daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && entry->isym.st_shndx < SHN_LORESERVE)
622 {
623 asection *s;
624
625 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
626 if (s == NULL || bfd_is_abs_section (s->output_section))
627 {
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd, entry);
631 return 2;
632 }
633 }
634
635 name = (bfd_elf_string_from_elf_section
636 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
637 entry->isym.st_name));
638
639 dynstr = elf_hash_table (info)->dynstr;
640 if (dynstr == NULL)
641 {
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
644 if (dynstr == NULL)
645 return 0;
646 }
647
648 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
649 if (dynstr_index == (unsigned long) -1)
650 return 0;
651 entry->isym.st_name = dynstr_index;
652
653 eht = elf_hash_table (info);
654
655 entry->next = eht->dynlocal;
656 eht->dynlocal = entry;
657 entry->input_bfd = input_bfd;
658 entry->input_indx = input_indx;
659 eht->dynsymcount++;
660
661 /* Whatever binding the symbol had before, it's now local. */
662 entry->isym.st_info
663 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
664
665 /* The dynindx will be set at the end of size_dynamic_sections. */
666
667 return 1;
668 }
669
670 /* Return the dynindex of a local dynamic symbol. */
671
672 long
673 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
674 bfd *input_bfd,
675 long input_indx)
676 {
677 struct elf_link_local_dynamic_entry *e;
678
679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
680 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
681 return e->dynindx;
682 return -1;
683 }
684
685 /* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
688
689 static bfd_boolean
690 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
691 void *data)
692 {
693 size_t *count = data;
694
695 if (h->root.type == bfd_link_hash_warning)
696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
697
698 if (h->forced_local)
699 return TRUE;
700
701 if (h->dynindx != -1)
702 h->dynindx = ++(*count);
703
704 return TRUE;
705 }
706
707
708 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
710
711 static bfd_boolean
712 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
713 void *data)
714 {
715 size_t *count = data;
716
717 if (h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 if (!h->forced_local)
721 return TRUE;
722
723 if (h->dynindx != -1)
724 h->dynindx = ++(*count);
725
726 return TRUE;
727 }
728
729 /* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
731 bfd_boolean
732 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
733 struct bfd_link_info *info,
734 asection *p)
735 {
736 struct elf_link_hash_table *htab;
737
738 switch (elf_section_data (p)->this_hdr.sh_type)
739 {
740 case SHT_PROGBITS:
741 case SHT_NOBITS:
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
744 case SHT_NULL:
745 htab = elf_hash_table (info);
746 if (p == htab->tls_sec)
747 return FALSE;
748
749 if (htab->text_index_section != NULL)
750 return p != htab->text_index_section && p != htab->data_index_section;
751
752 if (strcmp (p->name, ".got") == 0
753 || strcmp (p->name, ".got.plt") == 0
754 || strcmp (p->name, ".plt") == 0)
755 {
756 asection *ip;
757
758 if (htab->dynobj != NULL
759 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
760 && (ip->flags & SEC_LINKER_CREATED)
761 && ip->output_section == p)
762 return TRUE;
763 }
764 return FALSE;
765
766 /* There shouldn't be section relative relocations
767 against any other section. */
768 default:
769 return TRUE;
770 }
771 }
772
773 /* Assign dynsym indices. In a shared library we generate a section
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
777 symbols. */
778
779 static unsigned long
780 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
781 struct bfd_link_info *info,
782 unsigned long *section_sym_count)
783 {
784 unsigned long dynsymcount = 0;
785
786 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
787 {
788 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
789 asection *p;
790 for (p = output_bfd->sections; p ; p = p->next)
791 if ((p->flags & SEC_EXCLUDE) == 0
792 && (p->flags & SEC_ALLOC) != 0
793 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
794 elf_section_data (p)->dynindx = ++dynsymcount;
795 else
796 elf_section_data (p)->dynindx = 0;
797 }
798 *section_sym_count = dynsymcount;
799
800 elf_link_hash_traverse (elf_hash_table (info),
801 elf_link_renumber_local_hash_table_dynsyms,
802 &dynsymcount);
803
804 if (elf_hash_table (info)->dynlocal)
805 {
806 struct elf_link_local_dynamic_entry *p;
807 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
808 p->dynindx = ++dynsymcount;
809 }
810
811 elf_link_hash_traverse (elf_hash_table (info),
812 elf_link_renumber_hash_table_dynsyms,
813 &dynsymcount);
814
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount != 0)
819 ++dynsymcount;
820
821 elf_hash_table (info)->dynsymcount = dynsymcount;
822 return dynsymcount;
823 }
824
825 /* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
836
837 bfd_boolean
838 _bfd_elf_merge_symbol (bfd *abfd,
839 struct bfd_link_info *info,
840 const char *name,
841 Elf_Internal_Sym *sym,
842 asection **psec,
843 bfd_vma *pvalue,
844 unsigned int *pold_alignment,
845 struct elf_link_hash_entry **sym_hash,
846 bfd_boolean *skip,
847 bfd_boolean *override,
848 bfd_boolean *type_change_ok,
849 bfd_boolean *size_change_ok)
850 {
851 asection *sec, *oldsec;
852 struct elf_link_hash_entry *h;
853 struct elf_link_hash_entry *flip;
854 int bind;
855 bfd *oldbfd;
856 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
857 bfd_boolean newweak, oldweak;
858 const struct elf_backend_data *bed;
859
860 *skip = FALSE;
861 *override = FALSE;
862
863 sec = *psec;
864 bind = ELF_ST_BIND (sym->st_info);
865
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
869 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
870 {
871 *skip = TRUE;
872 return TRUE;
873 }
874
875 if (! bfd_is_und_section (sec))
876 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
877 else
878 h = ((struct elf_link_hash_entry *)
879 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
880 if (h == NULL)
881 return FALSE;
882 *sym_hash = h;
883
884 /* This code is for coping with dynamic objects, and is only useful
885 if we are doing an ELF link. */
886 if (info->output_bfd->xvec != abfd->xvec)
887 return TRUE;
888
889 /* For merging, we only care about real symbols. */
890
891 while (h->root.type == bfd_link_hash_indirect
892 || h->root.type == bfd_link_hash_warning)
893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
894
895 /* We have to check it for every instance since the first few may be
896 refereences and not all compilers emit symbol type for undefined
897 symbols. */
898 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
899
900 /* If we just created the symbol, mark it as being an ELF symbol.
901 Other than that, there is nothing to do--there is no merge issue
902 with a newly defined symbol--so we just return. */
903
904 if (h->root.type == bfd_link_hash_new)
905 {
906 h->non_elf = 0;
907 return TRUE;
908 }
909
910 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
911 existing symbol. */
912
913 switch (h->root.type)
914 {
915 default:
916 oldbfd = NULL;
917 oldsec = NULL;
918 break;
919
920 case bfd_link_hash_undefined:
921 case bfd_link_hash_undefweak:
922 oldbfd = h->root.u.undef.abfd;
923 oldsec = NULL;
924 break;
925
926 case bfd_link_hash_defined:
927 case bfd_link_hash_defweak:
928 oldbfd = h->root.u.def.section->owner;
929 oldsec = h->root.u.def.section;
930 break;
931
932 case bfd_link_hash_common:
933 oldbfd = h->root.u.c.p->section->owner;
934 oldsec = h->root.u.c.p->section;
935 break;
936 }
937
938 /* In cases involving weak versioned symbols, we may wind up trying
939 to merge a symbol with itself. Catch that here, to avoid the
940 confusion that results if we try to override a symbol with
941 itself. The additional tests catch cases like
942 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
943 dynamic object, which we do want to handle here. */
944 if (abfd == oldbfd
945 && ((abfd->flags & DYNAMIC) == 0
946 || !h->def_regular))
947 return TRUE;
948
949 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
950 respectively, is from a dynamic object. */
951
952 newdyn = (abfd->flags & DYNAMIC) != 0;
953
954 olddyn = FALSE;
955 if (oldbfd != NULL)
956 olddyn = (oldbfd->flags & DYNAMIC) != 0;
957 else if (oldsec != NULL)
958 {
959 /* This handles the special SHN_MIPS_{TEXT,DATA} section
960 indices used by MIPS ELF. */
961 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
962 }
963
964 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
965 respectively, appear to be a definition rather than reference. */
966
967 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
968
969 olddef = (h->root.type != bfd_link_hash_undefined
970 && h->root.type != bfd_link_hash_undefweak
971 && h->root.type != bfd_link_hash_common);
972
973 bed = get_elf_backend_data (abfd);
974 /* When we try to create a default indirect symbol from the dynamic
975 definition with the default version, we skip it if its type and
976 the type of existing regular definition mismatch. We only do it
977 if the existing regular definition won't be dynamic. */
978 if (pold_alignment == NULL
979 && !info->shared
980 && !info->export_dynamic
981 && !h->ref_dynamic
982 && newdyn
983 && newdef
984 && !olddyn
985 && (olddef || h->root.type == bfd_link_hash_common)
986 && ELF_ST_TYPE (sym->st_info) != h->type
987 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
988 && h->type != STT_NOTYPE
989 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
990 && bed->is_function_type (h->type)))
991 {
992 *skip = TRUE;
993 return TRUE;
994 }
995
996 /* Check TLS symbol. We don't check undefined symbol introduced by
997 "ld -u". */
998 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
999 && ELF_ST_TYPE (sym->st_info) != h->type
1000 && oldbfd != NULL)
1001 {
1002 bfd *ntbfd, *tbfd;
1003 bfd_boolean ntdef, tdef;
1004 asection *ntsec, *tsec;
1005
1006 if (h->type == STT_TLS)
1007 {
1008 ntbfd = abfd;
1009 ntsec = sec;
1010 ntdef = newdef;
1011 tbfd = oldbfd;
1012 tsec = oldsec;
1013 tdef = olddef;
1014 }
1015 else
1016 {
1017 ntbfd = oldbfd;
1018 ntsec = oldsec;
1019 ntdef = olddef;
1020 tbfd = abfd;
1021 tsec = sec;
1022 tdef = newdef;
1023 }
1024
1025 if (tdef && ntdef)
1026 (*_bfd_error_handler)
1027 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1028 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1029 else if (!tdef && !ntdef)
1030 (*_bfd_error_handler)
1031 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1032 tbfd, ntbfd, h->root.root.string);
1033 else if (tdef)
1034 (*_bfd_error_handler)
1035 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1036 tbfd, tsec, ntbfd, h->root.root.string);
1037 else
1038 (*_bfd_error_handler)
1039 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1040 tbfd, ntbfd, ntsec, h->root.root.string);
1041
1042 bfd_set_error (bfd_error_bad_value);
1043 return FALSE;
1044 }
1045
1046 /* We need to remember if a symbol has a definition in a dynamic
1047 object or is weak in all dynamic objects. Internal and hidden
1048 visibility will make it unavailable to dynamic objects. */
1049 if (newdyn && !h->dynamic_def)
1050 {
1051 if (!bfd_is_und_section (sec))
1052 h->dynamic_def = 1;
1053 else
1054 {
1055 /* Check if this symbol is weak in all dynamic objects. If it
1056 is the first time we see it in a dynamic object, we mark
1057 if it is weak. Otherwise, we clear it. */
1058 if (!h->ref_dynamic)
1059 {
1060 if (bind == STB_WEAK)
1061 h->dynamic_weak = 1;
1062 }
1063 else if (bind != STB_WEAK)
1064 h->dynamic_weak = 0;
1065 }
1066 }
1067
1068 /* If the old symbol has non-default visibility, we ignore the new
1069 definition from a dynamic object. */
1070 if (newdyn
1071 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1072 && !bfd_is_und_section (sec))
1073 {
1074 *skip = TRUE;
1075 /* Make sure this symbol is dynamic. */
1076 h->ref_dynamic = 1;
1077 /* A protected symbol has external availability. Make sure it is
1078 recorded as dynamic.
1079
1080 FIXME: Should we check type and size for protected symbol? */
1081 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1082 return bfd_elf_link_record_dynamic_symbol (info, h);
1083 else
1084 return TRUE;
1085 }
1086 else if (!newdyn
1087 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1088 && h->def_dynamic)
1089 {
1090 /* If the new symbol with non-default visibility comes from a
1091 relocatable file and the old definition comes from a dynamic
1092 object, we remove the old definition. */
1093 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1094 {
1095 /* Handle the case where the old dynamic definition is
1096 default versioned. We need to copy the symbol info from
1097 the symbol with default version to the normal one if it
1098 was referenced before. */
1099 if (h->ref_regular)
1100 {
1101 const struct elf_backend_data *bed
1102 = get_elf_backend_data (abfd);
1103 struct elf_link_hash_entry *vh = *sym_hash;
1104 vh->root.type = h->root.type;
1105 h->root.type = bfd_link_hash_indirect;
1106 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1107 /* Protected symbols will override the dynamic definition
1108 with default version. */
1109 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1110 {
1111 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1112 vh->dynamic_def = 1;
1113 vh->ref_dynamic = 1;
1114 }
1115 else
1116 {
1117 h->root.type = vh->root.type;
1118 vh->ref_dynamic = 0;
1119 /* We have to hide it here since it was made dynamic
1120 global with extra bits when the symbol info was
1121 copied from the old dynamic definition. */
1122 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1123 }
1124 h = vh;
1125 }
1126 else
1127 h = *sym_hash;
1128 }
1129
1130 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1131 && bfd_is_und_section (sec))
1132 {
1133 /* If the new symbol is undefined and the old symbol was
1134 also undefined before, we need to make sure
1135 _bfd_generic_link_add_one_symbol doesn't mess
1136 up the linker hash table undefs list. Since the old
1137 definition came from a dynamic object, it is still on the
1138 undefs list. */
1139 h->root.type = bfd_link_hash_undefined;
1140 h->root.u.undef.abfd = abfd;
1141 }
1142 else
1143 {
1144 h->root.type = bfd_link_hash_new;
1145 h->root.u.undef.abfd = NULL;
1146 }
1147
1148 if (h->def_dynamic)
1149 {
1150 h->def_dynamic = 0;
1151 h->ref_dynamic = 1;
1152 h->dynamic_def = 1;
1153 }
1154 /* FIXME: Should we check type and size for protected symbol? */
1155 h->size = 0;
1156 h->type = 0;
1157 return TRUE;
1158 }
1159
1160 /* Differentiate strong and weak symbols. */
1161 newweak = bind == STB_WEAK;
1162 oldweak = (h->root.type == bfd_link_hash_defweak
1163 || h->root.type == bfd_link_hash_undefweak);
1164
1165 /* If a new weak symbol definition comes from a regular file and the
1166 old symbol comes from a dynamic library, we treat the new one as
1167 strong. Similarly, an old weak symbol definition from a regular
1168 file is treated as strong when the new symbol comes from a dynamic
1169 library. Further, an old weak symbol from a dynamic library is
1170 treated as strong if the new symbol is from a dynamic library.
1171 This reflects the way glibc's ld.so works.
1172
1173 Do this before setting *type_change_ok or *size_change_ok so that
1174 we warn properly when dynamic library symbols are overridden. */
1175
1176 if (newdef && !newdyn && olddyn)
1177 newweak = FALSE;
1178 if (olddef && newdyn)
1179 oldweak = FALSE;
1180
1181 /* Allow changes between different types of funciton symbol. */
1182 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1183 && bed->is_function_type (h->type))
1184 *type_change_ok = TRUE;
1185
1186 /* It's OK to change the type if either the existing symbol or the
1187 new symbol is weak. A type change is also OK if the old symbol
1188 is undefined and the new symbol is defined. */
1189
1190 if (oldweak
1191 || newweak
1192 || (newdef
1193 && h->root.type == bfd_link_hash_undefined))
1194 *type_change_ok = TRUE;
1195
1196 /* It's OK to change the size if either the existing symbol or the
1197 new symbol is weak, or if the old symbol is undefined. */
1198
1199 if (*type_change_ok
1200 || h->root.type == bfd_link_hash_undefined)
1201 *size_change_ok = TRUE;
1202
1203 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1204 symbol, respectively, appears to be a common symbol in a dynamic
1205 object. If a symbol appears in an uninitialized section, and is
1206 not weak, and is not a function, then it may be a common symbol
1207 which was resolved when the dynamic object was created. We want
1208 to treat such symbols specially, because they raise special
1209 considerations when setting the symbol size: if the symbol
1210 appears as a common symbol in a regular object, and the size in
1211 the regular object is larger, we must make sure that we use the
1212 larger size. This problematic case can always be avoided in C,
1213 but it must be handled correctly when using Fortran shared
1214 libraries.
1215
1216 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1217 likewise for OLDDYNCOMMON and OLDDEF.
1218
1219 Note that this test is just a heuristic, and that it is quite
1220 possible to have an uninitialized symbol in a shared object which
1221 is really a definition, rather than a common symbol. This could
1222 lead to some minor confusion when the symbol really is a common
1223 symbol in some regular object. However, I think it will be
1224 harmless. */
1225
1226 if (newdyn
1227 && newdef
1228 && !newweak
1229 && (sec->flags & SEC_ALLOC) != 0
1230 && (sec->flags & SEC_LOAD) == 0
1231 && sym->st_size > 0
1232 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1233 newdyncommon = TRUE;
1234 else
1235 newdyncommon = FALSE;
1236
1237 if (olddyn
1238 && olddef
1239 && h->root.type == bfd_link_hash_defined
1240 && h->def_dynamic
1241 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1242 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1243 && h->size > 0
1244 && !bed->is_function_type (h->type))
1245 olddyncommon = TRUE;
1246 else
1247 olddyncommon = FALSE;
1248
1249 /* We now know everything about the old and new symbols. We ask the
1250 backend to check if we can merge them. */
1251 if (bed->merge_symbol
1252 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1253 pold_alignment, skip, override,
1254 type_change_ok, size_change_ok,
1255 &newdyn, &newdef, &newdyncommon, &newweak,
1256 abfd, &sec,
1257 &olddyn, &olddef, &olddyncommon, &oldweak,
1258 oldbfd, &oldsec))
1259 return FALSE;
1260
1261 /* If both the old and the new symbols look like common symbols in a
1262 dynamic object, set the size of the symbol to the larger of the
1263 two. */
1264
1265 if (olddyncommon
1266 && newdyncommon
1267 && sym->st_size != h->size)
1268 {
1269 /* Since we think we have two common symbols, issue a multiple
1270 common warning if desired. Note that we only warn if the
1271 size is different. If the size is the same, we simply let
1272 the old symbol override the new one as normally happens with
1273 symbols defined in dynamic objects. */
1274
1275 if (! ((*info->callbacks->multiple_common)
1276 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1277 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1278 return FALSE;
1279
1280 if (sym->st_size > h->size)
1281 h->size = sym->st_size;
1282
1283 *size_change_ok = TRUE;
1284 }
1285
1286 /* If we are looking at a dynamic object, and we have found a
1287 definition, we need to see if the symbol was already defined by
1288 some other object. If so, we want to use the existing
1289 definition, and we do not want to report a multiple symbol
1290 definition error; we do this by clobbering *PSEC to be
1291 bfd_und_section_ptr.
1292
1293 We treat a common symbol as a definition if the symbol in the
1294 shared library is a function, since common symbols always
1295 represent variables; this can cause confusion in principle, but
1296 any such confusion would seem to indicate an erroneous program or
1297 shared library. We also permit a common symbol in a regular
1298 object to override a weak symbol in a shared object. */
1299
1300 if (newdyn
1301 && newdef
1302 && (olddef
1303 || (h->root.type == bfd_link_hash_common
1304 && (newweak
1305 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1306 {
1307 *override = TRUE;
1308 newdef = FALSE;
1309 newdyncommon = FALSE;
1310
1311 *psec = sec = bfd_und_section_ptr;
1312 *size_change_ok = TRUE;
1313
1314 /* If we get here when the old symbol is a common symbol, then
1315 we are explicitly letting it override a weak symbol or
1316 function in a dynamic object, and we don't want to warn about
1317 a type change. If the old symbol is a defined symbol, a type
1318 change warning may still be appropriate. */
1319
1320 if (h->root.type == bfd_link_hash_common)
1321 *type_change_ok = TRUE;
1322 }
1323
1324 /* Handle the special case of an old common symbol merging with a
1325 new symbol which looks like a common symbol in a shared object.
1326 We change *PSEC and *PVALUE to make the new symbol look like a
1327 common symbol, and let _bfd_generic_link_add_one_symbol do the
1328 right thing. */
1329
1330 if (newdyncommon
1331 && h->root.type == bfd_link_hash_common)
1332 {
1333 *override = TRUE;
1334 newdef = FALSE;
1335 newdyncommon = FALSE;
1336 *pvalue = sym->st_size;
1337 *psec = sec = bed->common_section (oldsec);
1338 *size_change_ok = TRUE;
1339 }
1340
1341 /* Skip weak definitions of symbols that are already defined. */
1342 if (newdef && olddef && newweak)
1343 *skip = TRUE;
1344
1345 /* If the old symbol is from a dynamic object, and the new symbol is
1346 a definition which is not from a dynamic object, then the new
1347 symbol overrides the old symbol. Symbols from regular files
1348 always take precedence over symbols from dynamic objects, even if
1349 they are defined after the dynamic object in the link.
1350
1351 As above, we again permit a common symbol in a regular object to
1352 override a definition in a shared object if the shared object
1353 symbol is a function or is weak. */
1354
1355 flip = NULL;
1356 if (!newdyn
1357 && (newdef
1358 || (bfd_is_com_section (sec)
1359 && (oldweak
1360 || bed->is_function_type (h->type))))
1361 && olddyn
1362 && olddef
1363 && h->def_dynamic)
1364 {
1365 /* Change the hash table entry to undefined, and let
1366 _bfd_generic_link_add_one_symbol do the right thing with the
1367 new definition. */
1368
1369 h->root.type = bfd_link_hash_undefined;
1370 h->root.u.undef.abfd = h->root.u.def.section->owner;
1371 *size_change_ok = TRUE;
1372
1373 olddef = FALSE;
1374 olddyncommon = FALSE;
1375
1376 /* We again permit a type change when a common symbol may be
1377 overriding a function. */
1378
1379 if (bfd_is_com_section (sec))
1380 *type_change_ok = TRUE;
1381
1382 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1383 flip = *sym_hash;
1384 else
1385 /* This union may have been set to be non-NULL when this symbol
1386 was seen in a dynamic object. We must force the union to be
1387 NULL, so that it is correct for a regular symbol. */
1388 h->verinfo.vertree = NULL;
1389 }
1390
1391 /* Handle the special case of a new common symbol merging with an
1392 old symbol that looks like it might be a common symbol defined in
1393 a shared object. Note that we have already handled the case in
1394 which a new common symbol should simply override the definition
1395 in the shared library. */
1396
1397 if (! newdyn
1398 && bfd_is_com_section (sec)
1399 && olddyncommon)
1400 {
1401 /* It would be best if we could set the hash table entry to a
1402 common symbol, but we don't know what to use for the section
1403 or the alignment. */
1404 if (! ((*info->callbacks->multiple_common)
1405 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1406 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1407 return FALSE;
1408
1409 /* If the presumed common symbol in the dynamic object is
1410 larger, pretend that the new symbol has its size. */
1411
1412 if (h->size > *pvalue)
1413 *pvalue = h->size;
1414
1415 /* We need to remember the alignment required by the symbol
1416 in the dynamic object. */
1417 BFD_ASSERT (pold_alignment);
1418 *pold_alignment = h->root.u.def.section->alignment_power;
1419
1420 olddef = FALSE;
1421 olddyncommon = FALSE;
1422
1423 h->root.type = bfd_link_hash_undefined;
1424 h->root.u.undef.abfd = h->root.u.def.section->owner;
1425
1426 *size_change_ok = TRUE;
1427 *type_change_ok = TRUE;
1428
1429 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1430 flip = *sym_hash;
1431 else
1432 h->verinfo.vertree = NULL;
1433 }
1434
1435 if (flip != NULL)
1436 {
1437 /* Handle the case where we had a versioned symbol in a dynamic
1438 library and now find a definition in a normal object. In this
1439 case, we make the versioned symbol point to the normal one. */
1440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1441 flip->root.type = h->root.type;
1442 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1443 h->root.type = bfd_link_hash_indirect;
1444 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1445 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1446 if (h->def_dynamic)
1447 {
1448 h->def_dynamic = 0;
1449 flip->ref_dynamic = 1;
1450 }
1451 }
1452
1453 return TRUE;
1454 }
1455
1456 /* This function is called to create an indirect symbol from the
1457 default for the symbol with the default version if needed. The
1458 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1459 set DYNSYM if the new indirect symbol is dynamic. */
1460
1461 bfd_boolean
1462 _bfd_elf_add_default_symbol (bfd *abfd,
1463 struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 const char *name,
1466 Elf_Internal_Sym *sym,
1467 asection **psec,
1468 bfd_vma *value,
1469 bfd_boolean *dynsym,
1470 bfd_boolean override)
1471 {
1472 bfd_boolean type_change_ok;
1473 bfd_boolean size_change_ok;
1474 bfd_boolean skip;
1475 char *shortname;
1476 struct elf_link_hash_entry *hi;
1477 struct bfd_link_hash_entry *bh;
1478 const struct elf_backend_data *bed;
1479 bfd_boolean collect;
1480 bfd_boolean dynamic;
1481 char *p;
1482 size_t len, shortlen;
1483 asection *sec;
1484
1485 /* If this symbol has a version, and it is the default version, we
1486 create an indirect symbol from the default name to the fully
1487 decorated name. This will cause external references which do not
1488 specify a version to be bound to this version of the symbol. */
1489 p = strchr (name, ELF_VER_CHR);
1490 if (p == NULL || p[1] != ELF_VER_CHR)
1491 return TRUE;
1492
1493 if (override)
1494 {
1495 /* We are overridden by an old definition. We need to check if we
1496 need to create the indirect symbol from the default name. */
1497 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1498 FALSE, FALSE);
1499 BFD_ASSERT (hi != NULL);
1500 if (hi == h)
1501 return TRUE;
1502 while (hi->root.type == bfd_link_hash_indirect
1503 || hi->root.type == bfd_link_hash_warning)
1504 {
1505 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1506 if (hi == h)
1507 return TRUE;
1508 }
1509 }
1510
1511 bed = get_elf_backend_data (abfd);
1512 collect = bed->collect;
1513 dynamic = (abfd->flags & DYNAMIC) != 0;
1514
1515 shortlen = p - name;
1516 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1517 if (shortname == NULL)
1518 return FALSE;
1519 memcpy (shortname, name, shortlen);
1520 shortname[shortlen] = '\0';
1521
1522 /* We are going to create a new symbol. Merge it with any existing
1523 symbol with this name. For the purposes of the merge, act as
1524 though we were defining the symbol we just defined, although we
1525 actually going to define an indirect symbol. */
1526 type_change_ok = FALSE;
1527 size_change_ok = FALSE;
1528 sec = *psec;
1529 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1530 NULL, &hi, &skip, &override,
1531 &type_change_ok, &size_change_ok))
1532 return FALSE;
1533
1534 if (skip)
1535 goto nondefault;
1536
1537 if (! override)
1538 {
1539 bh = &hi->root;
1540 if (! (_bfd_generic_link_add_one_symbol
1541 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1542 0, name, FALSE, collect, &bh)))
1543 return FALSE;
1544 hi = (struct elf_link_hash_entry *) bh;
1545 }
1546 else
1547 {
1548 /* In this case the symbol named SHORTNAME is overriding the
1549 indirect symbol we want to add. We were planning on making
1550 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1551 is the name without a version. NAME is the fully versioned
1552 name, and it is the default version.
1553
1554 Overriding means that we already saw a definition for the
1555 symbol SHORTNAME in a regular object, and it is overriding
1556 the symbol defined in the dynamic object.
1557
1558 When this happens, we actually want to change NAME, the
1559 symbol we just added, to refer to SHORTNAME. This will cause
1560 references to NAME in the shared object to become references
1561 to SHORTNAME in the regular object. This is what we expect
1562 when we override a function in a shared object: that the
1563 references in the shared object will be mapped to the
1564 definition in the regular object. */
1565
1566 while (hi->root.type == bfd_link_hash_indirect
1567 || hi->root.type == bfd_link_hash_warning)
1568 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1569
1570 h->root.type = bfd_link_hash_indirect;
1571 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 hi->ref_dynamic = 1;
1576 if (hi->ref_regular
1577 || hi->def_regular)
1578 {
1579 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1580 return FALSE;
1581 }
1582 }
1583
1584 /* Now set HI to H, so that the following code will set the
1585 other fields correctly. */
1586 hi = h;
1587 }
1588
1589 /* Check if HI is a warning symbol. */
1590 if (hi->root.type == bfd_link_hash_warning)
1591 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1592
1593 /* If there is a duplicate definition somewhere, then HI may not
1594 point to an indirect symbol. We will have reported an error to
1595 the user in that case. */
1596
1597 if (hi->root.type == bfd_link_hash_indirect)
1598 {
1599 struct elf_link_hash_entry *ht;
1600
1601 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1602 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1603
1604 /* See if the new flags lead us to realize that the symbol must
1605 be dynamic. */
1606 if (! *dynsym)
1607 {
1608 if (! dynamic)
1609 {
1610 if (info->shared
1611 || hi->ref_dynamic)
1612 *dynsym = TRUE;
1613 }
1614 else
1615 {
1616 if (hi->ref_regular)
1617 *dynsym = TRUE;
1618 }
1619 }
1620 }
1621
1622 /* We also need to define an indirection from the nondefault version
1623 of the symbol. */
1624
1625 nondefault:
1626 len = strlen (name);
1627 shortname = bfd_hash_allocate (&info->hash->table, len);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 memcpy (shortname + shortlen, p + 1, len - shortlen);
1632
1633 /* Once again, merge with any existing symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 return TRUE;
1644
1645 if (override)
1646 {
1647 /* Here SHORTNAME is a versioned name, so we don't expect to see
1648 the type of override we do in the case above unless it is
1649 overridden by a versioned definition. */
1650 if (hi->root.type != bfd_link_hash_defined
1651 && hi->root.type != bfd_link_hash_defweak)
1652 (*_bfd_error_handler)
1653 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1654 abfd, shortname);
1655 }
1656 else
1657 {
1658 bh = &hi->root;
1659 if (! (_bfd_generic_link_add_one_symbol
1660 (info, abfd, shortname, BSF_INDIRECT,
1661 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1662 return FALSE;
1663 hi = (struct elf_link_hash_entry *) bh;
1664
1665 /* If there is a duplicate definition somewhere, then HI may not
1666 point to an indirect symbol. We will have reported an error
1667 to the user in that case. */
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 {
1671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1672
1673 /* See if the new flags lead us to realize that the symbol
1674 must be dynamic. */
1675 if (! *dynsym)
1676 {
1677 if (! dynamic)
1678 {
1679 if (info->shared
1680 || hi->ref_dynamic)
1681 *dynsym = TRUE;
1682 }
1683 else
1684 {
1685 if (hi->ref_regular)
1686 *dynsym = TRUE;
1687 }
1688 }
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694 \f
1695 /* This routine is used to export all defined symbols into the dynamic
1696 symbol table. It is called via elf_link_hash_traverse. */
1697
1698 bfd_boolean
1699 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1700 {
1701 struct elf_info_failed *eif = data;
1702
1703 /* Ignore this if we won't export it. */
1704 if (!eif->info->export_dynamic && !h->dynamic)
1705 return TRUE;
1706
1707 /* Ignore indirect symbols. These are added by the versioning code. */
1708 if (h->root.type == bfd_link_hash_indirect)
1709 return TRUE;
1710
1711 if (h->root.type == bfd_link_hash_warning)
1712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1713
1714 if (h->dynindx == -1
1715 && (h->def_regular
1716 || h->ref_regular))
1717 {
1718 struct bfd_elf_version_tree *t;
1719 struct bfd_elf_version_expr *d;
1720
1721 for (t = eif->verdefs; t != NULL; t = t->next)
1722 {
1723 if (t->globals.list != NULL)
1724 {
1725 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1726 if (d != NULL)
1727 goto doit;
1728 }
1729
1730 if (t->locals.list != NULL)
1731 {
1732 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1733 if (d != NULL)
1734 return TRUE;
1735 }
1736 }
1737
1738 if (!eif->verdefs)
1739 {
1740 doit:
1741 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1742 {
1743 eif->failed = TRUE;
1744 return FALSE;
1745 }
1746 }
1747 }
1748
1749 return TRUE;
1750 }
1751 \f
1752 /* Look through the symbols which are defined in other shared
1753 libraries and referenced here. Update the list of version
1754 dependencies. This will be put into the .gnu.version_r section.
1755 This function is called via elf_link_hash_traverse. */
1756
1757 bfd_boolean
1758 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1759 void *data)
1760 {
1761 struct elf_find_verdep_info *rinfo = data;
1762 Elf_Internal_Verneed *t;
1763 Elf_Internal_Vernaux *a;
1764 bfd_size_type amt;
1765
1766 if (h->root.type == bfd_link_hash_warning)
1767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1768
1769 /* We only care about symbols defined in shared objects with version
1770 information. */
1771 if (!h->def_dynamic
1772 || h->def_regular
1773 || h->dynindx == -1
1774 || h->verinfo.verdef == NULL)
1775 return TRUE;
1776
1777 /* See if we already know about this version. */
1778 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1779 {
1780 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1781 continue;
1782
1783 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1784 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1785 return TRUE;
1786
1787 break;
1788 }
1789
1790 /* This is a new version. Add it to tree we are building. */
1791
1792 if (t == NULL)
1793 {
1794 amt = sizeof *t;
1795 t = bfd_zalloc (rinfo->output_bfd, amt);
1796 if (t == NULL)
1797 {
1798 rinfo->failed = TRUE;
1799 return FALSE;
1800 }
1801
1802 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1803 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1804 elf_tdata (rinfo->output_bfd)->verref = t;
1805 }
1806
1807 amt = sizeof *a;
1808 a = bfd_zalloc (rinfo->output_bfd, amt);
1809 if (a == NULL)
1810 {
1811 rinfo->failed = TRUE;
1812 return FALSE;
1813 }
1814
1815 /* Note that we are copying a string pointer here, and testing it
1816 above. If bfd_elf_string_from_elf_section is ever changed to
1817 discard the string data when low in memory, this will have to be
1818 fixed. */
1819 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1820
1821 a->vna_flags = h->verinfo.verdef->vd_flags;
1822 a->vna_nextptr = t->vn_auxptr;
1823
1824 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1825 ++rinfo->vers;
1826
1827 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1828
1829 t->vn_auxptr = a;
1830
1831 return TRUE;
1832 }
1833
1834 /* Figure out appropriate versions for all the symbols. We may not
1835 have the version number script until we have read all of the input
1836 files, so until that point we don't know which symbols should be
1837 local. This function is called via elf_link_hash_traverse. */
1838
1839 bfd_boolean
1840 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1841 {
1842 struct elf_assign_sym_version_info *sinfo;
1843 struct bfd_link_info *info;
1844 const struct elf_backend_data *bed;
1845 struct elf_info_failed eif;
1846 char *p;
1847 bfd_size_type amt;
1848
1849 sinfo = data;
1850 info = sinfo->info;
1851
1852 if (h->root.type == bfd_link_hash_warning)
1853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1854
1855 /* Fix the symbol flags. */
1856 eif.failed = FALSE;
1857 eif.info = info;
1858 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1859 {
1860 if (eif.failed)
1861 sinfo->failed = TRUE;
1862 return FALSE;
1863 }
1864
1865 /* We only need version numbers for symbols defined in regular
1866 objects. */
1867 if (!h->def_regular)
1868 return TRUE;
1869
1870 bed = get_elf_backend_data (sinfo->output_bfd);
1871 p = strchr (h->root.root.string, ELF_VER_CHR);
1872 if (p != NULL && h->verinfo.vertree == NULL)
1873 {
1874 struct bfd_elf_version_tree *t;
1875 bfd_boolean hidden;
1876
1877 hidden = TRUE;
1878
1879 /* There are two consecutive ELF_VER_CHR characters if this is
1880 not a hidden symbol. */
1881 ++p;
1882 if (*p == ELF_VER_CHR)
1883 {
1884 hidden = FALSE;
1885 ++p;
1886 }
1887
1888 /* If there is no version string, we can just return out. */
1889 if (*p == '\0')
1890 {
1891 if (hidden)
1892 h->hidden = 1;
1893 return TRUE;
1894 }
1895
1896 /* Look for the version. If we find it, it is no longer weak. */
1897 for (t = sinfo->verdefs; t != NULL; t = t->next)
1898 {
1899 if (strcmp (t->name, p) == 0)
1900 {
1901 size_t len;
1902 char *alc;
1903 struct bfd_elf_version_expr *d;
1904
1905 len = p - h->root.root.string;
1906 alc = bfd_malloc (len);
1907 if (alc == NULL)
1908 {
1909 sinfo->failed = TRUE;
1910 return FALSE;
1911 }
1912 memcpy (alc, h->root.root.string, len - 1);
1913 alc[len - 1] = '\0';
1914 if (alc[len - 2] == ELF_VER_CHR)
1915 alc[len - 2] = '\0';
1916
1917 h->verinfo.vertree = t;
1918 t->used = TRUE;
1919 d = NULL;
1920
1921 if (t->globals.list != NULL)
1922 d = (*t->match) (&t->globals, NULL, alc);
1923
1924 /* See if there is anything to force this symbol to
1925 local scope. */
1926 if (d == NULL && t->locals.list != NULL)
1927 {
1928 d = (*t->match) (&t->locals, NULL, alc);
1929 if (d != NULL
1930 && h->dynindx != -1
1931 && ! info->export_dynamic)
1932 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1933 }
1934
1935 free (alc);
1936 break;
1937 }
1938 }
1939
1940 /* If we are building an application, we need to create a
1941 version node for this version. */
1942 if (t == NULL && info->executable)
1943 {
1944 struct bfd_elf_version_tree **pp;
1945 int version_index;
1946
1947 /* If we aren't going to export this symbol, we don't need
1948 to worry about it. */
1949 if (h->dynindx == -1)
1950 return TRUE;
1951
1952 amt = sizeof *t;
1953 t = bfd_zalloc (sinfo->output_bfd, amt);
1954 if (t == NULL)
1955 {
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 t->name = p;
1961 t->name_indx = (unsigned int) -1;
1962 t->used = TRUE;
1963
1964 version_index = 1;
1965 /* Don't count anonymous version tag. */
1966 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1967 version_index = 0;
1968 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1969 ++version_index;
1970 t->vernum = version_index;
1971
1972 *pp = t;
1973
1974 h->verinfo.vertree = t;
1975 }
1976 else if (t == NULL)
1977 {
1978 /* We could not find the version for a symbol when
1979 generating a shared archive. Return an error. */
1980 (*_bfd_error_handler)
1981 (_("%B: version node not found for symbol %s"),
1982 sinfo->output_bfd, h->root.root.string);
1983 bfd_set_error (bfd_error_bad_value);
1984 sinfo->failed = TRUE;
1985 return FALSE;
1986 }
1987
1988 if (hidden)
1989 h->hidden = 1;
1990 }
1991
1992 /* If we don't have a version for this symbol, see if we can find
1993 something. */
1994 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1995 {
1996 struct bfd_elf_version_tree *t;
1997 struct bfd_elf_version_tree *local_ver;
1998 struct bfd_elf_version_expr *d;
1999
2000 /* See if can find what version this symbol is in. If the
2001 symbol is supposed to be local, then don't actually register
2002 it. */
2003 local_ver = NULL;
2004 for (t = sinfo->verdefs; t != NULL; t = t->next)
2005 {
2006 if (t->globals.list != NULL)
2007 {
2008 bfd_boolean matched;
2009
2010 matched = FALSE;
2011 d = NULL;
2012 while ((d = (*t->match) (&t->globals, d,
2013 h->root.root.string)) != NULL)
2014 if (d->symver)
2015 matched = TRUE;
2016 else
2017 {
2018 /* There is a version without definition. Make
2019 the symbol the default definition for this
2020 version. */
2021 h->verinfo.vertree = t;
2022 local_ver = NULL;
2023 d->script = 1;
2024 break;
2025 }
2026 if (d != NULL)
2027 break;
2028 else if (matched)
2029 /* There is no undefined version for this symbol. Hide the
2030 default one. */
2031 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2032 }
2033
2034 if (t->locals.list != NULL)
2035 {
2036 d = NULL;
2037 while ((d = (*t->match) (&t->locals, d,
2038 h->root.root.string)) != NULL)
2039 {
2040 local_ver = t;
2041 /* If the match is "*", keep looking for a more
2042 explicit, perhaps even global, match.
