ddd088c1447732bca262135dca468f767d1fc452
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->is_weakalias)
727 {
728 struct elf_link_hash_entry *def = weakdef (h);
729
730 if (def->dynindx == -1
731 && !bfd_elf_link_record_dynamic_symbol (info, def))
732 return FALSE;
733 }
734 }
735
736 return TRUE;
737 }
738
739 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
740 success, and 2 on a failure caused by attempting to record a symbol
741 in a discarded section, eg. a discarded link-once section symbol. */
742
743 int
744 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
745 bfd *input_bfd,
746 long input_indx)
747 {
748 bfd_size_type amt;
749 struct elf_link_local_dynamic_entry *entry;
750 struct elf_link_hash_table *eht;
751 struct elf_strtab_hash *dynstr;
752 size_t dynstr_index;
753 char *name;
754 Elf_External_Sym_Shndx eshndx;
755 char esym[sizeof (Elf64_External_Sym)];
756
757 if (! is_elf_hash_table (info->hash))
758 return 0;
759
760 /* See if the entry exists already. */
761 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
762 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
763 return 1;
764
765 amt = sizeof (*entry);
766 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
767 if (entry == NULL)
768 return 0;
769
770 /* Go find the symbol, so that we can find it's name. */
771 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
772 1, input_indx, &entry->isym, esym, &eshndx))
773 {
774 bfd_release (input_bfd, entry);
775 return 0;
776 }
777
778 if (entry->isym.st_shndx != SHN_UNDEF
779 && entry->isym.st_shndx < SHN_LORESERVE)
780 {
781 asection *s;
782
783 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
784 if (s == NULL || bfd_is_abs_section (s->output_section))
785 {
786 /* We can still bfd_release here as nothing has done another
787 bfd_alloc. We can't do this later in this function. */
788 bfd_release (input_bfd, entry);
789 return 2;
790 }
791 }
792
793 name = (bfd_elf_string_from_elf_section
794 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
795 entry->isym.st_name));
796
797 dynstr = elf_hash_table (info)->dynstr;
798 if (dynstr == NULL)
799 {
800 /* Create a strtab to hold the dynamic symbol names. */
801 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
802 if (dynstr == NULL)
803 return 0;
804 }
805
806 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
807 if (dynstr_index == (size_t) -1)
808 return 0;
809 entry->isym.st_name = dynstr_index;
810
811 eht = elf_hash_table (info);
812
813 entry->next = eht->dynlocal;
814 eht->dynlocal = entry;
815 entry->input_bfd = input_bfd;
816 entry->input_indx = input_indx;
817 eht->dynsymcount++;
818
819 /* Whatever binding the symbol had before, it's now local. */
820 entry->isym.st_info
821 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
822
823 /* The dynindx will be set at the end of size_dynamic_sections. */
824
825 return 1;
826 }
827
828 /* Return the dynindex of a local dynamic symbol. */
829
830 long
831 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
832 bfd *input_bfd,
833 long input_indx)
834 {
835 struct elf_link_local_dynamic_entry *e;
836
837 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
838 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
839 return e->dynindx;
840 return -1;
841 }
842
843 /* This function is used to renumber the dynamic symbols, if some of
844 them are removed because they are marked as local. This is called
845 via elf_link_hash_traverse. */
846
847 static bfd_boolean
848 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
849 void *data)
850 {
851 size_t *count = (size_t *) data;
852
853 if (h->forced_local)
854 return TRUE;
855
856 if (h->dynindx != -1)
857 h->dynindx = ++(*count);
858
859 return TRUE;
860 }
861
862
863 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
864 STB_LOCAL binding. */
865
866 static bfd_boolean
867 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
868 void *data)
869 {
870 size_t *count = (size_t *) data;
871
872 if (!h->forced_local)
873 return TRUE;
874
875 if (h->dynindx != -1)
876 h->dynindx = ++(*count);
877
878 return TRUE;
879 }
880
881 /* Return true if the dynamic symbol for a given section should be
882 omitted when creating a shared library. */
883 bfd_boolean
884 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
885 struct bfd_link_info *info,
886 asection *p)
887 {
888 struct elf_link_hash_table *htab;
889 asection *ip;
890
891 switch (elf_section_data (p)->this_hdr.sh_type)
892 {
893 case SHT_PROGBITS:
894 case SHT_NOBITS:
895 /* If sh_type is yet undecided, assume it could be
896 SHT_PROGBITS/SHT_NOBITS. */
897 case SHT_NULL:
898 htab = elf_hash_table (info);
899 if (p == htab->tls_sec)
900 return FALSE;
901
902 if (htab->text_index_section != NULL)
903 return p != htab->text_index_section && p != htab->data_index_section;
904
905 return (htab->dynobj != NULL
906 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
907 && ip->output_section == p);
908
909 /* There shouldn't be section relative relocations
910 against any other section. */
911 default:
912 return TRUE;
913 }
914 }
915
916 /* Assign dynsym indices. In a shared library we generate a section
917 symbol for each output section, which come first. Next come symbols
918 which have been forced to local binding. Then all of the back-end
919 allocated local dynamic syms, followed by the rest of the global
920 symbols. */
921
922 static unsigned long
923 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
924 struct bfd_link_info *info,
925 unsigned long *section_sym_count)
926 {
927 unsigned long dynsymcount = 0;
928
929 if (bfd_link_pic (info)
930 || elf_hash_table (info)->is_relocatable_executable)
931 {
932 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
933 asection *p;
934 for (p = output_bfd->sections; p ; p = p->next)
935 if ((p->flags & SEC_EXCLUDE) == 0
936 && (p->flags & SEC_ALLOC) != 0
937 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
938 elf_section_data (p)->dynindx = ++dynsymcount;
939 else
940 elf_section_data (p)->dynindx = 0;
941 }
942 *section_sym_count = dynsymcount;
943
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_local_hash_table_dynsyms,
946 &dynsymcount);
947
948 if (elf_hash_table (info)->dynlocal)
949 {
950 struct elf_link_local_dynamic_entry *p;
951 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
952 p->dynindx = ++dynsymcount;
953 }
954 elf_hash_table (info)->local_dynsymcount = dynsymcount;
955
956 elf_link_hash_traverse (elf_hash_table (info),
957 elf_link_renumber_hash_table_dynsyms,
958 &dynsymcount);
959
960 /* There is an unused NULL entry at the head of the table which we
961 must account for in our count even if the table is empty since it
962 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
963 .dynamic section. */
964 dynsymcount++;
965
966 elf_hash_table (info)->dynsymcount = dynsymcount;
967 return dynsymcount;
968 }
969
970 /* Merge st_other field. */
971
972 static void
973 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
974 const Elf_Internal_Sym *isym, asection *sec,
975 bfd_boolean definition, bfd_boolean dynamic)
976 {
977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
978
979 /* If st_other has a processor-specific meaning, specific
980 code might be needed here. */
981 if (bed->elf_backend_merge_symbol_attribute)
982 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
983 dynamic);
984
985 if (!dynamic)
986 {
987 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
988 unsigned hvis = ELF_ST_VISIBILITY (h->other);
989
990 /* Keep the most constraining visibility. Leave the remainder
991 of the st_other field to elf_backend_merge_symbol_attribute. */
992 if (symvis - 1 < hvis - 1)
993 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
994 }
995 else if (definition
996 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
997 && (sec->flags & SEC_READONLY) == 0)
998 h->protected_def = 1;
999 }
1000
1001 /* This function is called when we want to merge a new symbol with an
1002 existing symbol. It handles the various cases which arise when we
1003 find a definition in a dynamic object, or when there is already a
1004 definition in a dynamic object. The new symbol is described by
1005 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1006 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1007 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1008 of an old common symbol. We set OVERRIDE if the old symbol is
1009 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1010 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1011 to change. By OK to change, we mean that we shouldn't warn if the
1012 type or size does change. */
1013
1014 static bfd_boolean
1015 _bfd_elf_merge_symbol (bfd *abfd,
1016 struct bfd_link_info *info,
1017 const char *name,
1018 Elf_Internal_Sym *sym,
1019 asection **psec,
1020 bfd_vma *pvalue,
1021 struct elf_link_hash_entry **sym_hash,
1022 bfd **poldbfd,
1023 bfd_boolean *pold_weak,
1024 unsigned int *pold_alignment,
1025 bfd_boolean *skip,
1026 bfd_boolean *override,
1027 bfd_boolean *type_change_ok,
1028 bfd_boolean *size_change_ok,
1029 bfd_boolean *matched)
1030 {
1031 asection *sec, *oldsec;
1032 struct elf_link_hash_entry *h;
1033 struct elf_link_hash_entry *hi;
1034 struct elf_link_hash_entry *flip;
1035 int bind;
1036 bfd *oldbfd;
1037 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1038 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1039 const struct elf_backend_data *bed;
1040 char *new_version;
1041 bfd_boolean default_sym = *matched;
1042
1043 *skip = FALSE;
1044 *override = FALSE;
1045
1046 sec = *psec;
1047 bind = ELF_ST_BIND (sym->st_info);
1048
1049 if (! bfd_is_und_section (sec))
1050 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1051 else
1052 h = ((struct elf_link_hash_entry *)
1053 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1054 if (h == NULL)
1055 return FALSE;
1056 *sym_hash = h;
1057
1058 bed = get_elf_backend_data (abfd);
1059
1060 /* NEW_VERSION is the symbol version of the new symbol. */
1061 if (h->versioned != unversioned)
1062 {
1063 /* Symbol version is unknown or versioned. */
1064 new_version = strrchr (name, ELF_VER_CHR);
1065 if (new_version)
1066 {
1067 if (h->versioned == unknown)
1068 {
1069 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1070 h->versioned = versioned_hidden;
1071 else
1072 h->versioned = versioned;
1073 }
1074 new_version += 1;
1075 if (new_version[0] == '\0')
1076 new_version = NULL;
1077 }
1078 else
1079 h->versioned = unversioned;
1080 }
1081 else
1082 new_version = NULL;
1083
1084 /* For merging, we only care about real symbols. But we need to make
1085 sure that indirect symbol dynamic flags are updated. */
1086 hi = h;
1087 while (h->root.type == bfd_link_hash_indirect
1088 || h->root.type == bfd_link_hash_warning)
1089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1090
1091 if (!*matched)
1092 {
1093 if (hi == h || h->root.type == bfd_link_hash_new)
1094 *matched = TRUE;
1095 else
1096 {
1097 /* OLD_HIDDEN is true if the existing symbol is only visible
1098 to the symbol with the same symbol version. NEW_HIDDEN is
1099 true if the new symbol is only visible to the symbol with
1100 the same symbol version. */
1101 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1102 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1103 if (!old_hidden && !new_hidden)
1104 /* The new symbol matches the existing symbol if both
1105 aren't hidden. */
1106 *matched = TRUE;
1107 else
1108 {
1109 /* OLD_VERSION is the symbol version of the existing
1110 symbol. */
1111 char *old_version;
1112
1113 if (h->versioned >= versioned)
1114 old_version = strrchr (h->root.root.string,
1115 ELF_VER_CHR) + 1;
1116 else
1117 old_version = NULL;
1118
1119 /* The new symbol matches the existing symbol if they
1120 have the same symbol version. */
1121 *matched = (old_version == new_version
1122 || (old_version != NULL
1123 && new_version != NULL
1124 && strcmp (old_version, new_version) == 0));
1125 }
1126 }
1127 }
1128
1129 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1130 existing symbol. */
1131
1132 oldbfd = NULL;
1133 oldsec = NULL;
1134 switch (h->root.type)
1135 {
1136 default:
1137 break;
1138
1139 case bfd_link_hash_undefined:
1140 case bfd_link_hash_undefweak:
1141 oldbfd = h->root.u.undef.abfd;
1142 break;
1143
1144 case bfd_link_hash_defined:
1145 case bfd_link_hash_defweak:
1146 oldbfd = h->root.u.def.section->owner;
1147 oldsec = h->root.u.def.section;
1148 break;
1149
1150 case bfd_link_hash_common:
1151 oldbfd = h->root.u.c.p->section->owner;
1152 oldsec = h->root.u.c.p->section;
1153 if (pold_alignment)
1154 *pold_alignment = h->root.u.c.p->alignment_power;
1155 break;
1156 }
1157 if (poldbfd && *poldbfd == NULL)
1158 *poldbfd = oldbfd;
1159
1160 /* Differentiate strong and weak symbols. */
1161 newweak = bind == STB_WEAK;
1162 oldweak = (h->root.type == bfd_link_hash_defweak
1163 || h->root.type == bfd_link_hash_undefweak);
1164 if (pold_weak)
1165 *pold_weak = oldweak;
1166
1167 /* We have to check it for every instance since the first few may be
1168 references and not all compilers emit symbol type for undefined
1169 symbols. */
1170 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1171
1172 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1173 respectively, is from a dynamic object. */
1174
1175 newdyn = (abfd->flags & DYNAMIC) != 0;
1176
1177 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1178 syms and defined syms in dynamic libraries respectively.
1179 ref_dynamic on the other hand can be set for a symbol defined in
1180 a dynamic library, and def_dynamic may not be set; When the
1181 definition in a dynamic lib is overridden by a definition in the
1182 executable use of the symbol in the dynamic lib becomes a
1183 reference to the executable symbol. */
1184 if (newdyn)
1185 {
1186 if (bfd_is_und_section (sec))
1187 {
1188 if (bind != STB_WEAK)
1189 {
1190 h->ref_dynamic_nonweak = 1;
1191 hi->ref_dynamic_nonweak = 1;
1192 }
1193 }
1194 else
1195 {
1196 /* Update the existing symbol only if they match. */
1197 if (*matched)
1198 h->dynamic_def = 1;
1199 hi->dynamic_def = 1;
1200 }
1201 }
1202
1203 /* If we just created the symbol, mark it as being an ELF symbol.
1204 Other than that, there is nothing to do--there is no merge issue
1205 with a newly defined symbol--so we just return. */
1206
1207 if (h->root.type == bfd_link_hash_new)
1208 {
1209 h->non_elf = 0;
1210 return TRUE;
1211 }
1212
1213 /* In cases involving weak versioned symbols, we may wind up trying
1214 to merge a symbol with itself. Catch that here, to avoid the
1215 confusion that results if we try to override a symbol with
1216 itself. The additional tests catch cases like
1217 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1218 dynamic object, which we do want to handle here. */
1219 if (abfd == oldbfd
1220 && (newweak || oldweak)
1221 && ((abfd->flags & DYNAMIC) == 0
1222 || !h->def_regular))
1223 return TRUE;
1224
1225 olddyn = FALSE;
1226 if (oldbfd != NULL)
1227 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1228 else if (oldsec != NULL)
1229 {
1230 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1231 indices used by MIPS ELF. */
1232 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1233 }
1234
1235 /* Handle a case where plugin_notice won't be called and thus won't
1236 set the non_ir_ref flags on the first pass over symbols. */
1237 if (oldbfd != NULL
1238 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1239 && newdyn != olddyn)
1240 {
1241 h->root.non_ir_ref_dynamic = TRUE;
1242 hi->root.non_ir_ref_dynamic = TRUE;
1243 }
1244
1245 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1246 respectively, appear to be a definition rather than reference. */
1247
1248 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1249
1250 olddef = (h->root.type != bfd_link_hash_undefined
1251 && h->root.type != bfd_link_hash_undefweak
1252 && h->root.type != bfd_link_hash_common);
1253
1254 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1255 respectively, appear to be a function. */
1256
1257 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1258 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1259
1260 oldfunc = (h->type != STT_NOTYPE
1261 && bed->is_function_type (h->type));
1262
1263 if (!(newfunc && oldfunc)
1264 && ELF_ST_TYPE (sym->st_info) != h->type
1265 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1266 && h->type != STT_NOTYPE
1267 && (newdef || bfd_is_com_section (sec))
1268 && (olddef || h->root.type == bfd_link_hash_common))
1269 {
1270 /* If creating a default indirect symbol ("foo" or "foo@") from
1271 a dynamic versioned definition ("foo@@") skip doing so if
1272 there is an existing regular definition with a different
1273 type. We don't want, for example, a "time" variable in the
1274 executable overriding a "time" function in a shared library. */
1275 if (newdyn
1276 && !olddyn)
1277 {
1278 *skip = TRUE;
1279 return TRUE;
1280 }
1281
1282 /* When adding a symbol from a regular object file after we have
1283 created indirect symbols, undo the indirection and any
1284 dynamic state. */
1285 if (hi != h
1286 && !newdyn
1287 && olddyn)
1288 {
1289 h = hi;
1290 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1291 h->forced_local = 0;
1292 h->ref_dynamic = 0;
1293 h->def_dynamic = 0;
1294 h->dynamic_def = 0;
1295 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1296 {
1297 h->root.type = bfd_link_hash_undefined;
1298 h->root.u.undef.abfd = abfd;
1299 }
1300 else
1301 {
1302 h->root.type = bfd_link_hash_new;
1303 h->root.u.undef.abfd = NULL;
1304 }
1305 return TRUE;
1306 }
1307 }
1308
1309 /* Check TLS symbols. We don't check undefined symbols introduced
1310 by "ld -u" which have no type (and oldbfd NULL), and we don't
1311 check symbols from plugins because they also have no type. */
1312 if (oldbfd != NULL
1313 && (oldbfd->flags & BFD_PLUGIN) == 0
1314 && (abfd->flags & BFD_PLUGIN) == 0
1315 && ELF_ST_TYPE (sym->st_info) != h->type
1316 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1317 {
1318 bfd *ntbfd, *tbfd;
1319 bfd_boolean ntdef, tdef;
1320 asection *ntsec, *tsec;
1321
1322 if (h->type == STT_TLS)
1323 {
1324 ntbfd = abfd;
1325 ntsec = sec;
1326 ntdef = newdef;
1327 tbfd = oldbfd;
1328 tsec = oldsec;
1329 tdef = olddef;
1330 }
1331 else
1332 {
1333 ntbfd = oldbfd;
1334 ntsec = oldsec;
1335 ntdef = olddef;
1336 tbfd = abfd;
1337 tsec = sec;
1338 tdef = newdef;
1339 }
1340
1341 if (tdef && ntdef)
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS definition in %B section %A "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1347 else if (!tdef && !ntdef)
1348 _bfd_error_handler
1349 /* xgettext:c-format */
1350 (_("%s: TLS reference in %B "
1351 "mismatches non-TLS reference in %B"),
1352 h->root.root.string, tbfd, ntbfd);
1353 else if (tdef)
1354 _bfd_error_handler
1355 /* xgettext:c-format */
1356 (_("%s: TLS definition in %B section %A "
1357 "mismatches non-TLS reference in %B"),
1358 h->root.root.string, tbfd, tsec, ntbfd);
1359 else
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS reference in %B "
1363 "mismatches non-TLS definition in %B section %A"),
1364 h->root.root.string, tbfd, ntbfd, ntsec);
1365
1366 bfd_set_error (bfd_error_bad_value);
1367 return FALSE;
1368 }
1369
1370 /* If the old symbol has non-default visibility, we ignore the new
1371 definition from a dynamic object. */
1372 if (newdyn
1373 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1374 && !bfd_is_und_section (sec))
1375 {
1376 *skip = TRUE;
1377 /* Make sure this symbol is dynamic. */
1378 h->ref_dynamic = 1;
1379 hi->ref_dynamic = 1;
1380 /* A protected symbol has external availability. Make sure it is
1381 recorded as dynamic.
1382
1383 FIXME: Should we check type and size for protected symbol? */
1384 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1385 return bfd_elf_link_record_dynamic_symbol (info, h);
1386 else
1387 return TRUE;
1388 }
1389 else if (!newdyn
1390 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1391 && h->def_dynamic)
1392 {
1393 /* If the new symbol with non-default visibility comes from a
1394 relocatable file and the old definition comes from a dynamic
1395 object, we remove the old definition. */
1396 if (hi->root.type == bfd_link_hash_indirect)
1397 {
1398 /* Handle the case where the old dynamic definition is
1399 default versioned. We need to copy the symbol info from
1400 the symbol with default version to the normal one if it
1401 was referenced before. */
1402 if (h->ref_regular)
1403 {
1404 hi->root.type = h->root.type;
1405 h->root.type = bfd_link_hash_indirect;
1406 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1407
1408 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1409 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1410 {
1411 /* If the new symbol is hidden or internal, completely undo
1412 any dynamic link state. */
1413 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1414 h->forced_local = 0;
1415 h->ref_dynamic = 0;
1416 }
1417 else
1418 h->ref_dynamic = 1;
1419
1420 h->def_dynamic = 0;
1421 /* FIXME: Should we check type and size for protected symbol? */
1422 h->size = 0;
1423 h->type = 0;
1424
1425 h = hi;
1426 }
1427 else
1428 h = hi;
1429 }
1430
1431 /* If the old symbol was undefined before, then it will still be
1432 on the undefs list. If the new symbol is undefined or
1433 common, we can't make it bfd_link_hash_new here, because new
1434 undefined or common symbols will be added to the undefs list
1435 by _bfd_generic_link_add_one_symbol. Symbols may not be
1436 added twice to the undefs list. Also, if the new symbol is
1437 undefweak then we don't want to lose the strong undef. */
1438 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1439 {
1440 h->root.type = bfd_link_hash_undefined;
1441 h->root.u.undef.abfd = abfd;
1442 }
1443 else
1444 {
1445 h->root.type = bfd_link_hash_new;
1446 h->root.u.undef.abfd = NULL;
1447 }
1448
1449 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1450 {
1451 /* If the new symbol is hidden or internal, completely undo
1452 any dynamic link state. */
1453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1454 h->forced_local = 0;
1455 h->ref_dynamic = 0;
1456 }
1457 else
1458 h->ref_dynamic = 1;
1459 h->def_dynamic = 0;
1460 /* FIXME: Should we check type and size for protected symbol? */
1461 h->size = 0;
1462 h->type = 0;
1463 return TRUE;
1464 }
1465
1466 /* If a new weak symbol definition comes from a regular file and the
1467 old symbol comes from a dynamic library, we treat the new one as
1468 strong. Similarly, an old weak symbol definition from a regular
1469 file is treated as strong when the new symbol comes from a dynamic
1470 library. Further, an old weak symbol from a dynamic library is
1471 treated as strong if the new symbol is from a dynamic library.
1472 This reflects the way glibc's ld.so works.
1473
1474 Do this before setting *type_change_ok or *size_change_ok so that
1475 we warn properly when dynamic library symbols are overridden. */
1476
1477 if (newdef && !newdyn && olddyn)
1478 newweak = FALSE;
1479 if (olddef && newdyn)
1480 oldweak = FALSE;
1481
1482 /* Allow changes between different types of function symbol. */
1483 if (newfunc && oldfunc)
1484 *type_change_ok = TRUE;
1485
1486 /* It's OK to change the type if either the existing symbol or the
1487 new symbol is weak. A type change is also OK if the old symbol
1488 is undefined and the new symbol is defined. */
1489
1490 if (oldweak
1491 || newweak
1492 || (newdef
1493 && h->root.type == bfd_link_hash_undefined))
1494 *type_change_ok = TRUE;
1495
1496 /* It's OK to change the size if either the existing symbol or the
1497 new symbol is weak, or if the old symbol is undefined. */
1498
1499 if (*type_change_ok
1500 || h->root.type == bfd_link_hash_undefined)
1501 *size_change_ok = TRUE;
1502
1503 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1504 symbol, respectively, appears to be a common symbol in a dynamic
1505 object. If a symbol appears in an uninitialized section, and is
1506 not weak, and is not a function, then it may be a common symbol
1507 which was resolved when the dynamic object was created. We want
1508 to treat such symbols specially, because they raise special
1509 considerations when setting the symbol size: if the symbol
1510 appears as a common symbol in a regular object, and the size in
1511 the regular object is larger, we must make sure that we use the
1512 larger size. This problematic case can always be avoided in C,
1513 but it must be handled correctly when using Fortran shared
1514 libraries.
1515
1516 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1517 likewise for OLDDYNCOMMON and OLDDEF.
1518
1519 Note that this test is just a heuristic, and that it is quite
1520 possible to have an uninitialized symbol in a shared object which
1521 is really a definition, rather than a common symbol. This could
1522 lead to some minor confusion when the symbol really is a common
1523 symbol in some regular object. However, I think it will be
1524 harmless. */
1525
1526 if (newdyn
1527 && newdef
1528 && !newweak
1529 && (sec->flags & SEC_ALLOC) != 0
1530 && (sec->flags & SEC_LOAD) == 0
1531 && sym->st_size > 0
1532 && !newfunc)
1533 newdyncommon = TRUE;
1534 else
1535 newdyncommon = FALSE;
1536
1537 if (olddyn
1538 && olddef
1539 && h->root.type == bfd_link_hash_defined
1540 && h->def_dynamic
1541 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1542 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1543 && h->size > 0
1544 && !oldfunc)
1545 olddyncommon = TRUE;
1546 else
1547 olddyncommon = FALSE;
1548
1549 /* We now know everything about the old and new symbols. We ask the
1550 backend to check if we can merge them. */
1551 if (bed->merge_symbol != NULL)
1552 {
1553 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1554 return FALSE;
1555 sec = *psec;
1556 }
1557
1558 /* There are multiple definitions of a normal symbol. Skip the
1559 default symbol as well as definition from an IR object. */
1560 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1561 && !default_sym && h->def_regular
1562 && !(oldbfd != NULL
1563 && (oldbfd->flags & BFD_PLUGIN) != 0
1564 && (abfd->flags & BFD_PLUGIN) == 0))
1565 {
1566 /* Handle a multiple definition. */
1567 (*info->callbacks->multiple_definition) (info, &h->root,
1568 abfd, sec, *pvalue);
1569 *skip = TRUE;
1570 return TRUE;
1571 }
1572
1573 /* If both the old and the new symbols look like common symbols in a
1574 dynamic object, set the size of the symbol to the larger of the
1575 two. */
1576
1577 if (olddyncommon
1578 && newdyncommon
1579 && sym->st_size != h->size)
1580 {
1581 /* Since we think we have two common symbols, issue a multiple
1582 common warning if desired. Note that we only warn if the
1583 size is different. If the size is the same, we simply let
1584 the old symbol override the new one as normally happens with
1585 symbols defined in dynamic objects. */
1586
1587 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1588 bfd_link_hash_common, sym->st_size);
1589 if (sym->st_size > h->size)
1590 h->size = sym->st_size;
1591
1592 *size_change_ok = TRUE;
1593 }
1594
1595 /* If we are looking at a dynamic object, and we have found a
1596 definition, we need to see if the symbol was already defined by
1597 some other object. If so, we want to use the existing
1598 definition, and we do not want to report a multiple symbol
1599 definition error; we do this by clobbering *PSEC to be
1600 bfd_und_section_ptr.
1601
1602 We treat a common symbol as a definition if the symbol in the
1603 shared library is a function, since common symbols always
1604 represent variables; this can cause confusion in principle, but
1605 any such confusion would seem to indicate an erroneous program or
1606 shared library. We also permit a common symbol in a regular
1607 object to override a weak symbol in a shared object. */
1608
1609 if (newdyn
1610 && newdef
1611 && (olddef
1612 || (h->root.type == bfd_link_hash_common
1613 && (newweak || newfunc))))
1614 {
1615 *override = TRUE;
1616 newdef = FALSE;
1617 newdyncommon = FALSE;
1618
1619 *psec = sec = bfd_und_section_ptr;
1620 *size_change_ok = TRUE;
1621
1622 /* If we get here when the old symbol is a common symbol, then
1623 we are explicitly letting it override a weak symbol or
1624 function in a dynamic object, and we don't want to warn about
1625 a type change. If the old symbol is a defined symbol, a type
1626 change warning may still be appropriate. */
1627
1628 if (h->root.type == bfd_link_hash_common)
1629 *type_change_ok = TRUE;
1630 }
1631
1632 /* Handle the special case of an old common symbol merging with a
1633 new symbol which looks like a common symbol in a shared object.
1634 We change *PSEC and *PVALUE to make the new symbol look like a
1635 common symbol, and let _bfd_generic_link_add_one_symbol do the
1636 right thing. */
1637
1638 if (newdyncommon
1639 && h->root.type == bfd_link_hash_common)
1640 {
1641 *override = TRUE;
1642 newdef = FALSE;
1643 newdyncommon = FALSE;
1644 *pvalue = sym->st_size;
1645 *psec = sec = bed->common_section (oldsec);
1646 *size_change_ok = TRUE;
1647 }
1648
1649 /* Skip weak definitions of symbols that are already defined. */
1650 if (newdef && olddef && newweak)
1651 {
1652 /* Don't skip new non-IR weak syms. */
1653 if (!(oldbfd != NULL
1654 && (oldbfd->flags & BFD_PLUGIN) != 0
1655 && (abfd->flags & BFD_PLUGIN) == 0))
1656 {
1657 newdef = FALSE;
1658 *skip = TRUE;
1659 }
1660
1661 /* Merge st_other. If the symbol already has a dynamic index,
1662 but visibility says it should not be visible, turn it into a
1663 local symbol. */
1664 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1665 if (h->dynindx != -1)
1666 switch (ELF_ST_VISIBILITY (h->other))
1667 {
1668 case STV_INTERNAL:
1669 case STV_HIDDEN:
1670 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1671 break;
1672 }
1673 }
1674
1675 /* If the old symbol is from a dynamic object, and the new symbol is
1676 a definition which is not from a dynamic object, then the new
1677 symbol overrides the old symbol. Symbols from regular files
1678 always take precedence over symbols from dynamic objects, even if
1679 they are defined after the dynamic object in the link.
1680
1681 As above, we again permit a common symbol in a regular object to
1682 override a definition in a shared object if the shared object
1683 symbol is a function or is weak. */
1684
1685 flip = NULL;
1686 if (!newdyn
1687 && (newdef
1688 || (bfd_is_com_section (sec)
1689 && (oldweak || oldfunc)))
1690 && olddyn
1691 && olddef
1692 && h->def_dynamic)
1693 {
1694 /* Change the hash table entry to undefined, and let
1695 _bfd_generic_link_add_one_symbol do the right thing with the
1696 new definition. */
1697
1698 h->root.type = bfd_link_hash_undefined;
1699 h->root.u.undef.abfd = h->root.u.def.section->owner;
1700 *size_change_ok = TRUE;
1701
1702 olddef = FALSE;
1703 olddyncommon = FALSE;
1704
1705 /* We again permit a type change when a common symbol may be
1706 overriding a function. */
1707
1708 if (bfd_is_com_section (sec))
1709 {
1710 if (oldfunc)
1711 {
1712 /* If a common symbol overrides a function, make sure
1713 that it isn't defined dynamically nor has type
1714 function. */
1715 h->def_dynamic = 0;
1716 h->type = STT_NOTYPE;
1717 }
1718 *type_change_ok = TRUE;
1719 }
1720
1721 if (hi->root.type == bfd_link_hash_indirect)
1722 flip = hi;
1723 else
1724 /* This union may have been set to be non-NULL when this symbol
1725 was seen in a dynamic object. We must force the union to be
1726 NULL, so that it is correct for a regular symbol. */
1727 h->verinfo.vertree = NULL;
1728 }
1729
1730 /* Handle the special case of a new common symbol merging with an
1731 old symbol that looks like it might be a common symbol defined in
1732 a shared object. Note that we have already handled the case in
1733 which a new common symbol should simply override the definition
1734 in the shared library. */
1735
1736 if (! newdyn
1737 && bfd_is_com_section (sec)
1738 && olddyncommon)
1739 {
1740 /* It would be best if we could set the hash table entry to a
1741 common symbol, but we don't know what to use for the section
1742 or the alignment. */
1743 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1744 bfd_link_hash_common, sym->st_size);
1745
1746 /* If the presumed common symbol in the dynamic object is
1747 larger, pretend that the new symbol has its size. */
1748
1749 if (h->size > *pvalue)
1750 *pvalue = h->size;
1751
1752 /* We need to remember the alignment required by the symbol
1753 in the dynamic object. */
1754 BFD_ASSERT (pold_alignment);
1755 *pold_alignment = h->root.u.def.section->alignment_power;
1756
1757 olddef = FALSE;
1758 olddyncommon = FALSE;
1759
1760 h->root.type = bfd_link_hash_undefined;
1761 h->root.u.undef.abfd = h->root.u.def.section->owner;
1762
1763 *size_change_ok = TRUE;
1764 *type_change_ok = TRUE;
1765
1766 if (hi->root.type == bfd_link_hash_indirect)
1767 flip = hi;
1768 else
1769 h->verinfo.vertree = NULL;
1770 }
1771
1772 if (flip != NULL)
1773 {
1774 /* Handle the case where we had a versioned symbol in a dynamic
1775 library and now find a definition in a normal object. In this
1776 case, we make the versioned symbol point to the normal one. */
1777 flip->root.type = h->root.type;
1778 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1779 h->root.type = bfd_link_hash_indirect;
1780 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1781 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1782 if (h->def_dynamic)
1783 {
1784 h->def_dynamic = 0;
1785 flip->ref_dynamic = 1;
1786 }
1787 }
1788
1789 return TRUE;
1790 }
1791
1792 /* This function is called to create an indirect symbol from the
1793 default for the symbol with the default version if needed. The
1794 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1795 set DYNSYM if the new indirect symbol is dynamic. */
1796
1797 static bfd_boolean
1798 _bfd_elf_add_default_symbol (bfd *abfd,
1799 struct bfd_link_info *info,
1800 struct elf_link_hash_entry *h,
1801 const char *name,
1802 Elf_Internal_Sym *sym,
1803 asection *sec,
1804 bfd_vma value,
1805 bfd **poldbfd,
1806 bfd_boolean *dynsym)
1807 {
1808 bfd_boolean type_change_ok;
1809 bfd_boolean size_change_ok;
1810 bfd_boolean skip;
1811 char *shortname;
1812 struct elf_link_hash_entry *hi;
1813 struct bfd_link_hash_entry *bh;
1814 const struct elf_backend_data *bed;
1815 bfd_boolean collect;
1816 bfd_boolean dynamic;
1817 bfd_boolean override;
1818 char *p;
1819 size_t len, shortlen;
1820 asection *tmp_sec;
1821 bfd_boolean matched;
1822
1823 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1824 return TRUE;
1825
1826 /* If this symbol has a version, and it is the default version, we
1827 create an indirect symbol from the default name to the fully
1828 decorated name. This will cause external references which do not
1829 specify a version to be bound to this version of the symbol. */
1830 p = strchr (name, ELF_VER_CHR);
1831 if (h->versioned == unknown)
1832 {
1833 if (p == NULL)
1834 {
1835 h->versioned = unversioned;
1836 return TRUE;
1837 }
1838 else
1839 {
1840 if (p[1] != ELF_VER_CHR)
1841 {
1842 h->versioned = versioned_hidden;
1843 return TRUE;
1844 }
1845 else
1846 h->versioned = versioned;
1847 }
1848 }
1849 else
1850 {
1851 /* PR ld/19073: We may see an unversioned definition after the
1852 default version. */
1853 if (p == NULL)
1854 return TRUE;
1855 }
1856
1857 bed = get_elf_backend_data (abfd);
1858 collect = bed->collect;
1859 dynamic = (abfd->flags & DYNAMIC) != 0;
1860
1861 shortlen = p - name;
1862 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1863 if (shortname == NULL)
1864 return FALSE;
1865 memcpy (shortname, name, shortlen);
1866 shortname[shortlen] = '\0';
1867
1868 /* We are going to create a new symbol. Merge it with any existing
1869 symbol with this name. For the purposes of the merge, act as
1870 though we were defining the symbol we just defined, although we
1871 actually going to define an indirect symbol. */
1872 type_change_ok = FALSE;
1873 size_change_ok = FALSE;
1874 matched = TRUE;
1875 tmp_sec = sec;
1876 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1877 &hi, poldbfd, NULL, NULL, &skip, &override,
1878 &type_change_ok, &size_change_ok, &matched))
1879 return FALSE;
1880
1881 if (skip)
1882 goto nondefault;
1883
1884 if (hi->def_regular)
1885 {
1886 /* If the undecorated symbol will have a version added by a
1887 script different to H, then don't indirect to/from the
1888 undecorated symbol. This isn't ideal because we may not yet
1889 have seen symbol versions, if given by a script on the
1890 command line rather than via --version-script. */
1891 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1892 {
1893 bfd_boolean hide;
1894
1895 hi->verinfo.vertree
1896 = bfd_find_version_for_sym (info->version_info,
1897 hi->root.root.string, &hide);
1898 if (hi->verinfo.vertree != NULL && hide)
1899 {
1900 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1901 goto nondefault;
1902 }
1903 }
1904 if (hi->verinfo.vertree != NULL
1905 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1906 goto nondefault;
1907 }
1908
1909 if (! override)
1910 {
1911 /* Add the default symbol if not performing a relocatable link. */
1912 if (! bfd_link_relocatable (info))
1913 {
1914 bh = &hi->root;
1915 if (! (_bfd_generic_link_add_one_symbol
1916 (info, abfd, shortname, BSF_INDIRECT,
1917 bfd_ind_section_ptr,
1918 0, name, FALSE, collect, &bh)))
1919 return FALSE;
1920 hi = (struct elf_link_hash_entry *) bh;
1921 }
1922 }
1923 else
1924 {
1925 /* In this case the symbol named SHORTNAME is overriding the
1926 indirect symbol we want to add. We were planning on making
1927 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1928 is the name without a version. NAME is the fully versioned
1929 name, and it is the default version.
1930
1931 Overriding means that we already saw a definition for the
1932 symbol SHORTNAME in a regular object, and it is overriding
1933 the symbol defined in the dynamic object.
1934
1935 When this happens, we actually want to change NAME, the
1936 symbol we just added, to refer to SHORTNAME. This will cause
1937 references to NAME in the shared object to become references
1938 to SHORTNAME in the regular object. This is what we expect
1939 when we override a function in a shared object: that the
1940 references in the shared object will be mapped to the
1941 definition in the regular object. */
1942
1943 while (hi->root.type == bfd_link_hash_indirect
1944 || hi->root.type == bfd_link_hash_warning)
1945 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946
1947 h->root.type = bfd_link_hash_indirect;
1948 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1949 if (h->def_dynamic)
1950 {
1951 h->def_dynamic = 0;
1952 hi->ref_dynamic = 1;
1953 if (hi->ref_regular
1954 || hi->def_regular)
1955 {
1956 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1957 return FALSE;
1958 }
1959 }
1960
1961 /* Now set HI to H, so that the following code will set the
1962 other fields correctly. */
1963 hi = h;
1964 }
1965
1966 /* Check if HI is a warning symbol. */
1967 if (hi->root.type == bfd_link_hash_warning)
1968 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1969
1970 /* If there is a duplicate definition somewhere, then HI may not
1971 point to an indirect symbol. We will have reported an error to
1972 the user in that case. */
1973
1974 if (hi->root.type == bfd_link_hash_indirect)
1975 {
1976 struct elf_link_hash_entry *ht;
1977
1978 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1980
1981 /* A reference to the SHORTNAME symbol from a dynamic library
1982 will be satisfied by the versioned symbol at runtime. In
1983 effect, we have a reference to the versioned symbol. */
1984 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1985 hi->dynamic_def |= ht->dynamic_def;
1986
1987 /* See if the new flags lead us to realize that the symbol must
1988 be dynamic. */
1989 if (! *dynsym)
1990 {
1991 if (! dynamic)
1992 {
1993 if (! bfd_link_executable (info)
1994 || hi->def_dynamic
1995 || hi->ref_dynamic)
1996 *dynsym = TRUE;
1997 }
1998 else
1999 {
2000 if (hi->ref_regular)
2001 *dynsym = TRUE;
2002 }
2003 }
2004 }
2005
2006 /* We also need to define an indirection from the nondefault version
2007 of the symbol. */
2008
2009 nondefault:
2010 len = strlen (name);
2011 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2012 if (shortname == NULL)
2013 return FALSE;
2014 memcpy (shortname, name, shortlen);
2015 memcpy (shortname + shortlen, p + 1, len - shortlen);
2016
2017 /* Once again, merge with any existing symbol. */
2018 type_change_ok = FALSE;
2019 size_change_ok = FALSE;
2020 tmp_sec = sec;
2021 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2022 &hi, poldbfd, NULL, NULL, &skip, &override,
2023 &type_change_ok, &size_change_ok, &matched))
2024 return FALSE;
2025
2026 if (skip)
2027 return TRUE;
2028
2029 if (override)
2030 {
2031 /* Here SHORTNAME is a versioned name, so we don't expect to see
2032 the type of override we do in the case above unless it is
2033 overridden by a versioned definition. */
2034 if (hi->root.type != bfd_link_hash_defined
2035 && hi->root.type != bfd_link_hash_defweak)
2036 _bfd_error_handler
2037 /* xgettext:c-format */
2038 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2039 abfd, shortname);
2040 }
2041 else
2042 {
2043 bh = &hi->root;
2044 if (! (_bfd_generic_link_add_one_symbol
2045 (info, abfd, shortname, BSF_INDIRECT,
2046 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2047 return FALSE;
2048 hi = (struct elf_link_hash_entry *) bh;
2049
2050 /* If there is a duplicate definition somewhere, then HI may not
2051 point to an indirect symbol. We will have reported an error
2052 to the user in that case. */
2053
2054 if (hi->root.type == bfd_link_hash_indirect)
2055 {
2056 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2057 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2058 hi->dynamic_def |= h->dynamic_def;
2059
2060 /* See if the new flags lead us to realize that the symbol
2061 must be dynamic. */
2062 if (! *dynsym)
2063 {
2064 if (! dynamic)
2065 {
2066 if (! bfd_link_executable (info)
2067 || hi->ref_dynamic)
2068 *dynsym = TRUE;
2069 }
2070 else
2071 {
2072 if (hi->ref_regular)
2073 *dynsym = TRUE;
2074 }
2075 }
2076 }
2077 }
2078
2079 return TRUE;
2080 }
2081 \f
2082 /* This routine is used to export all defined symbols into the dynamic
2083 symbol table. It is called via elf_link_hash_traverse. */
2084
2085 static bfd_boolean
2086 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2087 {
2088 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2089
2090 /* Ignore indirect symbols. These are added by the versioning code. */
2091 if (h->root.type == bfd_link_hash_indirect)
2092 return TRUE;
2093
2094 /* Ignore this if we won't export it. */
2095 if (!eif->info->export_dynamic && !h->dynamic)
2096 return TRUE;
2097
2098 if (h->dynindx == -1
2099 && (h->def_regular || h->ref_regular)
2100 && ! bfd_hide_sym_by_version (eif->info->version_info,
2101 h->root.root.string))
2102 {
2103 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2104 {
2105 eif->failed = TRUE;
2106 return FALSE;
2107 }
2108 }
2109
2110 return TRUE;
2111 }
2112 \f
2113 /* Look through the symbols which are defined in other shared
2114 libraries and referenced here. Update the list of version
2115 dependencies. This will be put into the .gnu.version_r section.
2116 This function is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2120 void *data)
2121 {
2122 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2123 Elf_Internal_Verneed *t;
2124 Elf_Internal_Vernaux *a;
2125 bfd_size_type amt;
2126
2127 /* We only care about symbols defined in shared objects with version
2128 information. */
2129 if (!h->def_dynamic
2130 || h->def_regular
2131 || h->dynindx == -1
2132 || h->verinfo.verdef == NULL
2133 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2134 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2135 return TRUE;
2136
2137 /* See if we already know about this version. */
2138 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2139 t != NULL;
2140 t = t->vn_nextref)
2141 {
2142 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2143 continue;
2144
2145 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2146 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2147 return TRUE;
2148
2149 break;
2150 }
2151
2152 /* This is a new version. Add it to tree we are building. */
2153
2154 if (t == NULL)
2155 {
2156 amt = sizeof *t;
2157 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2158 if (t == NULL)
2159 {
2160 rinfo->failed = TRUE;
2161 return FALSE;
2162 }
2163
2164 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2165 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2166 elf_tdata (rinfo->info->output_bfd)->verref = t;
2167 }
2168
2169 amt = sizeof *a;
2170 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2171 if (a == NULL)
2172 {
2173 rinfo->failed = TRUE;
2174 return FALSE;
2175 }
2176
2177 /* Note that we are copying a string pointer here, and testing it
2178 above. If bfd_elf_string_from_elf_section is ever changed to
2179 discard the string data when low in memory, this will have to be
2180 fixed. */
2181 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2182
2183 a->vna_flags = h->verinfo.verdef->vd_flags;
2184 a->vna_nextptr = t->vn_auxptr;
2185
2186 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2187 ++rinfo->vers;
2188
2189 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2190
2191 t->vn_auxptr = a;
2192
2193 return TRUE;
2194 }
2195
2196 /* Figure out appropriate versions for all the symbols. We may not
2197 have the version number script until we have read all of the input
2198 files, so until that point we don't know which symbols should be
2199 local. This function is called via elf_link_hash_traverse. */
2200
2201 static bfd_boolean
2202 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2203 {
2204 struct elf_info_failed *sinfo;
2205 struct bfd_link_info *info;
2206 const struct elf_backend_data *bed;
2207 struct elf_info_failed eif;
2208 char *p;
2209
2210 sinfo = (struct elf_info_failed *) data;
2211 info = sinfo->info;
2212
2213 /* Fix the symbol flags. */
2214 eif.failed = FALSE;
2215 eif.info = info;
2216 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2217 {
2218 if (eif.failed)
2219 sinfo->failed = TRUE;
2220 return FALSE;
2221 }
2222
2223 /* We only need version numbers for symbols defined in regular
2224 objects. */
2225 if (!h->def_regular)
2226 return TRUE;
2227
2228 bed = get_elf_backend_data (info->output_bfd);
2229 p = strchr (h->root.root.string, ELF_VER_CHR);
2230 if (p != NULL && h->verinfo.vertree == NULL)
2231 {
2232 struct bfd_elf_version_tree *t;
2233
2234 ++p;
2235 if (*p == ELF_VER_CHR)
2236 ++p;
2237
2238 /* If there is no version string, we can just return out. */
2239 if (*p == '\0')
2240 return TRUE;
2241
2242 /* Look for the version. If we find it, it is no longer weak. */
2243 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2244 {
2245 if (strcmp (t->name, p) == 0)
2246 {
2247 size_t len;
2248 char *alc;
2249 struct bfd_elf_version_expr *d;
2250
2251 len = p - h->root.root.string;
2252 alc = (char *) bfd_malloc (len);
2253 if (alc == NULL)
2254 {
2255 sinfo->failed = TRUE;
2256 return FALSE;
2257 }
2258 memcpy (alc, h->root.root.string, len - 1);
2259 alc[len - 1] = '\0';
2260 if (alc[len - 2] == ELF_VER_CHR)
2261 alc[len - 2] = '\0';
2262
2263 h->verinfo.vertree = t;
2264 t->used = TRUE;
2265 d = NULL;
2266
2267 if (t->globals.list != NULL)
2268 d = (*t->match) (&t->globals, NULL, alc);
2269
2270 /* See if there is anything to force this symbol to
2271 local scope. */
2272 if (d == NULL && t->locals.list != NULL)
2273 {
2274 d = (*t->match) (&t->locals, NULL, alc);
2275 if (d != NULL
2276 && h->dynindx != -1
2277 && ! info->export_dynamic)
2278 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2279 }
2280
2281 free (alc);
2282 break;
2283 }
2284 }
2285
2286 /* If we are building an application, we need to create a
2287 version node for this version. */
2288 if (t == NULL && bfd_link_executable (info))
2289 {
2290 struct bfd_elf_version_tree **pp;
2291 int version_index;
2292
2293 /* If we aren't going to export this symbol, we don't need
2294 to worry about it. */
2295 if (h->dynindx == -1)
2296 return TRUE;
2297
2298 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2299 sizeof *t);
2300 if (t == NULL)
2301 {
2302 sinfo->failed = TRUE;
2303 return FALSE;
2304 }
2305
2306 t->name = p;
2307 t->name_indx = (unsigned int) -1;
2308 t->used = TRUE;
2309
2310 version_index = 1;
2311 /* Don't count anonymous version tag. */
2312 if (sinfo->info->version_info != NULL
2313 && sinfo->info->version_info->vernum == 0)
2314 version_index = 0;
2315 for (pp = &sinfo->info->version_info;
2316 *pp != NULL;
2317 pp = &(*pp)->next)
2318 ++version_index;
2319 t->vernum = version_index;
2320
2321 *pp = t;
2322
2323 h->verinfo.vertree = t;
2324 }
2325 else if (t == NULL)
2326 {
2327 /* We could not find the version for a symbol when
2328 generating a shared archive. Return an error. */
2329 _bfd_error_handler
2330 /* xgettext:c-format */
2331 (_("%B: version node not found for symbol %s"),
2332 info->output_bfd, h->root.root.string);
2333 bfd_set_error (bfd_error_bad_value);
2334 sinfo->failed = TRUE;
2335 return FALSE;
2336 }
2337 }
2338
2339 /* If we don't have a version for this symbol, see if we can find
2340 something. */
2341 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2342 {
2343 bfd_boolean hide;
2344
2345 h->verinfo.vertree
2346 = bfd_find_version_for_sym (sinfo->info->version_info,
2347 h->root.root.string, &hide);
2348 if (h->verinfo.vertree != NULL && hide)
2349 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2350 }
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Read and swap the relocs from the section indicated by SHDR. This
2356 may be either a REL or a RELA section. The relocations are
2357 translated into RELA relocations and stored in INTERNAL_RELOCS,
2358 which should have already been allocated to contain enough space.
2359 The EXTERNAL_RELOCS are a buffer where the external form of the
2360 relocations should be stored.
