Remove unused local variable
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 const Elf_Internal_Sym *isym,
855 bfd_boolean definition, bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 if (!dynamic)
866 {
867 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
868 unsigned hvis = ELF_ST_VISIBILITY (h->other);
869
870 /* Keep the most constraining visibility. Leave the remainder
871 of the st_other field to elf_backend_merge_symbol_attribute. */
872 if (symvis - 1 < hvis - 1)
873 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
874 }
875 }
876
877 /* This function is called when we want to merge a new symbol with an
878 existing symbol. It handles the various cases which arise when we
879 find a definition in a dynamic object, or when there is already a
880 definition in a dynamic object. The new symbol is described by
881 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
882 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
883 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
884 of an old common symbol. We set OVERRIDE if the old symbol is
885 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
886 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
887 to change. By OK to change, we mean that we shouldn't warn if the
888 type or size does change. */
889
890 static bfd_boolean
891 _bfd_elf_merge_symbol (bfd *abfd,
892 struct bfd_link_info *info,
893 const char *name,
894 Elf_Internal_Sym *sym,
895 asection **psec,
896 bfd_vma *pvalue,
897 struct elf_link_hash_entry **sym_hash,
898 bfd **poldbfd,
899 bfd_boolean *pold_weak,
900 unsigned int *pold_alignment,
901 bfd_boolean *skip,
902 bfd_boolean *override,
903 bfd_boolean *type_change_ok,
904 bfd_boolean *size_change_ok)
905 {
906 asection *sec, *oldsec;
907 struct elf_link_hash_entry *h;
908 struct elf_link_hash_entry *hi;
909 struct elf_link_hash_entry *flip;
910 int bind;
911 bfd *oldbfd;
912 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
913 bfd_boolean newweak, oldweak, newfunc, oldfunc;
914 const struct elf_backend_data *bed;
915
916 *skip = FALSE;
917 *override = FALSE;
918
919 sec = *psec;
920 bind = ELF_ST_BIND (sym->st_info);
921
922 if (! bfd_is_und_section (sec))
923 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
924 else
925 h = ((struct elf_link_hash_entry *)
926 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
927 if (h == NULL)
928 return FALSE;
929 *sym_hash = h;
930
931 bed = get_elf_backend_data (abfd);
932
933 /* For merging, we only care about real symbols. But we need to make
934 sure that indirect symbol dynamic flags are updated. */
935 hi = h;
936 while (h->root.type == bfd_link_hash_indirect
937 || h->root.type == bfd_link_hash_warning)
938 h = (struct elf_link_hash_entry *) h->root.u.i.link;
939
940 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
941 existing symbol. */
942
943 oldbfd = NULL;
944 oldsec = NULL;
945 switch (h->root.type)
946 {
947 default:
948 break;
949
950 case bfd_link_hash_undefined:
951 case bfd_link_hash_undefweak:
952 oldbfd = h->root.u.undef.abfd;
953 break;
954
955 case bfd_link_hash_defined:
956 case bfd_link_hash_defweak:
957 oldbfd = h->root.u.def.section->owner;
958 oldsec = h->root.u.def.section;
959 break;
960
961 case bfd_link_hash_common:
962 oldbfd = h->root.u.c.p->section->owner;
963 oldsec = h->root.u.c.p->section;
964 if (pold_alignment)
965 *pold_alignment = h->root.u.c.p->alignment_power;
966 break;
967 }
968 if (poldbfd && *poldbfd == NULL)
969 *poldbfd = oldbfd;
970
971 /* Differentiate strong and weak symbols. */
972 newweak = bind == STB_WEAK;
973 oldweak = (h->root.type == bfd_link_hash_defweak
974 || h->root.type == bfd_link_hash_undefweak);
975 if (pold_weak)
976 *pold_weak = oldweak;
977
978 /* This code is for coping with dynamic objects, and is only useful
979 if we are doing an ELF link. */
980 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
981 return TRUE;
982
983 /* We have to check it for every instance since the first few may be
984 references and not all compilers emit symbol type for undefined
985 symbols. */
986 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
987
988 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
989 respectively, is from a dynamic object. */
990
991 newdyn = (abfd->flags & DYNAMIC) != 0;
992
993 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
994 syms and defined syms in dynamic libraries respectively.
995 ref_dynamic on the other hand can be set for a symbol defined in
996 a dynamic library, and def_dynamic may not be set; When the
997 definition in a dynamic lib is overridden by a definition in the
998 executable use of the symbol in the dynamic lib becomes a
999 reference to the executable symbol. */
1000 if (newdyn)
1001 {
1002 if (bfd_is_und_section (sec))
1003 {
1004 if (bind != STB_WEAK)
1005 {
1006 h->ref_dynamic_nonweak = 1;
1007 hi->ref_dynamic_nonweak = 1;
1008 }
1009 }
1010 else
1011 {
1012 h->dynamic_def = 1;
1013 hi->dynamic_def = 1;
1014 }
1015 }
1016
1017 /* If we just created the symbol, mark it as being an ELF symbol.
1018 Other than that, there is nothing to do--there is no merge issue
1019 with a newly defined symbol--so we just return. */
1020
1021 if (h->root.type == bfd_link_hash_new)
1022 {
1023 h->non_elf = 0;
1024 return TRUE;
1025 }
1026
1027 /* In cases involving weak versioned symbols, we may wind up trying
1028 to merge a symbol with itself. Catch that here, to avoid the
1029 confusion that results if we try to override a symbol with
1030 itself. The additional tests catch cases like
1031 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1032 dynamic object, which we do want to handle here. */
1033 if (abfd == oldbfd
1034 && (newweak || oldweak)
1035 && ((abfd->flags & DYNAMIC) == 0
1036 || !h->def_regular))
1037 return TRUE;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. */
1070 if (pold_alignment == NULL
1071 && newdyn
1072 && newdef
1073 && !olddyn
1074 && (((olddef || h->root.type == bfd_link_hash_common)
1075 && ELF_ST_TYPE (sym->st_info) != h->type
1076 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1077 && h->type != STT_NOTYPE
1078 && !(newfunc && oldfunc))
1079 || (olddef
1080 && ((h->type == STT_GNU_IFUNC)
1081 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
1087 /* Check TLS symbols. We don't check undefined symbols introduced
1088 by "ld -u" which have no type (and oldbfd NULL), and we don't
1089 check symbols from plugins because they also have no type. */
1090 if (oldbfd != NULL
1091 && (oldbfd->flags & BFD_PLUGIN) == 0
1092 && (abfd->flags & BFD_PLUGIN) == 0
1093 && ELF_ST_TYPE (sym->st_info) != h->type
1094 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1095 {
1096 bfd *ntbfd, *tbfd;
1097 bfd_boolean ntdef, tdef;
1098 asection *ntsec, *tsec;
1099
1100 if (h->type == STT_TLS)
1101 {
1102 ntbfd = abfd;
1103 ntsec = sec;
1104 ntdef = newdef;
1105 tbfd = oldbfd;
1106 tsec = oldsec;
1107 tdef = olddef;
1108 }
1109 else
1110 {
1111 ntbfd = oldbfd;
1112 ntsec = oldsec;
1113 ntdef = olddef;
1114 tbfd = abfd;
1115 tsec = sec;
1116 tdef = newdef;
1117 }
1118
1119 if (tdef && ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A "
1122 "mismatches non-TLS definition in %B section %A"),
1123 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1124 else if (!tdef && !ntdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS reference in %B "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, ntbfd, h->root.root.string);
1129 else if (tdef)
1130 (*_bfd_error_handler)
1131 (_("%s: TLS definition in %B section %A "
1132 "mismatches non-TLS reference in %B"),
1133 tbfd, tsec, ntbfd, h->root.root.string);
1134 else
1135 (*_bfd_error_handler)
1136 (_("%s: TLS reference in %B "
1137 "mismatches non-TLS definition in %B section %A"),
1138 tbfd, ntbfd, ntsec, h->root.root.string);
1139
1140 bfd_set_error (bfd_error_bad_value);
1141 return FALSE;
1142 }
1143
1144 /* If the old symbol has non-default visibility, we ignore the new
1145 definition from a dynamic object. */
1146 if (newdyn
1147 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1148 && !bfd_is_und_section (sec))
1149 {
1150 *skip = TRUE;
1151 /* Make sure this symbol is dynamic. */
1152 h->ref_dynamic = 1;
1153 hi->ref_dynamic = 1;
1154 /* A protected symbol has external availability. Make sure it is
1155 recorded as dynamic.
1156
1157 FIXME: Should we check type and size for protected symbol? */
1158 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1159 return bfd_elf_link_record_dynamic_symbol (info, h);
1160 else
1161 return TRUE;
1162 }
1163 else if (!newdyn
1164 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1165 && h->def_dynamic)
1166 {
1167 /* If the new symbol with non-default visibility comes from a
1168 relocatable file and the old definition comes from a dynamic
1169 object, we remove the old definition. */
1170 if (hi->root.type == bfd_link_hash_indirect)
1171 {
1172 /* Handle the case where the old dynamic definition is
1173 default versioned. We need to copy the symbol info from
1174 the symbol with default version to the normal one if it
1175 was referenced before. */
1176 if (h->ref_regular)
1177 {
1178 hi->root.type = h->root.type;
1179 h->root.type = bfd_link_hash_indirect;
1180 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1181
1182 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1183 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1184 {
1185 /* If the new symbol is hidden or internal, completely undo
1186 any dynamic link state. */
1187 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1188 h->forced_local = 0;
1189 h->ref_dynamic = 0;
1190 }
1191 else
1192 h->ref_dynamic = 1;
1193
1194 h->def_dynamic = 0;
1195 /* FIXME: Should we check type and size for protected symbol? */
1196 h->size = 0;
1197 h->type = 0;
1198
1199 h = hi;
1200 }
1201 else
1202 h = hi;
1203 }
1204
1205 /* If the old symbol was undefined before, then it will still be
1206 on the undefs list. If the new symbol is undefined or
1207 common, we can't make it bfd_link_hash_new here, because new
1208 undefined or common symbols will be added to the undefs list
1209 by _bfd_generic_link_add_one_symbol. Symbols may not be
1210 added twice to the undefs list. Also, if the new symbol is
1211 undefweak then we don't want to lose the strong undef. */
1212 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1213 {
1214 h->root.type = bfd_link_hash_undefined;
1215 h->root.u.undef.abfd = abfd;
1216 }
1217 else
1218 {
1219 h->root.type = bfd_link_hash_new;
1220 h->root.u.undef.abfd = NULL;
1221 }
1222
1223 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1224 {
1225 /* If the new symbol is hidden or internal, completely undo
1226 any dynamic link state. */
1227 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1228 h->forced_local = 0;
1229 h->ref_dynamic = 0;
1230 }
1231 else
1232 h->ref_dynamic = 1;
1233 h->def_dynamic = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1235 h->size = 0;
1236 h->type = 0;
1237 return TRUE;
1238 }
1239
1240 /* If a new weak symbol definition comes from a regular file and the
1241 old symbol comes from a dynamic library, we treat the new one as
1242 strong. Similarly, an old weak symbol definition from a regular
1243 file is treated as strong when the new symbol comes from a dynamic
1244 library. Further, an old weak symbol from a dynamic library is
1245 treated as strong if the new symbol is from a dynamic library.
1246 This reflects the way glibc's ld.so works.
1247
1248 Do this before setting *type_change_ok or *size_change_ok so that
1249 we warn properly when dynamic library symbols are overridden. */
1250
1251 if (newdef && !newdyn && olddyn)
1252 newweak = FALSE;
1253 if (olddef && newdyn)
1254 oldweak = FALSE;
1255
1256 /* Allow changes between different types of function symbol. */
1257 if (newfunc && oldfunc)
1258 *type_change_ok = TRUE;
1259
1260 /* It's OK to change the type if either the existing symbol or the
1261 new symbol is weak. A type change is also OK if the old symbol
1262 is undefined and the new symbol is defined. */
1263
1264 if (oldweak
1265 || newweak
1266 || (newdef
1267 && h->root.type == bfd_link_hash_undefined))
1268 *type_change_ok = TRUE;
1269
1270 /* It's OK to change the size if either the existing symbol or the
1271 new symbol is weak, or if the old symbol is undefined. */
1272
1273 if (*type_change_ok
1274 || h->root.type == bfd_link_hash_undefined)
1275 *size_change_ok = TRUE;
1276
1277 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1278 symbol, respectively, appears to be a common symbol in a dynamic
1279 object. If a symbol appears in an uninitialized section, and is
1280 not weak, and is not a function, then it may be a common symbol
1281 which was resolved when the dynamic object was created. We want
1282 to treat such symbols specially, because they raise special
1283 considerations when setting the symbol size: if the symbol
1284 appears as a common symbol in a regular object, and the size in
1285 the regular object is larger, we must make sure that we use the
1286 larger size. This problematic case can always be avoided in C,
1287 but it must be handled correctly when using Fortran shared
1288 libraries.
1289
1290 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1291 likewise for OLDDYNCOMMON and OLDDEF.
1292
1293 Note that this test is just a heuristic, and that it is quite
1294 possible to have an uninitialized symbol in a shared object which
1295 is really a definition, rather than a common symbol. This could
1296 lead to some minor confusion when the symbol really is a common
1297 symbol in some regular object. However, I think it will be
1298 harmless. */
1299
1300 if (newdyn
1301 && newdef
1302 && !newweak
1303 && (sec->flags & SEC_ALLOC) != 0
1304 && (sec->flags & SEC_LOAD) == 0
1305 && sym->st_size > 0
1306 && !newfunc)
1307 newdyncommon = TRUE;
1308 else
1309 newdyncommon = FALSE;
1310
1311 if (olddyn
1312 && olddef
1313 && h->root.type == bfd_link_hash_defined
1314 && h->def_dynamic
1315 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1316 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1317 && h->size > 0
1318 && !oldfunc)
1319 olddyncommon = TRUE;
1320 else
1321 olddyncommon = FALSE;
1322
1323 /* We now know everything about the old and new symbols. We ask the
1324 backend to check if we can merge them. */
1325 if (bed->merge_symbol != NULL)
1326 {
1327 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1328 return FALSE;
1329 sec = *psec;
1330 }
1331
1332 /* If both the old and the new symbols look like common symbols in a
1333 dynamic object, set the size of the symbol to the larger of the
1334 two. */
1335
1336 if (olddyncommon
1337 && newdyncommon
1338 && sym->st_size != h->size)
1339 {
1340 /* Since we think we have two common symbols, issue a multiple
1341 common warning if desired. Note that we only warn if the
1342 size is different. If the size is the same, we simply let
1343 the old symbol override the new one as normally happens with
1344 symbols defined in dynamic objects. */
1345
1346 if (! ((*info->callbacks->multiple_common)
1347 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1348 return FALSE;
1349
1350 if (sym->st_size > h->size)
1351 h->size = sym->st_size;
1352
1353 *size_change_ok = TRUE;
1354 }
1355
1356 /* If we are looking at a dynamic object, and we have found a
1357 definition, we need to see if the symbol was already defined by
1358 some other object. If so, we want to use the existing
1359 definition, and we do not want to report a multiple symbol
1360 definition error; we do this by clobbering *PSEC to be
1361 bfd_und_section_ptr.
1362
1363 We treat a common symbol as a definition if the symbol in the
1364 shared library is a function, since common symbols always
1365 represent variables; this can cause confusion in principle, but
1366 any such confusion would seem to indicate an erroneous program or
1367 shared library. We also permit a common symbol in a regular
1368 object to override a weak symbol in a shared object. */
1369
1370 if (newdyn
1371 && newdef
1372 && (olddef
1373 || (h->root.type == bfd_link_hash_common
1374 && (newweak || newfunc))))
1375 {
1376 *override = TRUE;
1377 newdef = FALSE;
1378 newdyncommon = FALSE;
1379
1380 *psec = sec = bfd_und_section_ptr;
1381 *size_change_ok = TRUE;
1382
1383 /* If we get here when the old symbol is a common symbol, then
1384 we are explicitly letting it override a weak symbol or
1385 function in a dynamic object, and we don't want to warn about
1386 a type change. If the old symbol is a defined symbol, a type
1387 change warning may still be appropriate. */
1388
1389 if (h->root.type == bfd_link_hash_common)
1390 *type_change_ok = TRUE;
1391 }
1392
1393 /* Handle the special case of an old common symbol merging with a
1394 new symbol which looks like a common symbol in a shared object.
1395 We change *PSEC and *PVALUE to make the new symbol look like a
1396 common symbol, and let _bfd_generic_link_add_one_symbol do the
1397 right thing. */
1398
1399 if (newdyncommon
1400 && h->root.type == bfd_link_hash_common)
1401 {
1402 *override = TRUE;
1403 newdef = FALSE;
1404 newdyncommon = FALSE;
1405 *pvalue = sym->st_size;
1406 *psec = sec = bed->common_section (oldsec);
1407 *size_change_ok = TRUE;
1408 }
1409
1410 /* Skip weak definitions of symbols that are already defined. */
1411 if (newdef && olddef && newweak)
1412 {
1413 /* Don't skip new non-IR weak syms. */
1414 if (!(oldbfd != NULL
1415 && (oldbfd->flags & BFD_PLUGIN) != 0
1416 && (abfd->flags & BFD_PLUGIN) == 0))
1417 {
1418 newdef = FALSE;
1419 *skip = TRUE;
1420 }
1421
1422 /* Merge st_other. If the symbol already has a dynamic index,
1423 but visibility says it should not be visible, turn it into a
1424 local symbol. */
1425 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1426 if (h->dynindx != -1)
1427 switch (ELF_ST_VISIBILITY (h->other))
1428 {
1429 case STV_INTERNAL:
1430 case STV_HIDDEN:
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 break;
1433 }
1434 }
1435
1436 /* If the old symbol is from a dynamic object, and the new symbol is
1437 a definition which is not from a dynamic object, then the new
1438 symbol overrides the old symbol. Symbols from regular files
1439 always take precedence over symbols from dynamic objects, even if
1440 they are defined after the dynamic object in the link.
1441
1442 As above, we again permit a common symbol in a regular object to
1443 override a definition in a shared object if the shared object
1444 symbol is a function or is weak. */
1445
1446 flip = NULL;
1447 if (!newdyn
1448 && (newdef
1449 || (bfd_is_com_section (sec)
1450 && (oldweak || oldfunc)))
1451 && olddyn
1452 && olddef
1453 && h->def_dynamic)
1454 {
1455 /* Change the hash table entry to undefined, and let
1456 _bfd_generic_link_add_one_symbol do the right thing with the
1457 new definition. */
1458
1459 h->root.type = bfd_link_hash_undefined;
1460 h->root.u.undef.abfd = h->root.u.def.section->owner;
1461 *size_change_ok = TRUE;
1462
1463 olddef = FALSE;
1464 olddyncommon = FALSE;
1465
1466 /* We again permit a type change when a common symbol may be
1467 overriding a function. */
1468
1469 if (bfd_is_com_section (sec))
1470 {
1471 if (oldfunc)
1472 {
1473 /* If a common symbol overrides a function, make sure
1474 that it isn't defined dynamically nor has type
1475 function. */
1476 h->def_dynamic = 0;
1477 h->type = STT_NOTYPE;
1478 }
1479 *type_change_ok = TRUE;
1480 }
1481
1482 if (hi->root.type == bfd_link_hash_indirect)
1483 flip = hi;
1484 else
1485 /* This union may have been set to be non-NULL when this symbol
1486 was seen in a dynamic object. We must force the union to be
1487 NULL, so that it is correct for a regular symbol. */
1488 h->verinfo.vertree = NULL;
1489 }
1490
1491 /* Handle the special case of a new common symbol merging with an
1492 old symbol that looks like it might be a common symbol defined in
1493 a shared object. Note that we have already handled the case in
1494 which a new common symbol should simply override the definition
1495 in the shared library. */
1496
1497 if (! newdyn
1498 && bfd_is_com_section (sec)
1499 && olddyncommon)
1500 {
1501 /* It would be best if we could set the hash table entry to a
1502 common symbol, but we don't know what to use for the section
1503 or the alignment. */
1504 if (! ((*info->callbacks->multiple_common)
1505 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1506 return FALSE;
1507
1508 /* If the presumed common symbol in the dynamic object is
1509 larger, pretend that the new symbol has its size. */
1510
1511 if (h->size > *pvalue)
1512 *pvalue = h->size;
1513
1514 /* We need to remember the alignment required by the symbol
1515 in the dynamic object. */
1516 BFD_ASSERT (pold_alignment);
1517 *pold_alignment = h->root.u.def.section->alignment_power;
1518
1519 olddef = FALSE;
1520 olddyncommon = FALSE;
1521
1522 h->root.type = bfd_link_hash_undefined;
1523 h->root.u.undef.abfd = h->root.u.def.section->owner;
1524
1525 *size_change_ok = TRUE;
1526 *type_change_ok = TRUE;
1527
1528 if (hi->root.type == bfd_link_hash_indirect)
1529 flip = hi;
1530 else
1531 h->verinfo.vertree = NULL;
1532 }
1533
1534 if (flip != NULL)
1535 {
1536 /* Handle the case where we had a versioned symbol in a dynamic
1537 library and now find a definition in a normal object. In this
1538 case, we make the versioned symbol point to the normal one. */
1539 flip->root.type = h->root.type;
1540 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1541 h->root.type = bfd_link_hash_indirect;
1542 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1543 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1544 if (h->def_dynamic)
1545 {
1546 h->def_dynamic = 0;
1547 flip->ref_dynamic = 1;
1548 }
1549 }
1550
1551 return TRUE;
1552 }
1553
1554 /* This function is called to create an indirect symbol from the
1555 default for the symbol with the default version if needed. The
1556 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1557 set DYNSYM if the new indirect symbol is dynamic. */
1558
1559 static bfd_boolean
1560 _bfd_elf_add_default_symbol (bfd *abfd,
1561 struct bfd_link_info *info,
1562 struct elf_link_hash_entry *h,
1563 const char *name,
1564 Elf_Internal_Sym *sym,
1565 asection *sec,
1566 bfd_vma value,
1567 bfd **poldbfd,
1568 bfd_boolean *dynsym)
1569 {
1570 bfd_boolean type_change_ok;
1571 bfd_boolean size_change_ok;
1572 bfd_boolean skip;
1573 char *shortname;
1574 struct elf_link_hash_entry *hi;
1575 struct bfd_link_hash_entry *bh;
1576 const struct elf_backend_data *bed;
1577 bfd_boolean collect;
1578 bfd_boolean dynamic;
1579 bfd_boolean override;
1580 char *p;
1581 size_t len, shortlen;
1582 asection *tmp_sec;
1583
1584 /* If this symbol has a version, and it is the default version, we
1585 create an indirect symbol from the default name to the fully
1586 decorated name. This will cause external references which do not
1587 specify a version to be bound to this version of the symbol. */
1588 p = strchr (name, ELF_VER_CHR);
1589 if (p == NULL || p[1] != ELF_VER_CHR)
1590 return TRUE;
1591
1592 bed = get_elf_backend_data (abfd);
1593 collect = bed->collect;
1594 dynamic = (abfd->flags & DYNAMIC) != 0;
1595
1596 shortlen = p - name;
1597 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1598 if (shortname == NULL)
1599 return FALSE;
1600 memcpy (shortname, name, shortlen);
1601 shortname[shortlen] = '\0';
1602
1603 /* We are going to create a new symbol. Merge it with any existing
1604 symbol with this name. For the purposes of the merge, act as
1605 though we were defining the symbol we just defined, although we
1606 actually going to define an indirect symbol. */
1607 type_change_ok = FALSE;
1608 size_change_ok = FALSE;
1609 tmp_sec = sec;
1610 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1611 &hi, poldbfd, NULL, NULL, &skip, &override,
1612 &type_change_ok, &size_change_ok))
1613 return FALSE;
1614
1615 if (skip)
1616 goto nondefault;
1617
1618 if (! override)
1619 {
1620 bh = &hi->root;
1621 if (! (_bfd_generic_link_add_one_symbol
1622 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1623 0, name, FALSE, collect, &bh)))
1624 return FALSE;
1625 hi = (struct elf_link_hash_entry *) bh;
1626 }
1627 else
1628 {
1629 /* In this case the symbol named SHORTNAME is overriding the
1630 indirect symbol we want to add. We were planning on making
1631 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1632 is the name without a version. NAME is the fully versioned
1633 name, and it is the default version.
1634
1635 Overriding means that we already saw a definition for the
1636 symbol SHORTNAME in a regular object, and it is overriding
1637 the symbol defined in the dynamic object.
1638
1639 When this happens, we actually want to change NAME, the
1640 symbol we just added, to refer to SHORTNAME. This will cause
1641 references to NAME in the shared object to become references
1642 to SHORTNAME in the regular object. This is what we expect
1643 when we override a function in a shared object: that the
1644 references in the shared object will be mapped to the
1645 definition in the regular object. */
1646
1647 while (hi->root.type == bfd_link_hash_indirect
1648 || hi->root.type == bfd_link_hash_warning)
1649 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1650
1651 h->root.type = bfd_link_hash_indirect;
1652 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1653 if (h->def_dynamic)
1654 {
1655 h->def_dynamic = 0;
1656 hi->ref_dynamic = 1;
1657 if (hi->ref_regular
1658 || hi->def_regular)
1659 {
1660 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1661 return FALSE;
1662 }
1663 }
1664
1665 /* Now set HI to H, so that the following code will set the
1666 other fields correctly. */
1667 hi = h;
1668 }
1669
1670 /* Check if HI is a warning symbol. */
1671 if (hi->root.type == bfd_link_hash_warning)
1672 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673
1674 /* If there is a duplicate definition somewhere, then HI may not
1675 point to an indirect symbol. We will have reported an error to
1676 the user in that case. */
1677
1678 if (hi->root.type == bfd_link_hash_indirect)
1679 {
1680 struct elf_link_hash_entry *ht;
1681
1682 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1683 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1684
1685 /* A reference to the SHORTNAME symbol from a dynamic library
1686 will be satisfied by the versioned symbol at runtime. In
1687 effect, we have a reference to the versioned symbol. */
1688 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1689 hi->dynamic_def |= ht->dynamic_def;
1690
1691 /* See if the new flags lead us to realize that the symbol must
1692 be dynamic. */
1693 if (! *dynsym)
1694 {
1695 if (! dynamic)
1696 {
1697 if (! info->executable
1698 || hi->def_dynamic
1699 || hi->ref_dynamic)
1700 *dynsym = TRUE;
1701 }
1702 else
1703 {
1704 if (hi->ref_regular)
1705 *dynsym = TRUE;
1706 }
1707 }
1708 }
1709
1710 /* We also need to define an indirection from the nondefault version
1711 of the symbol. */
1712
1713 nondefault:
1714 len = strlen (name);
1715 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1716 if (shortname == NULL)
1717 return FALSE;
1718 memcpy (shortname, name, shortlen);
1719 memcpy (shortname + shortlen, p + 1, len - shortlen);
1720
1721 /* Once again, merge with any existing symbol. */
1722 type_change_ok = FALSE;
1723 size_change_ok = FALSE;
1724 tmp_sec = sec;
1725 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1726 &hi, poldbfd, NULL, NULL, &skip, &override,
1727 &type_change_ok, &size_change_ok))
1728 return FALSE;
1729
1730 if (skip)
1731 return TRUE;
1732
1733 if (override)
1734 {
1735 /* Here SHORTNAME is a versioned name, so we don't expect to see
1736 the type of override we do in the case above unless it is
1737 overridden by a versioned definition. */
1738 if (hi->root.type != bfd_link_hash_defined
1739 && hi->root.type != bfd_link_hash_defweak)
1740 (*_bfd_error_handler)
1741 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1742 abfd, shortname);
1743 }
1744 else
1745 {
1746 bh = &hi->root;
1747 if (! (_bfd_generic_link_add_one_symbol
1748 (info, abfd, shortname, BSF_INDIRECT,
1749 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1750 return FALSE;
1751 hi = (struct elf_link_hash_entry *) bh;
1752
1753 /* If there is a duplicate definition somewhere, then HI may not
1754 point to an indirect symbol. We will have reported an error
1755 to the user in that case. */
1756
1757 if (hi->root.type == bfd_link_hash_indirect)
1758 {
1759 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1760 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1761 hi->dynamic_def |= h->dynamic_def;
1762
1763 /* See if the new flags lead us to realize that the symbol
1764 must be dynamic. */
1765 if (! *dynsym)
1766 {
1767 if (! dynamic)
1768 {
1769 if (! info->executable
1770 || hi->ref_dynamic)
1771 *dynsym = TRUE;
1772 }
1773 else
1774 {
1775 if (hi->ref_regular)
1776 *dynsym = TRUE;
1777 }
1778 }
1779 }
1780 }
1781
1782 return TRUE;
1783 }
1784 \f
1785 /* This routine is used to export all defined symbols into the dynamic
1786 symbol table. It is called via elf_link_hash_traverse. */
1787
1788 static bfd_boolean
1789 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1790 {
1791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1792
1793 /* Ignore indirect symbols. These are added by the versioning code. */
1794 if (h->root.type == bfd_link_hash_indirect)
1795 return TRUE;
1796
1797 /* Ignore this if we won't export it. */
1798 if (!eif->info->export_dynamic && !h->dynamic)
1799 return TRUE;
1800
1801 if (h->dynindx == -1
1802 && (h->def_regular || h->ref_regular)
1803 && ! bfd_hide_sym_by_version (eif->info->version_info,
1804 h->root.root.string))
1805 {
1806 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1807 {
1808 eif->failed = TRUE;
1809 return FALSE;
1810 }
1811 }
1812
1813 return TRUE;
1814 }
1815 \f
1816 /* Look through the symbols which are defined in other shared
1817 libraries and referenced here. Update the list of version
1818 dependencies. This will be put into the .gnu.version_r section.
1819 This function is called via elf_link_hash_traverse. */
1820
1821 static bfd_boolean
1822 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1823 void *data)
1824 {
1825 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1826 Elf_Internal_Verneed *t;
1827 Elf_Internal_Vernaux *a;
1828 bfd_size_type amt;
1829
1830 /* We only care about symbols defined in shared objects with version
1831 information. */
1832 if (!h->def_dynamic
1833 || h->def_regular
1834 || h->dynindx == -1
1835 || h->verinfo.verdef == NULL)
1836 return TRUE;
1837
1838 /* See if we already know about this version. */
1839 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1840 t != NULL;
1841 t = t->vn_nextref)
1842 {
1843 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1844 continue;
1845
1846 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1847 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1848 return TRUE;
1849
1850 break;
1851 }
1852
1853 /* This is a new version. Add it to tree we are building. */
1854
1855 if (t == NULL)
1856 {
1857 amt = sizeof *t;
1858 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1859 if (t == NULL)
1860 {
1861 rinfo->failed = TRUE;
1862 return FALSE;
1863 }
1864
1865 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1866 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1867 elf_tdata (rinfo->info->output_bfd)->verref = t;
1868 }
1869
1870 amt = sizeof *a;
1871 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (a == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 /* Note that we are copying a string pointer here, and testing it
1879 above. If bfd_elf_string_from_elf_section is ever changed to
1880 discard the string data when low in memory, this will have to be
1881 fixed. */
1882 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1883
1884 a->vna_flags = h->verinfo.verdef->vd_flags;
1885 a->vna_nextptr = t->vn_auxptr;
1886
1887 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1888 ++rinfo->vers;
1889
1890 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1891
1892 t->vn_auxptr = a;
1893
1894 return TRUE;
1895 }
1896
1897 /* Figure out appropriate versions for all the symbols. We may not
1898 have the version number script until we have read all of the input
1899 files, so until that point we don't know which symbols should be
1900 local. This function is called via elf_link_hash_traverse. */
1901
1902 static bfd_boolean
1903 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1904 {
1905 struct elf_info_failed *sinfo;
1906 struct bfd_link_info *info;
1907 const struct elf_backend_data *bed;
1908 struct elf_info_failed eif;
1909 char *p;
1910 bfd_size_type amt;
1911
1912 sinfo = (struct elf_info_failed *) data;
1913 info = sinfo->info;
1914
1915 /* Fix the symbol flags. */
1916 eif.failed = FALSE;
1917 eif.info = info;
1918 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1919 {
1920 if (eif.failed)
1921 sinfo->failed = TRUE;
1922 return FALSE;
1923 }
1924
1925 /* We only need version numbers for symbols defined in regular
1926 objects. */
1927 if (!h->def_regular)
1928 return TRUE;
1929
1930 bed = get_elf_backend_data (info->output_bfd);
1931 p = strchr (h->root.root.string, ELF_VER_CHR);
1932 if (p != NULL && h->verinfo.vertree == NULL)
1933 {
1934 struct bfd_elf_version_tree *t;
1935 bfd_boolean hidden;
1936
1937 hidden = TRUE;
1938
1939 /* There are two consecutive ELF_VER_CHR characters if this is
1940 not a hidden symbol. */
1941 ++p;
1942 if (*p == ELF_VER_CHR)
1943 {
1944 hidden = FALSE;
1945 ++p;
1946 }
1947
1948 /* If there is no version string, we can just return out. */
1949 if (*p == '\0')
1950 {
1951 if (hidden)
1952 h->hidden = 1;
1953 return TRUE;
1954 }
1955
1956 /* Look for the version. If we find it, it is no longer weak. */
1957 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1958 {
1959 if (strcmp (t->name, p) == 0)
1960 {
1961 size_t len;
1962 char *alc;
1963 struct bfd_elf_version_expr *d;
1964
1965 len = p - h->root.root.string;
1966 alc = (char *) bfd_malloc (len);
1967 if (alc == NULL)
1968 {
1969 sinfo->failed = TRUE;
1970 return FALSE;
1971 }
1972 memcpy (alc, h->root.root.string, len - 1);
1973 alc[len - 1] = '\0';
1974 if (alc[len - 2] == ELF_VER_CHR)
1975 alc[len - 2] = '\0';
1976
1977 h->verinfo.vertree = t;
1978 t->used = TRUE;
1979 d = NULL;
1980
1981 if (t->globals.list != NULL)
1982 d = (*t->match) (&t->globals, NULL, alc);
1983
1984 /* See if there is anything to force this symbol to
1985 local scope. */
1986 if (d == NULL && t->locals.list != NULL)
1987 {
1988 d = (*t->match) (&t->locals, NULL, alc);
1989 if (d != NULL
1990 && h->dynindx != -1
1991 && ! info->export_dynamic)
1992 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1993 }
1994
1995 free (alc);
1996 break;
1997 }
1998 }
1999
2000 /* If we are building an application, we need to create a
2001 version node for this version. */
2002 if (t == NULL && info->executable)
2003 {
2004 struct bfd_elf_version_tree **pp;
2005 int version_index;
2006
2007 /* If we aren't going to export this symbol, we don't need
2008 to worry about it. */
2009 if (h->dynindx == -1)
2010 return TRUE;
2011
2012 amt = sizeof *t;
2013 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2014 if (t == NULL)
2015 {
2016 sinfo->failed = TRUE;
2017 return FALSE;
2018 }
2019
2020 t->name = p;
2021 t->name_indx = (unsigned int) -1;
2022 t->used = TRUE;
2023
2024 version_index = 1;
2025 /* Don't count anonymous version tag. */
2026 if (sinfo->info->version_info != NULL
2027 && sinfo->info->version_info->vernum == 0)
2028 version_index = 0;
2029 for (pp = &sinfo->info->version_info;
2030 *pp != NULL;
2031 pp = &(*pp)->next)
2032 ++version_index;
2033 t->vernum = version_index;
2034
2035 *pp = t;
2036
2037 h->verinfo.vertree = t;
2038 }
2039 else if (t == NULL)
2040 {
2041 /* We could not find the version for a symbol when
2042 generating a shared archive. Return an error. */
2043 (*_bfd_error_handler)
2044 (_("%B: version node not found for symbol %s"),
2045 info->output_bfd, h->root.root.string);
2046 bfd_set_error (bfd_error_bad_value);
2047 sinfo->failed = TRUE;
2048 return FALSE;
2049 }
2050
2051 if (hidden)
2052 h->hidden = 1;
2053 }
2054
2055 /* If we don't have a version for this symbol, see if we can find
2056 something. */
2057 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2058 {
2059 bfd_boolean hide;
2060
2061 h->verinfo.vertree
2062 = bfd_find_version_for_sym (sinfo->info->version_info,
2063 h->root.root.string, &hide);
2064 if (h->verinfo.vertree != NULL && hide)
2065 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2066 }
2067
2068 return TRUE;
2069 }
2070 \f
2071 /* Read and swap the relocs from the section indicated by SHDR. This
2072 may be either a REL or a RELA section. The relocations are
2073 translated into RELA relocations and stored in INTERNAL_RELOCS,
2074 which should have already been allocated to contain enough space.
2075 The EXTERNAL_RELOCS are a buffer where the external form of the
2076 relocations should be stored.
2077
2078 Returns FALSE if something goes wrong. */
2079
2080 static bfd_boolean
2081 elf_link_read_relocs_from_section (bfd *abfd,
2082 asection *sec,
2083 Elf_Internal_Shdr *shdr,
2084 void *external_relocs,
2085 Elf_Internal_Rela *internal_relocs)
2086 {
2087 const struct elf_backend_data *bed;
2088 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2089 const bfd_byte *erela;
2090 const bfd_byte *erelaend;
2091 Elf_Internal_Rela *irela;
2092 Elf_Internal_Shdr *symtab_hdr;
2093 size_t nsyms;
2094
2095 /* Position ourselves at the start of the section. */
2096 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2097 return FALSE;
2098
2099 /* Read the relocations. */
2100 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2101 return FALSE;
2102
2103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2104 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2105
2106 bed = get_elf_backend_data (abfd);
2107
2108 /* Convert the external relocations to the internal format. */
2109 if (shdr->sh_entsize == bed->s->sizeof_rel)
2110 swap_in = bed->s->swap_reloc_in;
2111 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2112 swap_in = bed->s->swap_reloca_in;
2113 else
2114 {
2115 bfd_set_error (bfd_error_wrong_format);
2116 return FALSE;
2117 }
2118
2119 erela = (const bfd_byte *) external_relocs;
2120 erelaend = erela + shdr->sh_size;
2121 irela = internal_relocs;
2122 while (erela < erelaend)
2123 {
2124 bfd_vma r_symndx;
2125
2126 (*swap_in) (abfd, erela, irela);
2127 r_symndx = ELF32_R_SYM (irela->r_info);
2128 if (bed->s->arch_size == 64)
2129 r_symndx >>= 24;
2130 if (nsyms > 0)
2131 {
2132 if ((size_t) r_symndx >= nsyms)
2133 {
2134 (*_bfd_error_handler)
2135 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2136 " for offset 0x%lx in section `%A'"),
2137 abfd, sec,
2138 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2139 bfd_set_error (bfd_error_bad_value);
2140 return FALSE;
2141 }
2142 }
2143 else if (r_symndx != STN_UNDEF)
2144 {
2145 (*_bfd_error_handler)
2146 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2147 " when the object file has no symbol table"),
2148 abfd, sec,
2149 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2150 bfd_set_error (bfd_error_bad_value);
2151 return FALSE;
2152 }
2153 irela += bed->s->int_rels_per_ext_rel;
2154 erela += shdr->sh_entsize;
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 /* Read and swap the relocs for a section O. They may have been
2161 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2162 not NULL, they are used as buffers to read into. They are known to
2163 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2164 the return value is allocated using either malloc or bfd_alloc,
2165 according to the KEEP_MEMORY argument. If O has two relocation
2166 sections (both REL and RELA relocations), then the REL_HDR
2167 relocations will appear first in INTERNAL_RELOCS, followed by the
2168 RELA_HDR relocations. */
2169
2170 Elf_Internal_Rela *
2171 _bfd_elf_link_read_relocs (bfd *abfd,
2172 asection *o,
2173 void *external_relocs,
2174 Elf_Internal_Rela *internal_relocs,
2175 bfd_boolean keep_memory)
2176 {
2177 void *alloc1 = NULL;
2178 Elf_Internal_Rela *alloc2 = NULL;
2179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2180 struct bfd_elf_section_data *esdo = elf_section_data (o);
2181 Elf_Internal_Rela *internal_rela_relocs;
2182
2183 if (esdo->relocs != NULL)
2184 return esdo->relocs;
2185
2186 if (o->reloc_count == 0)
2187 return NULL;
2188
2189 if (internal_relocs == NULL)
2190 {
2191 bfd_size_type size;
2192
2193 size = o->reloc_count;
2194 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 if (keep_memory)
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2197 else
2198 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2199 if (internal_relocs == NULL)
2200 goto error_return;
2201 }
2202
2203 if (external_relocs == NULL)
2204 {
2205 bfd_size_type size = 0;
2206
2207 if (esdo->rel.hdr)
2208 size += esdo->rel.hdr->sh_size;
2209 if (esdo->rela.hdr)
2210 size += esdo->rela.hdr->sh_size;
2211
2212 alloc1 = bfd_malloc (size);
2213 if (alloc1 == NULL)
2214 goto error_return;
2215 external_relocs = alloc1;
2216 }
2217
2218 internal_rela_relocs = internal_relocs;
2219 if (esdo->rel.hdr)
2220 {
2221 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2222 external_relocs,
2223 internal_relocs))
2224 goto error_return;
2225 external_relocs = (((bfd_byte *) external_relocs)
2226 + esdo->rel.hdr->sh_size);
2227 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2228 * bed->s->int_rels_per_ext_rel);
2229 }
2230
2231 if (esdo->rela.hdr
2232 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2233 external_relocs,
2234 internal_rela_relocs)))
2235 goto error_return;
2236
2237 /* Cache the results for next time, if we can. */
2238 if (keep_memory)
2239 esdo->relocs = internal_relocs;
2240
2241 if (alloc1 != NULL)
2242 free (alloc1);
2243
2244 /* Don't free alloc2, since if it was allocated we are passing it
2245 back (under the name of internal_relocs). */
2246
2247 return internal_relocs;
2248
2249 error_return:
2250 if (alloc1 != NULL)
2251 free (alloc1);
2252 if (alloc2 != NULL)
2253 {
2254 if (keep_memory)
2255 bfd_release (abfd, alloc2);
2256 else
2257 free (alloc2);
2258 }
2259 return NULL;
2260 }
2261
2262 /* Compute the size of, and allocate space for, REL_HDR which is the
2263 section header for a section containing relocations for O. */
2264
2265 static bfd_boolean
2266 _bfd_elf_link_size_reloc_section (bfd *abfd,
2267 struct bfd_elf_section_reloc_data *reldata)
2268 {
2269 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2270
2271 /* That allows us to calculate the size of the section. */
2272 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2273
2274 /* The contents field must last into write_object_contents, so we
2275 allocate it with bfd_alloc rather than malloc. Also since we
2276 cannot be sure that the contents will actually be filled in,
2277 we zero the allocated space. */
2278 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2279 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2280 return FALSE;
2281
2282 if (reldata->hashes == NULL && reldata->count)
2283 {
2284 struct elf_link_hash_entry **p;
2285
2286 p = (struct elf_link_hash_entry **)
2287 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2288 if (p == NULL)
2289 return FALSE;
2290
2291 reldata->hashes = p;
2292 }
2293
2294 return TRUE;
2295 }
2296
2297 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2298 originated from the section given by INPUT_REL_HDR) to the
2299 OUTPUT_BFD. */
2300
2301 bfd_boolean
2302 _bfd_elf_link_output_relocs (bfd *output_bfd,
2303 asection *input_section,
2304 Elf_Internal_Shdr *input_rel_hdr,
2305 Elf_Internal_Rela *internal_relocs,
2306 struct elf_link_hash_entry **rel_hash
2307 ATTRIBUTE_UNUSED)
2308 {
2309 Elf_Internal_Rela *irela;
2310 Elf_Internal_Rela *irelaend;
2311 bfd_byte *erel;
2312 struct bfd_elf_section_reloc_data *output_reldata;
2313 asection *output_section;
2314 const struct elf_backend_data *bed;
2315 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2316 struct bfd_elf_section_data *esdo;
2317
2318 output_section = input_section->output_section;
2319
2320 bed = get_elf_backend_data (output_bfd);
2321 esdo = elf_section_data (output_section);
2322 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2323 {
2324 output_reldata = &esdo->rel;
2325 swap_out = bed->s->swap_reloc_out;
2326 }
2327 else if (esdo->rela.hdr
2328 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329 {
2330 output_reldata = &esdo->rela;
2331 swap_out = bed->s->swap_reloca_out;
2332 }
2333 else
2334 {
2335 (*_bfd_error_handler)
2336 (_("%B: relocation size mismatch in %B section %A"),
2337 output_bfd, input_section->owner, input_section);
2338 bfd_set_error (bfd_error_wrong_format);
2339 return FALSE;
2340 }
2341
2342 erel = output_reldata->hdr->contents;
2343 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2344 irela = internal_relocs;
2345 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2346 * bed->s->int_rels_per_ext_rel);
2347 while (irela < irelaend)
2348 {
2349 (*swap_out) (output_bfd, irela, erel);
2350 irela += bed->s->int_rels_per_ext_rel;
2351 erel += input_rel_hdr->sh_entsize;
2352 }
2353
2354 /* Bump the counter, so that we know where to add the next set of
2355 relocations. */
2356 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2357
2358 return TRUE;
2359 }
2360 \f
2361 /* Make weak undefined symbols in PIE dynamic. */
2362
2363 bfd_boolean
2364 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2365 struct elf_link_hash_entry *h)
2366 {
2367 if (info->pie
2368 && h->dynindx == -1
2369 && h->root.type == bfd_link_hash_undefweak)
2370 return bfd_elf_link_record_dynamic_symbol (info, h);
2371
2372 return TRUE;
2373 }
2374
2375 /* Fix up the flags for a symbol. This handles various cases which
2376 can only be fixed after all the input files are seen. This is
2377 currently called by both adjust_dynamic_symbol and
2378 assign_sym_version, which is unnecessary but perhaps more robust in
2379 the face of future changes. */
2380
2381 static bfd_boolean
2382 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2383 struct elf_info_failed *eif)
2384 {
2385 const struct elf_backend_data *bed;
2386
2387 /* If this symbol was mentioned in a non-ELF file, try to set
2388 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2389 permit a non-ELF file to correctly refer to a symbol defined in
2390 an ELF dynamic object. */
2391 if (h->non_elf)
2392 {
2393 while (h->root.type == bfd_link_hash_indirect)
2394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2395
2396 if (h->root.type != bfd_link_hash_defined
2397 && h->root.type != bfd_link_hash_defweak)
2398 {
2399 h->ref_regular = 1;
2400 h->ref_regular_nonweak = 1;
2401 }
2402 else
2403 {
2404 if (h->root.u.def.section->owner != NULL
2405 && (bfd_get_flavour (h->root.u.def.section->owner)
2406 == bfd_target_elf_flavour))
2407 {
2408 h->ref_regular = 1;
2409 h->ref_regular_nonweak = 1;
2410 }
2411 else
2412 h->def_regular = 1;
2413 }
2414
2415 if (h->dynindx == -1
2416 && (h->def_dynamic
2417 || h->ref_dynamic))
2418 {
2419 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2420 {
2421 eif->failed = TRUE;
2422 return FALSE;
2423 }
2424 }
2425 }
2426 else
2427 {
2428 /* Unfortunately, NON_ELF is only correct if the symbol
2429 was first seen in a non-ELF file. Fortunately, if the symbol
2430 was first seen in an ELF file, we're probably OK unless the
2431 symbol was defined in a non-ELF file. Catch that case here.
