* elflink.c (is_reloc_section): New function. Returns true if the
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->rela_plts_and_copies_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->rela_plts_and_copies_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && entry->isym.st_shndx < SHN_LORESERVE)
622 {
623 asection *s;
624
625 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
626 if (s == NULL || bfd_is_abs_section (s->output_section))
627 {
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd, entry);
631 return 2;
632 }
633 }
634
635 name = (bfd_elf_string_from_elf_section
636 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
637 entry->isym.st_name));
638
639 dynstr = elf_hash_table (info)->dynstr;
640 if (dynstr == NULL)
641 {
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
644 if (dynstr == NULL)
645 return 0;
646 }
647
648 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
649 if (dynstr_index == (unsigned long) -1)
650 return 0;
651 entry->isym.st_name = dynstr_index;
652
653 eht = elf_hash_table (info);
654
655 entry->next = eht->dynlocal;
656 eht->dynlocal = entry;
657 entry->input_bfd = input_bfd;
658 entry->input_indx = input_indx;
659 eht->dynsymcount++;
660
661 /* Whatever binding the symbol had before, it's now local. */
662 entry->isym.st_info
663 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
664
665 /* The dynindx will be set at the end of size_dynamic_sections. */
666
667 return 1;
668 }
669
670 /* Return the dynindex of a local dynamic symbol. */
671
672 long
673 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
674 bfd *input_bfd,
675 long input_indx)
676 {
677 struct elf_link_local_dynamic_entry *e;
678
679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
680 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
681 return e->dynindx;
682 return -1;
683 }
684
685 /* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
688
689 static bfd_boolean
690 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
691 void *data)
692 {
693 size_t *count = data;
694
695 if (h->root.type == bfd_link_hash_warning)
696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
697
698 if (h->forced_local)
699 return TRUE;
700
701 if (h->dynindx != -1)
702 h->dynindx = ++(*count);
703
704 return TRUE;
705 }
706
707
708 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
710
711 static bfd_boolean
712 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
713 void *data)
714 {
715 size_t *count = data;
716
717 if (h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 if (!h->forced_local)
721 return TRUE;
722
723 if (h->dynindx != -1)
724 h->dynindx = ++(*count);
725
726 return TRUE;
727 }
728
729 /* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
731 bfd_boolean
732 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
733 struct bfd_link_info *info,
734 asection *p)
735 {
736 struct elf_link_hash_table *htab;
737
738 switch (elf_section_data (p)->this_hdr.sh_type)
739 {
740 case SHT_PROGBITS:
741 case SHT_NOBITS:
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
744 case SHT_NULL:
745 htab = elf_hash_table (info);
746 if (p == htab->tls_sec)
747 return FALSE;
748
749 if (htab->text_index_section != NULL)
750 return p != htab->text_index_section && p != htab->data_index_section;
751
752 if (strcmp (p->name, ".got") == 0
753 || strcmp (p->name, ".got.plt") == 0
754 || strcmp (p->name, ".plt") == 0)
755 {
756 asection *ip;
757
758 if (htab->dynobj != NULL
759 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
760 && (ip->flags & SEC_LINKER_CREATED)
761 && ip->output_section == p)
762 return TRUE;
763 }
764 return FALSE;
765
766 /* There shouldn't be section relative relocations
767 against any other section. */
768 default:
769 return TRUE;
770 }
771 }
772
773 /* Assign dynsym indices. In a shared library we generate a section
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
777 symbols. */
778
779 static unsigned long
780 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
781 struct bfd_link_info *info,
782 unsigned long *section_sym_count)
783 {
784 unsigned long dynsymcount = 0;
785
786 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
787 {
788 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
789 asection *p;
790 for (p = output_bfd->sections; p ; p = p->next)
791 if ((p->flags & SEC_EXCLUDE) == 0
792 && (p->flags & SEC_ALLOC) != 0
793 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
794 elf_section_data (p)->dynindx = ++dynsymcount;
795 else
796 elf_section_data (p)->dynindx = 0;
797 }
798 *section_sym_count = dynsymcount;
799
800 elf_link_hash_traverse (elf_hash_table (info),
801 elf_link_renumber_local_hash_table_dynsyms,
802 &dynsymcount);
803
804 if (elf_hash_table (info)->dynlocal)
805 {
806 struct elf_link_local_dynamic_entry *p;
807 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
808 p->dynindx = ++dynsymcount;
809 }
810
811 elf_link_hash_traverse (elf_hash_table (info),
812 elf_link_renumber_hash_table_dynsyms,
813 &dynsymcount);
814
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount != 0)
819 ++dynsymcount;
820
821 elf_hash_table (info)->dynsymcount = dynsymcount;
822 return dynsymcount;
823 }
824
825 /* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
836
837 bfd_boolean
838 _bfd_elf_merge_symbol (bfd *abfd,
839 struct bfd_link_info *info,
840 const char *name,
841 Elf_Internal_Sym *sym,
842 asection **psec,
843 bfd_vma *pvalue,
844 unsigned int *pold_alignment,
845 struct elf_link_hash_entry **sym_hash,
846 bfd_boolean *skip,
847 bfd_boolean *override,
848 bfd_boolean *type_change_ok,
849 bfd_boolean *size_change_ok)
850 {
851 asection *sec, *oldsec;
852 struct elf_link_hash_entry *h;
853 struct elf_link_hash_entry *flip;
854 int bind;
855 bfd *oldbfd;
856 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
857 bfd_boolean newweak, oldweak, newfunc, oldfunc;
858 const struct elf_backend_data *bed;
859
860 *skip = FALSE;
861 *override = FALSE;
862
863 sec = *psec;
864 bind = ELF_ST_BIND (sym->st_info);
865
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
869 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
870 {
871 *skip = TRUE;
872 return TRUE;
873 }
874
875 if (! bfd_is_und_section (sec))
876 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
877 else
878 h = ((struct elf_link_hash_entry *)
879 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
880 if (h == NULL)
881 return FALSE;
882 *sym_hash = h;
883
884 bed = get_elf_backend_data (abfd);
885
886 /* This code is for coping with dynamic objects, and is only useful
887 if we are doing an ELF link. */
888 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
889 return TRUE;
890
891 /* For merging, we only care about real symbols. */
892
893 while (h->root.type == bfd_link_hash_indirect
894 || h->root.type == bfd_link_hash_warning)
895 h = (struct elf_link_hash_entry *) h->root.u.i.link;
896
897 /* We have to check it for every instance since the first few may be
898 refereences and not all compilers emit symbol type for undefined
899 symbols. */
900 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
901
902 /* If we just created the symbol, mark it as being an ELF symbol.
903 Other than that, there is nothing to do--there is no merge issue
904 with a newly defined symbol--so we just return. */
905
906 if (h->root.type == bfd_link_hash_new)
907 {
908 h->non_elf = 0;
909 return TRUE;
910 }
911
912 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
913 existing symbol. */
914
915 switch (h->root.type)
916 {
917 default:
918 oldbfd = NULL;
919 oldsec = NULL;
920 break;
921
922 case bfd_link_hash_undefined:
923 case bfd_link_hash_undefweak:
924 oldbfd = h->root.u.undef.abfd;
925 oldsec = NULL;
926 break;
927
928 case bfd_link_hash_defined:
929 case bfd_link_hash_defweak:
930 oldbfd = h->root.u.def.section->owner;
931 oldsec = h->root.u.def.section;
932 break;
933
934 case bfd_link_hash_common:
935 oldbfd = h->root.u.c.p->section->owner;
936 oldsec = h->root.u.c.p->section;
937 break;
938 }
939
940 /* In cases involving weak versioned symbols, we may wind up trying
941 to merge a symbol with itself. Catch that here, to avoid the
942 confusion that results if we try to override a symbol with
943 itself. The additional tests catch cases like
944 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
945 dynamic object, which we do want to handle here. */
946 if (abfd == oldbfd
947 && ((abfd->flags & DYNAMIC) == 0
948 || !h->def_regular))
949 return TRUE;
950
951 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
952 respectively, is from a dynamic object. */
953
954 newdyn = (abfd->flags & DYNAMIC) != 0;
955
956 olddyn = FALSE;
957 if (oldbfd != NULL)
958 olddyn = (oldbfd->flags & DYNAMIC) != 0;
959 else if (oldsec != NULL)
960 {
961 /* This handles the special SHN_MIPS_{TEXT,DATA} section
962 indices used by MIPS ELF. */
963 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
964 }
965
966 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
967 respectively, appear to be a definition rather than reference. */
968
969 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
970
971 olddef = (h->root.type != bfd_link_hash_undefined
972 && h->root.type != bfd_link_hash_undefweak
973 && h->root.type != bfd_link_hash_common);
974
975 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
976 respectively, appear to be a function. */
977
978 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
979 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
980
981 oldfunc = (h->type != STT_NOTYPE
982 && bed->is_function_type (h->type));
983
984 /* When we try to create a default indirect symbol from the dynamic
985 definition with the default version, we skip it if its type and
986 the type of existing regular definition mismatch. We only do it
987 if the existing regular definition won't be dynamic. */
988 if (pold_alignment == NULL
989 && !info->shared
990 && !info->export_dynamic
991 && !h->ref_dynamic
992 && newdyn
993 && newdef
994 && !olddyn
995 && (olddef || h->root.type == bfd_link_hash_common)
996 && ELF_ST_TYPE (sym->st_info) != h->type
997 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
998 && h->type != STT_NOTYPE
999 && !(newfunc && oldfunc))
1000 {
1001 *skip = TRUE;
1002 return TRUE;
1003 }
1004
1005 /* Check TLS symbol. We don't check undefined symbol introduced by
1006 "ld -u". */
1007 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1008 && ELF_ST_TYPE (sym->st_info) != h->type
1009 && oldbfd != NULL)
1010 {
1011 bfd *ntbfd, *tbfd;
1012 bfd_boolean ntdef, tdef;
1013 asection *ntsec, *tsec;
1014
1015 if (h->type == STT_TLS)
1016 {
1017 ntbfd = abfd;
1018 ntsec = sec;
1019 ntdef = newdef;
1020 tbfd = oldbfd;
1021 tsec = oldsec;
1022 tdef = olddef;
1023 }
1024 else
1025 {
1026 ntbfd = oldbfd;
1027 ntsec = oldsec;
1028 ntdef = olddef;
1029 tbfd = abfd;
1030 tsec = sec;
1031 tdef = newdef;
1032 }
1033
1034 if (tdef && ntdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1037 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1038 else if (!tdef && !ntdef)
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1041 tbfd, ntbfd, h->root.root.string);
1042 else if (tdef)
1043 (*_bfd_error_handler)
1044 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1045 tbfd, tsec, ntbfd, h->root.root.string);
1046 else
1047 (*_bfd_error_handler)
1048 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1049 tbfd, ntbfd, ntsec, h->root.root.string);
1050
1051 bfd_set_error (bfd_error_bad_value);
1052 return FALSE;
1053 }
1054
1055 /* We need to remember if a symbol has a definition in a dynamic
1056 object or is weak in all dynamic objects. Internal and hidden
1057 visibility will make it unavailable to dynamic objects. */
1058 if (newdyn && !h->dynamic_def)
1059 {
1060 if (!bfd_is_und_section (sec))
1061 h->dynamic_def = 1;
1062 else
1063 {
1064 /* Check if this symbol is weak in all dynamic objects. If it
1065 is the first time we see it in a dynamic object, we mark
1066 if it is weak. Otherwise, we clear it. */
1067 if (!h->ref_dynamic)
1068 {
1069 if (bind == STB_WEAK)
1070 h->dynamic_weak = 1;
1071 }
1072 else if (bind != STB_WEAK)
1073 h->dynamic_weak = 0;
1074 }
1075 }
1076
1077 /* If the old symbol has non-default visibility, we ignore the new
1078 definition from a dynamic object. */
1079 if (newdyn
1080 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1081 && !bfd_is_und_section (sec))
1082 {
1083 *skip = TRUE;
1084 /* Make sure this symbol is dynamic. */
1085 h->ref_dynamic = 1;
1086 /* A protected symbol has external availability. Make sure it is
1087 recorded as dynamic.
1088
1089 FIXME: Should we check type and size for protected symbol? */
1090 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1091 return bfd_elf_link_record_dynamic_symbol (info, h);
1092 else
1093 return TRUE;
1094 }
1095 else if (!newdyn
1096 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1097 && h->def_dynamic)
1098 {
1099 /* If the new symbol with non-default visibility comes from a
1100 relocatable file and the old definition comes from a dynamic
1101 object, we remove the old definition. */
1102 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1103 {
1104 /* Handle the case where the old dynamic definition is
1105 default versioned. We need to copy the symbol info from
1106 the symbol with default version to the normal one if it
1107 was referenced before. */
1108 if (h->ref_regular)
1109 {
1110 const struct elf_backend_data *bed
1111 = get_elf_backend_data (abfd);
1112 struct elf_link_hash_entry *vh = *sym_hash;
1113 vh->root.type = h->root.type;
1114 h->root.type = bfd_link_hash_indirect;
1115 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1116 /* Protected symbols will override the dynamic definition
1117 with default version. */
1118 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1119 {
1120 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1121 vh->dynamic_def = 1;
1122 vh->ref_dynamic = 1;
1123 }
1124 else
1125 {
1126 h->root.type = vh->root.type;
1127 vh->ref_dynamic = 0;
1128 /* We have to hide it here since it was made dynamic
1129 global with extra bits when the symbol info was
1130 copied from the old dynamic definition. */
1131 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1132 }
1133 h = vh;
1134 }
1135 else
1136 h = *sym_hash;
1137 }
1138
1139 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1140 && bfd_is_und_section (sec))
1141 {
1142 /* If the new symbol is undefined and the old symbol was
1143 also undefined before, we need to make sure
1144 _bfd_generic_link_add_one_symbol doesn't mess
1145 up the linker hash table undefs list. Since the old
1146 definition came from a dynamic object, it is still on the
1147 undefs list. */
1148 h->root.type = bfd_link_hash_undefined;
1149 h->root.u.undef.abfd = abfd;
1150 }
1151 else
1152 {
1153 h->root.type = bfd_link_hash_new;
1154 h->root.u.undef.abfd = NULL;
1155 }
1156
1157 if (h->def_dynamic)
1158 {
1159 h->def_dynamic = 0;
1160 h->ref_dynamic = 1;
1161 h->dynamic_def = 1;
1162 }
1163 /* FIXME: Should we check type and size for protected symbol? */
1164 h->size = 0;
1165 h->type = 0;
1166 return TRUE;
1167 }
1168
1169 /* Differentiate strong and weak symbols. */
1170 newweak = bind == STB_WEAK;
1171 oldweak = (h->root.type == bfd_link_hash_defweak
1172 || h->root.type == bfd_link_hash_undefweak);
1173
1174 /* If a new weak symbol definition comes from a regular file and the
1175 old symbol comes from a dynamic library, we treat the new one as
1176 strong. Similarly, an old weak symbol definition from a regular
1177 file is treated as strong when the new symbol comes from a dynamic
1178 library. Further, an old weak symbol from a dynamic library is
1179 treated as strong if the new symbol is from a dynamic library.
1180 This reflects the way glibc's ld.so works.
1181
1182 Do this before setting *type_change_ok or *size_change_ok so that
1183 we warn properly when dynamic library symbols are overridden. */
1184
1185 if (newdef && !newdyn && olddyn)
1186 newweak = FALSE;
1187 if (olddef && newdyn)
1188 oldweak = FALSE;
1189
1190 /* Allow changes between different types of funciton symbol. */
1191 if (newfunc && oldfunc)
1192 *type_change_ok = TRUE;
1193
1194 /* It's OK to change the type if either the existing symbol or the
1195 new symbol is weak. A type change is also OK if the old symbol
1196 is undefined and the new symbol is defined. */
1197
1198 if (oldweak
1199 || newweak
1200 || (newdef
1201 && h->root.type == bfd_link_hash_undefined))
1202 *type_change_ok = TRUE;
1203
1204 /* It's OK to change the size if either the existing symbol or the
1205 new symbol is weak, or if the old symbol is undefined. */
1206
1207 if (*type_change_ok
1208 || h->root.type == bfd_link_hash_undefined)
1209 *size_change_ok = TRUE;
1210
1211 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1212 symbol, respectively, appears to be a common symbol in a dynamic
1213 object. If a symbol appears in an uninitialized section, and is
1214 not weak, and is not a function, then it may be a common symbol
1215 which was resolved when the dynamic object was created. We want
1216 to treat such symbols specially, because they raise special
1217 considerations when setting the symbol size: if the symbol
1218 appears as a common symbol in a regular object, and the size in
1219 the regular object is larger, we must make sure that we use the
1220 larger size. This problematic case can always be avoided in C,
1221 but it must be handled correctly when using Fortran shared
1222 libraries.
1223
1224 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1225 likewise for OLDDYNCOMMON and OLDDEF.
1226
1227 Note that this test is just a heuristic, and that it is quite
1228 possible to have an uninitialized symbol in a shared object which
1229 is really a definition, rather than a common symbol. This could
1230 lead to some minor confusion when the symbol really is a common
1231 symbol in some regular object. However, I think it will be
1232 harmless. */
1233
1234 if (newdyn
1235 && newdef
1236 && !newweak
1237 && (sec->flags & SEC_ALLOC) != 0
1238 && (sec->flags & SEC_LOAD) == 0
1239 && sym->st_size > 0
1240 && !newfunc)
1241 newdyncommon = TRUE;
1242 else
1243 newdyncommon = FALSE;
1244
1245 if (olddyn
1246 && olddef
1247 && h->root.type == bfd_link_hash_defined
1248 && h->def_dynamic
1249 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1250 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1251 && h->size > 0
1252 && !oldfunc)
1253 olddyncommon = TRUE;
1254 else
1255 olddyncommon = FALSE;
1256
1257 /* We now know everything about the old and new symbols. We ask the
1258 backend to check if we can merge them. */
1259 if (bed->merge_symbol
1260 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1261 pold_alignment, skip, override,
1262 type_change_ok, size_change_ok,
1263 &newdyn, &newdef, &newdyncommon, &newweak,
1264 abfd, &sec,
1265 &olddyn, &olddef, &olddyncommon, &oldweak,
1266 oldbfd, &oldsec))
1267 return FALSE;
1268
1269 /* If both the old and the new symbols look like common symbols in a
1270 dynamic object, set the size of the symbol to the larger of the
1271 two. */
1272
1273 if (olddyncommon
1274 && newdyncommon
1275 && sym->st_size != h->size)
1276 {
1277 /* Since we think we have two common symbols, issue a multiple
1278 common warning if desired. Note that we only warn if the
1279 size is different. If the size is the same, we simply let
1280 the old symbol override the new one as normally happens with
1281 symbols defined in dynamic objects. */
1282
1283 if (! ((*info->callbacks->multiple_common)
1284 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1285 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1286 return FALSE;
1287
1288 if (sym->st_size > h->size)
1289 h->size = sym->st_size;
1290
1291 *size_change_ok = TRUE;
1292 }
1293
1294 /* If we are looking at a dynamic object, and we have found a
1295 definition, we need to see if the symbol was already defined by
1296 some other object. If so, we want to use the existing
1297 definition, and we do not want to report a multiple symbol
1298 definition error; we do this by clobbering *PSEC to be
1299 bfd_und_section_ptr.
1300
1301 We treat a common symbol as a definition if the symbol in the
1302 shared library is a function, since common symbols always
1303 represent variables; this can cause confusion in principle, but
1304 any such confusion would seem to indicate an erroneous program or
1305 shared library. We also permit a common symbol in a regular
1306 object to override a weak symbol in a shared object. */
1307
1308 if (newdyn
1309 && newdef
1310 && (olddef
1311 || (h->root.type == bfd_link_hash_common
1312 && (newweak || newfunc))))
1313 {
1314 *override = TRUE;
1315 newdef = FALSE;
1316 newdyncommon = FALSE;
1317
1318 *psec = sec = bfd_und_section_ptr;
1319 *size_change_ok = TRUE;
1320
1321 /* If we get here when the old symbol is a common symbol, then
1322 we are explicitly letting it override a weak symbol or
1323 function in a dynamic object, and we don't want to warn about
1324 a type change. If the old symbol is a defined symbol, a type
1325 change warning may still be appropriate. */
1326
1327 if (h->root.type == bfd_link_hash_common)
1328 *type_change_ok = TRUE;
1329 }
1330
1331 /* Handle the special case of an old common symbol merging with a
1332 new symbol which looks like a common symbol in a shared object.
1333 We change *PSEC and *PVALUE to make the new symbol look like a
1334 common symbol, and let _bfd_generic_link_add_one_symbol do the
1335 right thing. */
1336
1337 if (newdyncommon
1338 && h->root.type == bfd_link_hash_common)
1339 {
1340 *override = TRUE;
1341 newdef = FALSE;
1342 newdyncommon = FALSE;
1343 *pvalue = sym->st_size;
1344 *psec = sec = bed->common_section (oldsec);
1345 *size_change_ok = TRUE;
1346 }
1347
1348 /* Skip weak definitions of symbols that are already defined. */
1349 if (newdef && olddef && newweak)
1350 *skip = TRUE;
1351
1352 /* If the old symbol is from a dynamic object, and the new symbol is
1353 a definition which is not from a dynamic object, then the new
1354 symbol overrides the old symbol. Symbols from regular files
1355 always take precedence over symbols from dynamic objects, even if
1356 they are defined after the dynamic object in the link.
1357
1358 As above, we again permit a common symbol in a regular object to
1359 override a definition in a shared object if the shared object
1360 symbol is a function or is weak. */
1361
1362 flip = NULL;
1363 if (!newdyn
1364 && (newdef
1365 || (bfd_is_com_section (sec)
1366 && (oldweak || oldfunc)))
1367 && olddyn
1368 && olddef
1369 && h->def_dynamic)
1370 {
1371 /* Change the hash table entry to undefined, and let
1372 _bfd_generic_link_add_one_symbol do the right thing with the
1373 new definition. */
1374
1375 h->root.type = bfd_link_hash_undefined;
1376 h->root.u.undef.abfd = h->root.u.def.section->owner;
1377 *size_change_ok = TRUE;
1378
1379 olddef = FALSE;
1380 olddyncommon = FALSE;
1381
1382 /* We again permit a type change when a common symbol may be
1383 overriding a function. */
1384
1385 if (bfd_is_com_section (sec))
1386 {
1387 if (oldfunc)
1388 {
1389 /* If a common symbol overrides a function, make sure
1390 that it isn't defined dynamically nor has type
1391 function. */
1392 h->def_dynamic = 0;
1393 h->type = STT_NOTYPE;
1394 }
1395 *type_change_ok = TRUE;
1396 }
1397
1398 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1399 flip = *sym_hash;
1400 else
1401 /* This union may have been set to be non-NULL when this symbol
1402 was seen in a dynamic object. We must force the union to be
1403 NULL, so that it is correct for a regular symbol. */
1404 h->verinfo.vertree = NULL;
1405 }
1406
1407 /* Handle the special case of a new common symbol merging with an
1408 old symbol that looks like it might be a common symbol defined in
1409 a shared object. Note that we have already handled the case in
1410 which a new common symbol should simply override the definition
1411 in the shared library. */
1412
1413 if (! newdyn
1414 && bfd_is_com_section (sec)
1415 && olddyncommon)
1416 {
1417 /* It would be best if we could set the hash table entry to a
1418 common symbol, but we don't know what to use for the section
1419 or the alignment. */
1420 if (! ((*info->callbacks->multiple_common)
1421 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1422 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1423 return FALSE;
1424
1425 /* If the presumed common symbol in the dynamic object is
1426 larger, pretend that the new symbol has its size. */
1427
1428 if (h->size > *pvalue)
1429 *pvalue = h->size;
1430
1431 /* We need to remember the alignment required by the symbol
1432 in the dynamic object. */
1433 BFD_ASSERT (pold_alignment);
1434 *pold_alignment = h->root.u.def.section->alignment_power;
1435
1436 olddef = FALSE;
1437 olddyncommon = FALSE;
1438
1439 h->root.type = bfd_link_hash_undefined;
1440 h->root.u.undef.abfd = h->root.u.def.section->owner;
1441
1442 *size_change_ok = TRUE;
1443 *type_change_ok = TRUE;
1444
1445 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1446 flip = *sym_hash;
1447 else
1448 h->verinfo.vertree = NULL;
1449 }
1450
1451 if (flip != NULL)
1452 {
1453 /* Handle the case where we had a versioned symbol in a dynamic
1454 library and now find a definition in a normal object. In this
1455 case, we make the versioned symbol point to the normal one. */
1456 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1457 flip->root.type = h->root.type;
1458 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1459 h->root.type = bfd_link_hash_indirect;
1460 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1461 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1462 if (h->def_dynamic)
1463 {
1464 h->def_dynamic = 0;
1465 flip->ref_dynamic = 1;
1466 }
1467 }
1468
1469 return TRUE;
1470 }
1471
1472 /* This function is called to create an indirect symbol from the
1473 default for the symbol with the default version if needed. The
1474 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1475 set DYNSYM if the new indirect symbol is dynamic. */
1476
1477 bfd_boolean
1478 _bfd_elf_add_default_symbol (bfd *abfd,
1479 struct bfd_link_info *info,
1480 struct elf_link_hash_entry *h,
1481 const char *name,
1482 Elf_Internal_Sym *sym,
1483 asection **psec,
1484 bfd_vma *value,
1485 bfd_boolean *dynsym,
1486 bfd_boolean override)
1487 {
1488 bfd_boolean type_change_ok;
1489 bfd_boolean size_change_ok;
1490 bfd_boolean skip;
1491 char *shortname;
1492 struct elf_link_hash_entry *hi;
1493 struct bfd_link_hash_entry *bh;
1494 const struct elf_backend_data *bed;
1495 bfd_boolean collect;
1496 bfd_boolean dynamic;
1497 char *p;
1498 size_t len, shortlen;
1499 asection *sec;
1500
1501 /* If this symbol has a version, and it is the default version, we
1502 create an indirect symbol from the default name to the fully
1503 decorated name. This will cause external references which do not
1504 specify a version to be bound to this version of the symbol. */
1505 p = strchr (name, ELF_VER_CHR);
1506 if (p == NULL || p[1] != ELF_VER_CHR)
1507 return TRUE;
1508
1509 if (override)
1510 {
1511 /* We are overridden by an old definition. We need to check if we
1512 need to create the indirect symbol from the default name. */
1513 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1514 FALSE, FALSE);
1515 BFD_ASSERT (hi != NULL);
1516 if (hi == h)
1517 return TRUE;
1518 while (hi->root.type == bfd_link_hash_indirect
1519 || hi->root.type == bfd_link_hash_warning)
1520 {
1521 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1522 if (hi == h)
1523 return TRUE;
1524 }
1525 }
1526
1527 bed = get_elf_backend_data (abfd);
1528 collect = bed->collect;
1529 dynamic = (abfd->flags & DYNAMIC) != 0;
1530
1531 shortlen = p - name;
1532 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1533 if (shortname == NULL)
1534 return FALSE;
1535 memcpy (shortname, name, shortlen);
1536 shortname[shortlen] = '\0';
1537
1538 /* We are going to create a new symbol. Merge it with any existing
1539 symbol with this name. For the purposes of the merge, act as
1540 though we were defining the symbol we just defined, although we
1541 actually going to define an indirect symbol. */
1542 type_change_ok = FALSE;
1543 size_change_ok = FALSE;
1544 sec = *psec;
1545 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1546 NULL, &hi, &skip, &override,
1547 &type_change_ok, &size_change_ok))
1548 return FALSE;
1549
1550 if (skip)
1551 goto nondefault;
1552
1553 if (! override)
1554 {
1555 bh = &hi->root;
1556 if (! (_bfd_generic_link_add_one_symbol
1557 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1558 0, name, FALSE, collect, &bh)))
1559 return FALSE;
1560 hi = (struct elf_link_hash_entry *) bh;
1561 }
1562 else
1563 {
1564 /* In this case the symbol named SHORTNAME is overriding the
1565 indirect symbol we want to add. We were planning on making
1566 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1567 is the name without a version. NAME is the fully versioned
1568 name, and it is the default version.
1569
1570 Overriding means that we already saw a definition for the
1571 symbol SHORTNAME in a regular object, and it is overriding
1572 the symbol defined in the dynamic object.
1573
1574 When this happens, we actually want to change NAME, the
1575 symbol we just added, to refer to SHORTNAME. This will cause
1576 references to NAME in the shared object to become references
1577 to SHORTNAME in the regular object. This is what we expect
1578 when we override a function in a shared object: that the
1579 references in the shared object will be mapped to the
1580 definition in the regular object. */
1581
1582 while (hi->root.type == bfd_link_hash_indirect
1583 || hi->root.type == bfd_link_hash_warning)
1584 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1585
1586 h->root.type = bfd_link_hash_indirect;
1587 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1588 if (h->def_dynamic)
1589 {
1590 h->def_dynamic = 0;
1591 hi->ref_dynamic = 1;
1592 if (hi->ref_regular
1593 || hi->def_regular)
1594 {
1595 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1596 return FALSE;
1597 }
1598 }
1599
1600 /* Now set HI to H, so that the following code will set the
1601 other fields correctly. */
1602 hi = h;
1603 }
1604
1605 /* Check if HI is a warning symbol. */
1606 if (hi->root.type == bfd_link_hash_warning)
1607 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1608
1609 /* If there is a duplicate definition somewhere, then HI may not
1610 point to an indirect symbol. We will have reported an error to
1611 the user in that case. */
1612
1613 if (hi->root.type == bfd_link_hash_indirect)
1614 {
1615 struct elf_link_hash_entry *ht;
1616
1617 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1618 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1619
1620 /* See if the new flags lead us to realize that the symbol must
1621 be dynamic. */
1622 if (! *dynsym)
1623 {
1624 if (! dynamic)
1625 {
1626 if (info->shared
1627 || hi->ref_dynamic)
1628 *dynsym = TRUE;
1629 }
1630 else
1631 {
1632 if (hi->ref_regular)
1633 *dynsym = TRUE;
1634 }
1635 }
1636 }
1637
1638 /* We also need to define an indirection from the nondefault version
1639 of the symbol. */
1640
1641 nondefault:
1642 len = strlen (name);
1643 shortname = bfd_hash_allocate (&info->hash->table, len);
1644 if (shortname == NULL)
1645 return FALSE;
1646 memcpy (shortname, name, shortlen);
1647 memcpy (shortname + shortlen, p + 1, len - shortlen);
1648
1649 /* Once again, merge with any existing symbol. */
1650 type_change_ok = FALSE;
1651 size_change_ok = FALSE;
1652 sec = *psec;
1653 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1654 NULL, &hi, &skip, &override,
1655 &type_change_ok, &size_change_ok))
1656 return FALSE;
1657
1658 if (skip)
1659 return TRUE;
1660
1661 if (override)
1662 {
1663 /* Here SHORTNAME is a versioned name, so we don't expect to see
1664 the type of override we do in the case above unless it is
1665 overridden by a versioned definition. */
1666 if (hi->root.type != bfd_link_hash_defined
1667 && hi->root.type != bfd_link_hash_defweak)
1668 (*_bfd_error_handler)
1669 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1670 abfd, shortname);
1671 }
1672 else
1673 {
1674 bh = &hi->root;
1675 if (! (_bfd_generic_link_add_one_symbol
1676 (info, abfd, shortname, BSF_INDIRECT,
1677 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1678 return FALSE;
1679 hi = (struct elf_link_hash_entry *) bh;
1680
1681 /* If there is a duplicate definition somewhere, then HI may not
1682 point to an indirect symbol. We will have reported an error
1683 to the user in that case. */
1684
1685 if (hi->root.type == bfd_link_hash_indirect)
1686 {
1687 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1688
1689 /* See if the new flags lead us to realize that the symbol
1690 must be dynamic. */
1691 if (! *dynsym)
1692 {
1693 if (! dynamic)
1694 {
1695 if (info->shared
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706 }
1707
1708 return TRUE;
1709 }
1710 \f
1711 /* This routine is used to export all defined symbols into the dynamic
1712 symbol table. It is called via elf_link_hash_traverse. */
1713
1714 bfd_boolean
1715 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1716 {
1717 struct elf_info_failed *eif = data;
1718
1719 /* Ignore this if we won't export it. */
1720 if (!eif->info->export_dynamic && !h->dynamic)
1721 return TRUE;
1722
1723 /* Ignore indirect symbols. These are added by the versioning code. */
1724 if (h->root.type == bfd_link_hash_indirect)
1725 return TRUE;
1726
1727 if (h->root.type == bfd_link_hash_warning)
1728 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1729
1730 if (h->dynindx == -1
1731 && (h->def_regular
1732 || h->ref_regular))
1733 {
1734 struct bfd_elf_version_tree *t;
1735 struct bfd_elf_version_expr *d;
1736
1737 for (t = eif->verdefs; t != NULL; t = t->next)
1738 {
1739 if (t->globals.list != NULL)
1740 {
1741 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1742 if (d != NULL)
1743 goto doit;
1744 }
1745
1746 if (t->locals.list != NULL)
1747 {
1748 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1749 if (d != NULL)
1750 return TRUE;
1751 }
1752 }
1753
1754 if (!eif->verdefs)
1755 {
1756 doit:
1757 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1758 {
1759 eif->failed = TRUE;
1760 return FALSE;
1761 }
1762 }
1763 }
1764
1765 return TRUE;
1766 }
1767 \f
1768 /* Look through the symbols which are defined in other shared
1769 libraries and referenced here. Update the list of version
1770 dependencies. This will be put into the .gnu.version_r section.
1771 This function is called via elf_link_hash_traverse. */
1772
1773 bfd_boolean
1774 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1775 void *data)
1776 {
1777 struct elf_find_verdep_info *rinfo = data;
1778 Elf_Internal_Verneed *t;
1779 Elf_Internal_Vernaux *a;
1780 bfd_size_type amt;
1781
1782 if (h->root.type == bfd_link_hash_warning)
1783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1784
1785 /* We only care about symbols defined in shared objects with version
1786 information. */
1787 if (!h->def_dynamic
1788 || h->def_regular
1789 || h->dynindx == -1
1790 || h->verinfo.verdef == NULL)
1791 return TRUE;
1792
1793 /* See if we already know about this version. */
1794 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1795 {
1796 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1797 continue;
1798
1799 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1800 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1801 return TRUE;
1802
1803 break;
1804 }
1805
1806 /* This is a new version. Add it to tree we are building. */
1807
1808 if (t == NULL)
1809 {
1810 amt = sizeof *t;
1811 t = bfd_zalloc (rinfo->output_bfd, amt);
1812 if (t == NULL)
1813 {
1814 rinfo->failed = TRUE;
1815 return FALSE;
1816 }
1817
1818 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1819 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1820 elf_tdata (rinfo->output_bfd)->verref = t;
1821 }
1822
1823 amt = sizeof *a;
1824 a = bfd_zalloc (rinfo->output_bfd, amt);
1825 if (a == NULL)
1826 {
1827 rinfo->failed = TRUE;
1828 return FALSE;
1829 }
1830
1831 /* Note that we are copying a string pointer here, and testing it
1832 above. If bfd_elf_string_from_elf_section is ever changed to
1833 discard the string data when low in memory, this will have to be
1834 fixed. */
1835 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1836
1837 a->vna_flags = h->verinfo.verdef->vd_flags;
1838 a->vna_nextptr = t->vn_auxptr;
1839
1840 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1841 ++rinfo->vers;
1842
1843 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1844
1845 t->vn_auxptr = a;
1846
1847 return TRUE;
1848 }
1849
1850 /* Figure out appropriate versions for all the symbols. We may not
1851 have the version number script until we have read all of the input
1852 files, so until that point we don't know which symbols should be
1853 local. This function is called via elf_link_hash_traverse. */
1854
1855 bfd_boolean
1856 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1857 {
1858 struct elf_assign_sym_version_info *sinfo;
1859 struct bfd_link_info *info;
1860 const struct elf_backend_data *bed;
1861 struct elf_info_failed eif;
1862 char *p;
1863 bfd_size_type amt;
1864
1865 sinfo = data;
1866 info = sinfo->info;
1867
1868 if (h->root.type == bfd_link_hash_warning)
1869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1870
1871 /* Fix the symbol flags. */
1872 eif.failed = FALSE;
1873 eif.info = info;
1874 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1875 {
1876 if (eif.failed)
1877 sinfo->failed = TRUE;
1878 return FALSE;
1879 }
1880
1881 /* We only need version numbers for symbols defined in regular
1882 objects. */
1883 if (!h->def_regular)
1884 return TRUE;
1885
1886 bed = get_elf_backend_data (sinfo->output_bfd);
1887 p = strchr (h->root.root.string, ELF_VER_CHR);
1888 if (p != NULL && h->verinfo.vertree == NULL)
1889 {
1890 struct bfd_elf_version_tree *t;
1891 bfd_boolean hidden;
1892
1893 hidden = TRUE;
1894
1895 /* There are two consecutive ELF_VER_CHR characters if this is
1896 not a hidden symbol. */
1897 ++p;
1898 if (*p == ELF_VER_CHR)
1899 {
1900 hidden = FALSE;
1901 ++p;
1902 }
1903
1904 /* If there is no version string, we can just return out. */
1905 if (*p == '\0')
1906 {
1907 if (hidden)
1908 h->hidden = 1;
1909 return TRUE;
1910 }
1911
1912 /* Look for the version. If we find it, it is no longer weak. */
1913 for (t = sinfo->verdefs; t != NULL; t = t->next)
1914 {
1915 if (strcmp (t->name, p) == 0)
1916 {
1917 size_t len;
1918 char *alc;
1919 struct bfd_elf_version_expr *d;
1920
1921 len = p - h->root.root.string;
1922 alc = bfd_malloc (len);
1923 if (alc == NULL)
1924 {
1925 sinfo->failed = TRUE;
1926 return FALSE;
1927 }
1928 memcpy (alc, h->root.root.string, len - 1);
1929 alc[len - 1] = '\0';
1930 if (alc[len - 2] == ELF_VER_CHR)
1931 alc[len - 2] = '\0';
1932
1933 h->verinfo.vertree = t;
1934 t->used = TRUE;
1935 d = NULL;
1936
1937 if (t->globals.list != NULL)
1938 d = (*t->match) (&t->globals, NULL, alc);
1939
1940 /* See if there is anything to force this symbol to
1941 local scope. */
1942 if (d == NULL && t->locals.list != NULL)
1943 {
1944 d = (*t->match) (&t->locals, NULL, alc);
1945 if (d != NULL
1946 && h->dynindx != -1
1947 && ! info->export_dynamic)
1948 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1949 }
1950
1951 free (alc);
1952 break;
1953 }
1954 }
1955
1956 /* If we are building an application, we need to create a
1957 version node for this version. */
1958 if (t == NULL && info->executable)
1959 {
1960 struct bfd_elf_version_tree **pp;
1961 int version_index;
1962
1963 /* If we aren't going to export this symbol, we don't need
1964 to worry about it. */
1965 if (h->dynindx == -1)
1966 return TRUE;
1967
1968 amt = sizeof *t;
1969 t = bfd_zalloc (sinfo->output_bfd, amt);
1970 if (t == NULL)
1971 {
1972 sinfo->failed = TRUE;
1973 return FALSE;
1974 }
1975
1976 t->name = p;
1977 t->name_indx = (unsigned int) -1;
1978 t->used = TRUE;
1979
1980 version_index = 1;
1981 /* Don't count anonymous version tag. */
1982 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1983 version_index = 0;
1984 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1985 ++version_index;
1986 t->vernum = version_index;
1987
1988 *pp = t;
1989
1990 h->verinfo.vertree = t;
1991 }
1992 else if (t == NULL)
1993 {
1994 /* We could not find the version for a symbol when
1995 generating a shared archive. Return an error. */
1996 (*_bfd_error_handler)
1997 (_("%B: version node not found for symbol %s"),
1998 sinfo->output_bfd, h->root.root.string);
1999 bfd_set_error (bfd_error_bad_value);
2000 sinfo->failed = TRUE;
2001 return FALSE;
2002 }
2003
2004 if (hidden)
2005 h->hidden = 1;
2006 }
2007
2008 /* If we don't have a version for this symbol, see if we can find
2009 something. */
2010 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2011 {
2012 struct bfd_elf_version_tree *t;
2013 struct bfd_elf_version_tree *local_ver;
2014 struct bfd_elf_version_expr *d;
2015
2016 /* See if can find what version this symbol is in. If the
2017 symbol is supposed to be local, then don't actually register
2018 it. */
2019 local_ver = NULL;
2020 for (t = sinfo->verdefs; t != NULL; t = t->next)
2021 {
2022 if (t->globals.list != NULL)
2023 {
2024 bfd_boolean matched;
2025
2026 matched = FALSE;
2027 d = NULL;
2028 while ((d = (*t->match) (&t->globals, d,
2029 h->root.root.string)) != NULL)
2030 if (d->symver)
2031 matched = TRUE;
2032 else
2033 {
2034 /* There is a version without definition. Make
2035 the symbol the default definition for this
2036 version. */
2037 h->verinfo.vertree = t;
2038 local_ver = NULL;
2039 d->script = 1;
2040 break;
2041 }
2042 if (d != NULL)
2043 break;
2044 else if (matched)
2045 /* There is no undefined version for this symbol. Hide the
2046 default one. */
2047 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2048 }
2049
2050 if (t->locals.list != NULL)
2051 {
2052 d = NULL;
2053 while ((d = (*t->match) (&t->locals, d,
2054 h->root.root.string)) != NULL)
2055 {
2056 local_ver = t;
2057 /* If the match is "*", keep looking for a more
2058 explicit, perhaps even global, match.