2361
2362 Returns FALSE if something goes wrong. */
2363
2364 static bfd_boolean
2365 elf_link_read_relocs_from_section (bfd *abfd,
2366 asection *sec,
2367 Elf_Internal_Shdr *shdr,
2368 void *external_relocs,
2369 Elf_Internal_Rela *internal_relocs)
2370 {
2371 const struct elf_backend_data *bed;
2372 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2373 const bfd_byte *erela;
2374 const bfd_byte *erelaend;
2375 Elf_Internal_Rela *irela;
2376 Elf_Internal_Shdr *symtab_hdr;
2377 size_t nsyms;
2378
2379 /* Position ourselves at the start of the section. */
2380 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2381 return FALSE;
2382
2383 /* Read the relocations. */
2384 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2385 return FALSE;
2386
2387 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2388 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2389
2390 bed = get_elf_backend_data (abfd);
2391
2392 /* Convert the external relocations to the internal format. */
2393 if (shdr->sh_entsize == bed->s->sizeof_rel)
2394 swap_in = bed->s->swap_reloc_in;
2395 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2396 swap_in = bed->s->swap_reloca_in;
2397 else
2398 {
2399 bfd_set_error (bfd_error_wrong_format);
2400 return FALSE;
2401 }
2402
2403 erela = (const bfd_byte *) external_relocs;
2404 erelaend = erela + shdr->sh_size;
2405 irela = internal_relocs;
2406 while (erela < erelaend)
2407 {
2408 bfd_vma r_symndx;
2409
2410 (*swap_in) (abfd, erela, irela);
2411 r_symndx = ELF32_R_SYM (irela->r_info);
2412 if (bed->s->arch_size == 64)
2413 r_symndx >>= 24;
2414 if (nsyms > 0)
2415 {
2416 if ((size_t) r_symndx >= nsyms)
2417 {
2418 _bfd_error_handler
2419 /* xgettext:c-format */
2420 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2421 " for offset %#Lx in section `%A'"),
2422 abfd, r_symndx, (unsigned long) nsyms,
2423 irela->r_offset, sec);
2424 bfd_set_error (bfd_error_bad_value);
2425 return FALSE;
2426 }
2427 }
2428 else if (r_symndx != STN_UNDEF)
2429 {
2430 _bfd_error_handler
2431 /* xgettext:c-format */
2432 (_("%B: non-zero symbol index (%#Lx)"
2433 " for offset %#Lx in section `%A'"
2434 " when the object file has no symbol table"),
2435 abfd, r_symndx,
2436 irela->r_offset, sec);
2437 bfd_set_error (bfd_error_bad_value);
2438 return FALSE;
2439 }
2440 irela += bed->s->int_rels_per_ext_rel;
2441 erela += shdr->sh_entsize;
2442 }
2443
2444 return TRUE;
2445 }
2446
2447 /* Read and swap the relocs for a section O. They may have been
2448 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2449 not NULL, they are used as buffers to read into. They are known to
2450 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2451 the return value is allocated using either malloc or bfd_alloc,
2452 according to the KEEP_MEMORY argument. If O has two relocation
2453 sections (both REL and RELA relocations), then the REL_HDR
2454 relocations will appear first in INTERNAL_RELOCS, followed by the
2455 RELA_HDR relocations. */
2456
2457 Elf_Internal_Rela *
2458 _bfd_elf_link_read_relocs (bfd *abfd,
2459 asection *o,
2460 void *external_relocs,
2461 Elf_Internal_Rela *internal_relocs,
2462 bfd_boolean keep_memory)
2463 {
2464 void *alloc1 = NULL;
2465 Elf_Internal_Rela *alloc2 = NULL;
2466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2467 struct bfd_elf_section_data *esdo = elf_section_data (o);
2468 Elf_Internal_Rela *internal_rela_relocs;
2469
2470 if (esdo->relocs != NULL)
2471 return esdo->relocs;
2472
2473 if (o->reloc_count == 0)
2474 return NULL;
2475
2476 if (internal_relocs == NULL)
2477 {
2478 bfd_size_type size;
2479
2480 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2481 if (keep_memory)
2482 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2483 else
2484 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2485 if (internal_relocs == NULL)
2486 goto error_return;
2487 }
2488
2489 if (external_relocs == NULL)
2490 {
2491 bfd_size_type size = 0;
2492
2493 if (esdo->rel.hdr)
2494 size += esdo->rel.hdr->sh_size;
2495 if (esdo->rela.hdr)
2496 size += esdo->rela.hdr->sh_size;
2497
2498 alloc1 = bfd_malloc (size);
2499 if (alloc1 == NULL)
2500 goto error_return;
2501 external_relocs = alloc1;
2502 }
2503
2504 internal_rela_relocs = internal_relocs;
2505 if (esdo->rel.hdr)
2506 {
2507 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2508 external_relocs,
2509 internal_relocs))
2510 goto error_return;
2511 external_relocs = (((bfd_byte *) external_relocs)
2512 + esdo->rel.hdr->sh_size);
2513 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2514 * bed->s->int_rels_per_ext_rel);
2515 }
2516
2517 if (esdo->rela.hdr
2518 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2519 external_relocs,
2520 internal_rela_relocs)))
2521 goto error_return;
2522
2523 /* Cache the results for next time, if we can. */
2524 if (keep_memory)
2525 esdo->relocs = internal_relocs;
2526
2527 if (alloc1 != NULL)
2528 free (alloc1);
2529
2530 /* Don't free alloc2, since if it was allocated we are passing it
2531 back (under the name of internal_relocs). */
2532
2533 return internal_relocs;
2534
2535 error_return:
2536 if (alloc1 != NULL)
2537 free (alloc1);
2538 if (alloc2 != NULL)
2539 {
2540 if (keep_memory)
2541 bfd_release (abfd, alloc2);
2542 else
2543 free (alloc2);
2544 }
2545 return NULL;
2546 }
2547
2548 /* Compute the size of, and allocate space for, REL_HDR which is the
2549 section header for a section containing relocations for O. */
2550
2551 static bfd_boolean
2552 _bfd_elf_link_size_reloc_section (bfd *abfd,
2553 struct bfd_elf_section_reloc_data *reldata)
2554 {
2555 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2556
2557 /* That allows us to calculate the size of the section. */
2558 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2559
2560 /* The contents field must last into write_object_contents, so we
2561 allocate it with bfd_alloc rather than malloc. Also since we
2562 cannot be sure that the contents will actually be filled in,
2563 we zero the allocated space. */
2564 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2565 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2566 return FALSE;
2567
2568 if (reldata->hashes == NULL && reldata->count)
2569 {
2570 struct elf_link_hash_entry **p;
2571
2572 p = ((struct elf_link_hash_entry **)
2573 bfd_zmalloc (reldata->count * sizeof (*p)));
2574 if (p == NULL)
2575 return FALSE;
2576
2577 reldata->hashes = p;
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2584 originated from the section given by INPUT_REL_HDR) to the
2585 OUTPUT_BFD. */
2586
2587 bfd_boolean
2588 _bfd_elf_link_output_relocs (bfd *output_bfd,
2589 asection *input_section,
2590 Elf_Internal_Shdr *input_rel_hdr,
2591 Elf_Internal_Rela *internal_relocs,
2592 struct elf_link_hash_entry **rel_hash
2593 ATTRIBUTE_UNUSED)
2594 {
2595 Elf_Internal_Rela *irela;
2596 Elf_Internal_Rela *irelaend;
2597 bfd_byte *erel;
2598 struct bfd_elf_section_reloc_data *output_reldata;
2599 asection *output_section;
2600 const struct elf_backend_data *bed;
2601 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2602 struct bfd_elf_section_data *esdo;
2603
2604 output_section = input_section->output_section;
2605
2606 bed = get_elf_backend_data (output_bfd);
2607 esdo = elf_section_data (output_section);
2608 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2609 {
2610 output_reldata = &esdo->rel;
2611 swap_out = bed->s->swap_reloc_out;
2612 }
2613 else if (esdo->rela.hdr
2614 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2615 {
2616 output_reldata = &esdo->rela;
2617 swap_out = bed->s->swap_reloca_out;
2618 }
2619 else
2620 {
2621 _bfd_error_handler
2622 /* xgettext:c-format */
2623 (_("%B: relocation size mismatch in %B section %A"),
2624 output_bfd, input_section->owner, input_section);
2625 bfd_set_error (bfd_error_wrong_format);
2626 return FALSE;
2627 }
2628
2629 erel = output_reldata->hdr->contents;
2630 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2631 irela = internal_relocs;
2632 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 while (irela < irelaend)
2635 {
2636 (*swap_out) (output_bfd, irela, erel);
2637 irela += bed->s->int_rels_per_ext_rel;
2638 erel += input_rel_hdr->sh_entsize;
2639 }
2640
2641 /* Bump the counter, so that we know where to add the next set of
2642 relocations. */
2643 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2644
2645 return TRUE;
2646 }
2647 \f
2648 /* Make weak undefined symbols in PIE dynamic. */
2649
2650 bfd_boolean
2651 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2652 struct elf_link_hash_entry *h)
2653 {
2654 if (bfd_link_pie (info)
2655 && h->dynindx == -1
2656 && h->root.type == bfd_link_hash_undefweak)
2657 return bfd_elf_link_record_dynamic_symbol (info, h);
2658
2659 return TRUE;
2660 }
2661
2662 /* Fix up the flags for a symbol. This handles various cases which
2663 can only be fixed after all the input files are seen. This is
2664 currently called by both adjust_dynamic_symbol and
2665 assign_sym_version, which is unnecessary but perhaps more robust in
2666 the face of future changes. */
2667
2668 static bfd_boolean
2669 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2670 struct elf_info_failed *eif)
2671 {
2672 const struct elf_backend_data *bed;
2673
2674 /* If this symbol was mentioned in a non-ELF file, try to set
2675 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2676 permit a non-ELF file to correctly refer to a symbol defined in
2677 an ELF dynamic object. */
2678 if (h->non_elf)
2679 {
2680 while (h->root.type == bfd_link_hash_indirect)
2681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2682
2683 if (h->root.type != bfd_link_hash_defined
2684 && h->root.type != bfd_link_hash_defweak)
2685 {
2686 h->ref_regular = 1;
2687 h->ref_regular_nonweak = 1;
2688 }
2689 else
2690 {
2691 if (h->root.u.def.section->owner != NULL
2692 && (bfd_get_flavour (h->root.u.def.section->owner)
2693 == bfd_target_elf_flavour))
2694 {
2695 h->ref_regular = 1;
2696 h->ref_regular_nonweak = 1;
2697 }
2698 else
2699 h->def_regular = 1;
2700 }
2701
2702 if (h->dynindx == -1
2703 && (h->def_dynamic
2704 || h->ref_dynamic))
2705 {
2706 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2707 {
2708 eif->failed = TRUE;
2709 return FALSE;
2710 }
2711 }
2712 }
2713 else
2714 {
2715 /* Unfortunately, NON_ELF is only correct if the symbol
2716 was first seen in a non-ELF file. Fortunately, if the symbol
2717 was first seen in an ELF file, we're probably OK unless the
2718 symbol was defined in a non-ELF file. Catch that case here.
2719 FIXME: We're still in trouble if the symbol was first seen in
2720 a dynamic object, and then later in a non-ELF regular object. */
2721 if ((h->root.type == bfd_link_hash_defined
2722 || h->root.type == bfd_link_hash_defweak)
2723 && !h->def_regular
2724 && (h->root.u.def.section->owner != NULL
2725 ? (bfd_get_flavour (h->root.u.def.section->owner)
2726 != bfd_target_elf_flavour)
2727 : (bfd_is_abs_section (h->root.u.def.section)
2728 && !h->def_dynamic)))
2729 h->def_regular = 1;
2730 }
2731
2732 /* Backend specific symbol fixup. */
2733 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2734 if (bed->elf_backend_fixup_symbol
2735 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2736 return FALSE;
2737
2738 /* If this is a final link, and the symbol was defined as a common
2739 symbol in a regular object file, and there was no definition in
2740 any dynamic object, then the linker will have allocated space for
2741 the symbol in a common section but the DEF_REGULAR
2742 flag will not have been set. */
2743 if (h->root.type == bfd_link_hash_defined
2744 && !h->def_regular
2745 && h->ref_regular
2746 && !h->def_dynamic
2747 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2748 h->def_regular = 1;
2749
2750 /* If a weak undefined symbol has non-default visibility, we also
2751 hide it from the dynamic linker. */
2752 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2753 && h->root.type == bfd_link_hash_undefweak)
2754 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2755
2756 /* A hidden versioned symbol in executable should be forced local if
2757 it is is locally defined, not referenced by shared library and not
2758 exported. */
2759 else if (bfd_link_executable (eif->info)
2760 && h->versioned == versioned_hidden
2761 && !eif->info->export_dynamic
2762 && !h->dynamic
2763 && !h->ref_dynamic
2764 && h->def_regular)
2765 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2766
2767 /* If -Bsymbolic was used (which means to bind references to global
2768 symbols to the definition within the shared object), and this
2769 symbol was defined in a regular object, then it actually doesn't
2770 need a PLT entry. Likewise, if the symbol has non-default
2771 visibility. If the symbol has hidden or internal visibility, we
2772 will force it local. */
2773 else if (h->needs_plt
2774 && bfd_link_pic (eif->info)
2775 && is_elf_hash_table (eif->info->hash)
2776 && (SYMBOLIC_BIND (eif->info, h)
2777 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2778 && h->def_regular)
2779 {
2780 bfd_boolean force_local;
2781
2782 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2783 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2784 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2785 }
2786
2787 /* If this is a weak defined symbol in a dynamic object, and we know
2788 the real definition in the dynamic object, copy interesting flags
2789 over to the real definition. */
2790 if (h->is_weakalias)
2791 {
2792 struct elf_link_hash_entry *def = weakdef (h);
2793
2794 /* If the real definition is defined by a regular object file,
2795 don't do anything special. See the longer description in
2796 _bfd_elf_adjust_dynamic_symbol, below. */
2797 if (def->def_regular)
2798 {
2799 h = def;
2800 while ((h = h->u.alias) != def)
2801 h->is_weakalias = 0;
2802 }
2803 else
2804 {
2805 while (h->root.type == bfd_link_hash_indirect)
2806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2807 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2808 || h->root.type == bfd_link_hash_defweak);
2809 BFD_ASSERT (def->def_dynamic);
2810 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2811 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2812 }
2813 }
2814
2815 return TRUE;
2816 }
2817
2818 /* Make the backend pick a good value for a dynamic symbol. This is
2819 called via elf_link_hash_traverse, and also calls itself
2820 recursively. */
2821
2822 static bfd_boolean
2823 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2824 {
2825 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2826 struct elf_link_hash_table *htab;
2827 const struct elf_backend_data *bed;
2828
2829 if (! is_elf_hash_table (eif->info->hash))
2830 return FALSE;
2831
2832 /* Ignore indirect symbols. These are added by the versioning code. */
2833 if (h->root.type == bfd_link_hash_indirect)
2834 return TRUE;
2835
2836 /* Fix the symbol flags. */
2837 if (! _bfd_elf_fix_symbol_flags (h, eif))
2838 return FALSE;
2839
2840 htab = elf_hash_table (eif->info);
2841 bed = get_elf_backend_data (htab->dynobj);
2842
2843 if (h->root.type == bfd_link_hash_undefweak)
2844 {
2845 if (eif->info->dynamic_undefined_weak == 0)
2846 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2847 else if (eif->info->dynamic_undefined_weak > 0
2848 && h->ref_regular
2849 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2850 && !bfd_hide_sym_by_version (eif->info->version_info,
2851 h->root.root.string))
2852 {
2853 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2854 {
2855 eif->failed = TRUE;
2856 return FALSE;
2857 }
2858 }
2859 }
2860
2861 /* If this symbol does not require a PLT entry, and it is not
2862 defined by a dynamic object, or is not referenced by a regular
2863 object, ignore it. We do have to handle a weak defined symbol,
2864 even if no regular object refers to it, if we decided to add it
2865 to the dynamic symbol table. FIXME: Do we normally need to worry
2866 about symbols which are defined by one dynamic object and
2867 referenced by another one? */
2868 if (!h->needs_plt
2869 && h->type != STT_GNU_IFUNC
2870 && (h->def_regular
2871 || !h->def_dynamic
2872 || (!h->ref_regular
2873 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2874 {
2875 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2876 return TRUE;
2877 }
2878
2879 /* If we've already adjusted this symbol, don't do it again. This
2880 can happen via a recursive call. */
2881 if (h->dynamic_adjusted)
2882 return TRUE;
2883
2884 /* Don't look at this symbol again. Note that we must set this
2885 after checking the above conditions, because we may look at a
2886 symbol once, decide not to do anything, and then get called
2887 recursively later after REF_REGULAR is set below. */
2888 h->dynamic_adjusted = 1;
2889
2890 /* If this is a weak definition, and we know a real definition, and
2891 the real symbol is not itself defined by a regular object file,
2892 then get a good value for the real definition. We handle the
2893 real symbol first, for the convenience of the backend routine.
2894
2895 Note that there is a confusing case here. If the real definition
2896 is defined by a regular object file, we don't get the real symbol
2897 from the dynamic object, but we do get the weak symbol. If the
2898 processor backend uses a COPY reloc, then if some routine in the
2899 dynamic object changes the real symbol, we will not see that
2900 change in the corresponding weak symbol. This is the way other
2901 ELF linkers work as well, and seems to be a result of the shared
2902 library model.
2903
2904 I will clarify this issue. Most SVR4 shared libraries define the
2905 variable _timezone and define timezone as a weak synonym. The
2906 tzset call changes _timezone. If you write
2907 extern int timezone;
2908 int _timezone = 5;
2909 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2910 you might expect that, since timezone is a synonym for _timezone,
2911 the same number will print both times. However, if the processor
2912 backend uses a COPY reloc, then actually timezone will be copied
2913 into your process image, and, since you define _timezone
2914 yourself, _timezone will not. Thus timezone and _timezone will
2915 wind up at different memory locations. The tzset call will set
2916 _timezone, leaving timezone unchanged. */
2917
2918 if (h->is_weakalias)
2919 {
2920 struct elf_link_hash_entry *def = weakdef (h);
2921
2922 /* If we get to this point, there is an implicit reference to
2923 the alias by a regular object file via the weak symbol H. */
2924 def->ref_regular = 1;
2925
2926 /* Ensure that the backend adjust_dynamic_symbol function sees
2927 the strong alias before H by recursively calling ourselves. */
2928 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
2929 return FALSE;
2930 }
2931
2932 /* If a symbol has no type and no size and does not require a PLT
2933 entry, then we are probably about to do the wrong thing here: we
2934 are probably going to create a COPY reloc for an empty object.
2935 This case can arise when a shared object is built with assembly
2936 code, and the assembly code fails to set the symbol type. */
2937 if (h->size == 0
2938 && h->type == STT_NOTYPE
2939 && !h->needs_plt)
2940 _bfd_error_handler
2941 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2942 h->root.root.string);
2943
2944 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2945 {
2946 eif->failed = TRUE;
2947 return FALSE;
2948 }
2949
2950 return TRUE;
2951 }
2952
2953 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2954 DYNBSS. */
2955
2956 bfd_boolean
2957 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2958 struct elf_link_hash_entry *h,
2959 asection *dynbss)
2960 {
2961 unsigned int power_of_two;
2962 bfd_vma mask;
2963 asection *sec = h->root.u.def.section;
2964
2965 /* The section alignment of the definition is the maximum alignment
2966 requirement of symbols defined in the section. Since we don't
2967 know the symbol alignment requirement, we start with the
2968 maximum alignment and check low bits of the symbol address
2969 for the minimum alignment. */
2970 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2971 mask = ((bfd_vma) 1 << power_of_two) - 1;
2972 while ((h->root.u.def.value & mask) != 0)
2973 {
2974 mask >>= 1;
2975 --power_of_two;
2976 }
2977
2978 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2979 dynbss))
2980 {
2981 /* Adjust the section alignment if needed. */
2982 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2983 power_of_two))
2984 return FALSE;
2985 }
2986
2987 /* We make sure that the symbol will be aligned properly. */
2988 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2989
2990 /* Define the symbol as being at this point in DYNBSS. */
2991 h->root.u.def.section = dynbss;
2992 h->root.u.def.value = dynbss->size;
2993
2994 /* Increment the size of DYNBSS to make room for the symbol. */
2995 dynbss->size += h->size;
2996
2997 /* No error if extern_protected_data is true. */
2998 if (h->protected_def
2999 && (!info->extern_protected_data
3000 || (info->extern_protected_data < 0
3001 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3002 info->callbacks->einfo
3003 (_("%P: copy reloc against protected `%T' is dangerous\n"),
3004 h->root.root.string);
3005
3006 return TRUE;
3007 }
3008
3009 /* Adjust all external symbols pointing into SEC_MERGE sections
3010 to reflect the object merging within the sections. */
3011
3012 static bfd_boolean
3013 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3014 {
3015 asection *sec;
3016
3017 if ((h->root.type == bfd_link_hash_defined
3018 || h->root.type == bfd_link_hash_defweak)
3019 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3020 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3021 {
3022 bfd *output_bfd = (bfd *) data;
3023
3024 h->root.u.def.value =
3025 _bfd_merged_section_offset (output_bfd,
3026 &h->root.u.def.section,
3027 elf_section_data (sec)->sec_info,
3028 h->root.u.def.value);
3029 }
3030
3031 return TRUE;
3032 }
3033
3034 /* Returns false if the symbol referred to by H should be considered
3035 to resolve local to the current module, and true if it should be
3036 considered to bind dynamically. */
3037
3038 bfd_boolean
3039 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3040 struct bfd_link_info *info,
3041 bfd_boolean not_local_protected)
3042 {
3043 bfd_boolean binding_stays_local_p;
3044 const struct elf_backend_data *bed;
3045 struct elf_link_hash_table *hash_table;
3046
3047 if (h == NULL)
3048 return FALSE;
3049
3050 while (h->root.type == bfd_link_hash_indirect
3051 || h->root.type == bfd_link_hash_warning)
3052 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3053
3054 /* If it was forced local, then clearly it's not dynamic. */
3055 if (h->dynindx == -1)
3056 return FALSE;
3057 if (h->forced_local)
3058 return FALSE;
3059
3060 /* Identify the cases where name binding rules say that a
3061 visible symbol resolves locally. */
3062 binding_stays_local_p = (bfd_link_executable (info)
3063 || SYMBOLIC_BIND (info, h));
3064
3065 switch (ELF_ST_VISIBILITY (h->other))
3066 {
3067 case STV_INTERNAL:
3068 case STV_HIDDEN:
3069 return FALSE;
3070
3071 case STV_PROTECTED:
3072 hash_table = elf_hash_table (info);
3073 if (!is_elf_hash_table (hash_table))
3074 return FALSE;
3075
3076 bed = get_elf_backend_data (hash_table->dynobj);
3077
3078 /* Proper resolution for function pointer equality may require
3079 that these symbols perhaps be resolved dynamically, even though
3080 we should be resolving them to the current module. */
3081 if (!not_local_protected || !bed->is_function_type (h->type))
3082 binding_stays_local_p = TRUE;
3083 break;
3084
3085 default:
3086 break;
3087 }
3088
3089 /* If it isn't defined locally, then clearly it's dynamic. */
3090 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3091 return TRUE;
3092
3093 /* Otherwise, the symbol is dynamic if binding rules don't tell
3094 us that it remains local. */
3095 return !binding_stays_local_p;
3096 }
3097
3098 /* Return true if the symbol referred to by H should be considered
3099 to resolve local to the current module, and false otherwise. Differs
3100 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3101 undefined symbols. The two functions are virtually identical except
3102 for the place where dynindx == -1 is tested. If that test is true,
3103 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3104 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3105 defined symbols.
3106 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3107 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3108 treatment of undefined weak symbols. For those that do not make
3109 undefined weak symbols dynamic, both functions may return false. */
3110
3111 bfd_boolean
3112 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3113 struct bfd_link_info *info,
3114 bfd_boolean local_protected)
3115 {
3116 const struct elf_backend_data *bed;
3117 struct elf_link_hash_table *hash_table;
3118
3119 /* If it's a local sym, of course we resolve locally. */
3120 if (h == NULL)
3121 return TRUE;
3122
3123 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3124 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3125 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3126 return TRUE;
3127
3128 /* Forced local symbols resolve locally. */
3129 if (h->forced_local)
3130 return TRUE;
3131
3132 /* Common symbols that become definitions don't get the DEF_REGULAR
3133 flag set, so test it first, and don't bail out. */
3134 if (ELF_COMMON_DEF_P (h))
3135 /* Do nothing. */;
3136 /* If we don't have a definition in a regular file, then we can't
3137 resolve locally. The sym is either undefined or dynamic. */
3138 else if (!h->def_regular)
3139 return FALSE;
3140
3141 /* Non-dynamic symbols resolve locally. */
3142 if (h->dynindx == -1)
3143 return TRUE;
3144
3145 /* At this point, we know the symbol is defined and dynamic. In an
3146 executable it must resolve locally, likewise when building symbolic
3147 shared libraries. */
3148 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3149 return TRUE;
3150
3151 /* Now deal with defined dynamic symbols in shared libraries. Ones
3152 with default visibility might not resolve locally. */
3153 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3154 return FALSE;
3155
3156 hash_table = elf_hash_table (info);
3157 if (!is_elf_hash_table (hash_table))
3158 return TRUE;
3159
3160 bed = get_elf_backend_data (hash_table->dynobj);
3161
3162 /* If extern_protected_data is false, STV_PROTECTED non-function
3163 symbols are local. */
3164 if ((!info->extern_protected_data
3165 || (info->extern_protected_data < 0
3166 && !bed->extern_protected_data))
3167 && !bed->is_function_type (h->type))
3168 return TRUE;
3169
3170 /* Function pointer equality tests may require that STV_PROTECTED
3171 symbols be treated as dynamic symbols. If the address of a
3172 function not defined in an executable is set to that function's
3173 plt entry in the executable, then the address of the function in
3174 a shared library must also be the plt entry in the executable. */
3175 return local_protected;
3176 }
3177
3178 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3179 aligned. Returns the first TLS output section. */
3180
3181 struct bfd_section *
3182 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3183 {
3184 struct bfd_section *sec, *tls;
3185 unsigned int align = 0;
3186
3187 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3188 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3189 break;
3190 tls = sec;
3191
3192 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3193 if (sec->alignment_power > align)
3194 align = sec->alignment_power;
3195
3196 elf_hash_table (info)->tls_sec = tls;
3197
3198 /* Ensure the alignment of the first section is the largest alignment,
3199 so that the tls segment starts aligned. */
3200 if (tls != NULL)
3201 tls->alignment_power = align;
3202
3203 return tls;
3204 }
3205
3206 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3207 static bfd_boolean
3208 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3209 Elf_Internal_Sym *sym)
3210 {
3211 const struct elf_backend_data *bed;
3212
3213 /* Local symbols do not count, but target specific ones might. */
3214 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3215 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3216 return FALSE;
3217
3218 bed = get_elf_backend_data (abfd);
3219 /* Function symbols do not count. */
3220 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3221 return FALSE;
3222
3223 /* If the section is undefined, then so is the symbol. */
3224 if (sym->st_shndx == SHN_UNDEF)
3225 return FALSE;
3226
3227 /* If the symbol is defined in the common section, then
3228 it is a common definition and so does not count. */
3229 if (bed->common_definition (sym))
3230 return FALSE;
3231
3232 /* If the symbol is in a target specific section then we
3233 must rely upon the backend to tell us what it is. */
3234 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3235 /* FIXME - this function is not coded yet:
3236
3237 return _bfd_is_global_symbol_definition (abfd, sym);
3238
3239 Instead for now assume that the definition is not global,
3240 Even if this is wrong, at least the linker will behave
3241 in the same way that it used to do. */
3242 return FALSE;
3243
3244 return TRUE;
3245 }
3246
3247 /* Search the symbol table of the archive element of the archive ABFD
3248 whose archive map contains a mention of SYMDEF, and determine if
3249 the symbol is defined in this element. */
3250 static bfd_boolean
3251 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3252 {
3253 Elf_Internal_Shdr * hdr;
3254 size_t symcount;
3255 size_t extsymcount;
3256 size_t extsymoff;
3257 Elf_Internal_Sym *isymbuf;
3258 Elf_Internal_Sym *isym;
3259 Elf_Internal_Sym *isymend;
3260 bfd_boolean result;
3261
3262 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3263 if (abfd == NULL)
3264 return FALSE;
3265
3266 if (! bfd_check_format (abfd, bfd_object))
3267 return FALSE;
3268
3269 /* Select the appropriate symbol table. If we don't know if the
3270 object file is an IR object, give linker LTO plugin a chance to
3271 get the correct symbol table. */
3272 if (abfd->plugin_format == bfd_plugin_yes
3273 #if BFD_SUPPORTS_PLUGINS
3274 || (abfd->plugin_format == bfd_plugin_unknown
3275 && bfd_link_plugin_object_p (abfd))
3276 #endif
3277 )
3278 {
3279 /* Use the IR symbol table if the object has been claimed by
3280 plugin. */
3281 abfd = abfd->plugin_dummy_bfd;
3282 hdr = &elf_tdata (abfd)->symtab_hdr;
3283 }
3284 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3285 hdr = &elf_tdata (abfd)->symtab_hdr;
3286 else
3287 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3288
3289 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3290
3291 /* The sh_info field of the symtab header tells us where the
3292 external symbols start. We don't care about the local symbols. */
3293 if (elf_bad_symtab (abfd))
3294 {
3295 extsymcount = symcount;
3296 extsymoff = 0;
3297 }
3298 else
3299 {
3300 extsymcount = symcount - hdr->sh_info;
3301 extsymoff = hdr->sh_info;
3302 }
3303
3304 if (extsymcount == 0)
3305 return FALSE;
3306
3307 /* Read in the symbol table. */
3308 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3309 NULL, NULL, NULL);
3310 if (isymbuf == NULL)
3311 return FALSE;
3312
3313 /* Scan the symbol table looking for SYMDEF. */
3314 result = FALSE;
3315 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3316 {
3317 const char *name;
3318
3319 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3320 isym->st_name);
3321 if (name == NULL)
3322 break;
3323
3324 if (strcmp (name, symdef->name) == 0)
3325 {
3326 result = is_global_data_symbol_definition (abfd, isym);
3327 break;
3328 }
3329 }
3330
3331 free (isymbuf);
3332
3333 return result;
3334 }
3335 \f
3336 /* Add an entry to the .dynamic table. */
3337
3338 bfd_boolean
3339 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3340 bfd_vma tag,
3341 bfd_vma val)
3342 {
3343 struct elf_link_hash_table *hash_table;
3344 const struct elf_backend_data *bed;
3345 asection *s;
3346 bfd_size_type newsize;
3347 bfd_byte *newcontents;
3348 Elf_Internal_Dyn dyn;
3349
3350 hash_table = elf_hash_table (info);
3351 if (! is_elf_hash_table (hash_table))
3352 return FALSE;
3353
3354 bed = get_elf_backend_data (hash_table->dynobj);
3355 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3356 BFD_ASSERT (s != NULL);
3357
3358 newsize = s->size + bed->s->sizeof_dyn;
3359 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3360 if (newcontents == NULL)
3361 return FALSE;
3362
3363 dyn.d_tag = tag;
3364 dyn.d_un.d_val = val;
3365 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3366
3367 s->size = newsize;
3368 s->contents = newcontents;
3369
3370 return TRUE;
3371 }
3372
3373 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3374 otherwise just check whether one already exists. Returns -1 on error,
3375 1 if a DT_NEEDED tag already exists, and 0 on success. */
3376
3377 static int
3378 elf_add_dt_needed_tag (bfd *abfd,
3379 struct bfd_link_info *info,
3380 const char *soname,
3381 bfd_boolean do_it)
3382 {
3383 struct elf_link_hash_table *hash_table;
3384 size_t strindex;
3385
3386 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3387 return -1;
3388
3389 hash_table = elf_hash_table (info);
3390 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3391 if (strindex == (size_t) -1)
3392 return -1;
3393
3394 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3395 {
3396 asection *sdyn;
3397 const struct elf_backend_data *bed;
3398 bfd_byte *extdyn;
3399
3400 bed = get_elf_backend_data (hash_table->dynobj);
3401 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3402 if (sdyn != NULL)
3403 for (extdyn = sdyn->contents;
3404 extdyn < sdyn->contents + sdyn->size;
3405 extdyn += bed->s->sizeof_dyn)
3406 {
3407 Elf_Internal_Dyn dyn;
3408
3409 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3410 if (dyn.d_tag == DT_NEEDED
3411 && dyn.d_un.d_val == strindex)
3412 {
3413 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3414 return 1;
3415 }
3416 }
3417 }
3418
3419 if (do_it)
3420 {
3421 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3422 return -1;
3423
3424 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3425 return -1;
3426 }
3427 else
3428 /* We were just checking for existence of the tag. */
3429 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3430
3431 return 0;
3432 }
3433
3434 /* Return true if SONAME is on the needed list between NEEDED and STOP
3435 (or the end of list if STOP is NULL), and needed by a library that
3436 will be loaded. */
3437
3438 static bfd_boolean
3439 on_needed_list (const char *soname,
3440 struct bfd_link_needed_list *needed,
3441 struct bfd_link_needed_list *stop)
3442 {
3443 struct bfd_link_needed_list *look;
3444 for (look = needed; look != stop; look = look->next)
3445 if (strcmp (soname, look->name) == 0
3446 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3447 /* If needed by a library that itself is not directly
3448 needed, recursively check whether that library is
3449 indirectly needed. Since we add DT_NEEDED entries to
3450 the end of the list, library dependencies appear after
3451 the library. Therefore search prior to the current
3452 LOOK, preventing possible infinite recursion. */
3453 || on_needed_list (elf_dt_name (look->by), needed, look)))
3454 return TRUE;
3455
3456 return FALSE;
3457 }
3458
3459 /* Sort symbol by value, section, and size. */
3460 static int
3461 elf_sort_symbol (const void *arg1, const void *arg2)
3462 {
3463 const struct elf_link_hash_entry *h1;
3464 const struct elf_link_hash_entry *h2;
3465 bfd_signed_vma vdiff;
3466
3467 h1 = *(const struct elf_link_hash_entry **) arg1;
3468 h2 = *(const struct elf_link_hash_entry **) arg2;
3469 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3470 if (vdiff != 0)
3471 return vdiff > 0 ? 1 : -1;
3472 else
3473 {
3474 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3475 if (sdiff != 0)
3476 return sdiff > 0 ? 1 : -1;
3477 }
3478 vdiff = h1->size - h2->size;
3479 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3480 }
3481
3482 /* This function is used to adjust offsets into .dynstr for
3483 dynamic symbols. This is called via elf_link_hash_traverse. */
3484
3485 static bfd_boolean
3486 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3487 {
3488 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3489
3490 if (h->dynindx != -1)
3491 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3492 return TRUE;
3493 }
3494
3495 /* Assign string offsets in .dynstr, update all structures referencing
3496 them. */
3497
3498 static bfd_boolean
3499 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3500 {
3501 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3502 struct elf_link_local_dynamic_entry *entry;
3503 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3504 bfd *dynobj = hash_table->dynobj;
3505 asection *sdyn;
3506 bfd_size_type size;
3507 const struct elf_backend_data *bed;
3508 bfd_byte *extdyn;
3509
3510 _bfd_elf_strtab_finalize (dynstr);
3511 size = _bfd_elf_strtab_size (dynstr);
3512
3513 bed = get_elf_backend_data (dynobj);
3514 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3515 BFD_ASSERT (sdyn != NULL);
3516
3517 /* Update all .dynamic entries referencing .dynstr strings. */
3518 for (extdyn = sdyn->contents;
3519 extdyn < sdyn->contents + sdyn->size;
3520 extdyn += bed->s->sizeof_dyn)
3521 {
3522 Elf_Internal_Dyn dyn;
3523
3524 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3525 switch (dyn.d_tag)
3526 {
3527 case DT_STRSZ:
3528 dyn.d_un.d_val = size;
3529 break;
3530 case DT_NEEDED:
3531 case DT_SONAME:
3532 case DT_RPATH:
3533 case DT_RUNPATH:
3534 case DT_FILTER:
3535 case DT_AUXILIARY:
3536 case DT_AUDIT:
3537 case DT_DEPAUDIT:
3538 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3539 break;
3540 default:
3541 continue;
3542 }
3543 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3544 }
3545
3546 /* Now update local dynamic symbols. */
3547 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3548 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3549 entry->isym.st_name);
3550
3551 /* And the rest of dynamic symbols. */
3552 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3553
3554 /* Adjust version definitions. */
3555 if (elf_tdata (output_bfd)->cverdefs)
3556 {
3557 asection *s;
3558 bfd_byte *p;
3559 size_t i;
3560 Elf_Internal_Verdef def;
3561 Elf_Internal_Verdaux defaux;
3562
3563 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3564 p = s->contents;
3565 do
3566 {
3567 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3568 &def);
3569 p += sizeof (Elf_External_Verdef);
3570 if (def.vd_aux != sizeof (Elf_External_Verdef))
3571 continue;
3572 for (i = 0; i < def.vd_cnt; ++i)
3573 {
3574 _bfd_elf_swap_verdaux_in (output_bfd,
3575 (Elf_External_Verdaux *) p, &defaux);
3576 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3577 defaux.vda_name);
3578 _bfd_elf_swap_verdaux_out (output_bfd,
3579 &defaux, (Elf_External_Verdaux *) p);
3580 p += sizeof (Elf_External_Verdaux);
3581 }
3582 }
3583 while (def.vd_next);
3584 }
3585
3586 /* Adjust version references. */
3587 if (elf_tdata (output_bfd)->verref)
3588 {
3589 asection *s;
3590 bfd_byte *p;
3591 size_t i;
3592 Elf_Internal_Verneed need;
3593 Elf_Internal_Vernaux needaux;
3594
3595 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3596 p = s->contents;
3597 do
3598 {
3599 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3600 &need);
3601 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3602 _bfd_elf_swap_verneed_out (output_bfd, &need,
3603 (Elf_External_Verneed *) p);
3604 p += sizeof (Elf_External_Verneed);
3605 for (i = 0; i < need.vn_cnt; ++i)
3606 {
3607 _bfd_elf_swap_vernaux_in (output_bfd,
3608 (Elf_External_Vernaux *) p, &needaux);
3609 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3610 needaux.vna_name);
3611 _bfd_elf_swap_vernaux_out (output_bfd,
3612 &needaux,
3613 (Elf_External_Vernaux *) p);
3614 p += sizeof (Elf_External_Vernaux);
3615 }
3616 }
3617 while (need.vn_next);
3618 }
3619
3620 return TRUE;
3621 }
3622 \f
3623 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3624 The default is to only match when the INPUT and OUTPUT are exactly
3625 the same target. */
3626
3627 bfd_boolean
3628 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3629 const bfd_target *output)
3630 {
3631 return input == output;
3632 }
3633
3634 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3635 This version is used when different targets for the same architecture
3636 are virtually identical. */
3637
3638 bfd_boolean
3639 _bfd_elf_relocs_compatible (const bfd_target *input,
3640 const bfd_target *output)
3641 {
3642 const struct elf_backend_data *obed, *ibed;
3643
3644 if (input == output)
3645 return TRUE;
3646
3647 ibed = xvec_get_elf_backend_data (input);
3648 obed = xvec_get_elf_backend_data (output);
3649
3650 if (ibed->arch != obed->arch)
3651 return FALSE;
3652
3653 /* If both backends are using this function, deem them compatible. */
3654 return ibed->relocs_compatible == obed->relocs_compatible;
3655 }
3656
3657 /* Make a special call to the linker "notice" function to tell it that
3658 we are about to handle an as-needed lib, or have finished
3659 processing the lib. */
3660
3661 bfd_boolean
3662 _bfd_elf_notice_as_needed (bfd *ibfd,
3663 struct bfd_link_info *info,
3664 enum notice_asneeded_action act)
3665 {
3666 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3667 }
3668
3669 /* Check relocations an ELF object file. */
3670
3671 bfd_boolean
3672 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3673 {
3674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3675 struct elf_link_hash_table *htab = elf_hash_table (info);
3676
3677 /* If this object is the same format as the output object, and it is
3678 not a shared library, then let the backend look through the
3679 relocs.
3680
3681 This is required to build global offset table entries and to
3682 arrange for dynamic relocs. It is not required for the
3683 particular common case of linking non PIC code, even when linking
3684 against shared libraries, but unfortunately there is no way of
3685 knowing whether an object file has been compiled PIC or not.
3686 Looking through the relocs is not particularly time consuming.
3687 The problem is that we must either (1) keep the relocs in memory,
3688 which causes the linker to require additional runtime memory or
3689 (2) read the relocs twice from the input file, which wastes time.
3690 This would be a good case for using mmap.
3691
3692 I have no idea how to handle linking PIC code into a file of a
3693 different format. It probably can't be done. */
3694 if ((abfd->flags & DYNAMIC) == 0
3695 && is_elf_hash_table (htab)
3696 && bed->check_relocs != NULL
3697 && elf_object_id (abfd) == elf_hash_table_id (htab)
3698 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3699 {
3700 asection *o;
3701
3702 for (o = abfd->sections; o != NULL; o = o->next)
3703 {
3704 Elf_Internal_Rela *internal_relocs;
3705 bfd_boolean ok;
3706
3707 /* Don't check relocations in excluded sections. */
3708 if ((o->flags & SEC_RELOC) == 0
3709 || (o->flags & SEC_EXCLUDE) != 0
3710 || o->reloc_count == 0
3711 || ((info->strip == strip_all || info->strip == strip_debugger)
3712 && (o->flags & SEC_DEBUGGING) != 0)
3713 || bfd_is_abs_section (o->output_section))
3714 continue;
3715
3716 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3717 info->keep_memory);
3718 if (internal_relocs == NULL)
3719 return FALSE;
3720
3721 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3722
3723 if (elf_section_data (o)->relocs != internal_relocs)
3724 free (internal_relocs);
3725
3726 if (! ok)
3727 return FALSE;
3728 }
3729 }
3730
3731 return TRUE;
3732 }
3733
3734 /* Add symbols from an ELF object file to the linker hash table. */
3735
3736 static bfd_boolean
3737 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3738 {
3739 Elf_Internal_Ehdr *ehdr;
3740 Elf_Internal_Shdr *hdr;
3741 size_t symcount;
3742 size_t extsymcount;
3743 size_t extsymoff;
3744 struct elf_link_hash_entry **sym_hash;
3745 bfd_boolean dynamic;
3746 Elf_External_Versym *extversym = NULL;
3747 Elf_External_Versym *ever;
3748 struct elf_link_hash_entry *weaks;
3749 struct elf_link_hash_entry **nondeflt_vers = NULL;
3750 size_t nondeflt_vers_cnt = 0;
3751 Elf_Internal_Sym *isymbuf = NULL;
3752 Elf_Internal_Sym *isym;
3753 Elf_Internal_Sym *isymend;
3754 const struct elf_backend_data *bed;
3755 bfd_boolean add_needed;
3756 struct elf_link_hash_table *htab;
3757 bfd_size_type amt;
3758 void *alloc_mark = NULL;
3759 struct bfd_hash_entry **old_table = NULL;
3760 unsigned int old_size = 0;
3761 unsigned int old_count = 0;
3762 void *old_tab = NULL;
3763 void *old_ent;
3764 struct bfd_link_hash_entry *old_undefs = NULL;
3765 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3766 void *old_strtab = NULL;
3767 size_t tabsize = 0;
3768 asection *s;
3769 bfd_boolean just_syms;
3770
3771 htab = elf_hash_table (info);
3772 bed = get_elf_backend_data (abfd);
3773
3774 if ((abfd->flags & DYNAMIC) == 0)
3775 dynamic = FALSE;
3776 else
3777 {
3778 dynamic = TRUE;
3779
3780 /* You can't use -r against a dynamic object. Also, there's no
3781 hope of using a dynamic object which does not exactly match
3782 the format of the output file. */
3783 if (bfd_link_relocatable (info)
3784 || !is_elf_hash_table (htab)
3785 || info->output_bfd->xvec != abfd->xvec)
3786 {
3787 if (bfd_link_relocatable (info))
3788 bfd_set_error (bfd_error_invalid_operation);
3789 else
3790 bfd_set_error (bfd_error_wrong_format);
3791 goto error_return;
3792 }
3793 }
3794
3795 ehdr = elf_elfheader (abfd);
3796 if (info->warn_alternate_em
3797 && bed->elf_machine_code != ehdr->e_machine
3798 && ((bed->elf_machine_alt1 != 0
3799 && ehdr->e_machine == bed->elf_machine_alt1)
3800 || (bed->elf_machine_alt2 != 0
3801 && ehdr->e_machine == bed->elf_machine_alt2)))
3802 info->callbacks->einfo
3803 /* xgettext:c-format */
3804 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3805 ehdr->e_machine, abfd, bed->elf_machine_code);
3806
3807 /* As a GNU extension, any input sections which are named
3808 .gnu.warning.SYMBOL are treated as warning symbols for the given
3809 symbol. This differs from .gnu.warning sections, which generate
3810 warnings when they are included in an output file. */
3811 /* PR 12761: Also generate this warning when building shared libraries. */
3812 for (s = abfd->sections; s != NULL; s = s->next)
3813 {
3814 const char *name;
3815
3816 name = bfd_get_section_name (abfd, s);
3817 if (CONST_STRNEQ (name, ".gnu.warning."))
3818 {
3819 char *msg;
3820 bfd_size_type sz;
3821
3822 name += sizeof ".gnu.warning." - 1;
3823
3824 /* If this is a shared object, then look up the symbol
3825 in the hash table. If it is there, and it is already
3826 been defined, then we will not be using the entry
3827 from this shared object, so we don't need to warn.
3828 FIXME: If we see the definition in a regular object
3829 later on, we will warn, but we shouldn't. The only
3830 fix is to keep track of what warnings we are supposed
3831 to emit, and then handle them all at the end of the
3832 link. */
3833 if (dynamic)
3834 {
3835 struct elf_link_hash_entry *h;
3836
3837 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3838
3839 /* FIXME: What about bfd_link_hash_common? */
3840 if (h != NULL
3841 && (h->root.type == bfd_link_hash_defined
3842 || h->root.type == bfd_link_hash_defweak))
3843 continue;
3844 }
3845
3846 sz = s->size;
3847 msg = (char *) bfd_alloc (abfd, sz + 1);
3848 if (msg == NULL)
3849 goto error_return;
3850
3851 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3852 goto error_return;
3853
3854 msg[sz] = '\0';
3855
3856 if (! (_bfd_generic_link_add_one_symbol
3857 (info, abfd, name, BSF_WARNING, s, 0, msg,
3858 FALSE, bed->collect, NULL)))
3859 goto error_return;
3860
3861 if (bfd_link_executable (info))
3862 {
3863 /* Clobber the section size so that the warning does
3864 not get copied into the output file. */
3865 s->size = 0;
3866
3867 /* Also set SEC_EXCLUDE, so that symbols defined in
3868 the warning section don't get copied to the output. */
3869 s->flags |= SEC_EXCLUDE;
3870 }
3871 }
3872 }
3873
3874 just_syms = ((s = abfd->sections) != NULL
3875 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3876
3877 add_needed = TRUE;
3878 if (! dynamic)
3879 {
3880 /* If we are creating a shared library, create all the dynamic
3881 sections immediately. We need to attach them to something,
3882 so we attach them to this BFD, provided it is the right
3883 format and is not from ld --just-symbols. Always create the
3884 dynamic sections for -E/--dynamic-list. FIXME: If there
3885 are no input BFD's of the same format as the output, we can't
3886 make a shared library. */
3887 if (!just_syms
3888 && (bfd_link_pic (info)
3889 || (!bfd_link_relocatable (info)
3890 && info->nointerp
3891 && (info->export_dynamic || info->dynamic)))
3892 && is_elf_hash_table (htab)
3893 && info->output_bfd->xvec == abfd->xvec
3894 && !htab->dynamic_sections_created)
3895 {
3896 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3897 goto error_return;
3898 }
3899 }
3900 else if (!is_elf_hash_table (htab))
3901 goto error_return;
3902 else
3903 {
3904 const char *soname = NULL;
3905 char *audit = NULL;
3906 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3907 const Elf_Internal_Phdr *phdr;
3908 int ret;
3909
3910 /* ld --just-symbols and dynamic objects don't mix very well.
3911 ld shouldn't allow it. */
3912 if (just_syms)
3913 abort ();
3914
3915 /* If this dynamic lib was specified on the command line with
3916 --as-needed in effect, then we don't want to add a DT_NEEDED
3917 tag unless the lib is actually used. Similary for libs brought
3918 in by another lib's DT_NEEDED. When --no-add-needed is used
3919 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3920 any dynamic library in DT_NEEDED tags in the dynamic lib at
3921 all. */
3922 add_needed = (elf_dyn_lib_class (abfd)
3923 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3924 | DYN_NO_NEEDED)) == 0;
3925
3926 s = bfd_get_section_by_name (abfd, ".dynamic");
3927 if (s != NULL)
3928 {
3929 bfd_byte *dynbuf;
3930 bfd_byte *extdyn;
3931 unsigned int elfsec;
3932 unsigned long shlink;
3933
3934 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3935 {
3936 error_free_dyn:
3937 free (dynbuf);
3938 goto error_return;
3939 }
3940
3941 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3942 if (elfsec == SHN_BAD)
3943 goto error_free_dyn;
3944 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3945
3946 for (extdyn = dynbuf;
3947 extdyn < dynbuf + s->size;
3948 extdyn += bed->s->sizeof_dyn)
3949 {
3950 Elf_Internal_Dyn dyn;
3951
3952 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3953 if (dyn.d_tag == DT_SONAME)
3954 {
3955 unsigned int tagv = dyn.d_un.d_val;
3956 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3957 if (soname == NULL)
3958 goto error_free_dyn;
3959 }
3960 if (dyn.d_tag == DT_NEEDED)
3961 {
3962 struct bfd_link_needed_list *n, **pn;
3963 char *fnm, *anm;
3964 unsigned int tagv = dyn.d_un.d_val;
3965
3966 amt = sizeof (struct bfd_link_needed_list);
3967 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3968 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3969 if (n == NULL || fnm == NULL)
3970 goto error_free_dyn;
3971 amt = strlen (fnm) + 1;
3972 anm = (char *) bfd_alloc (abfd, amt);
3973 if (anm == NULL)
3974 goto error_free_dyn;
3975 memcpy (anm, fnm, amt);
3976 n->name = anm;
3977 n->by = abfd;
3978 n->next = NULL;
3979 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3980 ;
3981 *pn = n;
3982 }
3983 if (dyn.d_tag == DT_RUNPATH)
3984 {
3985 struct bfd_link_needed_list *n, **pn;
3986 char *fnm, *anm;
3987 unsigned int tagv = dyn.d_un.d_val;
3988
3989 amt = sizeof (struct bfd_link_needed_list);
3990 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3991 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3992 if (n == NULL || fnm == NULL)
3993 goto error_free_dyn;
3994 amt = strlen (fnm) + 1;
3995 anm = (char *) bfd_alloc (abfd, amt);
3996 if (anm == NULL)
3997 goto error_free_dyn;
3998 memcpy (anm, fnm, amt);
3999 n->name = anm;
4000 n->by = abfd;
4001 n->next = NULL;
4002 for (pn = & runpath;
4003 *pn != NULL;
4004 pn = &(*pn)->next)
4005 ;
4006 *pn = n;
4007 }
4008 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4009 if (!runpath && dyn.d_tag == DT_RPATH)
4010 {
4011 struct bfd_link_needed_list *n, **pn;
4012 char *fnm, *anm;
4013 unsigned int tagv = dyn.d_un.d_val;
4014
4015 amt = sizeof (struct bfd_link_needed_list);
4016 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4017 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4018 if (n == NULL || fnm == NULL)
4019 goto error_free_dyn;
4020 amt = strlen (fnm) + 1;
4021 anm = (char *) bfd_alloc (abfd, amt);
4022 if (anm == NULL)
4023 goto error_free_dyn;
4024 memcpy (anm, fnm, amt);
4025 n->name = anm;
4026 n->by = abfd;
4027 n->next = NULL;
4028 for (pn = & rpath;
4029 *pn != NULL;
4030 pn = &(*pn)->next)
4031 ;
4032 *pn = n;
4033 }
4034 if (dyn.d_tag == DT_AUDIT)
4035 {
4036 unsigned int tagv = dyn.d_un.d_val;
4037 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4038 }
4039 }
4040
4041 free (dynbuf);
4042 }
4043
4044 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4045 frees all more recently bfd_alloc'd blocks as well. */
4046 if (runpath)
4047 rpath = runpath;
4048
4049 if (rpath)
4050 {
4051 struct bfd_link_needed_list **pn;
4052 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4053 ;
4054 *pn = rpath;
4055 }
4056
4057 /* If we have a PT_GNU_RELRO program header, mark as read-only
4058 all sections contained fully therein. This makes relro
4059 shared library sections appear as they will at run-time. */
4060 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4061 while (--phdr >= elf_tdata (abfd)->phdr)
4062 if (phdr->p_type == PT_GNU_RELRO)
4063 {
4064 for (s = abfd->sections; s != NULL; s = s->next)
4065 if ((s->flags & SEC_ALLOC) != 0
4066 && s->vma >= phdr->p_vaddr
4067 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4068 s->flags |= SEC_READONLY;
4069 break;
4070 }
4071
4072 /* We do not want to include any of the sections in a dynamic
4073 object in the output file. We hack by simply clobbering the
4074 list of sections in the BFD. This could be handled more
4075 cleanly by, say, a new section flag; the existing
4076 SEC_NEVER_LOAD flag is not the one we want, because that one
4077 still implies that the section takes up space in the output
4078 file. */
4079 bfd_section_list_clear (abfd);
4080
4081 /* Find the name to use in a DT_NEEDED entry that refers to this
4082 object. If the object has a DT_SONAME entry, we use it.
