx == SHN_BAD)
11127 return false;
11128
11129 sym.st_value += o->output_offset;
11130
11131 indx = bfd_get_symcount (output_bfd);
11132 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11133 NULL);
11134 if (ret == 0)
11135 return false;
11136 else if (ret == 1)
11137 flinfo->indices[symndx] = indx;
11138 else
11139 abort ();
11140 }
11141 elf_section_data (osec)->this_hdr.sh_info
11142 = flinfo->indices[symndx];
11143 }
11144 }
11145
11146 if ((o->flags & SEC_HAS_CONTENTS) == 0
11147 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11148 continue;
11149
11150 if ((o->flags & SEC_LINKER_CREATED) != 0)
11151 {
11152 /* Section was created by _bfd_elf_link_create_dynamic_sections
11153 or somesuch. */
11154 continue;
11155 }
11156
11157 /* Get the contents of the section. They have been cached by a
11158 relaxation routine. Note that o is a section in an input
11159 file, so the contents field will not have been set by any of
11160 the routines which work on output files. */
11161 if (elf_section_data (o)->this_hdr.contents != NULL)
11162 {
11163 contents = elf_section_data (o)->this_hdr.contents;
11164 if (bed->caches_rawsize
11165 && o->rawsize != 0
11166 && o->rawsize < o->size)
11167 {
11168 memcpy (flinfo->contents, contents, o->rawsize);
11169 contents = flinfo->contents;
11170 }
11171 }
11172 else
11173 {
11174 contents = flinfo->contents;
11175 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11176 return false;
11177 }
11178
11179 if ((o->flags & SEC_RELOC) != 0)
11180 {
11181 Elf_Internal_Rela *internal_relocs;
11182 Elf_Internal_Rela *rel, *relend;
11183 int action_discarded;
11184 int ret;
11185
11186 /* Get the swapped relocs. */
11187 internal_relocs
11188 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
11189 flinfo->internal_relocs, false);
11190 if (internal_relocs == NULL
11191 && o->reloc_count > 0)
11192 return false;
11193
11194 /* We need to reverse-copy input .ctors/.dtors sections if
11195 they are placed in .init_array/.finit_array for output. */
11196 if (o->size > address_size
11197 && ((startswith (o->name, ".ctors")
11198 && strcmp (o->output_section->name,
11199 ".init_array") == 0)
11200 || (startswith (o->name, ".dtors")
11201 && strcmp (o->output_section->name,
11202 ".fini_array") == 0))
11203 && (o->name[6] == 0 || o->name[6] == '.'))
11204 {
11205 if (o->size * bed->s->int_rels_per_ext_rel
11206 != o->reloc_count * address_size)
11207 {
11208 _bfd_error_handler
11209 /* xgettext:c-format */
11210 (_("error: %pB: size of section %pA is not "
11211 "multiple of address size"),
11212 input_bfd, o);
11213 bfd_set_error (bfd_error_bad_value);
11214 return false;
11215 }
11216 o->flags |= SEC_ELF_REVERSE_COPY;
11217 }
11218
11219 action_discarded = -1;
11220 if (!elf_section_ignore_discarded_relocs (o))
11221 action_discarded = (*bed->action_discarded) (o);
11222
11223 /* Run through the relocs evaluating complex reloc symbols and
11224 looking for relocs against symbols from discarded sections
11225 or section symbols from removed link-once sections.
11226 Complain about relocs against discarded sections. Zero
11227 relocs against removed link-once sections. */
11228
11229 rel = internal_relocs;
11230 relend = rel + o->reloc_count;
11231 for ( ; rel < relend; rel++)
11232 {
11233 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11234 unsigned int s_type;
11235 asection **ps, *sec;
11236 struct elf_link_hash_entry *h = NULL;
11237 const char *sym_name;
11238
11239 if (r_symndx == STN_UNDEF)
11240 continue;
11241
11242 if (r_symndx >= locsymcount
11243 || (elf_bad_symtab (input_bfd)
11244 && flinfo->sections[r_symndx] == NULL))
11245 {
11246 h = sym_hashes[r_symndx - extsymoff];
11247
11248 /* Badly formatted input files can contain relocs that
11249 reference non-existant symbols. Check here so that
11250 we do not seg fault. */
11251 if (h == NULL)
11252 {
11253 _bfd_error_handler
11254 /* xgettext:c-format */
11255 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11256 "that references a non-existent global symbol"),
11257 input_bfd, (uint64_t) rel->r_info, o);
11258 bfd_set_error (bfd_error_bad_value);
11259 return false;
11260 }
11261
11262 while (h->root.type == bfd_link_hash_indirect
11263 || h->root.type == bfd_link_hash_warning)
11264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11265
11266 s_type = h->type;
11267
11268 /* If a plugin symbol is referenced from a non-IR file,
11269 mark the symbol as undefined. Note that the
11270 linker may attach linker created dynamic sections
11271 to the plugin bfd. Symbols defined in linker
11272 created sections are not plugin symbols. */
11273 if ((h->root.non_ir_ref_regular
11274 || h->root.non_ir_ref_dynamic)
11275 && (h->root.type == bfd_link_hash_defined
11276 || h->root.type == bfd_link_hash_defweak)
11277 && (h->root.u.def.section->flags
11278 & SEC_LINKER_CREATED) == 0
11279 && h->root.u.def.section->owner != NULL
11280 && (h->root.u.def.section->owner->flags
11281 & BFD_PLUGIN) != 0)
11282 {
11283 h->root.type = bfd_link_hash_undefined;
11284 h->root.u.undef.abfd = h->root.u.def.section->owner;
11285 }
11286
11287 ps = NULL;
11288 if (h->root.type == bfd_link_hash_defined
11289 || h->root.type == bfd_link_hash_defweak)
11290 ps = &h->root.u.def.section;
11291
11292 sym_name = h->root.root.string;
11293 }
11294 else
11295 {
11296 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11297
11298 s_type = ELF_ST_TYPE (sym->st_info);
11299 ps = &flinfo->sections[r_symndx];
11300 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11301 sym, *ps);
11302 }
11303
11304 if ((s_type == STT_RELC || s_type == STT_SRELC)
11305 && !bfd_link_relocatable (flinfo->info))
11306 {
11307 bfd_vma val;
11308 bfd_vma dot = (rel->r_offset
11309 + o->output_offset + o->output_section->vma);
11310 #ifdef DEBUG
11311 printf ("Encountered a complex symbol!");
11312 printf (" (input_bfd %s, section %s, reloc %ld\n",
11313 bfd_get_filename (input_bfd), o->name,
11314 (long) (rel - internal_relocs));
11315 printf (" symbol: idx %8.8lx, name %s\n",
11316 r_symndx, sym_name);
11317 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11318 (unsigned long) rel->r_info,
11319 (unsigned long) rel->r_offset);
11320 #endif
11321 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11322 isymbuf, locsymcount, s_type == STT_SRELC))
11323 return false;
11324
11325 /* Symbol evaluated OK. Update to absolute value. */
11326 set_symbol_value (input_bfd, isymbuf, locsymcount,
11327 r_symndx, val);
11328 continue;
11329 }
11330
11331 if (action_discarded != -1 && ps != NULL)
11332 {
11333 /* Complain if the definition comes from a
11334 discarded section. */
11335 if ((sec = *ps) != NULL && discarded_section (sec))
11336 {
11337 BFD_ASSERT (r_symndx != STN_UNDEF);
11338 if (action_discarded & COMPLAIN)
11339 (*flinfo->info->callbacks->einfo)
11340 /* xgettext:c-format */
11341 (_("%X`%s' referenced in section `%pA' of %pB: "
11342 "defined in discarded section `%pA' of %pB\n"),
11343 sym_name, o, input_bfd, sec, sec->owner);
11344
11345 /* Try to do the best we can to support buggy old
11346 versions of gcc. Pretend that the symbol is
11347 really defined in the kept linkonce section.
11348 FIXME: This is quite broken. Modifying the
11349 symbol here means we will be changing all later
11350 uses of the symbol, not just in this section. */
11351 if (action_discarded & PRETEND)
11352 {
11353 asection *kept;
11354
11355 kept = _bfd_elf_check_kept_section (sec,
11356 flinfo->info);
11357 if (kept != NULL)
11358 {
11359 *ps = kept;
11360 continue;
11361 }
11362 }
11363 }
11364 }
11365 }
11366
11367 /* Relocate the section by invoking a back end routine.
11368
11369 The back end routine is responsible for adjusting the
11370 section contents as necessary, and (if using Rela relocs
11371 and generating a relocatable output file) adjusting the
11372 reloc addend as necessary.
11373
11374 The back end routine does not have to worry about setting
11375 the reloc address or the reloc symbol index.
11376
11377 The back end routine is given a pointer to the swapped in
11378 internal symbols, and can access the hash table entries
11379 for the external symbols via elf_sym_hashes (input_bfd).
11380
11381 When generating relocatable output, the back end routine
11382 must handle STB_LOCAL/STT_SECTION symbols specially. The
11383 output symbol is going to be a section symbol
11384 corresponding to the output section, which will require
11385 the addend to be adjusted. */
11386
11387 ret = (*relocate_section) (output_bfd, flinfo->info,
11388 input_bfd, o, contents,
11389 internal_relocs,
11390 isymbuf,
11391 flinfo->sections);
11392 if (!ret)
11393 return false;
11394
11395 if (ret == 2
11396 || bfd_link_relocatable (flinfo->info)
11397 || flinfo->info->emitrelocations)
11398 {
11399 Elf_Internal_Rela *irela;
11400 Elf_Internal_Rela *irelaend, *irelamid;
11401 bfd_vma last_offset;
11402 struct elf_link_hash_entry **rel_hash;
11403 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11404 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11405 unsigned int next_erel;
11406 bool rela_normal;
11407 struct bfd_elf_section_data *esdi, *esdo;
11408
11409 esdi = elf_section_data (o);
11410 esdo = elf_section_data (o->output_section);
11411 rela_normal = false;
11412
11413 /* Adjust the reloc addresses and symbol indices. */
11414
11415 irela = internal_relocs;
11416 irelaend = irela + o->reloc_count;
11417 rel_hash = esdo->rel.hashes + esdo->rel.count;
11418 /* We start processing the REL relocs, if any. When we reach
11419 IRELAMID in the loop, we switch to the RELA relocs. */
11420 irelamid = irela;
11421 if (esdi->rel.hdr != NULL)
11422 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11423 * bed->s->int_rels_per_ext_rel);
11424 rel_hash_list = rel_hash;
11425 rela_hash_list = NULL;
11426 last_offset = o->output_offset;
11427 if (!bfd_link_relocatable (flinfo->info))
11428 last_offset += o->output_section->vma;
11429 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11430 {
11431 unsigned long r_symndx;
11432 asection *sec;
11433 Elf_Internal_Sym sym;
11434
11435 if (next_erel == bed->s->int_rels_per_ext_rel)
11436 {
11437 rel_hash++;
11438 next_erel = 0;
11439 }
11440
11441 if (irela == irelamid)
11442 {
11443 rel_hash = esdo->rela.hashes + esdo->rela.count;
11444 rela_hash_list = rel_hash;
11445 rela_normal = bed->rela_normal;
11446 }
11447
11448 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11449 flinfo->info, o,
11450 irela->r_offset);
11451 if (irela->r_offset >= (bfd_vma) -2)
11452 {
11453 /* This is a reloc for a deleted entry or somesuch.