2059 XXX: Shouldn't this be !d->wildcard instead? */
2060 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2061 break;
2062 }
2063
2064 if (d != NULL)
2065 break;
2066 }
2067 }
2068
2069 if (local_ver != NULL)
2070 {
2071 h->verinfo.vertree = local_ver;
2072 if (h->dynindx != -1
2073 && ! info->export_dynamic)
2074 {
2075 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2076 }
2077 }
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2098 {
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2106
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2117
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
2136 bfd_vma r_symndx;
2137
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if ((size_t) r_symndx >= nsyms)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2146 " for offset 0x%lx in section `%A'"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 REL_HDR2 relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 Elf_Internal_Shdr *rel_hdr;
2177 void *alloc1 = NULL;
2178 Elf_Internal_Rela *alloc2 = NULL;
2179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2180
2181 if (elf_section_data (o)->relocs != NULL)
2182 return elf_section_data (o)->relocs;
2183
2184 if (o->reloc_count == 0)
2185 return NULL;
2186
2187 rel_hdr = &elf_section_data (o)->rel_hdr;
2188
2189 if (internal_relocs == NULL)
2190 {
2191 bfd_size_type size;
2192
2193 size = o->reloc_count;
2194 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 if (keep_memory)
2196 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2197 else
2198 internal_relocs = alloc2 = bfd_malloc (size);
2199 if (internal_relocs == NULL)
2200 goto error_return;
2201 }
2202
2203 if (external_relocs == NULL)
2204 {
2205 bfd_size_type size = rel_hdr->sh_size;
2206
2207 if (elf_section_data (o)->rel_hdr2)
2208 size += elf_section_data (o)->rel_hdr2->sh_size;
2209 alloc1 = bfd_malloc (size);
2210 if (alloc1 == NULL)
2211 goto error_return;
2212 external_relocs = alloc1;
2213 }
2214
2215 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2216 external_relocs,
2217 internal_relocs))
2218 goto error_return;
2219 if (elf_section_data (o)->rel_hdr2
2220 && (!elf_link_read_relocs_from_section
2221 (abfd, o,
2222 elf_section_data (o)->rel_hdr2,
2223 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2224 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2225 * bed->s->int_rels_per_ext_rel))))
2226 goto error_return;
2227
2228 /* Cache the results for next time, if we can. */
2229 if (keep_memory)
2230 elf_section_data (o)->relocs = internal_relocs;
2231
2232 if (alloc1 != NULL)
2233 free (alloc1);
2234
2235 /* Don't free alloc2, since if it was allocated we are passing it
2236 back (under the name of internal_relocs). */
2237
2238 return internal_relocs;
2239
2240 error_return:
2241 if (alloc1 != NULL)
2242 free (alloc1);
2243 if (alloc2 != NULL)
2244 {
2245 if (keep_memory)
2246 bfd_release (abfd, alloc2);
2247 else
2248 free (alloc2);
2249 }
2250 return NULL;
2251 }
2252
2253 /* Compute the size of, and allocate space for, REL_HDR which is the
2254 section header for a section containing relocations for O. */
2255
2256 bfd_boolean
2257 _bfd_elf_link_size_reloc_section (bfd *abfd,
2258 Elf_Internal_Shdr *rel_hdr,
2259 asection *o)
2260 {
2261 bfd_size_type reloc_count;
2262 bfd_size_type num_rel_hashes;
2263
2264 /* Figure out how many relocations there will be. */
2265 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2266 reloc_count = elf_section_data (o)->rel_count;
2267 else
2268 reloc_count = elf_section_data (o)->rel_count2;
2269
2270 num_rel_hashes = o->reloc_count;
2271 if (num_rel_hashes < reloc_count)
2272 num_rel_hashes = reloc_count;
2273
2274 /* That allows us to calculate the size of the section. */
2275 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2276
2277 /* The contents field must last into write_object_contents, so we
2278 allocate it with bfd_alloc rather than malloc. Also since we
2279 cannot be sure that the contents will actually be filled in,
2280 we zero the allocated space. */
2281 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2282 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2283 return FALSE;
2284
2285 /* We only allocate one set of hash entries, so we only do it the
2286 first time we are called. */
2287 if (elf_section_data (o)->rel_hashes == NULL
2288 && num_rel_hashes)
2289 {
2290 struct elf_link_hash_entry **p;
2291
2292 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2293 if (p == NULL)
2294 return FALSE;
2295
2296 elf_section_data (o)->rel_hashes = p;
2297 }
2298
2299 return TRUE;
2300 }
2301
2302 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2303 originated from the section given by INPUT_REL_HDR) to the
2304 OUTPUT_BFD. */
2305
2306 bfd_boolean
2307 _bfd_elf_link_output_relocs (bfd *output_bfd,
2308 asection *input_section,
2309 Elf_Internal_Shdr *input_rel_hdr,
2310 Elf_Internal_Rela *internal_relocs,
2311 struct elf_link_hash_entry **rel_hash
2312 ATTRIBUTE_UNUSED)
2313 {
2314 Elf_Internal_Rela *irela;
2315 Elf_Internal_Rela *irelaend;
2316 bfd_byte *erel;
2317 Elf_Internal_Shdr *output_rel_hdr;
2318 asection *output_section;
2319 unsigned int *rel_countp = NULL;
2320 const struct elf_backend_data *bed;
2321 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2322
2323 output_section = input_section->output_section;
2324 output_rel_hdr = NULL;
2325
2326 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2327 == input_rel_hdr->sh_entsize)
2328 {
2329 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2330 rel_countp = &elf_section_data (output_section)->rel_count;
2331 }
2332 else if (elf_section_data (output_section)->rel_hdr2
2333 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2334 == input_rel_hdr->sh_entsize))
2335 {
2336 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2337 rel_countp = &elf_section_data (output_section)->rel_count2;
2338 }
2339 else
2340 {
2341 (*_bfd_error_handler)
2342 (_("%B: relocation size mismatch in %B section %A"),
2343 output_bfd, input_section->owner, input_section);
2344 bfd_set_error (bfd_error_wrong_format);
2345 return FALSE;
2346 }
2347
2348 bed = get_elf_backend_data (output_bfd);
2349 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2350 swap_out = bed->s->swap_reloc_out;
2351 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2352 swap_out = bed->s->swap_reloca_out;
2353 else
2354 abort ();
2355
2356 erel = output_rel_hdr->contents;
2357 erel += *rel_countp * input_rel_hdr->sh_entsize;
2358 irela = internal_relocs;
2359 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2360 * bed->s->int_rels_per_ext_rel);
2361 while (irela < irelaend)
2362 {
2363 (*swap_out) (output_bfd, irela, erel);
2364 irela += bed->s->int_rels_per_ext_rel;
2365 erel += input_rel_hdr->sh_entsize;
2366 }
2367
2368 /* Bump the counter, so that we know where to add the next set of
2369 relocations. */
2370 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2371
2372 return TRUE;
2373 }
2374 \f
2375 /* Make weak undefined symbols in PIE dynamic. */
2376
2377 bfd_boolean
2378 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2379 struct elf_link_hash_entry *h)
2380 {
2381 if (info->pie
2382 && h->dynindx == -1
2383 && h->root.type == bfd_link_hash_undefweak)
2384 return bfd_elf_link_record_dynamic_symbol (info, h);
2385
2386 return TRUE;
2387 }
2388
2389 /* Fix up the flags for a symbol. This handles various cases which
2390 can only be fixed after all the input files are seen. This is
2391 currently called by both adjust_dynamic_symbol and
2392 assign_sym_version, which is unnecessary but perhaps more robust in
2393 the face of future changes. */
2394
2395 bfd_boolean
2396 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2397 struct elf_info_failed *eif)
2398 {
2399 const struct elf_backend_data *bed;
2400
2401 /* If this symbol was mentioned in a non-ELF file, try to set
2402 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2403 permit a non-ELF file to correctly refer to a symbol defined in
2404 an ELF dynamic object. */
2405 if (h->non_elf)
2406 {
2407 while (h->root.type == bfd_link_hash_indirect)
2408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2409
2410 if (h->root.type != bfd_link_hash_defined
2411 && h->root.type != bfd_link_hash_defweak)
2412 {
2413 h->ref_regular = 1;
2414 h->ref_regular_nonweak = 1;
2415 }
2416 else
2417 {
2418 if (h->root.u.def.section->owner != NULL
2419 && (bfd_get_flavour (h->root.u.def.section->owner)
2420 == bfd_target_elf_flavour))
2421 {
2422 h->ref_regular = 1;
2423 h->ref_regular_nonweak = 1;
2424 }
2425 else
2426 h->def_regular = 1;
2427 }
2428
2429 if (h->dynindx == -1
2430 && (h->def_dynamic
2431 || h->ref_dynamic))
2432 {
2433 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2434 {
2435 eif->failed = TRUE;
2436 return FALSE;
2437 }
2438 }
2439 }
2440 else
2441 {
2442 /* Unfortunately, NON_ELF is only correct if the symbol
2443 was first seen in a non-ELF file. Fortunately, if the symbol
2444 was first seen in an ELF file, we're probably OK unless the
2445 symbol was defined in a non-ELF file. Catch that case here.
2446 FIXME: We're still in trouble if the symbol was first seen in
2447 a dynamic object, and then later in a non-ELF regular object. */
2448 if ((h->root.type == bfd_link_hash_defined
2449 || h->root.type == bfd_link_hash_defweak)
2450 && !h->def_regular
2451 && (h->root.u.def.section->owner != NULL
2452 ? (bfd_get_flavour (h->root.u.def.section->owner)
2453 != bfd_target_elf_flavour)
2454 : (bfd_is_abs_section (h->root.u.def.section)
2455 && !h->def_dynamic)))
2456 h->def_regular = 1;
2457 }
2458
2459 /* Backend specific symbol fixup. */
2460 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2461 if (bed->elf_backend_fixup_symbol
2462 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2463 return FALSE;
2464
2465 /* If this is a final link, and the symbol was defined as a common
2466 symbol in a regular object file, and there was no definition in
2467 any dynamic object, then the linker will have allocated space for
2468 the symbol in a common section but the DEF_REGULAR
2469 flag will not have been set. */
2470 if (h->root.type == bfd_link_hash_defined
2471 && !h->def_regular
2472 && h->ref_regular
2473 && !h->def_dynamic
2474 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2475 h->def_regular = 1;
2476
2477 /* If -Bsymbolic was used (which means to bind references to global
2478 symbols to the definition within the shared object), and this
2479 symbol was defined in a regular object, then it actually doesn't
2480 need a PLT entry. Likewise, if the symbol has non-default
2481 visibility. If the symbol has hidden or internal visibility, we
2482 will force it local. */
2483 if (h->needs_plt
2484 && eif->info->shared
2485 && is_elf_hash_table (eif->info->hash)
2486 && (SYMBOLIC_BIND (eif->info, h)
2487 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2488 && h->def_regular)
2489 {
2490 bfd_boolean force_local;
2491
2492 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2493 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2494 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2495 }
2496
2497 /* If a weak undefined symbol has non-default visibility, we also
2498 hide it from the dynamic linker. */
2499 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2500 && h->root.type == bfd_link_hash_undefweak)
2501 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2502
2503 /* If this is a weak defined symbol in a dynamic object, and we know
2504 the real definition in the dynamic object, copy interesting flags
2505 over to the real definition. */
2506 if (h->u.weakdef != NULL)
2507 {
2508 struct elf_link_hash_entry *weakdef;
2509
2510 weakdef = h->u.weakdef;
2511 if (h->root.type == bfd_link_hash_indirect)
2512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2513
2514 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2515 || h->root.type == bfd_link_hash_defweak);
2516 BFD_ASSERT (weakdef->def_dynamic);
2517
2518 /* If the real definition is defined by a regular object file,
2519 don't do anything special. See the longer description in
2520 _bfd_elf_adjust_dynamic_symbol, below. */
2521 if (weakdef->def_regular)
2522 h->u.weakdef = NULL;
2523 else
2524 {
2525 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2526 || weakdef->root.type == bfd_link_hash_defweak);
2527 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2528 }
2529 }
2530
2531 return TRUE;
2532 }
2533
2534 /* Make the backend pick a good value for a dynamic symbol. This is
2535 called via elf_link_hash_traverse, and also calls itself
2536 recursively. */
2537
2538 bfd_boolean
2539 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2540 {
2541 struct elf_info_failed *eif = data;
2542 bfd *dynobj;
2543 const struct elf_backend_data *bed;
2544
2545 if (! is_elf_hash_table (eif->info->hash))
2546 return FALSE;
2547
2548 if (h->root.type == bfd_link_hash_warning)
2549 {
2550 h->got = elf_hash_table (eif->info)->init_got_offset;
2551 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2552
2553 /* When warning symbols are created, they **replace** the "real"
2554 entry in the hash table, thus we never get to see the real
2555 symbol in a hash traversal. So look at it now. */
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2557 }
2558
2559 /* Ignore indirect symbols. These are added by the versioning code. */
2560 if (h->root.type == bfd_link_hash_indirect)
2561 return TRUE;
2562
2563 /* Fix the symbol flags. */
2564 if (! _bfd_elf_fix_symbol_flags (h, eif))
2565 return FALSE;
2566
2567 /* If this symbol does not require a PLT entry, and it is not
2568 defined by a dynamic object, or is not referenced by a regular
2569 object, ignore it. We do have to handle a weak defined symbol,
2570 even if no regular object refers to it, if we decided to add it
2571 to the dynamic symbol table. FIXME: Do we normally need to worry
2572 about symbols which are defined by one dynamic object and
2573 referenced by another one? */
2574 if (!h->needs_plt
2575 && (h->def_regular
2576 || !h->def_dynamic
2577 || (!h->ref_regular
2578 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2579 {
2580 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2581 return TRUE;
2582 }
2583
2584 /* If we've already adjusted this symbol, don't do it again. This
2585 can happen via a recursive call. */
2586 if (h->dynamic_adjusted)
2587 return TRUE;
2588
2589 /* Don't look at this symbol again. Note that we must set this
2590 after checking the above conditions, because we may look at a
2591 symbol once, decide not to do anything, and then get called
2592 recursively later after REF_REGULAR is set below. */
2593 h->dynamic_adjusted = 1;
2594
2595 /* If this is a weak definition, and we know a real definition, and
2596 the real symbol is not itself defined by a regular object file,
2597 then get a good value for the real definition. We handle the
2598 real symbol first, for the convenience of the backend routine.
2599
2600 Note that there is a confusing case here. If the real definition
2601 is defined by a regular object file, we don't get the real symbol
2602 from the dynamic object, but we do get the weak symbol. If the
2603 processor backend uses a COPY reloc, then if some routine in the
2604 dynamic object changes the real symbol, we will not see that
2605 change in the corresponding weak symbol. This is the way other
2606 ELF linkers work as well, and seems to be a result of the shared
2607 library model.
2608
2609 I will clarify this issue. Most SVR4 shared libraries define the
2610 variable _timezone and define timezone as a weak synonym. The
2611 tzset call changes _timezone. If you write
2612 extern int timezone;
2613 int _timezone = 5;
2614 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2615 you might expect that, since timezone is a synonym for _timezone,
2616 the same number will print both times. However, if the processor
2617 backend uses a COPY reloc, then actually timezone will be copied
2618 into your process image, and, since you define _timezone
2619 yourself, _timezone will not. Thus timezone and _timezone will
2620 wind up at different memory locations. The tzset call will set
2621 _timezone, leaving timezone unchanged. */
2622
2623 if (h->u.weakdef != NULL)
2624 {
2625 /* If we get to this point, we know there is an implicit
2626 reference by a regular object file via the weak symbol H.
2627 FIXME: Is this really true? What if the traversal finds
2628 H->U.WEAKDEF before it finds H? */
2629 h->u.weakdef->ref_regular = 1;
2630
2631 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2632 return FALSE;
2633 }
2634
2635 /* If a symbol has no type and no size and does not require a PLT
2636 entry, then we are probably about to do the wrong thing here: we
2637 are probably going to create a COPY reloc for an empty object.
2638 This case can arise when a shared object is built with assembly
2639 code, and the assembly code fails to set the symbol type. */
2640 if (h->size == 0
2641 && h->type == STT_NOTYPE
2642 && !h->needs_plt)
2643 (*_bfd_error_handler)
2644 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2645 h->root.root.string);
2646
2647 dynobj = elf_hash_table (eif->info)->dynobj;
2648 bed = get_elf_backend_data (dynobj);
2649 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2650 {
2651 eif->failed = TRUE;
2652 return FALSE;
2653 }
2654
2655 return TRUE;
2656 }
2657
2658 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659 DYNBSS. */
2660
2661 bfd_boolean
2662 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2663 asection *dynbss)
2664 {
2665 unsigned int power_of_two;
2666 bfd_vma mask;
2667 asection *sec = h->root.u.def.section;
2668
2669 /* The section aligment of definition is the maximum alignment
2670 requirement of symbols defined in the section. Since we don't
2671 know the symbol alignment requirement, we start with the
2672 maximum alignment and check low bits of the symbol address
2673 for the minimum alignment. */
2674 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2675 mask = ((bfd_vma) 1 << power_of_two) - 1;
2676 while ((h->root.u.def.value & mask) != 0)
2677 {
2678 mask >>= 1;
2679 --power_of_two;
2680 }
2681
2682 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2683 dynbss))
2684 {
2685 /* Adjust the section alignment if needed. */
2686 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2687 power_of_two))
2688 return FALSE;
2689 }
2690
2691 /* We make sure that the symbol will be aligned properly. */
2692 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2693
2694 /* Define the symbol as being at this point in DYNBSS. */
2695 h->root.u.def.section = dynbss;
2696 h->root.u.def.value = dynbss->size;
2697
2698 /* Increment the size of DYNBSS to make room for the symbol. */
2699 dynbss->size += h->size;
2700
2701 return TRUE;
2702 }
2703
2704 /* Adjust all external symbols pointing into SEC_MERGE sections
2705 to reflect the object merging within the sections. */
2706
2707 bfd_boolean
2708 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2709 {
2710 asection *sec;
2711
2712 if (h->root.type == bfd_link_hash_warning)
2713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2714
2715 if ((h->root.type == bfd_link_hash_defined
2716 || h->root.type == bfd_link_hash_defweak)
2717 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2718 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2719 {
2720 bfd *output_bfd = data;
2721
2722 h->root.u.def.value =
2723 _bfd_merged_section_offset (output_bfd,
2724 &h->root.u.def.section,
2725 elf_section_data (sec)->sec_info,
2726 h->root.u.def.value);
2727 }
2728
2729 return TRUE;
2730 }
2731
2732 /* Returns false if the symbol referred to by H should be considered
2733 to resolve local to the current module, and true if it should be
2734 considered to bind dynamically. */
2735
2736 bfd_boolean
2737 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2738 struct bfd_link_info *info,
2739 bfd_boolean ignore_protected)
2740 {
2741 bfd_boolean binding_stays_local_p;
2742 const struct elf_backend_data *bed;
2743 struct elf_link_hash_table *hash_table;
2744
2745 if (h == NULL)
2746 return FALSE;
2747
2748 while (h->root.type == bfd_link_hash_indirect
2749 || h->root.type == bfd_link_hash_warning)
2750 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2751
2752 /* If it was forced local, then clearly it's not dynamic. */
2753 if (h->dynindx == -1)
2754 return FALSE;
2755 if (h->forced_local)
2756 return FALSE;
2757
2758 /* Identify the cases where name binding rules say that a
2759 visible symbol resolves locally. */
2760 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2761
2762 switch (ELF_ST_VISIBILITY (h->other))
2763 {
2764 case STV_INTERNAL:
2765 case STV_HIDDEN:
2766 return FALSE;
2767
2768 case STV_PROTECTED:
2769 hash_table = elf_hash_table (info);
2770 if (!is_elf_hash_table (hash_table))
2771 return FALSE;
2772
2773 bed = get_elf_backend_data (hash_table->dynobj);
2774
2775 /* Proper resolution for function pointer equality may require
2776 that these symbols perhaps be resolved dynamically, even though
2777 we should be resolving them to the current module. */
2778 if (!ignore_protected || !bed->is_function_type (h->type))
2779 binding_stays_local_p = TRUE;
2780 break;
2781
2782 default:
2783 break;
2784 }
2785
2786 /* If it isn't defined locally, then clearly it's dynamic. */
2787 if (!h->def_regular)
2788 return TRUE;
2789
2790 /* Otherwise, the symbol is dynamic if binding rules don't tell
2791 us that it remains local. */
2792 return !binding_stays_local_p;
2793 }
2794
2795 /* Return true if the symbol referred to by H should be considered
2796 to resolve local to the current module, and false otherwise. Differs
2797 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2798 undefined symbols and weak symbols. */
2799
2800 bfd_boolean
2801 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2802 struct bfd_link_info *info,
2803 bfd_boolean local_protected)
2804 {
2805 const struct elf_backend_data *bed;
2806 struct elf_link_hash_table *hash_table;
2807
2808 /* If it's a local sym, of course we resolve locally. */
2809 if (h == NULL)
2810 return TRUE;
2811
2812 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2813 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2814 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2815 return TRUE;
2816
2817 /* Common symbols that become definitions don't get the DEF_REGULAR
2818 flag set, so test it first, and don't bail out. */
2819 if (ELF_COMMON_DEF_P (h))
2820 /* Do nothing. */;
2821 /* If we don't have a definition in a regular file, then we can't
2822 resolve locally. The sym is either undefined or dynamic. */
2823 else if (!h->def_regular)
2824 return FALSE;
2825
2826 /* Forced local symbols resolve locally. */
2827 if (h->forced_local)
2828 return TRUE;
2829
2830 /* As do non-dynamic symbols. */
2831 if (h->dynindx == -1)
2832 return TRUE;
2833
2834 /* At this point, we know the symbol is defined and dynamic. In an
2835 executable it must resolve locally, likewise when building symbolic
2836 shared libraries. */
2837 if (info->executable || SYMBOLIC_BIND (info, h))
2838 return TRUE;
2839
2840 /* Now deal with defined dynamic symbols in shared libraries. Ones
2841 with default visibility might not resolve locally. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2843 return FALSE;
2844
2845 hash_table = elf_hash_table (info);
2846 if (!is_elf_hash_table (hash_table))
2847 return TRUE;
2848
2849 bed = get_elf_backend_data (hash_table->dynobj);
2850
2851 /* STV_PROTECTED non-function symbols are local. */
2852 if (!bed->is_function_type (h->type))
2853 return TRUE;
2854
2855 /* Function pointer equality tests may require that STV_PROTECTED
2856 symbols be treated as dynamic symbols, even when we know that the
2857 dynamic linker will resolve them locally. */
2858 return local_protected;
2859 }
2860
2861 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2862 aligned. Returns the first TLS output section. */
2863
2864 struct bfd_section *
2865 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2866 {
2867 struct bfd_section *sec, *tls;
2868 unsigned int align = 0;
2869
2870 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2871 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2872 break;
2873 tls = sec;
2874
2875 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2876 if (sec->alignment_power > align)
2877 align = sec->alignment_power;
2878
2879 elf_hash_table (info)->tls_sec = tls;
2880
2881 /* Ensure the alignment of the first section is the largest alignment,
2882 so that the tls segment starts aligned. */
2883 if (tls != NULL)
2884 tls->alignment_power = align;
2885
2886 return tls;
2887 }
2888
2889 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2890 static bfd_boolean
2891 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2892 Elf_Internal_Sym *sym)
2893 {
2894 const struct elf_backend_data *bed;
2895
2896 /* Local symbols do not count, but target specific ones might. */
2897 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2898 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2899 return FALSE;
2900
2901 bed = get_elf_backend_data (abfd);
2902 /* Function symbols do not count. */
2903 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2904 return FALSE;
2905
2906 /* If the section is undefined, then so is the symbol. */
2907 if (sym->st_shndx == SHN_UNDEF)
2908 return FALSE;
2909
2910 /* If the symbol is defined in the common section, then
2911 it is a common definition and so does not count. */
2912 if (bed->common_definition (sym))
2913 return FALSE;
2914
2915 /* If the symbol is in a target specific section then we
2916 must rely upon the backend to tell us what it is. */
2917 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2918 /* FIXME - this function is not coded yet:
2919
2920 return _bfd_is_global_symbol_definition (abfd, sym);
2921
2922 Instead for now assume that the definition is not global,
2923 Even if this is wrong, at least the linker will behave
2924 in the same way that it used to do. */
2925 return FALSE;
2926
2927 return TRUE;
2928 }
2929
2930 /* Search the symbol table of the archive element of the archive ABFD
2931 whose archive map contains a mention of SYMDEF, and determine if
2932 the symbol is defined in this element. */
2933 static bfd_boolean
2934 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2935 {
2936 Elf_Internal_Shdr * hdr;
2937 bfd_size_type symcount;
2938 bfd_size_type extsymcount;
2939 bfd_size_type extsymoff;
2940 Elf_Internal_Sym *isymbuf;
2941 Elf_Internal_Sym *isym;
2942 Elf_Internal_Sym *isymend;
2943 bfd_boolean result;
2944
2945 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2946 if (abfd == NULL)
2947 return FALSE;
2948
2949 if (! bfd_check_format (abfd, bfd_object))
2950 return FALSE;
2951
2952 /* If we have already included the element containing this symbol in the
2953 link then we do not need to include it again. Just claim that any symbol
2954 it contains is not a definition, so that our caller will not decide to
2955 (re)include this element. */
2956 if (abfd->archive_pass)
2957 return FALSE;
2958
2959 /* Select the appropriate symbol table. */
2960 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2961 hdr = &elf_tdata (abfd)->symtab_hdr;
2962 else
2963 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2964
2965 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2966
2967 /* The sh_info field of the symtab header tells us where the
2968 external symbols start. We don't care about the local symbols. */
2969 if (elf_bad_symtab (abfd))
2970 {
2971 extsymcount = symcount;
2972 extsymoff = 0;
2973 }
2974 else
2975 {
2976 extsymcount = symcount - hdr->sh_info;
2977 extsymoff = hdr->sh_info;
2978 }
2979
2980 if (extsymcount == 0)
2981 return FALSE;
2982
2983 /* Read in the symbol table. */
2984 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2985 NULL, NULL, NULL);
2986 if (isymbuf == NULL)
2987 return FALSE;
2988
2989 /* Scan the symbol table looking for SYMDEF. */
2990 result = FALSE;
2991 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2992 {
2993 const char *name;
2994
2995 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2996 isym->st_name);
2997 if (name == NULL)
2998 break;
2999
3000 if (strcmp (name, symdef->name) == 0)
3001 {
3002 result = is_global_data_symbol_definition (abfd, isym);
3003 break;
3004 }
3005 }
3006
3007 free (isymbuf);
3008
3009 return result;
3010 }
3011 \f
3012 /* Add an entry to the .dynamic table. */
3013
3014 bfd_boolean
3015 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3016 bfd_vma tag,
3017 bfd_vma val)
3018 {
3019 struct elf_link_hash_table *hash_table;
3020 const struct elf_backend_data *bed;
3021 asection *s;
3022 bfd_size_type newsize;
3023 bfd_byte *newcontents;
3024 Elf_Internal_Dyn dyn;
3025
3026 hash_table = elf_hash_table (info);
3027 if (! is_elf_hash_table (hash_table))
3028 return FALSE;
3029
3030 bed = get_elf_backend_data (hash_table->dynobj);
3031 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3032 BFD_ASSERT (s != NULL);
3033
3034 newsize = s->size + bed->s->sizeof_dyn;
3035 newcontents = bfd_realloc (s->contents, newsize);
3036 if (newcontents == NULL)
3037 return FALSE;
3038
3039 dyn.d_tag = tag;
3040 dyn.d_un.d_val = val;
3041 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3042
3043 s->size = newsize;
3044 s->contents = newcontents;
3045
3046 return TRUE;
3047 }
3048
3049 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3050 otherwise just check whether one already exists. Returns -1 on error,
3051 1 if a DT_NEEDED tag already exists, and 0 on success. */
3052
3053 static int
3054 elf_add_dt_needed_tag (bfd *abfd,
3055 struct bfd_link_info *info,
3056 const char *soname,
3057 bfd_boolean do_it)
3058 {
3059 struct elf_link_hash_table *hash_table;
3060 bfd_size_type oldsize;
3061 bfd_size_type strindex;
3062
3063 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3064 return -1;
3065
3066 hash_table = elf_hash_table (info);
3067 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3068 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3069 if (strindex == (bfd_size_type) -1)
3070 return -1;
3071
3072 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3073 {
3074 asection *sdyn;
3075 const struct elf_backend_data *bed;
3076 bfd_byte *extdyn;
3077
3078 bed = get_elf_backend_data (hash_table->dynobj);
3079 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3080 if (sdyn != NULL)
3081 for (extdyn = sdyn->contents;
3082 extdyn < sdyn->contents + sdyn->size;
3083 extdyn += bed->s->sizeof_dyn)
3084 {
3085 Elf_Internal_Dyn dyn;
3086
3087 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3088 if (dyn.d_tag == DT_NEEDED
3089 && dyn.d_un.d_val == strindex)
3090 {
3091 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3092 return 1;
3093 }
3094 }
3095 }
3096
3097 if (do_it)
3098 {
3099 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3100 return -1;
3101
3102 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3103 return -1;
3104 }
3105 else
3106 /* We were just checking for existence of the tag. */
3107 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3108
3109 return 0;
3110 }
3111
3112 /* Sort symbol by value and section. */
3113 static int
3114 elf_sort_symbol (const void *arg1, const void *arg2)
3115 {
3116 const struct elf_link_hash_entry *h1;
3117 const struct elf_link_hash_entry *h2;
3118 bfd_signed_vma vdiff;
3119
3120 h1 = *(const struct elf_link_hash_entry **) arg1;
3121 h2 = *(const struct elf_link_hash_entry **) arg2;
3122 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3123 if (vdiff != 0)
3124 return vdiff > 0 ? 1 : -1;
3125 else
3126 {
3127 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3128 if (sdiff != 0)
3129 return sdiff > 0 ? 1 : -1;
3130 }
3131 return 0;
3132 }
3133
3134 /* This function is used to adjust offsets into .dynstr for
3135 dynamic symbols. This is called via elf_link_hash_traverse. */
3136
3137 static bfd_boolean
3138 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3139 {
3140 struct elf_strtab_hash *dynstr = data;
3141
3142 if (h->root.type == bfd_link_hash_warning)
3143 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148 }
3149
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3155 {
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3192 break;
3193 default:
3194 continue;
3195 }
3196 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3197 }
3198
3199 /* Now update local dynamic symbols. */
3200 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3201 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3202 entry->isym.st_name);
3203
3204 /* And the rest of dynamic symbols. */
3205 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3206
3207 /* Adjust version definitions. */
3208 if (elf_tdata (output_bfd)->cverdefs)
3209 {
3210 asection *s;
3211 bfd_byte *p;
3212 bfd_size_type i;
3213 Elf_Internal_Verdef def;
3214 Elf_Internal_Verdaux defaux;
3215
3216 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3217 p = s->contents;
3218 do
3219 {
3220 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3221 &def);
3222 p += sizeof (Elf_External_Verdef);
3223 if (def.vd_aux != sizeof (Elf_External_Verdef))
3224 continue;
3225 for (i = 0; i < def.vd_cnt; ++i)
3226 {
3227 _bfd_elf_swap_verdaux_in (output_bfd,
3228 (Elf_External_Verdaux *) p, &defaux);
3229 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3230 defaux.vda_name);
3231 _bfd_elf_swap_verdaux_out (output_bfd,
3232 &defaux, (Elf_External_Verdaux *) p);
3233 p += sizeof (Elf_External_Verdaux);
3234 }
3235 }
3236 while (def.vd_next);
3237 }
3238
3239 /* Adjust version references. */
3240 if (elf_tdata (output_bfd)->verref)
3241 {
3242 asection *s;
3243 bfd_byte *p;
3244 bfd_size_type i;
3245 Elf_Internal_Verneed need;
3246 Elf_Internal_Vernaux needaux;
3247
3248 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3249 p = s->contents;
3250 do
3251 {
3252 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3253 &need);
3254 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3255 _bfd_elf_swap_verneed_out (output_bfd, &need,
3256 (Elf_External_Verneed *) p);
3257 p += sizeof (Elf_External_Verneed);
3258 for (i = 0; i < need.vn_cnt; ++i)
3259 {
3260 _bfd_elf_swap_vernaux_in (output_bfd,
3261 (Elf_External_Vernaux *) p, &needaux);
3262 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3263 needaux.vna_name);
3264 _bfd_elf_swap_vernaux_out (output_bfd,
3265 &needaux,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3268 }
3269 }
3270 while (need.vn_next);
3271 }
3272
3273 return TRUE;
3274 }
3275 \f
3276 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 The default is to only match when the INPUT and OUTPUT are exactly
3278 the same target. */
3279
3280 bfd_boolean
3281 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3283 {
3284 return input == output;
3285 }
3286
3287 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 This version is used when different targets for the same architecture
3289 are virtually identical. */
3290
3291 bfd_boolean
3292 _bfd_elf_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3294 {
3295 const struct elf_backend_data *obed, *ibed;
3296
3297 if (input == output)
3298 return TRUE;
3299
3300 ibed = xvec_get_elf_backend_data (input);
3301 obed = xvec_get_elf_backend_data (output);
3302
3303 if (ibed->arch != obed->arch)
3304 return FALSE;
3305
3306 /* If both backends are using this function, deem them compatible. */
3307 return ibed->relocs_compatible == obed->relocs_compatible;
3308 }
3309
3310 /* Add symbols from an ELF object file to the linker hash table. */
3311
3312 static bfd_boolean
3313 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3314 {
3315 Elf_Internal_Shdr *hdr;
3316 bfd_size_type symcount;
3317 bfd_size_type extsymcount;
3318 bfd_size_type extsymoff;
3319 struct elf_link_hash_entry **sym_hash;
3320 bfd_boolean dynamic;
3321 Elf_External_Versym *extversym = NULL;
3322 Elf_External_Versym *ever;
3323 struct elf_link_hash_entry *weaks;
3324 struct elf_link_hash_entry **nondeflt_vers = NULL;
3325 bfd_size_type nondeflt_vers_cnt = 0;
3326 Elf_Internal_Sym *isymbuf = NULL;
3327 Elf_Internal_Sym *isym;
3328 Elf_Internal_Sym *isymend;
3329 const struct elf_backend_data *bed;
3330 bfd_boolean add_needed;
3331 struct elf_link_hash_table *htab;
3332 bfd_size_type amt;
3333 void *alloc_mark = NULL;
3334 struct bfd_hash_entry **old_table = NULL;
3335 unsigned int old_size = 0;
3336 unsigned int old_count = 0;
3337 void *old_tab = NULL;
3338 void *old_hash;
3339 void *old_ent;
3340 struct bfd_link_hash_entry *old_undefs = NULL;
3341 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3342 long old_dynsymcount = 0;
3343 size_t tabsize = 0;
3344 size_t hashsize = 0;
3345
3346 htab = elf_hash_table (info);
3347 bed = get_elf_backend_data (abfd);
3348
3349 if ((abfd->flags & DYNAMIC) == 0)
3350 dynamic = FALSE;
3351 else
3352 {
3353 dynamic = TRUE;
3354
3355 /* You can't use -r against a dynamic object. Also, there's no
3356 hope of using a dynamic object which does not exactly match
3357 the format of the output file. */
3358 if (info->relocatable
3359 || !is_elf_hash_table (htab)
3360 || info->output_bfd->xvec != abfd->xvec)
3361 {
3362 if (info->relocatable)
3363 bfd_set_error (bfd_error_invalid_operation);
3364 else
3365 bfd_set_error (bfd_error_wrong_format);
3366 goto error_return;
3367 }
3368 }
3369
3370 /* As a GNU extension, any input sections which are named
3371 .gnu.warning.SYMBOL are treated as warning symbols for the given
3372 symbol. This differs from .gnu.warning sections, which generate
3373 warnings when they are included in an output file. */
3374 if (info->executable)
3375 {
3376 asection *s;
3377
3378 for (s = abfd->sections; s != NULL; s = s->next)
3379 {
3380 const char *name;
3381
3382 name = bfd_get_section_name (abfd, s);
3383 if (CONST_STRNEQ (name, ".gnu.warning."))
3384 {
3385 char *msg;
3386 bfd_size_type sz;
3387
3388 name += sizeof ".gnu.warning." - 1;
3389
3390 /* If this is a shared object, then look up the symbol
3391 in the hash table. If it is there, and it is already
3392 been defined, then we will not be using the entry
3393 from this shared object, so we don't need to warn.
3394 FIXME: If we see the definition in a regular object
3395 later on, we will warn, but we shouldn't. The only
3396 fix is to keep track of what warnings we are supposed
3397 to emit, and then handle them all at the end of the
3398 link. */
3399 if (dynamic)
3400 {
3401 struct elf_link_hash_entry *h;
3402
3403 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3404
3405 /* FIXME: What about bfd_link_hash_common? */
3406 if (h != NULL
3407 && (h->root.type == bfd_link_hash_defined
3408 || h->root.type == bfd_link_hash_defweak))
3409 {
3410 /* We don't want to issue this warning. Clobber
3411 the section size so that the warning does not
3412 get copied into the output file. */
3413 s->size = 0;
3414 continue;
3415 }
3416 }
3417
3418 sz = s->size;
3419 msg = bfd_alloc (abfd, sz + 1);
3420 if (msg == NULL)
3421 goto error_return;
3422
3423 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3424 goto error_return;
3425
3426 msg[sz] = '\0';
3427
3428 if (! (_bfd_generic_link_add_one_symbol
3429 (info, abfd, name, BSF_WARNING, s, 0, msg,
3430 FALSE, bed->collect, NULL)))
3431 goto error_return;
3432
3433 if (! info->relocatable)
3434 {
3435 /* Clobber the section size so that the warning does
3436 not get copied into the output file. */
3437 s->size = 0;
3438
3439 /* Also set SEC_EXCLUDE, so that symbols defined in
3440 the warning section don't get copied to the output. */
3441 s->flags |= SEC_EXCLUDE;
3442 }
3443 }
3444 }
3445 }
3446
3447 add_needed = TRUE;
3448 if (! dynamic)
3449 {
3450 /* If we are creating a shared library, create all the dynamic
3451 sections immediately. We need to attach them to something,
3452 so we attach them to this BFD, provided it is the right
3453 format. FIXME: If there are no input BFD's of the same
3454 format as the output, we can't make a shared library. */
3455 if (info->shared
3456 && is_elf_hash_table (htab)
3457 && info->output_bfd->xvec == abfd->xvec
3458 && !htab->dynamic_sections_created)
3459 {
3460 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3461 goto error_return;
3462 }
3463 }
3464 else if (!is_elf_hash_table (htab))
3465 goto error_return;
3466 else
3467 {
3468 asection *s;
3469 const char *soname = NULL;
3470 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3471 int ret;
3472
3473 /* ld --just-symbols and dynamic objects don't mix very well.
3474 ld shouldn't allow it. */
3475 if ((s = abfd->sections) != NULL
3476 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3477 abort ();
3478
3479 /* If this dynamic lib was specified on the command line with
3480 --as-needed in effect, then we don't want to add a DT_NEEDED
3481 tag unless the lib is actually used. Similary for libs brought
3482 in by another lib's DT_NEEDED. When --no-add-needed is used
3483 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3484 any dynamic library in DT_NEEDED tags in the dynamic lib at
3485 all. */
3486 add_needed = (elf_dyn_lib_class (abfd)
3487 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3488 | DYN_NO_NEEDED)) == 0;
3489
3490 s = bfd_get_section_by_name (abfd, ".dynamic");
3491 if (s != NULL)
3492 {
3493 bfd_byte *dynbuf;
3494 bfd_byte *extdyn;
3495 unsigned int elfsec;
3496 unsigned long shlink;
3497
3498 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3499 goto error_free_dyn;
3500
3501 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3502 if (elfsec == SHN_BAD)
3503 goto error_free_dyn;
3504 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3505
3506 for (extdyn = dynbuf;
3507 extdyn < dynbuf + s->size;
3508 extdyn += bed->s->sizeof_dyn)
3509 {
3510 Elf_Internal_Dyn dyn;
3511
3512 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3513 if (dyn.d_tag == DT_SONAME)
3514 {
3515 unsigned int tagv = dyn.d_un.d_val;
3516 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3517 if (soname == NULL)
3518 goto error_free_dyn;
3519 }
3520 if (dyn.d_tag == DT_NEEDED)
3521 {
3522 struct bfd_link_needed_list *n, **pn;
3523 char *fnm, *anm;
3524 unsigned int tagv = dyn.d_un.d_val;
3525
3526 amt = sizeof (struct bfd_link_needed_list);
3527 n = bfd_alloc (abfd, amt);
3528 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3529 if (n == NULL || fnm == NULL)
3530 goto error_free_dyn;
3531 amt = strlen (fnm) + 1;
3532 anm = bfd_alloc (abfd, amt);
3533 if (anm == NULL)
3534 goto error_free_dyn;
3535 memcpy (anm, fnm, amt);
3536 n->name = anm;
3537 n->by = abfd;
3538 n->next = NULL;
3539 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3540 ;
3541 *pn = n;
3542 }
3543 if (dyn.d_tag == DT_RUNPATH)
3544 {
3545 struct bfd_link_needed_list *n, **pn;
3546 char *fnm, *anm;
3547 unsigned int tagv = dyn.d_un.d_val;
3548
3549 amt = sizeof (struct bfd_link_needed_list);
3550 n = bfd_alloc (abfd, amt);
3551 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3552 if (n == NULL || fnm == NULL)
3553 goto error_free_dyn;
3554 amt = strlen (fnm) + 1;
3555 anm = bfd_alloc (abfd, amt);
3556 if (anm == NULL)
3557 goto error_free_dyn;
3558 memcpy (anm, fnm, amt);
3559 n->name = anm;
3560 n->by = abfd;
3561 n->next = NULL;
3562 for (pn = & runpath;
3563 *pn != NULL;
3564 pn = &(*pn)->next)
3565 ;
3566 *pn = n;
3567 }
3568 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3569 if (!runpath && dyn.d_tag == DT_RPATH)
3570 {
3571 struct bfd_link_needed_list *n, **pn;
3572 char *fnm, *anm;
3573 unsigned int tagv = dyn.d_un.d_val;
3574
3575 amt = sizeof (struct bfd_link_needed_list);
3576 n = bfd_alloc (abfd, amt);
3577 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3578 if (n == NULL || fnm == NULL)
3579 goto error_free_dyn;
3580 amt = strlen (fnm) + 1;
3581 anm = bfd_alloc (abfd, amt);
3582 if (anm == NULL)
3583 {
3584 error_free_dyn:
3585 free (dynbuf);
3586 goto error_return;
3587 }
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & rpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 }
3599
3600 free (dynbuf);
3601 }
3602
3603 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3604 frees all more recently bfd_alloc'd blocks as well. */
3605 if (runpath)
3606 rpath = runpath;
3607
3608 if (rpath)
3609 {
3610 struct bfd_link_needed_list **pn;
3611 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3612 ;
3613 *pn = rpath;
3614 }
3615
3616 /* We do not want to include any of the sections in a dynamic
3617 object in the output file. We hack by simply clobbering the
3618 list of sections in the BFD. This could be handled more
3619 cleanly by, say, a new section flag; the existing
3620 SEC_NEVER_LOAD flag is not the one we want, because that one
3621 still implies that the section takes up space in the output
3622 file. */
3623 bfd_section_list_clear (abfd);
3624
3625 /* Find the name to use in a DT_NEEDED entry that refers to this
3626 object. If the object has a DT_SONAME entry, we use it.