2432 FIXME: We're still in trouble if the symbol was first seen in
2433 a dynamic object, and then later in a non-ELF regular object. */
2434 if ((h->root.type == bfd_link_hash_defined
2435 || h->root.type == bfd_link_hash_defweak)
2436 && !h->def_regular
2437 && (h->root.u.def.section->owner != NULL
2438 ? (bfd_get_flavour (h->root.u.def.section->owner)
2439 != bfd_target_elf_flavour)
2440 : (bfd_is_abs_section (h->root.u.def.section)
2441 && !h->def_dynamic)))
2442 h->def_regular = 1;
2443 }
2444
2445 /* Backend specific symbol fixup. */
2446 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2447 if (bed->elf_backend_fixup_symbol
2448 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2449 return FALSE;
2450
2451 /* If this is a final link, and the symbol was defined as a common
2452 symbol in a regular object file, and there was no definition in
2453 any dynamic object, then the linker will have allocated space for
2454 the symbol in a common section but the DEF_REGULAR
2455 flag will not have been set. */
2456 if (h->root.type == bfd_link_hash_defined
2457 && !h->def_regular
2458 && h->ref_regular
2459 && !h->def_dynamic
2460 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2461 h->def_regular = 1;
2462
2463 /* If -Bsymbolic was used (which means to bind references to global
2464 symbols to the definition within the shared object), and this
2465 symbol was defined in a regular object, then it actually doesn't
2466 need a PLT entry. Likewise, if the symbol has non-default
2467 visibility. If the symbol has hidden or internal visibility, we
2468 will force it local. */
2469 if (h->needs_plt
2470 && eif->info->shared
2471 && is_elf_hash_table (eif->info->hash)
2472 && (SYMBOLIC_BIND (eif->info, h)
2473 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2474 && h->def_regular)
2475 {
2476 bfd_boolean force_local;
2477
2478 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2479 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2480 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2481 }
2482
2483 /* If a weak undefined symbol has non-default visibility, we also
2484 hide it from the dynamic linker. */
2485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2486 && h->root.type == bfd_link_hash_undefweak)
2487 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2488
2489 /* If this is a weak defined symbol in a dynamic object, and we know
2490 the real definition in the dynamic object, copy interesting flags
2491 over to the real definition. */
2492 if (h->u.weakdef != NULL)
2493 {
2494 /* If the real definition is defined by a regular object file,
2495 don't do anything special. See the longer description in
2496 _bfd_elf_adjust_dynamic_symbol, below. */
2497 if (h->u.weakdef->def_regular)
2498 h->u.weakdef = NULL;
2499 else
2500 {
2501 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2502
2503 while (h->root.type == bfd_link_hash_indirect)
2504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2505
2506 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2507 || h->root.type == bfd_link_hash_defweak);
2508 BFD_ASSERT (weakdef->def_dynamic);
2509 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2510 || weakdef->root.type == bfd_link_hash_defweak);
2511 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2512 }
2513 }
2514
2515 return TRUE;
2516 }
2517
2518 /* Make the backend pick a good value for a dynamic symbol. This is
2519 called via elf_link_hash_traverse, and also calls itself
2520 recursively. */
2521
2522 static bfd_boolean
2523 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2524 {
2525 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2526 bfd *dynobj;
2527 const struct elf_backend_data *bed;
2528
2529 if (! is_elf_hash_table (eif->info->hash))
2530 return FALSE;
2531
2532 /* Ignore indirect symbols. These are added by the versioning code. */
2533 if (h->root.type == bfd_link_hash_indirect)
2534 return TRUE;
2535
2536 /* Fix the symbol flags. */
2537 if (! _bfd_elf_fix_symbol_flags (h, eif))
2538 return FALSE;
2539
2540 /* If this symbol does not require a PLT entry, and it is not
2541 defined by a dynamic object, or is not referenced by a regular
2542 object, ignore it. We do have to handle a weak defined symbol,
2543 even if no regular object refers to it, if we decided to add it
2544 to the dynamic symbol table. FIXME: Do we normally need to worry
2545 about symbols which are defined by one dynamic object and
2546 referenced by another one? */
2547 if (!h->needs_plt
2548 && h->type != STT_GNU_IFUNC
2549 && (h->def_regular
2550 || !h->def_dynamic
2551 || (!h->ref_regular
2552 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2553 {
2554 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2555 return TRUE;
2556 }
2557
2558 /* If we've already adjusted this symbol, don't do it again. This
2559 can happen via a recursive call. */
2560 if (h->dynamic_adjusted)
2561 return TRUE;
2562
2563 /* Don't look at this symbol again. Note that we must set this
2564 after checking the above conditions, because we may look at a
2565 symbol once, decide not to do anything, and then get called
2566 recursively later after REF_REGULAR is set below. */
2567 h->dynamic_adjusted = 1;
2568
2569 /* If this is a weak definition, and we know a real definition, and
2570 the real symbol is not itself defined by a regular object file,
2571 then get a good value for the real definition. We handle the
2572 real symbol first, for the convenience of the backend routine.
2573
2574 Note that there is a confusing case here. If the real definition
2575 is defined by a regular object file, we don't get the real symbol
2576 from the dynamic object, but we do get the weak symbol. If the
2577 processor backend uses a COPY reloc, then if some routine in the
2578 dynamic object changes the real symbol, we will not see that
2579 change in the corresponding weak symbol. This is the way other
2580 ELF linkers work as well, and seems to be a result of the shared
2581 library model.
2582
2583 I will clarify this issue. Most SVR4 shared libraries define the
2584 variable _timezone and define timezone as a weak synonym. The
2585 tzset call changes _timezone. If you write
2586 extern int timezone;
2587 int _timezone = 5;
2588 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2589 you might expect that, since timezone is a synonym for _timezone,
2590 the same number will print both times. However, if the processor
2591 backend uses a COPY reloc, then actually timezone will be copied
2592 into your process image, and, since you define _timezone
2593 yourself, _timezone will not. Thus timezone and _timezone will
2594 wind up at different memory locations. The tzset call will set
2595 _timezone, leaving timezone unchanged. */
2596
2597 if (h->u.weakdef != NULL)
2598 {
2599 /* If we get to this point, there is an implicit reference to
2600 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2601 h->u.weakdef->ref_regular = 1;
2602
2603 /* Ensure that the backend adjust_dynamic_symbol function sees
2604 H->U.WEAKDEF before H by recursively calling ourselves. */
2605 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2606 return FALSE;
2607 }
2608
2609 /* If a symbol has no type and no size and does not require a PLT
2610 entry, then we are probably about to do the wrong thing here: we
2611 are probably going to create a COPY reloc for an empty object.
2612 This case can arise when a shared object is built with assembly
2613 code, and the assembly code fails to set the symbol type. */
2614 if (h->size == 0
2615 && h->type == STT_NOTYPE
2616 && !h->needs_plt)
2617 (*_bfd_error_handler)
2618 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2619 h->root.root.string);
2620
2621 dynobj = elf_hash_table (eif->info)->dynobj;
2622 bed = get_elf_backend_data (dynobj);
2623
2624 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2625 {
2626 eif->failed = TRUE;
2627 return FALSE;
2628 }
2629
2630 return TRUE;
2631 }
2632
2633 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2634 DYNBSS. */
2635
2636 bfd_boolean
2637 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 return TRUE;
2677 }
2678
2679 /* Adjust all external symbols pointing into SEC_MERGE sections
2680 to reflect the object merging within the sections. */
2681
2682 static bfd_boolean
2683 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2684 {
2685 asection *sec;
2686
2687 if ((h->root.type == bfd_link_hash_defined
2688 || h->root.type == bfd_link_hash_defweak)
2689 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2691 {
2692 bfd *output_bfd = (bfd *) data;
2693
2694 h->root.u.def.value =
2695 _bfd_merged_section_offset (output_bfd,
2696 &h->root.u.def.section,
2697 elf_section_data (sec)->sec_info,
2698 h->root.u.def.value);
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Returns false if the symbol referred to by H should be considered
2705 to resolve local to the current module, and true if it should be
2706 considered to bind dynamically. */
2707
2708 bfd_boolean
2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 struct bfd_link_info *info,
2711 bfd_boolean not_local_protected)
2712 {
2713 bfd_boolean binding_stays_local_p;
2714 const struct elf_backend_data *bed;
2715 struct elf_link_hash_table *hash_table;
2716
2717 if (h == NULL)
2718 return FALSE;
2719
2720 while (h->root.type == bfd_link_hash_indirect
2721 || h->root.type == bfd_link_hash_warning)
2722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723
2724 /* If it was forced local, then clearly it's not dynamic. */
2725 if (h->dynindx == -1)
2726 return FALSE;
2727 if (h->forced_local)
2728 return FALSE;
2729
2730 /* Identify the cases where name binding rules say that a
2731 visible symbol resolves locally. */
2732 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733
2734 switch (ELF_ST_VISIBILITY (h->other))
2735 {
2736 case STV_INTERNAL:
2737 case STV_HIDDEN:
2738 return FALSE;
2739
2740 case STV_PROTECTED:
2741 hash_table = elf_hash_table (info);
2742 if (!is_elf_hash_table (hash_table))
2743 return FALSE;
2744
2745 bed = get_elf_backend_data (hash_table->dynobj);
2746
2747 /* Proper resolution for function pointer equality may require
2748 that these symbols perhaps be resolved dynamically, even though
2749 we should be resolving them to the current module. */
2750 if (!not_local_protected || !bed->is_function_type (h->type))
2751 binding_stays_local_p = TRUE;
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 /* If it isn't defined locally, then clearly it's dynamic. */
2759 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2760 return TRUE;
2761
2762 /* Otherwise, the symbol is dynamic if binding rules don't tell
2763 us that it remains local. */
2764 return !binding_stays_local_p;
2765 }
2766
2767 /* Return true if the symbol referred to by H should be considered
2768 to resolve local to the current module, and false otherwise. Differs
2769 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770 undefined symbols. The two functions are virtually identical except
2771 for the place where forced_local and dynindx == -1 are tested. If
2772 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2773 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2774 the symbol is local only for defined symbols.
2775 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2776 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2777 treatment of undefined weak symbols. For those that do not make
2778 undefined weak symbols dynamic, both functions may return false. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2793 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795 return TRUE;
2796
2797 /* Common symbols that become definitions don't get the DEF_REGULAR
2798 flag set, so test it first, and don't bail out. */
2799 if (ELF_COMMON_DEF_P (h))
2800 /* Do nothing. */;
2801 /* If we don't have a definition in a regular file, then we can't
2802 resolve locally. The sym is either undefined or dynamic. */
2803 else if (!h->def_regular)
2804 return FALSE;
2805
2806 /* Forced local symbols resolve locally. */
2807 if (h->forced_local)
2808 return TRUE;
2809
2810 /* As do non-dynamic symbols. */
2811 if (h->dynindx == -1)
2812 return TRUE;
2813
2814 /* At this point, we know the symbol is defined and dynamic. In an
2815 executable it must resolve locally, likewise when building symbolic
2816 shared libraries. */
2817 if (info->executable || SYMBOLIC_BIND (info, h))
2818 return TRUE;
2819
2820 /* Now deal with defined dynamic symbols in shared libraries. Ones
2821 with default visibility might not resolve locally. */
2822 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823 return FALSE;
2824
2825 hash_table = elf_hash_table (info);
2826 if (!is_elf_hash_table (hash_table))
2827 return TRUE;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830
2831 /* STV_PROTECTED non-function symbols are local. */
2832 if (!bed->is_function_type (h->type))
2833 return TRUE;
2834
2835 /* Function pointer equality tests may require that STV_PROTECTED
2836 symbols be treated as dynamic symbols. If the address of a
2837 function not defined in an executable is set to that function's
2838 plt entry in the executable, then the address of the function in
2839 a shared library must also be the plt entry in the executable. */
2840 return local_protected;
2841 }
2842
2843 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2844 aligned. Returns the first TLS output section. */
2845
2846 struct bfd_section *
2847 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2848 {
2849 struct bfd_section *sec, *tls;
2850 unsigned int align = 0;
2851
2852 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2853 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2854 break;
2855 tls = sec;
2856
2857 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2858 if (sec->alignment_power > align)
2859 align = sec->alignment_power;
2860
2861 elf_hash_table (info)->tls_sec = tls;
2862
2863 /* Ensure the alignment of the first section is the largest alignment,
2864 so that the tls segment starts aligned. */
2865 if (tls != NULL)
2866 tls->alignment_power = align;
2867
2868 return tls;
2869 }
2870
2871 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2872 static bfd_boolean
2873 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2874 Elf_Internal_Sym *sym)
2875 {
2876 const struct elf_backend_data *bed;
2877
2878 /* Local symbols do not count, but target specific ones might. */
2879 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2880 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2881 return FALSE;
2882
2883 bed = get_elf_backend_data (abfd);
2884 /* Function symbols do not count. */
2885 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2886 return FALSE;
2887
2888 /* If the section is undefined, then so is the symbol. */
2889 if (sym->st_shndx == SHN_UNDEF)
2890 return FALSE;
2891
2892 /* If the symbol is defined in the common section, then
2893 it is a common definition and so does not count. */
2894 if (bed->common_definition (sym))
2895 return FALSE;
2896
2897 /* If the symbol is in a target specific section then we
2898 must rely upon the backend to tell us what it is. */
2899 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2900 /* FIXME - this function is not coded yet:
2901
2902 return _bfd_is_global_symbol_definition (abfd, sym);
2903
2904 Instead for now assume that the definition is not global,
2905 Even if this is wrong, at least the linker will behave
2906 in the same way that it used to do. */
2907 return FALSE;
2908
2909 return TRUE;
2910 }
2911
2912 /* Search the symbol table of the archive element of the archive ABFD
2913 whose archive map contains a mention of SYMDEF, and determine if
2914 the symbol is defined in this element. */
2915 static bfd_boolean
2916 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2917 {
2918 Elf_Internal_Shdr * hdr;
2919 bfd_size_type symcount;
2920 bfd_size_type extsymcount;
2921 bfd_size_type extsymoff;
2922 Elf_Internal_Sym *isymbuf;
2923 Elf_Internal_Sym *isym;
2924 Elf_Internal_Sym *isymend;
2925 bfd_boolean result;
2926
2927 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2928 if (abfd == NULL)
2929 return FALSE;
2930
2931 if (! bfd_check_format (abfd, bfd_object))
2932 return FALSE;
2933
2934 /* Select the appropriate symbol table. */
2935 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2936 hdr = &elf_tdata (abfd)->symtab_hdr;
2937 else
2938 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2939
2940 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2941
2942 /* The sh_info field of the symtab header tells us where the
2943 external symbols start. We don't care about the local symbols. */
2944 if (elf_bad_symtab (abfd))
2945 {
2946 extsymcount = symcount;
2947 extsymoff = 0;
2948 }
2949 else
2950 {
2951 extsymcount = symcount - hdr->sh_info;
2952 extsymoff = hdr->sh_info;
2953 }
2954
2955 if (extsymcount == 0)
2956 return FALSE;
2957
2958 /* Read in the symbol table. */
2959 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2960 NULL, NULL, NULL);
2961 if (isymbuf == NULL)
2962 return FALSE;
2963
2964 /* Scan the symbol table looking for SYMDEF. */
2965 result = FALSE;
2966 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2967 {
2968 const char *name;
2969
2970 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2971 isym->st_name);
2972 if (name == NULL)
2973 break;
2974
2975 if (strcmp (name, symdef->name) == 0)
2976 {
2977 result = is_global_data_symbol_definition (abfd, isym);
2978 break;
2979 }
2980 }
2981
2982 free (isymbuf);
2983
2984 return result;
2985 }
2986 \f
2987 /* Add an entry to the .dynamic table. */
2988
2989 bfd_boolean
2990 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2991 bfd_vma tag,
2992 bfd_vma val)
2993 {
2994 struct elf_link_hash_table *hash_table;
2995 const struct elf_backend_data *bed;
2996 asection *s;
2997 bfd_size_type newsize;
2998 bfd_byte *newcontents;
2999 Elf_Internal_Dyn dyn;
3000
3001 hash_table = elf_hash_table (info);
3002 if (! is_elf_hash_table (hash_table))
3003 return FALSE;
3004
3005 bed = get_elf_backend_data (hash_table->dynobj);
3006 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3007 BFD_ASSERT (s != NULL);
3008
3009 newsize = s->size + bed->s->sizeof_dyn;
3010 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3011 if (newcontents == NULL)
3012 return FALSE;
3013
3014 dyn.d_tag = tag;
3015 dyn.d_un.d_val = val;
3016 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3017
3018 s->size = newsize;
3019 s->contents = newcontents;
3020
3021 return TRUE;
3022 }
3023
3024 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3025 otherwise just check whether one already exists. Returns -1 on error,
3026 1 if a DT_NEEDED tag already exists, and 0 on success. */
3027
3028 static int
3029 elf_add_dt_needed_tag (bfd *abfd,
3030 struct bfd_link_info *info,
3031 const char *soname,
3032 bfd_boolean do_it)
3033 {
3034 struct elf_link_hash_table *hash_table;
3035 bfd_size_type strindex;
3036
3037 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3038 return -1;
3039
3040 hash_table = elf_hash_table (info);
3041 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3042 if (strindex == (bfd_size_type) -1)
3043 return -1;
3044
3045 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3046 {
3047 asection *sdyn;
3048 const struct elf_backend_data *bed;
3049 bfd_byte *extdyn;
3050
3051 bed = get_elf_backend_data (hash_table->dynobj);
3052 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3053 if (sdyn != NULL)
3054 for (extdyn = sdyn->contents;
3055 extdyn < sdyn->contents + sdyn->size;
3056 extdyn += bed->s->sizeof_dyn)
3057 {
3058 Elf_Internal_Dyn dyn;
3059
3060 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3061 if (dyn.d_tag == DT_NEEDED
3062 && dyn.d_un.d_val == strindex)
3063 {
3064 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3065 return 1;
3066 }
3067 }
3068 }
3069
3070 if (do_it)
3071 {
3072 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3073 return -1;
3074
3075 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3076 return -1;
3077 }
3078 else
3079 /* We were just checking for existence of the tag. */
3080 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3081
3082 return 0;
3083 }
3084
3085 static bfd_boolean
3086 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3087 {
3088 for (; needed != NULL; needed = needed->next)
3089 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3090 && strcmp (soname, needed->name) == 0)
3091 return TRUE;
3092
3093 return FALSE;
3094 }
3095
3096 /* Sort symbol by value, section, and size. */
3097 static int
3098 elf_sort_symbol (const void *arg1, const void *arg2)
3099 {
3100 const struct elf_link_hash_entry *h1;
3101 const struct elf_link_hash_entry *h2;
3102 bfd_signed_vma vdiff;
3103
3104 h1 = *(const struct elf_link_hash_entry **) arg1;
3105 h2 = *(const struct elf_link_hash_entry **) arg2;
3106 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3107 if (vdiff != 0)
3108 return vdiff > 0 ? 1 : -1;
3109 else
3110 {
3111 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3112 if (sdiff != 0)
3113 return sdiff > 0 ? 1 : -1;
3114 }
3115 vdiff = h1->size - h2->size;
3116 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3117 }
3118
3119 /* This function is used to adjust offsets into .dynstr for
3120 dynamic symbols. This is called via elf_link_hash_traverse. */
3121
3122 static bfd_boolean
3123 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3124 {
3125 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3126
3127 if (h->dynindx != -1)
3128 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3129 return TRUE;
3130 }
3131
3132 /* Assign string offsets in .dynstr, update all structures referencing
3133 them. */
3134
3135 static bfd_boolean
3136 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3137 {
3138 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3139 struct elf_link_local_dynamic_entry *entry;
3140 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3141 bfd *dynobj = hash_table->dynobj;
3142 asection *sdyn;
3143 bfd_size_type size;
3144 const struct elf_backend_data *bed;
3145 bfd_byte *extdyn;
3146
3147 _bfd_elf_strtab_finalize (dynstr);
3148 size = _bfd_elf_strtab_size (dynstr);
3149
3150 bed = get_elf_backend_data (dynobj);
3151 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3152 BFD_ASSERT (sdyn != NULL);
3153
3154 /* Update all .dynamic entries referencing .dynstr strings. */
3155 for (extdyn = sdyn->contents;
3156 extdyn < sdyn->contents + sdyn->size;
3157 extdyn += bed->s->sizeof_dyn)
3158 {
3159 Elf_Internal_Dyn dyn;
3160
3161 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3162 switch (dyn.d_tag)
3163 {
3164 case DT_STRSZ:
3165 dyn.d_un.d_val = size;
3166 break;
3167 case DT_NEEDED:
3168 case DT_SONAME:
3169 case DT_RPATH:
3170 case DT_RUNPATH:
3171 case DT_FILTER:
3172 case DT_AUXILIARY:
3173 case DT_AUDIT:
3174 case DT_DEPAUDIT:
3175 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3176 break;
3177 default:
3178 continue;
3179 }
3180 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3181 }
3182
3183 /* Now update local dynamic symbols. */
3184 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3185 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3186 entry->isym.st_name);
3187
3188 /* And the rest of dynamic symbols. */
3189 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3190
3191 /* Adjust version definitions. */
3192 if (elf_tdata (output_bfd)->cverdefs)
3193 {
3194 asection *s;
3195 bfd_byte *p;
3196 bfd_size_type i;
3197 Elf_Internal_Verdef def;
3198 Elf_Internal_Verdaux defaux;
3199
3200 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3201 p = s->contents;
3202 do
3203 {
3204 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3205 &def);
3206 p += sizeof (Elf_External_Verdef);
3207 if (def.vd_aux != sizeof (Elf_External_Verdef))
3208 continue;
3209 for (i = 0; i < def.vd_cnt; ++i)
3210 {
3211 _bfd_elf_swap_verdaux_in (output_bfd,
3212 (Elf_External_Verdaux *) p, &defaux);
3213 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3214 defaux.vda_name);
3215 _bfd_elf_swap_verdaux_out (output_bfd,
3216 &defaux, (Elf_External_Verdaux *) p);
3217 p += sizeof (Elf_External_Verdaux);
3218 }
3219 }
3220 while (def.vd_next);
3221 }
3222
3223 /* Adjust version references. */
3224 if (elf_tdata (output_bfd)->verref)
3225 {
3226 asection *s;
3227 bfd_byte *p;
3228 bfd_size_type i;
3229 Elf_Internal_Verneed need;
3230 Elf_Internal_Vernaux needaux;
3231
3232 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3233 p = s->contents;
3234 do
3235 {
3236 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3237 &need);
3238 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3239 _bfd_elf_swap_verneed_out (output_bfd, &need,
3240 (Elf_External_Verneed *) p);
3241 p += sizeof (Elf_External_Verneed);
3242 for (i = 0; i < need.vn_cnt; ++i)
3243 {
3244 _bfd_elf_swap_vernaux_in (output_bfd,
3245 (Elf_External_Vernaux *) p, &needaux);
3246 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3247 needaux.vna_name);
3248 _bfd_elf_swap_vernaux_out (output_bfd,
3249 &needaux,
3250 (Elf_External_Vernaux *) p);
3251 p += sizeof (Elf_External_Vernaux);
3252 }
3253 }
3254 while (need.vn_next);
3255 }
3256
3257 return TRUE;
3258 }
3259 \f
3260 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3261 The default is to only match when the INPUT and OUTPUT are exactly
3262 the same target. */
3263
3264 bfd_boolean
3265 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3266 const bfd_target *output)
3267 {
3268 return input == output;
3269 }
3270
3271 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3272 This version is used when different targets for the same architecture
3273 are virtually identical. */
3274
3275 bfd_boolean
3276 _bfd_elf_relocs_compatible (const bfd_target *input,
3277 const bfd_target *output)
3278 {
3279 const struct elf_backend_data *obed, *ibed;
3280
3281 if (input == output)
3282 return TRUE;
3283
3284 ibed = xvec_get_elf_backend_data (input);
3285 obed = xvec_get_elf_backend_data (output);
3286
3287 if (ibed->arch != obed->arch)
3288 return FALSE;
3289
3290 /* If both backends are using this function, deem them compatible. */
3291 return ibed->relocs_compatible == obed->relocs_compatible;
3292 }
3293
3294 /* Make a special call to the linker "notice" function to tell it that
3295 we are about to handle an as-needed lib, or have finished
3296 processing the lib. */
3297
3298 bfd_boolean
3299 _bfd_elf_notice_as_needed (bfd *ibfd,
3300 struct bfd_link_info *info,
3301 enum notice_asneeded_action act)
3302 {
3303 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3304 }
3305
3306 /* Add symbols from an ELF object file to the linker hash table. */
3307
3308 static bfd_boolean
3309 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3310 {
3311 Elf_Internal_Ehdr *ehdr;
3312 Elf_Internal_Shdr *hdr;
3313 bfd_size_type symcount;
3314 bfd_size_type extsymcount;
3315 bfd_size_type extsymoff;
3316 struct elf_link_hash_entry **sym_hash;
3317 bfd_boolean dynamic;
3318 Elf_External_Versym *extversym = NULL;
3319 Elf_External_Versym *ever;
3320 struct elf_link_hash_entry *weaks;
3321 struct elf_link_hash_entry **nondeflt_vers = NULL;
3322 bfd_size_type nondeflt_vers_cnt = 0;
3323 Elf_Internal_Sym *isymbuf = NULL;
3324 Elf_Internal_Sym *isym;
3325 Elf_Internal_Sym *isymend;
3326 const struct elf_backend_data *bed;
3327 bfd_boolean add_needed;
3328 struct elf_link_hash_table *htab;
3329 bfd_size_type amt;
3330 void *alloc_mark = NULL;
3331 struct bfd_hash_entry **old_table = NULL;
3332 unsigned int old_size = 0;
3333 unsigned int old_count = 0;
3334 void *old_tab = NULL;
3335 void *old_ent;
3336 struct bfd_link_hash_entry *old_undefs = NULL;
3337 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3338 long old_dynsymcount = 0;
3339 bfd_size_type old_dynstr_size = 0;
3340 size_t tabsize = 0;
3341 asection *s;
3342 bfd_boolean just_syms;
3343
3344 htab = elf_hash_table (info);
3345 bed = get_elf_backend_data (abfd);
3346
3347 if ((abfd->flags & DYNAMIC) == 0)
3348 dynamic = FALSE;
3349 else
3350 {
3351 dynamic = TRUE;
3352
3353 /* You can't use -r against a dynamic object. Also, there's no
3354 hope of using a dynamic object which does not exactly match
3355 the format of the output file. */
3356 if (info->relocatable
3357 || !is_elf_hash_table (htab)
3358 || info->output_bfd->xvec != abfd->xvec)
3359 {
3360 if (info->relocatable)
3361 bfd_set_error (bfd_error_invalid_operation);
3362 else
3363 bfd_set_error (bfd_error_wrong_format);
3364 goto error_return;
3365 }
3366 }
3367
3368 ehdr = elf_elfheader (abfd);
3369 if (info->warn_alternate_em
3370 && bed->elf_machine_code != ehdr->e_machine
3371 && ((bed->elf_machine_alt1 != 0
3372 && ehdr->e_machine == bed->elf_machine_alt1)
3373 || (bed->elf_machine_alt2 != 0
3374 && ehdr->e_machine == bed->elf_machine_alt2)))
3375 info->callbacks->einfo
3376 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3377 ehdr->e_machine, abfd, bed->elf_machine_code);
3378
3379 /* As a GNU extension, any input sections which are named
3380 .gnu.warning.SYMBOL are treated as warning symbols for the given
3381 symbol. This differs from .gnu.warning sections, which generate
3382 warnings when they are included in an output file. */
3383 /* PR 12761: Also generate this warning when building shared libraries. */
3384 for (s = abfd->sections; s != NULL; s = s->next)
3385 {
3386 const char *name;
3387
3388 name = bfd_get_section_name (abfd, s);
3389 if (CONST_STRNEQ (name, ".gnu.warning."))
3390 {
3391 char *msg;
3392 bfd_size_type sz;
3393
3394 name += sizeof ".gnu.warning." - 1;
3395
3396 /* If this is a shared object, then look up the symbol
3397 in the hash table. If it is there, and it is already
3398 been defined, then we will not be using the entry
3399 from this shared object, so we don't need to warn.
3400 FIXME: If we see the definition in a regular object
3401 later on, we will warn, but we shouldn't. The only
3402 fix is to keep track of what warnings we are supposed
3403 to emit, and then handle them all at the end of the
3404 link. */
3405 if (dynamic)
3406 {
3407 struct elf_link_hash_entry *h;
3408
3409 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3410
3411 /* FIXME: What about bfd_link_hash_common? */
3412 if (h != NULL
3413 && (h->root.type == bfd_link_hash_defined
3414 || h->root.type == bfd_link_hash_defweak))
3415 continue;
3416 }
3417
3418 sz = s->size;
3419 msg = (char *) bfd_alloc (abfd, sz + 1);
3420 if (msg == NULL)
3421 goto error_return;
3422
3423 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3424 goto error_return;
3425
3426 msg[sz] = '\0';
3427
3428 if (! (_bfd_generic_link_add_one_symbol
3429 (info, abfd, name, BSF_WARNING, s, 0, msg,
3430 FALSE, bed->collect, NULL)))
3431 goto error_return;
3432
3433 if (!info->relocatable && info->executable)
3434 {
3435 /* Clobber the section size so that the warning does
3436 not get copied into the output file. */
3437 s->size = 0;
3438
3439 /* Also set SEC_EXCLUDE, so that symbols defined in
3440 the warning section don't get copied to the output. */
3441 s->flags |= SEC_EXCLUDE;
3442 }
3443 }
3444 }
3445
3446 just_syms = ((s = abfd->sections) != NULL
3447 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3448
3449 add_needed = TRUE;
3450 if (! dynamic)
3451 {
3452 /* If we are creating a shared library, create all the dynamic
3453 sections immediately. We need to attach them to something,
3454 so we attach them to this BFD, provided it is the right
3455 format and is not from ld --just-symbols. FIXME: If there
3456 are no input BFD's of the same format as the output, we can't
3457 make a shared library. */
3458 if (!just_syms
3459 && info->shared
3460 && is_elf_hash_table (htab)
3461 && info->output_bfd->xvec == abfd->xvec
3462 && !htab->dynamic_sections_created)
3463 {
3464 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3465 goto error_return;
3466 }
3467 }
3468 else if (!is_elf_hash_table (htab))
3469 goto error_return;
3470 else
3471 {
3472 const char *soname = NULL;
3473 char *audit = NULL;
3474 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3475 int ret;
3476
3477 /* ld --just-symbols and dynamic objects don't mix very well.
3478 ld shouldn't allow it. */
3479 if (just_syms)
3480 abort ();
3481
3482 /* If this dynamic lib was specified on the command line with
3483 --as-needed in effect, then we don't want to add a DT_NEEDED
3484 tag unless the lib is actually used. Similary for libs brought
3485 in by another lib's DT_NEEDED. When --no-add-needed is used
3486 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3487 any dynamic library in DT_NEEDED tags in the dynamic lib at
3488 all. */
3489 add_needed = (elf_dyn_lib_class (abfd)
3490 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3491 | DYN_NO_NEEDED)) == 0;
3492
3493 s = bfd_get_section_by_name (abfd, ".dynamic");
3494 if (s != NULL)
3495 {
3496 bfd_byte *dynbuf;
3497 bfd_byte *extdyn;
3498 unsigned int elfsec;
3499 unsigned long shlink;
3500
3501 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3502 {
3503 error_free_dyn:
3504 free (dynbuf);
3505 goto error_return;
3506 }
3507
3508 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3509 if (elfsec == SHN_BAD)
3510 goto error_free_dyn;
3511 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3512
3513 for (extdyn = dynbuf;
3514 extdyn < dynbuf + s->size;
3515 extdyn += bed->s->sizeof_dyn)
3516 {
3517 Elf_Internal_Dyn dyn;
3518
3519 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3520 if (dyn.d_tag == DT_SONAME)
3521 {
3522 unsigned int tagv = dyn.d_un.d_val;
3523 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3524 if (soname == NULL)
3525 goto error_free_dyn;
3526 }
3527 if (dyn.d_tag == DT_NEEDED)
3528 {
3529 struct bfd_link_needed_list *n, **pn;
3530 char *fnm, *anm;
3531 unsigned int tagv = dyn.d_un.d_val;
3532
3533 amt = sizeof (struct bfd_link_needed_list);
3534 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3535 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3536 if (n == NULL || fnm == NULL)
3537 goto error_free_dyn;
3538 amt = strlen (fnm) + 1;
3539 anm = (char *) bfd_alloc (abfd, amt);
3540 if (anm == NULL)
3541 goto error_free_dyn;
3542 memcpy (anm, fnm, amt);
3543 n->name = anm;
3544 n->by = abfd;
3545 n->next = NULL;
3546 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3547 ;
3548 *pn = n;
3549 }
3550 if (dyn.d_tag == DT_RUNPATH)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = & runpath;
3570 *pn != NULL;
3571 pn = &(*pn)->next)
3572 ;
3573 *pn = n;
3574 }
3575 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3576 if (!runpath && dyn.d_tag == DT_RPATH)
3577 {
3578 struct bfd_link_needed_list *n, **pn;
3579 char *fnm, *anm;
3580 unsigned int tagv = dyn.d_un.d_val;
3581
3582 amt = sizeof (struct bfd_link_needed_list);
3583 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 if (n == NULL || fnm == NULL)
3586 goto error_free_dyn;
3587 amt = strlen (fnm) + 1;
3588 anm = (char *) bfd_alloc (abfd, amt);
3589 if (anm == NULL)
3590 goto error_free_dyn;
3591 memcpy (anm, fnm, amt);
3592 n->name = anm;
3593 n->by = abfd;
3594 n->next = NULL;
3595 for (pn = & rpath;
3596 *pn != NULL;
3597 pn = &(*pn)->next)
3598 ;
3599 *pn = n;
3600 }
3601 if (dyn.d_tag == DT_AUDIT)
3602 {
3603 unsigned int tagv = dyn.d_un.d_val;
3604 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3605 }
3606 }
3607
3608 free (dynbuf);
3609 }
3610
3611 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3612 frees all more recently bfd_alloc'd blocks as well. */
3613 if (runpath)
3614 rpath = runpath;
3615
3616 if (rpath)
3617 {
3618 struct bfd_link_needed_list **pn;
3619 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3620 ;
3621 *pn = rpath;
3622 }
3623
3624 /* We do not want to include any of the sections in a dynamic
3625 object in the output file. We hack by simply clobbering the
3626 list of sections in the BFD. This could be handled more
3627 cleanly by, say, a new section flag; the existing
3628 SEC_NEVER_LOAD flag is not the one we want, because that one
3629 still implies that the section takes up space in the output
3630 file. */
3631 bfd_section_list_clear (abfd);
3632
3633 /* Find the name to use in a DT_NEEDED entry that refers to this
3634 object. If the object has a DT_SONAME entry, we use it.
3635 Otherwise, if the generic linker stuck something in
3636 elf_dt_name, we use that. Otherwise, we just use the file
3637 name. */
3638 if (soname == NULL || *soname == '\0')
3639 {
3640 soname = elf_dt_name (abfd);
3641 if (soname == NULL || *soname == '\0')
3642 soname = bfd_get_filename (abfd);
3643 }
3644
3645 /* Save the SONAME because sometimes the linker emulation code
3646 will need to know it. */
3647 elf_dt_name (abfd) = soname;
3648
3649 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3650 if (ret < 0)
3651 goto error_return;
3652
3653 /* If we have already included this dynamic object in the
3654 link, just ignore it. There is no reason to include a
3655 particular dynamic object more than once. */
3656 if (ret > 0)
3657 return TRUE;
3658
3659 /* Save the DT_AUDIT entry for the linker emulation code. */
3660 elf_dt_audit (abfd) = audit;
3661 }
3662
3663 /* If this is a dynamic object, we always link against the .dynsym
3664 symbol table, not the .symtab symbol table. The dynamic linker
3665 will only see the .dynsym symbol table, so there is no reason to
3666 look at .symtab for a dynamic object. */
3667
3668 if (! dynamic || elf_dynsymtab (abfd) == 0)
3669 hdr = &elf_tdata (abfd)->symtab_hdr;
3670 else
3671 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3672
3673 symcount = hdr->sh_size / bed->s->sizeof_sym;
3674
3675 /* The sh_info field of the symtab header tells us where the
3676 external symbols start. We don't care about the local symbols at
3677 this point. */
3678 if (elf_bad_symtab (abfd))
3679 {
3680 extsymcount = symcount;
3681 extsymoff = 0;
3682 }
3683 else
3684 {
3685 extsymcount = symcount - hdr->sh_info;
3686 extsymoff = hdr->sh_info;
3687 }
3688
3689 sym_hash = elf_sym_hashes (abfd);
3690 if (extsymcount != 0)
3691 {
3692 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3693 NULL, NULL, NULL);
3694 if (isymbuf == NULL)
3695 goto error_return;
3696
3697 if (sym_hash == NULL)
3698 {
3699 /* We store a pointer to the hash table entry for each
3700 external symbol. */
3701 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3702 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3703 if (sym_hash == NULL)
3704 goto error_free_sym;
3705 elf_sym_hashes (abfd) = sym_hash;
3706 }
3707 }
3708
3709 if (dynamic)
3710 {
3711 /* Read in any version definitions. */
3712 if (!_bfd_elf_slurp_version_tables (abfd,
3713 info->default_imported_symver))
3714 goto error_free_sym;
3715
3716 /* Read in the symbol versions, but don't bother to convert them
3717 to internal format. */
3718 if (elf_dynversym (abfd) != 0)
3719 {
3720 Elf_Internal_Shdr *versymhdr;
3721
3722 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3723 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3724 if (extversym == NULL)
3725 goto error_free_sym;
3726 amt = versymhdr->sh_size;
3727 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3728 || bfd_bread (extversym, amt, abfd) != amt)
3729 goto error_free_vers;
3730 }
3731 }
3732
3733 /* If we are loading an as-needed shared lib, save the symbol table
3734 state before we start adding symbols. If the lib turns out
3735 to be unneeded, restore the state. */
3736 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3737 {
3738 unsigned int i;
3739 size_t entsize;
3740
3741 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3742 {
3743 struct bfd_hash_entry *p;
3744 struct elf_link_hash_entry *h;
3745
3746 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3747 {
3748 h = (struct elf_link_hash_entry *) p;
3749 entsize += htab->root.table.entsize;
3750 if (h->root.type == bfd_link_hash_warning)
3751 entsize += htab->root.table.entsize;
3752 }
3753 }
3754
3755 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3756 old_tab = bfd_malloc (tabsize + entsize);
3757 if (old_tab == NULL)
3758 goto error_free_vers;
3759
3760 /* Remember the current objalloc pointer, so that all mem for
3761 symbols added can later be reclaimed. */
3762 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3763 if (alloc_mark == NULL)
3764 goto error_free_vers;
3765
3766 /* Make a special call to the linker "notice" function to
3767 tell it that we are about to handle an as-needed lib. */
3768 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3769 goto error_free_vers;
3770
3771 /* Clone the symbol table. Remember some pointers into the
3772 symbol table, and dynamic symbol count. */
3773 old_ent = (char *) old_tab + tabsize;
3774 memcpy (old_tab, htab->root.table.table, tabsize);
3775 old_undefs = htab->root.undefs;
3776 old_undefs_tail = htab->root.undefs_tail;
3777 old_table = htab->root.table.table;
3778 old_size = htab->root.table.size;
3779 old_count = htab->root.table.count;
3780 old_dynsymcount = htab->dynsymcount;
3781 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3782
3783 for (i = 0; i < htab->root.table.size; i++)
3784 {
3785 struct bfd_hash_entry *p;
3786 struct elf_link_hash_entry *h;
3787
3788 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3789 {
3790 memcpy (old_ent, p, htab->root.table.entsize);
3791 old_ent = (char *) old_ent + htab->root.table.entsize;
3792 h = (struct elf_link_hash_entry *) p;
3793 if (h->root.type == bfd_link_hash_warning)
3794 {
3795 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3796 old_ent = (char *) old_ent + htab->root.table.entsize;
3797 }
3798 }
3799 }
3800 }
3801
3802 weaks = NULL;
3803 ever = extversym != NULL ? extversym + extsymoff : NULL;
3804 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3805 isym < isymend;
3806 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3807 {
3808 int bind;
3809 bfd_vma value;
3810 asection *sec, *new_sec;
3811 flagword flags;
3812 const char *name;
3813 struct elf_link_hash_entry *h;
3814 struct elf_link_hash_entry *hi;
3815 bfd_boolean definition;
3816 bfd_boolean size_change_ok;
3817 bfd_boolean type_change_ok;
3818 bfd_boolean new_weakdef;
3819 bfd_boolean new_weak;
3820 bfd_boolean old_weak;
3821 bfd_boolean override;
3822 bfd_boolean common;
3823 unsigned int old_alignment;
3824 bfd *old_bfd;
3825
3826 override = FALSE;
3827
3828 flags = BSF_NO_FLAGS;
3829 sec = NULL;
3830 value = isym->st_value;
3831 common = bed->common_definition (isym);
3832
3833 bind = ELF_ST_BIND (isym->st_info);
3834 switch (bind)
3835 {
3836 case STB_LOCAL:
3837 /* This should be impossible, since ELF requires that all
3838 global symbols follow all local symbols, and that sh_info
3839 point to the first global symbol. Unfortunately, Irix 5
3840 screws this up. */
3841 continue;
3842
3843 case STB_GLOBAL:
3844 if (isym->st_shndx != SHN_UNDEF && !common)
3845 flags = BSF_GLOBAL;
3846 break;
3847
3848 case STB_WEAK:
3849 flags = BSF_WEAK;
3850 break;
3851
3852 case STB_GNU_UNIQUE:
3853 flags = BSF_GNU_UNIQUE;
3854 break;
3855
3856 default:
3857 /* Leave it up to the processor backend. */
3858 break;
3859 }
3860
3861 if (isym->st_shndx == SHN_UNDEF)
3862 sec = bfd_und_section_ptr;
3863 else if (isym->st_shndx == SHN_ABS)
3864 sec = bfd_abs_section_ptr;
3865 else if (isym->st_shndx == SHN_COMMON)
3866 {
3867 sec = bfd_com_section_ptr;
3868 /* What ELF calls the size we call the value. What ELF
3869 calls the value we call the alignment. */
3870 value = isym->st_size;
3871 }
3872 else
3873 {
3874 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3875 if (sec == NULL)
3876 sec = bfd_abs_section_ptr;
3877 else if (discarded_section (sec))
3878 {
3879 /* Symbols from discarded section are undefined. We keep
3880 its visibility. */
3881 sec = bfd_und_section_ptr;
3882 isym->st_shndx = SHN_UNDEF;
3883 }
3884 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3885 value -= sec->vma;
3886 }
3887
3888 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3889 isym->st_name);
3890 if (name == NULL)
3891 goto error_free_vers;
3892
3893 if (isym->st_shndx == SHN_COMMON
3894 && (abfd->flags & BFD_PLUGIN) != 0)
3895 {
3896 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3897
3898 if (xc == NULL)
3899 {
3900 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3901 | SEC_EXCLUDE);
3902 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3903 if (xc == NULL)
3904 goto error_free_vers;
3905 }
3906 sec = xc;
3907 }
3908 else if (isym->st_shndx == SHN_COMMON
3909 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3910 && !info->relocatable)
3911 {
3912 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3913
3914 if (tcomm == NULL)
3915 {
3916 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3917 | SEC_LINKER_CREATED);
3918 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3919 if (tcomm == NULL)
3920 goto error_free_vers;
3921 }
3922 sec = tcomm;
3923 }
3924 else if (bed->elf_add_symbol_hook)
3925 {
3926 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3927 &sec, &value))
3928 goto error_free_vers;
3929
3930 /* The hook function sets the name to NULL if this symbol
3931 should be skipped for some reason. */
3932 if (name == NULL)
3933 continue;
3934 }
3935
3936 /* Sanity check that all possibilities were handled. */
3937 if (sec == NULL)
3938 {
3939 bfd_set_error (bfd_error_bad_value);
3940 goto error_free_vers;
3941 }
3942
3943 /* Silently discard TLS symbols from --just-syms. There's
3944 no way to combine a static TLS block with a new TLS block
3945 for this executable. */
3946 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3947 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3948 continue;
3949
3950 if (bfd_is_und_section (sec)
3951 || bfd_is_com_section (sec))
3952 definition = FALSE;
3953 else
3954 definition = TRUE;
3955
3956 size_change_ok = FALSE;
3957 type_change_ok = bed->type_change_ok;
3958 old_weak = FALSE;
3959 old_alignment = 0;
3960 old_bfd = NULL;
3961 new_sec = sec;
3962
3963 if (is_elf_hash_table (htab))
3964 {
3965 Elf_Internal_Versym iver;
3966 unsigned int vernum = 0;
3967 bfd_boolean skip;
3968
3969 if (ever == NULL)
3970 {
3971 if (info->default_imported_symver)
3972 /* Use the default symbol version created earlier. */
3973 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3974 else
3975 iver.vs_vers = 0;
3976 }
3977 else
3978 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3979
3980 vernum = iver.vs_vers & VERSYM_VERSION;
3981
3982 /* If this is a hidden symbol, or if it is not version
3983 1, we append the version name to the symbol name.