2043 XXX: Shouldn't this be !d->wildcard instead? */
2044 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2045 break;
2046 }
2047
2048 if (d != NULL)
2049 break;
2050 }
2051 }
2052
2053 if (local_ver != NULL)
2054 {
2055 h->verinfo.vertree = local_ver;
2056 if (h->dynindx != -1
2057 && ! info->export_dynamic)
2058 {
2059 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2060 }
2061 }
2062 }
2063
2064 return TRUE;
2065 }
2066 \f
2067 /* Read and swap the relocs from the section indicated by SHDR. This
2068 may be either a REL or a RELA section. The relocations are
2069 translated into RELA relocations and stored in INTERNAL_RELOCS,
2070 which should have already been allocated to contain enough space.
2071 The EXTERNAL_RELOCS are a buffer where the external form of the
2072 relocations should be stored.
2073
2074 Returns FALSE if something goes wrong. */
2075
2076 static bfd_boolean
2077 elf_link_read_relocs_from_section (bfd *abfd,
2078 asection *sec,
2079 Elf_Internal_Shdr *shdr,
2080 void *external_relocs,
2081 Elf_Internal_Rela *internal_relocs)
2082 {
2083 const struct elf_backend_data *bed;
2084 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2085 const bfd_byte *erela;
2086 const bfd_byte *erelaend;
2087 Elf_Internal_Rela *irela;
2088 Elf_Internal_Shdr *symtab_hdr;
2089 size_t nsyms;
2090
2091 /* Position ourselves at the start of the section. */
2092 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2093 return FALSE;
2094
2095 /* Read the relocations. */
2096 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2097 return FALSE;
2098
2099 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2100 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2101
2102 bed = get_elf_backend_data (abfd);
2103
2104 /* Convert the external relocations to the internal format. */
2105 if (shdr->sh_entsize == bed->s->sizeof_rel)
2106 swap_in = bed->s->swap_reloc_in;
2107 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2108 swap_in = bed->s->swap_reloca_in;
2109 else
2110 {
2111 bfd_set_error (bfd_error_wrong_format);
2112 return FALSE;
2113 }
2114
2115 erela = external_relocs;
2116 erelaend = erela + shdr->sh_size;
2117 irela = internal_relocs;
2118 while (erela < erelaend)
2119 {
2120 bfd_vma r_symndx;
2121
2122 (*swap_in) (abfd, erela, irela);
2123 r_symndx = ELF32_R_SYM (irela->r_info);
2124 if (bed->s->arch_size == 64)
2125 r_symndx >>= 24;
2126 if ((size_t) r_symndx >= nsyms)
2127 {
2128 (*_bfd_error_handler)
2129 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2130 " for offset 0x%lx in section `%A'"),
2131 abfd, sec,
2132 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2133 bfd_set_error (bfd_error_bad_value);
2134 return FALSE;
2135 }
2136 irela += bed->s->int_rels_per_ext_rel;
2137 erela += shdr->sh_entsize;
2138 }
2139
2140 return TRUE;
2141 }
2142
2143 /* Read and swap the relocs for a section O. They may have been
2144 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2145 not NULL, they are used as buffers to read into. They are known to
2146 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2147 the return value is allocated using either malloc or bfd_alloc,
2148 according to the KEEP_MEMORY argument. If O has two relocation
2149 sections (both REL and RELA relocations), then the REL_HDR
2150 relocations will appear first in INTERNAL_RELOCS, followed by the
2151 REL_HDR2 relocations. */
2152
2153 Elf_Internal_Rela *
2154 _bfd_elf_link_read_relocs (bfd *abfd,
2155 asection *o,
2156 void *external_relocs,
2157 Elf_Internal_Rela *internal_relocs,
2158 bfd_boolean keep_memory)
2159 {
2160 Elf_Internal_Shdr *rel_hdr;
2161 void *alloc1 = NULL;
2162 Elf_Internal_Rela *alloc2 = NULL;
2163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2164
2165 if (elf_section_data (o)->relocs != NULL)
2166 return elf_section_data (o)->relocs;
2167
2168 if (o->reloc_count == 0)
2169 return NULL;
2170
2171 rel_hdr = &elf_section_data (o)->rel_hdr;
2172
2173 if (internal_relocs == NULL)
2174 {
2175 bfd_size_type size;
2176
2177 size = o->reloc_count;
2178 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2179 if (keep_memory)
2180 internal_relocs = bfd_alloc (abfd, size);
2181 else
2182 internal_relocs = alloc2 = bfd_malloc (size);
2183 if (internal_relocs == NULL)
2184 goto error_return;
2185 }
2186
2187 if (external_relocs == NULL)
2188 {
2189 bfd_size_type size = rel_hdr->sh_size;
2190
2191 if (elf_section_data (o)->rel_hdr2)
2192 size += elf_section_data (o)->rel_hdr2->sh_size;
2193 alloc1 = bfd_malloc (size);
2194 if (alloc1 == NULL)
2195 goto error_return;
2196 external_relocs = alloc1;
2197 }
2198
2199 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2200 external_relocs,
2201 internal_relocs))
2202 goto error_return;
2203 if (elf_section_data (o)->rel_hdr2
2204 && (!elf_link_read_relocs_from_section
2205 (abfd, o,
2206 elf_section_data (o)->rel_hdr2,
2207 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2208 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2209 * bed->s->int_rels_per_ext_rel))))
2210 goto error_return;
2211
2212 /* Cache the results for next time, if we can. */
2213 if (keep_memory)
2214 elf_section_data (o)->relocs = internal_relocs;
2215
2216 if (alloc1 != NULL)
2217 free (alloc1);
2218
2219 /* Don't free alloc2, since if it was allocated we are passing it
2220 back (under the name of internal_relocs). */
2221
2222 return internal_relocs;
2223
2224 error_return:
2225 if (alloc1 != NULL)
2226 free (alloc1);
2227 if (alloc2 != NULL)
2228 free (alloc2);
2229 return NULL;
2230 }
2231
2232 /* Compute the size of, and allocate space for, REL_HDR which is the
2233 section header for a section containing relocations for O. */
2234
2235 bfd_boolean
2236 _bfd_elf_link_size_reloc_section (bfd *abfd,
2237 Elf_Internal_Shdr *rel_hdr,
2238 asection *o)
2239 {
2240 bfd_size_type reloc_count;
2241 bfd_size_type num_rel_hashes;
2242
2243 /* Figure out how many relocations there will be. */
2244 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2245 reloc_count = elf_section_data (o)->rel_count;
2246 else
2247 reloc_count = elf_section_data (o)->rel_count2;
2248
2249 num_rel_hashes = o->reloc_count;
2250 if (num_rel_hashes < reloc_count)
2251 num_rel_hashes = reloc_count;
2252
2253 /* That allows us to calculate the size of the section. */
2254 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2255
2256 /* The contents field must last into write_object_contents, so we
2257 allocate it with bfd_alloc rather than malloc. Also since we
2258 cannot be sure that the contents will actually be filled in,
2259 we zero the allocated space. */
2260 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2261 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2262 return FALSE;
2263
2264 /* We only allocate one set of hash entries, so we only do it the
2265 first time we are called. */
2266 if (elf_section_data (o)->rel_hashes == NULL
2267 && num_rel_hashes)
2268 {
2269 struct elf_link_hash_entry **p;
2270
2271 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2272 if (p == NULL)
2273 return FALSE;
2274
2275 elf_section_data (o)->rel_hashes = p;
2276 }
2277
2278 return TRUE;
2279 }
2280
2281 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2282 originated from the section given by INPUT_REL_HDR) to the
2283 OUTPUT_BFD. */
2284
2285 bfd_boolean
2286 _bfd_elf_link_output_relocs (bfd *output_bfd,
2287 asection *input_section,
2288 Elf_Internal_Shdr *input_rel_hdr,
2289 Elf_Internal_Rela *internal_relocs,
2290 struct elf_link_hash_entry **rel_hash
2291 ATTRIBUTE_UNUSED)
2292 {
2293 Elf_Internal_Rela *irela;
2294 Elf_Internal_Rela *irelaend;
2295 bfd_byte *erel;
2296 Elf_Internal_Shdr *output_rel_hdr;
2297 asection *output_section;
2298 unsigned int *rel_countp = NULL;
2299 const struct elf_backend_data *bed;
2300 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2301
2302 output_section = input_section->output_section;
2303 output_rel_hdr = NULL;
2304
2305 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2306 == input_rel_hdr->sh_entsize)
2307 {
2308 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2309 rel_countp = &elf_section_data (output_section)->rel_count;
2310 }
2311 else if (elf_section_data (output_section)->rel_hdr2
2312 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2313 == input_rel_hdr->sh_entsize))
2314 {
2315 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2316 rel_countp = &elf_section_data (output_section)->rel_count2;
2317 }
2318 else
2319 {
2320 (*_bfd_error_handler)
2321 (_("%B: relocation size mismatch in %B section %A"),
2322 output_bfd, input_section->owner, input_section);
2323 bfd_set_error (bfd_error_wrong_format);
2324 return FALSE;
2325 }
2326
2327 bed = get_elf_backend_data (output_bfd);
2328 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2329 swap_out = bed->s->swap_reloc_out;
2330 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2331 swap_out = bed->s->swap_reloca_out;
2332 else
2333 abort ();
2334
2335 erel = output_rel_hdr->contents;
2336 erel += *rel_countp * input_rel_hdr->sh_entsize;
2337 irela = internal_relocs;
2338 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2339 * bed->s->int_rels_per_ext_rel);
2340 while (irela < irelaend)
2341 {
2342 (*swap_out) (output_bfd, irela, erel);
2343 irela += bed->s->int_rels_per_ext_rel;
2344 erel += input_rel_hdr->sh_entsize;
2345 }
2346
2347 /* Bump the counter, so that we know where to add the next set of
2348 relocations. */
2349 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2350
2351 return TRUE;
2352 }
2353 \f
2354 /* Make weak undefined symbols in PIE dynamic. */
2355
2356 bfd_boolean
2357 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2358 struct elf_link_hash_entry *h)
2359 {
2360 if (info->pie
2361 && h->dynindx == -1
2362 && h->root.type == bfd_link_hash_undefweak)
2363 return bfd_elf_link_record_dynamic_symbol (info, h);
2364
2365 return TRUE;
2366 }
2367
2368 /* Fix up the flags for a symbol. This handles various cases which
2369 can only be fixed after all the input files are seen. This is
2370 currently called by both adjust_dynamic_symbol and
2371 assign_sym_version, which is unnecessary but perhaps more robust in
2372 the face of future changes. */
2373
2374 bfd_boolean
2375 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2376 struct elf_info_failed *eif)
2377 {
2378 const struct elf_backend_data *bed;
2379
2380 /* If this symbol was mentioned in a non-ELF file, try to set
2381 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2382 permit a non-ELF file to correctly refer to a symbol defined in
2383 an ELF dynamic object. */
2384 if (h->non_elf)
2385 {
2386 while (h->root.type == bfd_link_hash_indirect)
2387 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2388
2389 if (h->root.type != bfd_link_hash_defined
2390 && h->root.type != bfd_link_hash_defweak)
2391 {
2392 h->ref_regular = 1;
2393 h->ref_regular_nonweak = 1;
2394 }
2395 else
2396 {
2397 if (h->root.u.def.section->owner != NULL
2398 && (bfd_get_flavour (h->root.u.def.section->owner)
2399 == bfd_target_elf_flavour))
2400 {
2401 h->ref_regular = 1;
2402 h->ref_regular_nonweak = 1;
2403 }
2404 else
2405 h->def_regular = 1;
2406 }
2407
2408 if (h->dynindx == -1
2409 && (h->def_dynamic
2410 || h->ref_dynamic))
2411 {
2412 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2413 {
2414 eif->failed = TRUE;
2415 return FALSE;
2416 }
2417 }
2418 }
2419 else
2420 {
2421 /* Unfortunately, NON_ELF is only correct if the symbol
2422 was first seen in a non-ELF file. Fortunately, if the symbol
2423 was first seen in an ELF file, we're probably OK unless the
2424 symbol was defined in a non-ELF file. Catch that case here.
2425 FIXME: We're still in trouble if the symbol was first seen in
2426 a dynamic object, and then later in a non-ELF regular object. */
2427 if ((h->root.type == bfd_link_hash_defined
2428 || h->root.type == bfd_link_hash_defweak)
2429 && !h->def_regular
2430 && (h->root.u.def.section->owner != NULL
2431 ? (bfd_get_flavour (h->root.u.def.section->owner)
2432 != bfd_target_elf_flavour)
2433 : (bfd_is_abs_section (h->root.u.def.section)
2434 && !h->def_dynamic)))
2435 h->def_regular = 1;
2436 }
2437
2438 /* Backend specific symbol fixup. */
2439 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2440 if (bed->elf_backend_fixup_symbol
2441 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2442 return FALSE;
2443
2444 /* If this is a final link, and the symbol was defined as a common
2445 symbol in a regular object file, and there was no definition in
2446 any dynamic object, then the linker will have allocated space for
2447 the symbol in a common section but the DEF_REGULAR
2448 flag will not have been set. */
2449 if (h->root.type == bfd_link_hash_defined
2450 && !h->def_regular
2451 && h->ref_regular
2452 && !h->def_dynamic
2453 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2454 h->def_regular = 1;
2455
2456 /* If -Bsymbolic was used (which means to bind references to global
2457 symbols to the definition within the shared object), and this
2458 symbol was defined in a regular object, then it actually doesn't
2459 need a PLT entry. Likewise, if the symbol has non-default
2460 visibility. If the symbol has hidden or internal visibility, we
2461 will force it local. */
2462 if (h->needs_plt
2463 && eif->info->shared
2464 && is_elf_hash_table (eif->info->hash)
2465 && (SYMBOLIC_BIND (eif->info, h)
2466 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2467 && h->def_regular)
2468 {
2469 bfd_boolean force_local;
2470
2471 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2472 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2473 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2474 }
2475
2476 /* If a weak undefined symbol has non-default visibility, we also
2477 hide it from the dynamic linker. */
2478 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2479 && h->root.type == bfd_link_hash_undefweak)
2480 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2481
2482 /* If this is a weak defined symbol in a dynamic object, and we know
2483 the real definition in the dynamic object, copy interesting flags
2484 over to the real definition. */
2485 if (h->u.weakdef != NULL)
2486 {
2487 struct elf_link_hash_entry *weakdef;
2488
2489 weakdef = h->u.weakdef;
2490 if (h->root.type == bfd_link_hash_indirect)
2491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2492
2493 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2494 || h->root.type == bfd_link_hash_defweak);
2495 BFD_ASSERT (weakdef->def_dynamic);
2496
2497 /* If the real definition is defined by a regular object file,
2498 don't do anything special. See the longer description in
2499 _bfd_elf_adjust_dynamic_symbol, below. */
2500 if (weakdef->def_regular)
2501 h->u.weakdef = NULL;
2502 else
2503 {
2504 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2505 || weakdef->root.type == bfd_link_hash_defweak);
2506 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2507 }
2508 }
2509
2510 return TRUE;
2511 }
2512
2513 /* Make the backend pick a good value for a dynamic symbol. This is
2514 called via elf_link_hash_traverse, and also calls itself
2515 recursively. */
2516
2517 bfd_boolean
2518 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2519 {
2520 struct elf_info_failed *eif = data;
2521 bfd *dynobj;
2522 const struct elf_backend_data *bed;
2523
2524 if (! is_elf_hash_table (eif->info->hash))
2525 return FALSE;
2526
2527 if (h->root.type == bfd_link_hash_warning)
2528 {
2529 h->got = elf_hash_table (eif->info)->init_got_offset;
2530 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2531
2532 /* When warning symbols are created, they **replace** the "real"
2533 entry in the hash table, thus we never get to see the real
2534 symbol in a hash traversal. So look at it now. */
2535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2536 }
2537
2538 /* Ignore indirect symbols. These are added by the versioning code. */
2539 if (h->root.type == bfd_link_hash_indirect)
2540 return TRUE;
2541
2542 /* Fix the symbol flags. */
2543 if (! _bfd_elf_fix_symbol_flags (h, eif))
2544 return FALSE;
2545
2546 /* If this symbol does not require a PLT entry, and it is not
2547 defined by a dynamic object, or is not referenced by a regular
2548 object, ignore it. We do have to handle a weak defined symbol,
2549 even if no regular object refers to it, if we decided to add it
2550 to the dynamic symbol table. FIXME: Do we normally need to worry
2551 about symbols which are defined by one dynamic object and
2552 referenced by another one? */
2553 if (!h->needs_plt
2554 && (h->def_regular
2555 || !h->def_dynamic
2556 || (!h->ref_regular
2557 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2558 {
2559 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2560 return TRUE;
2561 }
2562
2563 /* If we've already adjusted this symbol, don't do it again. This
2564 can happen via a recursive call. */
2565 if (h->dynamic_adjusted)
2566 return TRUE;
2567
2568 /* Don't look at this symbol again. Note that we must set this
2569 after checking the above conditions, because we may look at a
2570 symbol once, decide not to do anything, and then get called
2571 recursively later after REF_REGULAR is set below. */
2572 h->dynamic_adjusted = 1;
2573
2574 /* If this is a weak definition, and we know a real definition, and
2575 the real symbol is not itself defined by a regular object file,
2576 then get a good value for the real definition. We handle the
2577 real symbol first, for the convenience of the backend routine.
2578
2579 Note that there is a confusing case here. If the real definition
2580 is defined by a regular object file, we don't get the real symbol
2581 from the dynamic object, but we do get the weak symbol. If the
2582 processor backend uses a COPY reloc, then if some routine in the
2583 dynamic object changes the real symbol, we will not see that
2584 change in the corresponding weak symbol. This is the way other
2585 ELF linkers work as well, and seems to be a result of the shared
2586 library model.
2587
2588 I will clarify this issue. Most SVR4 shared libraries define the
2589 variable _timezone and define timezone as a weak synonym. The
2590 tzset call changes _timezone. If you write
2591 extern int timezone;
2592 int _timezone = 5;
2593 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2594 you might expect that, since timezone is a synonym for _timezone,
2595 the same number will print both times. However, if the processor
2596 backend uses a COPY reloc, then actually timezone will be copied
2597 into your process image, and, since you define _timezone
2598 yourself, _timezone will not. Thus timezone and _timezone will
2599 wind up at different memory locations. The tzset call will set
2600 _timezone, leaving timezone unchanged. */
2601
2602 if (h->u.weakdef != NULL)
2603 {
2604 /* If we get to this point, we know there is an implicit
2605 reference by a regular object file via the weak symbol H.
2606 FIXME: Is this really true? What if the traversal finds
2607 H->U.WEAKDEF before it finds H? */
2608 h->u.weakdef->ref_regular = 1;
2609
2610 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2611 return FALSE;
2612 }
2613
2614 /* If a symbol has no type and no size and does not require a PLT
2615 entry, then we are probably about to do the wrong thing here: we
2616 are probably going to create a COPY reloc for an empty object.
2617 This case can arise when a shared object is built with assembly
2618 code, and the assembly code fails to set the symbol type. */
2619 if (h->size == 0
2620 && h->type == STT_NOTYPE
2621 && !h->needs_plt)
2622 (*_bfd_error_handler)
2623 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2624 h->root.root.string);
2625
2626 dynobj = elf_hash_table (eif->info)->dynobj;
2627 bed = get_elf_backend_data (dynobj);
2628 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2629 {
2630 eif->failed = TRUE;
2631 return FALSE;
2632 }
2633
2634 return TRUE;
2635 }
2636
2637 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2638 DYNBSS. */
2639
2640 bfd_boolean
2641 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2642 asection *dynbss)
2643 {
2644 unsigned int power_of_two;
2645 bfd_vma mask;
2646 asection *sec = h->root.u.def.section;
2647
2648 /* The section aligment of definition is the maximum alignment
2649 requirement of symbols defined in the section. Since we don't
2650 know the symbol alignment requirement, we start with the
2651 maximum alignment and check low bits of the symbol address
2652 for the minimum alignment. */
2653 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2654 mask = ((bfd_vma) 1 << power_of_two) - 1;
2655 while ((h->root.u.def.value & mask) != 0)
2656 {
2657 mask >>= 1;
2658 --power_of_two;
2659 }
2660
2661 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2662 dynbss))
2663 {
2664 /* Adjust the section alignment if needed. */
2665 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2666 power_of_two))
2667 return FALSE;
2668 }
2669
2670 /* We make sure that the symbol will be aligned properly. */
2671 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2672
2673 /* Define the symbol as being at this point in DYNBSS. */
2674 h->root.u.def.section = dynbss;
2675 h->root.u.def.value = dynbss->size;
2676
2677 /* Increment the size of DYNBSS to make room for the symbol. */
2678 dynbss->size += h->size;
2679
2680 return TRUE;
2681 }
2682
2683 /* Adjust all external symbols pointing into SEC_MERGE sections
2684 to reflect the object merging within the sections. */
2685
2686 bfd_boolean
2687 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2688 {
2689 asection *sec;
2690
2691 if (h->root.type == bfd_link_hash_warning)
2692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2693
2694 if ((h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2697 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2698 {
2699 bfd *output_bfd = data;
2700
2701 h->root.u.def.value =
2702 _bfd_merged_section_offset (output_bfd,
2703 &h->root.u.def.section,
2704 elf_section_data (sec)->sec_info,
2705 h->root.u.def.value);
2706 }
2707
2708 return TRUE;
2709 }
2710
2711 /* Returns false if the symbol referred to by H should be considered
2712 to resolve local to the current module, and true if it should be
2713 considered to bind dynamically. */
2714
2715 bfd_boolean
2716 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2717 struct bfd_link_info *info,
2718 bfd_boolean ignore_protected)
2719 {
2720 bfd_boolean binding_stays_local_p;
2721 const struct elf_backend_data *bed;
2722 struct elf_link_hash_table *hash_table;
2723
2724 if (h == NULL)
2725 return FALSE;
2726
2727 while (h->root.type == bfd_link_hash_indirect
2728 || h->root.type == bfd_link_hash_warning)
2729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2730
2731 /* If it was forced local, then clearly it's not dynamic. */
2732 if (h->dynindx == -1)
2733 return FALSE;
2734 if (h->forced_local)
2735 return FALSE;
2736
2737 /* Identify the cases where name binding rules say that a
2738 visible symbol resolves locally. */
2739 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2740
2741 switch (ELF_ST_VISIBILITY (h->other))
2742 {
2743 case STV_INTERNAL:
2744 case STV_HIDDEN:
2745 return FALSE;
2746
2747 case STV_PROTECTED:
2748 hash_table = elf_hash_table (info);
2749 if (!is_elf_hash_table (hash_table))
2750 return FALSE;
2751
2752 bed = get_elf_backend_data (hash_table->dynobj);
2753
2754 /* Proper resolution for function pointer equality may require
2755 that these symbols perhaps be resolved dynamically, even though
2756 we should be resolving them to the current module. */
2757 if (!ignore_protected || !bed->is_function_type (h->type))
2758 binding_stays_local_p = TRUE;
2759 break;
2760
2761 default:
2762 break;
2763 }
2764
2765 /* If it isn't defined locally, then clearly it's dynamic. */
2766 if (!h->def_regular)
2767 return TRUE;
2768
2769 /* Otherwise, the symbol is dynamic if binding rules don't tell
2770 us that it remains local. */
2771 return !binding_stays_local_p;
2772 }
2773
2774 /* Return true if the symbol referred to by H should be considered
2775 to resolve local to the current module, and false otherwise. Differs
2776 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2777 undefined symbols and weak symbols. */
2778
2779 bfd_boolean
2780 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2781 struct bfd_link_info *info,
2782 bfd_boolean local_protected)
2783 {
2784 const struct elf_backend_data *bed;
2785 struct elf_link_hash_table *hash_table;
2786
2787 /* If it's a local sym, of course we resolve locally. */
2788 if (h == NULL)
2789 return TRUE;
2790
2791 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2792 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2793 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2794 return TRUE;
2795
2796 /* Common symbols that become definitions don't get the DEF_REGULAR
2797 flag set, so test it first, and don't bail out. */
2798 if (ELF_COMMON_DEF_P (h))
2799 /* Do nothing. */;
2800 /* If we don't have a definition in a regular file, then we can't
2801 resolve locally. The sym is either undefined or dynamic. */
2802 else if (!h->def_regular)
2803 return FALSE;
2804
2805 /* Forced local symbols resolve locally. */
2806 if (h->forced_local)
2807 return TRUE;
2808
2809 /* As do non-dynamic symbols. */
2810 if (h->dynindx == -1)
2811 return TRUE;
2812
2813 /* At this point, we know the symbol is defined and dynamic. In an
2814 executable it must resolve locally, likewise when building symbolic
2815 shared libraries. */
2816 if (info->executable || SYMBOLIC_BIND (info, h))
2817 return TRUE;
2818
2819 /* Now deal with defined dynamic symbols in shared libraries. Ones
2820 with default visibility might not resolve locally. */
2821 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2822 return FALSE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3258
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3262 {
3263 return input == output;
3264 }
3265
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3269
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3273 {
3274 const struct elf_backend_data *obed, *ibed;
3275
3276 if (input == output)
3277 return TRUE;
3278
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3281
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3284
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3287 }
3288
3289 /* Add symbols from an ELF object file to the linker hash table. */
3290
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3293 {
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3324
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3327
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3331 {
3332 dynamic = TRUE;
3333
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || info->output_bfd->xvec != abfd->xvec)
3340 {
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3346 }
3347 }
3348
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3354 {
3355 asection *s;
3356
3357 for (s = abfd->sections; s != NULL; s = s->next)
3358 {
3359 const char *name;
3360
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3363 {
3364 char *msg;
3365 bfd_size_type sz;
3366
3367 name += sizeof ".gnu.warning." - 1;
3368
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3379 {
3380 struct elf_link_hash_entry *h;
3381
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3383
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3388 {
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3394 }
3395 }
3396
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3401
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3404
3405 msg[sz] = '\0';
3406
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3411
3412 if (! info->relocatable)
3413 {
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3417
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3421 }
3422 }
3423 }
3424 }
3425
3426 add_needed = TRUE;
3427 if (! dynamic)
3428 {
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && info->output_bfd->xvec == abfd->xvec
3437 && !htab->dynamic_sections_created)
3438 {
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3441 }
3442 }
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3446 {
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3451
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3457
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3468
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3471 {
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 unsigned int elfsec;
3475 unsigned long shlink;
3476
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3479
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == SHN_BAD)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3484
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3488 {
3489 Elf_Internal_Dyn dyn;
3490
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3493 {
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3498 }
3499 if (dyn.d_tag == DT_NEEDED)
3500 {
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3504
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3519 ;
3520 *pn = n;
3521 }
3522 if (dyn.d_tag == DT_RUNPATH)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3544 ;
3545 *pn = n;
3546 }
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 {
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3566 }
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 }
3578
3579 free (dynbuf);
3580 }
3581
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3586
3587 if (rpath)
3588 {
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3591 ;
3592 *pn = rpath;
3593 }
3594
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3603
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3610 {
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3614 }
3615
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3619
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3623
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3629 }
3630
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3635
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3640
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3642
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3647 {
3648 extsymcount = symcount;
3649 extsymoff = 0;
3650 }
3651 else
3652 {
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3655 }
3656
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3659 {
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3664
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3672 }
3673
3674 if (dynamic)
3675 {
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3680
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3684 {
3685 Elf_Internal_Shdr *versymhdr;
3686
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3695 }
3696 }
3697
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3702 {
3703 unsigned int i;
3704 size_t entsize;
3705
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3707 {
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3710
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3712 {
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3717 }
3718 }
3719
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3725
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3731
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3737
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3750
3751 for (i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3762 {
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3765 }
3766 }
3767 }
3768 }
3769
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3775 {
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3790
3791 override = FALSE;
3792
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3798
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3801 {
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3807 }
3808 else if (bind == STB_GLOBAL)
3809 {
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3812 }
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3816 {
3817 /* Leave it up to the processor backend. */
3818 }
3819
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx == SHN_ABS)
3823 sec = bfd_abs_section_ptr;
3824 else if (isym->st_shndx == SHN_COMMON)
3825 {
3826 sec = bfd_com_section_ptr;
3827 /* What ELF calls the size we call the value. What ELF
3828 calls the value we call the alignment. */
3829 value = isym->st_size;
3830 }
3831 else
3832 {
3833 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3834 if (sec == NULL)
3835 sec = bfd_abs_section_ptr;
3836 else if (sec->kept_section)
3837 {
3838 /* Symbols from discarded section are undefined. We keep
3839 its visibility. */
3840 sec = bfd_und_section_ptr;
3841 isym->st_shndx = SHN_UNDEF;
3842 }
3843 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3844 value -= sec->vma;
3845 }
3846
3847 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3848 isym->st_name);
3849 if (name == NULL)
3850 goto error_free_vers;
3851
3852 if (isym->st_shndx == SHN_COMMON
3853 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3854 && !info->relocatable)
3855 {
3856 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3857
3858 if (tcomm == NULL)
3859 {
3860 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3861 (SEC_ALLOC
3862 | SEC_IS_COMMON
3863 | SEC_LINKER_CREATED
3864 | SEC_THREAD_LOCAL));
3865 if (tcomm == NULL)
3866 goto error_free_vers;
3867 }
3868 sec = tcomm;
3869 }
3870 else if (bed->elf_add_symbol_hook)
3871 {
3872 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3873 &sec, &value))
3874 goto error_free_vers;
3875
3876 /* The hook function sets the name to NULL if this symbol
3877 should be skipped for some reason. */
3878 if (name == NULL)
3879 continue;
3880 }
3881
3882 /* Sanity check that all possibilities were handled. */
3883 if (sec == NULL)
3884 {
3885 bfd_set_error (bfd_error_bad_value);
3886 goto error_free_vers;
3887 }
3888
3889 if (bfd_is_und_section (sec)
3890 || bfd_is_com_section (sec))
3891 definition = FALSE;
3892 else
3893 definition = TRUE;
3894
3895 size_change_ok = FALSE;
3896 type_change_ok = bed->type_change_ok;
3897 old_alignment = 0;
3898 old_bfd = NULL;
3899 new_sec = sec;
3900
3901 if (is_elf_hash_table (htab))
3902 {
3903 Elf_Internal_Versym iver;
3904 unsigned int vernum = 0;
3905 bfd_boolean skip;
3906
3907 if (ever == NULL)
3908 {
3909 if (info->default_imported_symver)
3910 /* Use the default symbol version created earlier. */
3911 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3912 else
3913 iver.vs_vers = 0;
3914 }
3915 else
3916 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3917
3918 vernum = iver.vs_vers & VERSYM_VERSION;
3919
3920 /* If this is a hidden symbol, or if it is not version
3921 1, we append the version name to the symbol name.
3922 However, we do not modify a non-hidden absolute symbol
3923 if it is not a function, because it might be the version
3924 symbol itself. FIXME: What if it isn't? */
3925 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3926 || (vernum > 1
3927 && (!bfd_is_abs_section (sec)
3928 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3929 {
3930 const char *verstr;
3931 size_t namelen, verlen, newlen;
3932 char *newname, *p;
3933
3934 if (isym->st_shndx != SHN_UNDEF)
3935 {
3936 if (vernum > elf_tdata (abfd)->cverdefs)
3937 verstr = NULL;
3938 else if (vernum > 1)
3939 verstr =
3940 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3941 else
3942 verstr = "";
3943
3944 if (verstr == NULL)
3945 {
3946 (*_bfd_error_handler)
3947 (_("%B: %s: invalid version %u (max %d)"),
3948 abfd, name, vernum,
3949 elf_tdata (abfd)->cverdefs);
3950 bfd_set_error (bfd_error_bad_value);
3951 goto error_free_vers;
3952 }
3953 }
3954 else
3955 {
3956 /* We cannot simply test for the number of
3957 entries in the VERNEED section since the
3958 numbers for the needed versions do not start
3959 at 0. */
3960 Elf_Internal_Verneed *t;
3961
3962 verstr = NULL;
3963 for (t = elf_tdata (abfd)->verref;
3964 t != NULL;
3965 t = t->vn_nextref)
3966 {
3967 Elf_Internal_Vernaux *a;
3968
3969 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3970 {
3971 if (a->vna_other == vernum)
3972 {
3973 verstr = a->vna_nodename;
3974 break;
3975 }
3976 }
3977 if (a != NULL)
3978 break;
3979 }
3980 if (verstr == NULL)
3981 {
3982 (*_bfd_error_handler)
3983 (_("%B: %s: invalid needed version %d"),
3984 abfd, name, vernum);
3985 bfd_set_error (bfd_error_bad_value);
3986 goto error_free_vers;
3987 }
3988 }
3989
3990 namelen = strlen (name);
3991 verlen = strlen (verstr);
3992 newlen = namelen + verlen + 2;
3993 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3994 && isym->st_shndx != SHN_UNDEF)
3995 ++newlen;
3996
3997 newname = bfd_hash_allocate (&htab->root.table, newlen);
3998 if (newname == NULL)
3999 goto error_free_vers;
4000 memcpy (newname, name, namelen);
4001 p = newname + namelen;
4002 *p++ = ELF_VER_CHR;
4003 /* If this is a defined non-hidden version symbol,
4004 we add another @ to the name. This indicates the
4005 default version of the symbol. */
4006 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4007 && isym->st_shndx != SHN_UNDEF)
4008 *p++ = ELF_VER_CHR;
4009 memcpy (p, verstr, verlen + 1);
4010
4011 name = newname;
4012 }
4013
4014 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4015 &value, &old_alignment,
4016 sym_hash, &skip, &override,
4017 &type_change_ok, &size_change_ok))
4018 goto error_free_vers;
4019
4020 if (skip)
4021 continue;
4022
4023 if (override)
4024 definition = FALSE;
4025
4026 h = *sym_hash;
4027 while (h->root.type == bfd_link_hash_indirect
4028 || h->root.type == bfd_link_hash_warning)
4029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4030
4031 /* Remember the old alignment if this is a common symbol, so
4032 that we don't reduce the alignment later on. We can't
4033 check later, because _bfd_generic_link_add_one_symbol
4034 will set a default for the alignment which we want to
4035 override. We also remember the old bfd where the existing
4036 definition comes from. */
4037 switch (h->root.type)
4038 {
4039 default:
4040 break;
4041
4042 case bfd_link_hash_defined:
4043 case bfd_link_hash_defweak:
4044 old_bfd = h->root.u.def.section->owner;
4045 break;
4046
4047 case bfd_link_hash_common:
4048 old_bfd = h->root.u.c.p->section->owner;
4049 old_alignment = h->root.u.c.p->alignment_power;
4050 break;
4051 }
4052
4053 if (elf_tdata (abfd)->verdef != NULL
4054 && ! override
4055 && vernum > 1
4056 && definition)
4057 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4058 }
4059
4060 if (! (_bfd_generic_link_add_one_symbol
4061 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4062 (struct bfd_link_hash_entry **) sym_hash)))
4063 goto error_free_vers;
4064
4065 h = *sym_hash;
4066 while (h->root.type == bfd_link_hash_indirect
4067 || h->root.type == bfd_link_hash_warning)
4068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4069 *sym_hash = h;
4070
4071 new_weakdef = FALSE;
4072 if (dynamic
4073 && definition
4074 && (flags & BSF_WEAK) != 0
4075 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4076 && is_elf_hash_table (htab)
4077 && h->u.weakdef == NULL)
4078 {
4079 /* Keep a list of all weak defined non function symbols from
4080 a dynamic object, using the weakdef field. Later in this
4081 function we will set the weakdef field to the correct
4082 value. We only put non-function symbols from dynamic
4083 objects on this list, because that happens to be the only
4084 time we need to know the normal symbol corresponding to a
4085 weak symbol, and the information is time consuming to
4086 figure out. If the weakdef field is not already NULL,
4087 then this symbol was already defined by some previous
4088 dynamic object, and we will be using that previous
4089 definition anyhow. */
4090
4091 h->u.weakdef = weaks;
4092 weaks = h;
4093 new_weakdef = TRUE;
4094 }
4095
4096 /* Set the alignment of a common symbol. */
4097 if ((common || bfd_is_com_section (sec))
4098 && h->root.type == bfd_link_hash_common)
4099 {
4100 unsigned int align;
4101
4102 if (common)
4103 align = bfd_log2 (isym->st_value);
4104 else
4105 {
4106 /* The new symbol is a common symbol in a shared object.