3627 Otherwise, if the generic linker stuck something in
3628 elf_dt_name, we use that. Otherwise, we just use the file
3629 name. */
3630 if (soname == NULL || *soname == '\0')
3631 {
3632 soname = elf_dt_name (abfd);
3633 if (soname == NULL || *soname == '\0')
3634 soname = bfd_get_filename (abfd);
3635 }
3636
3637 /* Save the SONAME because sometimes the linker emulation code
3638 will need to know it. */
3639 elf_dt_name (abfd) = soname;
3640
3641 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3642 if (ret < 0)
3643 goto error_return;
3644
3645 /* If we have already included this dynamic object in the
3646 link, just ignore it. There is no reason to include a
3647 particular dynamic object more than once. */
3648 if (ret > 0)
3649 return TRUE;
3650 }
3651
3652 /* If this is a dynamic object, we always link against the .dynsym
3653 symbol table, not the .symtab symbol table. The dynamic linker
3654 will only see the .dynsym symbol table, so there is no reason to
3655 look at .symtab for a dynamic object. */
3656
3657 if (! dynamic || elf_dynsymtab (abfd) == 0)
3658 hdr = &elf_tdata (abfd)->symtab_hdr;
3659 else
3660 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3661
3662 symcount = hdr->sh_size / bed->s->sizeof_sym;
3663
3664 /* The sh_info field of the symtab header tells us where the
3665 external symbols start. We don't care about the local symbols at
3666 this point. */
3667 if (elf_bad_symtab (abfd))
3668 {
3669 extsymcount = symcount;
3670 extsymoff = 0;
3671 }
3672 else
3673 {
3674 extsymcount = symcount - hdr->sh_info;
3675 extsymoff = hdr->sh_info;
3676 }
3677
3678 sym_hash = NULL;
3679 if (extsymcount != 0)
3680 {
3681 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3682 NULL, NULL, NULL);
3683 if (isymbuf == NULL)
3684 goto error_return;
3685
3686 /* We store a pointer to the hash table entry for each external
3687 symbol. */
3688 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3689 sym_hash = bfd_alloc (abfd, amt);
3690 if (sym_hash == NULL)
3691 goto error_free_sym;
3692 elf_sym_hashes (abfd) = sym_hash;
3693 }
3694
3695 if (dynamic)
3696 {
3697 /* Read in any version definitions. */
3698 if (!_bfd_elf_slurp_version_tables (abfd,
3699 info->default_imported_symver))
3700 goto error_free_sym;
3701
3702 /* Read in the symbol versions, but don't bother to convert them
3703 to internal format. */
3704 if (elf_dynversym (abfd) != 0)
3705 {
3706 Elf_Internal_Shdr *versymhdr;
3707
3708 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3709 extversym = bfd_malloc (versymhdr->sh_size);
3710 if (extversym == NULL)
3711 goto error_free_sym;
3712 amt = versymhdr->sh_size;
3713 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3714 || bfd_bread (extversym, amt, abfd) != amt)
3715 goto error_free_vers;
3716 }
3717 }
3718
3719 /* If we are loading an as-needed shared lib, save the symbol table
3720 state before we start adding symbols. If the lib turns out
3721 to be unneeded, restore the state. */
3722 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3723 {
3724 unsigned int i;
3725 size_t entsize;
3726
3727 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3728 {
3729 struct bfd_hash_entry *p;
3730 struct elf_link_hash_entry *h;
3731
3732 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3733 {
3734 h = (struct elf_link_hash_entry *) p;
3735 entsize += htab->root.table.entsize;
3736 if (h->root.type == bfd_link_hash_warning)
3737 entsize += htab->root.table.entsize;
3738 }
3739 }
3740
3741 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3742 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3743 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3744 if (old_tab == NULL)
3745 goto error_free_vers;
3746
3747 /* Remember the current objalloc pointer, so that all mem for
3748 symbols added can later be reclaimed. */
3749 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3750 if (alloc_mark == NULL)
3751 goto error_free_vers;
3752
3753 /* Make a special call to the linker "notice" function to
3754 tell it that we are about to handle an as-needed lib. */
3755 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3756 notice_as_needed))
3757 goto error_free_vers;
3758
3759 /* Clone the symbol table and sym hashes. Remember some
3760 pointers into the symbol table, and dynamic symbol count. */
3761 old_hash = (char *) old_tab + tabsize;
3762 old_ent = (char *) old_hash + hashsize;
3763 memcpy (old_tab, htab->root.table.table, tabsize);
3764 memcpy (old_hash, sym_hash, hashsize);
3765 old_undefs = htab->root.undefs;
3766 old_undefs_tail = htab->root.undefs_tail;
3767 old_table = htab->root.table.table;
3768 old_size = htab->root.table.size;
3769 old_count = htab->root.table.count;
3770 old_dynsymcount = htab->dynsymcount;
3771
3772 for (i = 0; i < htab->root.table.size; i++)
3773 {
3774 struct bfd_hash_entry *p;
3775 struct elf_link_hash_entry *h;
3776
3777 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3778 {
3779 memcpy (old_ent, p, htab->root.table.entsize);
3780 old_ent = (char *) old_ent + htab->root.table.entsize;
3781 h = (struct elf_link_hash_entry *) p;
3782 if (h->root.type == bfd_link_hash_warning)
3783 {
3784 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3785 old_ent = (char *) old_ent + htab->root.table.entsize;
3786 }
3787 }
3788 }
3789 }
3790
3791 weaks = NULL;
3792 ever = extversym != NULL ? extversym + extsymoff : NULL;
3793 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3794 isym < isymend;
3795 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3796 {
3797 int bind;
3798 bfd_vma value;
3799 asection *sec, *new_sec;
3800 flagword flags;
3801 const char *name;
3802 struct elf_link_hash_entry *h;
3803 bfd_boolean definition;
3804 bfd_boolean size_change_ok;
3805 bfd_boolean type_change_ok;
3806 bfd_boolean new_weakdef;
3807 bfd_boolean override;
3808 bfd_boolean common;
3809 unsigned int old_alignment;
3810 bfd *old_bfd;
3811
3812 override = FALSE;
3813
3814 flags = BSF_NO_FLAGS;
3815 sec = NULL;
3816 value = isym->st_value;
3817 *sym_hash = NULL;
3818 common = bed->common_definition (isym);
3819
3820 bind = ELF_ST_BIND (isym->st_info);
3821 if (bind == STB_LOCAL)
3822 {
3823 /* This should be impossible, since ELF requires that all
3824 global symbols follow all local symbols, and that sh_info
3825 point to the first global symbol. Unfortunately, Irix 5
3826 screws this up. */
3827 continue;
3828 }
3829 else if (bind == STB_GLOBAL)
3830 {
3831 if (isym->st_shndx != SHN_UNDEF && !common)
3832 flags = BSF_GLOBAL;
3833 }
3834 else if (bind == STB_WEAK)
3835 flags = BSF_WEAK;
3836 else
3837 {
3838 /* Leave it up to the processor backend. */
3839 }
3840
3841 if (isym->st_shndx == SHN_UNDEF)
3842 sec = bfd_und_section_ptr;
3843 else if (isym->st_shndx == SHN_ABS)
3844 sec = bfd_abs_section_ptr;
3845 else if (isym->st_shndx == SHN_COMMON)
3846 {
3847 sec = bfd_com_section_ptr;
3848 /* What ELF calls the size we call the value. What ELF
3849 calls the value we call the alignment. */
3850 value = isym->st_size;
3851 }
3852 else
3853 {
3854 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3855 if (sec == NULL)
3856 sec = bfd_abs_section_ptr;
3857 else if (sec->kept_section)
3858 {
3859 /* Symbols from discarded section are undefined. We keep
3860 its visibility. */
3861 sec = bfd_und_section_ptr;
3862 isym->st_shndx = SHN_UNDEF;
3863 }
3864 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3865 value -= sec->vma;
3866 }
3867
3868 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3869 isym->st_name);
3870 if (name == NULL)
3871 goto error_free_vers;
3872
3873 if (isym->st_shndx == SHN_COMMON
3874 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3875 && !info->relocatable)
3876 {
3877 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3878
3879 if (tcomm == NULL)
3880 {
3881 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3882 (SEC_ALLOC
3883 | SEC_IS_COMMON
3884 | SEC_LINKER_CREATED
3885 | SEC_THREAD_LOCAL));
3886 if (tcomm == NULL)
3887 goto error_free_vers;
3888 }
3889 sec = tcomm;
3890 }
3891 else if (bed->elf_add_symbol_hook)
3892 {
3893 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3894 &sec, &value))
3895 goto error_free_vers;
3896
3897 /* The hook function sets the name to NULL if this symbol
3898 should be skipped for some reason. */
3899 if (name == NULL)
3900 continue;
3901 }
3902
3903 /* Sanity check that all possibilities were handled. */
3904 if (sec == NULL)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 goto error_free_vers;
3908 }
3909
3910 if (bfd_is_und_section (sec)
3911 || bfd_is_com_section (sec))
3912 definition = FALSE;
3913 else
3914 definition = TRUE;
3915
3916 size_change_ok = FALSE;
3917 type_change_ok = bed->type_change_ok;
3918 old_alignment = 0;
3919 old_bfd = NULL;
3920 new_sec = sec;
3921
3922 if (is_elf_hash_table (htab))
3923 {
3924 Elf_Internal_Versym iver;
3925 unsigned int vernum = 0;
3926 bfd_boolean skip;
3927
3928 if (ever == NULL)
3929 {
3930 if (info->default_imported_symver)
3931 /* Use the default symbol version created earlier. */
3932 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3933 else
3934 iver.vs_vers = 0;
3935 }
3936 else
3937 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3938
3939 vernum = iver.vs_vers & VERSYM_VERSION;
3940
3941 /* If this is a hidden symbol, or if it is not version
3942 1, we append the version name to the symbol name.
3943 However, we do not modify a non-hidden absolute symbol
3944 if it is not a function, because it might be the version
3945 symbol itself. FIXME: What if it isn't? */
3946 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3947 || (vernum > 1
3948 && (!bfd_is_abs_section (sec)
3949 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3950 {
3951 const char *verstr;
3952 size_t namelen, verlen, newlen;
3953 char *newname, *p;
3954
3955 if (isym->st_shndx != SHN_UNDEF)
3956 {
3957 if (vernum > elf_tdata (abfd)->cverdefs)
3958 verstr = NULL;
3959 else if (vernum > 1)
3960 verstr =
3961 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3962 else
3963 verstr = "";
3964
3965 if (verstr == NULL)
3966 {
3967 (*_bfd_error_handler)
3968 (_("%B: %s: invalid version %u (max %d)"),
3969 abfd, name, vernum,
3970 elf_tdata (abfd)->cverdefs);
3971 bfd_set_error (bfd_error_bad_value);
3972 goto error_free_vers;
3973 }
3974 }
3975 else
3976 {
3977 /* We cannot simply test for the number of
3978 entries in the VERNEED section since the
3979 numbers for the needed versions do not start
3980 at 0. */
3981 Elf_Internal_Verneed *t;
3982
3983 verstr = NULL;
3984 for (t = elf_tdata (abfd)->verref;
3985 t != NULL;
3986 t = t->vn_nextref)
3987 {
3988 Elf_Internal_Vernaux *a;
3989
3990 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3991 {
3992 if (a->vna_other == vernum)
3993 {
3994 verstr = a->vna_nodename;
3995 break;
3996 }
3997 }
3998 if (a != NULL)
3999 break;
4000 }
4001 if (verstr == NULL)
4002 {
4003 (*_bfd_error_handler)
4004 (_("%B: %s: invalid needed version %d"),
4005 abfd, name, vernum);
4006 bfd_set_error (bfd_error_bad_value);
4007 goto error_free_vers;
4008 }
4009 }
4010
4011 namelen = strlen (name);
4012 verlen = strlen (verstr);
4013 newlen = namelen + verlen + 2;
4014 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4015 && isym->st_shndx != SHN_UNDEF)
4016 ++newlen;
4017
4018 newname = bfd_hash_allocate (&htab->root.table, newlen);
4019 if (newname == NULL)
4020 goto error_free_vers;
4021 memcpy (newname, name, namelen);
4022 p = newname + namelen;
4023 *p++ = ELF_VER_CHR;
4024 /* If this is a defined non-hidden version symbol,
4025 we add another @ to the name. This indicates the
4026 default version of the symbol. */
4027 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4028 && isym->st_shndx != SHN_UNDEF)
4029 *p++ = ELF_VER_CHR;
4030 memcpy (p, verstr, verlen + 1);
4031
4032 name = newname;
4033 }
4034
4035 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4036 &value, &old_alignment,
4037 sym_hash, &skip, &override,
4038 &type_change_ok, &size_change_ok))
4039 goto error_free_vers;
4040
4041 if (skip)
4042 continue;
4043
4044 if (override)
4045 definition = FALSE;
4046
4047 h = *sym_hash;
4048 while (h->root.type == bfd_link_hash_indirect
4049 || h->root.type == bfd_link_hash_warning)
4050 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4051
4052 /* Remember the old alignment if this is a common symbol, so
4053 that we don't reduce the alignment later on. We can't
4054 check later, because _bfd_generic_link_add_one_symbol
4055 will set a default for the alignment which we want to
4056 override. We also remember the old bfd where the existing
4057 definition comes from. */
4058 switch (h->root.type)
4059 {
4060 default:
4061 break;
4062
4063 case bfd_link_hash_defined:
4064 case bfd_link_hash_defweak:
4065 old_bfd = h->root.u.def.section->owner;
4066 break;
4067
4068 case bfd_link_hash_common:
4069 old_bfd = h->root.u.c.p->section->owner;
4070 old_alignment = h->root.u.c.p->alignment_power;
4071 break;
4072 }
4073
4074 if (elf_tdata (abfd)->verdef != NULL
4075 && ! override
4076 && vernum > 1
4077 && definition)
4078 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4079 }
4080
4081 if (! (_bfd_generic_link_add_one_symbol
4082 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4083 (struct bfd_link_hash_entry **) sym_hash)))
4084 goto error_free_vers;
4085
4086 h = *sym_hash;
4087 while (h->root.type == bfd_link_hash_indirect
4088 || h->root.type == bfd_link_hash_warning)
4089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4090 *sym_hash = h;
4091
4092 new_weakdef = FALSE;
4093 if (dynamic
4094 && definition
4095 && (flags & BSF_WEAK) != 0
4096 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4097 && is_elf_hash_table (htab)
4098 && h->u.weakdef == NULL)
4099 {
4100 /* Keep a list of all weak defined non function symbols from
4101 a dynamic object, using the weakdef field. Later in this
4102 function we will set the weakdef field to the correct
4103 value. We only put non-function symbols from dynamic
4104 objects on this list, because that happens to be the only
4105 time we need to know the normal symbol corresponding to a
4106 weak symbol, and the information is time consuming to
4107 figure out. If the weakdef field is not already NULL,
4108 then this symbol was already defined by some previous
4109 dynamic object, and we will be using that previous
4110 definition anyhow. */
4111
4112 h->u.weakdef = weaks;
4113 weaks = h;
4114 new_weakdef = TRUE;
4115 }
4116
4117 /* Set the alignment of a common symbol. */
4118 if ((common || bfd_is_com_section (sec))
4119 && h->root.type == bfd_link_hash_common)
4120 {
4121 unsigned int align;
4122
4123 if (common)
4124 align = bfd_log2 (isym->st_value);
4125 else
4126 {
4127 /* The new symbol is a common symbol in a shared object.
4128 We need to get the alignment from the section. */
4129 align = new_sec->alignment_power;
4130 }
4131 if (align > old_alignment
4132 /* Permit an alignment power of zero if an alignment of one
4133 is specified and no other alignments have been specified. */
4134 || (isym->st_value == 1 && old_alignment == 0))
4135 h->root.u.c.p->alignment_power = align;
4136 else
4137 h->root.u.c.p->alignment_power = old_alignment;
4138 }
4139
4140 if (is_elf_hash_table (htab))
4141 {
4142 bfd_boolean dynsym;
4143
4144 /* Check the alignment when a common symbol is involved. This
4145 can change when a common symbol is overridden by a normal
4146 definition or a common symbol is ignored due to the old
4147 normal definition. We need to make sure the maximum
4148 alignment is maintained. */
4149 if ((old_alignment || common)
4150 && h->root.type != bfd_link_hash_common)
4151 {
4152 unsigned int common_align;
4153 unsigned int normal_align;
4154 unsigned int symbol_align;
4155 bfd *normal_bfd;
4156 bfd *common_bfd;
4157
4158 symbol_align = ffs (h->root.u.def.value) - 1;
4159 if (h->root.u.def.section->owner != NULL
4160 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4161 {
4162 normal_align = h->root.u.def.section->alignment_power;
4163 if (normal_align > symbol_align)
4164 normal_align = symbol_align;
4165 }
4166 else
4167 normal_align = symbol_align;
4168
4169 if (old_alignment)
4170 {
4171 common_align = old_alignment;
4172 common_bfd = old_bfd;
4173 normal_bfd = abfd;
4174 }
4175 else
4176 {
4177 common_align = bfd_log2 (isym->st_value);
4178 common_bfd = abfd;
4179 normal_bfd = old_bfd;
4180 }
4181
4182 if (normal_align < common_align)
4183 {
4184 /* PR binutils/2735 */
4185 if (normal_bfd == NULL)
4186 (*_bfd_error_handler)
4187 (_("Warning: alignment %u of common symbol `%s' in %B"
4188 " is greater than the alignment (%u) of its section %A"),
4189 common_bfd, h->root.u.def.section,
4190 1 << common_align, name, 1 << normal_align);
4191 else
4192 (*_bfd_error_handler)
4193 (_("Warning: alignment %u of symbol `%s' in %B"
4194 " is smaller than %u in %B"),
4195 normal_bfd, common_bfd,
4196 1 << normal_align, name, 1 << common_align);
4197 }
4198 }
4199
4200 /* Remember the symbol size if it isn't undefined. */
4201 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4202 && (definition || h->size == 0))
4203 {
4204 if (h->size != 0
4205 && h->size != isym->st_size
4206 && ! size_change_ok)
4207 (*_bfd_error_handler)
4208 (_("Warning: size of symbol `%s' changed"
4209 " from %lu in %B to %lu in %B"),
4210 old_bfd, abfd,
4211 name, (unsigned long) h->size,
4212 (unsigned long) isym->st_size);
4213
4214 h->size = isym->st_size;
4215 }
4216
4217 /* If this is a common symbol, then we always want H->SIZE
4218 to be the size of the common symbol. The code just above
4219 won't fix the size if a common symbol becomes larger. We
4220 don't warn about a size change here, because that is
4221 covered by --warn-common. Allow changed between different
4222 function types. */
4223 if (h->root.type == bfd_link_hash_common)
4224 h->size = h->root.u.c.size;
4225
4226 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4227 && (definition || h->type == STT_NOTYPE))
4228 {
4229 if (h->type != STT_NOTYPE
4230 && h->type != ELF_ST_TYPE (isym->st_info)
4231 && ! type_change_ok)
4232 (*_bfd_error_handler)
4233 (_("Warning: type of symbol `%s' changed"
4234 " from %d to %d in %B"),
4235 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4236
4237 h->type = ELF_ST_TYPE (isym->st_info);
4238 }
4239
4240 /* If st_other has a processor-specific meaning, specific
4241 code might be needed here. We never merge the visibility
4242 attribute with the one from a dynamic object. */
4243 if (bed->elf_backend_merge_symbol_attribute)
4244 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4245 dynamic);
4246
4247 /* If this symbol has default visibility and the user has requested
4248 we not re-export it, then mark it as hidden. */
4249 if (definition && !dynamic
4250 && (abfd->no_export
4251 || (abfd->my_archive && abfd->my_archive->no_export))
4252 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4253 isym->st_other = (STV_HIDDEN
4254 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4255
4256 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4257 {
4258 unsigned char hvis, symvis, other, nvis;
4259
4260 /* Only merge the visibility. Leave the remainder of the
4261 st_other field to elf_backend_merge_symbol_attribute. */
4262 other = h->other & ~ELF_ST_VISIBILITY (-1);
4263
4264 /* Combine visibilities, using the most constraining one. */
4265 hvis = ELF_ST_VISIBILITY (h->other);
4266 symvis = ELF_ST_VISIBILITY (isym->st_other);
4267 if (! hvis)
4268 nvis = symvis;
4269 else if (! symvis)
4270 nvis = hvis;
4271 else
4272 nvis = hvis < symvis ? hvis : symvis;
4273
4274 h->other = other | nvis;
4275 }
4276
4277 /* Set a flag in the hash table entry indicating the type of
4278 reference or definition we just found. Keep a count of
4279 the number of dynamic symbols we find. A dynamic symbol
4280 is one which is referenced or defined by both a regular
4281 object and a shared object. */
4282 dynsym = FALSE;
4283 if (! dynamic)
4284 {
4285 if (! definition)
4286 {
4287 h->ref_regular = 1;
4288 if (bind != STB_WEAK)
4289 h->ref_regular_nonweak = 1;
4290 }
4291 else
4292 h->def_regular = 1;
4293 if (! info->executable
4294 || h->def_dynamic
4295 || h->ref_dynamic)
4296 dynsym = TRUE;
4297 }
4298 else
4299 {
4300 if (! definition)
4301 h->ref_dynamic = 1;
4302 else
4303 h->def_dynamic = 1;
4304 if (h->def_regular
4305 || h->ref_regular
4306 || (h->u.weakdef != NULL
4307 && ! new_weakdef
4308 && h->u.weakdef->dynindx != -1))
4309 dynsym = TRUE;
4310 }
4311
4312 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4313 {
4314 /* We don't want to make debug symbol dynamic. */
4315 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4316 dynsym = FALSE;
4317 }
4318
4319 /* Check to see if we need to add an indirect symbol for
4320 the default name. */
4321 if (definition || h->root.type == bfd_link_hash_common)
4322 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4323 &sec, &value, &dynsym,
4324 override))
4325 goto error_free_vers;
4326
4327 if (definition && !dynamic)
4328 {
4329 char *p = strchr (name, ELF_VER_CHR);
4330 if (p != NULL && p[1] != ELF_VER_CHR)
4331 {
4332 /* Queue non-default versions so that .symver x, x@FOO
4333 aliases can be checked. */
4334 if (!nondeflt_vers)
4335 {
4336 amt = ((isymend - isym + 1)
4337 * sizeof (struct elf_link_hash_entry *));
4338 nondeflt_vers = bfd_malloc (amt);
4339 if (!nondeflt_vers)
4340 goto error_free_vers;
4341 }
4342 nondeflt_vers[nondeflt_vers_cnt++] = h;
4343 }
4344 }
4345
4346 if (dynsym && h->dynindx == -1)
4347 {
4348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4349 goto error_free_vers;
4350 if (h->u.weakdef != NULL
4351 && ! new_weakdef
4352 && h->u.weakdef->dynindx == -1)
4353 {
4354 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4355 goto error_free_vers;
4356 }
4357 }
4358 else if (dynsym && h->dynindx != -1)
4359 /* If the symbol already has a dynamic index, but
4360 visibility says it should not be visible, turn it into
4361 a local symbol. */
4362 switch (ELF_ST_VISIBILITY (h->other))
4363 {
4364 case STV_INTERNAL:
4365 case STV_HIDDEN:
4366 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4367 dynsym = FALSE;
4368 break;
4369 }
4370
4371 if (!add_needed
4372 && definition
4373 && dynsym
4374 && h->ref_regular)
4375 {
4376 int ret;
4377 const char *soname = elf_dt_name (abfd);
4378
4379 /* A symbol from a library loaded via DT_NEEDED of some
4380 other library is referenced by a regular object.
4381 Add a DT_NEEDED entry for it. Issue an error if
4382 --no-add-needed is used. */
4383 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4384 {
4385 (*_bfd_error_handler)
4386 (_("%s: invalid DSO for symbol `%s' definition"),
4387 abfd, name);
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_free_vers;
4390 }
4391
4392 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4393
4394 add_needed = TRUE;
4395 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4396 if (ret < 0)
4397 goto error_free_vers;
4398
4399 BFD_ASSERT (ret == 0);
4400 }
4401 }
4402 }
4403
4404 if (extversym != NULL)
4405 {
4406 free (extversym);
4407 extversym = NULL;
4408 }
4409
4410 if (isymbuf != NULL)
4411 {
4412 free (isymbuf);
4413 isymbuf = NULL;
4414 }
4415
4416 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4417 {
4418 unsigned int i;
4419
4420 /* Restore the symbol table. */
4421 if (bed->as_needed_cleanup)
4422 (*bed->as_needed_cleanup) (abfd, info);
4423 old_hash = (char *) old_tab + tabsize;
4424 old_ent = (char *) old_hash + hashsize;
4425 sym_hash = elf_sym_hashes (abfd);
4426 htab->root.table.table = old_table;
4427 htab->root.table.size = old_size;
4428 htab->root.table.count = old_count;
4429 memcpy (htab->root.table.table, old_tab, tabsize);
4430 memcpy (sym_hash, old_hash, hashsize);
4431 htab->root.undefs = old_undefs;
4432 htab->root.undefs_tail = old_undefs_tail;
4433 for (i = 0; i < htab->root.table.size; i++)
4434 {
4435 struct bfd_hash_entry *p;
4436 struct elf_link_hash_entry *h;
4437
4438 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4439 {
4440 h = (struct elf_link_hash_entry *) p;
4441 if (h->root.type == bfd_link_hash_warning)
4442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4443 if (h->dynindx >= old_dynsymcount)
4444 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4445
4446 memcpy (p, old_ent, htab->root.table.entsize);
4447 old_ent = (char *) old_ent + htab->root.table.entsize;
4448 h = (struct elf_link_hash_entry *) p;
4449 if (h->root.type == bfd_link_hash_warning)
4450 {
4451 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4452 old_ent = (char *) old_ent + htab->root.table.entsize;
4453 }
4454 }
4455 }
4456
4457 /* Make a special call to the linker "notice" function to
4458 tell it that symbols added for crefs may need to be removed. */
4459 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4460 notice_not_needed))
4461 goto error_free_vers;
4462
4463 free (old_tab);
4464 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4465 alloc_mark);
4466 if (nondeflt_vers != NULL)
4467 free (nondeflt_vers);
4468 return TRUE;
4469 }
4470
4471 if (old_tab != NULL)
4472 {
4473 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4474 notice_needed))
4475 goto error_free_vers;
4476 free (old_tab);
4477 old_tab = NULL;
4478 }
4479
4480 /* Now that all the symbols from this input file are created, handle
4481 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4482 if (nondeflt_vers != NULL)
4483 {
4484 bfd_size_type cnt, symidx;
4485
4486 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4487 {
4488 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4489 char *shortname, *p;
4490
4491 p = strchr (h->root.root.string, ELF_VER_CHR);
4492 if (p == NULL
4493 || (h->root.type != bfd_link_hash_defined
4494 && h->root.type != bfd_link_hash_defweak))
4495 continue;
4496
4497 amt = p - h->root.root.string;
4498 shortname = bfd_malloc (amt + 1);
4499 if (!shortname)
4500 goto error_free_vers;
4501 memcpy (shortname, h->root.root.string, amt);
4502 shortname[amt] = '\0';
4503
4504 hi = (struct elf_link_hash_entry *)
4505 bfd_link_hash_lookup (&htab->root, shortname,
4506 FALSE, FALSE, FALSE);
4507 if (hi != NULL
4508 && hi->root.type == h->root.type
4509 && hi->root.u.def.value == h->root.u.def.value
4510 && hi->root.u.def.section == h->root.u.def.section)
4511 {
4512 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4513 hi->root.type = bfd_link_hash_indirect;
4514 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4516 sym_hash = elf_sym_hashes (abfd);
4517 if (sym_hash)
4518 for (symidx = 0; symidx < extsymcount; ++symidx)
4519 if (sym_hash[symidx] == hi)
4520 {
4521 sym_hash[symidx] = h;
4522 break;
4523 }
4524 }
4525 free (shortname);
4526 }
4527 free (nondeflt_vers);
4528 nondeflt_vers = NULL;
4529 }
4530
4531 /* Now set the weakdefs field correctly for all the weak defined
4532 symbols we found. The only way to do this is to search all the
4533 symbols. Since we only need the information for non functions in
4534 dynamic objects, that's the only time we actually put anything on
4535 the list WEAKS. We need this information so that if a regular
4536 object refers to a symbol defined weakly in a dynamic object, the
4537 real symbol in the dynamic object is also put in the dynamic
4538 symbols; we also must arrange for both symbols to point to the
4539 same memory location. We could handle the general case of symbol
4540 aliasing, but a general symbol alias can only be generated in
4541 assembler code, handling it correctly would be very time
4542 consuming, and other ELF linkers don't handle general aliasing
4543 either. */
4544 if (weaks != NULL)
4545 {
4546 struct elf_link_hash_entry **hpp;
4547 struct elf_link_hash_entry **hppend;
4548 struct elf_link_hash_entry **sorted_sym_hash;
4549 struct elf_link_hash_entry *h;
4550 size_t sym_count;
4551
4552 /* Since we have to search the whole symbol list for each weak
4553 defined symbol, search time for N weak defined symbols will be
4554 O(N^2). Binary search will cut it down to O(NlogN). */
4555 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4556 sorted_sym_hash = bfd_malloc (amt);
4557 if (sorted_sym_hash == NULL)
4558 goto error_return;
4559 sym_hash = sorted_sym_hash;
4560 hpp = elf_sym_hashes (abfd);
4561 hppend = hpp + extsymcount;
4562 sym_count = 0;
4563 for (; hpp < hppend; hpp++)
4564 {
4565 h = *hpp;
4566 if (h != NULL
4567 && h->root.type == bfd_link_hash_defined
4568 && !bed->is_function_type (h->type))
4569 {
4570 *sym_hash = h;
4571 sym_hash++;
4572 sym_count++;
4573 }
4574 }
4575
4576 qsort (sorted_sym_hash, sym_count,
4577 sizeof (struct elf_link_hash_entry *),
4578 elf_sort_symbol);
4579
4580 while (weaks != NULL)
4581 {
4582 struct elf_link_hash_entry *hlook;
4583 asection *slook;
4584 bfd_vma vlook;
4585 long ilook;
4586 size_t i, j, idx;
4587
4588 hlook = weaks;
4589 weaks = hlook->u.weakdef;
4590 hlook->u.weakdef = NULL;
4591
4592 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4593 || hlook->root.type == bfd_link_hash_defweak
4594 || hlook->root.type == bfd_link_hash_common
4595 || hlook->root.type == bfd_link_hash_indirect);
4596 slook = hlook->root.u.def.section;
4597 vlook = hlook->root.u.def.value;
4598
4599 ilook = -1;
4600 i = 0;
4601 j = sym_count;
4602 while (i < j)
4603 {
4604 bfd_signed_vma vdiff;
4605 idx = (i + j) / 2;
4606 h = sorted_sym_hash [idx];
4607 vdiff = vlook - h->root.u.def.value;
4608 if (vdiff < 0)
4609 j = idx;
4610 else if (vdiff > 0)
4611 i = idx + 1;
4612 else
4613 {
4614 long sdiff = slook->id - h->root.u.def.section->id;
4615 if (sdiff < 0)
4616 j = idx;
4617 else if (sdiff > 0)
4618 i = idx + 1;
4619 else
4620 {
4621 ilook = idx;
4622 break;
4623 }
4624 }
4625 }
4626
4627 /* We didn't find a value/section match. */
4628 if (ilook == -1)
4629 continue;
4630
4631 for (i = ilook; i < sym_count; i++)
4632 {
4633 h = sorted_sym_hash [i];
4634
4635 /* Stop if value or section doesn't match. */
4636 if (h->root.u.def.value != vlook
4637 || h->root.u.def.section != slook)
4638 break;
4639 else if (h != hlook)
4640 {
4641 hlook->u.weakdef = h;
4642
4643 /* If the weak definition is in the list of dynamic
4644 symbols, make sure the real definition is put
4645 there as well. */
4646 if (hlook->dynindx != -1 && h->dynindx == -1)
4647 {
4648 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4649 {
4650 err_free_sym_hash:
4651 free (sorted_sym_hash);
4652 goto error_return;
4653 }
4654 }
4655
4656 /* If the real definition is in the list of dynamic
4657 symbols, make sure the weak definition is put
4658 there as well. If we don't do this, then the
4659 dynamic loader might not merge the entries for the
4660 real definition and the weak definition. */
4661 if (h->dynindx != -1 && hlook->dynindx == -1)
4662 {
4663 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4664 goto err_free_sym_hash;
4665 }
4666 break;
4667 }
4668 }
4669 }
4670
4671 free (sorted_sym_hash);
4672 }
4673
4674 if (bed->check_directives
4675 && !(*bed->check_directives) (abfd, info))
4676 return FALSE;
4677
4678 /* If this object is the same format as the output object, and it is
4679 not a shared library, then let the backend look through the
4680 relocs.
4681
4682 This is required to build global offset table entries and to
4683 arrange for dynamic relocs. It is not required for the
4684 particular common case of linking non PIC code, even when linking
4685 against shared libraries, but unfortunately there is no way of
4686 knowing whether an object file has been compiled PIC or not.
4687 Looking through the relocs is not particularly time consuming.
4688 The problem is that we must either (1) keep the relocs in memory,
4689 which causes the linker to require additional runtime memory or
4690 (2) read the relocs twice from the input file, which wastes time.
4691 This would be a good case for using mmap.
4692
4693 I have no idea how to handle linking PIC code into a file of a
4694 different format. It probably can't be done. */
4695 if (! dynamic
4696 && is_elf_hash_table (htab)
4697 && bed->check_relocs != NULL
4698 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4699 {
4700 asection *o;
4701
4702 for (o = abfd->sections; o != NULL; o = o->next)
4703 {
4704 Elf_Internal_Rela *internal_relocs;
4705 bfd_boolean ok;
4706
4707 if ((o->flags & SEC_RELOC) == 0
4708 || o->reloc_count == 0
4709 || ((info->strip == strip_all || info->strip == strip_debugger)
4710 && (o->flags & SEC_DEBUGGING) != 0)
4711 || bfd_is_abs_section (o->output_section))
4712 continue;
4713
4714 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4715 info->keep_memory);
4716 if (internal_relocs == NULL)
4717 goto error_return;
4718
4719 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4720
4721 if (elf_section_data (o)->relocs != internal_relocs)
4722 free (internal_relocs);
4723
4724 if (! ok)
4725 goto error_return;
4726 }
4727 }
4728
4729 /* If this is a non-traditional link, try to optimize the handling
4730 of the .stab/.stabstr sections. */
4731 if (! dynamic
4732 && ! info->traditional_format
4733 && is_elf_hash_table (htab)
4734 && (info->strip != strip_all && info->strip != strip_debugger))
4735 {
4736 asection *stabstr;
4737
4738 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4739 if (stabstr != NULL)
4740 {
4741 bfd_size_type string_offset = 0;
4742 asection *stab;
4743
4744 for (stab = abfd->sections; stab; stab = stab->next)
4745 if (CONST_STRNEQ (stab->name, ".stab")
4746 && (!stab->name[5] ||
4747 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4748 && (stab->flags & SEC_MERGE) == 0
4749 && !bfd_is_abs_section (stab->output_section))
4750 {
4751 struct bfd_elf_section_data *secdata;
4752
4753 secdata = elf_section_data (stab);
4754 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4755 stabstr, &secdata->sec_info,
4756 &string_offset))
4757 goto error_return;
4758 if (secdata->sec_info)
4759 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4760 }
4761 }
4762 }
4763
4764 if (is_elf_hash_table (htab) && add_needed)
4765 {
4766 /* Add this bfd to the loaded list. */
4767 struct elf_link_loaded_list *n;
4768
4769 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4770 if (n == NULL)
4771 goto error_return;
4772 n->abfd = abfd;
4773 n->next = htab->loaded;
4774 htab->loaded = n;
4775 }
4776
4777 return TRUE;
4778
4779 error_free_vers:
4780 if (old_tab != NULL)
4781 free (old_tab);
4782 if (nondeflt_vers != NULL)
4783 free (nondeflt_vers);
4784 if (extversym != NULL)
4785 free (extversym);
4786 error_free_sym:
4787 if (isymbuf != NULL)
4788 free (isymbuf);
4789 error_return:
4790 return FALSE;
4791 }
4792
4793 /* Return the linker hash table entry of a symbol that might be
4794 satisfied by an archive symbol. Return -1 on error. */
4795
4796 struct elf_link_hash_entry *
4797 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4798 struct bfd_link_info *info,
4799 const char *name)
4800 {
4801 struct elf_link_hash_entry *h;
4802 char *p, *copy;
4803 size_t len, first;
4804
4805 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4806 if (h != NULL)
4807 return h;
4808
4809 /* If this is a default version (the name contains @@), look up the
4810 symbol again with only one `@' as well as without the version.
4811 The effect is that references to the symbol with and without the
4812 version will be matched by the default symbol in the archive. */
4813
4814 p = strchr (name, ELF_VER_CHR);
4815 if (p == NULL || p[1] != ELF_VER_CHR)
4816 return h;
4817
4818 /* First check with only one `@'. */
4819 len = strlen (name);
4820 copy = bfd_alloc (abfd, len);
4821 if (copy == NULL)
4822 return (struct elf_link_hash_entry *) 0 - 1;
4823
4824 first = p - name + 1;
4825 memcpy (copy, name, first);
4826 memcpy (copy + first, name + first + 1, len - first);
4827
4828 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4829 if (h == NULL)
4830 {
4831 /* We also need to check references to the symbol without the
4832 version. */
4833 copy[first - 1] = '\0';
4834 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4835 FALSE, FALSE, FALSE);
4836 }
4837
4838 bfd_release (abfd, copy);
4839 return h;
4840 }
4841
4842 /* Add symbols from an ELF archive file to the linker hash table. We
4843 don't use _bfd_generic_link_add_archive_symbols because of a
4844 problem which arises on UnixWare. The UnixWare libc.so is an
4845 archive which includes an entry libc.so.1 which defines a bunch of
4846 symbols. The libc.so archive also includes a number of other
4847 object files, which also define symbols, some of which are the same
4848 as those defined in libc.so.1. Correct linking requires that we
4849 consider each object file in turn, and include it if it defines any
4850 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4851 this; it looks through the list of undefined symbols, and includes
4852 any object file which defines them. When this algorithm is used on
4853 UnixWare, it winds up pulling in libc.so.1 early and defining a
4854 bunch of symbols. This means that some of the other objects in the
4855 archive are not included in the link, which is incorrect since they
4856 precede libc.so.1 in the archive.
4857
4858 Fortunately, ELF archive handling is simpler than that done by
4859 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4860 oddities. In ELF, if we find a symbol in the archive map, and the
4861 symbol is currently undefined, we know that we must pull in that
4862 object file.
4863
4864 Unfortunately, we do have to make multiple passes over the symbol
4865 table until nothing further is resolved. */
4866
4867 static bfd_boolean
4868 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4869 {
4870 symindex c;
4871 bfd_boolean *defined = NULL;
4872 bfd_boolean *included = NULL;
4873 carsym *symdefs;
4874 bfd_boolean loop;
4875 bfd_size_type amt;
4876 const struct elf_backend_data *bed;
4877 struct elf_link_hash_entry * (*archive_symbol_lookup)
4878 (bfd *, struct bfd_link_info *, const char *);
4879
4880 if (! bfd_has_map (abfd))
4881 {
4882 /* An empty archive is a special case. */
4883 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4884 return TRUE;
4885 bfd_set_error (bfd_error_no_armap);
4886 return FALSE;
4887 }
4888
4889 /* Keep track of all symbols we know to be already defined, and all
4890 files we know to be already included. This is to speed up the
4891 second and subsequent passes. */
4892 c = bfd_ardata (abfd)->symdef_count;
4893 if (c == 0)
4894 return TRUE;
4895 amt = c;
4896 amt *= sizeof (bfd_boolean);
4897 defined = bfd_zmalloc (amt);
4898 included = bfd_zmalloc (amt);
4899 if (defined == NULL || included == NULL)
4900 goto error_return;
4901
4902 symdefs = bfd_ardata (abfd)->symdefs;
4903 bed = get_elf_backend_data (abfd);
4904 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4905
4906 do
4907 {
4908 file_ptr last;
4909 symindex i;
4910 carsym *symdef;
4911 carsym *symdefend;
4912
4913 loop = FALSE;
4914 last = -1;
4915
4916 symdef = symdefs;
4917 symdefend = symdef + c;
4918 for (i = 0; symdef < symdefend; symdef++, i++)
4919 {
4920 struct elf_link_hash_entry *h;
4921 bfd *element;
4922 struct bfd_link_hash_entry *undefs_tail;
4923 symindex mark;
4924
4925 if (defined[i] || included[i])
4926 continue;
4927 if (symdef->file_offset == last)
4928 {
4929 included[i] = TRUE;
4930 continue;
4931 }
4932
4933 h = archive_symbol_lookup (abfd, info, symdef->name);
4934 if (h == (struct elf_link_hash_entry *) 0 - 1)
4935 goto error_return;
4936
4937 if (h == NULL)
4938 continue;
4939
4940 if (h->root.type == bfd_link_hash_common)
4941 {
4942 /* We currently have a common symbol. The archive map contains
4943 a reference to this symbol, so we may want to include it. We
4944 only want to include it however, if this archive element
4945 contains a definition of the symbol, not just another common
4946 declaration of it.