3984 However, we do not modify a non-hidden absolute symbol
3985 if it is not a function, because it might be the version
3986 symbol itself. FIXME: What if it isn't? */
3987 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3988 || (vernum > 1
3989 && (!bfd_is_abs_section (sec)
3990 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3991 {
3992 const char *verstr;
3993 size_t namelen, verlen, newlen;
3994 char *newname, *p;
3995
3996 if (isym->st_shndx != SHN_UNDEF)
3997 {
3998 if (vernum > elf_tdata (abfd)->cverdefs)
3999 verstr = NULL;
4000 else if (vernum > 1)
4001 verstr =
4002 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4003 else
4004 verstr = "";
4005
4006 if (verstr == NULL)
4007 {
4008 (*_bfd_error_handler)
4009 (_("%B: %s: invalid version %u (max %d)"),
4010 abfd, name, vernum,
4011 elf_tdata (abfd)->cverdefs);
4012 bfd_set_error (bfd_error_bad_value);
4013 goto error_free_vers;
4014 }
4015 }
4016 else
4017 {
4018 /* We cannot simply test for the number of
4019 entries in the VERNEED section since the
4020 numbers for the needed versions do not start
4021 at 0. */
4022 Elf_Internal_Verneed *t;
4023
4024 verstr = NULL;
4025 for (t = elf_tdata (abfd)->verref;
4026 t != NULL;
4027 t = t->vn_nextref)
4028 {
4029 Elf_Internal_Vernaux *a;
4030
4031 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4032 {
4033 if (a->vna_other == vernum)
4034 {
4035 verstr = a->vna_nodename;
4036 break;
4037 }
4038 }
4039 if (a != NULL)
4040 break;
4041 }
4042 if (verstr == NULL)
4043 {
4044 (*_bfd_error_handler)
4045 (_("%B: %s: invalid needed version %d"),
4046 abfd, name, vernum);
4047 bfd_set_error (bfd_error_bad_value);
4048 goto error_free_vers;
4049 }
4050 }
4051
4052 namelen = strlen (name);
4053 verlen = strlen (verstr);
4054 newlen = namelen + verlen + 2;
4055 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4056 && isym->st_shndx != SHN_UNDEF)
4057 ++newlen;
4058
4059 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4060 if (newname == NULL)
4061 goto error_free_vers;
4062 memcpy (newname, name, namelen);
4063 p = newname + namelen;
4064 *p++ = ELF_VER_CHR;
4065 /* If this is a defined non-hidden version symbol,
4066 we add another @ to the name. This indicates the
4067 default version of the symbol. */
4068 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4069 && isym->st_shndx != SHN_UNDEF)
4070 *p++ = ELF_VER_CHR;
4071 memcpy (p, verstr, verlen + 1);
4072
4073 name = newname;
4074 }
4075
4076 /* If this symbol has default visibility and the user has
4077 requested we not re-export it, then mark it as hidden. */
4078 if (definition
4079 && !dynamic
4080 && (abfd->no_export
4081 || (abfd->my_archive && abfd->my_archive->no_export))
4082 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4083 isym->st_other = (STV_HIDDEN
4084 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4085
4086 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4087 sym_hash, &old_bfd, &old_weak,
4088 &old_alignment, &skip, &override,
4089 &type_change_ok, &size_change_ok))
4090 goto error_free_vers;
4091
4092 if (skip)
4093 continue;
4094
4095 if (override)
4096 definition = FALSE;
4097
4098 h = *sym_hash;
4099 while (h->root.type == bfd_link_hash_indirect
4100 || h->root.type == bfd_link_hash_warning)
4101 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4102
4103 if (elf_tdata (abfd)->verdef != NULL
4104 && vernum > 1
4105 && definition)
4106 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4107 }
4108
4109 if (! (_bfd_generic_link_add_one_symbol
4110 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4111 (struct bfd_link_hash_entry **) sym_hash)))
4112 goto error_free_vers;
4113
4114 h = *sym_hash;
4115 /* We need to make sure that indirect symbol dynamic flags are
4116 updated. */
4117 hi = h;
4118 while (h->root.type == bfd_link_hash_indirect
4119 || h->root.type == bfd_link_hash_warning)
4120 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4121
4122 *sym_hash = h;
4123
4124 new_weak = (flags & BSF_WEAK) != 0;
4125 new_weakdef = FALSE;
4126 if (dynamic
4127 && definition
4128 && new_weak
4129 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4130 && is_elf_hash_table (htab)
4131 && h->u.weakdef == NULL)
4132 {
4133 /* Keep a list of all weak defined non function symbols from
4134 a dynamic object, using the weakdef field. Later in this
4135 function we will set the weakdef field to the correct
4136 value. We only put non-function symbols from dynamic
4137 objects on this list, because that happens to be the only
4138 time we need to know the normal symbol corresponding to a
4139 weak symbol, and the information is time consuming to
4140 figure out. If the weakdef field is not already NULL,
4141 then this symbol was already defined by some previous
4142 dynamic object, and we will be using that previous
4143 definition anyhow. */
4144
4145 h->u.weakdef = weaks;
4146 weaks = h;
4147 new_weakdef = TRUE;
4148 }
4149
4150 /* Set the alignment of a common symbol. */
4151 if ((common || bfd_is_com_section (sec))
4152 && h->root.type == bfd_link_hash_common)
4153 {
4154 unsigned int align;
4155
4156 if (common)
4157 align = bfd_log2 (isym->st_value);
4158 else
4159 {
4160 /* The new symbol is a common symbol in a shared object.
4161 We need to get the alignment from the section. */
4162 align = new_sec->alignment_power;
4163 }
4164 if (align > old_alignment)
4165 h->root.u.c.p->alignment_power = align;
4166 else
4167 h->root.u.c.p->alignment_power = old_alignment;
4168 }
4169
4170 if (is_elf_hash_table (htab))
4171 {
4172 /* Set a flag in the hash table entry indicating the type of
4173 reference or definition we just found. A dynamic symbol
4174 is one which is referenced or defined by both a regular
4175 object and a shared object. */
4176 bfd_boolean dynsym = FALSE;
4177
4178 /* Plugin symbols aren't normal. Don't set def_regular or
4179 ref_regular for them, or make them dynamic. */
4180 if ((abfd->flags & BFD_PLUGIN) != 0)
4181 ;
4182 else if (! dynamic)
4183 {
4184 if (! definition)
4185 {
4186 h->ref_regular = 1;
4187 if (bind != STB_WEAK)
4188 h->ref_regular_nonweak = 1;
4189 }
4190 else
4191 {
4192 h->def_regular = 1;
4193 if (h->def_dynamic)
4194 {
4195 h->def_dynamic = 0;
4196 h->ref_dynamic = 1;
4197 }
4198 }
4199
4200 /* If the indirect symbol has been forced local, don't
4201 make the real symbol dynamic. */
4202 if ((h == hi || !hi->forced_local)
4203 && (! info->executable
4204 || h->def_dynamic
4205 || h->ref_dynamic))
4206 dynsym = TRUE;
4207 }
4208 else
4209 {
4210 if (! definition)
4211 {
4212 h->ref_dynamic = 1;
4213 hi->ref_dynamic = 1;
4214 }
4215 else
4216 {
4217 h->def_dynamic = 1;
4218 hi->def_dynamic = 1;
4219 }
4220
4221 /* If the indirect symbol has been forced local, don't
4222 make the real symbol dynamic. */
4223 if ((h == hi || !hi->forced_local)
4224 && (h->def_regular
4225 || h->ref_regular
4226 || (h->u.weakdef != NULL
4227 && ! new_weakdef
4228 && h->u.weakdef->dynindx != -1)))
4229 dynsym = TRUE;
4230 }
4231
4232 /* Check to see if we need to add an indirect symbol for
4233 the default name. */
4234 if (definition
4235 || (!override && h->root.type == bfd_link_hash_common))
4236 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4237 sec, value, &old_bfd, &dynsym))
4238 goto error_free_vers;
4239
4240 /* Check the alignment when a common symbol is involved. This
4241 can change when a common symbol is overridden by a normal
4242 definition or a common symbol is ignored due to the old
4243 normal definition. We need to make sure the maximum
4244 alignment is maintained. */
4245 if ((old_alignment || common)
4246 && h->root.type != bfd_link_hash_common)
4247 {
4248 unsigned int common_align;
4249 unsigned int normal_align;
4250 unsigned int symbol_align;
4251 bfd *normal_bfd;
4252 bfd *common_bfd;
4253
4254 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4255 || h->root.type == bfd_link_hash_defweak);
4256
4257 symbol_align = ffs (h->root.u.def.value) - 1;
4258 if (h->root.u.def.section->owner != NULL
4259 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4260 {
4261 normal_align = h->root.u.def.section->alignment_power;
4262 if (normal_align > symbol_align)
4263 normal_align = symbol_align;
4264 }
4265 else
4266 normal_align = symbol_align;
4267
4268 if (old_alignment)
4269 {
4270 common_align = old_alignment;
4271 common_bfd = old_bfd;
4272 normal_bfd = abfd;
4273 }
4274 else
4275 {
4276 common_align = bfd_log2 (isym->st_value);
4277 common_bfd = abfd;
4278 normal_bfd = old_bfd;
4279 }
4280
4281 if (normal_align < common_align)
4282 {
4283 /* PR binutils/2735 */
4284 if (normal_bfd == NULL)
4285 (*_bfd_error_handler)
4286 (_("Warning: alignment %u of common symbol `%s' in %B is"
4287 " greater than the alignment (%u) of its section %A"),
4288 common_bfd, h->root.u.def.section,
4289 1 << common_align, name, 1 << normal_align);
4290 else
4291 (*_bfd_error_handler)
4292 (_("Warning: alignment %u of symbol `%s' in %B"
4293 " is smaller than %u in %B"),
4294 normal_bfd, common_bfd,
4295 1 << normal_align, name, 1 << common_align);
4296 }
4297 }
4298
4299 /* Remember the symbol size if it isn't undefined. */
4300 if (isym->st_size != 0
4301 && isym->st_shndx != SHN_UNDEF
4302 && (definition || h->size == 0))
4303 {
4304 if (h->size != 0
4305 && h->size != isym->st_size
4306 && ! size_change_ok)
4307 (*_bfd_error_handler)
4308 (_("Warning: size of symbol `%s' changed"
4309 " from %lu in %B to %lu in %B"),
4310 old_bfd, abfd,
4311 name, (unsigned long) h->size,
4312 (unsigned long) isym->st_size);
4313
4314 h->size = isym->st_size;
4315 }
4316
4317 /* If this is a common symbol, then we always want H->SIZE
4318 to be the size of the common symbol. The code just above
4319 won't fix the size if a common symbol becomes larger. We
4320 don't warn about a size change here, because that is
4321 covered by --warn-common. Allow changes between different
4322 function types. */
4323 if (h->root.type == bfd_link_hash_common)
4324 h->size = h->root.u.c.size;
4325
4326 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4327 && ((definition && !new_weak)
4328 || (old_weak && h->root.type == bfd_link_hash_common)
4329 || h->type == STT_NOTYPE))
4330 {
4331 unsigned int type = ELF_ST_TYPE (isym->st_info);
4332
4333 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4334 symbol. */
4335 if (type == STT_GNU_IFUNC
4336 && (abfd->flags & DYNAMIC) != 0)
4337 type = STT_FUNC;
4338
4339 if (h->type != type)
4340 {
4341 if (h->type != STT_NOTYPE && ! type_change_ok)
4342 (*_bfd_error_handler)
4343 (_("Warning: type of symbol `%s' changed"
4344 " from %d to %d in %B"),
4345 abfd, name, h->type, type);
4346
4347 h->type = type;
4348 }
4349 }
4350
4351 /* Merge st_other field. */
4352 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4353
4354 /* We don't want to make debug symbol dynamic. */
4355 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4356 dynsym = FALSE;
4357
4358 /* Nor should we make plugin symbols dynamic. */
4359 if ((abfd->flags & BFD_PLUGIN) != 0)
4360 dynsym = FALSE;
4361
4362 if (definition)
4363 {
4364 h->target_internal = isym->st_target_internal;
4365 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4366 }
4367
4368 if (definition && !dynamic)
4369 {
4370 char *p = strchr (name, ELF_VER_CHR);
4371 if (p != NULL && p[1] != ELF_VER_CHR)
4372 {
4373 /* Queue non-default versions so that .symver x, x@FOO
4374 aliases can be checked. */
4375 if (!nondeflt_vers)
4376 {
4377 amt = ((isymend - isym + 1)
4378 * sizeof (struct elf_link_hash_entry *));
4379 nondeflt_vers =
4380 (struct elf_link_hash_entry **) bfd_malloc (amt);
4381 if (!nondeflt_vers)
4382 goto error_free_vers;
4383 }
4384 nondeflt_vers[nondeflt_vers_cnt++] = h;
4385 }
4386 }
4387
4388 if (dynsym && h->dynindx == -1)
4389 {
4390 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4391 goto error_free_vers;
4392 if (h->u.weakdef != NULL
4393 && ! new_weakdef
4394 && h->u.weakdef->dynindx == -1)
4395 {
4396 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4397 goto error_free_vers;
4398 }
4399 }
4400 else if (dynsym && h->dynindx != -1)
4401 /* If the symbol already has a dynamic index, but
4402 visibility says it should not be visible, turn it into
4403 a local symbol. */
4404 switch (ELF_ST_VISIBILITY (h->other))
4405 {
4406 case STV_INTERNAL:
4407 case STV_HIDDEN:
4408 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4409 dynsym = FALSE;
4410 break;
4411 }
4412
4413 /* Don't add DT_NEEDED for references from the dummy bfd. */
4414 if (!add_needed
4415 && definition
4416 && ((dynsym
4417 && h->ref_regular_nonweak
4418 && (old_bfd == NULL
4419 || (old_bfd->flags & BFD_PLUGIN) == 0))
4420 || (h->ref_dynamic_nonweak
4421 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4422 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4423 {
4424 int ret;
4425 const char *soname = elf_dt_name (abfd);
4426
4427 info->callbacks->minfo ("%!", soname, old_bfd,
4428 h->root.root.string);
4429
4430 /* A symbol from a library loaded via DT_NEEDED of some
4431 other library is referenced by a regular object.
4432 Add a DT_NEEDED entry for it. Issue an error if
4433 --no-add-needed is used and the reference was not
4434 a weak one. */
4435 if (old_bfd != NULL
4436 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4437 {
4438 (*_bfd_error_handler)
4439 (_("%B: undefined reference to symbol '%s'"),
4440 old_bfd, name);
4441 bfd_set_error (bfd_error_missing_dso);
4442 goto error_free_vers;
4443 }
4444
4445 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4446 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4447
4448 add_needed = TRUE;
4449 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4450 if (ret < 0)
4451 goto error_free_vers;
4452
4453 BFD_ASSERT (ret == 0);
4454 }
4455 }
4456 }
4457
4458 if (extversym != NULL)
4459 {
4460 free (extversym);
4461 extversym = NULL;
4462 }
4463
4464 if (isymbuf != NULL)
4465 {
4466 free (isymbuf);
4467 isymbuf = NULL;
4468 }
4469
4470 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4471 {
4472 unsigned int i;
4473
4474 /* Restore the symbol table. */
4475 old_ent = (char *) old_tab + tabsize;
4476 memset (elf_sym_hashes (abfd), 0,
4477 extsymcount * sizeof (struct elf_link_hash_entry *));
4478 htab->root.table.table = old_table;
4479 htab->root.table.size = old_size;
4480 htab->root.table.count = old_count;
4481 memcpy (htab->root.table.table, old_tab, tabsize);
4482 htab->root.undefs = old_undefs;
4483 htab->root.undefs_tail = old_undefs_tail;
4484 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4485 for (i = 0; i < htab->root.table.size; i++)
4486 {
4487 struct bfd_hash_entry *p;
4488 struct elf_link_hash_entry *h;
4489 bfd_size_type size;
4490 unsigned int alignment_power;
4491
4492 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4493 {
4494 h = (struct elf_link_hash_entry *) p;
4495 if (h->root.type == bfd_link_hash_warning)
4496 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4497 if (h->dynindx >= old_dynsymcount
4498 && h->dynstr_index < old_dynstr_size)
4499 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4500
4501 /* Preserve the maximum alignment and size for common
4502 symbols even if this dynamic lib isn't on DT_NEEDED
4503 since it can still be loaded at run time by another
4504 dynamic lib. */
4505 if (h->root.type == bfd_link_hash_common)
4506 {
4507 size = h->root.u.c.size;
4508 alignment_power = h->root.u.c.p->alignment_power;
4509 }
4510 else
4511 {
4512 size = 0;
4513 alignment_power = 0;
4514 }
4515 memcpy (p, old_ent, htab->root.table.entsize);
4516 old_ent = (char *) old_ent + htab->root.table.entsize;
4517 h = (struct elf_link_hash_entry *) p;
4518 if (h->root.type == bfd_link_hash_warning)
4519 {
4520 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4521 old_ent = (char *) old_ent + htab->root.table.entsize;
4522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4523 }
4524 if (h->root.type == bfd_link_hash_common)
4525 {
4526 if (size > h->root.u.c.size)
4527 h->root.u.c.size = size;
4528 if (alignment_power > h->root.u.c.p->alignment_power)
4529 h->root.u.c.p->alignment_power = alignment_power;
4530 }
4531 }
4532 }
4533
4534 /* Make a special call to the linker "notice" function to
4535 tell it that symbols added for crefs may need to be removed. */
4536 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4537 goto error_free_vers;
4538
4539 free (old_tab);
4540 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4541 alloc_mark);
4542 if (nondeflt_vers != NULL)
4543 free (nondeflt_vers);
4544 return TRUE;
4545 }
4546
4547 if (old_tab != NULL)
4548 {
4549 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4550 goto error_free_vers;
4551 free (old_tab);
4552 old_tab = NULL;
4553 }
4554
4555 /* Now that all the symbols from this input file are created, handle
4556 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4557 if (nondeflt_vers != NULL)
4558 {
4559 bfd_size_type cnt, symidx;
4560
4561 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4562 {
4563 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4564 char *shortname, *p;
4565
4566 p = strchr (h->root.root.string, ELF_VER_CHR);
4567 if (p == NULL
4568 || (h->root.type != bfd_link_hash_defined
4569 && h->root.type != bfd_link_hash_defweak))
4570 continue;
4571
4572 amt = p - h->root.root.string;
4573 shortname = (char *) bfd_malloc (amt + 1);
4574 if (!shortname)
4575 goto error_free_vers;
4576 memcpy (shortname, h->root.root.string, amt);
4577 shortname[amt] = '\0';
4578
4579 hi = (struct elf_link_hash_entry *)
4580 bfd_link_hash_lookup (&htab->root, shortname,
4581 FALSE, FALSE, FALSE);
4582 if (hi != NULL
4583 && hi->root.type == h->root.type
4584 && hi->root.u.def.value == h->root.u.def.value
4585 && hi->root.u.def.section == h->root.u.def.section)
4586 {
4587 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4588 hi->root.type = bfd_link_hash_indirect;
4589 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4591 sym_hash = elf_sym_hashes (abfd);
4592 if (sym_hash)
4593 for (symidx = 0; symidx < extsymcount; ++symidx)
4594 if (sym_hash[symidx] == hi)
4595 {
4596 sym_hash[symidx] = h;
4597 break;
4598 }
4599 }
4600 free (shortname);
4601 }
4602 free (nondeflt_vers);
4603 nondeflt_vers = NULL;
4604 }
4605
4606 /* Now set the weakdefs field correctly for all the weak defined
4607 symbols we found. The only way to do this is to search all the
4608 symbols. Since we only need the information for non functions in
4609 dynamic objects, that's the only time we actually put anything on
4610 the list WEAKS. We need this information so that if a regular
4611 object refers to a symbol defined weakly in a dynamic object, the
4612 real symbol in the dynamic object is also put in the dynamic
4613 symbols; we also must arrange for both symbols to point to the
4614 same memory location. We could handle the general case of symbol
4615 aliasing, but a general symbol alias can only be generated in
4616 assembler code, handling it correctly would be very time
4617 consuming, and other ELF linkers don't handle general aliasing
4618 either. */
4619 if (weaks != NULL)
4620 {
4621 struct elf_link_hash_entry **hpp;
4622 struct elf_link_hash_entry **hppend;
4623 struct elf_link_hash_entry **sorted_sym_hash;
4624 struct elf_link_hash_entry *h;
4625 size_t sym_count;
4626
4627 /* Since we have to search the whole symbol list for each weak
4628 defined symbol, search time for N weak defined symbols will be
4629 O(N^2). Binary search will cut it down to O(NlogN). */
4630 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4631 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4632 if (sorted_sym_hash == NULL)
4633 goto error_return;
4634 sym_hash = sorted_sym_hash;
4635 hpp = elf_sym_hashes (abfd);
4636 hppend = hpp + extsymcount;
4637 sym_count = 0;
4638 for (; hpp < hppend; hpp++)
4639 {
4640 h = *hpp;
4641 if (h != NULL
4642 && h->root.type == bfd_link_hash_defined
4643 && !bed->is_function_type (h->type))
4644 {
4645 *sym_hash = h;
4646 sym_hash++;
4647 sym_count++;
4648 }
4649 }
4650
4651 qsort (sorted_sym_hash, sym_count,
4652 sizeof (struct elf_link_hash_entry *),
4653 elf_sort_symbol);
4654
4655 while (weaks != NULL)
4656 {
4657 struct elf_link_hash_entry *hlook;
4658 asection *slook;
4659 bfd_vma vlook;
4660 size_t i, j, idx = 0;
4661
4662 hlook = weaks;
4663 weaks = hlook->u.weakdef;
4664 hlook->u.weakdef = NULL;
4665
4666 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4667 || hlook->root.type == bfd_link_hash_defweak
4668 || hlook->root.type == bfd_link_hash_common
4669 || hlook->root.type == bfd_link_hash_indirect);
4670 slook = hlook->root.u.def.section;
4671 vlook = hlook->root.u.def.value;
4672
4673 i = 0;
4674 j = sym_count;
4675 while (i != j)
4676 {
4677 bfd_signed_vma vdiff;
4678 idx = (i + j) / 2;
4679 h = sorted_sym_hash[idx];
4680 vdiff = vlook - h->root.u.def.value;
4681 if (vdiff < 0)
4682 j = idx;
4683 else if (vdiff > 0)
4684 i = idx + 1;
4685 else
4686 {
4687 long sdiff = slook->id - h->root.u.def.section->id;
4688 if (sdiff < 0)
4689 j = idx;
4690 else if (sdiff > 0)
4691 i = idx + 1;
4692 else
4693 break;
4694 }
4695 }
4696
4697 /* We didn't find a value/section match. */
4698 if (i == j)
4699 continue;
4700
4701 /* With multiple aliases, or when the weak symbol is already
4702 strongly defined, we have multiple matching symbols and
4703 the binary search above may land on any of them. Step
4704 one past the matching symbol(s). */
4705 while (++idx != j)
4706 {
4707 h = sorted_sym_hash[idx];
4708 if (h->root.u.def.section != slook
4709 || h->root.u.def.value != vlook)
4710 break;
4711 }
4712
4713 /* Now look back over the aliases. Since we sorted by size
4714 as well as value and section, we'll choose the one with
4715 the largest size. */
4716 while (idx-- != i)
4717 {
4718 h = sorted_sym_hash[idx];
4719
4720 /* Stop if value or section doesn't match. */
4721 if (h->root.u.def.section != slook
4722 || h->root.u.def.value != vlook)
4723 break;
4724 else if (h != hlook)
4725 {
4726 hlook->u.weakdef = h;
4727
4728 /* If the weak definition is in the list of dynamic
4729 symbols, make sure the real definition is put
4730 there as well. */
4731 if (hlook->dynindx != -1 && h->dynindx == -1)
4732 {
4733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4734 {
4735 err_free_sym_hash:
4736 free (sorted_sym_hash);
4737 goto error_return;
4738 }
4739 }
4740
4741 /* If the real definition is in the list of dynamic
4742 symbols, make sure the weak definition is put
4743 there as well. If we don't do this, then the
4744 dynamic loader might not merge the entries for the
4745 real definition and the weak definition. */
4746 if (h->dynindx != -1 && hlook->dynindx == -1)
4747 {
4748 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4749 goto err_free_sym_hash;
4750 }
4751 break;
4752 }
4753 }
4754 }
4755
4756 free (sorted_sym_hash);
4757 }
4758
4759 if (bed->check_directives
4760 && !(*bed->check_directives) (abfd, info))
4761 return FALSE;
4762
4763 /* If this object is the same format as the output object, and it is
4764 not a shared library, then let the backend look through the
4765 relocs.
4766
4767 This is required to build global offset table entries and to
4768 arrange for dynamic relocs. It is not required for the
4769 particular common case of linking non PIC code, even when linking
4770 against shared libraries, but unfortunately there is no way of
4771 knowing whether an object file has been compiled PIC or not.
4772 Looking through the relocs is not particularly time consuming.
4773 The problem is that we must either (1) keep the relocs in memory,
4774 which causes the linker to require additional runtime memory or
4775 (2) read the relocs twice from the input file, which wastes time.
4776 This would be a good case for using mmap.
4777
4778 I have no idea how to handle linking PIC code into a file of a
4779 different format. It probably can't be done. */
4780 if (! dynamic
4781 && is_elf_hash_table (htab)
4782 && bed->check_relocs != NULL
4783 && elf_object_id (abfd) == elf_hash_table_id (htab)
4784 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4785 {
4786 asection *o;
4787
4788 for (o = abfd->sections; o != NULL; o = o->next)
4789 {
4790 Elf_Internal_Rela *internal_relocs;
4791 bfd_boolean ok;
4792
4793 if ((o->flags & SEC_RELOC) == 0
4794 || o->reloc_count == 0
4795 || ((info->strip == strip_all || info->strip == strip_debugger)
4796 && (o->flags & SEC_DEBUGGING) != 0)
4797 || bfd_is_abs_section (o->output_section))
4798 continue;
4799
4800 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4801 info->keep_memory);
4802 if (internal_relocs == NULL)
4803 goto error_return;
4804
4805 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4806
4807 if (elf_section_data (o)->relocs != internal_relocs)
4808 free (internal_relocs);
4809
4810 if (! ok)
4811 goto error_return;
4812 }
4813 }
4814
4815 /* If this is a non-traditional link, try to optimize the handling
4816 of the .stab/.stabstr sections. */
4817 if (! dynamic
4818 && ! info->traditional_format
4819 && is_elf_hash_table (htab)
4820 && (info->strip != strip_all && info->strip != strip_debugger))
4821 {
4822 asection *stabstr;
4823
4824 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4825 if (stabstr != NULL)
4826 {
4827 bfd_size_type string_offset = 0;
4828 asection *stab;
4829
4830 for (stab = abfd->sections; stab; stab = stab->next)
4831 if (CONST_STRNEQ (stab->name, ".stab")
4832 && (!stab->name[5] ||
4833 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4834 && (stab->flags & SEC_MERGE) == 0
4835 && !bfd_is_abs_section (stab->output_section))
4836 {
4837 struct bfd_elf_section_data *secdata;
4838
4839 secdata = elf_section_data (stab);
4840 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4841 stabstr, &secdata->sec_info,
4842 &string_offset))
4843 goto error_return;
4844 if (secdata->sec_info)
4845 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4846 }
4847 }
4848 }
4849
4850 if (is_elf_hash_table (htab) && add_needed)
4851 {
4852 /* Add this bfd to the loaded list. */
4853 struct elf_link_loaded_list *n;
4854
4855 n = (struct elf_link_loaded_list *)
4856 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4857 if (n == NULL)
4858 goto error_return;
4859 n->abfd = abfd;
4860 n->next = htab->loaded;
4861 htab->loaded = n;
4862 }
4863
4864 return TRUE;
4865
4866 error_free_vers:
4867 if (old_tab != NULL)
4868 free (old_tab);
4869 if (nondeflt_vers != NULL)
4870 free (nondeflt_vers);
4871 if (extversym != NULL)
4872 free (extversym);
4873 error_free_sym:
4874 if (isymbuf != NULL)
4875 free (isymbuf);
4876 error_return:
4877 return FALSE;
4878 }
4879
4880 /* Return the linker hash table entry of a symbol that might be
4881 satisfied by an archive symbol. Return -1 on error. */
4882
4883 struct elf_link_hash_entry *
4884 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4885 struct bfd_link_info *info,
4886 const char *name)
4887 {
4888 struct elf_link_hash_entry *h;
4889 char *p, *copy;
4890 size_t len, first;
4891
4892 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4893 if (h != NULL)
4894 return h;
4895
4896 /* If this is a default version (the name contains @@), look up the
4897 symbol again with only one `@' as well as without the version.
4898 The effect is that references to the symbol with and without the
4899 version will be matched by the default symbol in the archive. */
4900
4901 p = strchr (name, ELF_VER_CHR);
4902 if (p == NULL || p[1] != ELF_VER_CHR)
4903 return h;
4904
4905 /* First check with only one `@'. */
4906 len = strlen (name);
4907 copy = (char *) bfd_alloc (abfd, len);
4908 if (copy == NULL)
4909 return (struct elf_link_hash_entry *) 0 - 1;
4910
4911 first = p - name + 1;
4912 memcpy (copy, name, first);
4913 memcpy (copy + first, name + first + 1, len - first);
4914
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4916 if (h == NULL)
4917 {
4918 /* We also need to check references to the symbol without the
4919 version. */
4920 copy[first - 1] = '\0';
4921 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4922 FALSE, FALSE, TRUE);
4923 }
4924
4925 bfd_release (abfd, copy);
4926 return h;
4927 }
4928
4929 /* Add symbols from an ELF archive file to the linker hash table. We
4930 don't use _bfd_generic_link_add_archive_symbols because we need to
4931 handle versioned symbols.
4932
4933 Fortunately, ELF archive handling is simpler than that done by
4934 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4935 oddities. In ELF, if we find a symbol in the archive map, and the
4936 symbol is currently undefined, we know that we must pull in that
4937 object file.
4938
4939 Unfortunately, we do have to make multiple passes over the symbol
4940 table until nothing further is resolved. */
4941
4942 static bfd_boolean
4943 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4944 {
4945 symindex c;
4946 unsigned char *included = NULL;
4947 carsym *symdefs;
4948 bfd_boolean loop;
4949 bfd_size_type amt;
4950 const struct elf_backend_data *bed;
4951 struct elf_link_hash_entry * (*archive_symbol_lookup)
4952 (bfd *, struct bfd_link_info *, const char *);
4953
4954 if (! bfd_has_map (abfd))
4955 {
4956 /* An empty archive is a special case. */
4957 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4958 return TRUE;
4959 bfd_set_error (bfd_error_no_armap);
4960 return FALSE;
4961 }
4962
4963 /* Keep track of all symbols we know to be already defined, and all
4964 files we know to be already included. This is to speed up the
4965 second and subsequent passes. */
4966 c = bfd_ardata (abfd)->symdef_count;
4967 if (c == 0)
4968 return TRUE;
4969 amt = c;
4970 amt *= sizeof (*included);
4971 included = (unsigned char *) bfd_zmalloc (amt);
4972 if (included == NULL)
4973 return FALSE;
4974
4975 symdefs = bfd_ardata (abfd)->symdefs;
4976 bed = get_elf_backend_data (abfd);
4977 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4978
4979 do
4980 {
4981 file_ptr last;
4982 symindex i;
4983 carsym *symdef;
4984 carsym *symdefend;
4985
4986 loop = FALSE;
4987 last = -1;
4988
4989 symdef = symdefs;
4990 symdefend = symdef + c;
4991 for (i = 0; symdef < symdefend; symdef++, i++)
4992 {
4993 struct elf_link_hash_entry *h;
4994 bfd *element;
4995 struct bfd_link_hash_entry *undefs_tail;
4996 symindex mark;
4997
4998 if (included[i])
4999 continue;
5000 if (symdef->file_offset == last)
5001 {
5002 included[i] = TRUE;
5003 continue;
5004 }
5005
5006 h = archive_symbol_lookup (abfd, info, symdef->name);
5007 if (h == (struct elf_link_hash_entry *) 0 - 1)
5008 goto error_return;
5009
5010 if (h == NULL)
5011 continue;
5012
5013 if (h->root.type == bfd_link_hash_common)
5014 {
5015 /* We currently have a common symbol. The archive map contains
5016 a reference to this symbol, so we may want to include it. We
5017 only want to include it however, if this archive element
5018 contains a definition of the symbol, not just another common
5019 declaration of it.
5020
5021 Unfortunately some archivers (including GNU ar) will put
5022 declarations of common symbols into their archive maps, as
5023 well as real definitions, so we cannot just go by the archive
5024 map alone. Instead we must read in the element's symbol
5025 table and check that to see what kind of symbol definition
5026 this is. */
5027 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5028 continue;
5029 }
5030 else if (h->root.type != bfd_link_hash_undefined)
5031 {
5032 if (h->root.type != bfd_link_hash_undefweak)
5033 /* Symbol must be defined. Don't check it again. */
5034 included[i] = TRUE;
5035 continue;
5036 }
5037
5038 /* We need to include this archive member. */
5039 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5040 if (element == NULL)
5041 goto error_return;
5042
5043 if (! bfd_check_format (element, bfd_object))
5044 goto error_return;
5045
5046 undefs_tail = info->hash->undefs_tail;
5047
5048 if (!(*info->callbacks
5049 ->add_archive_element) (info, element, symdef->name, &element))
5050 goto error_return;
5051 if (!bfd_link_add_symbols (element, info))
5052 goto error_return;
5053
5054 /* If there are any new undefined symbols, we need to make
5055 another pass through the archive in order to see whether
5056 they can be defined. FIXME: This isn't perfect, because
5057 common symbols wind up on undefs_tail and because an
5058 undefined symbol which is defined later on in this pass
5059 does not require another pass. This isn't a bug, but it
5060 does make the code less efficient than it could be. */
5061 if (undefs_tail != info->hash->undefs_tail)
5062 loop = TRUE;
5063
5064 /* Look backward to mark all symbols from this object file
5065 which we have already seen in this pass. */
5066 mark = i;
5067 do
5068 {
5069 included[mark] = TRUE;
5070 if (mark == 0)
5071 break;
5072 --mark;
5073 }
5074 while (symdefs[mark].file_offset == symdef->file_offset);
5075
5076 /* We mark subsequent symbols from this object file as we go
5077 on through the loop. */
5078 last = symdef->file_offset;
5079 }
5080 }
5081 while (loop);
5082
5083 free (included);
5084
5085 return TRUE;
5086
5087 error_return:
5088 if (included != NULL)
5089 free (included);
5090 return FALSE;
5091 }
5092
5093 /* Given an ELF BFD, add symbols to the global hash table as
5094 appropriate. */
5095
5096 bfd_boolean
5097 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5098 {
5099 switch (bfd_get_format (abfd))
5100 {
5101 case bfd_object:
5102 return elf_link_add_object_symbols (abfd, info);
5103 case bfd_archive:
5104 return elf_link_add_archive_symbols (abfd, info);
5105 default:
5106 bfd_set_error (bfd_error_wrong_format);
5107 return FALSE;
5108 }
5109 }
5110 \f
5111 struct hash_codes_info
5112 {
5113 unsigned long *hashcodes;
5114 bfd_boolean error;
5115 };
5116
5117 /* This function will be called though elf_link_hash_traverse to store
5118 all hash value of the exported symbols in an array. */
5119
5120 static bfd_boolean
5121 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5122 {
5123 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5124 const char *name;
5125 char *p;
5126 unsigned long ha;
5127 char *alc = NULL;
5128
5129 /* Ignore indirect symbols. These are added by the versioning code. */
5130 if (h->dynindx == -1)
5131 return TRUE;
5132
5133 name = h->root.root.string;
5134 p = strchr (name, ELF_VER_CHR);
5135 if (p != NULL)
5136 {
5137 alc = (char *) bfd_malloc (p - name + 1);
5138 if (alc == NULL)
5139 {
5140 inf->error = TRUE;
5141 return FALSE;
5142 }
5143 memcpy (alc, name, p - name);
5144 alc[p - name] = '\0';
5145 name = alc;
5146 }
5147
5148 /* Compute the hash value. */
5149 ha = bfd_elf_hash (name);
5150
5151 /* Store the found hash value in the array given as the argument. */
5152 *(inf->hashcodes)++ = ha;
5153
5154 /* And store it in the struct so that we can put it in the hash table
5155 later. */
5156 h->u.elf_hash_value = ha;
5157
5158 if (alc != NULL)
5159 free (alc);
5160
5161 return TRUE;
5162 }
5163
5164 struct collect_gnu_hash_codes
5165 {
5166 bfd *output_bfd;
5167 const struct elf_backend_data *bed;
5168 unsigned long int nsyms;
5169 unsigned long int maskbits;
5170 unsigned long int *hashcodes;
5171 unsigned long int *hashval;
5172 unsigned long int *indx;
5173 unsigned long int *counts;
5174 bfd_vma *bitmask;
5175 bfd_byte *contents;
5176 long int min_dynindx;
5177 unsigned long int bucketcount;
5178 unsigned long int symindx;
5179 long int local_indx;
5180 long int shift1, shift2;
5181 unsigned long int mask;
5182 bfd_boolean error;
5183 };
5184
5185 /* This function will be called though elf_link_hash_traverse to store
5186 all hash value of the exported symbols in an array. */
5187
5188 static bfd_boolean
5189 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5190 {
5191 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5192 const char *name;
5193 char *p;
5194 unsigned long ha;
5195 char *alc = NULL;
5196
5197 /* Ignore indirect symbols. These are added by the versioning code. */
5198 if (h->dynindx == -1)
5199 return TRUE;
5200
5201 /* Ignore also local symbols and undefined symbols. */
5202 if (! (*s->bed->elf_hash_symbol) (h))
5203 return TRUE;
5204
5205 name = h->root.root.string;
5206 p = strchr (name, ELF_VER_CHR);
5207 if (p != NULL)
5208 {
5209 alc = (char *) bfd_malloc (p - name + 1);
5210 if (alc == NULL)
5211 {
5212 s->error = TRUE;
5213 return FALSE;
5214 }
5215 memcpy (alc, name, p - name);
5216 alc[p - name] = '\0';
5217 name = alc;
5218 }
5219
5220 /* Compute the hash value. */
5221 ha = bfd_elf_gnu_hash (name);
5222
5223 /* Store the found hash value in the array for compute_bucket_count,
5224 and also for .dynsym reordering purposes. */
5225 s->hashcodes[s->nsyms] = ha;
5226 s->hashval[h->dynindx] = ha;
5227 ++s->nsyms;
5228 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5229 s->min_dynindx = h->dynindx;
5230
5231 if (alc != NULL)
5232 free (alc);
5233
5234 return TRUE;
5235 }
5236
5237 /* This function will be called though elf_link_hash_traverse to do
5238 final dynaminc symbol renumbering. */
5239
5240 static bfd_boolean
5241 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5242 {
5243 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5244 unsigned long int bucket;
5245 unsigned long int val;
5246
5247 /* Ignore indirect symbols. */
5248 if (h->dynindx == -1)
5249 return TRUE;
5250
5251 /* Ignore also local symbols and undefined symbols. */
5252 if (! (*s->bed->elf_hash_symbol) (h))
5253 {
5254 if (h->dynindx >= s->min_dynindx)
5255 h->dynindx = s->local_indx++;
5256 return TRUE;
5257 }
5258
5259 bucket = s->hashval[h->dynindx] % s->bucketcount;
5260 val = (s->hashval[h->dynindx] >> s->shift1)
5261 & ((s->maskbits >> s->shift1) - 1);
5262 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5263 s->bitmask[val]
5264 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5265 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5266 if (s->counts[bucket] == 1)
5267 /* Last element terminates the chain. */
5268 val |= 1;
5269 bfd_put_32 (s->output_bfd, val,
5270 s->contents + (s->indx[bucket] - s->symindx) * 4);
5271 --s->counts[bucket];
5272 h->dynindx = s->indx[bucket]++;
5273 return TRUE;
5274 }
5275
5276 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5277
5278 bfd_boolean
5279 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5280 {
5281 return !(h->forced_local
5282 || h->root.type == bfd_link_hash_undefined
5283 || h->root.type == bfd_link_hash_undefweak
5284 || ((h->root.type == bfd_link_hash_defined
5285 || h->root.type == bfd_link_hash_defweak)
5286 && h->root.u.def.section->output_section == NULL));
5287 }
5288
5289 /* Array used to determine the number of hash table buckets to use
5290 based on the number of symbols there are. If there are fewer than
5291 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5292 fewer than 37 we use 17 buckets, and so forth. We never use more
5293 than 32771 buckets. */
5294
5295 static const size_t elf_buckets[] =
5296 {
5297 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5298 16411, 32771, 0
5299 };
5300
5301 /* Compute bucket count for hashing table. We do not use a static set
5302 of possible tables sizes anymore. Instead we determine for all
5303 possible reasonable sizes of the table the outcome (i.e., the
5304 number of collisions etc) and choose the best solution. The
5305 weighting functions are not too simple to allow the table to grow
5306 without bounds. Instead one of the weighting factors is the size.
