Combine read-only .eh_frame sections with read-write .eh_frame
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->output_bfd->xvec != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2793 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795 return TRUE;
2796
2797 /* Common symbols that become definitions don't get the DEF_REGULAR
2798 flag set, so test it first, and don't bail out. */
2799 if (ELF_COMMON_DEF_P (h))
2800 /* Do nothing. */;
2801 /* If we don't have a definition in a regular file, then we can't
2802 resolve locally. The sym is either undefined or dynamic. */
2803 else if (!h->def_regular)
2804 return FALSE;
2805
2806 /* Forced local symbols resolve locally. */
2807 if (h->forced_local)
2808 return TRUE;
2809
2810 /* As do non-dynamic symbols. */
2811 if (h->dynindx == -1)
2812 return TRUE;
2813
2814 /* At this point, we know the symbol is defined and dynamic. In an
2815 executable it must resolve locally, likewise when building symbolic
2816 shared libraries. */
2817 if (info->executable || SYMBOLIC_BIND (info, h))
2818 return TRUE;
2819
2820 /* Now deal with defined dynamic symbols in shared libraries. Ones
2821 with default visibility might not resolve locally. */
2822 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823 return FALSE;
2824
2825 hash_table = elf_hash_table (info);
2826 if (!is_elf_hash_table (hash_table))
2827 return TRUE;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830
2831 /* STV_PROTECTED non-function symbols are local. */
2832 if (!bed->is_function_type (h->type))
2833 return TRUE;
2834
2835 /* Function pointer equality tests may require that STV_PROTECTED
2836 symbols be treated as dynamic symbols, even when we know that the
2837 dynamic linker will resolve them locally. */
2838 return local_protected;
2839 }
2840
2841 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2842 aligned. Returns the first TLS output section. */
2843
2844 struct bfd_section *
2845 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2846 {
2847 struct bfd_section *sec, *tls;
2848 unsigned int align = 0;
2849
2850 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2851 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2852 break;
2853 tls = sec;
2854
2855 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2856 if (sec->alignment_power > align)
2857 align = sec->alignment_power;
2858
2859 elf_hash_table (info)->tls_sec = tls;
2860
2861 /* Ensure the alignment of the first section is the largest alignment,
2862 so that the tls segment starts aligned. */
2863 if (tls != NULL)
2864 tls->alignment_power = align;
2865
2866 return tls;
2867 }
2868
2869 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2870 static bfd_boolean
2871 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2872 Elf_Internal_Sym *sym)
2873 {
2874 const struct elf_backend_data *bed;
2875
2876 /* Local symbols do not count, but target specific ones might. */
2877 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2878 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2879 return FALSE;
2880
2881 bed = get_elf_backend_data (abfd);
2882 /* Function symbols do not count. */
2883 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2884 return FALSE;
2885
2886 /* If the section is undefined, then so is the symbol. */
2887 if (sym->st_shndx == SHN_UNDEF)
2888 return FALSE;
2889
2890 /* If the symbol is defined in the common section, then
2891 it is a common definition and so does not count. */
2892 if (bed->common_definition (sym))
2893 return FALSE;
2894
2895 /* If the symbol is in a target specific section then we
2896 must rely upon the backend to tell us what it is. */
2897 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2898 /* FIXME - this function is not coded yet:
2899
2900 return _bfd_is_global_symbol_definition (abfd, sym);
2901
2902 Instead for now assume that the definition is not global,
2903 Even if this is wrong, at least the linker will behave
2904 in the same way that it used to do. */
2905 return FALSE;
2906
2907 return TRUE;
2908 }
2909
2910 /* Search the symbol table of the archive element of the archive ABFD
2911 whose archive map contains a mention of SYMDEF, and determine if
2912 the symbol is defined in this element. */
2913 static bfd_boolean
2914 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2915 {
2916 Elf_Internal_Shdr * hdr;
2917 bfd_size_type symcount;
2918 bfd_size_type extsymcount;
2919 bfd_size_type extsymoff;
2920 Elf_Internal_Sym *isymbuf;
2921 Elf_Internal_Sym *isym;
2922 Elf_Internal_Sym *isymend;
2923 bfd_boolean result;
2924
2925 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2926 if (abfd == NULL)
2927 return FALSE;
2928
2929 if (! bfd_check_format (abfd, bfd_object))
2930 return FALSE;
2931
2932 /* If we have already included the element containing this symbol in the
2933 link then we do not need to include it again. Just claim that any symbol
2934 it contains is not a definition, so that our caller will not decide to
2935 (re)include this element. */
2936 if (abfd->archive_pass)
2937 return FALSE;
2938
2939 /* Select the appropriate symbol table. */
2940 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2941 hdr = &elf_tdata (abfd)->symtab_hdr;
2942 else
2943 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2944
2945 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2946
2947 /* The sh_info field of the symtab header tells us where the
2948 external symbols start. We don't care about the local symbols. */
2949 if (elf_bad_symtab (abfd))
2950 {
2951 extsymcount = symcount;
2952 extsymoff = 0;
2953 }
2954 else
2955 {
2956 extsymcount = symcount - hdr->sh_info;
2957 extsymoff = hdr->sh_info;
2958 }
2959
2960 if (extsymcount == 0)
2961 return FALSE;
2962
2963 /* Read in the symbol table. */
2964 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2965 NULL, NULL, NULL);
2966 if (isymbuf == NULL)
2967 return FALSE;
2968
2969 /* Scan the symbol table looking for SYMDEF. */
2970 result = FALSE;
2971 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2972 {
2973 const char *name;
2974
2975 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2976 isym->st_name);
2977 if (name == NULL)
2978 break;
2979
2980 if (strcmp (name, symdef->name) == 0)
2981 {
2982 result = is_global_data_symbol_definition (abfd, isym);
2983 break;
2984 }
2985 }
2986
2987 free (isymbuf);
2988
2989 return result;
2990 }
2991 \f
2992 /* Add an entry to the .dynamic table. */
2993
2994 bfd_boolean
2995 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2996 bfd_vma tag,
2997 bfd_vma val)
2998 {