11454 Turn it into an R_*_NONE reloc, at the same
11455 offset as the last reloc. elf_eh_frame.c and
11456 bfd_elf_discard_info rely on reloc offsets
11457 being ordered. */
11458 irela->r_offset = last_offset;
11459 irela->r_info = 0;
11460 irela->r_addend = 0;
11461 continue;
11462 }
11463
11464 irela->r_offset += o->output_offset;
11465
11466 /* Relocs in an executable have to be virtual addresses. */
11467 if (!bfd_link_relocatable (flinfo->info))
11468 irela->r_offset += o->output_section->vma;
11469
11470 last_offset = irela->r_offset;
11471
11472 r_symndx = irela->r_info >> r_sym_shift;
11473 if (r_symndx == STN_UNDEF)
11474 continue;
11475
11476 if (r_symndx >= locsymcount
11477 || (elf_bad_symtab (input_bfd)
11478 && flinfo->sections[r_symndx] == NULL))
11479 {
11480 struct elf_link_hash_entry *rh;
11481 unsigned long indx;
11482
11483 /* This is a reloc against a global symbol. We
11484 have not yet output all the local symbols, so
11485 we do not know the symbol index of any global
11486 symbol. We set the rel_hash entry for this
11487 reloc to point to the global hash table entry
11488 for this symbol. The symbol index is then
11489 set at the end of bfd_elf_final_link. */
11490 indx = r_symndx - extsymoff;
11491 rh = elf_sym_hashes (input_bfd)[indx];
11492 while (rh->root.type == bfd_link_hash_indirect
11493 || rh->root.type == bfd_link_hash_warning)
11494 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11495
11496 /* Setting the index to -2 tells
11497 elf_link_output_extsym that this symbol is
11498 used by a reloc. */
11499 BFD_ASSERT (rh->indx < 0);
11500 rh->indx = -2;
11501 *rel_hash = rh;
11502
11503 continue;
11504 }
11505
11506 /* This is a reloc against a local symbol. */
11507
11508 *rel_hash = NULL;
11509 sym = isymbuf[r_symndx];
11510 sec = flinfo->sections[r_symndx];
11511 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11512 {
11513 /* I suppose the backend ought to fill in the
11514 section of any STT_SECTION symbol against a
11515 processor specific section. */
11516 r_symndx = STN_UNDEF;
11517 if (bfd_is_abs_section (sec))
11518 ;
11519 else if (sec == NULL || sec->owner == NULL)
11520 {
11521 bfd_set_error (bfd_error_bad_value);
11522 return false;
11523 }
11524 else
11525 {
11526 asection *osec = sec->output_section;
11527
11528 /* If we have discarded a section, the output
11529 section will be the absolute section. In
11530 case of discarded SEC_MERGE sections, use
11531 the kept section. relocate_section should
11532 have already handled discarded linkonce
11533 sections. */
11534 if (bfd_is_abs_section (osec)
11535 && sec->kept_section != NULL
11536 && sec->kept_section->output_section != NULL)
11537 {
11538 osec = sec->kept_section->output_section;
11539 irela->r_addend -= osec->vma;
11540 }
11541
11542 if (!bfd_is_abs_section (osec))
11543 {
11544 r_symndx = osec->target_index;
11545 if (r_symndx == STN_UNDEF)
11546 {
11547 irela->r_addend += osec->vma;
11548 osec = _bfd_nearby_section (output_bfd, osec,
11549 osec->vma);
11550 irela->r_addend -= osec->vma;
11551 r_symndx = osec->target_index;
11552 }
11553 }
11554 }
11555
11556 /* Adjust the addend according to where the
11557 section winds up in the output section. */
11558 if (rela_normal)
11559 irela->r_addend += sec->output_offset;
11560 }
11561 else
11562 {
11563 if (flinfo->indices[r_symndx] == -1)
11564 {
11565 unsigned long shlink;
11566 const char *name;
11567 asection *osec;
11568 long indx;
11569
11570 if (flinfo->info->strip == strip_all)
11571 {
11572 /* You can't do ld -r -s. */
11573 bfd_set_error (bfd_error_invalid_operation);
11574 return false;
11575 }
11576
11577 /* This symbol was skipped earlier, but
11578 since it is needed by a reloc, we
11579 must output it now. */
11580 shlink = symtab_hdr->sh_link;
11581 name = (bfd_elf_string_from_elf_section
11582 (input_bfd, shlink, sym.st_name));
11583 if (name == NULL)
11584 return false;
11585
11586 osec = sec->output_section;
11587 sym.st_shndx =
11588 _bfd_elf_section_from_bfd_section (output_bfd,
11589 osec);
11590 if (sym.st_shndx == SHN_BAD)
11591 return false;
11592
11593 sym.st_value += sec->output_offset;
11594 if (!bfd_link_relocatable (flinfo->info))
11595 {
11596 sym.st_value += osec->vma;
11597 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11598 {
11599 struct elf_link_hash_table *htab
11600 = elf_hash_table (flinfo->info);
11601
11602 /* STT_TLS symbols are relative to PT_TLS
11603 segment base. */
11604 if (htab->tls_sec != NULL)
11605 sym.st_value -= htab->tls_sec->vma;
11606 else
11607 sym.st_info
11608 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11609 STT_NOTYPE);
11610 }
11611 }
11612
11613 indx = bfd_get_symcount (output_bfd);
11614 ret = elf_link_output_symstrtab (flinfo, name,
11615 &sym, sec,
11616 NULL);
11617 if (ret == 0)
11618 return false;
11619 else if (ret == 1)
11620 flinfo->indices[r_symndx] = indx;
11621 else
11622 abort ();
11623 }
11624
11625 r_symndx = flinfo->indices[r_symndx];
11626 }
11627
11628 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11629 | (irela->r_info & r_type_mask));
11630 }
11631
11632 /* Swap out the relocs. */
11633 input_rel_hdr = esdi->rel.hdr;
11634 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11635 {
11636 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11637 input_rel_hdr,
11638 internal_relocs,
11639 rel_hash_list))
11640 return false;
11641 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11642 * bed->s->int_rels_per_ext_rel);
11643 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11644 }
11645
11646 input_rela_hdr = esdi->rela.hdr;
11647 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11648 {
11649 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11650 input_rela_hdr,
11651 internal_relocs,
11652 rela_hash_list))
11653 return false;
11654 }
11655 }
11656 }
11657
11658 /* Write out the modified section contents. */
11659 if (bed->elf_backend_write_section
11660 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11661 contents))
11662 {
11663 /* Section written out. */
11664 }
11665 else switch (o->sec_info_type)
11666 {
11667 case SEC_INFO_TYPE_STABS:
11668 if (! (_bfd_write_section_stabs
11669 (output_bfd,
11670 &elf_hash_table (flinfo->info)->stab_info,
11671 o, &elf_section_data (o)->sec_info, contents)))
11672 return false;
11673 break;
11674 case SEC_INFO_TYPE_MERGE:
11675 if (! _bfd_write_merged_section (output_bfd, o,
11676 elf_section_data (o)->sec_info))
11677 return false;
11678 break;
11679 case SEC_INFO_TYPE_EH_FRAME:
11680 {
11681 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11682 o, contents))
11683 return false;
11684 }
11685 break;
11686 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11687 {
11688 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11689 flinfo->info,
11690 o, contents))
11691 return false;
11692 }
11693 break;
11694 default:
11695 {
11696 if (! (o->flags & SEC_EXCLUDE))
11697 {
11698 file_ptr offset = (file_ptr) o->output_offset;
11699 bfd_size_type todo = o->size;
11700
11701 offset *= bfd_octets_per_byte (output_bfd, o);
11702
11703 if ((o->flags & SEC_ELF_REVERSE_COPY))
11704 {
11705 /* Reverse-copy input section to output. */
11706 do
11707 {
11708 todo -= address_size;
11709 if (! bfd_set_section_contents (output_bfd,
11710 o->output_section,
11711 contents + todo,
11712 offset,
11713 address_size))
11714 return false;
11715 if (todo == 0)
11716 break;
11717 offset += address_size;
11718 }
11719 while (1);
11720 }
11721 else if (! bfd_set_section_contents (output_bfd,
11722 o->output_section,
11723 contents,
11724 offset, todo))
11725 return false;
11726 }
11727 }
11728 break;
11729 }
11730 }
11731
11732 return true;
11733 }
11734
11735 /* Generate a reloc when linking an ELF file. This is a reloc
11736 requested by the linker, and does not come from any input file. This
11737 is used to build constructor and destructor tables when linking
11738 with -Ur. */
11739
11740 static bool
11741 elf_reloc_link_order (bfd *output_bfd,
11742 struct bfd_link_info *info,
11743 asection *output_section,
11744 struct bfd_link_order *link_order)
11745 {
11746 reloc_howto_type *howto;
11747 long indx;
11748 bfd_vma offset;
11749 bfd_vma addend;
11750 struct bfd_elf_section_reloc_data *reldata;
11751 struct elf_link_hash_entry **rel_hash_ptr;
11752 Elf_Internal_Shdr *rel_hdr;
11753 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11754 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11755 bfd_byte *erel;
11756 unsigned int i;
11757 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11758
11759 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11760 if (howto == NULL)
11761 {
11762 bfd_set_error (bfd_error_bad_value);
11763 return false;
11764 }
11765
11766 addend = link_order->u.reloc.p->addend;
11767
11768 if (esdo->rel.hdr)
11769 reldata = &esdo->rel;
11770 else if (esdo->rela.hdr)
11771 reldata = &esdo->rela;
11772 else
11773 {
11774 reldata = NULL;
11775 BFD_ASSERT (0);
11776 }
11777
11778 /* Figure out the symbol index. */
11779 rel_hash_ptr = reldata->hashes + reldata->count;
11780 if (link_order->type == bfd_section_reloc_link_order)
11781 {
11782 indx = link_order->u.reloc.p->u.section->target_index;
11783 BFD_ASSERT (indx != 0);
11784 *rel_hash_ptr = NULL;
11785 }
11786 else
11787 {
11788 struct elf_link_hash_entry *h;
11789
11790 /* Treat a reloc against a defined symbol as though it were
11791 actually against the section. */
11792 h = ((struct elf_link_hash_entry *)
11793 bfd_wrapped_link_hash_lookup (output_bfd, info,
11794 link_order->u.reloc.p->u.name,
11795 false, false, true));
11796 if (h != NULL
11797 && (h->root.type == bfd_link_hash_defined
11798 || h->root.type == bfd_link_hash_defweak))
11799 {
11800 asection *section;
11801
11802 section = h->root.u.def.section;
11803 indx = section->output_section->target_index;
11804 *rel_hash_ptr = NULL;
11805 /* It seems that we ought to add the symbol value to the
11806 addend here, but in practice it has already been added
11807 because it was passed to constructor_callback. */
11808 addend += section->output_section->vma + section->output_offset;
11809 }
11810 else if (h != NULL)
11811 {
11812 /* Setting the index to -2 tells elf_link_output_extsym that
11813 this symbol is used by a reloc. */
11814 h->indx = -2;
11815 *rel_hash_ptr = h;
11816 indx = 0;
11817 }
11818 else
11819 {
11820 (*info->callbacks->unattached_reloc)
11821 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11822 indx = 0;
11823 }
11824 }
11825
11826 /* If this is an inplace reloc, we must write the addend into the
11827 object file. */
11828 if (howto->partial_inplace && addend != 0)
11829 {
11830 bfd_size_type size;
11831 bfd_reloc_status_type rstat;
11832 bfd_byte *buf;
11833 bool ok;
11834 const char *sym_name;
11835 bfd_size_type octets;
11836
11837 size = (bfd_size_type) bfd_get_reloc_size (howto);
11838 buf = (bfd_byte *) bfd_zmalloc (size);
11839 if (buf == NULL && size != 0)
11840 return false;
11841 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11842 switch (rstat)
11843 {
11844 case bfd_reloc_ok:
11845 break;
11846
11847 default:
11848 case bfd_reloc_outofrange:
11849 abort ();
11850
11851 case bfd_reloc_overflow:
11852 if (link_order->type == bfd_section_reloc_link_order)
11853 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11854 else
11855 sym_name = link_order->u.reloc.p->u.name;
11856 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11857 howto->name, addend, NULL, NULL,
11858 (bfd_vma) 0);
11859 break;
11860 }
11861
11862 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11863 output_section);
11864 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11865 octets, size);
11866 free (buf);
11867 if (! ok)
11868 return false;
11869 }
11870
11871 /* The address of a reloc is relative to the section in a
11872 relocatable file, and is a virtual address in an executable
11873 file. */
11874 offset = link_order->offset;
11875 if (! bfd_link_relocatable (info))
11876 offset += output_section->vma;
11877
11878 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11879 {
11880 irel[i].r_offset = offset;
11881 irel[i].r_info = 0;
11882 irel[i].r_addend = 0;
11883 }
11884 if (bed->s->arch_size == 32)
11885 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11886 else
11887 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11888
11889 rel_hdr = reldata->hdr;
11890 erel = rel_hdr->contents;
11891 if (rel_hdr->sh_type == SHT_REL)
11892 {
11893 erel += reldata->count * bed->s->sizeof_rel;
11894 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11895 }
11896 else
11897 {
11898 irel[0].r_addend = addend;
11899 erel += reldata->count * bed->s->sizeof_rela;
11900 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11901 }
11902
11903 ++reldata->count;
11904
11905 return true;
11906 }
11907
11908 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11909 Returns TRUE upon success, FALSE otherwise. */
11910
11911 static bool
11912 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11913 {
11914 bool ret = false;
11915 bfd *implib_bfd;
11916 const struct elf_backend_data *bed;
11917 flagword flags;
11918 enum bfd_architecture arch;
11919 unsigned int mach;
11920 asymbol **sympp = NULL;
11921 long symsize;
11922 long symcount;
11923 long src_count;
11924 elf_symbol_type *osymbuf;
11925 size_t amt;
11926
11927 implib_bfd = info->out_implib_bfd;
11928 bed = get_elf_backend_data (abfd);
11929
11930 if (!bfd_set_format (implib_bfd, bfd_object))
11931 return false;
11932
11933 /* Use flag from executable but make it a relocatable object. */
11934 flags = bfd_get_file_flags (abfd);
11935 flags &= ~HAS_RELOC;
11936 if (!bfd_set_start_address (implib_bfd, 0)
11937 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11938 return false;
11939
11940 /* Copy architecture of output file to import library file. */
11941 arch = bfd_get_arch (abfd);
11942 mach = bfd_get_mach (abfd);
11943 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11944 && (abfd->target_defaulted
11945 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11946 return false;
11947
11948 /* Get symbol table size. */
11949 symsize = bfd_get_symtab_upper_bound (abfd);
11950 if (symsize < 0)
11951 return false;
11952
11953 /* Read in the symbol table. */
11954 sympp = (asymbol **) bfd_malloc (symsize);
11955 if (sympp == NULL)
11956 return false;
11957
11958 symcount = bfd_canonicalize_symtab (abfd, sympp);
11959 if (symcount < 0)
11960 goto free_sym_buf;
11961
11962 /* Allow the BFD backend to copy any private header data it
11963 understands from the output BFD to the import library BFD. */
11964 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11965 goto free_sym_buf;
11966
11967 /* Filter symbols to appear in the import library. */
11968 if (bed->elf_backend_filter_implib_symbols)
11969 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11970 symcount);
11971 else
11972 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11973 if (symcount == 0)
11974 {
11975 bfd_set_error (bfd_error_no_symbols);
11976 _bfd_error_handler (_("%pB: no symbol found for import library"),
11977 implib_bfd);
11978 goto free_sym_buf;
11979 }
11980
11981
11982 /* Make symbols absolute. */
11983 amt = symcount * sizeof (*osymbuf);
11984 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11985 if (osymbuf == NULL)
11986 goto free_sym_buf;
11987
11988 for (src_count = 0; src_count < symcount; src_count++)
11989 {
11990 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11991 sizeof (*osymbuf));
11992 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11993 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11994 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11995 osymbuf[src_count].internal_elf_sym.st_value =
11996 osymbuf[src_count].symbol.value;
11997 sympp[src_count] = &osymbuf[src_count].symbol;
11998 }
11999
12000 bfd_set_symtab (implib_bfd, sympp, symcount);
12001
12002 /* Allow the BFD backend to copy any private data it understands
12003 from the output BFD to the import library BFD. This is done last
12004 to permit the routine to look at the filtered symbol table. */
12005 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12006 goto free_sym_buf;
12007
12008 if (!bfd_close (implib_bfd))
12009 goto free_sym_buf;
12010
12011 ret = true;
12012
12013 free_sym_buf:
12014 free (sympp);
12015 return ret;
12016 }
12017
12018 static void
12019 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12020 {
12021 asection *o;
12022
12023 if (flinfo->symstrtab != NULL)
12024 _bfd_elf_strtab_free (flinfo->symstrtab);
12025 free (flinfo->contents);
12026 free (flinfo->external_relocs);
12027 free (flinfo->internal_relocs);
12028 free (flinfo->external_syms);
12029 free (flinfo->locsym_shndx);
12030 free (flinfo->internal_syms);
12031 free (flinfo->indices);
12032 free (flinfo->sections);
12033 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12034 free (flinfo->symshndxbuf);