4083 Otherwise, if the generic linker stuck something in
4084 elf_dt_name, we use that. Otherwise, we just use the file
4085 name. */
4086 if (soname == NULL || *soname == '\0')
4087 {
4088 soname = elf_dt_name (abfd);
4089 if (soname == NULL || *soname == '\0')
4090 soname = bfd_get_filename (abfd);
4091 }
4092
4093 /* Save the SONAME because sometimes the linker emulation code
4094 will need to know it. */
4095 elf_dt_name (abfd) = soname;
4096
4097 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4098 if (ret < 0)
4099 goto error_return;
4100
4101 /* If we have already included this dynamic object in the
4102 link, just ignore it. There is no reason to include a
4103 particular dynamic object more than once. */
4104 if (ret > 0)
4105 return TRUE;
4106
4107 /* Save the DT_AUDIT entry for the linker emulation code. */
4108 elf_dt_audit (abfd) = audit;
4109 }
4110
4111 /* If this is a dynamic object, we always link against the .dynsym
4112 symbol table, not the .symtab symbol table. The dynamic linker
4113 will only see the .dynsym symbol table, so there is no reason to
4114 look at .symtab for a dynamic object. */
4115
4116 if (! dynamic || elf_dynsymtab (abfd) == 0)
4117 hdr = &elf_tdata (abfd)->symtab_hdr;
4118 else
4119 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4120
4121 symcount = hdr->sh_size / bed->s->sizeof_sym;
4122
4123 /* The sh_info field of the symtab header tells us where the
4124 external symbols start. We don't care about the local symbols at
4125 this point. */
4126 if (elf_bad_symtab (abfd))
4127 {
4128 extsymcount = symcount;
4129 extsymoff = 0;
4130 }
4131 else
4132 {
4133 extsymcount = symcount - hdr->sh_info;
4134 extsymoff = hdr->sh_info;
4135 }
4136
4137 sym_hash = elf_sym_hashes (abfd);
4138 if (extsymcount != 0)
4139 {
4140 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4141 NULL, NULL, NULL);
4142 if (isymbuf == NULL)
4143 goto error_return;
4144
4145 if (sym_hash == NULL)
4146 {
4147 /* We store a pointer to the hash table entry for each
4148 external symbol. */
4149 amt = extsymcount;
4150 amt *= sizeof (struct elf_link_hash_entry *);
4151 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4152 if (sym_hash == NULL)
4153 goto error_free_sym;
4154 elf_sym_hashes (abfd) = sym_hash;
4155 }
4156 }
4157
4158 if (dynamic)
4159 {
4160 /* Read in any version definitions. */
4161 if (!_bfd_elf_slurp_version_tables (abfd,
4162 info->default_imported_symver))
4163 goto error_free_sym;
4164
4165 /* Read in the symbol versions, but don't bother to convert them
4166 to internal format. */
4167 if (elf_dynversym (abfd) != 0)
4168 {
4169 Elf_Internal_Shdr *versymhdr;
4170
4171 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4172 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4173 if (extversym == NULL)
4174 goto error_free_sym;
4175 amt = versymhdr->sh_size;
4176 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4177 || bfd_bread (extversym, amt, abfd) != amt)
4178 goto error_free_vers;
4179 }
4180 }
4181
4182 /* If we are loading an as-needed shared lib, save the symbol table
4183 state before we start adding symbols. If the lib turns out
4184 to be unneeded, restore the state. */
4185 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4186 {
4187 unsigned int i;
4188 size_t entsize;
4189
4190 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4191 {
4192 struct bfd_hash_entry *p;
4193 struct elf_link_hash_entry *h;
4194
4195 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4196 {
4197 h = (struct elf_link_hash_entry *) p;
4198 entsize += htab->root.table.entsize;
4199 if (h->root.type == bfd_link_hash_warning)
4200 entsize += htab->root.table.entsize;
4201 }
4202 }
4203
4204 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4205 old_tab = bfd_malloc (tabsize + entsize);
4206 if (old_tab == NULL)
4207 goto error_free_vers;
4208
4209 /* Remember the current objalloc pointer, so that all mem for
4210 symbols added can later be reclaimed. */
4211 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4212 if (alloc_mark == NULL)
4213 goto error_free_vers;
4214
4215 /* Make a special call to the linker "notice" function to
4216 tell it that we are about to handle an as-needed lib. */
4217 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4218 goto error_free_vers;
4219
4220 /* Clone the symbol table. Remember some pointers into the
4221 symbol table, and dynamic symbol count. */
4222 old_ent = (char *) old_tab + tabsize;
4223 memcpy (old_tab, htab->root.table.table, tabsize);
4224 old_undefs = htab->root.undefs;
4225 old_undefs_tail = htab->root.undefs_tail;
4226 old_table = htab->root.table.table;
4227 old_size = htab->root.table.size;
4228 old_count = htab->root.table.count;
4229 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4230 if (old_strtab == NULL)
4231 goto error_free_vers;
4232
4233 for (i = 0; i < htab->root.table.size; i++)
4234 {
4235 struct bfd_hash_entry *p;
4236 struct elf_link_hash_entry *h;
4237
4238 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4239 {
4240 memcpy (old_ent, p, htab->root.table.entsize);
4241 old_ent = (char *) old_ent + htab->root.table.entsize;
4242 h = (struct elf_link_hash_entry *) p;
4243 if (h->root.type == bfd_link_hash_warning)
4244 {
4245 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4246 old_ent = (char *) old_ent + htab->root.table.entsize;
4247 }
4248 }
4249 }
4250 }
4251
4252 weaks = NULL;
4253 ever = extversym != NULL ? extversym + extsymoff : NULL;
4254 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4255 isym < isymend;
4256 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4257 {
4258 int bind;
4259 bfd_vma value;
4260 asection *sec, *new_sec;
4261 flagword flags;
4262 const char *name;
4263 struct elf_link_hash_entry *h;
4264 struct elf_link_hash_entry *hi;
4265 bfd_boolean definition;
4266 bfd_boolean size_change_ok;
4267 bfd_boolean type_change_ok;
4268 bfd_boolean new_weak;
4269 bfd_boolean old_weak;
4270 bfd_boolean override;
4271 bfd_boolean common;
4272 bfd_boolean discarded;
4273 unsigned int old_alignment;
4274 bfd *old_bfd;
4275 bfd_boolean matched;
4276
4277 override = FALSE;
4278
4279 flags = BSF_NO_FLAGS;
4280 sec = NULL;
4281 value = isym->st_value;
4282 common = bed->common_definition (isym);
4283 if (common && info->inhibit_common_definition)
4284 {
4285 /* Treat common symbol as undefined for --no-define-common. */
4286 isym->st_shndx = SHN_UNDEF;
4287 common = FALSE;
4288 }
4289 discarded = FALSE;
4290
4291 bind = ELF_ST_BIND (isym->st_info);
4292 switch (bind)
4293 {
4294 case STB_LOCAL:
4295 /* This should be impossible, since ELF requires that all
4296 global symbols follow all local symbols, and that sh_info
4297 point to the first global symbol. Unfortunately, Irix 5
4298 screws this up. */
4299 continue;
4300
4301 case STB_GLOBAL:
4302 if (isym->st_shndx != SHN_UNDEF && !common)
4303 flags = BSF_GLOBAL;
4304 break;
4305
4306 case STB_WEAK:
4307 flags = BSF_WEAK;
4308 break;
4309
4310 case STB_GNU_UNIQUE:
4311 flags = BSF_GNU_UNIQUE;
4312 break;
4313
4314 default:
4315 /* Leave it up to the processor backend. */
4316 break;
4317 }
4318
4319 if (isym->st_shndx == SHN_UNDEF)
4320 sec = bfd_und_section_ptr;
4321 else if (isym->st_shndx == SHN_ABS)
4322 sec = bfd_abs_section_ptr;
4323 else if (isym->st_shndx == SHN_COMMON)
4324 {
4325 sec = bfd_com_section_ptr;
4326 /* What ELF calls the size we call the value. What ELF
4327 calls the value we call the alignment. */
4328 value = isym->st_size;
4329 }
4330 else
4331 {
4332 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4333 if (sec == NULL)
4334 sec = bfd_abs_section_ptr;
4335 else if (discarded_section (sec))
4336 {
4337 /* Symbols from discarded section are undefined. We keep
4338 its visibility. */
4339 sec = bfd_und_section_ptr;
4340 discarded = TRUE;
4341 isym->st_shndx = SHN_UNDEF;
4342 }
4343 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4344 value -= sec->vma;
4345 }
4346
4347 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4348 isym->st_name);
4349 if (name == NULL)
4350 goto error_free_vers;
4351
4352 if (isym->st_shndx == SHN_COMMON
4353 && (abfd->flags & BFD_PLUGIN) != 0)
4354 {
4355 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4356
4357 if (xc == NULL)
4358 {
4359 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4360 | SEC_EXCLUDE);
4361 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4362 if (xc == NULL)
4363 goto error_free_vers;
4364 }
4365 sec = xc;
4366 }
4367 else if (isym->st_shndx == SHN_COMMON
4368 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4369 && !bfd_link_relocatable (info))
4370 {
4371 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4372
4373 if (tcomm == NULL)
4374 {
4375 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4376 | SEC_LINKER_CREATED);
4377 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4378 if (tcomm == NULL)
4379 goto error_free_vers;
4380 }
4381 sec = tcomm;
4382 }
4383 else if (bed->elf_add_symbol_hook)
4384 {
4385 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4386 &sec, &value))
4387 goto error_free_vers;
4388
4389 /* The hook function sets the name to NULL if this symbol
4390 should be skipped for some reason. */
4391 if (name == NULL)
4392 continue;
4393 }
4394
4395 /* Sanity check that all possibilities were handled. */
4396 if (sec == NULL)
4397 {
4398 bfd_set_error (bfd_error_bad_value);
4399 goto error_free_vers;
4400 }
4401
4402 /* Silently discard TLS symbols from --just-syms. There's
4403 no way to combine a static TLS block with a new TLS block
4404 for this executable. */
4405 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4406 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4407 continue;
4408
4409 if (bfd_is_und_section (sec)
4410 || bfd_is_com_section (sec))
4411 definition = FALSE;
4412 else
4413 definition = TRUE;
4414
4415 size_change_ok = FALSE;
4416 type_change_ok = bed->type_change_ok;
4417 old_weak = FALSE;
4418 matched = FALSE;
4419 old_alignment = 0;
4420 old_bfd = NULL;
4421 new_sec = sec;
4422
4423 if (is_elf_hash_table (htab))
4424 {
4425 Elf_Internal_Versym iver;
4426 unsigned int vernum = 0;
4427 bfd_boolean skip;
4428
4429 if (ever == NULL)
4430 {
4431 if (info->default_imported_symver)
4432 /* Use the default symbol version created earlier. */
4433 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4434 else
4435 iver.vs_vers = 0;
4436 }
4437 else
4438 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4439
4440 vernum = iver.vs_vers & VERSYM_VERSION;
4441
4442 /* If this is a hidden symbol, or if it is not version
4443 1, we append the version name to the symbol name.
4444 However, we do not modify a non-hidden absolute symbol
4445 if it is not a function, because it might be the version
4446 symbol itself. FIXME: What if it isn't? */
4447 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4448 || (vernum > 1
4449 && (!bfd_is_abs_section (sec)
4450 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4451 {
4452 const char *verstr;
4453 size_t namelen, verlen, newlen;
4454 char *newname, *p;
4455
4456 if (isym->st_shndx != SHN_UNDEF)
4457 {
4458 if (vernum > elf_tdata (abfd)->cverdefs)
4459 verstr = NULL;
4460 else if (vernum > 1)
4461 verstr =
4462 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4463 else
4464 verstr = "";
4465
4466 if (verstr == NULL)
4467 {
4468 _bfd_error_handler
4469 /* xgettext:c-format */
4470 (_("%B: %s: invalid version %u (max %d)"),
4471 abfd, name, vernum,
4472 elf_tdata (abfd)->cverdefs);
4473 bfd_set_error (bfd_error_bad_value);
4474 goto error_free_vers;
4475 }
4476 }
4477 else
4478 {
4479 /* We cannot simply test for the number of
4480 entries in the VERNEED section since the
4481 numbers for the needed versions do not start
4482 at 0. */
4483 Elf_Internal_Verneed *t;
4484
4485 verstr = NULL;
4486 for (t = elf_tdata (abfd)->verref;
4487 t != NULL;
4488 t = t->vn_nextref)
4489 {
4490 Elf_Internal_Vernaux *a;
4491
4492 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4493 {
4494 if (a->vna_other == vernum)
4495 {
4496 verstr = a->vna_nodename;
4497 break;
4498 }
4499 }
4500 if (a != NULL)
4501 break;
4502 }
4503 if (verstr == NULL)
4504 {
4505 _bfd_error_handler
4506 /* xgettext:c-format */
4507 (_("%B: %s: invalid needed version %d"),
4508 abfd, name, vernum);
4509 bfd_set_error (bfd_error_bad_value);
4510 goto error_free_vers;
4511 }
4512 }
4513
4514 namelen = strlen (name);
4515 verlen = strlen (verstr);
4516 newlen = namelen + verlen + 2;
4517 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4518 && isym->st_shndx != SHN_UNDEF)
4519 ++newlen;
4520
4521 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4522 if (newname == NULL)
4523 goto error_free_vers;
4524 memcpy (newname, name, namelen);
4525 p = newname + namelen;
4526 *p++ = ELF_VER_CHR;
4527 /* If this is a defined non-hidden version symbol,
4528 we add another @ to the name. This indicates the
4529 default version of the symbol. */
4530 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4531 && isym->st_shndx != SHN_UNDEF)
4532 *p++ = ELF_VER_CHR;
4533 memcpy (p, verstr, verlen + 1);
4534
4535 name = newname;
4536 }
4537
4538 /* If this symbol has default visibility and the user has
4539 requested we not re-export it, then mark it as hidden. */
4540 if (!bfd_is_und_section (sec)
4541 && !dynamic
4542 && abfd->no_export
4543 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4544 isym->st_other = (STV_HIDDEN
4545 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4546
4547 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4548 sym_hash, &old_bfd, &old_weak,
4549 &old_alignment, &skip, &override,
4550 &type_change_ok, &size_change_ok,
4551 &matched))
4552 goto error_free_vers;
4553
4554 if (skip)
4555 continue;
4556
4557 /* Override a definition only if the new symbol matches the
4558 existing one. */
4559 if (override && matched)
4560 definition = FALSE;
4561
4562 h = *sym_hash;
4563 while (h->root.type == bfd_link_hash_indirect
4564 || h->root.type == bfd_link_hash_warning)
4565 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4566
4567 if (elf_tdata (abfd)->verdef != NULL
4568 && vernum > 1
4569 && definition)
4570 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4571 }
4572
4573 if (! (_bfd_generic_link_add_one_symbol
4574 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4575 (struct bfd_link_hash_entry **) sym_hash)))
4576 goto error_free_vers;
4577
4578 if ((flags & BSF_GNU_UNIQUE)
4579 && (abfd->flags & DYNAMIC) == 0
4580 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4581 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4582
4583 h = *sym_hash;
4584 /* We need to make sure that indirect symbol dynamic flags are
4585 updated. */
4586 hi = h;
4587 while (h->root.type == bfd_link_hash_indirect
4588 || h->root.type == bfd_link_hash_warning)
4589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4590
4591 /* Setting the index to -3 tells elf_link_output_extsym that
4592 this symbol is defined in a discarded section. */
4593 if (discarded)
4594 h->indx = -3;
4595
4596 *sym_hash = h;
4597
4598 new_weak = (flags & BSF_WEAK) != 0;
4599 if (dynamic
4600 && definition
4601 && new_weak
4602 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4603 && is_elf_hash_table (htab)
4604 && h->u.alias == NULL)
4605 {
4606 /* Keep a list of all weak defined non function symbols from
4607 a dynamic object, using the alias field. Later in this
4608 function we will set the alias field to the correct
4609 value. We only put non-function symbols from dynamic
4610 objects on this list, because that happens to be the only
4611 time we need to know the normal symbol corresponding to a
4612 weak symbol, and the information is time consuming to
4613 figure out. If the alias field is not already NULL,
4614 then this symbol was already defined by some previous
4615 dynamic object, and we will be using that previous
4616 definition anyhow. */
4617
4618 h->u.alias = weaks;
4619 weaks = h;
4620 }
4621
4622 /* Set the alignment of a common symbol. */
4623 if ((common || bfd_is_com_section (sec))
4624 && h->root.type == bfd_link_hash_common)
4625 {
4626 unsigned int align;
4627
4628 if (common)
4629 align = bfd_log2 (isym->st_value);
4630 else
4631 {
4632 /* The new symbol is a common symbol in a shared object.
4633 We need to get the alignment from the section. */
4634 align = new_sec->alignment_power;
4635 }
4636 if (align > old_alignment)
4637 h->root.u.c.p->alignment_power = align;
4638 else
4639 h->root.u.c.p->alignment_power = old_alignment;
4640 }
4641
4642 if (is_elf_hash_table (htab))
4643 {
4644 /* Set a flag in the hash table entry indicating the type of
4645 reference or definition we just found. A dynamic symbol
4646 is one which is referenced or defined by both a regular
4647 object and a shared object. */
4648 bfd_boolean dynsym = FALSE;
4649
4650 /* Plugin symbols aren't normal. Don't set def_regular or
4651 ref_regular for them, or make them dynamic. */
4652 if ((abfd->flags & BFD_PLUGIN) != 0)
4653 ;
4654 else if (! dynamic)
4655 {
4656 if (! definition)
4657 {
4658 h->ref_regular = 1;
4659 if (bind != STB_WEAK)
4660 h->ref_regular_nonweak = 1;
4661 }
4662 else
4663 {
4664 h->def_regular = 1;
4665 if (h->def_dynamic)
4666 {
4667 h->def_dynamic = 0;
4668 h->ref_dynamic = 1;
4669 }
4670 }
4671
4672 /* If the indirect symbol has been forced local, don't
4673 make the real symbol dynamic. */
4674 if ((h == hi || !hi->forced_local)
4675 && (bfd_link_dll (info)
4676 || h->def_dynamic
4677 || h->ref_dynamic))
4678 dynsym = TRUE;
4679 }
4680 else
4681 {
4682 if (! definition)
4683 {
4684 h->ref_dynamic = 1;
4685 hi->ref_dynamic = 1;
4686 }
4687 else
4688 {
4689 h->def_dynamic = 1;
4690 hi->def_dynamic = 1;
4691 }
4692
4693 /* If the indirect symbol has been forced local, don't
4694 make the real symbol dynamic. */
4695 if ((h == hi || !hi->forced_local)
4696 && (h->def_regular
4697 || h->ref_regular
4698 || (h->is_weakalias
4699 && weakdef (h)->dynindx != -1)))
4700 dynsym = TRUE;
4701 }
4702
4703 /* Check to see if we need to add an indirect symbol for
4704 the default name. */
4705 if (definition
4706 || (!override && h->root.type == bfd_link_hash_common))
4707 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4708 sec, value, &old_bfd, &dynsym))
4709 goto error_free_vers;
4710
4711 /* Check the alignment when a common symbol is involved. This
4712 can change when a common symbol is overridden by a normal
4713 definition or a common symbol is ignored due to the old
4714 normal definition. We need to make sure the maximum
4715 alignment is maintained. */
4716 if ((old_alignment || common)
4717 && h->root.type != bfd_link_hash_common)
4718 {
4719 unsigned int common_align;
4720 unsigned int normal_align;
4721 unsigned int symbol_align;
4722 bfd *normal_bfd;
4723 bfd *common_bfd;
4724
4725 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4726 || h->root.type == bfd_link_hash_defweak);
4727
4728 symbol_align = ffs (h->root.u.def.value) - 1;
4729 if (h->root.u.def.section->owner != NULL
4730 && (h->root.u.def.section->owner->flags
4731 & (DYNAMIC | BFD_PLUGIN)) == 0)
4732 {
4733 normal_align = h->root.u.def.section->alignment_power;
4734 if (normal_align > symbol_align)
4735 normal_align = symbol_align;
4736 }
4737 else
4738 normal_align = symbol_align;
4739
4740 if (old_alignment)
4741 {
4742 common_align = old_alignment;
4743 common_bfd = old_bfd;
4744 normal_bfd = abfd;
4745 }
4746 else
4747 {
4748 common_align = bfd_log2 (isym->st_value);
4749 common_bfd = abfd;
4750 normal_bfd = old_bfd;
4751 }
4752
4753 if (normal_align < common_align)
4754 {
4755 /* PR binutils/2735 */
4756 if (normal_bfd == NULL)
4757 _bfd_error_handler
4758 /* xgettext:c-format */
4759 (_("Warning: alignment %u of common symbol `%s' in %B is"
4760 " greater than the alignment (%u) of its section %A"),
4761 1 << common_align, name, common_bfd,
4762 1 << normal_align, h->root.u.def.section);
4763 else
4764 _bfd_error_handler
4765 /* xgettext:c-format */
4766 (_("Warning: alignment %u of symbol `%s' in %B"
4767 " is smaller than %u in %B"),
4768 1 << normal_align, name, normal_bfd,
4769 1 << common_align, common_bfd);
4770 }
4771 }
4772
4773 /* Remember the symbol size if it isn't undefined. */
4774 if (isym->st_size != 0
4775 && isym->st_shndx != SHN_UNDEF
4776 && (definition || h->size == 0))
4777 {
4778 if (h->size != 0
4779 && h->size != isym->st_size
4780 && ! size_change_ok)
4781 _bfd_error_handler
4782 /* xgettext:c-format */
4783 (_("Warning: size of symbol `%s' changed"
4784 " from %Lu in %B to %Lu in %B"),
4785 name, h->size, old_bfd, isym->st_size, abfd);
4786
4787 h->size = isym->st_size;
4788 }
4789
4790 /* If this is a common symbol, then we always want H->SIZE
4791 to be the size of the common symbol. The code just above
4792 won't fix the size if a common symbol becomes larger. We
4793 don't warn about a size change here, because that is
4794 covered by --warn-common. Allow changes between different
4795 function types. */
4796 if (h->root.type == bfd_link_hash_common)
4797 h->size = h->root.u.c.size;
4798
4799 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4800 && ((definition && !new_weak)
4801 || (old_weak && h->root.type == bfd_link_hash_common)
4802 || h->type == STT_NOTYPE))
4803 {
4804 unsigned int type = ELF_ST_TYPE (isym->st_info);
4805
4806 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4807 symbol. */
4808 if (type == STT_GNU_IFUNC
4809 && (abfd->flags & DYNAMIC) != 0)
4810 type = STT_FUNC;
4811
4812 if (h->type != type)
4813 {
4814 if (h->type != STT_NOTYPE && ! type_change_ok)
4815 /* xgettext:c-format */
4816 _bfd_error_handler
4817 (_("Warning: type of symbol `%s' changed"
4818 " from %d to %d in %B"),
4819 name, h->type, type, abfd);
4820
4821 h->type = type;
4822 }
4823 }
4824
4825 /* Merge st_other field. */
4826 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4827
4828 /* We don't want to make debug symbol dynamic. */
4829 if (definition
4830 && (sec->flags & SEC_DEBUGGING)
4831 && !bfd_link_relocatable (info))
4832 dynsym = FALSE;
4833
4834 /* Nor should we make plugin symbols dynamic. */
4835 if ((abfd->flags & BFD_PLUGIN) != 0)
4836 dynsym = FALSE;
4837
4838 if (definition)
4839 {
4840 h->target_internal = isym->st_target_internal;
4841 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4842 }
4843
4844 if (definition && !dynamic)
4845 {
4846 char *p = strchr (name, ELF_VER_CHR);
4847 if (p != NULL && p[1] != ELF_VER_CHR)
4848 {
4849 /* Queue non-default versions so that .symver x, x@FOO
4850 aliases can be checked. */
4851 if (!nondeflt_vers)
4852 {
4853 amt = ((isymend - isym + 1)
4854 * sizeof (struct elf_link_hash_entry *));
4855 nondeflt_vers
4856 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4857 if (!nondeflt_vers)
4858 goto error_free_vers;
4859 }
4860 nondeflt_vers[nondeflt_vers_cnt++] = h;
4861 }
4862 }
4863
4864 if (dynsym && h->dynindx == -1)
4865 {
4866 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4867 goto error_free_vers;
4868 if (h->is_weakalias
4869 && weakdef (h)->dynindx == -1)
4870 {
4871 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
4872 goto error_free_vers;
4873 }
4874 }
4875 else if (h->dynindx != -1)
4876 /* If the symbol already has a dynamic index, but
4877 visibility says it should not be visible, turn it into
4878 a local symbol. */
4879 switch (ELF_ST_VISIBILITY (h->other))
4880 {
4881 case STV_INTERNAL:
4882 case STV_HIDDEN:
4883 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4884 dynsym = FALSE;
4885 break;
4886 }
4887
4888 /* Don't add DT_NEEDED for references from the dummy bfd nor
4889 for unmatched symbol. */
4890 if (!add_needed
4891 && matched
4892 && definition
4893 && ((dynsym
4894 && h->ref_regular_nonweak
4895 && (old_bfd == NULL
4896 || (old_bfd->flags & BFD_PLUGIN) == 0))
4897 || (h->ref_dynamic_nonweak
4898 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4899 && !on_needed_list (elf_dt_name (abfd),
4900 htab->needed, NULL))))
4901 {
4902 int ret;
4903 const char *soname = elf_dt_name (abfd);
4904
4905 info->callbacks->minfo ("%!", soname, old_bfd,
4906 h->root.root.string);
4907
4908 /* A symbol from a library loaded via DT_NEEDED of some
4909 other library is referenced by a regular object.
4910 Add a DT_NEEDED entry for it. Issue an error if
4911 --no-add-needed is used and the reference was not
4912 a weak one. */
4913 if (old_bfd != NULL
4914 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4915 {
4916 _bfd_error_handler
4917 /* xgettext:c-format */
4918 (_("%B: undefined reference to symbol '%s'"),
4919 old_bfd, name);
4920 bfd_set_error (bfd_error_missing_dso);
4921 goto error_free_vers;
4922 }
4923
4924 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4925 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4926
4927 add_needed = TRUE;
4928 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4929 if (ret < 0)
4930 goto error_free_vers;
4931
4932 BFD_ASSERT (ret == 0);
4933 }
4934 }
4935 }
4936
4937 if (info->lto_plugin_active
4938 && !bfd_link_relocatable (info)
4939 && (abfd->flags & BFD_PLUGIN) == 0
4940 && !just_syms
4941 && extsymcount)
4942 {
4943 int r_sym_shift;
4944
4945 if (bed->s->arch_size == 32)
4946 r_sym_shift = 8;
4947 else
4948 r_sym_shift = 32;
4949
4950 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
4951 referenced in regular objects so that linker plugin will get
4952 the correct symbol resolution. */
4953
4954 sym_hash = elf_sym_hashes (abfd);
4955 for (s = abfd->sections; s != NULL; s = s->next)
4956 {
4957 Elf_Internal_Rela *internal_relocs;
4958 Elf_Internal_Rela *rel, *relend;
4959
4960 /* Don't check relocations in excluded sections. */
4961 if ((s->flags & SEC_RELOC) == 0
4962 || s->reloc_count == 0
4963 || (s->flags & SEC_EXCLUDE) != 0
4964 || ((info->strip == strip_all
4965 || info->strip == strip_debugger)
4966 && (s->flags & SEC_DEBUGGING) != 0))
4967 continue;
4968
4969 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
4970 NULL,
4971 info->keep_memory);
4972 if (internal_relocs == NULL)
4973 goto error_free_vers;
4974
4975 rel = internal_relocs;
4976 relend = rel + s->reloc_count;
4977 for ( ; rel < relend; rel++)
4978 {
4979 unsigned long r_symndx = rel->r_info >> r_sym_shift;
4980 struct elf_link_hash_entry *h;
4981
4982 /* Skip local symbols. */
4983 if (r_symndx < extsymoff)
4984 continue;
4985
4986 h = sym_hash[r_symndx - extsymoff];
4987 if (h != NULL)
4988 h->root.non_ir_ref_regular = 1;
4989 }
4990
4991 if (elf_section_data (s)->relocs != internal_relocs)
4992 free (internal_relocs);
4993 }
4994 }
4995
4996 if (extversym != NULL)
4997 {
4998 free (extversym);
4999 extversym = NULL;
5000 }
5001
5002 if (isymbuf != NULL)
5003 {
5004 free (isymbuf);
5005 isymbuf = NULL;
5006 }
5007
5008 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5009 {
5010 unsigned int i;
5011
5012 /* Restore the symbol table. */
5013 old_ent = (char *) old_tab + tabsize;
5014 memset (elf_sym_hashes (abfd), 0,
5015 extsymcount * sizeof (struct elf_link_hash_entry *));
5016 htab->root.table.table = old_table;
5017 htab->root.table.size = old_size;
5018 htab->root.table.count = old_count;
5019 memcpy (htab->root.table.table, old_tab, tabsize);
5020 htab->root.undefs = old_undefs;
5021 htab->root.undefs_tail = old_undefs_tail;
5022 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5023 free (old_strtab);
5024 old_strtab = NULL;
5025 for (i = 0; i < htab->root.table.size; i++)
5026 {
5027 struct bfd_hash_entry *p;
5028 struct elf_link_hash_entry *h;
5029 bfd_size_type size;
5030 unsigned int alignment_power;
5031 unsigned int non_ir_ref_dynamic;
5032
5033 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5034 {
5035 h = (struct elf_link_hash_entry *) p;
5036 if (h->root.type == bfd_link_hash_warning)
5037 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5038
5039 /* Preserve the maximum alignment and size for common
5040 symbols even if this dynamic lib isn't on DT_NEEDED
5041 since it can still be loaded at run time by another
5042 dynamic lib. */
5043 if (h->root.type == bfd_link_hash_common)
5044 {
5045 size = h->root.u.c.size;
5046 alignment_power = h->root.u.c.p->alignment_power;
5047 }
5048 else
5049 {
5050 size = 0;
5051 alignment_power = 0;
5052 }
5053 /* Preserve non_ir_ref_dynamic so that this symbol
5054 will be exported when the dynamic lib becomes needed
5055 in the second pass. */
5056 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5057 memcpy (p, old_ent, htab->root.table.entsize);
5058 old_ent = (char *) old_ent + htab->root.table.entsize;
5059 h = (struct elf_link_hash_entry *) p;
5060 if (h->root.type == bfd_link_hash_warning)
5061 {
5062 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5063 old_ent = (char *) old_ent + htab->root.table.entsize;
5064 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5065 }
5066 if (h->root.type == bfd_link_hash_common)
5067 {
5068 if (size > h->root.u.c.size)
5069 h->root.u.c.size = size;
5070 if (alignment_power > h->root.u.c.p->alignment_power)
5071 h->root.u.c.p->alignment_power = alignment_power;
5072 }
5073 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5074 }
5075 }
5076
5077 /* Make a special call to the linker "notice" function to
5078 tell it that symbols added for crefs may need to be removed. */
5079 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5080 goto error_free_vers;
5081
5082 free (old_tab);
5083 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5084 alloc_mark);
5085 if (nondeflt_vers != NULL)
5086 free (nondeflt_vers);
5087 return TRUE;
5088 }
5089
5090 if (old_tab != NULL)
5091 {
5092 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5093 goto error_free_vers;
5094 free (old_tab);
5095 old_tab = NULL;
5096 }
5097
5098 /* Now that all the symbols from this input file are created, if
5099 not performing a relocatable link, handle .symver foo, foo@BAR
5100 such that any relocs against foo become foo@BAR. */
5101 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5102 {
5103 size_t cnt, symidx;
5104
5105 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5106 {
5107 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5108 char *shortname, *p;
5109
5110 p = strchr (h->root.root.string, ELF_VER_CHR);
5111 if (p == NULL
5112 || (h->root.type != bfd_link_hash_defined
5113 && h->root.type != bfd_link_hash_defweak))
5114 continue;
5115
5116 amt = p - h->root.root.string;
5117 shortname = (char *) bfd_malloc (amt + 1);
5118 if (!shortname)
5119 goto error_free_vers;
5120 memcpy (shortname, h->root.root.string, amt);
5121 shortname[amt] = '\0';
5122
5123 hi = (struct elf_link_hash_entry *)
5124 bfd_link_hash_lookup (&htab->root, shortname,
5125 FALSE, FALSE, FALSE);
5126 if (hi != NULL
5127 && hi->root.type == h->root.type
5128 && hi->root.u.def.value == h->root.u.def.value
5129 && hi->root.u.def.section == h->root.u.def.section)
5130 {
5131 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5132 hi->root.type = bfd_link_hash_indirect;
5133 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5134 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5135 sym_hash = elf_sym_hashes (abfd);
5136 if (sym_hash)
5137 for (symidx = 0; symidx < extsymcount; ++symidx)
5138 if (sym_hash[symidx] == hi)
5139 {
5140 sym_hash[symidx] = h;
5141 break;
5142 }
5143 }
5144 free (shortname);
5145 }
5146 free (nondeflt_vers);
5147 nondeflt_vers = NULL;
5148 }
5149
5150 /* Now set the alias field correctly for all the weak defined
5151 symbols we found. The only way to do this is to search all the
5152 symbols. Since we only need the information for non functions in
5153 dynamic objects, that's the only time we actually put anything on
5154 the list WEAKS. We need this information so that if a regular
5155 object refers to a symbol defined weakly in a dynamic object, the
5156 real symbol in the dynamic object is also put in the dynamic
5157 symbols; we also must arrange for both symbols to point to the
5158 same memory location. We could handle the general case of symbol
5159 aliasing, but a general symbol alias can only be generated in
5160 assembler code, handling it correctly would be very time
5161 consuming, and other ELF linkers don't handle general aliasing
5162 either. */
5163 if (weaks != NULL)
5164 {
5165 struct elf_link_hash_entry **hpp;
5166 struct elf_link_hash_entry **hppend;
5167 struct elf_link_hash_entry **sorted_sym_hash;
5168 struct elf_link_hash_entry *h;
5169 size_t sym_count;
5170
5171 /* Since we have to search the whole symbol list for each weak
5172 defined symbol, search time for N weak defined symbols will be
5173 O(N^2). Binary search will cut it down to O(NlogN). */
5174 amt = extsymcount;
5175 amt *= sizeof (struct elf_link_hash_entry *);
5176 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5177 if (sorted_sym_hash == NULL)
5178 goto error_return;
5179 sym_hash = sorted_sym_hash;
5180 hpp = elf_sym_hashes (abfd);
5181 hppend = hpp + extsymcount;
5182 sym_count = 0;
5183 for (; hpp < hppend; hpp++)
5184 {
5185 h = *hpp;
5186 if (h != NULL
5187 && h->root.type == bfd_link_hash_defined
5188 && !bed->is_function_type (h->type))
5189 {
5190 *sym_hash = h;
5191 sym_hash++;
5192 sym_count++;
5193 }
5194 }
5195
5196 qsort (sorted_sym_hash, sym_count,
5197 sizeof (struct elf_link_hash_entry *),
5198 elf_sort_symbol);
5199
5200 while (weaks != NULL)
5201 {
5202 struct elf_link_hash_entry *hlook;
5203 asection *slook;
5204 bfd_vma vlook;
5205 size_t i, j, idx = 0;
5206
5207 hlook = weaks;
5208 weaks = hlook->u.alias;
5209 hlook->u.alias = NULL;
5210
5211 if (hlook->root.type != bfd_link_hash_defined
5212 && hlook->root.type != bfd_link_hash_defweak)
5213 continue;
5214
5215 slook = hlook->root.u.def.section;
5216 vlook = hlook->root.u.def.value;
5217
5218 i = 0;
5219 j = sym_count;
5220 while (i != j)
5221 {
5222 bfd_signed_vma vdiff;
5223 idx = (i + j) / 2;
5224 h = sorted_sym_hash[idx];
5225 vdiff = vlook - h->root.u.def.value;
5226 if (vdiff < 0)
5227 j = idx;
5228 else if (vdiff > 0)
5229 i = idx + 1;
5230 else
5231 {
5232 int sdiff = slook->id - h->root.u.def.section->id;
5233 if (sdiff < 0)
5234 j = idx;
5235 else if (sdiff > 0)
5236 i = idx + 1;
5237 else
5238 break;
5239 }
5240 }
5241
5242 /* We didn't find a value/section match. */
5243 if (i == j)
5244 continue;
5245
5246 /* With multiple aliases, or when the weak symbol is already
5247 strongly defined, we have multiple matching symbols and
5248 the binary search above may land on any of them. Step
5249 one past the matching symbol(s). */
5250 while (++idx != j)
5251 {
5252 h = sorted_sym_hash[idx];
5253 if (h->root.u.def.section != slook
5254 || h->root.u.def.value != vlook)
5255 break;
5256 }
5257
5258 /* Now look back over the aliases. Since we sorted by size
5259 as well as value and section, we'll choose the one with
5260 the largest size. */
5261 while (idx-- != i)
5262 {
5263 h = sorted_sym_hash[idx];
5264
5265 /* Stop if value or section doesn't match. */
5266 if (h->root.u.def.section != slook
5267 || h->root.u.def.value != vlook)
5268 break;
5269 else if (h != hlook)
5270 {
5271 struct elf_link_hash_entry *t;
5272
5273 hlook->u.alias = h;
5274 hlook->is_weakalias = 1;
5275 t = h;
5276 if (t->u.alias != NULL)
5277 while (t->u.alias != h)
5278 t = t->u.alias;
5279 t->u.alias = hlook;
5280
5281 /* If the weak definition is in the list of dynamic
5282 symbols, make sure the real definition is put
5283 there as well. */
5284 if (hlook->dynindx != -1 && h->dynindx == -1)
5285 {
5286 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5287 {
5288 err_free_sym_hash:
5289 free (sorted_sym_hash);
5290 goto error_return;
5291 }
5292 }
5293
5294 /* If the real definition is in the list of dynamic
5295 symbols, make sure the weak definition is put
5296 there as well. If we don't do this, then the
5297 dynamic loader might not merge the entries for the
5298 real definition and the weak definition. */
5299 if (h->dynindx != -1 && hlook->dynindx == -1)
5300 {
5301 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5302 goto err_free_sym_hash;
5303 }
5304 break;
5305 }
5306 }
5307 }
5308
5309 free (sorted_sym_hash);
5310 }
5311
5312 if (bed->check_directives
5313 && !(*bed->check_directives) (abfd, info))
5314 return FALSE;
5315
5316 /* If this is a non-traditional link, try to optimize the handling
5317 of the .stab/.stabstr sections. */
5318 if (! dynamic
5319 && ! info->traditional_format
5320 && is_elf_hash_table (htab)
5321 && (info->strip != strip_all && info->strip != strip_debugger))
5322 {
5323 asection *stabstr;
5324
5325 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5326 if (stabstr != NULL)
5327 {
5328 bfd_size_type string_offset = 0;
5329 asection *stab;
5330
5331 for (stab = abfd->sections; stab; stab = stab->next)
5332 if (CONST_STRNEQ (stab->name, ".stab")
5333 && (!stab->name[5] ||
5334 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5335 && (stab->flags & SEC_MERGE) == 0
5336 && !bfd_is_abs_section (stab->output_section))
5337 {
5338 struct bfd_elf_section_data *secdata;
5339
5340 secdata = elf_section_data (stab);
5341 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5342 stabstr, &secdata->sec_info,
5343 &string_offset))
5344 goto error_return;
5345 if (secdata->sec_info)
5346 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5347 }
5348 }
5349 }
5350
5351 if (is_elf_hash_table (htab) && add_needed)
5352 {
5353 /* Add this bfd to the loaded list. */
5354 struct elf_link_loaded_list *n;
5355
5356 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5357 if (n == NULL)
5358 goto error_return;
5359 n->abfd = abfd;
5360 n->next = htab->loaded;
5361 htab->loaded = n;
5362 }
5363
5364 return TRUE;
5365
5366 error_free_vers:
5367 if (old_tab != NULL)
5368 free (old_tab);
5369 if (old_strtab != NULL)
5370 free (old_strtab);
5371 if (nondeflt_vers != NULL)
5372 free (nondeflt_vers);
5373 if (extversym != NULL)
5374 free (extversym);
5375 error_free_sym:
5376 if (isymbuf != NULL)
5377 free (isymbuf);
5378 error_return:
5379 return FALSE;
5380 }
5381
5382 /* Return the linker hash table entry of a symbol that might be
5383 satisfied by an archive symbol. Return -1 on error. */
5384
5385 struct elf_link_hash_entry *
5386 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5387 struct bfd_link_info *info,
5388 const char *name)
5389 {
5390 struct elf_link_hash_entry *h;
5391 char *p, *copy;
5392 size_t len, first;
5393
5394 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5395 if (h != NULL)
5396 return h;
5397
5398 /* If this is a default version (the name contains @@), look up the
5399 symbol again with only one `@' as well as without the version.
5400 The effect is that references to the symbol with and without the
5401 version will be matched by the default symbol in the archive. */
5402
5403 p = strchr (name, ELF_VER_CHR);
5404 if (p == NULL || p[1] != ELF_VER_CHR)
5405 return h;
5406
5407 /* First check with only one `@'. */
5408 len = strlen (name);
5409 copy = (char *) bfd_alloc (abfd, len);
5410 if (copy == NULL)
5411 return (struct elf_link_hash_entry *) 0 - 1;
5412
5413 first = p - name + 1;
5414 memcpy (copy, name, first);
5415 memcpy (copy + first, name + first + 1, len - first);
5416
5417 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5418 if (h == NULL)
5419 {
5420 /* We also need to check references to the symbol without the
5421 version. */
5422 copy[first - 1] = '\0';
5423 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5424 FALSE, FALSE, TRUE);
5425 }
5426
5427 bfd_release (abfd, copy);
5428 return h;
5429 }
5430
5431 /* Add symbols from an ELF archive file to the linker hash table. We
5432 don't use _bfd_generic_link_add_archive_symbols because we need to
5433 handle versioned symbols.
5434
5435 Fortunately, ELF archive handling is simpler than that done by
5436 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5437 oddities. In ELF, if we find a symbol in the archive map, and the
5438 symbol is currently undefined, we know that we must pull in that
5439 object file.
5440
5441 Unfortunately, we do have to make multiple passes over the symbol
5442 table until nothing further is resolved. */
5443
5444 static bfd_boolean
5445 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5446 {
5447 symindex c;
5448 unsigned char *included = NULL;
5449 carsym *symdefs;
5450 bfd_boolean loop;
5451 bfd_size_type amt;
5452 const struct elf_backend_data *bed;
5453 struct elf_link_hash_entry * (*archive_symbol_lookup)
5454 (bfd *, struct bfd_link_info *, const char *);
5455
5456 if (! bfd_has_map (abfd))
5457 {
5458 /* An empty archive is a special case. */
5459 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5460 return TRUE;
5461 bfd_set_error (bfd_error_no_armap);
5462 return FALSE;
5463 }
5464
5465 /* Keep track of all symbols we know to be already defined, and all
5466 files we know to be already included. This is to speed up the
5467 second and subsequent passes. */
5468 c = bfd_ardata (abfd)->symdef_count;
5469 if (c == 0)
5470 return TRUE;
5471 amt = c;
5472 amt *= sizeof (*included);
5473 included = (unsigned char *) bfd_zmalloc (amt);
5474 if (included == NULL)
5475 return FALSE;
5476
5477 symdefs = bfd_ardata (abfd)->symdefs;
5478 bed = get_elf_backend_data (abfd);
5479 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5480
5481 do
5482 {
5483 file_ptr last;
5484 symindex i;
5485 carsym *symdef;
5486 carsym *symdefend;
5487
5488 loop = FALSE;
5489 last = -1;
5490
5491 symdef = symdefs;
5492 symdefend = symdef + c;
5493 for (i = 0; symdef < symdefend; symdef++, i++)
5494 {
5495 struct elf_link_hash_entry *h;
5496 bfd *element;
5497 struct bfd_link_hash_entry *undefs_tail;
5498 symindex mark;
5499
5500 if (included[i])
5501 continue;
5502 if (symdef->file_offset == last)
5503 {
5504 included[i] = TRUE;
5505 continue;
5506 }
5507
5508 h = archive_symbol_lookup (abfd, info, symdef->name);
5509 if (h == (struct elf_link_hash_entry *) 0 - 1)
5510 goto error_return;
5511
5512 if (h == NULL)
5513 continue;
5514
5515 if (h->root.type == bfd_link_hash_common)
5516 {
5517 /* We currently have a common symbol. The archive map contains
5518 a reference to this symbol, so we may want to include it. We
5519 only want to include it however, if this archive element
5520 contains a definition of the symbol, not just another common
5521 declaration of it.
5522
5523 Unfortunately some archivers (including GNU ar) will put
5524 declarations of common symbols into their archive maps, as
5525 well as real definitions, so we cannot just go by the archive
5526 map alone. Instead we must read in the element's symbol
5527 table and check that to see what kind of symbol definition
5528 this is. */
5529 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5530 continue;
5531 }
5532 else if (h->root.type != bfd_link_hash_undefined)
5533 {
5534 if (h->root.type != bfd_link_hash_undefweak)
5535 /* Symbol must be defined. Don't check it again. */
5536 included[i] = TRUE;
5537 continue;
5538 }
5539
5540 /* We need to include this archive member. */
5541 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5542 if (element == NULL)
5543 goto error_return;
5544
5545 if (! bfd_check_format (element, bfd_object))
5546 goto error_return;
5547
5548 undefs_tail = info->hash->undefs_tail;
5549
5550 if (!(*info->callbacks
5551 ->add_archive_element) (info, element, symdef->name, &element))
5552 continue;
5553 if (!bfd_link_add_symbols (element, info))
5554 goto error_return;
5555
5556 /* If there are any new undefined symbols, we need to make
5557 another pass through the archive in order to see whether
5558 they can be defined. FIXME: This isn't perfect, because
5559 common symbols wind up on undefs_tail and because an
5560 undefined symbol which is defined later on in this pass
5561 does not require another pass. This isn't a bug, but it
5562 does make the code less efficient than it could be. */
5563 if (undefs_tail != info->hash->undefs_tail)
5564 loop = TRUE;
5565
5566 /* Look backward to mark all symbols from this object file
5567 which we have already seen in this pass. */
5568 mark = i;
5569 do
5570 {
5571 included[mark] = TRUE;
5572 if (mark == 0)
5573 break;
5574 --mark;
5575 }
5576 while (symdefs[mark].file_offset == symdef->file_offset);
5577
5578 /* We mark subsequent symbols from this object file as we go
5579 on through the loop. */
5580 last = symdef->file_offset;
5581 }
5582 }
5583 while (loop);
5584
5585 free (included);
5586
5587 return TRUE;
5588
5589 error_return:
5590 if (included != NULL)
5591 free (included);
5592 return FALSE;
5593 }
5594
5595 /* Given an ELF BFD, add symbols to the global hash table as
5596 appropriate. */
5597
5598 bfd_boolean
5599 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5600 {
5601 switch (bfd_get_format (abfd))
5602 {
5603 case bfd_object:
5604 return elf_link_add_object_symbols (abfd, info);
5605 case bfd_archive:
5606 return elf_link_add_archive_symbols (abfd, info);
5607 default:
5608 bfd_set_error (bfd_error_wrong_format);
5609 return FALSE;
5610 }
5611 }
5612 \f
5613 struct hash_codes_info
5614 {
5615 unsigned long *hashcodes;
5616 bfd_boolean error;
5617 };
5618
5619 /* This function will be called though elf_link_hash_traverse to store
5620 all hash value of the exported symbols in an array. */
5621
5622 static bfd_boolean
5623 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5624 {
5625 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5626 const char *name;
5627 unsigned long ha;
5628 char *alc = NULL;
5629
5630 /* Ignore indirect symbols. These are added by the versioning code. */
5631 if (h->dynindx == -1)
5632 return TRUE;
5633
5634 name = h->root.root.string;
5635 if (h->versioned >= versioned)
5636 {
5637 char *p = strchr (name, ELF_VER_CHR);
5638 if (p != NULL)
5639 {
5640 alc = (char *) bfd_malloc (p - name + 1);
5641 if (alc == NULL)
5642 {
5643 inf->error = TRUE;
5644 return FALSE;
5645 }
5646 memcpy (alc, name, p - name);
5647 alc[p - name] = '\0';
5648 name = alc;
5649 }
5650 }
5651
5652 /* Compute the hash value. */
5653 ha = bfd_elf_hash (name);
5654
5655 /* Store the found hash value in the array given as the argument. */
5656 *(inf->hashcodes)++ = ha;
5657
5658 /* And store it in the struct so that we can put it in the hash table
5659 later. */
5660 h->u.elf_hash_value = ha;
5661
5662 if (alc != NULL)
5663 free (alc);
5664
5665 return TRUE;
5666 }
5667
5668 struct collect_gnu_hash_codes
5669 {
5670 bfd *output_bfd;
5671 const struct elf_backend_data *bed;
5672 unsigned long int nsyms;
5673 unsigned long int maskbits;
5674 unsigned long int *hashcodes;
5675 unsigned long int *hashval;
5676 unsigned long int *indx;
5677 unsigned long int *counts;
5678 bfd_vma *bitmask;
5679 bfd_byte *contents;
5680 long int min_dynindx;
5681 unsigned long int bucketcount;
5682 unsigned long int symindx;
5683 long int local_indx;
5684 long int shift1, shift2;
5685 unsigned long int mask;
5686 bfd_boolean error;
5687 };
5688
5689 /* This function will be called though elf_link_hash_traverse to store
5690 all hash value of the exported symbols in an array. */
5691
5692 static bfd_boolean
5693 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5694 {
5695 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5696 const char *name;
5697 unsigned long ha;
5698 char *alc = NULL;
5699
5700 /* Ignore indirect symbols. These are added by the versioning code. */
5701 if (h->dynindx == -1)
5702 return TRUE;
5703
5704 /* Ignore also local symbols and undefined symbols. */
5705 if (! (*s->bed->elf_hash_symbol) (h))
5706 return TRUE;
5707
5708 name = h->root.root.string;
5709 if (h->versioned >= versioned)
5710 {
5711 char *p = strchr (name, ELF_VER_CHR);
5712 if (p != NULL)
5713 {
5714 alc = (char *) bfd_malloc (p - name + 1);
5715 if (alc == NULL)
5716 {
5717 s->error = TRUE;
5718 return FALSE;
5719 }
5720 memcpy (alc, name, p - name);
5721 alc[p - name] = '\0';
5722 name = alc;
5723 }
5724 }
5725
5726 /* Compute the hash value. */
5727 ha = bfd_elf_gnu_hash (name);
5728
5729 /* Store the found hash value in the array for compute_bucket_count,
5730 and also for .dynsym reordering purposes. */
5731 s->hashcodes[s->nsyms] = ha;
5732 s->hashval[h->dynindx] = ha;
5733 ++s->nsyms;
5734 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5735 s->min_dynindx = h->dynindx;
5736
5737 if (alc != NULL)
5738 free (alc);
5739
5740 return TRUE;
5741 }
5742
5743 /* This function will be called though elf_link_hash_traverse to do
5744 final dynaminc symbol renumbering. */
5745
5746 static bfd_boolean
5747 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5748 {
5749 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5750 unsigned long int bucket;
5751 unsigned long int val;
5752
5753 /* Ignore indirect symbols. */
5754 if (h->dynindx == -1)
5755 return TRUE;
5756
5757 /* Ignore also local symbols and undefined symbols. */
5758 if (! (*s->bed->elf_hash_symbol) (h))
5759 {
5760 if (h->dynindx >= s->min_dynindx)
5761 h->dynindx = s->local_indx++;
5762 return TRUE;
5763 }
5764
5765 bucket = s->hashval[h->dynindx] % s->bucketcount;
5766 val = (s->hashval[h->dynindx] >> s->shift1)
5767 & ((s->maskbits >> s->shift1) - 1);
5768 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5769 s->bitmask[val]
5770 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5771 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5772 if (s->counts[bucket] == 1)
5773 /* Last element terminates the chain. */
5774 val |= 1;
5775 bfd_put_32 (s->output_bfd, val,
5776 s->contents + (s->indx[bucket] - s->symindx) * 4);
5777 --s->counts[bucket];
5778 h->dynindx = s->indx[bucket]++;
5779 return TRUE;
5780 }
5781
5782 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5783
5784 bfd_boolean
5785 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5786 {
5787 return !(h->forced_local
5788 || h->root.type == bfd_link_hash_undefined
5789 || h->root.type == bfd_link_hash_undefweak
5790 || ((h->root.type == bfd_link_hash_defined
5791 || h->root.type == bfd_link_hash_defweak)
5792 && h->root.u.def.section->output_section == NULL));
5793 }
5794
5795 /* Array used to determine the number of hash table buckets to use
5796 based on the number of symbols there are. If there are fewer than
5797 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5798 fewer than 37 we use 17 buckets, and so forth. We never use more
5799 than 32771 buckets. */
5800
5801 static const size_t elf_buckets[] =
5802 {
5803 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5804 16411, 32771, 0
5805 };
5806
5807 /* Compute bucket count for hashing table. We do not use a static set
5808 of possible tables sizes anymore. Instead we determine for all
5809 possible reasonable sizes of the table the outcome (i.e., the
5810 number of collisions etc) and choose the best solution. The
5811 weighting functions are not too simple to allow the table to grow
5812 without bounds. Instead one of the weighting factors is the size.