2999 struct elf_link_hash_table *hash_table;
3000 const struct elf_backend_data *bed;
3001 asection *s;
3002 bfd_size_type newsize;
3003 bfd_byte *newcontents;
3004 Elf_Internal_Dyn dyn;
3005
3006 hash_table = elf_hash_table (info);
3007 if (! is_elf_hash_table (hash_table))
3008 return FALSE;
3009
3010 bed = get_elf_backend_data (hash_table->dynobj);
3011 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3012 BFD_ASSERT (s != NULL);
3013
3014 newsize = s->size + bed->s->sizeof_dyn;
3015 newcontents = bfd_realloc (s->contents, newsize);
3016 if (newcontents == NULL)
3017 return FALSE;
3018
3019 dyn.d_tag = tag;
3020 dyn.d_un.d_val = val;
3021 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3022
3023 s->size = newsize;
3024 s->contents = newcontents;
3025
3026 return TRUE;
3027 }
3028
3029 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3030 otherwise just check whether one already exists. Returns -1 on error,
3031 1 if a DT_NEEDED tag already exists, and 0 on success. */
3032
3033 static int
3034 elf_add_dt_needed_tag (bfd *abfd,
3035 struct bfd_link_info *info,
3036 const char *soname,
3037 bfd_boolean do_it)
3038 {
3039 struct elf_link_hash_table *hash_table;
3040 bfd_size_type oldsize;
3041 bfd_size_type strindex;
3042
3043 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3044 return -1;
3045
3046 hash_table = elf_hash_table (info);
3047 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3048 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3049 if (strindex == (bfd_size_type) -1)
3050 return -1;
3051
3052 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3053 {
3054 asection *sdyn;
3055 const struct elf_backend_data *bed;
3056 bfd_byte *extdyn;
3057
3058 bed = get_elf_backend_data (hash_table->dynobj);
3059 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3060 if (sdyn != NULL)
3061 for (extdyn = sdyn->contents;
3062 extdyn < sdyn->contents + sdyn->size;
3063 extdyn += bed->s->sizeof_dyn)
3064 {
3065 Elf_Internal_Dyn dyn;
3066
3067 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3068 if (dyn.d_tag == DT_NEEDED
3069 && dyn.d_un.d_val == strindex)
3070 {
3071 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3072 return 1;
3073 }
3074 }
3075 }
3076
3077 if (do_it)
3078 {
3079 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3080 return -1;
3081
3082 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3083 return -1;
3084 }
3085 else
3086 /* We were just checking for existence of the tag. */
3087 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3088
3089 return 0;
3090 }
3091
3092 /* Sort symbol by value and section. */
3093 static int
3094 elf_sort_symbol (const void *arg1, const void *arg2)
3095 {
3096 const struct elf_link_hash_entry *h1;
3097 const struct elf_link_hash_entry *h2;
3098 bfd_signed_vma vdiff;
3099
3100 h1 = *(const struct elf_link_hash_entry **) arg1;
3101 h2 = *(const struct elf_link_hash_entry **) arg2;
3102 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3103 if (vdiff != 0)
3104 return vdiff > 0 ? 1 : -1;
3105 else
3106 {
3107 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3108 if (sdiff != 0)
3109 return sdiff > 0 ? 1 : -1;
3110 }
3111 return 0;
3112 }
3113
3114 /* This function is used to adjust offsets into .dynstr for
3115 dynamic symbols. This is called via elf_link_hash_traverse. */
3116
3117 static bfd_boolean
3118 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3119 {
3120 struct elf_strtab_hash *dynstr = data;
3121
3122 if (h->root.type == bfd_link_hash_warning)
3123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3124
3125 if (h->dynindx != -1)
3126 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3127 return TRUE;
3128 }
3129
3130 /* Assign string offsets in .dynstr, update all structures referencing
3131 them. */
3132
3133 static bfd_boolean
3134 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3135 {
3136 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3137 struct elf_link_local_dynamic_entry *entry;
3138 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3139 bfd *dynobj = hash_table->dynobj;
3140 asection *sdyn;
3141 bfd_size_type size;
3142 const struct elf_backend_data *bed;
3143 bfd_byte *extdyn;
3144
3145 _bfd_elf_strtab_finalize (dynstr);
3146 size = _bfd_elf_strtab_size (dynstr);
3147
3148 bed = get_elf_backend_data (dynobj);
3149 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3150 BFD_ASSERT (sdyn != NULL);
3151
3152 /* Update all .dynamic entries referencing .dynstr strings. */
3153 for (extdyn = sdyn->contents;
3154 extdyn < sdyn->contents + sdyn->size;
3155 extdyn += bed->s->sizeof_dyn)
3156 {
3157 Elf_Internal_Dyn dyn;
3158
3159 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3160 switch (dyn.d_tag)
3161 {
3162 case DT_STRSZ:
3163 dyn.d_un.d_val = size;
3164 break;
3165 case DT_NEEDED:
3166 case DT_SONAME:
3167 case DT_RPATH:
3168 case DT_RUNPATH:
3169 case DT_FILTER:
3170 case DT_AUXILIARY:
3171 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3172 break;
3173 default:
3174 continue;
3175 }
3176 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3177 }
3178
3179 /* Now update local dynamic symbols. */
3180 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3181 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3182 entry->isym.st_name);
3183
3184 /* And the rest of dynamic symbols. */
3185 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3186
3187 /* Adjust version definitions. */
3188 if (elf_tdata (output_bfd)->cverdefs)
3189 {
3190 asection *s;
3191 bfd_byte *p;
3192 bfd_size_type i;
3193 Elf_Internal_Verdef def;
3194 Elf_Internal_Verdaux defaux;
3195
3196 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3197 p = s->contents;
3198 do
3199 {
3200 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3201 &def);
3202 p += sizeof (Elf_External_Verdef);
3203 if (def.vd_aux != sizeof (Elf_External_Verdef))
3204 continue;
3205 for (i = 0; i < def.vd_cnt; ++i)
3206 {
3207 _bfd_elf_swap_verdaux_in (output_bfd,
3208 (Elf_External_Verdaux *) p, &defaux);
3209 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3210 defaux.vda_name);
3211 _bfd_elf_swap_verdaux_out (output_bfd,
3212 &defaux, (Elf_External_Verdaux *) p);
3213 p += sizeof (Elf_External_Verdaux);
3214 }
3215 }
3216 while (def.vd_next);
3217 }
3218
3219 /* Adjust version references. */
3220 if (elf_tdata (output_bfd)->verref)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verneed need;
3226 Elf_Internal_Vernaux needaux;
3227
3228 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3233 &need);
3234 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3235 _bfd_elf_swap_verneed_out (output_bfd, &need,