12035 for (o = obfd->sections; o != NULL; o = o->next)
12036 {
12037 struct bfd_elf_section_data *esdo = elf_section_data (o);
12038 free (esdo->rel.hashes);
12039 free (esdo->rela.hashes);
12040 }
12041 }
12042
12043 /* Do the final step of an ELF link. */
12044
12045 bool
12046 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12047 {
12048 bool dynamic;
12049 bool emit_relocs;
12050 bfd *dynobj;
12051 struct elf_final_link_info flinfo;
12052 asection *o;
12053 struct bfd_link_order *p;
12054 bfd *sub;
12055 bfd_size_type max_contents_size;
12056 bfd_size_type max_external_reloc_size;
12057 bfd_size_type max_internal_reloc_count;
12058 bfd_size_type max_sym_count;
12059 bfd_size_type max_sym_shndx_count;
12060 Elf_Internal_Sym elfsym;
12061 unsigned int i;
12062 Elf_Internal_Shdr *symtab_hdr;
12063 Elf_Internal_Shdr *symtab_shndx_hdr;
12064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12065 struct elf_outext_info eoinfo;
12066 bool merged;
12067 size_t relativecount = 0;
12068 asection *reldyn = 0;
12069 bfd_size_type amt;
12070 asection *attr_section = NULL;
12071 bfd_vma attr_size = 0;
12072 const char *std_attrs_section;
12073 struct elf_link_hash_table *htab = elf_hash_table (info);
12074 bool sections_removed;
12075 bool ret;
12076
12077 if (!is_elf_hash_table (&htab->root))
12078 return false;
12079
12080 if (bfd_link_pic (info))
12081 abfd->flags |= DYNAMIC;
12082
12083 dynamic = htab->dynamic_sections_created;
12084 dynobj = htab->dynobj;
12085
12086 emit_relocs = (bfd_link_relocatable (info)
12087 || info->emitrelocations);
12088
12089 memset (&flinfo, 0, sizeof (flinfo));
12090 flinfo.info = info;
12091 flinfo.output_bfd = abfd;
12092 flinfo.symstrtab = _bfd_elf_strtab_init ();
12093 if (flinfo.symstrtab == NULL)
12094 return false;
12095
12096 if (! dynamic)
12097 {
12098 flinfo.hash_sec = NULL;
12099 flinfo.symver_sec = NULL;
12100 }
12101 else
12102 {
12103 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12104 /* Note that dynsym_sec can be NULL (on VMS). */
12105 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12106 /* Note that it is OK if symver_sec is NULL. */
12107 }
12108
12109 if (info->unique_symbol
12110 && !bfd_hash_table_init (&flinfo.local_hash_table,
12111 local_hash_newfunc,
12112 sizeof (struct local_hash_entry)))
12113 return false;
12114
12115 /* The object attributes have been merged. Remove the input
12116 sections from the link, and set the contents of the output
12117 section. */
12118 sections_removed = false;
12119 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12120 for (o = abfd->sections; o != NULL; o = o->next)
12121 {
12122 bool remove_section = false;
12123
12124 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12125 || strcmp (o->name, ".gnu.attributes") == 0)
12126 {
12127 for (p = o->map_head.link_order; p != NULL; p = p->next)
12128 {
12129 asection *input_section;
12130
12131 if (p->type != bfd_indirect_link_order)
12132 continue;
12133 input_section = p->u.indirect.section;
12134 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12135 elf_link_input_bfd ignores this section. */
12136 input_section->flags &= ~SEC_HAS_CONTENTS;
12137 }
12138
12139 attr_size = bfd_elf_obj_attr_size (abfd);
12140 bfd_set_section_size (o, attr_size);
12141 /* Skip this section later on. */
12142 o->map_head.link_order = NULL;
12143 if (attr_size)
12144 attr_section = o;
12145 else
12146 remove_section = true;
12147 }
12148 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12149 {
12150 /* Remove empty group section from linker output. */
12151 remove_section = true;
12152 }
12153 if (remove_section)
12154 {
12155 o->flags |= SEC_EXCLUDE;
12156 bfd_section_list_remove (abfd, o);
12157 abfd->section_count--;
12158 sections_removed = true;
12159 }
12160 }
12161 if (sections_removed)
12162 _bfd_fix_excluded_sec_syms (abfd, info);
12163
12164 /* Count up the number of relocations we will output for each output
12165 section, so that we know the sizes of the reloc sections. We
12166 also figure out some maximum sizes. */
12167 max_contents_size = 0;
12168 max_external_reloc_size = 0;
12169 max_internal_reloc_count = 0;
12170 max_sym_count = 0;
12171 max_sym_shndx_count = 0;
12172 merged = false;
12173 for (o = abfd->sections; o != NULL; o = o->next)
12174 {
12175 struct bfd_elf_section_data *esdo = elf_section_data (o);
12176 o->reloc_count = 0;
12177
12178 for (p = o->map_head.link_order; p != NULL; p = p->next)
12179 {
12180 unsigned int reloc_count = 0;
12181 unsigned int additional_reloc_count = 0;
12182 struct bfd_elf_section_data *esdi = NULL;
12183
12184 if (p->type == bfd_section_reloc_link_order
12185 || p->type == bfd_symbol_reloc_link_order)
12186 reloc_count = 1;
12187 else if (p->type == bfd_indirect_link_order)
12188 {
12189 asection *sec;
12190
12191 sec = p->u.indirect.section;
12192
12193 /* Mark all sections which are to be included in the
12194 link. This will normally be every section. We need
12195 to do this so that we can identify any sections which
12196 the linker has decided to not include. */
12197 sec->linker_mark = true;
12198
12199 if (sec->flags & SEC_MERGE)
12200 merged = true;
12201
12202 if (sec->rawsize > max_contents_size)
12203 max_contents_size = sec->rawsize;
12204 if (sec->size > max_contents_size)
12205 max_contents_size = sec->size;
12206
12207 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12208 && (sec->owner->flags & DYNAMIC) == 0)
12209 {
12210 size_t sym_count;
12211
12212 /* We are interested in just local symbols, not all
12213 symbols. */
12214 if (elf_bad_symtab (sec->owner))
12215 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12216 / bed->s->sizeof_sym);
12217 else
12218 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12219
12220 if (sym_count > max_sym_count)
12221 max_sym_count = sym_count;
12222
12223 if (sym_count > max_sym_shndx_count
12224 && elf_symtab_shndx_list (sec->owner) != NULL)
12225 max_sym_shndx_count = sym_count;
12226
12227 if (esdo->this_hdr.sh_type == SHT_REL
12228 || esdo->this_hdr.sh_type == SHT_RELA)
12229 /* Some backends use reloc_count in relocation sections
12230 to count particular types of relocs. Of course,
12231 reloc sections themselves can't have relocations. */
12232 ;
12233 else if (emit_relocs)
12234 {
12235 reloc_count = sec->reloc_count;
12236 if (bed->elf_backend_count_additional_relocs)
12237 {
12238 int c;
12239 c = (*bed->elf_backend_count_additional_relocs) (sec);
12240 additional_reloc_count += c;
12241 }
12242 }
12243 else if (bed->elf_backend_count_relocs)
12244 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12245
12246 esdi = elf_section_data (sec);
12247
12248 if ((sec->flags & SEC_RELOC) != 0)
12249 {
12250 size_t ext_size = 0;
12251
12252 if (esdi->rel.hdr != NULL)
12253 ext_size = esdi->rel.hdr->sh_size;
12254 if (esdi->rela.hdr != NULL)
12255 ext_size += esdi->rela.hdr->sh_size;
12256
12257 if (ext_size > max_external_reloc_size)
12258 max_external_reloc_size = ext_size;
12259 if (sec->reloc_count > max_internal_reloc_count)
12260 max_internal_reloc_count = sec->reloc_count;
12261 }
12262 }
12263 }
12264
12265 if (reloc_count == 0)
12266 continue;
12267
12268 reloc_count += additional_reloc_count;
12269 o->reloc_count += reloc_count;
12270
12271 if (p->type == bfd_indirect_link_order && emit_relocs)
12272 {
12273 if (esdi->rel.hdr)
12274 {
12275 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12276 esdo->rel.count += additional_reloc_count;
12277 }
12278 if (esdi->rela.hdr)
12279 {
12280 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12281 esdo->rela.count += additional_reloc_count;
12282 }
12283 }
12284 else
12285 {
12286 if (o->use_rela_p)
12287 esdo->rela.count += reloc_count;
12288 else
12289 esdo->rel.count += reloc_count;
12290 }
12291 }
12292
12293 if (o->reloc_count > 0)
12294 o->flags |= SEC_RELOC;
12295 else
12296 {
12297 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12298 set it (this is probably a bug) and if it is set
12299 assign_section_numbers will create a reloc section. */
12300 o->flags &=~ SEC_RELOC;
12301 }
12302
12303 /* If the SEC_ALLOC flag is not set, force the section VMA to
12304 zero. This is done in elf_fake_sections as well, but forcing
12305 the VMA to 0 here will ensure that relocs against these
12306 sections are handled correctly. */
12307 if ((o->flags & SEC_ALLOC) == 0
12308 && ! o->user_set_vma)
12309 o->vma = 0;
12310 }
12311
12312 if (! bfd_link_relocatable (info) && merged)
12313 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12314
12315 /* Figure out the file positions for everything but the symbol table
12316 and the relocs. We set symcount to force assign_section_numbers
12317 to create a symbol table. */
12318 abfd->symcount = info->strip != strip_all || emit_relocs;
12319 BFD_ASSERT (! abfd->output_has_begun);
12320 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12321 goto error_return;
12322
12323 /* Set sizes, and assign file positions for reloc sections. */
12324 for (o = abfd->sections; o != NULL; o = o->next)
12325 {
12326 struct bfd_elf_section_data *esdo = elf_section_data (o);
12327 if ((o->flags & SEC_RELOC) != 0)
12328 {
12329 if (esdo->rel.hdr
12330 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12331 goto error_return;
12332
12333 if (esdo->rela.hdr
12334 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12335 goto error_return;
12336 }
12337
12338 /* _bfd_elf_compute_section_file_positions makes temporary use
12339 of target_index. Reset it. */
12340 o->target_index = 0;
12341
12342 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12343 to count upwards while actually outputting the relocations. */
12344 esdo->rel.count = 0;
12345 esdo->rela.count = 0;
12346
12347 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12348 && !bfd_section_is_ctf (o))
12349 {
12350 /* Cache the section contents so that they can be compressed
12351 later. Use bfd_malloc since it will be freed by
12352 bfd_compress_section_contents. */
12353 unsigned char *contents = esdo->this_hdr.contents;
12354 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12355 abort ();
12356 contents
12357 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12358 if (contents == NULL)
12359 goto error_return;
12360 esdo->this_hdr.contents = contents;
12361 }
12362 }
12363
12364 /* We have now assigned file positions for all the sections except .symtab,
12365 .strtab, and non-loaded reloc and compressed debugging sections. We start
12366 the .symtab section at the current file position, and write directly to it.
12367 We build the .strtab section in memory. */
12368 abfd->symcount = 0;
12369 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12370 /* sh_name is set in prep_headers. */
12371 symtab_hdr->sh_type = SHT_SYMTAB;
12372 /* sh_flags, sh_addr and sh_size all start off zero. */
12373 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12374 /* sh_link is set in assign_section_numbers. */
12375 /* sh_info is set below. */
12376 /* sh_offset is set just below. */
12377 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12378
12379 if (max_sym_count < 20)
12380 max_sym_count = 20;
12381 htab->strtabsize = max_sym_count;
12382 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12383 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12384 if (htab->strtab == NULL)
12385 goto error_return;
12386 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12387 flinfo.symshndxbuf
12388 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12389 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12390
12391 if (info->strip != strip_all || emit_relocs)
12392 {
12393 file_ptr off = elf_next_file_pos (abfd);
12394
12395 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
12396
12397 /* Note that at this point elf_next_file_pos (abfd) is
12398 incorrect. We do not yet know the size of the .symtab section.
12399 We correct next_file_pos below, after we do know the size. */
12400
12401 /* Start writing out the symbol table. The first symbol is always a
12402 dummy symbol. */
12403 elfsym.st_value = 0;
12404 elfsym.st_size = 0;
12405 elfsym.st_info = 0;
12406 elfsym.st_other = 0;
12407 elfsym.st_shndx = SHN_UNDEF;
12408 elfsym.st_target_internal = 0;
12409 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12410 bfd_und_section_ptr, NULL) != 1)
12411 goto error_return;
12412
12413 /* Output a symbol for each section if asked or they are used for
12414 relocs. These symbols usually have no names. We store the
12415 index of each one in the index field of the section, so that
12416 we can find it again when outputting relocs. */
12417
12418 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12419 {
12420 bool name_local_sections
12421 = (bed->elf_backend_name_local_section_symbols
12422 && bed->elf_backend_name_local_section_symbols (abfd));
12423 const char *name = NULL;
12424
12425 elfsym.st_size = 0;
12426 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12427 elfsym.st_other = 0;
12428 elfsym.st_value = 0;
12429 elfsym.st_target_internal = 0;
12430 for (i = 1; i < elf_numsections (abfd); i++)
12431 {
12432 o = bfd_section_from_elf_index (abfd, i);
12433 if (o != NULL)
12434 {
12435 o->target_index = bfd_get_symcount (abfd);
12436 elfsym.st_shndx = i;
12437 if (!bfd_link_relocatable (info))
12438 elfsym.st_value = o->vma;
12439 if (name_local_sections)
12440 name = o->name;
12441 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12442 NULL) != 1)
12443 goto error_return;
12444 }
12445 }
12446 }
12447 }
12448
12449 /* On some targets like Irix 5 the symbol split between local and global
12450 ones recorded in the sh_info field needs to be done between section
12451 and all other symbols. */
12452 if (bed->elf_backend_elfsym_local_is_section
12453 && bed->elf_backend_elfsym_local_is_section (abfd))
12454 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12455
12456 /* Allocate some memory to hold information read in from the input
12457 files. */
12458 if (max_contents_size != 0)
12459 {
12460 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12461 if (flinfo.contents == NULL)
12462 goto error_return;
12463 }
12464
12465 if (max_external_reloc_size != 0)
12466 {
12467 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12468 if (flinfo.external_relocs == NULL)
12469 goto error_return;
12470 }
12471
12472 if (max_internal_reloc_count != 0)
12473 {
12474 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12475 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12476 if (flinfo.internal_relocs == NULL)
12477 goto error_return;
12478 }
12479
12480 if (max_sym_count != 0)
12481 {
12482 amt = max_sym_count * bed->s->sizeof_sym;
12483 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12484 if (flinfo.external_syms == NULL)
12485 goto error_return;
12486
12487 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12488 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12489 if (flinfo.internal_syms == NULL)
12490 goto error_return;
12491
12492 amt = max_sym_count * sizeof (long);
12493 flinfo.indices = (long int *) bfd_malloc (amt);
12494 if (flinfo.indices == NULL)
12495 goto error_return;
12496
12497 amt = max_sym_count * sizeof (asection *);
12498 flinfo.sections = (asection **) bfd_malloc (amt);
12499 if (flinfo.sections == NULL)
12500 goto error_return;
12501 }
12502
12503 if (max_sym_shndx_count != 0)
12504 {
12505 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12506 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12507 if (flinfo.locsym_shndx == NULL)
12508 goto error_return;
12509 }
12510
12511 if (htab->tls_sec)
12512 {
12513 bfd_vma base, end = 0; /* Both bytes. */
12514 asection *sec;
12515
12516 for (sec = htab->tls_sec;
12517 sec && (sec->flags & SEC_THREAD_LOCAL);
12518 sec = sec->next)
12519 {
12520 bfd_size_type size = sec->size;
12521 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12522
12523 if (size == 0
12524 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12525 {
12526 struct bfd_link_order *ord = sec->map_tail.link_order;
12527
12528 if (ord != NULL)
12529 size = ord->offset * opb + ord->size;
12530 }
12531 end = sec->vma + size / opb;
12532 }
12533 base = htab->tls_sec->vma;
12534 /* Only align end of TLS section if static TLS doesn't have special
12535 alignment requirements. */
12536 if (bed->static_tls_alignment == 1)
12537 end = align_power (end, htab->tls_sec->alignment_power);
12538 htab->tls_size = end - base;
12539 }
12540
12541 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12542 return false;
12543
12544 /* Since ELF permits relocations to be against local symbols, we
12545 must have the local symbols available when we do the relocations.
12546 Since we would rather only read the local symbols once, and we
12547 would rather not keep them in memory, we handle all the
12548 relocations for a single input file at the same time.