4107 We need to get the alignment from the section. */
4108 align = new_sec->alignment_power;
4109 }
4110 if (align > old_alignment
4111 /* Permit an alignment power of zero if an alignment of one
4112 is specified and no other alignments have been specified. */
4113 || (isym->st_value == 1 && old_alignment == 0))
4114 h->root.u.c.p->alignment_power = align;
4115 else
4116 h->root.u.c.p->alignment_power = old_alignment;
4117 }
4118
4119 if (is_elf_hash_table (htab))
4120 {
4121 bfd_boolean dynsym;
4122
4123 /* Check the alignment when a common symbol is involved. This
4124 can change when a common symbol is overridden by a normal
4125 definition or a common symbol is ignored due to the old
4126 normal definition. We need to make sure the maximum
4127 alignment is maintained. */
4128 if ((old_alignment || common)
4129 && h->root.type != bfd_link_hash_common)
4130 {
4131 unsigned int common_align;
4132 unsigned int normal_align;
4133 unsigned int symbol_align;
4134 bfd *normal_bfd;
4135 bfd *common_bfd;
4136
4137 symbol_align = ffs (h->root.u.def.value) - 1;
4138 if (h->root.u.def.section->owner != NULL
4139 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4140 {
4141 normal_align = h->root.u.def.section->alignment_power;
4142 if (normal_align > symbol_align)
4143 normal_align = symbol_align;
4144 }
4145 else
4146 normal_align = symbol_align;
4147
4148 if (old_alignment)
4149 {
4150 common_align = old_alignment;
4151 common_bfd = old_bfd;
4152 normal_bfd = abfd;
4153 }
4154 else
4155 {
4156 common_align = bfd_log2 (isym->st_value);
4157 common_bfd = abfd;
4158 normal_bfd = old_bfd;
4159 }
4160
4161 if (normal_align < common_align)
4162 {
4163 /* PR binutils/2735 */
4164 if (normal_bfd == NULL)
4165 (*_bfd_error_handler)
4166 (_("Warning: alignment %u of common symbol `%s' in %B"
4167 " is greater than the alignment (%u) of its section %A"),
4168 common_bfd, h->root.u.def.section,
4169 1 << common_align, name, 1 << normal_align);
4170 else
4171 (*_bfd_error_handler)
4172 (_("Warning: alignment %u of symbol `%s' in %B"
4173 " is smaller than %u in %B"),
4174 normal_bfd, common_bfd,
4175 1 << normal_align, name, 1 << common_align);
4176 }
4177 }
4178
4179 /* Remember the symbol size if it isn't undefined. */
4180 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4181 && (definition || h->size == 0))
4182 {
4183 if (h->size != 0
4184 && h->size != isym->st_size
4185 && ! size_change_ok)
4186 (*_bfd_error_handler)
4187 (_("Warning: size of symbol `%s' changed"
4188 " from %lu in %B to %lu in %B"),
4189 old_bfd, abfd,
4190 name, (unsigned long) h->size,
4191 (unsigned long) isym->st_size);
4192
4193 h->size = isym->st_size;
4194 }
4195
4196 /* If this is a common symbol, then we always want H->SIZE
4197 to be the size of the common symbol. The code just above
4198 won't fix the size if a common symbol becomes larger. We
4199 don't warn about a size change here, because that is
4200 covered by --warn-common. Allow changed between different
4201 function types. */
4202 if (h->root.type == bfd_link_hash_common)
4203 h->size = h->root.u.c.size;
4204
4205 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4206 && (definition || h->type == STT_NOTYPE))
4207 {
4208 if (h->type != STT_NOTYPE
4209 && h->type != ELF_ST_TYPE (isym->st_info)
4210 && ! type_change_ok)
4211 (*_bfd_error_handler)
4212 (_("Warning: type of symbol `%s' changed"
4213 " from %d to %d in %B"),
4214 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4215
4216 h->type = ELF_ST_TYPE (isym->st_info);
4217 }
4218
4219 /* If st_other has a processor-specific meaning, specific
4220 code might be needed here. We never merge the visibility
4221 attribute with the one from a dynamic object. */
4222 if (bed->elf_backend_merge_symbol_attribute)
4223 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4224 dynamic);
4225
4226 /* If this symbol has default visibility and the user has requested
4227 we not re-export it, then mark it as hidden. */
4228 if (definition && !dynamic
4229 && (abfd->no_export
4230 || (abfd->my_archive && abfd->my_archive->no_export))
4231 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4232 isym->st_other = (STV_HIDDEN
4233 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4234
4235 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4236 {
4237 unsigned char hvis, symvis, other, nvis;
4238
4239 /* Only merge the visibility. Leave the remainder of the
4240 st_other field to elf_backend_merge_symbol_attribute. */
4241 other = h->other & ~ELF_ST_VISIBILITY (-1);
4242
4243 /* Combine visibilities, using the most constraining one. */
4244 hvis = ELF_ST_VISIBILITY (h->other);
4245 symvis = ELF_ST_VISIBILITY (isym->st_other);
4246 if (! hvis)
4247 nvis = symvis;
4248 else if (! symvis)
4249 nvis = hvis;
4250 else
4251 nvis = hvis < symvis ? hvis : symvis;
4252
4253 h->other = other | nvis;
4254 }
4255
4256 /* Set a flag in the hash table entry indicating the type of
4257 reference or definition we just found. Keep a count of
4258 the number of dynamic symbols we find. A dynamic symbol
4259 is one which is referenced or defined by both a regular
4260 object and a shared object. */
4261 dynsym = FALSE;
4262 if (! dynamic)
4263 {
4264 if (! definition)
4265 {
4266 h->ref_regular = 1;
4267 if (bind != STB_WEAK)
4268 h->ref_regular_nonweak = 1;
4269 }
4270 else
4271 h->def_regular = 1;
4272 if (! info->executable
4273 || h->def_dynamic
4274 || h->ref_dynamic)
4275 dynsym = TRUE;
4276 }
4277 else
4278 {
4279 if (! definition)
4280 h->ref_dynamic = 1;
4281 else
4282 h->def_dynamic = 1;
4283 if (h->def_regular
4284 || h->ref_regular
4285 || (h->u.weakdef != NULL
4286 && ! new_weakdef
4287 && h->u.weakdef->dynindx != -1))
4288 dynsym = TRUE;
4289 }
4290
4291 if (definition && (sec->flags & SEC_DEBUGGING))
4292 {
4293 /* We don't want to make debug symbol dynamic. */
4294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4295 dynsym = FALSE;
4296 }
4297
4298 /* Check to see if we need to add an indirect symbol for
4299 the default name. */
4300 if (definition || h->root.type == bfd_link_hash_common)
4301 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4302 &sec, &value, &dynsym,
4303 override))
4304 goto error_free_vers;
4305
4306 if (definition && !dynamic)
4307 {
4308 char *p = strchr (name, ELF_VER_CHR);
4309 if (p != NULL && p[1] != ELF_VER_CHR)
4310 {
4311 /* Queue non-default versions so that .symver x, x@FOO
4312 aliases can be checked. */
4313 if (!nondeflt_vers)
4314 {
4315 amt = ((isymend - isym + 1)
4316 * sizeof (struct elf_link_hash_entry *));
4317 nondeflt_vers = bfd_malloc (amt);
4318 if (!nondeflt_vers)
4319 goto error_free_vers;
4320 }
4321 nondeflt_vers[nondeflt_vers_cnt++] = h;
4322 }
4323 }
4324
4325 if (dynsym && h->dynindx == -1)
4326 {
4327 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4328 goto error_free_vers;
4329 if (h->u.weakdef != NULL
4330 && ! new_weakdef
4331 && h->u.weakdef->dynindx == -1)
4332 {
4333 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4334 goto error_free_vers;
4335 }
4336 }
4337 else if (dynsym && h->dynindx != -1)
4338 /* If the symbol already has a dynamic index, but
4339 visibility says it should not be visible, turn it into
4340 a local symbol. */
4341 switch (ELF_ST_VISIBILITY (h->other))
4342 {
4343 case STV_INTERNAL:
4344 case STV_HIDDEN:
4345 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4346 dynsym = FALSE;
4347 break;
4348 }
4349
4350 if (!add_needed
4351 && definition
4352 && dynsym
4353 && h->ref_regular)
4354 {
4355 int ret;
4356 const char *soname = elf_dt_name (abfd);
4357
4358 /* A symbol from a library loaded via DT_NEEDED of some
4359 other library is referenced by a regular object.
4360 Add a DT_NEEDED entry for it. Issue an error if
4361 --no-add-needed is used. */
4362 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4363 {
4364 (*_bfd_error_handler)
4365 (_("%s: invalid DSO for symbol `%s' definition"),
4366 abfd, name);
4367 bfd_set_error (bfd_error_bad_value);
4368 goto error_free_vers;
4369 }
4370
4371 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4372
4373 add_needed = TRUE;
4374 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4375 if (ret < 0)
4376 goto error_free_vers;
4377
4378 BFD_ASSERT (ret == 0);
4379 }
4380 }
4381 }
4382
4383 if (extversym != NULL)
4384 {
4385 free (extversym);
4386 extversym = NULL;
4387 }
4388
4389 if (isymbuf != NULL)
4390 {
4391 free (isymbuf);
4392 isymbuf = NULL;
4393 }
4394
4395 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4396 {
4397 unsigned int i;
4398
4399 /* Restore the symbol table. */
4400 if (bed->as_needed_cleanup)
4401 (*bed->as_needed_cleanup) (abfd, info);
4402 old_hash = (char *) old_tab + tabsize;
4403 old_ent = (char *) old_hash + hashsize;
4404 sym_hash = elf_sym_hashes (abfd);
4405 htab->root.table.table = old_table;
4406 htab->root.table.size = old_size;
4407 htab->root.table.count = old_count;
4408 memcpy (htab->root.table.table, old_tab, tabsize);
4409 memcpy (sym_hash, old_hash, hashsize);
4410 htab->root.undefs = old_undefs;
4411 htab->root.undefs_tail = old_undefs_tail;
4412 for (i = 0; i < htab->root.table.size; i++)
4413 {
4414 struct bfd_hash_entry *p;
4415 struct elf_link_hash_entry *h;
4416
4417 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4418 {
4419 h = (struct elf_link_hash_entry *) p;
4420 if (h->root.type == bfd_link_hash_warning)
4421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4422 if (h->dynindx >= old_dynsymcount)
4423 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4424
4425 memcpy (p, old_ent, htab->root.table.entsize);
4426 old_ent = (char *) old_ent + htab->root.table.entsize;
4427 h = (struct elf_link_hash_entry *) p;
4428 if (h->root.type == bfd_link_hash_warning)
4429 {
4430 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 }
4433 }
4434 }
4435
4436 /* Make a special call to the linker "notice" function to
4437 tell it that symbols added for crefs may need to be removed. */
4438 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4439 notice_not_needed))
4440 goto error_free_vers;
4441
4442 free (old_tab);
4443 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4444 alloc_mark);
4445 if (nondeflt_vers != NULL)
4446 free (nondeflt_vers);
4447 return TRUE;
4448 }
4449
4450 if (old_tab != NULL)
4451 {
4452 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4453 notice_needed))
4454 goto error_free_vers;
4455 free (old_tab);
4456 old_tab = NULL;
4457 }
4458
4459 /* Now that all the symbols from this input file are created, handle
4460 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4461 if (nondeflt_vers != NULL)
4462 {
4463 bfd_size_type cnt, symidx;
4464
4465 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4466 {
4467 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4468 char *shortname, *p;
4469
4470 p = strchr (h->root.root.string, ELF_VER_CHR);
4471 if (p == NULL
4472 || (h->root.type != bfd_link_hash_defined
4473 && h->root.type != bfd_link_hash_defweak))
4474 continue;
4475
4476 amt = p - h->root.root.string;
4477 shortname = bfd_malloc (amt + 1);
4478 if (!shortname)
4479 goto error_free_vers;
4480 memcpy (shortname, h->root.root.string, amt);
4481 shortname[amt] = '\0';
4482
4483 hi = (struct elf_link_hash_entry *)
4484 bfd_link_hash_lookup (&htab->root, shortname,
4485 FALSE, FALSE, FALSE);
4486 if (hi != NULL
4487 && hi->root.type == h->root.type
4488 && hi->root.u.def.value == h->root.u.def.value
4489 && hi->root.u.def.section == h->root.u.def.section)
4490 {
4491 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4492 hi->root.type = bfd_link_hash_indirect;
4493 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4494 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4495 sym_hash = elf_sym_hashes (abfd);
4496 if (sym_hash)
4497 for (symidx = 0; symidx < extsymcount; ++symidx)
4498 if (sym_hash[symidx] == hi)
4499 {
4500 sym_hash[symidx] = h;
4501 break;
4502 }
4503 }
4504 free (shortname);
4505 }
4506 free (nondeflt_vers);
4507 nondeflt_vers = NULL;
4508 }
4509
4510 /* Now set the weakdefs field correctly for all the weak defined
4511 symbols we found. The only way to do this is to search all the
4512 symbols. Since we only need the information for non functions in
4513 dynamic objects, that's the only time we actually put anything on
4514 the list WEAKS. We need this information so that if a regular
4515 object refers to a symbol defined weakly in a dynamic object, the
4516 real symbol in the dynamic object is also put in the dynamic
4517 symbols; we also must arrange for both symbols to point to the
4518 same memory location. We could handle the general case of symbol
4519 aliasing, but a general symbol alias can only be generated in
4520 assembler code, handling it correctly would be very time
4521 consuming, and other ELF linkers don't handle general aliasing
4522 either. */
4523 if (weaks != NULL)
4524 {
4525 struct elf_link_hash_entry **hpp;
4526 struct elf_link_hash_entry **hppend;
4527 struct elf_link_hash_entry **sorted_sym_hash;
4528 struct elf_link_hash_entry *h;
4529 size_t sym_count;
4530
4531 /* Since we have to search the whole symbol list for each weak
4532 defined symbol, search time for N weak defined symbols will be
4533 O(N^2). Binary search will cut it down to O(NlogN). */
4534 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4535 sorted_sym_hash = bfd_malloc (amt);
4536 if (sorted_sym_hash == NULL)
4537 goto error_return;
4538 sym_hash = sorted_sym_hash;
4539 hpp = elf_sym_hashes (abfd);
4540 hppend = hpp + extsymcount;
4541 sym_count = 0;
4542 for (; hpp < hppend; hpp++)
4543 {
4544 h = *hpp;
4545 if (h != NULL
4546 && h->root.type == bfd_link_hash_defined
4547 && !bed->is_function_type (h->type))
4548 {
4549 *sym_hash = h;
4550 sym_hash++;
4551 sym_count++;
4552 }
4553 }
4554
4555 qsort (sorted_sym_hash, sym_count,
4556 sizeof (struct elf_link_hash_entry *),
4557 elf_sort_symbol);
4558
4559 while (weaks != NULL)
4560 {
4561 struct elf_link_hash_entry *hlook;
4562 asection *slook;
4563 bfd_vma vlook;
4564 long ilook;
4565 size_t i, j, idx;
4566
4567 hlook = weaks;
4568 weaks = hlook->u.weakdef;
4569 hlook->u.weakdef = NULL;
4570
4571 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4572 || hlook->root.type == bfd_link_hash_defweak
4573 || hlook->root.type == bfd_link_hash_common
4574 || hlook->root.type == bfd_link_hash_indirect);
4575 slook = hlook->root.u.def.section;
4576 vlook = hlook->root.u.def.value;
4577
4578 ilook = -1;
4579 i = 0;
4580 j = sym_count;
4581 while (i < j)
4582 {
4583 bfd_signed_vma vdiff;
4584 idx = (i + j) / 2;
4585 h = sorted_sym_hash [idx];
4586 vdiff = vlook - h->root.u.def.value;
4587 if (vdiff < 0)
4588 j = idx;
4589 else if (vdiff > 0)
4590 i = idx + 1;
4591 else
4592 {
4593 long sdiff = slook->id - h->root.u.def.section->id;
4594 if (sdiff < 0)
4595 j = idx;
4596 else if (sdiff > 0)
4597 i = idx + 1;
4598 else
4599 {
4600 ilook = idx;
4601 break;
4602 }
4603 }
4604 }
4605
4606 /* We didn't find a value/section match. */
4607 if (ilook == -1)
4608 continue;
4609
4610 for (i = ilook; i < sym_count; i++)
4611 {
4612 h = sorted_sym_hash [i];
4613
4614 /* Stop if value or section doesn't match. */
4615 if (h->root.u.def.value != vlook
4616 || h->root.u.def.section != slook)
4617 break;
4618 else if (h != hlook)
4619 {
4620 hlook->u.weakdef = h;
4621
4622 /* If the weak definition is in the list of dynamic
4623 symbols, make sure the real definition is put
4624 there as well. */
4625 if (hlook->dynindx != -1 && h->dynindx == -1)
4626 {
4627 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4628 goto error_return;
4629 }
4630
4631 /* If the real definition is in the list of dynamic
4632 symbols, make sure the weak definition is put
4633 there as well. If we don't do this, then the
4634 dynamic loader might not merge the entries for the
4635 real definition and the weak definition. */
4636 if (h->dynindx != -1 && hlook->dynindx == -1)
4637 {
4638 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4639 goto error_return;
4640 }
4641 break;
4642 }
4643 }
4644 }
4645
4646 free (sorted_sym_hash);
4647 }
4648
4649 if (bed->check_directives)
4650 (*bed->check_directives) (abfd, info);
4651
4652 /* If this object is the same format as the output object, and it is
4653 not a shared library, then let the backend look through the
4654 relocs.
4655
4656 This is required to build global offset table entries and to
4657 arrange for dynamic relocs. It is not required for the
4658 particular common case of linking non PIC code, even when linking
4659 against shared libraries, but unfortunately there is no way of
4660 knowing whether an object file has been compiled PIC or not.
4661 Looking through the relocs is not particularly time consuming.
4662 The problem is that we must either (1) keep the relocs in memory,
4663 which causes the linker to require additional runtime memory or
4664 (2) read the relocs twice from the input file, which wastes time.
4665 This would be a good case for using mmap.
4666
4667 I have no idea how to handle linking PIC code into a file of a
4668 different format. It probably can't be done. */
4669 if (! dynamic
4670 && is_elf_hash_table (htab)
4671 && bed->check_relocs != NULL
4672 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4673 {
4674 asection *o;
4675
4676 for (o = abfd->sections; o != NULL; o = o->next)
4677 {
4678 Elf_Internal_Rela *internal_relocs;
4679 bfd_boolean ok;
4680
4681 if ((o->flags & SEC_RELOC) == 0
4682 || o->reloc_count == 0
4683 || ((info->strip == strip_all || info->strip == strip_debugger)
4684 && (o->flags & SEC_DEBUGGING) != 0)
4685 || bfd_is_abs_section (o->output_section))
4686 continue;
4687
4688 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4689 info->keep_memory);
4690 if (internal_relocs == NULL)
4691 goto error_return;
4692
4693 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4694
4695 if (elf_section_data (o)->relocs != internal_relocs)
4696 free (internal_relocs);
4697
4698 if (! ok)
4699 goto error_return;
4700 }
4701 }
4702
4703 /* If this is a non-traditional link, try to optimize the handling
4704 of the .stab/.stabstr sections. */
4705 if (! dynamic
4706 && ! info->traditional_format
4707 && is_elf_hash_table (htab)
4708 && (info->strip != strip_all && info->strip != strip_debugger))
4709 {
4710 asection *stabstr;
4711
4712 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4713 if (stabstr != NULL)
4714 {
4715 bfd_size_type string_offset = 0;
4716 asection *stab;
4717
4718 for (stab = abfd->sections; stab; stab = stab->next)
4719 if (CONST_STRNEQ (stab->name, ".stab")
4720 && (!stab->name[5] ||
4721 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4722 && (stab->flags & SEC_MERGE) == 0
4723 && !bfd_is_abs_section (stab->output_section))
4724 {
4725 struct bfd_elf_section_data *secdata;
4726
4727 secdata = elf_section_data (stab);
4728 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4729 stabstr, &secdata->sec_info,
4730 &string_offset))
4731 goto error_return;
4732 if (secdata->sec_info)
4733 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4734 }
4735 }
4736 }
4737
4738 if (is_elf_hash_table (htab) && add_needed)
4739 {
4740 /* Add this bfd to the loaded list. */
4741 struct elf_link_loaded_list *n;
4742
4743 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4744 if (n == NULL)
4745 goto error_return;
4746 n->abfd = abfd;
4747 n->next = htab->loaded;
4748 htab->loaded = n;
4749 }
4750
4751 return TRUE;
4752
4753 error_free_vers:
4754 if (old_tab != NULL)
4755 free (old_tab);
4756 if (nondeflt_vers != NULL)
4757 free (nondeflt_vers);
4758 if (extversym != NULL)
4759 free (extversym);
4760 error_free_sym:
4761 if (isymbuf != NULL)
4762 free (isymbuf);
4763 error_return:
4764 return FALSE;
4765 }
4766
4767 /* Return the linker hash table entry of a symbol that might be
4768 satisfied by an archive symbol. Return -1 on error. */
4769
4770 struct elf_link_hash_entry *
4771 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4772 struct bfd_link_info *info,
4773 const char *name)
4774 {
4775 struct elf_link_hash_entry *h;
4776 char *p, *copy;
4777 size_t len, first;
4778
4779 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4780 if (h != NULL)
4781 return h;
4782
4783 /* If this is a default version (the name contains @@), look up the
4784 symbol again with only one `@' as well as without the version.
4785 The effect is that references to the symbol with and without the
4786 version will be matched by the default symbol in the archive. */
4787
4788 p = strchr (name, ELF_VER_CHR);
4789 if (p == NULL || p[1] != ELF_VER_CHR)
4790 return h;
4791
4792 /* First check with only one `@'. */
4793 len = strlen (name);
4794 copy = bfd_alloc (abfd, len);
4795 if (copy == NULL)
4796 return (struct elf_link_hash_entry *) 0 - 1;
4797
4798 first = p - name + 1;
4799 memcpy (copy, name, first);
4800 memcpy (copy + first, name + first + 1, len - first);
4801
4802 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4803 if (h == NULL)
4804 {
4805 /* We also need to check references to the symbol without the
4806 version. */
4807 copy[first - 1] = '\0';
4808 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4809 FALSE, FALSE, FALSE);
4810 }
4811
4812 bfd_release (abfd, copy);
4813 return h;
4814 }
4815
4816 /* Add symbols from an ELF archive file to the linker hash table. We
4817 don't use _bfd_generic_link_add_archive_symbols because of a
4818 problem which arises on UnixWare. The UnixWare libc.so is an
4819 archive which includes an entry libc.so.1 which defines a bunch of
4820 symbols. The libc.so archive also includes a number of other
4821 object files, which also define symbols, some of which are the same
4822 as those defined in libc.so.1. Correct linking requires that we
4823 consider each object file in turn, and include it if it defines any
4824 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4825 this; it looks through the list of undefined symbols, and includes
4826 any object file which defines them. When this algorithm is used on
4827 UnixWare, it winds up pulling in libc.so.1 early and defining a
4828 bunch of symbols. This means that some of the other objects in the
4829 archive are not included in the link, which is incorrect since they
4830 precede libc.so.1 in the archive.
4831
4832 Fortunately, ELF archive handling is simpler than that done by
4833 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4834 oddities. In ELF, if we find a symbol in the archive map, and the
4835 symbol is currently undefined, we know that we must pull in that
4836 object file.
4837
4838 Unfortunately, we do have to make multiple passes over the symbol
4839 table until nothing further is resolved. */
4840
4841 static bfd_boolean
4842 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4843 {
4844 symindex c;
4845 bfd_boolean *defined = NULL;
4846 bfd_boolean *included = NULL;
4847 carsym *symdefs;
4848 bfd_boolean loop;
4849 bfd_size_type amt;
4850 const struct elf_backend_data *bed;
4851 struct elf_link_hash_entry * (*archive_symbol_lookup)
4852 (bfd *, struct bfd_link_info *, const char *);
4853
4854 if (! bfd_has_map (abfd))
4855 {
4856 /* An empty archive is a special case. */
4857 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4858 return TRUE;
4859 bfd_set_error (bfd_error_no_armap);
4860 return FALSE;
4861 }
4862
4863 /* Keep track of all symbols we know to be already defined, and all
4864 files we know to be already included. This is to speed up the
4865 second and subsequent passes. */
4866 c = bfd_ardata (abfd)->symdef_count;
4867 if (c == 0)
4868 return TRUE;
4869 amt = c;
4870 amt *= sizeof (bfd_boolean);
4871 defined = bfd_zmalloc (amt);
4872 included = bfd_zmalloc (amt);
4873 if (defined == NULL || included == NULL)
4874 goto error_return;
4875
4876 symdefs = bfd_ardata (abfd)->symdefs;
4877 bed = get_elf_backend_data (abfd);
4878 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4879
4880 do
4881 {
4882 file_ptr last;
4883 symindex i;
4884 carsym *symdef;
4885 carsym *symdefend;
4886
4887 loop = FALSE;
4888 last = -1;
4889
4890 symdef = symdefs;
4891 symdefend = symdef + c;
4892 for (i = 0; symdef < symdefend; symdef++, i++)
4893 {
4894 struct elf_link_hash_entry *h;
4895 bfd *element;
4896 struct bfd_link_hash_entry *undefs_tail;
4897 symindex mark;
4898
4899 if (defined[i] || included[i])
4900 continue;
4901 if (symdef->file_offset == last)
4902 {
4903 included[i] = TRUE;
4904 continue;
4905 }
4906
4907 h = archive_symbol_lookup (abfd, info, symdef->name);
4908 if (h == (struct elf_link_hash_entry *) 0 - 1)
4909 goto error_return;
4910
4911 if (h == NULL)
4912 continue;
4913
4914 if (h->root.type == bfd_link_hash_common)
4915 {
4916 /* We currently have a common symbol. The archive map contains
4917 a reference to this symbol, so we may want to include it. We
4918 only want to include it however, if this archive element
4919 contains a definition of the symbol, not just another common
4920 declaration of it.
4921
4922 Unfortunately some archivers (including GNU ar) will put
4923 declarations of common symbols into their archive maps, as
4924 well as real definitions, so we cannot just go by the archive
4925 map alone. Instead we must read in the element's symbol
4926 table and check that to see what kind of symbol definition
4927 this is. */
4928 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4929 continue;
4930 }
4931 else if (h->root.type != bfd_link_hash_undefined)
4932 {
4933 if (h->root.type != bfd_link_hash_undefweak)
4934 defined[i] = TRUE;
4935 continue;
4936 }
4937
4938 /* We need to include this archive member. */
4939 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4940 if (element == NULL)
4941 goto error_return;
4942
4943 if (! bfd_check_format (element, bfd_object))
4944 goto error_return;
4945
4946 /* Doublecheck that we have not included this object
4947 already--it should be impossible, but there may be
4948 something wrong with the archive. */
4949 if (element->archive_pass != 0)
4950 {
4951 bfd_set_error (bfd_error_bad_value);
4952 goto error_return;
4953 }
4954 element->archive_pass = 1;
4955
4956 undefs_tail = info->hash->undefs_tail;
4957
4958 if (! (*info->callbacks->add_archive_element) (info, element,
4959 symdef->name))
4960 goto error_return;
4961 if (! bfd_link_add_symbols (element, info))
4962 goto error_return;
4963
4964 /* If there are any new undefined symbols, we need to make
4965 another pass through the archive in order to see whether
4966 they can be defined. FIXME: This isn't perfect, because
4967 common symbols wind up on undefs_tail and because an
4968 undefined symbol which is defined later on in this pass
4969 does not require another pass. This isn't a bug, but it
4970 does make the code less efficient than it could be. */
4971 if (undefs_tail != info->hash->undefs_tail)
4972 loop = TRUE;
4973
4974 /* Look backward to mark all symbols from this object file
4975 which we have already seen in this pass. */
4976 mark = i;
4977 do
4978 {
4979 included[mark] = TRUE;
4980 if (mark == 0)
4981 break;
4982 --mark;
4983 }
4984 while (symdefs[mark].file_offset == symdef->file_offset);
4985
4986 /* We mark subsequent symbols from this object file as we go
4987 on through the loop. */
4988 last = symdef->file_offset;
4989 }
4990 }
4991 while (loop);
4992
4993 free (defined);
4994 free (included);
4995
4996 return TRUE;
4997
4998 error_return:
4999 if (defined != NULL)
5000 free (defined);
5001 if (included != NULL)
5002 free (included);
5003 return FALSE;
5004 }
5005
5006 /* Given an ELF BFD, add symbols to the global hash table as
5007 appropriate. */
5008
5009 bfd_boolean
5010 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5011 {
5012 switch (bfd_get_format (abfd))
5013 {
5014 case bfd_object:
5015 return elf_link_add_object_symbols (abfd, info);
5016 case bfd_archive:
5017 return elf_link_add_archive_symbols (abfd, info);
5018 default:
5019 bfd_set_error (bfd_error_wrong_format);
5020 return FALSE;
5021 }
5022 }
5023 \f
5024 struct hash_codes_info
5025 {
5026 unsigned long *hashcodes;
5027 bfd_boolean error;
5028 };
5029
5030 /* This function will be called though elf_link_hash_traverse to store
5031 all hash value of the exported symbols in an array. */
5032
5033 static bfd_boolean
5034 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5035 {
5036 struct hash_codes_info *inf = data;
5037 const char *name;
5038 char *p;
5039 unsigned long ha;
5040 char *alc = NULL;
5041
5042 if (h->root.type == bfd_link_hash_warning)
5043 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5044
5045 /* Ignore indirect symbols. These are added by the versioning code. */
5046 if (h->dynindx == -1)
5047 return TRUE;
5048
5049 name = h->root.root.string;
5050 p = strchr (name, ELF_VER_CHR);
5051 if (p != NULL)
5052 {
5053 alc = bfd_malloc (p - name + 1);
5054 if (alc == NULL)
5055 {
5056 inf->error = TRUE;
5057 return FALSE;
5058 }
5059 memcpy (alc, name, p - name);
5060 alc[p - name] = '\0';
5061 name = alc;
5062 }
5063
5064 /* Compute the hash value. */
5065 ha = bfd_elf_hash (name);
5066
5067 /* Store the found hash value in the array given as the argument. */
5068 *(inf->hashcodes)++ = ha;
5069
5070 /* And store it in the struct so that we can put it in the hash table
5071 later. */
5072 h->u.elf_hash_value = ha;
5073
5074 if (alc != NULL)
5075 free (alc);
5076
5077 return TRUE;
5078 }
5079
5080 struct collect_gnu_hash_codes
5081 {
5082 bfd *output_bfd;
5083 const struct elf_backend_data *bed;
5084 unsigned long int nsyms;
5085 unsigned long int maskbits;
5086 unsigned long int *hashcodes;
5087 unsigned long int *hashval;
5088 unsigned long int *indx;
5089 unsigned long int *counts;
5090 bfd_vma *bitmask;
5091 bfd_byte *contents;
5092 long int min_dynindx;
5093 unsigned long int bucketcount;
5094 unsigned long int symindx;
5095 long int local_indx;
5096 long int shift1, shift2;
5097 unsigned long int mask;
5098 bfd_boolean error;
5099 };
5100
5101 /* This function will be called though elf_link_hash_traverse to store
5102 all hash value of the exported symbols in an array. */
5103
5104 static bfd_boolean
5105 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5106 {
5107 struct collect_gnu_hash_codes *s = data;
5108 const char *name;
5109 char *p;
5110 unsigned long ha;
5111 char *alc = NULL;
5112
5113 if (h->root.type == bfd_link_hash_warning)
5114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5115
5116 /* Ignore indirect symbols. These are added by the versioning code. */
5117 if (h->dynindx == -1)
5118 return TRUE;
5119
5120 /* Ignore also local symbols and undefined symbols. */
5121 if (! (*s->bed->elf_hash_symbol) (h))
5122 return TRUE;
5123
5124 name = h->root.root.string;
5125 p = strchr (name, ELF_VER_CHR);
5126 if (p != NULL)
5127 {
5128 alc = bfd_malloc (p - name + 1);
5129 if (alc == NULL)
5130 {
5131 s->error = TRUE;
5132 return FALSE;
5133 }
5134 memcpy (alc, name, p - name);
5135 alc[p - name] = '\0';
5136 name = alc;
5137 }
5138
5139 /* Compute the hash value. */
5140 ha = bfd_elf_gnu_hash (name);
5141
5142 /* Store the found hash value in the array for compute_bucket_count,
5143 and also for .dynsym reordering purposes. */
5144 s->hashcodes[s->nsyms] = ha;
5145 s->hashval[h->dynindx] = ha;
5146 ++s->nsyms;
5147 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5148 s->min_dynindx = h->dynindx;
5149
5150 if (alc != NULL)
5151 free (alc);
5152
5153 return TRUE;
5154 }
5155
5156 /* This function will be called though elf_link_hash_traverse to do
5157 final dynaminc symbol renumbering. */
5158
5159 static bfd_boolean
5160 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5161 {
5162 struct collect_gnu_hash_codes *s = data;
5163 unsigned long int bucket;
5164 unsigned long int val;
5165
5166 if (h->root.type == bfd_link_hash_warning)
5167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5168
5169 /* Ignore indirect symbols. */
5170 if (h->dynindx == -1)
5171 return TRUE;
5172
5173 /* Ignore also local symbols and undefined symbols. */
5174 if (! (*s->bed->elf_hash_symbol) (h))
5175 {
5176 if (h->dynindx >= s->min_dynindx)
5177 h->dynindx = s->local_indx++;
5178 return TRUE;
5179 }
5180
5181 bucket = s->hashval[h->dynindx] % s->bucketcount;
5182 val = (s->hashval[h->dynindx] >> s->shift1)
5183 & ((s->maskbits >> s->shift1) - 1);
5184 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5185 s->bitmask[val]
5186 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5187 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5188 if (s->counts[bucket] == 1)
5189 /* Last element terminates the chain. */
5190 val |= 1;
5191 bfd_put_32 (s->output_bfd, val,
5192 s->contents + (s->indx[bucket] - s->symindx) * 4);
5193 --s->counts[bucket];
5194 h->dynindx = s->indx[bucket]++;
5195 return TRUE;
5196 }
5197
5198 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5199
5200 bfd_boolean
5201 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5202 {
5203 return !(h->forced_local
5204 || h->root.type == bfd_link_hash_undefined
5205 || h->root.type == bfd_link_hash_undefweak
5206 || ((h->root.type == bfd_link_hash_defined
5207 || h->root.type == bfd_link_hash_defweak)
5208 && h->root.u.def.section->output_section == NULL));
5209 }
5210
5211 /* Array used to determine the number of hash table buckets to use
5212 based on the number of symbols there are. If there are fewer than
5213 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5214 fewer than 37 we use 17 buckets, and so forth. We never use more
5215 than 32771 buckets. */
5216
5217 static const size_t elf_buckets[] =
5218 {
5219 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5220 16411, 32771, 0
5221 };
5222
5223 /* Compute bucket count for hashing table. We do not use a static set
5224 of possible tables sizes anymore. Instead we determine for all
5225 possible reasonable sizes of the table the outcome (i.e., the
5226 number of collisions etc) and choose the best solution. The
5227 weighting functions are not too simple to allow the table to grow
5228 without bounds. Instead one of the weighting factors is the size.