3236 (Elf_External_Verneed *) p);
3237 p += sizeof (Elf_External_Verneed);
3238 for (i = 0; i < need.vn_cnt; ++i)
3239 {
3240 _bfd_elf_swap_vernaux_in (output_bfd,
3241 (Elf_External_Vernaux *) p, &needaux);
3242 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3243 needaux.vna_name);
3244 _bfd_elf_swap_vernaux_out (output_bfd,
3245 &needaux,
3246 (Elf_External_Vernaux *) p);
3247 p += sizeof (Elf_External_Vernaux);
3248 }
3249 }
3250 while (need.vn_next);
3251 }
3252
3253 return TRUE;
3254 }
3255 \f
3256 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3257 The default is to only match when the INPUT and OUTPUT are exactly
3258 the same target. */
3259
3260 bfd_boolean
3261 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3262 const bfd_target *output)
3263 {
3264 return input == output;
3265 }
3266
3267 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3268 This version is used when different targets for the same architecture
3269 are virtually identical. */
3270
3271 bfd_boolean
3272 _bfd_elf_relocs_compatible (const bfd_target *input,
3273 const bfd_target *output)
3274 {
3275 const struct elf_backend_data *obed, *ibed;
3276
3277 if (input == output)
3278 return TRUE;
3279
3280 ibed = xvec_get_elf_backend_data (input);
3281 obed = xvec_get_elf_backend_data (output);
3282
3283 if (ibed->arch != obed->arch)
3284 return FALSE;
3285
3286 /* If both backends are using this function, deem them compatible. */
3287 return ibed->relocs_compatible == obed->relocs_compatible;
3288 }
3289
3290 /* Add symbols from an ELF object file to the linker hash table. */
3291
3292 static bfd_boolean
3293 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3294 {
3295 Elf_Internal_Shdr *hdr;
3296 bfd_size_type symcount;
3297 bfd_size_type extsymcount;
3298 bfd_size_type extsymoff;
3299 struct elf_link_hash_entry **sym_hash;
3300 bfd_boolean dynamic;
3301 Elf_External_Versym *extversym = NULL;
3302 Elf_External_Versym *ever;
3303 struct elf_link_hash_entry *weaks;
3304 struct elf_link_hash_entry **nondeflt_vers = NULL;
3305 bfd_size_type nondeflt_vers_cnt = 0;
3306 Elf_Internal_Sym *isymbuf = NULL;
3307 Elf_Internal_Sym *isym;
3308 Elf_Internal_Sym *isymend;
3309 const struct elf_backend_data *bed;
3310 bfd_boolean add_needed;
3311 struct elf_link_hash_table *htab;
3312 bfd_size_type amt;
3313 void *alloc_mark = NULL;
3314 struct bfd_hash_entry **old_table = NULL;
3315 unsigned int old_size = 0;
3316 unsigned int old_count = 0;
3317 void *old_tab = NULL;
3318 void *old_hash;
3319 void *old_ent;
3320 struct bfd_link_hash_entry *old_undefs = NULL;
3321 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3322 long old_dynsymcount = 0;
3323 size_t tabsize = 0;
3324 size_t hashsize = 0;
3325
3326 htab = elf_hash_table (info);
3327 bed = get_elf_backend_data (abfd);
3328
3329 if ((abfd->flags & DYNAMIC) == 0)
3330 dynamic = FALSE;
3331 else
3332 {
3333 dynamic = TRUE;
3334
3335 /* You can't use -r against a dynamic object. Also, there's no
3336 hope of using a dynamic object which does not exactly match
3337 the format of the output file. */
3338 if (info->relocatable
3339 || !is_elf_hash_table (htab)
3340 || info->output_bfd->xvec != abfd->xvec)
3341 {
3342 if (info->relocatable)
3343 bfd_set_error (bfd_error_invalid_operation);
3344 else
3345 bfd_set_error (bfd_error_wrong_format);
3346 goto error_return;
3347 }
3348 }
3349
3350 /* As a GNU extension, any input sections which are named
3351 .gnu.warning.SYMBOL are treated as warning symbols for the given
3352 symbol. This differs from .gnu.warning sections, which generate
3353 warnings when they are included in an output file. */
3354 if (info->executable)
3355 {
3356 asection *s;
3357
3358 for (s = abfd->sections; s != NULL; s = s->next)
3359 {
3360 const char *name;
3361
3362 name = bfd_get_section_name (abfd, s);
3363 if (CONST_STRNEQ (name, ".gnu.warning."))
3364 {
3365 char *msg;
3366 bfd_size_type sz;
3367
3368 name += sizeof ".gnu.warning." - 1;
3369
3370 /* If this is a shared object, then look up the symbol
3371 in the hash table. If it is there, and it is already
3372 been defined, then we will not be using the entry
3373 from this shared object, so we don't need to warn.
3374 FIXME: If we see the definition in a regular object
3375 later on, we will warn, but we shouldn't. The only
3376 fix is to keep track of what warnings we are supposed
3377 to emit, and then handle them all at the end of the
3378 link. */
3379 if (dynamic)
3380 {
3381 struct elf_link_hash_entry *h;
3382
3383 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3384
3385 /* FIXME: What about bfd_link_hash_common? */
3386 if (h != NULL
3387 && (h->root.type == bfd_link_hash_defined
3388 || h->root.type == bfd_link_hash_defweak))
3389 {
3390 /* We don't want to issue this warning. Clobber
3391 the section size so that the warning does not
3392 get copied into the output file. */
3393 s->size = 0;
3394 continue;
3395 }
3396 }
3397
3398 sz = s->size;
3399 msg = bfd_alloc (abfd, sz + 1);
3400 if (msg == NULL)
3401 goto error_return;
3402
3403 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3404 goto error_return;
3405
3406 msg[sz] = '\0';
3407
3408 if (! (_bfd_generic_link_add_one_symbol
3409 (info, abfd, name, BSF_WARNING, s, 0, msg,
3410 FALSE, bed->collect, NULL)))
3411 goto error_return;
3412
3413 if (! info->relocatable)
3414 {
3415 /* Clobber the section size so that the warning does
3416 not get copied into the output file. */
3417 s->size = 0;
3418
3419 /* Also set SEC_EXCLUDE, so that symbols defined in
3420 the warning section don't get copied to the output. */
3421 s->flags |= SEC_EXCLUDE;
3422 }
3423 }
3424 }
3425 }
3426
3427 add_needed = TRUE;
3428 if (! dynamic)
3429 {
3430 /* If we are creating a shared library, create all the dynamic
3431 sections immediately. We need to attach them to something,
3432 so we attach them to this BFD, provided it is the right
3433 format. FIXME: If there are no input BFD's of the same
3434 format as the output, we can't make a shared library. */
3435 if (info->shared
3436 && is_elf_hash_table (htab)
3437 && info->output_bfd->xvec == abfd->xvec
3438 && !htab->dynamic_sections_created)
3439 {
3440 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3441 goto error_return;
3442 }
3443 }
3444 else if (!is_elf_hash_table (htab))
3445 goto error_return;
3446 else
3447 {
3448 asection *s;
3449 const char *soname = NULL;
3450 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3451 int ret;
3452
3453 /* ld --just-symbols and dynamic objects don't mix very well.