12549
12550 Unfortunately, there is no way to know the total number of local
12551 symbols until we have seen all of them, and the local symbol
12552 indices precede the global symbol indices. This means that when
12553 we are generating relocatable output, and we see a reloc against
12554 a global symbol, we can not know the symbol index until we have
12555 finished examining all the local symbols to see which ones we are
12556 going to output. To deal with this, we keep the relocations in
12557 memory, and don't output them until the end of the link. This is
12558 an unfortunate waste of memory, but I don't see a good way around
12559 it. Fortunately, it only happens when performing a relocatable
12560 link, which is not the common case. FIXME: If keep_memory is set
12561 we could write the relocs out and then read them again; I don't
12562 know how bad the memory loss will be. */
12563
12564 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12565 sub->output_has_begun = false;
12566 for (o = abfd->sections; o != NULL; o = o->next)
12567 {
12568 for (p = o->map_head.link_order; p != NULL; p = p->next)
12569 {
12570 if (p->type == bfd_indirect_link_order
12571 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12572 == bfd_target_elf_flavour)
12573 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12574 {
12575 if (! sub->output_has_begun)
12576 {
12577 if (! elf_link_input_bfd (&flinfo, sub))
12578 goto error_return;
12579 sub->output_has_begun = true;
12580 }
12581 }
12582 else if (p->type == bfd_section_reloc_link_order
12583 || p->type == bfd_symbol_reloc_link_order)
12584 {
12585 if (! elf_reloc_link_order (abfd, info, o, p))
12586 goto error_return;
12587 }
12588 else
12589 {
12590 if (! _bfd_default_link_order (abfd, info, o, p))
12591 {
12592 if (p->type == bfd_indirect_link_order
12593 && (bfd_get_flavour (sub)
12594 == bfd_target_elf_flavour)
12595 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12596 != bed->s->elfclass))
12597 {
12598 const char *iclass, *oclass;
12599
12600 switch (bed->s->elfclass)
12601 {
12602 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12603 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12604 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12605 default: abort ();
12606 }
12607
12608 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12609 {
12610 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12611 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12612 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12613 default: abort ();
12614 }
12615
12616 bfd_set_error (bfd_error_wrong_format);
12617 _bfd_error_handler
12618 /* xgettext:c-format */
12619 (_("%pB: file class %s incompatible with %s"),
12620 sub, iclass, oclass);
12621 }
12622
12623 goto error_return;
12624 }
12625 }
12626 }
12627 }
12628
12629 /* Free symbol buffer if needed. */
12630 if (!info->reduce_memory_overheads)
12631 {
12632 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12633 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12634 {
12635 free (elf_tdata (sub)->symbuf);
12636 elf_tdata (sub)->symbuf = NULL;
12637 }
12638 }
12639
12640 ret = true;
12641
12642 /* Output any global symbols that got converted to local in a
12643 version script or due to symbol visibility. We do this in a
12644 separate step since ELF requires all local symbols to appear
12645 prior to any global symbols. FIXME: We should only do this if
12646 some global symbols were, in fact, converted to become local.
12647 FIXME: Will this work correctly with the Irix 5 linker? */
12648 eoinfo.failed = false;
12649 eoinfo.flinfo = &flinfo;
12650 eoinfo.localsyms = true;
12651 eoinfo.file_sym_done = false;
12652 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12653 if (eoinfo.failed)
12654 {
12655 ret = false;
12656 goto return_local_hash_table;
12657 }
12658
12659 /* If backend needs to output some local symbols not present in the hash
12660 table, do it now. */
12661 if (bed->elf_backend_output_arch_local_syms
12662 && (info->strip != strip_all || emit_relocs))
12663 {
12664 if (! ((*bed->elf_backend_output_arch_local_syms)
12665 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12666 {
12667 ret = false;
12668 goto return_local_hash_table;
12669 }
12670 }
12671
12672 /* That wrote out all the local symbols. Finish up the symbol table
12673 with the global symbols. Even if we want to strip everything we
12674 can, we still need to deal with those global symbols that got
12675 converted to local in a version script. */
12676
12677 /* The sh_info field records the index of the first non local symbol. */
12678 if (!symtab_hdr->sh_info)
12679 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12680
12681 if (dynamic
12682 && htab->dynsym != NULL
12683 && htab->dynsym->output_section != bfd_abs_section_ptr)
12684 {
12685 Elf_Internal_Sym sym;
12686 bfd_byte *dynsym = htab->dynsym->contents;
12687
12688 o = htab->dynsym->output_section;
12689 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12690
12691 /* Write out the section symbols for the output sections. */
12692 if (bfd_link_pic (info)
12693 || htab->is_relocatable_executable)
12694 {
12695 asection *s;
12696
12697 sym.st_size = 0;
12698 sym.st_name = 0;
12699 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12700 sym.st_other = 0;
12701 sym.st_target_internal = 0;
12702
12703 for (s = abfd->sections; s != NULL; s = s->next)
12704 {
12705 int indx;
12706 bfd_byte *dest;
12707 long dynindx;
12708
12709 dynindx = elf_section_data (s)->dynindx;
12710 if (dynindx <= 0)
12711 continue;
12712 indx = elf_section_data (s)->this_idx;
12713 BFD_ASSERT (indx > 0);
12714 sym.st_shndx = indx;
12715 if (! check_dynsym (abfd, &sym))
12716 {
12717 ret = false;
12718 goto return_local_hash_table;
12719 }
12720 sym.st_value = s->vma;
12721 dest = dynsym + dynindx * bed->s->sizeof_sym;
12722
12723 /* Inform the linker of the addition of this symbol. */
12724
12725 if (info->callbacks->ctf_new_dynsym)
12726 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12727
12728 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12729 }
12730 }
12731
12732 /* Write out the local dynsyms. */
12733 if (htab->dynlocal)
12734 {
12735 struct elf_link_local_dynamic_entry *e;
12736 for (e = htab->dynlocal; e ; e = e->next)
12737 {
12738 asection *s;
12739 bfd_byte *dest;
12740
12741 /* Copy the internal symbol and turn off visibility.
12742 Note that we saved a word of storage and overwrote
12743 the original st_name with the dynstr_index. */
12744 sym = e->isym;
12745 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12746 sym.st_shndx = SHN_UNDEF;
12747
12748 s = bfd_section_from_elf_index (e->input_bfd,
12749 e->isym.st_shndx);
12750 if (s != NULL
12751 && s->output_section != NULL
12752 && elf_section_data (s->output_section) != NULL)
12753 {
12754 sym.st_shndx =
12755 elf_section_data (s->output_section)->this_idx;
12756 if (! check_dynsym (abfd, &sym))
12757 {
12758 ret = false;
12759 goto return_local_hash_table;
12760 }
12761 sym.st_value = (s->output_section->vma
12762 + s->output_offset
12763 + e->isym.st_value);
12764 }
12765
12766 /* Inform the linker of the addition of this symbol. */
12767
12768 if (info->callbacks->ctf_new_dynsym)
12769 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12770
12771 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12772 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12773 }
12774 }
12775 }
12776
12777 /* We get the global symbols from the hash table. */
12778 eoinfo.failed = false;
12779 eoinfo.localsyms = false;
12780 eoinfo.flinfo = &flinfo;
12781 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12782 if (eoinfo.failed)
12783 {
12784 ret = false;
12785 goto return_local_hash_table;
12786 }
12787
12788 /* If backend needs to output some symbols not present in the hash
12789 table, do it now. */
12790 if (bed->elf_backend_output_arch_syms
12791 && (info->strip != strip_all || emit_relocs))
12792 {
12793 if (! ((*bed->elf_backend_output_arch_syms)
12794 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12795 {
12796 ret = false;
12797 goto return_local_hash_table;
12798 }
12799 }
12800
12801 /* Finalize the .strtab section. */
12802 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12803
12804 /* Swap out the .strtab section. */
12805 if (!elf_link_swap_symbols_out (&flinfo))
12806 {
12807 ret = false;
12808 goto return_local_hash_table;
12809 }
12810
12811 /* Now we know the size of the symtab section. */
12812 if (bfd_get_symcount (abfd) > 0)
12813 {
12814 /* Finish up and write out the symbol string table (.strtab)
12815 section. */
12816 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12817 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12818
12819 if (elf_symtab_shndx_list (abfd))
12820 {
12821 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12822
12823 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12824 {
12825 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12826 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12827 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12828 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12829 symtab_shndx_hdr->sh_size = amt;
12830
12831 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12832 off, true);
12833
12834 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12835 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12836 {
12837 ret = false;
12838 goto return_local_hash_table;
12839 }
12840 }
12841 }
12842
12843 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12844 /* sh_name was set in prep_headers. */
12845 symstrtab_hdr->sh_type = SHT_STRTAB;
12846 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12847 symstrtab_hdr->sh_addr = 0;
12848 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12849 symstrtab_hdr->sh_entsize = 0;
12850 symstrtab_hdr->sh_link = 0;
12851 symstrtab_hdr->sh_info = 0;
12852 /* sh_offset is set just below. */
12853 symstrtab_hdr->sh_addralign = 1;
12854
12855 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12856 off, true);
12857 elf_next_file_pos (abfd) = off;
12858
12859 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12860 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12861 {
12862 ret = false;
12863 goto return_local_hash_table;
12864 }
12865 }
12866
12867 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12868 {
12869 _bfd_error_handler (_("%pB: failed to generate import library"),
12870 info->out_implib_bfd);
12871 ret = false;
12872 goto return_local_hash_table;
12873 }
12874
12875 /* Adjust the relocs to have the correct symbol indices. */
12876 for (o = abfd->sections; o != NULL; o = o->next)
12877 {
12878 struct bfd_elf_section_data *esdo = elf_section_data (o);
12879 bool sort;
12880
12881 if ((o->flags & SEC_RELOC) == 0)
12882 continue;
12883
12884 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12885 if (esdo->rel.hdr != NULL
12886 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12887 {
12888 ret = false;
12889 goto return_local_hash_table;
12890 }
12891 if (esdo->rela.hdr != NULL
12892 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12893 {
12894 ret = false;
12895 goto return_local_hash_table;
12896 }
12897
12898 /* Set the reloc_count field to 0 to prevent write_relocs from
12899 trying to swap the relocs out itself. */
12900 o->reloc_count = 0;
12901 }
12902
12903 if (dynamic && info->combreloc && dynobj != NULL)
12904 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12905
12906 /* If we are linking against a dynamic object, or generating a
12907 shared library, finish up the dynamic linking information. */
12908 if (dynamic)
12909 {
12910 bfd_byte *dyncon, *dynconend;
12911
12912 /* Fix up .dynamic entries. */
12913 o = bfd_get_linker_section (dynobj, ".dynamic");
12914 BFD_ASSERT (o != NULL);
12915
12916 dyncon = o->contents;
12917 dynconend = o->contents + o->size;
12918 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12919 {
12920 Elf_Internal_Dyn dyn;
12921 const char *name;
12922 unsigned int type;
12923 bfd_size_type sh_size;
12924 bfd_vma sh_addr;
12925
12926 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12927
12928 switch (dyn.d_tag)
12929 {
12930 default:
12931 continue;
12932 case DT_NULL:
12933 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12934 {
12935 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12936 {
12937 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12938 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12939 default: continue;
12940 }
12941 dyn.d_un.d_val = relativecount;
12942 relativecount = 0;
12943 break;
12944 }
12945 continue;
12946
12947 case DT_INIT:
12948 name = info->init_function;
12949 goto get_sym;
12950 case DT_FINI:
12951 name = info->fini_function;
12952 get_sym:
12953 {
12954 struct elf_link_hash_entry *h;
12955
12956 h = elf_link_hash_lookup (htab, name, false, false, true);
12957 if (h != NULL
12958 && (h->root.type == bfd_link_hash_defined
12959 || h->root.type == bfd_link_hash_defweak))
12960 {
12961 dyn.d_un.d_ptr = h->root.u.def.value;
12962 o = h->root.u.def.section;
12963 if (o->output_section != NULL)
12964 dyn.d_un.d_ptr += (o->output_section->vma
12965 + o->output_offset);
12966 else
12967 {
12968 /* The symbol is imported from another shared
12969 library and does not apply to this one. */
12970 dyn.d_un.d_ptr = 0;
12971 }
12972 break;
12973 }
12974 }
12975 continue;
12976
12977 case DT_PREINIT_ARRAYSZ:
12978 name = ".preinit_array";
12979 goto get_out_size;
12980 case DT_INIT_ARRAYSZ:
12981 name = ".init_array";
12982 goto get_out_size;
12983 case DT_FINI_ARRAYSZ:
12984 name = ".fini_array";
12985 get_out_size:
12986 o = bfd_get_section_by_name (abfd, name);
12987 if (o == NULL)
12988 {
12989 _bfd_error_handler
12990 (_("could not find section %s"), name);
12991 goto error_return;
12992 }
12993 if (o->size == 0)
12994 _bfd_error_handler
12995 (_("warning: %s section has zero size"), name);
12996 dyn.d_un.d_val = o->size;
12997 break;
12998
12999 case DT_PREINIT_ARRAY:
13000 name = ".preinit_array";
13001 goto get_out_vma;
13002 case DT_INIT_ARRAY:
13003 name = ".init_array";
13004 goto get_out_vma;
13005 case DT_FINI_ARRAY:
13006 name = ".fini_array";
13007 get_out_vma:
13008 o = bfd_get_section_by_name (abfd, name);
13009 goto do_vma;
13010
13011 case DT_HASH:
13012 name = ".hash";
13013 goto get_vma;
13014 case DT_GNU_HASH:
13015 name = ".gnu.hash";
13016 goto get_vma;
13017 case DT_STRTAB:
13018 name = ".dynstr";
13019 goto get_vma;
13020 case DT_SYMTAB:
13021 name = ".dynsym";
13022 goto get_vma;
13023 case DT_VERDEF:
13024 name = ".gnu.version_d";
13025 goto get_vma;
13026 case DT_VERNEED:
13027 name = ".gnu.version_r";
13028 goto get_vma;
13029 case DT_VERSYM:
13030 name = ".gnu.version";
13031 get_vma:
13032 o = bfd_get_linker_section (dynobj, name);
13033 do_vma:
13034 if (o == NULL || bfd_is_abs_section (o->output_section))
13035 {
13036 _bfd_error_handler
13037 (_("could not find section %s"), name);
13038 goto error_return;
13039 }
13040 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13041 {
13042 _bfd_error_handler
13043 (_("warning: section '%s' is being made into a note"), name);
13044 bfd_set_error (bfd_error_nonrepresentable_section);
13045 goto error_return;
13046 }
13047 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13048 break;
13049
13050 case DT_REL:
13051 case DT_RELA:
13052 case DT_RELSZ:
13053 case DT_RELASZ:
13054 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13055 type = SHT_REL;
13056 else
13057 type = SHT_RELA;
13058 sh_size = 0;
13059 sh_addr = 0;
13060 for (i = 1; i < elf_numsections (abfd); i++)
13061 {
13062 Elf_Internal_Shdr *hdr;
13063
13064 hdr = elf_elfsections (abfd)[i];
13065 if (hdr->sh_type == type
13066 && (hdr->sh_flags & SHF_ALLOC) != 0)
13067 {
13068 sh_size += hdr->sh_size;
13069 if (sh_addr == 0
13070 || sh_addr > hdr->sh_addr)
13071 sh_addr = hdr->sh_addr;
13072 }
13073 }
13074
13075 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13076 {
13077 unsigned int opb = bfd_octets_per_byte (abfd, o);
13078
13079 /* Don't count procedure linkage table relocs in the
13080 overall reloc count. */
13081 sh_size -= htab->srelplt->size;
13082 if (sh_size == 0)
13083 /* If the size is zero, make the address zero too.