4947
4948 Unfortunately some archivers (including GNU ar) will put
4949 declarations of common symbols into their archive maps, as
4950 well as real definitions, so we cannot just go by the archive
4951 map alone. Instead we must read in the element's symbol
4952 table and check that to see what kind of symbol definition
4953 this is. */
4954 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4955 continue;
4956 }
4957 else if (h->root.type != bfd_link_hash_undefined)
4958 {
4959 if (h->root.type != bfd_link_hash_undefweak)
4960 defined[i] = TRUE;
4961 continue;
4962 }
4963
4964 /* We need to include this archive member. */
4965 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4966 if (element == NULL)
4967 goto error_return;
4968
4969 if (! bfd_check_format (element, bfd_object))
4970 goto error_return;
4971
4972 /* Doublecheck that we have not included this object
4973 already--it should be impossible, but there may be
4974 something wrong with the archive. */
4975 if (element->archive_pass != 0)
4976 {
4977 bfd_set_error (bfd_error_bad_value);
4978 goto error_return;
4979 }
4980 element->archive_pass = 1;
4981
4982 undefs_tail = info->hash->undefs_tail;
4983
4984 if (! (*info->callbacks->add_archive_element) (info, element,
4985 symdef->name))
4986 goto error_return;
4987 if (! bfd_link_add_symbols (element, info))
4988 goto error_return;
4989
4990 /* If there are any new undefined symbols, we need to make
4991 another pass through the archive in order to see whether
4992 they can be defined. FIXME: This isn't perfect, because
4993 common symbols wind up on undefs_tail and because an
4994 undefined symbol which is defined later on in this pass
4995 does not require another pass. This isn't a bug, but it
4996 does make the code less efficient than it could be. */
4997 if (undefs_tail != info->hash->undefs_tail)
4998 loop = TRUE;
4999
5000 /* Look backward to mark all symbols from this object file
5001 which we have already seen in this pass. */
5002 mark = i;
5003 do
5004 {
5005 included[mark] = TRUE;
5006 if (mark == 0)
5007 break;
5008 --mark;
5009 }
5010 while (symdefs[mark].file_offset == symdef->file_offset);
5011
5012 /* We mark subsequent symbols from this object file as we go
5013 on through the loop. */
5014 last = symdef->file_offset;
5015 }
5016 }
5017 while (loop);
5018
5019 free (defined);
5020 free (included);
5021
5022 return TRUE;
5023
5024 error_return:
5025 if (defined != NULL)
5026 free (defined);
5027 if (included != NULL)
5028 free (included);
5029 return FALSE;
5030 }
5031
5032 /* Given an ELF BFD, add symbols to the global hash table as
5033 appropriate. */
5034
5035 bfd_boolean
5036 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5037 {
5038 switch (bfd_get_format (abfd))
5039 {
5040 case bfd_object:
5041 return elf_link_add_object_symbols (abfd, info);
5042 case bfd_archive:
5043 return elf_link_add_archive_symbols (abfd, info);
5044 default:
5045 bfd_set_error (bfd_error_wrong_format);
5046 return FALSE;
5047 }
5048 }
5049 \f
5050 struct hash_codes_info
5051 {
5052 unsigned long *hashcodes;
5053 bfd_boolean error;
5054 };
5055
5056 /* This function will be called though elf_link_hash_traverse to store
5057 all hash value of the exported symbols in an array. */
5058
5059 static bfd_boolean
5060 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5061 {
5062 struct hash_codes_info *inf = data;
5063 const char *name;
5064 char *p;
5065 unsigned long ha;
5066 char *alc = NULL;
5067
5068 if (h->root.type == bfd_link_hash_warning)
5069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5070
5071 /* Ignore indirect symbols. These are added by the versioning code. */
5072 if (h->dynindx == -1)
5073 return TRUE;
5074
5075 name = h->root.root.string;
5076 p = strchr (name, ELF_VER_CHR);
5077 if (p != NULL)
5078 {
5079 alc = bfd_malloc (p - name + 1);
5080 if (alc == NULL)
5081 {
5082 inf->error = TRUE;
5083 return FALSE;
5084 }
5085 memcpy (alc, name, p - name);
5086 alc[p - name] = '\0';
5087 name = alc;
5088 }
5089
5090 /* Compute the hash value. */
5091 ha = bfd_elf_hash (name);
5092
5093 /* Store the found hash value in the array given as the argument. */
5094 *(inf->hashcodes)++ = ha;
5095
5096 /* And store it in the struct so that we can put it in the hash table
5097 later. */
5098 h->u.elf_hash_value = ha;
5099
5100 if (alc != NULL)
5101 free (alc);
5102
5103 return TRUE;
5104 }
5105
5106 struct collect_gnu_hash_codes
5107 {
5108 bfd *output_bfd;
5109 const struct elf_backend_data *bed;
5110 unsigned long int nsyms;
5111 unsigned long int maskbits;
5112 unsigned long int *hashcodes;
5113 unsigned long int *hashval;
5114 unsigned long int *indx;
5115 unsigned long int *counts;
5116 bfd_vma *bitmask;
5117 bfd_byte *contents;
5118 long int min_dynindx;
5119 unsigned long int bucketcount;
5120 unsigned long int symindx;
5121 long int local_indx;
5122 long int shift1, shift2;
5123 unsigned long int mask;
5124 bfd_boolean error;
5125 };
5126
5127 /* This function will be called though elf_link_hash_traverse to store
5128 all hash value of the exported symbols in an array. */
5129
5130 static bfd_boolean
5131 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5132 {
5133 struct collect_gnu_hash_codes *s = data;
5134 const char *name;
5135 char *p;
5136 unsigned long ha;
5137 char *alc = NULL;
5138
5139 if (h->root.type == bfd_link_hash_warning)
5140 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5141
5142 /* Ignore indirect symbols. These are added by the versioning code. */
5143 if (h->dynindx == -1)
5144 return TRUE;
5145
5146 /* Ignore also local symbols and undefined symbols. */
5147 if (! (*s->bed->elf_hash_symbol) (h))
5148 return TRUE;
5149
5150 name = h->root.root.string;
5151 p = strchr (name, ELF_VER_CHR);
5152 if (p != NULL)
5153 {
5154 alc = bfd_malloc (p - name + 1);
5155 if (alc == NULL)
5156 {
5157 s->error = TRUE;
5158 return FALSE;
5159 }
5160 memcpy (alc, name, p - name);
5161 alc[p - name] = '\0';
5162 name = alc;
5163 }
5164
5165 /* Compute the hash value. */
5166 ha = bfd_elf_gnu_hash (name);
5167
5168 /* Store the found hash value in the array for compute_bucket_count,
5169 and also for .dynsym reordering purposes. */
5170 s->hashcodes[s->nsyms] = ha;
5171 s->hashval[h->dynindx] = ha;
5172 ++s->nsyms;
5173 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5174 s->min_dynindx = h->dynindx;
5175
5176 if (alc != NULL)
5177 free (alc);
5178
5179 return TRUE;
5180 }
5181
5182 /* This function will be called though elf_link_hash_traverse to do
5183 final dynaminc symbol renumbering. */
5184
5185 static bfd_boolean
5186 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5187 {
5188 struct collect_gnu_hash_codes *s = data;
5189 unsigned long int bucket;
5190 unsigned long int val;
5191
5192 if (h->root.type == bfd_link_hash_warning)
5193 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5194
5195 /* Ignore indirect symbols. */
5196 if (h->dynindx == -1)
5197 return TRUE;
5198
5199 /* Ignore also local symbols and undefined symbols. */
5200 if (! (*s->bed->elf_hash_symbol) (h))
5201 {
5202 if (h->dynindx >= s->min_dynindx)
5203 h->dynindx = s->local_indx++;
5204 return TRUE;
5205 }
5206
5207 bucket = s->hashval[h->dynindx] % s->bucketcount;
5208 val = (s->hashval[h->dynindx] >> s->shift1)
5209 & ((s->maskbits >> s->shift1) - 1);
5210 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5211 s->bitmask[val]
5212 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5213 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5214 if (s->counts[bucket] == 1)
5215 /* Last element terminates the chain. */
5216 val |= 1;
5217 bfd_put_32 (s->output_bfd, val,
5218 s->contents + (s->indx[bucket] - s->symindx) * 4);
5219 --s->counts[bucket];
5220 h->dynindx = s->indx[bucket]++;
5221 return TRUE;
5222 }
5223
5224 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5225
5226 bfd_boolean
5227 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5228 {
5229 return !(h->forced_local
5230 || h->root.type == bfd_link_hash_undefined
5231 || h->root.type == bfd_link_hash_undefweak
5232 || ((h->root.type == bfd_link_hash_defined
5233 || h->root.type == bfd_link_hash_defweak)
5234 && h->root.u.def.section->output_section == NULL));
5235 }
5236
5237 /* Array used to determine the number of hash table buckets to use
5238 based on the number of symbols there are. If there are fewer than
5239 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5240 fewer than 37 we use 17 buckets, and so forth. We never use more
5241 than 32771 buckets. */
5242
5243 static const size_t elf_buckets[] =
5244 {
5245 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5246 16411, 32771, 0
5247 };
5248
5249 /* Compute bucket count for hashing table. We do not use a static set
5250 of possible tables sizes anymore. Instead we determine for all
5251 possible reasonable sizes of the table the outcome (i.e., the
5252 number of collisions etc) and choose the best solution. The
5253 weighting functions are not too simple to allow the table to grow
5254 without bounds. Instead one of the weighting factors is the size.
5255 Therefore the result is always a good payoff between few collisions
5256 (= short chain lengths) and table size. */
5257 static size_t
5258 compute_bucket_count (struct bfd_link_info *info,
5259 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5260 unsigned long int nsyms,
5261 int gnu_hash)
5262 {
5263 size_t best_size = 0;
5264 unsigned long int i;
5265
5266 /* We have a problem here. The following code to optimize the table
5267 size requires an integer type with more the 32 bits. If
5268 BFD_HOST_U_64_BIT is set we know about such a type. */
5269 #ifdef BFD_HOST_U_64_BIT
5270 if (info->optimize)
5271 {
5272 size_t minsize;
5273 size_t maxsize;
5274 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5275 bfd *dynobj = elf_hash_table (info)->dynobj;
5276 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5277 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5278 unsigned long int *counts;
5279 bfd_size_type amt;
5280
5281 /* Possible optimization parameters: if we have NSYMS symbols we say
5282 that the hashing table must at least have NSYMS/4 and at most
5283 2*NSYMS buckets. */
5284 minsize = nsyms / 4;
5285 if (minsize == 0)
5286 minsize = 1;
5287 best_size = maxsize = nsyms * 2;
5288 if (gnu_hash)
5289 {
5290 if (minsize < 2)
5291 minsize = 2;
5292 if ((best_size & 31) == 0)
5293 ++best_size;
5294 }
5295
5296 /* Create array where we count the collisions in. We must use bfd_malloc
5297 since the size could be large. */
5298 amt = maxsize;
5299 amt *= sizeof (unsigned long int);
5300 counts = bfd_malloc (amt);
5301 if (counts == NULL)
5302 return 0;
5303
5304 /* Compute the "optimal" size for the hash table. The criteria is a
5305 minimal chain length. The minor criteria is (of course) the size
5306 of the table. */
5307 for (i = minsize; i < maxsize; ++i)
5308 {
5309 /* Walk through the array of hashcodes and count the collisions. */
5310 BFD_HOST_U_64_BIT max;
5311 unsigned long int j;
5312 unsigned long int fact;
5313
5314 if (gnu_hash && (i & 31) == 0)
5315 continue;
5316
5317 memset (counts, '\0', i * sizeof (unsigned long int));
5318
5319 /* Determine how often each hash bucket is used. */
5320 for (j = 0; j < nsyms; ++j)
5321 ++counts[hashcodes[j] % i];
5322
5323 /* For the weight function we need some information about the
5324 pagesize on the target. This is information need not be 100%
5325 accurate. Since this information is not available (so far) we
5326 define it here to a reasonable default value. If it is crucial
5327 to have a better value some day simply define this value. */
5328 # ifndef BFD_TARGET_PAGESIZE
5329 # define BFD_TARGET_PAGESIZE (4096)
5330 # endif
5331
5332 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5333 and the chains. */
5334 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5335
5336 # if 1
5337 /* Variant 1: optimize for short chains. We add the squares
5338 of all the chain lengths (which favors many small chain
5339 over a few long chains). */
5340 for (j = 0; j < i; ++j)
5341 max += counts[j] * counts[j];
5342
5343 /* This adds penalties for the overall size of the table. */
5344 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5345 max *= fact * fact;
5346 # else
5347 /* Variant 2: Optimize a lot more for small table. Here we
5348 also add squares of the size but we also add penalties for
5349 empty slots (the +1 term). */
5350 for (j = 0; j < i; ++j)
5351 max += (1 + counts[j]) * (1 + counts[j]);
5352
5353 /* The overall size of the table is considered, but not as
5354 strong as in variant 1, where it is squared. */
5355 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5356 max *= fact;
5357 # endif
5358
5359 /* Compare with current best results. */
5360 if (max < best_chlen)
5361 {
5362 best_chlen = max;
5363 best_size = i;
5364 }
5365 }
5366
5367 free (counts);
5368 }
5369 else
5370 #endif /* defined (BFD_HOST_U_64_BIT) */
5371 {
5372 /* This is the fallback solution if no 64bit type is available or if we
5373 are not supposed to spend much time on optimizations. We select the
5374 bucket count using a fixed set of numbers. */
5375 for (i = 0; elf_buckets[i] != 0; i++)
5376 {
5377 best_size = elf_buckets[i];
5378 if (nsyms < elf_buckets[i + 1])
5379 break;
5380 }
5381 if (gnu_hash && best_size < 2)
5382 best_size = 2;
5383 }
5384
5385 return best_size;
5386 }
5387
5388 /* Set up the sizes and contents of the ELF dynamic sections. This is
5389 called by the ELF linker emulation before_allocation routine. We
5390 must set the sizes of the sections before the linker sets the
5391 addresses of the various sections. */
5392
5393 bfd_boolean
5394 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5395 const char *soname,
5396 const char *rpath,
5397 const char *filter_shlib,
5398 const char * const *auxiliary_filters,
5399 struct bfd_link_info *info,
5400 asection **sinterpptr,
5401 struct bfd_elf_version_tree *verdefs)
5402 {
5403 bfd_size_type soname_indx;
5404 bfd *dynobj;
5405 const struct elf_backend_data *bed;
5406 struct elf_assign_sym_version_info asvinfo;
5407
5408 *sinterpptr = NULL;
5409
5410 soname_indx = (bfd_size_type) -1;
5411
5412 if (!is_elf_hash_table (info->hash))
5413 return TRUE;
5414
5415 bed = get_elf_backend_data (output_bfd);
5416 if (info->execstack)
5417 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5418 else if (info->noexecstack)
5419 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5420 else
5421 {
5422 bfd *inputobj;
5423 asection *notesec = NULL;
5424 int exec = 0;
5425
5426 for (inputobj = info->input_bfds;
5427 inputobj;
5428 inputobj = inputobj->link_next)
5429 {
5430 asection *s;
5431
5432 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5433 continue;
5434 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5435 if (s)
5436 {
5437 if (s->flags & SEC_CODE)
5438 exec = PF_X;
5439 notesec = s;
5440 }
5441 else if (bed->default_execstack)
5442 exec = PF_X;
5443 }
5444 if (notesec)
5445 {
5446 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5447 if (exec && info->relocatable
5448 && notesec->output_section != bfd_abs_section_ptr)
5449 notesec->output_section->flags |= SEC_CODE;
5450 }
5451 }
5452
5453 /* Any syms created from now on start with -1 in
5454 got.refcount/offset and plt.refcount/offset. */
5455 elf_hash_table (info)->init_got_refcount
5456 = elf_hash_table (info)->init_got_offset;
5457 elf_hash_table (info)->init_plt_refcount
5458 = elf_hash_table (info)->init_plt_offset;
5459
5460 /* The backend may have to create some sections regardless of whether
5461 we're dynamic or not. */
5462 if (bed->elf_backend_always_size_sections
5463 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5464 return FALSE;
5465
5466 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5467 return FALSE;
5468
5469 dynobj = elf_hash_table (info)->dynobj;
5470
5471 /* If there were no dynamic objects in the link, there is nothing to
5472 do here. */
5473 if (dynobj == NULL)
5474 return TRUE;
5475
5476 if (elf_hash_table (info)->dynamic_sections_created)
5477 {
5478 struct elf_info_failed eif;
5479 struct elf_link_hash_entry *h;
5480 asection *dynstr;
5481 struct bfd_elf_version_tree *t;
5482 struct bfd_elf_version_expr *d;
5483 asection *s;
5484 bfd_boolean all_defined;
5485
5486 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5487 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5488
5489 if (soname != NULL)
5490 {
5491 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5492 soname, TRUE);
5493 if (soname_indx == (bfd_size_type) -1
5494 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5495 return FALSE;
5496 }
5497
5498 if (info->symbolic)
5499 {
5500 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5501 return FALSE;
5502 info->flags |= DF_SYMBOLIC;
5503 }
5504
5505 if (rpath != NULL)
5506 {
5507 bfd_size_type indx;
5508
5509 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5510 TRUE);
5511 if (indx == (bfd_size_type) -1
5512 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5513 return FALSE;
5514
5515 if (info->new_dtags)
5516 {
5517 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5518 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5519 return FALSE;
5520 }
5521 }
5522
5523 if (filter_shlib != NULL)
5524 {
5525 bfd_size_type indx;
5526
5527 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5528 filter_shlib, TRUE);
5529 if (indx == (bfd_size_type) -1
5530 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5531 return FALSE;
5532 }
5533
5534 if (auxiliary_filters != NULL)
5535 {
5536 const char * const *p;
5537
5538 for (p = auxiliary_filters; *p != NULL; p++)
5539 {
5540 bfd_size_type indx;
5541
5542 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5543 *p, TRUE);
5544 if (indx == (bfd_size_type) -1
5545 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5546 return FALSE;
5547 }
5548 }
5549
5550 eif.info = info;
5551 eif.verdefs = verdefs;
5552 eif.failed = FALSE;
5553
5554 /* If we are supposed to export all symbols into the dynamic symbol
5555 table (this is not the normal case), then do so. */
5556 if (info->export_dynamic
5557 || (info->executable && info->dynamic))
5558 {
5559 elf_link_hash_traverse (elf_hash_table (info),
5560 _bfd_elf_export_symbol,
5561 &eif);
5562 if (eif.failed)
5563 return FALSE;
5564 }
5565
5566 /* Make all global versions with definition. */
5567 for (t = verdefs; t != NULL; t = t->next)
5568 for (d = t->globals.list; d != NULL; d = d->next)
5569 if (!d->symver && d->symbol)
5570 {
5571 const char *verstr, *name;
5572 size_t namelen, verlen, newlen;
5573 char *newname, *p;
5574 struct elf_link_hash_entry *newh;
5575
5576 name = d->symbol;
5577 namelen = strlen (name);
5578 verstr = t->name;
5579 verlen = strlen (verstr);
5580 newlen = namelen + verlen + 3;
5581
5582 newname = bfd_malloc (newlen);
5583 if (newname == NULL)
5584 return FALSE;
5585 memcpy (newname, name, namelen);
5586
5587 /* Check the hidden versioned definition. */
5588 p = newname + namelen;
5589 *p++ = ELF_VER_CHR;
5590 memcpy (p, verstr, verlen + 1);
5591 newh = elf_link_hash_lookup (elf_hash_table (info),
5592 newname, FALSE, FALSE,
5593 FALSE);
5594 if (newh == NULL
5595 || (newh->root.type != bfd_link_hash_defined
5596 && newh->root.type != bfd_link_hash_defweak))
5597 {
5598 /* Check the default versioned definition. */
5599 *p++ = ELF_VER_CHR;
5600 memcpy (p, verstr, verlen + 1);
5601 newh = elf_link_hash_lookup (elf_hash_table (info),
5602 newname, FALSE, FALSE,
5603 FALSE);
5604 }
5605 free (newname);
5606
5607 /* Mark this version if there is a definition and it is
5608 not defined in a shared object. */
5609 if (newh != NULL
5610 && !newh->def_dynamic
5611 && (newh->root.type == bfd_link_hash_defined
5612 || newh->root.type == bfd_link_hash_defweak))
5613 d->symver = 1;
5614 }
5615
5616 /* Attach all the symbols to their version information. */
5617 asvinfo.output_bfd = output_bfd;
5618 asvinfo.info = info;
5619 asvinfo.verdefs = verdefs;
5620 asvinfo.failed = FALSE;
5621
5622 elf_link_hash_traverse (elf_hash_table (info),
5623 _bfd_elf_link_assign_sym_version,
5624 &asvinfo);
5625 if (asvinfo.failed)
5626 return FALSE;
5627
5628 if (!info->allow_undefined_version)
5629 {
5630 /* Check if all global versions have a definition. */
5631 all_defined = TRUE;
5632 for (t = verdefs; t != NULL; t = t->next)
5633 for (d = t->globals.list; d != NULL; d = d->next)
5634 if (!d->symver && !d->script)
5635 {
5636 (*_bfd_error_handler)
5637 (_("%s: undefined version: %s"),
5638 d->pattern, t->name);
5639 all_defined = FALSE;
5640 }
5641
5642 if (!all_defined)
5643 {
5644 bfd_set_error (bfd_error_bad_value);
5645 return FALSE;
5646 }
5647 }
5648
5649 /* Find all symbols which were defined in a dynamic object and make
5650 the backend pick a reasonable value for them. */
5651 elf_link_hash_traverse (elf_hash_table (info),
5652 _bfd_elf_adjust_dynamic_symbol,
5653 &eif);
5654 if (eif.failed)
5655 return FALSE;
5656
5657 /* Add some entries to the .dynamic section. We fill in some of the
5658 values later, in bfd_elf_final_link, but we must add the entries
5659 now so that we know the final size of the .dynamic section. */
5660
5661 /* If there are initialization and/or finalization functions to
5662 call then add the corresponding DT_INIT/DT_FINI entries. */
5663 h = (info->init_function
5664 ? elf_link_hash_lookup (elf_hash_table (info),
5665 info->init_function, FALSE,
5666 FALSE, FALSE)
5667 : NULL);
5668 if (h != NULL
5669 && (h->ref_regular
5670 || h->def_regular))
5671 {
5672 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5673 return FALSE;
5674 }
5675 h = (info->fini_function
5676 ? elf_link_hash_lookup (elf_hash_table (info),
5677 info->fini_function, FALSE,
5678 FALSE, FALSE)
5679 : NULL);
5680 if (h != NULL
5681 && (h->ref_regular
5682 || h->def_regular))
5683 {
5684 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5685 return FALSE;
5686 }
5687
5688 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5689 if (s != NULL && s->linker_has_input)
5690 {
5691 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5692 if (! info->executable)
5693 {
5694 bfd *sub;
5695 asection *o;
5696
5697 for (sub = info->input_bfds; sub != NULL;
5698 sub = sub->link_next)
5699 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5700 for (o = sub->sections; o != NULL; o = o->next)
5701 if (elf_section_data (o)->this_hdr.sh_type
5702 == SHT_PREINIT_ARRAY)
5703 {
5704 (*_bfd_error_handler)
5705 (_("%B: .preinit_array section is not allowed in DSO"),
5706 sub);
5707 break;
5708 }
5709
5710 bfd_set_error (bfd_error_nonrepresentable_section);
5711 return FALSE;
5712 }
5713
5714 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5715 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5716 return FALSE;
5717 }
5718 s = bfd_get_section_by_name (output_bfd, ".init_array");
5719 if (s != NULL && s->linker_has_input)
5720 {
5721 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5722 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5723 return FALSE;
5724 }
5725 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5726 if (s != NULL && s->linker_has_input)
5727 {
5728 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5729 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5730 return FALSE;
5731 }
5732
5733 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5734 /* If .dynstr is excluded from the link, we don't want any of
5735 these tags. Strictly, we should be checking each section
5736 individually; This quick check covers for the case where
5737 someone does a /DISCARD/ : { *(*) }. */
5738 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5739 {
5740 bfd_size_type strsize;
5741
5742 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5743 if ((info->emit_hash
5744 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5745 || (info->emit_gnu_hash
5746 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5747 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5748 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5749 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5750 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5751 bed->s->sizeof_sym))
5752 return FALSE;
5753 }
5754 }
5755
5756 /* The backend must work out the sizes of all the other dynamic
5757 sections. */
5758 if (bed->elf_backend_size_dynamic_sections
5759 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5760 return FALSE;
5761
5762 if (elf_hash_table (info)->dynamic_sections_created)
5763 {
5764 unsigned long section_sym_count;
5765 asection *s;
5766
5767 /* Set up the version definition section. */
5768 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5769 BFD_ASSERT (s != NULL);
5770
5771 /* We may have created additional version definitions if we are
5772 just linking a regular application. */
5773 verdefs = asvinfo.verdefs;
5774
5775 /* Skip anonymous version tag. */
5776 if (verdefs != NULL && verdefs->vernum == 0)
5777 verdefs = verdefs->next;
5778
5779 if (verdefs == NULL && !info->create_default_symver)
5780 s->flags |= SEC_EXCLUDE;
5781 else
5782 {
5783 unsigned int cdefs;
5784 bfd_size_type size;
5785 struct bfd_elf_version_tree *t;
5786 bfd_byte *p;
5787 Elf_Internal_Verdef def;
5788 Elf_Internal_Verdaux defaux;
5789 struct bfd_link_hash_entry *bh;
5790 struct elf_link_hash_entry *h;
5791 const char *name;
5792
5793 cdefs = 0;
5794 size = 0;
5795
5796 /* Make space for the base version. */
5797 size += sizeof (Elf_External_Verdef);
5798 size += sizeof (Elf_External_Verdaux);
5799 ++cdefs;
5800
5801 /* Make space for the default version. */
5802 if (info->create_default_symver)
5803 {
5804 size += sizeof (Elf_External_Verdef);
5805 ++cdefs;
5806 }
5807
5808 for (t = verdefs; t != NULL; t = t->next)
5809 {
5810 struct bfd_elf_version_deps *n;
5811
5812 size += sizeof (Elf_External_Verdef);
5813 size += sizeof (Elf_External_Verdaux);
5814 ++cdefs;
5815
5816 for (n = t->deps; n != NULL; n = n->next)
5817 size += sizeof (Elf_External_Verdaux);
5818 }
5819
5820 s->size = size;
5821 s->contents = bfd_alloc (output_bfd, s->size);
5822 if (s->contents == NULL && s->size != 0)
5823 return FALSE;
5824
5825 /* Fill in the version definition section. */
5826
5827 p = s->contents;
5828
5829 def.vd_version = VER_DEF_CURRENT;
5830 def.vd_flags = VER_FLG_BASE;
5831 def.vd_ndx = 1;
5832 def.vd_cnt = 1;
5833 if (info->create_default_symver)
5834 {
5835 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5836 def.vd_next = sizeof (Elf_External_Verdef);
5837 }
5838 else
5839 {
5840 def.vd_aux = sizeof (Elf_External_Verdef);
5841 def.vd_next = (sizeof (Elf_External_Verdef)
5842 + sizeof (Elf_External_Verdaux));
5843 }
5844
5845 if (soname_indx != (bfd_size_type) -1)
5846 {
5847 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5848 soname_indx);
5849 def.vd_hash = bfd_elf_hash (soname);
5850 defaux.vda_name = soname_indx;
5851 name = soname;
5852 }
5853 else
5854 {
5855 bfd_size_type indx;
5856
5857 name = lbasename (output_bfd->filename);
5858 def.vd_hash = bfd_elf_hash (name);
5859 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5860 name, FALSE);
5861 if (indx == (bfd_size_type) -1)
5862 return FALSE;
5863 defaux.vda_name = indx;
5864 }
5865 defaux.vda_next = 0;
5866
5867 _bfd_elf_swap_verdef_out (output_bfd, &def,
5868 (Elf_External_Verdef *) p);
5869 p += sizeof (Elf_External_Verdef);
5870 if (info->create_default_symver)
5871 {
5872 /* Add a symbol representing this version. */
5873 bh = NULL;
5874 if (! (_bfd_generic_link_add_one_symbol
5875 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5876 0, NULL, FALSE,
5877 get_elf_backend_data (dynobj)->collect, &bh)))
5878 return FALSE;
5879 h = (struct elf_link_hash_entry *) bh;
5880 h->non_elf = 0;
5881 h->def_regular = 1;
5882 h->type = STT_OBJECT;
5883 h->verinfo.vertree = NULL;
5884
5885 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5886 return FALSE;
5887
5888 /* Create a duplicate of the base version with the same
5889 aux block, but different flags. */
5890 def.vd_flags = 0;
5891 def.vd_ndx = 2;
5892 def.vd_aux = sizeof (Elf_External_Verdef);
5893 if (verdefs)
5894 def.vd_next = (sizeof (Elf_External_Verdef)
5895 + sizeof (Elf_External_Verdaux));
5896 else
5897 def.vd_next = 0;
5898 _bfd_elf_swap_verdef_out (output_bfd, &def,
5899 (Elf_External_Verdef *) p);
5900 p += sizeof (Elf_External_Verdef);
5901 }
5902 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5903 (Elf_External_Verdaux *) p);
5904 p += sizeof (Elf_External_Verdaux);
5905
5906 for (t = verdefs; t != NULL; t = t->next)
5907 {
5908 unsigned int cdeps;
5909 struct bfd_elf_version_deps *n;
5910
5911 cdeps = 0;
5912 for (n = t->deps; n != NULL; n = n->next)
5913 ++cdeps;
5914
5915 /* Add a symbol representing this version. */
5916 bh = NULL;
5917 if (! (_bfd_generic_link_add_one_symbol
5918 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5919 0, NULL, FALSE,
5920 get_elf_backend_data (dynobj)->collect, &bh)))
5921 return FALSE;
5922 h = (struct elf_link_hash_entry *) bh;
5923 h->non_elf = 0;
5924 h->def_regular = 1;
5925 h->type = STT_OBJECT;
5926 h->verinfo.vertree = t;
5927
5928 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5929 return FALSE;
5930
5931 def.vd_version = VER_DEF_CURRENT;
5932 def.vd_flags = 0;
5933 if (t->globals.list == NULL
5934 && t->locals.list == NULL
5935 && ! t->used)
5936 def.vd_flags |= VER_FLG_WEAK;
5937 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5938 def.vd_cnt = cdeps + 1;
5939 def.vd_hash = bfd_elf_hash (t->name);
5940 def.vd_aux = sizeof (Elf_External_Verdef);
5941 def.vd_next = 0;
5942 if (t->next != NULL)
5943 def.vd_next = (sizeof (Elf_External_Verdef)
5944 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5945
5946 _bfd_elf_swap_verdef_out (output_bfd, &def,
5947 (Elf_External_Verdef *) p);
5948 p += sizeof (Elf_External_Verdef);
5949
5950 defaux.vda_name = h->dynstr_index;
5951 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5952 h->dynstr_index);
5953 defaux.vda_next = 0;
5954 if (t->deps != NULL)
5955 defaux.vda_next = sizeof (Elf_External_Verdaux);
5956 t->name_indx = defaux.vda_name;
5957
5958 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5959 (Elf_External_Verdaux *) p);
5960 p += sizeof (Elf_External_Verdaux);
5961
5962 for (n = t->deps; n != NULL; n = n->next)
5963 {
5964 if (n->version_needed == NULL)
5965 {
5966 /* This can happen if there was an error in the
5967 version script. */
5968 defaux.vda_name = 0;
5969 }
5970 else
5971 {
5972 defaux.vda_name = n->version_needed->name_indx;
5973 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5974 defaux.vda_name);
5975 }
5976 if (n->next == NULL)
5977 defaux.vda_next = 0;
5978 else
5979 defaux.vda_next = sizeof (Elf_External_Verdaux);
5980
5981 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5982 (Elf_External_Verdaux *) p);
5983 p += sizeof (Elf_External_Verdaux);
5984 }
5985 }
5986
5987 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5988 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5989 return FALSE;
5990
5991 elf_tdata (output_bfd)->cverdefs = cdefs;
5992 }
5993
5994 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5995 {
5996 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5997 return FALSE;
5998 }
5999 else if (info->flags & DF_BIND_NOW)
6000 {
6001 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6002 return FALSE;
6003 }
6004
6005 if (info->flags_1)
6006 {
6007 if (info->executable)
6008 info->flags_1 &= ~ (DF_1_INITFIRST
6009 | DF_1_NODELETE
6010 | DF_1_NOOPEN);
6011 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6012 return FALSE;
6013 }
6014
6015 /* Work out the size of the version reference section. */
6016
6017 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6018 BFD_ASSERT (s != NULL);
6019 {
6020 struct elf_find_verdep_info sinfo;
6021
6022 sinfo.output_bfd = output_bfd;
6023 sinfo.info = info;
6024 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6025 if (sinfo.vers == 0)
6026 sinfo.vers = 1;
6027 sinfo.failed = FALSE;
6028
6029 elf_link_hash_traverse (elf_hash_table (info),
6030 _bfd_elf_link_find_version_dependencies,
6031 &sinfo);
6032 if (sinfo.failed)
6033 return FALSE;
6034
6035 if (elf_tdata (output_bfd)->verref == NULL)
6036 s->flags |= SEC_EXCLUDE;
6037 else
6038 {
6039 Elf_Internal_Verneed *t;
6040 unsigned int size;
6041 unsigned int crefs;
6042 bfd_byte *p;
6043
6044 /* Build the version definition section. */
6045 size = 0;
6046 crefs = 0;
6047 for (t = elf_tdata (output_bfd)->verref;
6048 t != NULL;
6049 t = t->vn_nextref)
6050 {
6051 Elf_Internal_Vernaux *a;
6052
6053 size += sizeof (Elf_External_Verneed);
6054 ++crefs;
6055 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6056 size += sizeof (Elf_External_Vernaux);
6057 }
6058
6059 s->size = size;
6060 s->contents = bfd_alloc (output_bfd, s->size);
6061 if (s->contents == NULL)
6062 return FALSE;
6063
6064 p = s->contents;
6065 for (t = elf_tdata (output_bfd)->verref;
6066 t != NULL;
6067 t = t->vn_nextref)
6068 {
6069 unsigned int caux;
6070 Elf_Internal_Vernaux *a;
6071 bfd_size_type indx;
6072
6073 caux = 0;
6074 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6075 ++caux;
6076
6077 t->vn_version = VER_NEED_CURRENT;
6078 t->vn_cnt = caux;
6079 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6080 elf_dt_name (t->vn_bfd) != NULL
6081 ? elf_dt_name (t->vn_bfd)
6082 : lbasename (t->vn_bfd->filename),
6083 FALSE);
6084 if (indx == (bfd_size_type) -1)
6085 return FALSE;
6086 t->vn_file = indx;
6087 t->vn_aux = sizeof (Elf_External_Verneed);
6088 if (t->vn_nextref == NULL)
6089 t->vn_next = 0;
6090 else
6091 t->vn_next = (sizeof (Elf_External_Verneed)
6092 + caux * sizeof (Elf_External_Vernaux));
6093
6094 _bfd_elf_swap_verneed_out (output_bfd, t,
6095 (Elf_External_Verneed *) p);
6096 p += sizeof (Elf_External_Verneed);
6097
6098 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6099 {
6100 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6101 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6102 a->vna_nodename, FALSE);
6103 if (indx == (bfd_size_type) -1)
6104 return FALSE;
6105 a->vna_name = indx;
6106 if (a->vna_nextptr == NULL)
6107 a->vna_next = 0;
6108 else
6109 a->vna_next = sizeof (Elf_External_Vernaux);
6110
6111 _bfd_elf_swap_vernaux_out (output_bfd, a,
6112 (Elf_External_Vernaux *) p);
6113 p += sizeof (Elf_External_Vernaux);
6114 }
6115 }
6116
6117 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6118 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6119 return FALSE;
6120
6121 elf_tdata (output_bfd)->cverrefs = crefs;
6122 }
6123 }
6124
6125 if ((elf_tdata (output_bfd)->cverrefs == 0
6126 && elf_tdata (output_bfd)->cverdefs == 0)
6127 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6128 &section_sym_count) == 0)
6129 {
6130 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6131 s->flags |= SEC_EXCLUDE;
6132 }
6133 }
6134 return TRUE;
6135 }
6136
6137 /* Find the first non-excluded output section. We'll use its
6138 section symbol for some emitted relocs. */
6139 void
6140 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6141 {
6142 asection *s;
6143
6144 for (s = output_bfd->sections; s != NULL; s = s->next)
6145 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6146 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6147 {
6148 elf_hash_table (info)->text_index_section = s;
6149 break;
6150 }
6151 }
6152
6153 /* Find two non-excluded output sections, one for code, one for data.
6154 We'll use their section symbols for some emitted relocs. */
6155 void
6156 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6157 {
6158 asection *s;
6159
6160 /* Data first, since setting text_index_section changes
6161 _bfd_elf_link_omit_section_dynsym. */
6162 for (s = output_bfd->sections; s != NULL; s = s->next)
6163 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6164 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6165 {
6166 elf_hash_table (info)->data_index_section = s;
6167 break;
6168 }
6169
6170 for (s = output_bfd->sections; s != NULL; s = s->next)
6171 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6172 == (SEC_ALLOC | SEC_READONLY))
6173 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6174 {
6175 elf_hash_table (info)->text_index_section = s;
6176 break;
6177 }
6178
6179 if (elf_hash_table (info)->text_index_section == NULL)
6180 elf_hash_table (info)->text_index_section
6181 = elf_hash_table (info)->data_index_section;
6182 }
6183
6184 bfd_boolean
6185 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6186 {
6187 const struct elf_backend_data *bed;
6188
6189 if (!is_elf_hash_table (info->hash))
6190 return TRUE;
6191
6192 bed = get_elf_backend_data (output_bfd);
6193 (*bed->elf_backend_init_index_section) (output_bfd, info);
6194
6195 if (elf_hash_table (info)->dynamic_sections_created)
6196 {
6197 bfd *dynobj;
6198 asection *s;
6199 bfd_size_type dynsymcount;
6200 unsigned long section_sym_count;
6201 unsigned int dtagcount;
6202
6203 dynobj = elf_hash_table (info)->dynobj;
6204
6205 /* Assign dynsym indicies. In a shared library we generate a
6206 section symbol for each output section, which come first.
6207 Next come all of the back-end allocated local dynamic syms,
6208 followed by the rest of the global symbols. */
6209
6210 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6211 &section_sym_count);
6212
6213 /* Work out the size of the symbol version section. */
6214 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6215 BFD_ASSERT (s != NULL);
6216 if (dynsymcount != 0
6217 && (s->flags & SEC_EXCLUDE) == 0)
6218 {
6219 s->size = dynsymcount * sizeof (Elf_External_Versym);
6220 s->contents = bfd_zalloc (output_bfd, s->size);
6221 if (s->contents == NULL)
6222 return FALSE;
6223
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6225 return FALSE;
6226 }
6227
6228 /* Set the size of the .dynsym and .hash sections. We counted
6229 the number of dynamic symbols in elf_link_add_object_symbols.
6230 We will build the contents of .dynsym and .hash when we build
6231 the final symbol table, because until then we do not know the
6232 correct value to give the symbols. We built the .dynstr
6233 section as we went along in elf_link_add_object_symbols. */
6234 s = bfd_get_section_by_name (dynobj, ".dynsym");
6235 BFD_ASSERT (s != NULL);
6236 s->size = dynsymcount * bed->s->sizeof_sym;
6237
6238 if (dynsymcount != 0)
6239 {
6240 s->contents = bfd_alloc (output_bfd, s->size);
6241 if (s->contents == NULL)
6242 return FALSE;
6243
6244 /* The first entry in .dynsym is a dummy symbol.
6245 Clear all the section syms, in case we don't output them all. */
6246 ++section_sym_count;
6247 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6248 }
6249
6250 elf_hash_table (info)->bucketcount = 0;
6251
6252 /* Compute the size of the hashing table. As a side effect this
6253 computes the hash values for all the names we export. */
6254 if (info->emit_hash)
6255 {
6256 unsigned long int *hashcodes;
6257 struct hash_codes_info hashinf;
6258 bfd_size_type amt;
6259 unsigned long int nsyms;
6260 size_t bucketcount;
6261 size_t hash_entry_size;
6262
6263 /* Compute the hash values for all exported symbols. At the same
6264 time store the values in an array so that we could use them for
6265 optimizations. */
6266 amt = dynsymcount * sizeof (unsigned long int);
6267 hashcodes = bfd_malloc (amt);
6268 if (hashcodes == NULL)
6269 return FALSE;
6270 hashinf.hashcodes = hashcodes;
6271 hashinf.error = FALSE;
6272
6273 /* Put all hash values in HASHCODES. */
6274 elf_link_hash_traverse (elf_hash_table (info),
6275 elf_collect_hash_codes, &hashinf);
6276 if (hashinf.error)
6277 {
6278 free (hashcodes);
6279 return FALSE;
6280 }
6281
6282 nsyms = hashinf.hashcodes - hashcodes;
6283 bucketcount
6284 = compute_bucket_count (info, hashcodes, nsyms, 0);
6285 free (hashcodes);
6286
6287 if (bucketcount == 0)
6288 return FALSE;
6289
6290 elf_hash_table (info)->bucketcount = bucketcount;
6291
6292 s = bfd_get_section_by_name (dynobj, ".hash");
6293 BFD_ASSERT (s != NULL);
6294 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6295 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6296 s->contents = bfd_zalloc (output_bfd, s->size);
6297 if (s->contents == NULL)
6298 return FALSE;
6299
6300 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6301 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6302 s->contents + hash_entry_size);
6303 }
6304
6305 if (info->emit_gnu_hash)
6306 {
6307 size_t i, cnt;
6308 unsigned char *contents;
6309 struct collect_gnu_hash_codes cinfo;
6310 bfd_size_type amt;
6311 size_t bucketcount;
6312
6313 memset (&cinfo, 0, sizeof (cinfo));
6314
6315 /* Compute the hash values for all exported symbols. At the same
6316 time store the values in an array so that we could use them for
6317 optimizations. */
6318 amt = dynsymcount * 2 * sizeof (unsigned long int);
6319 cinfo.hashcodes = bfd_malloc (amt);
6320 if (cinfo.hashcodes == NULL)
6321 return FALSE;
6322
6323 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6324 cinfo.min_dynindx = -1;
6325 cinfo.output_bfd = output_bfd;
6326 cinfo.bed = bed;
6327
6328 /* Put all hash values in HASHCODES. */
6329 elf_link_hash_traverse (elf_hash_table (info),
6330 elf_collect_gnu_hash_codes, &cinfo);
6331 if (cinfo.error)
6332 {
6333 free (cinfo.hashcodes);
6334 return FALSE;
6335 }
6336
6337 bucketcount
6338 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6339
6340 if (bucketcount == 0)
6341 {
6342 free (cinfo.hashcodes);
6343 return FALSE;
6344 }
6345
6346 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6347 BFD_ASSERT (s != NULL);
6348
6349 if (cinfo.nsyms == 0)
6350 {
6351 /* Empty .gnu.hash section is special. */
6352 BFD_ASSERT (cinfo.min_dynindx == -1);
6353 free (cinfo.hashcodes);
6354 s->size = 5 * 4 + bed->s->arch_size / 8;
6355 contents = bfd_zalloc (output_bfd, s->size);
6356 if (contents == NULL)
6357 return FALSE;
6358 s->contents = contents;
6359 /* 1 empty bucket. */
6360 bfd_put_32 (output_bfd, 1, contents);
6361 /* SYMIDX above the special symbol 0. */
6362 bfd_put_32 (output_bfd, 1, contents + 4);
6363 /* Just one word for bitmask. */
6364 bfd_put_32 (output_bfd, 1, contents + 8);
6365 /* Only hash fn bloom filter. */
6366 bfd_put_32 (output_bfd, 0, contents + 12);
6367 /* No hashes are valid - empty bitmask. */
6368 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6369 /* No hashes in the only bucket. */
6370 bfd_put_32 (output_bfd, 0,
6371 contents + 16 + bed->s->arch_size / 8);
6372 }
6373 else
6374 {
6375 unsigned long int maskwords, maskbitslog2;
6376 BFD_ASSERT (cinfo.min_dynindx != -1);
6377
6378 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6379 if (maskbitslog2 < 3)
6380 maskbitslog2 = 5;
6381 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6382 maskbitslog2 = maskbitslog2 + 3;
6383 else
6384 maskbitslog2 = maskbitslog2 + 2;
6385 if (bed->s->arch_size == 64)
6386 {
6387 if (maskbitslog2 == 5)
6388 maskbitslog2 = 6;
6389 cinfo.shift1 = 6;
6390 }
6391 else
6392 cinfo.shift1 = 5;
6393 cinfo.mask = (1 << cinfo.shift1) - 1;
6394 cinfo.shift2 = maskbitslog2;
6395 cinfo.maskbits = 1 << maskbitslog2;
6396 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6397 amt = bucketcount * sizeof (unsigned long int) * 2;
6398 amt += maskwords * sizeof (bfd_vma);
6399 cinfo.bitmask = bfd_malloc (amt);
6400 if (cinfo.bitmask == NULL)
6401 {
6402 free (cinfo.hashcodes);
6403 return FALSE;
6404 }
6405
6406 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6407 cinfo.indx = cinfo.counts + bucketcount;
6408 cinfo.symindx = dynsymcount - cinfo.nsyms;
6409 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6410
6411 /* Determine how often each hash bucket is used. */
6412 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6413 for (i = 0; i < cinfo.nsyms; ++i)
6414 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6415
6416 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6417 if (cinfo.counts[i] != 0)
6418 {
6419 cinfo.indx[i] = cnt;
6420 cnt += cinfo.counts[i];
6421 }
6422 BFD_ASSERT (cnt == dynsymcount);
6423 cinfo.bucketcount = bucketcount;
6424 cinfo.local_indx = cinfo.min_dynindx;
6425
6426 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6427 s->size += cinfo.maskbits / 8;
6428 contents = bfd_zalloc (output_bfd, s->size);
6429 if (contents == NULL)
6430 {
6431 free (cinfo.bitmask);
6432 free (cinfo.hashcodes);
6433 return FALSE;
6434 }
6435
6436 s->contents = contents;
6437 bfd_put_32 (output_bfd, bucketcount, contents);
6438 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6439 bfd_put_32 (output_bfd, maskwords, contents + 8);
6440 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6441 contents += 16 + cinfo.maskbits / 8;
6442
6443 for (i = 0; i < bucketcount; ++i)
6444 {
6445 if (cinfo.counts[i] == 0)
6446 bfd_put_32 (output_bfd, 0, contents);
6447 else
6448 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6449 contents += 4;
6450 }
6451
6452 cinfo.contents = contents;
6453
6454 /* Renumber dynamic symbols, populate .gnu.hash section. */
6455 elf_link_hash_traverse (elf_hash_table (info),
6456 elf_renumber_gnu_hash_syms, &cinfo);
6457
6458 contents = s->contents + 16;
6459 for (i = 0; i < maskwords; ++i)
6460 {
6461 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6462 contents);
6463 contents += bed->s->arch_size / 8;
6464 }
6465
6466 free (cinfo.bitmask);
6467 free (cinfo.hashcodes);
6468 }
6469 }
6470
6471 s = bfd_get_section_by_name (dynobj, ".dynstr");
6472 BFD_ASSERT (s != NULL);
6473
6474 elf_finalize_dynstr (output_bfd, info);
6475
6476 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6477
6478 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6479 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6480 return FALSE;
6481 }
6482
6483 return TRUE;
6484 }
6485 \f
6486 /* Indicate that we are only retrieving symbol values from this
6487 section. */
6488
6489 void
6490 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6491 {
6492 if (is_elf_hash_table (info->hash))
6493 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6494 _bfd_generic_link_just_syms (sec, info);
6495 }
6496
6497 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6498
6499 static void
6500 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6501 asection *sec)
6502 {
6503 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6504 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6505 }
6506
6507 /* Finish SHF_MERGE section merging. */
6508
6509 bfd_boolean
6510 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6511 {
6512 bfd *ibfd;
6513 asection *sec;
6514
6515 if (!is_elf_hash_table (info->hash))
6516 return FALSE;
6517
6518 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6519 if ((ibfd->flags & DYNAMIC) == 0)
6520 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6521 if ((sec->flags & SEC_MERGE) != 0
6522 && !bfd_is_abs_section (sec->output_section))
6523 {
6524 struct bfd_elf_section_data *secdata;
6525
6526 secdata = elf_section_data (sec);
6527 if (! _bfd_add_merge_section (abfd,
6528 &elf_hash_table (info)->merge_info,
6529 sec, &secdata->sec_info))
6530 return FALSE;
6531 else if (secdata->sec_info)
6532 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6533 }
6534
6535 if (elf_hash_table (info)->merge_info != NULL)
6536 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6537 merge_sections_remove_hook);
6538 return TRUE;
6539 }
6540
6541 /* Create an entry in an ELF linker hash table. */
6542
6543 struct bfd_hash_entry *
6544 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6545 struct bfd_hash_table *table,
6546 const char *string)
6547 {
6548 /* Allocate the structure if it has not already been allocated by a
6549 subclass. */
6550 if (entry == NULL)
6551 {
6552 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6553 if (entry == NULL)
6554 return entry;
6555 }
6556
6557 /* Call the allocation method of the superclass. */
6558 entry = _bfd_link_hash_newfunc (entry, table, string);
6559 if (entry != NULL)
6560 {
6561 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6562 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6563
6564 /* Set local fields. */
6565 ret->indx = -1;
6566 ret->dynindx = -1;
6567 ret->got = htab->init_got_refcount;
6568 ret->plt = htab->init_plt_refcount;
6569 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6570 - offsetof (struct elf_link_hash_entry, size)));
6571 /* Assume that we have been called by a non-ELF symbol reader.