5307 Therefore the result is always a good payoff between few collisions
5308 (= short chain lengths) and table size. */
5309 static size_t
5310 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5311 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5312 unsigned long int nsyms,
5313 int gnu_hash)
5314 {
5315 size_t best_size = 0;
5316 unsigned long int i;
5317
5318 /* We have a problem here. The following code to optimize the table
5319 size requires an integer type with more the 32 bits. If
5320 BFD_HOST_U_64_BIT is set we know about such a type. */
5321 #ifdef BFD_HOST_U_64_BIT
5322 if (info->optimize)
5323 {
5324 size_t minsize;
5325 size_t maxsize;
5326 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5327 bfd *dynobj = elf_hash_table (info)->dynobj;
5328 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5329 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5330 unsigned long int *counts;
5331 bfd_size_type amt;
5332 unsigned int no_improvement_count = 0;
5333
5334 /* Possible optimization parameters: if we have NSYMS symbols we say
5335 that the hashing table must at least have NSYMS/4 and at most
5336 2*NSYMS buckets. */
5337 minsize = nsyms / 4;
5338 if (minsize == 0)
5339 minsize = 1;
5340 best_size = maxsize = nsyms * 2;
5341 if (gnu_hash)
5342 {
5343 if (minsize < 2)
5344 minsize = 2;
5345 if ((best_size & 31) == 0)
5346 ++best_size;
5347 }
5348
5349 /* Create array where we count the collisions in. We must use bfd_malloc
5350 since the size could be large. */
5351 amt = maxsize;
5352 amt *= sizeof (unsigned long int);
5353 counts = (unsigned long int *) bfd_malloc (amt);
5354 if (counts == NULL)
5355 return 0;
5356
5357 /* Compute the "optimal" size for the hash table. The criteria is a
5358 minimal chain length. The minor criteria is (of course) the size
5359 of the table. */
5360 for (i = minsize; i < maxsize; ++i)
5361 {
5362 /* Walk through the array of hashcodes and count the collisions. */
5363 BFD_HOST_U_64_BIT max;
5364 unsigned long int j;
5365 unsigned long int fact;
5366
5367 if (gnu_hash && (i & 31) == 0)
5368 continue;
5369
5370 memset (counts, '\0', i * sizeof (unsigned long int));
5371
5372 /* Determine how often each hash bucket is used. */
5373 for (j = 0; j < nsyms; ++j)
5374 ++counts[hashcodes[j] % i];
5375
5376 /* For the weight function we need some information about the
5377 pagesize on the target. This is information need not be 100%
5378 accurate. Since this information is not available (so far) we
5379 define it here to a reasonable default value. If it is crucial
5380 to have a better value some day simply define this value. */
5381 # ifndef BFD_TARGET_PAGESIZE
5382 # define BFD_TARGET_PAGESIZE (4096)
5383 # endif
5384
5385 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5386 and the chains. */
5387 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5388
5389 # if 1
5390 /* Variant 1: optimize for short chains. We add the squares
5391 of all the chain lengths (which favors many small chain
5392 over a few long chains). */
5393 for (j = 0; j < i; ++j)
5394 max += counts[j] * counts[j];
5395
5396 /* This adds penalties for the overall size of the table. */
5397 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5398 max *= fact * fact;
5399 # else
5400 /* Variant 2: Optimize a lot more for small table. Here we
5401 also add squares of the size but we also add penalties for
5402 empty slots (the +1 term). */
5403 for (j = 0; j < i; ++j)
5404 max += (1 + counts[j]) * (1 + counts[j]);
5405
5406 /* The overall size of the table is considered, but not as
5407 strong as in variant 1, where it is squared. */
5408 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5409 max *= fact;
5410 # endif
5411
5412 /* Compare with current best results. */
5413 if (max < best_chlen)
5414 {
5415 best_chlen = max;
5416 best_size = i;
5417 no_improvement_count = 0;
5418 }
5419 /* PR 11843: Avoid futile long searches for the best bucket size
5420 when there are a large number of symbols. */
5421 else if (++no_improvement_count == 100)
5422 break;
5423 }
5424
5425 free (counts);
5426 }
5427 else
5428 #endif /* defined (BFD_HOST_U_64_BIT) */
5429 {
5430 /* This is the fallback solution if no 64bit type is available or if we
5431 are not supposed to spend much time on optimizations. We select the
5432 bucket count using a fixed set of numbers. */
5433 for (i = 0; elf_buckets[i] != 0; i++)
5434 {
5435 best_size = elf_buckets[i];
5436 if (nsyms < elf_buckets[i + 1])
5437 break;
5438 }
5439 if (gnu_hash && best_size < 2)
5440 best_size = 2;
5441 }
5442
5443 return best_size;
5444 }
5445
5446 /* Size any SHT_GROUP section for ld -r. */
5447
5448 bfd_boolean
5449 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5450 {
5451 bfd *ibfd;
5452
5453 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5454 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5455 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5456 return FALSE;
5457 return TRUE;
5458 }
5459
5460 /* Set a default stack segment size. The value in INFO wins. If it
5461 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5462 undefined it is initialized. */
5463
5464 bfd_boolean
5465 bfd_elf_stack_segment_size (bfd *output_bfd,
5466 struct bfd_link_info *info,
5467 const char *legacy_symbol,
5468 bfd_vma default_size)
5469 {
5470 struct elf_link_hash_entry *h = NULL;
5471
5472 /* Look for legacy symbol. */
5473 if (legacy_symbol)
5474 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5475 FALSE, FALSE, FALSE);
5476 if (h && (h->root.type == bfd_link_hash_defined
5477 || h->root.type == bfd_link_hash_defweak)
5478 && h->def_regular
5479 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5480 {
5481 /* The symbol has no type if specified on the command line. */
5482 h->type = STT_OBJECT;
5483 if (info->stacksize)
5484 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5485 output_bfd, legacy_symbol);
5486 else if (h->root.u.def.section != bfd_abs_section_ptr)
5487 (*_bfd_error_handler) (_("%B: %s not absolute"),
5488 output_bfd, legacy_symbol);
5489 else
5490 info->stacksize = h->root.u.def.value;
5491 }
5492
5493 if (!info->stacksize)
5494 /* If the user didn't set a size, or explicitly inhibit the
5495 size, set it now. */
5496 info->stacksize = default_size;
5497
5498 /* Provide the legacy symbol, if it is referenced. */
5499 if (h && (h->root.type == bfd_link_hash_undefined
5500 || h->root.type == bfd_link_hash_undefweak))
5501 {
5502 struct bfd_link_hash_entry *bh = NULL;
5503
5504 if (!(_bfd_generic_link_add_one_symbol
5505 (info, output_bfd, legacy_symbol,
5506 BSF_GLOBAL, bfd_abs_section_ptr,
5507 info->stacksize >= 0 ? info->stacksize : 0,
5508 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5509 return FALSE;
5510
5511 h = (struct elf_link_hash_entry *) bh;
5512 h->def_regular = 1;
5513 h->type = STT_OBJECT;
5514 }
5515
5516 return TRUE;
5517 }
5518
5519 /* Set up the sizes and contents of the ELF dynamic sections. This is
5520 called by the ELF linker emulation before_allocation routine. We
5521 must set the sizes of the sections before the linker sets the
5522 addresses of the various sections. */
5523
5524 bfd_boolean
5525 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5526 const char *soname,
5527 const char *rpath,
5528 const char *filter_shlib,
5529 const char *audit,
5530 const char *depaudit,
5531 const char * const *auxiliary_filters,
5532 struct bfd_link_info *info,
5533 asection **sinterpptr)
5534 {
5535 bfd_size_type soname_indx;
5536 bfd *dynobj;
5537 const struct elf_backend_data *bed;
5538 struct elf_info_failed asvinfo;
5539
5540 *sinterpptr = NULL;
5541
5542 soname_indx = (bfd_size_type) -1;
5543
5544 if (!is_elf_hash_table (info->hash))
5545 return TRUE;
5546
5547 bed = get_elf_backend_data (output_bfd);
5548
5549 /* Any syms created from now on start with -1 in
5550 got.refcount/offset and plt.refcount/offset. */
5551 elf_hash_table (info)->init_got_refcount
5552 = elf_hash_table (info)->init_got_offset;
5553 elf_hash_table (info)->init_plt_refcount
5554 = elf_hash_table (info)->init_plt_offset;
5555
5556 if (info->relocatable
5557 && !_bfd_elf_size_group_sections (info))
5558 return FALSE;
5559
5560 /* The backend may have to create some sections regardless of whether
5561 we're dynamic or not. */
5562 if (bed->elf_backend_always_size_sections
5563 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5564 return FALSE;
5565
5566 /* Determine any GNU_STACK segment requirements, after the backend
5567 has had a chance to set a default segment size. */
5568 if (info->execstack)
5569 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5570 else if (info->noexecstack)
5571 elf_stack_flags (output_bfd) = PF_R | PF_W;
5572 else
5573 {
5574 bfd *inputobj;
5575 asection *notesec = NULL;
5576 int exec = 0;
5577
5578 for (inputobj = info->input_bfds;
5579 inputobj;
5580 inputobj = inputobj->link.next)
5581 {
5582 asection *s;
5583
5584 if (inputobj->flags
5585 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5586 continue;
5587 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5588 if (s)
5589 {
5590 if (s->flags & SEC_CODE)
5591 exec = PF_X;
5592 notesec = s;
5593 }
5594 else if (bed->default_execstack)
5595 exec = PF_X;
5596 }
5597 if (notesec || info->stacksize > 0)
5598 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5599 if (notesec && exec && info->relocatable
5600 && notesec->output_section != bfd_abs_section_ptr)
5601 notesec->output_section->flags |= SEC_CODE;
5602 }
5603
5604 dynobj = elf_hash_table (info)->dynobj;
5605
5606 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5607 {
5608 struct elf_info_failed eif;
5609 struct elf_link_hash_entry *h;
5610 asection *dynstr;
5611 struct bfd_elf_version_tree *t;
5612 struct bfd_elf_version_expr *d;
5613 asection *s;
5614 bfd_boolean all_defined;
5615
5616 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5617 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5618
5619 if (soname != NULL)
5620 {
5621 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5622 soname, TRUE);
5623 if (soname_indx == (bfd_size_type) -1
5624 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5625 return FALSE;
5626 }
5627
5628 if (info->symbolic)
5629 {
5630 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5631 return FALSE;
5632 info->flags |= DF_SYMBOLIC;
5633 }
5634
5635 if (rpath != NULL)
5636 {
5637 bfd_size_type indx;
5638 bfd_vma tag;
5639
5640 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5641 TRUE);
5642 if (indx == (bfd_size_type) -1)
5643 return FALSE;
5644
5645 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5646 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5647 return FALSE;
5648 }
5649
5650 if (filter_shlib != NULL)
5651 {
5652 bfd_size_type indx;
5653
5654 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5655 filter_shlib, TRUE);
5656 if (indx == (bfd_size_type) -1
5657 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5658 return FALSE;
5659 }
5660
5661 if (auxiliary_filters != NULL)
5662 {
5663 const char * const *p;
5664
5665 for (p = auxiliary_filters; *p != NULL; p++)
5666 {
5667 bfd_size_type indx;
5668
5669 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5670 *p, TRUE);
5671 if (indx == (bfd_size_type) -1
5672 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5673 return FALSE;
5674 }
5675 }
5676
5677 if (audit != NULL)
5678 {
5679 bfd_size_type indx;
5680
5681 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5682 TRUE);
5683 if (indx == (bfd_size_type) -1
5684 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5685 return FALSE;
5686 }
5687
5688 if (depaudit != NULL)
5689 {
5690 bfd_size_type indx;
5691
5692 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5693 TRUE);
5694 if (indx == (bfd_size_type) -1
5695 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5696 return FALSE;
5697 }
5698
5699 eif.info = info;
5700 eif.failed = FALSE;
5701
5702 /* If we are supposed to export all symbols into the dynamic symbol
5703 table (this is not the normal case), then do so. */
5704 if (info->export_dynamic
5705 || (info->executable && info->dynamic))
5706 {
5707 elf_link_hash_traverse (elf_hash_table (info),
5708 _bfd_elf_export_symbol,
5709 &eif);
5710 if (eif.failed)
5711 return FALSE;
5712 }
5713
5714 /* Make all global versions with definition. */
5715 for (t = info->version_info; t != NULL; t = t->next)
5716 for (d = t->globals.list; d != NULL; d = d->next)
5717 if (!d->symver && d->literal)
5718 {
5719 const char *verstr, *name;
5720 size_t namelen, verlen, newlen;
5721 char *newname, *p, leading_char;
5722 struct elf_link_hash_entry *newh;
5723
5724 leading_char = bfd_get_symbol_leading_char (output_bfd);
5725 name = d->pattern;
5726 namelen = strlen (name) + (leading_char != '\0');
5727 verstr = t->name;
5728 verlen = strlen (verstr);
5729 newlen = namelen + verlen + 3;
5730
5731 newname = (char *) bfd_malloc (newlen);
5732 if (newname == NULL)
5733 return FALSE;
5734 newname[0] = leading_char;
5735 memcpy (newname + (leading_char != '\0'), name, namelen);
5736
5737 /* Check the hidden versioned definition. */
5738 p = newname + namelen;
5739 *p++ = ELF_VER_CHR;
5740 memcpy (p, verstr, verlen + 1);
5741 newh = elf_link_hash_lookup (elf_hash_table (info),
5742 newname, FALSE, FALSE,
5743 FALSE);
5744 if (newh == NULL
5745 || (newh->root.type != bfd_link_hash_defined
5746 && newh->root.type != bfd_link_hash_defweak))
5747 {
5748 /* Check the default versioned definition. */
5749 *p++ = ELF_VER_CHR;
5750 memcpy (p, verstr, verlen + 1);
5751 newh = elf_link_hash_lookup (elf_hash_table (info),
5752 newname, FALSE, FALSE,
5753 FALSE);
5754 }
5755 free (newname);
5756
5757 /* Mark this version if there is a definition and it is
5758 not defined in a shared object. */
5759 if (newh != NULL
5760 && !newh->def_dynamic
5761 && (newh->root.type == bfd_link_hash_defined
5762 || newh->root.type == bfd_link_hash_defweak))
5763 d->symver = 1;
5764 }
5765
5766 /* Attach all the symbols to their version information. */
5767 asvinfo.info = info;
5768 asvinfo.failed = FALSE;
5769
5770 elf_link_hash_traverse (elf_hash_table (info),
5771 _bfd_elf_link_assign_sym_version,
5772 &asvinfo);
5773 if (asvinfo.failed)
5774 return FALSE;
5775
5776 if (!info->allow_undefined_version)
5777 {
5778 /* Check if all global versions have a definition. */
5779 all_defined = TRUE;
5780 for (t = info->version_info; t != NULL; t = t->next)
5781 for (d = t->globals.list; d != NULL; d = d->next)
5782 if (d->literal && !d->symver && !d->script)
5783 {
5784 (*_bfd_error_handler)
5785 (_("%s: undefined version: %s"),
5786 d->pattern, t->name);
5787 all_defined = FALSE;
5788 }
5789
5790 if (!all_defined)
5791 {
5792 bfd_set_error (bfd_error_bad_value);
5793 return FALSE;
5794 }
5795 }
5796
5797 /* Find all symbols which were defined in a dynamic object and make
5798 the backend pick a reasonable value for them. */
5799 elf_link_hash_traverse (elf_hash_table (info),
5800 _bfd_elf_adjust_dynamic_symbol,
5801 &eif);
5802 if (eif.failed)
5803 return FALSE;
5804
5805 /* Add some entries to the .dynamic section. We fill in some of the
5806 values later, in bfd_elf_final_link, but we must add the entries
5807 now so that we know the final size of the .dynamic section. */
5808
5809 /* If there are initialization and/or finalization functions to
5810 call then add the corresponding DT_INIT/DT_FINI entries. */
5811 h = (info->init_function
5812 ? elf_link_hash_lookup (elf_hash_table (info),
5813 info->init_function, FALSE,
5814 FALSE, FALSE)
5815 : NULL);
5816 if (h != NULL
5817 && (h->ref_regular
5818 || h->def_regular))
5819 {
5820 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5821 return FALSE;
5822 }
5823 h = (info->fini_function
5824 ? elf_link_hash_lookup (elf_hash_table (info),
5825 info->fini_function, FALSE,
5826 FALSE, FALSE)
5827 : NULL);
5828 if (h != NULL
5829 && (h->ref_regular
5830 || h->def_regular))
5831 {
5832 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5833 return FALSE;
5834 }
5835
5836 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5837 if (s != NULL && s->linker_has_input)
5838 {
5839 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5840 if (! info->executable)
5841 {
5842 bfd *sub;
5843 asection *o;
5844
5845 for (sub = info->input_bfds; sub != NULL;
5846 sub = sub->link.next)
5847 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5848 for (o = sub->sections; o != NULL; o = o->next)
5849 if (elf_section_data (o)->this_hdr.sh_type
5850 == SHT_PREINIT_ARRAY)
5851 {
5852 (*_bfd_error_handler)
5853 (_("%B: .preinit_array section is not allowed in DSO"),
5854 sub);
5855 break;
5856 }
5857
5858 bfd_set_error (bfd_error_nonrepresentable_section);
5859 return FALSE;
5860 }
5861
5862 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5863 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5864 return FALSE;
5865 }
5866 s = bfd_get_section_by_name (output_bfd, ".init_array");
5867 if (s != NULL && s->linker_has_input)
5868 {
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5870 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5871 return FALSE;
5872 }
5873 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5874 if (s != NULL && s->linker_has_input)
5875 {
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5877 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5878 return FALSE;
5879 }
5880
5881 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5882 /* If .dynstr is excluded from the link, we don't want any of
5883 these tags. Strictly, we should be checking each section
5884 individually; This quick check covers for the case where
5885 someone does a /DISCARD/ : { *(*) }. */
5886 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5887 {
5888 bfd_size_type strsize;
5889
5890 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5891 if ((info->emit_hash
5892 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5893 || (info->emit_gnu_hash
5894 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5895 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5897 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5898 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5899 bed->s->sizeof_sym))
5900 return FALSE;
5901 }
5902 }
5903
5904 /* The backend must work out the sizes of all the other dynamic
5905 sections. */
5906 if (dynobj != NULL
5907 && bed->elf_backend_size_dynamic_sections != NULL
5908 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5909 return FALSE;
5910
5911 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5912 return FALSE;
5913
5914 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5915 {
5916 unsigned long section_sym_count;
5917 struct bfd_elf_version_tree *verdefs;
5918 asection *s;
5919
5920 /* Set up the version definition section. */
5921 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5922 BFD_ASSERT (s != NULL);
5923
5924 /* We may have created additional version definitions if we are
5925 just linking a regular application. */
5926 verdefs = info->version_info;
5927
5928 /* Skip anonymous version tag. */
5929 if (verdefs != NULL && verdefs->vernum == 0)
5930 verdefs = verdefs->next;
5931
5932 if (verdefs == NULL && !info->create_default_symver)
5933 s->flags |= SEC_EXCLUDE;
5934 else
5935 {
5936 unsigned int cdefs;
5937 bfd_size_type size;
5938 struct bfd_elf_version_tree *t;
5939 bfd_byte *p;
5940 Elf_Internal_Verdef def;
5941 Elf_Internal_Verdaux defaux;
5942 struct bfd_link_hash_entry *bh;
5943 struct elf_link_hash_entry *h;
5944 const char *name;
5945
5946 cdefs = 0;
5947 size = 0;
5948
5949 /* Make space for the base version. */
5950 size += sizeof (Elf_External_Verdef);
5951 size += sizeof (Elf_External_Verdaux);
5952 ++cdefs;
5953
5954 /* Make space for the default version. */
5955 if (info->create_default_symver)
5956 {
5957 size += sizeof (Elf_External_Verdef);
5958 ++cdefs;
5959 }
5960
5961 for (t = verdefs; t != NULL; t = t->next)
5962 {
5963 struct bfd_elf_version_deps *n;
5964
5965 /* Don't emit base version twice. */
5966 if (t->vernum == 0)
5967 continue;
5968
5969 size += sizeof (Elf_External_Verdef);
5970 size += sizeof (Elf_External_Verdaux);
5971 ++cdefs;
5972
5973 for (n = t->deps; n != NULL; n = n->next)
5974 size += sizeof (Elf_External_Verdaux);
5975 }
5976
5977 s->size = size;
5978 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5979 if (s->contents == NULL && s->size != 0)
5980 return FALSE;
5981
5982 /* Fill in the version definition section. */
5983
5984 p = s->contents;
5985
5986 def.vd_version = VER_DEF_CURRENT;
5987 def.vd_flags = VER_FLG_BASE;
5988 def.vd_ndx = 1;
5989 def.vd_cnt = 1;
5990 if (info->create_default_symver)
5991 {
5992 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5993 def.vd_next = sizeof (Elf_External_Verdef);
5994 }
5995 else
5996 {
5997 def.vd_aux = sizeof (Elf_External_Verdef);
5998 def.vd_next = (sizeof (Elf_External_Verdef)
5999 + sizeof (Elf_External_Verdaux));
6000 }
6001
6002 if (soname_indx != (bfd_size_type) -1)
6003 {
6004 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6005 soname_indx);
6006 def.vd_hash = bfd_elf_hash (soname);
6007 defaux.vda_name = soname_indx;
6008 name = soname;
6009 }
6010 else
6011 {
6012 bfd_size_type indx;
6013
6014 name = lbasename (output_bfd->filename);
6015 def.vd_hash = bfd_elf_hash (name);
6016 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6017 name, FALSE);
6018 if (indx == (bfd_size_type) -1)
6019 return FALSE;
6020 defaux.vda_name = indx;
6021 }
6022 defaux.vda_next = 0;
6023
6024 _bfd_elf_swap_verdef_out (output_bfd, &def,
6025 (Elf_External_Verdef *) p);
6026 p += sizeof (Elf_External_Verdef);
6027 if (info->create_default_symver)
6028 {
6029 /* Add a symbol representing this version. */
6030 bh = NULL;
6031 if (! (_bfd_generic_link_add_one_symbol
6032 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6033 0, NULL, FALSE,
6034 get_elf_backend_data (dynobj)->collect, &bh)))
6035 return FALSE;
6036 h = (struct elf_link_hash_entry *) bh;
6037 h->non_elf = 0;
6038 h->def_regular = 1;
6039 h->type = STT_OBJECT;
6040 h->verinfo.vertree = NULL;
6041
6042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6043 return FALSE;
6044
6045 /* Create a duplicate of the base version with the same
6046 aux block, but different flags. */
6047 def.vd_flags = 0;
6048 def.vd_ndx = 2;
6049 def.vd_aux = sizeof (Elf_External_Verdef);
6050 if (verdefs)
6051 def.vd_next = (sizeof (Elf_External_Verdef)
6052 + sizeof (Elf_External_Verdaux));
6053 else
6054 def.vd_next = 0;
6055 _bfd_elf_swap_verdef_out (output_bfd, &def,
6056 (Elf_External_Verdef *) p);
6057 p += sizeof (Elf_External_Verdef);
6058 }
6059 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6060 (Elf_External_Verdaux *) p);
6061 p += sizeof (Elf_External_Verdaux);
6062
6063 for (t = verdefs; t != NULL; t = t->next)
6064 {
6065 unsigned int cdeps;
6066 struct bfd_elf_version_deps *n;
6067
6068 /* Don't emit the base version twice. */
6069 if (t->vernum == 0)
6070 continue;
6071
6072 cdeps = 0;
6073 for (n = t->deps; n != NULL; n = n->next)
6074 ++cdeps;
6075
6076 /* Add a symbol representing this version. */
6077 bh = NULL;
6078 if (! (_bfd_generic_link_add_one_symbol
6079 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6080 0, NULL, FALSE,
6081 get_elf_backend_data (dynobj)->collect, &bh)))
6082 return FALSE;
6083 h = (struct elf_link_hash_entry *) bh;
6084 h->non_elf = 0;
6085 h->def_regular = 1;
6086 h->type = STT_OBJECT;
6087 h->verinfo.vertree = t;
6088
6089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6090 return FALSE;
6091
6092 def.vd_version = VER_DEF_CURRENT;
6093 def.vd_flags = 0;
6094 if (t->globals.list == NULL
6095 && t->locals.list == NULL
6096 && ! t->used)
6097 def.vd_flags |= VER_FLG_WEAK;
6098 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6099 def.vd_cnt = cdeps + 1;
6100 def.vd_hash = bfd_elf_hash (t->name);
6101 def.vd_aux = sizeof (Elf_External_Verdef);
6102 def.vd_next = 0;
6103
6104 /* If a basever node is next, it *must* be the last node in
6105 the chain, otherwise Verdef construction breaks. */
6106 if (t->next != NULL && t->next->vernum == 0)
6107 BFD_ASSERT (t->next->next == NULL);
6108
6109 if (t->next != NULL && t->next->vernum != 0)
6110 def.vd_next = (sizeof (Elf_External_Verdef)
6111 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6112
6113 _bfd_elf_swap_verdef_out (output_bfd, &def,
6114 (Elf_External_Verdef *) p);
6115 p += sizeof (Elf_External_Verdef);
6116
6117 defaux.vda_name = h->dynstr_index;
6118 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6119 h->dynstr_index);
6120 defaux.vda_next = 0;
6121 if (t->deps != NULL)
6122 defaux.vda_next = sizeof (Elf_External_Verdaux);
6123 t->name_indx = defaux.vda_name;
6124
6125 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6126 (Elf_External_Verdaux *) p);
6127 p += sizeof (Elf_External_Verdaux);
6128
6129 for (n = t->deps; n != NULL; n = n->next)
6130 {
6131 if (n->version_needed == NULL)
6132 {
6133 /* This can happen if there was an error in the
6134 version script. */
6135 defaux.vda_name = 0;
6136 }
6137 else
6138 {
6139 defaux.vda_name = n->version_needed->name_indx;
6140 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6141 defaux.vda_name);
6142 }
6143 if (n->next == NULL)
6144 defaux.vda_next = 0;
6145 else
6146 defaux.vda_next = sizeof (Elf_External_Verdaux);
6147
6148 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6149 (Elf_External_Verdaux *) p);
6150 p += sizeof (Elf_External_Verdaux);
6151 }
6152 }
6153
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6155 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6156 return FALSE;
6157
6158 elf_tdata (output_bfd)->cverdefs = cdefs;
6159 }
6160
6161 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6162 {
6163 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6164 return FALSE;
6165 }
6166 else if (info->flags & DF_BIND_NOW)
6167 {
6168 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6169 return FALSE;
6170 }
6171
6172 if (info->flags_1)
6173 {
6174 if (info->executable)
6175 info->flags_1 &= ~ (DF_1_INITFIRST
6176 | DF_1_NODELETE
6177 | DF_1_NOOPEN);
6178 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6179 return FALSE;
6180 }
6181
6182 /* Work out the size of the version reference section. */
6183
6184 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6185 BFD_ASSERT (s != NULL);
6186 {
6187 struct elf_find_verdep_info sinfo;
6188
6189 sinfo.info = info;
6190 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6191 if (sinfo.vers == 0)
6192 sinfo.vers = 1;
6193 sinfo.failed = FALSE;
6194
6195 elf_link_hash_traverse (elf_hash_table (info),
6196 _bfd_elf_link_find_version_dependencies,
6197 &sinfo);
6198 if (sinfo.failed)
6199 return FALSE;
6200
6201 if (elf_tdata (output_bfd)->verref == NULL)
6202 s->flags |= SEC_EXCLUDE;
6203 else
6204 {
6205 Elf_Internal_Verneed *t;
6206 unsigned int size;
6207 unsigned int crefs;
6208 bfd_byte *p;
6209
6210 /* Build the version dependency section. */
6211 size = 0;
6212 crefs = 0;
6213 for (t = elf_tdata (output_bfd)->verref;
6214 t != NULL;
6215 t = t->vn_nextref)
6216 {
6217 Elf_Internal_Vernaux *a;
6218
6219 size += sizeof (Elf_External_Verneed);
6220 ++crefs;
6221 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6222 size += sizeof (Elf_External_Vernaux);
6223 }
6224
6225 s->size = size;
6226 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6227 if (s->contents == NULL)
6228 return FALSE;
6229
6230 p = s->contents;
6231 for (t = elf_tdata (output_bfd)->verref;
6232 t != NULL;
6233 t = t->vn_nextref)
6234 {
6235 unsigned int caux;
6236 Elf_Internal_Vernaux *a;
6237 bfd_size_type indx;
6238
6239 caux = 0;
6240 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6241 ++caux;
6242
6243 t->vn_version = VER_NEED_CURRENT;
6244 t->vn_cnt = caux;
6245 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6246 elf_dt_name (t->vn_bfd) != NULL
6247 ? elf_dt_name (t->vn_bfd)
6248 : lbasename (t->vn_bfd->filename),
6249 FALSE);
6250 if (indx == (bfd_size_type) -1)
6251 return FALSE;
6252 t->vn_file = indx;
6253 t->vn_aux = sizeof (Elf_External_Verneed);
6254 if (t->vn_nextref == NULL)
6255 t->vn_next = 0;
6256 else
6257 t->vn_next = (sizeof (Elf_External_Verneed)
6258 + caux * sizeof (Elf_External_Vernaux));
6259
6260 _bfd_elf_swap_verneed_out (output_bfd, t,
6261 (Elf_External_Verneed *) p);
6262 p += sizeof (Elf_External_Verneed);
6263
6264 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6265 {
6266 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6267 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6268 a->vna_nodename, FALSE);
6269 if (indx == (bfd_size_type) -1)
6270 return FALSE;
6271 a->vna_name = indx;
6272 if (a->vna_nextptr == NULL)
6273 a->vna_next = 0;
6274 else
6275 a->vna_next = sizeof (Elf_External_Vernaux);
6276
6277 _bfd_elf_swap_vernaux_out (output_bfd, a,
6278 (Elf_External_Vernaux *) p);
6279 p += sizeof (Elf_External_Vernaux);
6280 }
6281 }
6282
6283 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6284 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6285 return FALSE;
6286
6287 elf_tdata (output_bfd)->cverrefs = crefs;
6288 }
6289 }
6290
6291 if ((elf_tdata (output_bfd)->cverrefs == 0
6292 && elf_tdata (output_bfd)->cverdefs == 0)
6293 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6294 &section_sym_count) == 0)
6295 {
6296 s = bfd_get_linker_section (dynobj, ".gnu.version");
6297 s->flags |= SEC_EXCLUDE;
6298 }
6299 }
6300 return TRUE;
6301 }
6302
6303 /* Find the first non-excluded output section. We'll use its
6304 section symbol for some emitted relocs. */
6305 void
6306 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6307 {
6308 asection *s;
6309
6310 for (s = output_bfd->sections; s != NULL; s = s->next)
6311 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6312 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6313 {
6314 elf_hash_table (info)->text_index_section = s;
6315 break;
6316 }
6317 }
6318
6319 /* Find two non-excluded output sections, one for code, one for data.
6320 We'll use their section symbols for some emitted relocs. */
6321 void
6322 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6323 {
6324 asection *s;
6325
6326 /* Data first, since setting text_index_section changes
6327 _bfd_elf_link_omit_section_dynsym. */
6328 for (s = output_bfd->sections; s != NULL; s = s->next)
6329 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6330 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6331 {
6332 elf_hash_table (info)->data_index_section = s;
6333 break;
6334 }
6335
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6338 == (SEC_ALLOC | SEC_READONLY))
6339 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6340 {
6341 elf_hash_table (info)->text_index_section = s;
6342 break;
6343 }
6344
6345 if (elf_hash_table (info)->text_index_section == NULL)
6346 elf_hash_table (info)->text_index_section
6347 = elf_hash_table (info)->data_index_section;
6348 }
6349
6350 bfd_boolean
6351 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6352 {
6353 const struct elf_backend_data *bed;
6354
6355 if (!is_elf_hash_table (info->hash))
6356 return TRUE;
6357
6358 bed = get_elf_backend_data (output_bfd);
6359 (*bed->elf_backend_init_index_section) (output_bfd, info);
6360
6361 if (elf_hash_table (info)->dynamic_sections_created)
6362 {
6363 bfd *dynobj;
6364 asection *s;
6365 bfd_size_type dynsymcount;
6366 unsigned long section_sym_count;
6367 unsigned int dtagcount;
6368
6369 dynobj = elf_hash_table (info)->dynobj;
6370
6371 /* Assign dynsym indicies. In a shared library we generate a
6372 section symbol for each output section, which come first.
6373 Next come all of the back-end allocated local dynamic syms,
6374 followed by the rest of the global symbols. */
6375
6376 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6377 &section_sym_count);
6378
6379 /* Work out the size of the symbol version section. */
6380 s = bfd_get_linker_section (dynobj, ".gnu.version");
6381 BFD_ASSERT (s != NULL);
6382 if (dynsymcount != 0
6383 && (s->flags & SEC_EXCLUDE) == 0)
6384 {
6385 s->size = dynsymcount * sizeof (Elf_External_Versym);
6386 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6387 if (s->contents == NULL)
6388 return FALSE;
6389
6390 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6391 return FALSE;
6392 }
6393
6394 /* Set the size of the .dynsym and .hash sections. We counted
6395 the number of dynamic symbols in elf_link_add_object_symbols.
6396 We will build the contents of .dynsym and .hash when we build
6397 the final symbol table, because until then we do not know the
6398 correct value to give the symbols. We built the .dynstr
6399 section as we went along in elf_link_add_object_symbols. */
6400 s = bfd_get_linker_section (dynobj, ".dynsym");
6401 BFD_ASSERT (s != NULL);
6402 s->size = dynsymcount * bed->s->sizeof_sym;
6403
6404 if (dynsymcount != 0)
6405 {
6406 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6407 if (s->contents == NULL)
6408 return FALSE;
6409
6410 /* The first entry in .dynsym is a dummy symbol.
6411 Clear all the section syms, in case we don't output them all. */
6412 ++section_sym_count;
6413 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6414 }
6415
6416 elf_hash_table (info)->bucketcount = 0;
6417
6418 /* Compute the size of the hashing table. As a side effect this
6419 computes the hash values for all the names we export. */
6420 if (info->emit_hash)
6421 {
6422 unsigned long int *hashcodes;
6423 struct hash_codes_info hashinf;
6424 bfd_size_type amt;
6425 unsigned long int nsyms;
6426 size_t bucketcount;
6427 size_t hash_entry_size;
6428
6429 /* Compute the hash values for all exported symbols. At the same
6430 time store the values in an array so that we could use them for
6431 optimizations. */
6432 amt = dynsymcount * sizeof (unsigned long int);
6433 hashcodes = (unsigned long int *) bfd_malloc (amt);
6434 if (hashcodes == NULL)
6435 return FALSE;
6436 hashinf.hashcodes = hashcodes;
6437 hashinf.error = FALSE;
6438
6439 /* Put all hash values in HASHCODES. */
6440 elf_link_hash_traverse (elf_hash_table (info),
6441 elf_collect_hash_codes, &hashinf);
6442 if (hashinf.error)
6443 {
6444 free (hashcodes);
6445 return FALSE;
6446 }
6447
6448 nsyms = hashinf.hashcodes - hashcodes;
6449 bucketcount
6450 = compute_bucket_count (info, hashcodes, nsyms, 0);
6451 free (hashcodes);
6452
6453 if (bucketcount == 0)
6454 return FALSE;
6455
6456 elf_hash_table (info)->bucketcount = bucketcount;
6457
6458 s = bfd_get_linker_section (dynobj, ".hash");
6459 BFD_ASSERT (s != NULL);
6460 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6461 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6462 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6463 if (s->contents == NULL)
6464 return FALSE;
6465
6466 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6467 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6468 s->contents + hash_entry_size);
6469 }
6470
6471 if (info->emit_gnu_hash)
6472 {
6473 size_t i, cnt;
6474 unsigned char *contents;
6475 struct collect_gnu_hash_codes cinfo;
6476 bfd_size_type amt;
6477 size_t bucketcount;
6478
6479 memset (&cinfo, 0, sizeof (cinfo));
6480
6481 /* Compute the hash values for all exported symbols. At the same
6482 time store the values in an array so that we could use them for
6483 optimizations. */
6484 amt = dynsymcount * 2 * sizeof (unsigned long int);
6485 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6486 if (cinfo.hashcodes == NULL)
6487 return FALSE;
6488
6489 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6490 cinfo.min_dynindx = -1;
6491 cinfo.output_bfd = output_bfd;
6492 cinfo.bed = bed;
6493
6494 /* Put all hash values in HASHCODES. */
6495 elf_link_hash_traverse (elf_hash_table (info),
6496 elf_collect_gnu_hash_codes, &cinfo);
6497 if (cinfo.error)
6498 {
6499 free (cinfo.hashcodes);
6500 return FALSE;
6501 }
6502
6503 bucketcount
6504 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6505
6506 if (bucketcount == 0)
6507 {
6508 free (cinfo.hashcodes);
6509 return FALSE;
6510 }
6511
6512 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6513 BFD_ASSERT (s != NULL);
6514
6515 if (cinfo.nsyms == 0)
6516 {
6517 /* Empty .gnu.hash section is special. */
6518 BFD_ASSERT (cinfo.min_dynindx == -1);
6519 free (cinfo.hashcodes);
6520 s->size = 5 * 4 + bed->s->arch_size / 8;
6521 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6522 if (contents == NULL)
6523 return FALSE;
6524 s->contents = contents;
6525 /* 1 empty bucket. */
6526 bfd_put_32 (output_bfd, 1, contents);
6527 /* SYMIDX above the special symbol 0. */
6528 bfd_put_32 (output_bfd, 1, contents + 4);
6529 /* Just one word for bitmask. */
6530 bfd_put_32 (output_bfd, 1, contents + 8);
6531 /* Only hash fn bloom filter. */
6532 bfd_put_32 (output_bfd, 0, contents + 12);
6533 /* No hashes are valid - empty bitmask. */
6534 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6535 /* No hashes in the only bucket. */
6536 bfd_put_32 (output_bfd, 0,
6537 contents + 16 + bed->s->arch_size / 8);
6538 }
6539 else
6540 {
6541 unsigned long int maskwords, maskbitslog2, x;
6542 BFD_ASSERT (cinfo.min_dynindx != -1);
6543
6544 x = cinfo.nsyms;
6545 maskbitslog2 = 1;
6546 while ((x >>= 1) != 0)
6547 ++maskbitslog2;
6548 if (maskbitslog2 < 3)
6549 maskbitslog2 = 5;
6550 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6551 maskbitslog2 = maskbitslog2 + 3;
6552 else
6553 maskbitslog2 = maskbitslog2 + 2;
6554 if (bed->s->arch_size == 64)
6555 {
6556 if (maskbitslog2 == 5)
6557 maskbitslog2 = 6;
6558 cinfo.shift1 = 6;
6559 }
6560 else
6561 cinfo.shift1 = 5;
6562 cinfo.mask = (1 << cinfo.shift1) - 1;
6563 cinfo.shift2 = maskbitslog2;
6564 cinfo.maskbits = 1 << maskbitslog2;
6565 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6566 amt = bucketcount * sizeof (unsigned long int) * 2;
6567 amt += maskwords * sizeof (bfd_vma);
6568 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6569 if (cinfo.bitmask == NULL)
6570 {
6571 free (cinfo.hashcodes);
6572 return FALSE;
6573 }
6574
6575 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6576 cinfo.indx = cinfo.counts + bucketcount;
6577 cinfo.symindx = dynsymcount - cinfo.nsyms;
6578 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6579
6580 /* Determine how often each hash bucket is used. */
6581 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6582 for (i = 0; i < cinfo.nsyms; ++i)
6583 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6584
6585 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6586 if (cinfo.counts[i] != 0)
6587 {
6588 cinfo.indx[i] = cnt;
6589 cnt += cinfo.counts[i];
6590 }
6591 BFD_ASSERT (cnt == dynsymcount);
6592 cinfo.bucketcount = bucketcount;
6593 cinfo.local_indx = cinfo.min_dynindx;
6594
6595 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6596 s->size += cinfo.maskbits / 8;
6597 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6598 if (contents == NULL)
6599 {
6600 free (cinfo.bitmask);
6601 free (cinfo.hashcodes);
6602 return FALSE;
6603 }
6604
6605 s->contents = contents;
6606 bfd_put_32 (output_bfd, bucketcount, contents);
6607 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6608 bfd_put_32 (output_bfd, maskwords, contents + 8);
6609 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6610 contents += 16 + cinfo.maskbits / 8;
6611
6612 for (i = 0; i < bucketcount; ++i)
6613 {
6614 if (cinfo.counts[i] == 0)
6615 bfd_put_32 (output_bfd, 0, contents);
6616 else
6617 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6618 contents += 4;
6619 }
6620
6621 cinfo.contents = contents;
6622
6623 /* Renumber dynamic symbols, populate .gnu.hash section. */
6624 elf_link_hash_traverse (elf_hash_table (info),
6625 elf_renumber_gnu_hash_syms, &cinfo);
6626
6627 contents = s->contents + 16;
6628 for (i = 0; i < maskwords; ++i)
6629 {
6630 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6631 contents);
6632 contents += bed->s->arch_size / 8;
6633 }
6634
6635 free (cinfo.bitmask);
6636 free (cinfo.hashcodes);
6637 }
6638 }
6639
6640 s = bfd_get_linker_section (dynobj, ".dynstr");
6641 BFD_ASSERT (s != NULL);
6642
6643 elf_finalize_dynstr (output_bfd, info);
6644
6645 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6646
6647 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6648 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6649 return FALSE;
6650 }
6651
6652 return TRUE;
6653 }
6654 \f
6655 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6656
6657 static void
6658 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6659 asection *sec)
6660 {
6661 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6662 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6663 }
6664
6665 /* Finish SHF_MERGE section merging. */
6666
6667 bfd_boolean
6668 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6669 {
6670 bfd *ibfd;
6671 asection *sec;
6672
6673 if (!is_elf_hash_table (info->hash))
6674 return FALSE;
6675
6676 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6677 if ((ibfd->flags & DYNAMIC) == 0)
6678 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6679 if ((sec->flags & SEC_MERGE) != 0
6680 && !bfd_is_abs_section (sec->output_section))
6681 {
6682 struct bfd_elf_section_data *secdata;
6683
6684 secdata = elf_section_data (sec);
6685 if (! _bfd_add_merge_section (abfd,
6686 &elf_hash_table (info)->merge_info,
6687 sec, &secdata->sec_info))
6688 return FALSE;
6689 else if (secdata->sec_info)
6690 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6691 }
6692
6693 if (elf_hash_table (info)->merge_info != NULL)
6694 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6695 merge_sections_remove_hook);
6696 return TRUE;
6697 }
6698
6699 /* Create an entry in an ELF linker hash table. */
6700
6701 struct bfd_hash_entry *
6702 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6703 struct bfd_hash_table *table,
6704 const char *string)
6705 {
6706 /* Allocate the structure if it has not already been allocated by a
6707 subclass. */
6708 if (entry == NULL)
6709 {
6710 entry = (struct bfd_hash_entry *)
6711 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6712 if (entry == NULL)
6713 return entry;
6714 }
6715
6716 /* Call the allocation method of the superclass. */
6717 entry = _bfd_link_hash_newfunc (entry, table, string);
6718 if (entry != NULL)
6719 {
6720 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6721 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6722
6723 /* Set local fields. */
6724 ret->indx = -1;
6725 ret->dynindx = -1;
6726 ret->got = htab->init_got_refcount;
6727 ret->plt = htab->init_plt_refcount;
6728 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6729 - offsetof (struct elf_link_hash_entry, size)));
6730 /* Assume that we have been called by a non-ELF symbol reader.
6731 This flag is then reset by the code which reads an ELF input
6732 file. This ensures that a symbol created by a non-ELF symbol
6733 reader will have the flag set correctly. */
6734 ret->non_elf = 1;
6735 }
6736
6737 return entry;
6738 }
6739
6740 /* Copy data from an indirect symbol to its direct symbol, hiding the
6741 old indirect symbol. Also used for copying flags to a weakdef. */
6742
6743 void
6744 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6745 struct elf_link_hash_entry *dir,
6746 struct elf_link_hash_entry *ind)
6747 {
6748 struct elf_link_hash_table *htab;
6749
6750 /* Copy down any references that we may have already seen to the
6751 symbol which just became indirect. */
6752
6753 dir->ref_dynamic |= ind->ref_dynamic;
6754 dir->ref_regular |= ind->ref_regular;
6755 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6756 dir->non_got_ref |= ind->non_got_ref;
6757 dir->needs_plt |= ind->needs_plt;
6758 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6759
6760 if (ind->root.type != bfd_link_hash_indirect)
6761 return;
6762
6763 /* Copy over the global and procedure linkage table refcount entries.