13084 This is to avoid a glibc bug. If the backend
13085 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13086 zero, then we'll put DT_RELA at the end of
13087 DT_JMPREL. glibc will interpret the end of
13088 DT_RELA matching the end of DT_JMPREL as the
13089 case where DT_RELA includes DT_JMPREL, and for
13090 LD_BIND_NOW will decide that processing DT_RELA
13091 will process the PLT relocs too. Net result:
13092 No PLT relocs applied. */
13093 sh_addr = 0;
13094
13095 /* If .rela.plt is the first .rela section, exclude
13096 it from DT_RELA. */
13097 else if (sh_addr == (htab->srelplt->output_section->vma
13098 + htab->srelplt->output_offset) * opb)
13099 sh_addr += htab->srelplt->size;
13100 }
13101
13102 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13103 dyn.d_un.d_val = sh_size;
13104 else
13105 dyn.d_un.d_ptr = sh_addr;
13106 break;
13107 }
13108 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13109 }
13110 }
13111
13112 /* If we have created any dynamic sections, then output them. */
13113 if (dynobj != NULL)
13114 {
13115 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13116 goto error_return;
13117
13118 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13119 if (bfd_link_textrel_check (info)
13120 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13121 {
13122 bfd_byte *dyncon, *dynconend;
13123
13124 dyncon = o->contents;
13125 dynconend = o->contents + o->size;
13126 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13127 {
13128 Elf_Internal_Dyn dyn;
13129
13130 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13131
13132 if (dyn.d_tag == DT_TEXTREL)
13133 {
13134 if (info->textrel_check == textrel_check_error)
13135 info->callbacks->einfo
13136 (_("%P%X: read-only segment has dynamic relocations\n"));
13137 else if (bfd_link_dll (info))
13138 info->callbacks->einfo
13139 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13140 else
13141 info->callbacks->einfo
13142 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13143 break;
13144 }
13145 }
13146 }
13147
13148 for (o = dynobj->sections; o != NULL; o = o->next)
13149 {
13150 if ((o->flags & SEC_HAS_CONTENTS) == 0
13151 || o->size == 0
13152 || o->output_section == bfd_abs_section_ptr)
13153 continue;
13154 if ((o->flags & SEC_LINKER_CREATED) == 0)
13155 {
13156 /* At this point, we are only interested in sections
13157 created by _bfd_elf_link_create_dynamic_sections. */
13158 continue;
13159 }
13160 if (htab->stab_info.stabstr == o)
13161 continue;
13162 if (htab->eh_info.hdr_sec == o)
13163 continue;
13164 if (strcmp (o->name, ".dynstr") != 0)
13165 {
13166 bfd_size_type octets = ((file_ptr) o->output_offset
13167 * bfd_octets_per_byte (abfd, o));
13168 if (!bfd_set_section_contents (abfd, o->output_section,
13169 o->contents, octets, o->size))
13170 goto error_return;
13171 }
13172 else
13173 {
13174 /* The contents of the .dynstr section are actually in a
13175 stringtab. */
13176 file_ptr off;
13177
13178 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13179 if (bfd_seek (abfd, off, SEEK_SET) != 0
13180 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13181 goto error_return;
13182 }
13183 }
13184 }
13185
13186 if (!info->resolve_section_groups)
13187 {
13188 bool failed = false;
13189
13190 BFD_ASSERT (bfd_link_relocatable (info));
13191 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13192 if (failed)
13193 goto error_return;
13194 }
13195
13196 /* If we have optimized stabs strings, output them. */
13197 if (htab->stab_info.stabstr != NULL)
13198 {
13199 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13200 goto error_return;
13201 }
13202
13203 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13204 goto error_return;
13205
13206 if (info->callbacks->emit_ctf)
13207 info->callbacks->emit_ctf ();
13208
13209 elf_final_link_free (abfd, &flinfo);
13210
13211 if (attr_section)
13212 {
13213 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13214 if (contents == NULL)
13215 {
13216 /* Bail out and fail. */
13217 ret = false;
13218 goto return_local_hash_table;
13219 }
13220 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13221 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13222 free (contents);
13223 }
13224
13225 return_local_hash_table:
13226 if (info->unique_symbol)
13227 bfd_hash_table_free (&flinfo.local_hash_table);
13228 return ret;
13229
13230 error_return:
13231 elf_final_link_free (abfd, &flinfo);
13232 ret = false;
13233 goto return_local_hash_table;
13234 }
13235 \f
13236 /* Initialize COOKIE for input bfd ABFD. */
13237
13238 static bool
13239 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13240 struct bfd_link_info *info, bfd *abfd)
13241 {
13242 Elf_Internal_Shdr *symtab_hdr;
13243 const struct elf_backend_data *bed;
13244
13245 bed = get_elf_backend_data (abfd);
13246 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13247
13248 cookie->abfd = abfd;
13249 cookie->sym_hashes = elf_sym_hashes (abfd);
13250 cookie->bad_symtab = elf_bad_symtab (abfd);
13251 if (cookie->bad_symtab)
13252 {
13253 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13254 cookie->extsymoff = 0;
13255 }
13256 else
13257 {
13258 cookie->locsymcount = symtab_hdr->sh_info;
13259 cookie->extsymoff = symtab_hdr->sh_info;
13260 }
13261
13262 if (bed->s->arch_size == 32)
13263 cookie->r_sym_shift = 8;
13264 else
13265 cookie->r_sym_shift = 32;
13266
13267 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13268 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13269 {
13270 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13271 cookie->locsymcount, 0,
13272 NULL, NULL, NULL);
13273 if (cookie->locsyms == NULL)
13274 {
13275 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13276 return false;
13277 }
13278 if (info->keep_memory)
13279 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13280 }
13281 return true;
13282 }
13283
13284 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13285
13286 static void
13287 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13288 {
13289 Elf_Internal_Shdr *symtab_hdr;
13290
13291 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13292 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13293 free (cookie->locsyms);
13294 }
13295
13296 /* Initialize the relocation information in COOKIE for input section SEC
13297 of input bfd ABFD. */
13298
13299 static bool
13300 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13301 struct bfd_link_info *info, bfd *abfd,
13302 asection *sec)
13303 {
13304 if (sec->reloc_count == 0)
13305 {
13306 cookie->rels = NULL;
13307 cookie->relend = NULL;
13308 }
13309 else
13310 {
13311 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13312 info->keep_memory);
13313 if (cookie->rels == NULL)
13314 return false;
13315 cookie->rel = cookie->rels;
13316 cookie->relend = cookie->rels + sec->reloc_count;
13317 }
13318 cookie->rel = cookie->rels;
13319 return true;
13320 }
13321
13322 /* Free the memory allocated by init_reloc_cookie_rels,
13323 if appropriate. */
13324
13325 static void
13326 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13327 asection *sec)
13328 {
13329 if (elf_section_data (sec)->relocs != cookie->rels)
13330 free (cookie->rels);
13331 }
13332
13333 /* Initialize the whole of COOKIE for input section SEC. */
13334
13335 static bool
13336 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13337 struct bfd_link_info *info,
13338 asection *sec)
13339 {
13340 if (!init_reloc_cookie (cookie, info, sec->owner))
13341 goto error1;
13342 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13343 goto error2;
13344 return true;
13345
13346 error2:
13347 fini_reloc_cookie (cookie, sec->owner);
13348 error1:
13349 return false;
13350 }
13351
13352 /* Free the memory allocated by init_reloc_cookie_for_section,
13353 if appropriate. */
13354
13355 static void
13356 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13357 asection *sec)
13358 {
13359 fini_reloc_cookie_rels (cookie, sec);
13360 fini_reloc_cookie (cookie, sec->owner);
13361 }
13362 \f
13363 /* Garbage collect unused sections. */
13364
13365 /* Default gc_mark_hook. */
13366
13367 asection *
13368 _bfd_elf_gc_mark_hook (asection *sec,
13369 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13370 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13371 struct elf_link_hash_entry *h,
13372 Elf_Internal_Sym *sym)
13373 {
13374 if (h != NULL)
13375 {
13376 switch (h->root.type)
13377 {
13378 case bfd_link_hash_defined:
13379 case bfd_link_hash_defweak:
13380 return h->root.u.def.section;
13381
13382 case bfd_link_hash_common:
13383 return h->root.u.c.p->section;
13384
13385 default:
13386 break;
13387 }
13388 }
13389 else
13390 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13391
13392 return NULL;
13393 }
13394
13395 /* Return the debug definition section. */
13396
13397 static asection *
13398 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13399 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13400 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13401 struct elf_link_hash_entry *h,
13402 Elf_Internal_Sym *sym)
13403 {
13404 if (h != NULL)
13405 {
13406 /* Return the global debug definition section. */
13407 if ((h->root.type == bfd_link_hash_defined
13408 || h->root.type == bfd_link_hash_defweak)
13409 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13410 return h->root.u.def.section;
13411 }
13412 else
13413 {
13414 /* Return the local debug definition section. */
13415 asection *isec = bfd_section_from_elf_index (sec->owner,
13416 sym->st_shndx);
13417 if ((isec->flags & SEC_DEBUGGING) != 0)
13418 return isec;
13419 }
13420
13421 return NULL;
13422 }
13423
13424 /* COOKIE->rel describes a relocation against section SEC, which is
13425 a section we've decided to keep. Return the section that contains
13426 the relocation symbol, or NULL if no section contains it. */
13427
13428 asection *
13429 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13430 elf_gc_mark_hook_fn gc_mark_hook,
13431 struct elf_reloc_cookie *cookie,
13432 bool *start_stop)
13433 {
13434 unsigned long r_symndx;
13435 struct elf_link_hash_entry *h, *hw;
13436
13437 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13438 if (r_symndx == STN_UNDEF)
13439 return NULL;
13440
13441 if (r_symndx >= cookie->locsymcount
13442 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13443 {
13444 bool was_marked;
13445
13446 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13447 if (h == NULL)
13448 {
13449 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13450 sec->owner);
13451 return NULL;
13452 }
13453 while (h->root.type == bfd_link_hash_indirect
13454 || h->root.type == bfd_link_hash_warning)
13455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13456
13457 was_marked = h->mark;
13458 h->mark = 1;
13459 /* Keep all aliases of the symbol too. If an object symbol
13460 needs to be copied into .dynbss then all of its aliases
13461 should be present as dynamic symbols, not just the one used
13462 on the copy relocation. */
13463 hw = h;
13464 while (hw->is_weakalias)
13465 {
13466 hw = hw->u.alias;
13467 hw->mark = 1;
13468 }
13469
13470 if (!was_marked && h->start_stop && !h->root.ldscript_def)
13471 {
13472 if (info->start_stop_gc)
13473 return NULL;
13474
13475 /* To work around a glibc bug, mark XXX input sections
13476 when there is a reference to __start_XXX or __stop_XXX
13477 symbols. */
13478 else if (start_stop != NULL)
13479 {
13480 asection *s = h->u2.start_stop_section;
13481 *start_stop = true;
13482 return s;
13483 }
13484 }
13485
13486 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13487 }
13488
13489 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13490 &cookie->locsyms[r_symndx]);
13491 }
13492
13493 /* COOKIE->rel describes a relocation against section SEC, which is
13494 a section we've decided to keep. Mark the section that contains
13495 the relocation symbol. */
13496
13497 bool
13498 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13499 asection *sec,
13500 elf_gc_mark_hook_fn gc_mark_hook,
13501 struct elf_reloc_cookie *cookie)
13502 {
13503 asection *rsec;
13504 bool start_stop = false;
13505
13506 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13507 while (rsec != NULL)
13508 {
13509 if (!rsec->gc_mark)
13510 {
13511 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13512 || (rsec->owner->flags & DYNAMIC) != 0)
13513 rsec->gc_mark = 1;
13514 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13515 return false;
13516 }
13517 if (!start_stop)
13518 break;
13519 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13520 }
13521 return true;
13522 }
13523
13524 /* The mark phase of garbage collection. For a given section, mark
13525 it and any sections in this section's group, and all the sections
13526 which define symbols to which it refers. */
13527
13528 bool
13529 _bfd_elf_gc_mark (struct bfd_link_info *info,
13530 asection *sec,
13531 elf_gc_mark_hook_fn gc_mark_hook)
13532 {
13533 bool ret;
13534 asection *group_sec, *eh_frame;
13535
13536 sec->gc_mark = 1;
13537
13538 /* Mark all the sections in the group. */
13539 group_sec = elf_section_data (sec)->next_in_group;
13540 if (group_sec && !group_sec->gc_mark)
13541 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13542 return false;
13543
13544 /* Look through the section relocs. */
13545 ret = true;
13546 eh_frame = elf_eh_frame_section (sec->owner);
13547 if ((sec->flags & SEC_RELOC) != 0
13548 && sec->reloc_count > 0
13549 && sec != eh_frame)
13550 {
13551 struct elf_reloc_cookie cookie;
13552
13553 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13554 ret = false;
13555 else
13556 {
13557 for (; cookie.rel < cookie.relend; cookie.rel++)
13558 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13559 {
13560 ret = false;
13561 break;
13562 }
13563 fini_reloc_cookie_for_section (&cookie, sec);
13564 }
13565 }
13566
13567 if (ret && eh_frame && elf_fde_list (sec))
13568 {
13569 struct elf_reloc_cookie cookie;
13570
13571 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13572 ret = false;
13573 else
13574 {
13575 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13576 gc_mark_hook, &cookie))
13577 ret = false;
13578 fini_reloc_cookie_for_section (&cookie, eh_frame);
13579 }
13580 }
13581
13582 eh_frame = elf_section_eh_frame_entry (sec);
13583 if (ret && eh_frame && !eh_frame->gc_mark)
13584 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13585 ret = false;
13586
13587 return ret;
13588 }
13589
13590 /* Scan and mark sections in a special or debug section group. */
13591
13592 static void
13593 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13594 {
13595 /* Point to first section of section group. */
13596 asection *ssec;
13597 /* Used to iterate the section group. */
13598 asection *msec;
13599
13600 bool is_special_grp = true;
13601 bool is_debug_grp = true;
13602
13603 /* First scan to see if group contains any section other than debug
13604 and special section. */
13605 ssec = msec = elf_next_in_group (grp);
13606 do
13607 {
13608 if ((msec->flags & SEC_DEBUGGING) == 0)
13609 is_debug_grp = false;
13610
13611 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13612 is_special_grp = false;
13613
13614 msec = elf_next_in_group (msec);
13615 }
13616 while (msec != ssec);
13617
13618 /* If this is a pure debug section group or pure special section group,
13619 keep all sections in this group. */
13620 if (is_debug_grp || is_special_grp)
13621 {
13622 do
13623 {
13624 msec->gc_mark = 1;
13625 msec = elf_next_in_group (msec);
13626 }
13627 while (msec != ssec);
13628 }
13629 }
13630
13631 /* Keep debug and special sections. */
13632
13633 bool
13634 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13635 elf_gc_mark_hook_fn mark_hook)
13636 {
13637 bfd *ibfd;
13638
13639 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13640 {
13641 asection *isec;
13642 bool some_kept;
13643 bool debug_frag_seen;
13644 bool has_kept_debug_info;
13645
13646 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13647 continue;
13648 isec = ibfd->sections;
13649 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13650 continue;
13651
13652 /* Ensure all linker created sections are kept,
13653 see if any other section is already marked,
13654 and note if we have any fragmented debug sections. */
13655 debug_frag_seen = some_kept = has_kept_debug_info = false;
13656 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13657 {
13658 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13659 isec->gc_mark = 1;
13660 else if (isec->gc_mark
13661 && (isec->flags & SEC_ALLOC) != 0
13662 && elf_section_type (isec) != SHT_NOTE)
13663 some_kept = true;
13664 else
13665 {
13666 /* Since all sections, except for backend specific ones,
13667 have been garbage collected, call mark_hook on this
13668 section if any of its linked-to sections is marked. */
13669 asection *linked_to_sec;
13670 for (linked_to_sec = elf_linked_to_section (isec);
13671 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13672 linked_to_sec = elf_linked_to_section (linked_to_sec))
13673 {
13674 if (linked_to_sec->gc_mark)
13675 {
13676 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13677 return false;
13678 break;
13679 }
13680 linked_to_sec->linker_mark = 1;
13681 }
13682 for (linked_to_sec = elf_linked_to_section (isec);
13683 linked_to_sec != NULL && linked_to_sec->linker_mark;
13684 linked_to_sec = elf_linked_to_section (linked_to_sec))
13685 linked_to_sec->linker_mark = 0;
13686 }
13687
13688 if (!debug_frag_seen
13689 && (isec->flags & SEC_DEBUGGING)
13690 && startswith (isec->name, ".debug_line."))