5229 Therefore the result is always a good payoff between few collisions
5230 (= short chain lengths) and table size. */
5231 static size_t
5232 compute_bucket_count (struct bfd_link_info *info,
5233 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5234 unsigned long int nsyms,
5235 int gnu_hash)
5236 {
5237 size_t best_size = 0;
5238 unsigned long int i;
5239
5240 /* We have a problem here. The following code to optimize the table
5241 size requires an integer type with more the 32 bits. If
5242 BFD_HOST_U_64_BIT is set we know about such a type. */
5243 #ifdef BFD_HOST_U_64_BIT
5244 if (info->optimize)
5245 {
5246 size_t minsize;
5247 size_t maxsize;
5248 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5249 bfd *dynobj = elf_hash_table (info)->dynobj;
5250 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5251 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5252 unsigned long int *counts;
5253 bfd_size_type amt;
5254
5255 /* Possible optimization parameters: if we have NSYMS symbols we say
5256 that the hashing table must at least have NSYMS/4 and at most
5257 2*NSYMS buckets. */
5258 minsize = nsyms / 4;
5259 if (minsize == 0)
5260 minsize = 1;
5261 best_size = maxsize = nsyms * 2;
5262 if (gnu_hash)
5263 {
5264 if (minsize < 2)
5265 minsize = 2;
5266 if ((best_size & 31) == 0)
5267 ++best_size;
5268 }
5269
5270 /* Create array where we count the collisions in. We must use bfd_malloc
5271 since the size could be large. */
5272 amt = maxsize;
5273 amt *= sizeof (unsigned long int);
5274 counts = bfd_malloc (amt);
5275 if (counts == NULL)
5276 return 0;
5277
5278 /* Compute the "optimal" size for the hash table. The criteria is a
5279 minimal chain length. The minor criteria is (of course) the size
5280 of the table. */
5281 for (i = minsize; i < maxsize; ++i)
5282 {
5283 /* Walk through the array of hashcodes and count the collisions. */
5284 BFD_HOST_U_64_BIT max;
5285 unsigned long int j;
5286 unsigned long int fact;
5287
5288 if (gnu_hash && (i & 31) == 0)
5289 continue;
5290
5291 memset (counts, '\0', i * sizeof (unsigned long int));
5292
5293 /* Determine how often each hash bucket is used. */
5294 for (j = 0; j < nsyms; ++j)
5295 ++counts[hashcodes[j] % i];
5296
5297 /* For the weight function we need some information about the
5298 pagesize on the target. This is information need not be 100%
5299 accurate. Since this information is not available (so far) we
5300 define it here to a reasonable default value. If it is crucial
5301 to have a better value some day simply define this value. */
5302 # ifndef BFD_TARGET_PAGESIZE
5303 # define BFD_TARGET_PAGESIZE (4096)
5304 # endif
5305
5306 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5307 and the chains. */
5308 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5309
5310 # if 1
5311 /* Variant 1: optimize for short chains. We add the squares
5312 of all the chain lengths (which favors many small chain
5313 over a few long chains). */
5314 for (j = 0; j < i; ++j)
5315 max += counts[j] * counts[j];
5316
5317 /* This adds penalties for the overall size of the table. */
5318 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5319 max *= fact * fact;
5320 # else
5321 /* Variant 2: Optimize a lot more for small table. Here we
5322 also add squares of the size but we also add penalties for
5323 empty slots (the +1 term). */
5324 for (j = 0; j < i; ++j)
5325 max += (1 + counts[j]) * (1 + counts[j]);
5326
5327 /* The overall size of the table is considered, but not as
5328 strong as in variant 1, where it is squared. */
5329 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5330 max *= fact;
5331 # endif
5332
5333 /* Compare with current best results. */
5334 if (max < best_chlen)
5335 {
5336 best_chlen = max;
5337 best_size = i;
5338 }
5339 }
5340
5341 free (counts);
5342 }
5343 else
5344 #endif /* defined (BFD_HOST_U_64_BIT) */
5345 {
5346 /* This is the fallback solution if no 64bit type is available or if we
5347 are not supposed to spend much time on optimizations. We select the
5348 bucket count using a fixed set of numbers. */
5349 for (i = 0; elf_buckets[i] != 0; i++)
5350 {
5351 best_size = elf_buckets[i];
5352 if (nsyms < elf_buckets[i + 1])
5353 break;
5354 }
5355 if (gnu_hash && best_size < 2)
5356 best_size = 2;
5357 }
5358
5359 return best_size;
5360 }
5361
5362 /* Set up the sizes and contents of the ELF dynamic sections. This is
5363 called by the ELF linker emulation before_allocation routine. We
5364 must set the sizes of the sections before the linker sets the
5365 addresses of the various sections. */
5366
5367 bfd_boolean
5368 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5369 const char *soname,
5370 const char *rpath,
5371 const char *filter_shlib,
5372 const char * const *auxiliary_filters,
5373 struct bfd_link_info *info,
5374 asection **sinterpptr,
5375 struct bfd_elf_version_tree *verdefs)
5376 {
5377 bfd_size_type soname_indx;
5378 bfd *dynobj;
5379 const struct elf_backend_data *bed;
5380 struct elf_assign_sym_version_info asvinfo;
5381
5382 *sinterpptr = NULL;
5383
5384 soname_indx = (bfd_size_type) -1;
5385
5386 if (!is_elf_hash_table (info->hash))
5387 return TRUE;
5388
5389 bed = get_elf_backend_data (output_bfd);
5390 if (info->execstack)
5391 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5392 else if (info->noexecstack)
5393 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5394 else
5395 {
5396 bfd *inputobj;
5397 asection *notesec = NULL;
5398 int exec = 0;
5399
5400 for (inputobj = info->input_bfds;
5401 inputobj;
5402 inputobj = inputobj->link_next)
5403 {
5404 asection *s;
5405
5406 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5407 continue;
5408 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5409 if (s)
5410 {
5411 if (s->flags & SEC_CODE)
5412 exec = PF_X;
5413 notesec = s;
5414 }
5415 else if (bed->default_execstack)
5416 exec = PF_X;
5417 }
5418 if (notesec)
5419 {
5420 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5421 if (exec && info->relocatable
5422 && notesec->output_section != bfd_abs_section_ptr)
5423 notesec->output_section->flags |= SEC_CODE;
5424 }
5425 }
5426
5427 /* Any syms created from now on start with -1 in
5428 got.refcount/offset and plt.refcount/offset. */
5429 elf_hash_table (info)->init_got_refcount
5430 = elf_hash_table (info)->init_got_offset;
5431 elf_hash_table (info)->init_plt_refcount
5432 = elf_hash_table (info)->init_plt_offset;
5433
5434 /* The backend may have to create some sections regardless of whether
5435 we're dynamic or not. */
5436 if (bed->elf_backend_always_size_sections
5437 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5438 return FALSE;
5439
5440 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5441 return FALSE;
5442
5443 dynobj = elf_hash_table (info)->dynobj;
5444
5445 /* If there were no dynamic objects in the link, there is nothing to
5446 do here. */
5447 if (dynobj == NULL)
5448 return TRUE;
5449
5450 if (elf_hash_table (info)->dynamic_sections_created)
5451 {
5452 struct elf_info_failed eif;
5453 struct elf_link_hash_entry *h;
5454 asection *dynstr;
5455 struct bfd_elf_version_tree *t;
5456 struct bfd_elf_version_expr *d;
5457 asection *s;
5458 bfd_boolean all_defined;
5459
5460 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5461 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5462
5463 if (soname != NULL)
5464 {
5465 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5466 soname, TRUE);
5467 if (soname_indx == (bfd_size_type) -1
5468 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5469 return FALSE;
5470 }
5471
5472 if (info->symbolic)
5473 {
5474 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5475 return FALSE;
5476 info->flags |= DF_SYMBOLIC;
5477 }
5478
5479 if (rpath != NULL)
5480 {
5481 bfd_size_type indx;
5482
5483 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5484 TRUE);
5485 if (indx == (bfd_size_type) -1
5486 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5487 return FALSE;
5488
5489 if (info->new_dtags)
5490 {
5491 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5492 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5493 return FALSE;
5494 }
5495 }
5496
5497 if (filter_shlib != NULL)
5498 {
5499 bfd_size_type indx;
5500
5501 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5502 filter_shlib, TRUE);
5503 if (indx == (bfd_size_type) -1
5504 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5505 return FALSE;
5506 }
5507
5508 if (auxiliary_filters != NULL)
5509 {
5510 const char * const *p;
5511
5512 for (p = auxiliary_filters; *p != NULL; p++)
5513 {
5514 bfd_size_type indx;
5515
5516 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5517 *p, TRUE);
5518 if (indx == (bfd_size_type) -1
5519 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5520 return FALSE;
5521 }
5522 }
5523
5524 eif.info = info;
5525 eif.verdefs = verdefs;
5526 eif.failed = FALSE;
5527
5528 /* If we are supposed to export all symbols into the dynamic symbol
5529 table (this is not the normal case), then do so. */
5530 if (info->export_dynamic
5531 || (info->executable && info->dynamic))
5532 {
5533 elf_link_hash_traverse (elf_hash_table (info),
5534 _bfd_elf_export_symbol,
5535 &eif);
5536 if (eif.failed)
5537 return FALSE;
5538 }
5539
5540 /* Make all global versions with definition. */
5541 for (t = verdefs; t != NULL; t = t->next)
5542 for (d = t->globals.list; d != NULL; d = d->next)
5543 if (!d->symver && d->symbol)
5544 {
5545 const char *verstr, *name;
5546 size_t namelen, verlen, newlen;
5547 char *newname, *p;
5548 struct elf_link_hash_entry *newh;
5549
5550 name = d->symbol;
5551 namelen = strlen (name);
5552 verstr = t->name;
5553 verlen = strlen (verstr);
5554 newlen = namelen + verlen + 3;
5555
5556 newname = bfd_malloc (newlen);
5557 if (newname == NULL)
5558 return FALSE;
5559 memcpy (newname, name, namelen);
5560
5561 /* Check the hidden versioned definition. */
5562 p = newname + namelen;
5563 *p++ = ELF_VER_CHR;
5564 memcpy (p, verstr, verlen + 1);
5565 newh = elf_link_hash_lookup (elf_hash_table (info),
5566 newname, FALSE, FALSE,
5567 FALSE);
5568 if (newh == NULL
5569 || (newh->root.type != bfd_link_hash_defined
5570 && newh->root.type != bfd_link_hash_defweak))
5571 {
5572 /* Check the default versioned definition. */
5573 *p++ = ELF_VER_CHR;
5574 memcpy (p, verstr, verlen + 1);
5575 newh = elf_link_hash_lookup (elf_hash_table (info),
5576 newname, FALSE, FALSE,
5577 FALSE);
5578 }
5579 free (newname);
5580
5581 /* Mark this version if there is a definition and it is
5582 not defined in a shared object. */
5583 if (newh != NULL
5584 && !newh->def_dynamic
5585 && (newh->root.type == bfd_link_hash_defined
5586 || newh->root.type == bfd_link_hash_defweak))
5587 d->symver = 1;
5588 }
5589
5590 /* Attach all the symbols to their version information. */
5591 asvinfo.output_bfd = output_bfd;
5592 asvinfo.info = info;
5593 asvinfo.verdefs = verdefs;
5594 asvinfo.failed = FALSE;
5595
5596 elf_link_hash_traverse (elf_hash_table (info),
5597 _bfd_elf_link_assign_sym_version,
5598 &asvinfo);
5599 if (asvinfo.failed)
5600 return FALSE;
5601
5602 if (!info->allow_undefined_version)
5603 {
5604 /* Check if all global versions have a definition. */
5605 all_defined = TRUE;
5606 for (t = verdefs; t != NULL; t = t->next)
5607 for (d = t->globals.list; d != NULL; d = d->next)
5608 if (!d->symver && !d->script)
5609 {
5610 (*_bfd_error_handler)
5611 (_("%s: undefined version: %s"),
5612 d->pattern, t->name);
5613 all_defined = FALSE;
5614 }
5615
5616 if (!all_defined)
5617 {
5618 bfd_set_error (bfd_error_bad_value);
5619 return FALSE;
5620 }
5621 }
5622
5623 /* Find all symbols which were defined in a dynamic object and make
5624 the backend pick a reasonable value for them. */
5625 elf_link_hash_traverse (elf_hash_table (info),
5626 _bfd_elf_adjust_dynamic_symbol,
5627 &eif);
5628 if (eif.failed)
5629 return FALSE;
5630
5631 /* Add some entries to the .dynamic section. We fill in some of the
5632 values later, in bfd_elf_final_link, but we must add the entries
5633 now so that we know the final size of the .dynamic section. */
5634
5635 /* If there are initialization and/or finalization functions to
5636 call then add the corresponding DT_INIT/DT_FINI entries. */
5637 h = (info->init_function
5638 ? elf_link_hash_lookup (elf_hash_table (info),
5639 info->init_function, FALSE,
5640 FALSE, FALSE)
5641 : NULL);
5642 if (h != NULL
5643 && (h->ref_regular
5644 || h->def_regular))
5645 {
5646 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5647 return FALSE;
5648 }
5649 h = (info->fini_function
5650 ? elf_link_hash_lookup (elf_hash_table (info),
5651 info->fini_function, FALSE,
5652 FALSE, FALSE)
5653 : NULL);
5654 if (h != NULL
5655 && (h->ref_regular
5656 || h->def_regular))
5657 {
5658 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5659 return FALSE;
5660 }
5661
5662 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5663 if (s != NULL && s->linker_has_input)
5664 {
5665 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5666 if (! info->executable)
5667 {
5668 bfd *sub;
5669 asection *o;
5670
5671 for (sub = info->input_bfds; sub != NULL;
5672 sub = sub->link_next)
5673 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5674 for (o = sub->sections; o != NULL; o = o->next)
5675 if (elf_section_data (o)->this_hdr.sh_type
5676 == SHT_PREINIT_ARRAY)
5677 {
5678 (*_bfd_error_handler)
5679 (_("%B: .preinit_array section is not allowed in DSO"),
5680 sub);
5681 break;
5682 }
5683
5684 bfd_set_error (bfd_error_nonrepresentable_section);
5685 return FALSE;
5686 }
5687
5688 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5689 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5690 return FALSE;
5691 }
5692 s = bfd_get_section_by_name (output_bfd, ".init_array");
5693 if (s != NULL && s->linker_has_input)
5694 {
5695 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5696 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5697 return FALSE;
5698 }
5699 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5700 if (s != NULL && s->linker_has_input)
5701 {
5702 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5703 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5704 return FALSE;
5705 }
5706
5707 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5708 /* If .dynstr is excluded from the link, we don't want any of
5709 these tags. Strictly, we should be checking each section
5710 individually; This quick check covers for the case where
5711 someone does a /DISCARD/ : { *(*) }. */
5712 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5713 {
5714 bfd_size_type strsize;
5715
5716 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5717 if ((info->emit_hash
5718 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5719 || (info->emit_gnu_hash
5720 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5721 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5722 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5723 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5724 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5725 bed->s->sizeof_sym))
5726 return FALSE;
5727 }
5728 }
5729
5730 /* The backend must work out the sizes of all the other dynamic
5731 sections. */
5732 if (bed->elf_backend_size_dynamic_sections
5733 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5734 return FALSE;
5735
5736 if (elf_hash_table (info)->dynamic_sections_created)
5737 {
5738 unsigned long section_sym_count;
5739 asection *s;
5740
5741 /* Set up the version definition section. */
5742 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5743 BFD_ASSERT (s != NULL);
5744
5745 /* We may have created additional version definitions if we are
5746 just linking a regular application. */
5747 verdefs = asvinfo.verdefs;
5748
5749 /* Skip anonymous version tag. */
5750 if (verdefs != NULL && verdefs->vernum == 0)
5751 verdefs = verdefs->next;
5752
5753 if (verdefs == NULL && !info->create_default_symver)
5754 s->flags |= SEC_EXCLUDE;
5755 else
5756 {
5757 unsigned int cdefs;
5758 bfd_size_type size;
5759 struct bfd_elf_version_tree *t;
5760 bfd_byte *p;
5761 Elf_Internal_Verdef def;
5762 Elf_Internal_Verdaux defaux;
5763 struct bfd_link_hash_entry *bh;
5764 struct elf_link_hash_entry *h;
5765 const char *name;
5766
5767 cdefs = 0;
5768 size = 0;
5769
5770 /* Make space for the base version. */
5771 size += sizeof (Elf_External_Verdef);
5772 size += sizeof (Elf_External_Verdaux);
5773 ++cdefs;
5774
5775 /* Make space for the default version. */
5776 if (info->create_default_symver)
5777 {
5778 size += sizeof (Elf_External_Verdef);
5779 ++cdefs;
5780 }
5781
5782 for (t = verdefs; t != NULL; t = t->next)
5783 {
5784 struct bfd_elf_version_deps *n;
5785
5786 size += sizeof (Elf_External_Verdef);
5787 size += sizeof (Elf_External_Verdaux);
5788 ++cdefs;
5789
5790 for (n = t->deps; n != NULL; n = n->next)
5791 size += sizeof (Elf_External_Verdaux);
5792 }
5793
5794 s->size = size;
5795 s->contents = bfd_alloc (output_bfd, s->size);
5796 if (s->contents == NULL && s->size != 0)
5797 return FALSE;
5798
5799 /* Fill in the version definition section. */
5800
5801 p = s->contents;
5802
5803 def.vd_version = VER_DEF_CURRENT;
5804 def.vd_flags = VER_FLG_BASE;
5805 def.vd_ndx = 1;
5806 def.vd_cnt = 1;
5807 if (info->create_default_symver)
5808 {
5809 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5810 def.vd_next = sizeof (Elf_External_Verdef);
5811 }
5812 else
5813 {
5814 def.vd_aux = sizeof (Elf_External_Verdef);
5815 def.vd_next = (sizeof (Elf_External_Verdef)
5816 + sizeof (Elf_External_Verdaux));
5817 }
5818
5819 if (soname_indx != (bfd_size_type) -1)
5820 {
5821 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5822 soname_indx);
5823 def.vd_hash = bfd_elf_hash (soname);
5824 defaux.vda_name = soname_indx;
5825 name = soname;
5826 }
5827 else
5828 {
5829 bfd_size_type indx;
5830
5831 name = lbasename (output_bfd->filename);
5832 def.vd_hash = bfd_elf_hash (name);
5833 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5834 name, FALSE);
5835 if (indx == (bfd_size_type) -1)
5836 return FALSE;
5837 defaux.vda_name = indx;
5838 }
5839 defaux.vda_next = 0;
5840
5841 _bfd_elf_swap_verdef_out (output_bfd, &def,
5842 (Elf_External_Verdef *) p);
5843 p += sizeof (Elf_External_Verdef);
5844 if (info->create_default_symver)
5845 {
5846 /* Add a symbol representing this version. */
5847 bh = NULL;
5848 if (! (_bfd_generic_link_add_one_symbol
5849 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5850 0, NULL, FALSE,
5851 get_elf_backend_data (dynobj)->collect, &bh)))
5852 return FALSE;
5853 h = (struct elf_link_hash_entry *) bh;
5854 h->non_elf = 0;
5855 h->def_regular = 1;
5856 h->type = STT_OBJECT;
5857 h->verinfo.vertree = NULL;
5858
5859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5860 return FALSE;
5861
5862 /* Create a duplicate of the base version with the same
5863 aux block, but different flags. */
5864 def.vd_flags = 0;
5865 def.vd_ndx = 2;
5866 def.vd_aux = sizeof (Elf_External_Verdef);
5867 if (verdefs)
5868 def.vd_next = (sizeof (Elf_External_Verdef)
5869 + sizeof (Elf_External_Verdaux));
5870 else
5871 def.vd_next = 0;
5872 _bfd_elf_swap_verdef_out (output_bfd, &def,
5873 (Elf_External_Verdef *) p);
5874 p += sizeof (Elf_External_Verdef);
5875 }
5876 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5877 (Elf_External_Verdaux *) p);
5878 p += sizeof (Elf_External_Verdaux);
5879
5880 for (t = verdefs; t != NULL; t = t->next)
5881 {
5882 unsigned int cdeps;
5883 struct bfd_elf_version_deps *n;
5884
5885 cdeps = 0;
5886 for (n = t->deps; n != NULL; n = n->next)
5887 ++cdeps;
5888
5889 /* Add a symbol representing this version. */
5890 bh = NULL;
5891 if (! (_bfd_generic_link_add_one_symbol
5892 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5893 0, NULL, FALSE,
5894 get_elf_backend_data (dynobj)->collect, &bh)))
5895 return FALSE;
5896 h = (struct elf_link_hash_entry *) bh;
5897 h->non_elf = 0;
5898 h->def_regular = 1;
5899 h->type = STT_OBJECT;
5900 h->verinfo.vertree = t;
5901
5902 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5903 return FALSE;
5904
5905 def.vd_version = VER_DEF_CURRENT;
5906 def.vd_flags = 0;
5907 if (t->globals.list == NULL
5908 && t->locals.list == NULL
5909 && ! t->used)
5910 def.vd_flags |= VER_FLG_WEAK;
5911 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5912 def.vd_cnt = cdeps + 1;
5913 def.vd_hash = bfd_elf_hash (t->name);
5914 def.vd_aux = sizeof (Elf_External_Verdef);
5915 def.vd_next = 0;
5916 if (t->next != NULL)
5917 def.vd_next = (sizeof (Elf_External_Verdef)
5918 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5919
5920 _bfd_elf_swap_verdef_out (output_bfd, &def,
5921 (Elf_External_Verdef *) p);
5922 p += sizeof (Elf_External_Verdef);
5923
5924 defaux.vda_name = h->dynstr_index;
5925 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5926 h->dynstr_index);
5927 defaux.vda_next = 0;
5928 if (t->deps != NULL)
5929 defaux.vda_next = sizeof (Elf_External_Verdaux);
5930 t->name_indx = defaux.vda_name;
5931
5932 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5933 (Elf_External_Verdaux *) p);
5934 p += sizeof (Elf_External_Verdaux);
5935
5936 for (n = t->deps; n != NULL; n = n->next)
5937 {
5938 if (n->version_needed == NULL)
5939 {
5940 /* This can happen if there was an error in the
5941 version script. */
5942 defaux.vda_name = 0;
5943 }
5944 else
5945 {
5946 defaux.vda_name = n->version_needed->name_indx;
5947 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5948 defaux.vda_name);
5949 }
5950 if (n->next == NULL)
5951 defaux.vda_next = 0;
5952 else
5953 defaux.vda_next = sizeof (Elf_External_Verdaux);
5954
5955 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5956 (Elf_External_Verdaux *) p);
5957 p += sizeof (Elf_External_Verdaux);
5958 }
5959 }
5960
5961 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5962 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5963 return FALSE;
5964
5965 elf_tdata (output_bfd)->cverdefs = cdefs;
5966 }
5967
5968 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5969 {
5970 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5971 return FALSE;
5972 }
5973 else if (info->flags & DF_BIND_NOW)
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5976 return FALSE;
5977 }
5978
5979 if (info->flags_1)
5980 {
5981 if (info->executable)
5982 info->flags_1 &= ~ (DF_1_INITFIRST
5983 | DF_1_NODELETE
5984 | DF_1_NOOPEN);
5985 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5986 return FALSE;
5987 }
5988
5989 /* Work out the size of the version reference section. */
5990
5991 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5992 BFD_ASSERT (s != NULL);
5993 {
5994 struct elf_find_verdep_info sinfo;
5995
5996 sinfo.output_bfd = output_bfd;
5997 sinfo.info = info;
5998 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5999 if (sinfo.vers == 0)
6000 sinfo.vers = 1;
6001 sinfo.failed = FALSE;
6002
6003 elf_link_hash_traverse (elf_hash_table (info),
6004 _bfd_elf_link_find_version_dependencies,
6005 &sinfo);
6006 if (sinfo.failed)
6007 return FALSE;
6008
6009 if (elf_tdata (output_bfd)->verref == NULL)
6010 s->flags |= SEC_EXCLUDE;
6011 else
6012 {
6013 Elf_Internal_Verneed *t;
6014 unsigned int size;
6015 unsigned int crefs;
6016 bfd_byte *p;
6017
6018 /* Build the version definition section. */
6019 size = 0;
6020 crefs = 0;
6021 for (t = elf_tdata (output_bfd)->verref;
6022 t != NULL;
6023 t = t->vn_nextref)
6024 {
6025 Elf_Internal_Vernaux *a;
6026
6027 size += sizeof (Elf_External_Verneed);
6028 ++crefs;
6029 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6030 size += sizeof (Elf_External_Vernaux);
6031 }
6032
6033 s->size = size;
6034 s->contents = bfd_alloc (output_bfd, s->size);
6035 if (s->contents == NULL)
6036 return FALSE;
6037
6038 p = s->contents;
6039 for (t = elf_tdata (output_bfd)->verref;
6040 t != NULL;
6041 t = t->vn_nextref)
6042 {
6043 unsigned int caux;
6044 Elf_Internal_Vernaux *a;
6045 bfd_size_type indx;
6046
6047 caux = 0;
6048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6049 ++caux;
6050
6051 t->vn_version = VER_NEED_CURRENT;
6052 t->vn_cnt = caux;
6053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6054 elf_dt_name (t->vn_bfd) != NULL
6055 ? elf_dt_name (t->vn_bfd)
6056 : lbasename (t->vn_bfd->filename),
6057 FALSE);
6058 if (indx == (bfd_size_type) -1)
6059 return FALSE;
6060 t->vn_file = indx;
6061 t->vn_aux = sizeof (Elf_External_Verneed);
6062 if (t->vn_nextref == NULL)
6063 t->vn_next = 0;
6064 else
6065 t->vn_next = (sizeof (Elf_External_Verneed)
6066 + caux * sizeof (Elf_External_Vernaux));
6067
6068 _bfd_elf_swap_verneed_out (output_bfd, t,
6069 (Elf_External_Verneed *) p);
6070 p += sizeof (Elf_External_Verneed);
6071
6072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6073 {
6074 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6075 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6076 a->vna_nodename, FALSE);
6077 if (indx == (bfd_size_type) -1)
6078 return FALSE;
6079 a->vna_name = indx;
6080 if (a->vna_nextptr == NULL)
6081 a->vna_next = 0;
6082 else
6083 a->vna_next = sizeof (Elf_External_Vernaux);
6084
6085 _bfd_elf_swap_vernaux_out (output_bfd, a,
6086 (Elf_External_Vernaux *) p);
6087 p += sizeof (Elf_External_Vernaux);
6088 }
6089 }
6090
6091 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6092 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6093 return FALSE;
6094
6095 elf_tdata (output_bfd)->cverrefs = crefs;
6096 }
6097 }
6098
6099 if ((elf_tdata (output_bfd)->cverrefs == 0
6100 && elf_tdata (output_bfd)->cverdefs == 0)
6101 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6102 &section_sym_count) == 0)
6103 {
6104 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6105 s->flags |= SEC_EXCLUDE;
6106 }
6107 }
6108 return TRUE;
6109 }
6110
6111 /* Find the first non-excluded output section. We'll use its
6112 section symbol for some emitted relocs. */
6113 void
6114 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6115 {
6116 asection *s;
6117
6118 for (s = output_bfd->sections; s != NULL; s = s->next)
6119 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6120 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6121 {
6122 elf_hash_table (info)->text_index_section = s;
6123 break;
6124 }
6125 }
6126
6127 /* Find two non-excluded output sections, one for code, one for data.
6128 We'll use their section symbols for some emitted relocs. */
6129 void
6130 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6131 {
6132 asection *s;
6133
6134 /* Data first, since setting text_index_section changes
6135 _bfd_elf_link_omit_section_dynsym. */
6136 for (s = output_bfd->sections; s != NULL; s = s->next)
6137 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6138 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6139 {
6140 elf_hash_table (info)->data_index_section = s;
6141 break;
6142 }
6143
6144 for (s = output_bfd->sections; s != NULL; s = s->next)
6145 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6146 == (SEC_ALLOC | SEC_READONLY))
6147 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6148 {
6149 elf_hash_table (info)->text_index_section = s;
6150 break;
6151 }
6152
6153 if (elf_hash_table (info)->text_index_section == NULL)
6154 elf_hash_table (info)->text_index_section
6155 = elf_hash_table (info)->data_index_section;
6156 }
6157
6158 bfd_boolean
6159 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6160 {
6161 const struct elf_backend_data *bed;
6162
6163 if (!is_elf_hash_table (info->hash))
6164 return TRUE;
6165
6166 bed = get_elf_backend_data (output_bfd);
6167 (*bed->elf_backend_init_index_section) (output_bfd, info);
6168
6169 if (elf_hash_table (info)->dynamic_sections_created)
6170 {
6171 bfd *dynobj;
6172 asection *s;
6173 bfd_size_type dynsymcount;
6174 unsigned long section_sym_count;
6175 unsigned int dtagcount;
6176
6177 dynobj = elf_hash_table (info)->dynobj;
6178
6179 /* Assign dynsym indicies. In a shared library we generate a
6180 section symbol for each output section, which come first.
6181 Next come all of the back-end allocated local dynamic syms,
6182 followed by the rest of the global symbols. */
6183
6184 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6185 &section_sym_count);
6186
6187 /* Work out the size of the symbol version section. */
6188 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6189 BFD_ASSERT (s != NULL);
6190 if (dynsymcount != 0
6191 && (s->flags & SEC_EXCLUDE) == 0)
6192 {
6193 s->size = dynsymcount * sizeof (Elf_External_Versym);
6194 s->contents = bfd_zalloc (output_bfd, s->size);
6195 if (s->contents == NULL)
6196 return FALSE;
6197
6198 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6199 return FALSE;
6200 }
6201
6202 /* Set the size of the .dynsym and .hash sections. We counted
6203 the number of dynamic symbols in elf_link_add_object_symbols.
6204 We will build the contents of .dynsym and .hash when we build
6205 the final symbol table, because until then we do not know the
6206 correct value to give the symbols. We built the .dynstr
6207 section as we went along in elf_link_add_object_symbols. */
6208 s = bfd_get_section_by_name (dynobj, ".dynsym");
6209 BFD_ASSERT (s != NULL);
6210 s->size = dynsymcount * bed->s->sizeof_sym;
6211
6212 if (dynsymcount != 0)
6213 {
6214 s->contents = bfd_alloc (output_bfd, s->size);
6215 if (s->contents == NULL)
6216 return FALSE;
6217
6218 /* The first entry in .dynsym is a dummy symbol.
6219 Clear all the section syms, in case we don't output them all. */
6220 ++section_sym_count;
6221 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6222 }
6223
6224 elf_hash_table (info)->bucketcount = 0;
6225
6226 /* Compute the size of the hashing table. As a side effect this
6227 computes the hash values for all the names we export. */
6228 if (info->emit_hash)
6229 {
6230 unsigned long int *hashcodes;
6231 struct hash_codes_info hashinf;
6232 bfd_size_type amt;
6233 unsigned long int nsyms;
6234 size_t bucketcount;
6235 size_t hash_entry_size;
6236
6237 /* Compute the hash values for all exported symbols. At the same
6238 time store the values in an array so that we could use them for
6239 optimizations. */
6240 amt = dynsymcount * sizeof (unsigned long int);
6241 hashcodes = bfd_malloc (amt);
6242 if (hashcodes == NULL)
6243 return FALSE;
6244 hashinf.hashcodes = hashcodes;
6245 hashinf.error = FALSE;
6246
6247 /* Put all hash values in HASHCODES. */
6248 elf_link_hash_traverse (elf_hash_table (info),
6249 elf_collect_hash_codes, &hashinf);
6250 if (hashinf.error)
6251 return FALSE;
6252
6253 nsyms = hashinf.hashcodes - hashcodes;
6254 bucketcount
6255 = compute_bucket_count (info, hashcodes, nsyms, 0);
6256 free (hashcodes);
6257
6258 if (bucketcount == 0)
6259 return FALSE;
6260
6261 elf_hash_table (info)->bucketcount = bucketcount;
6262
6263 s = bfd_get_section_by_name (dynobj, ".hash");
6264 BFD_ASSERT (s != NULL);
6265 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6266 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6267 s->contents = bfd_zalloc (output_bfd, s->size);
6268 if (s->contents == NULL)
6269 return FALSE;
6270
6271 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6272 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6273 s->contents + hash_entry_size);
6274 }
6275
6276 if (info->emit_gnu_hash)
6277 {
6278 size_t i, cnt;
6279 unsigned char *contents;
6280 struct collect_gnu_hash_codes cinfo;
6281 bfd_size_type amt;
6282 size_t bucketcount;
6283
6284 memset (&cinfo, 0, sizeof (cinfo));
6285
6286 /* Compute the hash values for all exported symbols. At the same
6287 time store the values in an array so that we could use them for
6288 optimizations. */
6289 amt = dynsymcount * 2 * sizeof (unsigned long int);
6290 cinfo.hashcodes = bfd_malloc (amt);
6291 if (cinfo.hashcodes == NULL)
6292 return FALSE;
6293
6294 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6295 cinfo.min_dynindx = -1;
6296 cinfo.output_bfd = output_bfd;
6297 cinfo.bed = bed;
6298
6299 /* Put all hash values in HASHCODES. */
6300 elf_link_hash_traverse (elf_hash_table (info),
6301 elf_collect_gnu_hash_codes, &cinfo);
6302 if (cinfo.error)
6303 return FALSE;
6304
6305 bucketcount
6306 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6307
6308 if (bucketcount == 0)
6309 {
6310 free (cinfo.hashcodes);
6311 return FALSE;
6312 }
6313
6314 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6315 BFD_ASSERT (s != NULL);
6316
6317 if (cinfo.nsyms == 0)
6318 {
6319 /* Empty .gnu.hash section is special. */
6320 BFD_ASSERT (cinfo.min_dynindx == -1);
6321 free (cinfo.hashcodes);
6322 s->size = 5 * 4 + bed->s->arch_size / 8;
6323 contents = bfd_zalloc (output_bfd, s->size);
6324 if (contents == NULL)
6325 return FALSE;
6326 s->contents = contents;
6327 /* 1 empty bucket. */
6328 bfd_put_32 (output_bfd, 1, contents);
6329 /* SYMIDX above the special symbol 0. */
6330 bfd_put_32 (output_bfd, 1, contents + 4);
6331 /* Just one word for bitmask. */
6332 bfd_put_32 (output_bfd, 1, contents + 8);
6333 /* Only hash fn bloom filter. */
6334 bfd_put_32 (output_bfd, 0, contents + 12);
6335 /* No hashes are valid - empty bitmask. */
6336 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6337 /* No hashes in the only bucket. */
6338 bfd_put_32 (output_bfd, 0,
6339 contents + 16 + bed->s->arch_size / 8);
6340 }
6341 else
6342 {
6343 unsigned long int maskwords, maskbitslog2;
6344 BFD_ASSERT (cinfo.min_dynindx != -1);
6345
6346 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6347 if (maskbitslog2 < 3)
6348 maskbitslog2 = 5;
6349 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6350 maskbitslog2 = maskbitslog2 + 3;
6351 else
6352 maskbitslog2 = maskbitslog2 + 2;
6353 if (bed->s->arch_size == 64)
6354 {
6355 if (maskbitslog2 == 5)
6356 maskbitslog2 = 6;
6357 cinfo.shift1 = 6;
6358 }
6359 else
6360 cinfo.shift1 = 5;
6361 cinfo.mask = (1 << cinfo.shift1) - 1;
6362 cinfo.shift2 = maskbitslog2;
6363 cinfo.maskbits = 1 << maskbitslog2;
6364 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6365 amt = bucketcount * sizeof (unsigned long int) * 2;
6366 amt += maskwords * sizeof (bfd_vma);
6367 cinfo.bitmask = bfd_malloc (amt);
6368 if (cinfo.bitmask == NULL)
6369 {
6370 free (cinfo.hashcodes);
6371 return FALSE;
6372 }
6373
6374 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6375 cinfo.indx = cinfo.counts + bucketcount;
6376 cinfo.symindx = dynsymcount - cinfo.nsyms;
6377 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6378
6379 /* Determine how often each hash bucket is used. */
6380 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6381 for (i = 0; i < cinfo.nsyms; ++i)
6382 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6383
6384 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6385 if (cinfo.counts[i] != 0)
6386 {
6387 cinfo.indx[i] = cnt;
6388 cnt += cinfo.counts[i];
6389 }
6390 BFD_ASSERT (cnt == dynsymcount);
6391 cinfo.bucketcount = bucketcount;
6392 cinfo.local_indx = cinfo.min_dynindx;
6393
6394 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6395 s->size += cinfo.maskbits / 8;
6396 contents = bfd_zalloc (output_bfd, s->size);
6397 if (contents == NULL)
6398 {
6399 free (cinfo.bitmask);
6400 free (cinfo.hashcodes);
6401 return FALSE;
6402 }
6403
6404 s->contents = contents;
6405 bfd_put_32 (output_bfd, bucketcount, contents);
6406 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6407 bfd_put_32 (output_bfd, maskwords, contents + 8);
6408 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6409 contents += 16 + cinfo.maskbits / 8;
6410
6411 for (i = 0; i < bucketcount; ++i)
6412 {
6413 if (cinfo.counts[i] == 0)
6414 bfd_put_32 (output_bfd, 0, contents);
6415 else
6416 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6417 contents += 4;
6418 }
6419
6420 cinfo.contents = contents;
6421
6422 /* Renumber dynamic symbols, populate .gnu.hash section. */
6423 elf_link_hash_traverse (elf_hash_table (info),
6424 elf_renumber_gnu_hash_syms, &cinfo);
6425
6426 contents = s->contents + 16;
6427 for (i = 0; i < maskwords; ++i)
6428 {
6429 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6430 contents);
6431 contents += bed->s->arch_size / 8;
6432 }
6433
6434 free (cinfo.bitmask);
6435 free (cinfo.hashcodes);
6436 }
6437 }
6438
6439 s = bfd_get_section_by_name (dynobj, ".dynstr");
6440 BFD_ASSERT (s != NULL);
6441
6442 elf_finalize_dynstr (output_bfd, info);
6443
6444 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6445
6446 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6447 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6448 return FALSE;
6449 }
6450
6451 return TRUE;
6452 }
6453 \f
6454 /* Indicate that we are only retrieving symbol values from this
6455 section. */
6456
6457 void
6458 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6459 {
6460 if (is_elf_hash_table (info->hash))
6461 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6462 _bfd_generic_link_just_syms (sec, info);
6463 }
6464
6465 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6466
6467 static void
6468 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6469 asection *sec)
6470 {
6471 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6472 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6473 }
6474
6475 /* Finish SHF_MERGE section merging. */
6476
6477 bfd_boolean
6478 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6479 {
6480 bfd *ibfd;
6481 asection *sec;
6482
6483 if (!is_elf_hash_table (info->hash))
6484 return FALSE;
6485
6486 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6487 if ((ibfd->flags & DYNAMIC) == 0)
6488 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6489 if ((sec->flags & SEC_MERGE) != 0
6490 && !bfd_is_abs_section (sec->output_section))
6491 {
6492 struct bfd_elf_section_data *secdata;
6493
6494 secdata = elf_section_data (sec);
6495 if (! _bfd_add_merge_section (abfd,
6496 &elf_hash_table (info)->merge_info,
6497 sec, &secdata->sec_info))
6498 return FALSE;
6499 else if (secdata->sec_info)
6500 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6501 }
6502
6503 if (elf_hash_table (info)->merge_info != NULL)
6504 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6505 merge_sections_remove_hook);
6506 return TRUE;
6507 }
6508
6509 /* Create an entry in an ELF linker hash table. */
6510
6511 struct bfd_hash_entry *
6512 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6513 struct bfd_hash_table *table,
6514 const char *string)
6515 {
6516 /* Allocate the structure if it has not already been allocated by a
6517 subclass. */
6518 if (entry == NULL)
6519 {
6520 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6521 if (entry == NULL)
6522 return entry;
6523 }
6524
6525 /* Call the allocation method of the superclass. */
6526 entry = _bfd_link_hash_newfunc (entry, table, string);
6527 if (entry != NULL)
6528 {
6529 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6530 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6531
6532 /* Set local fields. */
6533 ret->indx = -1;
6534 ret->dynindx = -1;
6535 ret->got = htab->init_got_refcount;
6536 ret->plt = htab->init_plt_refcount;
6537 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6538 - offsetof (struct elf_link_hash_entry, size)));
6539 /* Assume that we have been called by a non-ELF symbol reader.
6540 This flag is then reset by the code which reads an ELF input
6541 file. This ensures that a symbol created by a non-ELF symbol
6542 reader will have the flag set correctly. */
6543 ret->non_elf = 1;
6544 }
6545
6546 return entry;
6547 }
6548
6549 /* Copy data from an indirect symbol to its direct symbol, hiding the
6550 old indirect symbol. Also used for copying flags to a weakdef. */
6551
6552 void
6553 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6554 struct elf_link_hash_entry *dir,
6555 struct elf_link_hash_entry *ind)
6556 {
6557 struct elf_link_hash_table *htab;
6558
6559 /* Copy down any references that we may have already seen to the
6560 symbol which just became indirect. */
6561
6562 dir->ref_dynamic |= ind->ref_dynamic;
6563 dir->ref_regular |= ind->ref_regular;
6564 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6565 dir->non_got_ref |= ind->non_got_ref;
6566 dir->needs_plt |= ind->needs_plt;
6567 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6568
6569 if (ind->root.type != bfd_link_hash_indirect)
6570 return;
6571
6572 /* Copy over the global and procedure linkage table refcount entries.