5813 Therefore the result is always a good payoff between few collisions
5814 (= short chain lengths) and table size. */
5815 static size_t
5816 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5817 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5818 unsigned long int nsyms,
5819 int gnu_hash)
5820 {
5821 size_t best_size = 0;
5822 unsigned long int i;
5823
5824 /* We have a problem here. The following code to optimize the table
5825 size requires an integer type with more the 32 bits. If
5826 BFD_HOST_U_64_BIT is set we know about such a type. */
5827 #ifdef BFD_HOST_U_64_BIT
5828 if (info->optimize)
5829 {
5830 size_t minsize;
5831 size_t maxsize;
5832 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5833 bfd *dynobj = elf_hash_table (info)->dynobj;
5834 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5835 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5836 unsigned long int *counts;
5837 bfd_size_type amt;
5838 unsigned int no_improvement_count = 0;
5839
5840 /* Possible optimization parameters: if we have NSYMS symbols we say
5841 that the hashing table must at least have NSYMS/4 and at most
5842 2*NSYMS buckets. */
5843 minsize = nsyms / 4;
5844 if (minsize == 0)
5845 minsize = 1;
5846 best_size = maxsize = nsyms * 2;
5847 if (gnu_hash)
5848 {
5849 if (minsize < 2)
5850 minsize = 2;
5851 if ((best_size & 31) == 0)
5852 ++best_size;
5853 }
5854
5855 /* Create array where we count the collisions in. We must use bfd_malloc
5856 since the size could be large. */
5857 amt = maxsize;
5858 amt *= sizeof (unsigned long int);
5859 counts = (unsigned long int *) bfd_malloc (amt);
5860 if (counts == NULL)
5861 return 0;
5862
5863 /* Compute the "optimal" size for the hash table. The criteria is a
5864 minimal chain length. The minor criteria is (of course) the size
5865 of the table. */
5866 for (i = minsize; i < maxsize; ++i)
5867 {
5868 /* Walk through the array of hashcodes and count the collisions. */
5869 BFD_HOST_U_64_BIT max;
5870 unsigned long int j;
5871 unsigned long int fact;
5872
5873 if (gnu_hash && (i & 31) == 0)
5874 continue;
5875
5876 memset (counts, '\0', i * sizeof (unsigned long int));
5877
5878 /* Determine how often each hash bucket is used. */
5879 for (j = 0; j < nsyms; ++j)
5880 ++counts[hashcodes[j] % i];
5881
5882 /* For the weight function we need some information about the
5883 pagesize on the target. This is information need not be 100%
5884 accurate. Since this information is not available (so far) we
5885 define it here to a reasonable default value. If it is crucial
5886 to have a better value some day simply define this value. */
5887 # ifndef BFD_TARGET_PAGESIZE
5888 # define BFD_TARGET_PAGESIZE (4096)
5889 # endif
5890
5891 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5892 and the chains. */
5893 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5894
5895 # if 1
5896 /* Variant 1: optimize for short chains. We add the squares
5897 of all the chain lengths (which favors many small chain
5898 over a few long chains). */
5899 for (j = 0; j < i; ++j)
5900 max += counts[j] * counts[j];
5901
5902 /* This adds penalties for the overall size of the table. */
5903 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5904 max *= fact * fact;
5905 # else
5906 /* Variant 2: Optimize a lot more for small table. Here we
5907 also add squares of the size but we also add penalties for
5908 empty slots (the +1 term). */
5909 for (j = 0; j < i; ++j)
5910 max += (1 + counts[j]) * (1 + counts[j]);
5911
5912 /* The overall size of the table is considered, but not as
5913 strong as in variant 1, where it is squared. */
5914 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5915 max *= fact;
5916 # endif
5917
5918 /* Compare with current best results. */
5919 if (max < best_chlen)
5920 {
5921 best_chlen = max;
5922 best_size = i;
5923 no_improvement_count = 0;
5924 }
5925 /* PR 11843: Avoid futile long searches for the best bucket size
5926 when there are a large number of symbols. */
5927 else if (++no_improvement_count == 100)
5928 break;
5929 }
5930
5931 free (counts);
5932 }
5933 else
5934 #endif /* defined (BFD_HOST_U_64_BIT) */
5935 {
5936 /* This is the fallback solution if no 64bit type is available or if we
5937 are not supposed to spend much time on optimizations. We select the
5938 bucket count using a fixed set of numbers. */
5939 for (i = 0; elf_buckets[i] != 0; i++)
5940 {
5941 best_size = elf_buckets[i];
5942 if (nsyms < elf_buckets[i + 1])
5943 break;
5944 }
5945 if (gnu_hash && best_size < 2)
5946 best_size = 2;
5947 }
5948
5949 return best_size;
5950 }
5951
5952 /* Size any SHT_GROUP section for ld -r. */
5953
5954 bfd_boolean
5955 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5956 {
5957 bfd *ibfd;
5958 asection *s;
5959
5960 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5961 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5962 && (s = ibfd->sections) != NULL
5963 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5964 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5965 return FALSE;
5966 return TRUE;
5967 }
5968
5969 /* Set a default stack segment size. The value in INFO wins. If it
5970 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5971 undefined it is initialized. */
5972
5973 bfd_boolean
5974 bfd_elf_stack_segment_size (bfd *output_bfd,
5975 struct bfd_link_info *info,
5976 const char *legacy_symbol,
5977 bfd_vma default_size)
5978 {
5979 struct elf_link_hash_entry *h = NULL;
5980
5981 /* Look for legacy symbol. */
5982 if (legacy_symbol)
5983 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5984 FALSE, FALSE, FALSE);
5985 if (h && (h->root.type == bfd_link_hash_defined
5986 || h->root.type == bfd_link_hash_defweak)
5987 && h->def_regular
5988 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5989 {
5990 /* The symbol has no type if specified on the command line. */
5991 h->type = STT_OBJECT;
5992 if (info->stacksize)
5993 /* xgettext:c-format */
5994 _bfd_error_handler (_("%B: stack size specified and %s set"),
5995 output_bfd, legacy_symbol);
5996 else if (h->root.u.def.section != bfd_abs_section_ptr)
5997 /* xgettext:c-format */
5998 _bfd_error_handler (_("%B: %s not absolute"),
5999 output_bfd, legacy_symbol);
6000 else
6001 info->stacksize = h->root.u.def.value;
6002 }
6003
6004 if (!info->stacksize)
6005 /* If the user didn't set a size, or explicitly inhibit the
6006 size, set it now. */
6007 info->stacksize = default_size;
6008
6009 /* Provide the legacy symbol, if it is referenced. */
6010 if (h && (h->root.type == bfd_link_hash_undefined
6011 || h->root.type == bfd_link_hash_undefweak))
6012 {
6013 struct bfd_link_hash_entry *bh = NULL;
6014
6015 if (!(_bfd_generic_link_add_one_symbol
6016 (info, output_bfd, legacy_symbol,
6017 BSF_GLOBAL, bfd_abs_section_ptr,
6018 info->stacksize >= 0 ? info->stacksize : 0,
6019 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6020 return FALSE;
6021
6022 h = (struct elf_link_hash_entry *) bh;
6023 h->def_regular = 1;
6024 h->type = STT_OBJECT;
6025 }
6026
6027 return TRUE;
6028 }
6029
6030 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6031
6032 struct elf_gc_sweep_symbol_info
6033 {
6034 struct bfd_link_info *info;
6035 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6036 bfd_boolean);
6037 };
6038
6039 static bfd_boolean
6040 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6041 {
6042 if (!h->mark
6043 && (((h->root.type == bfd_link_hash_defined
6044 || h->root.type == bfd_link_hash_defweak)
6045 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6046 && h->root.u.def.section->gc_mark))
6047 || h->root.type == bfd_link_hash_undefined
6048 || h->root.type == bfd_link_hash_undefweak))
6049 {
6050 struct elf_gc_sweep_symbol_info *inf;
6051
6052 inf = (struct elf_gc_sweep_symbol_info *) data;
6053 (*inf->hide_symbol) (inf->info, h, TRUE);
6054 h->def_regular = 0;
6055 h->ref_regular = 0;
6056 h->ref_regular_nonweak = 0;
6057 }
6058
6059 return TRUE;
6060 }
6061
6062 /* Set up the sizes and contents of the ELF dynamic sections. This is
6063 called by the ELF linker emulation before_allocation routine. We
6064 must set the sizes of the sections before the linker sets the
6065 addresses of the various sections. */
6066
6067 bfd_boolean
6068 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6069 const char *soname,
6070 const char *rpath,
6071 const char *filter_shlib,
6072 const char *audit,
6073 const char *depaudit,
6074 const char * const *auxiliary_filters,
6075 struct bfd_link_info *info,
6076 asection **sinterpptr)
6077 {
6078 bfd *dynobj;
6079 const struct elf_backend_data *bed;
6080
6081 *sinterpptr = NULL;
6082
6083 if (!is_elf_hash_table (info->hash))
6084 return TRUE;
6085
6086 dynobj = elf_hash_table (info)->dynobj;
6087
6088 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6089 {
6090 struct bfd_elf_version_tree *verdefs;
6091 struct elf_info_failed asvinfo;
6092 struct bfd_elf_version_tree *t;
6093 struct bfd_elf_version_expr *d;
6094 asection *s;
6095 size_t soname_indx;
6096
6097 /* If we are supposed to export all symbols into the dynamic symbol
6098 table (this is not the normal case), then do so. */
6099 if (info->export_dynamic
6100 || (bfd_link_executable (info) && info->dynamic))
6101 {
6102 struct elf_info_failed eif;
6103
6104 eif.info = info;
6105 eif.failed = FALSE;
6106 elf_link_hash_traverse (elf_hash_table (info),
6107 _bfd_elf_export_symbol,
6108 &eif);
6109 if (eif.failed)
6110 return FALSE;
6111 }
6112
6113 if (soname != NULL)
6114 {
6115 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6116 soname, TRUE);
6117 if (soname_indx == (size_t) -1
6118 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6119 return FALSE;
6120 }
6121 else
6122 soname_indx = (size_t) -1;
6123
6124 /* Make all global versions with definition. */
6125 for (t = info->version_info; t != NULL; t = t->next)
6126 for (d = t->globals.list; d != NULL; d = d->next)
6127 if (!d->symver && d->literal)
6128 {
6129 const char *verstr, *name;
6130 size_t namelen, verlen, newlen;
6131 char *newname, *p, leading_char;
6132 struct elf_link_hash_entry *newh;
6133
6134 leading_char = bfd_get_symbol_leading_char (output_bfd);
6135 name = d->pattern;
6136 namelen = strlen (name) + (leading_char != '\0');
6137 verstr = t->name;
6138 verlen = strlen (verstr);
6139 newlen = namelen + verlen + 3;
6140
6141 newname = (char *) bfd_malloc (newlen);
6142 if (newname == NULL)
6143 return FALSE;
6144 newname[0] = leading_char;
6145 memcpy (newname + (leading_char != '\0'), name, namelen);
6146
6147 /* Check the hidden versioned definition. */
6148 p = newname + namelen;
6149 *p++ = ELF_VER_CHR;
6150 memcpy (p, verstr, verlen + 1);
6151 newh = elf_link_hash_lookup (elf_hash_table (info),
6152 newname, FALSE, FALSE,
6153 FALSE);
6154 if (newh == NULL
6155 || (newh->root.type != bfd_link_hash_defined
6156 && newh->root.type != bfd_link_hash_defweak))
6157 {
6158 /* Check the default versioned definition. */
6159 *p++ = ELF_VER_CHR;
6160 memcpy (p, verstr, verlen + 1);
6161 newh = elf_link_hash_lookup (elf_hash_table (info),
6162 newname, FALSE, FALSE,
6163 FALSE);
6164 }
6165 free (newname);
6166
6167 /* Mark this version if there is a definition and it is
6168 not defined in a shared object. */
6169 if (newh != NULL
6170 && !newh->def_dynamic
6171 && (newh->root.type == bfd_link_hash_defined
6172 || newh->root.type == bfd_link_hash_defweak))
6173 d->symver = 1;
6174 }
6175
6176 /* Attach all the symbols to their version information. */
6177 asvinfo.info = info;
6178 asvinfo.failed = FALSE;
6179
6180 elf_link_hash_traverse (elf_hash_table (info),
6181 _bfd_elf_link_assign_sym_version,
6182 &asvinfo);
6183 if (asvinfo.failed)
6184 return FALSE;
6185
6186 if (!info->allow_undefined_version)
6187 {
6188 /* Check if all global versions have a definition. */
6189 bfd_boolean all_defined = TRUE;
6190 for (t = info->version_info; t != NULL; t = t->next)
6191 for (d = t->globals.list; d != NULL; d = d->next)
6192 if (d->literal && !d->symver && !d->script)
6193 {
6194 _bfd_error_handler
6195 (_("%s: undefined version: %s"),
6196 d->pattern, t->name);
6197 all_defined = FALSE;
6198 }
6199
6200 if (!all_defined)
6201 {
6202 bfd_set_error (bfd_error_bad_value);
6203 return FALSE;
6204 }
6205 }
6206
6207 /* Set up the version definition section. */
6208 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6209 BFD_ASSERT (s != NULL);
6210
6211 /* We may have created additional version definitions if we are
6212 just linking a regular application. */
6213 verdefs = info->version_info;
6214
6215 /* Skip anonymous version tag. */
6216 if (verdefs != NULL && verdefs->vernum == 0)
6217 verdefs = verdefs->next;
6218
6219 if (verdefs == NULL && !info->create_default_symver)
6220 s->flags |= SEC_EXCLUDE;
6221 else
6222 {
6223 unsigned int cdefs;
6224 bfd_size_type size;
6225 bfd_byte *p;
6226 Elf_Internal_Verdef def;
6227 Elf_Internal_Verdaux defaux;
6228 struct bfd_link_hash_entry *bh;
6229 struct elf_link_hash_entry *h;
6230 const char *name;
6231
6232 cdefs = 0;
6233 size = 0;
6234
6235 /* Make space for the base version. */
6236 size += sizeof (Elf_External_Verdef);
6237 size += sizeof (Elf_External_Verdaux);
6238 ++cdefs;
6239
6240 /* Make space for the default version. */
6241 if (info->create_default_symver)
6242 {
6243 size += sizeof (Elf_External_Verdef);
6244 ++cdefs;
6245 }
6246
6247 for (t = verdefs; t != NULL; t = t->next)
6248 {
6249 struct bfd_elf_version_deps *n;
6250
6251 /* Don't emit base version twice. */
6252 if (t->vernum == 0)
6253 continue;
6254
6255 size += sizeof (Elf_External_Verdef);
6256 size += sizeof (Elf_External_Verdaux);
6257 ++cdefs;
6258
6259 for (n = t->deps; n != NULL; n = n->next)
6260 size += sizeof (Elf_External_Verdaux);
6261 }
6262
6263 s->size = size;
6264 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6265 if (s->contents == NULL && s->size != 0)
6266 return FALSE;
6267
6268 /* Fill in the version definition section. */
6269
6270 p = s->contents;
6271
6272 def.vd_version = VER_DEF_CURRENT;
6273 def.vd_flags = VER_FLG_BASE;
6274 def.vd_ndx = 1;
6275 def.vd_cnt = 1;
6276 if (info->create_default_symver)
6277 {
6278 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6279 def.vd_next = sizeof (Elf_External_Verdef);
6280 }
6281 else
6282 {
6283 def.vd_aux = sizeof (Elf_External_Verdef);
6284 def.vd_next = (sizeof (Elf_External_Verdef)
6285 + sizeof (Elf_External_Verdaux));
6286 }
6287
6288 if (soname_indx != (size_t) -1)
6289 {
6290 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6291 soname_indx);
6292 def.vd_hash = bfd_elf_hash (soname);
6293 defaux.vda_name = soname_indx;
6294 name = soname;
6295 }
6296 else
6297 {
6298 size_t indx;
6299
6300 name = lbasename (output_bfd->filename);
6301 def.vd_hash = bfd_elf_hash (name);
6302 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6303 name, FALSE);
6304 if (indx == (size_t) -1)
6305 return FALSE;
6306 defaux.vda_name = indx;
6307 }
6308 defaux.vda_next = 0;
6309
6310 _bfd_elf_swap_verdef_out (output_bfd, &def,
6311 (Elf_External_Verdef *) p);
6312 p += sizeof (Elf_External_Verdef);
6313 if (info->create_default_symver)
6314 {
6315 /* Add a symbol representing this version. */
6316 bh = NULL;
6317 if (! (_bfd_generic_link_add_one_symbol
6318 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6319 0, NULL, FALSE,
6320 get_elf_backend_data (dynobj)->collect, &bh)))
6321 return FALSE;
6322 h = (struct elf_link_hash_entry *) bh;
6323 h->non_elf = 0;
6324 h->def_regular = 1;
6325 h->type = STT_OBJECT;
6326 h->verinfo.vertree = NULL;
6327
6328 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6329 return FALSE;
6330
6331 /* Create a duplicate of the base version with the same
6332 aux block, but different flags. */
6333 def.vd_flags = 0;
6334 def.vd_ndx = 2;
6335 def.vd_aux = sizeof (Elf_External_Verdef);
6336 if (verdefs)
6337 def.vd_next = (sizeof (Elf_External_Verdef)
6338 + sizeof (Elf_External_Verdaux));
6339 else
6340 def.vd_next = 0;
6341 _bfd_elf_swap_verdef_out (output_bfd, &def,
6342 (Elf_External_Verdef *) p);
6343 p += sizeof (Elf_External_Verdef);
6344 }
6345 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6346 (Elf_External_Verdaux *) p);
6347 p += sizeof (Elf_External_Verdaux);
6348
6349 for (t = verdefs; t != NULL; t = t->next)
6350 {
6351 unsigned int cdeps;
6352 struct bfd_elf_version_deps *n;
6353
6354 /* Don't emit the base version twice. */
6355 if (t->vernum == 0)
6356 continue;
6357
6358 cdeps = 0;
6359 for (n = t->deps; n != NULL; n = n->next)
6360 ++cdeps;
6361
6362 /* Add a symbol representing this version. */
6363 bh = NULL;
6364 if (! (_bfd_generic_link_add_one_symbol
6365 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6366 0, NULL, FALSE,
6367 get_elf_backend_data (dynobj)->collect, &bh)))
6368 return FALSE;
6369 h = (struct elf_link_hash_entry *) bh;
6370 h->non_elf = 0;
6371 h->def_regular = 1;
6372 h->type = STT_OBJECT;
6373 h->verinfo.vertree = t;
6374
6375 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6376 return FALSE;
6377
6378 def.vd_version = VER_DEF_CURRENT;
6379 def.vd_flags = 0;
6380 if (t->globals.list == NULL
6381 && t->locals.list == NULL
6382 && ! t->used)
6383 def.vd_flags |= VER_FLG_WEAK;
6384 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6385 def.vd_cnt = cdeps + 1;
6386 def.vd_hash = bfd_elf_hash (t->name);
6387 def.vd_aux = sizeof (Elf_External_Verdef);
6388 def.vd_next = 0;
6389
6390 /* If a basever node is next, it *must* be the last node in
6391 the chain, otherwise Verdef construction breaks. */
6392 if (t->next != NULL && t->next->vernum == 0)
6393 BFD_ASSERT (t->next->next == NULL);
6394
6395 if (t->next != NULL && t->next->vernum != 0)
6396 def.vd_next = (sizeof (Elf_External_Verdef)
6397 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6398
6399 _bfd_elf_swap_verdef_out (output_bfd, &def,
6400 (Elf_External_Verdef *) p);
6401 p += sizeof (Elf_External_Verdef);
6402
6403 defaux.vda_name = h->dynstr_index;
6404 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6405 h->dynstr_index);
6406 defaux.vda_next = 0;
6407 if (t->deps != NULL)
6408 defaux.vda_next = sizeof (Elf_External_Verdaux);
6409 t->name_indx = defaux.vda_name;
6410
6411 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6412 (Elf_External_Verdaux *) p);
6413 p += sizeof (Elf_External_Verdaux);
6414
6415 for (n = t->deps; n != NULL; n = n->next)
6416 {
6417 if (n->version_needed == NULL)
6418 {
6419 /* This can happen if there was an error in the
6420 version script. */
6421 defaux.vda_name = 0;
6422 }
6423 else
6424 {
6425 defaux.vda_name = n->version_needed->name_indx;
6426 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6427 defaux.vda_name);
6428 }
6429 if (n->next == NULL)
6430 defaux.vda_next = 0;
6431 else
6432 defaux.vda_next = sizeof (Elf_External_Verdaux);
6433
6434 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6435 (Elf_External_Verdaux *) p);
6436 p += sizeof (Elf_External_Verdaux);
6437 }
6438 }
6439
6440 elf_tdata (output_bfd)->cverdefs = cdefs;
6441 }
6442 }
6443
6444 bed = get_elf_backend_data (output_bfd);
6445
6446 if (info->gc_sections && bed->can_gc_sections)
6447 {
6448 struct elf_gc_sweep_symbol_info sweep_info;
6449
6450 /* Remove the symbols that were in the swept sections from the
6451 dynamic symbol table. */
6452 sweep_info.info = info;
6453 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6454 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6455 &sweep_info);
6456 }
6457
6458 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6459 {
6460 asection *s;
6461 struct elf_find_verdep_info sinfo;
6462
6463 /* Work out the size of the version reference section. */
6464
6465 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6466 BFD_ASSERT (s != NULL);
6467
6468 sinfo.info = info;
6469 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6470 if (sinfo.vers == 0)
6471 sinfo.vers = 1;
6472 sinfo.failed = FALSE;
6473
6474 elf_link_hash_traverse (elf_hash_table (info),
6475 _bfd_elf_link_find_version_dependencies,
6476 &sinfo);
6477 if (sinfo.failed)
6478 return FALSE;
6479
6480 if (elf_tdata (output_bfd)->verref == NULL)
6481 s->flags |= SEC_EXCLUDE;
6482 else
6483 {
6484 Elf_Internal_Verneed *vn;
6485 unsigned int size;
6486 unsigned int crefs;
6487 bfd_byte *p;
6488
6489 /* Build the version dependency section. */
6490 size = 0;
6491 crefs = 0;
6492 for (vn = elf_tdata (output_bfd)->verref;
6493 vn != NULL;
6494 vn = vn->vn_nextref)
6495 {
6496 Elf_Internal_Vernaux *a;
6497
6498 size += sizeof (Elf_External_Verneed);
6499 ++crefs;
6500 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6501 size += sizeof (Elf_External_Vernaux);
6502 }
6503
6504 s->size = size;
6505 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6506 if (s->contents == NULL)
6507 return FALSE;
6508
6509 p = s->contents;
6510 for (vn = elf_tdata (output_bfd)->verref;
6511 vn != NULL;
6512 vn = vn->vn_nextref)
6513 {
6514 unsigned int caux;
6515 Elf_Internal_Vernaux *a;
6516 size_t indx;
6517
6518 caux = 0;
6519 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6520 ++caux;
6521
6522 vn->vn_version = VER_NEED_CURRENT;
6523 vn->vn_cnt = caux;
6524 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6525 elf_dt_name (vn->vn_bfd) != NULL
6526 ? elf_dt_name (vn->vn_bfd)
6527 : lbasename (vn->vn_bfd->filename),
6528 FALSE);
6529 if (indx == (size_t) -1)
6530 return FALSE;
6531 vn->vn_file = indx;
6532 vn->vn_aux = sizeof (Elf_External_Verneed);
6533 if (vn->vn_nextref == NULL)
6534 vn->vn_next = 0;
6535 else
6536 vn->vn_next = (sizeof (Elf_External_Verneed)
6537 + caux * sizeof (Elf_External_Vernaux));
6538
6539 _bfd_elf_swap_verneed_out (output_bfd, vn,
6540 (Elf_External_Verneed *) p);
6541 p += sizeof (Elf_External_Verneed);
6542
6543 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6544 {
6545 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6546 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6547 a->vna_nodename, FALSE);
6548 if (indx == (size_t) -1)
6549 return FALSE;
6550 a->vna_name = indx;
6551 if (a->vna_nextptr == NULL)
6552 a->vna_next = 0;
6553 else
6554 a->vna_next = sizeof (Elf_External_Vernaux);
6555
6556 _bfd_elf_swap_vernaux_out (output_bfd, a,
6557 (Elf_External_Vernaux *) p);
6558 p += sizeof (Elf_External_Vernaux);
6559 }
6560 }
6561
6562 elf_tdata (output_bfd)->cverrefs = crefs;
6563 }
6564 }
6565
6566 /* Any syms created from now on start with -1 in
6567 got.refcount/offset and plt.refcount/offset. */
6568 elf_hash_table (info)->init_got_refcount
6569 = elf_hash_table (info)->init_got_offset;
6570 elf_hash_table (info)->init_plt_refcount
6571 = elf_hash_table (info)->init_plt_offset;
6572
6573 if (bfd_link_relocatable (info)
6574 && !_bfd_elf_size_group_sections (info))
6575 return FALSE;
6576
6577 /* The backend may have to create some sections regardless of whether
6578 we're dynamic or not. */
6579 if (bed->elf_backend_always_size_sections
6580 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6581 return FALSE;
6582
6583 /* Determine any GNU_STACK segment requirements, after the backend
6584 has had a chance to set a default segment size. */
6585 if (info->execstack)
6586 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6587 else if (info->noexecstack)
6588 elf_stack_flags (output_bfd) = PF_R | PF_W;
6589 else
6590 {
6591 bfd *inputobj;
6592 asection *notesec = NULL;
6593 int exec = 0;
6594
6595 for (inputobj = info->input_bfds;
6596 inputobj;
6597 inputobj = inputobj->link.next)
6598 {
6599 asection *s;
6600
6601 if (inputobj->flags
6602 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6603 continue;
6604 s = inputobj->sections;
6605 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6606 continue;
6607
6608 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6609 if (s)
6610 {
6611 if (s->flags & SEC_CODE)
6612 exec = PF_X;
6613 notesec = s;
6614 }
6615 else if (bed->default_execstack)
6616 exec = PF_X;
6617 }
6618 if (notesec || info->stacksize > 0)
6619 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6620 if (notesec && exec && bfd_link_relocatable (info)
6621 && notesec->output_section != bfd_abs_section_ptr)
6622 notesec->output_section->flags |= SEC_CODE;
6623 }
6624
6625 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6626 {
6627 struct elf_info_failed eif;
6628 struct elf_link_hash_entry *h;
6629 asection *dynstr;
6630 asection *s;
6631
6632 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6633 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6634
6635 if (info->symbolic)
6636 {
6637 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6638 return FALSE;
6639 info->flags |= DF_SYMBOLIC;
6640 }
6641
6642 if (rpath != NULL)
6643 {
6644 size_t indx;
6645 bfd_vma tag;
6646
6647 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6648 TRUE);
6649 if (indx == (size_t) -1)
6650 return FALSE;
6651
6652 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6653 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6654 return FALSE;
6655 }
6656
6657 if (filter_shlib != NULL)
6658 {
6659 size_t indx;
6660
6661 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6662 filter_shlib, TRUE);
6663 if (indx == (size_t) -1
6664 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6665 return FALSE;
6666 }
6667
6668 if (auxiliary_filters != NULL)
6669 {
6670 const char * const *p;
6671
6672 for (p = auxiliary_filters; *p != NULL; p++)
6673 {
6674 size_t indx;
6675
6676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6677 *p, TRUE);
6678 if (indx == (size_t) -1
6679 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6680 return FALSE;
6681 }
6682 }
6683
6684 if (audit != NULL)
6685 {
6686 size_t indx;
6687
6688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6689 TRUE);
6690 if (indx == (size_t) -1
6691 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6692 return FALSE;
6693 }
6694
6695 if (depaudit != NULL)
6696 {
6697 size_t indx;
6698
6699 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6700 TRUE);
6701 if (indx == (size_t) -1
6702 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6703 return FALSE;
6704 }
6705
6706 eif.info = info;
6707 eif.failed = FALSE;
6708
6709 /* Find all symbols which were defined in a dynamic object and make
6710 the backend pick a reasonable value for them. */
6711 elf_link_hash_traverse (elf_hash_table (info),
6712 _bfd_elf_adjust_dynamic_symbol,
6713 &eif);
6714 if (eif.failed)
6715 return FALSE;
6716
6717 /* Add some entries to the .dynamic section. We fill in some of the
6718 values later, in bfd_elf_final_link, but we must add the entries
6719 now so that we know the final size of the .dynamic section. */
6720
6721 /* If there are initialization and/or finalization functions to
6722 call then add the corresponding DT_INIT/DT_FINI entries. */
6723 h = (info->init_function
6724 ? elf_link_hash_lookup (elf_hash_table (info),
6725 info->init_function, FALSE,
6726 FALSE, FALSE)
6727 : NULL);
6728 if (h != NULL
6729 && (h->ref_regular
6730 || h->def_regular))
6731 {
6732 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6733 return FALSE;
6734 }
6735 h = (info->fini_function
6736 ? elf_link_hash_lookup (elf_hash_table (info),
6737 info->fini_function, FALSE,
6738 FALSE, FALSE)
6739 : NULL);
6740 if (h != NULL
6741 && (h->ref_regular
6742 || h->def_regular))
6743 {
6744 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6745 return FALSE;
6746 }
6747
6748 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6749 if (s != NULL && s->linker_has_input)
6750 {
6751 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6752 if (! bfd_link_executable (info))
6753 {
6754 bfd *sub;
6755 asection *o;
6756
6757 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6758 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6759 && (o = sub->sections) != NULL
6760 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6761 for (o = sub->sections; o != NULL; o = o->next)
6762 if (elf_section_data (o)->this_hdr.sh_type
6763 == SHT_PREINIT_ARRAY)
6764 {
6765 _bfd_error_handler
6766 (_("%B: .preinit_array section is not allowed in DSO"),
6767 sub);
6768 break;
6769 }
6770
6771 bfd_set_error (bfd_error_nonrepresentable_section);
6772 return FALSE;
6773 }
6774
6775 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6776 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6777 return FALSE;
6778 }
6779 s = bfd_get_section_by_name (output_bfd, ".init_array");
6780 if (s != NULL && s->linker_has_input)
6781 {
6782 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6783 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6784 return FALSE;
6785 }
6786 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6787 if (s != NULL && s->linker_has_input)
6788 {
6789 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6790 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6791 return FALSE;
6792 }
6793
6794 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6795 /* If .dynstr is excluded from the link, we don't want any of
6796 these tags. Strictly, we should be checking each section
6797 individually; This quick check covers for the case where
6798 someone does a /DISCARD/ : { *(*) }. */
6799 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6800 {
6801 bfd_size_type strsize;
6802
6803 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6804 if ((info->emit_hash
6805 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6806 || (info->emit_gnu_hash
6807 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6808 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6809 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6810 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6811 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6812 bed->s->sizeof_sym))
6813 return FALSE;
6814 }
6815 }
6816
6817 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6818 return FALSE;
6819
6820 /* The backend must work out the sizes of all the other dynamic
6821 sections. */
6822 if (dynobj != NULL
6823 && bed->elf_backend_size_dynamic_sections != NULL
6824 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6825 return FALSE;
6826
6827 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6828 {
6829 unsigned long section_sym_count;
6830
6831 if (elf_tdata (output_bfd)->cverdefs)
6832 {
6833 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6834
6835 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6836 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6837 return FALSE;
6838 }
6839
6840 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6841 {
6842 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6843 return FALSE;
6844 }
6845 else if (info->flags & DF_BIND_NOW)
6846 {
6847 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6848 return FALSE;
6849 }
6850
6851 if (info->flags_1)
6852 {
6853 if (bfd_link_executable (info))
6854 info->flags_1 &= ~ (DF_1_INITFIRST
6855 | DF_1_NODELETE
6856 | DF_1_NOOPEN);
6857 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6858 return FALSE;
6859 }
6860
6861 if (elf_tdata (output_bfd)->cverrefs)
6862 {
6863 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6864
6865 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6866 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6867 return FALSE;
6868 }
6869
6870 if ((elf_tdata (output_bfd)->cverrefs == 0
6871 && elf_tdata (output_bfd)->cverdefs == 0)
6872 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6873 &section_sym_count) <= 1)
6874 {
6875 asection *s;
6876
6877 s = bfd_get_linker_section (dynobj, ".gnu.version");
6878 s->flags |= SEC_EXCLUDE;
6879 }
6880 }
6881 return TRUE;
6882 }
6883
6884 /* Find the first non-excluded output section. We'll use its
6885 section symbol for some emitted relocs. */
6886 void
6887 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6888 {
6889 asection *s;
6890
6891 for (s = output_bfd->sections; s != NULL; s = s->next)
6892 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6893 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6894 {
6895 elf_hash_table (info)->text_index_section = s;
6896 break;
6897 }
6898 }
6899
6900 /* Find two non-excluded output sections, one for code, one for data.
6901 We'll use their section symbols for some emitted relocs. */
6902 void
6903 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6904 {
6905 asection *s;
6906
6907 /* Data first, since setting text_index_section changes
6908 _bfd_elf_link_omit_section_dynsym. */
6909 for (s = output_bfd->sections; s != NULL; s = s->next)
6910 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6911 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6912 {
6913 elf_hash_table (info)->data_index_section = s;
6914 break;
6915 }
6916
6917 for (s = output_bfd->sections; s != NULL; s = s->next)
6918 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6919 == (SEC_ALLOC | SEC_READONLY))
6920 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6921 {
6922 elf_hash_table (info)->text_index_section = s;
6923 break;
6924 }
6925
6926 if (elf_hash_table (info)->text_index_section == NULL)
6927 elf_hash_table (info)->text_index_section
6928 = elf_hash_table (info)->data_index_section;
6929 }
6930
6931 bfd_boolean
6932 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6933 {
6934 const struct elf_backend_data *bed;
6935 unsigned long section_sym_count;
6936 bfd_size_type dynsymcount = 0;
6937
6938 if (!is_elf_hash_table (info->hash))
6939 return TRUE;
6940
6941 bed = get_elf_backend_data (output_bfd);
6942 (*bed->elf_backend_init_index_section) (output_bfd, info);
6943
6944 /* Assign dynsym indices. In a shared library we generate a section
6945 symbol for each output section, which come first. Next come all
6946 of the back-end allocated local dynamic syms, followed by the rest
6947 of the global symbols.
6948
6949 This is usually not needed for static binaries, however backends
6950 can request to always do it, e.g. the MIPS backend uses dynamic
6951 symbol counts to lay out GOT, which will be produced in the
6952 presence of GOT relocations even in static binaries (holding fixed
6953 data in that case, to satisfy those relocations). */
6954
6955 if (elf_hash_table (info)->dynamic_sections_created
6956 || bed->always_renumber_dynsyms)
6957 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6958 &section_sym_count);
6959
6960 if (elf_hash_table (info)->dynamic_sections_created)
6961 {
6962 bfd *dynobj;
6963 asection *s;
6964 unsigned int dtagcount;
6965
6966 dynobj = elf_hash_table (info)->dynobj;
6967
6968 /* Work out the size of the symbol version section. */
6969 s = bfd_get_linker_section (dynobj, ".gnu.version");
6970 BFD_ASSERT (s != NULL);
6971 if ((s->flags & SEC_EXCLUDE) == 0)
6972 {
6973 s->size = dynsymcount * sizeof (Elf_External_Versym);
6974 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6975 if (s->contents == NULL)
6976 return FALSE;
6977
6978 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6979 return FALSE;
6980 }
6981
6982 /* Set the size of the .dynsym and .hash sections. We counted
6983 the number of dynamic symbols in elf_link_add_object_symbols.
6984 We will build the contents of .dynsym and .hash when we build
6985 the final symbol table, because until then we do not know the
6986 correct value to give the symbols. We built the .dynstr
6987 section as we went along in elf_link_add_object_symbols. */
6988 s = elf_hash_table (info)->dynsym;
6989 BFD_ASSERT (s != NULL);
6990 s->size = dynsymcount * bed->s->sizeof_sym;
6991
6992 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6993 if (s->contents == NULL)
6994 return FALSE;
6995
6996 /* The first entry in .dynsym is a dummy symbol. Clear all the
6997 section syms, in case we don't output them all. */
6998 ++section_sym_count;
6999 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7000
7001 elf_hash_table (info)->bucketcount = 0;
7002
7003 /* Compute the size of the hashing table. As a side effect this
7004 computes the hash values for all the names we export. */
7005 if (info->emit_hash)
7006 {
7007 unsigned long int *hashcodes;
7008 struct hash_codes_info hashinf;
7009 bfd_size_type amt;
7010 unsigned long int nsyms;
7011 size_t bucketcount;
7012 size_t hash_entry_size;
7013
7014 /* Compute the hash values for all exported symbols. At the same
7015 time store the values in an array so that we could use them for
7016 optimizations. */
7017 amt = dynsymcount * sizeof (unsigned long int);
7018 hashcodes = (unsigned long int *) bfd_malloc (amt);
7019 if (hashcodes == NULL)
7020 return FALSE;
7021 hashinf.hashcodes = hashcodes;
7022 hashinf.error = FALSE;
7023
7024 /* Put all hash values in HASHCODES. */
7025 elf_link_hash_traverse (elf_hash_table (info),
7026 elf_collect_hash_codes, &hashinf);
7027 if (hashinf.error)
7028 {
7029 free (hashcodes);
7030 return FALSE;
7031 }
7032
7033 nsyms = hashinf.hashcodes - hashcodes;
7034 bucketcount
7035 = compute_bucket_count (info, hashcodes, nsyms, 0);
7036 free (hashcodes);
7037
7038 if (bucketcount == 0 && nsyms > 0)
7039 return FALSE;
7040
7041 elf_hash_table (info)->bucketcount = bucketcount;
7042
7043 s = bfd_get_linker_section (dynobj, ".hash");
7044 BFD_ASSERT (s != NULL);
7045 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7046 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7047 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7048 if (s->contents == NULL)
7049 return FALSE;
7050
7051 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7052 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7053 s->contents + hash_entry_size);
7054 }
7055
7056 if (info->emit_gnu_hash)
7057 {
7058 size_t i, cnt;
7059 unsigned char *contents;
7060 struct collect_gnu_hash_codes cinfo;
7061 bfd_size_type amt;
7062 size_t bucketcount;
7063
7064 memset (&cinfo, 0, sizeof (cinfo));
7065
7066 /* Compute the hash values for all exported symbols. At the same
7067 time store the values in an array so that we could use them for
7068 optimizations. */
7069 amt = dynsymcount * 2 * sizeof (unsigned long int);
7070 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7071 if (cinfo.hashcodes == NULL)
7072 return FALSE;
7073
7074 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7075 cinfo.min_dynindx = -1;
7076 cinfo.output_bfd = output_bfd;
7077 cinfo.bed = bed;
7078
7079 /* Put all hash values in HASHCODES. */
7080 elf_link_hash_traverse (elf_hash_table (info),
7081 elf_collect_gnu_hash_codes, &cinfo);
7082 if (cinfo.error)
7083 {
7084 free (cinfo.hashcodes);
7085 return FALSE;
7086 }
7087
7088 bucketcount
7089 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7090
7091 if (bucketcount == 0)
7092 {
7093 free (cinfo.hashcodes);
7094 return FALSE;
7095 }
7096
7097 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7098 BFD_ASSERT (s != NULL);
7099
7100 if (cinfo.nsyms == 0)
7101 {
7102 /* Empty .gnu.hash section is special. */
7103 BFD_ASSERT (cinfo.min_dynindx == -1);
7104 free (cinfo.hashcodes);
7105 s->size = 5 * 4 + bed->s->arch_size / 8;
7106 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7107 if (contents == NULL)
7108 return FALSE;
7109 s->contents = contents;
7110 /* 1 empty bucket. */
7111 bfd_put_32 (output_bfd, 1, contents);
7112 /* SYMIDX above the special symbol 0. */
7113 bfd_put_32 (output_bfd, 1, contents + 4);
7114 /* Just one word for bitmask. */
7115 bfd_put_32 (output_bfd, 1, contents + 8);
7116 /* Only hash fn bloom filter. */
7117 bfd_put_32 (output_bfd, 0, contents + 12);
7118 /* No hashes are valid - empty bitmask. */
7119 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7120 /* No hashes in the only bucket. */
7121 bfd_put_32 (output_bfd, 0,
7122 contents + 16 + bed->s->arch_size / 8);
7123 }
7124 else
7125 {
7126 unsigned long int maskwords, maskbitslog2, x;
7127 BFD_ASSERT (cinfo.min_dynindx != -1);
7128
7129 x = cinfo.nsyms;
7130 maskbitslog2 = 1;
7131 while ((x >>= 1) != 0)
7132 ++maskbitslog2;
7133 if (maskbitslog2 < 3)
7134 maskbitslog2 = 5;
7135 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7136 maskbitslog2 = maskbitslog2 + 3;
7137 else
7138 maskbitslog2 = maskbitslog2 + 2;
7139 if (bed->s->arch_size == 64)
7140 {
7141 if (maskbitslog2 == 5)
7142 maskbitslog2 = 6;
7143 cinfo.shift1 = 6;
7144 }
7145 else
7146 cinfo.shift1 = 5;
7147 cinfo.mask = (1 << cinfo.shift1) - 1;
7148 cinfo.shift2 = maskbitslog2;
7149 cinfo.maskbits = 1 << maskbitslog2;
7150 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7151 amt = bucketcount * sizeof (unsigned long int) * 2;
7152 amt += maskwords * sizeof (bfd_vma);
7153 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7154 if (cinfo.bitmask == NULL)
7155 {
7156 free (cinfo.hashcodes);
7157 return FALSE;
7158 }
7159
7160 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7161 cinfo.indx = cinfo.counts + bucketcount;
7162 cinfo.symindx = dynsymcount - cinfo.nsyms;
7163 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7164
7165 /* Determine how often each hash bucket is used. */
7166 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7167 for (i = 0; i < cinfo.nsyms; ++i)
7168 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7169
7170 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7171 if (cinfo.counts[i] != 0)
7172 {
7173 cinfo.indx[i] = cnt;
7174 cnt += cinfo.counts[i];
7175 }
7176 BFD_ASSERT (cnt == dynsymcount);
7177 cinfo.bucketcount = bucketcount;
7178 cinfo.local_indx = cinfo.min_dynindx;
7179
7180 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7181 s->size += cinfo.maskbits / 8;
7182 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7183 if (contents == NULL)
7184 {
7185 free (cinfo.bitmask);
7186 free (cinfo.hashcodes);
7187 return FALSE;
7188 }
7189
7190 s->contents = contents;
7191 bfd_put_32 (output_bfd, bucketcount, contents);
7192 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7193 bfd_put_32 (output_bfd, maskwords, contents + 8);
7194 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7195 contents += 16 + cinfo.maskbits / 8;
7196
7197 for (i = 0; i < bucketcount; ++i)
7198 {
7199 if (cinfo.counts[i] == 0)
7200 bfd_put_32 (output_bfd, 0, contents);
7201 else
7202 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7203 contents += 4;
7204 }
7205
7206 cinfo.contents = contents;
7207
7208 /* Renumber dynamic symbols, populate .gnu.hash section. */
7209 elf_link_hash_traverse (elf_hash_table (info),
7210 elf_renumber_gnu_hash_syms, &cinfo);
7211
7212 contents = s->contents + 16;
7213 for (i = 0; i < maskwords; ++i)
7214 {
7215 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7216 contents);
7217 contents += bed->s->arch_size / 8;
7218 }
7219
7220 free (cinfo.bitmask);
7221 free (cinfo.hashcodes);
7222 }
7223 }
7224
7225 s = bfd_get_linker_section (dynobj, ".dynstr");
7226 BFD_ASSERT (s != NULL);
7227
7228 elf_finalize_dynstr (output_bfd, info);
7229
7230 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7231
7232 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7233 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7234 return FALSE;
7235 }
7236
7237 return TRUE;
7238 }
7239 \f
7240 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7241
7242 static void
7243 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7244 asection *sec)
7245 {
7246 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7247 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7248 }
7249
7250 /* Finish SHF_MERGE section merging. */
7251
7252 bfd_boolean
7253 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7254 {
7255 bfd *ibfd;
7256 asection *sec;
7257
7258 if (!is_elf_hash_table (info->hash))
7259 return FALSE;
7260
7261 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7262 if ((ibfd->flags & DYNAMIC) == 0
7263 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7264 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7265 == get_elf_backend_data (obfd)->s->elfclass))
7266 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7267 if ((sec->flags & SEC_MERGE) != 0
7268 && !bfd_is_abs_section (sec->output_section))
7269 {
7270 struct bfd_elf_section_data *secdata;
7271
7272 secdata = elf_section_data (sec);
7273 if (! _bfd_add_merge_section (obfd,
7274 &elf_hash_table (info)->merge_info,
7275 sec, &secdata->sec_info))
7276 return FALSE;
7277 else if (secdata->sec_info)
7278 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7279 }
7280
7281 if (elf_hash_table (info)->merge_info != NULL)
7282 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7283 merge_sections_remove_hook);
7284 return TRUE;
7285 }
7286
7287 /* Create an entry in an ELF linker hash table. */
7288
7289 struct bfd_hash_entry *
7290 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7291 struct bfd_hash_table *table,
7292 const char *string)
7293 {
7294 /* Allocate the structure if it has not already been allocated by a
7295 subclass. */
7296 if (entry == NULL)
7297 {
7298 entry = (struct bfd_hash_entry *)
7299 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7300 if (entry == NULL)
7301 return entry;
7302 }
7303
7304 /* Call the allocation method of the superclass. */
7305 entry = _bfd_link_hash_newfunc (entry, table, string);
7306 if (entry != NULL)
7307 {
7308 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7309 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7310
7311 /* Set local fields. */
7312 ret->indx = -1;
7313 ret->dynindx = -1;
7314 ret->got = htab->init_got_refcount;
7315 ret->plt = htab->init_plt_refcount;
7316 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7317 - offsetof (struct elf_link_hash_entry, size)));
7318 /* Assume that we have been called by a non-ELF symbol reader.
7319 This flag is then reset by the code which reads an ELF input
7320 file. This ensures that a symbol created by a non-ELF symbol
7321 reader will have the flag set correctly. */
7322 ret->non_elf = 1;
7323 }
7324
7325 return entry;
7326 }
7327
7328 /* Copy data from an indirect symbol to its direct symbol, hiding the
7329 old indirect symbol. Also used for copying flags to a weakdef. */
7330
7331 void
7332 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7333 struct elf_link_hash_entry *dir,
7334 struct elf_link_hash_entry *ind)
7335 {
7336 struct elf_link_hash_table *htab;
7337
7338 /* Copy down any references that we may have already seen to the
7339 symbol which just became indirect. */
7340
7341 if (dir->versioned != versioned_hidden)
7342 dir->ref_dynamic |= ind->ref_dynamic;
7343 dir->ref_regular |= ind->ref_regular;
7344 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7345 dir->non_got_ref |= ind->non_got_ref;
7346 dir->needs_plt |= ind->needs_plt;
7347 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7348
7349 if (ind->root.type != bfd_link_hash_indirect)
7350 return;
7351
7352 /* Copy over the global and procedure linkage table refcount entries.