6764 These may have been already set up by a check_relocs routine. */
6765 htab = elf_hash_table (info);
6766 if (ind->got.refcount > htab->init_got_refcount.refcount)
6767 {
6768 if (dir->got.refcount < 0)
6769 dir->got.refcount = 0;
6770 dir->got.refcount += ind->got.refcount;
6771 ind->got.refcount = htab->init_got_refcount.refcount;
6772 }
6773
6774 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6775 {
6776 if (dir->plt.refcount < 0)
6777 dir->plt.refcount = 0;
6778 dir->plt.refcount += ind->plt.refcount;
6779 ind->plt.refcount = htab->init_plt_refcount.refcount;
6780 }
6781
6782 if (ind->dynindx != -1)
6783 {
6784 if (dir->dynindx != -1)
6785 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6786 dir->dynindx = ind->dynindx;
6787 dir->dynstr_index = ind->dynstr_index;
6788 ind->dynindx = -1;
6789 ind->dynstr_index = 0;
6790 }
6791 }
6792
6793 void
6794 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6795 struct elf_link_hash_entry *h,
6796 bfd_boolean force_local)
6797 {
6798 /* STT_GNU_IFUNC symbol must go through PLT. */
6799 if (h->type != STT_GNU_IFUNC)
6800 {
6801 h->plt = elf_hash_table (info)->init_plt_offset;
6802 h->needs_plt = 0;
6803 }
6804 if (force_local)
6805 {
6806 h->forced_local = 1;
6807 if (h->dynindx != -1)
6808 {
6809 h->dynindx = -1;
6810 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6811 h->dynstr_index);
6812 }
6813 }
6814 }
6815
6816 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6817 caller. */
6818
6819 bfd_boolean
6820 _bfd_elf_link_hash_table_init
6821 (struct elf_link_hash_table *table,
6822 bfd *abfd,
6823 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 struct bfd_hash_table *,
6825 const char *),
6826 unsigned int entsize,
6827 enum elf_target_id target_id)
6828 {
6829 bfd_boolean ret;
6830 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6831
6832 table->init_got_refcount.refcount = can_refcount - 1;
6833 table->init_plt_refcount.refcount = can_refcount - 1;
6834 table->init_got_offset.offset = -(bfd_vma) 1;
6835 table->init_plt_offset.offset = -(bfd_vma) 1;
6836 /* The first dynamic symbol is a dummy. */
6837 table->dynsymcount = 1;
6838
6839 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6840
6841 table->root.type = bfd_link_elf_hash_table;
6842 table->hash_table_id = target_id;
6843
6844 return ret;
6845 }
6846
6847 /* Create an ELF linker hash table. */
6848
6849 struct bfd_link_hash_table *
6850 _bfd_elf_link_hash_table_create (bfd *abfd)
6851 {
6852 struct elf_link_hash_table *ret;
6853 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6854
6855 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6856 if (ret == NULL)
6857 return NULL;
6858
6859 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6860 sizeof (struct elf_link_hash_entry),
6861 GENERIC_ELF_DATA))
6862 {
6863 free (ret);
6864 return NULL;
6865 }
6866 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6867
6868 return &ret->root;
6869 }
6870
6871 /* Destroy an ELF linker hash table. */
6872
6873 void
6874 _bfd_elf_link_hash_table_free (bfd *obfd)
6875 {
6876 struct elf_link_hash_table *htab;
6877
6878 htab = (struct elf_link_hash_table *) obfd->link.hash;
6879 if (htab->dynstr != NULL)
6880 _bfd_elf_strtab_free (htab->dynstr);
6881 _bfd_merge_sections_free (htab->merge_info);
6882 _bfd_generic_link_hash_table_free (obfd);
6883 }
6884
6885 /* This is a hook for the ELF emulation code in the generic linker to
6886 tell the backend linker what file name to use for the DT_NEEDED
6887 entry for a dynamic object. */
6888
6889 void
6890 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6891 {
6892 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6893 && bfd_get_format (abfd) == bfd_object)
6894 elf_dt_name (abfd) = name;
6895 }
6896
6897 int
6898 bfd_elf_get_dyn_lib_class (bfd *abfd)
6899 {
6900 int lib_class;
6901 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6902 && bfd_get_format (abfd) == bfd_object)
6903 lib_class = elf_dyn_lib_class (abfd);
6904 else
6905 lib_class = 0;
6906 return lib_class;
6907 }
6908
6909 void
6910 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6911 {
6912 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6913 && bfd_get_format (abfd) == bfd_object)
6914 elf_dyn_lib_class (abfd) = lib_class;
6915 }
6916
6917 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6918 the linker ELF emulation code. */
6919
6920 struct bfd_link_needed_list *
6921 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6922 struct bfd_link_info *info)
6923 {
6924 if (! is_elf_hash_table (info->hash))
6925 return NULL;
6926 return elf_hash_table (info)->needed;
6927 }
6928
6929 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6930 hook for the linker ELF emulation code. */
6931
6932 struct bfd_link_needed_list *
6933 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6934 struct bfd_link_info *info)
6935 {
6936 if (! is_elf_hash_table (info->hash))
6937 return NULL;
6938 return elf_hash_table (info)->runpath;
6939 }
6940
6941 /* Get the name actually used for a dynamic object for a link. This
6942 is the SONAME entry if there is one. Otherwise, it is the string
6943 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6944
6945 const char *
6946 bfd_elf_get_dt_soname (bfd *abfd)
6947 {
6948 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949 && bfd_get_format (abfd) == bfd_object)
6950 return elf_dt_name (abfd);
6951 return NULL;
6952 }
6953
6954 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6955 the ELF linker emulation code. */
6956
6957 bfd_boolean
6958 bfd_elf_get_bfd_needed_list (bfd *abfd,
6959 struct bfd_link_needed_list **pneeded)
6960 {
6961 asection *s;
6962 bfd_byte *dynbuf = NULL;
6963 unsigned int elfsec;
6964 unsigned long shlink;
6965 bfd_byte *extdyn, *extdynend;
6966 size_t extdynsize;
6967 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6968
6969 *pneeded = NULL;
6970
6971 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6972 || bfd_get_format (abfd) != bfd_object)
6973 return TRUE;
6974
6975 s = bfd_get_section_by_name (abfd, ".dynamic");
6976 if (s == NULL || s->size == 0)
6977 return TRUE;
6978
6979 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6980 goto error_return;
6981
6982 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6983 if (elfsec == SHN_BAD)
6984 goto error_return;
6985
6986 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6987
6988 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6989 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6990
6991 extdyn = dynbuf;
6992 extdynend = extdyn + s->size;
6993 for (; extdyn < extdynend; extdyn += extdynsize)
6994 {
6995 Elf_Internal_Dyn dyn;
6996
6997 (*swap_dyn_in) (abfd, extdyn, &dyn);
6998
6999 if (dyn.d_tag == DT_NULL)
7000 break;
7001
7002 if (dyn.d_tag == DT_NEEDED)
7003 {
7004 const char *string;
7005 struct bfd_link_needed_list *l;
7006 unsigned int tagv = dyn.d_un.d_val;
7007 bfd_size_type amt;
7008
7009 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7010 if (string == NULL)
7011 goto error_return;
7012
7013 amt = sizeof *l;
7014 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7015 if (l == NULL)
7016 goto error_return;
7017
7018 l->by = abfd;
7019 l->name = string;
7020 l->next = *pneeded;
7021 *pneeded = l;
7022 }
7023 }
7024
7025 free (dynbuf);
7026
7027 return TRUE;
7028
7029 error_return:
7030 if (dynbuf != NULL)
7031 free (dynbuf);
7032 return FALSE;
7033 }
7034
7035 struct elf_symbuf_symbol
7036 {
7037 unsigned long st_name; /* Symbol name, index in string tbl */
7038 unsigned char st_info; /* Type and binding attributes */
7039 unsigned char st_other; /* Visibilty, and target specific */
7040 };
7041
7042 struct elf_symbuf_head
7043 {
7044 struct elf_symbuf_symbol *ssym;
7045 bfd_size_type count;
7046 unsigned int st_shndx;
7047 };
7048
7049 struct elf_symbol
7050 {
7051 union
7052 {
7053 Elf_Internal_Sym *isym;
7054 struct elf_symbuf_symbol *ssym;
7055 } u;
7056 const char *name;
7057 };
7058
7059 /* Sort references to symbols by ascending section number. */
7060
7061 static int
7062 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7063 {
7064 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7065 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7066
7067 return s1->st_shndx - s2->st_shndx;
7068 }
7069
7070 static int
7071 elf_sym_name_compare (const void *arg1, const void *arg2)
7072 {
7073 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7074 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7075 return strcmp (s1->name, s2->name);
7076 }
7077
7078 static struct elf_symbuf_head *
7079 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7080 {
7081 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7082 struct elf_symbuf_symbol *ssym;
7083 struct elf_symbuf_head *ssymbuf, *ssymhead;
7084 bfd_size_type i, shndx_count, total_size;
7085
7086 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7087 if (indbuf == NULL)
7088 return NULL;
7089
7090 for (ind = indbuf, i = 0; i < symcount; i++)
7091 if (isymbuf[i].st_shndx != SHN_UNDEF)
7092 *ind++ = &isymbuf[i];
7093 indbufend = ind;
7094
7095 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7096 elf_sort_elf_symbol);
7097
7098 shndx_count = 0;
7099 if (indbufend > indbuf)
7100 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7101 if (ind[0]->st_shndx != ind[1]->st_shndx)
7102 shndx_count++;
7103
7104 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7105 + (indbufend - indbuf) * sizeof (*ssym));
7106 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7107 if (ssymbuf == NULL)
7108 {
7109 free (indbuf);
7110 return NULL;
7111 }
7112
7113 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7114 ssymbuf->ssym = NULL;
7115 ssymbuf->count = shndx_count;
7116 ssymbuf->st_shndx = 0;
7117 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7118 {
7119 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7120 {
7121 ssymhead++;
7122 ssymhead->ssym = ssym;
7123 ssymhead->count = 0;
7124 ssymhead->st_shndx = (*ind)->st_shndx;
7125 }
7126 ssym->st_name = (*ind)->st_name;
7127 ssym->st_info = (*ind)->st_info;
7128 ssym->st_other = (*ind)->st_other;
7129 ssymhead->count++;
7130 }
7131 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7132 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7133 == total_size));
7134
7135 free (indbuf);
7136 return ssymbuf;
7137 }
7138
7139 /* Check if 2 sections define the same set of local and global
7140 symbols. */
7141
7142 static bfd_boolean
7143 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7144 struct bfd_link_info *info)
7145 {
7146 bfd *bfd1, *bfd2;
7147 const struct elf_backend_data *bed1, *bed2;
7148 Elf_Internal_Shdr *hdr1, *hdr2;
7149 bfd_size_type symcount1, symcount2;
7150 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7151 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7152 Elf_Internal_Sym *isym, *isymend;
7153 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7154 bfd_size_type count1, count2, i;
7155 unsigned int shndx1, shndx2;
7156 bfd_boolean result;
7157
7158 bfd1 = sec1->owner;
7159 bfd2 = sec2->owner;
7160
7161 /* Both sections have to be in ELF. */
7162 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7163 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7164 return FALSE;
7165
7166 if (elf_section_type (sec1) != elf_section_type (sec2))
7167 return FALSE;
7168
7169 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7170 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7171 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7172 return FALSE;
7173
7174 bed1 = get_elf_backend_data (bfd1);
7175 bed2 = get_elf_backend_data (bfd2);
7176 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7177 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7178 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7179 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7180
7181 if (symcount1 == 0 || symcount2 == 0)
7182 return FALSE;
7183
7184 result = FALSE;
7185 isymbuf1 = NULL;
7186 isymbuf2 = NULL;
7187 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7188 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7189
7190 if (ssymbuf1 == NULL)
7191 {
7192 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7193 NULL, NULL, NULL);
7194 if (isymbuf1 == NULL)
7195 goto done;
7196
7197 if (!info->reduce_memory_overheads)
7198 elf_tdata (bfd1)->symbuf = ssymbuf1
7199 = elf_create_symbuf (symcount1, isymbuf1);
7200 }
7201
7202 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7203 {
7204 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7205 NULL, NULL, NULL);
7206 if (isymbuf2 == NULL)
7207 goto done;
7208
7209 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7210 elf_tdata (bfd2)->symbuf = ssymbuf2
7211 = elf_create_symbuf (symcount2, isymbuf2);
7212 }
7213
7214 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7215 {
7216 /* Optimized faster version. */
7217 bfd_size_type lo, hi, mid;
7218 struct elf_symbol *symp;
7219 struct elf_symbuf_symbol *ssym, *ssymend;
7220
7221 lo = 0;
7222 hi = ssymbuf1->count;
7223 ssymbuf1++;
7224 count1 = 0;
7225 while (lo < hi)
7226 {
7227 mid = (lo + hi) / 2;
7228 if (shndx1 < ssymbuf1[mid].st_shndx)
7229 hi = mid;
7230 else if (shndx1 > ssymbuf1[mid].st_shndx)
7231 lo = mid + 1;
7232 else
7233 {
7234 count1 = ssymbuf1[mid].count;
7235 ssymbuf1 += mid;
7236 break;
7237 }
7238 }
7239
7240 lo = 0;
7241 hi = ssymbuf2->count;
7242 ssymbuf2++;
7243 count2 = 0;
7244 while (lo < hi)
7245 {
7246 mid = (lo + hi) / 2;
7247 if (shndx2 < ssymbuf2[mid].st_shndx)
7248 hi = mid;
7249 else if (shndx2 > ssymbuf2[mid].st_shndx)
7250 lo = mid + 1;
7251 else
7252 {
7253 count2 = ssymbuf2[mid].count;
7254 ssymbuf2 += mid;
7255 break;
7256 }
7257 }
7258
7259 if (count1 == 0 || count2 == 0 || count1 != count2)
7260 goto done;
7261
7262 symtable1 = (struct elf_symbol *)
7263 bfd_malloc (count1 * sizeof (struct elf_symbol));
7264 symtable2 = (struct elf_symbol *)
7265 bfd_malloc (count2 * sizeof (struct elf_symbol));
7266 if (symtable1 == NULL || symtable2 == NULL)
7267 goto done;
7268
7269 symp = symtable1;
7270 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7271 ssym < ssymend; ssym++, symp++)
7272 {
7273 symp->u.ssym = ssym;
7274 symp->name = bfd_elf_string_from_elf_section (bfd1,
7275 hdr1->sh_link,
7276 ssym->st_name);
7277 }
7278
7279 symp = symtable2;
7280 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7281 ssym < ssymend; ssym++, symp++)
7282 {
7283 symp->u.ssym = ssym;
7284 symp->name = bfd_elf_string_from_elf_section (bfd2,
7285 hdr2->sh_link,
7286 ssym->st_name);
7287 }
7288
7289 /* Sort symbol by name. */
7290 qsort (symtable1, count1, sizeof (struct elf_symbol),
7291 elf_sym_name_compare);
7292 qsort (symtable2, count1, sizeof (struct elf_symbol),
7293 elf_sym_name_compare);
7294
7295 for (i = 0; i < count1; i++)
7296 /* Two symbols must have the same binding, type and name. */
7297 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7298 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7299 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7300 goto done;
7301
7302 result = TRUE;
7303 goto done;
7304 }
7305
7306 symtable1 = (struct elf_symbol *)
7307 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7308 symtable2 = (struct elf_symbol *)
7309 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7310 if (symtable1 == NULL || symtable2 == NULL)
7311 goto done;
7312
7313 /* Count definitions in the section. */
7314 count1 = 0;
7315 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7316 if (isym->st_shndx == shndx1)
7317 symtable1[count1++].u.isym = isym;
7318
7319 count2 = 0;
7320 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7321 if (isym->st_shndx == shndx2)
7322 symtable2[count2++].u.isym = isym;
7323
7324 if (count1 == 0 || count2 == 0 || count1 != count2)
7325 goto done;
7326
7327 for (i = 0; i < count1; i++)
7328 symtable1[i].name
7329 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7330 symtable1[i].u.isym->st_name);
7331
7332 for (i = 0; i < count2; i++)
7333 symtable2[i].name
7334 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7335 symtable2[i].u.isym->st_name);
7336
7337 /* Sort symbol by name. */
7338 qsort (symtable1, count1, sizeof (struct elf_symbol),
7339 elf_sym_name_compare);
7340 qsort (symtable2, count1, sizeof (struct elf_symbol),
7341 elf_sym_name_compare);
7342
7343 for (i = 0; i < count1; i++)
7344 /* Two symbols must have the same binding, type and name. */
7345 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7346 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7347 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7348 goto done;
7349
7350 result = TRUE;
7351
7352 done:
7353 if (symtable1)
7354 free (symtable1);
7355 if (symtable2)
7356 free (symtable2);
7357 if (isymbuf1)
7358 free (isymbuf1);
7359 if (isymbuf2)
7360 free (isymbuf2);
7361
7362 return result;
7363 }
7364
7365 /* Return TRUE if 2 section types are compatible. */
7366
7367 bfd_boolean
7368 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7369 bfd *bbfd, const asection *bsec)
7370 {
7371 if (asec == NULL
7372 || bsec == NULL
7373 || abfd->xvec->flavour != bfd_target_elf_flavour
7374 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7375 return TRUE;
7376
7377 return elf_section_type (asec) == elf_section_type (bsec);
7378 }
7379 \f
7380 /* Final phase of ELF linker. */
7381
7382 /* A structure we use to avoid passing large numbers of arguments. */
7383
7384 struct elf_final_link_info
7385 {
7386 /* General link information. */
7387 struct bfd_link_info *info;
7388 /* Output BFD. */
7389 bfd *output_bfd;
7390 /* Symbol string table. */
7391 struct bfd_strtab_hash *symstrtab;
7392 /* .dynsym section. */
7393 asection *dynsym_sec;
7394 /* .hash section. */
7395 asection *hash_sec;
7396 /* symbol version section (.gnu.version). */
7397 asection *symver_sec;
7398 /* Buffer large enough to hold contents of any section. */
7399 bfd_byte *contents;
7400 /* Buffer large enough to hold external relocs of any section. */
7401 void *external_relocs;
7402 /* Buffer large enough to hold internal relocs of any section. */
7403 Elf_Internal_Rela *internal_relocs;
7404 /* Buffer large enough to hold external local symbols of any input
7405 BFD. */
7406 bfd_byte *external_syms;
7407 /* And a buffer for symbol section indices. */
7408 Elf_External_Sym_Shndx *locsym_shndx;
7409 /* Buffer large enough to hold internal local symbols of any input
7410 BFD. */
7411 Elf_Internal_Sym *internal_syms;
7412 /* Array large enough to hold a symbol index for each local symbol
7413 of any input BFD. */
7414 long *indices;
7415 /* Array large enough to hold a section pointer for each local
7416 symbol of any input BFD. */
7417 asection **sections;
7418 /* Buffer to hold swapped out symbols. */
7419 bfd_byte *symbuf;
7420 /* And one for symbol section indices. */
7421 Elf_External_Sym_Shndx *symshndxbuf;
7422 /* Number of swapped out symbols in buffer. */
7423 size_t symbuf_count;
7424 /* Number of symbols which fit in symbuf. */
7425 size_t symbuf_size;
7426 /* And same for symshndxbuf. */
7427 size_t shndxbuf_size;
7428 /* Number of STT_FILE syms seen. */
7429 size_t filesym_count;
7430 };
7431
7432 /* This struct is used to pass information to elf_link_output_extsym. */
7433
7434 struct elf_outext_info
7435 {
7436 bfd_boolean failed;
7437 bfd_boolean localsyms;
7438 bfd_boolean need_second_pass;
7439 bfd_boolean second_pass;
7440 bfd_boolean file_sym_done;
7441 struct elf_final_link_info *flinfo;
7442 };
7443
7444
7445 /* Support for evaluating a complex relocation.
7446
7447 Complex relocations are generalized, self-describing relocations. The
7448 implementation of them consists of two parts: complex symbols, and the
7449 relocations themselves.
7450
7451 The relocations are use a reserved elf-wide relocation type code (R_RELC
7452 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7453 information (start bit, end bit, word width, etc) into the addend. This
7454 information is extracted from CGEN-generated operand tables within gas.
7455
7456 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7457 internal) representing prefix-notation expressions, including but not
7458 limited to those sorts of expressions normally encoded as addends in the
7459 addend field. The symbol mangling format is:
7460
7461 <node> := <literal>
7462 | <unary-operator> ':' <node>
7463 | <binary-operator> ':' <node> ':' <node>
7464 ;
7465
7466 <literal> := 's' <digits=N> ':' <N character symbol name>
7467 | 'S' <digits=N> ':' <N character section name>
7468 | '#' <hexdigits>
7469 ;
7470
7471 <binary-operator> := as in C
7472 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7473
7474 static void
7475 set_symbol_value (bfd *bfd_with_globals,
7476 Elf_Internal_Sym *isymbuf,
7477 size_t locsymcount,
7478 size_t symidx,
7479 bfd_vma val)
7480 {
7481 struct elf_link_hash_entry **sym_hashes;
7482 struct elf_link_hash_entry *h;
7483 size_t extsymoff = locsymcount;
7484
7485 if (symidx < locsymcount)
7486 {
7487 Elf_Internal_Sym *sym;
7488
7489 sym = isymbuf + symidx;
7490 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7491 {
7492 /* It is a local symbol: move it to the
7493 "absolute" section and give it a value. */
7494 sym->st_shndx = SHN_ABS;
7495 sym->st_value = val;
7496 return;
7497 }
7498 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7499 extsymoff = 0;
7500 }
7501
7502 /* It is a global symbol: set its link type
7503 to "defined" and give it a value. */
7504
7505 sym_hashes = elf_sym_hashes (bfd_with_globals);
7506 h = sym_hashes [symidx - extsymoff];
7507 while (h->root.type == bfd_link_hash_indirect
7508 || h->root.type == bfd_link_hash_warning)
7509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7510 h->root.type = bfd_link_hash_defined;
7511 h->root.u.def.value = val;
7512 h->root.u.def.section = bfd_abs_section_ptr;
7513 }
7514
7515 static bfd_boolean
7516 resolve_symbol (const char *name,
7517 bfd *input_bfd,
7518 struct elf_final_link_info *flinfo,
7519 bfd_vma *result,
7520 Elf_Internal_Sym *isymbuf,
7521 size_t locsymcount)
7522 {
7523 Elf_Internal_Sym *sym;
7524 struct bfd_link_hash_entry *global_entry;
7525 const char *candidate = NULL;
7526 Elf_Internal_Shdr *symtab_hdr;
7527 size_t i;
7528
7529 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7530
7531 for (i = 0; i < locsymcount; ++ i)
7532 {
7533 sym = isymbuf + i;
7534
7535 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7536 continue;
7537
7538 candidate = bfd_elf_string_from_elf_section (input_bfd,
7539 symtab_hdr->sh_link,
7540 sym->st_name);
7541 #ifdef DEBUG
7542 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7543 name, candidate, (unsigned long) sym->st_value);
7544 #endif
7545 if (candidate && strcmp (candidate, name) == 0)
7546 {
7547 asection *sec = flinfo->sections [i];
7548
7549 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7550 *result += sec->output_offset + sec->output_section->vma;
7551 #ifdef DEBUG
7552 printf ("Found symbol with value %8.8lx\n",
7553 (unsigned long) *result);
7554 #endif
7555 return TRUE;
7556 }
7557 }
7558
7559 /* Hmm, haven't found it yet. perhaps it is a global. */
7560 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7561 FALSE, FALSE, TRUE);
7562 if (!global_entry)
7563 return FALSE;
7564
7565 if (global_entry->type == bfd_link_hash_defined
7566 || global_entry->type == bfd_link_hash_defweak)
7567 {
7568 *result = (global_entry->u.def.value
7569 + global_entry->u.def.section->output_section->vma
7570 + global_entry->u.def.section->output_offset);
7571 #ifdef DEBUG
7572 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7573 global_entry->root.string, (unsigned long) *result);
7574 #endif
7575 return TRUE;
7576 }
7577
7578 return FALSE;
7579 }
7580
7581 static bfd_boolean
7582 resolve_section (const char *name,
7583 asection *sections,
7584 bfd_vma *result)
7585 {
7586 asection *curr;
7587 unsigned int len;
7588
7589 for (curr = sections; curr; curr = curr->next)
7590 if (strcmp (curr->name, name) == 0)
7591 {
7592 *result = curr->vma;
7593 return TRUE;
7594 }
7595
7596 /* Hmm. still haven't found it. try pseudo-section names. */
7597 for (curr = sections; curr; curr = curr->next)
7598 {
7599 len = strlen (curr->name);
7600 if (len > strlen (name))
7601 continue;
7602
7603 if (strncmp (curr->name, name, len) == 0)
7604 {
7605 if (strncmp (".end", name + len, 4) == 0)
7606 {
7607 *result = curr->vma + curr->size;
7608 return TRUE;
7609 }
7610
7611 /* Insert more pseudo-section names here, if you like. */
7612 }
7613 }
7614
7615 return FALSE;
7616 }
7617
7618 static void
7619 undefined_reference (const char *reftype, const char *name)
7620 {
7621 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7622 reftype, name);
7623 }
7624
7625 static bfd_boolean
7626 eval_symbol (bfd_vma *result,
7627 const char **symp,
7628 bfd *input_bfd,
7629 struct elf_final_link_info *flinfo,
7630 bfd_vma dot,
7631 Elf_Internal_Sym *isymbuf,
7632 size_t locsymcount,
7633 int signed_p)
7634 {
7635 size_t len;
7636 size_t symlen;
7637 bfd_vma a;
7638 bfd_vma b;
7639 char symbuf[4096];
7640 const char *sym = *symp;
7641 const char *symend;
7642 bfd_boolean symbol_is_section = FALSE;
7643
7644 len = strlen (sym);
7645 symend = sym + len;
7646
7647 if (len < 1 || len > sizeof (symbuf))
7648 {
7649 bfd_set_error (bfd_error_invalid_operation);
7650 return FALSE;
7651 }
7652
7653 switch (* sym)
7654 {
7655 case '.':
7656 *result = dot;
7657 *symp = sym + 1;
7658 return TRUE;
7659
7660 case '#':
7661 ++sym;
7662 *result = strtoul (sym, (char **) symp, 16);
7663 return TRUE;
7664
7665 case 'S':
7666 symbol_is_section = TRUE;
7667 case 's':
7668 ++sym;
7669 symlen = strtol (sym, (char **) symp, 10);
7670 sym = *symp + 1; /* Skip the trailing ':'. */
7671
7672 if (symend < sym || symlen + 1 > sizeof (symbuf))
7673 {
7674 bfd_set_error (bfd_error_invalid_operation);
7675 return FALSE;
7676 }
7677
7678 memcpy (symbuf, sym, symlen);
7679 symbuf[symlen] = '\0';
7680 *symp = sym + symlen;
7681
7682 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7683 the symbol as a section, or vice-versa. so we're pretty liberal in our
7684 interpretation here; section means "try section first", not "must be a
7685 section", and likewise with symbol. */
7686
7687 if (symbol_is_section)
7688 {
7689 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7690 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7691 isymbuf, locsymcount))
7692 {
7693 undefined_reference ("section", symbuf);
7694 return FALSE;
7695 }
7696 }
7697 else
7698 {
7699 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7700 isymbuf, locsymcount)
7701 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7702 result))
7703 {
7704 undefined_reference ("symbol", symbuf);
7705 return FALSE;
7706 }
7707 }
7708
7709 return TRUE;
7710
7711 /* All that remains are operators. */
7712
7713 #define UNARY_OP(op) \
7714 if (strncmp (sym, #op, strlen (#op)) == 0) \
7715 { \
7716 sym += strlen (#op); \
7717 if (*sym == ':') \
7718 ++sym; \
7719 *symp = sym; \
7720 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7722 return FALSE; \
7723 if (signed_p) \
7724 *result = op ((bfd_signed_vma) a); \
7725 else \
7726 *result = op a; \
7727 return TRUE; \
7728 }
7729
7730 #define BINARY_OP(op) \
7731 if (strncmp (sym, #op, strlen (#op)) == 0) \
7732 { \
7733 sym += strlen (#op); \
7734 if (*sym == ':') \
7735 ++sym; \
7736 *symp = sym; \
7737 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7738 isymbuf, locsymcount, signed_p)) \
7739 return FALSE; \
7740 ++*symp; \
7741 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7742 isymbuf, locsymcount, signed_p)) \
7743 return FALSE; \
7744 if (signed_p) \
7745 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7746 else \
7747 *result = a op b; \
7748 return TRUE; \
7749 }
7750
7751 default:
7752 UNARY_OP (0-);
7753 BINARY_OP (<<);
7754 BINARY_OP (>>);
7755 BINARY_OP (==);
7756 BINARY_OP (!=);
7757 BINARY_OP (<=);
7758 BINARY_OP (>=);
7759 BINARY_OP (&&);
7760 BINARY_OP (||);
7761 UNARY_OP (~);
7762 UNARY_OP (!);
7763 BINARY_OP (*);
7764 BINARY_OP (/);
7765 BINARY_OP (%);
7766 BINARY_OP (^);
7767 BINARY_OP (|);
7768 BINARY_OP (&);
7769 BINARY_OP (+);
7770 BINARY_OP (-);
7771 BINARY_OP (<);
7772 BINARY_OP (>);
7773 #undef UNARY_OP
7774 #undef BINARY_OP
7775 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7776 bfd_set_error (bfd_error_invalid_operation);
7777 return FALSE;
7778 }
7779 }
7780
7781 static void
7782 put_value (bfd_vma size,
7783 unsigned long chunksz,
7784 bfd *input_bfd,
7785 bfd_vma x,
7786 bfd_byte *location)
7787 {
7788 location += (size - chunksz);
7789
7790 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7791 {
7792 switch (chunksz)
7793 {
7794 default:
7795 case 0:
7796 abort ();
7797 case 1:
7798 bfd_put_8 (input_bfd, x, location);
7799 break;
7800 case 2:
7801 bfd_put_16 (input_bfd, x, location);
7802 break;
7803 case 4:
7804 bfd_put_32 (input_bfd, x, location);
7805 break;
7806 case 8:
7807 #ifdef BFD64
7808 bfd_put_64 (input_bfd, x, location);
7809 #else
7810 abort ();
7811 #endif
7812 break;
7813 }
7814 }
7815 }
7816
7817 static bfd_vma
7818 get_value (bfd_vma size,
7819 unsigned long chunksz,
7820 bfd *input_bfd,
7821 bfd_byte *location)
7822 {
7823 int shift;
7824 bfd_vma x = 0;
7825
7826 /* Sanity checks. */
7827 BFD_ASSERT (chunksz <= sizeof (x)
7828 && size >= chunksz
7829 && chunksz != 0
7830 && (size % chunksz) == 0
7831 && input_bfd != NULL
7832 && location != NULL);
7833
7834 if (chunksz == sizeof (x))
7835 {
7836 BFD_ASSERT (size == chunksz);
7837
7838 /* Make sure that we do not perform an undefined shift operation.
7839 We know that size == chunksz so there will only be one iteration
7840 of the loop below. */
7841 shift = 0;
7842 }
7843 else
7844 shift = 8 * chunksz;
7845
7846 for (; size; size -= chunksz, location += chunksz)
7847 {
7848 switch (chunksz)
7849 {
7850 case 1:
7851 x = (x << shift) | bfd_get_8 (input_bfd, location);
7852 break;
7853 case 2:
7854 x = (x << shift) | bfd_get_16 (input_bfd, location);
7855 break;
7856 case 4:
7857 x = (x << shift) | bfd_get_32 (input_bfd, location);
7858 break;
7859 #ifdef BFD64
7860 case 8:
7861 x = (x << shift) | bfd_get_64 (input_bfd, location);
7862 break;
7863 #endif
7864 default:
7865 abort ();
7866 }
7867 }
7868 return x;
7869 }
7870
7871 static void
7872 decode_complex_addend (unsigned long *start, /* in bits */
7873 unsigned long *oplen, /* in bits */
7874 unsigned long *len, /* in bits */
7875 unsigned long *wordsz, /* in bytes */
7876 unsigned long *chunksz, /* in bytes */
7877 unsigned long *lsb0_p,
7878 unsigned long *signed_p,
7879 unsigned long *trunc_p,
7880 unsigned long encoded)
7881 {
7882 * start = encoded & 0x3F;
7883 * len = (encoded >> 6) & 0x3F;
7884 * oplen = (encoded >> 12) & 0x3F;
7885 * wordsz = (encoded >> 18) & 0xF;
7886 * chunksz = (encoded >> 22) & 0xF;
7887 * lsb0_p = (encoded >> 27) & 1;
7888 * signed_p = (encoded >> 28) & 1;
7889 * trunc_p = (encoded >> 29) & 1;
7890 }
7891
7892 bfd_reloc_status_type
7893 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7894 asection *input_section ATTRIBUTE_UNUSED,
7895 bfd_byte *contents,
7896 Elf_Internal_Rela *rel,
7897 bfd_vma relocation)
7898 {
7899 bfd_vma shift, x, mask;
7900 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7901 bfd_reloc_status_type r;
7902
7903 /* Perform this reloc, since it is complex.
7904 (this is not to say that it necessarily refers to a complex
7905 symbol; merely that it is a self-describing CGEN based reloc.
7906 i.e. the addend has the complete reloc information (bit start, end,
7907 word size, etc) encoded within it.). */
7908
7909 decode_complex_addend (&start, &oplen, &len, &wordsz,
7910 &chunksz, &lsb0_p, &signed_p,
7911 &trunc_p, rel->r_addend);
7912
7913 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7914
7915 if (lsb0_p)
7916 shift = (start + 1) - len;
7917 else
7918 shift = (8 * wordsz) - (start + len);
7919
7920 /* FIXME: octets_per_byte. */
7921 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7922
7923 #ifdef DEBUG
7924 printf ("Doing complex reloc: "
7925 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7926 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7927 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7928 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7929 oplen, (unsigned long) x, (unsigned long) mask,
7930 (unsigned long) relocation);
7931 #endif
7932
7933 r = bfd_reloc_ok;
7934 if (! trunc_p)
7935 /* Now do an overflow check. */
7936 r = bfd_check_overflow ((signed_p
7937 ? complain_overflow_signed
7938 : complain_overflow_unsigned),
7939 len, 0, (8 * wordsz),
7940 relocation);
7941
7942 /* Do the deed. */
7943 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7944
7945 #ifdef DEBUG
7946 printf (" relocation: %8.8lx\n"
7947 " shifted mask: %8.8lx\n"
7948 " shifted/masked reloc: %8.8lx\n"
7949 " result: %8.8lx\n",
7950 (unsigned long) relocation, (unsigned long) (mask << shift),
7951 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7952 #endif
7953 /* FIXME: octets_per_byte. */
7954 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7955 return r;
7956 }
7957
7958 /* When performing a relocatable link, the input relocations are
7959 preserved. But, if they reference global symbols, the indices
7960 referenced must be updated. Update all the relocations found in
7961 RELDATA. */
7962
7963 static void
7964 elf_link_adjust_relocs (bfd *abfd,
7965 struct bfd_elf_section_reloc_data *reldata)
7966 {
7967 unsigned int i;
7968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7969 bfd_byte *erela;
7970 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7971 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7972 bfd_vma r_type_mask;
7973 int r_sym_shift;
7974 unsigned int count = reldata->count;
7975 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7976
7977 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7978 {
7979 swap_in = bed->s->swap_reloc_in;
7980 swap_out = bed->s->swap_reloc_out;
7981 }
7982 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7983 {
7984 swap_in = bed->s->swap_reloca_in;
7985 swap_out = bed->s->swap_reloca_out;
7986 }
7987 else
7988 abort ();
7989
7990 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7991 abort ();
7992
7993 if (bed->s->arch_size == 32)
7994 {
7995 r_type_mask = 0xff;
7996 r_sym_shift = 8;
7997 }
7998 else
7999 {
8000 r_type_mask = 0xffffffff;
8001 r_sym_shift = 32;
8002 }
8003
8004 erela = reldata->hdr->contents;
8005 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8006 {
8007 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8008 unsigned int j;
8009
8010 if (*rel_hash == NULL)
8011 continue;
8012
8013 BFD_ASSERT ((*rel_hash)->indx >= 0);
8014
8015 (*swap_in) (abfd, erela, irela);
8016 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8017 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8018 | (irela[j].r_info & r_type_mask));
8019 (*swap_out) (abfd, irela, erela);
8020 }
8021 }
8022
8023 struct elf_link_sort_rela
8024 {
8025 union {
8026 bfd_vma offset;
8027 bfd_vma sym_mask;
8028 } u;
8029 enum elf_reloc_type_class type;
8030 /* We use this as an array of size int_rels_per_ext_rel. */
8031 Elf_Internal_Rela rela[1];
8032 };
8033
8034 static int
8035 elf_link_sort_cmp1 (const void *A, const void *B)
8036 {
8037 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8038 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8039 int relativea, relativeb;
8040
8041 relativea = a->type == reloc_class_relative;
8042 relativeb = b->type == reloc_class_relative;
8043
8044 if (relativea < relativeb)
8045 return 1;
8046 if (relativea > relativeb)
8047 return -1;
8048 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8049 return -1;
8050 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8051 return 1;
8052 if (a->rela->r_offset < b->rela->r_offset)
8053 return -1;
8054 if (a->rela->r_offset > b->rela->r_offset)
8055 return 1;
8056 return 0;
8057 }
8058
8059 static int
8060 elf_link_sort_cmp2 (const void *A, const void *B)
8061 {
8062 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8063 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8064
8065 if (a->type < b->type)
8066 return -1;
8067 if (a->type > b->type)
8068 return 1;
8069 if (a->u.offset < b->u.offset)
8070 return -1;
8071 if (a->u.offset > b->u.offset)
8072 return 1;
8073 if (a->rela->r_offset < b->rela->r_offset)
8074 return -1;
8075 if (a->rela->r_offset > b->rela->r_offset)
8076 return 1;
8077 return 0;
8078 }
8079
8080 static size_t
8081 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8082 {
8083 asection *dynamic_relocs;
8084 asection *rela_dyn;
8085 asection *rel_dyn;
8086 bfd_size_type count, size;
8087 size_t i, ret, sort_elt, ext_size;
8088 bfd_byte *sort, *s_non_relative, *p;
8089 struct elf_link_sort_rela *sq;
8090 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8091 int i2e = bed->s->int_rels_per_ext_rel;
8092 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8093 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8094 struct bfd_link_order *lo;
8095 bfd_vma r_sym_mask;
8096 bfd_boolean use_rela;
8097
8098 /* Find a dynamic reloc section. */
8099 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8100 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8101 if (rela_dyn != NULL && rela_dyn->size > 0
8102 && rel_dyn != NULL && rel_dyn->size > 0)
8103 {
8104 bfd_boolean use_rela_initialised = FALSE;
8105
8106 /* This is just here to stop gcc from complaining.
8107 It's initialization checking code is not perfect. */
8108 use_rela = TRUE;
8109
8110 /* Both sections are present. Examine the sizes
8111 of the indirect sections to help us choose. */
8112 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8113 if (lo->type == bfd_indirect_link_order)
8114 {
8115 asection *o = lo->u.indirect.section;
8116
8117 if ((o->size % bed->s->sizeof_rela) == 0)
8118 {
8119 if ((o->size % bed->s->sizeof_rel) == 0)
8120 /* Section size is divisible by both rel and rela sizes.
8121 It is of no help to us. */
8122 ;
8123 else
8124 {
8125 /* Section size is only divisible by rela. */
8126 if (use_rela_initialised && (use_rela == FALSE))
8127 {
8128 _bfd_error_handler
8129 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8130 bfd_set_error (bfd_error_invalid_operation);
8131 return 0;
8132 }
8133 else
8134 {
8135 use_rela = TRUE;
8136 use_rela_initialised = TRUE;
8137 }
8138 }
8139 }
8140 else if ((o->size % bed->s->sizeof_rel) == 0)
8141 {
8142 /* Section size is only divisible by rel. */
8143 if (use_rela_initialised && (use_rela == TRUE))
8144 {
8145 _bfd_error_handler
8146 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8147 bfd_set_error (bfd_error_invalid_operation);
8148 return 0;
8149 }
8150 else
8151 {
8152 use_rela = FALSE;
8153 use_rela_initialised = TRUE;
8154 }
8155 }
8156 else
8157 {
8158 /* The section size is not divisible by either - something is wrong. */
8159 _bfd_error_handler
8160 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8161 bfd_set_error (bfd_error_invalid_operation);
8162 return 0;
8163 }
8164 }
8165
8166 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8167 if (lo->type == bfd_indirect_link_order)
8168 {
8169 asection *o = lo->u.indirect.section;
8170
8171 if ((o->size % bed->s->sizeof_rela) == 0)
8172 {
8173 if ((o->size % bed->s->sizeof_rel) == 0)
8174 /* Section size is divisible by both rel and rela sizes.
8175 It is of no help to us. */
8176 ;
8177 else
8178 {
8179 /* Section size is only divisible by rela. */
8180 if (use_rela_initialised && (use_rela == FALSE))
8181 {
8182 _bfd_error_handler
8183 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8184 bfd_set_error (bfd_error_invalid_operation);
8185 return 0;
8186 }
8187 else
8188 {
8189 use_rela = TRUE;
8190 use_rela_initialised = TRUE;
8191 }
8192 }
8193 }
8194 else if ((o->size % bed->s->sizeof_rel) == 0)
8195 {
8196 /* Section size is only divisible by rel. */
8197 if (use_rela_initialised && (use_rela == TRUE))
8198 {
8199 _bfd_error_handler
8200 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8201 bfd_set_error (bfd_error_invalid_operation);
8202 return 0;
8203 }
8204 else
8205 {
8206 use_rela = FALSE;
8207 use_rela_initialised = TRUE;
8208 }
8209 }
8210 else
8211 {
8212 /* The section size is not divisible by either - something is wrong. */
8213 _bfd_error_handler
8214 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8215 bfd_set_error (bfd_error_invalid_operation);
8216 return 0;
8217 }
8218 }
8219
8220 if (! use_rela_initialised)
8221 /* Make a guess. */
8222 use_rela = TRUE;
8223 }
8224 else if (rela_dyn != NULL && rela_dyn->size > 0)
8225 use_rela = TRUE;
8226 else if (rel_dyn != NULL && rel_dyn->size > 0)
8227 use_rela = FALSE;
8228 else
8229 return 0;
8230
8231 if (use_rela)
8232 {
8233 dynamic_relocs = rela_dyn;
8234 ext_size = bed->s->sizeof_rela;
8235 swap_in = bed->s->swap_reloca_in;
8236 swap_out = bed->s->swap_reloca_out;
8237 }
8238 else
8239 {
8240 dynamic_relocs = rel_dyn;
8241 ext_size = bed->s->sizeof_rel;
8242 swap_in = bed->s->swap_reloc_in;
8243 swap_out = bed->s->swap_reloc_out;
8244 }
8245
8246 size = 0;
8247 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8248 if (lo->type == bfd_indirect_link_order)
8249 size += lo->u.indirect.section->size;
8250
8251 if (size != dynamic_relocs->size)
8252 return 0;
8253
8254 sort_elt = (sizeof (struct elf_link_sort_rela)
8255 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8256
8257 count = dynamic_relocs->size / ext_size;
8258 if (count == 0)
8259 return 0;
8260 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8261
8262 if (sort == NULL)
8263 {
8264 (*info->callbacks->warning)
8265 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8266 return 0;
8267 }
8268
8269 if (bed->s->arch_size == 32)
8270 r_sym_mask = ~(bfd_vma) 0xff;
8271 else
8272 r_sym_mask = ~(bfd_vma) 0xffffffff;
8273
8274 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8275 if (lo->type == bfd_indirect_link_order)
8276 {
8277 bfd_byte *erel, *erelend;
8278 asection *o = lo->u.indirect.section;
8279
8280 if (o->contents == NULL && o->size != 0)
8281 {
8282 /* This is a reloc section that is being handled as a normal
8283 section. See bfd_section_from_shdr. We can't combine
8284 relocs in this case. */
8285 free (sort);
8286 return 0;
8287 }
8288 erel = o->contents;
8289 erelend = o->contents + o->size;
8290 /* FIXME: octets_per_byte. */
8291 p = sort + o->output_offset / ext_size * sort_elt;
8292
8293 while (erel < erelend)
8294 {
8295 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8296
8297 (*swap_in) (abfd, erel, s->rela);
8298 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8299 s->u.sym_mask = r_sym_mask;
8300 p += sort_elt;
8301 erel += ext_size;
8302 }
8303 }
8304
8305 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8306
8307 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8308 {
8309 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8310 if (s->type != reloc_class_relative)
8311 break;
8312 }
8313 ret = i;
8314 s_non_relative = p;
8315
8316 sq = (struct elf_link_sort_rela *) s_non_relative;
8317 for (; i < count; i++, p += sort_elt)
8318 {
8319 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8320 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8321 sq = sp;
8322 sp->u.offset = sq->rela->r_offset;
8323 }
8324
8325 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8326
8327 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8328 if (lo->type == bfd_indirect_link_order)
8329 {
8330 bfd_byte *erel, *erelend;
8331 asection *o = lo->u.indirect.section;
8332
8333 erel = o->contents;
8334 erelend = o->contents + o->size;
8335 /* FIXME: octets_per_byte. */
8336 p = sort + o->output_offset / ext_size * sort_elt;
8337 while (erel < erelend)
8338 {
8339 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8340 (*swap_out) (abfd, s->rela, erel);
8341 p += sort_elt;
8342 erel += ext_size;
8343 }
8344 }
8345
8346 free (sort);
8347 *psec = dynamic_relocs;
8348 return ret;
8349 }
8350
8351 /* Flush the output symbols to the file. */
8352
8353 static bfd_boolean
8354 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8355 const struct elf_backend_data *bed)
8356 {
8357 if (flinfo->symbuf_count > 0)
8358 {
8359 Elf_Internal_Shdr *hdr;
8360 file_ptr pos;
8361 bfd_size_type amt;
8362
8363 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8364 pos = hdr->sh_offset + hdr->sh_size;
8365 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8366 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8367 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8368 return FALSE;
8369
8370 hdr->sh_size += amt;
8371 flinfo->symbuf_count = 0;
8372 }
8373
8374 return TRUE;
8375 }
8376
8377 /* Add a symbol to the output symbol table. */
8378
8379 static int
8380 elf_link_output_sym (struct elf_final_link_info *flinfo,
8381 const char *name,
8382 Elf_Internal_Sym *elfsym,
8383 asection *input_sec,
8384 struct elf_link_hash_entry *h)
8385 {
8386 bfd_byte *dest;
8387 Elf_External_Sym_Shndx *destshndx;
8388 int (*output_symbol_hook)
8389 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8390 struct elf_link_hash_entry *);
8391 const struct elf_backend_data *bed;
8392
8393 bed = get_elf_backend_data (flinfo->output_bfd);
8394 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8395 if (output_symbol_hook != NULL)
8396 {
8397 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8398 if (ret != 1)
8399 return ret;
8400 }
8401
8402 if (name == NULL || *name == '\0')
8403 elfsym->st_name = 0;
8404 else if (input_sec->flags & SEC_EXCLUDE)
8405 elfsym->st_name = 0;
8406 else
8407 {
8408 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8409 name, TRUE, FALSE);
8410 if (elfsym->st_name == (unsigned long) -1)
8411 return 0;
8412 }
8413
8414 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8415 {
8416 if (! elf_link_flush_output_syms (flinfo, bed))
8417 return 0;
8418 }
8419
8420 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8421 destshndx = flinfo->symshndxbuf;
8422 if (destshndx != NULL)
8423 {
8424 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8425 {
8426 bfd_size_type amt;
8427
8428 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8429 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8430 amt * 2);
8431 if (destshndx == NULL)
8432 return 0;
8433 flinfo->symshndxbuf = destshndx;
8434 memset ((char *) destshndx + amt, 0, amt);
8435 flinfo->shndxbuf_size *= 2;
8436 }
8437 destshndx += bfd_get_symcount (flinfo->output_bfd);
8438 }
8439
8440 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8441 flinfo->symbuf_count += 1;
8442 bfd_get_symcount (flinfo->output_bfd) += 1;
8443
8444 return 1;
8445 }
8446
8447 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8448
8449 static bfd_boolean
8450 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8451 {
8452 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8453 && sym->st_shndx < SHN_LORESERVE)
8454 {
8455 /* The gABI doesn't support dynamic symbols in output sections
8456 beyond 64k. */
8457 (*_bfd_error_handler)
8458 (_("%B: Too many sections: %d (>= %d)"),
8459 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8460 bfd_set_error (bfd_error_nonrepresentable_section);
8461 return FALSE;
8462 }
8463 return TRUE;
8464 }
8465
8466 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8467 allowing an unsatisfied unversioned symbol in the DSO to match a
8468 versioned symbol that would normally require an explicit version.