6572 This flag is then reset by the code which reads an ELF input
6573 file. This ensures that a symbol created by a non-ELF symbol
6574 reader will have the flag set correctly. */
6575 ret->non_elf = 1;
6576 }
6577
6578 return entry;
6579 }
6580
6581 /* Copy data from an indirect symbol to its direct symbol, hiding the
6582 old indirect symbol. Also used for copying flags to a weakdef. */
6583
6584 void
6585 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6586 struct elf_link_hash_entry *dir,
6587 struct elf_link_hash_entry *ind)
6588 {
6589 struct elf_link_hash_table *htab;
6590
6591 /* Copy down any references that we may have already seen to the
6592 symbol which just became indirect. */
6593
6594 dir->ref_dynamic |= ind->ref_dynamic;
6595 dir->ref_regular |= ind->ref_regular;
6596 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6597 dir->non_got_ref |= ind->non_got_ref;
6598 dir->needs_plt |= ind->needs_plt;
6599 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6600
6601 if (ind->root.type != bfd_link_hash_indirect)
6602 return;
6603
6604 /* Copy over the global and procedure linkage table refcount entries.
6605 These may have been already set up by a check_relocs routine. */
6606 htab = elf_hash_table (info);
6607 if (ind->got.refcount > htab->init_got_refcount.refcount)
6608 {
6609 if (dir->got.refcount < 0)
6610 dir->got.refcount = 0;
6611 dir->got.refcount += ind->got.refcount;
6612 ind->got.refcount = htab->init_got_refcount.refcount;
6613 }
6614
6615 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6616 {
6617 if (dir->plt.refcount < 0)
6618 dir->plt.refcount = 0;
6619 dir->plt.refcount += ind->plt.refcount;
6620 ind->plt.refcount = htab->init_plt_refcount.refcount;
6621 }
6622
6623 if (ind->dynindx != -1)
6624 {
6625 if (dir->dynindx != -1)
6626 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6627 dir->dynindx = ind->dynindx;
6628 dir->dynstr_index = ind->dynstr_index;
6629 ind->dynindx = -1;
6630 ind->dynstr_index = 0;
6631 }
6632 }
6633
6634 void
6635 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6636 struct elf_link_hash_entry *h,
6637 bfd_boolean force_local)
6638 {
6639 h->plt = elf_hash_table (info)->init_plt_offset;
6640 h->needs_plt = 0;
6641 if (force_local)
6642 {
6643 h->forced_local = 1;
6644 if (h->dynindx != -1)
6645 {
6646 h->dynindx = -1;
6647 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6648 h->dynstr_index);
6649 }
6650 }
6651 }
6652
6653 /* Initialize an ELF linker hash table. */
6654
6655 bfd_boolean
6656 _bfd_elf_link_hash_table_init
6657 (struct elf_link_hash_table *table,
6658 bfd *abfd,
6659 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6660 struct bfd_hash_table *,
6661 const char *),
6662 unsigned int entsize)
6663 {
6664 bfd_boolean ret;
6665 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6666
6667 memset (table, 0, sizeof * table);
6668 table->init_got_refcount.refcount = can_refcount - 1;
6669 table->init_plt_refcount.refcount = can_refcount - 1;
6670 table->init_got_offset.offset = -(bfd_vma) 1;
6671 table->init_plt_offset.offset = -(bfd_vma) 1;
6672 /* The first dynamic symbol is a dummy. */
6673 table->dynsymcount = 1;
6674
6675 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6676 table->root.type = bfd_link_elf_hash_table;
6677
6678 return ret;
6679 }
6680
6681 /* Create an ELF linker hash table. */
6682
6683 struct bfd_link_hash_table *
6684 _bfd_elf_link_hash_table_create (bfd *abfd)
6685 {
6686 struct elf_link_hash_table *ret;
6687 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6688
6689 ret = bfd_malloc (amt);
6690 if (ret == NULL)
6691 return NULL;
6692
6693 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6694 sizeof (struct elf_link_hash_entry)))
6695 {
6696 free (ret);
6697 return NULL;
6698 }
6699
6700 return &ret->root;
6701 }
6702
6703 /* This is a hook for the ELF emulation code in the generic linker to
6704 tell the backend linker what file name to use for the DT_NEEDED
6705 entry for a dynamic object. */
6706
6707 void
6708 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6709 {
6710 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6711 && bfd_get_format (abfd) == bfd_object)
6712 elf_dt_name (abfd) = name;
6713 }
6714
6715 int
6716 bfd_elf_get_dyn_lib_class (bfd *abfd)
6717 {
6718 int lib_class;
6719 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6720 && bfd_get_format (abfd) == bfd_object)
6721 lib_class = elf_dyn_lib_class (abfd);
6722 else
6723 lib_class = 0;
6724 return lib_class;
6725 }
6726
6727 void
6728 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6729 {
6730 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6731 && bfd_get_format (abfd) == bfd_object)
6732 elf_dyn_lib_class (abfd) = lib_class;
6733 }
6734
6735 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6736 the linker ELF emulation code. */
6737
6738 struct bfd_link_needed_list *
6739 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6740 struct bfd_link_info *info)
6741 {
6742 if (! is_elf_hash_table (info->hash))
6743 return NULL;
6744 return elf_hash_table (info)->needed;
6745 }
6746
6747 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6748 hook for the linker ELF emulation code. */
6749
6750 struct bfd_link_needed_list *
6751 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6752 struct bfd_link_info *info)
6753 {
6754 if (! is_elf_hash_table (info->hash))
6755 return NULL;
6756 return elf_hash_table (info)->runpath;
6757 }
6758
6759 /* Get the name actually used for a dynamic object for a link. This
6760 is the SONAME entry if there is one. Otherwise, it is the string
6761 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6762
6763 const char *
6764 bfd_elf_get_dt_soname (bfd *abfd)
6765 {
6766 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6767 && bfd_get_format (abfd) == bfd_object)
6768 return elf_dt_name (abfd);
6769 return NULL;
6770 }
6771
6772 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6773 the ELF linker emulation code. */
6774
6775 bfd_boolean
6776 bfd_elf_get_bfd_needed_list (bfd *abfd,
6777 struct bfd_link_needed_list **pneeded)
6778 {
6779 asection *s;
6780 bfd_byte *dynbuf = NULL;
6781 unsigned int elfsec;
6782 unsigned long shlink;
6783 bfd_byte *extdyn, *extdynend;
6784 size_t extdynsize;
6785 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6786
6787 *pneeded = NULL;
6788
6789 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6790 || bfd_get_format (abfd) != bfd_object)
6791 return TRUE;
6792
6793 s = bfd_get_section_by_name (abfd, ".dynamic");
6794 if (s == NULL || s->size == 0)
6795 return TRUE;
6796
6797 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6798 goto error_return;
6799
6800 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6801 if (elfsec == SHN_BAD)
6802 goto error_return;
6803
6804 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6805
6806 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6807 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6808
6809 extdyn = dynbuf;
6810 extdynend = extdyn + s->size;
6811 for (; extdyn < extdynend; extdyn += extdynsize)
6812 {
6813 Elf_Internal_Dyn dyn;
6814
6815 (*swap_dyn_in) (abfd, extdyn, &dyn);
6816
6817 if (dyn.d_tag == DT_NULL)
6818 break;
6819
6820 if (dyn.d_tag == DT_NEEDED)
6821 {
6822 const char *string;
6823 struct bfd_link_needed_list *l;
6824 unsigned int tagv = dyn.d_un.d_val;
6825 bfd_size_type amt;
6826
6827 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6828 if (string == NULL)
6829 goto error_return;
6830
6831 amt = sizeof *l;
6832 l = bfd_alloc (abfd, amt);
6833 if (l == NULL)
6834 goto error_return;
6835
6836 l->by = abfd;
6837 l->name = string;
6838 l->next = *pneeded;
6839 *pneeded = l;
6840 }
6841 }
6842
6843 free (dynbuf);
6844
6845 return TRUE;
6846
6847 error_return:
6848 if (dynbuf != NULL)
6849 free (dynbuf);
6850 return FALSE;
6851 }
6852
6853 struct elf_symbuf_symbol
6854 {
6855 unsigned long st_name; /* Symbol name, index in string tbl */
6856 unsigned char st_info; /* Type and binding attributes */
6857 unsigned char st_other; /* Visibilty, and target specific */
6858 };
6859
6860 struct elf_symbuf_head
6861 {
6862 struct elf_symbuf_symbol *ssym;
6863 bfd_size_type count;
6864 unsigned int st_shndx;
6865 };
6866
6867 struct elf_symbol
6868 {
6869 union
6870 {
6871 Elf_Internal_Sym *isym;
6872 struct elf_symbuf_symbol *ssym;
6873 } u;
6874 const char *name;
6875 };
6876
6877 /* Sort references to symbols by ascending section number. */
6878
6879 static int
6880 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6881 {
6882 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6883 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6884
6885 return s1->st_shndx - s2->st_shndx;
6886 }
6887
6888 static int
6889 elf_sym_name_compare (const void *arg1, const void *arg2)
6890 {
6891 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6892 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6893 return strcmp (s1->name, s2->name);
6894 }
6895
6896 static struct elf_symbuf_head *
6897 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6898 {
6899 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6900 struct elf_symbuf_symbol *ssym;
6901 struct elf_symbuf_head *ssymbuf, *ssymhead;
6902 bfd_size_type i, shndx_count, total_size;
6903
6904 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6905 if (indbuf == NULL)
6906 return NULL;
6907
6908 for (ind = indbuf, i = 0; i < symcount; i++)
6909 if (isymbuf[i].st_shndx != SHN_UNDEF)
6910 *ind++ = &isymbuf[i];
6911 indbufend = ind;
6912
6913 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6914 elf_sort_elf_symbol);
6915
6916 shndx_count = 0;
6917 if (indbufend > indbuf)
6918 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6919 if (ind[0]->st_shndx != ind[1]->st_shndx)
6920 shndx_count++;
6921
6922 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6923 + (indbufend - indbuf) * sizeof (*ssym));
6924 ssymbuf = bfd_malloc (total_size);
6925 if (ssymbuf == NULL)
6926 {
6927 free (indbuf);
6928 return NULL;
6929 }
6930
6931 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6932 ssymbuf->ssym = NULL;
6933 ssymbuf->count = shndx_count;
6934 ssymbuf->st_shndx = 0;
6935 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6936 {
6937 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6938 {
6939 ssymhead++;
6940 ssymhead->ssym = ssym;
6941 ssymhead->count = 0;
6942 ssymhead->st_shndx = (*ind)->st_shndx;
6943 }
6944 ssym->st_name = (*ind)->st_name;
6945 ssym->st_info = (*ind)->st_info;
6946 ssym->st_other = (*ind)->st_other;
6947 ssymhead->count++;
6948 }
6949 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6950 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6951 == total_size));
6952
6953 free (indbuf);
6954 return ssymbuf;
6955 }
6956
6957 /* Check if 2 sections define the same set of local and global
6958 symbols. */
6959
6960 static bfd_boolean
6961 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6962 struct bfd_link_info *info)
6963 {
6964 bfd *bfd1, *bfd2;
6965 const struct elf_backend_data *bed1, *bed2;
6966 Elf_Internal_Shdr *hdr1, *hdr2;
6967 bfd_size_type symcount1, symcount2;
6968 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6969 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6970 Elf_Internal_Sym *isym, *isymend;
6971 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6972 bfd_size_type count1, count2, i;
6973 unsigned int shndx1, shndx2;
6974 bfd_boolean result;
6975
6976 bfd1 = sec1->owner;
6977 bfd2 = sec2->owner;
6978
6979 /* Both sections have to be in ELF. */
6980 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6981 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6982 return FALSE;
6983
6984 if (elf_section_type (sec1) != elf_section_type (sec2))
6985 return FALSE;
6986
6987 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6988 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6989 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
6990 return FALSE;
6991
6992 bed1 = get_elf_backend_data (bfd1);
6993 bed2 = get_elf_backend_data (bfd2);
6994 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6995 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6996 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6997 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6998
6999 if (symcount1 == 0 || symcount2 == 0)
7000 return FALSE;
7001
7002 result = FALSE;
7003 isymbuf1 = NULL;
7004 isymbuf2 = NULL;
7005 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7006 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7007
7008 if (ssymbuf1 == NULL)
7009 {
7010 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7011 NULL, NULL, NULL);
7012 if (isymbuf1 == NULL)
7013 goto done;
7014
7015 if (!info->reduce_memory_overheads)
7016 elf_tdata (bfd1)->symbuf = ssymbuf1
7017 = elf_create_symbuf (symcount1, isymbuf1);
7018 }
7019
7020 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7021 {
7022 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7023 NULL, NULL, NULL);
7024 if (isymbuf2 == NULL)
7025 goto done;
7026
7027 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7028 elf_tdata (bfd2)->symbuf = ssymbuf2
7029 = elf_create_symbuf (symcount2, isymbuf2);
7030 }
7031
7032 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7033 {
7034 /* Optimized faster version. */
7035 bfd_size_type lo, hi, mid;
7036 struct elf_symbol *symp;
7037 struct elf_symbuf_symbol *ssym, *ssymend;
7038
7039 lo = 0;
7040 hi = ssymbuf1->count;
7041 ssymbuf1++;
7042 count1 = 0;
7043 while (lo < hi)
7044 {
7045 mid = (lo + hi) / 2;
7046 if (shndx1 < ssymbuf1[mid].st_shndx)
7047 hi = mid;
7048 else if (shndx1 > ssymbuf1[mid].st_shndx)
7049 lo = mid + 1;
7050 else
7051 {
7052 count1 = ssymbuf1[mid].count;
7053 ssymbuf1 += mid;
7054 break;
7055 }
7056 }
7057
7058 lo = 0;
7059 hi = ssymbuf2->count;
7060 ssymbuf2++;
7061 count2 = 0;
7062 while (lo < hi)
7063 {
7064 mid = (lo + hi) / 2;
7065 if (shndx2 < ssymbuf2[mid].st_shndx)
7066 hi = mid;
7067 else if (shndx2 > ssymbuf2[mid].st_shndx)
7068 lo = mid + 1;
7069 else
7070 {
7071 count2 = ssymbuf2[mid].count;
7072 ssymbuf2 += mid;
7073 break;
7074 }
7075 }
7076
7077 if (count1 == 0 || count2 == 0 || count1 != count2)
7078 goto done;
7079
7080 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7081 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7082 if (symtable1 == NULL || symtable2 == NULL)
7083 goto done;
7084
7085 symp = symtable1;
7086 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7087 ssym < ssymend; ssym++, symp++)
7088 {
7089 symp->u.ssym = ssym;
7090 symp->name = bfd_elf_string_from_elf_section (bfd1,
7091 hdr1->sh_link,
7092 ssym->st_name);
7093 }
7094
7095 symp = symtable2;
7096 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7097 ssym < ssymend; ssym++, symp++)
7098 {
7099 symp->u.ssym = ssym;
7100 symp->name = bfd_elf_string_from_elf_section (bfd2,
7101 hdr2->sh_link,
7102 ssym->st_name);
7103 }
7104
7105 /* Sort symbol by name. */
7106 qsort (symtable1, count1, sizeof (struct elf_symbol),
7107 elf_sym_name_compare);
7108 qsort (symtable2, count1, sizeof (struct elf_symbol),
7109 elf_sym_name_compare);
7110
7111 for (i = 0; i < count1; i++)
7112 /* Two symbols must have the same binding, type and name. */
7113 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7114 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7115 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7116 goto done;
7117
7118 result = TRUE;
7119 goto done;
7120 }
7121
7122 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7123 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7124 if (symtable1 == NULL || symtable2 == NULL)
7125 goto done;
7126
7127 /* Count definitions in the section. */
7128 count1 = 0;
7129 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7130 if (isym->st_shndx == shndx1)
7131 symtable1[count1++].u.isym = isym;
7132
7133 count2 = 0;
7134 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7135 if (isym->st_shndx == shndx2)
7136 symtable2[count2++].u.isym = isym;
7137
7138 if (count1 == 0 || count2 == 0 || count1 != count2)
7139 goto done;
7140
7141 for (i = 0; i < count1; i++)
7142 symtable1[i].name
7143 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7144 symtable1[i].u.isym->st_name);
7145
7146 for (i = 0; i < count2; i++)
7147 symtable2[i].name
7148 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7149 symtable2[i].u.isym->st_name);
7150
7151 /* Sort symbol by name. */
7152 qsort (symtable1, count1, sizeof (struct elf_symbol),
7153 elf_sym_name_compare);
7154 qsort (symtable2, count1, sizeof (struct elf_symbol),
7155 elf_sym_name_compare);
7156
7157 for (i = 0; i < count1; i++)
7158 /* Two symbols must have the same binding, type and name. */
7159 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7160 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7161 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7162 goto done;
7163
7164 result = TRUE;
7165
7166 done:
7167 if (symtable1)
7168 free (symtable1);
7169 if (symtable2)
7170 free (symtable2);
7171 if (isymbuf1)
7172 free (isymbuf1);
7173 if (isymbuf2)
7174 free (isymbuf2);
7175
7176 return result;
7177 }
7178
7179 /* Return TRUE if 2 section types are compatible. */
7180
7181 bfd_boolean
7182 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7183 bfd *bbfd, const asection *bsec)
7184 {
7185 if (asec == NULL
7186 || bsec == NULL
7187 || abfd->xvec->flavour != bfd_target_elf_flavour
7188 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7189 return TRUE;
7190
7191 return elf_section_type (asec) == elf_section_type (bsec);
7192 }
7193 \f
7194 /* Final phase of ELF linker. */
7195
7196 /* A structure we use to avoid passing large numbers of arguments. */
7197
7198 struct elf_final_link_info
7199 {
7200 /* General link information. */
7201 struct bfd_link_info *info;
7202 /* Output BFD. */
7203 bfd *output_bfd;
7204 /* Symbol string table. */
7205 struct bfd_strtab_hash *symstrtab;
7206 /* .dynsym section. */
7207 asection *dynsym_sec;
7208 /* .hash section. */
7209 asection *hash_sec;
7210 /* symbol version section (.gnu.version). */
7211 asection *symver_sec;
7212 /* Buffer large enough to hold contents of any section. */
7213 bfd_byte *contents;
7214 /* Buffer large enough to hold external relocs of any section. */
7215 void *external_relocs;
7216 /* Buffer large enough to hold internal relocs of any section. */
7217 Elf_Internal_Rela *internal_relocs;
7218 /* Buffer large enough to hold external local symbols of any input
7219 BFD. */
7220 bfd_byte *external_syms;
7221 /* And a buffer for symbol section indices. */
7222 Elf_External_Sym_Shndx *locsym_shndx;
7223 /* Buffer large enough to hold internal local symbols of any input
7224 BFD. */
7225 Elf_Internal_Sym *internal_syms;
7226 /* Array large enough to hold a symbol index for each local symbol
7227 of any input BFD. */
7228 long *indices;
7229 /* Array large enough to hold a section pointer for each local
7230 symbol of any input BFD. */
7231 asection **sections;
7232 /* Buffer to hold swapped out symbols. */
7233 bfd_byte *symbuf;
7234 /* And one for symbol section indices. */
7235 Elf_External_Sym_Shndx *symshndxbuf;
7236 /* Number of swapped out symbols in buffer. */
7237 size_t symbuf_count;
7238 /* Number of symbols which fit in symbuf. */
7239 size_t symbuf_size;
7240 /* And same for symshndxbuf. */
7241 size_t shndxbuf_size;
7242 };
7243
7244 /* This struct is used to pass information to elf_link_output_extsym. */
7245
7246 struct elf_outext_info
7247 {
7248 bfd_boolean failed;
7249 bfd_boolean localsyms;
7250 struct elf_final_link_info *finfo;
7251 };
7252
7253
7254 /* Support for evaluating a complex relocation.
7255
7256 Complex relocations are generalized, self-describing relocations. The
7257 implementation of them consists of two parts: complex symbols, and the
7258 relocations themselves.
7259
7260 The relocations are use a reserved elf-wide relocation type code (R_RELC
7261 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7262 information (start bit, end bit, word width, etc) into the addend. This
7263 information is extracted from CGEN-generated operand tables within gas.
7264
7265 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7266 internal) representing prefix-notation expressions, including but not
7267 limited to those sorts of expressions normally encoded as addends in the
7268 addend field. The symbol mangling format is:
7269
7270 <node> := <literal>
7271 | <unary-operator> ':' <node>
7272 | <binary-operator> ':' <node> ':' <node>
7273 ;
7274
7275 <literal> := 's' <digits=N> ':' <N character symbol name>
7276 | 'S' <digits=N> ':' <N character section name>
7277 | '#' <hexdigits>
7278 ;
7279
7280 <binary-operator> := as in C
7281 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7282
7283 static void
7284 set_symbol_value (bfd *bfd_with_globals,
7285 Elf_Internal_Sym *isymbuf,
7286 size_t locsymcount,
7287 size_t symidx,
7288 bfd_vma val)
7289 {
7290 struct elf_link_hash_entry **sym_hashes;
7291 struct elf_link_hash_entry *h;
7292 size_t extsymoff = locsymcount;
7293
7294 if (symidx < locsymcount)
7295 {
7296 Elf_Internal_Sym *sym;
7297
7298 sym = isymbuf + symidx;
7299 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7300 {
7301 /* It is a local symbol: move it to the
7302 "absolute" section and give it a value. */
7303 sym->st_shndx = SHN_ABS;
7304 sym->st_value = val;
7305 return;
7306 }
7307 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7308 extsymoff = 0;
7309 }
7310
7311 /* It is a global symbol: set its link type
7312 to "defined" and give it a value. */
7313
7314 sym_hashes = elf_sym_hashes (bfd_with_globals);
7315 h = sym_hashes [symidx - extsymoff];
7316 while (h->root.type == bfd_link_hash_indirect
7317 || h->root.type == bfd_link_hash_warning)
7318 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7319 h->root.type = bfd_link_hash_defined;
7320 h->root.u.def.value = val;
7321 h->root.u.def.section = bfd_abs_section_ptr;
7322 }
7323
7324 static bfd_boolean
7325 resolve_symbol (const char *name,
7326 bfd *input_bfd,
7327 struct elf_final_link_info *finfo,
7328 bfd_vma *result,
7329 Elf_Internal_Sym *isymbuf,
7330 size_t locsymcount)
7331 {
7332 Elf_Internal_Sym *sym;
7333 struct bfd_link_hash_entry *global_entry;
7334 const char *candidate = NULL;
7335 Elf_Internal_Shdr *symtab_hdr;
7336 size_t i;
7337
7338 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7339
7340 for (i = 0; i < locsymcount; ++ i)
7341 {
7342 sym = isymbuf + i;
7343
7344 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7345 continue;
7346
7347 candidate = bfd_elf_string_from_elf_section (input_bfd,
7348 symtab_hdr->sh_link,
7349 sym->st_name);
7350 #ifdef DEBUG
7351 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7352 name, candidate, (unsigned long) sym->st_value);
7353 #endif
7354 if (candidate && strcmp (candidate, name) == 0)
7355 {
7356 asection *sec = finfo->sections [i];
7357
7358 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7359 *result += sec->output_offset + sec->output_section->vma;
7360 #ifdef DEBUG
7361 printf ("Found symbol with value %8.8lx\n",
7362 (unsigned long) *result);
7363 #endif
7364 return TRUE;
7365 }
7366 }
7367
7368 /* Hmm, haven't found it yet. perhaps it is a global. */
7369 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7370 FALSE, FALSE, TRUE);
7371 if (!global_entry)
7372 return FALSE;
7373
7374 if (global_entry->type == bfd_link_hash_defined
7375 || global_entry->type == bfd_link_hash_defweak)
7376 {
7377 *result = (global_entry->u.def.value
7378 + global_entry->u.def.section->output_section->vma
7379 + global_entry->u.def.section->output_offset);
7380 #ifdef DEBUG
7381 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7382 global_entry->root.string, (unsigned long) *result);
7383 #endif
7384 return TRUE;
7385 }
7386
7387 return FALSE;
7388 }
7389
7390 static bfd_boolean
7391 resolve_section (const char *name,
7392 asection *sections,
7393 bfd_vma *result)
7394 {
7395 asection *curr;
7396 unsigned int len;
7397
7398 for (curr = sections; curr; curr = curr->next)
7399 if (strcmp (curr->name, name) == 0)
7400 {
7401 *result = curr->vma;
7402 return TRUE;
7403 }
7404
7405 /* Hmm. still haven't found it. try pseudo-section names. */
7406 for (curr = sections; curr; curr = curr->next)
7407 {
7408 len = strlen (curr->name);
7409 if (len > strlen (name))
7410 continue;
7411
7412 if (strncmp (curr->name, name, len) == 0)
7413 {
7414 if (strncmp (".end", name + len, 4) == 0)
7415 {
7416 *result = curr->vma + curr->size;
7417 return TRUE;
7418 }
7419
7420 /* Insert more pseudo-section names here, if you like. */
7421 }
7422 }
7423
7424 return FALSE;
7425 }
7426
7427 static void
7428 undefined_reference (const char *reftype, const char *name)
7429 {
7430 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7431 reftype, name);
7432 }
7433
7434 static bfd_boolean
7435 eval_symbol (bfd_vma *result,
7436 const char **symp,
7437 bfd *input_bfd,
7438 struct elf_final_link_info *finfo,
7439 bfd_vma dot,
7440 Elf_Internal_Sym *isymbuf,
7441 size_t locsymcount,
7442 int signed_p)
7443 {
7444 size_t len;
7445 size_t symlen;
7446 bfd_vma a;
7447 bfd_vma b;
7448 char symbuf[4096];
7449 const char *sym = *symp;
7450 const char *symend;
7451 bfd_boolean symbol_is_section = FALSE;
7452
7453 len = strlen (sym);
7454 symend = sym + len;
7455
7456 if (len < 1 || len > sizeof (symbuf))
7457 {
7458 bfd_set_error (bfd_error_invalid_operation);
7459 return FALSE;
7460 }
7461
7462 switch (* sym)
7463 {
7464 case '.':
7465 *result = dot;
7466 *symp = sym + 1;
7467 return TRUE;
7468
7469 case '#':
7470 ++sym;
7471 *result = strtoul (sym, (char **) symp, 16);
7472 return TRUE;
7473
7474 case 'S':
7475 symbol_is_section = TRUE;
7476 case 's':
7477 ++sym;
7478 symlen = strtol (sym, (char **) symp, 10);
7479 sym = *symp + 1; /* Skip the trailing ':'. */
7480
7481 if (symend < sym || symlen + 1 > sizeof (symbuf))
7482 {
7483 bfd_set_error (bfd_error_invalid_operation);
7484 return FALSE;
7485 }
7486
7487 memcpy (symbuf, sym, symlen);
7488 symbuf[symlen] = '\0';
7489 *symp = sym + symlen;
7490
7491 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7492 the symbol as a section, or vice-versa. so we're pretty liberal in our
7493 interpretation here; section means "try section first", not "must be a
7494 section", and likewise with symbol. */
7495
7496 if (symbol_is_section)
7497 {
7498 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7499 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7500 isymbuf, locsymcount))
7501 {
7502 undefined_reference ("section", symbuf);
7503 return FALSE;
7504 }
7505 }
7506 else
7507 {
7508 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7509 isymbuf, locsymcount)
7510 && !resolve_section (symbuf, finfo->output_bfd->sections,
7511 result))
7512 {
7513 undefined_reference ("symbol", symbuf);
7514 return FALSE;
7515 }
7516 }
7517
7518 return TRUE;
7519
7520 /* All that remains are operators. */
7521
7522 #define UNARY_OP(op) \
7523 if (strncmp (sym, #op, strlen (#op)) == 0) \
7524 { \
7525 sym += strlen (#op); \
7526 if (*sym == ':') \
7527 ++sym; \
7528 *symp = sym; \
7529 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7530 isymbuf, locsymcount, signed_p)) \
7531 return FALSE; \
7532 if (signed_p) \
7533 *result = op ((bfd_signed_vma) a); \
7534 else \
7535 *result = op a; \
7536 return TRUE; \
7537 }
7538
7539 #define BINARY_OP(op) \
7540 if (strncmp (sym, #op, strlen (#op)) == 0) \
7541 { \
7542 sym += strlen (#op); \
7543 if (*sym == ':') \
7544 ++sym; \
7545 *symp = sym; \
7546 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7547 isymbuf, locsymcount, signed_p)) \
7548 return FALSE; \
7549 ++*symp; \
7550 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7551 isymbuf, locsymcount, signed_p)) \
7552 return FALSE; \
7553 if (signed_p) \
7554 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7555 else \
7556 *result = a op b; \
7557 return TRUE; \
7558 }
7559
7560 default:
7561 UNARY_OP (0-);
7562 BINARY_OP (<<);
7563 BINARY_OP (>>);
7564 BINARY_OP (==);
7565 BINARY_OP (!=);
7566 BINARY_OP (<=);
7567 BINARY_OP (>=);
7568 BINARY_OP (&&);
7569 BINARY_OP (||);
7570 UNARY_OP (~);
7571 UNARY_OP (!);
7572 BINARY_OP (*);
7573 BINARY_OP (/);
7574 BINARY_OP (%);
7575 BINARY_OP (^);
7576 BINARY_OP (|);
7577 BINARY_OP (&);
7578 BINARY_OP (+);
7579 BINARY_OP (-);
7580 BINARY_OP (<);
7581 BINARY_OP (>);
7582 #undef UNARY_OP
7583 #undef BINARY_OP
7584 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7585 bfd_set_error (bfd_error_invalid_operation);
7586 return FALSE;
7587 }
7588 }
7589
7590 static void
7591 put_value (bfd_vma size,
7592 unsigned long chunksz,
7593 bfd *input_bfd,
7594 bfd_vma x,
7595 bfd_byte *location)
7596 {
7597 location += (size - chunksz);
7598
7599 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7600 {
7601 switch (chunksz)
7602 {
7603 default:
7604 case 0:
7605 abort ();
7606 case 1:
7607 bfd_put_8 (input_bfd, x, location);
7608 break;
7609 case 2:
7610 bfd_put_16 (input_bfd, x, location);
7611 break;
7612 case 4:
7613 bfd_put_32 (input_bfd, x, location);
7614 break;
7615 case 8:
7616 #ifdef BFD64
7617 bfd_put_64 (input_bfd, x, location);
7618 #else
7619 abort ();
7620 #endif
7621 break;
7622 }
7623 }
7624 }
7625
7626 static bfd_vma
7627 get_value (bfd_vma size,
7628 unsigned long chunksz,
7629 bfd *input_bfd,
7630 bfd_byte *location)
7631 {
7632 bfd_vma x = 0;
7633
7634 for (; size; size -= chunksz, location += chunksz)
7635 {
7636 switch (chunksz)
7637 {
7638 default:
7639 case 0:
7640 abort ();
7641 case 1:
7642 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7643 break;
7644 case 2:
7645 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7646 break;
7647 case 4:
7648 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7649 break;
7650 case 8:
7651 #ifdef BFD64
7652 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7653 #else
7654 abort ();
7655 #endif
7656 break;
7657 }
7658 }
7659 return x;
7660 }
7661
7662 static void
7663 decode_complex_addend (unsigned long *start, /* in bits */
7664 unsigned long *oplen, /* in bits */
7665 unsigned long *len, /* in bits */
7666 unsigned long *wordsz, /* in bytes */
7667 unsigned long *chunksz, /* in bytes */
7668 unsigned long *lsb0_p,
7669 unsigned long *signed_p,
7670 unsigned long *trunc_p,
7671 unsigned long encoded)
7672 {
7673 * start = encoded & 0x3F;
7674 * len = (encoded >> 6) & 0x3F;
7675 * oplen = (encoded >> 12) & 0x3F;
7676 * wordsz = (encoded >> 18) & 0xF;
7677 * chunksz = (encoded >> 22) & 0xF;
7678 * lsb0_p = (encoded >> 27) & 1;
7679 * signed_p = (encoded >> 28) & 1;
7680 * trunc_p = (encoded >> 29) & 1;
7681 }
7682
7683 bfd_reloc_status_type
7684 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7685 asection *input_section ATTRIBUTE_UNUSED,
7686 bfd_byte *contents,
7687 Elf_Internal_Rela *rel,
7688 bfd_vma relocation)
7689 {
7690 bfd_vma shift, x, mask;
7691 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7692 bfd_reloc_status_type r;
7693
7694 /* Perform this reloc, since it is complex.
7695 (this is not to say that it necessarily refers to a complex
7696 symbol; merely that it is a self-describing CGEN based reloc.
7697 i.e. the addend has the complete reloc information (bit start, end,
7698 word size, etc) encoded within it.). */
7699
7700 decode_complex_addend (&start, &oplen, &len, &wordsz,
7701 &chunksz, &lsb0_p, &signed_p,
7702 &trunc_p, rel->r_addend);
7703
7704 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7705
7706 if (lsb0_p)
7707 shift = (start + 1) - len;
7708 else
7709 shift = (8 * wordsz) - (start + len);
7710
7711 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7712
7713 #ifdef DEBUG
7714 printf ("Doing complex reloc: "
7715 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7716 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7717 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7718 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7719 oplen, x, mask, relocation);
7720 #endif
7721
7722 r = bfd_reloc_ok;
7723 if (! trunc_p)
7724 /* Now do an overflow check. */
7725 r = bfd_check_overflow ((signed_p
7726 ? complain_overflow_signed
7727 : complain_overflow_unsigned),
7728 len, 0, (8 * wordsz),
7729 relocation);
7730
7731 /* Do the deed. */
7732 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7733
7734 #ifdef DEBUG
7735 printf (" relocation: %8.8lx\n"
7736 " shifted mask: %8.8lx\n"
7737 " shifted/masked reloc: %8.8lx\n"
7738 " result: %8.8lx\n",
7739 relocation, (mask << shift),
7740 ((relocation & mask) << shift), x);
7741 #endif
7742 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7743 return r;
7744 }
7745
7746 /* When performing a relocatable link, the input relocations are
7747 preserved. But, if they reference global symbols, the indices
7748 referenced must be updated. Update all the relocations in
7749 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7750
7751 static void
7752 elf_link_adjust_relocs (bfd *abfd,
7753 Elf_Internal_Shdr *rel_hdr,
7754 unsigned int count,
7755 struct elf_link_hash_entry **rel_hash)
7756 {
7757 unsigned int i;
7758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7759 bfd_byte *erela;
7760 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7761 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7762 bfd_vma r_type_mask;
7763 int r_sym_shift;
7764
7765 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7766 {
7767 swap_in = bed->s->swap_reloc_in;
7768 swap_out = bed->s->swap_reloc_out;
7769 }
7770 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7771 {
7772 swap_in = bed->s->swap_reloca_in;
7773 swap_out = bed->s->swap_reloca_out;
7774 }
7775 else
7776 abort ();
7777
7778 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7779 abort ();
7780
7781 if (bed->s->arch_size == 32)
7782 {
7783 r_type_mask = 0xff;
7784 r_sym_shift = 8;
7785 }
7786 else
7787 {
7788 r_type_mask = 0xffffffff;
7789 r_sym_shift = 32;
7790 }
7791
7792 erela = rel_hdr->contents;
7793 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7794 {
7795 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7796 unsigned int j;
7797
7798 if (*rel_hash == NULL)
7799 continue;
7800
7801 BFD_ASSERT ((*rel_hash)->indx >= 0);
7802
7803 (*swap_in) (abfd, erela, irela);
7804 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7805 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7806 | (irela[j].r_info & r_type_mask));
7807 (*swap_out) (abfd, irela, erela);
7808 }
7809 }
7810
7811 struct elf_link_sort_rela
7812 {
7813 union {
7814 bfd_vma offset;
7815 bfd_vma sym_mask;
7816 } u;
7817 enum elf_reloc_type_class type;
7818 /* We use this as an array of size int_rels_per_ext_rel. */
7819 Elf_Internal_Rela rela[1];
7820 };
7821
7822 static int
7823 elf_link_sort_cmp1 (const void *A, const void *B)
7824 {
7825 const struct elf_link_sort_rela *a = A;
7826 const struct elf_link_sort_rela *b = B;
7827 int relativea, relativeb;
7828
7829 relativea = a->type == reloc_class_relative;
7830 relativeb = b->type == reloc_class_relative;
7831
7832 if (relativea < relativeb)
7833 return 1;
7834 if (relativea > relativeb)
7835 return -1;
7836 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7837 return -1;
7838 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7839 return 1;
7840 if (a->rela->r_offset < b->rela->r_offset)
7841 return -1;
7842 if (a->rela->r_offset > b->rela->r_offset)
7843 return 1;
7844 return 0;
7845 }
7846
7847 static int
7848 elf_link_sort_cmp2 (const void *A, const void *B)
7849 {
7850 const struct elf_link_sort_rela *a = A;
7851 const struct elf_link_sort_rela *b = B;
7852 int copya, copyb;
7853
7854 if (a->u.offset < b->u.offset)
7855 return -1;
7856 if (a->u.offset > b->u.offset)
7857 return 1;
7858 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7859 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7860 if (copya < copyb)
7861 return -1;
7862 if (copya > copyb)
7863 return 1;
7864 if (a->rela->r_offset < b->rela->r_offset)
7865 return -1;
7866 if (a->rela->r_offset > b->rela->r_offset)
7867 return 1;
7868 return 0;
7869 }
7870
7871 static size_t
7872 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7873 {
7874 asection *dynamic_relocs;
7875 asection *rela_dyn;
7876 asection *rel_dyn;
7877 bfd_size_type count, size;
7878 size_t i, ret, sort_elt, ext_size;
7879 bfd_byte *sort, *s_non_relative, *p;
7880 struct elf_link_sort_rela *sq;
7881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7882 int i2e = bed->s->int_rels_per_ext_rel;
7883 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7884 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7885 struct bfd_link_order *lo;
7886 bfd_vma r_sym_mask;
7887 bfd_boolean use_rela;
7888
7889 /* Find a dynamic reloc section. */
7890 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7891 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7892 if (rela_dyn != NULL && rela_dyn->size > 0
7893 && rel_dyn != NULL && rel_dyn->size > 0)
7894 {
7895 bfd_boolean use_rela_initialised = FALSE;
7896
7897 /* This is just here to stop gcc from complaining.
7898 It's initialization checking code is not perfect. */
7899 use_rela = TRUE;
7900
7901 /* Both sections are present. Examine the sizes
7902 of the indirect sections to help us choose. */
7903 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7904 if (lo->type == bfd_indirect_link_order)
7905 {
7906 asection *o = lo->u.indirect.section;
7907
7908 if ((o->size % bed->s->sizeof_rela) == 0)
7909 {
7910 if ((o->size % bed->s->sizeof_rel) == 0)
7911 /* Section size is divisible by both rel and rela sizes.
7912 It is of no help to us. */
7913 ;
7914 else
7915 {
7916 /* Section size is only divisible by rela. */
7917 if (use_rela_initialised && (use_rela == FALSE))
7918 {
7919 _bfd_error_handler
7920 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7921 bfd_set_error (bfd_error_invalid_operation);
7922 return 0;
7923 }
7924 else
7925 {
7926 use_rela = TRUE;
7927 use_rela_initialised = TRUE;
7928 }
7929 }
7930 }
7931 else if ((o->size % bed->s->sizeof_rel) == 0)
7932 {
7933 /* Section size is only divisible by rel. */
7934 if (use_rela_initialised && (use_rela == TRUE))
7935 {
7936 _bfd_error_handler
7937 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7938 bfd_set_error (bfd_error_invalid_operation);
7939 return 0;
7940 }
7941 else
7942 {
7943 use_rela = FALSE;
7944 use_rela_initialised = TRUE;
7945 }
7946 }
7947 else
7948 {
7949 /* The section size is not divisible by either - something is wrong. */
7950 _bfd_error_handler
7951 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7952 bfd_set_error (bfd_error_invalid_operation);
7953 return 0;
7954 }
7955 }
7956
7957 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7958 if (lo->type == bfd_indirect_link_order)
7959 {
7960 asection *o = lo->u.indirect.section;
7961
7962 if ((o->size % bed->s->sizeof_rela) == 0)
7963 {
7964 if ((o->size % bed->s->sizeof_rel) == 0)
7965 /* Section size is divisible by both rel and rela sizes.