3454 ld shouldn't allow it. */
3455 if ((s = abfd->sections) != NULL
3456 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3457 abort ();
3458
3459 /* If this dynamic lib was specified on the command line with
3460 --as-needed in effect, then we don't want to add a DT_NEEDED
3461 tag unless the lib is actually used. Similary for libs brought
3462 in by another lib's DT_NEEDED. When --no-add-needed is used
3463 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3464 any dynamic library in DT_NEEDED tags in the dynamic lib at
3465 all. */
3466 add_needed = (elf_dyn_lib_class (abfd)
3467 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3468 | DYN_NO_NEEDED)) == 0;
3469
3470 s = bfd_get_section_by_name (abfd, ".dynamic");
3471 if (s != NULL)
3472 {
3473 bfd_byte *dynbuf;
3474 bfd_byte *extdyn;
3475 unsigned int elfsec;
3476 unsigned long shlink;
3477
3478 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3479 goto error_free_dyn;
3480
3481 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3482 if (elfsec == SHN_BAD)
3483 goto error_free_dyn;
3484 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3485
3486 for (extdyn = dynbuf;
3487 extdyn < dynbuf + s->size;
3488 extdyn += bed->s->sizeof_dyn)
3489 {
3490 Elf_Internal_Dyn dyn;
3491
3492 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3493 if (dyn.d_tag == DT_SONAME)
3494 {
3495 unsigned int tagv = dyn.d_un.d_val;
3496 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3497 if (soname == NULL)
3498 goto error_free_dyn;
3499 }
3500 if (dyn.d_tag == DT_NEEDED)
3501 {
3502 struct bfd_link_needed_list *n, **pn;
3503 char *fnm, *anm;
3504 unsigned int tagv = dyn.d_un.d_val;
3505
3506 amt = sizeof (struct bfd_link_needed_list);
3507 n = bfd_alloc (abfd, amt);
3508 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3509 if (n == NULL || fnm == NULL)
3510 goto error_free_dyn;
3511 amt = strlen (fnm) + 1;
3512 anm = bfd_alloc (abfd, amt);
3513 if (anm == NULL)
3514 goto error_free_dyn;
3515 memcpy (anm, fnm, amt);
3516 n->name = anm;
3517 n->by = abfd;
3518 n->next = NULL;
3519 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3520 ;
3521 *pn = n;
3522 }
3523 if (dyn.d_tag == DT_RUNPATH)
3524 {
3525 struct bfd_link_needed_list *n, **pn;
3526 char *fnm, *anm;
3527 unsigned int tagv = dyn.d_un.d_val;
3528
3529 amt = sizeof (struct bfd_link_needed_list);
3530 n = bfd_alloc (abfd, amt);
3531 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3532 if (n == NULL || fnm == NULL)
3533 goto error_free_dyn;
3534 amt = strlen (fnm) + 1;
3535 anm = bfd_alloc (abfd, amt);
3536 if (anm == NULL)
3537 goto error_free_dyn;
3538 memcpy (anm, fnm, amt);
3539 n->name = anm;
3540 n->by = abfd;
3541 n->next = NULL;
3542 for (pn = & runpath;
3543 *pn != NULL;
3544 pn = &(*pn)->next)
3545 ;
3546 *pn = n;
3547 }
3548 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3549 if (!runpath && dyn.d_tag == DT_RPATH)
3550 {
3551 struct bfd_link_needed_list *n, **pn;
3552 char *fnm, *anm;
3553 unsigned int tagv = dyn.d_un.d_val;
3554
3555 amt = sizeof (struct bfd_link_needed_list);
3556 n = bfd_alloc (abfd, amt);
3557 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3558 if (n == NULL || fnm == NULL)
3559 goto error_free_dyn;
3560 amt = strlen (fnm) + 1;
3561 anm = bfd_alloc (abfd, amt);
3562 if (anm == NULL)
3563 {
3564 error_free_dyn:
3565 free (dynbuf);
3566 goto error_return;
3567 }
3568 memcpy (anm, fnm, amt);
3569 n->name = anm;
3570 n->by = abfd;
3571 n->next = NULL;
3572 for (pn = & rpath;
3573 *pn != NULL;
3574 pn = &(*pn)->next)
3575 ;
3576 *pn = n;
3577 }
3578 }
3579
3580 free (dynbuf);
3581 }
3582
3583 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3584 frees all more recently bfd_alloc'd blocks as well. */
3585 if (runpath)
3586 rpath = runpath;
3587
3588 if (rpath)
3589 {
3590 struct bfd_link_needed_list **pn;
3591 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3592 ;
3593 *pn = rpath;
3594 }
3595
3596 /* We do not want to include any of the sections in a dynamic
3597 object in the output file. We hack by simply clobbering the
3598 list of sections in the BFD. This could be handled more
3599 cleanly by, say, a new section flag; the existing
3600 SEC_NEVER_LOAD flag is not the one we want, because that one
3601 still implies that the section takes up space in the output
3602 file. */
3603 bfd_section_list_clear (abfd);
3604
3605 /* Find the name to use in a DT_NEEDED entry that refers to this
3606 object. If the object has a DT_SONAME entry, we use it.
3607 Otherwise, if the generic linker stuck something in
3608 elf_dt_name, we use that. Otherwise, we just use the file
3609 name. */
3610 if (soname == NULL || *soname == '\0')
3611 {
3612 soname = elf_dt_name (abfd);
3613 if (soname == NULL || *soname == '\0')
3614 soname = bfd_get_filename (abfd);
3615 }
3616
3617 /* Save the SONAME because sometimes the linker emulation code
3618 will need to know it. */
3619 elf_dt_name (abfd) = soname;
3620
3621 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3622 if (ret < 0)
3623 goto error_return;
3624
3625 /* If we have already included this dynamic object in the
3626 link, just ignore it. There is no reason to include a
3627 particular dynamic object more than once. */
3628 if (ret > 0)
3629 return TRUE;
3630 }
3631
3632 /* If this is a dynamic object, we always link against the .dynsym
3633 symbol table, not the .symtab symbol table. The dynamic linker
3634 will only see the .dynsym symbol table, so there is no reason to
3635 look at .symtab for a dynamic object. */
3636
3637 if (! dynamic || elf_dynsymtab (abfd) == 0)
3638 hdr = &elf_tdata (abfd)->symtab_hdr;
3639 else
3640 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3641
3642 symcount = hdr->sh_size / bed->s->sizeof_sym;
3643
3644 /* The sh_info field of the symtab header tells us where the
3645 external symbols start. We don't care about the local symbols at
3646 this point. */
3647 if (elf_bad_symtab (abfd))
3648 {
3649 extsymcount = symcount;
3650 extsymoff = 0;
3651 }
3652 else
3653 {
3654 extsymcount = symcount - hdr->sh_info;
3655 extsymoff = hdr->sh_info;
3656 }
3657
3658 sym_hash = NULL;
3659 if (extsymcount != 0)
3660 {
3661 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3662 NULL, NULL, NULL);
3663 if (isymbuf == NULL)
3664 goto error_return;
3665
3666 /* We store a pointer to the hash table entry for each external
3667 symbol. */
3668 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3669 sym_hash = bfd_alloc (abfd, amt);
3670 if (sym_hash == NULL)
3671 goto error_free_sym;
3672 elf_sym_hashes (abfd) = sym_hash;
3673 }
3674
3675 if (dynamic)
3676 {
3677 /* Read in any version definitions. */
3678 if (!_bfd_elf_slurp_version_tables (abfd,
3679 info->default_imported_symver))
3680 goto error_free_sym;
3681
3682 /* Read in the symbol versions, but don't bother to convert them
3683 to internal format. */
3684 if (elf_dynversym (abfd) != 0)
3685 {