6573 These may have been already set up by a check_relocs routine. */
6574 htab = elf_hash_table (info);
6575 if (ind->got.refcount > htab->init_got_refcount.refcount)
6576 {
6577 if (dir->got.refcount < 0)
6578 dir->got.refcount = 0;
6579 dir->got.refcount += ind->got.refcount;
6580 ind->got.refcount = htab->init_got_refcount.refcount;
6581 }
6582
6583 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6584 {
6585 if (dir->plt.refcount < 0)
6586 dir->plt.refcount = 0;
6587 dir->plt.refcount += ind->plt.refcount;
6588 ind->plt.refcount = htab->init_plt_refcount.refcount;
6589 }
6590
6591 if (ind->dynindx != -1)
6592 {
6593 if (dir->dynindx != -1)
6594 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6595 dir->dynindx = ind->dynindx;
6596 dir->dynstr_index = ind->dynstr_index;
6597 ind->dynindx = -1;
6598 ind->dynstr_index = 0;
6599 }
6600 }
6601
6602 void
6603 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6604 struct elf_link_hash_entry *h,
6605 bfd_boolean force_local)
6606 {
6607 h->plt = elf_hash_table (info)->init_plt_offset;
6608 h->needs_plt = 0;
6609 if (force_local)
6610 {
6611 h->forced_local = 1;
6612 if (h->dynindx != -1)
6613 {
6614 h->dynindx = -1;
6615 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6616 h->dynstr_index);
6617 }
6618 }
6619 }
6620
6621 /* Initialize an ELF linker hash table. */
6622
6623 bfd_boolean
6624 _bfd_elf_link_hash_table_init
6625 (struct elf_link_hash_table *table,
6626 bfd *abfd,
6627 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6628 struct bfd_hash_table *,
6629 const char *),
6630 unsigned int entsize)
6631 {
6632 bfd_boolean ret;
6633 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6634
6635 memset (table, 0, sizeof * table);
6636 table->init_got_refcount.refcount = can_refcount - 1;
6637 table->init_plt_refcount.refcount = can_refcount - 1;
6638 table->init_got_offset.offset = -(bfd_vma) 1;
6639 table->init_plt_offset.offset = -(bfd_vma) 1;
6640 /* The first dynamic symbol is a dummy. */
6641 table->dynsymcount = 1;
6642
6643 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6644 table->root.type = bfd_link_elf_hash_table;
6645
6646 return ret;
6647 }
6648
6649 /* Create an ELF linker hash table. */
6650
6651 struct bfd_link_hash_table *
6652 _bfd_elf_link_hash_table_create (bfd *abfd)
6653 {
6654 struct elf_link_hash_table *ret;
6655 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6656
6657 ret = bfd_malloc (amt);
6658 if (ret == NULL)
6659 return NULL;
6660
6661 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6662 sizeof (struct elf_link_hash_entry)))
6663 {
6664 free (ret);
6665 return NULL;
6666 }
6667
6668 return &ret->root;
6669 }
6670
6671 /* This is a hook for the ELF emulation code in the generic linker to
6672 tell the backend linker what file name to use for the DT_NEEDED
6673 entry for a dynamic object. */
6674
6675 void
6676 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6677 {
6678 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6679 && bfd_get_format (abfd) == bfd_object)
6680 elf_dt_name (abfd) = name;
6681 }
6682
6683 int
6684 bfd_elf_get_dyn_lib_class (bfd *abfd)
6685 {
6686 int lib_class;
6687 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6688 && bfd_get_format (abfd) == bfd_object)
6689 lib_class = elf_dyn_lib_class (abfd);
6690 else
6691 lib_class = 0;
6692 return lib_class;
6693 }
6694
6695 void
6696 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6697 {
6698 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6699 && bfd_get_format (abfd) == bfd_object)
6700 elf_dyn_lib_class (abfd) = lib_class;
6701 }
6702
6703 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6704 the linker ELF emulation code. */
6705
6706 struct bfd_link_needed_list *
6707 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6708 struct bfd_link_info *info)
6709 {
6710 if (! is_elf_hash_table (info->hash))
6711 return NULL;
6712 return elf_hash_table (info)->needed;
6713 }
6714
6715 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6716 hook for the linker ELF emulation code. */
6717
6718 struct bfd_link_needed_list *
6719 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6720 struct bfd_link_info *info)
6721 {
6722 if (! is_elf_hash_table (info->hash))
6723 return NULL;
6724 return elf_hash_table (info)->runpath;
6725 }
6726
6727 /* Get the name actually used for a dynamic object for a link. This
6728 is the SONAME entry if there is one. Otherwise, it is the string
6729 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6730
6731 const char *
6732 bfd_elf_get_dt_soname (bfd *abfd)
6733 {
6734 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6735 && bfd_get_format (abfd) == bfd_object)
6736 return elf_dt_name (abfd);
6737 return NULL;
6738 }
6739
6740 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6741 the ELF linker emulation code. */
6742
6743 bfd_boolean
6744 bfd_elf_get_bfd_needed_list (bfd *abfd,
6745 struct bfd_link_needed_list **pneeded)
6746 {
6747 asection *s;
6748 bfd_byte *dynbuf = NULL;
6749 unsigned int elfsec;
6750 unsigned long shlink;
6751 bfd_byte *extdyn, *extdynend;
6752 size_t extdynsize;
6753 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6754
6755 *pneeded = NULL;
6756
6757 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6758 || bfd_get_format (abfd) != bfd_object)
6759 return TRUE;
6760
6761 s = bfd_get_section_by_name (abfd, ".dynamic");
6762 if (s == NULL || s->size == 0)
6763 return TRUE;
6764
6765 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6766 goto error_return;
6767
6768 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6769 if (elfsec == SHN_BAD)
6770 goto error_return;
6771
6772 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6773
6774 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6775 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6776
6777 extdyn = dynbuf;
6778 extdynend = extdyn + s->size;
6779 for (; extdyn < extdynend; extdyn += extdynsize)
6780 {
6781 Elf_Internal_Dyn dyn;
6782
6783 (*swap_dyn_in) (abfd, extdyn, &dyn);
6784
6785 if (dyn.d_tag == DT_NULL)
6786 break;
6787
6788 if (dyn.d_tag == DT_NEEDED)
6789 {
6790 const char *string;
6791 struct bfd_link_needed_list *l;
6792 unsigned int tagv = dyn.d_un.d_val;
6793 bfd_size_type amt;
6794
6795 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6796 if (string == NULL)
6797 goto error_return;
6798
6799 amt = sizeof *l;
6800 l = bfd_alloc (abfd, amt);
6801 if (l == NULL)
6802 goto error_return;
6803
6804 l->by = abfd;
6805 l->name = string;
6806 l->next = *pneeded;
6807 *pneeded = l;
6808 }
6809 }
6810
6811 free (dynbuf);
6812
6813 return TRUE;
6814
6815 error_return:
6816 if (dynbuf != NULL)
6817 free (dynbuf);
6818 return FALSE;
6819 }
6820
6821 struct elf_symbuf_symbol
6822 {
6823 unsigned long st_name; /* Symbol name, index in string tbl */
6824 unsigned char st_info; /* Type and binding attributes */
6825 unsigned char st_other; /* Visibilty, and target specific */
6826 };
6827
6828 struct elf_symbuf_head
6829 {
6830 struct elf_symbuf_symbol *ssym;
6831 bfd_size_type count;
6832 unsigned int st_shndx;
6833 };
6834
6835 struct elf_symbol
6836 {
6837 union
6838 {
6839 Elf_Internal_Sym *isym;
6840 struct elf_symbuf_symbol *ssym;
6841 } u;
6842 const char *name;
6843 };
6844
6845 /* Sort references to symbols by ascending section number. */
6846
6847 static int
6848 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6849 {
6850 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6851 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6852
6853 return s1->st_shndx - s2->st_shndx;
6854 }
6855
6856 static int
6857 elf_sym_name_compare (const void *arg1, const void *arg2)
6858 {
6859 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6860 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6861 return strcmp (s1->name, s2->name);
6862 }
6863
6864 static struct elf_symbuf_head *
6865 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6866 {
6867 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6868 struct elf_symbuf_symbol *ssym;
6869 struct elf_symbuf_head *ssymbuf, *ssymhead;
6870 bfd_size_type i, shndx_count, total_size;
6871
6872 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6873 if (indbuf == NULL)
6874 return NULL;
6875
6876 for (ind = indbuf, i = 0; i < symcount; i++)
6877 if (isymbuf[i].st_shndx != SHN_UNDEF)
6878 *ind++ = &isymbuf[i];
6879 indbufend = ind;
6880
6881 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6882 elf_sort_elf_symbol);
6883
6884 shndx_count = 0;
6885 if (indbufend > indbuf)
6886 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6887 if (ind[0]->st_shndx != ind[1]->st_shndx)
6888 shndx_count++;
6889
6890 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6891 + (indbufend - indbuf) * sizeof (*ssym));
6892 ssymbuf = bfd_malloc (total_size);
6893 if (ssymbuf == NULL)
6894 {
6895 free (indbuf);
6896 return NULL;
6897 }
6898
6899 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6900 ssymbuf->ssym = NULL;
6901 ssymbuf->count = shndx_count;
6902 ssymbuf->st_shndx = 0;
6903 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6904 {
6905 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6906 {
6907 ssymhead++;
6908 ssymhead->ssym = ssym;
6909 ssymhead->count = 0;
6910 ssymhead->st_shndx = (*ind)->st_shndx;
6911 }
6912 ssym->st_name = (*ind)->st_name;
6913 ssym->st_info = (*ind)->st_info;
6914 ssym->st_other = (*ind)->st_other;
6915 ssymhead->count++;
6916 }
6917 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6918 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6919 == total_size));
6920
6921 free (indbuf);
6922 return ssymbuf;
6923 }
6924
6925 /* Check if 2 sections define the same set of local and global
6926 symbols. */
6927
6928 static bfd_boolean
6929 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6930 struct bfd_link_info *info)
6931 {
6932 bfd *bfd1, *bfd2;
6933 const struct elf_backend_data *bed1, *bed2;
6934 Elf_Internal_Shdr *hdr1, *hdr2;
6935 bfd_size_type symcount1, symcount2;
6936 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6937 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6938 Elf_Internal_Sym *isym, *isymend;
6939 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6940 bfd_size_type count1, count2, i;
6941 unsigned int shndx1, shndx2;
6942 bfd_boolean result;
6943
6944 bfd1 = sec1->owner;
6945 bfd2 = sec2->owner;
6946
6947 /* Both sections have to be in ELF. */
6948 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6949 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6950 return FALSE;
6951
6952 if (elf_section_type (sec1) != elf_section_type (sec2))
6953 return FALSE;
6954
6955 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6956 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6957 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
6958 return FALSE;
6959
6960 bed1 = get_elf_backend_data (bfd1);
6961 bed2 = get_elf_backend_data (bfd2);
6962 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6963 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6964 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6965 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6966
6967 if (symcount1 == 0 || symcount2 == 0)
6968 return FALSE;
6969
6970 result = FALSE;
6971 isymbuf1 = NULL;
6972 isymbuf2 = NULL;
6973 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6974 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6975
6976 if (ssymbuf1 == NULL)
6977 {
6978 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6979 NULL, NULL, NULL);
6980 if (isymbuf1 == NULL)
6981 goto done;
6982
6983 if (!info->reduce_memory_overheads)
6984 elf_tdata (bfd1)->symbuf = ssymbuf1
6985 = elf_create_symbuf (symcount1, isymbuf1);
6986 }
6987
6988 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6989 {
6990 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6991 NULL, NULL, NULL);
6992 if (isymbuf2 == NULL)
6993 goto done;
6994
6995 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6996 elf_tdata (bfd2)->symbuf = ssymbuf2
6997 = elf_create_symbuf (symcount2, isymbuf2);
6998 }
6999
7000 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7001 {
7002 /* Optimized faster version. */
7003 bfd_size_type lo, hi, mid;
7004 struct elf_symbol *symp;
7005 struct elf_symbuf_symbol *ssym, *ssymend;
7006
7007 lo = 0;
7008 hi = ssymbuf1->count;
7009 ssymbuf1++;
7010 count1 = 0;
7011 while (lo < hi)
7012 {
7013 mid = (lo + hi) / 2;
7014 if (shndx1 < ssymbuf1[mid].st_shndx)
7015 hi = mid;
7016 else if (shndx1 > ssymbuf1[mid].st_shndx)
7017 lo = mid + 1;
7018 else
7019 {
7020 count1 = ssymbuf1[mid].count;
7021 ssymbuf1 += mid;
7022 break;
7023 }
7024 }
7025
7026 lo = 0;
7027 hi = ssymbuf2->count;
7028 ssymbuf2++;
7029 count2 = 0;
7030 while (lo < hi)
7031 {
7032 mid = (lo + hi) / 2;
7033 if (shndx2 < ssymbuf2[mid].st_shndx)
7034 hi = mid;
7035 else if (shndx2 > ssymbuf2[mid].st_shndx)
7036 lo = mid + 1;
7037 else
7038 {
7039 count2 = ssymbuf2[mid].count;
7040 ssymbuf2 += mid;
7041 break;
7042 }
7043 }
7044
7045 if (count1 == 0 || count2 == 0 || count1 != count2)
7046 goto done;
7047
7048 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7049 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7050 if (symtable1 == NULL || symtable2 == NULL)
7051 goto done;
7052
7053 symp = symtable1;
7054 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7055 ssym < ssymend; ssym++, symp++)
7056 {
7057 symp->u.ssym = ssym;
7058 symp->name = bfd_elf_string_from_elf_section (bfd1,
7059 hdr1->sh_link,
7060 ssym->st_name);
7061 }
7062
7063 symp = symtable2;
7064 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7065 ssym < ssymend; ssym++, symp++)
7066 {
7067 symp->u.ssym = ssym;
7068 symp->name = bfd_elf_string_from_elf_section (bfd2,
7069 hdr2->sh_link,
7070 ssym->st_name);
7071 }
7072
7073 /* Sort symbol by name. */
7074 qsort (symtable1, count1, sizeof (struct elf_symbol),
7075 elf_sym_name_compare);
7076 qsort (symtable2, count1, sizeof (struct elf_symbol),
7077 elf_sym_name_compare);
7078
7079 for (i = 0; i < count1; i++)
7080 /* Two symbols must have the same binding, type and name. */
7081 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7082 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7083 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7084 goto done;
7085
7086 result = TRUE;
7087 goto done;
7088 }
7089
7090 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7091 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7092 if (symtable1 == NULL || symtable2 == NULL)
7093 goto done;
7094
7095 /* Count definitions in the section. */
7096 count1 = 0;
7097 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7098 if (isym->st_shndx == shndx1)
7099 symtable1[count1++].u.isym = isym;
7100
7101 count2 = 0;
7102 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7103 if (isym->st_shndx == shndx2)
7104 symtable2[count2++].u.isym = isym;
7105
7106 if (count1 == 0 || count2 == 0 || count1 != count2)
7107 goto done;
7108
7109 for (i = 0; i < count1; i++)
7110 symtable1[i].name
7111 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7112 symtable1[i].u.isym->st_name);
7113
7114 for (i = 0; i < count2; i++)
7115 symtable2[i].name
7116 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7117 symtable2[i].u.isym->st_name);
7118
7119 /* Sort symbol by name. */
7120 qsort (symtable1, count1, sizeof (struct elf_symbol),
7121 elf_sym_name_compare);
7122 qsort (symtable2, count1, sizeof (struct elf_symbol),
7123 elf_sym_name_compare);
7124
7125 for (i = 0; i < count1; i++)
7126 /* Two symbols must have the same binding, type and name. */
7127 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7128 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7129 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7130 goto done;
7131
7132 result = TRUE;
7133
7134 done:
7135 if (symtable1)
7136 free (symtable1);
7137 if (symtable2)
7138 free (symtable2);
7139 if (isymbuf1)
7140 free (isymbuf1);
7141 if (isymbuf2)
7142 free (isymbuf2);
7143
7144 return result;
7145 }
7146
7147 /* Return TRUE if 2 section types are compatible. */
7148
7149 bfd_boolean
7150 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7151 bfd *bbfd, const asection *bsec)
7152 {
7153 if (asec == NULL
7154 || bsec == NULL
7155 || abfd->xvec->flavour != bfd_target_elf_flavour
7156 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7157 return TRUE;
7158
7159 return elf_section_type (asec) == elf_section_type (bsec);
7160 }
7161 \f
7162 /* Final phase of ELF linker. */
7163
7164 /* A structure we use to avoid passing large numbers of arguments. */
7165
7166 struct elf_final_link_info
7167 {
7168 /* General link information. */
7169 struct bfd_link_info *info;
7170 /* Output BFD. */
7171 bfd *output_bfd;
7172 /* Symbol string table. */
7173 struct bfd_strtab_hash *symstrtab;
7174 /* .dynsym section. */
7175 asection *dynsym_sec;
7176 /* .hash section. */
7177 asection *hash_sec;
7178 /* symbol version section (.gnu.version). */
7179 asection *symver_sec;
7180 /* Buffer large enough to hold contents of any section. */
7181 bfd_byte *contents;
7182 /* Buffer large enough to hold external relocs of any section. */
7183 void *external_relocs;
7184 /* Buffer large enough to hold internal relocs of any section. */
7185 Elf_Internal_Rela *internal_relocs;
7186 /* Buffer large enough to hold external local symbols of any input
7187 BFD. */
7188 bfd_byte *external_syms;
7189 /* And a buffer for symbol section indices. */
7190 Elf_External_Sym_Shndx *locsym_shndx;
7191 /* Buffer large enough to hold internal local symbols of any input
7192 BFD. */
7193 Elf_Internal_Sym *internal_syms;
7194 /* Array large enough to hold a symbol index for each local symbol
7195 of any input BFD. */
7196 long *indices;
7197 /* Array large enough to hold a section pointer for each local
7198 symbol of any input BFD. */
7199 asection **sections;
7200 /* Buffer to hold swapped out symbols. */
7201 bfd_byte *symbuf;
7202 /* And one for symbol section indices. */
7203 Elf_External_Sym_Shndx *symshndxbuf;
7204 /* Number of swapped out symbols in buffer. */
7205 size_t symbuf_count;
7206 /* Number of symbols which fit in symbuf. */
7207 size_t symbuf_size;
7208 /* And same for symshndxbuf. */
7209 size_t shndxbuf_size;
7210 };
7211
7212 /* This struct is used to pass information to elf_link_output_extsym. */
7213
7214 struct elf_outext_info
7215 {
7216 bfd_boolean failed;
7217 bfd_boolean localsyms;
7218 struct elf_final_link_info *finfo;
7219 };
7220
7221
7222 /* Support for evaluating a complex relocation.
7223
7224 Complex relocations are generalized, self-describing relocations. The
7225 implementation of them consists of two parts: complex symbols, and the
7226 relocations themselves.
7227
7228 The relocations are use a reserved elf-wide relocation type code (R_RELC
7229 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7230 information (start bit, end bit, word width, etc) into the addend. This
7231 information is extracted from CGEN-generated operand tables within gas.
7232
7233 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7234 internal) representing prefix-notation expressions, including but not
7235 limited to those sorts of expressions normally encoded as addends in the
7236 addend field. The symbol mangling format is:
7237
7238 <node> := <literal>
7239 | <unary-operator> ':' <node>
7240 | <binary-operator> ':' <node> ':' <node>
7241 ;
7242
7243 <literal> := 's' <digits=N> ':' <N character symbol name>
7244 | 'S' <digits=N> ':' <N character section name>
7245 | '#' <hexdigits>
7246 ;
7247
7248 <binary-operator> := as in C
7249 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7250
7251 static void
7252 set_symbol_value (bfd *bfd_with_globals,
7253 Elf_Internal_Sym *isymbuf,
7254 size_t locsymcount,
7255 size_t symidx,
7256 bfd_vma val)
7257 {
7258 struct elf_link_hash_entry **sym_hashes;
7259 struct elf_link_hash_entry *h;
7260 size_t extsymoff = locsymcount;
7261
7262 if (symidx < locsymcount)
7263 {
7264 Elf_Internal_Sym *sym;
7265
7266 sym = isymbuf + symidx;
7267 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7268 {
7269 /* It is a local symbol: move it to the
7270 "absolute" section and give it a value. */
7271 sym->st_shndx = SHN_ABS;
7272 sym->st_value = val;
7273 return;
7274 }
7275 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7276 extsymoff = 0;
7277 }
7278
7279 /* It is a global symbol: set its link type
7280 to "defined" and give it a value. */
7281
7282 sym_hashes = elf_sym_hashes (bfd_with_globals);
7283 h = sym_hashes [symidx - extsymoff];
7284 while (h->root.type == bfd_link_hash_indirect
7285 || h->root.type == bfd_link_hash_warning)
7286 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7287 h->root.type = bfd_link_hash_defined;
7288 h->root.u.def.value = val;
7289 h->root.u.def.section = bfd_abs_section_ptr;
7290 }
7291
7292 static bfd_boolean
7293 resolve_symbol (const char *name,
7294 bfd *input_bfd,
7295 struct elf_final_link_info *finfo,
7296 bfd_vma *result,
7297 Elf_Internal_Sym *isymbuf,
7298 size_t locsymcount)
7299 {
7300 Elf_Internal_Sym *sym;
7301 struct bfd_link_hash_entry *global_entry;
7302 const char *candidate = NULL;
7303 Elf_Internal_Shdr *symtab_hdr;
7304 size_t i;
7305
7306 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7307
7308 for (i = 0; i < locsymcount; ++ i)
7309 {
7310 sym = isymbuf + i;
7311
7312 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7313 continue;
7314
7315 candidate = bfd_elf_string_from_elf_section (input_bfd,
7316 symtab_hdr->sh_link,
7317 sym->st_name);
7318 #ifdef DEBUG
7319 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7320 name, candidate, (unsigned long) sym->st_value);
7321 #endif
7322 if (candidate && strcmp (candidate, name) == 0)
7323 {
7324 asection *sec = finfo->sections [i];
7325
7326 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7327 *result += sec->output_offset + sec->output_section->vma;
7328 #ifdef DEBUG
7329 printf ("Found symbol with value %8.8lx\n",
7330 (unsigned long) *result);
7331 #endif
7332 return TRUE;
7333 }
7334 }
7335
7336 /* Hmm, haven't found it yet. perhaps it is a global. */
7337 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7338 FALSE, FALSE, TRUE);
7339 if (!global_entry)
7340 return FALSE;
7341
7342 if (global_entry->type == bfd_link_hash_defined
7343 || global_entry->type == bfd_link_hash_defweak)
7344 {
7345 *result = (global_entry->u.def.value
7346 + global_entry->u.def.section->output_section->vma
7347 + global_entry->u.def.section->output_offset);
7348 #ifdef DEBUG
7349 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7350 global_entry->root.string, (unsigned long) *result);
7351 #endif
7352 return TRUE;
7353 }
7354
7355 return FALSE;
7356 }
7357
7358 static bfd_boolean
7359 resolve_section (const char *name,
7360 asection *sections,
7361 bfd_vma *result)
7362 {
7363 asection *curr;
7364 unsigned int len;
7365
7366 for (curr = sections; curr; curr = curr->next)
7367 if (strcmp (curr->name, name) == 0)
7368 {
7369 *result = curr->vma;
7370 return TRUE;
7371 }
7372
7373 /* Hmm. still haven't found it. try pseudo-section names. */
7374 for (curr = sections; curr; curr = curr->next)
7375 {
7376 len = strlen (curr->name);
7377 if (len > strlen (name))
7378 continue;
7379
7380 if (strncmp (curr->name, name, len) == 0)
7381 {
7382 if (strncmp (".end", name + len, 4) == 0)
7383 {
7384 *result = curr->vma + curr->size;
7385 return TRUE;
7386 }
7387
7388 /* Insert more pseudo-section names here, if you like. */
7389 }
7390 }
7391
7392 return FALSE;
7393 }
7394
7395 static void
7396 undefined_reference (const char *reftype, const char *name)
7397 {
7398 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7399 reftype, name);
7400 }
7401
7402 static bfd_boolean
7403 eval_symbol (bfd_vma *result,
7404 const char **symp,
7405 bfd *input_bfd,
7406 struct elf_final_link_info *finfo,
7407 bfd_vma dot,
7408 Elf_Internal_Sym *isymbuf,
7409 size_t locsymcount,
7410 int signed_p)
7411 {
7412 size_t len;
7413 size_t symlen;
7414 bfd_vma a;
7415 bfd_vma b;
7416 char symbuf[4096];
7417 const char *sym = *symp;
7418 const char *symend;
7419 bfd_boolean symbol_is_section = FALSE;
7420
7421 len = strlen (sym);
7422 symend = sym + len;
7423
7424 if (len < 1 || len > sizeof (symbuf))
7425 {
7426 bfd_set_error (bfd_error_invalid_operation);
7427 return FALSE;
7428 }
7429
7430 switch (* sym)
7431 {
7432 case '.':
7433 *result = dot;
7434 *symp = sym + 1;
7435 return TRUE;
7436
7437 case '#':
7438 ++sym;
7439 *result = strtoul (sym, (char **) symp, 16);
7440 return TRUE;
7441
7442 case 'S':
7443 symbol_is_section = TRUE;
7444 case 's':
7445 ++sym;
7446 symlen = strtol (sym, (char **) symp, 10);
7447 sym = *symp + 1; /* Skip the trailing ':'. */
7448
7449 if (symend < sym || symlen + 1 > sizeof (symbuf))
7450 {
7451 bfd_set_error (bfd_error_invalid_operation);
7452 return FALSE;
7453 }
7454
7455 memcpy (symbuf, sym, symlen);
7456 symbuf[symlen] = '\0';
7457 *symp = sym + symlen;
7458
7459 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7460 the symbol as a section, or vice-versa. so we're pretty liberal in our
7461 interpretation here; section means "try section first", not "must be a
7462 section", and likewise with symbol. */
7463
7464 if (symbol_is_section)
7465 {
7466 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7467 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7468 isymbuf, locsymcount))
7469 {
7470 undefined_reference ("section", symbuf);
7471 return FALSE;
7472 }
7473 }
7474 else
7475 {
7476 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7477 isymbuf, locsymcount)
7478 && !resolve_section (symbuf, finfo->output_bfd->sections,
7479 result))
7480 {
7481 undefined_reference ("symbol", symbuf);
7482 return FALSE;
7483 }
7484 }
7485
7486 return TRUE;
7487
7488 /* All that remains are operators. */
7489
7490 #define UNARY_OP(op) \
7491 if (strncmp (sym, #op, strlen (#op)) == 0) \
7492 { \
7493 sym += strlen (#op); \
7494 if (*sym == ':') \
7495 ++sym; \
7496 *symp = sym; \
7497 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7498 isymbuf, locsymcount, signed_p)) \
7499 return FALSE; \
7500 if (signed_p) \
7501 *result = op ((bfd_signed_vma) a); \
7502 else \
7503 *result = op a; \
7504 return TRUE; \
7505 }
7506
7507 #define BINARY_OP(op) \
7508 if (strncmp (sym, #op, strlen (#op)) == 0) \
7509 { \
7510 sym += strlen (#op); \
7511 if (*sym == ':') \
7512 ++sym; \
7513 *symp = sym; \
7514 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7515 isymbuf, locsymcount, signed_p)) \
7516 return FALSE; \
7517 ++*symp; \
7518 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7519 isymbuf, locsymcount, signed_p)) \
7520 return FALSE; \
7521 if (signed_p) \
7522 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7523 else \
7524 *result = a op b; \
7525 return TRUE; \
7526 }
7527
7528 default:
7529 UNARY_OP (0-);
7530 BINARY_OP (<<);
7531 BINARY_OP (>>);
7532 BINARY_OP (==);
7533 BINARY_OP (!=);
7534 BINARY_OP (<=);
7535 BINARY_OP (>=);
7536 BINARY_OP (&&);
7537 BINARY_OP (||);
7538 UNARY_OP (~);
7539 UNARY_OP (!);
7540 BINARY_OP (*);
7541 BINARY_OP (/);
7542 BINARY_OP (%);
7543 BINARY_OP (^);
7544 BINARY_OP (|);
7545 BINARY_OP (&);
7546 BINARY_OP (+);
7547 BINARY_OP (-);
7548 BINARY_OP (<);
7549 BINARY_OP (>);
7550 #undef UNARY_OP
7551 #undef BINARY_OP
7552 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7553 bfd_set_error (bfd_error_invalid_operation);
7554 return FALSE;
7555 }
7556 }
7557
7558 static void
7559 put_value (bfd_vma size,
7560 unsigned long chunksz,
7561 bfd *input_bfd,
7562 bfd_vma x,
7563 bfd_byte *location)
7564 {
7565 location += (size - chunksz);
7566
7567 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7568 {
7569 switch (chunksz)
7570 {
7571 default:
7572 case 0:
7573 abort ();
7574 case 1:
7575 bfd_put_8 (input_bfd, x, location);
7576 break;
7577 case 2:
7578 bfd_put_16 (input_bfd, x, location);
7579 break;
7580 case 4:
7581 bfd_put_32 (input_bfd, x, location);
7582 break;
7583 case 8:
7584 #ifdef BFD64
7585 bfd_put_64 (input_bfd, x, location);
7586 #else
7587 abort ();
7588 #endif
7589 break;
7590 }
7591 }
7592 }
7593
7594 static bfd_vma
7595 get_value (bfd_vma size,
7596 unsigned long chunksz,
7597 bfd *input_bfd,
7598 bfd_byte *location)
7599 {
7600 bfd_vma x = 0;
7601
7602 for (; size; size -= chunksz, location += chunksz)
7603 {
7604 switch (chunksz)
7605 {
7606 default:
7607 case 0:
7608 abort ();
7609 case 1:
7610 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7611 break;
7612 case 2:
7613 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7614 break;
7615 case 4:
7616 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7617 break;
7618 case 8:
7619 #ifdef BFD64
7620 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7621 #else
7622 abort ();
7623 #endif
7624 break;
7625 }
7626 }
7627 return x;
7628 }
7629
7630 static void
7631 decode_complex_addend (unsigned long *start, /* in bits */
7632 unsigned long *oplen, /* in bits */
7633 unsigned long *len, /* in bits */
7634 unsigned long *wordsz, /* in bytes */
7635 unsigned long *chunksz, /* in bytes */
7636 unsigned long *lsb0_p,
7637 unsigned long *signed_p,
7638 unsigned long *trunc_p,
7639 unsigned long encoded)
7640 {
7641 * start = encoded & 0x3F;
7642 * len = (encoded >> 6) & 0x3F;
7643 * oplen = (encoded >> 12) & 0x3F;
7644 * wordsz = (encoded >> 18) & 0xF;
7645 * chunksz = (encoded >> 22) & 0xF;
7646 * lsb0_p = (encoded >> 27) & 1;
7647 * signed_p = (encoded >> 28) & 1;
7648 * trunc_p = (encoded >> 29) & 1;
7649 }
7650
7651 bfd_reloc_status_type
7652 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7653 asection *input_section ATTRIBUTE_UNUSED,
7654 bfd_byte *contents,
7655 Elf_Internal_Rela *rel,
7656 bfd_vma relocation)
7657 {
7658 bfd_vma shift, x, mask;
7659 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7660 bfd_reloc_status_type r;
7661
7662 /* Perform this reloc, since it is complex.
7663 (this is not to say that it necessarily refers to a complex
7664 symbol; merely that it is a self-describing CGEN based reloc.
7665 i.e. the addend has the complete reloc information (bit start, end,
7666 word size, etc) encoded within it.). */
7667
7668 decode_complex_addend (&start, &oplen, &len, &wordsz,
7669 &chunksz, &lsb0_p, &signed_p,
7670 &trunc_p, rel->r_addend);
7671
7672 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7673
7674 if (lsb0_p)
7675 shift = (start + 1) - len;
7676 else
7677 shift = (8 * wordsz) - (start + len);
7678
7679 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7680
7681 #ifdef DEBUG
7682 printf ("Doing complex reloc: "
7683 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7684 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7685 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7686 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7687 oplen, x, mask, relocation);
7688 #endif
7689
7690 r = bfd_reloc_ok;
7691 if (! trunc_p)
7692 /* Now do an overflow check. */
7693 r = bfd_check_overflow ((signed_p
7694 ? complain_overflow_signed
7695 : complain_overflow_unsigned),
7696 len, 0, (8 * wordsz),
7697 relocation);
7698
7699 /* Do the deed. */
7700 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7701
7702 #ifdef DEBUG
7703 printf (" relocation: %8.8lx\n"
7704 " shifted mask: %8.8lx\n"
7705 " shifted/masked reloc: %8.8lx\n"
7706 " result: %8.8lx\n",
7707 relocation, (mask << shift),
7708 ((relocation & mask) << shift), x);
7709 #endif
7710 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7711 return r;
7712 }
7713
7714 /* When performing a relocatable link, the input relocations are
7715 preserved. But, if they reference global symbols, the indices
7716 referenced must be updated. Update all the relocations in
7717 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7718
7719 static void
7720 elf_link_adjust_relocs (bfd *abfd,
7721 Elf_Internal_Shdr *rel_hdr,
7722 unsigned int count,
7723 struct elf_link_hash_entry **rel_hash)
7724 {
7725 unsigned int i;
7726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7727 bfd_byte *erela;
7728 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7729 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7730 bfd_vma r_type_mask;
7731 int r_sym_shift;
7732
7733 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7734 {
7735 swap_in = bed->s->swap_reloc_in;
7736 swap_out = bed->s->swap_reloc_out;
7737 }
7738 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7739 {
7740 swap_in = bed->s->swap_reloca_in;
7741 swap_out = bed->s->swap_reloca_out;
7742 }
7743 else
7744 abort ();
7745
7746 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7747 abort ();
7748
7749 if (bed->s->arch_size == 32)
7750 {
7751 r_type_mask = 0xff;
7752 r_sym_shift = 8;
7753 }
7754 else
7755 {
7756 r_type_mask = 0xffffffff;
7757 r_sym_shift = 32;
7758 }
7759
7760 erela = rel_hdr->contents;
7761 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7762 {
7763 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7764 unsigned int j;
7765
7766 if (*rel_hash == NULL)
7767 continue;
7768
7769 BFD_ASSERT ((*rel_hash)->indx >= 0);
7770
7771 (*swap_in) (abfd, erela, irela);
7772 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7773 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7774 | (irela[j].r_info & r_type_mask));
7775 (*swap_out) (abfd, irela, erela);
7776 }
7777 }
7778
7779 struct elf_link_sort_rela
7780 {
7781 union {
7782 bfd_vma offset;
7783 bfd_vma sym_mask;
7784 } u;
7785 enum elf_reloc_type_class type;
7786 /* We use this as an array of size int_rels_per_ext_rel. */
7787 Elf_Internal_Rela rela[1];
7788 };
7789
7790 static int
7791 elf_link_sort_cmp1 (const void *A, const void *B)
7792 {
7793 const struct elf_link_sort_rela *a = A;
7794 const struct elf_link_sort_rela *b = B;
7795 int relativea, relativeb;
7796
7797 relativea = a->type == reloc_class_relative;
7798 relativeb = b->type == reloc_class_relative;
7799
7800 if (relativea < relativeb)
7801 return 1;
7802 if (relativea > relativeb)
7803 return -1;
7804 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7805 return -1;
7806 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7807 return 1;
7808 if (a->rela->r_offset < b->rela->r_offset)
7809 return -1;
7810 if (a->rela->r_offset > b->rela->r_offset)
7811 return 1;
7812 return 0;
7813 }
7814
7815 static int
7816 elf_link_sort_cmp2 (const void *A, const void *B)
7817 {
7818 const struct elf_link_sort_rela *a = A;
7819 const struct elf_link_sort_rela *b = B;
7820 int copya, copyb;
7821
7822 if (a->u.offset < b->u.offset)
7823 return -1;
7824 if (a->u.offset > b->u.offset)
7825 return 1;
7826 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7827 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7828 if (copya < copyb)
7829 return -1;
7830 if (copya > copyb)
7831 return 1;
7832 if (a->rela->r_offset < b->rela->r_offset)
7833 return -1;
7834 if (a->rela->r_offset > b->rela->r_offset)
7835 return 1;
7836 return 0;
7837 }
7838
7839 static size_t
7840 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7841 {
7842 asection *dynamic_relocs;
7843 asection *rela_dyn;
7844 asection *rel_dyn;
7845 bfd_size_type count, size;
7846 size_t i, ret, sort_elt, ext_size;
7847 bfd_byte *sort, *s_non_relative, *p;
7848 struct elf_link_sort_rela *sq;
7849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7850 int i2e = bed->s->int_rels_per_ext_rel;
7851 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7852 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7853 struct bfd_link_order *lo;
7854 bfd_vma r_sym_mask;
7855 bfd_boolean use_rela;
7856
7857 /* Find a dynamic reloc section. */
7858 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7859 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7860 if (rela_dyn != NULL && rela_dyn->size > 0
7861 && rel_dyn != NULL && rel_dyn->size > 0)
7862 {
7863 bfd_boolean use_rela_initialised = FALSE;
7864
7865 /* This is just here to stop gcc from complaining.
7866 It's initialization checking code is not perfect. */
7867 use_rela = TRUE;
7868
7869 /* Both sections are present. Examine the sizes
7870 of the indirect sections to help us choose. */
7871 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7872 if (lo->type == bfd_indirect_link_order)
7873 {
7874 asection *o = lo->u.indirect.section;
7875
7876 if ((o->size % bed->s->sizeof_rela) == 0)
7877 {
7878 if ((o->size % bed->s->sizeof_rel) == 0)
7879 /* Section size is divisible by both rel and rela sizes.
7880 It is of no help to us. */
7881 ;
7882 else
7883 {
7884 /* Section size is only divisible by rela. */
7885 if (use_rela_initialised && (use_rela == FALSE))
7886 {
7887 _bfd_error_handler
7888 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7889 bfd_set_error (bfd_error_invalid_operation);
7890 return 0;
7891 }
7892 else
7893 {
7894 use_rela = TRUE;
7895 use_rela_initialised = TRUE;
7896 }
7897 }
7898 }
7899 else if ((o->size % bed->s->sizeof_rel) == 0)
7900 {
7901 /* Section size is only divisible by rel. */
7902 if (use_rela_initialised && (use_rela == TRUE))
7903 {
7904 _bfd_error_handler
7905 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7906 bfd_set_error (bfd_error_invalid_operation);
7907 return 0;
7908 }
7909 else
7910 {
7911 use_rela = FALSE;
7912 use_rela_initialised = TRUE;
7913 }
7914 }
7915 else
7916 {
7917 /* The section size is not divisible by either - something is wrong. */
7918 _bfd_error_handler
7919 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7920 bfd_set_error (bfd_error_invalid_operation);
7921 return 0;
7922 }
7923 }
7924
7925 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7926 if (lo->type == bfd_indirect_link_order)
7927 {
7928 asection *o = lo->u.indirect.section;
7929
7930 if ((o->size % bed->s->sizeof_rela) == 0)
7931 {
7932 if ((o->size % bed->s->sizeof_rel) == 0)
7933 /* Section size is divisible by both rel and rela sizes.
7934 It is of no help to us. */
7935 ;
7936 else
7937 {
7938 /* Section size is only divisible by rela. */
7939 if (use_rela_initialised && (use_rela == FALSE))
7940 {
7941 _bfd_error_handler
7942 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7943 bfd_set_error (bfd_error_invalid_operation);
7944 return 0;
7945 }
7946 else
7947 {
7948 use_rela = TRUE;
7949 use_rela_initialised = TRUE;
7950 }
7951 }
7952 }
7953 else if ((o->size % bed->s->sizeof_rel) == 0)
7954 {
7955 /* Section size is only divisible by rel. */
7956 if (use_rela_initialised && (use_rela == TRUE))
7957 {
7958 _bfd_error_handler
7959 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7960 bfd_set_error (bfd_error_invalid_operation);
7961 return 0;
7962 }
7963 else
7964 {
7965 use_rela = FALSE;
7966 use_rela_initialised = TRUE;
7967 }
7968 }
7969 else
7970 {
7971 /* The section size is not divisible by either - something is wrong. */
7972 _bfd_error_handler
7973 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7974 bfd_set_error (bfd_error_invalid_operation);
7975 return 0;
7976 }
7977 }
7978
7979 if (! use_rela_initialised)
7980 /* Make a guess. */
7981 use_rela = TRUE;
7982 }
7983 else if (rela_dyn != NULL && rela_dyn->size > 0)
7984 use_rela = TRUE;
7985 else if (rel_dyn != NULL && rel_dyn->size > 0)
7986 use_rela = FALSE;
7987 else
7988 return 0;
7989
7990 if (use_rela)
7991 {
7992 dynamic_relocs = rela_dyn;
7993 ext_size = bed->s->sizeof_rela;
7994 swap_in = bed->s->swap_reloca_in;
7995 swap_out = bed->s->swap_reloca_out;
7996 }
7997 else
7998 {
7999 dynamic_relocs = rel_dyn;
8000 ext_size = bed->s->sizeof_rel;
8001 swap_in = bed->s->swap_reloc_in;
8002 swap_out = bed->s->swap_reloc_out;
8003 }
8004
8005 size = 0;
8006 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8007 if (lo->type == bfd_indirect_link_order)
8008 size += lo->u.indirect.section->size;
8009
8010 if (size != dynamic_relocs->size)
8011 return 0;
8012
8013 sort_elt = (sizeof (struct elf_link_sort_rela)
8014 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8015
8016 count = dynamic_relocs->size / ext_size;
8017 sort = bfd_zmalloc (sort_elt * count);
8018
8019 if (sort == NULL)
8020 {
8021 (*info->callbacks->warning)
8022 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8023 return 0;
8024 }
8025
8026 if (bed->s->arch_size == 32)
8027 r_sym_mask = ~(bfd_vma) 0xff;
8028 else
8029 r_sym_mask = ~(bfd_vma) 0xffffffff;
8030
8031 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8032 if (lo->type == bfd_indirect_link_order)
8033 {
8034 bfd_byte *erel, *erelend;
8035 asection *o = lo->u.indirect.section;
8036
8037 if (o->contents == NULL && o->size != 0)
8038 {
8039 /* This is a reloc section that is being handled as a normal
8040 section. See bfd_section_from_shdr. We can't combine
8041 relocs in this case. */
8042 free (sort);
8043 return 0;
8044 }
8045 erel = o->contents;
8046 erelend = o->contents + o->size;
8047 p = sort + o->output_offset / ext_size * sort_elt;
8048
8049 while (erel < erelend)
8050 {
8051 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8052
8053 (*swap_in) (abfd, erel, s->rela);
8054 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8055 s->u.sym_mask = r_sym_mask;
8056 p += sort_elt;
8057 erel += ext_size;
8058 }
8059 }
8060
8061 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8062
8063 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8064 {
8065 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8066 if (s->type != reloc_class_relative)
8067 break;
8068 }
8069 ret = i;
8070 s_non_relative = p;
8071
8072 sq = (struct elf_link_sort_rela *) s_non_relative;
8073 for (; i < count; i++, p += sort_elt)
8074 {
8075 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8076 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8077 sq = sp;
8078 sp->u.offset = sq->rela->r_offset;
8079 }
8080
8081 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8082
8083 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8084 if (lo->type == bfd_indirect_link_order)
8085 {
8086 bfd_byte *erel, *erelend;
8087 asection *o = lo->u.indirect.section;
8088
8089 erel = o->contents;
8090 erelend = o->contents + o->size;
8091 p = sort + o->output_offset / ext_size * sort_elt;
8092 while (erel < erelend)
8093 {
8094 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8095 (*swap_out) (abfd, s->rela, erel);
8096 p += sort_elt;
8097 erel += ext_size;
8098 }
8099 }
8100
8101 free (sort);
8102 *psec = dynamic_relocs;
8103 return ret;
8104 }
8105
8106 /* Flush the output symbols to the file. */
8107
8108 static bfd_boolean
8109 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8110 const struct elf_backend_data *bed)
8111 {
8112 if (finfo->symbuf_count > 0)
8113 {
8114 Elf_Internal_Shdr *hdr;
8115 file_ptr pos;
8116 bfd_size_type amt;
8117
8118 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8119 pos = hdr->sh_offset + hdr->sh_size;
8120 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8121 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8122 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8123 return FALSE;
8124
8125 hdr->sh_size += amt;
8126 finfo->symbuf_count = 0;
8127 }
8128
8129 return TRUE;
8130 }
8131
8132 /* Add a symbol to the output symbol table. */
8133
8134 static bfd_boolean
8135 elf_link_output_sym (struct elf_final_link_info *finfo,
8136 const char *name,
8137 Elf_Internal_Sym *elfsym,
8138 asection *input_sec,
8139 struct elf_link_hash_entry *h)
8140 {
8141 bfd_byte *dest;
8142 Elf_External_Sym_Shndx *destshndx;
8143 bfd_boolean (*output_symbol_hook)
8144 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8145 struct elf_link_hash_entry *);
8146 const struct elf_backend_data *bed;
8147
8148 bed = get_elf_backend_data (finfo->output_bfd);
8149 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8150 if (output_symbol_hook != NULL)
8151 {
8152 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8153 return FALSE;
8154 }
8155
8156 if (name == NULL || *name == '\0')
8157 elfsym->st_name = 0;
8158 else if (input_sec->flags & SEC_EXCLUDE)
8159 elfsym->st_name = 0;
8160 else
8161 {
8162 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8163 name, TRUE, FALSE);
8164 if (elfsym->st_name == (unsigned long) -1)
8165 return FALSE;
8166 }
8167
8168 if (finfo->symbuf_count >= finfo->symbuf_size)
8169 {
8170 if (! elf_link_flush_output_syms (finfo, bed))
8171 return FALSE;
8172 }
8173
8174 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8175 destshndx = finfo->symshndxbuf;
8176 if (destshndx != NULL)
8177 {
8178 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8179 {
8180 bfd_size_type amt;
8181
8182 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8183 destshndx = bfd_realloc (destshndx, amt * 2);
8184 if (destshndx == NULL)
8185 return FALSE;
8186 finfo->symshndxbuf = destshndx;
8187 memset ((char *) destshndx + amt, 0, amt);
8188 finfo->shndxbuf_size *= 2;
8189 }
8190 destshndx += bfd_get_symcount (finfo->output_bfd);
8191 }
8192
8193 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8194 finfo->symbuf_count += 1;
8195 bfd_get_symcount (finfo->output_bfd) += 1;
8196
8197 return TRUE;
8198 }
8199
8200 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8201
8202 static bfd_boolean
8203 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8204 {
8205 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8206 && sym->st_shndx < SHN_LORESERVE)
8207 {
8208 /* The gABI doesn't support dynamic symbols in output sections
8209 beyond 64k. */
8210 (*_bfd_error_handler)
8211 (_("%B: Too many sections: %d (>= %d)"),
8212 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8213 bfd_set_error (bfd_error_nonrepresentable_section);
8214 return FALSE;
8215 }
8216 return TRUE;
8217 }
8218
8219 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8220 allowing an unsatisfied unversioned symbol in the DSO to match a
8221 versioned symbol that would normally require an explicit version.