7966 It is of no help to us. */
7967 ;
7968 else
7969 {
7970 /* Section size is only divisible by rela. */
7971 if (use_rela_initialised && (use_rela == FALSE))
7972 {
7973 _bfd_error_handler
7974 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7975 bfd_set_error (bfd_error_invalid_operation);
7976 return 0;
7977 }
7978 else
7979 {
7980 use_rela = TRUE;
7981 use_rela_initialised = TRUE;
7982 }
7983 }
7984 }
7985 else if ((o->size % bed->s->sizeof_rel) == 0)
7986 {
7987 /* Section size is only divisible by rel. */
7988 if (use_rela_initialised && (use_rela == TRUE))
7989 {
7990 _bfd_error_handler
7991 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7992 bfd_set_error (bfd_error_invalid_operation);
7993 return 0;
7994 }
7995 else
7996 {
7997 use_rela = FALSE;
7998 use_rela_initialised = TRUE;
7999 }
8000 }
8001 else
8002 {
8003 /* The section size is not divisible by either - something is wrong. */
8004 _bfd_error_handler
8005 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8006 bfd_set_error (bfd_error_invalid_operation);
8007 return 0;
8008 }
8009 }
8010
8011 if (! use_rela_initialised)
8012 /* Make a guess. */
8013 use_rela = TRUE;
8014 }
8015 else if (rela_dyn != NULL && rela_dyn->size > 0)
8016 use_rela = TRUE;
8017 else if (rel_dyn != NULL && rel_dyn->size > 0)
8018 use_rela = FALSE;
8019 else
8020 return 0;
8021
8022 if (use_rela)
8023 {
8024 dynamic_relocs = rela_dyn;
8025 ext_size = bed->s->sizeof_rela;
8026 swap_in = bed->s->swap_reloca_in;
8027 swap_out = bed->s->swap_reloca_out;
8028 }
8029 else
8030 {
8031 dynamic_relocs = rel_dyn;
8032 ext_size = bed->s->sizeof_rel;
8033 swap_in = bed->s->swap_reloc_in;
8034 swap_out = bed->s->swap_reloc_out;
8035 }
8036
8037 size = 0;
8038 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8039 if (lo->type == bfd_indirect_link_order)
8040 size += lo->u.indirect.section->size;
8041
8042 if (size != dynamic_relocs->size)
8043 return 0;
8044
8045 sort_elt = (sizeof (struct elf_link_sort_rela)
8046 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8047
8048 count = dynamic_relocs->size / ext_size;
8049 sort = bfd_zmalloc (sort_elt * count);
8050
8051 if (sort == NULL)
8052 {
8053 (*info->callbacks->warning)
8054 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8055 return 0;
8056 }
8057
8058 if (bed->s->arch_size == 32)
8059 r_sym_mask = ~(bfd_vma) 0xff;
8060 else
8061 r_sym_mask = ~(bfd_vma) 0xffffffff;
8062
8063 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8064 if (lo->type == bfd_indirect_link_order)
8065 {
8066 bfd_byte *erel, *erelend;
8067 asection *o = lo->u.indirect.section;
8068
8069 if (o->contents == NULL && o->size != 0)
8070 {
8071 /* This is a reloc section that is being handled as a normal
8072 section. See bfd_section_from_shdr. We can't combine
8073 relocs in this case. */
8074 free (sort);
8075 return 0;
8076 }
8077 erel = o->contents;
8078 erelend = o->contents + o->size;
8079 p = sort + o->output_offset / ext_size * sort_elt;
8080
8081 while (erel < erelend)
8082 {
8083 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8084
8085 (*swap_in) (abfd, erel, s->rela);
8086 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8087 s->u.sym_mask = r_sym_mask;
8088 p += sort_elt;
8089 erel += ext_size;
8090 }
8091 }
8092
8093 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8094
8095 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8096 {
8097 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8098 if (s->type != reloc_class_relative)
8099 break;
8100 }
8101 ret = i;
8102 s_non_relative = p;
8103
8104 sq = (struct elf_link_sort_rela *) s_non_relative;
8105 for (; i < count; i++, p += sort_elt)
8106 {
8107 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8108 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8109 sq = sp;
8110 sp->u.offset = sq->rela->r_offset;
8111 }
8112
8113 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8114
8115 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8116 if (lo->type == bfd_indirect_link_order)
8117 {
8118 bfd_byte *erel, *erelend;
8119 asection *o = lo->u.indirect.section;
8120
8121 erel = o->contents;
8122 erelend = o->contents + o->size;
8123 p = sort + o->output_offset / ext_size * sort_elt;
8124 while (erel < erelend)
8125 {
8126 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8127 (*swap_out) (abfd, s->rela, erel);
8128 p += sort_elt;
8129 erel += ext_size;
8130 }
8131 }
8132
8133 free (sort);
8134 *psec = dynamic_relocs;
8135 return ret;
8136 }
8137
8138 /* Flush the output symbols to the file. */
8139
8140 static bfd_boolean
8141 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8142 const struct elf_backend_data *bed)
8143 {
8144 if (finfo->symbuf_count > 0)
8145 {
8146 Elf_Internal_Shdr *hdr;
8147 file_ptr pos;
8148 bfd_size_type amt;
8149
8150 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8151 pos = hdr->sh_offset + hdr->sh_size;
8152 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8153 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8154 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8155 return FALSE;
8156
8157 hdr->sh_size += amt;
8158 finfo->symbuf_count = 0;
8159 }
8160
8161 return TRUE;
8162 }
8163
8164 /* Add a symbol to the output symbol table. */
8165
8166 static bfd_boolean
8167 elf_link_output_sym (struct elf_final_link_info *finfo,
8168 const char *name,
8169 Elf_Internal_Sym *elfsym,
8170 asection *input_sec,
8171 struct elf_link_hash_entry *h)
8172 {
8173 bfd_byte *dest;
8174 Elf_External_Sym_Shndx *destshndx;
8175 bfd_boolean (*output_symbol_hook)
8176 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8177 struct elf_link_hash_entry *);
8178 const struct elf_backend_data *bed;
8179
8180 bed = get_elf_backend_data (finfo->output_bfd);
8181 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8182 if (output_symbol_hook != NULL)
8183 {
8184 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8185 return FALSE;
8186 }
8187
8188 if (name == NULL || *name == '\0')
8189 elfsym->st_name = 0;
8190 else if (input_sec->flags & SEC_EXCLUDE)
8191 elfsym->st_name = 0;
8192 else
8193 {
8194 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8195 name, TRUE, FALSE);
8196 if (elfsym->st_name == (unsigned long) -1)
8197 return FALSE;
8198 }
8199
8200 if (finfo->symbuf_count >= finfo->symbuf_size)
8201 {
8202 if (! elf_link_flush_output_syms (finfo, bed))
8203 return FALSE;
8204 }
8205
8206 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8207 destshndx = finfo->symshndxbuf;
8208 if (destshndx != NULL)
8209 {
8210 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8211 {
8212 bfd_size_type amt;
8213
8214 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8215 destshndx = bfd_realloc (destshndx, amt * 2);
8216 if (destshndx == NULL)
8217 return FALSE;
8218 finfo->symshndxbuf = destshndx;
8219 memset ((char *) destshndx + amt, 0, amt);
8220 finfo->shndxbuf_size *= 2;
8221 }
8222 destshndx += bfd_get_symcount (finfo->output_bfd);
8223 }
8224
8225 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8226 finfo->symbuf_count += 1;
8227 bfd_get_symcount (finfo->output_bfd) += 1;
8228
8229 return TRUE;
8230 }
8231
8232 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8233
8234 static bfd_boolean
8235 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8236 {
8237 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8238 && sym->st_shndx < SHN_LORESERVE)
8239 {
8240 /* The gABI doesn't support dynamic symbols in output sections
8241 beyond 64k. */
8242 (*_bfd_error_handler)
8243 (_("%B: Too many sections: %d (>= %d)"),
8244 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8245 bfd_set_error (bfd_error_nonrepresentable_section);
8246 return FALSE;
8247 }
8248 return TRUE;
8249 }
8250
8251 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8252 allowing an unsatisfied unversioned symbol in the DSO to match a
8253 versioned symbol that would normally require an explicit version.
8254 We also handle the case that a DSO references a hidden symbol
8255 which may be satisfied by a versioned symbol in another DSO. */
8256
8257 static bfd_boolean
8258 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8259 const struct elf_backend_data *bed,
8260 struct elf_link_hash_entry *h)
8261 {
8262 bfd *abfd;
8263 struct elf_link_loaded_list *loaded;
8264
8265 if (!is_elf_hash_table (info->hash))
8266 return FALSE;
8267
8268 switch (h->root.type)
8269 {
8270 default:
8271 abfd = NULL;
8272 break;
8273
8274 case bfd_link_hash_undefined:
8275 case bfd_link_hash_undefweak:
8276 abfd = h->root.u.undef.abfd;
8277 if ((abfd->flags & DYNAMIC) == 0
8278 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8279 return FALSE;
8280 break;
8281
8282 case bfd_link_hash_defined:
8283 case bfd_link_hash_defweak:
8284 abfd = h->root.u.def.section->owner;
8285 break;
8286
8287 case bfd_link_hash_common:
8288 abfd = h->root.u.c.p->section->owner;
8289 break;
8290 }
8291 BFD_ASSERT (abfd != NULL);
8292
8293 for (loaded = elf_hash_table (info)->loaded;
8294 loaded != NULL;
8295 loaded = loaded->next)
8296 {
8297 bfd *input;
8298 Elf_Internal_Shdr *hdr;
8299 bfd_size_type symcount;
8300 bfd_size_type extsymcount;
8301 bfd_size_type extsymoff;
8302 Elf_Internal_Shdr *versymhdr;
8303 Elf_Internal_Sym *isym;
8304 Elf_Internal_Sym *isymend;
8305 Elf_Internal_Sym *isymbuf;
8306 Elf_External_Versym *ever;
8307 Elf_External_Versym *extversym;
8308
8309 input = loaded->abfd;
8310
8311 /* We check each DSO for a possible hidden versioned definition. */
8312 if (input == abfd
8313 || (input->flags & DYNAMIC) == 0
8314 || elf_dynversym (input) == 0)
8315 continue;
8316
8317 hdr = &elf_tdata (input)->dynsymtab_hdr;
8318
8319 symcount = hdr->sh_size / bed->s->sizeof_sym;
8320 if (elf_bad_symtab (input))
8321 {
8322 extsymcount = symcount;
8323 extsymoff = 0;
8324 }
8325 else
8326 {
8327 extsymcount = symcount - hdr->sh_info;
8328 extsymoff = hdr->sh_info;
8329 }
8330
8331 if (extsymcount == 0)
8332 continue;
8333
8334 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8335 NULL, NULL, NULL);
8336 if (isymbuf == NULL)
8337 return FALSE;
8338
8339 /* Read in any version definitions. */
8340 versymhdr = &elf_tdata (input)->dynversym_hdr;
8341 extversym = bfd_malloc (versymhdr->sh_size);
8342 if (extversym == NULL)
8343 goto error_ret;
8344
8345 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8346 || (bfd_bread (extversym, versymhdr->sh_size, input)
8347 != versymhdr->sh_size))
8348 {
8349 free (extversym);
8350 error_ret:
8351 free (isymbuf);
8352 return FALSE;
8353 }
8354
8355 ever = extversym + extsymoff;
8356 isymend = isymbuf + extsymcount;
8357 for (isym = isymbuf; isym < isymend; isym++, ever++)
8358 {
8359 const char *name;
8360 Elf_Internal_Versym iver;
8361 unsigned short version_index;
8362
8363 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8364 || isym->st_shndx == SHN_UNDEF)
8365 continue;
8366
8367 name = bfd_elf_string_from_elf_section (input,
8368 hdr->sh_link,
8369 isym->st_name);
8370 if (strcmp (name, h->root.root.string) != 0)
8371 continue;
8372
8373 _bfd_elf_swap_versym_in (input, ever, &iver);
8374
8375 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8376 {
8377 /* If we have a non-hidden versioned sym, then it should
8378 have provided a definition for the undefined sym. */
8379 abort ();
8380 }
8381
8382 version_index = iver.vs_vers & VERSYM_VERSION;
8383 if (version_index == 1 || version_index == 2)
8384 {
8385 /* This is the base or first version. We can use it. */
8386 free (extversym);
8387 free (isymbuf);
8388 return TRUE;
8389 }
8390 }
8391
8392 free (extversym);
8393 free (isymbuf);
8394 }
8395
8396 return FALSE;
8397 }
8398
8399 /* Add an external symbol to the symbol table. This is called from
8400 the hash table traversal routine. When generating a shared object,
8401 we go through the symbol table twice. The first time we output
8402 anything that might have been forced to local scope in a version
8403 script. The second time we output the symbols that are still
8404 global symbols. */
8405
8406 static bfd_boolean
8407 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8408 {
8409 struct elf_outext_info *eoinfo = data;
8410 struct elf_final_link_info *finfo = eoinfo->finfo;
8411 bfd_boolean strip;
8412 Elf_Internal_Sym sym;
8413 asection *input_sec;
8414 const struct elf_backend_data *bed;
8415
8416 if (h->root.type == bfd_link_hash_warning)
8417 {
8418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8419 if (h->root.type == bfd_link_hash_new)
8420 return TRUE;
8421 }
8422
8423 /* Decide whether to output this symbol in this pass. */
8424 if (eoinfo->localsyms)
8425 {
8426 if (!h->forced_local)
8427 return TRUE;
8428 }
8429 else
8430 {
8431 if (h->forced_local)
8432 return TRUE;
8433 }
8434
8435 bed = get_elf_backend_data (finfo->output_bfd);
8436
8437 if (h->root.type == bfd_link_hash_undefined)
8438 {
8439 /* If we have an undefined symbol reference here then it must have
8440 come from a shared library that is being linked in. (Undefined
8441 references in regular files have already been handled). */
8442 bfd_boolean ignore_undef = FALSE;
8443
8444 /* Some symbols may be special in that the fact that they're
8445 undefined can be safely ignored - let backend determine that. */
8446 if (bed->elf_backend_ignore_undef_symbol)
8447 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8448
8449 /* If we are reporting errors for this situation then do so now. */
8450 if (ignore_undef == FALSE
8451 && h->ref_dynamic
8452 && ! h->ref_regular
8453 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8454 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8455 {
8456 if (! (finfo->info->callbacks->undefined_symbol
8457 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8458 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8459 {
8460 eoinfo->failed = TRUE;
8461 return FALSE;
8462 }
8463 }
8464 }
8465
8466 /* We should also warn if a forced local symbol is referenced from
8467 shared libraries. */
8468 if (! finfo->info->relocatable
8469 && (! finfo->info->shared)
8470 && h->forced_local
8471 && h->ref_dynamic
8472 && !h->dynamic_def
8473 && !h->dynamic_weak
8474 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8475 {
8476 (*_bfd_error_handler)
8477 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8478 finfo->output_bfd,
8479 h->root.u.def.section == bfd_abs_section_ptr
8480 ? finfo->output_bfd : h->root.u.def.section->owner,
8481 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8482 ? "internal"
8483 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8484 ? "hidden" : "local",
8485 h->root.root.string);
8486 eoinfo->failed = TRUE;
8487 return FALSE;
8488 }
8489
8490 /* We don't want to output symbols that have never been mentioned by
8491 a regular file, or that we have been told to strip. However, if
8492 h->indx is set to -2, the symbol is used by a reloc and we must
8493 output it. */
8494 if (h->indx == -2)
8495 strip = FALSE;
8496 else if ((h->def_dynamic
8497 || h->ref_dynamic
8498 || h->root.type == bfd_link_hash_new)
8499 && !h->def_regular
8500 && !h->ref_regular)
8501 strip = TRUE;
8502 else if (finfo->info->strip == strip_all)
8503 strip = TRUE;
8504 else if (finfo->info->strip == strip_some
8505 && bfd_hash_lookup (finfo->info->keep_hash,
8506 h->root.root.string, FALSE, FALSE) == NULL)
8507 strip = TRUE;
8508 else if (finfo->info->strip_discarded
8509 && (h->root.type == bfd_link_hash_defined
8510 || h->root.type == bfd_link_hash_defweak)
8511 && elf_discarded_section (h->root.u.def.section))
8512 strip = TRUE;
8513 else
8514 strip = FALSE;
8515
8516 /* If we're stripping it, and it's not a dynamic symbol, there's
8517 nothing else to do unless it is a forced local symbol. */
8518 if (strip
8519 && h->dynindx == -1
8520 && !h->forced_local)
8521 return TRUE;
8522
8523 sym.st_value = 0;
8524 sym.st_size = h->size;
8525 sym.st_other = h->other;
8526 if (h->forced_local)
8527 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8528 else if (h->root.type == bfd_link_hash_undefweak
8529 || h->root.type == bfd_link_hash_defweak)
8530 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8531 else
8532 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8533
8534 switch (h->root.type)
8535 {
8536 default:
8537 case bfd_link_hash_new:
8538 case bfd_link_hash_warning:
8539 abort ();
8540 return FALSE;
8541
8542 case bfd_link_hash_undefined:
8543 case bfd_link_hash_undefweak:
8544 input_sec = bfd_und_section_ptr;
8545 sym.st_shndx = SHN_UNDEF;
8546 break;
8547
8548 case bfd_link_hash_defined:
8549 case bfd_link_hash_defweak:
8550 {
8551 input_sec = h->root.u.def.section;
8552 if (input_sec->output_section != NULL)
8553 {
8554 sym.st_shndx =
8555 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8556 input_sec->output_section);
8557 if (sym.st_shndx == SHN_BAD)
8558 {
8559 (*_bfd_error_handler)
8560 (_("%B: could not find output section %A for input section %A"),
8561 finfo->output_bfd, input_sec->output_section, input_sec);
8562 eoinfo->failed = TRUE;
8563 return FALSE;
8564 }
8565
8566 /* ELF symbols in relocatable files are section relative,
8567 but in nonrelocatable files they are virtual
8568 addresses. */
8569 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8570 if (! finfo->info->relocatable)
8571 {
8572 sym.st_value += input_sec->output_section->vma;
8573 if (h->type == STT_TLS)
8574 {
8575 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8576 if (tls_sec != NULL)
8577 sym.st_value -= tls_sec->vma;
8578 else
8579 {
8580 /* The TLS section may have been garbage collected. */
8581 BFD_ASSERT (finfo->info->gc_sections
8582 && !input_sec->gc_mark);
8583 }
8584 }
8585 }
8586 }
8587 else
8588 {
8589 BFD_ASSERT (input_sec->owner == NULL
8590 || (input_sec->owner->flags & DYNAMIC) != 0);
8591 sym.st_shndx = SHN_UNDEF;
8592 input_sec = bfd_und_section_ptr;
8593 }
8594 }
8595 break;
8596
8597 case bfd_link_hash_common:
8598 input_sec = h->root.u.c.p->section;
8599 sym.st_shndx = bed->common_section_index (input_sec);
8600 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8601 break;
8602
8603 case bfd_link_hash_indirect:
8604 /* These symbols are created by symbol versioning. They point
8605 to the decorated version of the name. For example, if the
8606 symbol foo@@GNU_1.2 is the default, which should be used when
8607 foo is used with no version, then we add an indirect symbol
8608 foo which points to foo@@GNU_1.2. We ignore these symbols,
8609 since the indirected symbol is already in the hash table. */
8610 return TRUE;
8611 }
8612
8613 /* Give the processor backend a chance to tweak the symbol value,
8614 and also to finish up anything that needs to be done for this
8615 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8616 forced local syms when non-shared is due to a historical quirk. */
8617 if ((h->dynindx != -1
8618 || h->forced_local)
8619 && ((finfo->info->shared
8620 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8621 || h->root.type != bfd_link_hash_undefweak))
8622 || !h->forced_local)
8623 && elf_hash_table (finfo->info)->dynamic_sections_created)
8624 {
8625 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8626 (finfo->output_bfd, finfo->info, h, &sym)))
8627 {
8628 eoinfo->failed = TRUE;
8629 return FALSE;
8630 }
8631 }
8632
8633 /* If we are marking the symbol as undefined, and there are no
8634 non-weak references to this symbol from a regular object, then
8635 mark the symbol as weak undefined; if there are non-weak
8636 references, mark the symbol as strong. We can't do this earlier,
8637 because it might not be marked as undefined until the
8638 finish_dynamic_symbol routine gets through with it. */
8639 if (sym.st_shndx == SHN_UNDEF
8640 && h->ref_regular
8641 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8642 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8643 {
8644 int bindtype;
8645
8646 if (h->ref_regular_nonweak)
8647 bindtype = STB_GLOBAL;
8648 else
8649 bindtype = STB_WEAK;
8650 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8651 }
8652
8653 /* If this is a symbol defined in a dynamic library, don't use the
8654 symbol size from the dynamic library. Relinking an executable
8655 against a new library may introduce gratuitous changes in the
8656 executable's symbols if we keep the size. */
8657 if (sym.st_shndx == SHN_UNDEF
8658 && !h->def_regular
8659 && h->def_dynamic)
8660 sym.st_size = 0;
8661
8662 /* If a non-weak symbol with non-default visibility is not defined
8663 locally, it is a fatal error. */
8664 if (! finfo->info->relocatable
8665 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8666 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8667 && h->root.type == bfd_link_hash_undefined
8668 && !h->def_regular)
8669 {
8670 (*_bfd_error_handler)
8671 (_("%B: %s symbol `%s' isn't defined"),
8672 finfo->output_bfd,
8673 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8674 ? "protected"
8675 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8676 ? "internal" : "hidden",
8677 h->root.root.string);
8678 eoinfo->failed = TRUE;
8679 return FALSE;
8680 }
8681
8682 /* If this symbol should be put in the .dynsym section, then put it
8683 there now. We already know the symbol index. We also fill in
8684 the entry in the .hash section. */
8685 if (h->dynindx != -1
8686 && elf_hash_table (finfo->info)->dynamic_sections_created)
8687 {
8688 bfd_byte *esym;
8689
8690 sym.st_name = h->dynstr_index;
8691 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8692 if (! check_dynsym (finfo->output_bfd, &sym))
8693 {
8694 eoinfo->failed = TRUE;
8695 return FALSE;
8696 }
8697 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8698
8699 if (finfo->hash_sec != NULL)
8700 {
8701 size_t hash_entry_size;
8702 bfd_byte *bucketpos;
8703 bfd_vma chain;
8704 size_t bucketcount;
8705 size_t bucket;
8706
8707 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8708 bucket = h->u.elf_hash_value % bucketcount;
8709
8710 hash_entry_size
8711 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8712 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8713 + (bucket + 2) * hash_entry_size);
8714 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8715 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8716 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8717 ((bfd_byte *) finfo->hash_sec->contents
8718 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8719 }
8720
8721 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8722 {
8723 Elf_Internal_Versym iversym;
8724 Elf_External_Versym *eversym;
8725
8726 if (!h->def_regular)
8727 {
8728 if (h->verinfo.verdef == NULL)
8729 iversym.vs_vers = 0;
8730 else
8731 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8732 }
8733 else
8734 {
8735 if (h->verinfo.vertree == NULL)
8736 iversym.vs_vers = 1;
8737 else
8738 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8739 if (finfo->info->create_default_symver)
8740 iversym.vs_vers++;
8741 }
8742
8743 if (h->hidden)
8744 iversym.vs_vers |= VERSYM_HIDDEN;
8745
8746 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8747 eversym += h->dynindx;
8748 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8749 }
8750 }
8751
8752 /* If we're stripping it, then it was just a dynamic symbol, and
8753 there's nothing else to do. */
8754 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8755 return TRUE;
8756
8757 h->indx = bfd_get_symcount (finfo->output_bfd);
8758
8759 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8760 {
8761 eoinfo->failed = TRUE;
8762 return FALSE;
8763 }
8764
8765 return TRUE;
8766 }
8767
8768 /* Return TRUE if special handling is done for relocs in SEC against
8769 symbols defined in discarded sections. */
8770
8771 static bfd_boolean
8772 elf_section_ignore_discarded_relocs (asection *sec)
8773 {
8774 const struct elf_backend_data *bed;
8775
8776 switch (sec->sec_info_type)
8777 {
8778 case ELF_INFO_TYPE_STABS:
8779 case ELF_INFO_TYPE_EH_FRAME:
8780 return TRUE;
8781 default:
8782 break;
8783 }
8784
8785 bed = get_elf_backend_data (sec->owner);
8786 if (bed->elf_backend_ignore_discarded_relocs != NULL
8787 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8788 return TRUE;
8789
8790 return FALSE;
8791 }
8792
8793 /* Return a mask saying how ld should treat relocations in SEC against
8794 symbols defined in discarded sections. If this function returns
8795 COMPLAIN set, ld will issue a warning message. If this function
8796 returns PRETEND set, and the discarded section was link-once and the
8797 same size as the kept link-once section, ld will pretend that the
8798 symbol was actually defined in the kept section. Otherwise ld will
8799 zero the reloc (at least that is the intent, but some cooperation by
8800 the target dependent code is needed, particularly for REL targets). */
8801
8802 unsigned int
8803 _bfd_elf_default_action_discarded (asection *sec)
8804 {
8805 if (sec->flags & SEC_DEBUGGING)
8806 return PRETEND;
8807
8808 if (strcmp (".eh_frame", sec->name) == 0)
8809 return 0;
8810
8811 if (strcmp (".gcc_except_table", sec->name) == 0)
8812 return 0;
8813
8814 return COMPLAIN | PRETEND;
8815 }
8816
8817 /* Find a match between a section and a member of a section group. */
8818
8819 static asection *
8820 match_group_member (asection *sec, asection *group,
8821 struct bfd_link_info *info)
8822 {
8823 asection *first = elf_next_in_group (group);
8824 asection *s = first;
8825
8826 while (s != NULL)
8827 {
8828 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8829 return s;
8830
8831 s = elf_next_in_group (s);
8832 if (s == first)
8833 break;
8834 }
8835
8836 return NULL;
8837 }
8838
8839 /* Check if the kept section of a discarded section SEC can be used
8840 to replace it. Return the replacement if it is OK. Otherwise return
8841 NULL. */
8842
8843 asection *
8844 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8845 {
8846 asection *kept;
8847
8848 kept = sec->kept_section;
8849 if (kept != NULL)
8850 {
8851 if ((kept->flags & SEC_GROUP) != 0)
8852 kept = match_group_member (sec, kept, info);
8853 if (kept != NULL
8854 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8855 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8856 kept = NULL;
8857 sec->kept_section = kept;
8858 }
8859 return kept;
8860 }
8861
8862 /* Link an input file into the linker output file. This function
8863 handles all the sections and relocations of the input file at once.
8864 This is so that we only have to read the local symbols once, and
8865 don't have to keep them in memory. */
8866
8867 static bfd_boolean
8868 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8869 {
8870 int (*relocate_section)
8871 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8872 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8873 bfd *output_bfd;
8874 Elf_Internal_Shdr *symtab_hdr;
8875 size_t locsymcount;
8876 size_t extsymoff;
8877 Elf_Internal_Sym *isymbuf;
8878 Elf_Internal_Sym *isym;
8879 Elf_Internal_Sym *isymend;
8880 long *pindex;
8881 asection **ppsection;
8882 asection *o;
8883 const struct elf_backend_data *bed;
8884 struct elf_link_hash_entry **sym_hashes;
8885
8886 output_bfd = finfo->output_bfd;
8887 bed = get_elf_backend_data (output_bfd);
8888 relocate_section = bed->elf_backend_relocate_section;
8889
8890 /* If this is a dynamic object, we don't want to do anything here:
8891 we don't want the local symbols, and we don't want the section
8892 contents. */
8893 if ((input_bfd->flags & DYNAMIC) != 0)
8894 return TRUE;
8895
8896 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8897 if (elf_bad_symtab (input_bfd))
8898 {
8899 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8900 extsymoff = 0;
8901 }
8902 else
8903 {
8904 locsymcount = symtab_hdr->sh_info;
8905 extsymoff = symtab_hdr->sh_info;
8906 }
8907
8908 /* Read the local symbols. */
8909 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8910 if (isymbuf == NULL && locsymcount != 0)
8911 {
8912 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8913 finfo->internal_syms,
8914 finfo->external_syms,
8915 finfo->locsym_shndx);
8916 if (isymbuf == NULL)
8917 return FALSE;
8918 }
8919
8920 /* Find local symbol sections and adjust values of symbols in
8921 SEC_MERGE sections. Write out those local symbols we know are
8922 going into the output file. */
8923 isymend = isymbuf + locsymcount;
8924 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8925 isym < isymend;
8926 isym++, pindex++, ppsection++)
8927 {
8928 asection *isec;
8929 const char *name;
8930 Elf_Internal_Sym osym;
8931
8932 *pindex = -1;
8933
8934 if (elf_bad_symtab (input_bfd))
8935 {
8936 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8937 {
8938 *ppsection = NULL;
8939 continue;
8940 }
8941 }
8942
8943 if (isym->st_shndx == SHN_UNDEF)
8944 isec = bfd_und_section_ptr;
8945 else if (isym->st_shndx == SHN_ABS)
8946 isec = bfd_abs_section_ptr;
8947 else if (isym->st_shndx == SHN_COMMON)
8948 isec = bfd_com_section_ptr;
8949 else
8950 {
8951 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8952 if (isec == NULL)
8953 {
8954 /* Don't attempt to output symbols with st_shnx in the
8955 reserved range other than SHN_ABS and SHN_COMMON. */
8956 *ppsection = NULL;
8957 continue;
8958 }
8959 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8960 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8961 isym->st_value =
8962 _bfd_merged_section_offset (output_bfd, &isec,
8963 elf_section_data (isec)->sec_info,
8964 isym->st_value);
8965 }
8966
8967 *ppsection = isec;
8968
8969 /* Don't output the first, undefined, symbol. */
8970 if (ppsection == finfo->sections)
8971 continue;
8972
8973 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8974 {
8975 /* We never output section symbols. Instead, we use the
8976 section symbol of the corresponding section in the output
8977 file. */
8978 continue;
8979 }
8980
8981 /* If we are stripping all symbols, we don't want to output this
8982 one. */
8983 if (finfo->info->strip == strip_all)
8984 continue;
8985
8986 /* If we are discarding all local symbols, we don't want to
8987 output this one. If we are generating a relocatable output
8988 file, then some of the local symbols may be required by
8989 relocs; we output them below as we discover that they are
8990 needed. */
8991 if (finfo->info->discard == discard_all)
8992 continue;
8993
8994 /* If this symbol is defined in a section which we are
8995 discarding, we don't need to keep it. */
8996 if (isym->st_shndx != SHN_UNDEF
8997 && isym->st_shndx < SHN_LORESERVE
8998 && bfd_section_removed_from_list (output_bfd,
8999 isec->output_section))
9000 continue;
9001
9002 /* Get the name of the symbol. */
9003 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9004 isym->st_name);
9005 if (name == NULL)
9006 return FALSE;
9007
9008 /* See if we are discarding symbols with this name. */
9009 if ((finfo->info->strip == strip_some
9010 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9011 == NULL))
9012 || (((finfo->info->discard == discard_sec_merge
9013 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9014 || finfo->info->discard == discard_l)
9015 && bfd_is_local_label_name (input_bfd, name)))
9016 continue;
9017
9018 /* If we get here, we are going to output this symbol. */
9019
9020 osym = *isym;
9021
9022 /* Adjust the section index for the output file. */
9023 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9024 isec->output_section);
9025 if (osym.st_shndx == SHN_BAD)
9026 return FALSE;
9027
9028 *pindex = bfd_get_symcount (output_bfd);
9029
9030 /* ELF symbols in relocatable files are section relative, but
9031 in executable files they are virtual addresses. Note that
9032 this code assumes that all ELF sections have an associated
9033 BFD section with a reasonable value for output_offset; below
9034 we assume that they also have a reasonable value for
9035 output_section. Any special sections must be set up to meet
9036 these requirements. */
9037 osym.st_value += isec->output_offset;
9038 if (! finfo->info->relocatable)
9039 {
9040 osym.st_value += isec->output_section->vma;
9041 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9042 {
9043 /* STT_TLS symbols are relative to PT_TLS segment base. */
9044 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9045 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9046 }
9047 }
9048
9049 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9050 return FALSE;
9051 }
9052
9053 /* Relocate the contents of each section. */
9054 sym_hashes = elf_sym_hashes (input_bfd);
9055 for (o = input_bfd->sections; o != NULL; o = o->next)
9056 {
9057 bfd_byte *contents;
9058
9059 if (! o->linker_mark)
9060 {
9061 /* This section was omitted from the link. */
9062 continue;
9063 }
9064
9065 if (finfo->info->relocatable
9066 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9067 {
9068 /* Deal with the group signature symbol. */
9069 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9070 unsigned long symndx = sec_data->this_hdr.sh_info;
9071 asection *osec = o->output_section;
9072
9073 if (symndx >= locsymcount
9074 || (elf_bad_symtab (input_bfd)
9075 && finfo->sections[symndx] == NULL))
9076 {
9077 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9078 while (h->root.type == bfd_link_hash_indirect
9079 || h->root.type == bfd_link_hash_warning)
9080 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9081 /* Arrange for symbol to be output. */
9082 h->indx = -2;
9083 elf_section_data (osec)->this_hdr.sh_info = -2;
9084 }
9085 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9086 {
9087 /* We'll use the output section target_index. */
9088 asection *sec = finfo->sections[symndx]->output_section;
9089 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9090 }
9091 else
9092 {
9093 if (finfo->indices[symndx] == -1)
9094 {
9095 /* Otherwise output the local symbol now. */
9096 Elf_Internal_Sym sym = isymbuf[symndx];
9097 asection *sec = finfo->sections[symndx]->output_section;
9098 const char *name;
9099
9100 name = bfd_elf_string_from_elf_section (input_bfd,
9101 symtab_hdr->sh_link,
9102 sym.st_name);
9103 if (name == NULL)
9104 return FALSE;
9105
9106 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9107 sec);
9108 if (sym.st_shndx == SHN_BAD)
9109 return FALSE;
9110
9111 sym.st_value += o->output_offset;
9112
9113 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9114 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9115 return FALSE;
9116 }
9117 elf_section_data (osec)->this_hdr.sh_info
9118 = finfo->indices[symndx];
9119 }
9120 }
9121
9122 if ((o->flags & SEC_HAS_CONTENTS) == 0
9123 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9124 continue;
9125
9126 if ((o->flags & SEC_LINKER_CREATED) != 0)
9127 {
9128 /* Section was created by _bfd_elf_link_create_dynamic_sections
9129 or somesuch. */
9130 continue;
9131 }
9132
9133 /* Get the contents of the section. They have been cached by a
9134 relaxation routine. Note that o is a section in an input
9135 file, so the contents field will not have been set by any of
9136 the routines which work on output files. */
9137 if (elf_section_data (o)->this_hdr.contents != NULL)
9138 contents = elf_section_data (o)->this_hdr.contents;
9139 else
9140 {
9141 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9142
9143 contents = finfo->contents;
9144 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9145 return FALSE;
9146 }
9147
9148 if ((o->flags & SEC_RELOC) != 0)
9149 {
9150 Elf_Internal_Rela *internal_relocs;
9151 Elf_Internal_Rela *rel, *relend;
9152 bfd_vma r_type_mask;
9153 int r_sym_shift;
9154 int action_discarded;
9155 int ret;
9156
9157 /* Get the swapped relocs. */
9158 internal_relocs
9159 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9160 finfo->internal_relocs, FALSE);
9161 if (internal_relocs == NULL
9162 && o->reloc_count > 0)
9163 return FALSE;
9164
9165 if (bed->s->arch_size == 32)
9166 {
9167 r_type_mask = 0xff;
9168 r_sym_shift = 8;
9169 }
9170 else
9171 {
9172 r_type_mask = 0xffffffff;
9173 r_sym_shift = 32;
9174 }
9175
9176 action_discarded = -1;
9177 if (!elf_section_ignore_discarded_relocs (o))
9178 action_discarded = (*bed->action_discarded) (o);
9179
9180 /* Run through the relocs evaluating complex reloc symbols and
9181 looking for relocs against symbols from discarded sections
9182 or section symbols from removed link-once sections.
9183 Complain about relocs against discarded sections. Zero
9184 relocs against removed link-once sections. */
9185
9186 rel = internal_relocs;
9187 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9188 for ( ; rel < relend; rel++)
9189 {
9190 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9191 unsigned int s_type;
9192 asection **ps, *sec;
9193 struct elf_link_hash_entry *h = NULL;
9194 const char *sym_name;
9195
9196 if (r_symndx == STN_UNDEF)
9197 continue;
9198
9199 if (r_symndx >= locsymcount
9200 || (elf_bad_symtab (input_bfd)
9201 && finfo->sections[r_symndx] == NULL))
9202 {
9203 h = sym_hashes[r_symndx - extsymoff];
9204
9205 /* Badly formatted input files can contain relocs that
9206 reference non-existant symbols. Check here so that
9207 we do not seg fault. */
9208 if (h == NULL)
9209 {
9210 char buffer [32];
9211
9212 sprintf_vma (buffer, rel->r_info);
9213 (*_bfd_error_handler)
9214 (_("error: %B contains a reloc (0x%s) for section %A "
9215 "that references a non-existent global symbol"),
9216 input_bfd, o, buffer);
9217 bfd_set_error (bfd_error_bad_value);
9218 return FALSE;
9219 }
9220
9221 while (h->root.type == bfd_link_hash_indirect
9222 || h->root.type == bfd_link_hash_warning)
9223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9224
9225 s_type = h->type;
9226
9227 ps = NULL;
9228 if (h->root.type == bfd_link_hash_defined
9229 || h->root.type == bfd_link_hash_defweak)
9230 ps = &h->root.u.def.section;
9231
9232 sym_name = h->root.root.string;
9233 }
9234 else
9235 {
9236 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9237
9238 s_type = ELF_ST_TYPE (sym->st_info);
9239 ps = &finfo->sections[r_symndx];
9240 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9241 sym, *ps);
9242 }
9243
9244 if (s_type == STT_RELC || s_type == STT_SRELC)
9245 {
9246 bfd_vma val;
9247 bfd_vma dot = (rel->r_offset
9248 + o->output_offset + o->output_section->vma);
9249 #ifdef DEBUG
9250 printf ("Encountered a complex symbol!");
9251 printf (" (input_bfd %s, section %s, reloc %ld\n",
9252 input_bfd->filename, o->name, rel - internal_relocs);
9253 printf (" symbol: idx %8.8lx, name %s\n",
9254 r_symndx, sym_name);
9255 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9256 (unsigned long) rel->r_info,
9257 (unsigned long) rel->r_offset);
9258 #endif
9259 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9260 isymbuf, locsymcount, s_type == STT_SRELC))
9261 return FALSE;
9262
9263 /* Symbol evaluated OK. Update to absolute value. */
9264 set_symbol_value (input_bfd, isymbuf, locsymcount,
9265 r_symndx, val);
9266 continue;
9267 }
9268
9269 if (action_discarded != -1 && ps != NULL)
9270 {
9271 /* Complain if the definition comes from a
9272 discarded section. */
9273 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9274 {
9275 BFD_ASSERT (r_symndx != 0);
9276 if (action_discarded & COMPLAIN)
9277 (*finfo->info->callbacks->einfo)
9278 (_("%X`%s' referenced in section `%A' of %B: "
9279 "defined in discarded section `%A' of %B\n"),
9280 sym_name, o, input_bfd, sec, sec->owner);
9281
9282 /* Try to do the best we can to support buggy old
9283 versions of gcc. Pretend that the symbol is
9284 really defined in the kept linkonce section.
9285 FIXME: This is quite broken. Modifying the
9286 symbol here means we will be changing all later
9287 uses of the symbol, not just in this section. */
9288 if (action_discarded & PRETEND)
9289 {
9290 asection *kept;
9291
9292 kept = _bfd_elf_check_kept_section (sec,
9293 finfo->info);
9294 if (kept != NULL)
9295 {
9296 *ps = kept;
9297 continue;
9298 }
9299 }
9300 }
9301 }
9302 }
9303
9304 /* Relocate the section by invoking a back end routine.
9305
9306 The back end routine is responsible for adjusting the
9307 section contents as necessary, and (if using Rela relocs
9308 and generating a relocatable output file) adjusting the
9309 reloc addend as necessary.
9310
9311 The back end routine does not have to worry about setting
9312 the reloc address or the reloc symbol index.
9313
9314 The back end routine is given a pointer to the swapped in
9315 internal symbols, and can access the hash table entries
9316 for the external symbols via elf_sym_hashes (input_bfd).
9317
9318 When generating relocatable output, the back end routine
9319 must handle STB_LOCAL/STT_SECTION symbols specially. The
9320 output symbol is going to be a section symbol
9321 corresponding to the output section, which will require
9322 the addend to be adjusted. */
9323
9324 ret = (*relocate_section) (output_bfd, finfo->info,
9325 input_bfd, o, contents,
9326 internal_relocs,
9327 isymbuf,
9328 finfo->sections);
9329 if (!ret)
9330 return FALSE;
9331
9332 if (ret == 2
9333 || finfo->info->relocatable
9334 || finfo->info->emitrelocations)
9335 {
9336 Elf_Internal_Rela *irela;
9337 Elf_Internal_Rela *irelaend;
9338 bfd_vma last_offset;
9339 struct elf_link_hash_entry **rel_hash;
9340 struct elf_link_hash_entry **rel_hash_list;
9341 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9342 unsigned int next_erel;
9343 bfd_boolean rela_normal;
9344
9345 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9346 rela_normal = (bed->rela_normal
9347 && (input_rel_hdr->sh_entsize
9348 == bed->s->sizeof_rela));
9349
9350 /* Adjust the reloc addresses and symbol indices. */
9351
9352 irela = internal_relocs;
9353 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9354 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9355 + elf_section_data (o->output_section)->rel_count
9356 + elf_section_data (o->output_section)->rel_count2);
9357 rel_hash_list = rel_hash;
9358 last_offset = o->output_offset;
9359 if (!finfo->info->relocatable)
9360 last_offset += o->output_section->vma;
9361 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9362 {
9363 unsigned long r_symndx;
9364 asection *sec;
9365 Elf_Internal_Sym sym;
9366
9367 if (next_erel == bed->s->int_rels_per_ext_rel)
9368 {
9369 rel_hash++;
9370 next_erel = 0;
9371 }
9372
9373 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9374 finfo->info, o,
9375 irela->r_offset);
9376 if (irela->r_offset >= (bfd_vma) -2)
9377 {
9378 /* This is a reloc for a deleted entry or somesuch.