7353 These may have been already set up by a check_relocs routine. */
7354 htab = elf_hash_table (info);
7355 if (ind->got.refcount > htab->init_got_refcount.refcount)
7356 {
7357 if (dir->got.refcount < 0)
7358 dir->got.refcount = 0;
7359 dir->got.refcount += ind->got.refcount;
7360 ind->got.refcount = htab->init_got_refcount.refcount;
7361 }
7362
7363 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7364 {
7365 if (dir->plt.refcount < 0)
7366 dir->plt.refcount = 0;
7367 dir->plt.refcount += ind->plt.refcount;
7368 ind->plt.refcount = htab->init_plt_refcount.refcount;
7369 }
7370
7371 if (ind->dynindx != -1)
7372 {
7373 if (dir->dynindx != -1)
7374 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7375 dir->dynindx = ind->dynindx;
7376 dir->dynstr_index = ind->dynstr_index;
7377 ind->dynindx = -1;
7378 ind->dynstr_index = 0;
7379 }
7380 }
7381
7382 void
7383 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7384 struct elf_link_hash_entry *h,
7385 bfd_boolean force_local)
7386 {
7387 /* STT_GNU_IFUNC symbol must go through PLT. */
7388 if (h->type != STT_GNU_IFUNC)
7389 {
7390 h->plt = elf_hash_table (info)->init_plt_offset;
7391 h->needs_plt = 0;
7392 }
7393 if (force_local)
7394 {
7395 h->forced_local = 1;
7396 if (h->dynindx != -1)
7397 {
7398 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7399 h->dynstr_index);
7400 h->dynindx = -1;
7401 h->dynstr_index = 0;
7402 }
7403 }
7404 }
7405
7406 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7407 caller. */
7408
7409 bfd_boolean
7410 _bfd_elf_link_hash_table_init
7411 (struct elf_link_hash_table *table,
7412 bfd *abfd,
7413 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7414 struct bfd_hash_table *,
7415 const char *),
7416 unsigned int entsize,
7417 enum elf_target_id target_id)
7418 {
7419 bfd_boolean ret;
7420 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7421
7422 table->init_got_refcount.refcount = can_refcount - 1;
7423 table->init_plt_refcount.refcount = can_refcount - 1;
7424 table->init_got_offset.offset = -(bfd_vma) 1;
7425 table->init_plt_offset.offset = -(bfd_vma) 1;
7426 /* The first dynamic symbol is a dummy. */
7427 table->dynsymcount = 1;
7428
7429 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7430
7431 table->root.type = bfd_link_elf_hash_table;
7432 table->hash_table_id = target_id;
7433
7434 return ret;
7435 }
7436
7437 /* Create an ELF linker hash table. */
7438
7439 struct bfd_link_hash_table *
7440 _bfd_elf_link_hash_table_create (bfd *abfd)
7441 {
7442 struct elf_link_hash_table *ret;
7443 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7444
7445 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7446 if (ret == NULL)
7447 return NULL;
7448
7449 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7450 sizeof (struct elf_link_hash_entry),
7451 GENERIC_ELF_DATA))
7452 {
7453 free (ret);
7454 return NULL;
7455 }
7456 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7457
7458 return &ret->root;
7459 }
7460
7461 /* Destroy an ELF linker hash table. */
7462
7463 void
7464 _bfd_elf_link_hash_table_free (bfd *obfd)
7465 {
7466 struct elf_link_hash_table *htab;
7467
7468 htab = (struct elf_link_hash_table *) obfd->link.hash;
7469 if (htab->dynstr != NULL)
7470 _bfd_elf_strtab_free (htab->dynstr);
7471 _bfd_merge_sections_free (htab->merge_info);
7472 _bfd_generic_link_hash_table_free (obfd);
7473 }
7474
7475 /* This is a hook for the ELF emulation code in the generic linker to
7476 tell the backend linker what file name to use for the DT_NEEDED
7477 entry for a dynamic object. */
7478
7479 void
7480 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7481 {
7482 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7483 && bfd_get_format (abfd) == bfd_object)
7484 elf_dt_name (abfd) = name;
7485 }
7486
7487 int
7488 bfd_elf_get_dyn_lib_class (bfd *abfd)
7489 {
7490 int lib_class;
7491 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7492 && bfd_get_format (abfd) == bfd_object)
7493 lib_class = elf_dyn_lib_class (abfd);
7494 else
7495 lib_class = 0;
7496 return lib_class;
7497 }
7498
7499 void
7500 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7501 {
7502 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7503 && bfd_get_format (abfd) == bfd_object)
7504 elf_dyn_lib_class (abfd) = lib_class;
7505 }
7506
7507 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7508 the linker ELF emulation code. */
7509
7510 struct bfd_link_needed_list *
7511 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7512 struct bfd_link_info *info)
7513 {
7514 if (! is_elf_hash_table (info->hash))
7515 return NULL;
7516 return elf_hash_table (info)->needed;
7517 }
7518
7519 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7520 hook for the linker ELF emulation code. */
7521
7522 struct bfd_link_needed_list *
7523 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7524 struct bfd_link_info *info)
7525 {
7526 if (! is_elf_hash_table (info->hash))
7527 return NULL;
7528 return elf_hash_table (info)->runpath;
7529 }
7530
7531 /* Get the name actually used for a dynamic object for a link. This
7532 is the SONAME entry if there is one. Otherwise, it is the string
7533 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7534
7535 const char *
7536 bfd_elf_get_dt_soname (bfd *abfd)
7537 {
7538 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7539 && bfd_get_format (abfd) == bfd_object)
7540 return elf_dt_name (abfd);
7541 return NULL;
7542 }
7543
7544 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7545 the ELF linker emulation code. */
7546
7547 bfd_boolean
7548 bfd_elf_get_bfd_needed_list (bfd *abfd,
7549 struct bfd_link_needed_list **pneeded)
7550 {
7551 asection *s;
7552 bfd_byte *dynbuf = NULL;
7553 unsigned int elfsec;
7554 unsigned long shlink;
7555 bfd_byte *extdyn, *extdynend;
7556 size_t extdynsize;
7557 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7558
7559 *pneeded = NULL;
7560
7561 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7562 || bfd_get_format (abfd) != bfd_object)
7563 return TRUE;
7564
7565 s = bfd_get_section_by_name (abfd, ".dynamic");
7566 if (s == NULL || s->size == 0)
7567 return TRUE;
7568
7569 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7570 goto error_return;
7571
7572 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7573 if (elfsec == SHN_BAD)
7574 goto error_return;
7575
7576 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7577
7578 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7579 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7580
7581 extdyn = dynbuf;
7582 extdynend = extdyn + s->size;
7583 for (; extdyn < extdynend; extdyn += extdynsize)
7584 {
7585 Elf_Internal_Dyn dyn;
7586
7587 (*swap_dyn_in) (abfd, extdyn, &dyn);
7588
7589 if (dyn.d_tag == DT_NULL)
7590 break;
7591
7592 if (dyn.d_tag == DT_NEEDED)
7593 {
7594 const char *string;
7595 struct bfd_link_needed_list *l;
7596 unsigned int tagv = dyn.d_un.d_val;
7597 bfd_size_type amt;
7598
7599 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7600 if (string == NULL)
7601 goto error_return;
7602
7603 amt = sizeof *l;
7604 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7605 if (l == NULL)
7606 goto error_return;
7607
7608 l->by = abfd;
7609 l->name = string;
7610 l->next = *pneeded;
7611 *pneeded = l;
7612 }
7613 }
7614
7615 free (dynbuf);
7616
7617 return TRUE;
7618
7619 error_return:
7620 if (dynbuf != NULL)
7621 free (dynbuf);
7622 return FALSE;
7623 }
7624
7625 struct elf_symbuf_symbol
7626 {
7627 unsigned long st_name; /* Symbol name, index in string tbl */
7628 unsigned char st_info; /* Type and binding attributes */
7629 unsigned char st_other; /* Visibilty, and target specific */
7630 };
7631
7632 struct elf_symbuf_head
7633 {
7634 struct elf_symbuf_symbol *ssym;
7635 size_t count;
7636 unsigned int st_shndx;
7637 };
7638
7639 struct elf_symbol
7640 {
7641 union
7642 {
7643 Elf_Internal_Sym *isym;
7644 struct elf_symbuf_symbol *ssym;
7645 } u;
7646 const char *name;
7647 };
7648
7649 /* Sort references to symbols by ascending section number. */
7650
7651 static int
7652 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7653 {
7654 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7655 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7656
7657 return s1->st_shndx - s2->st_shndx;
7658 }
7659
7660 static int
7661 elf_sym_name_compare (const void *arg1, const void *arg2)
7662 {
7663 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7664 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7665 return strcmp (s1->name, s2->name);
7666 }
7667
7668 static struct elf_symbuf_head *
7669 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7670 {
7671 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7672 struct elf_symbuf_symbol *ssym;
7673 struct elf_symbuf_head *ssymbuf, *ssymhead;
7674 size_t i, shndx_count, total_size;
7675
7676 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7677 if (indbuf == NULL)
7678 return NULL;
7679
7680 for (ind = indbuf, i = 0; i < symcount; i++)
7681 if (isymbuf[i].st_shndx != SHN_UNDEF)
7682 *ind++ = &isymbuf[i];
7683 indbufend = ind;
7684
7685 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7686 elf_sort_elf_symbol);
7687
7688 shndx_count = 0;
7689 if (indbufend > indbuf)
7690 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7691 if (ind[0]->st_shndx != ind[1]->st_shndx)
7692 shndx_count++;
7693
7694 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7695 + (indbufend - indbuf) * sizeof (*ssym));
7696 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7697 if (ssymbuf == NULL)
7698 {
7699 free (indbuf);
7700 return NULL;
7701 }
7702
7703 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7704 ssymbuf->ssym = NULL;
7705 ssymbuf->count = shndx_count;
7706 ssymbuf->st_shndx = 0;
7707 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7708 {
7709 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7710 {
7711 ssymhead++;
7712 ssymhead->ssym = ssym;
7713 ssymhead->count = 0;
7714 ssymhead->st_shndx = (*ind)->st_shndx;
7715 }
7716 ssym->st_name = (*ind)->st_name;
7717 ssym->st_info = (*ind)->st_info;
7718 ssym->st_other = (*ind)->st_other;
7719 ssymhead->count++;
7720 }
7721 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7722 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7723 == total_size));
7724
7725 free (indbuf);
7726 return ssymbuf;
7727 }
7728
7729 /* Check if 2 sections define the same set of local and global
7730 symbols. */
7731
7732 static bfd_boolean
7733 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7734 struct bfd_link_info *info)
7735 {
7736 bfd *bfd1, *bfd2;
7737 const struct elf_backend_data *bed1, *bed2;
7738 Elf_Internal_Shdr *hdr1, *hdr2;
7739 size_t symcount1, symcount2;
7740 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7741 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7742 Elf_Internal_Sym *isym, *isymend;
7743 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7744 size_t count1, count2, i;
7745 unsigned int shndx1, shndx2;
7746 bfd_boolean result;
7747
7748 bfd1 = sec1->owner;
7749 bfd2 = sec2->owner;
7750
7751 /* Both sections have to be in ELF. */
7752 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7753 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7754 return FALSE;
7755
7756 if (elf_section_type (sec1) != elf_section_type (sec2))
7757 return FALSE;
7758
7759 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7760 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7761 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7762 return FALSE;
7763
7764 bed1 = get_elf_backend_data (bfd1);
7765 bed2 = get_elf_backend_data (bfd2);
7766 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7767 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7768 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7769 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7770
7771 if (symcount1 == 0 || symcount2 == 0)
7772 return FALSE;
7773
7774 result = FALSE;
7775 isymbuf1 = NULL;
7776 isymbuf2 = NULL;
7777 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7778 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7779
7780 if (ssymbuf1 == NULL)
7781 {
7782 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7783 NULL, NULL, NULL);
7784 if (isymbuf1 == NULL)
7785 goto done;
7786
7787 if (!info->reduce_memory_overheads)
7788 elf_tdata (bfd1)->symbuf = ssymbuf1
7789 = elf_create_symbuf (symcount1, isymbuf1);
7790 }
7791
7792 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7793 {
7794 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7795 NULL, NULL, NULL);
7796 if (isymbuf2 == NULL)
7797 goto done;
7798
7799 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7800 elf_tdata (bfd2)->symbuf = ssymbuf2
7801 = elf_create_symbuf (symcount2, isymbuf2);
7802 }
7803
7804 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7805 {
7806 /* Optimized faster version. */
7807 size_t lo, hi, mid;
7808 struct elf_symbol *symp;
7809 struct elf_symbuf_symbol *ssym, *ssymend;
7810
7811 lo = 0;
7812 hi = ssymbuf1->count;
7813 ssymbuf1++;
7814 count1 = 0;
7815 while (lo < hi)
7816 {
7817 mid = (lo + hi) / 2;
7818 if (shndx1 < ssymbuf1[mid].st_shndx)
7819 hi = mid;
7820 else if (shndx1 > ssymbuf1[mid].st_shndx)
7821 lo = mid + 1;
7822 else
7823 {
7824 count1 = ssymbuf1[mid].count;
7825 ssymbuf1 += mid;
7826 break;
7827 }
7828 }
7829
7830 lo = 0;
7831 hi = ssymbuf2->count;
7832 ssymbuf2++;
7833 count2 = 0;
7834 while (lo < hi)
7835 {
7836 mid = (lo + hi) / 2;
7837 if (shndx2 < ssymbuf2[mid].st_shndx)
7838 hi = mid;
7839 else if (shndx2 > ssymbuf2[mid].st_shndx)
7840 lo = mid + 1;
7841 else
7842 {
7843 count2 = ssymbuf2[mid].count;
7844 ssymbuf2 += mid;
7845 break;
7846 }
7847 }
7848
7849 if (count1 == 0 || count2 == 0 || count1 != count2)
7850 goto done;
7851
7852 symtable1
7853 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7854 symtable2
7855 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7856 if (symtable1 == NULL || symtable2 == NULL)
7857 goto done;
7858
7859 symp = symtable1;
7860 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7861 ssym < ssymend; ssym++, symp++)
7862 {
7863 symp->u.ssym = ssym;
7864 symp->name = bfd_elf_string_from_elf_section (bfd1,
7865 hdr1->sh_link,
7866 ssym->st_name);
7867 }
7868
7869 symp = symtable2;
7870 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7871 ssym < ssymend; ssym++, symp++)
7872 {
7873 symp->u.ssym = ssym;
7874 symp->name = bfd_elf_string_from_elf_section (bfd2,
7875 hdr2->sh_link,
7876 ssym->st_name);
7877 }
7878
7879 /* Sort symbol by name. */
7880 qsort (symtable1, count1, sizeof (struct elf_symbol),
7881 elf_sym_name_compare);
7882 qsort (symtable2, count1, sizeof (struct elf_symbol),
7883 elf_sym_name_compare);
7884
7885 for (i = 0; i < count1; i++)
7886 /* Two symbols must have the same binding, type and name. */
7887 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7888 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7889 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7890 goto done;
7891
7892 result = TRUE;
7893 goto done;
7894 }
7895
7896 symtable1 = (struct elf_symbol *)
7897 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7898 symtable2 = (struct elf_symbol *)
7899 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7900 if (symtable1 == NULL || symtable2 == NULL)
7901 goto done;
7902
7903 /* Count definitions in the section. */
7904 count1 = 0;
7905 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7906 if (isym->st_shndx == shndx1)
7907 symtable1[count1++].u.isym = isym;
7908
7909 count2 = 0;
7910 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7911 if (isym->st_shndx == shndx2)
7912 symtable2[count2++].u.isym = isym;
7913
7914 if (count1 == 0 || count2 == 0 || count1 != count2)
7915 goto done;
7916
7917 for (i = 0; i < count1; i++)
7918 symtable1[i].name
7919 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7920 symtable1[i].u.isym->st_name);
7921
7922 for (i = 0; i < count2; i++)
7923 symtable2[i].name
7924 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7925 symtable2[i].u.isym->st_name);
7926
7927 /* Sort symbol by name. */
7928 qsort (symtable1, count1, sizeof (struct elf_symbol),
7929 elf_sym_name_compare);
7930 qsort (symtable2, count1, sizeof (struct elf_symbol),
7931 elf_sym_name_compare);
7932
7933 for (i = 0; i < count1; i++)
7934 /* Two symbols must have the same binding, type and name. */
7935 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7936 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7937 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7938 goto done;
7939
7940 result = TRUE;
7941
7942 done:
7943 if (symtable1)
7944 free (symtable1);
7945 if (symtable2)
7946 free (symtable2);
7947 if (isymbuf1)
7948 free (isymbuf1);
7949 if (isymbuf2)
7950 free (isymbuf2);
7951
7952 return result;
7953 }
7954
7955 /* Return TRUE if 2 section types are compatible. */
7956
7957 bfd_boolean
7958 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7959 bfd *bbfd, const asection *bsec)
7960 {
7961 if (asec == NULL
7962 || bsec == NULL
7963 || abfd->xvec->flavour != bfd_target_elf_flavour
7964 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7965 return TRUE;
7966
7967 return elf_section_type (asec) == elf_section_type (bsec);
7968 }
7969 \f
7970 /* Final phase of ELF linker. */
7971
7972 /* A structure we use to avoid passing large numbers of arguments. */
7973
7974 struct elf_final_link_info
7975 {
7976 /* General link information. */
7977 struct bfd_link_info *info;
7978 /* Output BFD. */
7979 bfd *output_bfd;
7980 /* Symbol string table. */
7981 struct elf_strtab_hash *symstrtab;
7982 /* .hash section. */
7983 asection *hash_sec;
7984 /* symbol version section (.gnu.version). */
7985 asection *symver_sec;
7986 /* Buffer large enough to hold contents of any section. */
7987 bfd_byte *contents;
7988 /* Buffer large enough to hold external relocs of any section. */
7989 void *external_relocs;
7990 /* Buffer large enough to hold internal relocs of any section. */
7991 Elf_Internal_Rela *internal_relocs;
7992 /* Buffer large enough to hold external local symbols of any input
7993 BFD. */
7994 bfd_byte *external_syms;
7995 /* And a buffer for symbol section indices. */
7996 Elf_External_Sym_Shndx *locsym_shndx;
7997 /* Buffer large enough to hold internal local symbols of any input
7998 BFD. */
7999 Elf_Internal_Sym *internal_syms;
8000 /* Array large enough to hold a symbol index for each local symbol
8001 of any input BFD. */
8002 long *indices;
8003 /* Array large enough to hold a section pointer for each local
8004 symbol of any input BFD. */
8005 asection **sections;
8006 /* Buffer for SHT_SYMTAB_SHNDX section. */
8007 Elf_External_Sym_Shndx *symshndxbuf;
8008 /* Number of STT_FILE syms seen. */
8009 size_t filesym_count;
8010 };
8011
8012 /* This struct is used to pass information to elf_link_output_extsym. */
8013
8014 struct elf_outext_info
8015 {
8016 bfd_boolean failed;
8017 bfd_boolean localsyms;
8018 bfd_boolean file_sym_done;
8019 struct elf_final_link_info *flinfo;
8020 };
8021
8022
8023 /* Support for evaluating a complex relocation.
8024
8025 Complex relocations are generalized, self-describing relocations. The
8026 implementation of them consists of two parts: complex symbols, and the
8027 relocations themselves.
8028
8029 The relocations are use a reserved elf-wide relocation type code (R_RELC
8030 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8031 information (start bit, end bit, word width, etc) into the addend. This
8032 information is extracted from CGEN-generated operand tables within gas.
8033
8034 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8035 internal) representing prefix-notation expressions, including but not
8036 limited to those sorts of expressions normally encoded as addends in the
8037 addend field. The symbol mangling format is:
8038
8039 <node> := <literal>
8040 | <unary-operator> ':' <node>
8041 | <binary-operator> ':' <node> ':' <node>
8042 ;
8043
8044 <literal> := 's' <digits=N> ':' <N character symbol name>
8045 | 'S' <digits=N> ':' <N character section name>
8046 | '#' <hexdigits>
8047 ;
8048
8049 <binary-operator> := as in C
8050 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8051
8052 static void
8053 set_symbol_value (bfd *bfd_with_globals,
8054 Elf_Internal_Sym *isymbuf,
8055 size_t locsymcount,
8056 size_t symidx,
8057 bfd_vma val)
8058 {
8059 struct elf_link_hash_entry **sym_hashes;
8060 struct elf_link_hash_entry *h;
8061 size_t extsymoff = locsymcount;
8062
8063 if (symidx < locsymcount)
8064 {
8065 Elf_Internal_Sym *sym;
8066
8067 sym = isymbuf + symidx;
8068 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8069 {
8070 /* It is a local symbol: move it to the
8071 "absolute" section and give it a value. */
8072 sym->st_shndx = SHN_ABS;
8073 sym->st_value = val;
8074 return;
8075 }
8076 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8077 extsymoff = 0;
8078 }
8079
8080 /* It is a global symbol: set its link type
8081 to "defined" and give it a value. */
8082
8083 sym_hashes = elf_sym_hashes (bfd_with_globals);
8084 h = sym_hashes [symidx - extsymoff];
8085 while (h->root.type == bfd_link_hash_indirect
8086 || h->root.type == bfd_link_hash_warning)
8087 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8088 h->root.type = bfd_link_hash_defined;
8089 h->root.u.def.value = val;
8090 h->root.u.def.section = bfd_abs_section_ptr;
8091 }
8092
8093 static bfd_boolean
8094 resolve_symbol (const char *name,
8095 bfd *input_bfd,
8096 struct elf_final_link_info *flinfo,
8097 bfd_vma *result,
8098 Elf_Internal_Sym *isymbuf,
8099 size_t locsymcount)
8100 {
8101 Elf_Internal_Sym *sym;
8102 struct bfd_link_hash_entry *global_entry;
8103 const char *candidate = NULL;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 size_t i;
8106
8107 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8108
8109 for (i = 0; i < locsymcount; ++ i)
8110 {
8111 sym = isymbuf + i;
8112
8113 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8114 continue;
8115
8116 candidate = bfd_elf_string_from_elf_section (input_bfd,
8117 symtab_hdr->sh_link,
8118 sym->st_name);
8119 #ifdef DEBUG
8120 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8121 name, candidate, (unsigned long) sym->st_value);
8122 #endif
8123 if (candidate && strcmp (candidate, name) == 0)
8124 {
8125 asection *sec = flinfo->sections [i];
8126
8127 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8128 *result += sec->output_offset + sec->output_section->vma;
8129 #ifdef DEBUG
8130 printf ("Found symbol with value %8.8lx\n",
8131 (unsigned long) *result);
8132 #endif
8133 return TRUE;
8134 }
8135 }
8136
8137 /* Hmm, haven't found it yet. perhaps it is a global. */
8138 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8139 FALSE, FALSE, TRUE);
8140 if (!global_entry)
8141 return FALSE;
8142
8143 if (global_entry->type == bfd_link_hash_defined
8144 || global_entry->type == bfd_link_hash_defweak)
8145 {
8146 *result = (global_entry->u.def.value
8147 + global_entry->u.def.section->output_section->vma
8148 + global_entry->u.def.section->output_offset);
8149 #ifdef DEBUG
8150 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8151 global_entry->root.string, (unsigned long) *result);
8152 #endif
8153 return TRUE;
8154 }
8155
8156 return FALSE;
8157 }
8158
8159 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8160 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8161 names like "foo.end" which is the end address of section "foo". */
8162
8163 static bfd_boolean
8164 resolve_section (const char *name,
8165 asection *sections,
8166 bfd_vma *result,
8167 bfd * abfd)
8168 {
8169 asection *curr;
8170 unsigned int len;
8171
8172 for (curr = sections; curr; curr = curr->next)
8173 if (strcmp (curr->name, name) == 0)
8174 {
8175 *result = curr->vma;
8176 return TRUE;
8177 }
8178
8179 /* Hmm. still haven't found it. try pseudo-section names. */
8180 /* FIXME: This could be coded more efficiently... */
8181 for (curr = sections; curr; curr = curr->next)
8182 {
8183 len = strlen (curr->name);
8184 if (len > strlen (name))
8185 continue;
8186
8187 if (strncmp (curr->name, name, len) == 0)
8188 {
8189 if (strncmp (".end", name + len, 4) == 0)
8190 {
8191 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8192 return TRUE;
8193 }
8194
8195 /* Insert more pseudo-section names here, if you like. */
8196 }
8197 }
8198
8199 return FALSE;
8200 }
8201
8202 static void
8203 undefined_reference (const char *reftype, const char *name)
8204 {
8205 /* xgettext:c-format */
8206 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8207 reftype, name);
8208 }
8209
8210 static bfd_boolean
8211 eval_symbol (bfd_vma *result,
8212 const char **symp,
8213 bfd *input_bfd,
8214 struct elf_final_link_info *flinfo,
8215 bfd_vma dot,
8216 Elf_Internal_Sym *isymbuf,
8217 size_t locsymcount,
8218 int signed_p)
8219 {
8220 size_t len;
8221 size_t symlen;
8222 bfd_vma a;
8223 bfd_vma b;
8224 char symbuf[4096];
8225 const char *sym = *symp;
8226 const char *symend;
8227 bfd_boolean symbol_is_section = FALSE;
8228
8229 len = strlen (sym);
8230 symend = sym + len;
8231
8232 if (len < 1 || len > sizeof (symbuf))
8233 {
8234 bfd_set_error (bfd_error_invalid_operation);
8235 return FALSE;
8236 }
8237
8238 switch (* sym)
8239 {
8240 case '.':
8241 *result = dot;
8242 *symp = sym + 1;
8243 return TRUE;
8244
8245 case '#':
8246 ++sym;
8247 *result = strtoul (sym, (char **) symp, 16);
8248 return TRUE;
8249
8250 case 'S':
8251 symbol_is_section = TRUE;
8252 /* Fall through. */
8253 case 's':
8254 ++sym;
8255 symlen = strtol (sym, (char **) symp, 10);
8256 sym = *symp + 1; /* Skip the trailing ':'. */
8257
8258 if (symend < sym || symlen + 1 > sizeof (symbuf))
8259 {
8260 bfd_set_error (bfd_error_invalid_operation);
8261 return FALSE;
8262 }
8263
8264 memcpy (symbuf, sym, symlen);
8265 symbuf[symlen] = '\0';
8266 *symp = sym + symlen;
8267
8268 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8269 the symbol as a section, or vice-versa. so we're pretty liberal in our
8270 interpretation here; section means "try section first", not "must be a
8271 section", and likewise with symbol. */
8272
8273 if (symbol_is_section)
8274 {
8275 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8276 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8277 isymbuf, locsymcount))
8278 {
8279 undefined_reference ("section", symbuf);
8280 return FALSE;
8281 }
8282 }
8283 else
8284 {
8285 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8286 isymbuf, locsymcount)
8287 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8288 result, input_bfd))
8289 {
8290 undefined_reference ("symbol", symbuf);
8291 return FALSE;
8292 }
8293 }
8294
8295 return TRUE;
8296
8297 /* All that remains are operators. */
8298
8299 #define UNARY_OP(op) \
8300 if (strncmp (sym, #op, strlen (#op)) == 0) \
8301 { \
8302 sym += strlen (#op); \
8303 if (*sym == ':') \
8304 ++sym; \
8305 *symp = sym; \
8306 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8307 isymbuf, locsymcount, signed_p)) \
8308 return FALSE; \
8309 if (signed_p) \
8310 *result = op ((bfd_signed_vma) a); \
8311 else \
8312 *result = op a; \
8313 return TRUE; \
8314 }
8315
8316 #define BINARY_OP(op) \
8317 if (strncmp (sym, #op, strlen (#op)) == 0) \
8318 { \
8319 sym += strlen (#op); \
8320 if (*sym == ':') \
8321 ++sym; \
8322 *symp = sym; \
8323 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8324 isymbuf, locsymcount, signed_p)) \
8325 return FALSE; \
8326 ++*symp; \
8327 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8328 isymbuf, locsymcount, signed_p)) \
8329 return FALSE; \
8330 if (signed_p) \
8331 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8332 else \
8333 *result = a op b; \
8334 return TRUE; \
8335 }
8336
8337 default:
8338 UNARY_OP (0-);
8339 BINARY_OP (<<);
8340 BINARY_OP (>>);
8341 BINARY_OP (==);
8342 BINARY_OP (!=);
8343 BINARY_OP (<=);
8344 BINARY_OP (>=);
8345 BINARY_OP (&&);
8346 BINARY_OP (||);
8347 UNARY_OP (~);
8348 UNARY_OP (!);
8349 BINARY_OP (*);
8350 BINARY_OP (/);
8351 BINARY_OP (%);
8352 BINARY_OP (^);
8353 BINARY_OP (|);
8354 BINARY_OP (&);
8355 BINARY_OP (+);
8356 BINARY_OP (-);
8357 BINARY_OP (<);
8358 BINARY_OP (>);
8359 #undef UNARY_OP
8360 #undef BINARY_OP
8361 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8362 bfd_set_error (bfd_error_invalid_operation);
8363 return FALSE;
8364 }
8365 }
8366
8367 static void
8368 put_value (bfd_vma size,
8369 unsigned long chunksz,
8370 bfd *input_bfd,
8371 bfd_vma x,
8372 bfd_byte *location)
8373 {
8374 location += (size - chunksz);
8375
8376 for (; size; size -= chunksz, location -= chunksz)
8377 {
8378 switch (chunksz)
8379 {
8380 case 1:
8381 bfd_put_8 (input_bfd, x, location);
8382 x >>= 8;
8383 break;
8384 case 2:
8385 bfd_put_16 (input_bfd, x, location);
8386 x >>= 16;
8387 break;
8388 case 4:
8389 bfd_put_32 (input_bfd, x, location);
8390 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8391 x >>= 16;
8392 x >>= 16;
8393 break;
8394 #ifdef BFD64
8395 case 8:
8396 bfd_put_64 (input_bfd, x, location);
8397 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8398 x >>= 32;
8399 x >>= 32;
8400 break;
8401 #endif
8402 default:
8403 abort ();
8404 break;
8405 }
8406 }
8407 }
8408
8409 static bfd_vma
8410 get_value (bfd_vma size,
8411 unsigned long chunksz,
8412 bfd *input_bfd,
8413 bfd_byte *location)
8414 {
8415 int shift;
8416 bfd_vma x = 0;
8417
8418 /* Sanity checks. */
8419 BFD_ASSERT (chunksz <= sizeof (x)
8420 && size >= chunksz
8421 && chunksz != 0
8422 && (size % chunksz) == 0
8423 && input_bfd != NULL
8424 && location != NULL);
8425
8426 if (chunksz == sizeof (x))
8427 {
8428 BFD_ASSERT (size == chunksz);
8429
8430 /* Make sure that we do not perform an undefined shift operation.
8431 We know that size == chunksz so there will only be one iteration
8432 of the loop below. */
8433 shift = 0;
8434 }
8435 else
8436 shift = 8 * chunksz;
8437
8438 for (; size; size -= chunksz, location += chunksz)
8439 {
8440 switch (chunksz)
8441 {
8442 case 1:
8443 x = (x << shift) | bfd_get_8 (input_bfd, location);
8444 break;
8445 case 2:
8446 x = (x << shift) | bfd_get_16 (input_bfd, location);
8447 break;
8448 case 4:
8449 x = (x << shift) | bfd_get_32 (input_bfd, location);
8450 break;
8451 #ifdef BFD64
8452 case 8:
8453 x = (x << shift) | bfd_get_64 (input_bfd, location);
8454 break;
8455 #endif
8456 default:
8457 abort ();
8458 }
8459 }
8460 return x;
8461 }
8462
8463 static void
8464 decode_complex_addend (unsigned long *start, /* in bits */
8465 unsigned long *oplen, /* in bits */
8466 unsigned long *len, /* in bits */
8467 unsigned long *wordsz, /* in bytes */
8468 unsigned long *chunksz, /* in bytes */
8469 unsigned long *lsb0_p,
8470 unsigned long *signed_p,
8471 unsigned long *trunc_p,
8472 unsigned long encoded)
8473 {
8474 * start = encoded & 0x3F;
8475 * len = (encoded >> 6) & 0x3F;
8476 * oplen = (encoded >> 12) & 0x3F;
8477 * wordsz = (encoded >> 18) & 0xF;
8478 * chunksz = (encoded >> 22) & 0xF;
8479 * lsb0_p = (encoded >> 27) & 1;
8480 * signed_p = (encoded >> 28) & 1;
8481 * trunc_p = (encoded >> 29) & 1;
8482 }
8483
8484 bfd_reloc_status_type
8485 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8486 asection *input_section ATTRIBUTE_UNUSED,
8487 bfd_byte *contents,
8488 Elf_Internal_Rela *rel,
8489 bfd_vma relocation)
8490 {
8491 bfd_vma shift, x, mask;
8492 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8493 bfd_reloc_status_type r;
8494
8495 /* Perform this reloc, since it is complex.
8496 (this is not to say that it necessarily refers to a complex
8497 symbol; merely that it is a self-describing CGEN based reloc.
8498 i.e. the addend has the complete reloc information (bit start, end,
8499 word size, etc) encoded within it.). */
8500
8501 decode_complex_addend (&start, &oplen, &len, &wordsz,
8502 &chunksz, &lsb0_p, &signed_p,
8503 &trunc_p, rel->r_addend);
8504
8505 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8506
8507 if (lsb0_p)
8508 shift = (start + 1) - len;
8509 else
8510 shift = (8 * wordsz) - (start + len);
8511
8512 x = get_value (wordsz, chunksz, input_bfd,
8513 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8514
8515 #ifdef DEBUG
8516 printf ("Doing complex reloc: "
8517 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8518 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8519 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8520 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8521 oplen, (unsigned long) x, (unsigned long) mask,
8522 (unsigned long) relocation);
8523 #endif
8524
8525 r = bfd_reloc_ok;
8526 if (! trunc_p)
8527 /* Now do an overflow check. */
8528 r = bfd_check_overflow ((signed_p
8529 ? complain_overflow_signed
8530 : complain_overflow_unsigned),
8531 len, 0, (8 * wordsz),
8532 relocation);
8533
8534 /* Do the deed. */
8535 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8536
8537 #ifdef DEBUG
8538 printf (" relocation: %8.8lx\n"
8539 " shifted mask: %8.8lx\n"
8540 " shifted/masked reloc: %8.8lx\n"
8541 " result: %8.8lx\n",
8542 (unsigned long) relocation, (unsigned long) (mask << shift),
8543 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8544 #endif
8545 put_value (wordsz, chunksz, input_bfd, x,
8546 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8547 return r;
8548 }
8549
8550 /* Functions to read r_offset from external (target order) reloc
8551 entry. Faster than bfd_getl32 et al, because we let the compiler
8552 know the value is aligned. */
8553
8554 static bfd_vma
8555 ext32l_r_offset (const void *p)
8556 {
8557 union aligned32
8558 {
8559 uint32_t v;
8560 unsigned char c[4];
8561 };
8562 const union aligned32 *a
8563 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8564
8565 uint32_t aval = ( (uint32_t) a->c[0]
8566 | (uint32_t) a->c[1] << 8
8567 | (uint32_t) a->c[2] << 16
8568 | (uint32_t) a->c[3] << 24);
8569 return aval;
8570 }
8571
8572 static bfd_vma
8573 ext32b_r_offset (const void *p)
8574 {
8575 union aligned32
8576 {
8577 uint32_t v;
8578 unsigned char c[4];
8579 };
8580 const union aligned32 *a
8581 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8582
8583 uint32_t aval = ( (uint32_t) a->c[0] << 24
8584 | (uint32_t) a->c[1] << 16
8585 | (uint32_t) a->c[2] << 8
8586 | (uint32_t) a->c[3]);
8587 return aval;
8588 }
8589
8590 #ifdef BFD_HOST_64_BIT
8591 static bfd_vma
8592 ext64l_r_offset (const void *p)
8593 {
8594 union aligned64
8595 {
8596 uint64_t v;
8597 unsigned char c[8];
8598 };
8599 const union aligned64 *a
8600 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8601
8602 uint64_t aval = ( (uint64_t) a->c[0]
8603 | (uint64_t) a->c[1] << 8
8604 | (uint64_t) a->c[2] << 16
8605 | (uint64_t) a->c[3] << 24
8606 | (uint64_t) a->c[4] << 32
8607 | (uint64_t) a->c[5] << 40
8608 | (uint64_t) a->c[6] << 48
8609 | (uint64_t) a->c[7] << 56);
8610 return aval;
8611 }
8612
8613 static bfd_vma
8614 ext64b_r_offset (const void *p)
8615 {
8616 union aligned64
8617 {
8618 uint64_t v;
8619 unsigned char c[8];
8620 };
8621 const union aligned64 *a
8622 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8623
8624 uint64_t aval = ( (uint64_t) a->c[0] << 56
8625 | (uint64_t) a->c[1] << 48
8626 | (uint64_t) a->c[2] << 40
8627 | (uint64_t) a->c[3] << 32
8628 | (uint64_t) a->c[4] << 24
8629 | (uint64_t) a->c[5] << 16
8630 | (uint64_t) a->c[6] << 8
8631 | (uint64_t) a->c[7]);
8632 return aval;
8633 }
8634 #endif
8635
8636 /* When performing a relocatable link, the input relocations are
8637 preserved. But, if they reference global symbols, the indices
8638 referenced must be updated. Update all the relocations found in
8639 RELDATA. */
8640
8641 static bfd_boolean
8642 elf_link_adjust_relocs (bfd *abfd,
8643 asection *sec,
8644 struct bfd_elf_section_reloc_data *reldata,
8645 bfd_boolean sort,
8646 struct bfd_link_info *info)
8647 {
8648 unsigned int i;
8649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8650 bfd_byte *erela;
8651 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8652 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8653 bfd_vma r_type_mask;
8654 int r_sym_shift;
8655 unsigned int count = reldata->count;
8656 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8657
8658 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8659 {
8660 swap_in = bed->s->swap_reloc_in;
8661 swap_out = bed->s->swap_reloc_out;
8662 }
8663 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8664 {
8665 swap_in = bed->s->swap_reloca_in;
8666 swap_out = bed->s->swap_reloca_out;
8667 }
8668 else
8669 abort ();
8670
8671 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8672 abort ();
8673
8674 if (bed->s->arch_size == 32)
8675 {
8676 r_type_mask = 0xff;
8677 r_sym_shift = 8;
8678 }
8679 else
8680 {
8681 r_type_mask = 0xffffffff;
8682 r_sym_shift = 32;
8683 }
8684
8685 erela = reldata->hdr->contents;
8686 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8687 {
8688 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8689 unsigned int j;
8690
8691 if (*rel_hash == NULL)
8692 continue;
8693
8694 if ((*rel_hash)->indx == -2
8695 && info->gc_sections
8696 && ! info->gc_keep_exported)
8697 {
8698 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8699 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8700 abfd, sec,
8701 (*rel_hash)->root.root.string);
8702 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8703 abfd, sec);
8704 bfd_set_error (bfd_error_invalid_operation);
8705 return FALSE;
8706 }
8707 BFD_ASSERT ((*rel_hash)->indx >= 0);
8708
8709 (*swap_in) (abfd, erela, irela);
8710 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8711 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8712 | (irela[j].r_info & r_type_mask));
8713 (*swap_out) (abfd, irela, erela);
8714 }
8715
8716 if (bed->elf_backend_update_relocs)
8717 (*bed->elf_backend_update_relocs) (sec, reldata);
8718
8719 if (sort && count != 0)
8720 {
8721 bfd_vma (*ext_r_off) (const void *);
8722 bfd_vma r_off;
8723 size_t elt_size;
8724 bfd_byte *base, *end, *p, *loc;
8725 bfd_byte *buf = NULL;
8726
8727 if (bed->s->arch_size == 32)
8728 {
8729 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8730 ext_r_off = ext32l_r_offset;
8731 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8732 ext_r_off = ext32b_r_offset;
8733 else
8734 abort ();
8735 }
8736 else
8737 {
8738 #ifdef BFD_HOST_64_BIT
8739 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8740 ext_r_off = ext64l_r_offset;
8741 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8742 ext_r_off = ext64b_r_offset;
8743 else
8744 #endif
8745 abort ();
8746 }
8747
8748 /* Must use a stable sort here. A modified insertion sort,
8749 since the relocs are mostly sorted already. */
8750 elt_size = reldata->hdr->sh_entsize;
8751 base = reldata->hdr->contents;
8752 end = base + count * elt_size;
8753 if (elt_size > sizeof (Elf64_External_Rela))
8754 abort ();
8755
8756 /* Ensure the first element is lowest. This acts as a sentinel,
8757 speeding the main loop below. */
8758 r_off = (*ext_r_off) (base);
8759 for (p = loc = base; (p += elt_size) < end; )
8760 {
8761 bfd_vma r_off2 = (*ext_r_off) (p);
8762 if (r_off > r_off2)
8763 {
8764 r_off = r_off2;
8765 loc = p;
8766 }
8767 }
8768 if (loc != base)
8769 {
8770 /* Don't just swap *base and *loc as that changes the order
8771 of the original base[0] and base[1] if they happen to
8772 have the same r_offset. */
8773 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8774 memcpy (onebuf, loc, elt_size);
8775 memmove (base + elt_size, base, loc - base);
8776 memcpy (base, onebuf, elt_size);
8777 }
8778
8779 for (p = base + elt_size; (p += elt_size) < end; )
8780 {
8781 /* base to p is sorted, *p is next to insert. */
8782 r_off = (*ext_r_off) (p);
8783 /* Search the sorted region for location to insert. */
8784 loc = p - elt_size;
8785 while (r_off < (*ext_r_off) (loc))
8786 loc -= elt_size;
8787 loc += elt_size;
8788 if (loc != p)
8789 {
8790 /* Chances are there is a run of relocs to insert here,
8791 from one of more input files. Files are not always
8792 linked in order due to the way elf_link_input_bfd is
8793 called. See pr17666. */
8794 size_t sortlen = p - loc;
8795 bfd_vma r_off2 = (*ext_r_off) (loc);
8796 size_t runlen = elt_size;
8797 size_t buf_size = 96 * 1024;
8798 while (p + runlen < end
8799 && (sortlen <= buf_size
8800 || runlen + elt_size <= buf_size)
8801 && r_off2 > (*ext_r_off) (p + runlen))
8802 runlen += elt_size;
8803 if (buf == NULL)
8804 {
8805 buf = bfd_malloc (buf_size);
8806 if (buf == NULL)
8807 return FALSE;
8808 }
8809 if (runlen < sortlen)
8810 {
8811 memcpy (buf, p, runlen);
8812 memmove (loc + runlen, loc, sortlen);
8813 memcpy (loc, buf, runlen);
8814 }
8815 else
8816 {
8817 memcpy (buf, loc, sortlen);
8818 memmove (loc, p, runlen);
8819 memcpy (loc + runlen, buf, sortlen);
8820 }
8821 p += runlen - elt_size;
8822 }
8823 }
8824 /* Hashes are no longer valid. */
8825 free (reldata->hashes);
8826 reldata->hashes = NULL;
8827 free (buf);
8828 }
8829 return TRUE;
8830 }
8831
8832 struct elf_link_sort_rela
8833 {
8834 union {
8835 bfd_vma offset;
8836 bfd_vma sym_mask;
8837 } u;
8838 enum elf_reloc_type_class type;
8839 /* We use this as an array of size int_rels_per_ext_rel. */
8840 Elf_Internal_Rela rela[1];
8841 };
8842
8843 static int
8844 elf_link_sort_cmp1 (const void *A, const void *B)
8845 {
8846 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8847 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8848 int relativea, relativeb;
8849
8850 relativea = a->type == reloc_class_relative;
8851 relativeb = b->type == reloc_class_relative;
8852
8853 if (relativea < relativeb)
8854 return 1;
8855 if (relativea > relativeb)
8856 return -1;
8857 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8858 return -1;
8859 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8860 return 1;
8861 if (a->rela->r_offset < b->rela->r_offset)
8862 return -1;
8863 if (a->rela->r_offset > b->rela->r_offset)
8864 return 1;
8865 return 0;
8866 }
8867
8868 static int
8869 elf_link_sort_cmp2 (const void *A, const void *B)
8870 {
8871 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8872 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8873
8874 if (a->type < b->type)
8875 return -1;
8876 if (a->type > b->type)
8877 return 1;
8878 if (a->u.offset < b->u.offset)
8879 return -1;
8880 if (a->u.offset > b->u.offset)
8881 return 1;
8882 if (a->rela->r_offset < b->rela->r_offset)
8883 return -1;
8884 if (a->rela->r_offset > b->rela->r_offset)
8885 return 1;
8886 return 0;
8887 }
8888
8889 static size_t
8890 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8891 {
8892 asection *dynamic_relocs;
8893 asection *rela_dyn;
8894 asection *rel_dyn;
8895 bfd_size_type count, size;
8896 size_t i, ret, sort_elt, ext_size;
8897 bfd_byte *sort, *s_non_relative, *p;
8898 struct elf_link_sort_rela *sq;
8899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8900 int i2e = bed->s->int_rels_per_ext_rel;
8901 unsigned int opb = bfd_octets_per_byte (abfd);
8902 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8903 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8904 struct bfd_link_order *lo;
8905 bfd_vma r_sym_mask;
8906 bfd_boolean use_rela;
8907
8908 /* Find a dynamic reloc section. */
8909 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8910 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8911 if (rela_dyn != NULL && rela_dyn->size > 0
8912 && rel_dyn != NULL && rel_dyn->size > 0)
8913 {
8914 bfd_boolean use_rela_initialised = FALSE;
8915
8916 /* This is just here to stop gcc from complaining.
8917 Its initialization checking code is not perfect. */
8918 use_rela = TRUE;
8919
8920 /* Both sections are present. Examine the sizes
8921 of the indirect sections to help us choose. */
8922 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8923 if (lo->type == bfd_indirect_link_order)
8924 {
8925 asection *o = lo->u.indirect.section;
8926
8927 if ((o->size % bed->s->sizeof_rela) == 0)
8928 {
8929 if ((o->size % bed->s->sizeof_rel) == 0)
8930 /* Section size is divisible by both rel and rela sizes.
8931 It is of no help to us. */
8932 ;
8933 else
8934 {
8935 /* Section size is only divisible by rela. */
8936 if (use_rela_initialised && !use_rela)
8937 {
8938 _bfd_error_handler (_("%B: Unable to sort relocs - "
8939 "they are in more than one size"),
8940 abfd);
8941 bfd_set_error (bfd_error_invalid_operation);
8942 return 0;
8943 }
8944 else
8945 {
8946 use_rela = TRUE;
8947 use_rela_initialised = TRUE;
8948 }
8949 }
8950 }
8951 else if ((o->size % bed->s->sizeof_rel) == 0)
8952 {
8953 /* Section size is only divisible by rel. */
8954 if (use_rela_initialised && use_rela)
8955 {
8956 _bfd_error_handler (_("%B: Unable to sort relocs - "
8957 "they are in more than one size"),
8958 abfd);
8959 bfd_set_error (bfd_error_invalid_operation);
8960 return 0;
8961 }
8962 else
8963 {
8964 use_rela = FALSE;
8965 use_rela_initialised = TRUE;
8966 }
8967 }
8968 else
8969 {
8970 /* The section size is not divisible by either -
8971 something is wrong. */
8972 _bfd_error_handler (_("%B: Unable to sort relocs - "
8973 "they are of an unknown size"), abfd);
8974 bfd_set_error (bfd_error_invalid_operation);
8975 return 0;
8976 }
8977 }
8978
8979 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8980 if (lo->type == bfd_indirect_link_order)
8981 {
8982 asection *o = lo->u.indirect.section;
8983
8984 if ((o->size % bed->s->sizeof_rela) == 0)
8985 {
8986 if ((o->size % bed->s->sizeof_rel) == 0)
8987 /* Section size is divisible by both rel and rela sizes.
8988 It is of no help to us. */
8989 ;
8990 else
8991 {
8992 /* Section size is only divisible by rela. */
8993 if (use_rela_initialised && !use_rela)
8994 {
8995 _bfd_error_handler (_("%B: Unable to sort relocs - "
8996 "they are in more than one size"),
8997 abfd);
8998 bfd_set_error (bfd_error_invalid_operation);
8999 return 0;
9000 }
9001 else
9002 {
9003 use_rela = TRUE;
9004 use_rela_initialised = TRUE;
9005 }
9006 }
9007 }
9008 else if ((o->size % bed->s->sizeof_rel) == 0)
9009 {
9010 /* Section size is only divisible by rel. */
9011 if (use_rela_initialised && use_rela)
9012 {
9013 _bfd_error_handler (_("%B: Unable to sort relocs - "
9014 "they are in more than one size"),
9015 abfd);
9016 bfd_set_error (bfd_error_invalid_operation);
9017 return 0;
9018 }
9019 else
9020 {
9021 use_rela = FALSE;
9022 use_rela_initialised = TRUE;
9023 }
9024 }
9025 else
9026 {
9027 /* The section size is not divisible by either -
9028 something is wrong. */
9029 _bfd_error_handler (_("%B: Unable to sort relocs - "
9030 "they are of an unknown size"), abfd);
9031 bfd_set_error (bfd_error_invalid_operation);
9032 return 0;
9033 }
9034 }
9035
9036 if (! use_rela_initialised)
9037 /* Make a guess. */
9038 use_rela = TRUE;
9039 }
9040 else if (rela_dyn != NULL && rela_dyn->size > 0)
9041 use_rela = TRUE;
9042 else if (rel_dyn != NULL && rel_dyn->size > 0)
9043 use_rela = FALSE;
9044 else
9045 return 0;
9046
9047 if (use_rela)
9048 {
9049 dynamic_relocs = rela_dyn;
9050 ext_size = bed->s->sizeof_rela;
9051 swap_in = bed->s->swap_reloca_in;
9052 swap_out = bed->s->swap_reloca_out;
9053 }
9054 else
9055 {
9056 dynamic_relocs = rel_dyn;
9057 ext_size = bed->s->sizeof_rel;
9058 swap_in = bed->s->swap_reloc_in;
9059 swap_out = bed->s->swap_reloc_out;
9060 }
9061
9062 size = 0;
9063 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9064 if (lo->type == bfd_indirect_link_order)
9065 size += lo->u.indirect.section->size;
9066
9067 if (size != dynamic_relocs->size)
9068 return 0;
9069
9070 sort_elt = (sizeof (struct elf_link_sort_rela)
9071 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9072
9073 count = dynamic_relocs->size / ext_size;
9074 if (count == 0)
9075 return 0;
9076 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9077
9078 if (sort == NULL)
9079 {
9080 (*info->callbacks->warning)
9081 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9082 return 0;
9083 }
9084
9085 if (bed->s->arch_size == 32)
9086 r_sym_mask = ~(bfd_vma) 0xff;
9087 else
9088 r_sym_mask = ~(bfd_vma) 0xffffffff;
9089
9090 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9091 if (lo->type == bfd_indirect_link_order)
9092 {
9093 bfd_byte *erel, *erelend;
9094 asection *o = lo->u.indirect.section;
9095
9096 if (o->contents == NULL && o->size != 0)
9097 {
9098 /* This is a reloc section that is being handled as a normal
9099 section. See bfd_section_from_shdr. We can't combine
9100 relocs in this case. */
9101 free (sort);
9102 return 0;
9103 }
9104 erel = o->contents;
9105 erelend = o->contents + o->size;
9106 p = sort + o->output_offset * opb / ext_size * sort_elt;
9107
9108 while (erel < erelend)
9109 {
9110 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9111
9112 (*swap_in) (abfd, erel, s->rela);
9113 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9114 s->u.sym_mask = r_sym_mask;
9115 p += sort_elt;
9116 erel += ext_size;
9117 }
9118 }
9119
9120 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9121
9122 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9123 {
9124 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9125 if (s->type != reloc_class_relative)
9126 break;
9127 }
9128 ret = i;
9129 s_non_relative = p;
9130
9131 sq = (struct elf_link_sort_rela *) s_non_relative;
9132 for (; i < count; i++, p += sort_elt)
9133 {
9134 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9135 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9136 sq = sp;
9137 sp->u.offset = sq->rela->r_offset;
9138 }
9139
9140 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9141
9142 struct elf_link_hash_table *htab = elf_hash_table (info);
9143 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9144 {
9145 /* We have plt relocs in .rela.dyn. */
9146 sq = (struct elf_link_sort_rela *) sort;
9147 for (i = 0; i < count; i++)
9148 if (sq[count - i - 1].type != reloc_class_plt)
9149 break;
9150 if (i != 0 && htab->srelplt->size == i * ext_size)
9151 {
9152 struct bfd_link_order **plo;
9153 /* Put srelplt link_order last. This is so the output_offset
9154 set in the next loop is correct for DT_JMPREL. */
9155 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9156 if ((*plo)->type == bfd_indirect_link_order
9157 && (*plo)->u.indirect.section == htab->srelplt)
9158 {
9159 lo = *plo;
9160 *plo = lo->next;
9161 }
9162 else
9163 plo = &(*plo)->next;
9164 *plo = lo;
9165 lo->next = NULL;
9166 dynamic_relocs->map_tail.link_order = lo;
9167 }
9168 }
9169
9170 p = sort;
9171 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9172 if (lo->type == bfd_indirect_link_order)
9173 {
9174 bfd_byte *erel, *erelend;
9175 asection *o = lo->u.indirect.section;
9176
9177 erel = o->contents;
9178 erelend = o->contents + o->size;
9179 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9180 while (erel < erelend)
9181 {
9182 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9183 (*swap_out) (abfd, s->rela, erel);
9184 p += sort_elt;
9185 erel += ext_size;
9186 }
9187 }
9188
9189 free (sort);
9190 *psec = dynamic_relocs;
9191 return ret;
9192 }
9193
9194 /* Add a symbol to the output symbol string table. */
9195
9196 static int
9197 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9198 const char *name,
9199 Elf_Internal_Sym *elfsym,
9200 asection *input_sec,
9201 struct elf_link_hash_entry *h)
9202 {
9203 int (*output_symbol_hook)
9204 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9205 struct elf_link_hash_entry *);
9206 struct elf_link_hash_table *hash_table;
9207 const struct elf_backend_data *bed;
9208 bfd_size_type strtabsize;
9209
9210 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9211
9212 bed = get_elf_backend_data (flinfo->output_bfd);
9213 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9214 if (output_symbol_hook != NULL)
9215 {
9216 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9217 if (ret != 1)
9218 return ret;
9219 }
9220
9221 if (name == NULL
9222 || *name == '\0'
9223 || (input_sec->flags & SEC_EXCLUDE))
9224 elfsym->st_name = (unsigned long) -1;
9225 else
9226 {
9227 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9228 to get the final offset for st_name. */
9229 elfsym->st_name
9230 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9231 name, FALSE);
9232 if (elfsym->st_name == (unsigned long) -1)
9233 return 0;
9234 }
9235
9236 hash_table = elf_hash_table (flinfo->info);
9237 strtabsize = hash_table->strtabsize;
9238 if (strtabsize <= hash_table->strtabcount)
9239 {
9240 strtabsize += strtabsize;
9241 hash_table->strtabsize = strtabsize;
9242 strtabsize *= sizeof (*hash_table->strtab);
9243 hash_table->strtab
9244 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9245 strtabsize);
9246 if (hash_table->strtab == NULL)
9247 return 0;
9248 }
9249 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9250 hash_table->strtab[hash_table->strtabcount].dest_index
9251 = hash_table->strtabcount;
9252 hash_table->strtab[hash_table->strtabcount].destshndx_index
9253 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9254
9255 bfd_get_symcount (flinfo->output_bfd) += 1;
9256 hash_table->strtabcount += 1;
9257
9258 return 1;
9259 }
9260
9261 /* Swap symbols out to the symbol table and flush the output symbols to
9262 the file. */
9263
9264 static bfd_boolean
9265 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9266 {
9267 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9268 bfd_size_type amt;
9269 size_t i;
9270 const struct elf_backend_data *bed;
9271 bfd_byte *symbuf;
9272 Elf_Internal_Shdr *hdr;
9273 file_ptr pos;
9274 bfd_boolean ret;
9275
9276 if (!hash_table->strtabcount)
9277 return TRUE;
9278
9279 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9280
9281 bed = get_elf_backend_data (flinfo->output_bfd);
9282
9283 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9284 symbuf = (bfd_byte *) bfd_malloc (amt);
9285 if (symbuf == NULL)
9286 return FALSE;
9287
9288 if (flinfo->symshndxbuf)
9289 {
9290 amt = sizeof (Elf_External_Sym_Shndx);
9291 amt *= bfd_get_symcount (flinfo->output_bfd);
9292 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9293 if (flinfo->symshndxbuf == NULL)
9294 {
9295 free (symbuf);
9296 return FALSE;
9297 }
9298 }
9299
9300 for (i = 0; i < hash_table->strtabcount; i++)
9301 {
9302 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9303 if (elfsym->sym.st_name == (unsigned long) -1)
9304 elfsym->sym.st_name = 0;
9305 else
9306 elfsym->sym.st_name
9307 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9308 elfsym->sym.st_name);
9309 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9310 ((bfd_byte *) symbuf
9311 + (elfsym->dest_index
9312 * bed->s->sizeof_sym)),
9313 (flinfo->symshndxbuf
9314 + elfsym->destshndx_index));
9315 }
9316
9317 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9318 pos = hdr->sh_offset + hdr->sh_size;
9319 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9320 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9321 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9322 {
9323 hdr->sh_size += amt;
9324 ret = TRUE;
9325 }
9326 else
9327 ret = FALSE;
9328
9329 free (symbuf);
9330
9331 free (hash_table->strtab);
9332 hash_table->strtab = NULL;
9333
9334 return ret;
9335 }
9336
9337 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9338
9339 static bfd_boolean
9340 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9341 {
9342 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9343 && sym->st_shndx < SHN_LORESERVE)
9344 {
9345 /* The gABI doesn't support dynamic symbols in output sections
9346 beyond 64k. */
9347 _bfd_error_handler
9348 /* xgettext:c-format */
9349 (_("%B: Too many sections: %d (>= %d)"),
9350 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9351 bfd_set_error (bfd_error_nonrepresentable_section);
9352 return FALSE;
9353 }
9354 return TRUE;
9355 }
9356
9357 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9358 allowing an unsatisfied unversioned symbol in the DSO to match a
9359 versioned symbol that would normally require an explicit version.