3686 Elf_Internal_Shdr *versymhdr;
3687
3688 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3689 extversym = bfd_malloc (versymhdr->sh_size);
3690 if (extversym == NULL)
3691 goto error_free_sym;
3692 amt = versymhdr->sh_size;
3693 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3694 || bfd_bread (extversym, amt, abfd) != amt)
3695 goto error_free_vers;
3696 }
3697 }
3698
3699 /* If we are loading an as-needed shared lib, save the symbol table
3700 state before we start adding symbols. If the lib turns out
3701 to be unneeded, restore the state. */
3702 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3703 {
3704 unsigned int i;
3705 size_t entsize;
3706
3707 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3708 {
3709 struct bfd_hash_entry *p;
3710 struct elf_link_hash_entry *h;
3711
3712 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3713 {
3714 h = (struct elf_link_hash_entry *) p;
3715 entsize += htab->root.table.entsize;
3716 if (h->root.type == bfd_link_hash_warning)
3717 entsize += htab->root.table.entsize;
3718 }
3719 }
3720
3721 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3722 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3724 if (old_tab == NULL)
3725 goto error_free_vers;
3726
3727 /* Remember the current objalloc pointer, so that all mem for
3728 symbols added can later be reclaimed. */
3729 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3730 if (alloc_mark == NULL)
3731 goto error_free_vers;
3732
3733 /* Make a special call to the linker "notice" function to
3734 tell it that we are about to handle an as-needed lib. */
3735 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3736 notice_as_needed))
3737 goto error_free_vers;
3738
3739 /* Clone the symbol table and sym hashes. Remember some
3740 pointers into the symbol table, and dynamic symbol count. */
3741 old_hash = (char *) old_tab + tabsize;
3742 old_ent = (char *) old_hash + hashsize;
3743 memcpy (old_tab, htab->root.table.table, tabsize);
3744 memcpy (old_hash, sym_hash, hashsize);
3745 old_undefs = htab->root.undefs;
3746 old_undefs_tail = htab->root.undefs_tail;
3747 old_table = htab->root.table.table;
3748 old_size = htab->root.table.size;
3749 old_count = htab->root.table.count;
3750 old_dynsymcount = htab->dynsymcount;
3751
3752 for (i = 0; i < htab->root.table.size; i++)
3753 {
3754 struct bfd_hash_entry *p;
3755 struct elf_link_hash_entry *h;
3756
3757 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3758 {
3759 memcpy (old_ent, p, htab->root.table.entsize);
3760 old_ent = (char *) old_ent + htab->root.table.entsize;
3761 h = (struct elf_link_hash_entry *) p;
3762 if (h->root.type == bfd_link_hash_warning)
3763 {
3764 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3765 old_ent = (char *) old_ent + htab->root.table.entsize;
3766 }
3767 }
3768 }
3769 }
3770
3771 weaks = NULL;
3772 ever = extversym != NULL ? extversym + extsymoff : NULL;
3773 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3774 isym < isymend;
3775 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3776 {
3777 int bind;
3778 bfd_vma value;
3779 asection *sec, *new_sec;
3780 flagword flags;
3781 const char *name;
3782 struct elf_link_hash_entry *h;
3783 bfd_boolean definition;
3784 bfd_boolean size_change_ok;
3785 bfd_boolean type_change_ok;
3786 bfd_boolean new_weakdef;
3787 bfd_boolean override;
3788 bfd_boolean common;
3789 unsigned int old_alignment;
3790 bfd *old_bfd;
3791
3792 override = FALSE;
3793
3794 flags = BSF_NO_FLAGS;
3795 sec = NULL;
3796 value = isym->st_value;
3797 *sym_hash = NULL;
3798 common = bed->common_definition (isym);
3799
3800 bind = ELF_ST_BIND (isym->st_info);
3801 if (bind == STB_LOCAL)
3802 {
3803 /* This should be impossible, since ELF requires that all
3804 global symbols follow all local symbols, and that sh_info
3805 point to the first global symbol. Unfortunately, Irix 5
3806 screws this up. */
3807 continue;
3808 }
3809 else if (bind == STB_GLOBAL)
3810 {
3811 if (isym->st_shndx != SHN_UNDEF && !common)
3812 flags = BSF_GLOBAL;
3813 }
3814 else if (bind == STB_WEAK)
3815 flags = BSF_WEAK;
3816 else
3817 {
3818 /* Leave it up to the processor backend. */
3819 }
3820
3821 if (isym->st_shndx == SHN_UNDEF)
3822 sec = bfd_und_section_ptr;
3823 else if (isym->st_shndx == SHN_ABS)
3824 sec = bfd_abs_section_ptr;
3825 else if (isym->st_shndx == SHN_COMMON)
3826 {
3827 sec = bfd_com_section_ptr;
3828 /* What ELF calls the size we call the value. What ELF
3829 calls the value we call the alignment. */
3830 value = isym->st_size;
3831 }
3832 else
3833 {
3834 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3835 if (sec == NULL)
3836 sec = bfd_abs_section_ptr;
3837 else if (sec->kept_section)
3838 {
3839 /* Symbols from discarded section are undefined. We keep
3840 its visibility. */
3841 sec = bfd_und_section_ptr;
3842 isym->st_shndx = SHN_UNDEF;
3843 }
3844 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3845 value -= sec->vma;
3846 }
3847
3848 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3849 isym->st_name);
3850 if (name == NULL)
3851 goto error_free_vers;
3852
3853 if (isym->st_shndx == SHN_COMMON
3854 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3855 && !info->relocatable)
3856 {
3857 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3858
3859 if (tcomm == NULL)
3860 {
3861 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3862 (SEC_ALLOC
3863 | SEC_IS_COMMON
3864 | SEC_LINKER_CREATED
3865 | SEC_THREAD_LOCAL));
3866 if (tcomm == NULL)
3867 goto error_free_vers;
3868 }
3869 sec = tcomm;
3870 }
3871 else if (bed->elf_add_symbol_hook)
3872 {
3873 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3874 &sec, &value))
3875 goto error_free_vers;
3876
3877 /* The hook function sets the name to NULL if this symbol
3878 should be skipped for some reason. */
3879 if (name == NULL)
3880 continue;
3881 }
3882
3883 /* Sanity check that all possibilities were handled. */
3884 if (sec == NULL)
3885 {
3886 bfd_set_error (bfd_error_bad_value);
3887 goto error_free_vers;
3888 }
3889
3890 if (bfd_is_und_section (sec)
3891 || bfd_is_com_section (sec))
3892 definition = FALSE;
3893 else
3894 definition = TRUE;
3895
3896 size_change_ok = FALSE;
3897 type_change_ok = bed->type_change_ok;
3898 old_alignment = 0;
3899 old_bfd = NULL;
3900 new_sec = sec;
3901
3902 if (is_elf_hash_table (htab))
3903 {
3904 Elf_Internal_Versym iver;
3905 unsigned int vernum = 0;
3906 bfd_boolean skip;
3907
3908 if (ever == NULL)
3909 {
3910 if (info->default_imported_symver)
3911 /* Use the default symbol version created earlier. */
3912 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3913 else
3914 iver.vs_vers = 0;
3915 }
3916 else
3917 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3918
3919 vernum = iver.vs_vers & VERSYM_VERSION;
3920
3921 /* If this is a hidden symbol, or if it is not version
3922 1, we append the version name to the symbol name.