8469 We also handle the case that a DSO references a hidden symbol
8470 which may be satisfied by a versioned symbol in another DSO. */
8471
8472 static bfd_boolean
8473 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8474 const struct elf_backend_data *bed,
8475 struct elf_link_hash_entry *h)
8476 {
8477 bfd *abfd;
8478 struct elf_link_loaded_list *loaded;
8479
8480 if (!is_elf_hash_table (info->hash))
8481 return FALSE;
8482
8483 /* Check indirect symbol. */
8484 while (h->root.type == bfd_link_hash_indirect)
8485 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8486
8487 switch (h->root.type)
8488 {
8489 default:
8490 abfd = NULL;
8491 break;
8492
8493 case bfd_link_hash_undefined:
8494 case bfd_link_hash_undefweak:
8495 abfd = h->root.u.undef.abfd;
8496 if ((abfd->flags & DYNAMIC) == 0
8497 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8498 return FALSE;
8499 break;
8500
8501 case bfd_link_hash_defined:
8502 case bfd_link_hash_defweak:
8503 abfd = h->root.u.def.section->owner;
8504 break;
8505
8506 case bfd_link_hash_common:
8507 abfd = h->root.u.c.p->section->owner;
8508 break;
8509 }
8510 BFD_ASSERT (abfd != NULL);
8511
8512 for (loaded = elf_hash_table (info)->loaded;
8513 loaded != NULL;
8514 loaded = loaded->next)
8515 {
8516 bfd *input;
8517 Elf_Internal_Shdr *hdr;
8518 bfd_size_type symcount;
8519 bfd_size_type extsymcount;
8520 bfd_size_type extsymoff;
8521 Elf_Internal_Shdr *versymhdr;
8522 Elf_Internal_Sym *isym;
8523 Elf_Internal_Sym *isymend;
8524 Elf_Internal_Sym *isymbuf;
8525 Elf_External_Versym *ever;
8526 Elf_External_Versym *extversym;
8527
8528 input = loaded->abfd;
8529
8530 /* We check each DSO for a possible hidden versioned definition. */
8531 if (input == abfd
8532 || (input->flags & DYNAMIC) == 0
8533 || elf_dynversym (input) == 0)
8534 continue;
8535
8536 hdr = &elf_tdata (input)->dynsymtab_hdr;
8537
8538 symcount = hdr->sh_size / bed->s->sizeof_sym;
8539 if (elf_bad_symtab (input))
8540 {
8541 extsymcount = symcount;
8542 extsymoff = 0;
8543 }
8544 else
8545 {
8546 extsymcount = symcount - hdr->sh_info;
8547 extsymoff = hdr->sh_info;
8548 }
8549
8550 if (extsymcount == 0)
8551 continue;
8552
8553 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8554 NULL, NULL, NULL);
8555 if (isymbuf == NULL)
8556 return FALSE;
8557
8558 /* Read in any version definitions. */
8559 versymhdr = &elf_tdata (input)->dynversym_hdr;
8560 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8561 if (extversym == NULL)
8562 goto error_ret;
8563
8564 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8565 || (bfd_bread (extversym, versymhdr->sh_size, input)
8566 != versymhdr->sh_size))
8567 {
8568 free (extversym);
8569 error_ret:
8570 free (isymbuf);
8571 return FALSE;
8572 }
8573
8574 ever = extversym + extsymoff;
8575 isymend = isymbuf + extsymcount;
8576 for (isym = isymbuf; isym < isymend; isym++, ever++)
8577 {
8578 const char *name;
8579 Elf_Internal_Versym iver;
8580 unsigned short version_index;
8581
8582 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8583 || isym->st_shndx == SHN_UNDEF)
8584 continue;
8585
8586 name = bfd_elf_string_from_elf_section (input,
8587 hdr->sh_link,
8588 isym->st_name);
8589 if (strcmp (name, h->root.root.string) != 0)
8590 continue;
8591
8592 _bfd_elf_swap_versym_in (input, ever, &iver);
8593
8594 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8595 && !(h->def_regular
8596 && h->forced_local))
8597 {
8598 /* If we have a non-hidden versioned sym, then it should
8599 have provided a definition for the undefined sym unless
8600 it is defined in a non-shared object and forced local.
8601 */
8602 abort ();
8603 }
8604
8605 version_index = iver.vs_vers & VERSYM_VERSION;
8606 if (version_index == 1 || version_index == 2)
8607 {
8608 /* This is the base or first version. We can use it. */
8609 free (extversym);
8610 free (isymbuf);
8611 return TRUE;
8612 }
8613 }
8614
8615 free (extversym);
8616 free (isymbuf);
8617 }
8618
8619 return FALSE;
8620 }
8621
8622 /* Add an external symbol to the symbol table. This is called from
8623 the hash table traversal routine. When generating a shared object,
8624 we go through the symbol table twice. The first time we output
8625 anything that might have been forced to local scope in a version
8626 script. The second time we output the symbols that are still
8627 global symbols. */
8628
8629 static bfd_boolean
8630 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8631 {
8632 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8633 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8634 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8635 bfd_boolean strip;
8636 Elf_Internal_Sym sym;
8637 asection *input_sec;
8638 const struct elf_backend_data *bed;
8639 long indx;
8640 int ret;
8641
8642 if (h->root.type == bfd_link_hash_warning)
8643 {
8644 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8645 if (h->root.type == bfd_link_hash_new)
8646 return TRUE;
8647 }
8648
8649 /* Decide whether to output this symbol in this pass. */
8650 if (eoinfo->localsyms)
8651 {
8652 if (!h->forced_local)
8653 return TRUE;
8654 if (eoinfo->second_pass
8655 && !((h->root.type == bfd_link_hash_defined
8656 || h->root.type == bfd_link_hash_defweak)
8657 && h->root.u.def.section->output_section != NULL))
8658 return TRUE;
8659
8660 if (!eoinfo->file_sym_done
8661 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8662 : eoinfo->flinfo->filesym_count > 1))
8663 {
8664 /* Output a FILE symbol so that following locals are not associated
8665 with the wrong input file. */
8666 memset (&sym, 0, sizeof (sym));
8667 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8668 sym.st_shndx = SHN_ABS;
8669 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8670 bfd_und_section_ptr, NULL))
8671 return FALSE;
8672
8673 eoinfo->file_sym_done = TRUE;
8674 }
8675 }
8676 else
8677 {
8678 if (h->forced_local)
8679 return TRUE;
8680 }
8681
8682 bed = get_elf_backend_data (flinfo->output_bfd);
8683
8684 if (h->root.type == bfd_link_hash_undefined)
8685 {
8686 /* If we have an undefined symbol reference here then it must have
8687 come from a shared library that is being linked in. (Undefined
8688 references in regular files have already been handled unless
8689 they are in unreferenced sections which are removed by garbage
8690 collection). */
8691 bfd_boolean ignore_undef = FALSE;
8692
8693 /* Some symbols may be special in that the fact that they're
8694 undefined can be safely ignored - let backend determine that. */
8695 if (bed->elf_backend_ignore_undef_symbol)
8696 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8697
8698 /* If we are reporting errors for this situation then do so now. */
8699 if (!ignore_undef
8700 && h->ref_dynamic
8701 && (!h->ref_regular || flinfo->info->gc_sections)
8702 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8703 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8704 {
8705 if (!(flinfo->info->callbacks->undefined_symbol
8706 (flinfo->info, h->root.root.string,
8707 h->ref_regular ? NULL : h->root.u.undef.abfd,
8708 NULL, 0,
8709 (flinfo->info->unresolved_syms_in_shared_libs
8710 == RM_GENERATE_ERROR))))
8711 {
8712 bfd_set_error (bfd_error_bad_value);
8713 eoinfo->failed = TRUE;
8714 return FALSE;
8715 }
8716 }
8717 }
8718
8719 /* We should also warn if a forced local symbol is referenced from
8720 shared libraries. */
8721 if (!flinfo->info->relocatable
8722 && flinfo->info->executable
8723 && h->forced_local
8724 && h->ref_dynamic
8725 && h->def_regular
8726 && !h->dynamic_def
8727 && h->ref_dynamic_nonweak
8728 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8729 {
8730 bfd *def_bfd;
8731 const char *msg;
8732 struct elf_link_hash_entry *hi = h;
8733
8734 /* Check indirect symbol. */
8735 while (hi->root.type == bfd_link_hash_indirect)
8736 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8737
8738 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8739 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8740 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8741 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8742 else
8743 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8744 def_bfd = flinfo->output_bfd;
8745 if (hi->root.u.def.section != bfd_abs_section_ptr)
8746 def_bfd = hi->root.u.def.section->owner;
8747 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8748 h->root.root.string);
8749 bfd_set_error (bfd_error_bad_value);
8750 eoinfo->failed = TRUE;
8751 return FALSE;
8752 }
8753
8754 /* We don't want to output symbols that have never been mentioned by
8755 a regular file, or that we have been told to strip. However, if
8756 h->indx is set to -2, the symbol is used by a reloc and we must
8757 output it. */
8758 if (h->indx == -2)
8759 strip = FALSE;
8760 else if ((h->def_dynamic
8761 || h->ref_dynamic
8762 || h->root.type == bfd_link_hash_new)
8763 && !h->def_regular
8764 && !h->ref_regular)
8765 strip = TRUE;
8766 else if (flinfo->info->strip == strip_all)
8767 strip = TRUE;
8768 else if (flinfo->info->strip == strip_some
8769 && bfd_hash_lookup (flinfo->info->keep_hash,
8770 h->root.root.string, FALSE, FALSE) == NULL)
8771 strip = TRUE;
8772 else if ((h->root.type == bfd_link_hash_defined
8773 || h->root.type == bfd_link_hash_defweak)
8774 && ((flinfo->info->strip_discarded
8775 && discarded_section (h->root.u.def.section))
8776 || (h->root.u.def.section->owner != NULL
8777 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8778 strip = TRUE;
8779 else if ((h->root.type == bfd_link_hash_undefined
8780 || h->root.type == bfd_link_hash_undefweak)
8781 && h->root.u.undef.abfd != NULL
8782 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8783 strip = TRUE;
8784 else
8785 strip = FALSE;
8786
8787 /* If we're stripping it, and it's not a dynamic symbol, there's
8788 nothing else to do unless it is a forced local symbol or a
8789 STT_GNU_IFUNC symbol. */
8790 if (strip
8791 && h->dynindx == -1
8792 && h->type != STT_GNU_IFUNC
8793 && !h->forced_local)
8794 return TRUE;
8795
8796 sym.st_value = 0;
8797 sym.st_size = h->size;
8798 sym.st_other = h->other;
8799 if (h->forced_local)
8800 {
8801 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8802 /* Turn off visibility on local symbol. */
8803 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8804 }
8805 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8806 else if (h->unique_global && h->def_regular)
8807 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8808 else if (h->root.type == bfd_link_hash_undefweak
8809 || h->root.type == bfd_link_hash_defweak)
8810 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8811 else
8812 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8813 sym.st_target_internal = h->target_internal;
8814
8815 switch (h->root.type)
8816 {
8817 default:
8818 case bfd_link_hash_new:
8819 case bfd_link_hash_warning:
8820 abort ();
8821 return FALSE;
8822
8823 case bfd_link_hash_undefined:
8824 case bfd_link_hash_undefweak:
8825 input_sec = bfd_und_section_ptr;
8826 sym.st_shndx = SHN_UNDEF;
8827 break;
8828
8829 case bfd_link_hash_defined:
8830 case bfd_link_hash_defweak:
8831 {
8832 input_sec = h->root.u.def.section;
8833 if (input_sec->output_section != NULL)
8834 {
8835 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8836 {
8837 bfd_boolean second_pass_sym
8838 = (input_sec->owner == flinfo->output_bfd
8839 || input_sec->owner == NULL
8840 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8841 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8842
8843 eoinfo->need_second_pass |= second_pass_sym;
8844 if (eoinfo->second_pass != second_pass_sym)
8845 return TRUE;
8846 }
8847
8848 sym.st_shndx =
8849 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8850 input_sec->output_section);
8851 if (sym.st_shndx == SHN_BAD)
8852 {
8853 (*_bfd_error_handler)
8854 (_("%B: could not find output section %A for input section %A"),
8855 flinfo->output_bfd, input_sec->output_section, input_sec);
8856 bfd_set_error (bfd_error_nonrepresentable_section);
8857 eoinfo->failed = TRUE;
8858 return FALSE;
8859 }
8860
8861 /* ELF symbols in relocatable files are section relative,
8862 but in nonrelocatable files they are virtual
8863 addresses. */
8864 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8865 if (!flinfo->info->relocatable)
8866 {
8867 sym.st_value += input_sec->output_section->vma;
8868 if (h->type == STT_TLS)
8869 {
8870 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8871 if (tls_sec != NULL)
8872 sym.st_value -= tls_sec->vma;
8873 else
8874 {
8875 /* The TLS section may have been garbage collected. */
8876 BFD_ASSERT (flinfo->info->gc_sections
8877 && !input_sec->gc_mark);
8878 }
8879 }
8880 }
8881 }
8882 else
8883 {
8884 BFD_ASSERT (input_sec->owner == NULL
8885 || (input_sec->owner->flags & DYNAMIC) != 0);
8886 sym.st_shndx = SHN_UNDEF;
8887 input_sec = bfd_und_section_ptr;
8888 }
8889 }
8890 break;
8891
8892 case bfd_link_hash_common:
8893 input_sec = h->root.u.c.p->section;
8894 sym.st_shndx = bed->common_section_index (input_sec);
8895 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8896 break;
8897
8898 case bfd_link_hash_indirect:
8899 /* These symbols are created by symbol versioning. They point
8900 to the decorated version of the name. For example, if the
8901 symbol foo@@GNU_1.2 is the default, which should be used when
8902 foo is used with no version, then we add an indirect symbol
8903 foo which points to foo@@GNU_1.2. We ignore these symbols,
8904 since the indirected symbol is already in the hash table. */
8905 return TRUE;
8906 }
8907
8908 /* Give the processor backend a chance to tweak the symbol value,
8909 and also to finish up anything that needs to be done for this
8910 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8911 forced local syms when non-shared is due to a historical quirk.
8912 STT_GNU_IFUNC symbol must go through PLT. */
8913 if ((h->type == STT_GNU_IFUNC
8914 && h->def_regular
8915 && !flinfo->info->relocatable)
8916 || ((h->dynindx != -1
8917 || h->forced_local)
8918 && ((flinfo->info->shared
8919 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8920 || h->root.type != bfd_link_hash_undefweak))
8921 || !h->forced_local)
8922 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8923 {
8924 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8925 (flinfo->output_bfd, flinfo->info, h, &sym)))
8926 {
8927 eoinfo->failed = TRUE;
8928 return FALSE;
8929 }
8930 }
8931
8932 /* If we are marking the symbol as undefined, and there are no
8933 non-weak references to this symbol from a regular object, then
8934 mark the symbol as weak undefined; if there are non-weak
8935 references, mark the symbol as strong. We can't do this earlier,
8936 because it might not be marked as undefined until the
8937 finish_dynamic_symbol routine gets through with it. */
8938 if (sym.st_shndx == SHN_UNDEF
8939 && h->ref_regular
8940 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8941 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8942 {
8943 int bindtype;
8944 unsigned int type = ELF_ST_TYPE (sym.st_info);
8945
8946 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8947 if (type == STT_GNU_IFUNC)
8948 type = STT_FUNC;
8949
8950 if (h->ref_regular_nonweak)
8951 bindtype = STB_GLOBAL;
8952 else
8953 bindtype = STB_WEAK;
8954 sym.st_info = ELF_ST_INFO (bindtype, type);
8955 }
8956
8957 /* If this is a symbol defined in a dynamic library, don't use the
8958 symbol size from the dynamic library. Relinking an executable
8959 against a new library may introduce gratuitous changes in the
8960 executable's symbols if we keep the size. */
8961 if (sym.st_shndx == SHN_UNDEF
8962 && !h->def_regular
8963 && h->def_dynamic)
8964 sym.st_size = 0;
8965
8966 /* If a non-weak symbol with non-default visibility is not defined
8967 locally, it is a fatal error. */
8968 if (!flinfo->info->relocatable
8969 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8970 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8971 && h->root.type == bfd_link_hash_undefined
8972 && !h->def_regular)
8973 {
8974 const char *msg;
8975
8976 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8977 msg = _("%B: protected symbol `%s' isn't defined");
8978 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8979 msg = _("%B: internal symbol `%s' isn't defined");
8980 else
8981 msg = _("%B: hidden symbol `%s' isn't defined");
8982 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8983 bfd_set_error (bfd_error_bad_value);
8984 eoinfo->failed = TRUE;
8985 return FALSE;
8986 }
8987
8988 /* If this symbol should be put in the .dynsym section, then put it
8989 there now. We already know the symbol index. We also fill in
8990 the entry in the .hash section. */
8991 if (flinfo->dynsym_sec != NULL
8992 && h->dynindx != -1
8993 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8994 {
8995 bfd_byte *esym;
8996
8997 /* Since there is no version information in the dynamic string,
8998 if there is no version info in symbol version section, we will
8999 have a run-time problem. */
9000 if (h->verinfo.verdef == NULL)
9001 {
9002 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9003
9004 if (p && p [1] != '\0')
9005 {
9006 (*_bfd_error_handler)
9007 (_("%B: No symbol version section for versioned symbol `%s'"),
9008 flinfo->output_bfd, h->root.root.string);
9009 eoinfo->failed = TRUE;
9010 return FALSE;
9011 }
9012 }
9013
9014 sym.st_name = h->dynstr_index;
9015 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9016 if (!check_dynsym (flinfo->output_bfd, &sym))
9017 {
9018 eoinfo->failed = TRUE;
9019 return FALSE;
9020 }
9021 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9022
9023 if (flinfo->hash_sec != NULL)
9024 {
9025 size_t hash_entry_size;
9026 bfd_byte *bucketpos;
9027 bfd_vma chain;
9028 size_t bucketcount;
9029 size_t bucket;
9030
9031 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9032 bucket = h->u.elf_hash_value % bucketcount;
9033
9034 hash_entry_size
9035 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9036 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9037 + (bucket + 2) * hash_entry_size);
9038 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9039 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9040 bucketpos);
9041 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9042 ((bfd_byte *) flinfo->hash_sec->contents
9043 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9044 }
9045
9046 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9047 {
9048 Elf_Internal_Versym iversym;
9049 Elf_External_Versym *eversym;
9050
9051 if (!h->def_regular)
9052 {
9053 if (h->verinfo.verdef == NULL)
9054 iversym.vs_vers = 0;
9055 else
9056 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9057 }
9058 else
9059 {
9060 if (h->verinfo.vertree == NULL)
9061 iversym.vs_vers = 1;
9062 else
9063 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9064 if (flinfo->info->create_default_symver)
9065 iversym.vs_vers++;
9066 }
9067
9068 if (h->hidden)
9069 iversym.vs_vers |= VERSYM_HIDDEN;
9070
9071 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9072 eversym += h->dynindx;
9073 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9074 }
9075 }
9076
9077 /* If we're stripping it, then it was just a dynamic symbol, and
9078 there's nothing else to do. */
9079 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9080 return TRUE;
9081
9082 indx = bfd_get_symcount (flinfo->output_bfd);
9083 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9084 if (ret == 0)
9085 {
9086 eoinfo->failed = TRUE;
9087 return FALSE;
9088 }
9089 else if (ret == 1)
9090 h->indx = indx;
9091 else if (h->indx == -2)
9092 abort();
9093
9094 return TRUE;
9095 }
9096
9097 /* Return TRUE if special handling is done for relocs in SEC against
9098 symbols defined in discarded sections. */
9099
9100 static bfd_boolean
9101 elf_section_ignore_discarded_relocs (asection *sec)
9102 {
9103 const struct elf_backend_data *bed;
9104
9105 switch (sec->sec_info_type)
9106 {
9107 case SEC_INFO_TYPE_STABS:
9108 case SEC_INFO_TYPE_EH_FRAME:
9109 return TRUE;
9110 default:
9111 break;
9112 }
9113
9114 bed = get_elf_backend_data (sec->owner);
9115 if (bed->elf_backend_ignore_discarded_relocs != NULL
9116 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9117 return TRUE;
9118
9119 return FALSE;
9120 }
9121
9122 /* Return a mask saying how ld should treat relocations in SEC against
9123 symbols defined in discarded sections. If this function returns
9124 COMPLAIN set, ld will issue a warning message. If this function
9125 returns PRETEND set, and the discarded section was link-once and the
9126 same size as the kept link-once section, ld will pretend that the
9127 symbol was actually defined in the kept section. Otherwise ld will
9128 zero the reloc (at least that is the intent, but some cooperation by
9129 the target dependent code is needed, particularly for REL targets). */
9130
9131 unsigned int
9132 _bfd_elf_default_action_discarded (asection *sec)
9133 {
9134 if (sec->flags & SEC_DEBUGGING)
9135 return PRETEND;
9136
9137 if (strcmp (".eh_frame", sec->name) == 0)
9138 return 0;
9139
9140 if (strcmp (".gcc_except_table", sec->name) == 0)
9141 return 0;
9142
9143 return COMPLAIN | PRETEND;
9144 }
9145
9146 /* Find a match between a section and a member of a section group. */
9147
9148 static asection *
9149 match_group_member (asection *sec, asection *group,
9150 struct bfd_link_info *info)
9151 {
9152 asection *first = elf_next_in_group (group);
9153 asection *s = first;
9154
9155 while (s != NULL)
9156 {
9157 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9158 return s;
9159
9160 s = elf_next_in_group (s);
9161 if (s == first)
9162 break;
9163 }
9164
9165 return NULL;
9166 }
9167
9168 /* Check if the kept section of a discarded section SEC can be used
9169 to replace it. Return the replacement if it is OK. Otherwise return
9170 NULL. */
9171
9172 asection *
9173 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9174 {
9175 asection *kept;
9176
9177 kept = sec->kept_section;
9178 if (kept != NULL)
9179 {
9180 if ((kept->flags & SEC_GROUP) != 0)
9181 kept = match_group_member (sec, kept, info);
9182 if (kept != NULL
9183 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9184 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9185 kept = NULL;
9186 sec->kept_section = kept;
9187 }
9188 return kept;
9189 }
9190
9191 /* Link an input file into the linker output file. This function
9192 handles all the sections and relocations of the input file at once.
9193 This is so that we only have to read the local symbols once, and
9194 don't have to keep them in memory. */
9195
9196 static bfd_boolean
9197 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9198 {
9199 int (*relocate_section)
9200 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9201 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9202 bfd *output_bfd;
9203 Elf_Internal_Shdr *symtab_hdr;
9204 size_t locsymcount;
9205 size_t extsymoff;
9206 Elf_Internal_Sym *isymbuf;
9207 Elf_Internal_Sym *isym;
9208 Elf_Internal_Sym *isymend;
9209 long *pindex;
9210 asection **ppsection;
9211 asection *o;
9212 const struct elf_backend_data *bed;
9213 struct elf_link_hash_entry **sym_hashes;
9214 bfd_size_type address_size;
9215 bfd_vma r_type_mask;
9216 int r_sym_shift;
9217 bfd_boolean have_file_sym = FALSE;
9218
9219 output_bfd = flinfo->output_bfd;
9220 bed = get_elf_backend_data (output_bfd);
9221 relocate_section = bed->elf_backend_relocate_section;
9222
9223 /* If this is a dynamic object, we don't want to do anything here:
9224 we don't want the local symbols, and we don't want the section
9225 contents. */
9226 if ((input_bfd->flags & DYNAMIC) != 0)
9227 return TRUE;
9228
9229 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9230 if (elf_bad_symtab (input_bfd))
9231 {
9232 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9233 extsymoff = 0;
9234 }
9235 else
9236 {
9237 locsymcount = symtab_hdr->sh_info;
9238 extsymoff = symtab_hdr->sh_info;
9239 }
9240
9241 /* Read the local symbols. */
9242 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9243 if (isymbuf == NULL && locsymcount != 0)
9244 {
9245 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9246 flinfo->internal_syms,
9247 flinfo->external_syms,
9248 flinfo->locsym_shndx);
9249 if (isymbuf == NULL)
9250 return FALSE;
9251 }
9252
9253 /* Find local symbol sections and adjust values of symbols in
9254 SEC_MERGE sections. Write out those local symbols we know are
9255 going into the output file. */
9256 isymend = isymbuf + locsymcount;
9257 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9258 isym < isymend;
9259 isym++, pindex++, ppsection++)
9260 {
9261 asection *isec;
9262 const char *name;
9263 Elf_Internal_Sym osym;
9264 long indx;
9265 int ret;
9266
9267 *pindex = -1;
9268
9269 if (elf_bad_symtab (input_bfd))
9270 {
9271 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9272 {
9273 *ppsection = NULL;
9274 continue;
9275 }
9276 }
9277
9278 if (isym->st_shndx == SHN_UNDEF)
9279 isec = bfd_und_section_ptr;
9280 else if (isym->st_shndx == SHN_ABS)
9281 isec = bfd_abs_section_ptr;
9282 else if (isym->st_shndx == SHN_COMMON)
9283 isec = bfd_com_section_ptr;
9284 else
9285 {
9286 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9287 if (isec == NULL)
9288 {
9289 /* Don't attempt to output symbols with st_shnx in the
9290 reserved range other than SHN_ABS and SHN_COMMON. */
9291 *ppsection = NULL;
9292 continue;
9293 }
9294 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9295 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9296 isym->st_value =
9297 _bfd_merged_section_offset (output_bfd, &isec,
9298 elf_section_data (isec)->sec_info,
9299 isym->st_value);
9300 }
9301
9302 *ppsection = isec;
9303
9304 /* Don't output the first, undefined, symbol. */
9305 if (ppsection == flinfo->sections)
9306 continue;
9307
9308 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9309 {
9310 /* We never output section symbols. Instead, we use the
9311 section symbol of the corresponding section in the output
9312 file. */
9313 continue;
9314 }
9315
9316 /* If we are stripping all symbols, we don't want to output this
9317 one. */
9318 if (flinfo->info->strip == strip_all)
9319 continue;
9320
9321 /* If we are discarding all local symbols, we don't want to
9322 output this one. If we are generating a relocatable output
9323 file, then some of the local symbols may be required by
9324 relocs; we output them below as we discover that they are
9325 needed. */
9326 if (flinfo->info->discard == discard_all)
9327 continue;
9328
9329 /* If this symbol is defined in a section which we are
9330 discarding, we don't need to keep it. */
9331 if (isym->st_shndx != SHN_UNDEF
9332 && isym->st_shndx < SHN_LORESERVE
9333 && bfd_section_removed_from_list (output_bfd,
9334 isec->output_section))
9335 continue;
9336
9337 /* Get the name of the symbol. */
9338 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9339 isym->st_name);
9340 if (name == NULL)
9341 return FALSE;
9342
9343 /* See if we are discarding symbols with this name. */
9344 if ((flinfo->info->strip == strip_some
9345 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9346 == NULL))
9347 || (((flinfo->info->discard == discard_sec_merge
9348 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9349 || flinfo->info->discard == discard_l)
9350 && bfd_is_local_label_name (input_bfd, name)))
9351 continue;
9352
9353 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9354 {
9355 have_file_sym = TRUE;
9356 flinfo->filesym_count += 1;
9357 }
9358 if (!have_file_sym)
9359 {
9360 /* In the absence of debug info, bfd_find_nearest_line uses
9361 FILE symbols to determine the source file for local
9362 function symbols. Provide a FILE symbol here if input
9363 files lack such, so that their symbols won't be
9364 associated with a previous input file. It's not the
9365 source file, but the best we can do. */
9366 have_file_sym = TRUE;
9367 flinfo->filesym_count += 1;
9368 memset (&osym, 0, sizeof (osym));
9369 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9370 osym.st_shndx = SHN_ABS;
9371 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9372 bfd_abs_section_ptr, NULL))
9373 return FALSE;
9374 }
9375
9376 osym = *isym;
9377
9378 /* Adjust the section index for the output file. */
9379 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9380 isec->output_section);
9381 if (osym.st_shndx == SHN_BAD)
9382 return FALSE;
9383
9384 /* ELF symbols in relocatable files are section relative, but
9385 in executable files they are virtual addresses. Note that
9386 this code assumes that all ELF sections have an associated
9387 BFD section with a reasonable value for output_offset; below
9388 we assume that they also have a reasonable value for
9389 output_section. Any special sections must be set up to meet
9390 these requirements. */
9391 osym.st_value += isec->output_offset;
9392 if (!flinfo->info->relocatable)
9393 {
9394 osym.st_value += isec->output_section->vma;
9395 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9396 {
9397 /* STT_TLS symbols are relative to PT_TLS segment base. */
9398 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9399 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9400 }
9401 }
9402
9403 indx = bfd_get_symcount (output_bfd);
9404 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9405 if (ret == 0)
9406 return FALSE;
9407 else if (ret == 1)
9408 *pindex = indx;
9409 }
9410
9411 if (bed->s->arch_size == 32)
9412 {
9413 r_type_mask = 0xff;
9414 r_sym_shift = 8;
9415 address_size = 4;
9416 }
9417 else
9418 {
9419 r_type_mask = 0xffffffff;
9420 r_sym_shift = 32;
9421 address_size = 8;
9422 }
9423
9424 /* Relocate the contents of each section. */
9425 sym_hashes = elf_sym_hashes (input_bfd);
9426 for (o = input_bfd->sections; o != NULL; o = o->next)
9427 {
9428 bfd_byte *contents;
9429
9430 if (! o->linker_mark)
9431 {
9432 /* This section was omitted from the link. */
9433 continue;
9434 }
9435
9436 if (flinfo->info->relocatable
9437 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9438 {
9439 /* Deal with the group signature symbol. */
9440 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9441 unsigned long symndx = sec_data->this_hdr.sh_info;
9442 asection *osec = o->output_section;
9443
9444 if (symndx >= locsymcount
9445 || (elf_bad_symtab (input_bfd)
9446 && flinfo->sections[symndx] == NULL))
9447 {
9448 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9449 while (h->root.type == bfd_link_hash_indirect
9450 || h->root.type == bfd_link_hash_warning)
9451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9452 /* Arrange for symbol to be output. */
9453 h->indx = -2;
9454 elf_section_data (osec)->this_hdr.sh_info = -2;
9455 }
9456 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9457 {
9458 /* We'll use the output section target_index. */
9459 asection *sec = flinfo->sections[symndx]->output_section;
9460 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9461 }
9462 else
9463 {
9464 if (flinfo->indices[symndx] == -1)
9465 {
9466 /* Otherwise output the local symbol now. */
9467 Elf_Internal_Sym sym = isymbuf[symndx];
9468 asection *sec = flinfo->sections[symndx]->output_section;
9469 const char *name;
9470 long indx;
9471 int ret;
9472
9473 name = bfd_elf_string_from_elf_section (input_bfd,
9474 symtab_hdr->sh_link,
9475 sym.st_name);
9476 if (name == NULL)
9477 return FALSE;
9478
9479 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9480 sec);
9481 if (sym.st_shndx == SHN_BAD)
9482 return FALSE;
9483
9484 sym.st_value += o->output_offset;
9485
9486 indx = bfd_get_symcount (output_bfd);
9487 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9488 if (ret == 0)
9489 return FALSE;
9490 else if (ret == 1)
9491 flinfo->indices[symndx] = indx;
9492 else
9493 abort ();
9494 }
9495 elf_section_data (osec)->this_hdr.sh_info
9496 = flinfo->indices[symndx];
9497 }
9498 }
9499
9500 if ((o->flags & SEC_HAS_CONTENTS) == 0
9501 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9502 continue;
9503
9504 if ((o->flags & SEC_LINKER_CREATED) != 0)
9505 {
9506 /* Section was created by _bfd_elf_link_create_dynamic_sections
9507 or somesuch. */
9508 continue;
9509 }
9510
9511 /* Get the contents of the section. They have been cached by a
9512 relaxation routine. Note that o is a section in an input
9513 file, so the contents field will not have been set by any of
9514 the routines which work on output files. */
9515 if (elf_section_data (o)->this_hdr.contents != NULL)
9516 {
9517 contents = elf_section_data (o)->this_hdr.contents;
9518 if (bed->caches_rawsize
9519 && o->rawsize != 0
9520 && o->rawsize < o->size)
9521 {
9522 memcpy (flinfo->contents, contents, o->rawsize);
9523 contents = flinfo->contents;
9524 }
9525 }
9526 else
9527 {
9528 contents = flinfo->contents;
9529 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9530 return FALSE;
9531 }
9532
9533 if ((o->flags & SEC_RELOC) != 0)
9534 {
9535 Elf_Internal_Rela *internal_relocs;
9536 Elf_Internal_Rela *rel, *relend;
9537 int action_discarded;
9538 int ret;
9539
9540 /* Get the swapped relocs. */
9541 internal_relocs
9542 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9543 flinfo->internal_relocs, FALSE);
9544 if (internal_relocs == NULL
9545 && o->reloc_count > 0)
9546 return FALSE;
9547
9548 /* We need to reverse-copy input .ctors/.dtors sections if
9549 they are placed in .init_array/.finit_array for output. */
9550 if (o->size > address_size
9551 && ((strncmp (o->name, ".ctors", 6) == 0
9552 && strcmp (o->output_section->name,
9553 ".init_array") == 0)
9554 || (strncmp (o->name, ".dtors", 6) == 0
9555 && strcmp (o->output_section->name,
9556 ".fini_array") == 0))
9557 && (o->name[6] == 0 || o->name[6] == '.'))
9558 {
9559 if (o->size != o->reloc_count * address_size)
9560 {
9561 (*_bfd_error_handler)
9562 (_("error: %B: size of section %A is not "
9563 "multiple of address size"),
9564 input_bfd, o);
9565 bfd_set_error (bfd_error_on_input);
9566 return FALSE;
9567 }
9568 o->flags |= SEC_ELF_REVERSE_COPY;
9569 }
9570
9571 action_discarded = -1;
9572 if (!elf_section_ignore_discarded_relocs (o))
9573 action_discarded = (*bed->action_discarded) (o);
9574
9575 /* Run through the relocs evaluating complex reloc symbols and
9576 looking for relocs against symbols from discarded sections
9577 or section symbols from removed link-once sections.
9578 Complain about relocs against discarded sections. Zero
9579 relocs against removed link-once sections. */
9580
9581 rel = internal_relocs;
9582 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9583 for ( ; rel < relend; rel++)
9584 {
9585 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9586 unsigned int s_type;
9587 asection **ps, *sec;
9588 struct elf_link_hash_entry *h = NULL;
9589 const char *sym_name;
9590
9591 if (r_symndx == STN_UNDEF)
9592 continue;
9593
9594 if (r_symndx >= locsymcount
9595 || (elf_bad_symtab (input_bfd)
9596 && flinfo->sections[r_symndx] == NULL))
9597 {
9598 h = sym_hashes[r_symndx - extsymoff];
9599
9600 /* Badly formatted input files can contain relocs that
9601 reference non-existant symbols. Check here so that
9602 we do not seg fault. */
9603 if (h == NULL)
9604 {
9605 char buffer [32];
9606
9607 sprintf_vma (buffer, rel->r_info);
9608 (*_bfd_error_handler)
9609 (_("error: %B contains a reloc (0x%s) for section %A "
9610 "that references a non-existent global symbol"),
9611 input_bfd, o, buffer);
9612 bfd_set_error (bfd_error_bad_value);
9613 return FALSE;
9614 }
9615
9616 while (h->root.type == bfd_link_hash_indirect
9617 || h->root.type == bfd_link_hash_warning)
9618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9619
9620 s_type = h->type;
9621
9622 ps = NULL;
9623 if (h->root.type == bfd_link_hash_defined
9624 || h->root.type == bfd_link_hash_defweak)
9625 ps = &h->root.u.def.section;
9626
9627 sym_name = h->root.root.string;
9628 }
9629 else
9630 {
9631 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9632
9633 s_type = ELF_ST_TYPE (sym->st_info);
9634 ps = &flinfo->sections[r_symndx];
9635 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9636 sym, *ps);
9637 }
9638
9639 if ((s_type == STT_RELC || s_type == STT_SRELC)
9640 && !flinfo->info->relocatable)
9641 {
9642 bfd_vma val;
9643 bfd_vma dot = (rel->r_offset
9644 + o->output_offset + o->output_section->vma);
9645 #ifdef DEBUG
9646 printf ("Encountered a complex symbol!");
9647 printf (" (input_bfd %s, section %s, reloc %ld\n",
9648 input_bfd->filename, o->name,
9649 (long) (rel - internal_relocs));
9650 printf (" symbol: idx %8.8lx, name %s\n",
9651 r_symndx, sym_name);
9652 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9653 (unsigned long) rel->r_info,
9654 (unsigned long) rel->r_offset);
9655 #endif
9656 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9657 isymbuf, locsymcount, s_type == STT_SRELC))
9658 return FALSE;
9659
9660 /* Symbol evaluated OK. Update to absolute value. */
9661 set_symbol_value (input_bfd, isymbuf, locsymcount,
9662 r_symndx, val);
9663 continue;
9664 }
9665
9666 if (action_discarded != -1 && ps != NULL)
9667 {
9668 /* Complain if the definition comes from a
9669 discarded section. */
9670 if ((sec = *ps) != NULL && discarded_section (sec))
9671 {
9672 BFD_ASSERT (r_symndx != STN_UNDEF);
9673 if (action_discarded & COMPLAIN)
9674 (*flinfo->info->callbacks->einfo)
9675 (_("%X`%s' referenced in section `%A' of %B: "
9676 "defined in discarded section `%A' of %B\n"),
9677 sym_name, o, input_bfd, sec, sec->owner);
9678
9679 /* Try to do the best we can to support buggy old
9680 versions of gcc. Pretend that the symbol is
9681 really defined in the kept linkonce section.
9682 FIXME: This is quite broken. Modifying the
9683 symbol here means we will be changing all later
9684 uses of the symbol, not just in this section. */
9685 if (action_discarded & PRETEND)
9686 {
9687 asection *kept;
9688
9689 kept = _bfd_elf_check_kept_section (sec,
9690 flinfo->info);
9691 if (kept != NULL)
9692 {
9693 *ps = kept;
9694 continue;
9695 }
9696 }
9697 }
9698 }
9699 }
9700
9701 /* Relocate the section by invoking a back end routine.
9702
9703 The back end routine is responsible for adjusting the
9704 section contents as necessary, and (if using Rela relocs
9705 and generating a relocatable output file) adjusting the
9706 reloc addend as necessary.
9707
9708 The back end routine does not have to worry about setting
9709 the reloc address or the reloc symbol index.
9710
9711 The back end routine is given a pointer to the swapped in
9712 internal symbols, and can access the hash table entries
9713 for the external symbols via elf_sym_hashes (input_bfd).
9714
9715 When generating relocatable output, the back end routine
9716 must handle STB_LOCAL/STT_SECTION symbols specially. The
9717 output symbol is going to be a section symbol
9718 corresponding to the output section, which will require
9719 the addend to be adjusted. */
9720
9721 ret = (*relocate_section) (output_bfd, flinfo->info,
9722 input_bfd, o, contents,
9723 internal_relocs,
9724 isymbuf,
9725 flinfo->sections);
9726 if (!ret)
9727 return FALSE;
9728
9729 if (ret == 2
9730 || flinfo->info->relocatable
9731 || flinfo->info->emitrelocations)
9732 {
9733 Elf_Internal_Rela *irela;
9734 Elf_Internal_Rela *irelaend, *irelamid;
9735 bfd_vma last_offset;
9736 struct elf_link_hash_entry **rel_hash;
9737 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9738 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9739 unsigned int next_erel;
9740 bfd_boolean rela_normal;
9741 struct bfd_elf_section_data *esdi, *esdo;
9742
9743 esdi = elf_section_data (o);
9744 esdo = elf_section_data (o->output_section);
9745 rela_normal = FALSE;
9746
9747 /* Adjust the reloc addresses and symbol indices. */
9748
9749 irela = internal_relocs;
9750 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9751 rel_hash = esdo->rel.hashes + esdo->rel.count;
9752 /* We start processing the REL relocs, if any. When we reach
9753 IRELAMID in the loop, we switch to the RELA relocs. */
9754 irelamid = irela;
9755 if (esdi->rel.hdr != NULL)
9756 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9757 * bed->s->int_rels_per_ext_rel);
9758 rel_hash_list = rel_hash;
9759 rela_hash_list = NULL;
9760 last_offset = o->output_offset;
9761 if (!flinfo->info->relocatable)
9762 last_offset += o->output_section->vma;
9763 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9764 {
9765 unsigned long r_symndx;
9766 asection *sec;
9767 Elf_Internal_Sym sym;
9768
9769 if (next_erel == bed->s->int_rels_per_ext_rel)
9770 {
9771 rel_hash++;
9772 next_erel = 0;
9773 }
9774
9775 if (irela == irelamid)
9776 {
9777 rel_hash = esdo->rela.hashes + esdo->rela.count;
9778 rela_hash_list = rel_hash;
9779 rela_normal = bed->rela_normal;
9780 }
9781
9782 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9783 flinfo->info, o,
9784 irela->r_offset);
9785 if (irela->r_offset >= (bfd_vma) -2)
9786 {
9787 /* This is a reloc for a deleted entry or somesuch.