13691 debug_frag_seen = true;
13692 else if (strcmp (bfd_section_name (isec),
13693 "__patchable_function_entries") == 0
13694 && elf_linked_to_section (isec) == NULL)
13695 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13696 "need linked-to section "
13697 "for --gc-sections\n"),
13698 isec->owner, isec);
13699 }
13700
13701 /* If no non-note alloc section in this file will be kept, then
13702 we can toss out the debug and special sections. */
13703 if (!some_kept)
13704 continue;
13705
13706 /* Keep debug and special sections like .comment when they are
13707 not part of a group. Also keep section groups that contain
13708 just debug sections or special sections. NB: Sections with
13709 linked-to section has been handled above. */
13710 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13711 {
13712 if ((isec->flags & SEC_GROUP) != 0)
13713 _bfd_elf_gc_mark_debug_special_section_group (isec);
13714 else if (((isec->flags & SEC_DEBUGGING) != 0
13715 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13716 && elf_next_in_group (isec) == NULL
13717 && elf_linked_to_section (isec) == NULL)
13718 isec->gc_mark = 1;
13719 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13720 has_kept_debug_info = true;
13721 }
13722
13723 /* Look for CODE sections which are going to be discarded,
13724 and find and discard any fragmented debug sections which
13725 are associated with that code section. */
13726 if (debug_frag_seen)
13727 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13728 if ((isec->flags & SEC_CODE) != 0
13729 && isec->gc_mark == 0)
13730 {
13731 unsigned int ilen;
13732 asection *dsec;
13733
13734 ilen = strlen (isec->name);
13735
13736 /* Association is determined by the name of the debug
13737 section containing the name of the code section as
13738 a suffix. For example .debug_line.text.foo is a
13739 debug section associated with .text.foo. */
13740 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13741 {
13742 unsigned int dlen;
13743
13744 if (dsec->gc_mark == 0
13745 || (dsec->flags & SEC_DEBUGGING) == 0)
13746 continue;
13747
13748 dlen = strlen (dsec->name);
13749
13750 if (dlen > ilen
13751 && strncmp (dsec->name + (dlen - ilen),
13752 isec->name, ilen) == 0)
13753 dsec->gc_mark = 0;
13754 }
13755 }
13756
13757 /* Mark debug sections referenced by kept debug sections. */
13758 if (has_kept_debug_info)
13759 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13760 if (isec->gc_mark
13761 && (isec->flags & SEC_DEBUGGING) != 0)
13762 if (!_bfd_elf_gc_mark (info, isec,
13763 elf_gc_mark_debug_section))
13764 return false;
13765 }
13766 return true;
13767 }
13768
13769 static bool
13770 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13771 {
13772 bfd *sub;
13773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13774
13775 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13776 {
13777 asection *o;
13778
13779 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13780 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13781 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13782 continue;
13783 o = sub->sections;
13784 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13785 continue;
13786
13787 for (o = sub->sections; o != NULL; o = o->next)
13788 {
13789 /* When any section in a section group is kept, we keep all
13790 sections in the section group. If the first member of
13791 the section group is excluded, we will also exclude the
13792 group section. */
13793 if (o->flags & SEC_GROUP)
13794 {
13795 asection *first = elf_next_in_group (o);
13796 o->gc_mark = first->gc_mark;
13797 }
13798
13799 if (o->gc_mark)
13800 continue;
13801
13802 /* Skip sweeping sections already excluded. */
13803 if (o->flags & SEC_EXCLUDE)
13804 continue;
13805
13806 /* Since this is early in the link process, it is simple
13807 to remove a section from the output. */
13808 o->flags |= SEC_EXCLUDE;
13809
13810 if (info->print_gc_sections && o->size != 0)
13811 /* xgettext:c-format */
13812 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13813 o, sub);
13814 }
13815 }
13816
13817 return true;
13818 }
13819
13820 /* Propagate collected vtable information. This is called through
13821 elf_link_hash_traverse. */
13822
13823 static bool
13824 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13825 {
13826 /* Those that are not vtables. */
13827 if (h->start_stop
13828 || h->u2.vtable == NULL
13829 || h->u2.vtable->parent == NULL)
13830 return true;
13831
13832 /* Those vtables that do not have parents, we cannot merge. */
13833 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13834 return true;
13835
13836 /* If we've already been done, exit. */
13837 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13838 return true;
13839
13840 /* Make sure the parent's table is up to date. */
13841 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13842
13843 if (h->u2.vtable->used == NULL)
13844 {
13845 /* None of this table's entries were referenced. Re-use the
13846 parent's table. */
13847 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13848 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13849 }
13850 else
13851 {
13852 size_t n;
13853 bool *cu, *pu;
13854
13855 /* Or the parent's entries into ours. */
13856 cu = h->u2.vtable->used;
13857 cu[-1] = true;
13858 pu = h->u2.vtable->parent->u2.vtable->used;
13859 if (pu != NULL)
13860 {
13861 const struct elf_backend_data *bed;
13862 unsigned int log_file_align;
13863
13864 bed = get_elf_backend_data (h->root.u.def.section->owner);
13865 log_file_align = bed->s->log_file_align;
13866 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13867 while (n--)
13868 {
13869 if (*pu)
13870 *cu = true;
13871 pu++;
13872 cu++;
13873 }
13874 }
13875 }
13876
13877 return true;
13878 }
13879
13880 static bool
13881 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13882 {
13883 asection *sec;
13884 bfd_vma hstart, hend;
13885 Elf_Internal_Rela *relstart, *relend, *rel;
13886 const struct elf_backend_data *bed;
13887 unsigned int log_file_align;
13888
13889 /* Take care of both those symbols that do not describe vtables as
13890 well as those that are not loaded. */
13891 if (h->start_stop
13892 || h->u2.vtable == NULL
13893 || h->u2.vtable->parent == NULL)
13894 return true;
13895
13896 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13897 || h->root.type == bfd_link_hash_defweak);
13898
13899 sec = h->root.u.def.section;
13900 hstart = h->root.u.def.value;
13901 hend = hstart + h->size;
13902
13903 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, true);
13904 if (!relstart)
13905 return *(bool *) okp = false;
13906 bed = get_elf_backend_data (sec->owner);
13907 log_file_align = bed->s->log_file_align;
13908
13909 relend = relstart + sec->reloc_count;
13910
13911 for (rel = relstart; rel < relend; ++rel)
13912 if (rel->r_offset >= hstart && rel->r_offset < hend)
13913 {
13914 /* If the entry is in use, do nothing. */
13915 if (h->u2.vtable->used
13916 && (rel->r_offset - hstart) < h->u2.vtable->size)
13917 {
13918 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13919 if (h->u2.vtable->used[entry])
13920 continue;
13921 }
13922 /* Otherwise, kill it. */
13923 rel->r_offset = rel->r_info = rel->r_addend = 0;
13924 }
13925
13926 return true;
13927 }
13928
13929 /* Mark sections containing dynamically referenced symbols. When
13930 building shared libraries, we must assume that any visible symbol is
13931 referenced. */
13932
13933 bool
13934 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13935 {
13936 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13937 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13938
13939 if ((h->root.type == bfd_link_hash_defined
13940 || h->root.type == bfd_link_hash_defweak)
13941 && (!h->start_stop
13942 || h->root.ldscript_def
13943 || !info->start_stop_gc)
13944 && ((h->ref_dynamic && !h->forced_local)
13945 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13946 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13947 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13948 && (!bfd_link_executable (info)
13949 || info->gc_keep_exported
13950 || info->export_dynamic
13951 || (h->dynamic
13952 && d != NULL
13953 && (*d->match) (&d->head, NULL, h->root.root.string)))
13954 && (h->versioned >= versioned
13955 || !bfd_hide_sym_by_version (info->version_info,
13956 h->root.root.string)))))
13957 h->root.u.def.section->flags |= SEC_KEEP;
13958
13959 return true;
13960 }
13961
13962 /* Keep all sections containing symbols undefined on the command-line,
13963 and the section containing the entry symbol. */
13964
13965 void
13966 _bfd_elf_gc_keep (struct bfd_link_info *info)
13967 {
13968 struct bfd_sym_chain *sym;
13969
13970 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13971 {
13972 struct elf_link_hash_entry *h;
13973
13974 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13975 false, false, false);
13976
13977 if (h != NULL
13978 && (h->root.type == bfd_link_hash_defined
13979 || h->root.type == bfd_link_hash_defweak)
13980 && !bfd_is_const_section (h->root.u.def.section))
13981 h->root.u.def.section->flags |= SEC_KEEP;
13982 }
13983 }
13984
13985 bool
13986 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13987 struct bfd_link_info *info)
13988 {
13989 bfd *ibfd = info->input_bfds;
13990
13991 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13992 {
13993 asection *sec;
13994 struct elf_reloc_cookie cookie;
13995
13996 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13997 continue;
13998 sec = ibfd->sections;
13999 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14000 continue;
14001
14002 if (!init_reloc_cookie (&cookie, info, ibfd))
14003 return false;
14004
14005 for (sec = ibfd->sections; sec; sec = sec->next)
14006 {
14007 if (startswith (bfd_section_name (sec), ".eh_frame_entry")
14008 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14009 {
14010 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14011 fini_reloc_cookie_rels (&cookie, sec);
14012 }
14013 }
14014 }
14015 return true;
14016 }
14017
14018 /* Do mark and sweep of unused sections. */
14019
14020 bool
14021 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14022 {
14023 bool ok = true;
14024 bfd *sub;
14025 elf_gc_mark_hook_fn gc_mark_hook;
14026 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14027 struct elf_link_hash_table *htab;
14028
14029 if (!bed->can_gc_sections
14030 || !is_elf_hash_table (info->hash))
14031 {
14032 _bfd_error_handler(_("warning: gc-sections option ignored"));
14033 return true;
14034 }
14035
14036 bed->gc_keep (info);
14037 htab = elf_hash_table (info);
14038
14039 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14040 at the .eh_frame section if we can mark the FDEs individually. */
14041 for (sub = info->input_bfds;
14042 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14043 sub = sub->link.next)
14044 {
14045 asection *sec;
14046 struct elf_reloc_cookie cookie;
14047
14048 sec = sub->sections;
14049 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14050 continue;
14051 sec = bfd_get_section_by_name (sub, ".eh_frame");
14052 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14053 {
14054 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14055 if (elf_section_data (sec)->sec_info
14056 && (sec->flags & SEC_LINKER_CREATED) == 0)
14057 elf_eh_frame_section (sub) = sec;
14058 fini_reloc_cookie_for_section (&cookie, sec);
14059 sec = bfd_get_next_section_by_name (NULL, sec);
14060 }
14061 }
14062
14063 /* Apply transitive closure to the vtable entry usage info. */
14064 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14065 if (!ok)
14066 return false;
14067
14068 /* Kill the vtable relocations that were not used. */
14069 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
14070 if (!ok)
14071 return false;
14072
14073 /* Mark dynamically referenced symbols. */
14074 if (htab->dynamic_sections_created || info->gc_keep_exported)
14075 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14076
14077 /* Grovel through relocs to find out who stays ... */
14078 gc_mark_hook = bed->gc_mark_hook;
14079 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14080 {
14081 asection *o;
14082
14083 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14084 || elf_object_id (sub) != elf_hash_table_id (htab)
14085 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14086 continue;
14087
14088 o = sub->sections;
14089 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14090 continue;
14091
14092 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14093 Also treat note sections as a root, if the section is not part
14094 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14095 well as FINI_ARRAY sections for ld -r. */
14096 for (o = sub->sections; o != NULL; o = o->next)
14097 if (!o->gc_mark
14098 && (o->flags & SEC_EXCLUDE) == 0
14099 && ((o->flags & SEC_KEEP) != 0
14100 || (bfd_link_relocatable (info)
14101 && ((elf_section_data (o)->this_hdr.sh_type
14102 == SHT_PREINIT_ARRAY)
14103 || (elf_section_data (o)->this_hdr.sh_type
14104 == SHT_INIT_ARRAY)
14105 || (elf_section_data (o)->this_hdr.sh_type
14106 == SHT_FINI_ARRAY)))
14107 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14108 && elf_next_in_group (o) == NULL
14109 && elf_linked_to_section (o) == NULL)
14110 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14111 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14112 {
14113 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14114 return false;
14115 }
14116 }
14117
14118 /* Allow the backend to mark additional target specific sections. */
14119 bed->gc_mark_extra_sections (info, gc_mark_hook);
14120
14121 /* ... and mark SEC_EXCLUDE for those that go. */
14122 return elf_gc_sweep (abfd, info);
14123 }
14124 \f
14125 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14126
14127 bool
14128 bfd_elf_gc_record_vtinherit (bfd *abfd,
14129 asection *sec,
14130 struct elf_link_hash_entry *h,
14131 bfd_vma offset)
14132 {
14133 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14134 struct elf_link_hash_entry **search, *child;
14135 size_t extsymcount;
14136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14137
14138 /* The sh_info field of the symtab header tells us where the
14139 external symbols start. We don't care about the local symbols at
14140 this point. */
14141 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14142 if (!elf_bad_symtab (abfd))
14143 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14144
14145 sym_hashes = elf_sym_hashes (abfd);
14146 sym_hashes_end = sym_hashes + extsymcount;
14147
14148 /* Hunt down the child symbol, which is in this section at the same
14149 offset as the relocation. */
14150 for (search = sym_hashes; search != sym_hashes_end; ++search)
14151 {
14152 if ((child = *search) != NULL
14153 && (child->root.type == bfd_link_hash_defined
14154 || child->root.type == bfd_link_hash_defweak)
14155 && child->root.u.def.section == sec
14156 && child->root.u.def.value == offset)
14157 goto win;
14158 }
14159
14160 /* xgettext:c-format */
14161 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14162 abfd, sec, (uint64_t) offset);
14163 bfd_set_error (bfd_error_invalid_operation);
14164 return false;
14165
14166 win:
14167 if (!child->u2.vtable)
14168 {
14169 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14170 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14171 if (!child->u2.vtable)
14172 return false;
14173 }
14174 if (!h)
14175 {
14176 /* This *should* only be the absolute section. It could potentially