3923 However, we do not modify a non-hidden absolute symbol
3924 if it is not a function, because it might be the version
3925 symbol itself. FIXME: What if it isn't? */
3926 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3927 || (vernum > 1
3928 && (!bfd_is_abs_section (sec)
3929 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3930 {
3931 const char *verstr;
3932 size_t namelen, verlen, newlen;
3933 char *newname, *p;
3934
3935 if (isym->st_shndx != SHN_UNDEF)
3936 {
3937 if (vernum > elf_tdata (abfd)->cverdefs)
3938 verstr = NULL;
3939 else if (vernum > 1)
3940 verstr =
3941 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3942 else
3943 verstr = "";
3944
3945 if (verstr == NULL)
3946 {
3947 (*_bfd_error_handler)
3948 (_("%B: %s: invalid version %u (max %d)"),
3949 abfd, name, vernum,
3950 elf_tdata (abfd)->cverdefs);
3951 bfd_set_error (bfd_error_bad_value);
3952 goto error_free_vers;
3953 }
3954 }
3955 else
3956 {
3957 /* We cannot simply test for the number of
3958 entries in the VERNEED section since the
3959 numbers for the needed versions do not start
3960 at 0. */
3961 Elf_Internal_Verneed *t;
3962
3963 verstr = NULL;
3964 for (t = elf_tdata (abfd)->verref;
3965 t != NULL;
3966 t = t->vn_nextref)
3967 {
3968 Elf_Internal_Vernaux *a;
3969
3970 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3971 {
3972 if (a->vna_other == vernum)
3973 {
3974 verstr = a->vna_nodename;
3975 break;
3976 }
3977 }
3978 if (a != NULL)
3979 break;
3980 }
3981 if (verstr == NULL)
3982 {
3983 (*_bfd_error_handler)
3984 (_("%B: %s: invalid needed version %d"),
3985 abfd, name, vernum);
3986 bfd_set_error (bfd_error_bad_value);
3987 goto error_free_vers;
3988 }
3989 }
3990
3991 namelen = strlen (name);
3992 verlen = strlen (verstr);
3993 newlen = namelen + verlen + 2;
3994 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3995 && isym->st_shndx != SHN_UNDEF)
3996 ++newlen;
3997
3998 newname = bfd_hash_allocate (&htab->root.table, newlen);
3999 if (newname == NULL)
4000 goto error_free_vers;
4001 memcpy (newname, name, namelen);
4002 p = newname + namelen;
4003 *p++ = ELF_VER_CHR;
4004 /* If this is a defined non-hidden version symbol,
4005 we add another @ to the name. This indicates the
4006 default version of the symbol. */
4007 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4008 && isym->st_shndx != SHN_UNDEF)
4009 *p++ = ELF_VER_CHR;
4010 memcpy (p, verstr, verlen + 1);
4011
4012 name = newname;
4013 }
4014
4015 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4016 &value, &old_alignment,
4017 sym_hash, &skip, &override,
4018 &type_change_ok, &size_change_ok))
4019 goto error_free_vers;
4020
4021 if (skip)
4022 continue;
4023
4024 if (override)
4025 definition = FALSE;
4026
4027 h = *sym_hash;
4028 while (h->root.type == bfd_link_hash_indirect
4029 || h->root.type == bfd_link_hash_warning)
4030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4031
4032 /* Remember the old alignment if this is a common symbol, so
4033 that we don't reduce the alignment later on. We can't
4034 check later, because _bfd_generic_link_add_one_symbol
4035 will set a default for the alignment which we want to
4036 override. We also remember the old bfd where the existing
4037 definition comes from. */
4038 switch (h->root.type)
4039 {
4040 default:
4041 break;
4042
4043 case bfd_link_hash_defined:
4044 case bfd_link_hash_defweak:
4045 old_bfd = h->root.u.def.section->owner;
4046 break;
4047
4048 case bfd_link_hash_common:
4049 old_bfd = h->root.u.c.p->section->owner;
4050 old_alignment = h->root.u.c.p->alignment_power;
4051 break;
4052 }
4053
4054 if (elf_tdata (abfd)->verdef != NULL
4055 && ! override
4056 && vernum > 1
4057 && definition)
4058 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4059 }
4060
4061 if (! (_bfd_generic_link_add_one_symbol
4062 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4063 (struct bfd_link_hash_entry **) sym_hash)))
4064 goto error_free_vers;
4065
4066 h = *sym_hash;
4067 while (h->root.type == bfd_link_hash_indirect
4068 || h->root.type == bfd_link_hash_warning)
4069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4070 *sym_hash = h;
4071
4072 new_weakdef = FALSE;
4073 if (dynamic
4074 && definition
4075 && (flags & BSF_WEAK) != 0
4076 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4077 && is_elf_hash_table (htab)
4078 && h->u.weakdef == NULL)
4079 {
4080 /* Keep a list of all weak defined non function symbols from
4081 a dynamic object, using the weakdef field. Later in this
4082 function we will set the weakdef field to the correct
4083 value. We only put non-function symbols from dynamic
4084 objects on this list, because that happens to be the only
4085 time we need to know the normal symbol corresponding to a
4086 weak symbol, and the information is time consuming to
4087 figure out. If the weakdef field is not already NULL,
4088 then this symbol was already defined by some previous
4089 dynamic object, and we will be using that previous
4090 definition anyhow. */
4091
4092 h->u.weakdef = weaks;
4093 weaks = h;
4094 new_weakdef = TRUE;
4095 }
4096
4097 /* Set the alignment of a common symbol. */
4098 if ((common || bfd_is_com_section (sec))
4099 && h->root.type == bfd_link_hash_common)
4100 {
4101 unsigned int align;
4102
4103 if (common)
4104 align = bfd_log2 (isym->st_value);
4105 else
4106 {
4107 /* The new symbol is a common symbol in a shared object.