9788 Turn it into an R_*_NONE reloc, at the same
9789 offset as the last reloc. elf_eh_frame.c and
9790 bfd_elf_discard_info rely on reloc offsets
9791 being ordered. */
9792 irela->r_offset = last_offset;
9793 irela->r_info = 0;
9794 irela->r_addend = 0;
9795 continue;
9796 }
9797
9798 irela->r_offset += o->output_offset;
9799
9800 /* Relocs in an executable have to be virtual addresses. */
9801 if (!flinfo->info->relocatable)
9802 irela->r_offset += o->output_section->vma;
9803
9804 last_offset = irela->r_offset;
9805
9806 r_symndx = irela->r_info >> r_sym_shift;
9807 if (r_symndx == STN_UNDEF)
9808 continue;
9809
9810 if (r_symndx >= locsymcount
9811 || (elf_bad_symtab (input_bfd)
9812 && flinfo->sections[r_symndx] == NULL))
9813 {
9814 struct elf_link_hash_entry *rh;
9815 unsigned long indx;
9816
9817 /* This is a reloc against a global symbol. We
9818 have not yet output all the local symbols, so
9819 we do not know the symbol index of any global
9820 symbol. We set the rel_hash entry for this
9821 reloc to point to the global hash table entry
9822 for this symbol. The symbol index is then
9823 set at the end of bfd_elf_final_link. */
9824 indx = r_symndx - extsymoff;
9825 rh = elf_sym_hashes (input_bfd)[indx];
9826 while (rh->root.type == bfd_link_hash_indirect
9827 || rh->root.type == bfd_link_hash_warning)
9828 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9829
9830 /* Setting the index to -2 tells
9831 elf_link_output_extsym that this symbol is
9832 used by a reloc. */
9833 BFD_ASSERT (rh->indx < 0);
9834 rh->indx = -2;
9835
9836 *rel_hash = rh;
9837
9838 continue;
9839 }
9840
9841 /* This is a reloc against a local symbol. */
9842
9843 *rel_hash = NULL;
9844 sym = isymbuf[r_symndx];
9845 sec = flinfo->sections[r_symndx];
9846 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9847 {
9848 /* I suppose the backend ought to fill in the
9849 section of any STT_SECTION symbol against a
9850 processor specific section. */
9851 r_symndx = STN_UNDEF;
9852 if (bfd_is_abs_section (sec))
9853 ;
9854 else if (sec == NULL || sec->owner == NULL)
9855 {
9856 bfd_set_error (bfd_error_bad_value);
9857 return FALSE;
9858 }
9859 else
9860 {
9861 asection *osec = sec->output_section;
9862
9863 /* If we have discarded a section, the output
9864 section will be the absolute section. In
9865 case of discarded SEC_MERGE sections, use
9866 the kept section. relocate_section should
9867 have already handled discarded linkonce
9868 sections. */
9869 if (bfd_is_abs_section (osec)
9870 && sec->kept_section != NULL
9871 && sec->kept_section->output_section != NULL)
9872 {
9873 osec = sec->kept_section->output_section;
9874 irela->r_addend -= osec->vma;
9875 }
9876
9877 if (!bfd_is_abs_section (osec))
9878 {
9879 r_symndx = osec->target_index;
9880 if (r_symndx == STN_UNDEF)
9881 {
9882 irela->r_addend += osec->vma;
9883 osec = _bfd_nearby_section (output_bfd, osec,
9884 osec->vma);
9885 irela->r_addend -= osec->vma;
9886 r_symndx = osec->target_index;
9887 }
9888 }
9889 }
9890
9891 /* Adjust the addend according to where the
9892 section winds up in the output section. */
9893 if (rela_normal)
9894 irela->r_addend += sec->output_offset;
9895 }
9896 else
9897 {
9898 if (flinfo->indices[r_symndx] == -1)
9899 {
9900 unsigned long shlink;
9901 const char *name;
9902 asection *osec;
9903 long indx;
9904
9905 if (flinfo->info->strip == strip_all)
9906 {
9907 /* You can't do ld -r -s. */
9908 bfd_set_error (bfd_error_invalid_operation);
9909 return FALSE;
9910 }
9911
9912 /* This symbol was skipped earlier, but
9913 since it is needed by a reloc, we
9914 must output it now. */
9915 shlink = symtab_hdr->sh_link;
9916 name = (bfd_elf_string_from_elf_section
9917 (input_bfd, shlink, sym.st_name));
9918 if (name == NULL)
9919 return FALSE;
9920
9921 osec = sec->output_section;
9922 sym.st_shndx =
9923 _bfd_elf_section_from_bfd_section (output_bfd,
9924 osec);
9925 if (sym.st_shndx == SHN_BAD)
9926 return FALSE;
9927
9928 sym.st_value += sec->output_offset;
9929 if (!flinfo->info->relocatable)
9930 {
9931 sym.st_value += osec->vma;
9932 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9933 {
9934 /* STT_TLS symbols are relative to PT_TLS
9935 segment base. */
9936 BFD_ASSERT (elf_hash_table (flinfo->info)
9937 ->tls_sec != NULL);
9938 sym.st_value -= (elf_hash_table (flinfo->info)
9939 ->tls_sec->vma);
9940 }
9941 }
9942
9943 indx = bfd_get_symcount (output_bfd);
9944 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9945 NULL);
9946 if (ret == 0)
9947 return FALSE;
9948 else if (ret == 1)
9949 flinfo->indices[r_symndx] = indx;
9950 else
9951 abort ();
9952 }
9953
9954 r_symndx = flinfo->indices[r_symndx];
9955 }
9956
9957 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9958 | (irela->r_info & r_type_mask));
9959 }
9960
9961 /* Swap out the relocs. */
9962 input_rel_hdr = esdi->rel.hdr;
9963 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9964 {
9965 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9966 input_rel_hdr,
9967 internal_relocs,
9968 rel_hash_list))
9969 return FALSE;
9970 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9971 * bed->s->int_rels_per_ext_rel);
9972 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9973 }
9974
9975 input_rela_hdr = esdi->rela.hdr;
9976 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9977 {
9978 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9979 input_rela_hdr,
9980 internal_relocs,
9981 rela_hash_list))
9982 return FALSE;
9983 }
9984 }
9985 }
9986
9987 /* Write out the modified section contents. */
9988 if (bed->elf_backend_write_section
9989 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9990 contents))
9991 {
9992 /* Section written out. */
9993 }
9994 else switch (o->sec_info_type)
9995 {
9996 case SEC_INFO_TYPE_STABS:
9997 if (! (_bfd_write_section_stabs
9998 (output_bfd,
9999 &elf_hash_table (flinfo->info)->stab_info,
10000 o, &elf_section_data (o)->sec_info, contents)))
10001 return FALSE;
10002 break;
10003 case SEC_INFO_TYPE_MERGE:
10004 if (! _bfd_write_merged_section (output_bfd, o,
10005 elf_section_data (o)->sec_info))
10006 return FALSE;
10007 break;
10008 case SEC_INFO_TYPE_EH_FRAME:
10009 {
10010 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10011 o, contents))
10012 return FALSE;
10013 }
10014 break;
10015 default:
10016 {
10017 /* FIXME: octets_per_byte. */
10018 if (! (o->flags & SEC_EXCLUDE))
10019 {
10020 file_ptr offset = (file_ptr) o->output_offset;
10021 bfd_size_type todo = o->size;
10022 if ((o->flags & SEC_ELF_REVERSE_COPY))
10023 {
10024 /* Reverse-copy input section to output. */
10025 do
10026 {
10027 todo -= address_size;
10028 if (! bfd_set_section_contents (output_bfd,
10029 o->output_section,
10030 contents + todo,
10031 offset,
10032 address_size))
10033 return FALSE;
10034 if (todo == 0)
10035 break;
10036 offset += address_size;
10037 }
10038 while (1);
10039 }
10040 else if (! bfd_set_section_contents (output_bfd,
10041 o->output_section,
10042 contents,
10043 offset, todo))
10044 return FALSE;
10045 }
10046 }
10047 break;
10048 }
10049 }
10050
10051 return TRUE;
10052 }
10053
10054 /* Generate a reloc when linking an ELF file. This is a reloc
10055 requested by the linker, and does not come from any input file. This
10056 is used to build constructor and destructor tables when linking
10057 with -Ur. */
10058
10059 static bfd_boolean
10060 elf_reloc_link_order (bfd *output_bfd,
10061 struct bfd_link_info *info,
10062 asection *output_section,
10063 struct bfd_link_order *link_order)
10064 {
10065 reloc_howto_type *howto;
10066 long indx;
10067 bfd_vma offset;
10068 bfd_vma addend;
10069 struct bfd_elf_section_reloc_data *reldata;
10070 struct elf_link_hash_entry **rel_hash_ptr;
10071 Elf_Internal_Shdr *rel_hdr;
10072 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10073 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10074 bfd_byte *erel;
10075 unsigned int i;
10076 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10077
10078 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10079 if (howto == NULL)
10080 {
10081 bfd_set_error (bfd_error_bad_value);
10082 return FALSE;
10083 }
10084
10085 addend = link_order->u.reloc.p->addend;
10086
10087 if (esdo->rel.hdr)
10088 reldata = &esdo->rel;
10089 else if (esdo->rela.hdr)
10090 reldata = &esdo->rela;
10091 else
10092 {
10093 reldata = NULL;
10094 BFD_ASSERT (0);
10095 }
10096
10097 /* Figure out the symbol index. */
10098 rel_hash_ptr = reldata->hashes + reldata->count;
10099 if (link_order->type == bfd_section_reloc_link_order)
10100 {
10101 indx = link_order->u.reloc.p->u.section->target_index;
10102 BFD_ASSERT (indx != 0);
10103 *rel_hash_ptr = NULL;
10104 }
10105 else
10106 {
10107 struct elf_link_hash_entry *h;
10108
10109 /* Treat a reloc against a defined symbol as though it were
10110 actually against the section. */
10111 h = ((struct elf_link_hash_entry *)
10112 bfd_wrapped_link_hash_lookup (output_bfd, info,
10113 link_order->u.reloc.p->u.name,
10114 FALSE, FALSE, TRUE));
10115 if (h != NULL
10116 && (h->root.type == bfd_link_hash_defined
10117 || h->root.type == bfd_link_hash_defweak))
10118 {
10119 asection *section;
10120
10121 section = h->root.u.def.section;
10122 indx = section->output_section->target_index;
10123 *rel_hash_ptr = NULL;
10124 /* It seems that we ought to add the symbol value to the
10125 addend here, but in practice it has already been added
10126 because it was passed to constructor_callback. */
10127 addend += section->output_section->vma + section->output_offset;
10128 }
10129 else if (h != NULL)
10130 {
10131 /* Setting the index to -2 tells elf_link_output_extsym that
10132 this symbol is used by a reloc. */
10133 h->indx = -2;
10134 *rel_hash_ptr = h;
10135 indx = 0;
10136 }
10137 else
10138 {
10139 if (! ((*info->callbacks->unattached_reloc)
10140 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10141 return FALSE;
10142 indx = 0;
10143 }
10144 }
10145
10146 /* If this is an inplace reloc, we must write the addend into the
10147 object file. */
10148 if (howto->partial_inplace && addend != 0)
10149 {
10150 bfd_size_type size;
10151 bfd_reloc_status_type rstat;
10152 bfd_byte *buf;
10153 bfd_boolean ok;
10154 const char *sym_name;
10155
10156 size = (bfd_size_type) bfd_get_reloc_size (howto);
10157 buf = (bfd_byte *) bfd_zmalloc (size);
10158 if (buf == NULL)
10159 return FALSE;
10160 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10161 switch (rstat)
10162 {
10163 case bfd_reloc_ok:
10164 break;
10165
10166 default:
10167 case bfd_reloc_outofrange:
10168 abort ();
10169
10170 case bfd_reloc_overflow:
10171 if (link_order->type == bfd_section_reloc_link_order)
10172 sym_name = bfd_section_name (output_bfd,
10173 link_order->u.reloc.p->u.section);
10174 else
10175 sym_name = link_order->u.reloc.p->u.name;
10176 if (! ((*info->callbacks->reloc_overflow)
10177 (info, NULL, sym_name, howto->name, addend, NULL,
10178 NULL, (bfd_vma) 0)))
10179 {
10180 free (buf);
10181 return FALSE;
10182 }
10183 break;
10184 }
10185 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10186 link_order->offset, size);
10187 free (buf);
10188 if (! ok)
10189 return FALSE;
10190 }
10191
10192 /* The address of a reloc is relative to the section in a
10193 relocatable file, and is a virtual address in an executable
10194 file. */
10195 offset = link_order->offset;
10196 if (! info->relocatable)
10197 offset += output_section->vma;
10198
10199 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10200 {
10201 irel[i].r_offset = offset;
10202 irel[i].r_info = 0;
10203 irel[i].r_addend = 0;
10204 }
10205 if (bed->s->arch_size == 32)
10206 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10207 else
10208 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10209
10210 rel_hdr = reldata->hdr;
10211 erel = rel_hdr->contents;
10212 if (rel_hdr->sh_type == SHT_REL)
10213 {
10214 erel += reldata->count * bed->s->sizeof_rel;
10215 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10216 }
10217 else
10218 {
10219 irel[0].r_addend = addend;
10220 erel += reldata->count * bed->s->sizeof_rela;
10221 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10222 }
10223
10224 ++reldata->count;
10225
10226 return TRUE;
10227 }
10228
10229
10230 /* Get the output vma of the section pointed to by the sh_link field. */
10231
10232 static bfd_vma
10233 elf_get_linked_section_vma (struct bfd_link_order *p)
10234 {
10235 Elf_Internal_Shdr **elf_shdrp;
10236 asection *s;
10237 int elfsec;
10238
10239 s = p->u.indirect.section;
10240 elf_shdrp = elf_elfsections (s->owner);
10241 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10242 elfsec = elf_shdrp[elfsec]->sh_link;
10243 /* PR 290:
10244 The Intel C compiler generates SHT_IA_64_UNWIND with
10245 SHF_LINK_ORDER. But it doesn't set the sh_link or
10246 sh_info fields. Hence we could get the situation
10247 where elfsec is 0. */
10248 if (elfsec == 0)
10249 {
10250 const struct elf_backend_data *bed
10251 = get_elf_backend_data (s->owner);
10252 if (bed->link_order_error_handler)
10253 bed->link_order_error_handler
10254 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10255 return 0;
10256 }
10257 else
10258 {
10259 s = elf_shdrp[elfsec]->bfd_section;
10260 return s->output_section->vma + s->output_offset;
10261 }
10262 }
10263
10264
10265 /* Compare two sections based on the locations of the sections they are
10266 linked to. Used by elf_fixup_link_order. */
10267
10268 static int
10269 compare_link_order (const void * a, const void * b)
10270 {
10271 bfd_vma apos;
10272 bfd_vma bpos;
10273
10274 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10275 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10276 if (apos < bpos)
10277 return -1;
10278 return apos > bpos;
10279 }
10280
10281
10282 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10283 order as their linked sections. Returns false if this could not be done
10284 because an output section includes both ordered and unordered
10285 sections. Ideally we'd do this in the linker proper. */
10286
10287 static bfd_boolean
10288 elf_fixup_link_order (bfd *abfd, asection *o)
10289 {
10290 int seen_linkorder;
10291 int seen_other;
10292 int n;
10293 struct bfd_link_order *p;
10294 bfd *sub;
10295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10296 unsigned elfsec;
10297 struct bfd_link_order **sections;
10298 asection *s, *other_sec, *linkorder_sec;
10299 bfd_vma offset;
10300
10301 other_sec = NULL;
10302 linkorder_sec = NULL;
10303 seen_other = 0;
10304 seen_linkorder = 0;
10305 for (p = o->map_head.link_order; p != NULL; p = p->next)
10306 {
10307 if (p->type == bfd_indirect_link_order)
10308 {
10309 s = p->u.indirect.section;
10310 sub = s->owner;
10311 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10312 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10313 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10314 && elfsec < elf_numsections (sub)
10315 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10316 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10317 {
10318 seen_linkorder++;
10319 linkorder_sec = s;
10320 }
10321 else
10322 {
10323 seen_other++;
10324 other_sec = s;
10325 }
10326 }
10327 else
10328 seen_other++;
10329
10330 if (seen_other && seen_linkorder)
10331 {
10332 if (other_sec && linkorder_sec)
10333 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10334 o, linkorder_sec,
10335 linkorder_sec->owner, other_sec,
10336 other_sec->owner);
10337 else
10338 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10339 o);
10340 bfd_set_error (bfd_error_bad_value);
10341 return FALSE;
10342 }
10343 }
10344
10345 if (!seen_linkorder)
10346 return TRUE;
10347
10348 sections = (struct bfd_link_order **)
10349 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10350 if (sections == NULL)
10351 return FALSE;
10352 seen_linkorder = 0;
10353
10354 for (p = o->map_head.link_order; p != NULL; p = p->next)
10355 {
10356 sections[seen_linkorder++] = p;
10357 }
10358 /* Sort the input sections in the order of their linked section. */
10359 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10360 compare_link_order);
10361
10362 /* Change the offsets of the sections. */
10363 offset = 0;
10364 for (n = 0; n < seen_linkorder; n++)
10365 {
10366 s = sections[n]->u.indirect.section;
10367 offset &= ~(bfd_vma) 0 << s->alignment_power;
10368 s->output_offset = offset;
10369 sections[n]->offset = offset;
10370 /* FIXME: octets_per_byte. */
10371 offset += sections[n]->size;
10372 }
10373
10374 free (sections);
10375 return TRUE;
10376 }
10377
10378 static void
10379 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10380 {
10381 asection *o;
10382
10383 if (flinfo->symstrtab != NULL)
10384 _bfd_stringtab_free (flinfo->symstrtab);
10385 if (flinfo->contents != NULL)
10386 free (flinfo->contents);
10387 if (flinfo->external_relocs != NULL)
10388 free (flinfo->external_relocs);
10389 if (flinfo->internal_relocs != NULL)
10390 free (flinfo->internal_relocs);
10391 if (flinfo->external_syms != NULL)
10392 free (flinfo->external_syms);
10393 if (flinfo->locsym_shndx != NULL)
10394 free (flinfo->locsym_shndx);
10395 if (flinfo->internal_syms != NULL)
10396 free (flinfo->internal_syms);
10397 if (flinfo->indices != NULL)
10398 free (flinfo->indices);
10399 if (flinfo->sections != NULL)
10400 free (flinfo->sections);
10401 if (flinfo->symbuf != NULL)
10402 free (flinfo->symbuf);
10403 if (flinfo->symshndxbuf != NULL)
10404 free (flinfo->symshndxbuf);
10405 for (o = obfd->sections; o != NULL; o = o->next)
10406 {
10407 struct bfd_elf_section_data *esdo = elf_section_data (o);
10408 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10409 free (esdo->rel.hashes);
10410 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10411 free (esdo->rela.hashes);
10412 }
10413 }
10414
10415 /* Do the final step of an ELF link. */
10416
10417 bfd_boolean
10418 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10419 {
10420 bfd_boolean dynamic;
10421 bfd_boolean emit_relocs;
10422 bfd *dynobj;
10423 struct elf_final_link_info flinfo;
10424 asection *o;
10425 struct bfd_link_order *p;
10426 bfd *sub;
10427 bfd_size_type max_contents_size;
10428 bfd_size_type max_external_reloc_size;
10429 bfd_size_type max_internal_reloc_count;
10430 bfd_size_type max_sym_count;
10431 bfd_size_type max_sym_shndx_count;
10432 file_ptr off;
10433 Elf_Internal_Sym elfsym;
10434 unsigned int i;
10435 Elf_Internal_Shdr *symtab_hdr;
10436 Elf_Internal_Shdr *symtab_shndx_hdr;
10437 Elf_Internal_Shdr *symstrtab_hdr;
10438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10439 struct elf_outext_info eoinfo;
10440 bfd_boolean merged;
10441 size_t relativecount = 0;
10442 asection *reldyn = 0;
10443 bfd_size_type amt;
10444 asection *attr_section = NULL;
10445 bfd_vma attr_size = 0;
10446 const char *std_attrs_section;
10447
10448 if (! is_elf_hash_table (info->hash))
10449 return FALSE;
10450
10451 if (info->shared)
10452 abfd->flags |= DYNAMIC;
10453
10454 dynamic = elf_hash_table (info)->dynamic_sections_created;
10455 dynobj = elf_hash_table (info)->dynobj;
10456
10457 emit_relocs = (info->relocatable
10458 || info->emitrelocations);
10459
10460 flinfo.info = info;
10461 flinfo.output_bfd = abfd;
10462 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10463 if (flinfo.symstrtab == NULL)
10464 return FALSE;
10465
10466 if (! dynamic)
10467 {
10468 flinfo.dynsym_sec = NULL;
10469 flinfo.hash_sec = NULL;
10470 flinfo.symver_sec = NULL;
10471 }
10472 else
10473 {
10474 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10475 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10476 /* Note that dynsym_sec can be NULL (on VMS). */
10477 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10478 /* Note that it is OK if symver_sec is NULL. */
10479 }
10480
10481 flinfo.contents = NULL;
10482 flinfo.external_relocs = NULL;
10483 flinfo.internal_relocs = NULL;
10484 flinfo.external_syms = NULL;
10485 flinfo.locsym_shndx = NULL;
10486 flinfo.internal_syms = NULL;
10487 flinfo.indices = NULL;
10488 flinfo.sections = NULL;
10489 flinfo.symbuf = NULL;
10490 flinfo.symshndxbuf = NULL;
10491 flinfo.symbuf_count = 0;
10492 flinfo.shndxbuf_size = 0;
10493 flinfo.filesym_count = 0;
10494
10495 /* The object attributes have been merged. Remove the input
10496 sections from the link, and set the contents of the output
10497 secton. */
10498 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10499 for (o = abfd->sections; o != NULL; o = o->next)
10500 {
10501 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10502 || strcmp (o->name, ".gnu.attributes") == 0)
10503 {
10504 for (p = o->map_head.link_order; p != NULL; p = p->next)
10505 {
10506 asection *input_section;
10507
10508 if (p->type != bfd_indirect_link_order)
10509 continue;
10510 input_section = p->u.indirect.section;
10511 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10512 elf_link_input_bfd ignores this section. */
10513 input_section->flags &= ~SEC_HAS_CONTENTS;
10514 }
10515
10516 attr_size = bfd_elf_obj_attr_size (abfd);
10517 if (attr_size)
10518 {
10519 bfd_set_section_size (abfd, o, attr_size);
10520 attr_section = o;
10521 /* Skip this section later on. */
10522 o->map_head.link_order = NULL;
10523 }
10524 else
10525 o->flags |= SEC_EXCLUDE;
10526 }
10527 }
10528
10529 /* Count up the number of relocations we will output for each output
10530 section, so that we know the sizes of the reloc sections. We
10531 also figure out some maximum sizes. */
10532 max_contents_size = 0;
10533 max_external_reloc_size = 0;
10534 max_internal_reloc_count = 0;
10535 max_sym_count = 0;
10536 max_sym_shndx_count = 0;
10537 merged = FALSE;
10538 for (o = abfd->sections; o != NULL; o = o->next)
10539 {
10540 struct bfd_elf_section_data *esdo = elf_section_data (o);
10541 o->reloc_count = 0;
10542
10543 for (p = o->map_head.link_order; p != NULL; p = p->next)
10544 {
10545 unsigned int reloc_count = 0;
10546 struct bfd_elf_section_data *esdi = NULL;
10547
10548 if (p->type == bfd_section_reloc_link_order
10549 || p->type == bfd_symbol_reloc_link_order)
10550 reloc_count = 1;
10551 else if (p->type == bfd_indirect_link_order)
10552 {
10553 asection *sec;
10554
10555 sec = p->u.indirect.section;
10556 esdi = elf_section_data (sec);
10557
10558 /* Mark all sections which are to be included in the
10559 link. This will normally be every section. We need
10560 to do this so that we can identify any sections which
10561 the linker has decided to not include. */
10562 sec->linker_mark = TRUE;
10563
10564 if (sec->flags & SEC_MERGE)
10565 merged = TRUE;
10566
10567 if (esdo->this_hdr.sh_type == SHT_REL
10568 || esdo->this_hdr.sh_type == SHT_RELA)
10569 /* Some backends use reloc_count in relocation sections
10570 to count particular types of relocs. Of course,
10571 reloc sections themselves can't have relocations. */
10572 reloc_count = 0;
10573 else if (info->relocatable || info->emitrelocations)
10574 reloc_count = sec->reloc_count;
10575 else if (bed->elf_backend_count_relocs)
10576 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10577
10578 if (sec->rawsize > max_contents_size)
10579 max_contents_size = sec->rawsize;
10580 if (sec->size > max_contents_size)
10581 max_contents_size = sec->size;
10582
10583 /* We are interested in just local symbols, not all
10584 symbols. */
10585 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10586 && (sec->owner->flags & DYNAMIC) == 0)
10587 {
10588 size_t sym_count;
10589
10590 if (elf_bad_symtab (sec->owner))
10591 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10592 / bed->s->sizeof_sym);
10593 else
10594 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10595
10596 if (sym_count > max_sym_count)
10597 max_sym_count = sym_count;
10598
10599 if (sym_count > max_sym_shndx_count
10600 && elf_symtab_shndx (sec->owner) != 0)
10601 max_sym_shndx_count = sym_count;
10602
10603 if ((sec->flags & SEC_RELOC) != 0)
10604 {
10605 size_t ext_size = 0;
10606
10607 if (esdi->rel.hdr != NULL)
10608 ext_size = esdi->rel.hdr->sh_size;
10609 if (esdi->rela.hdr != NULL)
10610 ext_size += esdi->rela.hdr->sh_size;
10611
10612 if (ext_size > max_external_reloc_size)
10613 max_external_reloc_size = ext_size;
10614 if (sec->reloc_count > max_internal_reloc_count)
10615 max_internal_reloc_count = sec->reloc_count;
10616 }
10617 }
10618 }
10619
10620 if (reloc_count == 0)
10621 continue;
10622
10623 o->reloc_count += reloc_count;
10624
10625 if (p->type == bfd_indirect_link_order
10626 && (info->relocatable || info->emitrelocations))
10627 {
10628 if (esdi->rel.hdr)
10629 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10630 if (esdi->rela.hdr)
10631 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10632 }
10633 else
10634 {
10635 if (o->use_rela_p)
10636 esdo->rela.count += reloc_count;
10637 else
10638 esdo->rel.count += reloc_count;
10639 }
10640 }
10641
10642 if (o->reloc_count > 0)
10643 o->flags |= SEC_RELOC;
10644 else
10645 {
10646 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10647 set it (this is probably a bug) and if it is set
10648 assign_section_numbers will create a reloc section. */
10649 o->flags &=~ SEC_RELOC;
10650 }
10651
10652 /* If the SEC_ALLOC flag is not set, force the section VMA to
10653 zero. This is done in elf_fake_sections as well, but forcing
10654 the VMA to 0 here will ensure that relocs against these
10655 sections are handled correctly. */
10656 if ((o->flags & SEC_ALLOC) == 0
10657 && ! o->user_set_vma)
10658 o->vma = 0;
10659 }
10660
10661 if (! info->relocatable && merged)
10662 elf_link_hash_traverse (elf_hash_table (info),
10663 _bfd_elf_link_sec_merge_syms, abfd);
10664
10665 /* Figure out the file positions for everything but the symbol table
10666 and the relocs. We set symcount to force assign_section_numbers
10667 to create a symbol table. */
10668 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10669 BFD_ASSERT (! abfd->output_has_begun);
10670 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10671 goto error_return;
10672
10673 /* Set sizes, and assign file positions for reloc sections. */
10674 for (o = abfd->sections; o != NULL; o = o->next)
10675 {
10676 struct bfd_elf_section_data *esdo = elf_section_data (o);
10677 if ((o->flags & SEC_RELOC) != 0)
10678 {
10679 if (esdo->rel.hdr
10680 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10681 goto error_return;
10682
10683 if (esdo->rela.hdr
10684 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10685 goto error_return;
10686 }
10687
10688 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10689 to count upwards while actually outputting the relocations. */
10690 esdo->rel.count = 0;
10691 esdo->rela.count = 0;
10692 }
10693
10694 /* We have now assigned file positions for all the sections except
10695 .symtab, .strtab, and non-loaded reloc sections. We start the
10696 .symtab section at the current file position, and write directly
10697 to it. We build the .strtab section in memory. */
10698 bfd_get_symcount (abfd) = 0;
10699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10700 /* sh_name is set in prep_headers. */
10701 symtab_hdr->sh_type = SHT_SYMTAB;
10702 /* sh_flags, sh_addr and sh_size all start off zero. */
10703 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10704 /* sh_link is set in assign_section_numbers. */
10705 /* sh_info is set below. */
10706 /* sh_offset is set just below. */
10707 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10708
10709 off = elf_next_file_pos (abfd);
10710 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10711
10712 /* Note that at this point elf_next_file_pos (abfd) is
10713 incorrect. We do not yet know the size of the .symtab section.
10714 We correct next_file_pos below, after we do know the size. */
10715
10716 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10717 continuously seeking to the right position in the file. */
10718 if (! info->keep_memory || max_sym_count < 20)
10719 flinfo.symbuf_size = 20;
10720 else
10721 flinfo.symbuf_size = max_sym_count;
10722 amt = flinfo.symbuf_size;
10723 amt *= bed->s->sizeof_sym;
10724 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10725 if (flinfo.symbuf == NULL)
10726 goto error_return;
10727 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10728 {
10729 /* Wild guess at number of output symbols. realloc'd as needed. */
10730 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10731 flinfo.shndxbuf_size = amt;
10732 amt *= sizeof (Elf_External_Sym_Shndx);
10733 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10734 if (flinfo.symshndxbuf == NULL)
10735 goto error_return;
10736 }
10737
10738 /* Start writing out the symbol table. The first symbol is always a
10739 dummy symbol. */
10740 if (info->strip != strip_all
10741 || emit_relocs)
10742 {
10743 elfsym.st_value = 0;
10744 elfsym.st_size = 0;
10745 elfsym.st_info = 0;
10746 elfsym.st_other = 0;
10747 elfsym.st_shndx = SHN_UNDEF;
10748 elfsym.st_target_internal = 0;
10749 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10750 NULL) != 1)
10751 goto error_return;
10752 }
10753
10754 /* Output a symbol for each section. We output these even if we are
10755 discarding local symbols, since they are used for relocs. These
10756 symbols have no names. We store the index of each one in the
10757 index field of the section, so that we can find it again when
10758 outputting relocs. */
10759 if (info->strip != strip_all
10760 || emit_relocs)
10761 {
10762 elfsym.st_size = 0;
10763 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10764 elfsym.st_other = 0;
10765 elfsym.st_value = 0;
10766 elfsym.st_target_internal = 0;
10767 for (i = 1; i < elf_numsections (abfd); i++)
10768 {
10769 o = bfd_section_from_elf_index (abfd, i);
10770 if (o != NULL)
10771 {
10772 o->target_index = bfd_get_symcount (abfd);
10773 elfsym.st_shndx = i;
10774 if (!info->relocatable)
10775 elfsym.st_value = o->vma;
10776 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10777 goto error_return;
10778 }
10779 }
10780 }
10781
10782 /* Allocate some memory to hold information read in from the input
10783 files. */
10784 if (max_contents_size != 0)
10785 {
10786 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10787 if (flinfo.contents == NULL)
10788 goto error_return;
10789 }
10790
10791 if (max_external_reloc_size != 0)
10792 {
10793 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10794 if (flinfo.external_relocs == NULL)
10795 goto error_return;
10796 }
10797
10798 if (max_internal_reloc_count != 0)
10799 {
10800 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10801 amt *= sizeof (Elf_Internal_Rela);
10802 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10803 if (flinfo.internal_relocs == NULL)
10804 goto error_return;
10805 }
10806
10807 if (max_sym_count != 0)
10808 {
10809 amt = max_sym_count * bed->s->sizeof_sym;
10810 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10811 if (flinfo.external_syms == NULL)
10812 goto error_return;
10813
10814 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10815 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10816 if (flinfo.internal_syms == NULL)
10817 goto error_return;
10818
10819 amt = max_sym_count * sizeof (long);
10820 flinfo.indices = (long int *) bfd_malloc (amt);
10821 if (flinfo.indices == NULL)
10822 goto error_return;
10823
10824 amt = max_sym_count * sizeof (asection *);
10825 flinfo.sections = (asection **) bfd_malloc (amt);
10826 if (flinfo.sections == NULL)
10827 goto error_return;
10828 }
10829
10830 if (max_sym_shndx_count != 0)
10831 {
10832 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10833 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10834 if (flinfo.locsym_shndx == NULL)
10835 goto error_return;
10836 }
10837
10838 if (elf_hash_table (info)->tls_sec)
10839 {
10840 bfd_vma base, end = 0;
10841 asection *sec;
10842
10843 for (sec = elf_hash_table (info)->tls_sec;
10844 sec && (sec->flags & SEC_THREAD_LOCAL);
10845 sec = sec->next)
10846 {
10847 bfd_size_type size = sec->size;
10848
10849 if (size == 0
10850 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10851 {
10852 struct bfd_link_order *ord = sec->map_tail.link_order;
10853
10854 if (ord != NULL)
10855 size = ord->offset + ord->size;
10856 }
10857 end = sec->vma + size;
10858 }
10859 base = elf_hash_table (info)->tls_sec->vma;
10860 /* Only align end of TLS section if static TLS doesn't have special
10861 alignment requirements. */
10862 if (bed->static_tls_alignment == 1)
10863 end = align_power (end,
10864 elf_hash_table (info)->tls_sec->alignment_power);
10865 elf_hash_table (info)->tls_size = end - base;
10866 }
10867
10868 /* Reorder SHF_LINK_ORDER sections. */
10869 for (o = abfd->sections; o != NULL; o = o->next)
10870 {
10871 if (!elf_fixup_link_order (abfd, o))
10872 return FALSE;
10873 }
10874
10875 /* Since ELF permits relocations to be against local symbols, we
10876 must have the local symbols available when we do the relocations.
10877 Since we would rather only read the local symbols once, and we
10878 would rather not keep them in memory, we handle all the
10879 relocations for a single input file at the same time.
10880
10881 Unfortunately, there is no way to know the total number of local
10882 symbols until we have seen all of them, and the local symbol
10883 indices precede the global symbol indices. This means that when
10884 we are generating relocatable output, and we see a reloc against
10885 a global symbol, we can not know the symbol index until we have
10886 finished examining all the local symbols to see which ones we are
10887 going to output. To deal with this, we keep the relocations in
10888 memory, and don't output them until the end of the link. This is
10889 an unfortunate waste of memory, but I don't see a good way around
10890 it. Fortunately, it only happens when performing a relocatable
10891 link, which is not the common case. FIXME: If keep_memory is set
10892 we could write the relocs out and then read them again; I don't
10893 know how bad the memory loss will be. */
10894
10895 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10896 sub->output_has_begun = FALSE;
10897 for (o = abfd->sections; o != NULL; o = o->next)
10898 {
10899 for (p = o->map_head.link_order; p != NULL; p = p->next)
10900 {
10901 if (p->type == bfd_indirect_link_order
10902 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10903 == bfd_target_elf_flavour)
10904 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10905 {
10906 if (! sub->output_has_begun)
10907 {
10908 if (! elf_link_input_bfd (&flinfo, sub))
10909 goto error_return;
10910 sub->output_has_begun = TRUE;
10911 }
10912 }
10913 else if (p->type == bfd_section_reloc_link_order
10914 || p->type == bfd_symbol_reloc_link_order)
10915 {
10916 if (! elf_reloc_link_order (abfd, info, o, p))
10917 goto error_return;
10918 }
10919 else
10920 {
10921 if (! _bfd_default_link_order (abfd, info, o, p))
10922 {
10923 if (p->type == bfd_indirect_link_order
10924 && (bfd_get_flavour (sub)
10925 == bfd_target_elf_flavour)
10926 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10927 != bed->s->elfclass))
10928 {
10929 const char *iclass, *oclass;
10930
10931 if (bed->s->elfclass == ELFCLASS64)
10932 {
10933 iclass = "ELFCLASS32";
10934 oclass = "ELFCLASS64";
10935 }
10936 else
10937 {
10938 iclass = "ELFCLASS64";
10939 oclass = "ELFCLASS32";
10940 }
10941
10942 bfd_set_error (bfd_error_wrong_format);
10943 (*_bfd_error_handler)
10944 (_("%B: file class %s incompatible with %s"),
10945 sub, iclass, oclass);
10946 }
10947
10948 goto error_return;
10949 }
10950 }
10951 }
10952 }
10953
10954 /* Free symbol buffer if needed. */
10955 if (!info->reduce_memory_overheads)
10956 {
10957 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10958 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10959 && elf_tdata (sub)->symbuf)
10960 {
10961 free (elf_tdata (sub)->symbuf);
10962 elf_tdata (sub)->symbuf = NULL;
10963 }
10964 }
10965
10966 /* Output any global symbols that got converted to local in a
10967 version script or due to symbol visibility. We do this in a
10968 separate step since ELF requires all local symbols to appear
10969 prior to any global symbols. FIXME: We should only do this if
10970 some global symbols were, in fact, converted to become local.
10971 FIXME: Will this work correctly with the Irix 5 linker? */
10972 eoinfo.failed = FALSE;
10973 eoinfo.flinfo = &flinfo;
10974 eoinfo.localsyms = TRUE;
10975 eoinfo.need_second_pass = FALSE;
10976 eoinfo.second_pass = FALSE;
10977 eoinfo.file_sym_done = FALSE;
10978 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10979 if (eoinfo.failed)
10980 return FALSE;
10981
10982 if (eoinfo.need_second_pass)
10983 {
10984 eoinfo.second_pass = TRUE;
10985 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10986 if (eoinfo.failed)
10987 return FALSE;
10988 }
10989
10990 /* If backend needs to output some local symbols not present in the hash
10991 table, do it now. */
10992 if (bed->elf_backend_output_arch_local_syms)
10993 {
10994 typedef int (*out_sym_func)
10995 (void *, const char *, Elf_Internal_Sym *, asection *,
10996 struct elf_link_hash_entry *);
10997
10998 if (! ((*bed->elf_backend_output_arch_local_syms)
10999 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11000 return FALSE;
11001 }
11002
11003 /* That wrote out all the local symbols. Finish up the symbol table
11004 with the global symbols. Even if we want to strip everything we
11005 can, we still need to deal with those global symbols that got
11006 converted to local in a version script. */
11007
11008 /* The sh_info field records the index of the first non local symbol. */
11009 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11010
11011 if (dynamic
11012 && flinfo.dynsym_sec != NULL
11013 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11014 {
11015 Elf_Internal_Sym sym;
11016 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11017 long last_local = 0;
11018
11019 /* Write out the section symbols for the output sections. */
11020 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11021 {
11022 asection *s;
11023
11024 sym.st_size = 0;
11025 sym.st_name = 0;
11026 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11027 sym.st_other = 0;
11028 sym.st_target_internal = 0;
11029
11030 for (s = abfd->sections; s != NULL; s = s->next)
11031 {
11032 int indx;
11033 bfd_byte *dest;
11034 long dynindx;
11035
11036 dynindx = elf_section_data (s)->dynindx;
11037 if (dynindx <= 0)
11038 continue;
11039 indx = elf_section_data (s)->this_idx;
11040 BFD_ASSERT (indx > 0);
11041 sym.st_shndx = indx;
11042 if (! check_dynsym (abfd, &sym))
11043 return FALSE;
11044 sym.st_value = s->vma;
11045 dest = dynsym + dynindx * bed->s->sizeof_sym;
11046 if (last_local < dynindx)
11047 last_local = dynindx;
11048 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11049 }
11050 }
11051
11052 /* Write out the local dynsyms. */
11053 if (elf_hash_table (info)->dynlocal)
11054 {
11055 struct elf_link_local_dynamic_entry *e;
11056 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11057 {
11058 asection *s;
11059 bfd_byte *dest;
11060
11061 /* Copy the internal symbol and turn off visibility.
11062 Note that we saved a word of storage and overwrote
11063 the original st_name with the dynstr_index. */
11064 sym = e->isym;
11065 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11066
11067 s = bfd_section_from_elf_index (e->input_bfd,
11068 e->isym.st_shndx);
11069 if (s != NULL)
11070 {
11071 sym.st_shndx =
11072 elf_section_data (s->output_section)->this_idx;
11073 if (! check_dynsym (abfd, &sym))
11074 return FALSE;
11075 sym.st_value = (s->output_section->vma
11076 + s->output_offset
11077 + e->isym.st_value);
11078 }
11079
11080 if (last_local < e->dynindx)
11081 last_local = e->dynindx;
11082
11083 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11084 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11085 }
11086 }
11087
11088 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11089 last_local + 1;
11090 }
11091
11092 /* We get the global symbols from the hash table. */
11093 eoinfo.failed = FALSE;
11094 eoinfo.localsyms = FALSE;
11095 eoinfo.flinfo = &flinfo;
11096 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11097 if (eoinfo.failed)
11098 return FALSE;
11099
11100 /* If backend needs to output some symbols not present in the hash
11101 table, do it now. */
11102 if (bed->elf_backend_output_arch_syms)
11103 {
11104 typedef int (*out_sym_func)
11105 (void *, const char *, Elf_Internal_Sym *, asection *,
11106 struct elf_link_hash_entry *);
11107
11108 if (! ((*bed->elf_backend_output_arch_syms)
11109 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11110 return FALSE;
11111 }
11112
11113 /* Flush all symbols to the file. */
11114 if (! elf_link_flush_output_syms (&flinfo, bed))
11115 return FALSE;
11116
11117 /* Now we know the size of the symtab section. */
11118 off += symtab_hdr->sh_size;
11119
11120 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11121 if (symtab_shndx_hdr->sh_name != 0)
11122 {
11123 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11124 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11125 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11126 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11127 symtab_shndx_hdr->sh_size = amt;
11128
11129 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11130 off, TRUE);
11131
11132 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11133 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11134 return FALSE;
11135 }
11136
11137
11138 /* Finish up and write out the symbol string table (.strtab)
11139 section. */
11140 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11141 /* sh_name was set in prep_headers. */
11142 symstrtab_hdr->sh_type = SHT_STRTAB;
11143 symstrtab_hdr->sh_flags = 0;
11144 symstrtab_hdr->sh_addr = 0;
11145 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11146 symstrtab_hdr->sh_entsize = 0;
11147 symstrtab_hdr->sh_link = 0;
11148 symstrtab_hdr->sh_info = 0;
11149 /* sh_offset is set just below. */
11150 symstrtab_hdr->sh_addralign = 1;
11151
11152 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11153 elf_next_file_pos (abfd) = off;
11154
11155 if (bfd_get_symcount (abfd) > 0)
11156 {
11157 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11158 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11159 return FALSE;
11160 }
11161
11162 /* Adjust the relocs to have the correct symbol indices. */
11163 for (o = abfd->sections; o != NULL; o = o->next)
11164 {
11165 struct bfd_elf_section_data *esdo = elf_section_data (o);
11166 if ((o->flags & SEC_RELOC) == 0)
11167 continue;
11168
11169 if (esdo->rel.hdr != NULL)
11170 elf_link_adjust_relocs (abfd, &esdo->rel);
11171 if (esdo->rela.hdr != NULL)
11172 elf_link_adjust_relocs (abfd, &esdo->rela);
11173
11174 /* Set the reloc_count field to 0 to prevent write_relocs from
11175 trying to swap the relocs out itself. */
11176 o->reloc_count = 0;
11177 }
11178
11179 if (dynamic && info->combreloc && dynobj != NULL)
11180 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11181
11182 /* If we are linking against a dynamic object, or generating a
11183 shared library, finish up the dynamic linking information. */
11184 if (dynamic)
11185 {
11186 bfd_byte *dyncon, *dynconend;
11187
11188 /* Fix up .dynamic entries. */
11189 o = bfd_get_linker_section (dynobj, ".dynamic");
11190 BFD_ASSERT (o != NULL);
11191
11192 dyncon = o->contents;
11193 dynconend = o->contents + o->size;
11194 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11195 {
11196 Elf_Internal_Dyn dyn;
11197 const char *name;
11198 unsigned int type;
11199
11200 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11201
11202 switch (dyn.d_tag)
11203 {
11204 default:
11205 continue;
11206 case DT_NULL:
11207 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11208 {
11209 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11210 {
11211 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11212 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11213 default: continue;
11214 }
11215 dyn.d_un.d_val = relativecount;
11216 relativecount = 0;
11217 break;
11218 }
11219 continue;
11220
11221 case DT_INIT:
11222 name = info->init_function;
11223 goto get_sym;
11224 case DT_FINI:
11225 name = info->fini_function;
11226 get_sym:
11227 {
11228 struct elf_link_hash_entry *h;
11229
11230 h = elf_link_hash_lookup (elf_hash_table (info), name,
11231 FALSE, FALSE, TRUE);
11232 if (h != NULL
11233 && (h->root.type == bfd_link_hash_defined
11234 || h->root.type == bfd_link_hash_defweak))
11235 {
11236 dyn.d_un.d_ptr = h->root.u.def.value;
11237 o = h->root.u.def.section;
11238 if (o->output_section != NULL)
11239 dyn.d_un.d_ptr += (o->output_section->vma
11240 + o->output_offset);
11241 else
11242 {
11243 /* The symbol is imported from another shared
11244 library and does not apply to this one. */
11245 dyn.d_un.d_ptr = 0;
11246 }
11247 break;
11248 }
11249 }
11250 continue;
11251
11252 case DT_PREINIT_ARRAYSZ:
11253 name = ".preinit_array";
11254 goto get_size;
11255 case DT_INIT_ARRAYSZ:
11256 name = ".init_array";
11257 goto get_size;
11258 case DT_FINI_ARRAYSZ:
11259 name = ".fini_array";
11260 get_size:
11261 o = bfd_get_section_by_name (abfd, name);
11262 if (o == NULL)
11263 {
11264 (*_bfd_error_handler)
11265 (_("%B: could not find output section %s"), abfd, name);
11266 goto error_return;
11267 }
11268 if (o->size == 0)
11269 (*_bfd_error_handler)
11270 (_("warning: %s section has zero size"), name);
11271 dyn.d_un.d_val = o->size;
11272 break;
11273
11274 case DT_PREINIT_ARRAY:
11275 name = ".preinit_array";
11276 goto get_vma;
11277 case DT_INIT_ARRAY:
11278 name = ".init_array";
11279 goto get_vma;
11280 case DT_FINI_ARRAY:
11281 name = ".fini_array";
11282 goto get_vma;
11283
11284 case DT_HASH:
11285 name = ".hash";
11286 goto get_vma;
11287 case DT_GNU_HASH:
11288 name = ".gnu.hash";
11289 goto get_vma;
11290 case DT_STRTAB:
11291 name = ".dynstr";
11292 goto get_vma;
11293 case DT_SYMTAB:
11294 name = ".dynsym";
11295 goto get_vma;
11296 case DT_VERDEF:
11297 name = ".gnu.version_d";
11298 goto get_vma;
11299 case DT_VERNEED:
11300 name = ".gnu.version_r";
11301 goto get_vma;
11302 case DT_VERSYM:
11303 name = ".gnu.version";
11304 get_vma:
11305 o = bfd_get_section_by_name (abfd, name);
11306 if (o == NULL)
11307 {
11308 (*_bfd_error_handler)
11309 (_("%B: could not find output section %s"), abfd, name);
11310 goto error_return;
11311 }
11312 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11313 {
11314 (*_bfd_error_handler)
11315 (_("warning: section '%s' is being made into a note"), name);
11316 bfd_set_error (bfd_error_nonrepresentable_section);
11317 goto error_return;
11318 }
11319 dyn.d_un.d_ptr = o->vma;
11320 break;
11321
11322 case DT_REL:
11323 case DT_RELA:
11324 case DT_RELSZ:
11325 case DT_RELASZ:
11326 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11327 type = SHT_REL;
11328 else
11329 type = SHT_RELA;
11330 dyn.d_un.d_val = 0;
11331 dyn.d_un.d_ptr = 0;
11332 for (i = 1; i < elf_numsections (abfd); i++)
11333 {
11334 Elf_Internal_Shdr *hdr;
11335
11336 hdr = elf_elfsections (abfd)[i];
11337 if (hdr->sh_type == type
11338 && (hdr->sh_flags & SHF_ALLOC) != 0)
11339 {
11340 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11341 dyn.d_un.d_val += hdr->sh_size;
11342 else
11343 {
11344 if (dyn.d_un.d_ptr == 0
11345 || hdr->sh_addr < dyn.d_un.d_ptr)
11346 dyn.d_un.d_ptr = hdr->sh_addr;
11347 }
11348 }
11349 }
11350 break;
11351 }
11352 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11353 }
11354 }
11355
11356 /* If we have created any dynamic sections, then output them. */
11357 if (dynobj != NULL)
11358 {
11359 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11360 goto error_return;
11361
11362 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11363 if (((info->warn_shared_textrel && info->shared)
11364 || info->error_textrel)
11365 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11366 {
11367 bfd_byte *dyncon, *dynconend;
11368
11369 dyncon = o->contents;
11370 dynconend = o->contents + o->size;
11371 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11372 {
11373 Elf_Internal_Dyn dyn;
11374
11375 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11376
11377 if (dyn.d_tag == DT_TEXTREL)
11378 {
11379 if (info->error_textrel)
11380 info->callbacks->einfo
11381 (_("%P%X: read-only segment has dynamic relocations.\n"));
11382 else
11383 info->callbacks->einfo
11384 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11385 break;
11386 }
11387 }
11388 }
11389
11390 for (o = dynobj->sections; o != NULL; o = o->next)
11391 {
11392 if ((o->flags & SEC_HAS_CONTENTS) == 0
11393 || o->size == 0
11394 || o->output_section == bfd_abs_section_ptr)
11395 continue;
11396 if ((o->flags & SEC_LINKER_CREATED) == 0)
11397 {
11398 /* At this point, we are only interested in sections
11399 created by _bfd_elf_link_create_dynamic_sections. */
11400 continue;
11401 }
11402 if (elf_hash_table (info)->stab_info.stabstr == o)
11403 continue;
11404 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11405 continue;
11406 if (strcmp (o->name, ".dynstr") != 0)
11407 {
11408 /* FIXME: octets_per_byte. */
11409 if (! bfd_set_section_contents (abfd, o->output_section,
11410 o->contents,
11411 (file_ptr) o->output_offset,
11412 o->size))
11413 goto error_return;
11414 }
11415 else
11416 {
11417 /* The contents of the .dynstr section are actually in a
11418 stringtab. */
11419 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11420 if (bfd_seek (abfd, off, SEEK_SET) != 0
11421 || ! _bfd_elf_strtab_emit (abfd,
11422 elf_hash_table (info)->dynstr))
11423 goto error_return;
11424 }
11425 }
11426 }
11427
11428 if (info->relocatable)
11429 {
11430 bfd_boolean failed = FALSE;
11431
11432 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11433 if (failed)
11434 goto error_return;
11435 }
11436
11437 /* If we have optimized stabs strings, output them. */
11438 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11439 {
11440 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11441 goto error_return;
11442 }
11443
11444 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11445 goto error_return;
11446
11447 elf_final_link_free (abfd, &flinfo);
11448
11449 elf_linker (abfd) = TRUE;
11450
11451 if (attr_section)
11452 {
11453 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11454 if (contents == NULL)
11455 return FALSE; /* Bail out and fail. */
11456 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11457 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11458 free (contents);
11459 }
11460
11461 return TRUE;
11462
11463 error_return:
11464 elf_final_link_free (abfd, &flinfo);
11465 return FALSE;
11466 }
11467 \f
11468 /* Initialize COOKIE for input bfd ABFD. */
11469
11470 static bfd_boolean
11471 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11472 struct bfd_link_info *info, bfd *abfd)
11473 {
11474 Elf_Internal_Shdr *symtab_hdr;
11475 const struct elf_backend_data *bed;
11476
11477 bed = get_elf_backend_data (abfd);
11478 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11479
11480 cookie->abfd = abfd;
11481 cookie->sym_hashes = elf_sym_hashes (abfd);
11482 cookie->bad_symtab = elf_bad_symtab (abfd);
11483 if (cookie->bad_symtab)
11484 {
11485 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11486 cookie->extsymoff = 0;
11487 }
11488 else
11489 {
11490 cookie->locsymcount = symtab_hdr->sh_info;
11491 cookie->extsymoff = symtab_hdr->sh_info;
11492 }
11493
11494 if (bed->s->arch_size == 32)
11495 cookie->r_sym_shift = 8;
11496 else
11497 cookie->r_sym_shift = 32;
11498
11499 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11500 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11501 {
11502 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11503 cookie->locsymcount, 0,
11504 NULL, NULL, NULL);
11505 if (cookie->locsyms == NULL)
11506 {
11507 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11508 return FALSE;
11509 }
11510 if (info->keep_memory)
11511 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11512 }
11513 return TRUE;
11514 }
11515
11516 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11517
11518 static void
11519 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11520 {
11521 Elf_Internal_Shdr *symtab_hdr;
11522
11523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11524 if (cookie->locsyms != NULL
11525 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11526 free (cookie->locsyms);
11527 }
11528
11529 /* Initialize the relocation information in COOKIE for input section SEC
11530 of input bfd ABFD. */
11531
11532 static bfd_boolean
11533 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11534 struct bfd_link_info *info, bfd *abfd,
11535 asection *sec)
11536 {
11537 const struct elf_backend_data *bed;
11538
11539 if (sec->reloc_count == 0)
11540 {
11541 cookie->rels = NULL;
11542 cookie->relend = NULL;
11543 }
11544 else
11545 {
11546 bed = get_elf_backend_data (abfd);
11547
11548 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11549 info->keep_memory);
11550 if (cookie->rels == NULL)
11551 return FALSE;
11552 cookie->rel = cookie->rels;
11553 cookie->relend = (cookie->rels
11554 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11555 }
11556 cookie->rel = cookie->rels;
11557 return TRUE;
11558 }
11559
11560 /* Free the memory allocated by init_reloc_cookie_rels,
11561 if appropriate. */
11562
11563 static void
11564 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11565 asection *sec)
11566 {
11567 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11568 free (cookie->rels);
11569 }
11570
11571 /* Initialize the whole of COOKIE for input section SEC. */
11572
11573 static bfd_boolean
11574 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11575 struct bfd_link_info *info,
11576 asection *sec)
11577 {
11578 if (!init_reloc_cookie (cookie, info, sec->owner))
11579 goto error1;
11580 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11581 goto error2;
11582 return TRUE;
11583
11584 error2:
11585 fini_reloc_cookie (cookie, sec->owner);
11586 error1:
11587 return FALSE;
11588 }
11589
11590 /* Free the memory allocated by init_reloc_cookie_for_section,
11591 if appropriate. */
11592
11593 static void
11594 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11595 asection *sec)
11596 {
11597 fini_reloc_cookie_rels (cookie, sec);
11598 fini_reloc_cookie (cookie, sec->owner);
11599 }
11600 \f
11601 /* Garbage collect unused sections. */
11602
11603 /* Default gc_mark_hook. */
11604
11605 asection *
11606 _bfd_elf_gc_mark_hook (asection *sec,
11607 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11608 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11609 struct elf_link_hash_entry *h,
11610 Elf_Internal_Sym *sym)
11611 {
11612 const char *sec_name;
11613
11614 if (h != NULL)
11615 {
11616 switch (h->root.type)
11617 {
11618 case bfd_link_hash_defined:
11619 case bfd_link_hash_defweak:
11620 return h->root.u.def.section;
11621
11622 case bfd_link_hash_common:
11623 return h->root.u.c.p->section;
11624
11625 case bfd_link_hash_undefined:
11626 case bfd_link_hash_undefweak:
11627 /* To work around a glibc bug, keep all XXX input sections
11628 when there is an as yet undefined reference to __start_XXX
11629 or __stop_XXX symbols. The linker will later define such
11630 symbols for orphan input sections that have a name
11631 representable as a C identifier. */
11632 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11633 sec_name = h->root.root.string + 8;
11634 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11635 sec_name = h->root.root.string + 7;
11636 else
11637 sec_name = NULL;
11638
11639 if (sec_name && *sec_name != '\0')
11640 {
11641 bfd *i;
11642
11643 for (i = info->input_bfds; i; i = i->link.next)
11644 {
11645 sec = bfd_get_section_by_name (i, sec_name);
11646 if (sec)
11647 sec->flags |= SEC_KEEP;
11648 }
11649 }
11650 break;
11651
11652 default:
11653 break;
11654 }
11655 }
11656 else
11657 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11658
11659 return NULL;
11660 }
11661
11662 /* COOKIE->rel describes a relocation against section SEC, which is
11663 a section we've decided to keep. Return the section that contains
11664 the relocation symbol, or NULL if no section contains it. */
11665
11666 asection *
11667 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11668 elf_gc_mark_hook_fn gc_mark_hook,
11669 struct elf_reloc_cookie *cookie)
11670 {
11671 unsigned long r_symndx;
11672 struct elf_link_hash_entry *h;
11673
11674 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11675 if (r_symndx == STN_UNDEF)
11676 return NULL;
11677
11678 if (r_symndx >= cookie->locsymcount
11679 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11680 {
11681 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11682 while (h->root.type == bfd_link_hash_indirect
11683 || h->root.type == bfd_link_hash_warning)
11684 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11685 h->mark = 1;
11686 /* If this symbol is weak and there is a non-weak definition, we
11687 keep the non-weak definition because many backends put
11688 dynamic reloc info on the non-weak definition for code
11689 handling copy relocs. */
11690 if (h->u.weakdef != NULL)
11691 h->u.weakdef->mark = 1;
11692 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11693 }
11694
11695 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11696 &cookie->locsyms[r_symndx]);
11697 }
11698
11699 /* COOKIE->rel describes a relocation against section SEC, which is
11700 a section we've decided to keep. Mark the section that contains
11701 the relocation symbol. */
11702
11703 bfd_boolean
11704 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11705 asection *sec,
11706 elf_gc_mark_hook_fn gc_mark_hook,
11707 struct elf_reloc_cookie *cookie)
11708 {
11709 asection *rsec;
11710
11711 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11712 if (rsec && !rsec->gc_mark)
11713 {
11714 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11715 || (rsec->owner->flags & DYNAMIC) != 0)
11716 rsec->gc_mark = 1;
11717 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11718 return FALSE;
11719 }
11720 return TRUE;
11721 }
11722
11723 /* The mark phase of garbage collection. For a given section, mark
11724 it and any sections in this section's group, and all the sections
11725 which define symbols to which it refers. */
11726
11727 bfd_boolean
11728 _bfd_elf_gc_mark (struct bfd_link_info *info,
11729 asection *sec,
11730 elf_gc_mark_hook_fn gc_mark_hook)
11731 {
11732 bfd_boolean ret;
11733 asection *group_sec, *eh_frame;
11734
11735 sec->gc_mark = 1;
11736
11737 /* Mark all the sections in the group. */
11738 group_sec = elf_section_data (sec)->next_in_group;
11739 if (group_sec && !group_sec->gc_mark)
11740 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11741 return FALSE;
11742
11743 /* Look through the section relocs. */
11744 ret = TRUE;
11745 eh_frame = elf_eh_frame_section (sec->owner);
11746 if ((sec->flags & SEC_RELOC) != 0
11747 && sec->reloc_count > 0
11748 && sec != eh_frame)
11749 {
11750 struct elf_reloc_cookie cookie;
11751
11752 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11753 ret = FALSE;
11754 else
11755 {
11756 for (; cookie.rel < cookie.relend; cookie.rel++)
11757 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11758 {
11759 ret = FALSE;
11760 break;
11761 }
11762 fini_reloc_cookie_for_section (&cookie, sec);
11763 }
11764 }
11765
11766 if (ret && eh_frame && elf_fde_list (sec))
11767 {
11768 struct elf_reloc_cookie cookie;
11769
11770 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11771 ret = FALSE;
11772 else
11773 {
11774 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11775 gc_mark_hook, &cookie))
11776 ret = FALSE;
11777 fini_reloc_cookie_for_section (&cookie, eh_frame);
11778 }
11779 }
11780
11781 return ret;
11782 }
11783
11784 /* Keep debug and special sections. */
11785
11786 bfd_boolean
11787 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11788 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11789 {
11790 bfd *ibfd;
11791
11792 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11793 {
11794 asection *isec;
11795 bfd_boolean some_kept;
11796 bfd_boolean debug_frag_seen;
11797
11798 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11799 continue;
11800
11801 /* Ensure all linker created sections are kept,
11802 see if any other section is already marked,
11803 and note if we have any fragmented debug sections. */
11804 debug_frag_seen = some_kept = FALSE;
11805 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11806 {
11807 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11808 isec->gc_mark = 1;
11809 else if (isec->gc_mark)
11810 some_kept = TRUE;
11811
11812 if (debug_frag_seen == FALSE
11813 && (isec->flags & SEC_DEBUGGING)
11814 && CONST_STRNEQ (isec->name, ".debug_line."))