8222 We also handle the case that a DSO references a hidden symbol
8223 which may be satisfied by a versioned symbol in another DSO. */
8224
8225 static bfd_boolean
8226 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8227 const struct elf_backend_data *bed,
8228 struct elf_link_hash_entry *h)
8229 {
8230 bfd *abfd;
8231 struct elf_link_loaded_list *loaded;
8232
8233 if (!is_elf_hash_table (info->hash))
8234 return FALSE;
8235
8236 switch (h->root.type)
8237 {
8238 default:
8239 abfd = NULL;
8240 break;
8241
8242 case bfd_link_hash_undefined:
8243 case bfd_link_hash_undefweak:
8244 abfd = h->root.u.undef.abfd;
8245 if ((abfd->flags & DYNAMIC) == 0
8246 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8247 return FALSE;
8248 break;
8249
8250 case bfd_link_hash_defined:
8251 case bfd_link_hash_defweak:
8252 abfd = h->root.u.def.section->owner;
8253 break;
8254
8255 case bfd_link_hash_common:
8256 abfd = h->root.u.c.p->section->owner;
8257 break;
8258 }
8259 BFD_ASSERT (abfd != NULL);
8260
8261 for (loaded = elf_hash_table (info)->loaded;
8262 loaded != NULL;
8263 loaded = loaded->next)
8264 {
8265 bfd *input;
8266 Elf_Internal_Shdr *hdr;
8267 bfd_size_type symcount;
8268 bfd_size_type extsymcount;
8269 bfd_size_type extsymoff;
8270 Elf_Internal_Shdr *versymhdr;
8271 Elf_Internal_Sym *isym;
8272 Elf_Internal_Sym *isymend;
8273 Elf_Internal_Sym *isymbuf;
8274 Elf_External_Versym *ever;
8275 Elf_External_Versym *extversym;
8276
8277 input = loaded->abfd;
8278
8279 /* We check each DSO for a possible hidden versioned definition. */
8280 if (input == abfd
8281 || (input->flags & DYNAMIC) == 0
8282 || elf_dynversym (input) == 0)
8283 continue;
8284
8285 hdr = &elf_tdata (input)->dynsymtab_hdr;
8286
8287 symcount = hdr->sh_size / bed->s->sizeof_sym;
8288 if (elf_bad_symtab (input))
8289 {
8290 extsymcount = symcount;
8291 extsymoff = 0;
8292 }
8293 else
8294 {
8295 extsymcount = symcount - hdr->sh_info;
8296 extsymoff = hdr->sh_info;
8297 }
8298
8299 if (extsymcount == 0)
8300 continue;
8301
8302 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8303 NULL, NULL, NULL);
8304 if (isymbuf == NULL)
8305 return FALSE;
8306
8307 /* Read in any version definitions. */
8308 versymhdr = &elf_tdata (input)->dynversym_hdr;
8309 extversym = bfd_malloc (versymhdr->sh_size);
8310 if (extversym == NULL)
8311 goto error_ret;
8312
8313 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8314 || (bfd_bread (extversym, versymhdr->sh_size, input)
8315 != versymhdr->sh_size))
8316 {
8317 free (extversym);
8318 error_ret:
8319 free (isymbuf);
8320 return FALSE;
8321 }
8322
8323 ever = extversym + extsymoff;
8324 isymend = isymbuf + extsymcount;
8325 for (isym = isymbuf; isym < isymend; isym++, ever++)
8326 {
8327 const char *name;
8328 Elf_Internal_Versym iver;
8329 unsigned short version_index;
8330
8331 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8332 || isym->st_shndx == SHN_UNDEF)
8333 continue;
8334
8335 name = bfd_elf_string_from_elf_section (input,
8336 hdr->sh_link,
8337 isym->st_name);
8338 if (strcmp (name, h->root.root.string) != 0)
8339 continue;
8340
8341 _bfd_elf_swap_versym_in (input, ever, &iver);
8342
8343 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8344 {
8345 /* If we have a non-hidden versioned sym, then it should
8346 have provided a definition for the undefined sym. */
8347 abort ();
8348 }
8349
8350 version_index = iver.vs_vers & VERSYM_VERSION;
8351 if (version_index == 1 || version_index == 2)
8352 {
8353 /* This is the base or first version. We can use it. */
8354 free (extversym);
8355 free (isymbuf);
8356 return TRUE;
8357 }
8358 }
8359
8360 free (extversym);
8361 free (isymbuf);
8362 }
8363
8364 return FALSE;
8365 }
8366
8367 /* Add an external symbol to the symbol table. This is called from
8368 the hash table traversal routine. When generating a shared object,
8369 we go through the symbol table twice. The first time we output
8370 anything that might have been forced to local scope in a version
8371 script. The second time we output the symbols that are still
8372 global symbols. */
8373
8374 static bfd_boolean
8375 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8376 {
8377 struct elf_outext_info *eoinfo = data;
8378 struct elf_final_link_info *finfo = eoinfo->finfo;
8379 bfd_boolean strip;
8380 Elf_Internal_Sym sym;
8381 asection *input_sec;
8382 const struct elf_backend_data *bed;
8383
8384 if (h->root.type == bfd_link_hash_warning)
8385 {
8386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8387 if (h->root.type == bfd_link_hash_new)
8388 return TRUE;
8389 }
8390
8391 /* Decide whether to output this symbol in this pass. */
8392 if (eoinfo->localsyms)
8393 {
8394 if (!h->forced_local)
8395 return TRUE;
8396 }
8397 else
8398 {
8399 if (h->forced_local)
8400 return TRUE;
8401 }
8402
8403 bed = get_elf_backend_data (finfo->output_bfd);
8404
8405 if (h->root.type == bfd_link_hash_undefined)
8406 {
8407 /* If we have an undefined symbol reference here then it must have
8408 come from a shared library that is being linked in. (Undefined
8409 references in regular files have already been handled). */
8410 bfd_boolean ignore_undef = FALSE;
8411
8412 /* Some symbols may be special in that the fact that they're
8413 undefined can be safely ignored - let backend determine that. */
8414 if (bed->elf_backend_ignore_undef_symbol)
8415 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8416
8417 /* If we are reporting errors for this situation then do so now. */
8418 if (ignore_undef == FALSE
8419 && h->ref_dynamic
8420 && ! h->ref_regular
8421 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8422 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8423 {
8424 if (! (finfo->info->callbacks->undefined_symbol
8425 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8426 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8427 {
8428 eoinfo->failed = TRUE;
8429 return FALSE;
8430 }
8431 }
8432 }
8433
8434 /* We should also warn if a forced local symbol is referenced from
8435 shared libraries. */
8436 if (! finfo->info->relocatable
8437 && (! finfo->info->shared)
8438 && h->forced_local
8439 && h->ref_dynamic
8440 && !h->dynamic_def
8441 && !h->dynamic_weak
8442 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8443 {
8444 (*_bfd_error_handler)
8445 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8446 finfo->output_bfd,
8447 h->root.u.def.section == bfd_abs_section_ptr
8448 ? finfo->output_bfd : h->root.u.def.section->owner,
8449 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8450 ? "internal"
8451 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8452 ? "hidden" : "local",
8453 h->root.root.string);
8454 eoinfo->failed = TRUE;
8455 return FALSE;
8456 }
8457
8458 /* We don't want to output symbols that have never been mentioned by
8459 a regular file, or that we have been told to strip. However, if
8460 h->indx is set to -2, the symbol is used by a reloc and we must
8461 output it. */
8462 if (h->indx == -2)
8463 strip = FALSE;
8464 else if ((h->def_dynamic
8465 || h->ref_dynamic
8466 || h->root.type == bfd_link_hash_new)
8467 && !h->def_regular
8468 && !h->ref_regular)
8469 strip = TRUE;
8470 else if (finfo->info->strip == strip_all)
8471 strip = TRUE;
8472 else if (finfo->info->strip == strip_some
8473 && bfd_hash_lookup (finfo->info->keep_hash,
8474 h->root.root.string, FALSE, FALSE) == NULL)
8475 strip = TRUE;
8476 else if (finfo->info->strip_discarded
8477 && (h->root.type == bfd_link_hash_defined
8478 || h->root.type == bfd_link_hash_defweak)
8479 && elf_discarded_section (h->root.u.def.section))
8480 strip = TRUE;
8481 else
8482 strip = FALSE;
8483
8484 /* If we're stripping it, and it's not a dynamic symbol, there's
8485 nothing else to do unless it is a forced local symbol. */
8486 if (strip
8487 && h->dynindx == -1
8488 && !h->forced_local)
8489 return TRUE;
8490
8491 sym.st_value = 0;
8492 sym.st_size = h->size;
8493 sym.st_other = h->other;
8494 if (h->forced_local)
8495 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8496 else if (h->root.type == bfd_link_hash_undefweak
8497 || h->root.type == bfd_link_hash_defweak)
8498 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8499 else
8500 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8501
8502 switch (h->root.type)
8503 {
8504 default:
8505 case bfd_link_hash_new:
8506 case bfd_link_hash_warning:
8507 abort ();
8508 return FALSE;
8509
8510 case bfd_link_hash_undefined:
8511 case bfd_link_hash_undefweak:
8512 input_sec = bfd_und_section_ptr;
8513 sym.st_shndx = SHN_UNDEF;
8514 break;
8515
8516 case bfd_link_hash_defined:
8517 case bfd_link_hash_defweak:
8518 {
8519 input_sec = h->root.u.def.section;
8520 if (input_sec->output_section != NULL)
8521 {
8522 sym.st_shndx =
8523 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8524 input_sec->output_section);
8525 if (sym.st_shndx == SHN_BAD)
8526 {
8527 (*_bfd_error_handler)
8528 (_("%B: could not find output section %A for input section %A"),
8529 finfo->output_bfd, input_sec->output_section, input_sec);
8530 eoinfo->failed = TRUE;
8531 return FALSE;
8532 }
8533
8534 /* ELF symbols in relocatable files are section relative,
8535 but in nonrelocatable files they are virtual
8536 addresses. */
8537 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8538 if (! finfo->info->relocatable)
8539 {
8540 sym.st_value += input_sec->output_section->vma;
8541 if (h->type == STT_TLS)
8542 {
8543 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8544 if (tls_sec != NULL)
8545 sym.st_value -= tls_sec->vma;
8546 else
8547 {
8548 /* The TLS section may have been garbage collected. */
8549 BFD_ASSERT (finfo->info->gc_sections
8550 && !input_sec->gc_mark);
8551 }
8552 }
8553 }
8554 }
8555 else
8556 {
8557 BFD_ASSERT (input_sec->owner == NULL
8558 || (input_sec->owner->flags & DYNAMIC) != 0);
8559 sym.st_shndx = SHN_UNDEF;
8560 input_sec = bfd_und_section_ptr;
8561 }
8562 }
8563 break;
8564
8565 case bfd_link_hash_common:
8566 input_sec = h->root.u.c.p->section;
8567 sym.st_shndx = bed->common_section_index (input_sec);
8568 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8569 break;
8570
8571 case bfd_link_hash_indirect:
8572 /* These symbols are created by symbol versioning. They point
8573 to the decorated version of the name. For example, if the
8574 symbol foo@@GNU_1.2 is the default, which should be used when
8575 foo is used with no version, then we add an indirect symbol
8576 foo which points to foo@@GNU_1.2. We ignore these symbols,
8577 since the indirected symbol is already in the hash table. */
8578 return TRUE;
8579 }
8580
8581 /* Give the processor backend a chance to tweak the symbol value,
8582 and also to finish up anything that needs to be done for this
8583 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8584 forced local syms when non-shared is due to a historical quirk. */
8585 if ((h->dynindx != -1
8586 || h->forced_local)
8587 && ((finfo->info->shared
8588 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8589 || h->root.type != bfd_link_hash_undefweak))
8590 || !h->forced_local)
8591 && elf_hash_table (finfo->info)->dynamic_sections_created)
8592 {
8593 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8594 (finfo->output_bfd, finfo->info, h, &sym)))
8595 {
8596 eoinfo->failed = TRUE;
8597 return FALSE;
8598 }
8599 }
8600
8601 /* If we are marking the symbol as undefined, and there are no
8602 non-weak references to this symbol from a regular object, then
8603 mark the symbol as weak undefined; if there are non-weak
8604 references, mark the symbol as strong. We can't do this earlier,
8605 because it might not be marked as undefined until the
8606 finish_dynamic_symbol routine gets through with it. */
8607 if (sym.st_shndx == SHN_UNDEF
8608 && h->ref_regular
8609 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8610 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8611 {
8612 int bindtype;
8613
8614 if (h->ref_regular_nonweak)
8615 bindtype = STB_GLOBAL;
8616 else
8617 bindtype = STB_WEAK;
8618 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8619 }
8620
8621 /* If a non-weak symbol with non-default visibility is not defined
8622 locally, it is a fatal error. */
8623 if (! finfo->info->relocatable
8624 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8625 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8626 && h->root.type == bfd_link_hash_undefined
8627 && !h->def_regular)
8628 {
8629 (*_bfd_error_handler)
8630 (_("%B: %s symbol `%s' isn't defined"),
8631 finfo->output_bfd,
8632 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8633 ? "protected"
8634 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8635 ? "internal" : "hidden",
8636 h->root.root.string);
8637 eoinfo->failed = TRUE;
8638 return FALSE;
8639 }
8640
8641 /* If this symbol should be put in the .dynsym section, then put it
8642 there now. We already know the symbol index. We also fill in
8643 the entry in the .hash section. */
8644 if (h->dynindx != -1
8645 && elf_hash_table (finfo->info)->dynamic_sections_created)
8646 {
8647 bfd_byte *esym;
8648
8649 sym.st_name = h->dynstr_index;
8650 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8651 if (! check_dynsym (finfo->output_bfd, &sym))
8652 {
8653 eoinfo->failed = TRUE;
8654 return FALSE;
8655 }
8656 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8657
8658 if (finfo->hash_sec != NULL)
8659 {
8660 size_t hash_entry_size;
8661 bfd_byte *bucketpos;
8662 bfd_vma chain;
8663 size_t bucketcount;
8664 size_t bucket;
8665
8666 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8667 bucket = h->u.elf_hash_value % bucketcount;
8668
8669 hash_entry_size
8670 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8671 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8672 + (bucket + 2) * hash_entry_size);
8673 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8674 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8675 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8676 ((bfd_byte *) finfo->hash_sec->contents
8677 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8678 }
8679
8680 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8681 {
8682 Elf_Internal_Versym iversym;
8683 Elf_External_Versym *eversym;
8684
8685 if (!h->def_regular)
8686 {
8687 if (h->verinfo.verdef == NULL)
8688 iversym.vs_vers = 0;
8689 else
8690 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8691 }
8692 else
8693 {
8694 if (h->verinfo.vertree == NULL)
8695 iversym.vs_vers = 1;
8696 else
8697 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8698 if (finfo->info->create_default_symver)
8699 iversym.vs_vers++;
8700 }
8701
8702 if (h->hidden)
8703 iversym.vs_vers |= VERSYM_HIDDEN;
8704
8705 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8706 eversym += h->dynindx;
8707 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8708 }
8709 }
8710
8711 /* If we're stripping it, then it was just a dynamic symbol, and
8712 there's nothing else to do. */
8713 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8714 return TRUE;
8715
8716 h->indx = bfd_get_symcount (finfo->output_bfd);
8717
8718 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8719 {
8720 eoinfo->failed = TRUE;
8721 return FALSE;
8722 }
8723
8724 return TRUE;
8725 }
8726
8727 /* Return TRUE if special handling is done for relocs in SEC against
8728 symbols defined in discarded sections. */
8729
8730 static bfd_boolean
8731 elf_section_ignore_discarded_relocs (asection *sec)
8732 {
8733 const struct elf_backend_data *bed;
8734
8735 switch (sec->sec_info_type)
8736 {
8737 case ELF_INFO_TYPE_STABS:
8738 case ELF_INFO_TYPE_EH_FRAME:
8739 return TRUE;
8740 default:
8741 break;
8742 }
8743
8744 bed = get_elf_backend_data (sec->owner);
8745 if (bed->elf_backend_ignore_discarded_relocs != NULL
8746 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8747 return TRUE;
8748
8749 return FALSE;
8750 }
8751
8752 /* Return a mask saying how ld should treat relocations in SEC against
8753 symbols defined in discarded sections. If this function returns
8754 COMPLAIN set, ld will issue a warning message. If this function
8755 returns PRETEND set, and the discarded section was link-once and the
8756 same size as the kept link-once section, ld will pretend that the
8757 symbol was actually defined in the kept section. Otherwise ld will
8758 zero the reloc (at least that is the intent, but some cooperation by
8759 the target dependent code is needed, particularly for REL targets). */
8760
8761 unsigned int
8762 _bfd_elf_default_action_discarded (asection *sec)
8763 {
8764 if (sec->flags & SEC_DEBUGGING)
8765 return PRETEND;
8766
8767 if (strcmp (".eh_frame", sec->name) == 0)
8768 return 0;
8769
8770 if (strcmp (".gcc_except_table", sec->name) == 0)
8771 return 0;
8772
8773 return COMPLAIN | PRETEND;
8774 }
8775
8776 /* Find a match between a section and a member of a section group. */
8777
8778 static asection *
8779 match_group_member (asection *sec, asection *group,
8780 struct bfd_link_info *info)
8781 {
8782 asection *first = elf_next_in_group (group);
8783 asection *s = first;
8784
8785 while (s != NULL)
8786 {
8787 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8788 return s;
8789
8790 s = elf_next_in_group (s);
8791 if (s == first)
8792 break;
8793 }
8794
8795 return NULL;
8796 }
8797
8798 /* Check if the kept section of a discarded section SEC can be used
8799 to replace it. Return the replacement if it is OK. Otherwise return
8800 NULL. */
8801
8802 asection *
8803 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8804 {
8805 asection *kept;
8806
8807 kept = sec->kept_section;
8808 if (kept != NULL)
8809 {
8810 if ((kept->flags & SEC_GROUP) != 0)
8811 kept = match_group_member (sec, kept, info);
8812 if (kept != NULL
8813 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8814 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8815 kept = NULL;
8816 sec->kept_section = kept;
8817 }
8818 return kept;
8819 }
8820
8821 /* Link an input file into the linker output file. This function
8822 handles all the sections and relocations of the input file at once.
8823 This is so that we only have to read the local symbols once, and
8824 don't have to keep them in memory. */
8825
8826 static bfd_boolean
8827 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8828 {
8829 int (*relocate_section)
8830 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8831 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8832 bfd *output_bfd;
8833 Elf_Internal_Shdr *symtab_hdr;
8834 size_t locsymcount;
8835 size_t extsymoff;
8836 Elf_Internal_Sym *isymbuf;
8837 Elf_Internal_Sym *isym;
8838 Elf_Internal_Sym *isymend;
8839 long *pindex;
8840 asection **ppsection;
8841 asection *o;
8842 const struct elf_backend_data *bed;
8843 struct elf_link_hash_entry **sym_hashes;
8844
8845 output_bfd = finfo->output_bfd;
8846 bed = get_elf_backend_data (output_bfd);
8847 relocate_section = bed->elf_backend_relocate_section;
8848
8849 /* If this is a dynamic object, we don't want to do anything here:
8850 we don't want the local symbols, and we don't want the section
8851 contents. */
8852 if ((input_bfd->flags & DYNAMIC) != 0)
8853 return TRUE;
8854
8855 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8856 if (elf_bad_symtab (input_bfd))
8857 {
8858 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8859 extsymoff = 0;
8860 }
8861 else
8862 {
8863 locsymcount = symtab_hdr->sh_info;
8864 extsymoff = symtab_hdr->sh_info;
8865 }
8866
8867 /* Read the local symbols. */
8868 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8869 if (isymbuf == NULL && locsymcount != 0)
8870 {
8871 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8872 finfo->internal_syms,
8873 finfo->external_syms,
8874 finfo->locsym_shndx);
8875 if (isymbuf == NULL)
8876 return FALSE;
8877 }
8878
8879 /* Find local symbol sections and adjust values of symbols in
8880 SEC_MERGE sections. Write out those local symbols we know are
8881 going into the output file. */
8882 isymend = isymbuf + locsymcount;
8883 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8884 isym < isymend;
8885 isym++, pindex++, ppsection++)
8886 {
8887 asection *isec;
8888 const char *name;
8889 Elf_Internal_Sym osym;
8890
8891 *pindex = -1;
8892
8893 if (elf_bad_symtab (input_bfd))
8894 {
8895 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8896 {
8897 *ppsection = NULL;
8898 continue;
8899 }
8900 }
8901
8902 if (isym->st_shndx == SHN_UNDEF)
8903 isec = bfd_und_section_ptr;
8904 else if (isym->st_shndx == SHN_ABS)
8905 isec = bfd_abs_section_ptr;
8906 else if (isym->st_shndx == SHN_COMMON)
8907 isec = bfd_com_section_ptr;
8908 else
8909 {
8910 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8911 if (isec == NULL)
8912 {
8913 /* Don't attempt to output symbols with st_shnx in the
8914 reserved range other than SHN_ABS and SHN_COMMON. */
8915 *ppsection = NULL;
8916 continue;
8917 }
8918 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8919 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8920 isym->st_value =
8921 _bfd_merged_section_offset (output_bfd, &isec,
8922 elf_section_data (isec)->sec_info,
8923 isym->st_value);
8924 }
8925
8926 *ppsection = isec;
8927
8928 /* Don't output the first, undefined, symbol. */
8929 if (ppsection == finfo->sections)
8930 continue;
8931
8932 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8933 {
8934 /* We never output section symbols. Instead, we use the
8935 section symbol of the corresponding section in the output
8936 file. */
8937 continue;
8938 }
8939
8940 /* If we are stripping all symbols, we don't want to output this
8941 one. */
8942 if (finfo->info->strip == strip_all)
8943 continue;
8944
8945 /* If we are discarding all local symbols, we don't want to
8946 output this one. If we are generating a relocatable output
8947 file, then some of the local symbols may be required by
8948 relocs; we output them below as we discover that they are
8949 needed. */
8950 if (finfo->info->discard == discard_all)
8951 continue;
8952
8953 /* If this symbol is defined in a section which we are
8954 discarding, we don't need to keep it. */
8955 if (isym->st_shndx != SHN_UNDEF
8956 && isym->st_shndx < SHN_LORESERVE
8957 && bfd_section_removed_from_list (output_bfd,
8958 isec->output_section))
8959 continue;
8960
8961 /* Get the name of the symbol. */
8962 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8963 isym->st_name);
8964 if (name == NULL)
8965 return FALSE;
8966
8967 /* See if we are discarding symbols with this name. */
8968 if ((finfo->info->strip == strip_some
8969 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8970 == NULL))
8971 || (((finfo->info->discard == discard_sec_merge
8972 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8973 || finfo->info->discard == discard_l)
8974 && bfd_is_local_label_name (input_bfd, name)))
8975 continue;
8976
8977 /* If we get here, we are going to output this symbol. */
8978
8979 osym = *isym;
8980
8981 /* Adjust the section index for the output file. */
8982 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8983 isec->output_section);
8984 if (osym.st_shndx == SHN_BAD)
8985 return FALSE;
8986
8987 *pindex = bfd_get_symcount (output_bfd);
8988
8989 /* ELF symbols in relocatable files are section relative, but
8990 in executable files they are virtual addresses. Note that
8991 this code assumes that all ELF sections have an associated
8992 BFD section with a reasonable value for output_offset; below
8993 we assume that they also have a reasonable value for
8994 output_section. Any special sections must be set up to meet
8995 these requirements. */
8996 osym.st_value += isec->output_offset;
8997 if (! finfo->info->relocatable)
8998 {
8999 osym.st_value += isec->output_section->vma;
9000 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9001 {
9002 /* STT_TLS symbols are relative to PT_TLS segment base. */
9003 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9004 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9005 }
9006 }
9007
9008 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9009 return FALSE;
9010 }
9011
9012 /* Relocate the contents of each section. */
9013 sym_hashes = elf_sym_hashes (input_bfd);
9014 for (o = input_bfd->sections; o != NULL; o = o->next)
9015 {
9016 bfd_byte *contents;
9017
9018 if (! o->linker_mark)
9019 {
9020 /* This section was omitted from the link. */
9021 continue;
9022 }
9023
9024 if ((o->flags & SEC_HAS_CONTENTS) == 0
9025 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9026 continue;
9027
9028 if ((o->flags & SEC_LINKER_CREATED) != 0)
9029 {
9030 /* Section was created by _bfd_elf_link_create_dynamic_sections
9031 or somesuch. */
9032 continue;
9033 }
9034
9035 /* Get the contents of the section. They have been cached by a
9036 relaxation routine. Note that o is a section in an input
9037 file, so the contents field will not have been set by any of
9038 the routines which work on output files. */
9039 if (elf_section_data (o)->this_hdr.contents != NULL)
9040 contents = elf_section_data (o)->this_hdr.contents;
9041 else
9042 {
9043 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9044
9045 contents = finfo->contents;
9046 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9047 return FALSE;
9048 }
9049
9050 if ((o->flags & SEC_RELOC) != 0)
9051 {
9052 Elf_Internal_Rela *internal_relocs;
9053 Elf_Internal_Rela *rel, *relend;
9054 bfd_vma r_type_mask;
9055 int r_sym_shift;
9056 int action_discarded;
9057 int ret;
9058
9059 /* Get the swapped relocs. */
9060 internal_relocs
9061 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9062 finfo->internal_relocs, FALSE);
9063 if (internal_relocs == NULL
9064 && o->reloc_count > 0)
9065 return FALSE;
9066
9067 if (bed->s->arch_size == 32)
9068 {
9069 r_type_mask = 0xff;
9070 r_sym_shift = 8;
9071 }
9072 else
9073 {
9074 r_type_mask = 0xffffffff;
9075 r_sym_shift = 32;
9076 }
9077
9078 action_discarded = -1;
9079 if (!elf_section_ignore_discarded_relocs (o))
9080 action_discarded = (*bed->action_discarded) (o);
9081
9082 /* Run through the relocs evaluating complex reloc symbols and
9083 looking for relocs against symbols from discarded sections
9084 or section symbols from removed link-once sections.
9085 Complain about relocs against discarded sections. Zero
9086 relocs against removed link-once sections. */
9087
9088 rel = internal_relocs;
9089 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9090 for ( ; rel < relend; rel++)
9091 {
9092 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9093 unsigned int s_type;
9094 asection **ps, *sec;
9095 struct elf_link_hash_entry *h = NULL;
9096 const char *sym_name;
9097
9098 if (r_symndx == STN_UNDEF)
9099 continue;
9100
9101 if (r_symndx >= locsymcount
9102 || (elf_bad_symtab (input_bfd)
9103 && finfo->sections[r_symndx] == NULL))
9104 {
9105 h = sym_hashes[r_symndx - extsymoff];
9106
9107 /* Badly formatted input files can contain relocs that
9108 reference non-existant symbols. Check here so that
9109 we do not seg fault. */
9110 if (h == NULL)
9111 {
9112 char buffer [32];
9113
9114 sprintf_vma (buffer, rel->r_info);
9115 (*_bfd_error_handler)
9116 (_("error: %B contains a reloc (0x%s) for section %A "
9117 "that references a non-existent global symbol"),
9118 input_bfd, o, buffer);
9119 bfd_set_error (bfd_error_bad_value);
9120 return FALSE;
9121 }
9122
9123 while (h->root.type == bfd_link_hash_indirect
9124 || h->root.type == bfd_link_hash_warning)
9125 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9126
9127 s_type = h->type;
9128
9129 ps = NULL;
9130 if (h->root.type == bfd_link_hash_defined
9131 || h->root.type == bfd_link_hash_defweak)
9132 ps = &h->root.u.def.section;
9133
9134 sym_name = h->root.root.string;
9135 }
9136 else
9137 {
9138 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9139
9140 s_type = ELF_ST_TYPE (sym->st_info);
9141 ps = &finfo->sections[r_symndx];
9142 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9143 sym, *ps);
9144 }
9145
9146 if (s_type == STT_RELC || s_type == STT_SRELC)
9147 {
9148 bfd_vma val;
9149 bfd_vma dot = (rel->r_offset
9150 + o->output_offset + o->output_section->vma);
9151 #ifdef DEBUG
9152 printf ("Encountered a complex symbol!");
9153 printf (" (input_bfd %s, section %s, reloc %ld\n",
9154 input_bfd->filename, o->name, rel - internal_relocs);
9155 printf (" symbol: idx %8.8lx, name %s\n",
9156 r_symndx, sym_name);
9157 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9158 (unsigned long) rel->r_info,
9159 (unsigned long) rel->r_offset);
9160 #endif
9161 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9162 isymbuf, locsymcount, s_type == STT_SRELC))
9163 return FALSE;
9164
9165 /* Symbol evaluated OK. Update to absolute value. */
9166 set_symbol_value (input_bfd, isymbuf, locsymcount,
9167 r_symndx, val);
9168 continue;
9169 }
9170
9171 if (action_discarded != -1 && ps != NULL)
9172 {
9173 /* Complain if the definition comes from a
9174 discarded section. */
9175 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9176 {
9177 BFD_ASSERT (r_symndx != 0);
9178 if (action_discarded & COMPLAIN)
9179 (*finfo->info->callbacks->einfo)
9180 (_("%X`%s' referenced in section `%A' of %B: "
9181 "defined in discarded section `%A' of %B\n"),
9182 sym_name, o, input_bfd, sec, sec->owner);
9183
9184 /* Try to do the best we can to support buggy old
9185 versions of gcc. Pretend that the symbol is
9186 really defined in the kept linkonce section.
9187 FIXME: This is quite broken. Modifying the
9188 symbol here means we will be changing all later
9189 uses of the symbol, not just in this section. */
9190 if (action_discarded & PRETEND)
9191 {
9192 asection *kept;
9193
9194 kept = _bfd_elf_check_kept_section (sec,
9195 finfo->info);
9196 if (kept != NULL)
9197 {
9198 *ps = kept;
9199 continue;
9200 }
9201 }
9202 }
9203 }
9204 }
9205
9206 /* Relocate the section by invoking a back end routine.
9207
9208 The back end routine is responsible for adjusting the
9209 section contents as necessary, and (if using Rela relocs
9210 and generating a relocatable output file) adjusting the
9211 reloc addend as necessary.
9212
9213 The back end routine does not have to worry about setting
9214 the reloc address or the reloc symbol index.
9215
9216 The back end routine is given a pointer to the swapped in
9217 internal symbols, and can access the hash table entries
9218 for the external symbols via elf_sym_hashes (input_bfd).
9219
9220 When generating relocatable output, the back end routine
9221 must handle STB_LOCAL/STT_SECTION symbols specially. The
9222 output symbol is going to be a section symbol
9223 corresponding to the output section, which will require
9224 the addend to be adjusted. */
9225
9226 ret = (*relocate_section) (output_bfd, finfo->info,
9227 input_bfd, o, contents,
9228 internal_relocs,
9229 isymbuf,
9230 finfo->sections);
9231 if (!ret)
9232 return FALSE;
9233
9234 if (ret == 2
9235 || finfo->info->relocatable
9236 || finfo->info->emitrelocations)
9237 {
9238 Elf_Internal_Rela *irela;
9239 Elf_Internal_Rela *irelaend;
9240 bfd_vma last_offset;
9241 struct elf_link_hash_entry **rel_hash;
9242 struct elf_link_hash_entry **rel_hash_list;
9243 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9244 unsigned int next_erel;
9245 bfd_boolean rela_normal;
9246
9247 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9248 rela_normal = (bed->rela_normal
9249 && (input_rel_hdr->sh_entsize
9250 == bed->s->sizeof_rela));
9251
9252 /* Adjust the reloc addresses and symbol indices. */
9253
9254 irela = internal_relocs;
9255 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9256 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9257 + elf_section_data (o->output_section)->rel_count
9258 + elf_section_data (o->output_section)->rel_count2);
9259 rel_hash_list = rel_hash;
9260 last_offset = o->output_offset;
9261 if (!finfo->info->relocatable)
9262 last_offset += o->output_section->vma;
9263 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9264 {
9265 unsigned long r_symndx;
9266 asection *sec;
9267 Elf_Internal_Sym sym;
9268
9269 if (next_erel == bed->s->int_rels_per_ext_rel)
9270 {
9271 rel_hash++;
9272 next_erel = 0;
9273 }
9274
9275 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9276 finfo->info, o,
9277 irela->r_offset);
9278 if (irela->r_offset >= (bfd_vma) -2)
9279 {
9280 /* This is a reloc for a deleted entry or somesuch.