14177 be that someone has defined a non-global vtable though, which
14178 would be bad. It isn't worth paging in the local symbols to be
14179 sure though; that case should simply be handled by the assembler. */
14180
14181 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14182 }
14183 else
14184 child->u2.vtable->parent = h;
14185
14186 return true;
14187 }
14188
14189 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14190
14191 bool
14192 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14193 struct elf_link_hash_entry *h,
14194 bfd_vma addend)
14195 {
14196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14197 unsigned int log_file_align = bed->s->log_file_align;
14198
14199 if (!h)
14200 {
14201 /* xgettext:c-format */
14202 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14203 abfd, sec);
14204 bfd_set_error (bfd_error_bad_value);
14205 return false;
14206 }
14207
14208 if (!h->u2.vtable)
14209 {
14210 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14211 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14212 if (!h->u2.vtable)
14213 return false;
14214 }
14215
14216 if (addend >= h->u2.vtable->size)
14217 {
14218 size_t size, bytes, file_align;
14219 bool *ptr = h->u2.vtable->used;
14220
14221 /* While the symbol is undefined, we have to be prepared to handle
14222 a zero size. */
14223 file_align = 1 << log_file_align;
14224 if (h->root.type == bfd_link_hash_undefined)
14225 size = addend + file_align;
14226 else
14227 {
14228 size = h->size;
14229 if (addend >= size)
14230 {
14231 /* Oops! We've got a reference past the defined end of
14232 the table. This is probably a bug -- shall we warn? */
14233 size = addend + file_align;
14234 }
14235 }
14236 size = (size + file_align - 1) & -file_align;
14237
14238 /* Allocate one extra entry for use as a "done" flag for the
14239 consolidation pass. */
14240 bytes = ((size >> log_file_align) + 1) * sizeof (bool);
14241
14242 if (ptr)
14243 {
14244 ptr = (bool *) bfd_realloc (ptr - 1, bytes);
14245
14246 if (ptr != NULL)
14247 {
14248 size_t oldbytes;
14249
14250 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14251 * sizeof (bool));
14252 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14253 }
14254 }
14255 else
14256 ptr = (bool *) bfd_zmalloc (bytes);
14257
14258 if (ptr == NULL)
14259 return false;
14260
14261 /* And arrange for that done flag to be at index -1. */
14262 h->u2.vtable->used = ptr + 1;
14263 h->u2.vtable->size = size;
14264 }
14265
14266 h->u2.vtable->used[addend >> log_file_align] = true;
14267
14268 return true;
14269 }
14270
14271 /* Map an ELF section header flag to its corresponding string. */
14272 typedef struct
14273 {
14274 char *flag_name;
14275 flagword flag_value;
14276 } elf_flags_to_name_table;
14277
14278 static const elf_flags_to_name_table elf_flags_to_names [] =
14279 {
14280 { "SHF_WRITE", SHF_WRITE },
14281 { "SHF_ALLOC", SHF_ALLOC },
14282 { "SHF_EXECINSTR", SHF_EXECINSTR },
14283 { "SHF_MERGE", SHF_MERGE },
14284 { "SHF_STRINGS", SHF_STRINGS },
14285 { "SHF_INFO_LINK", SHF_INFO_LINK},
14286 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14287 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14288 { "SHF_GROUP", SHF_GROUP },
14289 { "SHF_TLS", SHF_TLS },
14290 { "SHF_MASKOS", SHF_MASKOS },
14291 { "SHF_EXCLUDE", SHF_EXCLUDE },
14292 };
14293
14294 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14295 bool
14296 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14297 struct flag_info *flaginfo,
14298 asection *section)
14299 {
14300 const bfd_vma sh_flags = elf_section_flags (section);
14301
14302 if (!flaginfo->flags_initialized)
14303 {
14304 bfd *obfd = info->output_bfd;
14305 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14306 struct flag_info_list *tf = flaginfo->flag_list;
14307 int with_hex = 0;
14308 int without_hex = 0;
14309
14310 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14311 {
14312 unsigned i;
14313 flagword (*lookup) (char *);
14314
14315 lookup = bed->elf_backend_lookup_section_flags_hook;
14316 if (lookup != NULL)
14317 {
14318 flagword hexval = (*lookup) ((char *) tf->name);
14319
14320 if (hexval != 0)
14321 {
14322 if (tf->with == with_flags)
14323 with_hex |= hexval;
14324 else if (tf->with == without_flags)
14325 without_hex |= hexval;
14326 tf->valid = true;
14327 continue;
14328 }
14329 }
14330 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14331 {
14332 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14333 {
14334 if (tf->with == with_flags)
14335 with_hex |= elf_flags_to_names[i].flag_value;
14336 else if (tf->with == without_flags)
14337 without_hex |= elf_flags_to_names[i].flag_value;
14338 tf->valid = true;
14339 break;
14340 }
14341 }
14342 if (!tf->valid)
14343 {
14344 info->callbacks->einfo
14345 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14346 return false;
14347 }
14348 }
14349 flaginfo->flags_initialized = true;
14350 flaginfo->only_with_flags |= with_hex;
14351 flaginfo->not_with_flags |= without_hex;
14352 }
14353
14354 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14355 return false;
14356
14357 if ((flaginfo->not_with_flags & sh_flags) != 0)
14358 return false;
14359
14360 return true;
14361 }
14362
14363 struct alloc_got_off_arg {
14364 bfd_vma gotoff;
14365 struct bfd_link_info *info;
14366 };
14367
14368 /* We need a special top-level link routine to convert got reference counts
14369 to real got offsets. */
14370
14371 static bool
14372 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14373 {
14374 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14375 bfd *obfd = gofarg->info->output_bfd;
14376 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14377
14378 if (h->got.refcount > 0)
14379 {
14380 h->got.offset = gofarg->gotoff;
14381 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14382 }
14383 else
14384 h->got.offset = (bfd_vma) -1;
14385
14386 return true;
14387 }
14388
14389 /* And an accompanying bit to work out final got entry offsets once
14390 we're done. Should be called from final_link. */
14391
14392 bool
14393 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14394 struct bfd_link_info *info)
14395 {
14396 bfd *i;
14397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14398 bfd_vma gotoff;
14399 struct alloc_got_off_arg gofarg;
14400
14401 BFD_ASSERT (abfd == info->output_bfd);
14402
14403 if (! is_elf_hash_table (info->hash))
14404 return false;
14405
14406 /* The GOT offset is relative to the .got section, but the GOT header is
14407 put into the .got.plt section, if the backend uses it. */
14408 if (bed->want_got_plt)
14409 gotoff = 0;
14410 else
14411 gotoff = bed->got_header_size;
14412
14413 /* Do the local .got entries first. */
14414 for (i = info->input_bfds; i; i = i->link.next)
14415 {
14416 bfd_signed_vma *local_got;
14417 size_t j, locsymcount;
14418 Elf_Internal_Shdr *symtab_hdr;
14419
14420 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14421 continue;
14422
14423 local_got = elf_local_got_refcounts (i);
14424 if (!local_got)
14425 continue;
14426
14427 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14428 if (elf_bad_symtab (i))
14429 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14430 else
14431 locsymcount = symtab_hdr->sh_info;
14432
14433 for (j = 0; j < locsymcount; ++j)
14434 {
14435 if (local_got[j] > 0)
14436 {
14437 local_got[j] = gotoff;
14438 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14439 }
14440 else
14441 local_got[j] = (bfd_vma) -1;
14442 }
14443 }
14444
14445 /* Then the global .got entries. .plt refcounts are handled by
14446 adjust_dynamic_symbol */
14447 gofarg.gotoff = gotoff;
14448 gofarg.info = info;
14449 elf_link_hash_traverse (elf_hash_table (info),
14450 elf_gc_allocate_got_offsets,
14451 &gofarg);
14452 return true;
14453 }
14454
14455 /* Many folk need no more in the way of final link than this, once
14456 got entry reference counting is enabled. */
14457
14458 bool
14459 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14460 {
14461 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14462 return false;
14463
14464 /* Invoke the regular ELF backend linker to do all the work. */
14465 return bfd_elf_final_link (abfd, info);
14466 }
14467
14468 bool
14469 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14470 {
14471 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14472
14473 if (rcookie->bad_symtab)
14474 rcookie->rel = rcookie->rels;
14475
14476 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14477 {
14478 unsigned long r_symndx;
14479
14480 if (! rcookie->bad_symtab)
14481 if (rcookie->rel->r_offset > offset)
14482 return false;
14483 if (rcookie->rel->r_offset != offset)
14484 continue;
14485
14486 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14487 if (r_symndx == STN_UNDEF)
14488 return true;
14489
14490 if (r_symndx >= rcookie->locsymcount
14491 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14492 {
14493 struct elf_link_hash_entry *h;
14494
14495 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14496
14497 while (h->root.type == bfd_link_hash_indirect
14498 || h->root.type == bfd_link_hash_warning)
14499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14500
14501 if ((h->root.type == bfd_link_hash_defined
14502 || h->root.type == bfd_link_hash_defweak)
14503 && (h->root.u.def.section->owner != rcookie->abfd
14504 || h->root.u.def.section->kept_section != NULL
14505 || discarded_section (h->root.u.def.section)))
14506 return true;
14507 }
14508 else
14509 {
14510 /* It's not a relocation against a global symbol,
14511 but it could be a relocation against a local
14512 symbol for a discarded section. */
14513 asection *isec;
14514 Elf_Internal_Sym *isym;
14515
14516 /* Need to: get the symbol; get the section. */
14517 isym = &rcookie->locsyms[r_symndx];
14518 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14519 if (isec != NULL
14520 && (isec->kept_section != NULL
14521 || discarded_section (isec)))
14522 return true;
14523 }
14524 return false;
14525 }
14526 return false;
14527 }
14528
14529 /* Discard unneeded references to discarded sections.
14530 Returns -1 on error, 1 if any section's size was changed, 0 if
14531 nothing changed. This function assumes that the relocations are in
14532 sorted order, which is true for all known assemblers. */
14533
14534 int
14535 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14536 {
14537 struct elf_reloc_cookie cookie;
14538 asection *o;
14539 bfd *abfd;
14540 int changed = 0;
14541
14542 if (info->traditional_format
14543 || !is_elf_hash_table (info->hash))
14544 return 0;
14545
14546 o = bfd_get_section_by_name (output_bfd, ".stab");
14547 if (o != NULL)
14548 {
14549 asection *i;
14550
14551 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14552 {
14553 if (i->size == 0
14554 || i->reloc_count == 0
14555 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14556 continue;
14557
14558 abfd = i->owner;
14559 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14560 continue;
14561
14562 if (!init_reloc_cookie_for_section (&cookie, info, i))
14563 return -1;
14564
14565 if (_bfd_discard_section_stabs (abfd, i,
14566 elf_section_data (i)->sec_info,
14567 bfd_elf_reloc_symbol_deleted_p,
14568 &cookie))
14569 changed = 1;
14570
14571 fini_reloc_cookie_for_section (&cookie, i);
14572 }
14573 }
14574
14575 o = NULL;
14576 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14577 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14578 if (o != NULL)
14579 {
14580 asection *i;
14581 int eh_changed = 0;
14582 unsigned int eh_alignment; /* Octets. */
14583
14584 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14585 {
14586 if (i->size == 0)
14587 continue;
14588
14589 abfd = i->owner;
14590 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14591 continue;
14592
14593 if (!init_reloc_cookie_for_section (&cookie, info, i))
14594 return -1;
14595
14596 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14597 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14598 bfd_elf_reloc_symbol_deleted_p,
14599 &cookie))
14600 {
14601 eh_changed = 1;
14602 if (i->size != i->rawsize)
14603 changed = 1;
14604 }
14605
14606 fini_reloc_cookie_for_section (&cookie, i);
14607 }
14608
14609 eh_alignment = ((1 << o->alignment_power)
14610 * bfd_octets_per_byte (output_bfd, o));
14611 /* Skip over zero terminator, and prevent empty sections from
14612 adding alignment padding at the end. */
14613 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14614 if (i->size == 0)
14615 i->flags |= SEC_EXCLUDE;
14616 else if (i->size > 4)
14617 break;
14618 /* The last non-empty eh_frame section doesn't need padding. */
14619 if (i != NULL)
14620 i = i->map_tail.s;
14621 /* Any prior sections must pad the last FDE out to the output
14622 section alignment. Otherwise we might have zero padding
14623 between sections, which would be seen as a terminator. */
14624 for (; i != NULL; i = i->map_tail.s)
14625 if (i->size == 4)
14626 /* All but the last zero terminator should have been removed. */
14627 BFD_FAIL ();
14628 else
14629 {
14630 bfd_size_type size
14631 = (i->size + eh_alignment - 1) & -eh_alignment;
14632 if (i->size != size)
14633 {
14634 i->size = size;
14635 changed = 1;
14636 eh_changed = 1;
14637 }
14638 }
14639 if (eh_changed)
14640 elf_link_hash_traverse (elf_hash_table (info),
14641 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14642 }
14643
14644 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14645 {
14646 const struct elf_backend_data *bed;
14647 asection *s;
14648
14649 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14650 continue;
14651 s = abfd->sections;
14652 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14653 continue;
14654
14655 bed = get_elf_backend_data (abfd);
14656
14657 if (bed->elf_backend_discard_info != NULL)
14658 {
14659 if (!init_reloc_cookie (&cookie, info, abfd))
14660 return -1;
14661
14662 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14663 changed = 1;
14664
14665 fini_reloc_cookie (&cookie, abfd);
14666 }
14667 }
14668
14669 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14670 _bfd_elf_end_eh_frame_parsing (info);
14671
14672 if (info->eh_frame_hdr_type
14673 && !bfd_link_relocatable (info)
14674 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14675 changed = 1;
14676
14677 return changed;
14678 }
14679
14680 bool
14681 _bfd_elf_section_already_linked (bfd *abfd,
14682 asection *sec,
14683 struct bfd_link_info *info)
14684 {
14685 flagword flags;
14686 const char *name, *key;
14687 struct bfd_section_already_linked *l;
14688 struct bfd_section_already_linked_hash_entry *already_linked_list;
14689
14690 if (sec->output_section == bfd_abs_section_ptr)
14691 return false;
14692
14693 flags = sec->flags;
14694
14695 /* Return if it isn't a linkonce section. A comdat group section
14696 also has SEC_LINK_ONCE set. */
14697 if ((flags & SEC_LINK_ONCE) == 0)
14698 return false;
14699
14700 /* Don't put group member sections on our list of already linked
14701 sections. They are handled as a group via their group section. */
14702 if (elf_sec_group (sec) != NULL)
14703 return false;
14704
14705 /* For a SHT_GROUP section, use the group signature as the key. */
14706 name = sec->name;
14707 if ((flags & SEC_GROUP) != 0
14708 && elf_next_in_group (sec) != NULL
14709 && elf_group_name (elf_next_in_group (sec)) != NULL)
14710 key = elf_group_name (elf_next_in_group (sec));
14711 else
14712 {
14713 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14714 if (startswith (name, ".gnu.linkonce.")