4108 We need to get the alignment from the section. */
4109 align = new_sec->alignment_power;
4110 }
4111 if (align > old_alignment
4112 /* Permit an alignment power of zero if an alignment of one
4113 is specified and no other alignments have been specified. */
4114 || (isym->st_value == 1 && old_alignment == 0))
4115 h->root.u.c.p->alignment_power = align;
4116 else
4117 h->root.u.c.p->alignment_power = old_alignment;
4118 }
4119
4120 if (is_elf_hash_table (htab))
4121 {
4122 bfd_boolean dynsym;
4123
4124 /* Check the alignment when a common symbol is involved. This
4125 can change when a common symbol is overridden by a normal
4126 definition or a common symbol is ignored due to the old
4127 normal definition. We need to make sure the maximum
4128 alignment is maintained. */
4129 if ((old_alignment || common)
4130 && h->root.type != bfd_link_hash_common)
4131 {
4132 unsigned int common_align;
4133 unsigned int normal_align;
4134 unsigned int symbol_align;
4135 bfd *normal_bfd;
4136 bfd *common_bfd;
4137
4138 symbol_align = ffs (h->root.u.def.value) - 1;
4139 if (h->root.u.def.section->owner != NULL
4140 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4141 {
4142 normal_align = h->root.u.def.section->alignment_power;
4143 if (normal_align > symbol_align)
4144 normal_align = symbol_align;
4145 }
4146 else
4147 normal_align = symbol_align;
4148
4149 if (old_alignment)
4150 {
4151 common_align = old_alignment;
4152 common_bfd = old_bfd;
4153 normal_bfd = abfd;
4154 }
4155 else
4156 {
4157 common_align = bfd_log2 (isym->st_value);
4158 common_bfd = abfd;
4159 normal_bfd = old_bfd;
4160 }
4161
4162 if (normal_align < common_align)
4163 {
4164 /* PR binutils/2735 */
4165 if (normal_bfd == NULL)
4166 (*_bfd_error_handler)
4167 (_("Warning: alignment %u of common symbol `%s' in %B"
4168 " is greater than the alignment (%u) of its section %A"),
4169 common_bfd, h->root.u.def.section,
4170 1 << common_align, name, 1 << normal_align);
4171 else
4172 (*_bfd_error_handler)
4173 (_("Warning: alignment %u of symbol `%s' in %B"
4174 " is smaller than %u in %B"),
4175 normal_bfd, common_bfd,
4176 1 << normal_align, name, 1 << common_align);
4177 }
4178 }
4179
4180 /* Remember the symbol size if it isn't undefined. */
4181 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4182 && (definition || h->size == 0))
4183 {
4184 if (h->size != 0
4185 && h->size != isym->st_size
4186 && ! size_change_ok)
4187 (*_bfd_error_handler)
4188 (_("Warning: size of symbol `%s' changed"
4189 " from %lu in %B to %lu in %B"),
4190 old_bfd, abfd,
4191 name, (unsigned long) h->size,
4192 (unsigned long) isym->st_size);
4193
4194 h->size = isym->st_size;
4195 }
4196
4197 /* If this is a common symbol, then we always want H->SIZE
4198 to be the size of the common symbol. The code just above
4199 won't fix the size if a common symbol becomes larger. We
4200 don't warn about a size change here, because that is
4201 covered by --warn-common. Allow changed between different
4202 function types. */
4203 if (h->root.type == bfd_link_hash_common)
4204 h->size = h->root.u.c.size;
4205
4206 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4207 && (definition || h->type == STT_NOTYPE))
4208 {
4209 if (h->type != STT_NOTYPE
4210 && h->type != ELF_ST_TYPE (isym->st_info)
4211 && ! type_change_ok)
4212 (*_bfd_error_handler)
4213 (_("Warning: type of symbol `%s' changed"
4214 " from %d to %d in %B"),
4215 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4216
4217 h->type = ELF_ST_TYPE (isym->st_info);
4218 }
4219
4220 /* If st_other has a processor-specific meaning, specific
4221 code might be needed here. We never merge the visibility
4222 attribute with the one from a dynamic object. */
4223 if (bed->elf_backend_merge_symbol_attribute)
4224 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4225 dynamic);
4226
4227 /* If this symbol has default visibility and the user has requested
4228 we not re-export it, then mark it as hidden. */
4229 if (definition && !dynamic
4230 && (abfd->no_export
4231 || (abfd->my_archive && abfd->my_archive->no_export))
4232 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4233 isym->st_other = (STV_HIDDEN
4234 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4235
4236 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4237 {
4238 unsigned char hvis, symvis, other, nvis;
4239
4240 /* Only merge the visibility. Leave the remainder of the
4241 st_other field to elf_backend_merge_symbol_attribute. */
4242 other = h->other & ~ELF_ST_VISIBILITY (-1);
4243
4244 /* Combine visibilities, using the most constraining one. */
4245 hvis = ELF_ST_VISIBILITY (h->other);
4246 symvis = ELF_ST_VISIBILITY (isym->st_other);
4247 if (! hvis)
4248 nvis = symvis;
4249 else if (! symvis)
4250 nvis = hvis;
4251 else
4252 nvis = hvis < symvis ? hvis : symvis;
4253
4254 h->other = other | nvis;
4255 }
4256
4257 /* Set a flag in the hash table entry indicating the type of
4258 reference or definition we just found. Keep a count of
4259 the number of dynamic symbols we find. A dynamic symbol
4260 is one which is referenced or defined by both a regular
4261 object and a shared object. */
4262 dynsym = FALSE;
4263 if (! dynamic)
4264 {
4265 if (! definition)
4266 {
4267 h->ref_regular = 1;
4268 if (bind != STB_WEAK)
4269 h->ref_regular_nonweak = 1;
4270 }
4271 else
4272 h->def_regular = 1;
4273 if (! info->executable
4274 || h->def_dynamic
4275 || h->ref_dynamic)
4276 dynsym = TRUE;
4277 }
4278 else
4279 {
4280 if (! definition)
4281 h->ref_dynamic = 1;
4282 else
4283 h->def_dynamic = 1;
4284 if (h->def_regular
4285 || h->ref_regular
4286 || (h->u.weakdef != NULL
4287 && ! new_weakdef
4288 && h->u.weakdef->dynindx != -1))
4289 dynsym = TRUE;
4290 }
4291
4292 if (definition && (sec->flags & SEC_DEBUGGING))
4293 {
4294 /* We don't want to make debug symbol dynamic. */
4295 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4296 dynsym = FALSE;
4297 }
4298
4299 /* Check to see if we need to add an indirect symbol for
4300 the default name. */
4301 if (definition || h->root.type == bfd_link_hash_common)
4302 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4303 &sec, &value, &dynsym,
4304 override))
4305 goto error_free_vers;
4306
4307 if (definition && !dynamic)
4308 {
4309 char *p = strchr (name, ELF_VER_CHR);
4310 if (p != NULL && p[1] != ELF_VER_CHR)
4311 {
4312 /* Queue non-default versions so that .symver x, x@FOO
4313 aliases can be checked. */
4314 if (!nondeflt_vers)
4315 {
4316 amt = ((isymend - isym + 1)
4317 * sizeof (struct elf_link_hash_entry *));
4318 nondeflt_vers = bfd_malloc (amt);
4319 if (!nondeflt_vers)
4320 goto error_free_vers;
4321 }
4322 nondeflt_vers[nondeflt_vers_cnt++] = h;
4323 }
4324 }
4325
4326 if (dynsym && h->dynindx == -1)
4327 {
4328 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4329 goto error_free_vers;
4330 if (h->u.weakdef != NULL
4331 && ! new_weakdef
4332 && h->u.weakdef->dynindx == -1)
4333 {
4334 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4335 goto error_free_vers;
4336 }
4337 }
4338 else if (dynsym && h->dynindx != -1)
4339 /* If the symbol already has a dynamic index, but
4340 visibility says it should not be visible, turn it into
4341 a local symbol. */
4342 switch (ELF_ST_VISIBILITY (h->other))
4343 {
4344 case STV_INTERNAL:
4345 case STV_HIDDEN:
4346 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4347 dynsym = FALSE;
4348 break;
4349 }
4350
4351 if (!add_needed
4352 && definition
4353 && dynsym
4354 && h->ref_regular)
4355 {
4356 int ret;
4357 const char *soname = elf_dt_name (abfd);
4358
4359 /* A symbol from a library loaded via DT_NEEDED of some
4360 other library is referenced by a regular object.