9379 Turn it into an R_*_NONE reloc, at the same
9380 offset as the last reloc. elf_eh_frame.c and
9381 bfd_elf_discard_info rely on reloc offsets
9382 being ordered. */
9383 irela->r_offset = last_offset;
9384 irela->r_info = 0;
9385 irela->r_addend = 0;
9386 continue;
9387 }
9388
9389 irela->r_offset += o->output_offset;
9390
9391 /* Relocs in an executable have to be virtual addresses. */
9392 if (!finfo->info->relocatable)
9393 irela->r_offset += o->output_section->vma;
9394
9395 last_offset = irela->r_offset;
9396
9397 r_symndx = irela->r_info >> r_sym_shift;
9398 if (r_symndx == STN_UNDEF)
9399 continue;
9400
9401 if (r_symndx >= locsymcount
9402 || (elf_bad_symtab (input_bfd)
9403 && finfo->sections[r_symndx] == NULL))
9404 {
9405 struct elf_link_hash_entry *rh;
9406 unsigned long indx;
9407
9408 /* This is a reloc against a global symbol. We
9409 have not yet output all the local symbols, so
9410 we do not know the symbol index of any global
9411 symbol. We set the rel_hash entry for this
9412 reloc to point to the global hash table entry
9413 for this symbol. The symbol index is then
9414 set at the end of bfd_elf_final_link. */
9415 indx = r_symndx - extsymoff;
9416 rh = elf_sym_hashes (input_bfd)[indx];
9417 while (rh->root.type == bfd_link_hash_indirect
9418 || rh->root.type == bfd_link_hash_warning)
9419 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9420
9421 /* Setting the index to -2 tells
9422 elf_link_output_extsym that this symbol is
9423 used by a reloc. */
9424 BFD_ASSERT (rh->indx < 0);
9425 rh->indx = -2;
9426
9427 *rel_hash = rh;
9428
9429 continue;
9430 }
9431
9432 /* This is a reloc against a local symbol. */
9433
9434 *rel_hash = NULL;
9435 sym = isymbuf[r_symndx];
9436 sec = finfo->sections[r_symndx];
9437 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9438 {
9439 /* I suppose the backend ought to fill in the
9440 section of any STT_SECTION symbol against a
9441 processor specific section. */
9442 r_symndx = 0;
9443 if (bfd_is_abs_section (sec))
9444 ;
9445 else if (sec == NULL || sec->owner == NULL)
9446 {
9447 bfd_set_error (bfd_error_bad_value);
9448 return FALSE;
9449 }
9450 else
9451 {
9452 asection *osec = sec->output_section;
9453
9454 /* If we have discarded a section, the output
9455 section will be the absolute section. In
9456 case of discarded SEC_MERGE sections, use
9457 the kept section. relocate_section should
9458 have already handled discarded linkonce
9459 sections. */
9460 if (bfd_is_abs_section (osec)
9461 && sec->kept_section != NULL
9462 && sec->kept_section->output_section != NULL)
9463 {
9464 osec = sec->kept_section->output_section;
9465 irela->r_addend -= osec->vma;
9466 }
9467
9468 if (!bfd_is_abs_section (osec))
9469 {
9470 r_symndx = osec->target_index;
9471 if (r_symndx == 0)
9472 {
9473 struct elf_link_hash_table *htab;
9474 asection *oi;
9475
9476 htab = elf_hash_table (finfo->info);
9477 oi = htab->text_index_section;
9478 if ((osec->flags & SEC_READONLY) == 0
9479 && htab->data_index_section != NULL)
9480 oi = htab->data_index_section;
9481
9482 if (oi != NULL)
9483 {
9484 irela->r_addend += osec->vma - oi->vma;
9485 r_symndx = oi->target_index;
9486 }
9487 }
9488
9489 BFD_ASSERT (r_symndx != 0);
9490 }
9491 }
9492
9493 /* Adjust the addend according to where the
9494 section winds up in the output section. */
9495 if (rela_normal)
9496 irela->r_addend += sec->output_offset;
9497 }
9498 else
9499 {
9500 if (finfo->indices[r_symndx] == -1)
9501 {
9502 unsigned long shlink;
9503 const char *name;
9504 asection *osec;
9505
9506 if (finfo->info->strip == strip_all)
9507 {
9508 /* You can't do ld -r -s. */
9509 bfd_set_error (bfd_error_invalid_operation);
9510 return FALSE;
9511 }
9512
9513 /* This symbol was skipped earlier, but
9514 since it is needed by a reloc, we
9515 must output it now. */
9516 shlink = symtab_hdr->sh_link;
9517 name = (bfd_elf_string_from_elf_section
9518 (input_bfd, shlink, sym.st_name));
9519 if (name == NULL)
9520 return FALSE;
9521
9522 osec = sec->output_section;
9523 sym.st_shndx =
9524 _bfd_elf_section_from_bfd_section (output_bfd,
9525 osec);
9526 if (sym.st_shndx == SHN_BAD)
9527 return FALSE;
9528
9529 sym.st_value += sec->output_offset;
9530 if (! finfo->info->relocatable)
9531 {
9532 sym.st_value += osec->vma;
9533 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9534 {
9535 /* STT_TLS symbols are relative to PT_TLS
9536 segment base. */
9537 BFD_ASSERT (elf_hash_table (finfo->info)
9538 ->tls_sec != NULL);
9539 sym.st_value -= (elf_hash_table (finfo->info)
9540 ->tls_sec->vma);
9541 }
9542 }
9543
9544 finfo->indices[r_symndx]
9545 = bfd_get_symcount (output_bfd);
9546
9547 if (! elf_link_output_sym (finfo, name, &sym, sec,
9548 NULL))
9549 return FALSE;
9550 }
9551
9552 r_symndx = finfo->indices[r_symndx];
9553 }
9554
9555 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9556 | (irela->r_info & r_type_mask));
9557 }
9558
9559 /* Swap out the relocs. */
9560 if (input_rel_hdr->sh_size != 0
9561 && !bed->elf_backend_emit_relocs (output_bfd, o,
9562 input_rel_hdr,
9563 internal_relocs,
9564 rel_hash_list))
9565 return FALSE;
9566
9567 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9568 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9569 {
9570 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9571 * bed->s->int_rels_per_ext_rel);
9572 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9573 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9574 input_rel_hdr2,
9575 internal_relocs,
9576 rel_hash_list))
9577 return FALSE;
9578 }
9579 }
9580 }
9581
9582 /* Write out the modified section contents. */
9583 if (bed->elf_backend_write_section
9584 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9585 contents))
9586 {
9587 /* Section written out. */
9588 }
9589 else switch (o->sec_info_type)
9590 {
9591 case ELF_INFO_TYPE_STABS:
9592 if (! (_bfd_write_section_stabs
9593 (output_bfd,
9594 &elf_hash_table (finfo->info)->stab_info,
9595 o, &elf_section_data (o)->sec_info, contents)))
9596 return FALSE;
9597 break;
9598 case ELF_INFO_TYPE_MERGE:
9599 if (! _bfd_write_merged_section (output_bfd, o,
9600 elf_section_data (o)->sec_info))
9601 return FALSE;
9602 break;
9603 case ELF_INFO_TYPE_EH_FRAME:
9604 {
9605 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9606 o, contents))
9607 return FALSE;
9608 }
9609 break;
9610 default:
9611 {
9612 if (! (o->flags & SEC_EXCLUDE)
9613 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9614 && ! bfd_set_section_contents (output_bfd, o->output_section,
9615 contents,
9616 (file_ptr) o->output_offset,
9617 o->size))
9618 return FALSE;
9619 }
9620 break;
9621 }
9622 }
9623
9624 return TRUE;
9625 }
9626
9627 /* Generate a reloc when linking an ELF file. This is a reloc
9628 requested by the linker, and does not come from any input file. This
9629 is used to build constructor and destructor tables when linking
9630 with -Ur. */
9631
9632 static bfd_boolean
9633 elf_reloc_link_order (bfd *output_bfd,
9634 struct bfd_link_info *info,
9635 asection *output_section,
9636 struct bfd_link_order *link_order)
9637 {
9638 reloc_howto_type *howto;
9639 long indx;
9640 bfd_vma offset;
9641 bfd_vma addend;
9642 struct elf_link_hash_entry **rel_hash_ptr;
9643 Elf_Internal_Shdr *rel_hdr;
9644 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9645 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9646 bfd_byte *erel;
9647 unsigned int i;
9648
9649 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9650 if (howto == NULL)
9651 {
9652 bfd_set_error (bfd_error_bad_value);
9653 return FALSE;
9654 }
9655
9656 addend = link_order->u.reloc.p->addend;
9657
9658 /* Figure out the symbol index. */
9659 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9660 + elf_section_data (output_section)->rel_count
9661 + elf_section_data (output_section)->rel_count2);
9662 if (link_order->type == bfd_section_reloc_link_order)
9663 {
9664 indx = link_order->u.reloc.p->u.section->target_index;
9665 BFD_ASSERT (indx != 0);
9666 *rel_hash_ptr = NULL;
9667 }
9668 else
9669 {
9670 struct elf_link_hash_entry *h;
9671
9672 /* Treat a reloc against a defined symbol as though it were
9673 actually against the section. */
9674 h = ((struct elf_link_hash_entry *)
9675 bfd_wrapped_link_hash_lookup (output_bfd, info,
9676 link_order->u.reloc.p->u.name,
9677 FALSE, FALSE, TRUE));
9678 if (h != NULL
9679 && (h->root.type == bfd_link_hash_defined
9680 || h->root.type == bfd_link_hash_defweak))
9681 {
9682 asection *section;
9683
9684 section = h->root.u.def.section;
9685 indx = section->output_section->target_index;
9686 *rel_hash_ptr = NULL;
9687 /* It seems that we ought to add the symbol value to the
9688 addend here, but in practice it has already been added
9689 because it was passed to constructor_callback. */
9690 addend += section->output_section->vma + section->output_offset;
9691 }
9692 else if (h != NULL)
9693 {
9694 /* Setting the index to -2 tells elf_link_output_extsym that
9695 this symbol is used by a reloc. */
9696 h->indx = -2;
9697 *rel_hash_ptr = h;
9698 indx = 0;
9699 }
9700 else
9701 {
9702 if (! ((*info->callbacks->unattached_reloc)
9703 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9704 return FALSE;
9705 indx = 0;
9706 }
9707 }
9708
9709 /* If this is an inplace reloc, we must write the addend into the
9710 object file. */
9711 if (howto->partial_inplace && addend != 0)
9712 {
9713 bfd_size_type size;
9714 bfd_reloc_status_type rstat;
9715 bfd_byte *buf;
9716 bfd_boolean ok;
9717 const char *sym_name;
9718
9719 size = bfd_get_reloc_size (howto);
9720 buf = bfd_zmalloc (size);
9721 if (buf == NULL)
9722 return FALSE;
9723 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9724 switch (rstat)
9725 {
9726 case bfd_reloc_ok:
9727 break;
9728
9729 default:
9730 case bfd_reloc_outofrange:
9731 abort ();
9732
9733 case bfd_reloc_overflow:
9734 if (link_order->type == bfd_section_reloc_link_order)
9735 sym_name = bfd_section_name (output_bfd,
9736 link_order->u.reloc.p->u.section);
9737 else
9738 sym_name = link_order->u.reloc.p->u.name;
9739 if (! ((*info->callbacks->reloc_overflow)
9740 (info, NULL, sym_name, howto->name, addend, NULL,
9741 NULL, (bfd_vma) 0)))
9742 {
9743 free (buf);
9744 return FALSE;
9745 }
9746 break;
9747 }
9748 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9749 link_order->offset, size);
9750 free (buf);
9751 if (! ok)
9752 return FALSE;
9753 }
9754
9755 /* The address of a reloc is relative to the section in a
9756 relocatable file, and is a virtual address in an executable
9757 file. */
9758 offset = link_order->offset;
9759 if (! info->relocatable)
9760 offset += output_section->vma;
9761
9762 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9763 {
9764 irel[i].r_offset = offset;
9765 irel[i].r_info = 0;
9766 irel[i].r_addend = 0;
9767 }
9768 if (bed->s->arch_size == 32)
9769 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9770 else
9771 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9772
9773 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9774 erel = rel_hdr->contents;
9775 if (rel_hdr->sh_type == SHT_REL)
9776 {
9777 erel += (elf_section_data (output_section)->rel_count
9778 * bed->s->sizeof_rel);
9779 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9780 }
9781 else
9782 {
9783 irel[0].r_addend = addend;
9784 erel += (elf_section_data (output_section)->rel_count
9785 * bed->s->sizeof_rela);
9786 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9787 }
9788
9789 ++elf_section_data (output_section)->rel_count;
9790
9791 return TRUE;
9792 }
9793
9794
9795 /* Get the output vma of the section pointed to by the sh_link field. */
9796
9797 static bfd_vma
9798 elf_get_linked_section_vma (struct bfd_link_order *p)
9799 {
9800 Elf_Internal_Shdr **elf_shdrp;
9801 asection *s;
9802 int elfsec;
9803
9804 s = p->u.indirect.section;
9805 elf_shdrp = elf_elfsections (s->owner);
9806 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9807 elfsec = elf_shdrp[elfsec]->sh_link;
9808 /* PR 290:
9809 The Intel C compiler generates SHT_IA_64_UNWIND with
9810 SHF_LINK_ORDER. But it doesn't set the sh_link or
9811 sh_info fields. Hence we could get the situation
9812 where elfsec is 0. */
9813 if (elfsec == 0)
9814 {
9815 const struct elf_backend_data *bed
9816 = get_elf_backend_data (s->owner);
9817 if (bed->link_order_error_handler)
9818 bed->link_order_error_handler
9819 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9820 return 0;
9821 }
9822 else
9823 {
9824 s = elf_shdrp[elfsec]->bfd_section;
9825 return s->output_section->vma + s->output_offset;
9826 }
9827 }
9828
9829
9830 /* Compare two sections based on the locations of the sections they are
9831 linked to. Used by elf_fixup_link_order. */
9832
9833 static int
9834 compare_link_order (const void * a, const void * b)
9835 {
9836 bfd_vma apos;
9837 bfd_vma bpos;
9838
9839 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9840 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9841 if (apos < bpos)
9842 return -1;
9843 return apos > bpos;
9844 }
9845
9846
9847 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9848 order as their linked sections. Returns false if this could not be done
9849 because an output section includes both ordered and unordered
9850 sections. Ideally we'd do this in the linker proper. */
9851
9852 static bfd_boolean
9853 elf_fixup_link_order (bfd *abfd, asection *o)
9854 {
9855 int seen_linkorder;
9856 int seen_other;
9857 int n;
9858 struct bfd_link_order *p;
9859 bfd *sub;
9860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9861 unsigned elfsec;
9862 struct bfd_link_order **sections;
9863 asection *s, *other_sec, *linkorder_sec;
9864 bfd_vma offset;
9865
9866 other_sec = NULL;
9867 linkorder_sec = NULL;
9868 seen_other = 0;
9869 seen_linkorder = 0;
9870 for (p = o->map_head.link_order; p != NULL; p = p->next)
9871 {
9872 if (p->type == bfd_indirect_link_order)
9873 {
9874 s = p->u.indirect.section;
9875 sub = s->owner;
9876 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9877 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9878 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9879 && elfsec < elf_numsections (sub)
9880 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9881 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9882 {
9883 seen_linkorder++;
9884 linkorder_sec = s;
9885 }
9886 else
9887 {
9888 seen_other++;
9889 other_sec = s;
9890 }
9891 }
9892 else
9893 seen_other++;
9894
9895 if (seen_other && seen_linkorder)
9896 {
9897 if (other_sec && linkorder_sec)
9898 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9899 o, linkorder_sec,
9900 linkorder_sec->owner, other_sec,
9901 other_sec->owner);
9902 else
9903 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9904 o);
9905 bfd_set_error (bfd_error_bad_value);
9906 return FALSE;
9907 }
9908 }
9909
9910 if (!seen_linkorder)
9911 return TRUE;
9912
9913 sections = (struct bfd_link_order **)
9914 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9915 if (sections == NULL)
9916 return FALSE;
9917 seen_linkorder = 0;
9918
9919 for (p = o->map_head.link_order; p != NULL; p = p->next)
9920 {
9921 sections[seen_linkorder++] = p;
9922 }
9923 /* Sort the input sections in the order of their linked section. */
9924 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9925 compare_link_order);
9926
9927 /* Change the offsets of the sections. */
9928 offset = 0;
9929 for (n = 0; n < seen_linkorder; n++)
9930 {
9931 s = sections[n]->u.indirect.section;
9932 offset &= ~(bfd_vma) 0 << s->alignment_power;
9933 s->output_offset = offset;
9934 sections[n]->offset = offset;
9935 offset += sections[n]->size;
9936 }
9937
9938 free (sections);
9939 return TRUE;
9940 }
9941
9942
9943 /* Do the final step of an ELF link. */
9944
9945 bfd_boolean
9946 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9947 {
9948 bfd_boolean dynamic;
9949 bfd_boolean emit_relocs;
9950 bfd *dynobj;
9951 struct elf_final_link_info finfo;
9952 register asection *o;
9953 register struct bfd_link_order *p;
9954 register bfd *sub;
9955 bfd_size_type max_contents_size;
9956 bfd_size_type max_external_reloc_size;
9957 bfd_size_type max_internal_reloc_count;
9958 bfd_size_type max_sym_count;
9959 bfd_size_type max_sym_shndx_count;
9960 file_ptr off;
9961 Elf_Internal_Sym elfsym;
9962 unsigned int i;
9963 Elf_Internal_Shdr *symtab_hdr;
9964 Elf_Internal_Shdr *symtab_shndx_hdr;
9965 Elf_Internal_Shdr *symstrtab_hdr;
9966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9967 struct elf_outext_info eoinfo;
9968 bfd_boolean merged;
9969 size_t relativecount = 0;
9970 asection *reldyn = 0;
9971 bfd_size_type amt;
9972 asection *attr_section = NULL;
9973 bfd_vma attr_size = 0;
9974 const char *std_attrs_section;
9975
9976 if (! is_elf_hash_table (info->hash))
9977 return FALSE;
9978
9979 if (info->shared)
9980 abfd->flags |= DYNAMIC;
9981
9982 dynamic = elf_hash_table (info)->dynamic_sections_created;
9983 dynobj = elf_hash_table (info)->dynobj;
9984
9985 emit_relocs = (info->relocatable
9986 || info->emitrelocations);
9987
9988 finfo.info = info;
9989 finfo.output_bfd = abfd;
9990 finfo.symstrtab = _bfd_elf_stringtab_init ();
9991 if (finfo.symstrtab == NULL)
9992 return FALSE;
9993
9994 if (! dynamic)
9995 {
9996 finfo.dynsym_sec = NULL;
9997 finfo.hash_sec = NULL;
9998 finfo.symver_sec = NULL;
9999 }
10000 else
10001 {
10002 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10003 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10004 BFD_ASSERT (finfo.dynsym_sec != NULL);
10005 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10006 /* Note that it is OK if symver_sec is NULL. */
10007 }
10008
10009 finfo.contents = NULL;
10010 finfo.external_relocs = NULL;
10011 finfo.internal_relocs = NULL;
10012 finfo.external_syms = NULL;
10013 finfo.locsym_shndx = NULL;
10014 finfo.internal_syms = NULL;
10015 finfo.indices = NULL;
10016 finfo.sections = NULL;
10017 finfo.symbuf = NULL;
10018 finfo.symshndxbuf = NULL;
10019 finfo.symbuf_count = 0;
10020 finfo.shndxbuf_size = 0;
10021
10022 /* The object attributes have been merged. Remove the input
10023 sections from the link, and set the contents of the output
10024 secton. */
10025 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10026 for (o = abfd->sections; o != NULL; o = o->next)
10027 {
10028 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10029 || strcmp (o->name, ".gnu.attributes") == 0)
10030 {
10031 for (p = o->map_head.link_order; p != NULL; p = p->next)
10032 {
10033 asection *input_section;
10034
10035 if (p->type != bfd_indirect_link_order)
10036 continue;
10037 input_section = p->u.indirect.section;
10038 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10039 elf_link_input_bfd ignores this section. */
10040 input_section->flags &= ~SEC_HAS_CONTENTS;
10041 }
10042
10043 attr_size = bfd_elf_obj_attr_size (abfd);
10044 if (attr_size)
10045 {
10046 bfd_set_section_size (abfd, o, attr_size);
10047 attr_section = o;
10048 /* Skip this section later on. */
10049 o->map_head.link_order = NULL;
10050 }
10051 else
10052 o->flags |= SEC_EXCLUDE;
10053 }
10054 }
10055
10056 /* Count up the number of relocations we will output for each output
10057 section, so that we know the sizes of the reloc sections. We
10058 also figure out some maximum sizes. */
10059 max_contents_size = 0;
10060 max_external_reloc_size = 0;
10061 max_internal_reloc_count = 0;
10062 max_sym_count = 0;
10063 max_sym_shndx_count = 0;
10064 merged = FALSE;
10065 for (o = abfd->sections; o != NULL; o = o->next)
10066 {
10067 struct bfd_elf_section_data *esdo = elf_section_data (o);
10068 o->reloc_count = 0;
10069
10070 for (p = o->map_head.link_order; p != NULL; p = p->next)
10071 {
10072 unsigned int reloc_count = 0;
10073 struct bfd_elf_section_data *esdi = NULL;
10074 unsigned int *rel_count1;
10075
10076 if (p->type == bfd_section_reloc_link_order
10077 || p->type == bfd_symbol_reloc_link_order)
10078 reloc_count = 1;
10079 else if (p->type == bfd_indirect_link_order)
10080 {
10081 asection *sec;
10082
10083 sec = p->u.indirect.section;
10084 esdi = elf_section_data (sec);
10085
10086 /* Mark all sections which are to be included in the
10087 link. This will normally be every section. We need
10088 to do this so that we can identify any sections which
10089 the linker has decided to not include. */
10090 sec->linker_mark = TRUE;
10091
10092 if (sec->flags & SEC_MERGE)
10093 merged = TRUE;
10094
10095 if (info->relocatable || info->emitrelocations)
10096 reloc_count = sec->reloc_count;
10097 else if (bed->elf_backend_count_relocs)
10098 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10099
10100 if (sec->rawsize > max_contents_size)
10101 max_contents_size = sec->rawsize;
10102 if (sec->size > max_contents_size)
10103 max_contents_size = sec->size;
10104
10105 /* We are interested in just local symbols, not all
10106 symbols. */
10107 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10108 && (sec->owner->flags & DYNAMIC) == 0)
10109 {
10110 size_t sym_count;
10111
10112 if (elf_bad_symtab (sec->owner))
10113 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10114 / bed->s->sizeof_sym);
10115 else
10116 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10117
10118 if (sym_count > max_sym_count)
10119 max_sym_count = sym_count;
10120
10121 if (sym_count > max_sym_shndx_count
10122 && elf_symtab_shndx (sec->owner) != 0)
10123 max_sym_shndx_count = sym_count;
10124
10125 if ((sec->flags & SEC_RELOC) != 0)
10126 {
10127 size_t ext_size;
10128
10129 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10130 if (ext_size > max_external_reloc_size)
10131 max_external_reloc_size = ext_size;
10132 if (sec->reloc_count > max_internal_reloc_count)
10133 max_internal_reloc_count = sec->reloc_count;
10134 }
10135 }
10136 }
10137
10138 if (reloc_count == 0)
10139 continue;
10140
10141 o->reloc_count += reloc_count;
10142
10143 /* MIPS may have a mix of REL and RELA relocs on sections.
10144 To support this curious ABI we keep reloc counts in
10145 elf_section_data too. We must be careful to add the
10146 relocations from the input section to the right output
10147 count. FIXME: Get rid of one count. We have
10148 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10149 rel_count1 = &esdo->rel_count;
10150 if (esdi != NULL)
10151 {
10152 bfd_boolean same_size;
10153 bfd_size_type entsize1;
10154
10155 entsize1 = esdi->rel_hdr.sh_entsize;
10156 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10157 || entsize1 == bed->s->sizeof_rela);
10158 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10159
10160 if (!same_size)
10161 rel_count1 = &esdo->rel_count2;
10162
10163 if (esdi->rel_hdr2 != NULL)
10164 {
10165 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10166 unsigned int alt_count;
10167 unsigned int *rel_count2;
10168
10169 BFD_ASSERT (entsize2 != entsize1
10170 && (entsize2 == bed->s->sizeof_rel
10171 || entsize2 == bed->s->sizeof_rela));
10172
10173 rel_count2 = &esdo->rel_count2;
10174 if (!same_size)
10175 rel_count2 = &esdo->rel_count;
10176
10177 /* The following is probably too simplistic if the
10178 backend counts output relocs unusually. */
10179 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10180 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10181 *rel_count2 += alt_count;
10182 reloc_count -= alt_count;
10183 }
10184 }
10185 *rel_count1 += reloc_count;
10186 }
10187
10188 if (o->reloc_count > 0)
10189 o->flags |= SEC_RELOC;
10190 else
10191 {
10192 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10193 set it (this is probably a bug) and if it is set
10194 assign_section_numbers will create a reloc section. */
10195 o->flags &=~ SEC_RELOC;
10196 }
10197
10198 /* If the SEC_ALLOC flag is not set, force the section VMA to
10199 zero. This is done in elf_fake_sections as well, but forcing
10200 the VMA to 0 here will ensure that relocs against these
10201 sections are handled correctly. */
10202 if ((o->flags & SEC_ALLOC) == 0
10203 && ! o->user_set_vma)
10204 o->vma = 0;
10205 }
10206
10207 if (! info->relocatable && merged)
10208 elf_link_hash_traverse (elf_hash_table (info),
10209 _bfd_elf_link_sec_merge_syms, abfd);
10210
10211 /* Figure out the file positions for everything but the symbol table
10212 and the relocs. We set symcount to force assign_section_numbers
10213 to create a symbol table. */
10214 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10215 BFD_ASSERT (! abfd->output_has_begun);
10216 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10217 goto error_return;
10218
10219 /* Set sizes, and assign file positions for reloc sections. */
10220 for (o = abfd->sections; o != NULL; o = o->next)
10221 {
10222 if ((o->flags & SEC_RELOC) != 0)
10223 {
10224 if (!(_bfd_elf_link_size_reloc_section
10225 (abfd, &elf_section_data (o)->rel_hdr, o)))
10226 goto error_return;
10227
10228 if (elf_section_data (o)->rel_hdr2
10229 && !(_bfd_elf_link_size_reloc_section
10230 (abfd, elf_section_data (o)->rel_hdr2, o)))
10231 goto error_return;
10232 }
10233
10234 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10235 to count upwards while actually outputting the relocations. */
10236 elf_section_data (o)->rel_count = 0;
10237 elf_section_data (o)->rel_count2 = 0;
10238 }
10239
10240 _bfd_elf_assign_file_positions_for_relocs (abfd);
10241
10242 /* We have now assigned file positions for all the sections except
10243 .symtab and .strtab. We start the .symtab section at the current
10244 file position, and write directly to it. We build the .strtab
10245 section in memory. */
10246 bfd_get_symcount (abfd) = 0;
10247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10248 /* sh_name is set in prep_headers. */
10249 symtab_hdr->sh_type = SHT_SYMTAB;
10250 /* sh_flags, sh_addr and sh_size all start off zero. */
10251 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10252 /* sh_link is set in assign_section_numbers. */
10253 /* sh_info is set below. */
10254 /* sh_offset is set just below. */
10255 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10256
10257 off = elf_tdata (abfd)->next_file_pos;
10258 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10259
10260 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10261 incorrect. We do not yet know the size of the .symtab section.
10262 We correct next_file_pos below, after we do know the size. */
10263
10264 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10265 continuously seeking to the right position in the file. */
10266 if (! info->keep_memory || max_sym_count < 20)
10267 finfo.symbuf_size = 20;
10268 else
10269 finfo.symbuf_size = max_sym_count;
10270 amt = finfo.symbuf_size;
10271 amt *= bed->s->sizeof_sym;
10272 finfo.symbuf = bfd_malloc (amt);
10273 if (finfo.symbuf == NULL)
10274 goto error_return;
10275 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10276 {
10277 /* Wild guess at number of output symbols. realloc'd as needed. */
10278 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10279 finfo.shndxbuf_size = amt;
10280 amt *= sizeof (Elf_External_Sym_Shndx);
10281 finfo.symshndxbuf = bfd_zmalloc (amt);
10282 if (finfo.symshndxbuf == NULL)
10283 goto error_return;
10284 }
10285
10286 /* Start writing out the symbol table. The first symbol is always a
10287 dummy symbol. */
10288 if (info->strip != strip_all
10289 || emit_relocs)
10290 {
10291 elfsym.st_value = 0;
10292 elfsym.st_size = 0;
10293 elfsym.st_info = 0;
10294 elfsym.st_other = 0;
10295 elfsym.st_shndx = SHN_UNDEF;
10296 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10297 NULL))
10298 goto error_return;
10299 }
10300
10301 /* Output a symbol for each section. We output these even if we are
10302 discarding local symbols, since they are used for relocs. These
10303 symbols have no names. We store the index of each one in the
10304 index field of the section, so that we can find it again when
10305 outputting relocs. */
10306 if (info->strip != strip_all
10307 || emit_relocs)
10308 {
10309 elfsym.st_size = 0;
10310 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10311 elfsym.st_other = 0;
10312 elfsym.st_value = 0;
10313 for (i = 1; i < elf_numsections (abfd); i++)
10314 {
10315 o = bfd_section_from_elf_index (abfd, i);
10316 if (o != NULL)
10317 {
10318 o->target_index = bfd_get_symcount (abfd);
10319 elfsym.st_shndx = i;
10320 if (!info->relocatable)
10321 elfsym.st_value = o->vma;
10322 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10323 goto error_return;
10324 }
10325 }
10326 }
10327
10328 /* Allocate some memory to hold information read in from the input
10329 files. */
10330 if (max_contents_size != 0)
10331 {
10332 finfo.contents = bfd_malloc (max_contents_size);
10333 if (finfo.contents == NULL)
10334 goto error_return;
10335 }
10336
10337 if (max_external_reloc_size != 0)
10338 {
10339 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10340 if (finfo.external_relocs == NULL)
10341 goto error_return;
10342 }
10343
10344 if (max_internal_reloc_count != 0)
10345 {
10346 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10347 amt *= sizeof (Elf_Internal_Rela);
10348 finfo.internal_relocs = bfd_malloc (amt);
10349 if (finfo.internal_relocs == NULL)
10350 goto error_return;
10351 }
10352
10353 if (max_sym_count != 0)
10354 {
10355 amt = max_sym_count * bed->s->sizeof_sym;
10356 finfo.external_syms = bfd_malloc (amt);
10357 if (finfo.external_syms == NULL)
10358 goto error_return;
10359
10360 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10361 finfo.internal_syms = bfd_malloc (amt);
10362 if (finfo.internal_syms == NULL)
10363 goto error_return;
10364
10365 amt = max_sym_count * sizeof (long);
10366 finfo.indices = bfd_malloc (amt);
10367 if (finfo.indices == NULL)
10368 goto error_return;
10369
10370 amt = max_sym_count * sizeof (asection *);
10371 finfo.sections = bfd_malloc (amt);
10372 if (finfo.sections == NULL)
10373 goto error_return;
10374 }
10375
10376 if (max_sym_shndx_count != 0)
10377 {
10378 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10379 finfo.locsym_shndx = bfd_malloc (amt);
10380 if (finfo.locsym_shndx == NULL)
10381 goto error_return;
10382 }
10383
10384 if (elf_hash_table (info)->tls_sec)
10385 {
10386 bfd_vma base, end = 0;
10387 asection *sec;
10388
10389 for (sec = elf_hash_table (info)->tls_sec;
10390 sec && (sec->flags & SEC_THREAD_LOCAL);
10391 sec = sec->next)
10392 {
10393 bfd_size_type size = sec->size;
10394
10395 if (size == 0
10396 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10397 {
10398 struct bfd_link_order *o = sec->map_tail.link_order;
10399 if (o != NULL)
10400 size = o->offset + o->size;
10401 }
10402 end = sec->vma + size;
10403 }
10404 base = elf_hash_table (info)->tls_sec->vma;
10405 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10406 elf_hash_table (info)->tls_size = end - base;
10407 }
10408
10409 /* Reorder SHF_LINK_ORDER sections. */
10410 for (o = abfd->sections; o != NULL; o = o->next)
10411 {
10412 if (!elf_fixup_link_order (abfd, o))
10413 return FALSE;
10414 }
10415
10416 /* Since ELF permits relocations to be against local symbols, we
10417 must have the local symbols available when we do the relocations.
10418 Since we would rather only read the local symbols once, and we
10419 would rather not keep them in memory, we handle all the
10420 relocations for a single input file at the same time.
10421
10422 Unfortunately, there is no way to know the total number of local
10423 symbols until we have seen all of them, and the local symbol
10424 indices precede the global symbol indices. This means that when
10425 we are generating relocatable output, and we see a reloc against
10426 a global symbol, we can not know the symbol index until we have
10427 finished examining all the local symbols to see which ones we are
10428 going to output. To deal with this, we keep the relocations in
10429 memory, and don't output them until the end of the link. This is
10430 an unfortunate waste of memory, but I don't see a good way around
10431 it. Fortunately, it only happens when performing a relocatable
10432 link, which is not the common case. FIXME: If keep_memory is set
10433 we could write the relocs out and then read them again; I don't
10434 know how bad the memory loss will be. */
10435
10436 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10437 sub->output_has_begun = FALSE;
10438 for (o = abfd->sections; o != NULL; o = o->next)
10439 {
10440 for (p = o->map_head.link_order; p != NULL; p = p->next)
10441 {
10442 if (p->type == bfd_indirect_link_order
10443 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10444 == bfd_target_elf_flavour)
10445 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10446 {
10447 if (! sub->output_has_begun)
10448 {
10449 if (! elf_link_input_bfd (&finfo, sub))
10450 goto error_return;
10451 sub->output_has_begun = TRUE;
10452 }
10453 }
10454 else if (p->type == bfd_section_reloc_link_order
10455 || p->type == bfd_symbol_reloc_link_order)
10456 {
10457 if (! elf_reloc_link_order (abfd, info, o, p))
10458 goto error_return;
10459 }
10460 else
10461 {
10462 if (! _bfd_default_link_order (abfd, info, o, p))
10463 goto error_return;
10464 }
10465 }
10466 }
10467
10468 /* Free symbol buffer if needed. */
10469 if (!info->reduce_memory_overheads)
10470 {
10471 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10472 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10473 && elf_tdata (sub)->symbuf)
10474 {
10475 free (elf_tdata (sub)->symbuf);
10476 elf_tdata (sub)->symbuf = NULL;
10477 }
10478 }
10479
10480 /* Output any global symbols that got converted to local in a
10481 version script or due to symbol visibility. We do this in a
10482 separate step since ELF requires all local symbols to appear
10483 prior to any global symbols. FIXME: We should only do this if
10484 some global symbols were, in fact, converted to become local.
10485 FIXME: Will this work correctly with the Irix 5 linker? */
10486 eoinfo.failed = FALSE;
10487 eoinfo.finfo = &finfo;
10488 eoinfo.localsyms = TRUE;
10489 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10490 &eoinfo);
10491 if (eoinfo.failed)
10492 return FALSE;
10493
10494 /* If backend needs to output some local symbols not present in the hash
10495 table, do it now. */
10496 if (bed->elf_backend_output_arch_local_syms)
10497 {
10498 typedef bfd_boolean (*out_sym_func)
10499 (void *, const char *, Elf_Internal_Sym *, asection *,
10500 struct elf_link_hash_entry *);
10501
10502 if (! ((*bed->elf_backend_output_arch_local_syms)
10503 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10504 return FALSE;
10505 }
10506
10507 /* That wrote out all the local symbols. Finish up the symbol table
10508 with the global symbols. Even if we want to strip everything we
10509 can, we still need to deal with those global symbols that got
10510 converted to local in a version script. */
10511
10512 /* The sh_info field records the index of the first non local symbol. */
10513 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10514
10515 if (dynamic
10516 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10517 {
10518 Elf_Internal_Sym sym;
10519 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10520 long last_local = 0;
10521
10522 /* Write out the section symbols for the output sections. */
10523 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10524 {
10525 asection *s;
10526
10527 sym.st_size = 0;
10528 sym.st_name = 0;
10529 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10530 sym.st_other = 0;
10531
10532 for (s = abfd->sections; s != NULL; s = s->next)
10533 {
10534 int indx;
10535 bfd_byte *dest;
10536 long dynindx;
10537
10538 dynindx = elf_section_data (s)->dynindx;
10539 if (dynindx <= 0)
10540 continue;
10541 indx = elf_section_data (s)->this_idx;
10542 BFD_ASSERT (indx > 0);
10543 sym.st_shndx = indx;
10544 if (! check_dynsym (abfd, &sym))
10545 return FALSE;
10546 sym.st_value = s->vma;
10547 dest = dynsym + dynindx * bed->s->sizeof_sym;
10548 if (last_local < dynindx)
10549 last_local = dynindx;
10550 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10551 }
10552 }
10553
10554 /* Write out the local dynsyms. */
10555 if (elf_hash_table (info)->dynlocal)
10556 {
10557 struct elf_link_local_dynamic_entry *e;
10558 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10559 {
10560 asection *s;
10561 bfd_byte *dest;
10562
10563 sym.st_size = e->isym.st_size;
10564 sym.st_other = e->isym.st_other;
10565
10566 /* Copy the internal symbol as is.