11815 debug_frag_seen = TRUE;
11816 }
11817
11818 /* If no section in this file will be kept, then we can
11819 toss out the debug and special sections. */
11820 if (!some_kept)
11821 continue;
11822
11823 /* Keep debug and special sections like .comment when they are
11824 not part of a group, or when we have single-member groups. */
11825 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11826 if ((elf_next_in_group (isec) == NULL
11827 || elf_next_in_group (isec) == isec)
11828 && ((isec->flags & SEC_DEBUGGING) != 0
11829 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11830 isec->gc_mark = 1;
11831
11832 if (! debug_frag_seen)
11833 continue;
11834
11835 /* Look for CODE sections which are going to be discarded,
11836 and find and discard any fragmented debug sections which
11837 are associated with that code section. */
11838 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11839 if ((isec->flags & SEC_CODE) != 0
11840 && isec->gc_mark == 0)
11841 {
11842 unsigned int ilen;
11843 asection *dsec;
11844
11845 ilen = strlen (isec->name);
11846
11847 /* Association is determined by the name of the debug section
11848 containing the name of the code section as a suffix. For
11849 example .debug_line.text.foo is a debug section associated
11850 with .text.foo. */
11851 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11852 {
11853 unsigned int dlen;
11854
11855 if (dsec->gc_mark == 0
11856 || (dsec->flags & SEC_DEBUGGING) == 0)
11857 continue;
11858
11859 dlen = strlen (dsec->name);
11860
11861 if (dlen > ilen
11862 && strncmp (dsec->name + (dlen - ilen),
11863 isec->name, ilen) == 0)
11864 {
11865 dsec->gc_mark = 0;
11866 break;
11867 }
11868 }
11869 }
11870 }
11871 return TRUE;
11872 }
11873
11874 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11875
11876 struct elf_gc_sweep_symbol_info
11877 {
11878 struct bfd_link_info *info;
11879 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11880 bfd_boolean);
11881 };
11882
11883 static bfd_boolean
11884 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11885 {
11886 if (!h->mark
11887 && (((h->root.type == bfd_link_hash_defined
11888 || h->root.type == bfd_link_hash_defweak)
11889 && !(h->def_regular
11890 && h->root.u.def.section->gc_mark))
11891 || h->root.type == bfd_link_hash_undefined
11892 || h->root.type == bfd_link_hash_undefweak))
11893 {
11894 struct elf_gc_sweep_symbol_info *inf;
11895
11896 inf = (struct elf_gc_sweep_symbol_info *) data;
11897 (*inf->hide_symbol) (inf->info, h, TRUE);
11898 h->def_regular = 0;
11899 h->ref_regular = 0;
11900 h->ref_regular_nonweak = 0;
11901 }
11902
11903 return TRUE;
11904 }
11905
11906 /* The sweep phase of garbage collection. Remove all garbage sections. */
11907
11908 typedef bfd_boolean (*gc_sweep_hook_fn)
11909 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11910
11911 static bfd_boolean
11912 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11913 {
11914 bfd *sub;
11915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11916 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11917 unsigned long section_sym_count;
11918 struct elf_gc_sweep_symbol_info sweep_info;
11919
11920 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11921 {
11922 asection *o;
11923
11924 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11925 continue;
11926
11927 for (o = sub->sections; o != NULL; o = o->next)
11928 {
11929 /* When any section in a section group is kept, we keep all
11930 sections in the section group. If the first member of
11931 the section group is excluded, we will also exclude the
11932 group section. */
11933 if (o->flags & SEC_GROUP)
11934 {
11935 asection *first = elf_next_in_group (o);
11936 o->gc_mark = first->gc_mark;
11937 }
11938
11939 if (o->gc_mark)
11940 continue;
11941
11942 /* Skip sweeping sections already excluded. */
11943 if (o->flags & SEC_EXCLUDE)
11944 continue;
11945
11946 /* Since this is early in the link process, it is simple
11947 to remove a section from the output. */
11948 o->flags |= SEC_EXCLUDE;
11949
11950 if (info->print_gc_sections && o->size != 0)
11951 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11952
11953 /* But we also have to update some of the relocation
11954 info we collected before. */
11955 if (gc_sweep_hook
11956 && (o->flags & SEC_RELOC) != 0
11957 && o->reloc_count != 0
11958 && !((info->strip == strip_all || info->strip == strip_debugger)
11959 && (o->flags & SEC_DEBUGGING) != 0)
11960 && !bfd_is_abs_section (o->output_section))
11961 {
11962 Elf_Internal_Rela *internal_relocs;
11963 bfd_boolean r;
11964
11965 internal_relocs
11966 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11967 info->keep_memory);
11968 if (internal_relocs == NULL)
11969 return FALSE;
11970
11971 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11972
11973 if (elf_section_data (o)->relocs != internal_relocs)
11974 free (internal_relocs);
11975
11976 if (!r)
11977 return FALSE;
11978 }
11979 }
11980 }
11981
11982 /* Remove the symbols that were in the swept sections from the dynamic
11983 symbol table. GCFIXME: Anyone know how to get them out of the
11984 static symbol table as well? */
11985 sweep_info.info = info;
11986 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11987 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11988 &sweep_info);
11989
11990 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11991 return TRUE;
11992 }
11993
11994 /* Propagate collected vtable information. This is called through
11995 elf_link_hash_traverse. */
11996
11997 static bfd_boolean
11998 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11999 {
12000 /* Those that are not vtables. */
12001 if (h->vtable == NULL || h->vtable->parent == NULL)
12002 return TRUE;
12003
12004 /* Those vtables that do not have parents, we cannot merge. */
12005 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12006 return TRUE;
12007
12008 /* If we've already been done, exit. */
12009 if (h->vtable->used && h->vtable->used[-1])
12010 return TRUE;
12011
12012 /* Make sure the parent's table is up to date. */
12013 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12014
12015 if (h->vtable->used == NULL)
12016 {
12017 /* None of this table's entries were referenced. Re-use the
12018 parent's table. */
12019 h->vtable->used = h->vtable->parent->vtable->used;
12020 h->vtable->size = h->vtable->parent->vtable->size;
12021 }
12022 else
12023 {
12024 size_t n;
12025 bfd_boolean *cu, *pu;
12026
12027 /* Or the parent's entries into ours. */
12028 cu = h->vtable->used;
12029 cu[-1] = TRUE;
12030 pu = h->vtable->parent->vtable->used;
12031 if (pu != NULL)
12032 {
12033 const struct elf_backend_data *bed;
12034 unsigned int log_file_align;
12035
12036 bed = get_elf_backend_data (h->root.u.def.section->owner);
12037 log_file_align = bed->s->log_file_align;
12038 n = h->vtable->parent->vtable->size >> log_file_align;
12039 while (n--)
12040 {
12041 if (*pu)
12042 *cu = TRUE;
12043 pu++;
12044 cu++;
12045 }
12046 }
12047 }
12048
12049 return TRUE;
12050 }
12051
12052 static bfd_boolean
12053 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12054 {
12055 asection *sec;
12056 bfd_vma hstart, hend;
12057 Elf_Internal_Rela *relstart, *relend, *rel;
12058 const struct elf_backend_data *bed;
12059 unsigned int log_file_align;
12060
12061 /* Take care of both those symbols that do not describe vtables as
12062 well as those that are not loaded. */
12063 if (h->vtable == NULL || h->vtable->parent == NULL)
12064 return TRUE;
12065
12066 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12067 || h->root.type == bfd_link_hash_defweak);
12068
12069 sec = h->root.u.def.section;
12070 hstart = h->root.u.def.value;
12071 hend = hstart + h->size;
12072
12073 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12074 if (!relstart)
12075 return *(bfd_boolean *) okp = FALSE;
12076 bed = get_elf_backend_data (sec->owner);
12077 log_file_align = bed->s->log_file_align;
12078
12079 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12080
12081 for (rel = relstart; rel < relend; ++rel)
12082 if (rel->r_offset >= hstart && rel->r_offset < hend)
12083 {
12084 /* If the entry is in use, do nothing. */
12085 if (h->vtable->used
12086 && (rel->r_offset - hstart) < h->vtable->size)
12087 {
12088 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12089 if (h->vtable->used[entry])
12090 continue;
12091 }
12092 /* Otherwise, kill it. */
12093 rel->r_offset = rel->r_info = rel->r_addend = 0;
12094 }
12095
12096 return TRUE;
12097 }
12098
12099 /* Mark sections containing dynamically referenced symbols. When
12100 building shared libraries, we must assume that any visible symbol is
12101 referenced. */
12102
12103 bfd_boolean
12104 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12105 {
12106 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12107 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12108
12109 if ((h->root.type == bfd_link_hash_defined
12110 || h->root.type == bfd_link_hash_defweak)
12111 && (h->ref_dynamic
12112 || (h->def_regular
12113 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12114 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12115 && (!info->executable
12116 || info->export_dynamic
12117 || (h->dynamic
12118 && d != NULL
12119 && (*d->match) (&d->head, NULL, h->root.root.string)))
12120 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12121 || !bfd_hide_sym_by_version (info->version_info,
12122 h->root.root.string)))))
12123 h->root.u.def.section->flags |= SEC_KEEP;
12124
12125 return TRUE;
12126 }
12127
12128 /* Keep all sections containing symbols undefined on the command-line,
12129 and the section containing the entry symbol. */
12130
12131 void
12132 _bfd_elf_gc_keep (struct bfd_link_info *info)
12133 {
12134 struct bfd_sym_chain *sym;
12135
12136 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12137 {
12138 struct elf_link_hash_entry *h;
12139
12140 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12141 FALSE, FALSE, FALSE);
12142
12143 if (h != NULL
12144 && (h->root.type == bfd_link_hash_defined
12145 || h->root.type == bfd_link_hash_defweak)
12146 && !bfd_is_abs_section (h->root.u.def.section))
12147 h->root.u.def.section->flags |= SEC_KEEP;
12148 }
12149 }
12150
12151 /* Do mark and sweep of unused sections. */
12152
12153 bfd_boolean
12154 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12155 {
12156 bfd_boolean ok = TRUE;
12157 bfd *sub;
12158 elf_gc_mark_hook_fn gc_mark_hook;
12159 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12160 struct elf_link_hash_table *htab;
12161
12162 if (!bed->can_gc_sections
12163 || !is_elf_hash_table (info->hash))
12164 {
12165 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12166 return TRUE;
12167 }
12168
12169 bed->gc_keep (info);
12170 htab = elf_hash_table (info);
12171
12172 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12173 at the .eh_frame section if we can mark the FDEs individually. */
12174 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12175 {
12176 asection *sec;
12177 struct elf_reloc_cookie cookie;
12178
12179 sec = bfd_get_section_by_name (sub, ".eh_frame");
12180 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12181 {
12182 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12183 if (elf_section_data (sec)->sec_info
12184 && (sec->flags & SEC_LINKER_CREATED) == 0)
12185 elf_eh_frame_section (sub) = sec;
12186 fini_reloc_cookie_for_section (&cookie, sec);
12187 sec = bfd_get_next_section_by_name (sec);
12188 }
12189 }
12190
12191 /* Apply transitive closure to the vtable entry usage info. */
12192 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12193 if (!ok)
12194 return FALSE;
12195
12196 /* Kill the vtable relocations that were not used. */
12197 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12198 if (!ok)
12199 return FALSE;
12200
12201 /* Mark dynamically referenced symbols. */
12202 if (htab->dynamic_sections_created)
12203 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12204
12205 /* Grovel through relocs to find out who stays ... */
12206 gc_mark_hook = bed->gc_mark_hook;
12207 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12208 {
12209 asection *o;
12210
12211 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12212 continue;
12213
12214 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12215 Also treat note sections as a root, if the section is not part
12216 of a group. */
12217 for (o = sub->sections; o != NULL; o = o->next)
12218 if (!o->gc_mark
12219 && (o->flags & SEC_EXCLUDE) == 0
12220 && ((o->flags & SEC_KEEP) != 0
12221 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12222 && elf_next_in_group (o) == NULL )))
12223 {
12224 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12225 return FALSE;
12226 }
12227 }
12228
12229 /* Allow the backend to mark additional target specific sections. */
12230 bed->gc_mark_extra_sections (info, gc_mark_hook);
12231
12232 /* ... and mark SEC_EXCLUDE for those that go. */
12233 return elf_gc_sweep (abfd, info);
12234 }
12235 \f
12236 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12237
12238 bfd_boolean
12239 bfd_elf_gc_record_vtinherit (bfd *abfd,
12240 asection *sec,
12241 struct elf_link_hash_entry *h,
12242 bfd_vma offset)
12243 {
12244 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12245 struct elf_link_hash_entry **search, *child;
12246 bfd_size_type extsymcount;
12247 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12248
12249 /* The sh_info field of the symtab header tells us where the
12250 external symbols start. We don't care about the local symbols at
12251 this point. */
12252 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12253 if (!elf_bad_symtab (abfd))
12254 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12255
12256 sym_hashes = elf_sym_hashes (abfd);
12257 sym_hashes_end = sym_hashes + extsymcount;
12258
12259 /* Hunt down the child symbol, which is in this section at the same
12260 offset as the relocation. */
12261 for (search = sym_hashes; search != sym_hashes_end; ++search)
12262 {
12263 if ((child = *search) != NULL
12264 && (child->root.type == bfd_link_hash_defined
12265 || child->root.type == bfd_link_hash_defweak)
12266 && child->root.u.def.section == sec
12267 && child->root.u.def.value == offset)
12268 goto win;
12269 }
12270
12271 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12272 abfd, sec, (unsigned long) offset);
12273 bfd_set_error (bfd_error_invalid_operation);
12274 return FALSE;
12275
12276 win:
12277 if (!child->vtable)
12278 {
12279 child->vtable = (struct elf_link_virtual_table_entry *)
12280 bfd_zalloc (abfd, sizeof (*child->vtable));
12281 if (!child->vtable)
12282 return FALSE;
12283 }
12284 if (!h)
12285 {
12286 /* This *should* only be the absolute section. It could potentially
12287 be that someone has defined a non-global vtable though, which
12288 would be bad. It isn't worth paging in the local symbols to be
12289 sure though; that case should simply be handled by the assembler. */
12290
12291 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12292 }
12293 else
12294 child->vtable->parent = h;
12295
12296 return TRUE;
12297 }
12298
12299 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12300
12301 bfd_boolean
12302 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12303 asection *sec ATTRIBUTE_UNUSED,
12304 struct elf_link_hash_entry *h,
12305 bfd_vma addend)
12306 {
12307 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12308 unsigned int log_file_align = bed->s->log_file_align;
12309
12310 if (!h->vtable)
12311 {
12312 h->vtable = (struct elf_link_virtual_table_entry *)
12313 bfd_zalloc (abfd, sizeof (*h->vtable));
12314 if (!h->vtable)
12315 return FALSE;
12316 }
12317
12318 if (addend >= h->vtable->size)
12319 {
12320 size_t size, bytes, file_align;
12321 bfd_boolean *ptr = h->vtable->used;
12322
12323 /* While the symbol is undefined, we have to be prepared to handle
12324 a zero size. */
12325 file_align = 1 << log_file_align;
12326 if (h->root.type == bfd_link_hash_undefined)
12327 size = addend + file_align;
12328 else
12329 {
12330 size = h->size;
12331 if (addend >= size)
12332 {
12333 /* Oops! We've got a reference past the defined end of
12334 the table. This is probably a bug -- shall we warn? */
12335 size = addend + file_align;
12336 }
12337 }
12338 size = (size + file_align - 1) & -file_align;
12339
12340 /* Allocate one extra entry for use as a "done" flag for the
12341 consolidation pass. */
12342 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12343
12344 if (ptr)
12345 {
12346 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12347
12348 if (ptr != NULL)
12349 {
12350 size_t oldbytes;
12351
12352 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12353 * sizeof (bfd_boolean));
12354 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12355 }
12356 }
12357 else
12358 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12359
12360 if (ptr == NULL)
12361 return FALSE;
12362
12363 /* And arrange for that done flag to be at index -1. */
12364 h->vtable->used = ptr + 1;
12365 h->vtable->size = size;
12366 }
12367
12368 h->vtable->used[addend >> log_file_align] = TRUE;
12369
12370 return TRUE;
12371 }
12372
12373 /* Map an ELF section header flag to its corresponding string. */
12374 typedef struct
12375 {
12376 char *flag_name;
12377 flagword flag_value;
12378 } elf_flags_to_name_table;
12379
12380 static elf_flags_to_name_table elf_flags_to_names [] =
12381 {
12382 { "SHF_WRITE", SHF_WRITE },
12383 { "SHF_ALLOC", SHF_ALLOC },
12384 { "SHF_EXECINSTR", SHF_EXECINSTR },
12385 { "SHF_MERGE", SHF_MERGE },
12386 { "SHF_STRINGS", SHF_STRINGS },
12387 { "SHF_INFO_LINK", SHF_INFO_LINK},
12388 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12389 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12390 { "SHF_GROUP", SHF_GROUP },
12391 { "SHF_TLS", SHF_TLS },
12392 { "SHF_MASKOS", SHF_MASKOS },
12393 { "SHF_EXCLUDE", SHF_EXCLUDE },
12394 };
12395
12396 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12397 bfd_boolean
12398 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12399 struct flag_info *flaginfo,
12400 asection *section)
12401 {
12402 const bfd_vma sh_flags = elf_section_flags (section);
12403
12404 if (!flaginfo->flags_initialized)
12405 {
12406 bfd *obfd = info->output_bfd;
12407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12408 struct flag_info_list *tf = flaginfo->flag_list;
12409 int with_hex = 0;
12410 int without_hex = 0;
12411
12412 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12413 {
12414 unsigned i;
12415 flagword (*lookup) (char *);
12416
12417 lookup = bed->elf_backend_lookup_section_flags_hook;
12418 if (lookup != NULL)
12419 {
12420 flagword hexval = (*lookup) ((char *) tf->name);
12421
12422 if (hexval != 0)
12423 {
12424 if (tf->with == with_flags)
12425 with_hex |= hexval;
12426 else if (tf->with == without_flags)
12427 without_hex |= hexval;
12428 tf->valid = TRUE;
12429 continue;
12430 }
12431 }
12432 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12433 {
12434 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12435 {
12436 if (tf->with == with_flags)
12437 with_hex |= elf_flags_to_names[i].flag_value;
12438 else if (tf->with == without_flags)
12439 without_hex |= elf_flags_to_names[i].flag_value;
12440 tf->valid = TRUE;
12441 break;
12442 }
12443 }
12444 if (!tf->valid)
12445 {
12446 info->callbacks->einfo
12447 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12448 return FALSE;
12449 }
12450 }
12451 flaginfo->flags_initialized = TRUE;
12452 flaginfo->only_with_flags |= with_hex;
12453 flaginfo->not_with_flags |= without_hex;
12454 }
12455
12456 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12457 return FALSE;
12458
12459 if ((flaginfo->not_with_flags & sh_flags) != 0)
12460 return FALSE;
12461
12462 return TRUE;
12463 }
12464
12465 struct alloc_got_off_arg {
12466 bfd_vma gotoff;
12467 struct bfd_link_info *info;
12468 };
12469
12470 /* We need a special top-level link routine to convert got reference counts
12471 to real got offsets. */
12472
12473 static bfd_boolean
12474 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12475 {
12476 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12477 bfd *obfd = gofarg->info->output_bfd;
12478 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12479
12480 if (h->got.refcount > 0)
12481 {
12482 h->got.offset = gofarg->gotoff;
12483 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12484 }
12485 else
12486 h->got.offset = (bfd_vma) -1;
12487
12488 return TRUE;
12489 }
12490
12491 /* And an accompanying bit to work out final got entry offsets once
12492 we're done. Should be called from final_link. */
12493
12494 bfd_boolean
12495 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12496 struct bfd_link_info *info)
12497 {
12498 bfd *i;
12499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12500 bfd_vma gotoff;
12501 struct alloc_got_off_arg gofarg;
12502
12503 BFD_ASSERT (abfd == info->output_bfd);
12504
12505 if (! is_elf_hash_table (info->hash))
12506 return FALSE;
12507
12508 /* The GOT offset is relative to the .got section, but the GOT header is
12509 put into the .got.plt section, if the backend uses it. */
12510 if (bed->want_got_plt)
12511 gotoff = 0;
12512 else
12513 gotoff = bed->got_header_size;
12514
12515 /* Do the local .got entries first. */
12516 for (i = info->input_bfds; i; i = i->link.next)
12517 {
12518 bfd_signed_vma *local_got;
12519 bfd_size_type j, locsymcount;
12520 Elf_Internal_Shdr *symtab_hdr;
12521
12522 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12523 continue;
12524
12525 local_got = elf_local_got_refcounts (i);
12526 if (!local_got)
12527 continue;
12528
12529 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12530 if (elf_bad_symtab (i))
12531 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12532 else
12533 locsymcount = symtab_hdr->sh_info;
12534
12535 for (j = 0; j < locsymcount; ++j)
12536 {
12537 if (local_got[j] > 0)
12538 {
12539 local_got[j] = gotoff;
12540 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12541 }
12542 else
12543 local_got[j] = (bfd_vma) -1;
12544 }
12545 }
12546
12547 /* Then the global .got entries. .plt refcounts are handled by
12548 adjust_dynamic_symbol */
12549 gofarg.gotoff = gotoff;
12550 gofarg.info = info;
12551 elf_link_hash_traverse (elf_hash_table (info),
12552 elf_gc_allocate_got_offsets,
12553 &gofarg);
12554 return TRUE;
12555 }
12556
12557 /* Many folk need no more in the way of final link than this, once
12558 got entry reference counting is enabled. */
12559
12560 bfd_boolean
12561 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12562 {
12563 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12564 return FALSE;
12565
12566 /* Invoke the regular ELF backend linker to do all the work. */
12567 return bfd_elf_final_link (abfd, info);
12568 }
12569
12570 bfd_boolean
12571 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12572 {
12573 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12574
12575 if (rcookie->bad_symtab)
12576 rcookie->rel = rcookie->rels;
12577
12578 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12579 {
12580 unsigned long r_symndx;
12581
12582 if (! rcookie->bad_symtab)
12583 if (rcookie->rel->r_offset > offset)
12584 return FALSE;
12585 if (rcookie->rel->r_offset != offset)
12586 continue;
12587
12588 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12589 if (r_symndx == STN_UNDEF)
12590 return TRUE;
12591
12592 if (r_symndx >= rcookie->locsymcount
12593 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12594 {
12595 struct elf_link_hash_entry *h;
12596
12597 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12598
12599 while (h->root.type == bfd_link_hash_indirect
12600 || h->root.type == bfd_link_hash_warning)
12601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12602
12603 if ((h->root.type == bfd_link_hash_defined
12604 || h->root.type == bfd_link_hash_defweak)
12605 && discarded_section (h->root.u.def.section))
12606 return TRUE;
12607 else
12608 return FALSE;
12609 }
12610 else
12611 {
12612 /* It's not a relocation against a global symbol,
12613 but it could be a relocation against a local
12614 symbol for a discarded section. */
12615 asection *isec;
12616 Elf_Internal_Sym *isym;
12617
12618 /* Need to: get the symbol; get the section. */
12619 isym = &rcookie->locsyms[r_symndx];
12620 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12621 if (isec != NULL && discarded_section (isec))
12622 return TRUE;
12623 }
12624 return FALSE;
12625 }
12626 return FALSE;
12627 }
12628
12629 /* Discard unneeded references to discarded sections.
12630 Returns -1 on error, 1 if any section's size was changed, 0 if
12631 nothing changed. This function assumes that the relocations are in
12632 sorted order, which is true for all known assemblers. */
12633
12634 int
12635 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12636 {
12637 struct elf_reloc_cookie cookie;
12638 asection *o;
12639 bfd *abfd;
12640 int changed = 0;
12641
12642 if (info->traditional_format
12643 || !is_elf_hash_table (info->hash))
12644 return 0;
12645
12646 o = bfd_get_section_by_name (output_bfd, ".stab");
12647 if (o != NULL)
12648 {
12649 asection *i;
12650
12651 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12652 {
12653 if (i->size == 0
12654 || i->reloc_count == 0
12655 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12656 continue;
12657
12658 abfd = i->owner;
12659 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12660 continue;
12661
12662 if (!init_reloc_cookie_for_section (&cookie, info, i))
12663 return -1;
12664
12665 if (_bfd_discard_section_stabs (abfd, i,
12666 elf_section_data (i)->sec_info,
12667 bfd_elf_reloc_symbol_deleted_p,
12668 &cookie))
12669 changed = 1;
12670
12671 fini_reloc_cookie_for_section (&cookie, i);
12672 }
12673 }
12674
12675 o = NULL;
12676 if (!info->relocatable)
12677 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12678 if (o != NULL)
12679 {
12680 asection *i;
12681
12682 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12683 {
12684 if (i->size == 0)
12685 continue;
12686
12687 abfd = i->owner;
12688 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12689 continue;
12690
12691 if (!init_reloc_cookie_for_section (&cookie, info, i))
12692 return -1;
12693
12694 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12695 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12696 bfd_elf_reloc_symbol_deleted_p,
12697 &cookie))
12698 changed = 1;
12699
12700 fini_reloc_cookie_for_section (&cookie, i);
12701 }
12702 }
12703
12704 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12705 {
12706 const struct elf_backend_data *bed;
12707
12708 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12709 continue;
12710
12711 bed = get_elf_backend_data (abfd);
12712
12713 if (bed->elf_backend_discard_info != NULL)
12714 {
12715 if (!init_reloc_cookie (&cookie, info, abfd))
12716 return -1;
12717
12718 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12719 changed = 1;
12720
12721 fini_reloc_cookie (&cookie, abfd);
12722 }
12723 }
12724
12725 if (info->eh_frame_hdr
12726 && !info->relocatable
12727 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12728 changed = 1;
12729
12730 return changed;
12731 }
12732
12733 bfd_boolean
12734 _bfd_elf_section_already_linked (bfd *abfd,
12735 asection *sec,
12736 struct bfd_link_info *info)
12737 {
12738 flagword flags;
12739 const char *name, *key;
12740 struct bfd_section_already_linked *l;
12741 struct bfd_section_already_linked_hash_entry *already_linked_list;
12742
12743 if (sec->output_section == bfd_abs_section_ptr)
12744 return FALSE;
12745
12746 flags = sec->flags;
12747
12748 /* Return if it isn't a linkonce section. A comdat group section
12749 also has SEC_LINK_ONCE set. */
12750 if ((flags & SEC_LINK_ONCE) == 0)
12751 return FALSE;
12752
12753 /* Don't put group member sections on our list of already linked
12754 sections. They are handled as a group via their group section. */
12755 if (elf_sec_group (sec) != NULL)
12756 return FALSE;
12757
12758 /* For a SHT_GROUP section, use the group signature as the key. */
12759 name = sec->name;
12760 if ((flags & SEC_GROUP) != 0
12761 && elf_next_in_group (sec) != NULL
12762 && elf_group_name (elf_next_in_group (sec)) != NULL)
12763 key = elf_group_name (elf_next_in_group (sec));
12764 else
12765 {
12766 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12767 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12768 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12769 key++;
12770 else
12771 /* Must be a user linkonce section that doesn't follow gcc's
12772 naming convention. In this case we won't be matching
12773 single member groups. */
12774 key = name;
12775 }
12776
12777 already_linked_list = bfd_section_already_linked_table_lookup (key);
12778
12779 for (l = already_linked_list->entry; l != NULL; l = l->next)
12780 {
12781 /* We may have 2 different types of sections on the list: group
12782 sections with a signature of <key> (<key> is some string),
12783 and linkonce sections named .gnu.linkonce.<type>.<key>.
12784 Match like sections. LTO plugin sections are an exception.
12785 They are always named .gnu.linkonce.t.<key> and match either
12786 type of section. */
12787 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12788 && ((flags & SEC_GROUP) != 0
12789 || strcmp (name, l->sec->name) == 0))
12790 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12791 {
12792 /* The section has already been linked. See if we should
12793 issue a warning. */
12794 if (!_bfd_handle_already_linked (sec, l, info))
12795 return FALSE;
12796
12797 if (flags & SEC_GROUP)
12798 {
12799 asection *first = elf_next_in_group (sec);
12800 asection *s = first;
12801
12802 while (s != NULL)
12803 {
12804 s->output_section = bfd_abs_section_ptr;
12805 /* Record which group discards it. */
12806 s->kept_section = l->sec;
12807 s = elf_next_in_group (s);
12808 /* These lists are circular. */
12809 if (s == first)
12810 break;
12811 }
12812 }
12813
12814 return TRUE;
12815 }
12816 }
12817
12818 /* A single member comdat group section may be discarded by a
12819 linkonce section and vice versa. */
12820 if ((flags & SEC_GROUP) != 0)
12821 {
12822 asection *first = elf_next_in_group (sec);
12823
12824 if (first != NULL && elf_next_in_group (first) == first)
12825 /* Check this single member group against linkonce sections. */
12826 for (l = already_linked_list->entry; l != NULL; l = l->next)
12827 if ((l->sec->flags & SEC_GROUP) == 0
12828 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12829 {
12830 first->output_section = bfd_abs_section_ptr;
12831 first->kept_section = l->sec;
12832 sec->output_section = bfd_abs_section_ptr;
12833 break;
12834 }
12835 }
12836 else
12837 /* Check this linkonce section against single member groups. */
12838 for (l = already_linked_list->entry; l != NULL; l = l->next)
12839 if (l->sec->flags & SEC_GROUP)
12840 {
12841 asection *first = elf_next_in_group (l->sec);
12842
12843 if (first != NULL
12844 && elf_next_in_group (first) == first
12845 && bfd_elf_match_symbols_in_sections (first, sec, info))
12846 {
12847 sec->output_section = bfd_abs_section_ptr;
12848 sec->kept_section = first;
12849 break;
12850 }
12851 }
12852
12853 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12854 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12855 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12856 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12857 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12858 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12859 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12860 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12861 The reverse order cannot happen as there is never a bfd with only the
12862 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12863 matter as here were are looking only for cross-bfd sections. */
12864
12865 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12866 for (l = already_linked_list->entry; l != NULL; l = l->next)
12867 if ((l->sec->flags & SEC_GROUP) == 0
12868 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12869 {
12870 if (abfd != l->sec->owner)
12871 sec->output_section = bfd_abs_section_ptr;
12872 break;
12873 }
12874
12875 /* This is the first section with this name. Record it. */
12876 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12877 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12878 return sec->output_section == bfd_abs_section_ptr;
12879 }
12880
12881 bfd_boolean
12882 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12883 {
12884 return sym->st_shndx == SHN_COMMON;
12885 }
12886
12887 unsigned int
12888 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12889 {
12890 return SHN_COMMON;
12891 }
12892
12893 asection *
12894 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12895 {
12896 return bfd_com_section_ptr;
12897 }
12898
12899 bfd_vma
12900 _bfd_elf_default_got_elt_size (bfd *abfd,
12901 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12902 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12903 bfd *ibfd ATTRIBUTE_UNUSED,
12904 unsigned long symndx ATTRIBUTE_UNUSED)
12905 {
12906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12907 return bed->s->arch_size / 8;
12908 }
12909
12910 /* Routines to support the creation of dynamic relocs. */
12911
12912 /* Returns the name of the dynamic reloc section associated with SEC. */
12913
12914 static const char *
12915 get_dynamic_reloc_section_name (bfd * abfd,
12916 asection * sec,
12917 bfd_boolean is_rela)
12918 {
12919 char *name;
12920 const char *old_name = bfd_get_section_name (NULL, sec);
12921 const char *prefix = is_rela ? ".rela" : ".rel";
12922
12923 if (old_name == NULL)
12924 return NULL;
12925
12926 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12927 sprintf (name, "%s%s", prefix, old_name);
12928
12929 return name;
12930 }
12931
12932 /* Returns the dynamic reloc section associated with SEC.
12933 If necessary compute the name of the dynamic reloc section based
12934 on SEC's name (looked up in ABFD's string table) and the setting
12935 of IS_RELA. */
12936
12937 asection *
12938 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12939 asection * sec,
12940 bfd_boolean is_rela)
12941 {
12942 asection * reloc_sec = elf_section_data (sec)->sreloc;
12943
12944 if (reloc_sec == NULL)
12945 {
12946 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12947
12948 if (name != NULL)
12949 {
12950 reloc_sec = bfd_get_linker_section (abfd, name);
12951
12952 if (reloc_sec != NULL)
12953 elf_section_data (sec)->sreloc = reloc_sec;
12954 }
12955 }
12956
12957 return reloc_sec;
12958 }
12959
12960 /* Returns the dynamic reloc section associated with SEC. If the
12961 section does not exist it is created and attached to the DYNOBJ
12962 bfd and stored in the SRELOC field of SEC's elf_section_data
12963 structure.
12964
12965 ALIGNMENT is the alignment for the newly created section and
12966 IS_RELA defines whether the name should be .rela.<SEC's name>
12967 or .rel.<SEC's name>. The section name is looked up in the
12968 string table associated with ABFD. */
12969
12970 asection *
12971 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12972 bfd * dynobj,
12973 unsigned int alignment,
12974 bfd * abfd,
12975 bfd_boolean is_rela)
12976 {
12977 asection * reloc_sec = elf_section_data (sec)->sreloc;
12978
12979 if (reloc_sec == NULL)
12980 {
12981 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12982
12983 if (name == NULL)
12984 return NULL;
12985
12986 reloc_sec = bfd_get_linker_section (dynobj, name);
12987
12988 if (reloc_sec == NULL)
12989 {
12990 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12991 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12992 if ((sec->flags & SEC_ALLOC) != 0)
12993 flags |= SEC_ALLOC | SEC_LOAD;
12994
12995 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12996 if (reloc_sec != NULL)
12997 {
12998 /* _bfd_elf_get_sec_type_attr chooses a section type by
12999 name. Override as it may be wrong, eg. for a user
13000 section named "auto" we'll get ".relauto" which is
13001 seen to be a .rela section. */
13002 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13003 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13004 reloc_sec = NULL;
13005 }
13006 }
13007
13008 elf_section_data (sec)->sreloc = reloc_sec;
13009 }
13010
13011 return reloc_sec;
13012 }
13013
13014 /* Copy the ELF symbol type and other attributes for a linker script
13015 assignment from HSRC to HDEST. Generally this should be treated as
13016 if we found a strong non-dynamic definition for HDEST (except that
13017 ld ignores multiple definition errors). */
13018 void
13019 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13020 struct bfd_link_hash_entry *hdest,
13021 struct bfd_link_hash_entry *hsrc)
13022 {
13023 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13024 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13025 Elf_Internal_Sym isym;
13026
13027 ehdest->type = ehsrc->type;
13028 ehdest->target_internal = ehsrc->target_internal;
13029
13030 isym.st_other = ehsrc->other;
13031 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13032 }
13033
13034 /* Append a RELA relocation REL to section S in BFD. */
13035
13036 void
13037 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13038 {
13039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13040 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13041 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13042 bed->s->swap_reloca_out (abfd, rel, loc);
13043 }
13044
13045 /* Append a REL relocation REL to section S in BFD. */
13046
13047 void
13048 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13049 {
13050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13051 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13052 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13053 bed->s->swap_reloc_out (abfd, rel, loc);
13054 }
This page took 0.345548 seconds and 4 git commands to generate.