9360 We also handle the case that a DSO references a hidden symbol
9361 which may be satisfied by a versioned symbol in another DSO. */
9362
9363 static bfd_boolean
9364 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9365 const struct elf_backend_data *bed,
9366 struct elf_link_hash_entry *h)
9367 {
9368 bfd *abfd;
9369 struct elf_link_loaded_list *loaded;
9370
9371 if (!is_elf_hash_table (info->hash))
9372 return FALSE;
9373
9374 /* Check indirect symbol. */
9375 while (h->root.type == bfd_link_hash_indirect)
9376 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9377
9378 switch (h->root.type)
9379 {
9380 default:
9381 abfd = NULL;
9382 break;
9383
9384 case bfd_link_hash_undefined:
9385 case bfd_link_hash_undefweak:
9386 abfd = h->root.u.undef.abfd;
9387 if (abfd == NULL
9388 || (abfd->flags & DYNAMIC) == 0
9389 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9390 return FALSE;
9391 break;
9392
9393 case bfd_link_hash_defined:
9394 case bfd_link_hash_defweak:
9395 abfd = h->root.u.def.section->owner;
9396 break;
9397
9398 case bfd_link_hash_common:
9399 abfd = h->root.u.c.p->section->owner;
9400 break;
9401 }
9402 BFD_ASSERT (abfd != NULL);
9403
9404 for (loaded = elf_hash_table (info)->loaded;
9405 loaded != NULL;
9406 loaded = loaded->next)
9407 {
9408 bfd *input;
9409 Elf_Internal_Shdr *hdr;
9410 size_t symcount;
9411 size_t extsymcount;
9412 size_t extsymoff;
9413 Elf_Internal_Shdr *versymhdr;
9414 Elf_Internal_Sym *isym;
9415 Elf_Internal_Sym *isymend;
9416 Elf_Internal_Sym *isymbuf;
9417 Elf_External_Versym *ever;
9418 Elf_External_Versym *extversym;
9419
9420 input = loaded->abfd;
9421
9422 /* We check each DSO for a possible hidden versioned definition. */
9423 if (input == abfd
9424 || (input->flags & DYNAMIC) == 0
9425 || elf_dynversym (input) == 0)
9426 continue;
9427
9428 hdr = &elf_tdata (input)->dynsymtab_hdr;
9429
9430 symcount = hdr->sh_size / bed->s->sizeof_sym;
9431 if (elf_bad_symtab (input))
9432 {
9433 extsymcount = symcount;
9434 extsymoff = 0;
9435 }
9436 else
9437 {
9438 extsymcount = symcount - hdr->sh_info;
9439 extsymoff = hdr->sh_info;
9440 }
9441
9442 if (extsymcount == 0)
9443 continue;
9444
9445 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9446 NULL, NULL, NULL);
9447 if (isymbuf == NULL)
9448 return FALSE;
9449
9450 /* Read in any version definitions. */
9451 versymhdr = &elf_tdata (input)->dynversym_hdr;
9452 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9453 if (extversym == NULL)
9454 goto error_ret;
9455
9456 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9457 || (bfd_bread (extversym, versymhdr->sh_size, input)
9458 != versymhdr->sh_size))
9459 {
9460 free (extversym);
9461 error_ret:
9462 free (isymbuf);
9463 return FALSE;
9464 }
9465
9466 ever = extversym + extsymoff;
9467 isymend = isymbuf + extsymcount;
9468 for (isym = isymbuf; isym < isymend; isym++, ever++)
9469 {
9470 const char *name;
9471 Elf_Internal_Versym iver;
9472 unsigned short version_index;
9473
9474 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9475 || isym->st_shndx == SHN_UNDEF)
9476 continue;
9477
9478 name = bfd_elf_string_from_elf_section (input,
9479 hdr->sh_link,
9480 isym->st_name);
9481 if (strcmp (name, h->root.root.string) != 0)
9482 continue;
9483
9484 _bfd_elf_swap_versym_in (input, ever, &iver);
9485
9486 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9487 && !(h->def_regular
9488 && h->forced_local))
9489 {
9490 /* If we have a non-hidden versioned sym, then it should
9491 have provided a definition for the undefined sym unless
9492 it is defined in a non-shared object and forced local.
9493 */
9494 abort ();
9495 }
9496
9497 version_index = iver.vs_vers & VERSYM_VERSION;
9498 if (version_index == 1 || version_index == 2)
9499 {
9500 /* This is the base or first version. We can use it. */
9501 free (extversym);
9502 free (isymbuf);
9503 return TRUE;
9504 }
9505 }
9506
9507 free (extversym);
9508 free (isymbuf);
9509 }
9510
9511 return FALSE;
9512 }
9513
9514 /* Convert ELF common symbol TYPE. */
9515
9516 static int
9517 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9518 {
9519 /* Commom symbol can only appear in relocatable link. */
9520 if (!bfd_link_relocatable (info))
9521 abort ();
9522 switch (info->elf_stt_common)
9523 {
9524 case unchanged:
9525 break;
9526 case elf_stt_common:
9527 type = STT_COMMON;
9528 break;
9529 case no_elf_stt_common:
9530 type = STT_OBJECT;
9531 break;
9532 }
9533 return type;
9534 }
9535
9536 /* Add an external symbol to the symbol table. This is called from
9537 the hash table traversal routine. When generating a shared object,
9538 we go through the symbol table twice. The first time we output
9539 anything that might have been forced to local scope in a version
9540 script. The second time we output the symbols that are still
9541 global symbols. */
9542
9543 static bfd_boolean
9544 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9545 {
9546 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9547 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9548 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9549 bfd_boolean strip;
9550 Elf_Internal_Sym sym;
9551 asection *input_sec;
9552 const struct elf_backend_data *bed;
9553 long indx;
9554 int ret;
9555 unsigned int type;
9556
9557 if (h->root.type == bfd_link_hash_warning)
9558 {
9559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9560 if (h->root.type == bfd_link_hash_new)
9561 return TRUE;
9562 }
9563
9564 /* Decide whether to output this symbol in this pass. */
9565 if (eoinfo->localsyms)
9566 {
9567 if (!h->forced_local)
9568 return TRUE;
9569 }
9570 else
9571 {
9572 if (h->forced_local)
9573 return TRUE;
9574 }
9575
9576 bed = get_elf_backend_data (flinfo->output_bfd);
9577
9578 if (h->root.type == bfd_link_hash_undefined)
9579 {
9580 /* If we have an undefined symbol reference here then it must have
9581 come from a shared library that is being linked in. (Undefined
9582 references in regular files have already been handled unless
9583 they are in unreferenced sections which are removed by garbage
9584 collection). */
9585 bfd_boolean ignore_undef = FALSE;
9586
9587 /* Some symbols may be special in that the fact that they're
9588 undefined can be safely ignored - let backend determine that. */
9589 if (bed->elf_backend_ignore_undef_symbol)
9590 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9591
9592 /* If we are reporting errors for this situation then do so now. */
9593 if (!ignore_undef
9594 && h->ref_dynamic
9595 && (!h->ref_regular || flinfo->info->gc_sections)
9596 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9597 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9598 (*flinfo->info->callbacks->undefined_symbol)
9599 (flinfo->info, h->root.root.string,
9600 h->ref_regular ? NULL : h->root.u.undef.abfd,
9601 NULL, 0,
9602 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9603
9604 /* Strip a global symbol defined in a discarded section. */
9605 if (h->indx == -3)
9606 return TRUE;
9607 }
9608
9609 /* We should also warn if a forced local symbol is referenced from
9610 shared libraries. */
9611 if (bfd_link_executable (flinfo->info)
9612 && h->forced_local
9613 && h->ref_dynamic
9614 && h->def_regular
9615 && !h->dynamic_def
9616 && h->ref_dynamic_nonweak
9617 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9618 {
9619 bfd *def_bfd;
9620 const char *msg;
9621 struct elf_link_hash_entry *hi = h;
9622
9623 /* Check indirect symbol. */
9624 while (hi->root.type == bfd_link_hash_indirect)
9625 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9626
9627 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9628 /* xgettext:c-format */
9629 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9630 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9631 /* xgettext:c-format */
9632 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9633 else
9634 /* xgettext:c-format */
9635 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9636 def_bfd = flinfo->output_bfd;
9637 if (hi->root.u.def.section != bfd_abs_section_ptr)
9638 def_bfd = hi->root.u.def.section->owner;
9639 _bfd_error_handler (msg, flinfo->output_bfd,
9640 h->root.root.string, def_bfd);
9641 bfd_set_error (bfd_error_bad_value);
9642 eoinfo->failed = TRUE;
9643 return FALSE;
9644 }
9645
9646 /* We don't want to output symbols that have never been mentioned by
9647 a regular file, or that we have been told to strip. However, if
9648 h->indx is set to -2, the symbol is used by a reloc and we must
9649 output it. */
9650 strip = FALSE;
9651 if (h->indx == -2)
9652 ;
9653 else if ((h->def_dynamic
9654 || h->ref_dynamic
9655 || h->root.type == bfd_link_hash_new)
9656 && !h->def_regular
9657 && !h->ref_regular)
9658 strip = TRUE;
9659 else if (flinfo->info->strip == strip_all)
9660 strip = TRUE;
9661 else if (flinfo->info->strip == strip_some
9662 && bfd_hash_lookup (flinfo->info->keep_hash,
9663 h->root.root.string, FALSE, FALSE) == NULL)
9664 strip = TRUE;
9665 else if ((h->root.type == bfd_link_hash_defined
9666 || h->root.type == bfd_link_hash_defweak)
9667 && ((flinfo->info->strip_discarded
9668 && discarded_section (h->root.u.def.section))
9669 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9670 && h->root.u.def.section->owner != NULL
9671 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9672 strip = TRUE;
9673 else if ((h->root.type == bfd_link_hash_undefined
9674 || h->root.type == bfd_link_hash_undefweak)
9675 && h->root.u.undef.abfd != NULL
9676 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9677 strip = TRUE;
9678
9679 type = h->type;
9680
9681 /* If we're stripping it, and it's not a dynamic symbol, there's
9682 nothing else to do. However, if it is a forced local symbol or
9683 an ifunc symbol we need to give the backend finish_dynamic_symbol
9684 function a chance to make it dynamic. */
9685 if (strip
9686 && h->dynindx == -1
9687 && type != STT_GNU_IFUNC
9688 && !h->forced_local)
9689 return TRUE;
9690
9691 sym.st_value = 0;
9692 sym.st_size = h->size;
9693 sym.st_other = h->other;
9694 switch (h->root.type)
9695 {
9696 default:
9697 case bfd_link_hash_new:
9698 case bfd_link_hash_warning:
9699 abort ();
9700 return FALSE;
9701
9702 case bfd_link_hash_undefined:
9703 case bfd_link_hash_undefweak:
9704 input_sec = bfd_und_section_ptr;
9705 sym.st_shndx = SHN_UNDEF;
9706 break;
9707
9708 case bfd_link_hash_defined:
9709 case bfd_link_hash_defweak:
9710 {
9711 input_sec = h->root.u.def.section;
9712 if (input_sec->output_section != NULL)
9713 {
9714 sym.st_shndx =
9715 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9716 input_sec->output_section);
9717 if (sym.st_shndx == SHN_BAD)
9718 {
9719 _bfd_error_handler
9720 /* xgettext:c-format */
9721 (_("%B: could not find output section %A for input section %A"),
9722 flinfo->output_bfd, input_sec->output_section, input_sec);
9723 bfd_set_error (bfd_error_nonrepresentable_section);
9724 eoinfo->failed = TRUE;
9725 return FALSE;
9726 }
9727
9728 /* ELF symbols in relocatable files are section relative,
9729 but in nonrelocatable files they are virtual
9730 addresses. */
9731 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9732 if (!bfd_link_relocatable (flinfo->info))
9733 {
9734 sym.st_value += input_sec->output_section->vma;
9735 if (h->type == STT_TLS)
9736 {
9737 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9738 if (tls_sec != NULL)
9739 sym.st_value -= tls_sec->vma;
9740 }
9741 }
9742 }
9743 else
9744 {
9745 BFD_ASSERT (input_sec->owner == NULL
9746 || (input_sec->owner->flags & DYNAMIC) != 0);
9747 sym.st_shndx = SHN_UNDEF;
9748 input_sec = bfd_und_section_ptr;
9749 }
9750 }
9751 break;
9752
9753 case bfd_link_hash_common:
9754 input_sec = h->root.u.c.p->section;
9755 sym.st_shndx = bed->common_section_index (input_sec);
9756 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9757 break;
9758
9759 case bfd_link_hash_indirect:
9760 /* These symbols are created by symbol versioning. They point
9761 to the decorated version of the name. For example, if the
9762 symbol foo@@GNU_1.2 is the default, which should be used when
9763 foo is used with no version, then we add an indirect symbol
9764 foo which points to foo@@GNU_1.2. We ignore these symbols,
9765 since the indirected symbol is already in the hash table. */
9766 return TRUE;
9767 }
9768
9769 if (type == STT_COMMON || type == STT_OBJECT)
9770 switch (h->root.type)
9771 {
9772 case bfd_link_hash_common:
9773 type = elf_link_convert_common_type (flinfo->info, type);
9774 break;
9775 case bfd_link_hash_defined:
9776 case bfd_link_hash_defweak:
9777 if (bed->common_definition (&sym))
9778 type = elf_link_convert_common_type (flinfo->info, type);
9779 else
9780 type = STT_OBJECT;
9781 break;
9782 case bfd_link_hash_undefined:
9783 case bfd_link_hash_undefweak:
9784 break;
9785 default:
9786 abort ();
9787 }
9788
9789 if (h->forced_local)
9790 {
9791 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9792 /* Turn off visibility on local symbol. */
9793 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9794 }
9795 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9796 else if (h->unique_global && h->def_regular)
9797 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9798 else if (h->root.type == bfd_link_hash_undefweak
9799 || h->root.type == bfd_link_hash_defweak)
9800 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9801 else
9802 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9803 sym.st_target_internal = h->target_internal;
9804
9805 /* Give the processor backend a chance to tweak the symbol value,
9806 and also to finish up anything that needs to be done for this
9807 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9808 forced local syms when non-shared is due to a historical quirk.
9809 STT_GNU_IFUNC symbol must go through PLT. */
9810 if ((h->type == STT_GNU_IFUNC
9811 && h->def_regular
9812 && !bfd_link_relocatable (flinfo->info))
9813 || ((h->dynindx != -1
9814 || h->forced_local)
9815 && ((bfd_link_pic (flinfo->info)
9816 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9817 || h->root.type != bfd_link_hash_undefweak))
9818 || !h->forced_local)
9819 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9820 {
9821 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9822 (flinfo->output_bfd, flinfo->info, h, &sym)))
9823 {
9824 eoinfo->failed = TRUE;
9825 return FALSE;
9826 }
9827 }
9828
9829 /* If we are marking the symbol as undefined, and there are no
9830 non-weak references to this symbol from a regular object, then
9831 mark the symbol as weak undefined; if there are non-weak
9832 references, mark the symbol as strong. We can't do this earlier,
9833 because it might not be marked as undefined until the
9834 finish_dynamic_symbol routine gets through with it. */
9835 if (sym.st_shndx == SHN_UNDEF
9836 && h->ref_regular
9837 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9838 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9839 {
9840 int bindtype;
9841 type = ELF_ST_TYPE (sym.st_info);
9842
9843 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9844 if (type == STT_GNU_IFUNC)
9845 type = STT_FUNC;
9846
9847 if (h->ref_regular_nonweak)
9848 bindtype = STB_GLOBAL;
9849 else
9850 bindtype = STB_WEAK;
9851 sym.st_info = ELF_ST_INFO (bindtype, type);
9852 }
9853
9854 /* If this is a symbol defined in a dynamic library, don't use the
9855 symbol size from the dynamic library. Relinking an executable
9856 against a new library may introduce gratuitous changes in the
9857 executable's symbols if we keep the size. */
9858 if (sym.st_shndx == SHN_UNDEF
9859 && !h->def_regular
9860 && h->def_dynamic)
9861 sym.st_size = 0;
9862
9863 /* If a non-weak symbol with non-default visibility is not defined
9864 locally, it is a fatal error. */
9865 if (!bfd_link_relocatable (flinfo->info)
9866 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9867 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9868 && h->root.type == bfd_link_hash_undefined
9869 && !h->def_regular)
9870 {
9871 const char *msg;
9872
9873 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9874 /* xgettext:c-format */
9875 msg = _("%B: protected symbol `%s' isn't defined");
9876 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9877 /* xgettext:c-format */
9878 msg = _("%B: internal symbol `%s' isn't defined");
9879 else
9880 /* xgettext:c-format */
9881 msg = _("%B: hidden symbol `%s' isn't defined");
9882 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9883 bfd_set_error (bfd_error_bad_value);
9884 eoinfo->failed = TRUE;
9885 return FALSE;
9886 }
9887
9888 /* If this symbol should be put in the .dynsym section, then put it
9889 there now. We already know the symbol index. We also fill in
9890 the entry in the .hash section. */
9891 if (elf_hash_table (flinfo->info)->dynsym != NULL
9892 && h->dynindx != -1
9893 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9894 {
9895 bfd_byte *esym;
9896
9897 /* Since there is no version information in the dynamic string,
9898 if there is no version info in symbol version section, we will
9899 have a run-time problem if not linking executable, referenced
9900 by shared library, or not bound locally. */
9901 if (h->verinfo.verdef == NULL
9902 && (!bfd_link_executable (flinfo->info)
9903 || h->ref_dynamic
9904 || !h->def_regular))
9905 {
9906 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9907
9908 if (p && p [1] != '\0')
9909 {
9910 _bfd_error_handler
9911 /* xgettext:c-format */
9912 (_("%B: No symbol version section for versioned symbol `%s'"),
9913 flinfo->output_bfd, h->root.root.string);
9914 eoinfo->failed = TRUE;
9915 return FALSE;
9916 }
9917 }
9918
9919 sym.st_name = h->dynstr_index;
9920 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9921 + h->dynindx * bed->s->sizeof_sym);
9922 if (!check_dynsym (flinfo->output_bfd, &sym))
9923 {
9924 eoinfo->failed = TRUE;
9925 return FALSE;
9926 }
9927 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9928
9929 if (flinfo->hash_sec != NULL)
9930 {
9931 size_t hash_entry_size;
9932 bfd_byte *bucketpos;
9933 bfd_vma chain;
9934 size_t bucketcount;
9935 size_t bucket;
9936
9937 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9938 bucket = h->u.elf_hash_value % bucketcount;
9939
9940 hash_entry_size
9941 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9942 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9943 + (bucket + 2) * hash_entry_size);
9944 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9945 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9946 bucketpos);
9947 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9948 ((bfd_byte *) flinfo->hash_sec->contents
9949 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9950 }
9951
9952 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9953 {
9954 Elf_Internal_Versym iversym;
9955 Elf_External_Versym *eversym;
9956
9957 if (!h->def_regular)
9958 {
9959 if (h->verinfo.verdef == NULL
9960 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9961 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9962 iversym.vs_vers = 0;
9963 else
9964 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9965 }
9966 else
9967 {
9968 if (h->verinfo.vertree == NULL)
9969 iversym.vs_vers = 1;
9970 else
9971 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9972 if (flinfo->info->create_default_symver)
9973 iversym.vs_vers++;
9974 }
9975
9976 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9977 defined locally. */
9978 if (h->versioned == versioned_hidden && h->def_regular)
9979 iversym.vs_vers |= VERSYM_HIDDEN;
9980
9981 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9982 eversym += h->dynindx;
9983 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9984 }
9985 }
9986
9987 /* If the symbol is undefined, and we didn't output it to .dynsym,
9988 strip it from .symtab too. Obviously we can't do this for
9989 relocatable output or when needed for --emit-relocs. */
9990 else if (input_sec == bfd_und_section_ptr
9991 && h->indx != -2
9992 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
9993 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
9994 && !bfd_link_relocatable (flinfo->info))
9995 return TRUE;
9996
9997 /* Also strip others that we couldn't earlier due to dynamic symbol
9998 processing. */
9999 if (strip)
10000 return TRUE;
10001 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10002 return TRUE;
10003
10004 /* Output a FILE symbol so that following locals are not associated
10005 with the wrong input file. We need one for forced local symbols
10006 if we've seen more than one FILE symbol or when we have exactly
10007 one FILE symbol but global symbols are present in a file other
10008 than the one with the FILE symbol. We also need one if linker
10009 defined symbols are present. In practice these conditions are
10010 always met, so just emit the FILE symbol unconditionally. */
10011 if (eoinfo->localsyms
10012 && !eoinfo->file_sym_done
10013 && eoinfo->flinfo->filesym_count != 0)
10014 {
10015 Elf_Internal_Sym fsym;
10016
10017 memset (&fsym, 0, sizeof (fsym));
10018 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10019 fsym.st_shndx = SHN_ABS;
10020 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10021 bfd_und_section_ptr, NULL))
10022 return FALSE;
10023
10024 eoinfo->file_sym_done = TRUE;
10025 }
10026
10027 indx = bfd_get_symcount (flinfo->output_bfd);
10028 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10029 input_sec, h);
10030 if (ret == 0)
10031 {
10032 eoinfo->failed = TRUE;
10033 return FALSE;
10034 }
10035 else if (ret == 1)
10036 h->indx = indx;
10037 else if (h->indx == -2)
10038 abort();
10039
10040 return TRUE;
10041 }
10042
10043 /* Return TRUE if special handling is done for relocs in SEC against
10044 symbols defined in discarded sections. */
10045
10046 static bfd_boolean
10047 elf_section_ignore_discarded_relocs (asection *sec)
10048 {
10049 const struct elf_backend_data *bed;
10050
10051 switch (sec->sec_info_type)
10052 {
10053 case SEC_INFO_TYPE_STABS:
10054 case SEC_INFO_TYPE_EH_FRAME:
10055 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10056 return TRUE;
10057 default:
10058 break;
10059 }
10060
10061 bed = get_elf_backend_data (sec->owner);
10062 if (bed->elf_backend_ignore_discarded_relocs != NULL
10063 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10064 return TRUE;
10065
10066 return FALSE;
10067 }
10068
10069 /* Return a mask saying how ld should treat relocations in SEC against
10070 symbols defined in discarded sections. If this function returns
10071 COMPLAIN set, ld will issue a warning message. If this function
10072 returns PRETEND set, and the discarded section was link-once and the
10073 same size as the kept link-once section, ld will pretend that the
10074 symbol was actually defined in the kept section. Otherwise ld will
10075 zero the reloc (at least that is the intent, but some cooperation by
10076 the target dependent code is needed, particularly for REL targets). */
10077
10078 unsigned int
10079 _bfd_elf_default_action_discarded (asection *sec)
10080 {
10081 if (sec->flags & SEC_DEBUGGING)
10082 return PRETEND;
10083
10084 if (strcmp (".eh_frame", sec->name) == 0)
10085 return 0;
10086
10087 if (strcmp (".gcc_except_table", sec->name) == 0)
10088 return 0;
10089
10090 return COMPLAIN | PRETEND;
10091 }
10092
10093 /* Find a match between a section and a member of a section group. */
10094
10095 static asection *
10096 match_group_member (asection *sec, asection *group,
10097 struct bfd_link_info *info)
10098 {
10099 asection *first = elf_next_in_group (group);
10100 asection *s = first;
10101
10102 while (s != NULL)
10103 {
10104 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10105 return s;
10106
10107 s = elf_next_in_group (s);
10108 if (s == first)
10109 break;
10110 }
10111
10112 return NULL;
10113 }
10114
10115 /* Check if the kept section of a discarded section SEC can be used
10116 to replace it. Return the replacement if it is OK. Otherwise return
10117 NULL. */
10118
10119 asection *
10120 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10121 {
10122 asection *kept;
10123
10124 kept = sec->kept_section;
10125 if (kept != NULL)
10126 {
10127 if ((kept->flags & SEC_GROUP) != 0)
10128 kept = match_group_member (sec, kept, info);
10129 if (kept != NULL
10130 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10131 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10132 kept = NULL;
10133 sec->kept_section = kept;
10134 }
10135 return kept;
10136 }
10137
10138 /* Link an input file into the linker output file. This function
10139 handles all the sections and relocations of the input file at once.
10140 This is so that we only have to read the local symbols once, and
10141 don't have to keep them in memory. */
10142
10143 static bfd_boolean
10144 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10145 {
10146 int (*relocate_section)
10147 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10148 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10149 bfd *output_bfd;
10150 Elf_Internal_Shdr *symtab_hdr;
10151 size_t locsymcount;
10152 size_t extsymoff;
10153 Elf_Internal_Sym *isymbuf;
10154 Elf_Internal_Sym *isym;
10155 Elf_Internal_Sym *isymend;
10156 long *pindex;
10157 asection **ppsection;
10158 asection *o;
10159 const struct elf_backend_data *bed;
10160 struct elf_link_hash_entry **sym_hashes;
10161 bfd_size_type address_size;
10162 bfd_vma r_type_mask;
10163 int r_sym_shift;
10164 bfd_boolean have_file_sym = FALSE;
10165
10166 output_bfd = flinfo->output_bfd;
10167 bed = get_elf_backend_data (output_bfd);
10168 relocate_section = bed->elf_backend_relocate_section;
10169
10170 /* If this is a dynamic object, we don't want to do anything here:
10171 we don't want the local symbols, and we don't want the section
10172 contents. */
10173 if ((input_bfd->flags & DYNAMIC) != 0)
10174 return TRUE;
10175
10176 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10177 if (elf_bad_symtab (input_bfd))
10178 {
10179 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10180 extsymoff = 0;
10181 }
10182 else
10183 {
10184 locsymcount = symtab_hdr->sh_info;
10185 extsymoff = symtab_hdr->sh_info;
10186 }
10187
10188 /* Read the local symbols. */
10189 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10190 if (isymbuf == NULL && locsymcount != 0)
10191 {
10192 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10193 flinfo->internal_syms,
10194 flinfo->external_syms,
10195 flinfo->locsym_shndx);
10196 if (isymbuf == NULL)
10197 return FALSE;
10198 }
10199
10200 /* Find local symbol sections and adjust values of symbols in
10201 SEC_MERGE sections. Write out those local symbols we know are
10202 going into the output file. */
10203 isymend = isymbuf + locsymcount;
10204 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10205 isym < isymend;
10206 isym++, pindex++, ppsection++)
10207 {
10208 asection *isec;
10209 const char *name;
10210 Elf_Internal_Sym osym;
10211 long indx;
10212 int ret;
10213
10214 *pindex = -1;
10215
10216 if (elf_bad_symtab (input_bfd))
10217 {
10218 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10219 {
10220 *ppsection = NULL;
10221 continue;
10222 }
10223 }
10224
10225 if (isym->st_shndx == SHN_UNDEF)
10226 isec = bfd_und_section_ptr;
10227 else if (isym->st_shndx == SHN_ABS)
10228 isec = bfd_abs_section_ptr;
10229 else if (isym->st_shndx == SHN_COMMON)
10230 isec = bfd_com_section_ptr;
10231 else
10232 {
10233 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10234 if (isec == NULL)
10235 {
10236 /* Don't attempt to output symbols with st_shnx in the
10237 reserved range other than SHN_ABS and SHN_COMMON. */
10238 *ppsection = NULL;
10239 continue;
10240 }
10241 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10242 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10243 isym->st_value =
10244 _bfd_merged_section_offset (output_bfd, &isec,
10245 elf_section_data (isec)->sec_info,
10246 isym->st_value);
10247 }
10248
10249 *ppsection = isec;
10250
10251 /* Don't output the first, undefined, symbol. In fact, don't
10252 output any undefined local symbol. */
10253 if (isec == bfd_und_section_ptr)
10254 continue;
10255
10256 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10257 {
10258 /* We never output section symbols. Instead, we use the
10259 section symbol of the corresponding section in the output
10260 file. */
10261 continue;
10262 }
10263
10264 /* If we are stripping all symbols, we don't want to output this
10265 one. */
10266 if (flinfo->info->strip == strip_all)
10267 continue;
10268
10269 /* If we are discarding all local symbols, we don't want to
10270 output this one. If we are generating a relocatable output
10271 file, then some of the local symbols may be required by
10272 relocs; we output them below as we discover that they are
10273 needed. */
10274 if (flinfo->info->discard == discard_all)
10275 continue;
10276
10277 /* If this symbol is defined in a section which we are
10278 discarding, we don't need to keep it. */
10279 if (isym->st_shndx != SHN_UNDEF
10280 && isym->st_shndx < SHN_LORESERVE
10281 && bfd_section_removed_from_list (output_bfd,
10282 isec->output_section))
10283 continue;
10284
10285 /* Get the name of the symbol. */
10286 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10287 isym->st_name);
10288 if (name == NULL)
10289 return FALSE;
10290
10291 /* See if we are discarding symbols with this name. */
10292 if ((flinfo->info->strip == strip_some
10293 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10294 == NULL))
10295 || (((flinfo->info->discard == discard_sec_merge
10296 && (isec->flags & SEC_MERGE)
10297 && !bfd_link_relocatable (flinfo->info))
10298 || flinfo->info->discard == discard_l)
10299 && bfd_is_local_label_name (input_bfd, name)))
10300 continue;
10301
10302 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10303 {
10304 if (input_bfd->lto_output)
10305 /* -flto puts a temp file name here. This means builds
10306 are not reproducible. Discard the symbol. */
10307 continue;
10308 have_file_sym = TRUE;
10309 flinfo->filesym_count += 1;
10310 }
10311 if (!have_file_sym)
10312 {
10313 /* In the absence of debug info, bfd_find_nearest_line uses
10314 FILE symbols to determine the source file for local
10315 function symbols. Provide a FILE symbol here if input
10316 files lack such, so that their symbols won't be
10317 associated with a previous input file. It's not the
10318 source file, but the best we can do. */
10319 have_file_sym = TRUE;
10320 flinfo->filesym_count += 1;
10321 memset (&osym, 0, sizeof (osym));
10322 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10323 osym.st_shndx = SHN_ABS;
10324 if (!elf_link_output_symstrtab (flinfo,
10325 (input_bfd->lto_output ? NULL
10326 : input_bfd->filename),
10327 &osym, bfd_abs_section_ptr,
10328 NULL))
10329 return FALSE;
10330 }
10331
10332 osym = *isym;
10333
10334 /* Adjust the section index for the output file. */
10335 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10336 isec->output_section);
10337 if (osym.st_shndx == SHN_BAD)
10338 return FALSE;
10339
10340 /* ELF symbols in relocatable files are section relative, but
10341 in executable files they are virtual addresses. Note that
10342 this code assumes that all ELF sections have an associated
10343 BFD section with a reasonable value for output_offset; below
10344 we assume that they also have a reasonable value for
10345 output_section. Any special sections must be set up to meet
10346 these requirements. */
10347 osym.st_value += isec->output_offset;
10348 if (!bfd_link_relocatable (flinfo->info))
10349 {
10350 osym.st_value += isec->output_section->vma;
10351 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10352 {
10353 /* STT_TLS symbols are relative to PT_TLS segment base. */
10354 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10355 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10356 }
10357 }
10358
10359 indx = bfd_get_symcount (output_bfd);
10360 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10361 if (ret == 0)
10362 return FALSE;
10363 else if (ret == 1)
10364 *pindex = indx;
10365 }
10366
10367 if (bed->s->arch_size == 32)
10368 {
10369 r_type_mask = 0xff;
10370 r_sym_shift = 8;
10371 address_size = 4;
10372 }
10373 else
10374 {
10375 r_type_mask = 0xffffffff;
10376 r_sym_shift = 32;
10377 address_size = 8;
10378 }
10379
10380 /* Relocate the contents of each section. */
10381 sym_hashes = elf_sym_hashes (input_bfd);
10382 for (o = input_bfd->sections; o != NULL; o = o->next)
10383 {
10384 bfd_byte *contents;
10385
10386 if (! o->linker_mark)
10387 {
10388 /* This section was omitted from the link. */
10389 continue;
10390 }
10391
10392 if (!flinfo->info->resolve_section_groups
10393 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10394 {
10395 /* Deal with the group signature symbol. */
10396 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10397 unsigned long symndx = sec_data->this_hdr.sh_info;
10398 asection *osec = o->output_section;
10399
10400 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10401 if (symndx >= locsymcount
10402 || (elf_bad_symtab (input_bfd)
10403 && flinfo->sections[symndx] == NULL))
10404 {
10405 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10406 while (h->root.type == bfd_link_hash_indirect
10407 || h->root.type == bfd_link_hash_warning)
10408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10409 /* Arrange for symbol to be output. */
10410 h->indx = -2;
10411 elf_section_data (osec)->this_hdr.sh_info = -2;
10412 }
10413 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10414 {
10415 /* We'll use the output section target_index. */
10416 asection *sec = flinfo->sections[symndx]->output_section;
10417 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10418 }
10419 else
10420 {
10421 if (flinfo->indices[symndx] == -1)
10422 {
10423 /* Otherwise output the local symbol now. */
10424 Elf_Internal_Sym sym = isymbuf[symndx];
10425 asection *sec = flinfo->sections[symndx]->output_section;
10426 const char *name;
10427 long indx;
10428 int ret;
10429
10430 name = bfd_elf_string_from_elf_section (input_bfd,
10431 symtab_hdr->sh_link,
10432 sym.st_name);
10433 if (name == NULL)
10434 return FALSE;
10435
10436 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10437 sec);
10438 if (sym.st_shndx == SHN_BAD)
10439 return FALSE;
10440
10441 sym.st_value += o->output_offset;
10442
10443 indx = bfd_get_symcount (output_bfd);
10444 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10445 NULL);
10446 if (ret == 0)
10447 return FALSE;
10448 else if (ret == 1)
10449 flinfo->indices[symndx] = indx;
10450 else
10451 abort ();
10452 }
10453 elf_section_data (osec)->this_hdr.sh_info
10454 = flinfo->indices[symndx];
10455 }
10456 }
10457
10458 if ((o->flags & SEC_HAS_CONTENTS) == 0
10459 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10460 continue;
10461
10462 if ((o->flags & SEC_LINKER_CREATED) != 0)
10463 {
10464 /* Section was created by _bfd_elf_link_create_dynamic_sections
10465 or somesuch. */
10466 continue;
10467 }
10468
10469 /* Get the contents of the section. They have been cached by a
10470 relaxation routine. Note that o is a section in an input
10471 file, so the contents field will not have been set by any of
10472 the routines which work on output files. */
10473 if (elf_section_data (o)->this_hdr.contents != NULL)
10474 {
10475 contents = elf_section_data (o)->this_hdr.contents;
10476 if (bed->caches_rawsize
10477 && o->rawsize != 0
10478 && o->rawsize < o->size)
10479 {
10480 memcpy (flinfo->contents, contents, o->rawsize);
10481 contents = flinfo->contents;
10482 }
10483 }
10484 else
10485 {
10486 contents = flinfo->contents;
10487 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10488 return FALSE;
10489 }
10490
10491 if ((o->flags & SEC_RELOC) != 0)
10492 {
10493 Elf_Internal_Rela *internal_relocs;
10494 Elf_Internal_Rela *rel, *relend;
10495 int action_discarded;
10496 int ret;
10497
10498 /* Get the swapped relocs. */
10499 internal_relocs
10500 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10501 flinfo->internal_relocs, FALSE);
10502 if (internal_relocs == NULL
10503 && o->reloc_count > 0)
10504 return FALSE;
10505
10506 /* We need to reverse-copy input .ctors/.dtors sections if
10507 they are placed in .init_array/.finit_array for output. */
10508 if (o->size > address_size
10509 && ((strncmp (o->name, ".ctors", 6) == 0
10510 && strcmp (o->output_section->name,
10511 ".init_array") == 0)
10512 || (strncmp (o->name, ".dtors", 6) == 0
10513 && strcmp (o->output_section->name,
10514 ".fini_array") == 0))
10515 && (o->name[6] == 0 || o->name[6] == '.'))
10516 {
10517 if (o->size * bed->s->int_rels_per_ext_rel
10518 != o->reloc_count * address_size)
10519 {
10520 _bfd_error_handler
10521 /* xgettext:c-format */
10522 (_("error: %B: size of section %A is not "
10523 "multiple of address size"),
10524 input_bfd, o);
10525 bfd_set_error (bfd_error_bad_value);
10526 return FALSE;
10527 }
10528 o->flags |= SEC_ELF_REVERSE_COPY;
10529 }
10530
10531 action_discarded = -1;
10532 if (!elf_section_ignore_discarded_relocs (o))
10533 action_discarded = (*bed->action_discarded) (o);
10534
10535 /* Run through the relocs evaluating complex reloc symbols and
10536 looking for relocs against symbols from discarded sections
10537 or section symbols from removed link-once sections.
10538 Complain about relocs against discarded sections. Zero
10539 relocs against removed link-once sections. */
10540
10541 rel = internal_relocs;
10542 relend = rel + o->reloc_count;
10543 for ( ; rel < relend; rel++)
10544 {
10545 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10546 unsigned int s_type;
10547 asection **ps, *sec;
10548 struct elf_link_hash_entry *h = NULL;
10549 const char *sym_name;
10550
10551 if (r_symndx == STN_UNDEF)
10552 continue;
10553
10554 if (r_symndx >= locsymcount
10555 || (elf_bad_symtab (input_bfd)
10556 && flinfo->sections[r_symndx] == NULL))
10557 {
10558 h = sym_hashes[r_symndx - extsymoff];
10559
10560 /* Badly formatted input files can contain relocs that
10561 reference non-existant symbols. Check here so that
10562 we do not seg fault. */
10563 if (h == NULL)
10564 {
10565 _bfd_error_handler
10566 /* xgettext:c-format */
10567 (_("error: %B contains a reloc (%#Lx) for section %A "
10568 "that references a non-existent global symbol"),
10569 input_bfd, rel->r_info, o);
10570 bfd_set_error (bfd_error_bad_value);
10571 return FALSE;
10572 }
10573
10574 while (h->root.type == bfd_link_hash_indirect
10575 || h->root.type == bfd_link_hash_warning)
10576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10577
10578 s_type = h->type;
10579
10580 /* If a plugin symbol is referenced from a non-IR file,
10581 mark the symbol as undefined. Note that the
10582 linker may attach linker created dynamic sections
10583 to the plugin bfd. Symbols defined in linker
10584 created sections are not plugin symbols. */
10585 if ((h->root.non_ir_ref_regular
10586 || h->root.non_ir_ref_dynamic)
10587 && (h->root.type == bfd_link_hash_defined
10588 || h->root.type == bfd_link_hash_defweak)
10589 && (h->root.u.def.section->flags
10590 & SEC_LINKER_CREATED) == 0
10591 && h->root.u.def.section->owner != NULL
10592 && (h->root.u.def.section->owner->flags
10593 & BFD_PLUGIN) != 0)
10594 {
10595 h->root.type = bfd_link_hash_undefined;
10596 h->root.u.undef.abfd = h->root.u.def.section->owner;
10597 }
10598
10599 ps = NULL;
10600 if (h->root.type == bfd_link_hash_defined
10601 || h->root.type == bfd_link_hash_defweak)
10602 ps = &h->root.u.def.section;
10603
10604 sym_name = h->root.root.string;
10605 }
10606 else
10607 {
10608 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10609
10610 s_type = ELF_ST_TYPE (sym->st_info);
10611 ps = &flinfo->sections[r_symndx];
10612 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10613 sym, *ps);
10614 }
10615
10616 if ((s_type == STT_RELC || s_type == STT_SRELC)
10617 && !bfd_link_relocatable (flinfo->info))
10618 {
10619 bfd_vma val;
10620 bfd_vma dot = (rel->r_offset
10621 + o->output_offset + o->output_section->vma);
10622 #ifdef DEBUG
10623 printf ("Encountered a complex symbol!");
10624 printf (" (input_bfd %s, section %s, reloc %ld\n",
10625 input_bfd->filename, o->name,
10626 (long) (rel - internal_relocs));
10627 printf (" symbol: idx %8.8lx, name %s\n",
10628 r_symndx, sym_name);
10629 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10630 (unsigned long) rel->r_info,
10631 (unsigned long) rel->r_offset);
10632 #endif
10633 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10634 isymbuf, locsymcount, s_type == STT_SRELC))
10635 return FALSE;
10636
10637 /* Symbol evaluated OK. Update to absolute value. */
10638 set_symbol_value (input_bfd, isymbuf, locsymcount,
10639 r_symndx, val);
10640 continue;
10641 }
10642
10643 if (action_discarded != -1 && ps != NULL)
10644 {
10645 /* Complain if the definition comes from a
10646 discarded section. */
10647 if ((sec = *ps) != NULL && discarded_section (sec))
10648 {
10649 BFD_ASSERT (r_symndx != STN_UNDEF);
10650 if (action_discarded & COMPLAIN)
10651 (*flinfo->info->callbacks->einfo)
10652 /* xgettext:c-format */
10653 (_("%X`%s' referenced in section `%A' of %B: "
10654 "defined in discarded section `%A' of %B\n"),
10655 sym_name, o, input_bfd, sec, sec->owner);
10656
10657 /* Try to do the best we can to support buggy old
10658 versions of gcc. Pretend that the symbol is
10659 really defined in the kept linkonce section.
10660 FIXME: This is quite broken. Modifying the
10661 symbol here means we will be changing all later
10662 uses of the symbol, not just in this section. */
10663 if (action_discarded & PRETEND)
10664 {
10665 asection *kept;
10666
10667 kept = _bfd_elf_check_kept_section (sec,
10668 flinfo->info);
10669 if (kept != NULL)
10670 {
10671 *ps = kept;
10672 continue;
10673 }
10674 }
10675 }
10676 }
10677 }
10678
10679 /* Relocate the section by invoking a back end routine.
10680
10681 The back end routine is responsible for adjusting the
10682 section contents as necessary, and (if using Rela relocs
10683 and generating a relocatable output file) adjusting the
10684 reloc addend as necessary.
10685
10686 The back end routine does not have to worry about setting
10687 the reloc address or the reloc symbol index.
10688
10689 The back end routine is given a pointer to the swapped in
10690 internal symbols, and can access the hash table entries
10691 for the external symbols via elf_sym_hashes (input_bfd).
10692
10693 When generating relocatable output, the back end routine
10694 must handle STB_LOCAL/STT_SECTION symbols specially. The
10695 output symbol is going to be a section symbol
10696 corresponding to the output section, which will require
10697 the addend to be adjusted. */
10698
10699 ret = (*relocate_section) (output_bfd, flinfo->info,
10700 input_bfd, o, contents,
10701 internal_relocs,
10702 isymbuf,
10703 flinfo->sections);
10704 if (!ret)
10705 return FALSE;
10706
10707 if (ret == 2
10708 || bfd_link_relocatable (flinfo->info)
10709 || flinfo->info->emitrelocations)
10710 {
10711 Elf_Internal_Rela *irela;
10712 Elf_Internal_Rela *irelaend, *irelamid;
10713 bfd_vma last_offset;
10714 struct elf_link_hash_entry **rel_hash;
10715 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10716 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10717 unsigned int next_erel;
10718 bfd_boolean rela_normal;
10719 struct bfd_elf_section_data *esdi, *esdo;
10720
10721 esdi = elf_section_data (o);
10722 esdo = elf_section_data (o->output_section);
10723 rela_normal = FALSE;
10724
10725 /* Adjust the reloc addresses and symbol indices. */
10726
10727 irela = internal_relocs;
10728 irelaend = irela + o->reloc_count;
10729 rel_hash = esdo->rel.hashes + esdo->rel.count;
10730 /* We start processing the REL relocs, if any. When we reach
10731 IRELAMID in the loop, we switch to the RELA relocs. */
10732 irelamid = irela;
10733 if (esdi->rel.hdr != NULL)
10734 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10735 * bed->s->int_rels_per_ext_rel);
10736 rel_hash_list = rel_hash;
10737 rela_hash_list = NULL;
10738 last_offset = o->output_offset;
10739 if (!bfd_link_relocatable (flinfo->info))
10740 last_offset += o->output_section->vma;
10741 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10742 {
10743 unsigned long r_symndx;
10744 asection *sec;
10745 Elf_Internal_Sym sym;
10746
10747 if (next_erel == bed->s->int_rels_per_ext_rel)
10748 {
10749 rel_hash++;
10750 next_erel = 0;
10751 }
10752
10753 if (irela == irelamid)
10754 {
10755 rel_hash = esdo->rela.hashes + esdo->rela.count;
10756 rela_hash_list = rel_hash;
10757 rela_normal = bed->rela_normal;
10758 }
10759
10760 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10761 flinfo->info, o,
10762 irela->r_offset);
10763 if (irela->r_offset >= (bfd_vma) -2)
10764 {
10765 /* This is a reloc for a deleted entry or somesuch.