9281 Turn it into an R_*_NONE reloc, at the same
9282 offset as the last reloc. elf_eh_frame.c and
9283 bfd_elf_discard_info rely on reloc offsets
9284 being ordered. */
9285 irela->r_offset = last_offset;
9286 irela->r_info = 0;
9287 irela->r_addend = 0;
9288 continue;
9289 }
9290
9291 irela->r_offset += o->output_offset;
9292
9293 /* Relocs in an executable have to be virtual addresses. */
9294 if (!finfo->info->relocatable)
9295 irela->r_offset += o->output_section->vma;
9296
9297 last_offset = irela->r_offset;
9298
9299 r_symndx = irela->r_info >> r_sym_shift;
9300 if (r_symndx == STN_UNDEF)
9301 continue;
9302
9303 if (r_symndx >= locsymcount
9304 || (elf_bad_symtab (input_bfd)
9305 && finfo->sections[r_symndx] == NULL))
9306 {
9307 struct elf_link_hash_entry *rh;
9308 unsigned long indx;
9309
9310 /* This is a reloc against a global symbol. We
9311 have not yet output all the local symbols, so
9312 we do not know the symbol index of any global
9313 symbol. We set the rel_hash entry for this
9314 reloc to point to the global hash table entry
9315 for this symbol. The symbol index is then
9316 set at the end of bfd_elf_final_link. */
9317 indx = r_symndx - extsymoff;
9318 rh = elf_sym_hashes (input_bfd)[indx];
9319 while (rh->root.type == bfd_link_hash_indirect
9320 || rh->root.type == bfd_link_hash_warning)
9321 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9322
9323 /* Setting the index to -2 tells
9324 elf_link_output_extsym that this symbol is
9325 used by a reloc. */
9326 BFD_ASSERT (rh->indx < 0);
9327 rh->indx = -2;
9328
9329 *rel_hash = rh;
9330
9331 continue;
9332 }
9333
9334 /* This is a reloc against a local symbol. */
9335
9336 *rel_hash = NULL;
9337 sym = isymbuf[r_symndx];
9338 sec = finfo->sections[r_symndx];
9339 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9340 {
9341 /* I suppose the backend ought to fill in the
9342 section of any STT_SECTION symbol against a
9343 processor specific section. */
9344 r_symndx = 0;
9345 if (bfd_is_abs_section (sec))
9346 ;
9347 else if (sec == NULL || sec->owner == NULL)
9348 {
9349 bfd_set_error (bfd_error_bad_value);
9350 return FALSE;
9351 }
9352 else
9353 {
9354 asection *osec = sec->output_section;
9355
9356 /* If we have discarded a section, the output
9357 section will be the absolute section. In
9358 case of discarded SEC_MERGE sections, use
9359 the kept section. relocate_section should
9360 have already handled discarded linkonce
9361 sections. */
9362 if (bfd_is_abs_section (osec)
9363 && sec->kept_section != NULL
9364 && sec->kept_section->output_section != NULL)
9365 {
9366 osec = sec->kept_section->output_section;
9367 irela->r_addend -= osec->vma;
9368 }
9369
9370 if (!bfd_is_abs_section (osec))
9371 {
9372 r_symndx = osec->target_index;
9373 if (r_symndx == 0)
9374 {
9375 struct elf_link_hash_table *htab;
9376 asection *oi;
9377
9378 htab = elf_hash_table (finfo->info);
9379 oi = htab->text_index_section;
9380 if ((osec->flags & SEC_READONLY) == 0
9381 && htab->data_index_section != NULL)
9382 oi = htab->data_index_section;
9383
9384 if (oi != NULL)
9385 {
9386 irela->r_addend += osec->vma - oi->vma;
9387 r_symndx = oi->target_index;
9388 }
9389 }
9390
9391 BFD_ASSERT (r_symndx != 0);
9392 }
9393 }
9394
9395 /* Adjust the addend according to where the
9396 section winds up in the output section. */
9397 if (rela_normal)
9398 irela->r_addend += sec->output_offset;
9399 }
9400 else
9401 {
9402 if (finfo->indices[r_symndx] == -1)
9403 {
9404 unsigned long shlink;
9405 const char *name;
9406 asection *osec;
9407
9408 if (finfo->info->strip == strip_all)
9409 {
9410 /* You can't do ld -r -s. */
9411 bfd_set_error (bfd_error_invalid_operation);
9412 return FALSE;
9413 }
9414
9415 /* This symbol was skipped earlier, but
9416 since it is needed by a reloc, we
9417 must output it now. */
9418 shlink = symtab_hdr->sh_link;
9419 name = (bfd_elf_string_from_elf_section
9420 (input_bfd, shlink, sym.st_name));
9421 if (name == NULL)
9422 return FALSE;
9423
9424 osec = sec->output_section;
9425 sym.st_shndx =
9426 _bfd_elf_section_from_bfd_section (output_bfd,
9427 osec);
9428 if (sym.st_shndx == SHN_BAD)
9429 return FALSE;
9430
9431 sym.st_value += sec->output_offset;
9432 if (! finfo->info->relocatable)
9433 {
9434 sym.st_value += osec->vma;
9435 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9436 {
9437 /* STT_TLS symbols are relative to PT_TLS
9438 segment base. */
9439 BFD_ASSERT (elf_hash_table (finfo->info)
9440 ->tls_sec != NULL);
9441 sym.st_value -= (elf_hash_table (finfo->info)
9442 ->tls_sec->vma);
9443 }
9444 }
9445
9446 finfo->indices[r_symndx]
9447 = bfd_get_symcount (output_bfd);
9448
9449 if (! elf_link_output_sym (finfo, name, &sym, sec,
9450 NULL))
9451 return FALSE;
9452 }
9453
9454 r_symndx = finfo->indices[r_symndx];
9455 }
9456
9457 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9458 | (irela->r_info & r_type_mask));
9459 }
9460
9461 /* Swap out the relocs. */
9462 if (input_rel_hdr->sh_size != 0
9463 && !bed->elf_backend_emit_relocs (output_bfd, o,
9464 input_rel_hdr,
9465 internal_relocs,
9466 rel_hash_list))
9467 return FALSE;
9468
9469 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9470 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9471 {
9472 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9473 * bed->s->int_rels_per_ext_rel);
9474 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9475 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9476 input_rel_hdr2,
9477 internal_relocs,
9478 rel_hash_list))
9479 return FALSE;
9480 }
9481 }
9482 }
9483
9484 /* Write out the modified section contents. */
9485 if (bed->elf_backend_write_section
9486 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9487 contents))
9488 {
9489 /* Section written out. */
9490 }
9491 else switch (o->sec_info_type)
9492 {
9493 case ELF_INFO_TYPE_STABS:
9494 if (! (_bfd_write_section_stabs
9495 (output_bfd,
9496 &elf_hash_table (finfo->info)->stab_info,
9497 o, &elf_section_data (o)->sec_info, contents)))
9498 return FALSE;
9499 break;
9500 case ELF_INFO_TYPE_MERGE:
9501 if (! _bfd_write_merged_section (output_bfd, o,
9502 elf_section_data (o)->sec_info))
9503 return FALSE;
9504 break;
9505 case ELF_INFO_TYPE_EH_FRAME:
9506 {
9507 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9508 o, contents))
9509 return FALSE;
9510 }
9511 break;
9512 default:
9513 {
9514 if (! (o->flags & SEC_EXCLUDE)
9515 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9516 && ! bfd_set_section_contents (output_bfd, o->output_section,
9517 contents,
9518 (file_ptr) o->output_offset,
9519 o->size))
9520 return FALSE;
9521 }
9522 break;
9523 }
9524 }
9525
9526 return TRUE;
9527 }
9528
9529 /* Generate a reloc when linking an ELF file. This is a reloc
9530 requested by the linker, and does not come from any input file. This
9531 is used to build constructor and destructor tables when linking
9532 with -Ur. */
9533
9534 static bfd_boolean
9535 elf_reloc_link_order (bfd *output_bfd,
9536 struct bfd_link_info *info,
9537 asection *output_section,
9538 struct bfd_link_order *link_order)
9539 {
9540 reloc_howto_type *howto;
9541 long indx;
9542 bfd_vma offset;
9543 bfd_vma addend;
9544 struct elf_link_hash_entry **rel_hash_ptr;
9545 Elf_Internal_Shdr *rel_hdr;
9546 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9547 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9548 bfd_byte *erel;
9549 unsigned int i;
9550
9551 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9552 if (howto == NULL)
9553 {
9554 bfd_set_error (bfd_error_bad_value);
9555 return FALSE;
9556 }
9557
9558 addend = link_order->u.reloc.p->addend;
9559
9560 /* Figure out the symbol index. */
9561 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9562 + elf_section_data (output_section)->rel_count
9563 + elf_section_data (output_section)->rel_count2);
9564 if (link_order->type == bfd_section_reloc_link_order)
9565 {
9566 indx = link_order->u.reloc.p->u.section->target_index;
9567 BFD_ASSERT (indx != 0);
9568 *rel_hash_ptr = NULL;
9569 }
9570 else
9571 {
9572 struct elf_link_hash_entry *h;
9573
9574 /* Treat a reloc against a defined symbol as though it were
9575 actually against the section. */
9576 h = ((struct elf_link_hash_entry *)
9577 bfd_wrapped_link_hash_lookup (output_bfd, info,
9578 link_order->u.reloc.p->u.name,
9579 FALSE, FALSE, TRUE));
9580 if (h != NULL
9581 && (h->root.type == bfd_link_hash_defined
9582 || h->root.type == bfd_link_hash_defweak))
9583 {
9584 asection *section;
9585
9586 section = h->root.u.def.section;
9587 indx = section->output_section->target_index;
9588 *rel_hash_ptr = NULL;
9589 /* It seems that we ought to add the symbol value to the
9590 addend here, but in practice it has already been added
9591 because it was passed to constructor_callback. */
9592 addend += section->output_section->vma + section->output_offset;
9593 }
9594 else if (h != NULL)
9595 {
9596 /* Setting the index to -2 tells elf_link_output_extsym that
9597 this symbol is used by a reloc. */
9598 h->indx = -2;
9599 *rel_hash_ptr = h;
9600 indx = 0;
9601 }
9602 else
9603 {
9604 if (! ((*info->callbacks->unattached_reloc)
9605 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9606 return FALSE;
9607 indx = 0;
9608 }
9609 }
9610
9611 /* If this is an inplace reloc, we must write the addend into the
9612 object file. */
9613 if (howto->partial_inplace && addend != 0)
9614 {
9615 bfd_size_type size;
9616 bfd_reloc_status_type rstat;
9617 bfd_byte *buf;
9618 bfd_boolean ok;
9619 const char *sym_name;
9620
9621 size = bfd_get_reloc_size (howto);
9622 buf = bfd_zmalloc (size);
9623 if (buf == NULL)
9624 return FALSE;
9625 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9626 switch (rstat)
9627 {
9628 case bfd_reloc_ok:
9629 break;
9630
9631 default:
9632 case bfd_reloc_outofrange:
9633 abort ();
9634
9635 case bfd_reloc_overflow:
9636 if (link_order->type == bfd_section_reloc_link_order)
9637 sym_name = bfd_section_name (output_bfd,
9638 link_order->u.reloc.p->u.section);
9639 else
9640 sym_name = link_order->u.reloc.p->u.name;
9641 if (! ((*info->callbacks->reloc_overflow)
9642 (info, NULL, sym_name, howto->name, addend, NULL,
9643 NULL, (bfd_vma) 0)))
9644 {
9645 free (buf);
9646 return FALSE;
9647 }
9648 break;
9649 }
9650 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9651 link_order->offset, size);
9652 free (buf);
9653 if (! ok)
9654 return FALSE;
9655 }
9656
9657 /* The address of a reloc is relative to the section in a
9658 relocatable file, and is a virtual address in an executable
9659 file. */
9660 offset = link_order->offset;
9661 if (! info->relocatable)
9662 offset += output_section->vma;
9663
9664 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9665 {
9666 irel[i].r_offset = offset;
9667 irel[i].r_info = 0;
9668 irel[i].r_addend = 0;
9669 }
9670 if (bed->s->arch_size == 32)
9671 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9672 else
9673 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9674
9675 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9676 erel = rel_hdr->contents;
9677 if (rel_hdr->sh_type == SHT_REL)
9678 {
9679 erel += (elf_section_data (output_section)->rel_count
9680 * bed->s->sizeof_rel);
9681 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9682 }
9683 else
9684 {
9685 irel[0].r_addend = addend;
9686 erel += (elf_section_data (output_section)->rel_count
9687 * bed->s->sizeof_rela);
9688 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9689 }
9690
9691 ++elf_section_data (output_section)->rel_count;
9692
9693 return TRUE;
9694 }
9695
9696
9697 /* Get the output vma of the section pointed to by the sh_link field. */
9698
9699 static bfd_vma
9700 elf_get_linked_section_vma (struct bfd_link_order *p)
9701 {
9702 Elf_Internal_Shdr **elf_shdrp;
9703 asection *s;
9704 int elfsec;
9705
9706 s = p->u.indirect.section;
9707 elf_shdrp = elf_elfsections (s->owner);
9708 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9709 elfsec = elf_shdrp[elfsec]->sh_link;
9710 /* PR 290:
9711 The Intel C compiler generates SHT_IA_64_UNWIND with
9712 SHF_LINK_ORDER. But it doesn't set the sh_link or
9713 sh_info fields. Hence we could get the situation
9714 where elfsec is 0. */
9715 if (elfsec == 0)
9716 {
9717 const struct elf_backend_data *bed
9718 = get_elf_backend_data (s->owner);
9719 if (bed->link_order_error_handler)
9720 bed->link_order_error_handler
9721 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9722 return 0;
9723 }
9724 else
9725 {
9726 s = elf_shdrp[elfsec]->bfd_section;
9727 return s->output_section->vma + s->output_offset;
9728 }
9729 }
9730
9731
9732 /* Compare two sections based on the locations of the sections they are
9733 linked to. Used by elf_fixup_link_order. */
9734
9735 static int
9736 compare_link_order (const void * a, const void * b)
9737 {
9738 bfd_vma apos;
9739 bfd_vma bpos;
9740
9741 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9742 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9743 if (apos < bpos)
9744 return -1;
9745 return apos > bpos;
9746 }
9747
9748
9749 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9750 order as their linked sections. Returns false if this could not be done
9751 because an output section includes both ordered and unordered
9752 sections. Ideally we'd do this in the linker proper. */
9753
9754 static bfd_boolean
9755 elf_fixup_link_order (bfd *abfd, asection *o)
9756 {
9757 int seen_linkorder;
9758 int seen_other;
9759 int n;
9760 struct bfd_link_order *p;
9761 bfd *sub;
9762 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9763 unsigned elfsec;
9764 struct bfd_link_order **sections;
9765 asection *s, *other_sec, *linkorder_sec;
9766 bfd_vma offset;
9767
9768 other_sec = NULL;
9769 linkorder_sec = NULL;
9770 seen_other = 0;
9771 seen_linkorder = 0;
9772 for (p = o->map_head.link_order; p != NULL; p = p->next)
9773 {
9774 if (p->type == bfd_indirect_link_order)
9775 {
9776 s = p->u.indirect.section;
9777 sub = s->owner;
9778 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9779 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9780 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9781 && elfsec < elf_numsections (sub)
9782 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9783 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9784 {
9785 seen_linkorder++;
9786 linkorder_sec = s;
9787 }
9788 else
9789 {
9790 seen_other++;
9791 other_sec = s;
9792 }
9793 }
9794 else
9795 seen_other++;
9796
9797 if (seen_other && seen_linkorder)
9798 {
9799 if (other_sec && linkorder_sec)
9800 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9801 o, linkorder_sec,
9802 linkorder_sec->owner, other_sec,
9803 other_sec->owner);
9804 else
9805 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9806 o);
9807 bfd_set_error (bfd_error_bad_value);
9808 return FALSE;
9809 }
9810 }
9811
9812 if (!seen_linkorder)
9813 return TRUE;
9814
9815 sections = (struct bfd_link_order **)
9816 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9817 if (sections == NULL)
9818 return FALSE;
9819 seen_linkorder = 0;
9820
9821 for (p = o->map_head.link_order; p != NULL; p = p->next)
9822 {
9823 sections[seen_linkorder++] = p;
9824 }
9825 /* Sort the input sections in the order of their linked section. */
9826 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9827 compare_link_order);
9828
9829 /* Change the offsets of the sections. */
9830 offset = 0;
9831 for (n = 0; n < seen_linkorder; n++)
9832 {
9833 s = sections[n]->u.indirect.section;
9834 offset &= ~(bfd_vma) 0 << s->alignment_power;
9835 s->output_offset = offset;
9836 sections[n]->offset = offset;
9837 offset += sections[n]->size;
9838 }
9839
9840 return TRUE;
9841 }
9842
9843
9844 /* Do the final step of an ELF link. */
9845
9846 bfd_boolean
9847 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9848 {
9849 bfd_boolean dynamic;
9850 bfd_boolean emit_relocs;
9851 bfd *dynobj;
9852 struct elf_final_link_info finfo;
9853 register asection *o;
9854 register struct bfd_link_order *p;
9855 register bfd *sub;
9856 bfd_size_type max_contents_size;
9857 bfd_size_type max_external_reloc_size;
9858 bfd_size_type max_internal_reloc_count;
9859 bfd_size_type max_sym_count;
9860 bfd_size_type max_sym_shndx_count;
9861 file_ptr off;
9862 Elf_Internal_Sym elfsym;
9863 unsigned int i;
9864 Elf_Internal_Shdr *symtab_hdr;
9865 Elf_Internal_Shdr *symtab_shndx_hdr;
9866 Elf_Internal_Shdr *symstrtab_hdr;
9867 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9868 struct elf_outext_info eoinfo;
9869 bfd_boolean merged;
9870 size_t relativecount = 0;
9871 asection *reldyn = 0;
9872 bfd_size_type amt;
9873 asection *attr_section = NULL;
9874 bfd_vma attr_size = 0;
9875 const char *std_attrs_section;
9876
9877 if (! is_elf_hash_table (info->hash))
9878 return FALSE;
9879
9880 if (info->shared)
9881 abfd->flags |= DYNAMIC;
9882
9883 dynamic = elf_hash_table (info)->dynamic_sections_created;
9884 dynobj = elf_hash_table (info)->dynobj;
9885
9886 emit_relocs = (info->relocatable
9887 || info->emitrelocations);
9888
9889 finfo.info = info;
9890 finfo.output_bfd = abfd;
9891 finfo.symstrtab = _bfd_elf_stringtab_init ();
9892 if (finfo.symstrtab == NULL)
9893 return FALSE;
9894
9895 if (! dynamic)
9896 {
9897 finfo.dynsym_sec = NULL;
9898 finfo.hash_sec = NULL;
9899 finfo.symver_sec = NULL;
9900 }
9901 else
9902 {
9903 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9904 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9905 BFD_ASSERT (finfo.dynsym_sec != NULL);
9906 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9907 /* Note that it is OK if symver_sec is NULL. */
9908 }
9909
9910 finfo.contents = NULL;
9911 finfo.external_relocs = NULL;
9912 finfo.internal_relocs = NULL;
9913 finfo.external_syms = NULL;
9914 finfo.locsym_shndx = NULL;
9915 finfo.internal_syms = NULL;
9916 finfo.indices = NULL;
9917 finfo.sections = NULL;
9918 finfo.symbuf = NULL;
9919 finfo.symshndxbuf = NULL;
9920 finfo.symbuf_count = 0;
9921 finfo.shndxbuf_size = 0;
9922
9923 /* The object attributes have been merged. Remove the input
9924 sections from the link, and set the contents of the output
9925 secton. */
9926 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9927 for (o = abfd->sections; o != NULL; o = o->next)
9928 {
9929 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9930 || strcmp (o->name, ".gnu.attributes") == 0)
9931 {
9932 for (p = o->map_head.link_order; p != NULL; p = p->next)
9933 {
9934 asection *input_section;
9935
9936 if (p->type != bfd_indirect_link_order)
9937 continue;
9938 input_section = p->u.indirect.section;
9939 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9940 elf_link_input_bfd ignores this section. */
9941 input_section->flags &= ~SEC_HAS_CONTENTS;
9942 }
9943
9944 attr_size = bfd_elf_obj_attr_size (abfd);
9945 if (attr_size)
9946 {
9947 bfd_set_section_size (abfd, o, attr_size);
9948 attr_section = o;
9949 /* Skip this section later on. */
9950 o->map_head.link_order = NULL;
9951 }
9952 else
9953 o->flags |= SEC_EXCLUDE;
9954 }
9955 }
9956
9957 /* Count up the number of relocations we will output for each output
9958 section, so that we know the sizes of the reloc sections. We
9959 also figure out some maximum sizes. */
9960 max_contents_size = 0;
9961 max_external_reloc_size = 0;
9962 max_internal_reloc_count = 0;
9963 max_sym_count = 0;
9964 max_sym_shndx_count = 0;
9965 merged = FALSE;
9966 for (o = abfd->sections; o != NULL; o = o->next)
9967 {
9968 struct bfd_elf_section_data *esdo = elf_section_data (o);
9969 o->reloc_count = 0;
9970
9971 for (p = o->map_head.link_order; p != NULL; p = p->next)
9972 {
9973 unsigned int reloc_count = 0;
9974 struct bfd_elf_section_data *esdi = NULL;
9975 unsigned int *rel_count1;
9976
9977 if (p->type == bfd_section_reloc_link_order
9978 || p->type == bfd_symbol_reloc_link_order)
9979 reloc_count = 1;
9980 else if (p->type == bfd_indirect_link_order)
9981 {
9982 asection *sec;
9983
9984 sec = p->u.indirect.section;
9985 esdi = elf_section_data (sec);
9986
9987 /* Mark all sections which are to be included in the
9988 link. This will normally be every section. We need
9989 to do this so that we can identify any sections which
9990 the linker has decided to not include. */
9991 sec->linker_mark = TRUE;
9992
9993 if (sec->flags & SEC_MERGE)
9994 merged = TRUE;
9995
9996 if (info->relocatable || info->emitrelocations)
9997 reloc_count = sec->reloc_count;
9998 else if (bed->elf_backend_count_relocs)
9999 {
10000 Elf_Internal_Rela * relocs;
10001
10002 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10003 NULL, NULL,
10004 info->keep_memory);
10005
10006 if (relocs != NULL)
10007 {
10008 reloc_count
10009 = (*bed->elf_backend_count_relocs) (sec, relocs);
10010
10011 if (elf_section_data (sec)->relocs != relocs)
10012 free (relocs);
10013 }
10014 }
10015
10016 if (sec->rawsize > max_contents_size)
10017 max_contents_size = sec->rawsize;
10018 if (sec->size > max_contents_size)
10019 max_contents_size = sec->size;
10020
10021 /* We are interested in just local symbols, not all
10022 symbols. */
10023 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10024 && (sec->owner->flags & DYNAMIC) == 0)
10025 {
10026 size_t sym_count;
10027
10028 if (elf_bad_symtab (sec->owner))
10029 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10030 / bed->s->sizeof_sym);
10031 else
10032 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10033
10034 if (sym_count > max_sym_count)
10035 max_sym_count = sym_count;
10036
10037 if (sym_count > max_sym_shndx_count
10038 && elf_symtab_shndx (sec->owner) != 0)
10039 max_sym_shndx_count = sym_count;
10040
10041 if ((sec->flags & SEC_RELOC) != 0)
10042 {
10043 size_t ext_size;
10044
10045 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10046 if (ext_size > max_external_reloc_size)
10047 max_external_reloc_size = ext_size;
10048 if (sec->reloc_count > max_internal_reloc_count)
10049 max_internal_reloc_count = sec->reloc_count;
10050 }
10051 }
10052 }
10053
10054 if (reloc_count == 0)
10055 continue;
10056
10057 o->reloc_count += reloc_count;
10058
10059 /* MIPS may have a mix of REL and RELA relocs on sections.
10060 To support this curious ABI we keep reloc counts in
10061 elf_section_data too. We must be careful to add the
10062 relocations from the input section to the right output
10063 count. FIXME: Get rid of one count. We have
10064 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10065 rel_count1 = &esdo->rel_count;
10066 if (esdi != NULL)
10067 {
10068 bfd_boolean same_size;
10069 bfd_size_type entsize1;
10070
10071 entsize1 = esdi->rel_hdr.sh_entsize;
10072 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10073 || entsize1 == bed->s->sizeof_rela);
10074 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10075
10076 if (!same_size)
10077 rel_count1 = &esdo->rel_count2;
10078
10079 if (esdi->rel_hdr2 != NULL)
10080 {
10081 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10082 unsigned int alt_count;
10083 unsigned int *rel_count2;
10084
10085 BFD_ASSERT (entsize2 != entsize1
10086 && (entsize2 == bed->s->sizeof_rel
10087 || entsize2 == bed->s->sizeof_rela));
10088
10089 rel_count2 = &esdo->rel_count2;
10090 if (!same_size)
10091 rel_count2 = &esdo->rel_count;
10092
10093 /* The following is probably too simplistic if the
10094 backend counts output relocs unusually. */
10095 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10096 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10097 *rel_count2 += alt_count;
10098 reloc_count -= alt_count;
10099 }
10100 }
10101 *rel_count1 += reloc_count;
10102 }
10103
10104 if (o->reloc_count > 0)
10105 o->flags |= SEC_RELOC;
10106 else
10107 {
10108 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10109 set it (this is probably a bug) and if it is set
10110 assign_section_numbers will create a reloc section. */
10111 o->flags &=~ SEC_RELOC;
10112 }
10113
10114 /* If the SEC_ALLOC flag is not set, force the section VMA to
10115 zero. This is done in elf_fake_sections as well, but forcing
10116 the VMA to 0 here will ensure that relocs against these
10117 sections are handled correctly. */
10118 if ((o->flags & SEC_ALLOC) == 0
10119 && ! o->user_set_vma)
10120 o->vma = 0;
10121 }
10122
10123 if (! info->relocatable && merged)
10124 elf_link_hash_traverse (elf_hash_table (info),
10125 _bfd_elf_link_sec_merge_syms, abfd);
10126
10127 /* Figure out the file positions for everything but the symbol table
10128 and the relocs. We set symcount to force assign_section_numbers
10129 to create a symbol table. */
10130 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10131 BFD_ASSERT (! abfd->output_has_begun);
10132 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10133 goto error_return;
10134
10135 /* Set sizes, and assign file positions for reloc sections. */
10136 for (o = abfd->sections; o != NULL; o = o->next)
10137 {
10138 if ((o->flags & SEC_RELOC) != 0)
10139 {
10140 if (!(_bfd_elf_link_size_reloc_section
10141 (abfd, &elf_section_data (o)->rel_hdr, o)))
10142 goto error_return;
10143
10144 if (elf_section_data (o)->rel_hdr2
10145 && !(_bfd_elf_link_size_reloc_section
10146 (abfd, elf_section_data (o)->rel_hdr2, o)))
10147 goto error_return;
10148 }
10149
10150 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10151 to count upwards while actually outputting the relocations. */
10152 elf_section_data (o)->rel_count = 0;
10153 elf_section_data (o)->rel_count2 = 0;
10154 }
10155
10156 _bfd_elf_assign_file_positions_for_relocs (abfd);
10157
10158 /* We have now assigned file positions for all the sections except
10159 .symtab and .strtab. We start the .symtab section at the current
10160 file position, and write directly to it. We build the .strtab
10161 section in memory. */
10162 bfd_get_symcount (abfd) = 0;
10163 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10164 /* sh_name is set in prep_headers. */
10165 symtab_hdr->sh_type = SHT_SYMTAB;
10166 /* sh_flags, sh_addr and sh_size all start off zero. */
10167 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10168 /* sh_link is set in assign_section_numbers. */
10169 /* sh_info is set below. */
10170 /* sh_offset is set just below. */
10171 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10172
10173 off = elf_tdata (abfd)->next_file_pos;
10174 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10175
10176 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10177 incorrect. We do not yet know the size of the .symtab section.
10178 We correct next_file_pos below, after we do know the size. */
10179
10180 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10181 continuously seeking to the right position in the file. */
10182 if (! info->keep_memory || max_sym_count < 20)
10183 finfo.symbuf_size = 20;
10184 else
10185 finfo.symbuf_size = max_sym_count;
10186 amt = finfo.symbuf_size;
10187 amt *= bed->s->sizeof_sym;
10188 finfo.symbuf = bfd_malloc (amt);
10189 if (finfo.symbuf == NULL)
10190 goto error_return;
10191 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10192 {
10193 /* Wild guess at number of output symbols. realloc'd as needed. */
10194 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10195 finfo.shndxbuf_size = amt;
10196 amt *= sizeof (Elf_External_Sym_Shndx);
10197 finfo.symshndxbuf = bfd_zmalloc (amt);
10198 if (finfo.symshndxbuf == NULL)
10199 goto error_return;
10200 }
10201
10202 /* Start writing out the symbol table. The first symbol is always a
10203 dummy symbol. */
10204 if (info->strip != strip_all
10205 || emit_relocs)
10206 {
10207 elfsym.st_value = 0;
10208 elfsym.st_size = 0;
10209 elfsym.st_info = 0;
10210 elfsym.st_other = 0;
10211 elfsym.st_shndx = SHN_UNDEF;
10212 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10213 NULL))
10214 goto error_return;
10215 }
10216
10217 /* Output a symbol for each section. We output these even if we are
10218 discarding local symbols, since they are used for relocs. These
10219 symbols have no names. We store the index of each one in the
10220 index field of the section, so that we can find it again when
10221 outputting relocs. */
10222 if (info->strip != strip_all
10223 || emit_relocs)
10224 {
10225 elfsym.st_size = 0;
10226 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10227 elfsym.st_other = 0;
10228 elfsym.st_value = 0;
10229 for (i = 1; i < elf_numsections (abfd); i++)
10230 {
10231 o = bfd_section_from_elf_index (abfd, i);
10232 if (o != NULL)
10233 {
10234 o->target_index = bfd_get_symcount (abfd);
10235 elfsym.st_shndx = i;
10236 if (!info->relocatable)
10237 elfsym.st_value = o->vma;
10238 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10239 goto error_return;
10240 }
10241 }
10242 }
10243
10244 /* Allocate some memory to hold information read in from the input
10245 files. */
10246 if (max_contents_size != 0)
10247 {
10248 finfo.contents = bfd_malloc (max_contents_size);
10249 if (finfo.contents == NULL)
10250 goto error_return;
10251 }
10252
10253 if (max_external_reloc_size != 0)
10254 {
10255 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10256 if (finfo.external_relocs == NULL)
10257 goto error_return;
10258 }
10259
10260 if (max_internal_reloc_count != 0)
10261 {
10262 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10263 amt *= sizeof (Elf_Internal_Rela);
10264 finfo.internal_relocs = bfd_malloc (amt);
10265 if (finfo.internal_relocs == NULL)
10266 goto error_return;
10267 }
10268
10269 if (max_sym_count != 0)
10270 {
10271 amt = max_sym_count * bed->s->sizeof_sym;
10272 finfo.external_syms = bfd_malloc (amt);
10273 if (finfo.external_syms == NULL)
10274 goto error_return;
10275
10276 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10277 finfo.internal_syms = bfd_malloc (amt);
10278 if (finfo.internal_syms == NULL)
10279 goto error_return;
10280
10281 amt = max_sym_count * sizeof (long);
10282 finfo.indices = bfd_malloc (amt);
10283 if (finfo.indices == NULL)
10284 goto error_return;
10285
10286 amt = max_sym_count * sizeof (asection *);
10287 finfo.sections = bfd_malloc (amt);
10288 if (finfo.sections == NULL)
10289 goto error_return;
10290 }
10291
10292 if (max_sym_shndx_count != 0)
10293 {
10294 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10295 finfo.locsym_shndx = bfd_malloc (amt);
10296 if (finfo.locsym_shndx == NULL)
10297 goto error_return;
10298 }
10299
10300 if (elf_hash_table (info)->tls_sec)
10301 {
10302 bfd_vma base, end = 0;
10303 asection *sec;
10304
10305 for (sec = elf_hash_table (info)->tls_sec;
10306 sec && (sec->flags & SEC_THREAD_LOCAL);
10307 sec = sec->next)
10308 {
10309 bfd_size_type size = sec->size;
10310
10311 if (size == 0
10312 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10313 {
10314 struct bfd_link_order *o = sec->map_tail.link_order;
10315 if (o != NULL)
10316 size = o->offset + o->size;
10317 }
10318 end = sec->vma + size;
10319 }
10320 base = elf_hash_table (info)->tls_sec->vma;
10321 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10322 elf_hash_table (info)->tls_size = end - base;
10323 }
10324
10325 /* Reorder SHF_LINK_ORDER sections. */
10326 for (o = abfd->sections; o != NULL; o = o->next)
10327 {
10328 if (!elf_fixup_link_order (abfd, o))
10329 return FALSE;
10330 }
10331
10332 /* Since ELF permits relocations to be against local symbols, we
10333 must have the local symbols available when we do the relocations.
10334 Since we would rather only read the local symbols once, and we
10335 would rather not keep them in memory, we handle all the
10336 relocations for a single input file at the same time.
10337
10338 Unfortunately, there is no way to know the total number of local
10339 symbols until we have seen all of them, and the local symbol
10340 indices precede the global symbol indices. This means that when
10341 we are generating relocatable output, and we see a reloc against
10342 a global symbol, we can not know the symbol index until we have
10343 finished examining all the local symbols to see which ones we are
10344 going to output. To deal with this, we keep the relocations in
10345 memory, and don't output them until the end of the link. This is
10346 an unfortunate waste of memory, but I don't see a good way around
10347 it. Fortunately, it only happens when performing a relocatable
10348 link, which is not the common case. FIXME: If keep_memory is set
10349 we could write the relocs out and then read them again; I don't
10350 know how bad the memory loss will be. */
10351
10352 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10353 sub->output_has_begun = FALSE;
10354 for (o = abfd->sections; o != NULL; o = o->next)
10355 {
10356 for (p = o->map_head.link_order; p != NULL; p = p->next)
10357 {
10358 if (p->type == bfd_indirect_link_order
10359 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10360 == bfd_target_elf_flavour)
10361 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10362 {
10363 if (! sub->output_has_begun)
10364 {
10365 if (! elf_link_input_bfd (&finfo, sub))
10366 goto error_return;
10367 sub->output_has_begun = TRUE;
10368 }
10369 }
10370 else if (p->type == bfd_section_reloc_link_order
10371 || p->type == bfd_symbol_reloc_link_order)
10372 {
10373 if (! elf_reloc_link_order (abfd, info, o, p))
10374 goto error_return;
10375 }
10376 else
10377 {
10378 if (! _bfd_default_link_order (abfd, info, o, p))
10379 goto error_return;
10380 }
10381 }
10382 }
10383
10384 /* Free symbol buffer if needed. */
10385 if (!info->reduce_memory_overheads)
10386 {
10387 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10388 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10389 && elf_tdata (sub)->symbuf)
10390 {
10391 free (elf_tdata (sub)->symbuf);
10392 elf_tdata (sub)->symbuf = NULL;
10393 }
10394 }
10395
10396 /* Output any global symbols that got converted to local in a
10397 version script or due to symbol visibility. We do this in a
10398 separate step since ELF requires all local symbols to appear
10399 prior to any global symbols. FIXME: We should only do this if
10400 some global symbols were, in fact, converted to become local.
10401 FIXME: Will this work correctly with the Irix 5 linker? */
10402 eoinfo.failed = FALSE;
10403 eoinfo.finfo = &finfo;
10404 eoinfo.localsyms = TRUE;
10405 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10406 &eoinfo);
10407 if (eoinfo.failed)
10408 return FALSE;
10409
10410 /* If backend needs to output some local symbols not present in the hash
10411 table, do it now. */
10412 if (bed->elf_backend_output_arch_local_syms)
10413 {
10414 typedef bfd_boolean (*out_sym_func)
10415 (void *, const char *, Elf_Internal_Sym *, asection *,
10416 struct elf_link_hash_entry *);
10417
10418 if (! ((*bed->elf_backend_output_arch_local_syms)
10419 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10420 return FALSE;
10421 }
10422
10423 /* That wrote out all the local symbols. Finish up the symbol table
10424 with the global symbols. Even if we want to strip everything we
10425 can, we still need to deal with those global symbols that got
10426 converted to local in a version script. */
10427
10428 /* The sh_info field records the index of the first non local symbol. */
10429 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10430
10431 if (dynamic
10432 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10433 {
10434 Elf_Internal_Sym sym;
10435 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10436 long last_local = 0;
10437
10438 /* Write out the section symbols for the output sections. */
10439 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10440 {
10441 asection *s;
10442
10443 sym.st_size = 0;
10444 sym.st_name = 0;
10445 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10446 sym.st_other = 0;
10447
10448 for (s = abfd->sections; s != NULL; s = s->next)
10449 {
10450 int indx;
10451 bfd_byte *dest;
10452 long dynindx;
10453
10454 dynindx = elf_section_data (s)->dynindx;
10455 if (dynindx <= 0)
10456 continue;
10457 indx = elf_section_data (s)->this_idx;
10458 BFD_ASSERT (indx > 0);
10459 sym.st_shndx = indx;
10460 if (! check_dynsym (abfd, &sym))
10461 return FALSE;
10462 sym.st_value = s->vma;
10463 dest = dynsym + dynindx * bed->s->sizeof_sym;
10464 if (last_local < dynindx)
10465 last_local = dynindx;
10466 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10467 }
10468 }
10469
10470 /* Write out the local dynsyms. */
10471 if (elf_hash_table (info)->dynlocal)
10472 {
10473 struct elf_link_local_dynamic_entry *e;
10474 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10475 {
10476 asection *s;
10477 bfd_byte *dest;
10478
10479 sym.st_size = e->isym.st_size;
10480 sym.st_other = e->isym.st_other;
10481
10482 /* Copy the internal symbol as is.