14715 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14716 key++;
14717 else
14718 /* Must be a user linkonce section that doesn't follow gcc's
14719 naming convention. In this case we won't be matching
14720 single member groups. */
14721 key = name;
14722 }
14723
14724 already_linked_list = bfd_section_already_linked_table_lookup (key);
14725
14726 for (l = already_linked_list->entry; l != NULL; l = l->next)
14727 {
14728 /* We may have 2 different types of sections on the list: group
14729 sections with a signature of <key> (<key> is some string),
14730 and linkonce sections named .gnu.linkonce.<type>.<key>.
14731 Match like sections. LTO plugin sections are an exception.
14732 They are always named .gnu.linkonce.t.<key> and match either
14733 type of section. */
14734 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14735 && ((flags & SEC_GROUP) != 0
14736 || strcmp (name, l->sec->name) == 0))
14737 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14738 || (sec->owner->flags & BFD_PLUGIN) != 0)
14739 {
14740 /* The section has already been linked. See if we should
14741 issue a warning. */
14742 if (!_bfd_handle_already_linked (sec, l, info))
14743 return false;
14744
14745 if (flags & SEC_GROUP)
14746 {
14747 asection *first = elf_next_in_group (sec);
14748 asection *s = first;
14749
14750 while (s != NULL)
14751 {
14752 s->output_section = bfd_abs_section_ptr;
14753 /* Record which group discards it. */
14754 s->kept_section = l->sec;
14755 s = elf_next_in_group (s);
14756 /* These lists are circular. */
14757 if (s == first)
14758 break;
14759 }
14760 }
14761
14762 return true;
14763 }
14764 }
14765
14766 /* A single member comdat group section may be discarded by a
14767 linkonce section and vice versa. */
14768 if ((flags & SEC_GROUP) != 0)
14769 {
14770 asection *first = elf_next_in_group (sec);
14771
14772 if (first != NULL && elf_next_in_group (first) == first)
14773 /* Check this single member group against linkonce sections. */
14774 for (l = already_linked_list->entry; l != NULL; l = l->next)
14775 if ((l->sec->flags & SEC_GROUP) == 0
14776 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14777 {
14778 first->output_section = bfd_abs_section_ptr;
14779 first->kept_section = l->sec;
14780 sec->output_section = bfd_abs_section_ptr;
14781 break;
14782 }
14783 }
14784 else
14785 /* Check this linkonce section against single member groups. */
14786 for (l = already_linked_list->entry; l != NULL; l = l->next)
14787 if (l->sec->flags & SEC_GROUP)
14788 {
14789 asection *first = elf_next_in_group (l->sec);
14790
14791 if (first != NULL
14792 && elf_next_in_group (first) == first
14793 && bfd_elf_match_symbols_in_sections (first, sec, info))
14794 {
14795 sec->output_section = bfd_abs_section_ptr;
14796 sec->kept_section = first;
14797 break;
14798 }
14799 }
14800
14801 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14802 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14803 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14804 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14805 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14806 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14807 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14808 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14809 The reverse order cannot happen as there is never a bfd with only the
14810 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14811 matter as here were are looking only for cross-bfd sections. */
14812
14813 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r."))
14814 for (l = already_linked_list->entry; l != NULL; l = l->next)
14815 if ((l->sec->flags & SEC_GROUP) == 0
14816 && startswith (l->sec->name, ".gnu.linkonce.t."))
14817 {
14818 if (abfd != l->sec->owner)
14819 sec->output_section = bfd_abs_section_ptr;
14820 break;
14821 }
14822
14823 /* This is the first section with this name. Record it. */
14824 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14825 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14826 return sec->output_section == bfd_abs_section_ptr;
14827 }
14828
14829 bool
14830 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14831 {
14832 return sym->st_shndx == SHN_COMMON;
14833 }
14834
14835 unsigned int
14836 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14837 {
14838 return SHN_COMMON;
14839 }
14840
14841 asection *
14842 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14843 {
14844 return bfd_com_section_ptr;
14845 }
14846
14847 bfd_vma
14848 _bfd_elf_default_got_elt_size (bfd *abfd,
14849 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14850 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14851 bfd *ibfd ATTRIBUTE_UNUSED,
14852 unsigned long symndx ATTRIBUTE_UNUSED)
14853 {
14854 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14855 return bed->s->arch_size / 8;
14856 }
14857
14858 /* Routines to support the creation of dynamic relocs. */
14859
14860 /* Returns the name of the dynamic reloc section associated with SEC. */
14861
14862 static const char *
14863 get_dynamic_reloc_section_name (bfd * abfd,
14864 asection * sec,
14865 bool is_rela)
14866 {
14867 char *name;
14868 const char *old_name = bfd_section_name (sec);
14869 const char *prefix = is_rela ? ".rela" : ".rel";
14870
14871 if (old_name == NULL)
14872 return NULL;
14873
14874 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14875 sprintf (name, "%s%s", prefix, old_name);
14876
14877 return name;
14878 }
14879
14880 /* Returns the dynamic reloc section associated with SEC.
14881 If necessary compute the name of the dynamic reloc section based
14882 on SEC's name (looked up in ABFD's string table) and the setting
14883 of IS_RELA. */
14884
14885 asection *
14886 _bfd_elf_get_dynamic_reloc_section (bfd *abfd,
14887 asection *sec,
14888 bool is_rela)
14889 {
14890 asection *reloc_sec = elf_section_data (sec)->sreloc;
14891
14892 if (reloc_sec == NULL)
14893 {
14894 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14895
14896 if (name != NULL)
14897 {
14898 reloc_sec = bfd_get_linker_section (abfd, name);
14899
14900 if (reloc_sec != NULL)
14901 elf_section_data (sec)->sreloc = reloc_sec;
14902 }
14903 }
14904
14905 return reloc_sec;
14906 }
14907
14908 /* Returns the dynamic reloc section associated with SEC. If the
14909 section does not exist it is created and attached to the DYNOBJ
14910 bfd and stored in the SRELOC field of SEC's elf_section_data
14911 structure.
14912
14913 ALIGNMENT is the alignment for the newly created section and
14914 IS_RELA defines whether the name should be .rela.<SEC's name>
14915 or .rel.<SEC's name>. The section name is looked up in the
14916 string table associated with ABFD. */
14917
14918 asection *
14919 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14920 bfd *dynobj,
14921 unsigned int alignment,
14922 bfd *abfd,
14923 bool is_rela)
14924 {
14925 asection * reloc_sec = elf_section_data (sec)->sreloc;
14926
14927 if (reloc_sec == NULL)
14928 {
14929 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14930
14931 if (name == NULL)
14932 return NULL;
14933
14934 reloc_sec = bfd_get_linker_section (dynobj, name);
14935
14936 if (reloc_sec == NULL)
14937 {
14938 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14939 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14940 if ((sec->flags & SEC_ALLOC) != 0)
14941 flags |= SEC_ALLOC | SEC_LOAD;
14942
14943 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14944 if (reloc_sec != NULL)
14945 {
14946 /* _bfd_elf_get_sec_type_attr chooses a section type by
14947 name. Override as it may be wrong, eg. for a user
14948 section named "auto" we'll get ".relauto" which is
14949 seen to be a .rela section. */
14950 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14951 if (!bfd_set_section_alignment (reloc_sec, alignment))
14952 reloc_sec = NULL;
14953 }
14954 }
14955
14956 elf_section_data (sec)->sreloc = reloc_sec;
14957 }
14958
14959 return reloc_sec;
14960 }
14961
14962 /* Copy the ELF symbol type and other attributes for a linker script
14963 assignment from HSRC to HDEST. Generally this should be treated as
14964 if we found a strong non-dynamic definition for HDEST (except that
14965 ld ignores multiple definition errors). */
14966 void
14967 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14968 struct bfd_link_hash_entry *hdest,
14969 struct bfd_link_hash_entry *hsrc)
14970 {
14971 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14972 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14973 Elf_Internal_Sym isym;
14974
14975 ehdest->type = ehsrc->type;
14976 ehdest->target_internal = ehsrc->target_internal;
14977
14978 isym.st_other = ehsrc->other;
14979 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false);
14980 }
14981
14982 /* Append a RELA relocation REL to section S in BFD. */
14983
14984 void
14985 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14986 {
14987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14988 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14989 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14990 bed->s->swap_reloca_out (abfd, rel, loc);
14991 }
14992
14993 /* Append a REL relocation REL to section S in BFD. */
14994
14995 void
14996 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14997 {
14998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14999 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
15000 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
15001 bed->s->swap_reloc_out (abfd, rel, loc);
15002 }
15003
15004 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15005
15006 struct bfd_link_hash_entry *
15007 bfd_elf_define_start_stop (struct bfd_link_info *info,
15008 const char *symbol, asection *sec)
15009 {
15010 struct elf_link_hash_entry *h;
15011
15012 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15013 false, false, true);
15014 /* NB: Common symbols will be turned into definition later. */
15015 if (h != NULL
15016 && !h->root.ldscript_def
15017 && (h->root.type == bfd_link_hash_undefined
15018 || h->root.type == bfd_link_hash_undefweak
15019 || ((h->ref_regular || h->def_dynamic)
15020 && !h->def_regular
15021 && h->root.type != bfd_link_hash_common)))
15022 {
15023 bool was_dynamic = h->ref_dynamic || h->def_dynamic;
15024 h->verinfo.verdef = NULL;
15025 h->root.type = bfd_link_hash_defined;
15026 h->root.u.def.section = sec;
15027 h->root.u.def.value = 0;
15028 h->def_regular = 1;
15029 h->def_dynamic = 0;
15030 h->start_stop = 1;
15031 h->u2.start_stop_section = sec;
15032 if (symbol[0] == '.')
15033 {
15034 /* .startof. and .sizeof. symbols are local. */
15035 const struct elf_backend_data *bed;
15036 bed = get_elf_backend_data (info->output_bfd);
15037 (*bed->elf_backend_hide_symbol) (info, h, true);
15038 }
15039 else
15040 {
15041 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15042 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15043 | info->start_stop_visibility);
15044 if (was_dynamic)
15045 bfd_elf_link_record_dynamic_symbol (info, h);
15046 }
15047 return &h->root;
15048 }
15049 return NULL;
15050 }
15051
15052 /* Find dynamic relocs for H that apply to read-only sections. */
15053
15054 asection *
15055 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15056 {
15057 struct elf_dyn_relocs *p;
15058
15059 for (p = h->dyn_relocs; p != NULL; p = p->next)
15060 {
15061 asection *s = p->sec->output_section;
15062
15063 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15064 return p->sec;
15065 }
15066 return NULL;
15067 }
15068
15069 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15070 read-only sections. */
15071
15072 bool
15073 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15074 {
15075 asection *sec;
15076
15077 if (h->root.type == bfd_link_hash_indirect)
15078 return true;
15079
15080 sec = _bfd_elf_readonly_dynrelocs (h);
15081 if (sec != NULL)
15082 {
15083 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15084
15085 info->flags |= DF_TEXTREL;
15086 /* xgettext:c-format */
15087 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15088 "in read-only section `%pA'\n"),
15089 sec->owner, h->root.root.string, sec);
15090
15091 if (bfd_link_textrel_check (info))
15092 /* xgettext:c-format */
15093 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15094 "in read-only section `%pA'\n"),
15095 sec->owner, h->root.root.string, sec);
15096
15097 /* Not an error, just cut short the traversal. */
15098 return false;
15099 }
15100 return true;
15101 }
15102
15103 /* Add dynamic tags. */
15104
15105 bool
15106 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15107 bool need_dynamic_reloc)
15108 {
15109 struct elf_link_hash_table *htab = elf_hash_table (info);
15110
15111 if (htab->dynamic_sections_created)
15112 {
15113 /* Add some entries to the .dynamic section. We fill in the
15114 values later, in finish_dynamic_sections, but we must add
15115 the entries now so that we get the correct size for the
15116 .dynamic section. The DT_DEBUG entry is filled in by the
15117 dynamic linker and used by the debugger. */
15118 #define add_dynamic_entry(TAG, VAL) \
15119 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15120
15121 const struct elf_backend_data *bed
15122 = get_elf_backend_data (output_bfd);
15123
15124 if (bfd_link_executable (info))
15125 {
15126 if (!add_dynamic_entry (DT_DEBUG, 0))
15127 return false;
15128 }
15129
15130 if (htab->dt_pltgot_required || htab->splt->size != 0)
15131 {
15132 /* DT_PLTGOT is used by prelink even if there is no PLT
15133 relocation. */
15134 if (!add_dynamic_entry (DT_PLTGOT, 0))
15135 return false;
15136 }
15137
15138 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15139 {
15140 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15141 || !add_dynamic_entry (DT_PLTREL,
15142 (bed->rela_plts_and_copies_p
15143 ? DT_RELA : DT_REL))
15144 || !add_dynamic_entry (DT_JMPREL, 0))
15145 return false;
15146 }
15147
15148 if (htab->tlsdesc_plt
15149 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15150 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15151 return false;
15152
15153 if (need_dynamic_reloc)
15154 {
15155 if (bed->rela_plts_and_copies_p)
15156 {
15157 if (!add_dynamic_entry (DT_RELA, 0)
15158 || !add_dynamic_entry (DT_RELASZ, 0)
15159 || !add_dynamic_entry (DT_RELAENT,
15160 bed->s->sizeof_rela))
15161 return false;
15162 }
15163 else
15164 {
15165 if (!add_dynamic_entry (DT_REL, 0)
15166 || !add_dynamic_entry (DT_RELSZ, 0)
15167 || !add_dynamic_entry (DT_RELENT,
15168 bed->s->sizeof_rel))
15169 return false;
15170 }
15171
15172 /* If any dynamic relocs apply to a read-only section,
15173 then we need a DT_TEXTREL entry. */
15174 if ((info->flags & DF_TEXTREL) == 0)
15175 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15176 info);
15177
15178 if ((info->flags & DF_TEXTREL) != 0)
15179 {
15180 if (htab->ifunc_resolvers)
15181 info->callbacks->einfo
15182 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15183 "may result in a segfault at runtime; recompile with %s\n"),
15184 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15185
15186 if (!add_dynamic_entry (DT_TEXTREL, 0))
15187 return false;
15188 }
15189 }
15190 }
15191 #undef add_dynamic_entry
15192
15193 return true;
15194 }
This page took 0.762977 seconds and 4 git commands to generate.