10766 Turn it into an R_*_NONE reloc, at the same
10767 offset as the last reloc. elf_eh_frame.c and
10768 bfd_elf_discard_info rely on reloc offsets
10769 being ordered. */
10770 irela->r_offset = last_offset;
10771 irela->r_info = 0;
10772 irela->r_addend = 0;
10773 continue;
10774 }
10775
10776 irela->r_offset += o->output_offset;
10777
10778 /* Relocs in an executable have to be virtual addresses. */
10779 if (!bfd_link_relocatable (flinfo->info))
10780 irela->r_offset += o->output_section->vma;
10781
10782 last_offset = irela->r_offset;
10783
10784 r_symndx = irela->r_info >> r_sym_shift;
10785 if (r_symndx == STN_UNDEF)
10786 continue;
10787
10788 if (r_symndx >= locsymcount
10789 || (elf_bad_symtab (input_bfd)
10790 && flinfo->sections[r_symndx] == NULL))
10791 {
10792 struct elf_link_hash_entry *rh;
10793 unsigned long indx;
10794
10795 /* This is a reloc against a global symbol. We
10796 have not yet output all the local symbols, so
10797 we do not know the symbol index of any global
10798 symbol. We set the rel_hash entry for this
10799 reloc to point to the global hash table entry
10800 for this symbol. The symbol index is then
10801 set at the end of bfd_elf_final_link. */
10802 indx = r_symndx - extsymoff;
10803 rh = elf_sym_hashes (input_bfd)[indx];
10804 while (rh->root.type == bfd_link_hash_indirect
10805 || rh->root.type == bfd_link_hash_warning)
10806 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10807
10808 /* Setting the index to -2 tells
10809 elf_link_output_extsym that this symbol is
10810 used by a reloc. */
10811 BFD_ASSERT (rh->indx < 0);
10812 rh->indx = -2;
10813 *rel_hash = rh;
10814
10815 continue;
10816 }
10817
10818 /* This is a reloc against a local symbol. */
10819
10820 *rel_hash = NULL;
10821 sym = isymbuf[r_symndx];
10822 sec = flinfo->sections[r_symndx];
10823 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10824 {
10825 /* I suppose the backend ought to fill in the
10826 section of any STT_SECTION symbol against a
10827 processor specific section. */
10828 r_symndx = STN_UNDEF;
10829 if (bfd_is_abs_section (sec))
10830 ;
10831 else if (sec == NULL || sec->owner == NULL)
10832 {
10833 bfd_set_error (bfd_error_bad_value);
10834 return FALSE;
10835 }
10836 else
10837 {
10838 asection *osec = sec->output_section;
10839
10840 /* If we have discarded a section, the output
10841 section will be the absolute section. In
10842 case of discarded SEC_MERGE sections, use
10843 the kept section. relocate_section should
10844 have already handled discarded linkonce
10845 sections. */
10846 if (bfd_is_abs_section (osec)
10847 && sec->kept_section != NULL
10848 && sec->kept_section->output_section != NULL)
10849 {
10850 osec = sec->kept_section->output_section;
10851 irela->r_addend -= osec->vma;
10852 }
10853
10854 if (!bfd_is_abs_section (osec))
10855 {
10856 r_symndx = osec->target_index;
10857 if (r_symndx == STN_UNDEF)
10858 {
10859 irela->r_addend += osec->vma;
10860 osec = _bfd_nearby_section (output_bfd, osec,
10861 osec->vma);
10862 irela->r_addend -= osec->vma;
10863 r_symndx = osec->target_index;
10864 }
10865 }
10866 }
10867
10868 /* Adjust the addend according to where the
10869 section winds up in the output section. */
10870 if (rela_normal)
10871 irela->r_addend += sec->output_offset;
10872 }
10873 else
10874 {
10875 if (flinfo->indices[r_symndx] == -1)
10876 {
10877 unsigned long shlink;
10878 const char *name;
10879 asection *osec;
10880 long indx;
10881
10882 if (flinfo->info->strip == strip_all)
10883 {
10884 /* You can't do ld -r -s. */
10885 bfd_set_error (bfd_error_invalid_operation);
10886 return FALSE;
10887 }
10888
10889 /* This symbol was skipped earlier, but
10890 since it is needed by a reloc, we
10891 must output it now. */
10892 shlink = symtab_hdr->sh_link;
10893 name = (bfd_elf_string_from_elf_section
10894 (input_bfd, shlink, sym.st_name));
10895 if (name == NULL)
10896 return FALSE;
10897
10898 osec = sec->output_section;
10899 sym.st_shndx =
10900 _bfd_elf_section_from_bfd_section (output_bfd,
10901 osec);
10902 if (sym.st_shndx == SHN_BAD)
10903 return FALSE;
10904
10905 sym.st_value += sec->output_offset;
10906 if (!bfd_link_relocatable (flinfo->info))
10907 {
10908 sym.st_value += osec->vma;
10909 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10910 {
10911 /* STT_TLS symbols are relative to PT_TLS
10912 segment base. */
10913 BFD_ASSERT (elf_hash_table (flinfo->info)
10914 ->tls_sec != NULL);
10915 sym.st_value -= (elf_hash_table (flinfo->info)
10916 ->tls_sec->vma);
10917 }
10918 }
10919
10920 indx = bfd_get_symcount (output_bfd);
10921 ret = elf_link_output_symstrtab (flinfo, name,
10922 &sym, sec,
10923 NULL);
10924 if (ret == 0)
10925 return FALSE;
10926 else if (ret == 1)
10927 flinfo->indices[r_symndx] = indx;
10928 else
10929 abort ();
10930 }
10931
10932 r_symndx = flinfo->indices[r_symndx];
10933 }
10934
10935 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10936 | (irela->r_info & r_type_mask));
10937 }
10938
10939 /* Swap out the relocs. */
10940 input_rel_hdr = esdi->rel.hdr;
10941 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10942 {
10943 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10944 input_rel_hdr,
10945 internal_relocs,
10946 rel_hash_list))
10947 return FALSE;
10948 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10949 * bed->s->int_rels_per_ext_rel);
10950 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10951 }
10952
10953 input_rela_hdr = esdi->rela.hdr;
10954 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10955 {
10956 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10957 input_rela_hdr,
10958 internal_relocs,
10959 rela_hash_list))
10960 return FALSE;
10961 }
10962 }
10963 }
10964
10965 /* Write out the modified section contents. */
10966 if (bed->elf_backend_write_section
10967 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10968 contents))
10969 {
10970 /* Section written out. */
10971 }
10972 else switch (o->sec_info_type)
10973 {
10974 case SEC_INFO_TYPE_STABS:
10975 if (! (_bfd_write_section_stabs
10976 (output_bfd,
10977 &elf_hash_table (flinfo->info)->stab_info,
10978 o, &elf_section_data (o)->sec_info, contents)))
10979 return FALSE;
10980 break;
10981 case SEC_INFO_TYPE_MERGE:
10982 if (! _bfd_write_merged_section (output_bfd, o,
10983 elf_section_data (o)->sec_info))
10984 return FALSE;
10985 break;
10986 case SEC_INFO_TYPE_EH_FRAME:
10987 {
10988 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10989 o, contents))
10990 return FALSE;
10991 }
10992 break;
10993 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10994 {
10995 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10996 flinfo->info,
10997 o, contents))
10998 return FALSE;
10999 }
11000 break;
11001 default:
11002 {
11003 if (! (o->flags & SEC_EXCLUDE))
11004 {
11005 file_ptr offset = (file_ptr) o->output_offset;
11006 bfd_size_type todo = o->size;
11007
11008 offset *= bfd_octets_per_byte (output_bfd);
11009
11010 if ((o->flags & SEC_ELF_REVERSE_COPY))
11011 {
11012 /* Reverse-copy input section to output. */
11013 do
11014 {
11015 todo -= address_size;
11016 if (! bfd_set_section_contents (output_bfd,
11017 o->output_section,
11018 contents + todo,
11019 offset,
11020 address_size))
11021 return FALSE;
11022 if (todo == 0)
11023 break;
11024 offset += address_size;
11025 }
11026 while (1);
11027 }
11028 else if (! bfd_set_section_contents (output_bfd,
11029 o->output_section,
11030 contents,
11031 offset, todo))
11032 return FALSE;
11033 }
11034 }
11035 break;
11036 }
11037 }
11038
11039 return TRUE;
11040 }
11041
11042 /* Generate a reloc when linking an ELF file. This is a reloc
11043 requested by the linker, and does not come from any input file. This
11044 is used to build constructor and destructor tables when linking
11045 with -Ur. */
11046
11047 static bfd_boolean
11048 elf_reloc_link_order (bfd *output_bfd,
11049 struct bfd_link_info *info,
11050 asection *output_section,
11051 struct bfd_link_order *link_order)
11052 {
11053 reloc_howto_type *howto;
11054 long indx;
11055 bfd_vma offset;
11056 bfd_vma addend;
11057 struct bfd_elf_section_reloc_data *reldata;
11058 struct elf_link_hash_entry **rel_hash_ptr;
11059 Elf_Internal_Shdr *rel_hdr;
11060 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11061 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11062 bfd_byte *erel;
11063 unsigned int i;
11064 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11065
11066 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11067 if (howto == NULL)
11068 {
11069 bfd_set_error (bfd_error_bad_value);
11070 return FALSE;
11071 }
11072
11073 addend = link_order->u.reloc.p->addend;
11074
11075 if (esdo->rel.hdr)
11076 reldata = &esdo->rel;
11077 else if (esdo->rela.hdr)
11078 reldata = &esdo->rela;
11079 else
11080 {
11081 reldata = NULL;
11082 BFD_ASSERT (0);
11083 }
11084
11085 /* Figure out the symbol index. */
11086 rel_hash_ptr = reldata->hashes + reldata->count;
11087 if (link_order->type == bfd_section_reloc_link_order)
11088 {
11089 indx = link_order->u.reloc.p->u.section->target_index;
11090 BFD_ASSERT (indx != 0);
11091 *rel_hash_ptr = NULL;
11092 }
11093 else
11094 {
11095 struct elf_link_hash_entry *h;
11096
11097 /* Treat a reloc against a defined symbol as though it were
11098 actually against the section. */
11099 h = ((struct elf_link_hash_entry *)
11100 bfd_wrapped_link_hash_lookup (output_bfd, info,
11101 link_order->u.reloc.p->u.name,
11102 FALSE, FALSE, TRUE));
11103 if (h != NULL
11104 && (h->root.type == bfd_link_hash_defined
11105 || h->root.type == bfd_link_hash_defweak))
11106 {
11107 asection *section;
11108
11109 section = h->root.u.def.section;
11110 indx = section->output_section->target_index;
11111 *rel_hash_ptr = NULL;
11112 /* It seems that we ought to add the symbol value to the
11113 addend here, but in practice it has already been added
11114 because it was passed to constructor_callback. */
11115 addend += section->output_section->vma + section->output_offset;
11116 }
11117 else if (h != NULL)
11118 {
11119 /* Setting the index to -2 tells elf_link_output_extsym that
11120 this symbol is used by a reloc. */
11121 h->indx = -2;
11122 *rel_hash_ptr = h;
11123 indx = 0;
11124 }
11125 else
11126 {
11127 (*info->callbacks->unattached_reloc)
11128 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11129 indx = 0;
11130 }
11131 }
11132
11133 /* If this is an inplace reloc, we must write the addend into the
11134 object file. */
11135 if (howto->partial_inplace && addend != 0)
11136 {
11137 bfd_size_type size;
11138 bfd_reloc_status_type rstat;
11139 bfd_byte *buf;
11140 bfd_boolean ok;
11141 const char *sym_name;
11142
11143 size = (bfd_size_type) bfd_get_reloc_size (howto);
11144 buf = (bfd_byte *) bfd_zmalloc (size);
11145 if (buf == NULL && size != 0)
11146 return FALSE;
11147 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11148 switch (rstat)
11149 {
11150 case bfd_reloc_ok:
11151 break;
11152
11153 default:
11154 case bfd_reloc_outofrange:
11155 abort ();
11156
11157 case bfd_reloc_overflow:
11158 if (link_order->type == bfd_section_reloc_link_order)
11159 sym_name = bfd_section_name (output_bfd,
11160 link_order->u.reloc.p->u.section);
11161 else
11162 sym_name = link_order->u.reloc.p->u.name;
11163 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11164 howto->name, addend, NULL, NULL,
11165 (bfd_vma) 0);
11166 break;
11167 }
11168
11169 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11170 link_order->offset
11171 * bfd_octets_per_byte (output_bfd),
11172 size);
11173 free (buf);
11174 if (! ok)
11175 return FALSE;
11176 }
11177
11178 /* The address of a reloc is relative to the section in a
11179 relocatable file, and is a virtual address in an executable
11180 file. */
11181 offset = link_order->offset;
11182 if (! bfd_link_relocatable (info))
11183 offset += output_section->vma;
11184
11185 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11186 {
11187 irel[i].r_offset = offset;
11188 irel[i].r_info = 0;
11189 irel[i].r_addend = 0;
11190 }
11191 if (bed->s->arch_size == 32)
11192 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11193 else
11194 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11195
11196 rel_hdr = reldata->hdr;
11197 erel = rel_hdr->contents;
11198 if (rel_hdr->sh_type == SHT_REL)
11199 {
11200 erel += reldata->count * bed->s->sizeof_rel;
11201 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11202 }
11203 else
11204 {
11205 irel[0].r_addend = addend;
11206 erel += reldata->count * bed->s->sizeof_rela;
11207 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11208 }
11209
11210 ++reldata->count;
11211
11212 return TRUE;
11213 }
11214
11215
11216 /* Get the output vma of the section pointed to by the sh_link field. */
11217
11218 static bfd_vma
11219 elf_get_linked_section_vma (struct bfd_link_order *p)
11220 {
11221 Elf_Internal_Shdr **elf_shdrp;
11222 asection *s;
11223 int elfsec;
11224
11225 s = p->u.indirect.section;
11226 elf_shdrp = elf_elfsections (s->owner);
11227 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11228 elfsec = elf_shdrp[elfsec]->sh_link;
11229 /* PR 290:
11230 The Intel C compiler generates SHT_IA_64_UNWIND with
11231 SHF_LINK_ORDER. But it doesn't set the sh_link or
11232 sh_info fields. Hence we could get the situation
11233 where elfsec is 0. */
11234 if (elfsec == 0)
11235 {
11236 const struct elf_backend_data *bed
11237 = get_elf_backend_data (s->owner);
11238 if (bed->link_order_error_handler)
11239 bed->link_order_error_handler
11240 /* xgettext:c-format */
11241 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11242 return 0;
11243 }
11244 else
11245 {
11246 s = elf_shdrp[elfsec]->bfd_section;
11247 return s->output_section->vma + s->output_offset;
11248 }
11249 }
11250
11251
11252 /* Compare two sections based on the locations of the sections they are
11253 linked to. Used by elf_fixup_link_order. */
11254
11255 static int
11256 compare_link_order (const void * a, const void * b)
11257 {
11258 bfd_vma apos;
11259 bfd_vma bpos;
11260
11261 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11262 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11263 if (apos < bpos)
11264 return -1;
11265 return apos > bpos;
11266 }
11267
11268
11269 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11270 order as their linked sections. Returns false if this could not be done
11271 because an output section includes both ordered and unordered
11272 sections. Ideally we'd do this in the linker proper. */
11273
11274 static bfd_boolean
11275 elf_fixup_link_order (bfd *abfd, asection *o)
11276 {
11277 int seen_linkorder;
11278 int seen_other;
11279 int n;
11280 struct bfd_link_order *p;
11281 bfd *sub;
11282 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11283 unsigned elfsec;
11284 struct bfd_link_order **sections;
11285 asection *s, *other_sec, *linkorder_sec;
11286 bfd_vma offset;
11287
11288 other_sec = NULL;
11289 linkorder_sec = NULL;
11290 seen_other = 0;
11291 seen_linkorder = 0;
11292 for (p = o->map_head.link_order; p != NULL; p = p->next)
11293 {
11294 if (p->type == bfd_indirect_link_order)
11295 {
11296 s = p->u.indirect.section;
11297 sub = s->owner;
11298 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11299 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11300 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11301 && elfsec < elf_numsections (sub)
11302 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11303 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11304 {
11305 seen_linkorder++;
11306 linkorder_sec = s;
11307 }
11308 else
11309 {
11310 seen_other++;
11311 other_sec = s;
11312 }
11313 }
11314 else
11315 seen_other++;
11316
11317 if (seen_other && seen_linkorder)
11318 {
11319 if (other_sec && linkorder_sec)
11320 _bfd_error_handler
11321 /* xgettext:c-format */
11322 (_("%A has both ordered [`%A' in %B] "
11323 "and unordered [`%A' in %B] sections"),
11324 o, linkorder_sec, linkorder_sec->owner,
11325 other_sec, other_sec->owner);
11326 else
11327 _bfd_error_handler
11328 (_("%A has both ordered and unordered sections"), o);
11329 bfd_set_error (bfd_error_bad_value);
11330 return FALSE;
11331 }
11332 }
11333
11334 if (!seen_linkorder)
11335 return TRUE;
11336
11337 sections = (struct bfd_link_order **)
11338 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11339 if (sections == NULL)
11340 return FALSE;
11341 seen_linkorder = 0;
11342
11343 for (p = o->map_head.link_order; p != NULL; p = p->next)
11344 {
11345 sections[seen_linkorder++] = p;
11346 }
11347 /* Sort the input sections in the order of their linked section. */
11348 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11349 compare_link_order);
11350
11351 /* Change the offsets of the sections. */
11352 offset = 0;
11353 for (n = 0; n < seen_linkorder; n++)
11354 {
11355 s = sections[n]->u.indirect.section;
11356 offset &= ~(bfd_vma) 0 << s->alignment_power;
11357 s->output_offset = offset / bfd_octets_per_byte (abfd);
11358 sections[n]->offset = offset;
11359 offset += sections[n]->size;
11360 }
11361
11362 free (sections);
11363 return TRUE;
11364 }
11365
11366 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11367 Returns TRUE upon success, FALSE otherwise. */
11368
11369 static bfd_boolean
11370 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11371 {
11372 bfd_boolean ret = FALSE;
11373 bfd *implib_bfd;
11374 const struct elf_backend_data *bed;
11375 flagword flags;
11376 enum bfd_architecture arch;
11377 unsigned int mach;
11378 asymbol **sympp = NULL;
11379 long symsize;
11380 long symcount;
11381 long src_count;
11382 elf_symbol_type *osymbuf;
11383
11384 implib_bfd = info->out_implib_bfd;
11385 bed = get_elf_backend_data (abfd);
11386
11387 if (!bfd_set_format (implib_bfd, bfd_object))
11388 return FALSE;
11389
11390 /* Use flag from executable but make it a relocatable object. */
11391 flags = bfd_get_file_flags (abfd);
11392 flags &= ~HAS_RELOC;
11393 if (!bfd_set_start_address (implib_bfd, 0)
11394 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11395 return FALSE;
11396
11397 /* Copy architecture of output file to import library file. */
11398 arch = bfd_get_arch (abfd);
11399 mach = bfd_get_mach (abfd);
11400 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11401 && (abfd->target_defaulted
11402 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11403 return FALSE;
11404
11405 /* Get symbol table size. */
11406 symsize = bfd_get_symtab_upper_bound (abfd);
11407 if (symsize < 0)
11408 return FALSE;
11409
11410 /* Read in the symbol table. */
11411 sympp = (asymbol **) xmalloc (symsize);
11412 symcount = bfd_canonicalize_symtab (abfd, sympp);
11413 if (symcount < 0)
11414 goto free_sym_buf;
11415
11416 /* Allow the BFD backend to copy any private header data it
11417 understands from the output BFD to the import library BFD. */
11418 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11419 goto free_sym_buf;
11420
11421 /* Filter symbols to appear in the import library. */
11422 if (bed->elf_backend_filter_implib_symbols)
11423 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11424 symcount);
11425 else
11426 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11427 if (symcount == 0)
11428 {
11429 bfd_set_error (bfd_error_no_symbols);
11430 _bfd_error_handler (_("%B: no symbol found for import library"),
11431 implib_bfd);
11432 goto free_sym_buf;
11433 }
11434
11435
11436 /* Make symbols absolute. */
11437 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11438 sizeof (*osymbuf));
11439 for (src_count = 0; src_count < symcount; src_count++)
11440 {
11441 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11442 sizeof (*osymbuf));
11443 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11444 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11445 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11446 osymbuf[src_count].internal_elf_sym.st_value =
11447 osymbuf[src_count].symbol.value;
11448 sympp[src_count] = &osymbuf[src_count].symbol;
11449 }
11450
11451 bfd_set_symtab (implib_bfd, sympp, symcount);
11452
11453 /* Allow the BFD backend to copy any private data it understands
11454 from the output BFD to the import library BFD. This is done last
11455 to permit the routine to look at the filtered symbol table. */
11456 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11457 goto free_sym_buf;
11458
11459 if (!bfd_close (implib_bfd))
11460 goto free_sym_buf;
11461
11462 ret = TRUE;
11463
11464 free_sym_buf:
11465 free (sympp);
11466 return ret;
11467 }
11468
11469 static void
11470 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11471 {
11472 asection *o;
11473
11474 if (flinfo->symstrtab != NULL)
11475 _bfd_elf_strtab_free (flinfo->symstrtab);
11476 if (flinfo->contents != NULL)
11477 free (flinfo->contents);
11478 if (flinfo->external_relocs != NULL)
11479 free (flinfo->external_relocs);
11480 if (flinfo->internal_relocs != NULL)
11481 free (flinfo->internal_relocs);
11482 if (flinfo->external_syms != NULL)
11483 free (flinfo->external_syms);
11484 if (flinfo->locsym_shndx != NULL)
11485 free (flinfo->locsym_shndx);
11486 if (flinfo->internal_syms != NULL)
11487 free (flinfo->internal_syms);
11488 if (flinfo->indices != NULL)
11489 free (flinfo->indices);
11490 if (flinfo->sections != NULL)
11491 free (flinfo->sections);
11492 if (flinfo->symshndxbuf != NULL)
11493 free (flinfo->symshndxbuf);
11494 for (o = obfd->sections; o != NULL; o = o->next)
11495 {
11496 struct bfd_elf_section_data *esdo = elf_section_data (o);
11497 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11498 free (esdo->rel.hashes);
11499 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11500 free (esdo->rela.hashes);
11501 }
11502 }
11503
11504 /* Do the final step of an ELF link. */
11505
11506 bfd_boolean
11507 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11508 {
11509 bfd_boolean dynamic;
11510 bfd_boolean emit_relocs;
11511 bfd *dynobj;
11512 struct elf_final_link_info flinfo;
11513 asection *o;
11514 struct bfd_link_order *p;
11515 bfd *sub;
11516 bfd_size_type max_contents_size;
11517 bfd_size_type max_external_reloc_size;
11518 bfd_size_type max_internal_reloc_count;
11519 bfd_size_type max_sym_count;
11520 bfd_size_type max_sym_shndx_count;
11521 Elf_Internal_Sym elfsym;
11522 unsigned int i;
11523 Elf_Internal_Shdr *symtab_hdr;
11524 Elf_Internal_Shdr *symtab_shndx_hdr;
11525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11526 struct elf_outext_info eoinfo;
11527 bfd_boolean merged;
11528 size_t relativecount = 0;
11529 asection *reldyn = 0;
11530 bfd_size_type amt;
11531 asection *attr_section = NULL;
11532 bfd_vma attr_size = 0;
11533 const char *std_attrs_section;
11534 struct elf_link_hash_table *htab = elf_hash_table (info);
11535
11536 if (!is_elf_hash_table (htab))
11537 return FALSE;
11538
11539 if (bfd_link_pic (info))
11540 abfd->flags |= DYNAMIC;
11541
11542 dynamic = htab->dynamic_sections_created;
11543 dynobj = htab->dynobj;
11544
11545 emit_relocs = (bfd_link_relocatable (info)
11546 || info->emitrelocations);
11547
11548 flinfo.info = info;
11549 flinfo.output_bfd = abfd;
11550 flinfo.symstrtab = _bfd_elf_strtab_init ();
11551 if (flinfo.symstrtab == NULL)
11552 return FALSE;
11553
11554 if (! dynamic)
11555 {
11556 flinfo.hash_sec = NULL;
11557 flinfo.symver_sec = NULL;
11558 }
11559 else
11560 {
11561 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11562 /* Note that dynsym_sec can be NULL (on VMS). */
11563 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11564 /* Note that it is OK if symver_sec is NULL. */
11565 }
11566
11567 flinfo.contents = NULL;
11568 flinfo.external_relocs = NULL;
11569 flinfo.internal_relocs = NULL;
11570 flinfo.external_syms = NULL;
11571 flinfo.locsym_shndx = NULL;
11572 flinfo.internal_syms = NULL;
11573 flinfo.indices = NULL;
11574 flinfo.sections = NULL;
11575 flinfo.symshndxbuf = NULL;
11576 flinfo.filesym_count = 0;
11577
11578 /* The object attributes have been merged. Remove the input
11579 sections from the link, and set the contents of the output
11580 secton. */
11581 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11582 for (o = abfd->sections; o != NULL; o = o->next)
11583 {
11584 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11585 || strcmp (o->name, ".gnu.attributes") == 0)
11586 {
11587 for (p = o->map_head.link_order; p != NULL; p = p->next)
11588 {
11589 asection *input_section;
11590
11591 if (p->type != bfd_indirect_link_order)
11592 continue;
11593 input_section = p->u.indirect.section;
11594 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11595 elf_link_input_bfd ignores this section. */
11596 input_section->flags &= ~SEC_HAS_CONTENTS;
11597 }
11598
11599 attr_size = bfd_elf_obj_attr_size (abfd);
11600 if (attr_size)
11601 {
11602 bfd_set_section_size (abfd, o, attr_size);
11603 attr_section = o;
11604 /* Skip this section later on. */
11605 o->map_head.link_order = NULL;
11606 }
11607 else
11608 o->flags |= SEC_EXCLUDE;
11609 }
11610 }
11611
11612 /* Count up the number of relocations we will output for each output
11613 section, so that we know the sizes of the reloc sections. We
11614 also figure out some maximum sizes. */
11615 max_contents_size = 0;
11616 max_external_reloc_size = 0;
11617 max_internal_reloc_count = 0;
11618 max_sym_count = 0;
11619 max_sym_shndx_count = 0;
11620 merged = FALSE;
11621 for (o = abfd->sections; o != NULL; o = o->next)
11622 {
11623 struct bfd_elf_section_data *esdo = elf_section_data (o);
11624 o->reloc_count = 0;
11625
11626 for (p = o->map_head.link_order; p != NULL; p = p->next)
11627 {
11628 unsigned int reloc_count = 0;
11629 unsigned int additional_reloc_count = 0;
11630 struct bfd_elf_section_data *esdi = NULL;
11631
11632 if (p->type == bfd_section_reloc_link_order
11633 || p->type == bfd_symbol_reloc_link_order)
11634 reloc_count = 1;
11635 else if (p->type == bfd_indirect_link_order)
11636 {
11637 asection *sec;
11638
11639 sec = p->u.indirect.section;
11640
11641 /* Mark all sections which are to be included in the
11642 link. This will normally be every section. We need
11643 to do this so that we can identify any sections which
11644 the linker has decided to not include. */
11645 sec->linker_mark = TRUE;
11646
11647 if (sec->flags & SEC_MERGE)
11648 merged = TRUE;
11649
11650 if (sec->rawsize > max_contents_size)
11651 max_contents_size = sec->rawsize;
11652 if (sec->size > max_contents_size)
11653 max_contents_size = sec->size;
11654
11655 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11656 && (sec->owner->flags & DYNAMIC) == 0)
11657 {
11658 size_t sym_count;
11659
11660 /* We are interested in just local symbols, not all
11661 symbols. */
11662 if (elf_bad_symtab (sec->owner))
11663 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11664 / bed->s->sizeof_sym);
11665 else
11666 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11667
11668 if (sym_count > max_sym_count)
11669 max_sym_count = sym_count;
11670
11671 if (sym_count > max_sym_shndx_count
11672 && elf_symtab_shndx_list (sec->owner) != NULL)
11673 max_sym_shndx_count = sym_count;
11674
11675 if (esdo->this_hdr.sh_type == SHT_REL
11676 || esdo->this_hdr.sh_type == SHT_RELA)
11677 /* Some backends use reloc_count in relocation sections
11678 to count particular types of relocs. Of course,
11679 reloc sections themselves can't have relocations. */
11680 ;
11681 else if (emit_relocs)
11682 {
11683 reloc_count = sec->reloc_count;
11684 if (bed->elf_backend_count_additional_relocs)
11685 {
11686 int c;
11687 c = (*bed->elf_backend_count_additional_relocs) (sec);
11688 additional_reloc_count += c;
11689 }
11690 }
11691 else if (bed->elf_backend_count_relocs)
11692 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11693
11694 esdi = elf_section_data (sec);
11695
11696 if ((sec->flags & SEC_RELOC) != 0)
11697 {
11698 size_t ext_size = 0;
11699
11700 if (esdi->rel.hdr != NULL)
11701 ext_size = esdi->rel.hdr->sh_size;
11702 if (esdi->rela.hdr != NULL)
11703 ext_size += esdi->rela.hdr->sh_size;
11704
11705 if (ext_size > max_external_reloc_size)
11706 max_external_reloc_size = ext_size;
11707 if (sec->reloc_count > max_internal_reloc_count)
11708 max_internal_reloc_count = sec->reloc_count;
11709 }
11710 }
11711 }
11712
11713 if (reloc_count == 0)
11714 continue;
11715
11716 reloc_count += additional_reloc_count;
11717 o->reloc_count += reloc_count;
11718
11719 if (p->type == bfd_indirect_link_order && emit_relocs)
11720 {
11721 if (esdi->rel.hdr)
11722 {
11723 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11724 esdo->rel.count += additional_reloc_count;
11725 }
11726 if (esdi->rela.hdr)
11727 {
11728 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11729 esdo->rela.count += additional_reloc_count;
11730 }
11731 }
11732 else
11733 {
11734 if (o->use_rela_p)
11735 esdo->rela.count += reloc_count;
11736 else
11737 esdo->rel.count += reloc_count;
11738 }
11739 }
11740
11741 if (o->reloc_count > 0)
11742 o->flags |= SEC_RELOC;
11743 else
11744 {
11745 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11746 set it (this is probably a bug) and if it is set
11747 assign_section_numbers will create a reloc section. */
11748 o->flags &=~ SEC_RELOC;
11749 }
11750
11751 /* If the SEC_ALLOC flag is not set, force the section VMA to
11752 zero. This is done in elf_fake_sections as well, but forcing
11753 the VMA to 0 here will ensure that relocs against these
11754 sections are handled correctly. */
11755 if ((o->flags & SEC_ALLOC) == 0
11756 && ! o->user_set_vma)
11757 o->vma = 0;
11758 }
11759
11760 if (! bfd_link_relocatable (info) && merged)
11761 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11762
11763 /* Figure out the file positions for everything but the symbol table
11764 and the relocs. We set symcount to force assign_section_numbers
11765 to create a symbol table. */
11766 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11767 BFD_ASSERT (! abfd->output_has_begun);
11768 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11769 goto error_return;
11770
11771 /* Set sizes, and assign file positions for reloc sections. */
11772 for (o = abfd->sections; o != NULL; o = o->next)
11773 {
11774 struct bfd_elf_section_data *esdo = elf_section_data (o);
11775 if ((o->flags & SEC_RELOC) != 0)
11776 {
11777 if (esdo->rel.hdr
11778 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11779 goto error_return;
11780
11781 if (esdo->rela.hdr
11782 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11783 goto error_return;
11784 }
11785
11786 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11787 to count upwards while actually outputting the relocations. */
11788 esdo->rel.count = 0;
11789 esdo->rela.count = 0;
11790
11791 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11792 {
11793 /* Cache the section contents so that they can be compressed
11794 later. Use bfd_malloc since it will be freed by
11795 bfd_compress_section_contents. */
11796 unsigned char *contents = esdo->this_hdr.contents;
11797 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11798 abort ();
11799 contents
11800 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11801 if (contents == NULL)
11802 goto error_return;
11803 esdo->this_hdr.contents = contents;
11804 }
11805 }
11806
11807 /* We have now assigned file positions for all the sections except
11808 .symtab, .strtab, and non-loaded reloc sections. We start the
11809 .symtab section at the current file position, and write directly
11810 to it. We build the .strtab section in memory. */
11811 bfd_get_symcount (abfd) = 0;
11812 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11813 /* sh_name is set in prep_headers. */
11814 symtab_hdr->sh_type = SHT_SYMTAB;
11815 /* sh_flags, sh_addr and sh_size all start off zero. */
11816 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11817 /* sh_link is set in assign_section_numbers. */
11818 /* sh_info is set below. */
11819 /* sh_offset is set just below. */
11820 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11821
11822 if (max_sym_count < 20)
11823 max_sym_count = 20;
11824 htab->strtabsize = max_sym_count;
11825 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11826 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11827 if (htab->strtab == NULL)
11828 goto error_return;
11829 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11830 flinfo.symshndxbuf
11831 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11832 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11833
11834 if (info->strip != strip_all || emit_relocs)
11835 {
11836 file_ptr off = elf_next_file_pos (abfd);
11837
11838 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11839
11840 /* Note that at this point elf_next_file_pos (abfd) is
11841 incorrect. We do not yet know the size of the .symtab section.
11842 We correct next_file_pos below, after we do know the size. */
11843
11844 /* Start writing out the symbol table. The first symbol is always a
11845 dummy symbol. */
11846 elfsym.st_value = 0;
11847 elfsym.st_size = 0;
11848 elfsym.st_info = 0;
11849 elfsym.st_other = 0;
11850 elfsym.st_shndx = SHN_UNDEF;
11851 elfsym.st_target_internal = 0;
11852 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11853 bfd_und_section_ptr, NULL) != 1)
11854 goto error_return;
11855
11856 /* Output a symbol for each section. We output these even if we are
11857 discarding local symbols, since they are used for relocs. These
11858 symbols have no names. We store the index of each one in the
11859 index field of the section, so that we can find it again when
11860 outputting relocs. */
11861
11862 elfsym.st_size = 0;
11863 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11864 elfsym.st_other = 0;
11865 elfsym.st_value = 0;
11866 elfsym.st_target_internal = 0;
11867 for (i = 1; i < elf_numsections (abfd); i++)
11868 {
11869 o = bfd_section_from_elf_index (abfd, i);
11870 if (o != NULL)
11871 {
11872 o->target_index = bfd_get_symcount (abfd);
11873 elfsym.st_shndx = i;
11874 if (!bfd_link_relocatable (info))
11875 elfsym.st_value = o->vma;
11876 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11877 NULL) != 1)
11878 goto error_return;
11879 }
11880 }
11881 }
11882
11883 /* Allocate some memory to hold information read in from the input
11884 files. */
11885 if (max_contents_size != 0)
11886 {
11887 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11888 if (flinfo.contents == NULL)
11889 goto error_return;
11890 }
11891
11892 if (max_external_reloc_size != 0)
11893 {
11894 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11895 if (flinfo.external_relocs == NULL)
11896 goto error_return;
11897 }
11898
11899 if (max_internal_reloc_count != 0)
11900 {
11901 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11902 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11903 if (flinfo.internal_relocs == NULL)
11904 goto error_return;
11905 }
11906
11907 if (max_sym_count != 0)
11908 {
11909 amt = max_sym_count * bed->s->sizeof_sym;
11910 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11911 if (flinfo.external_syms == NULL)
11912 goto error_return;
11913
11914 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11915 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11916 if (flinfo.internal_syms == NULL)
11917 goto error_return;
11918
11919 amt = max_sym_count * sizeof (long);
11920 flinfo.indices = (long int *) bfd_malloc (amt);
11921 if (flinfo.indices == NULL)
11922 goto error_return;
11923
11924 amt = max_sym_count * sizeof (asection *);
11925 flinfo.sections = (asection **) bfd_malloc (amt);
11926 if (flinfo.sections == NULL)
11927 goto error_return;
11928 }
11929
11930 if (max_sym_shndx_count != 0)
11931 {
11932 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11933 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11934 if (flinfo.locsym_shndx == NULL)
11935 goto error_return;
11936 }
11937
11938 if (htab->tls_sec)
11939 {
11940 bfd_vma base, end = 0;
11941 asection *sec;
11942
11943 for (sec = htab->tls_sec;
11944 sec && (sec->flags & SEC_THREAD_LOCAL);
11945 sec = sec->next)
11946 {
11947 bfd_size_type size = sec->size;
11948
11949 if (size == 0
11950 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11951 {
11952 struct bfd_link_order *ord = sec->map_tail.link_order;
11953
11954 if (ord != NULL)
11955 size = ord->offset + ord->size;
11956 }
11957 end = sec->vma + size;
11958 }
11959 base = htab->tls_sec->vma;
11960 /* Only align end of TLS section if static TLS doesn't have special
11961 alignment requirements. */
11962 if (bed->static_tls_alignment == 1)
11963 end = align_power (end, htab->tls_sec->alignment_power);
11964 htab->tls_size = end - base;
11965 }
11966
11967 /* Reorder SHF_LINK_ORDER sections. */
11968 for (o = abfd->sections; o != NULL; o = o->next)
11969 {
11970 if (!elf_fixup_link_order (abfd, o))
11971 return FALSE;
11972 }
11973
11974 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11975 return FALSE;
11976
11977 /* Since ELF permits relocations to be against local symbols, we
11978 must have the local symbols available when we do the relocations.
11979 Since we would rather only read the local symbols once, and we
11980 would rather not keep them in memory, we handle all the
11981 relocations for a single input file at the same time.
11982
11983 Unfortunately, there is no way to know the total number of local
11984 symbols until we have seen all of them, and the local symbol
11985 indices precede the global symbol indices. This means that when
11986 we are generating relocatable output, and we see a reloc against
11987 a global symbol, we can not know the symbol index until we have
11988 finished examining all the local symbols to see which ones we are
11989 going to output. To deal with this, we keep the relocations in
11990 memory, and don't output them until the end of the link. This is
11991 an unfortunate waste of memory, but I don't see a good way around
11992 it. Fortunately, it only happens when performing a relocatable
11993 link, which is not the common case. FIXME: If keep_memory is set
11994 we could write the relocs out and then read them again; I don't
11995 know how bad the memory loss will be. */
11996
11997 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11998 sub->output_has_begun = FALSE;
11999 for (o = abfd->sections; o != NULL; o = o->next)
12000 {
12001 for (p = o->map_head.link_order; p != NULL; p = p->next)
12002 {
12003 if (p->type == bfd_indirect_link_order
12004 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12005 == bfd_target_elf_flavour)
12006 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12007 {
12008 if (! sub->output_has_begun)
12009 {
12010 if (! elf_link_input_bfd (&flinfo, sub))
12011 goto error_return;
12012 sub->output_has_begun = TRUE;
12013 }
12014 }
12015 else if (p->type == bfd_section_reloc_link_order
12016 || p->type == bfd_symbol_reloc_link_order)
12017 {
12018 if (! elf_reloc_link_order (abfd, info, o, p))
12019 goto error_return;
12020 }
12021 else
12022 {
12023 if (! _bfd_default_link_order (abfd, info, o, p))
12024 {
12025 if (p->type == bfd_indirect_link_order
12026 && (bfd_get_flavour (sub)
12027 == bfd_target_elf_flavour)
12028 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12029 != bed->s->elfclass))
12030 {
12031 const char *iclass, *oclass;
12032
12033 switch (bed->s->elfclass)
12034 {
12035 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12036 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12037 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12038 default: abort ();
12039 }
12040
12041 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12042 {
12043 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12044 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12045 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12046 default: abort ();
12047 }
12048
12049 bfd_set_error (bfd_error_wrong_format);
12050 _bfd_error_handler
12051 /* xgettext:c-format */
12052 (_("%B: file class %s incompatible with %s"),
12053 sub, iclass, oclass);
12054 }
12055
12056 goto error_return;
12057 }
12058 }
12059 }
12060 }
12061
12062 /* Free symbol buffer if needed. */
12063 if (!info->reduce_memory_overheads)
12064 {
12065 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12066 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12067 && elf_tdata (sub)->symbuf)
12068 {
12069 free (elf_tdata (sub)->symbuf);
12070 elf_tdata (sub)->symbuf = NULL;
12071 }
12072 }
12073
12074 /* Output any global symbols that got converted to local in a
12075 version script or due to symbol visibility. We do this in a
12076 separate step since ELF requires all local symbols to appear
12077 prior to any global symbols. FIXME: We should only do this if
12078 some global symbols were, in fact, converted to become local.
12079 FIXME: Will this work correctly with the Irix 5 linker? */
12080 eoinfo.failed = FALSE;
12081 eoinfo.flinfo = &flinfo;
12082 eoinfo.localsyms = TRUE;
12083 eoinfo.file_sym_done = FALSE;
12084 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12085 if (eoinfo.failed)
12086 return FALSE;
12087
12088 /* If backend needs to output some local symbols not present in the hash
12089 table, do it now. */
12090 if (bed->elf_backend_output_arch_local_syms
12091 && (info->strip != strip_all || emit_relocs))
12092 {
12093 typedef int (*out_sym_func)
12094 (void *, const char *, Elf_Internal_Sym *, asection *,
12095 struct elf_link_hash_entry *);
12096
12097 if (! ((*bed->elf_backend_output_arch_local_syms)
12098 (abfd, info, &flinfo,
12099 (out_sym_func) elf_link_output_symstrtab)))
12100 return FALSE;
12101 }
12102
12103 /* That wrote out all the local symbols. Finish up the symbol table
12104 with the global symbols. Even if we want to strip everything we
12105 can, we still need to deal with those global symbols that got
12106 converted to local in a version script. */
12107
12108 /* The sh_info field records the index of the first non local symbol. */
12109 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12110
12111 if (dynamic
12112 && htab->dynsym != NULL
12113 && htab->dynsym->output_section != bfd_abs_section_ptr)
12114 {
12115 Elf_Internal_Sym sym;
12116 bfd_byte *dynsym = htab->dynsym->contents;
12117
12118 o = htab->dynsym->output_section;
12119 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12120
12121 /* Write out the section symbols for the output sections. */
12122 if (bfd_link_pic (info)
12123 || htab->is_relocatable_executable)
12124 {
12125 asection *s;
12126
12127 sym.st_size = 0;
12128 sym.st_name = 0;
12129 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12130 sym.st_other = 0;
12131 sym.st_target_internal = 0;
12132
12133 for (s = abfd->sections; s != NULL; s = s->next)
12134 {
12135 int indx;
12136 bfd_byte *dest;
12137 long dynindx;
12138
12139 dynindx = elf_section_data (s)->dynindx;
12140 if (dynindx <= 0)
12141 continue;
12142 indx = elf_section_data (s)->this_idx;
12143 BFD_ASSERT (indx > 0);
12144 sym.st_shndx = indx;
12145 if (! check_dynsym (abfd, &sym))
12146 return FALSE;
12147 sym.st_value = s->vma;
12148 dest = dynsym + dynindx * bed->s->sizeof_sym;
12149 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12150 }
12151 }
12152
12153 /* Write out the local dynsyms. */
12154 if (htab->dynlocal)
12155 {
12156 struct elf_link_local_dynamic_entry *e;
12157 for (e = htab->dynlocal; e ; e = e->next)
12158 {
12159 asection *s;
12160 bfd_byte *dest;
12161
12162 /* Copy the internal symbol and turn off visibility.
12163 Note that we saved a word of storage and overwrote
12164 the original st_name with the dynstr_index. */
12165 sym = e->isym;
12166 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12167
12168 s = bfd_section_from_elf_index (e->input_bfd,
12169 e->isym.st_shndx);
12170 if (s != NULL)
12171 {
12172 sym.st_shndx =
12173 elf_section_data (s->output_section)->this_idx;
12174 if (! check_dynsym (abfd, &sym))
12175 return FALSE;
12176 sym.st_value = (s->output_section->vma
12177 + s->output_offset
12178 + e->isym.st_value);
12179 }
12180
12181 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12182 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12183 }
12184 }
12185 }
12186
12187 /* We get the global symbols from the hash table. */
12188 eoinfo.failed = FALSE;
12189 eoinfo.localsyms = FALSE;
12190 eoinfo.flinfo = &flinfo;
12191 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12192 if (eoinfo.failed)
12193 return FALSE;
12194
12195 /* If backend needs to output some symbols not present in the hash
12196 table, do it now. */
12197 if (bed->elf_backend_output_arch_syms
12198 && (info->strip != strip_all || emit_relocs))
12199 {
12200 typedef int (*out_sym_func)
12201 (void *, const char *, Elf_Internal_Sym *, asection *,
12202 struct elf_link_hash_entry *);
12203
12204 if (! ((*bed->elf_backend_output_arch_syms)
12205 (abfd, info, &flinfo,
12206 (out_sym_func) elf_link_output_symstrtab)))
12207 return FALSE;
12208 }
12209
12210 /* Finalize the .strtab section. */
12211 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12212
12213 /* Swap out the .strtab section. */
12214 if (!elf_link_swap_symbols_out (&flinfo))
12215 return FALSE;
12216
12217 /* Now we know the size of the symtab section. */
12218 if (bfd_get_symcount (abfd) > 0)
12219 {
12220 /* Finish up and write out the symbol string table (.strtab)
12221 section. */
12222 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12223 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12224
12225 if (elf_symtab_shndx_list (abfd))
12226 {
12227 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12228
12229 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12230 {
12231 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12232 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12233 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12234 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12235 symtab_shndx_hdr->sh_size = amt;
12236
12237 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12238 off, TRUE);
12239
12240 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12241 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12242 return FALSE;
12243 }
12244 }
12245
12246 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12247 /* sh_name was set in prep_headers. */
12248 symstrtab_hdr->sh_type = SHT_STRTAB;
12249 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12250 symstrtab_hdr->sh_addr = 0;
12251 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12252 symstrtab_hdr->sh_entsize = 0;
12253 symstrtab_hdr->sh_link = 0;
12254 symstrtab_hdr->sh_info = 0;
12255 /* sh_offset is set just below. */
12256 symstrtab_hdr->sh_addralign = 1;
12257
12258 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12259 off, TRUE);
12260 elf_next_file_pos (abfd) = off;
12261
12262 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12263 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12264 return FALSE;
12265 }
12266
12267 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12268 {
12269 _bfd_error_handler (_("%B: failed to generate import library"),
12270 info->out_implib_bfd);
12271 return FALSE;
12272 }
12273
12274 /* Adjust the relocs to have the correct symbol indices. */
12275 for (o = abfd->sections; o != NULL; o = o->next)
12276 {
12277 struct bfd_elf_section_data *esdo = elf_section_data (o);
12278 bfd_boolean sort;
12279
12280 if ((o->flags & SEC_RELOC) == 0)
12281 continue;
12282
12283 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12284 if (esdo->rel.hdr != NULL
12285 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12286 return FALSE;
12287 if (esdo->rela.hdr != NULL
12288 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12289 return FALSE;
12290
12291 /* Set the reloc_count field to 0 to prevent write_relocs from
12292 trying to swap the relocs out itself. */
12293 o->reloc_count = 0;
12294 }
12295
12296 if (dynamic && info->combreloc && dynobj != NULL)
12297 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12298
12299 /* If we are linking against a dynamic object, or generating a
12300 shared library, finish up the dynamic linking information. */
12301 if (dynamic)
12302 {
12303 bfd_byte *dyncon, *dynconend;
12304
12305 /* Fix up .dynamic entries. */
12306 o = bfd_get_linker_section (dynobj, ".dynamic");
12307 BFD_ASSERT (o != NULL);
12308
12309 dyncon = o->contents;
12310 dynconend = o->contents + o->size;
12311 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12312 {
12313 Elf_Internal_Dyn dyn;
12314 const char *name;
12315 unsigned int type;
12316 bfd_size_type sh_size;
12317 bfd_vma sh_addr;
12318
12319 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12320
12321 switch (dyn.d_tag)
12322 {
12323 default:
12324 continue;
12325 case DT_NULL:
12326 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12327 {
12328 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12329 {
12330 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12331 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12332 default: continue;
12333 }
12334 dyn.d_un.d_val = relativecount;
12335 relativecount = 0;
12336 break;
12337 }
12338 continue;
12339
12340 case DT_INIT:
12341 name = info->init_function;
12342 goto get_sym;
12343 case DT_FINI:
12344 name = info->fini_function;
12345 get_sym:
12346 {
12347 struct elf_link_hash_entry *h;
12348
12349 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12350 if (h != NULL
12351 && (h->root.type == bfd_link_hash_defined
12352 || h->root.type == bfd_link_hash_defweak))
12353 {
12354 dyn.d_un.d_ptr = h->root.u.def.value;
12355 o = h->root.u.def.section;
12356 if (o->output_section != NULL)
12357 dyn.d_un.d_ptr += (o->output_section->vma
12358 + o->output_offset);
12359 else
12360 {
12361 /* The symbol is imported from another shared
12362 library and does not apply to this one. */
12363 dyn.d_un.d_ptr = 0;
12364 }
12365 break;
12366 }
12367 }
12368 continue;
12369
12370 case DT_PREINIT_ARRAYSZ:
12371 name = ".preinit_array";
12372 goto get_out_size;
12373 case DT_INIT_ARRAYSZ:
12374 name = ".init_array";
12375 goto get_out_size;
12376 case DT_FINI_ARRAYSZ:
12377 name = ".fini_array";
12378 get_out_size:
12379 o = bfd_get_section_by_name (abfd, name);
12380 if (o == NULL)
12381 {
12382 _bfd_error_handler
12383 (_("could not find section %s"), name);
12384 goto error_return;
12385 }
12386 if (o->size == 0)
12387 _bfd_error_handler
12388 (_("warning: %s section has zero size"), name);
12389 dyn.d_un.d_val = o->size;
12390 break;
12391
12392 case DT_PREINIT_ARRAY:
12393 name = ".preinit_array";
12394 goto get_out_vma;
12395 case DT_INIT_ARRAY:
12396 name = ".init_array";
12397 goto get_out_vma;
12398 case DT_FINI_ARRAY:
12399 name = ".fini_array";
12400 get_out_vma:
12401 o = bfd_get_section_by_name (abfd, name);
12402 goto do_vma;
12403
12404 case DT_HASH:
12405 name = ".hash";
12406 goto get_vma;
12407 case DT_GNU_HASH:
12408 name = ".gnu.hash";
12409 goto get_vma;
12410 case DT_STRTAB:
12411 name = ".dynstr";
12412 goto get_vma;
12413 case DT_SYMTAB:
12414 name = ".dynsym";
12415 goto get_vma;
12416 case DT_VERDEF:
12417 name = ".gnu.version_d";
12418 goto get_vma;
12419 case DT_VERNEED:
12420 name = ".gnu.version_r";
12421 goto get_vma;
12422 case DT_VERSYM:
12423 name = ".gnu.version";
12424 get_vma:
12425 o = bfd_get_linker_section (dynobj, name);
12426 do_vma:
12427 if (o == NULL || bfd_is_abs_section (o->output_section))
12428 {
12429 _bfd_error_handler
12430 (_("could not find section %s"), name);
12431 goto error_return;
12432 }
12433 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12434 {
12435 _bfd_error_handler
12436 (_("warning: section '%s' is being made into a note"), name);
12437 bfd_set_error (bfd_error_nonrepresentable_section);
12438 goto error_return;
12439 }
12440 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12441 break;
12442
12443 case DT_REL:
12444 case DT_RELA:
12445 case DT_RELSZ:
12446 case DT_RELASZ:
12447 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12448 type = SHT_REL;
12449 else
12450 type = SHT_RELA;
12451 sh_size = 0;
12452 sh_addr = 0;
12453 for (i = 1; i < elf_numsections (abfd); i++)
12454 {
12455 Elf_Internal_Shdr *hdr;
12456
12457 hdr = elf_elfsections (abfd)[i];
12458 if (hdr->sh_type == type
12459 && (hdr->sh_flags & SHF_ALLOC) != 0)
12460 {
12461 sh_size += hdr->sh_size;
12462 if (sh_addr == 0
12463 || sh_addr > hdr->sh_addr)
12464 sh_addr = hdr->sh_addr;
12465 }
12466 }
12467
12468 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12469 {
12470 /* Don't count procedure linkage table relocs in the
12471 overall reloc count. */
12472 sh_size -= htab->srelplt->size;
12473 if (sh_size == 0)
12474 /* If the size is zero, make the address zero too.