10567 Note that we saved a word of storage and overwrote
10568 the original st_name with the dynstr_index. */
10569 sym = e->isym;
10570
10571 s = bfd_section_from_elf_index (e->input_bfd,
10572 e->isym.st_shndx);
10573 if (s != NULL)
10574 {
10575 sym.st_shndx =
10576 elf_section_data (s->output_section)->this_idx;
10577 if (! check_dynsym (abfd, &sym))
10578 return FALSE;
10579 sym.st_value = (s->output_section->vma
10580 + s->output_offset
10581 + e->isym.st_value);
10582 }
10583
10584 if (last_local < e->dynindx)
10585 last_local = e->dynindx;
10586
10587 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10588 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10589 }
10590 }
10591
10592 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10593 last_local + 1;
10594 }
10595
10596 /* We get the global symbols from the hash table. */
10597 eoinfo.failed = FALSE;
10598 eoinfo.localsyms = FALSE;
10599 eoinfo.finfo = &finfo;
10600 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10601 &eoinfo);
10602 if (eoinfo.failed)
10603 return FALSE;
10604
10605 /* If backend needs to output some symbols not present in the hash
10606 table, do it now. */
10607 if (bed->elf_backend_output_arch_syms)
10608 {
10609 typedef bfd_boolean (*out_sym_func)
10610 (void *, const char *, Elf_Internal_Sym *, asection *,
10611 struct elf_link_hash_entry *);
10612
10613 if (! ((*bed->elf_backend_output_arch_syms)
10614 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10615 return FALSE;
10616 }
10617
10618 /* Flush all symbols to the file. */
10619 if (! elf_link_flush_output_syms (&finfo, bed))
10620 return FALSE;
10621
10622 /* Now we know the size of the symtab section. */
10623 off += symtab_hdr->sh_size;
10624
10625 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10626 if (symtab_shndx_hdr->sh_name != 0)
10627 {
10628 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10629 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10630 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10631 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10632 symtab_shndx_hdr->sh_size = amt;
10633
10634 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10635 off, TRUE);
10636
10637 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10638 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10639 return FALSE;
10640 }
10641
10642
10643 /* Finish up and write out the symbol string table (.strtab)
10644 section. */
10645 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10646 /* sh_name was set in prep_headers. */
10647 symstrtab_hdr->sh_type = SHT_STRTAB;
10648 symstrtab_hdr->sh_flags = 0;
10649 symstrtab_hdr->sh_addr = 0;
10650 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10651 symstrtab_hdr->sh_entsize = 0;
10652 symstrtab_hdr->sh_link = 0;
10653 symstrtab_hdr->sh_info = 0;
10654 /* sh_offset is set just below. */
10655 symstrtab_hdr->sh_addralign = 1;
10656
10657 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10658 elf_tdata (abfd)->next_file_pos = off;
10659
10660 if (bfd_get_symcount (abfd) > 0)
10661 {
10662 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10663 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10664 return FALSE;
10665 }
10666
10667 /* Adjust the relocs to have the correct symbol indices. */
10668 for (o = abfd->sections; o != NULL; o = o->next)
10669 {
10670 if ((o->flags & SEC_RELOC) == 0)
10671 continue;
10672
10673 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10674 elf_section_data (o)->rel_count,
10675 elf_section_data (o)->rel_hashes);
10676 if (elf_section_data (o)->rel_hdr2 != NULL)
10677 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10678 elf_section_data (o)->rel_count2,
10679 (elf_section_data (o)->rel_hashes
10680 + elf_section_data (o)->rel_count));
10681
10682 /* Set the reloc_count field to 0 to prevent write_relocs from
10683 trying to swap the relocs out itself. */
10684 o->reloc_count = 0;
10685 }
10686
10687 if (dynamic && info->combreloc && dynobj != NULL)
10688 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10689
10690 /* If we are linking against a dynamic object, or generating a
10691 shared library, finish up the dynamic linking information. */
10692 if (dynamic)
10693 {
10694 bfd_byte *dyncon, *dynconend;
10695
10696 /* Fix up .dynamic entries. */
10697 o = bfd_get_section_by_name (dynobj, ".dynamic");
10698 BFD_ASSERT (o != NULL);
10699
10700 dyncon = o->contents;
10701 dynconend = o->contents + o->size;
10702 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10703 {
10704 Elf_Internal_Dyn dyn;
10705 const char *name;
10706 unsigned int type;
10707
10708 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10709
10710 switch (dyn.d_tag)
10711 {
10712 default:
10713 continue;
10714 case DT_NULL:
10715 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10716 {
10717 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10718 {
10719 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10720 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10721 default: continue;
10722 }
10723 dyn.d_un.d_val = relativecount;
10724 relativecount = 0;
10725 break;
10726 }
10727 continue;
10728
10729 case DT_INIT:
10730 name = info->init_function;
10731 goto get_sym;
10732 case DT_FINI:
10733 name = info->fini_function;
10734 get_sym:
10735 {
10736 struct elf_link_hash_entry *h;
10737
10738 h = elf_link_hash_lookup (elf_hash_table (info), name,
10739 FALSE, FALSE, TRUE);
10740 if (h != NULL
10741 && (h->root.type == bfd_link_hash_defined
10742 || h->root.type == bfd_link_hash_defweak))
10743 {
10744 dyn.d_un.d_ptr = h->root.u.def.value;
10745 o = h->root.u.def.section;
10746 if (o->output_section != NULL)
10747 dyn.d_un.d_ptr += (o->output_section->vma
10748 + o->output_offset);
10749 else
10750 {
10751 /* The symbol is imported from another shared
10752 library and does not apply to this one. */
10753 dyn.d_un.d_ptr = 0;
10754 }
10755 break;
10756 }
10757 }
10758 continue;
10759
10760 case DT_PREINIT_ARRAYSZ:
10761 name = ".preinit_array";
10762 goto get_size;
10763 case DT_INIT_ARRAYSZ:
10764 name = ".init_array";
10765 goto get_size;
10766 case DT_FINI_ARRAYSZ:
10767 name = ".fini_array";
10768 get_size:
10769 o = bfd_get_section_by_name (abfd, name);
10770 if (o == NULL)
10771 {
10772 (*_bfd_error_handler)
10773 (_("%B: could not find output section %s"), abfd, name);
10774 goto error_return;
10775 }
10776 if (o->size == 0)
10777 (*_bfd_error_handler)
10778 (_("warning: %s section has zero size"), name);
10779 dyn.d_un.d_val = o->size;
10780 break;
10781
10782 case DT_PREINIT_ARRAY:
10783 name = ".preinit_array";
10784 goto get_vma;
10785 case DT_INIT_ARRAY:
10786 name = ".init_array";
10787 goto get_vma;
10788 case DT_FINI_ARRAY:
10789 name = ".fini_array";
10790 goto get_vma;
10791
10792 case DT_HASH:
10793 name = ".hash";
10794 goto get_vma;
10795 case DT_GNU_HASH:
10796 name = ".gnu.hash";
10797 goto get_vma;
10798 case DT_STRTAB:
10799 name = ".dynstr";
10800 goto get_vma;
10801 case DT_SYMTAB:
10802 name = ".dynsym";
10803 goto get_vma;
10804 case DT_VERDEF:
10805 name = ".gnu.version_d";
10806 goto get_vma;
10807 case DT_VERNEED:
10808 name = ".gnu.version_r";
10809 goto get_vma;
10810 case DT_VERSYM:
10811 name = ".gnu.version";
10812 get_vma:
10813 o = bfd_get_section_by_name (abfd, name);
10814 if (o == NULL)
10815 {
10816 (*_bfd_error_handler)
10817 (_("%B: could not find output section %s"), abfd, name);
10818 goto error_return;
10819 }
10820 dyn.d_un.d_ptr = o->vma;
10821 break;
10822
10823 case DT_REL:
10824 case DT_RELA:
10825 case DT_RELSZ:
10826 case DT_RELASZ:
10827 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10828 type = SHT_REL;
10829 else
10830 type = SHT_RELA;
10831 dyn.d_un.d_val = 0;
10832 dyn.d_un.d_ptr = 0;
10833 for (i = 1; i < elf_numsections (abfd); i++)
10834 {
10835 Elf_Internal_Shdr *hdr;
10836
10837 hdr = elf_elfsections (abfd)[i];
10838 if (hdr->sh_type == type
10839 && (hdr->sh_flags & SHF_ALLOC) != 0)
10840 {
10841 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10842 dyn.d_un.d_val += hdr->sh_size;
10843 else
10844 {
10845 if (dyn.d_un.d_ptr == 0
10846 || hdr->sh_addr < dyn.d_un.d_ptr)
10847 dyn.d_un.d_ptr = hdr->sh_addr;
10848 }
10849 }
10850 }
10851 break;
10852 }
10853 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10854 }
10855 }
10856
10857 /* If we have created any dynamic sections, then output them. */
10858 if (dynobj != NULL)
10859 {
10860 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10861 goto error_return;
10862
10863 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10864 if (info->warn_shared_textrel && info->shared)
10865 {
10866 bfd_byte *dyncon, *dynconend;
10867
10868 /* Fix up .dynamic entries. */
10869 o = bfd_get_section_by_name (dynobj, ".dynamic");
10870 BFD_ASSERT (o != NULL);
10871
10872 dyncon = o->contents;
10873 dynconend = o->contents + o->size;
10874 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10875 {
10876 Elf_Internal_Dyn dyn;
10877
10878 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10879
10880 if (dyn.d_tag == DT_TEXTREL)
10881 {
10882 info->callbacks->einfo
10883 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10884 break;
10885 }
10886 }
10887 }
10888
10889 for (o = dynobj->sections; o != NULL; o = o->next)
10890 {
10891 if ((o->flags & SEC_HAS_CONTENTS) == 0
10892 || o->size == 0
10893 || o->output_section == bfd_abs_section_ptr)
10894 continue;
10895 if ((o->flags & SEC_LINKER_CREATED) == 0)
10896 {
10897 /* At this point, we are only interested in sections
10898 created by _bfd_elf_link_create_dynamic_sections. */
10899 continue;
10900 }
10901 if (elf_hash_table (info)->stab_info.stabstr == o)
10902 continue;
10903 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10904 continue;
10905 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10906 != SHT_STRTAB)
10907 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10908 {
10909 if (! bfd_set_section_contents (abfd, o->output_section,
10910 o->contents,
10911 (file_ptr) o->output_offset,
10912 o->size))
10913 goto error_return;
10914 }
10915 else
10916 {
10917 /* The contents of the .dynstr section are actually in a
10918 stringtab. */
10919 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10920 if (bfd_seek (abfd, off, SEEK_SET) != 0
10921 || ! _bfd_elf_strtab_emit (abfd,
10922 elf_hash_table (info)->dynstr))
10923 goto error_return;
10924 }
10925 }
10926 }
10927
10928 if (info->relocatable)
10929 {
10930 bfd_boolean failed = FALSE;
10931
10932 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10933 if (failed)
10934 goto error_return;
10935 }
10936
10937 /* If we have optimized stabs strings, output them. */
10938 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10939 {
10940 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10941 goto error_return;
10942 }
10943
10944 if (info->eh_frame_hdr)
10945 {
10946 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10947 goto error_return;
10948 }
10949
10950 if (finfo.symstrtab != NULL)
10951 _bfd_stringtab_free (finfo.symstrtab);
10952 if (finfo.contents != NULL)
10953 free (finfo.contents);
10954 if (finfo.external_relocs != NULL)
10955 free (finfo.external_relocs);
10956 if (finfo.internal_relocs != NULL)
10957 free (finfo.internal_relocs);
10958 if (finfo.external_syms != NULL)
10959 free (finfo.external_syms);
10960 if (finfo.locsym_shndx != NULL)
10961 free (finfo.locsym_shndx);
10962 if (finfo.internal_syms != NULL)
10963 free (finfo.internal_syms);
10964 if (finfo.indices != NULL)
10965 free (finfo.indices);
10966 if (finfo.sections != NULL)
10967 free (finfo.sections);
10968 if (finfo.symbuf != NULL)
10969 free (finfo.symbuf);
10970 if (finfo.symshndxbuf != NULL)
10971 free (finfo.symshndxbuf);
10972 for (o = abfd->sections; o != NULL; o = o->next)
10973 {
10974 if ((o->flags & SEC_RELOC) != 0
10975 && elf_section_data (o)->rel_hashes != NULL)
10976 free (elf_section_data (o)->rel_hashes);
10977 }
10978
10979 elf_tdata (abfd)->linker = TRUE;
10980
10981 if (attr_section)
10982 {
10983 bfd_byte *contents = bfd_malloc (attr_size);
10984 if (contents == NULL)
10985 return FALSE; /* Bail out and fail. */
10986 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10987 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10988 free (contents);
10989 }
10990
10991 return TRUE;
10992
10993 error_return:
10994 if (finfo.symstrtab != NULL)
10995 _bfd_stringtab_free (finfo.symstrtab);
10996 if (finfo.contents != NULL)
10997 free (finfo.contents);
10998 if (finfo.external_relocs != NULL)
10999 free (finfo.external_relocs);
11000 if (finfo.internal_relocs != NULL)
11001 free (finfo.internal_relocs);
11002 if (finfo.external_syms != NULL)
11003 free (finfo.external_syms);
11004 if (finfo.locsym_shndx != NULL)
11005 free (finfo.locsym_shndx);
11006 if (finfo.internal_syms != NULL)
11007 free (finfo.internal_syms);
11008 if (finfo.indices != NULL)
11009 free (finfo.indices);
11010 if (finfo.sections != NULL)
11011 free (finfo.sections);
11012 if (finfo.symbuf != NULL)
11013 free (finfo.symbuf);
11014 if (finfo.symshndxbuf != NULL)
11015 free (finfo.symshndxbuf);
11016 for (o = abfd->sections; o != NULL; o = o->next)
11017 {
11018 if ((o->flags & SEC_RELOC) != 0
11019 && elf_section_data (o)->rel_hashes != NULL)
11020 free (elf_section_data (o)->rel_hashes);
11021 }
11022
11023 return FALSE;
11024 }
11025 \f
11026 /* Initialize COOKIE for input bfd ABFD. */
11027
11028 static bfd_boolean
11029 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11030 struct bfd_link_info *info, bfd *abfd)
11031 {
11032 Elf_Internal_Shdr *symtab_hdr;
11033 const struct elf_backend_data *bed;
11034
11035 bed = get_elf_backend_data (abfd);
11036 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11037
11038 cookie->abfd = abfd;
11039 cookie->sym_hashes = elf_sym_hashes (abfd);
11040 cookie->bad_symtab = elf_bad_symtab (abfd);
11041 if (cookie->bad_symtab)
11042 {
11043 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11044 cookie->extsymoff = 0;
11045 }
11046 else
11047 {
11048 cookie->locsymcount = symtab_hdr->sh_info;
11049 cookie->extsymoff = symtab_hdr->sh_info;
11050 }
11051
11052 if (bed->s->arch_size == 32)
11053 cookie->r_sym_shift = 8;
11054 else
11055 cookie->r_sym_shift = 32;
11056
11057 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11058 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11059 {
11060 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11061 cookie->locsymcount, 0,
11062 NULL, NULL, NULL);
11063 if (cookie->locsyms == NULL)
11064 {
11065 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11066 return FALSE;
11067 }
11068 if (info->keep_memory)
11069 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11070 }
11071 return TRUE;
11072 }
11073
11074 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11075
11076 static void
11077 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11078 {
11079 Elf_Internal_Shdr *symtab_hdr;
11080
11081 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11082 if (cookie->locsyms != NULL
11083 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11084 free (cookie->locsyms);
11085 }
11086
11087 /* Initialize the relocation information in COOKIE for input section SEC
11088 of input bfd ABFD. */
11089
11090 static bfd_boolean
11091 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11092 struct bfd_link_info *info, bfd *abfd,
11093 asection *sec)
11094 {
11095 const struct elf_backend_data *bed;
11096
11097 if (sec->reloc_count == 0)
11098 {
11099 cookie->rels = NULL;
11100 cookie->relend = NULL;
11101 }
11102 else
11103 {
11104 bed = get_elf_backend_data (abfd);
11105
11106 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11107 info->keep_memory);
11108 if (cookie->rels == NULL)
11109 return FALSE;
11110 cookie->rel = cookie->rels;
11111 cookie->relend = (cookie->rels
11112 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11113 }
11114 cookie->rel = cookie->rels;
11115 return TRUE;
11116 }
11117
11118 /* Free the memory allocated by init_reloc_cookie_rels,
11119 if appropriate. */
11120
11121 static void
11122 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11123 asection *sec)
11124 {
11125 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11126 free (cookie->rels);
11127 }
11128
11129 /* Initialize the whole of COOKIE for input section SEC. */
11130
11131 static bfd_boolean
11132 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11133 struct bfd_link_info *info,
11134 asection *sec)
11135 {
11136 if (!init_reloc_cookie (cookie, info, sec->owner))
11137 goto error1;
11138 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11139 goto error2;
11140 return TRUE;
11141
11142 error2:
11143 fini_reloc_cookie (cookie, sec->owner);
11144 error1:
11145 return FALSE;
11146 }
11147
11148 /* Free the memory allocated by init_reloc_cookie_for_section,
11149 if appropriate. */
11150
11151 static void
11152 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11153 asection *sec)
11154 {
11155 fini_reloc_cookie_rels (cookie, sec);
11156 fini_reloc_cookie (cookie, sec->owner);
11157 }
11158 \f
11159 /* Garbage collect unused sections. */
11160
11161 /* Default gc_mark_hook. */
11162
11163 asection *
11164 _bfd_elf_gc_mark_hook (asection *sec,
11165 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11166 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11167 struct elf_link_hash_entry *h,
11168 Elf_Internal_Sym *sym)
11169 {
11170 if (h != NULL)
11171 {
11172 switch (h->root.type)
11173 {
11174 case bfd_link_hash_defined:
11175 case bfd_link_hash_defweak:
11176 return h->root.u.def.section;
11177
11178 case bfd_link_hash_common:
11179 return h->root.u.c.p->section;
11180
11181 default:
11182 break;
11183 }
11184 }
11185 else
11186 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11187
11188 return NULL;
11189 }
11190
11191 /* COOKIE->rel describes a relocation against section SEC, which is
11192 a section we've decided to keep. Return the section that contains
11193 the relocation symbol, or NULL if no section contains it. */
11194
11195 asection *
11196 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11197 elf_gc_mark_hook_fn gc_mark_hook,
11198 struct elf_reloc_cookie *cookie)
11199 {
11200 unsigned long r_symndx;
11201 struct elf_link_hash_entry *h;
11202
11203 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11204 if (r_symndx == 0)
11205 return NULL;
11206
11207 if (r_symndx >= cookie->locsymcount
11208 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11209 {
11210 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11211 while (h->root.type == bfd_link_hash_indirect
11212 || h->root.type == bfd_link_hash_warning)
11213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11214 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11215 }
11216
11217 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11218 &cookie->locsyms[r_symndx]);
11219 }
11220
11221 /* COOKIE->rel describes a relocation against section SEC, which is
11222 a section we've decided to keep. Mark the section that contains
11223 the relocation symbol. */
11224
11225 bfd_boolean
11226 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11227 asection *sec,
11228 elf_gc_mark_hook_fn gc_mark_hook,
11229 struct elf_reloc_cookie *cookie)
11230 {
11231 asection *rsec;
11232
11233 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11234 if (rsec && !rsec->gc_mark)
11235 {
11236 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11237 rsec->gc_mark = 1;
11238 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11239 return FALSE;
11240 }
11241 return TRUE;
11242 }
11243
11244 /* The mark phase of garbage collection. For a given section, mark
11245 it and any sections in this section's group, and all the sections
11246 which define symbols to which it refers. */
11247
11248 bfd_boolean
11249 _bfd_elf_gc_mark (struct bfd_link_info *info,
11250 asection *sec,
11251 elf_gc_mark_hook_fn gc_mark_hook)
11252 {
11253 bfd_boolean ret;
11254 asection *group_sec, *eh_frame;
11255
11256 sec->gc_mark = 1;
11257
11258 /* Mark all the sections in the group. */
11259 group_sec = elf_section_data (sec)->next_in_group;
11260 if (group_sec && !group_sec->gc_mark)
11261 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11262 return FALSE;
11263
11264 /* Look through the section relocs. */
11265 ret = TRUE;
11266 eh_frame = elf_eh_frame_section (sec->owner);
11267 if ((sec->flags & SEC_RELOC) != 0
11268 && sec->reloc_count > 0
11269 && sec != eh_frame)
11270 {
11271 struct elf_reloc_cookie cookie;
11272
11273 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11274 ret = FALSE;
11275 else
11276 {
11277 for (; cookie.rel < cookie.relend; cookie.rel++)
11278 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11279 {
11280 ret = FALSE;
11281 break;
11282 }
11283 fini_reloc_cookie_for_section (&cookie, sec);
11284 }
11285 }
11286
11287 if (ret && eh_frame && elf_fde_list (sec))
11288 {
11289 struct elf_reloc_cookie cookie;
11290
11291 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11292 ret = FALSE;
11293 else
11294 {
11295 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11296 gc_mark_hook, &cookie))
11297 ret = FALSE;
11298 fini_reloc_cookie_for_section (&cookie, eh_frame);
11299 }
11300 }
11301
11302 return ret;
11303 }
11304
11305 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11306
11307 struct elf_gc_sweep_symbol_info
11308 {
11309 struct bfd_link_info *info;
11310 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11311 bfd_boolean);
11312 };
11313
11314 static bfd_boolean
11315 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11316 {
11317 if (h->root.type == bfd_link_hash_warning)
11318 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11319
11320 if ((h->root.type == bfd_link_hash_defined
11321 || h->root.type == bfd_link_hash_defweak)
11322 && !h->root.u.def.section->gc_mark
11323 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11324 {
11325 struct elf_gc_sweep_symbol_info *inf = data;
11326 (*inf->hide_symbol) (inf->info, h, TRUE);
11327 }
11328
11329 return TRUE;
11330 }
11331
11332 /* The sweep phase of garbage collection. Remove all garbage sections. */
11333
11334 typedef bfd_boolean (*gc_sweep_hook_fn)
11335 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11336
11337 static bfd_boolean
11338 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11339 {
11340 bfd *sub;
11341 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11342 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11343 unsigned long section_sym_count;
11344 struct elf_gc_sweep_symbol_info sweep_info;
11345
11346 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11347 {
11348 asection *o;
11349
11350 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11351 continue;
11352
11353 for (o = sub->sections; o != NULL; o = o->next)
11354 {
11355 /* Keep debug and special sections. */
11356 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11357 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11358 o->gc_mark = 1;
11359
11360 if (o->gc_mark)
11361 continue;
11362
11363 /* Skip sweeping sections already excluded. */
11364 if (o->flags & SEC_EXCLUDE)
11365 continue;
11366
11367 /* Since this is early in the link process, it is simple
11368 to remove a section from the output. */
11369 o->flags |= SEC_EXCLUDE;
11370
11371 if (info->print_gc_sections && o->size != 0)
11372 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11373
11374 /* But we also have to update some of the relocation
11375 info we collected before. */
11376 if (gc_sweep_hook
11377 && (o->flags & SEC_RELOC) != 0
11378 && o->reloc_count > 0
11379 && !bfd_is_abs_section (o->output_section))
11380 {
11381 Elf_Internal_Rela *internal_relocs;
11382 bfd_boolean r;
11383
11384 internal_relocs
11385 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11386 info->keep_memory);
11387 if (internal_relocs == NULL)
11388 return FALSE;
11389
11390 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11391
11392 if (elf_section_data (o)->relocs != internal_relocs)
11393 free (internal_relocs);
11394
11395 if (!r)
11396 return FALSE;
11397 }
11398 }
11399 }
11400
11401 /* Remove the symbols that were in the swept sections from the dynamic
11402 symbol table. GCFIXME: Anyone know how to get them out of the
11403 static symbol table as well? */
11404 sweep_info.info = info;
11405 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11406 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11407 &sweep_info);
11408
11409 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11410 return TRUE;
11411 }
11412
11413 /* Propagate collected vtable information. This is called through
11414 elf_link_hash_traverse. */
11415
11416 static bfd_boolean
11417 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11418 {
11419 if (h->root.type == bfd_link_hash_warning)
11420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11421
11422 /* Those that are not vtables. */
11423 if (h->vtable == NULL || h->vtable->parent == NULL)
11424 return TRUE;
11425
11426 /* Those vtables that do not have parents, we cannot merge. */
11427 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11428 return TRUE;
11429
11430 /* If we've already been done, exit. */
11431 if (h->vtable->used && h->vtable->used[-1])
11432 return TRUE;
11433
11434 /* Make sure the parent's table is up to date. */
11435 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11436
11437 if (h->vtable->used == NULL)
11438 {
11439 /* None of this table's entries were referenced. Re-use the
11440 parent's table. */
11441 h->vtable->used = h->vtable->parent->vtable->used;
11442 h->vtable->size = h->vtable->parent->vtable->size;
11443 }
11444 else
11445 {
11446 size_t n;
11447 bfd_boolean *cu, *pu;
11448
11449 /* Or the parent's entries into ours. */
11450 cu = h->vtable->used;
11451 cu[-1] = TRUE;
11452 pu = h->vtable->parent->vtable->used;
11453 if (pu != NULL)
11454 {
11455 const struct elf_backend_data *bed;
11456 unsigned int log_file_align;
11457
11458 bed = get_elf_backend_data (h->root.u.def.section->owner);
11459 log_file_align = bed->s->log_file_align;
11460 n = h->vtable->parent->vtable->size >> log_file_align;
11461 while (n--)
11462 {
11463 if (*pu)
11464 *cu = TRUE;
11465 pu++;
11466 cu++;
11467 }
11468 }
11469 }
11470
11471 return TRUE;
11472 }
11473
11474 static bfd_boolean
11475 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11476 {
11477 asection *sec;
11478 bfd_vma hstart, hend;
11479 Elf_Internal_Rela *relstart, *relend, *rel;
11480 const struct elf_backend_data *bed;
11481 unsigned int log_file_align;
11482
11483 if (h->root.type == bfd_link_hash_warning)
11484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11485
11486 /* Take care of both those symbols that do not describe vtables as
11487 well as those that are not loaded. */
11488 if (h->vtable == NULL || h->vtable->parent == NULL)
11489 return TRUE;
11490
11491 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11492 || h->root.type == bfd_link_hash_defweak);
11493
11494 sec = h->root.u.def.section;
11495 hstart = h->root.u.def.value;
11496 hend = hstart + h->size;
11497
11498 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11499 if (!relstart)
11500 return *(bfd_boolean *) okp = FALSE;
11501 bed = get_elf_backend_data (sec->owner);
11502 log_file_align = bed->s->log_file_align;
11503
11504 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11505
11506 for (rel = relstart; rel < relend; ++rel)
11507 if (rel->r_offset >= hstart && rel->r_offset < hend)
11508 {
11509 /* If the entry is in use, do nothing. */
11510 if (h->vtable->used
11511 && (rel->r_offset - hstart) < h->vtable->size)
11512 {
11513 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11514 if (h->vtable->used[entry])
11515 continue;
11516 }
11517 /* Otherwise, kill it. */
11518 rel->r_offset = rel->r_info = rel->r_addend = 0;
11519 }
11520
11521 return TRUE;
11522 }
11523
11524 /* Mark sections containing dynamically referenced symbols. When
11525 building shared libraries, we must assume that any visible symbol is
11526 referenced. */
11527
11528 bfd_boolean
11529 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11530 {
11531 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11532
11533 if (h->root.type == bfd_link_hash_warning)
11534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11535
11536 if ((h->root.type == bfd_link_hash_defined
11537 || h->root.type == bfd_link_hash_defweak)
11538 && (h->ref_dynamic
11539 || (!info->executable
11540 && h->def_regular
11541 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11542 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11543 h->root.u.def.section->flags |= SEC_KEEP;
11544
11545 return TRUE;
11546 }
11547
11548 /* Keep all sections containing symbols undefined on the command-line,
11549 and the section containing the entry symbol. */
11550
11551 void
11552 _bfd_elf_gc_keep (struct bfd_link_info *info)
11553 {
11554 struct bfd_sym_chain *sym;
11555
11556 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11557 {
11558 struct elf_link_hash_entry *h;
11559
11560 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11561 FALSE, FALSE, FALSE);
11562
11563 if (h != NULL
11564 && (h->root.type == bfd_link_hash_defined
11565 || h->root.type == bfd_link_hash_defweak)
11566 && !bfd_is_abs_section (h->root.u.def.section))
11567 h->root.u.def.section->flags |= SEC_KEEP;
11568 }
11569 }
11570
11571 /* Do mark and sweep of unused sections. */
11572
11573 bfd_boolean
11574 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11575 {
11576 bfd_boolean ok = TRUE;
11577 bfd *sub;
11578 elf_gc_mark_hook_fn gc_mark_hook;
11579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11580
11581 if (!bed->can_gc_sections
11582 || !is_elf_hash_table (info->hash))
11583 {
11584 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11585 return TRUE;
11586 }
11587
11588 bed->gc_keep (info);
11589
11590 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11591 at the .eh_frame section if we can mark the FDEs individually. */
11592 _bfd_elf_begin_eh_frame_parsing (info);
11593 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11594 {
11595 asection *sec;
11596 struct elf_reloc_cookie cookie;
11597
11598 sec = bfd_get_section_by_name (sub, ".eh_frame");
11599 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11600 {
11601 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11602 if (elf_section_data (sec)->sec_info)
11603 elf_eh_frame_section (sub) = sec;
11604 fini_reloc_cookie_for_section (&cookie, sec);
11605 }
11606 }
11607 _bfd_elf_end_eh_frame_parsing (info);
11608
11609 /* Apply transitive closure to the vtable entry usage info. */
11610 elf_link_hash_traverse (elf_hash_table (info),
11611 elf_gc_propagate_vtable_entries_used,
11612 &ok);
11613 if (!ok)
11614 return FALSE;
11615
11616 /* Kill the vtable relocations that were not used. */
11617 elf_link_hash_traverse (elf_hash_table (info),
11618 elf_gc_smash_unused_vtentry_relocs,
11619 &ok);
11620 if (!ok)
11621 return FALSE;
11622
11623 /* Mark dynamically referenced symbols. */
11624 if (elf_hash_table (info)->dynamic_sections_created)
11625 elf_link_hash_traverse (elf_hash_table (info),
11626 bed->gc_mark_dynamic_ref,
11627 info);
11628
11629 /* Grovel through relocs to find out who stays ... */
11630 gc_mark_hook = bed->gc_mark_hook;
11631 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11632 {
11633 asection *o;
11634
11635 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11636 continue;
11637
11638 for (o = sub->sections; o != NULL; o = o->next)
11639 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11640 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11641 return FALSE;
11642 }
11643
11644 /* Allow the backend to mark additional target specific sections. */
11645 if (bed->gc_mark_extra_sections)
11646 bed->gc_mark_extra_sections (info, gc_mark_hook);
11647
11648 /* ... and mark SEC_EXCLUDE for those that go. */
11649 return elf_gc_sweep (abfd, info);
11650 }
11651 \f
11652 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11653
11654 bfd_boolean
11655 bfd_elf_gc_record_vtinherit (bfd *abfd,
11656 asection *sec,
11657 struct elf_link_hash_entry *h,
11658 bfd_vma offset)
11659 {
11660 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11661 struct elf_link_hash_entry **search, *child;
11662 bfd_size_type extsymcount;
11663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11664
11665 /* The sh_info field of the symtab header tells us where the
11666 external symbols start. We don't care about the local symbols at
11667 this point. */
11668 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11669 if (!elf_bad_symtab (abfd))
11670 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11671
11672 sym_hashes = elf_sym_hashes (abfd);
11673 sym_hashes_end = sym_hashes + extsymcount;
11674
11675 /* Hunt down the child symbol, which is in this section at the same
11676 offset as the relocation. */
11677 for (search = sym_hashes; search != sym_hashes_end; ++search)
11678 {
11679 if ((child = *search) != NULL
11680 && (child->root.type == bfd_link_hash_defined
11681 || child->root.type == bfd_link_hash_defweak)
11682 && child->root.u.def.section == sec
11683 && child->root.u.def.value == offset)
11684 goto win;
11685 }
11686
11687 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11688 abfd, sec, (unsigned long) offset);
11689 bfd_set_error (bfd_error_invalid_operation);
11690 return FALSE;
11691
11692 win:
11693 if (!child->vtable)
11694 {
11695 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11696 if (!child->vtable)
11697 return FALSE;
11698 }
11699 if (!h)
11700 {
11701 /* This *should* only be the absolute section. It could potentially
11702 be that someone has defined a non-global vtable though, which
11703 would be bad. It isn't worth paging in the local symbols to be
11704 sure though; that case should simply be handled by the assembler. */
11705
11706 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11707 }
11708 else
11709 child->vtable->parent = h;
11710
11711 return TRUE;
11712 }
11713
11714 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11715
11716 bfd_boolean
11717 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11718 asection *sec ATTRIBUTE_UNUSED,
11719 struct elf_link_hash_entry *h,
11720 bfd_vma addend)
11721 {
11722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11723 unsigned int log_file_align = bed->s->log_file_align;
11724
11725 if (!h->vtable)
11726 {
11727 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11728 if (!h->vtable)
11729 return FALSE;
11730 }
11731
11732 if (addend >= h->vtable->size)
11733 {
11734 size_t size, bytes, file_align;
11735 bfd_boolean *ptr = h->vtable->used;
11736
11737 /* While the symbol is undefined, we have to be prepared to handle
11738 a zero size. */
11739 file_align = 1 << log_file_align;
11740 if (h->root.type == bfd_link_hash_undefined)
11741 size = addend + file_align;
11742 else
11743 {
11744 size = h->size;
11745 if (addend >= size)
11746 {
11747 /* Oops! We've got a reference past the defined end of
11748 the table. This is probably a bug -- shall we warn? */
11749 size = addend + file_align;
11750 }
11751 }
11752 size = (size + file_align - 1) & -file_align;
11753
11754 /* Allocate one extra entry for use as a "done" flag for the
11755 consolidation pass. */
11756 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11757
11758 if (ptr)
11759 {
11760 ptr = bfd_realloc (ptr - 1, bytes);
11761
11762 if (ptr != NULL)
11763 {
11764 size_t oldbytes;
11765
11766 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11767 * sizeof (bfd_boolean));
11768 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11769 }
11770 }
11771 else
11772 ptr = bfd_zmalloc (bytes);
11773
11774 if (ptr == NULL)
11775 return FALSE;
11776
11777 /* And arrange for that done flag to be at index -1. */
11778 h->vtable->used = ptr + 1;
11779 h->vtable->size = size;
11780 }
11781
11782 h->vtable->used[addend >> log_file_align] = TRUE;
11783
11784 return TRUE;
11785 }
11786
11787 struct alloc_got_off_arg {
11788 bfd_vma gotoff;
11789 struct bfd_link_info *info;
11790 };
11791
11792 /* We need a special top-level link routine to convert got reference counts
11793 to real got offsets. */
11794
11795 static bfd_boolean
11796 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11797 {
11798 struct alloc_got_off_arg *gofarg = arg;
11799 bfd *obfd = gofarg->info->output_bfd;
11800 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11801
11802 if (h->root.type == bfd_link_hash_warning)
11803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11804
11805 if (h->got.refcount > 0)
11806 {
11807 h->got.offset = gofarg->gotoff;
11808 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11809 }
11810 else
11811 h->got.offset = (bfd_vma) -1;
11812
11813 return TRUE;
11814 }
11815
11816 /* And an accompanying bit to work out final got entry offsets once
11817 we're done. Should be called from final_link. */
11818
11819 bfd_boolean
11820 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11821 struct bfd_link_info *info)
11822 {
11823 bfd *i;
11824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11825 bfd_vma gotoff;
11826 struct alloc_got_off_arg gofarg;
11827
11828 BFD_ASSERT (abfd == info->output_bfd);
11829
11830 if (! is_elf_hash_table (info->hash))
11831 return FALSE;
11832
11833 /* The GOT offset is relative to the .got section, but the GOT header is
11834 put into the .got.plt section, if the backend uses it. */
11835 if (bed->want_got_plt)
11836 gotoff = 0;
11837 else
11838 gotoff = bed->got_header_size;
11839
11840 /* Do the local .got entries first. */
11841 for (i = info->input_bfds; i; i = i->link_next)
11842 {
11843 bfd_signed_vma *local_got;
11844 bfd_size_type j, locsymcount;
11845 Elf_Internal_Shdr *symtab_hdr;
11846
11847 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11848 continue;
11849
11850 local_got = elf_local_got_refcounts (i);
11851 if (!local_got)
11852 continue;
11853
11854 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11855 if (elf_bad_symtab (i))
11856 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11857 else
11858 locsymcount = symtab_hdr->sh_info;
11859
11860 for (j = 0; j < locsymcount; ++j)
11861 {
11862 if (local_got[j] > 0)
11863 {
11864 local_got[j] = gotoff;
11865 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11866 }
11867 else
11868 local_got[j] = (bfd_vma) -1;
11869 }
11870 }
11871
11872 /* Then the global .got entries. .plt refcounts are handled by
11873 adjust_dynamic_symbol */
11874 gofarg.gotoff = gotoff;
11875 gofarg.info = info;
11876 elf_link_hash_traverse (elf_hash_table (info),
11877 elf_gc_allocate_got_offsets,
11878 &gofarg);
11879 return TRUE;
11880 }
11881
11882 /* Many folk need no more in the way of final link than this, once
11883 got entry reference counting is enabled. */
11884
11885 bfd_boolean
11886 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11887 {
11888 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11889 return FALSE;
11890
11891 /* Invoke the regular ELF backend linker to do all the work. */
11892 return bfd_elf_final_link (abfd, info);
11893 }
11894
11895 bfd_boolean
11896 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11897 {
11898 struct elf_reloc_cookie *rcookie = cookie;
11899
11900 if (rcookie->bad_symtab)
11901 rcookie->rel = rcookie->rels;
11902
11903 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11904 {
11905 unsigned long r_symndx;
11906
11907 if (! rcookie->bad_symtab)
11908 if (rcookie->rel->r_offset > offset)
11909 return FALSE;
11910 if (rcookie->rel->r_offset != offset)
11911 continue;
11912
11913 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11914 if (r_symndx == SHN_UNDEF)
11915 return TRUE;
11916
11917 if (r_symndx >= rcookie->locsymcount
11918 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11919 {
11920 struct elf_link_hash_entry *h;
11921
11922 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11923
11924 while (h->root.type == bfd_link_hash_indirect
11925 || h->root.type == bfd_link_hash_warning)
11926 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11927
11928 if ((h->root.type == bfd_link_hash_defined
11929 || h->root.type == bfd_link_hash_defweak)
11930 && elf_discarded_section (h->root.u.def.section))
11931 return TRUE;
11932 else
11933 return FALSE;
11934 }
11935 else
11936 {
11937 /* It's not a relocation against a global symbol,
11938 but it could be a relocation against a local
11939 symbol for a discarded section. */
11940 asection *isec;
11941 Elf_Internal_Sym *isym;
11942
11943 /* Need to: get the symbol; get the section. */
11944 isym = &rcookie->locsyms[r_symndx];
11945 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11946 if (isec != NULL && elf_discarded_section (isec))
11947 return TRUE;
11948 }
11949 return FALSE;
11950 }
11951 return FALSE;
11952 }
11953
11954 /* Discard unneeded references to discarded sections.
11955 Returns TRUE if any section's size was changed. */
11956 /* This function assumes that the relocations are in sorted order,
11957 which is true for all known assemblers. */
11958
11959 bfd_boolean
11960 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11961 {
11962 struct elf_reloc_cookie cookie;
11963 asection *stab, *eh;
11964 const struct elf_backend_data *bed;
11965 bfd *abfd;
11966 bfd_boolean ret = FALSE;
11967
11968 if (info->traditional_format
11969 || !is_elf_hash_table (info->hash))
11970 return FALSE;
11971
11972 _bfd_elf_begin_eh_frame_parsing (info);
11973 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11974 {
11975 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11976 continue;
11977
11978 bed = get_elf_backend_data (abfd);
11979
11980 if ((abfd->flags & DYNAMIC) != 0)
11981 continue;
11982
11983 eh = NULL;
11984 if (!info->relocatable)
11985 {
11986 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11987 if (eh != NULL
11988 && (eh->size == 0
11989 || bfd_is_abs_section (eh->output_section)))
11990 eh = NULL;
11991 }
11992
11993 stab = bfd_get_section_by_name (abfd, ".stab");
11994 if (stab != NULL
11995 && (stab->size == 0
11996 || bfd_is_abs_section (stab->output_section)
11997 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11998 stab = NULL;
11999
12000 if (stab == NULL
12001 && eh == NULL
12002 && bed->elf_backend_discard_info == NULL)
12003 continue;
12004
12005 if (!init_reloc_cookie (&cookie, info, abfd))
12006 return FALSE;
12007
12008 if (stab != NULL
12009 && stab->reloc_count > 0
12010 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12011 {
12012 if (_bfd_discard_section_stabs (abfd, stab,
12013 elf_section_data (stab)->sec_info,
12014 bfd_elf_reloc_symbol_deleted_p,
12015 &cookie))
12016 ret = TRUE;
12017 fini_reloc_cookie_rels (&cookie, stab);
12018 }
12019
12020 if (eh != NULL
12021 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12022 {
12023 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12024 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12025 bfd_elf_reloc_symbol_deleted_p,
12026 &cookie))
12027 ret = TRUE;
12028 fini_reloc_cookie_rels (&cookie, eh);
12029 }
12030
12031 if (bed->elf_backend_discard_info != NULL
12032 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12033 ret = TRUE;
12034
12035 fini_reloc_cookie (&cookie, abfd);
12036 }
12037 _bfd_elf_end_eh_frame_parsing (info);
12038
12039 if (info->eh_frame_hdr
12040 && !info->relocatable
12041 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12042 ret = TRUE;
12043
12044 return ret;
12045 }
12046
12047 /* For a SHT_GROUP section, return the group signature. For other
12048 sections, return the normal section name. */
12049
12050 static const char *
12051 section_signature (asection *sec)
12052 {
12053 if ((sec->flags & SEC_GROUP) != 0
12054 && elf_next_in_group (sec) != NULL
12055 && elf_group_name (elf_next_in_group (sec)) != NULL)
12056 return elf_group_name (elf_next_in_group (sec));
12057 return sec->name;
12058 }
12059
12060 void
12061 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12062 struct bfd_link_info *info)
12063 {
12064 flagword flags;
12065 const char *name, *p;
12066 struct bfd_section_already_linked *l;
12067 struct bfd_section_already_linked_hash_entry *already_linked_list;
12068
12069 if (sec->output_section == bfd_abs_section_ptr)
12070 return;
12071
12072 flags = sec->flags;
12073
12074 /* Return if it isn't a linkonce section. A comdat group section
12075 also has SEC_LINK_ONCE set. */
12076 if ((flags & SEC_LINK_ONCE) == 0)
12077 return;
12078
12079 /* Don't put group member sections on our list of already linked
12080 sections. They are handled as a group via their group section. */
12081 if (elf_sec_group (sec) != NULL)
12082 return;
12083
12084 /* FIXME: When doing a relocatable link, we may have trouble
12085 copying relocations in other sections that refer to local symbols
12086 in the section being discarded. Those relocations will have to
12087 be converted somehow; as of this writing I'm not sure that any of
12088 the backends handle that correctly.
12089
12090 It is tempting to instead not discard link once sections when
12091 doing a relocatable link (technically, they should be discarded
12092 whenever we are building constructors). However, that fails,
12093 because the linker winds up combining all the link once sections
12094 into a single large link once section, which defeats the purpose
12095 of having link once sections in the first place.
12096
12097 Also, not merging link once sections in a relocatable link
12098 causes trouble for MIPS ELF, which relies on link once semantics
12099 to handle the .reginfo section correctly. */
12100
12101 name = section_signature (sec);
12102
12103 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12104 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12105 p++;
12106 else
12107 p = name;
12108
12109 already_linked_list = bfd_section_already_linked_table_lookup (p);
12110
12111 for (l = already_linked_list->entry; l != NULL; l = l->next)
12112 {
12113 /* We may have 2 different types of sections on the list: group
12114 sections and linkonce sections. Match like sections. */
12115 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12116 && strcmp (name, section_signature (l->sec)) == 0
12117 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12118 {
12119 /* The section has already been linked. See if we should
12120 issue a warning. */
12121 switch (flags & SEC_LINK_DUPLICATES)
12122 {
12123 default:
12124 abort ();
12125
12126 case SEC_LINK_DUPLICATES_DISCARD:
12127 break;
12128
12129 case SEC_LINK_DUPLICATES_ONE_ONLY:
12130 (*_bfd_error_handler)
12131 (_("%B: ignoring duplicate section `%A'"),
12132 abfd, sec);
12133 break;
12134
12135 case SEC_LINK_DUPLICATES_SAME_SIZE:
12136 if (sec->size != l->sec->size)
12137 (*_bfd_error_handler)
12138 (_("%B: duplicate section `%A' has different size"),
12139 abfd, sec);
12140 break;
12141
12142 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12143 if (sec->size != l->sec->size)
12144 (*_bfd_error_handler)
12145 (_("%B: duplicate section `%A' has different size"),
12146 abfd, sec);
12147 else if (sec->size != 0)
12148 {
12149 bfd_byte *sec_contents, *l_sec_contents;
12150
12151 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12152 (*_bfd_error_handler)
12153 (_("%B: warning: could not read contents of section `%A'"),
12154 abfd, sec);
12155 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12156 &l_sec_contents))
12157 (*_bfd_error_handler)
12158 (_("%B: warning: could not read contents of section `%A'"),
12159 l->sec->owner, l->sec);
12160 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12161 (*_bfd_error_handler)
12162 (_("%B: warning: duplicate section `%A' has different contents"),
12163 abfd, sec);
12164
12165 if (sec_contents)
12166 free (sec_contents);
12167 if (l_sec_contents)
12168 free (l_sec_contents);
12169 }
12170 break;
12171 }
12172
12173 /* Set the output_section field so that lang_add_section
12174 does not create a lang_input_section structure for this
12175 section. Since there might be a symbol in the section
12176 being discarded, we must retain a pointer to the section
12177 which we are really going to use. */
12178 sec->output_section = bfd_abs_section_ptr;
12179 sec->kept_section = l->sec;
12180
12181 if (flags & SEC_GROUP)
12182 {
12183 asection *first = elf_next_in_group (sec);
12184 asection *s = first;
12185
12186 while (s != NULL)
12187 {
12188 s->output_section = bfd_abs_section_ptr;
12189 /* Record which group discards it. */
12190 s->kept_section = l->sec;
12191 s = elf_next_in_group (s);
12192 /* These lists are circular. */
12193 if (s == first)
12194 break;
12195 }
12196 }
12197
12198 return;
12199 }
12200 }
12201
12202 /* A single member comdat group section may be discarded by a
12203 linkonce section and vice versa. */
12204
12205 if ((flags & SEC_GROUP) != 0)
12206 {
12207 asection *first = elf_next_in_group (sec);
12208
12209 if (first != NULL && elf_next_in_group (first) == first)
12210 /* Check this single member group against linkonce sections. */
12211 for (l = already_linked_list->entry; l != NULL; l = l->next)
12212 if ((l->sec->flags & SEC_GROUP) == 0
12213 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12214 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12215 {
12216 first->output_section = bfd_abs_section_ptr;
12217 first->kept_section = l->sec;
12218 sec->output_section = bfd_abs_section_ptr;
12219 break;
12220 }
12221 }
12222 else
12223 /* Check this linkonce section against single member groups. */
12224 for (l = already_linked_list->entry; l != NULL; l = l->next)
12225 if (l->sec->flags & SEC_GROUP)
12226 {
12227 asection *first = elf_next_in_group (l->sec);
12228
12229 if (first != NULL
12230 && elf_next_in_group (first) == first
12231 && bfd_elf_match_symbols_in_sections (first, sec, info))
12232 {
12233 sec->output_section = bfd_abs_section_ptr;
12234 sec->kept_section = first;
12235 break;
12236 }
12237 }
12238
12239 /* This is the first section with this name. Record it. */
12240 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12241 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12242 }
12243
12244 bfd_boolean
12245 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12246 {
12247 return sym->st_shndx == SHN_COMMON;
12248 }
12249
12250 unsigned int
12251 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12252 {
12253 return SHN_COMMON;
12254 }
12255
12256 asection *
12257 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12258 {
12259 return bfd_com_section_ptr;
12260 }
12261
12262 bfd_vma
12263 _bfd_elf_default_got_elt_size (bfd *abfd,
12264 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12265 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12266 bfd *ibfd ATTRIBUTE_UNUSED,
12267 unsigned long symndx ATTRIBUTE_UNUSED)
12268 {
12269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12270 return bed->s->arch_size / 8;
12271 }
12272
12273 /* Routines to support the creation of dynamic relocs. */
12274
12275 /* Return true if NAME is a name of a relocation
12276 section associated with section S. */
12277
12278 static bfd_boolean
12279 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12280 {
12281 if (rela)
12282 return CONST_STRNEQ (name, ".rela")
12283 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12284
12285 return CONST_STRNEQ (name, ".rel")
12286 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12287 }
12288
12289 /* Returns the name of the dynamic reloc section associated with SEC. */
12290
12291 static const char *
12292 get_dynamic_reloc_section_name (bfd * abfd,
12293 asection * sec,
12294 bfd_boolean is_rela)
12295 {
12296 const char * name;
12297 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12298 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12299
12300 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12301 if (name == NULL)
12302 return NULL;
12303
12304 if (! is_reloc_section (is_rela, name, sec))
12305 {
12306 static bfd_boolean complained = FALSE;
12307
12308 if (! complained)
12309 {
12310 (*_bfd_error_handler)
12311 (_("%B: bad relocation section name `%s\'"), abfd, name);
12312 complained = TRUE;
12313 }
12314 name = NULL;
12315 }
12316
12317 return name;
12318 }
12319
12320 /* Returns the dynamic reloc section associated with SEC.
12321 If necessary compute the name of the dynamic reloc section based
12322 on SEC's name (looked up in ABFD's string table) and the setting
12323 of IS_RELA. */
12324
12325 asection *
12326 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12327 asection * sec,
12328 bfd_boolean is_rela)
12329 {
12330 asection * reloc_sec = elf_section_data (sec)->sreloc;
12331
12332 if (reloc_sec == NULL)
12333 {
12334 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12335
12336 if (name != NULL)
12337 {
12338 reloc_sec = bfd_get_section_by_name (abfd, name);
12339
12340 if (reloc_sec != NULL)
12341 elf_section_data (sec)->sreloc = reloc_sec;
12342 }
12343 }
12344
12345 return reloc_sec;
12346 }
12347
12348 /* Returns the dynamic reloc section associated with SEC. If the
12349 section does not exist it is created and attached to the DYNOBJ
12350 bfd and stored in the SRELOC field of SEC's elf_section_data
12351 structure.
12352
12353 ALIGNMENT is the alignment for the newly created section and
12354 IS_RELA defines whether the name should be .rela.<SEC's name>
12355 or .rel.<SEC's name>. The section name is looked up in the
12356 string table associated with ABFD. */
12357
12358 asection *
12359 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12360 bfd * dynobj,
12361 unsigned int alignment,
12362 bfd * abfd,
12363 bfd_boolean is_rela)
12364 {
12365 asection * reloc_sec = elf_section_data (sec)->sreloc;
12366
12367 if (reloc_sec == NULL)
12368 {
12369 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12370
12371 if (name == NULL)
12372 return NULL;
12373
12374 reloc_sec = bfd_get_section_by_name (dynobj, name);
12375
12376 if (reloc_sec == NULL)
12377 {
12378 flagword flags;
12379
12380 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12381 if ((sec->flags & SEC_ALLOC) != 0)
12382 flags |= SEC_ALLOC | SEC_LOAD;
12383
12384 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12385 if (reloc_sec != NULL)
12386 {
12387 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12388 reloc_sec = NULL;
12389 }
12390 }
12391
12392 elf_section_data (sec)->sreloc = reloc_sec;
12393 }
12394
12395 return reloc_sec;
12396 }
This page took 0.285644 seconds and 4 git commands to generate.