10483 Note that we saved a word of storage and overwrote
10484 the original st_name with the dynstr_index. */
10485 sym = e->isym;
10486
10487 s = bfd_section_from_elf_index (e->input_bfd,
10488 e->isym.st_shndx);
10489 if (s != NULL)
10490 {
10491 sym.st_shndx =
10492 elf_section_data (s->output_section)->this_idx;
10493 if (! check_dynsym (abfd, &sym))
10494 return FALSE;
10495 sym.st_value = (s->output_section->vma
10496 + s->output_offset
10497 + e->isym.st_value);
10498 }
10499
10500 if (last_local < e->dynindx)
10501 last_local = e->dynindx;
10502
10503 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10504 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10505 }
10506 }
10507
10508 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10509 last_local + 1;
10510 }
10511
10512 /* We get the global symbols from the hash table. */
10513 eoinfo.failed = FALSE;
10514 eoinfo.localsyms = FALSE;
10515 eoinfo.finfo = &finfo;
10516 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10517 &eoinfo);
10518 if (eoinfo.failed)
10519 return FALSE;
10520
10521 /* If backend needs to output some symbols not present in the hash
10522 table, do it now. */
10523 if (bed->elf_backend_output_arch_syms)
10524 {
10525 typedef bfd_boolean (*out_sym_func)
10526 (void *, const char *, Elf_Internal_Sym *, asection *,
10527 struct elf_link_hash_entry *);
10528
10529 if (! ((*bed->elf_backend_output_arch_syms)
10530 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10531 return FALSE;
10532 }
10533
10534 /* Flush all symbols to the file. */
10535 if (! elf_link_flush_output_syms (&finfo, bed))
10536 return FALSE;
10537
10538 /* Now we know the size of the symtab section. */
10539 off += symtab_hdr->sh_size;
10540
10541 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10542 if (symtab_shndx_hdr->sh_name != 0)
10543 {
10544 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10545 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10546 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10547 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10548 symtab_shndx_hdr->sh_size = amt;
10549
10550 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10551 off, TRUE);
10552
10553 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10554 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10555 return FALSE;
10556 }
10557
10558
10559 /* Finish up and write out the symbol string table (.strtab)
10560 section. */
10561 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10562 /* sh_name was set in prep_headers. */
10563 symstrtab_hdr->sh_type = SHT_STRTAB;
10564 symstrtab_hdr->sh_flags = 0;
10565 symstrtab_hdr->sh_addr = 0;
10566 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10567 symstrtab_hdr->sh_entsize = 0;
10568 symstrtab_hdr->sh_link = 0;
10569 symstrtab_hdr->sh_info = 0;
10570 /* sh_offset is set just below. */
10571 symstrtab_hdr->sh_addralign = 1;
10572
10573 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10574 elf_tdata (abfd)->next_file_pos = off;
10575
10576 if (bfd_get_symcount (abfd) > 0)
10577 {
10578 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10579 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10580 return FALSE;
10581 }
10582
10583 /* Adjust the relocs to have the correct symbol indices. */
10584 for (o = abfd->sections; o != NULL; o = o->next)
10585 {
10586 if ((o->flags & SEC_RELOC) == 0)
10587 continue;
10588
10589 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10590 elf_section_data (o)->rel_count,
10591 elf_section_data (o)->rel_hashes);
10592 if (elf_section_data (o)->rel_hdr2 != NULL)
10593 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10594 elf_section_data (o)->rel_count2,
10595 (elf_section_data (o)->rel_hashes
10596 + elf_section_data (o)->rel_count));
10597
10598 /* Set the reloc_count field to 0 to prevent write_relocs from
10599 trying to swap the relocs out itself. */
10600 o->reloc_count = 0;
10601 }
10602
10603 if (dynamic && info->combreloc && dynobj != NULL)
10604 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10605
10606 /* If we are linking against a dynamic object, or generating a
10607 shared library, finish up the dynamic linking information. */
10608 if (dynamic)
10609 {
10610 bfd_byte *dyncon, *dynconend;
10611
10612 /* Fix up .dynamic entries. */
10613 o = bfd_get_section_by_name (dynobj, ".dynamic");
10614 BFD_ASSERT (o != NULL);
10615
10616 dyncon = o->contents;
10617 dynconend = o->contents + o->size;
10618 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10619 {
10620 Elf_Internal_Dyn dyn;
10621 const char *name;
10622 unsigned int type;
10623
10624 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10625
10626 switch (dyn.d_tag)
10627 {
10628 default:
10629 continue;
10630 case DT_NULL:
10631 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10632 {
10633 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10634 {
10635 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10636 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10637 default: continue;
10638 }
10639 dyn.d_un.d_val = relativecount;
10640 relativecount = 0;
10641 break;
10642 }
10643 continue;
10644
10645 case DT_INIT:
10646 name = info->init_function;
10647 goto get_sym;
10648 case DT_FINI:
10649 name = info->fini_function;
10650 get_sym:
10651 {
10652 struct elf_link_hash_entry *h;
10653
10654 h = elf_link_hash_lookup (elf_hash_table (info), name,
10655 FALSE, FALSE, TRUE);
10656 if (h != NULL
10657 && (h->root.type == bfd_link_hash_defined
10658 || h->root.type == bfd_link_hash_defweak))
10659 {
10660 dyn.d_un.d_val = h->root.u.def.value;
10661 o = h->root.u.def.section;
10662 if (o->output_section != NULL)
10663 dyn.d_un.d_val += (o->output_section->vma
10664 + o->output_offset);
10665 else
10666 {
10667 /* The symbol is imported from another shared
10668 library and does not apply to this one. */
10669 dyn.d_un.d_val = 0;
10670 }
10671 break;
10672 }
10673 }
10674 continue;
10675
10676 case DT_PREINIT_ARRAYSZ:
10677 name = ".preinit_array";
10678 goto get_size;
10679 case DT_INIT_ARRAYSZ:
10680 name = ".init_array";
10681 goto get_size;
10682 case DT_FINI_ARRAYSZ:
10683 name = ".fini_array";
10684 get_size:
10685 o = bfd_get_section_by_name (abfd, name);
10686 if (o == NULL)
10687 {
10688 (*_bfd_error_handler)
10689 (_("%B: could not find output section %s"), abfd, name);
10690 goto error_return;
10691 }
10692 if (o->size == 0)
10693 (*_bfd_error_handler)
10694 (_("warning: %s section has zero size"), name);
10695 dyn.d_un.d_val = o->size;
10696 break;
10697
10698 case DT_PREINIT_ARRAY:
10699 name = ".preinit_array";
10700 goto get_vma;
10701 case DT_INIT_ARRAY:
10702 name = ".init_array";
10703 goto get_vma;
10704 case DT_FINI_ARRAY:
10705 name = ".fini_array";
10706 goto get_vma;
10707
10708 case DT_HASH:
10709 name = ".hash";
10710 goto get_vma;
10711 case DT_GNU_HASH:
10712 name = ".gnu.hash";
10713 goto get_vma;
10714 case DT_STRTAB:
10715 name = ".dynstr";
10716 goto get_vma;
10717 case DT_SYMTAB:
10718 name = ".dynsym";
10719 goto get_vma;
10720 case DT_VERDEF:
10721 name = ".gnu.version_d";
10722 goto get_vma;
10723 case DT_VERNEED:
10724 name = ".gnu.version_r";
10725 goto get_vma;
10726 case DT_VERSYM:
10727 name = ".gnu.version";
10728 get_vma:
10729 o = bfd_get_section_by_name (abfd, name);
10730 if (o == NULL)
10731 {
10732 (*_bfd_error_handler)
10733 (_("%B: could not find output section %s"), abfd, name);
10734 goto error_return;
10735 }
10736 dyn.d_un.d_ptr = o->vma;
10737 break;
10738
10739 case DT_REL:
10740 case DT_RELA:
10741 case DT_RELSZ:
10742 case DT_RELASZ:
10743 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10744 type = SHT_REL;
10745 else
10746 type = SHT_RELA;
10747 dyn.d_un.d_val = 0;
10748 for (i = 1; i < elf_numsections (abfd); i++)
10749 {
10750 Elf_Internal_Shdr *hdr;
10751
10752 hdr = elf_elfsections (abfd)[i];
10753 if (hdr->sh_type == type
10754 && (hdr->sh_flags & SHF_ALLOC) != 0)
10755 {
10756 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10757 dyn.d_un.d_val += hdr->sh_size;
10758 else
10759 {
10760 if (dyn.d_un.d_val == 0
10761 || hdr->sh_addr < dyn.d_un.d_val)
10762 dyn.d_un.d_val = hdr->sh_addr;
10763 }
10764 }
10765 }
10766 break;
10767 }
10768 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10769 }
10770 }
10771
10772 /* If we have created any dynamic sections, then output them. */
10773 if (dynobj != NULL)
10774 {
10775 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10776 goto error_return;
10777
10778 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10779 if (info->warn_shared_textrel && info->shared)
10780 {
10781 bfd_byte *dyncon, *dynconend;
10782
10783 /* Fix up .dynamic entries. */
10784 o = bfd_get_section_by_name (dynobj, ".dynamic");
10785 BFD_ASSERT (o != NULL);
10786
10787 dyncon = o->contents;
10788 dynconend = o->contents + o->size;
10789 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10790 {
10791 Elf_Internal_Dyn dyn;
10792
10793 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10794
10795 if (dyn.d_tag == DT_TEXTREL)
10796 {
10797 info->callbacks->einfo
10798 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10799 break;
10800 }
10801 }
10802 }
10803
10804 for (o = dynobj->sections; o != NULL; o = o->next)
10805 {
10806 if ((o->flags & SEC_HAS_CONTENTS) == 0
10807 || o->size == 0
10808 || o->output_section == bfd_abs_section_ptr)
10809 continue;
10810 if ((o->flags & SEC_LINKER_CREATED) == 0)
10811 {
10812 /* At this point, we are only interested in sections
10813 created by _bfd_elf_link_create_dynamic_sections. */
10814 continue;
10815 }
10816 if (elf_hash_table (info)->stab_info.stabstr == o)
10817 continue;
10818 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10819 continue;
10820 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10821 != SHT_STRTAB)
10822 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10823 {
10824 if (! bfd_set_section_contents (abfd, o->output_section,
10825 o->contents,
10826 (file_ptr) o->output_offset,
10827 o->size))
10828 goto error_return;
10829 }
10830 else
10831 {
10832 /* The contents of the .dynstr section are actually in a
10833 stringtab. */
10834 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10835 if (bfd_seek (abfd, off, SEEK_SET) != 0
10836 || ! _bfd_elf_strtab_emit (abfd,
10837 elf_hash_table (info)->dynstr))
10838 goto error_return;
10839 }
10840 }
10841 }
10842
10843 if (info->relocatable)
10844 {
10845 bfd_boolean failed = FALSE;
10846
10847 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10848 if (failed)
10849 goto error_return;
10850 }
10851
10852 /* If we have optimized stabs strings, output them. */
10853 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10854 {
10855 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10856 goto error_return;
10857 }
10858
10859 if (info->eh_frame_hdr)
10860 {
10861 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10862 goto error_return;
10863 }
10864
10865 if (finfo.symstrtab != NULL)
10866 _bfd_stringtab_free (finfo.symstrtab);
10867 if (finfo.contents != NULL)
10868 free (finfo.contents);
10869 if (finfo.external_relocs != NULL)
10870 free (finfo.external_relocs);
10871 if (finfo.internal_relocs != NULL)
10872 free (finfo.internal_relocs);
10873 if (finfo.external_syms != NULL)
10874 free (finfo.external_syms);
10875 if (finfo.locsym_shndx != NULL)
10876 free (finfo.locsym_shndx);
10877 if (finfo.internal_syms != NULL)
10878 free (finfo.internal_syms);
10879 if (finfo.indices != NULL)
10880 free (finfo.indices);
10881 if (finfo.sections != NULL)
10882 free (finfo.sections);
10883 if (finfo.symbuf != NULL)
10884 free (finfo.symbuf);
10885 if (finfo.symshndxbuf != NULL)
10886 free (finfo.symshndxbuf);
10887 for (o = abfd->sections; o != NULL; o = o->next)
10888 {
10889 if ((o->flags & SEC_RELOC) != 0
10890 && elf_section_data (o)->rel_hashes != NULL)
10891 free (elf_section_data (o)->rel_hashes);
10892 }
10893
10894 elf_tdata (abfd)->linker = TRUE;
10895
10896 if (attr_section)
10897 {
10898 bfd_byte *contents = bfd_malloc (attr_size);
10899 if (contents == NULL)
10900 return FALSE; /* Bail out and fail. */
10901 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10902 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10903 free (contents);
10904 }
10905
10906 return TRUE;
10907
10908 error_return:
10909 if (finfo.symstrtab != NULL)
10910 _bfd_stringtab_free (finfo.symstrtab);
10911 if (finfo.contents != NULL)
10912 free (finfo.contents);
10913 if (finfo.external_relocs != NULL)
10914 free (finfo.external_relocs);
10915 if (finfo.internal_relocs != NULL)
10916 free (finfo.internal_relocs);
10917 if (finfo.external_syms != NULL)
10918 free (finfo.external_syms);
10919 if (finfo.locsym_shndx != NULL)
10920 free (finfo.locsym_shndx);
10921 if (finfo.internal_syms != NULL)
10922 free (finfo.internal_syms);
10923 if (finfo.indices != NULL)
10924 free (finfo.indices);
10925 if (finfo.sections != NULL)
10926 free (finfo.sections);
10927 if (finfo.symbuf != NULL)
10928 free (finfo.symbuf);
10929 if (finfo.symshndxbuf != NULL)
10930 free (finfo.symshndxbuf);
10931 for (o = abfd->sections; o != NULL; o = o->next)
10932 {
10933 if ((o->flags & SEC_RELOC) != 0
10934 && elf_section_data (o)->rel_hashes != NULL)
10935 free (elf_section_data (o)->rel_hashes);
10936 }
10937
10938 return FALSE;
10939 }
10940 \f
10941 /* Initialize COOKIE for input bfd ABFD. */
10942
10943 static bfd_boolean
10944 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10945 struct bfd_link_info *info, bfd *abfd)
10946 {
10947 Elf_Internal_Shdr *symtab_hdr;
10948 const struct elf_backend_data *bed;
10949
10950 bed = get_elf_backend_data (abfd);
10951 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10952
10953 cookie->abfd = abfd;
10954 cookie->sym_hashes = elf_sym_hashes (abfd);
10955 cookie->bad_symtab = elf_bad_symtab (abfd);
10956 if (cookie->bad_symtab)
10957 {
10958 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10959 cookie->extsymoff = 0;
10960 }
10961 else
10962 {
10963 cookie->locsymcount = symtab_hdr->sh_info;
10964 cookie->extsymoff = symtab_hdr->sh_info;
10965 }
10966
10967 if (bed->s->arch_size == 32)
10968 cookie->r_sym_shift = 8;
10969 else
10970 cookie->r_sym_shift = 32;
10971
10972 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10973 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10974 {
10975 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10976 cookie->locsymcount, 0,
10977 NULL, NULL, NULL);
10978 if (cookie->locsyms == NULL)
10979 {
10980 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10981 return FALSE;
10982 }
10983 if (info->keep_memory)
10984 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10985 }
10986 return TRUE;
10987 }
10988
10989 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10990
10991 static void
10992 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
10993 {
10994 Elf_Internal_Shdr *symtab_hdr;
10995
10996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10997 if (cookie->locsyms != NULL
10998 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
10999 free (cookie->locsyms);
11000 }
11001
11002 /* Initialize the relocation information in COOKIE for input section SEC
11003 of input bfd ABFD. */
11004
11005 static bfd_boolean
11006 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11007 struct bfd_link_info *info, bfd *abfd,
11008 asection *sec)
11009 {
11010 const struct elf_backend_data *bed;
11011
11012 if (sec->reloc_count == 0)
11013 {
11014 cookie->rels = NULL;
11015 cookie->relend = NULL;
11016 }
11017 else
11018 {
11019 bed = get_elf_backend_data (abfd);
11020
11021 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11022 info->keep_memory);
11023 if (cookie->rels == NULL)
11024 return FALSE;
11025 cookie->rel = cookie->rels;
11026 cookie->relend = (cookie->rels
11027 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11028 }
11029 cookie->rel = cookie->rels;
11030 return TRUE;
11031 }
11032
11033 /* Free the memory allocated by init_reloc_cookie_rels,
11034 if appropriate. */
11035
11036 static void
11037 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11038 asection *sec)
11039 {
11040 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11041 free (cookie->rels);
11042 }
11043
11044 /* Initialize the whole of COOKIE for input section SEC. */
11045
11046 static bfd_boolean
11047 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11048 struct bfd_link_info *info,
11049 asection *sec)
11050 {
11051 if (!init_reloc_cookie (cookie, info, sec->owner))
11052 goto error1;
11053 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11054 goto error2;
11055 return TRUE;
11056
11057 error2:
11058 fini_reloc_cookie (cookie, sec->owner);
11059 error1:
11060 return FALSE;
11061 }
11062
11063 /* Free the memory allocated by init_reloc_cookie_for_section,
11064 if appropriate. */
11065
11066 static void
11067 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11068 asection *sec)
11069 {
11070 fini_reloc_cookie_rels (cookie, sec);
11071 fini_reloc_cookie (cookie, sec->owner);
11072 }
11073 \f
11074 /* Garbage collect unused sections. */
11075
11076 /* Default gc_mark_hook. */
11077
11078 asection *
11079 _bfd_elf_gc_mark_hook (asection *sec,
11080 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11081 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11082 struct elf_link_hash_entry *h,
11083 Elf_Internal_Sym *sym)
11084 {
11085 if (h != NULL)
11086 {
11087 switch (h->root.type)
11088 {
11089 case bfd_link_hash_defined:
11090 case bfd_link_hash_defweak:
11091 return h->root.u.def.section;
11092
11093 case bfd_link_hash_common:
11094 return h->root.u.c.p->section;
11095
11096 default:
11097 break;
11098 }
11099 }
11100 else
11101 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11102
11103 return NULL;
11104 }
11105
11106 /* COOKIE->rel describes a relocation against section SEC, which is
11107 a section we've decided to keep. Return the section that contains
11108 the relocation symbol, or NULL if no section contains it. */
11109
11110 asection *
11111 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11112 elf_gc_mark_hook_fn gc_mark_hook,
11113 struct elf_reloc_cookie *cookie)
11114 {
11115 unsigned long r_symndx;
11116 struct elf_link_hash_entry *h;
11117
11118 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11119 if (r_symndx == 0)
11120 return NULL;
11121
11122 if (r_symndx >= cookie->locsymcount
11123 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11124 {
11125 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11126 while (h->root.type == bfd_link_hash_indirect
11127 || h->root.type == bfd_link_hash_warning)
11128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11129 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11130 }
11131
11132 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11133 &cookie->locsyms[r_symndx]);
11134 }
11135
11136 /* COOKIE->rel describes a relocation against section SEC, which is
11137 a section we've decided to keep. Mark the section that contains
11138 the relocation symbol. */
11139
11140 bfd_boolean
11141 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11142 asection *sec,
11143 elf_gc_mark_hook_fn gc_mark_hook,
11144 struct elf_reloc_cookie *cookie)
11145 {
11146 asection *rsec;
11147
11148 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11149 if (rsec && !rsec->gc_mark)
11150 {
11151 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11152 rsec->gc_mark = 1;
11153 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11154 return FALSE;
11155 }
11156 return TRUE;
11157 }
11158
11159 /* The mark phase of garbage collection. For a given section, mark
11160 it and any sections in this section's group, and all the sections
11161 which define symbols to which it refers. */
11162
11163 bfd_boolean
11164 _bfd_elf_gc_mark (struct bfd_link_info *info,
11165 asection *sec,
11166 elf_gc_mark_hook_fn gc_mark_hook)
11167 {
11168 bfd_boolean ret;
11169 asection *group_sec, *eh_frame;
11170
11171 sec->gc_mark = 1;
11172
11173 /* Mark all the sections in the group. */
11174 group_sec = elf_section_data (sec)->next_in_group;
11175 if (group_sec && !group_sec->gc_mark)
11176 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11177 return FALSE;
11178
11179 /* Look through the section relocs. */
11180 ret = TRUE;
11181 eh_frame = elf_eh_frame_section (sec->owner);
11182 if ((sec->flags & SEC_RELOC) != 0
11183 && sec->reloc_count > 0
11184 && sec != eh_frame)
11185 {
11186 struct elf_reloc_cookie cookie;
11187
11188 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11189 ret = FALSE;
11190 else
11191 {
11192 for (; cookie.rel < cookie.relend; cookie.rel++)
11193 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11194 {
11195 ret = FALSE;
11196 break;
11197 }
11198 fini_reloc_cookie_for_section (&cookie, sec);
11199 }
11200 }
11201
11202 if (ret && eh_frame && elf_fde_list (sec))
11203 {
11204 struct elf_reloc_cookie cookie;
11205
11206 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11207 ret = FALSE;
11208 else
11209 {
11210 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11211 gc_mark_hook, &cookie))
11212 ret = FALSE;
11213 fini_reloc_cookie_for_section (&cookie, eh_frame);
11214 }
11215 }
11216
11217 return ret;
11218 }
11219
11220 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11221
11222 struct elf_gc_sweep_symbol_info
11223 {
11224 struct bfd_link_info *info;
11225 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11226 bfd_boolean);
11227 };
11228
11229 static bfd_boolean
11230 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11231 {
11232 if (h->root.type == bfd_link_hash_warning)
11233 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11234
11235 if ((h->root.type == bfd_link_hash_defined
11236 || h->root.type == bfd_link_hash_defweak)
11237 && !h->root.u.def.section->gc_mark
11238 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11239 {
11240 struct elf_gc_sweep_symbol_info *inf = data;
11241 (*inf->hide_symbol) (inf->info, h, TRUE);
11242 }
11243
11244 return TRUE;
11245 }
11246
11247 /* The sweep phase of garbage collection. Remove all garbage sections. */
11248
11249 typedef bfd_boolean (*gc_sweep_hook_fn)
11250 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11251
11252 static bfd_boolean
11253 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11254 {
11255 bfd *sub;
11256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11257 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11258 unsigned long section_sym_count;
11259 struct elf_gc_sweep_symbol_info sweep_info;
11260
11261 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11262 {
11263 asection *o;
11264
11265 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11266 continue;
11267
11268 for (o = sub->sections; o != NULL; o = o->next)
11269 {
11270 /* Keep debug and special sections. */
11271 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11272 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11273 o->gc_mark = 1;
11274
11275 if (o->gc_mark)
11276 continue;
11277
11278 /* Skip sweeping sections already excluded. */
11279 if (o->flags & SEC_EXCLUDE)
11280 continue;
11281
11282 /* Since this is early in the link process, it is simple
11283 to remove a section from the output. */
11284 o->flags |= SEC_EXCLUDE;
11285
11286 if (info->print_gc_sections && o->size != 0)
11287 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11288
11289 /* But we also have to update some of the relocation
11290 info we collected before. */
11291 if (gc_sweep_hook
11292 && (o->flags & SEC_RELOC) != 0
11293 && o->reloc_count > 0
11294 && !bfd_is_abs_section (o->output_section))
11295 {
11296 Elf_Internal_Rela *internal_relocs;
11297 bfd_boolean r;
11298
11299 internal_relocs
11300 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11301 info->keep_memory);
11302 if (internal_relocs == NULL)
11303 return FALSE;
11304
11305 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11306
11307 if (elf_section_data (o)->relocs != internal_relocs)
11308 free (internal_relocs);
11309
11310 if (!r)
11311 return FALSE;
11312 }
11313 }
11314 }
11315
11316 /* Remove the symbols that were in the swept sections from the dynamic
11317 symbol table. GCFIXME: Anyone know how to get them out of the
11318 static symbol table as well? */
11319 sweep_info.info = info;
11320 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11321 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11322 &sweep_info);
11323
11324 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11325 return TRUE;
11326 }
11327
11328 /* Propagate collected vtable information. This is called through
11329 elf_link_hash_traverse. */
11330
11331 static bfd_boolean
11332 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11333 {
11334 if (h->root.type == bfd_link_hash_warning)
11335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11336
11337 /* Those that are not vtables. */
11338 if (h->vtable == NULL || h->vtable->parent == NULL)
11339 return TRUE;
11340
11341 /* Those vtables that do not have parents, we cannot merge. */
11342 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11343 return TRUE;
11344
11345 /* If we've already been done, exit. */
11346 if (h->vtable->used && h->vtable->used[-1])
11347 return TRUE;
11348
11349 /* Make sure the parent's table is up to date. */
11350 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11351
11352 if (h->vtable->used == NULL)
11353 {
11354 /* None of this table's entries were referenced. Re-use the
11355 parent's table. */
11356 h->vtable->used = h->vtable->parent->vtable->used;
11357 h->vtable->size = h->vtable->parent->vtable->size;
11358 }
11359 else
11360 {
11361 size_t n;
11362 bfd_boolean *cu, *pu;
11363
11364 /* Or the parent's entries into ours. */
11365 cu = h->vtable->used;
11366 cu[-1] = TRUE;
11367 pu = h->vtable->parent->vtable->used;
11368 if (pu != NULL)
11369 {
11370 const struct elf_backend_data *bed;
11371 unsigned int log_file_align;
11372
11373 bed = get_elf_backend_data (h->root.u.def.section->owner);
11374 log_file_align = bed->s->log_file_align;
11375 n = h->vtable->parent->vtable->size >> log_file_align;
11376 while (n--)
11377 {
11378 if (*pu)
11379 *cu = TRUE;
11380 pu++;
11381 cu++;
11382 }
11383 }
11384 }
11385
11386 return TRUE;
11387 }
11388
11389 static bfd_boolean
11390 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11391 {
11392 asection *sec;
11393 bfd_vma hstart, hend;
11394 Elf_Internal_Rela *relstart, *relend, *rel;
11395 const struct elf_backend_data *bed;
11396 unsigned int log_file_align;
11397
11398 if (h->root.type == bfd_link_hash_warning)
11399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11400
11401 /* Take care of both those symbols that do not describe vtables as
11402 well as those that are not loaded. */
11403 if (h->vtable == NULL || h->vtable->parent == NULL)
11404 return TRUE;
11405
11406 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11407 || h->root.type == bfd_link_hash_defweak);
11408
11409 sec = h->root.u.def.section;
11410 hstart = h->root.u.def.value;
11411 hend = hstart + h->size;
11412
11413 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11414 if (!relstart)
11415 return *(bfd_boolean *) okp = FALSE;
11416 bed = get_elf_backend_data (sec->owner);
11417 log_file_align = bed->s->log_file_align;
11418
11419 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11420
11421 for (rel = relstart; rel < relend; ++rel)
11422 if (rel->r_offset >= hstart && rel->r_offset < hend)
11423 {
11424 /* If the entry is in use, do nothing. */
11425 if (h->vtable->used
11426 && (rel->r_offset - hstart) < h->vtable->size)
11427 {
11428 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11429 if (h->vtable->used[entry])
11430 continue;
11431 }
11432 /* Otherwise, kill it. */
11433 rel->r_offset = rel->r_info = rel->r_addend = 0;
11434 }
11435
11436 return TRUE;
11437 }
11438
11439 /* Mark sections containing dynamically referenced symbols. When
11440 building shared libraries, we must assume that any visible symbol is
11441 referenced. */
11442
11443 bfd_boolean
11444 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11445 {
11446 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11447
11448 if (h->root.type == bfd_link_hash_warning)
11449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11450
11451 if ((h->root.type == bfd_link_hash_defined
11452 || h->root.type == bfd_link_hash_defweak)
11453 && (h->ref_dynamic
11454 || (!info->executable
11455 && h->def_regular
11456 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11457 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11458 h->root.u.def.section->flags |= SEC_KEEP;
11459
11460 return TRUE;
11461 }
11462
11463 /* Keep all sections containing symbols undefined on the command-line,
11464 and the section containing the entry symbol. */
11465
11466 void
11467 _bfd_elf_gc_keep (struct bfd_link_info *info)
11468 {
11469 struct bfd_sym_chain *sym;
11470
11471 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11472 {
11473 struct elf_link_hash_entry *h;
11474
11475 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11476 FALSE, FALSE, FALSE);
11477
11478 if (h != NULL
11479 && (h->root.type == bfd_link_hash_defined
11480 || h->root.type == bfd_link_hash_defweak)
11481 && !bfd_is_abs_section (h->root.u.def.section))
11482 h->root.u.def.section->flags |= SEC_KEEP;
11483 }
11484 }
11485
11486 /* Do mark and sweep of unused sections. */
11487
11488 bfd_boolean
11489 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11490 {
11491 bfd_boolean ok = TRUE;
11492 bfd *sub;
11493 elf_gc_mark_hook_fn gc_mark_hook;
11494 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11495
11496 if (!bed->can_gc_sections
11497 || !is_elf_hash_table (info->hash))
11498 {
11499 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11500 return TRUE;
11501 }
11502
11503 bed->gc_keep (info);
11504
11505 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11506 at the .eh_frame section if we can mark the FDEs individually. */
11507 _bfd_elf_begin_eh_frame_parsing (info);
11508 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11509 {
11510 asection *sec;
11511 struct elf_reloc_cookie cookie;
11512
11513 sec = bfd_get_section_by_name (sub, ".eh_frame");
11514 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11515 {
11516 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11517 if (elf_section_data (sec)->sec_info)
11518 elf_eh_frame_section (sub) = sec;
11519 fini_reloc_cookie_for_section (&cookie, sec);
11520 }
11521 }
11522 _bfd_elf_end_eh_frame_parsing (info);
11523
11524 /* Apply transitive closure to the vtable entry usage info. */
11525 elf_link_hash_traverse (elf_hash_table (info),
11526 elf_gc_propagate_vtable_entries_used,
11527 &ok);
11528 if (!ok)
11529 return FALSE;
11530
11531 /* Kill the vtable relocations that were not used. */
11532 elf_link_hash_traverse (elf_hash_table (info),
11533 elf_gc_smash_unused_vtentry_relocs,
11534 &ok);
11535 if (!ok)
11536 return FALSE;
11537
11538 /* Mark dynamically referenced symbols. */
11539 if (elf_hash_table (info)->dynamic_sections_created)
11540 elf_link_hash_traverse (elf_hash_table (info),
11541 bed->gc_mark_dynamic_ref,
11542 info);
11543
11544 /* Grovel through relocs to find out who stays ... */
11545 gc_mark_hook = bed->gc_mark_hook;
11546 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11547 {
11548 asection *o;
11549
11550 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11551 continue;
11552
11553 for (o = sub->sections; o != NULL; o = o->next)
11554 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11555 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11556 return FALSE;
11557 }
11558
11559 /* Allow the backend to mark additional target specific sections. */
11560 if (bed->gc_mark_extra_sections)
11561 bed->gc_mark_extra_sections (info, gc_mark_hook);
11562
11563 /* ... and mark SEC_EXCLUDE for those that go. */
11564 return elf_gc_sweep (abfd, info);
11565 }
11566 \f
11567 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11568
11569 bfd_boolean
11570 bfd_elf_gc_record_vtinherit (bfd *abfd,
11571 asection *sec,
11572 struct elf_link_hash_entry *h,
11573 bfd_vma offset)
11574 {
11575 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11576 struct elf_link_hash_entry **search, *child;
11577 bfd_size_type extsymcount;
11578 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11579
11580 /* The sh_info field of the symtab header tells us where the
11581 external symbols start. We don't care about the local symbols at
11582 this point. */
11583 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11584 if (!elf_bad_symtab (abfd))
11585 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11586
11587 sym_hashes = elf_sym_hashes (abfd);
11588 sym_hashes_end = sym_hashes + extsymcount;
11589
11590 /* Hunt down the child symbol, which is in this section at the same
11591 offset as the relocation. */
11592 for (search = sym_hashes; search != sym_hashes_end; ++search)
11593 {
11594 if ((child = *search) != NULL
11595 && (child->root.type == bfd_link_hash_defined
11596 || child->root.type == bfd_link_hash_defweak)
11597 && child->root.u.def.section == sec
11598 && child->root.u.def.value == offset)
11599 goto win;
11600 }
11601
11602 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11603 abfd, sec, (unsigned long) offset);
11604 bfd_set_error (bfd_error_invalid_operation);
11605 return FALSE;
11606
11607 win:
11608 if (!child->vtable)
11609 {
11610 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11611 if (!child->vtable)
11612 return FALSE;
11613 }
11614 if (!h)
11615 {
11616 /* This *should* only be the absolute section. It could potentially
11617 be that someone has defined a non-global vtable though, which
11618 would be bad. It isn't worth paging in the local symbols to be
11619 sure though; that case should simply be handled by the assembler. */
11620
11621 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11622 }
11623 else
11624 child->vtable->parent = h;
11625
11626 return TRUE;
11627 }
11628
11629 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11630
11631 bfd_boolean
11632 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11633 asection *sec ATTRIBUTE_UNUSED,
11634 struct elf_link_hash_entry *h,
11635 bfd_vma addend)
11636 {
11637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11638 unsigned int log_file_align = bed->s->log_file_align;
11639
11640 if (!h->vtable)
11641 {
11642 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11643 if (!h->vtable)
11644 return FALSE;
11645 }
11646
11647 if (addend >= h->vtable->size)
11648 {
11649 size_t size, bytes, file_align;
11650 bfd_boolean *ptr = h->vtable->used;
11651
11652 /* While the symbol is undefined, we have to be prepared to handle
11653 a zero size. */
11654 file_align = 1 << log_file_align;
11655 if (h->root.type == bfd_link_hash_undefined)
11656 size = addend + file_align;
11657 else
11658 {
11659 size = h->size;
11660 if (addend >= size)
11661 {
11662 /* Oops! We've got a reference past the defined end of
11663 the table. This is probably a bug -- shall we warn? */
11664 size = addend + file_align;
11665 }
11666 }
11667 size = (size + file_align - 1) & -file_align;
11668
11669 /* Allocate one extra entry for use as a "done" flag for the
11670 consolidation pass. */
11671 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11672
11673 if (ptr)
11674 {
11675 ptr = bfd_realloc (ptr - 1, bytes);
11676
11677 if (ptr != NULL)
11678 {
11679 size_t oldbytes;
11680
11681 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11682 * sizeof (bfd_boolean));
11683 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11684 }
11685 }
11686 else
11687 ptr = bfd_zmalloc (bytes);
11688
11689 if (ptr == NULL)
11690 return FALSE;
11691
11692 /* And arrange for that done flag to be at index -1. */
11693 h->vtable->used = ptr + 1;
11694 h->vtable->size = size;
11695 }
11696
11697 h->vtable->used[addend >> log_file_align] = TRUE;
11698
11699 return TRUE;
11700 }
11701
11702 struct alloc_got_off_arg {
11703 bfd_vma gotoff;
11704 unsigned int got_elt_size;
11705 };
11706
11707 /* We need a special top-level link routine to convert got reference counts
11708 to real got offsets. */
11709
11710 static bfd_boolean
11711 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11712 {
11713 struct alloc_got_off_arg *gofarg = arg;
11714
11715 if (h->root.type == bfd_link_hash_warning)
11716 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11717
11718 if (h->got.refcount > 0)
11719 {
11720 h->got.offset = gofarg->gotoff;
11721 gofarg->gotoff += gofarg->got_elt_size;
11722 }
11723 else
11724 h->got.offset = (bfd_vma) -1;
11725
11726 return TRUE;
11727 }
11728
11729 /* And an accompanying bit to work out final got entry offsets once
11730 we're done. Should be called from final_link. */
11731
11732 bfd_boolean
11733 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11734 struct bfd_link_info *info)
11735 {
11736 bfd *i;
11737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11738 bfd_vma gotoff;
11739 unsigned int got_elt_size = bed->s->arch_size / 8;
11740 struct alloc_got_off_arg gofarg;
11741
11742 if (! is_elf_hash_table (info->hash))
11743 return FALSE;
11744
11745 /* The GOT offset is relative to the .got section, but the GOT header is
11746 put into the .got.plt section, if the backend uses it. */
11747 if (bed->want_got_plt)
11748 gotoff = 0;
11749 else
11750 gotoff = bed->got_header_size;
11751
11752 /* Do the local .got entries first. */
11753 for (i = info->input_bfds; i; i = i->link_next)
11754 {
11755 bfd_signed_vma *local_got;
11756 bfd_size_type j, locsymcount;
11757 Elf_Internal_Shdr *symtab_hdr;
11758
11759 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11760 continue;
11761
11762 local_got = elf_local_got_refcounts (i);
11763 if (!local_got)
11764 continue;
11765
11766 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11767 if (elf_bad_symtab (i))
11768 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11769 else
11770 locsymcount = symtab_hdr->sh_info;
11771
11772 for (j = 0; j < locsymcount; ++j)
11773 {
11774 if (local_got[j] > 0)
11775 {
11776 local_got[j] = gotoff;
11777 gotoff += got_elt_size;
11778 }
11779 else
11780 local_got[j] = (bfd_vma) -1;
11781 }
11782 }
11783
11784 /* Then the global .got entries. .plt refcounts are handled by
11785 adjust_dynamic_symbol */
11786 gofarg.gotoff = gotoff;
11787 gofarg.got_elt_size = got_elt_size;
11788 elf_link_hash_traverse (elf_hash_table (info),
11789 elf_gc_allocate_got_offsets,
11790 &gofarg);
11791 return TRUE;
11792 }
11793
11794 /* Many folk need no more in the way of final link than this, once
11795 got entry reference counting is enabled. */
11796
11797 bfd_boolean
11798 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11799 {
11800 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11801 return FALSE;
11802
11803 /* Invoke the regular ELF backend linker to do all the work. */
11804 return bfd_elf_final_link (abfd, info);
11805 }
11806
11807 bfd_boolean
11808 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11809 {
11810 struct elf_reloc_cookie *rcookie = cookie;
11811
11812 if (rcookie->bad_symtab)
11813 rcookie->rel = rcookie->rels;
11814
11815 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11816 {
11817 unsigned long r_symndx;
11818
11819 if (! rcookie->bad_symtab)
11820 if (rcookie->rel->r_offset > offset)
11821 return FALSE;
11822 if (rcookie->rel->r_offset != offset)
11823 continue;
11824
11825 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11826 if (r_symndx == SHN_UNDEF)
11827 return TRUE;
11828
11829 if (r_symndx >= rcookie->locsymcount
11830 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11831 {
11832 struct elf_link_hash_entry *h;
11833
11834 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11835
11836 while (h->root.type == bfd_link_hash_indirect
11837 || h->root.type == bfd_link_hash_warning)
11838 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11839
11840 if ((h->root.type == bfd_link_hash_defined
11841 || h->root.type == bfd_link_hash_defweak)
11842 && elf_discarded_section (h->root.u.def.section))
11843 return TRUE;
11844 else
11845 return FALSE;
11846 }
11847 else
11848 {
11849 /* It's not a relocation against a global symbol,
11850 but it could be a relocation against a local
11851 symbol for a discarded section. */
11852 asection *isec;
11853 Elf_Internal_Sym *isym;
11854
11855 /* Need to: get the symbol; get the section. */
11856 isym = &rcookie->locsyms[r_symndx];
11857 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11858 if (isec != NULL && elf_discarded_section (isec))
11859 return TRUE;
11860 }
11861 return FALSE;
11862 }
11863 return FALSE;
11864 }
11865
11866 /* Discard unneeded references to discarded sections.
11867 Returns TRUE if any section's size was changed. */
11868 /* This function assumes that the relocations are in sorted order,
11869 which is true for all known assemblers. */
11870
11871 bfd_boolean
11872 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11873 {
11874 struct elf_reloc_cookie cookie;
11875 asection *stab, *eh;
11876 const struct elf_backend_data *bed;
11877 bfd *abfd;
11878 bfd_boolean ret = FALSE;
11879
11880 if (info->traditional_format
11881 || !is_elf_hash_table (info->hash))
11882 return FALSE;
11883
11884 _bfd_elf_begin_eh_frame_parsing (info);
11885 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11886 {
11887 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11888 continue;
11889
11890 bed = get_elf_backend_data (abfd);
11891
11892 if ((abfd->flags & DYNAMIC) != 0)
11893 continue;
11894
11895 eh = NULL;
11896 if (!info->relocatable)
11897 {
11898 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11899 if (eh != NULL
11900 && (eh->size == 0
11901 || bfd_is_abs_section (eh->output_section)))
11902 eh = NULL;
11903 }
11904
11905 stab = bfd_get_section_by_name (abfd, ".stab");
11906 if (stab != NULL
11907 && (stab->size == 0
11908 || bfd_is_abs_section (stab->output_section)
11909 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11910 stab = NULL;
11911
11912 if (stab == NULL
11913 && eh == NULL
11914 && bed->elf_backend_discard_info == NULL)
11915 continue;
11916
11917 if (!init_reloc_cookie (&cookie, info, abfd))
11918 return FALSE;
11919
11920 if (stab != NULL
11921 && stab->reloc_count > 0
11922 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11923 {
11924 if (_bfd_discard_section_stabs (abfd, stab,
11925 elf_section_data (stab)->sec_info,
11926 bfd_elf_reloc_symbol_deleted_p,
11927 &cookie))
11928 ret = TRUE;
11929 fini_reloc_cookie_rels (&cookie, stab);
11930 }
11931
11932 if (eh != NULL
11933 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11934 {
11935 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11936 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11937 bfd_elf_reloc_symbol_deleted_p,
11938 &cookie))
11939 ret = TRUE;
11940 fini_reloc_cookie_rels (&cookie, eh);
11941 }
11942
11943 if (bed->elf_backend_discard_info != NULL
11944 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11945 ret = TRUE;
11946
11947 fini_reloc_cookie (&cookie, abfd);
11948 }
11949 _bfd_elf_end_eh_frame_parsing (info);
11950
11951 if (info->eh_frame_hdr
11952 && !info->relocatable
11953 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11954 ret = TRUE;
11955
11956 return ret;
11957 }
11958
11959 void
11960 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11961 struct bfd_link_info *info)
11962 {
11963 flagword flags;
11964 const char *name, *p;
11965 struct bfd_section_already_linked *l;
11966 struct bfd_section_already_linked_hash_entry *already_linked_list;
11967
11968 if (sec->output_section == bfd_abs_section_ptr)
11969 return;
11970
11971 flags = sec->flags;
11972
11973 /* Return if it isn't a linkonce section. A comdat group section
11974 also has SEC_LINK_ONCE set. */
11975 if ((flags & SEC_LINK_ONCE) == 0)
11976 return;
11977
11978 /* Don't put group member sections on our list of already linked
11979 sections. They are handled as a group via their group section. */
11980 if (elf_sec_group (sec) != NULL)
11981 return;
11982
11983 /* FIXME: When doing a relocatable link, we may have trouble
11984 copying relocations in other sections that refer to local symbols
11985 in the section being discarded. Those relocations will have to
11986 be converted somehow; as of this writing I'm not sure that any of
11987 the backends handle that correctly.
11988
11989 It is tempting to instead not discard link once sections when
11990 doing a relocatable link (technically, they should be discarded
11991 whenever we are building constructors). However, that fails,
11992 because the linker winds up combining all the link once sections
11993 into a single large link once section, which defeats the purpose
11994 of having link once sections in the first place.
11995
11996 Also, not merging link once sections in a relocatable link
11997 causes trouble for MIPS ELF, which relies on link once semantics
11998 to handle the .reginfo section correctly. */
11999
12000 name = bfd_get_section_name (abfd, sec);
12001
12002 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12003 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12004 p++;
12005 else
12006 p = name;
12007
12008 already_linked_list = bfd_section_already_linked_table_lookup (p);
12009
12010 for (l = already_linked_list->entry; l != NULL; l = l->next)
12011 {
12012 /* We may have 2 different types of sections on the list: group
12013 sections and linkonce sections. Match like sections. */
12014 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12015 && strcmp (name, l->sec->name) == 0
12016 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12017 {
12018 /* The section has already been linked. See if we should
12019 issue a warning. */
12020 switch (flags & SEC_LINK_DUPLICATES)
12021 {
12022 default:
12023 abort ();
12024
12025 case SEC_LINK_DUPLICATES_DISCARD:
12026 break;
12027
12028 case SEC_LINK_DUPLICATES_ONE_ONLY:
12029 (*_bfd_error_handler)
12030 (_("%B: ignoring duplicate section `%A'"),
12031 abfd, sec);
12032 break;
12033
12034 case SEC_LINK_DUPLICATES_SAME_SIZE:
12035 if (sec->size != l->sec->size)
12036 (*_bfd_error_handler)
12037 (_("%B: duplicate section `%A' has different size"),
12038 abfd, sec);
12039 break;
12040
12041 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12042 if (sec->size != l->sec->size)
12043 (*_bfd_error_handler)
12044 (_("%B: duplicate section `%A' has different size"),
12045 abfd, sec);
12046 else if (sec->size != 0)
12047 {
12048 bfd_byte *sec_contents, *l_sec_contents;
12049
12050 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12051 (*_bfd_error_handler)
12052 (_("%B: warning: could not read contents of section `%A'"),
12053 abfd, sec);
12054 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12055 &l_sec_contents))
12056 (*_bfd_error_handler)
12057 (_("%B: warning: could not read contents of section `%A'"),
12058 l->sec->owner, l->sec);
12059 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12060 (*_bfd_error_handler)
12061 (_("%B: warning: duplicate section `%A' has different contents"),
12062 abfd, sec);
12063
12064 if (sec_contents)
12065 free (sec_contents);
12066 if (l_sec_contents)
12067 free (l_sec_contents);
12068 }
12069 break;
12070 }
12071
12072 /* Set the output_section field so that lang_add_section
12073 does not create a lang_input_section structure for this
12074 section. Since there might be a symbol in the section
12075 being discarded, we must retain a pointer to the section
12076 which we are really going to use. */
12077 sec->output_section = bfd_abs_section_ptr;
12078 sec->kept_section = l->sec;
12079
12080 if (flags & SEC_GROUP)
12081 {
12082 asection *first = elf_next_in_group (sec);
12083 asection *s = first;
12084
12085 while (s != NULL)
12086 {
12087 s->output_section = bfd_abs_section_ptr;
12088 /* Record which group discards it. */
12089 s->kept_section = l->sec;
12090 s = elf_next_in_group (s);
12091 /* These lists are circular. */
12092 if (s == first)
12093 break;
12094 }
12095 }
12096
12097 return;
12098 }
12099 }
12100
12101 /* A single member comdat group section may be discarded by a
12102 linkonce section and vice versa. */
12103
12104 if ((flags & SEC_GROUP) != 0)
12105 {
12106 asection *first = elf_next_in_group (sec);
12107
12108 if (first != NULL && elf_next_in_group (first) == first)
12109 /* Check this single member group against linkonce sections. */
12110 for (l = already_linked_list->entry; l != NULL; l = l->next)
12111 if ((l->sec->flags & SEC_GROUP) == 0
12112 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12113 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12114 {
12115 first->output_section = bfd_abs_section_ptr;
12116 first->kept_section = l->sec;
12117 sec->output_section = bfd_abs_section_ptr;
12118 break;
12119 }
12120 }
12121 else
12122 /* Check this linkonce section against single member groups. */
12123 for (l = already_linked_list->entry; l != NULL; l = l->next)
12124 if (l->sec->flags & SEC_GROUP)
12125 {
12126 asection *first = elf_next_in_group (l->sec);
12127
12128 if (first != NULL
12129 && elf_next_in_group (first) == first
12130 && bfd_elf_match_symbols_in_sections (first, sec, info))
12131 {
12132 sec->output_section = bfd_abs_section_ptr;
12133 sec->kept_section = first;
12134 break;
12135 }
12136 }
12137
12138 /* This is the first section with this name. Record it. */
12139 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12140 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12141 }
12142
12143 bfd_boolean
12144 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12145 {
12146 return sym->st_shndx == SHN_COMMON;
12147 }
12148
12149 unsigned int
12150 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12151 {
12152 return SHN_COMMON;
12153 }
12154
12155 asection *
12156 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12157 {
12158 return bfd_com_section_ptr;
12159 }
This page took 0.31929 seconds and 4 git commands to generate.