12475 This is to avoid a glibc bug. If the backend
12476 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12477 zero, then we'll put DT_RELA at the end of
12478 DT_JMPREL. glibc will interpret the end of
12479 DT_RELA matching the end of DT_JMPREL as the
12480 case where DT_RELA includes DT_JMPREL, and for
12481 LD_BIND_NOW will decide that processing DT_RELA
12482 will process the PLT relocs too. Net result:
12483 No PLT relocs applied. */
12484 sh_addr = 0;
12485
12486 /* If .rela.plt is the first .rela section, exclude
12487 it from DT_RELA. */
12488 else if (sh_addr == (htab->srelplt->output_section->vma
12489 + htab->srelplt->output_offset))
12490 sh_addr += htab->srelplt->size;
12491 }
12492
12493 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12494 dyn.d_un.d_val = sh_size;
12495 else
12496 dyn.d_un.d_ptr = sh_addr;
12497 break;
12498 }
12499 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12500 }
12501 }
12502
12503 /* If we have created any dynamic sections, then output them. */
12504 if (dynobj != NULL)
12505 {
12506 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12507 goto error_return;
12508
12509 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12510 if (((info->warn_shared_textrel && bfd_link_pic (info))
12511 || info->error_textrel)
12512 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12513 {
12514 bfd_byte *dyncon, *dynconend;
12515
12516 dyncon = o->contents;
12517 dynconend = o->contents + o->size;
12518 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12519 {
12520 Elf_Internal_Dyn dyn;
12521
12522 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12523
12524 if (dyn.d_tag == DT_TEXTREL)
12525 {
12526 if (info->error_textrel)
12527 info->callbacks->einfo
12528 (_("%P%X: read-only segment has dynamic relocations.\n"));
12529 else
12530 info->callbacks->einfo
12531 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12532 break;
12533 }
12534 }
12535 }
12536
12537 for (o = dynobj->sections; o != NULL; o = o->next)
12538 {
12539 if ((o->flags & SEC_HAS_CONTENTS) == 0
12540 || o->size == 0
12541 || o->output_section == bfd_abs_section_ptr)
12542 continue;
12543 if ((o->flags & SEC_LINKER_CREATED) == 0)
12544 {
12545 /* At this point, we are only interested in sections
12546 created by _bfd_elf_link_create_dynamic_sections. */
12547 continue;
12548 }
12549 if (htab->stab_info.stabstr == o)
12550 continue;
12551 if (htab->eh_info.hdr_sec == o)
12552 continue;
12553 if (strcmp (o->name, ".dynstr") != 0)
12554 {
12555 if (! bfd_set_section_contents (abfd, o->output_section,
12556 o->contents,
12557 (file_ptr) o->output_offset
12558 * bfd_octets_per_byte (abfd),
12559 o->size))
12560 goto error_return;
12561 }
12562 else
12563 {
12564 /* The contents of the .dynstr section are actually in a
12565 stringtab. */
12566 file_ptr off;
12567
12568 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12569 if (bfd_seek (abfd, off, SEEK_SET) != 0
12570 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12571 goto error_return;
12572 }
12573 }
12574 }
12575
12576 if (!info->resolve_section_groups)
12577 {
12578 bfd_boolean failed = FALSE;
12579
12580 BFD_ASSERT (bfd_link_relocatable (info));
12581 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12582 if (failed)
12583 goto error_return;
12584 }
12585
12586 /* If we have optimized stabs strings, output them. */
12587 if (htab->stab_info.stabstr != NULL)
12588 {
12589 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12590 goto error_return;
12591 }
12592
12593 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12594 goto error_return;
12595
12596 elf_final_link_free (abfd, &flinfo);
12597
12598 elf_linker (abfd) = TRUE;
12599
12600 if (attr_section)
12601 {
12602 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12603 if (contents == NULL)
12604 return FALSE; /* Bail out and fail. */
12605 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12606 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12607 free (contents);
12608 }
12609
12610 return TRUE;
12611
12612 error_return:
12613 elf_final_link_free (abfd, &flinfo);
12614 return FALSE;
12615 }
12616 \f
12617 /* Initialize COOKIE for input bfd ABFD. */
12618
12619 static bfd_boolean
12620 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12621 struct bfd_link_info *info, bfd *abfd)
12622 {
12623 Elf_Internal_Shdr *symtab_hdr;
12624 const struct elf_backend_data *bed;
12625
12626 bed = get_elf_backend_data (abfd);
12627 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12628
12629 cookie->abfd = abfd;
12630 cookie->sym_hashes = elf_sym_hashes (abfd);
12631 cookie->bad_symtab = elf_bad_symtab (abfd);
12632 if (cookie->bad_symtab)
12633 {
12634 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12635 cookie->extsymoff = 0;
12636 }
12637 else
12638 {
12639 cookie->locsymcount = symtab_hdr->sh_info;
12640 cookie->extsymoff = symtab_hdr->sh_info;
12641 }
12642
12643 if (bed->s->arch_size == 32)
12644 cookie->r_sym_shift = 8;
12645 else
12646 cookie->r_sym_shift = 32;
12647
12648 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12649 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12650 {
12651 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12652 cookie->locsymcount, 0,
12653 NULL, NULL, NULL);
12654 if (cookie->locsyms == NULL)
12655 {
12656 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12657 return FALSE;
12658 }
12659 if (info->keep_memory)
12660 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12661 }
12662 return TRUE;
12663 }
12664
12665 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12666
12667 static void
12668 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12669 {
12670 Elf_Internal_Shdr *symtab_hdr;
12671
12672 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12673 if (cookie->locsyms != NULL
12674 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12675 free (cookie->locsyms);
12676 }
12677
12678 /* Initialize the relocation information in COOKIE for input section SEC
12679 of input bfd ABFD. */
12680
12681 static bfd_boolean
12682 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12683 struct bfd_link_info *info, bfd *abfd,
12684 asection *sec)
12685 {
12686 if (sec->reloc_count == 0)
12687 {
12688 cookie->rels = NULL;
12689 cookie->relend = NULL;
12690 }
12691 else
12692 {
12693 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12694 info->keep_memory);
12695 if (cookie->rels == NULL)
12696 return FALSE;
12697 cookie->rel = cookie->rels;
12698 cookie->relend = cookie->rels + sec->reloc_count;
12699 }
12700 cookie->rel = cookie->rels;
12701 return TRUE;
12702 }
12703
12704 /* Free the memory allocated by init_reloc_cookie_rels,
12705 if appropriate. */
12706
12707 static void
12708 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12709 asection *sec)
12710 {
12711 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12712 free (cookie->rels);
12713 }
12714
12715 /* Initialize the whole of COOKIE for input section SEC. */
12716
12717 static bfd_boolean
12718 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12719 struct bfd_link_info *info,
12720 asection *sec)
12721 {
12722 if (!init_reloc_cookie (cookie, info, sec->owner))
12723 goto error1;
12724 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12725 goto error2;
12726 return TRUE;
12727
12728 error2:
12729 fini_reloc_cookie (cookie, sec->owner);
12730 error1:
12731 return FALSE;
12732 }
12733
12734 /* Free the memory allocated by init_reloc_cookie_for_section,
12735 if appropriate. */
12736
12737 static void
12738 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12739 asection *sec)
12740 {
12741 fini_reloc_cookie_rels (cookie, sec);
12742 fini_reloc_cookie (cookie, sec->owner);
12743 }
12744 \f
12745 /* Garbage collect unused sections. */
12746
12747 /* Default gc_mark_hook. */
12748
12749 asection *
12750 _bfd_elf_gc_mark_hook (asection *sec,
12751 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12752 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12753 struct elf_link_hash_entry *h,
12754 Elf_Internal_Sym *sym)
12755 {
12756 if (h != NULL)
12757 {
12758 switch (h->root.type)
12759 {
12760 case bfd_link_hash_defined:
12761 case bfd_link_hash_defweak:
12762 return h->root.u.def.section;
12763
12764 case bfd_link_hash_common:
12765 return h->root.u.c.p->section;
12766
12767 default:
12768 break;
12769 }
12770 }
12771 else
12772 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12773
12774 return NULL;
12775 }
12776
12777 /* Return the global debug definition section. */
12778
12779 static asection *
12780 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12781 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12782 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12783 struct elf_link_hash_entry *h,
12784 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12785 {
12786 if (h != NULL
12787 && (h->root.type == bfd_link_hash_defined
12788 || h->root.type == bfd_link_hash_defweak)
12789 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12790 return h->root.u.def.section;
12791
12792 return NULL;
12793 }
12794
12795 /* COOKIE->rel describes a relocation against section SEC, which is
12796 a section we've decided to keep. Return the section that contains
12797 the relocation symbol, or NULL if no section contains it. */
12798
12799 asection *
12800 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12801 elf_gc_mark_hook_fn gc_mark_hook,
12802 struct elf_reloc_cookie *cookie,
12803 bfd_boolean *start_stop)
12804 {
12805 unsigned long r_symndx;
12806 struct elf_link_hash_entry *h;
12807
12808 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12809 if (r_symndx == STN_UNDEF)
12810 return NULL;
12811
12812 if (r_symndx >= cookie->locsymcount
12813 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12814 {
12815 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12816 if (h == NULL)
12817 {
12818 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12819 sec->owner);
12820 return NULL;
12821 }
12822 while (h->root.type == bfd_link_hash_indirect
12823 || h->root.type == bfd_link_hash_warning)
12824 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12825 h->mark = 1;
12826 /* If this symbol is weak and there is a non-weak definition, we
12827 keep the non-weak definition because many backends put
12828 dynamic reloc info on the non-weak definition for code
12829 handling copy relocs. */
12830 if (h->is_weakalias)
12831 weakdef (h)->mark = 1;
12832
12833 if (start_stop != NULL)
12834 {
12835 /* To work around a glibc bug, mark XXX input sections
12836 when there is a reference to __start_XXX or __stop_XXX
12837 symbols. */
12838 if (h->start_stop)
12839 {
12840 asection *s = h->u2.start_stop_section;
12841 *start_stop = !s->gc_mark;
12842 return s;
12843 }
12844 }
12845
12846 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12847 }
12848
12849 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12850 &cookie->locsyms[r_symndx]);
12851 }
12852
12853 /* COOKIE->rel describes a relocation against section SEC, which is
12854 a section we've decided to keep. Mark the section that contains
12855 the relocation symbol. */
12856
12857 bfd_boolean
12858 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12859 asection *sec,
12860 elf_gc_mark_hook_fn gc_mark_hook,
12861 struct elf_reloc_cookie *cookie)
12862 {
12863 asection *rsec;
12864 bfd_boolean start_stop = FALSE;
12865
12866 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12867 while (rsec != NULL)
12868 {
12869 if (!rsec->gc_mark)
12870 {
12871 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12872 || (rsec->owner->flags & DYNAMIC) != 0)
12873 rsec->gc_mark = 1;
12874 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12875 return FALSE;
12876 }
12877 if (!start_stop)
12878 break;
12879 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12880 }
12881 return TRUE;
12882 }
12883
12884 /* The mark phase of garbage collection. For a given section, mark
12885 it and any sections in this section's group, and all the sections
12886 which define symbols to which it refers. */
12887
12888 bfd_boolean
12889 _bfd_elf_gc_mark (struct bfd_link_info *info,
12890 asection *sec,
12891 elf_gc_mark_hook_fn gc_mark_hook)
12892 {
12893 bfd_boolean ret;
12894 asection *group_sec, *eh_frame;
12895
12896 sec->gc_mark = 1;
12897
12898 /* Mark all the sections in the group. */
12899 group_sec = elf_section_data (sec)->next_in_group;
12900 if (group_sec && !group_sec->gc_mark)
12901 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12902 return FALSE;
12903
12904 /* Look through the section relocs. */
12905 ret = TRUE;
12906 eh_frame = elf_eh_frame_section (sec->owner);
12907 if ((sec->flags & SEC_RELOC) != 0
12908 && sec->reloc_count > 0
12909 && sec != eh_frame)
12910 {
12911 struct elf_reloc_cookie cookie;
12912
12913 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12914 ret = FALSE;
12915 else
12916 {
12917 for (; cookie.rel < cookie.relend; cookie.rel++)
12918 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12919 {
12920 ret = FALSE;
12921 break;
12922 }
12923 fini_reloc_cookie_for_section (&cookie, sec);
12924 }
12925 }
12926
12927 if (ret && eh_frame && elf_fde_list (sec))
12928 {
12929 struct elf_reloc_cookie cookie;
12930
12931 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12932 ret = FALSE;
12933 else
12934 {
12935 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12936 gc_mark_hook, &cookie))
12937 ret = FALSE;
12938 fini_reloc_cookie_for_section (&cookie, eh_frame);
12939 }
12940 }
12941
12942 eh_frame = elf_section_eh_frame_entry (sec);
12943 if (ret && eh_frame && !eh_frame->gc_mark)
12944 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12945 ret = FALSE;
12946
12947 return ret;
12948 }
12949
12950 /* Scan and mark sections in a special or debug section group. */
12951
12952 static void
12953 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12954 {
12955 /* Point to first section of section group. */
12956 asection *ssec;
12957 /* Used to iterate the section group. */
12958 asection *msec;
12959
12960 bfd_boolean is_special_grp = TRUE;
12961 bfd_boolean is_debug_grp = TRUE;
12962
12963 /* First scan to see if group contains any section other than debug
12964 and special section. */
12965 ssec = msec = elf_next_in_group (grp);
12966 do
12967 {
12968 if ((msec->flags & SEC_DEBUGGING) == 0)
12969 is_debug_grp = FALSE;
12970
12971 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12972 is_special_grp = FALSE;
12973
12974 msec = elf_next_in_group (msec);
12975 }
12976 while (msec != ssec);
12977
12978 /* If this is a pure debug section group or pure special section group,
12979 keep all sections in this group. */
12980 if (is_debug_grp || is_special_grp)
12981 {
12982 do
12983 {
12984 msec->gc_mark = 1;
12985 msec = elf_next_in_group (msec);
12986 }
12987 while (msec != ssec);
12988 }
12989 }
12990
12991 /* Keep debug and special sections. */
12992
12993 bfd_boolean
12994 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12995 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12996 {
12997 bfd *ibfd;
12998
12999 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13000 {
13001 asection *isec;
13002 bfd_boolean some_kept;
13003 bfd_boolean debug_frag_seen;
13004 bfd_boolean has_kept_debug_info;
13005
13006 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13007 continue;
13008 isec = ibfd->sections;
13009 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13010 continue;
13011
13012 /* Ensure all linker created sections are kept,
13013 see if any other section is already marked,
13014 and note if we have any fragmented debug sections. */
13015 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13016 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13017 {
13018 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13019 isec->gc_mark = 1;
13020 else if (isec->gc_mark
13021 && (isec->flags & SEC_ALLOC) != 0
13022 && elf_section_type (isec) != SHT_NOTE)
13023 some_kept = TRUE;
13024
13025 if (!debug_frag_seen
13026 && (isec->flags & SEC_DEBUGGING)
13027 && CONST_STRNEQ (isec->name, ".debug_line."))
13028 debug_frag_seen = TRUE;
13029 }
13030
13031 /* If no non-note alloc section in this file will be kept, then
13032 we can toss out the debug and special sections. */
13033 if (!some_kept)
13034 continue;
13035
13036 /* Keep debug and special sections like .comment when they are
13037 not part of a group. Also keep section groups that contain
13038 just debug sections or special sections. */
13039 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13040 {
13041 if ((isec->flags & SEC_GROUP) != 0)
13042 _bfd_elf_gc_mark_debug_special_section_group (isec);
13043 else if (((isec->flags & SEC_DEBUGGING) != 0
13044 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13045 && elf_next_in_group (isec) == NULL)
13046 isec->gc_mark = 1;
13047 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13048 has_kept_debug_info = TRUE;
13049 }
13050
13051 /* Look for CODE sections which are going to be discarded,
13052 and find and discard any fragmented debug sections which
13053 are associated with that code section. */
13054 if (debug_frag_seen)
13055 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13056 if ((isec->flags & SEC_CODE) != 0
13057 && isec->gc_mark == 0)
13058 {
13059 unsigned int ilen;
13060 asection *dsec;
13061
13062 ilen = strlen (isec->name);
13063
13064 /* Association is determined by the name of the debug
13065 section containing the name of the code section as
13066 a suffix. For example .debug_line.text.foo is a
13067 debug section associated with .text.foo. */
13068 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13069 {
13070 unsigned int dlen;
13071
13072 if (dsec->gc_mark == 0
13073 || (dsec->flags & SEC_DEBUGGING) == 0)
13074 continue;
13075
13076 dlen = strlen (dsec->name);
13077
13078 if (dlen > ilen
13079 && strncmp (dsec->name + (dlen - ilen),
13080 isec->name, ilen) == 0)
13081 dsec->gc_mark = 0;
13082 }
13083 }
13084
13085 /* Mark debug sections referenced by kept debug sections. */
13086 if (has_kept_debug_info)
13087 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13088 if (isec->gc_mark
13089 && (isec->flags & SEC_DEBUGGING) != 0)
13090 if (!_bfd_elf_gc_mark (info, isec,
13091 elf_gc_mark_debug_section))
13092 return FALSE;
13093 }
13094 return TRUE;
13095 }
13096
13097 static bfd_boolean
13098 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13099 {
13100 bfd *sub;
13101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13102
13103 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13104 {
13105 asection *o;
13106
13107 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13108 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13109 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13110 continue;
13111 o = sub->sections;
13112 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13113 continue;
13114
13115 for (o = sub->sections; o != NULL; o = o->next)
13116 {
13117 /* When any section in a section group is kept, we keep all
13118 sections in the section group. If the first member of
13119 the section group is excluded, we will also exclude the
13120 group section. */
13121 if (o->flags & SEC_GROUP)
13122 {
13123 asection *first = elf_next_in_group (o);
13124 o->gc_mark = first->gc_mark;
13125 }
13126
13127 if (o->gc_mark)
13128 continue;
13129
13130 /* Skip sweeping sections already excluded. */
13131 if (o->flags & SEC_EXCLUDE)
13132 continue;
13133
13134 /* Since this is early in the link process, it is simple
13135 to remove a section from the output. */
13136 o->flags |= SEC_EXCLUDE;
13137
13138 if (info->print_gc_sections && o->size != 0)
13139 /* xgettext:c-format */
13140 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13141 o, sub);
13142 }
13143 }
13144
13145 return TRUE;
13146 }
13147
13148 /* Propagate collected vtable information. This is called through
13149 elf_link_hash_traverse. */
13150
13151 static bfd_boolean
13152 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13153 {
13154 /* Those that are not vtables. */
13155 if (h->start_stop
13156 || h->u2.vtable == NULL
13157 || h->u2.vtable->parent == NULL)
13158 return TRUE;
13159
13160 /* Those vtables that do not have parents, we cannot merge. */
13161 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13162 return TRUE;
13163
13164 /* If we've already been done, exit. */
13165 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13166 return TRUE;
13167
13168 /* Make sure the parent's table is up to date. */
13169 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13170
13171 if (h->u2.vtable->used == NULL)
13172 {
13173 /* None of this table's entries were referenced. Re-use the
13174 parent's table. */
13175 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13176 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13177 }
13178 else
13179 {
13180 size_t n;
13181 bfd_boolean *cu, *pu;
13182
13183 /* Or the parent's entries into ours. */
13184 cu = h->u2.vtable->used;
13185 cu[-1] = TRUE;
13186 pu = h->u2.vtable->parent->u2.vtable->used;
13187 if (pu != NULL)
13188 {
13189 const struct elf_backend_data *bed;
13190 unsigned int log_file_align;
13191
13192 bed = get_elf_backend_data (h->root.u.def.section->owner);
13193 log_file_align = bed->s->log_file_align;
13194 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13195 while (n--)
13196 {
13197 if (*pu)
13198 *cu = TRUE;
13199 pu++;
13200 cu++;
13201 }
13202 }
13203 }
13204
13205 return TRUE;
13206 }
13207
13208 static bfd_boolean
13209 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13210 {
13211 asection *sec;
13212 bfd_vma hstart, hend;
13213 Elf_Internal_Rela *relstart, *relend, *rel;
13214 const struct elf_backend_data *bed;
13215 unsigned int log_file_align;
13216
13217 /* Take care of both those symbols that do not describe vtables as
13218 well as those that are not loaded. */
13219 if (h->start_stop
13220 || h->u2.vtable == NULL
13221 || h->u2.vtable->parent == NULL)
13222 return TRUE;
13223
13224 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13225 || h->root.type == bfd_link_hash_defweak);
13226
13227 sec = h->root.u.def.section;
13228 hstart = h->root.u.def.value;
13229 hend = hstart + h->size;
13230
13231 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13232 if (!relstart)
13233 return *(bfd_boolean *) okp = FALSE;
13234 bed = get_elf_backend_data (sec->owner);
13235 log_file_align = bed->s->log_file_align;
13236
13237 relend = relstart + sec->reloc_count;
13238
13239 for (rel = relstart; rel < relend; ++rel)
13240 if (rel->r_offset >= hstart && rel->r_offset < hend)
13241 {
13242 /* If the entry is in use, do nothing. */
13243 if (h->u2.vtable->used
13244 && (rel->r_offset - hstart) < h->u2.vtable->size)
13245 {
13246 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13247 if (h->u2.vtable->used[entry])
13248 continue;
13249 }
13250 /* Otherwise, kill it. */
13251 rel->r_offset = rel->r_info = rel->r_addend = 0;
13252 }
13253
13254 return TRUE;
13255 }
13256
13257 /* Mark sections containing dynamically referenced symbols. When
13258 building shared libraries, we must assume that any visible symbol is
13259 referenced. */
13260
13261 bfd_boolean
13262 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13263 {
13264 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13265 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13266
13267 if ((h->root.type == bfd_link_hash_defined
13268 || h->root.type == bfd_link_hash_defweak)
13269 && (h->ref_dynamic
13270 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13271 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13272 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13273 && (!bfd_link_executable (info)
13274 || info->gc_keep_exported
13275 || info->export_dynamic
13276 || (h->dynamic
13277 && d != NULL
13278 && (*d->match) (&d->head, NULL, h->root.root.string)))
13279 && (h->versioned >= versioned
13280 || !bfd_hide_sym_by_version (info->version_info,
13281 h->root.root.string)))))
13282 h->root.u.def.section->flags |= SEC_KEEP;
13283
13284 return TRUE;
13285 }
13286
13287 /* Keep all sections containing symbols undefined on the command-line,
13288 and the section containing the entry symbol. */
13289
13290 void
13291 _bfd_elf_gc_keep (struct bfd_link_info *info)
13292 {
13293 struct bfd_sym_chain *sym;
13294
13295 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13296 {
13297 struct elf_link_hash_entry *h;
13298
13299 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13300 FALSE, FALSE, FALSE);
13301
13302 if (h != NULL
13303 && (h->root.type == bfd_link_hash_defined
13304 || h->root.type == bfd_link_hash_defweak)
13305 && !bfd_is_abs_section (h->root.u.def.section)
13306 && !bfd_is_und_section (h->root.u.def.section))
13307 h->root.u.def.section->flags |= SEC_KEEP;
13308 }
13309 }
13310
13311 bfd_boolean
13312 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13313 struct bfd_link_info *info)
13314 {
13315 bfd *ibfd = info->input_bfds;
13316
13317 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13318 {
13319 asection *sec;
13320 struct elf_reloc_cookie cookie;
13321
13322 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13323 continue;
13324 sec = ibfd->sections;
13325 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13326 continue;
13327
13328 if (!init_reloc_cookie (&cookie, info, ibfd))
13329 return FALSE;
13330
13331 for (sec = ibfd->sections; sec; sec = sec->next)
13332 {
13333 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13334 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13335 {
13336 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13337 fini_reloc_cookie_rels (&cookie, sec);
13338 }
13339 }
13340 }
13341 return TRUE;
13342 }
13343
13344 /* Do mark and sweep of unused sections. */
13345
13346 bfd_boolean
13347 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13348 {
13349 bfd_boolean ok = TRUE;
13350 bfd *sub;
13351 elf_gc_mark_hook_fn gc_mark_hook;
13352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13353 struct elf_link_hash_table *htab;
13354
13355 if (!bed->can_gc_sections
13356 || !is_elf_hash_table (info->hash))
13357 {
13358 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13359 return TRUE;
13360 }
13361
13362 bed->gc_keep (info);
13363 htab = elf_hash_table (info);
13364
13365 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13366 at the .eh_frame section if we can mark the FDEs individually. */
13367 for (sub = info->input_bfds;
13368 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13369 sub = sub->link.next)
13370 {
13371 asection *sec;
13372 struct elf_reloc_cookie cookie;
13373
13374 sec = sub->sections;
13375 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13376 continue;
13377 sec = bfd_get_section_by_name (sub, ".eh_frame");
13378 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13379 {
13380 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13381 if (elf_section_data (sec)->sec_info
13382 && (sec->flags & SEC_LINKER_CREATED) == 0)
13383 elf_eh_frame_section (sub) = sec;
13384 fini_reloc_cookie_for_section (&cookie, sec);
13385 sec = bfd_get_next_section_by_name (NULL, sec);
13386 }
13387 }
13388
13389 /* Apply transitive closure to the vtable entry usage info. */
13390 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13391 if (!ok)
13392 return FALSE;
13393
13394 /* Kill the vtable relocations that were not used. */
13395 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13396 if (!ok)
13397 return FALSE;
13398
13399 /* Mark dynamically referenced symbols. */
13400 if (htab->dynamic_sections_created || info->gc_keep_exported)
13401 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13402
13403 /* Grovel through relocs to find out who stays ... */
13404 gc_mark_hook = bed->gc_mark_hook;
13405 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13406 {
13407 asection *o;
13408
13409 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13410 || elf_object_id (sub) != elf_hash_table_id (htab)
13411 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13412 continue;
13413
13414 o = sub->sections;
13415 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13416 continue;
13417
13418 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13419 Also treat note sections as a root, if the section is not part
13420 of a group. */
13421 for (o = sub->sections; o != NULL; o = o->next)
13422 if (!o->gc_mark
13423 && (o->flags & SEC_EXCLUDE) == 0
13424 && ((o->flags & SEC_KEEP) != 0
13425 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13426 && elf_next_in_group (o) == NULL )))
13427 {
13428 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13429 return FALSE;
13430 }
13431 }
13432
13433 /* Allow the backend to mark additional target specific sections. */
13434 bed->gc_mark_extra_sections (info, gc_mark_hook);
13435
13436 /* ... and mark SEC_EXCLUDE for those that go. */
13437 return elf_gc_sweep (abfd, info);
13438 }
13439 \f
13440 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13441
13442 bfd_boolean
13443 bfd_elf_gc_record_vtinherit (bfd *abfd,
13444 asection *sec,
13445 struct elf_link_hash_entry *h,
13446 bfd_vma offset)
13447 {
13448 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13449 struct elf_link_hash_entry **search, *child;
13450 size_t extsymcount;
13451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13452
13453 /* The sh_info field of the symtab header tells us where the
13454 external symbols start. We don't care about the local symbols at
13455 this point. */
13456 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13457 if (!elf_bad_symtab (abfd))
13458 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13459
13460 sym_hashes = elf_sym_hashes (abfd);
13461 sym_hashes_end = sym_hashes + extsymcount;
13462
13463 /* Hunt down the child symbol, which is in this section at the same
13464 offset as the relocation. */
13465 for (search = sym_hashes; search != sym_hashes_end; ++search)
13466 {
13467 if ((child = *search) != NULL
13468 && (child->root.type == bfd_link_hash_defined
13469 || child->root.type == bfd_link_hash_defweak)
13470 && child->root.u.def.section == sec
13471 && child->root.u.def.value == offset)
13472 goto win;
13473 }
13474
13475 /* xgettext:c-format */
13476 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13477 abfd, sec, offset);
13478 bfd_set_error (bfd_error_invalid_operation);
13479 return FALSE;
13480
13481 win:
13482 if (!child->u2.vtable)
13483 {
13484 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13485 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13486 if (!child->u2.vtable)
13487 return FALSE;
13488 }
13489 if (!h)
13490 {
13491 /* This *should* only be the absolute section. It could potentially
13492 be that someone has defined a non-global vtable though, which
13493 would be bad. It isn't worth paging in the local symbols to be
13494 sure though; that case should simply be handled by the assembler. */
13495
13496 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13497 }
13498 else
13499 child->u2.vtable->parent = h;
13500
13501 return TRUE;
13502 }
13503
13504 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13505
13506 bfd_boolean
13507 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13508 asection *sec ATTRIBUTE_UNUSED,
13509 struct elf_link_hash_entry *h,
13510 bfd_vma addend)
13511 {
13512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13513 unsigned int log_file_align = bed->s->log_file_align;
13514
13515 if (!h->u2.vtable)
13516 {
13517 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13518 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13519 if (!h->u2.vtable)
13520 return FALSE;
13521 }
13522
13523 if (addend >= h->u2.vtable->size)
13524 {
13525 size_t size, bytes, file_align;
13526 bfd_boolean *ptr = h->u2.vtable->used;
13527
13528 /* While the symbol is undefined, we have to be prepared to handle
13529 a zero size. */
13530 file_align = 1 << log_file_align;
13531 if (h->root.type == bfd_link_hash_undefined)
13532 size = addend + file_align;
13533 else
13534 {
13535 size = h->size;
13536 if (addend >= size)
13537 {
13538 /* Oops! We've got a reference past the defined end of
13539 the table. This is probably a bug -- shall we warn? */
13540 size = addend + file_align;
13541 }
13542 }
13543 size = (size + file_align - 1) & -file_align;
13544
13545 /* Allocate one extra entry for use as a "done" flag for the
13546 consolidation pass. */
13547 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13548
13549 if (ptr)
13550 {
13551 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13552
13553 if (ptr != NULL)
13554 {
13555 size_t oldbytes;
13556
13557 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13558 * sizeof (bfd_boolean));
13559 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13560 }
13561 }
13562 else
13563 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13564
13565 if (ptr == NULL)
13566 return FALSE;
13567
13568 /* And arrange for that done flag to be at index -1. */
13569 h->u2.vtable->used = ptr + 1;
13570 h->u2.vtable->size = size;
13571 }
13572
13573 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13574
13575 return TRUE;
13576 }
13577
13578 /* Map an ELF section header flag to its corresponding string. */
13579 typedef struct
13580 {
13581 char *flag_name;
13582 flagword flag_value;
13583 } elf_flags_to_name_table;
13584
13585 static elf_flags_to_name_table elf_flags_to_names [] =
13586 {
13587 { "SHF_WRITE", SHF_WRITE },
13588 { "SHF_ALLOC", SHF_ALLOC },
13589 { "SHF_EXECINSTR", SHF_EXECINSTR },
13590 { "SHF_MERGE", SHF_MERGE },
13591 { "SHF_STRINGS", SHF_STRINGS },
13592 { "SHF_INFO_LINK", SHF_INFO_LINK},
13593 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13594 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13595 { "SHF_GROUP", SHF_GROUP },
13596 { "SHF_TLS", SHF_TLS },
13597 { "SHF_MASKOS", SHF_MASKOS },
13598 { "SHF_EXCLUDE", SHF_EXCLUDE },
13599 };
13600
13601 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13602 bfd_boolean
13603 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13604 struct flag_info *flaginfo,
13605 asection *section)
13606 {
13607 const bfd_vma sh_flags = elf_section_flags (section);
13608
13609 if (!flaginfo->flags_initialized)
13610 {
13611 bfd *obfd = info->output_bfd;
13612 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13613 struct flag_info_list *tf = flaginfo->flag_list;
13614 int with_hex = 0;
13615 int without_hex = 0;
13616
13617 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13618 {
13619 unsigned i;
13620 flagword (*lookup) (char *);
13621
13622 lookup = bed->elf_backend_lookup_section_flags_hook;
13623 if (lookup != NULL)
13624 {
13625 flagword hexval = (*lookup) ((char *) tf->name);
13626
13627 if (hexval != 0)
13628 {
13629 if (tf->with == with_flags)
13630 with_hex |= hexval;
13631 else if (tf->with == without_flags)
13632 without_hex |= hexval;
13633 tf->valid = TRUE;
13634 continue;
13635 }
13636 }
13637 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13638 {
13639 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13640 {
13641 if (tf->with == with_flags)
13642 with_hex |= elf_flags_to_names[i].flag_value;
13643 else if (tf->with == without_flags)
13644 without_hex |= elf_flags_to_names[i].flag_value;
13645 tf->valid = TRUE;
13646 break;
13647 }
13648 }
13649 if (!tf->valid)
13650 {
13651 info->callbacks->einfo
13652 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13653 return FALSE;
13654 }
13655 }
13656 flaginfo->flags_initialized = TRUE;
13657 flaginfo->only_with_flags |= with_hex;
13658 flaginfo->not_with_flags |= without_hex;
13659 }
13660
13661 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13662 return FALSE;
13663
13664 if ((flaginfo->not_with_flags & sh_flags) != 0)
13665 return FALSE;
13666
13667 return TRUE;
13668 }
13669
13670 struct alloc_got_off_arg {
13671 bfd_vma gotoff;
13672 struct bfd_link_info *info;
13673 };
13674
13675 /* We need a special top-level link routine to convert got reference counts
13676 to real got offsets. */
13677
13678 static bfd_boolean
13679 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13680 {
13681 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13682 bfd *obfd = gofarg->info->output_bfd;
13683 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13684
13685 if (h->got.refcount > 0)
13686 {
13687 h->got.offset = gofarg->gotoff;
13688 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13689 }
13690 else
13691 h->got.offset = (bfd_vma) -1;
13692
13693 return TRUE;
13694 }
13695
13696 /* And an accompanying bit to work out final got entry offsets once
13697 we're done. Should be called from final_link. */
13698
13699 bfd_boolean
13700 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13701 struct bfd_link_info *info)
13702 {
13703 bfd *i;
13704 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13705 bfd_vma gotoff;
13706 struct alloc_got_off_arg gofarg;
13707
13708 BFD_ASSERT (abfd == info->output_bfd);
13709
13710 if (! is_elf_hash_table (info->hash))
13711 return FALSE;
13712
13713 /* The GOT offset is relative to the .got section, but the GOT header is
13714 put into the .got.plt section, if the backend uses it. */
13715 if (bed->want_got_plt)
13716 gotoff = 0;
13717 else
13718 gotoff = bed->got_header_size;
13719
13720 /* Do the local .got entries first. */
13721 for (i = info->input_bfds; i; i = i->link.next)
13722 {
13723 bfd_signed_vma *local_got;
13724 size_t j, locsymcount;
13725 Elf_Internal_Shdr *symtab_hdr;
13726
13727 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13728 continue;
13729
13730 local_got = elf_local_got_refcounts (i);
13731 if (!local_got)
13732 continue;
13733
13734 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13735 if (elf_bad_symtab (i))
13736 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13737 else
13738 locsymcount = symtab_hdr->sh_info;
13739
13740 for (j = 0; j < locsymcount; ++j)
13741 {
13742 if (local_got[j] > 0)
13743 {
13744 local_got[j] = gotoff;
13745 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13746 }
13747 else
13748 local_got[j] = (bfd_vma) -1;
13749 }
13750 }
13751
13752 /* Then the global .got entries. .plt refcounts are handled by
13753 adjust_dynamic_symbol */
13754 gofarg.gotoff = gotoff;
13755 gofarg.info = info;
13756 elf_link_hash_traverse (elf_hash_table (info),
13757 elf_gc_allocate_got_offsets,
13758 &gofarg);
13759 return TRUE;
13760 }
13761
13762 /* Many folk need no more in the way of final link than this, once
13763 got entry reference counting is enabled. */
13764
13765 bfd_boolean
13766 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13767 {
13768 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13769 return FALSE;
13770
13771 /* Invoke the regular ELF backend linker to do all the work. */
13772 return bfd_elf_final_link (abfd, info);
13773 }
13774
13775 bfd_boolean
13776 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13777 {
13778 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13779
13780 if (rcookie->bad_symtab)
13781 rcookie->rel = rcookie->rels;
13782
13783 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13784 {
13785 unsigned long r_symndx;
13786
13787 if (! rcookie->bad_symtab)
13788 if (rcookie->rel->r_offset > offset)
13789 return FALSE;
13790 if (rcookie->rel->r_offset != offset)
13791 continue;
13792
13793 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13794 if (r_symndx == STN_UNDEF)
13795 return TRUE;
13796
13797 if (r_symndx >= rcookie->locsymcount
13798 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13799 {
13800 struct elf_link_hash_entry *h;
13801
13802 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13803
13804 while (h->root.type == bfd_link_hash_indirect
13805 || h->root.type == bfd_link_hash_warning)
13806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13807
13808 if ((h->root.type == bfd_link_hash_defined
13809 || h->root.type == bfd_link_hash_defweak)
13810 && (h->root.u.def.section->owner != rcookie->abfd
13811 || h->root.u.def.section->kept_section != NULL
13812 || discarded_section (h->root.u.def.section)))
13813 return TRUE;
13814 }
13815 else
13816 {
13817 /* It's not a relocation against a global symbol,
13818 but it could be a relocation against a local
13819 symbol for a discarded section. */
13820 asection *isec;
13821 Elf_Internal_Sym *isym;
13822
13823 /* Need to: get the symbol; get the section. */
13824 isym = &rcookie->locsyms[r_symndx];
13825 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13826 if (isec != NULL
13827 && (isec->kept_section != NULL
13828 || discarded_section (isec)))
13829 return TRUE;
13830 }
13831 return FALSE;
13832 }
13833 return FALSE;
13834 }
13835
13836 /* Discard unneeded references to discarded sections.
13837 Returns -1 on error, 1 if any section's size was changed, 0 if
13838 nothing changed. This function assumes that the relocations are in
13839 sorted order, which is true for all known assemblers. */
13840
13841 int
13842 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13843 {
13844 struct elf_reloc_cookie cookie;
13845 asection *o;
13846 bfd *abfd;
13847 int changed = 0;
13848
13849 if (info->traditional_format
13850 || !is_elf_hash_table (info->hash))
13851 return 0;
13852
13853 o = bfd_get_section_by_name (output_bfd, ".stab");
13854 if (o != NULL)
13855 {
13856 asection *i;
13857
13858 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13859 {
13860 if (i->size == 0
13861 || i->reloc_count == 0
13862 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13863 continue;
13864
13865 abfd = i->owner;
13866 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13867 continue;
13868
13869 if (!init_reloc_cookie_for_section (&cookie, info, i))
13870 return -1;
13871
13872 if (_bfd_discard_section_stabs (abfd, i,
13873 elf_section_data (i)->sec_info,
13874 bfd_elf_reloc_symbol_deleted_p,
13875 &cookie))
13876 changed = 1;
13877
13878 fini_reloc_cookie_for_section (&cookie, i);
13879 }
13880 }
13881
13882 o = NULL;
13883 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13884 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13885 if (o != NULL)
13886 {
13887 asection *i;
13888 int eh_changed = 0;
13889 unsigned int eh_alignment;
13890
13891 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13892 {
13893 if (i->size == 0)
13894 continue;
13895
13896 abfd = i->owner;
13897 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13898 continue;
13899
13900 if (!init_reloc_cookie_for_section (&cookie, info, i))
13901 return -1;
13902
13903 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13904 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13905 bfd_elf_reloc_symbol_deleted_p,
13906 &cookie))
13907 {
13908 eh_changed = 1;
13909 if (i->size != i->rawsize)
13910 changed = 1;
13911 }
13912
13913 fini_reloc_cookie_for_section (&cookie, i);
13914 }
13915
13916 eh_alignment = 1 << o->alignment_power;
13917 /* Skip over zero terminator, and prevent empty sections from
13918 adding alignment padding at the end. */
13919 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13920 if (i->size == 0)
13921 i->flags |= SEC_EXCLUDE;
13922 else if (i->size > 4)
13923 break;
13924 /* The last non-empty eh_frame section doesn't need padding. */
13925 if (i != NULL)
13926 i = i->map_tail.s;
13927 /* Any prior sections must pad the last FDE out to the output
13928 section alignment. Otherwise we might have zero padding
13929 between sections, which would be seen as a terminator. */
13930 for (; i != NULL; i = i->map_tail.s)
13931 if (i->size == 4)
13932 /* All but the last zero terminator should have been removed. */
13933 BFD_FAIL ();
13934 else
13935 {
13936 bfd_size_type size
13937 = (i->size + eh_alignment - 1) & -eh_alignment;
13938 if (i->size != size)
13939 {
13940 i->size = size;
13941 changed = 1;
13942 eh_changed = 1;
13943 }
13944 }
13945 if (eh_changed)
13946 elf_link_hash_traverse (elf_hash_table (info),
13947 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13948 }
13949
13950 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13951 {
13952 const struct elf_backend_data *bed;
13953 asection *s;
13954
13955 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13956 continue;
13957 s = abfd->sections;
13958 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13959 continue;
13960
13961 bed = get_elf_backend_data (abfd);
13962
13963 if (bed->elf_backend_discard_info != NULL)
13964 {
13965 if (!init_reloc_cookie (&cookie, info, abfd))
13966 return -1;
13967
13968 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13969 changed = 1;
13970
13971 fini_reloc_cookie (&cookie, abfd);
13972 }
13973 }
13974
13975 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13976 _bfd_elf_end_eh_frame_parsing (info);
13977
13978 if (info->eh_frame_hdr_type
13979 && !bfd_link_relocatable (info)
13980 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13981 changed = 1;
13982
13983 return changed;
13984 }
13985
13986 bfd_boolean
13987 _bfd_elf_section_already_linked (bfd *abfd,
13988 asection *sec,
13989 struct bfd_link_info *info)
13990 {
13991 flagword flags;
13992 const char *name, *key;
13993 struct bfd_section_already_linked *l;
13994 struct bfd_section_already_linked_hash_entry *already_linked_list;
13995
13996 if (sec->output_section == bfd_abs_section_ptr)
13997 return FALSE;
13998
13999 flags = sec->flags;
14000
14001 /* Return if it isn't a linkonce section. A comdat group section
14002 also has SEC_LINK_ONCE set. */
14003 if ((flags & SEC_LINK_ONCE) == 0)
14004 return FALSE;
14005
14006 /* Don't put group member sections on our list of already linked
14007 sections. They are handled as a group via their group section. */
14008 if (elf_sec_group (sec) != NULL)
14009 return FALSE;
14010
14011 /* For a SHT_GROUP section, use the group signature as the key. */
14012 name = sec->name;
14013 if ((flags & SEC_GROUP) != 0
14014 && elf_next_in_group (sec) != NULL
14015 && elf_group_name (elf_next_in_group (sec)) != NULL)
14016 key = elf_group_name (elf_next_in_group (sec));
14017 else
14018 {
14019 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14020 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14021 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14022 key++;
14023 else
14024 /* Must be a user linkonce section that doesn't follow gcc's
14025 naming convention. In this case we won't be matching
14026 single member groups. */
14027 key = name;
14028 }
14029
14030 already_linked_list = bfd_section_already_linked_table_lookup (key);
14031
14032 for (l = already_linked_list->entry; l != NULL; l = l->next)
14033 {
14034 /* We may have 2 different types of sections on the list: group
14035 sections with a signature of <key> (<key> is some string),
14036 and linkonce sections named .gnu.linkonce.<type>.<key>.
14037 Match like sections. LTO plugin sections are an exception.
14038 They are always named .gnu.linkonce.t.<key> and match either
14039 type of section. */
14040 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14041 && ((flags & SEC_GROUP) != 0
14042 || strcmp (name, l->sec->name) == 0))
14043 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14044 {
14045 /* The section has already been linked. See if we should
14046 issue a warning. */
14047 if (!_bfd_handle_already_linked (sec, l, info))
14048 return FALSE;
14049
14050 if (flags & SEC_GROUP)
14051 {
14052 asection *first = elf_next_in_group (sec);
14053 asection *s = first;
14054
14055 while (s != NULL)
14056 {
14057 s->output_section = bfd_abs_section_ptr;
14058 /* Record which group discards it. */
14059 s->kept_section = l->sec;
14060 s = elf_next_in_group (s);
14061 /* These lists are circular. */
14062 if (s == first)
14063 break;
14064 }
14065 }
14066
14067 return TRUE;
14068 }
14069 }
14070
14071 /* A single member comdat group section may be discarded by a
14072 linkonce section and vice versa. */
14073 if ((flags & SEC_GROUP) != 0)
14074 {
14075 asection *first = elf_next_in_group (sec);
14076
14077 if (first != NULL && elf_next_in_group (first) == first)
14078 /* Check this single member group against linkonce sections. */
14079 for (l = already_linked_list->entry; l != NULL; l = l->next)
14080 if ((l->sec->flags & SEC_GROUP) == 0
14081 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14082 {
14083 first->output_section = bfd_abs_section_ptr;
14084 first->kept_section = l->sec;
14085 sec->output_section = bfd_abs_section_ptr;
14086 break;
14087 }
14088 }
14089 else
14090 /* Check this linkonce section against single member groups. */
14091 for (l = already_linked_list->entry; l != NULL; l = l->next)
14092 if (l->sec->flags & SEC_GROUP)
14093 {
14094 asection *first = elf_next_in_group (l->sec);
14095
14096 if (first != NULL
14097 && elf_next_in_group (first) == first
14098 && bfd_elf_match_symbols_in_sections (first, sec, info))
14099 {
14100 sec->output_section = bfd_abs_section_ptr;
14101 sec->kept_section = first;
14102 break;
14103 }
14104 }
14105
14106 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14107 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14108 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14109 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14110 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14111 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14112 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14113 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14114 The reverse order cannot happen as there is never a bfd with only the
14115 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14116 matter as here were are looking only for cross-bfd sections. */
14117
14118 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14119 for (l = already_linked_list->entry; l != NULL; l = l->next)
14120 if ((l->sec->flags & SEC_GROUP) == 0
14121 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14122 {
14123 if (abfd != l->sec->owner)
14124 sec->output_section = bfd_abs_section_ptr;
14125 break;
14126 }
14127
14128 /* This is the first section with this name. Record it. */
14129 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14130 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14131 return sec->output_section == bfd_abs_section_ptr;
14132 }
14133
14134 bfd_boolean
14135 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14136 {
14137 return sym->st_shndx == SHN_COMMON;
14138 }
14139
14140 unsigned int
14141 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14142 {
14143 return SHN_COMMON;
14144 }
14145
14146 asection *
14147 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14148 {
14149 return bfd_com_section_ptr;
14150 }
14151
14152 bfd_vma
14153 _bfd_elf_default_got_elt_size (bfd *abfd,
14154 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14155 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14156 bfd *ibfd ATTRIBUTE_UNUSED,
14157 unsigned long symndx ATTRIBUTE_UNUSED)
14158 {
14159 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14160 return bed->s->arch_size / 8;
14161 }
14162
14163 /* Routines to support the creation of dynamic relocs. */
14164
14165 /* Returns the name of the dynamic reloc section associated with SEC. */
14166
14167 static const char *
14168 get_dynamic_reloc_section_name (bfd * abfd,
14169 asection * sec,
14170 bfd_boolean is_rela)
14171 {
14172 char *name;
14173 const char *old_name = bfd_get_section_name (NULL, sec);
14174 const char *prefix = is_rela ? ".rela" : ".rel";
14175
14176 if (old_name == NULL)
14177 return NULL;
14178
14179 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14180 sprintf (name, "%s%s", prefix, old_name);
14181
14182 return name;
14183 }
14184
14185 /* Returns the dynamic reloc section associated with SEC.
14186 If necessary compute the name of the dynamic reloc section based
14187 on SEC's name (looked up in ABFD's string table) and the setting
14188 of IS_RELA. */
14189
14190 asection *
14191 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14192 asection * sec,
14193 bfd_boolean is_rela)
14194 {
14195 asection * reloc_sec = elf_section_data (sec)->sreloc;
14196
14197 if (reloc_sec == NULL)
14198 {
14199 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14200
14201 if (name != NULL)
14202 {
14203 reloc_sec = bfd_get_linker_section (abfd, name);
14204
14205 if (reloc_sec != NULL)
14206 elf_section_data (sec)->sreloc = reloc_sec;
14207 }
14208 }
14209
14210 return reloc_sec;
14211 }
14212
14213 /* Returns the dynamic reloc section associated with SEC. If the
14214 section does not exist it is created and attached to the DYNOBJ
14215 bfd and stored in the SRELOC field of SEC's elf_section_data
14216 structure.
14217
14218 ALIGNMENT is the alignment for the newly created section and
14219 IS_RELA defines whether the name should be .rela.<SEC's name>
14220 or .rel.<SEC's name>. The section name is looked up in the
14221 string table associated with ABFD. */
14222
14223 asection *
14224 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14225 bfd *dynobj,
14226 unsigned int alignment,
14227 bfd *abfd,
14228 bfd_boolean is_rela)
14229 {
14230 asection * reloc_sec = elf_section_data (sec)->sreloc;
14231
14232 if (reloc_sec == NULL)
14233 {
14234 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14235
14236 if (name == NULL)
14237 return NULL;
14238
14239 reloc_sec = bfd_get_linker_section (dynobj, name);
14240
14241 if (reloc_sec == NULL)
14242 {
14243 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14244 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14245 if ((sec->flags & SEC_ALLOC) != 0)
14246 flags |= SEC_ALLOC | SEC_LOAD;
14247
14248 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14249 if (reloc_sec != NULL)
14250 {
14251 /* _bfd_elf_get_sec_type_attr chooses a section type by
14252 name. Override as it may be wrong, eg. for a user
14253 section named "auto" we'll get ".relauto" which is
14254 seen to be a .rela section. */
14255 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14256 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14257 reloc_sec = NULL;
14258 }
14259 }
14260
14261 elf_section_data (sec)->sreloc = reloc_sec;
14262 }
14263
14264 return reloc_sec;
14265 }
14266
14267 /* Copy the ELF symbol type and other attributes for a linker script
14268 assignment from HSRC to HDEST. Generally this should be treated as
14269 if we found a strong non-dynamic definition for HDEST (except that
14270 ld ignores multiple definition errors). */
14271 void
14272 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14273 struct bfd_link_hash_entry *hdest,
14274 struct bfd_link_hash_entry *hsrc)
14275 {
14276 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14277 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14278 Elf_Internal_Sym isym;
14279
14280 ehdest->type = ehsrc->type;
14281 ehdest->target_internal = ehsrc->target_internal;
14282
14283 isym.st_other = ehsrc->other;
14284 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14285 }
14286
14287 /* Append a RELA relocation REL to section S in BFD. */
14288
14289 void
14290 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14291 {
14292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14293 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14294 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14295 bed->s->swap_reloca_out (abfd, rel, loc);
14296 }
14297
14298 /* Append a REL relocation REL to section S in BFD. */
14299
14300 void
14301 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14302 {
14303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14304 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14305 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14306 bed->s->swap_reloc_out (abfd, rel, loc);
14307 }
14308
14309 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14310
14311 struct bfd_link_hash_entry *
14312 bfd_elf_define_start_stop (struct bfd_link_info *info,
14313 const char *symbol, asection *sec)
14314 {
14315 struct elf_link_hash_entry *h;
14316
14317 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14318 FALSE, FALSE, TRUE);
14319 if (h != NULL
14320 && (h->root.type == bfd_link_hash_undefined
14321 || h->root.type == bfd_link_hash_undefweak
14322 || (h->ref_regular && !h->def_regular)))
14323 {
14324 h->root.type = bfd_link_hash_defined;
14325 h->root.u.def.section = sec;
14326 h->root.u.def.value = 0;
14327 h->def_regular = 1;
14328 h->def_dynamic = 0;
14329 h->start_stop = 1;
14330 h->u2.start_stop_section = sec;
14331 if (symbol[0] == '.')
14332 {
14333 /* .startof. and .sizeof. symbols are local. */
14334 const struct elf_backend_data *bed;
14335 bed = get_elf_backend_data (info->output_bfd);
14336 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14337 }
14338 else if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14339 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14340 return &h->root;
14341 }
14342 return NULL;
14343 }
This page took 0.325364 seconds and 4 git commands to generate.