4361 Add a DT_NEEDED entry for it. Issue an error if
4362 --no-add-needed is used. */
4363 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4364 {
4365 (*_bfd_error_handler)
4366 (_("%s: invalid DSO for symbol `%s' definition"),
4367 abfd, name);
4368 bfd_set_error (bfd_error_bad_value);
4369 goto error_free_vers;
4370 }
4371
4372 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4373
4374 add_needed = TRUE;
4375 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4376 if (ret < 0)
4377 goto error_free_vers;
4378
4379 BFD_ASSERT (ret == 0);
4380 }
4381 }
4382 }
4383
4384 if (extversym != NULL)
4385 {
4386 free (extversym);
4387 extversym = NULL;
4388 }
4389
4390 if (isymbuf != NULL)
4391 {
4392 free (isymbuf);
4393 isymbuf = NULL;
4394 }
4395
4396 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4397 {
4398 unsigned int i;
4399
4400 /* Restore the symbol table. */
4401 if (bed->as_needed_cleanup)
4402 (*bed->as_needed_cleanup) (abfd, info);
4403 old_hash = (char *) old_tab + tabsize;
4404 old_ent = (char *) old_hash + hashsize;
4405 sym_hash = elf_sym_hashes (abfd);
4406 htab->root.table.table = old_table;
4407 htab->root.table.size = old_size;
4408 htab->root.table.count = old_count;
4409 memcpy (htab->root.table.table, old_tab, tabsize);
4410 memcpy (sym_hash, old_hash, hashsize);
4411 htab->root.undefs = old_undefs;
4412 htab->root.undefs_tail = old_undefs_tail;
4413 for (i = 0; i < htab->root.table.size; i++)
4414 {
4415 struct bfd_hash_entry *p;
4416 struct elf_link_hash_entry *h;
4417
4418 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4419 {
4420 h = (struct elf_link_hash_entry *) p;
4421 if (h->root.type == bfd_link_hash_warning)
4422 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4423 if (h->dynindx >= old_dynsymcount)
4424 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4425
4426 memcpy (p, old_ent, htab->root.table.entsize);
4427 old_ent = (char *) old_ent + htab->root.table.entsize;
4428 h = (struct elf_link_hash_entry *) p;
4429 if (h->root.type == bfd_link_hash_warning)
4430 {
4431 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4432 old_ent = (char *) old_ent + htab->root.table.entsize;
4433 }
4434 }
4435 }
4436
4437 /* Make a special call to the linker "notice" function to
4438 tell it that symbols added for crefs may need to be removed. */
4439 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4440 notice_not_needed))
4441 goto error_free_vers;
4442
4443 free (old_tab);
4444 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4445 alloc_mark);
4446 if (nondeflt_vers != NULL)
4447 free (nondeflt_vers);
4448 return TRUE;
4449 }
4450
4451 if (old_tab != NULL)
4452 {
4453 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4454 notice_needed))
4455 goto error_free_vers;
4456 free (old_tab);
4457 old_tab = NULL;
4458 }
4459
4460 /* Now that all the symbols from this input file are created, handle
4461 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4462 if (nondeflt_vers != NULL)
4463 {
4464 bfd_size_type cnt, symidx;
4465
4466 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4467 {
4468 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4469 char *shortname, *p;
4470
4471 p = strchr (h->root.root.string, ELF_VER_CHR);
4472 if (p == NULL
4473 || (h->root.type != bfd_link_hash_defined
4474 && h->root.type != bfd_link_hash_defweak))
4475 continue;
4476
4477 amt = p - h->root.root.string;
4478 shortname = bfd_malloc (amt + 1);
4479 if (!shortname)
4480 goto error_free_vers;
4481 memcpy (shortname, h->root.root.string, amt);
4482 shortname[amt] = '\0';
4483
4484 hi = (struct elf_link_hash_entry *)
4485 bfd_link_hash_lookup (&htab->root, shortname,
4486 FALSE, FALSE, FALSE);
4487 if (hi != NULL
4488 && hi->root.type == h->root.type
4489 && hi->root.u.def.value == h->root.u.def.value
4490 && hi->root.u.def.section == h->root.u.def.section)
4491 {
4492 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4493 hi->root.type = bfd_link_hash_indirect;
4494 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4495 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4496 sym_hash = elf_sym_hashes (abfd);
4497 if (sym_hash)
4498 for (symidx = 0; symidx < extsymcount; ++symidx)
4499 if (sym_hash[symidx] == hi)
4500 {
4501 sym_hash[symidx] = h;
4502 break;
4503 }
4504 }
4505 free (shortname);
4506 }
4507 free (nondeflt_vers);
4508 nondeflt_vers = NULL;
4509 }
4510
4511 /* Now set the weakdefs field correctly for all the weak defined
4512 symbols we found. The only way to do this is to search all the
4513 symbols. Since we only need the information for non functions in
4514 dynamic objects, that's the only time we actually put anything on
4515 the list WEAKS. We need this information so that if a regular
4516 object refers to a symbol defined weakly in a dynamic object, the
4517 real symbol in the dynamic object is also put in the dynamic
4518 symbols; we also must arrange for both symbols to point to the
4519 same memory location. We could handle the general case of symbol
4520 aliasing, but a general symbol alias can only be generated in
4521 assembler code, handling it correctly would be very time
4522 consuming, and other ELF linkers don't handle general aliasing
4523 either. */
4524 if (weaks != NULL)
4525 {
4526 struct elf_link_hash_entry **hpp;
4527 struct elf_link_hash_entry **hppend;
4528 struct elf_link_hash_entry **sorted_sym_hash;
4529 struct elf_link_hash_entry *h;
4530 size_t sym_count;
4531
4532 /* Since we have to search the whole symbol list for each weak
4533 defined symbol, search time for N weak defined symbols will be
4534 O(N^2). Binary search will cut it down to O(NlogN). */
4535 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4536 sorted_sym_hash = bfd_malloc (amt);
4537 if (sorted_sym_hash == NULL)
4538 goto error_return;
4539 sym_hash = sorted_sym_hash;
4540 hpp = elf_sym_hashes (abfd);
4541 hppend = hpp + extsymcount;
4542 sym_count = 0;
4543 for (; hpp < hppend; hpp++)
4544 {
4545 h = *hpp;
4546 if (h != NULL
4547 && h->root.type == bfd_link_hash_defined
4548 && !bed->is_function_type (h->type))
4549 {
4550 *sym_hash = h;
4551 sym_hash++;
4552 sym_count++;
4553 }
4554 }
4555
4556 qsort (sorted_sym_hash, sym_count,
4557 sizeof (struct elf_link_hash_entry *),
4558 elf_sort_symbol);
4559
4560 while (weaks != NULL)
4561 {
4562 struct elf_link_hash_entry *hlook;
4563 asection *slook;
4564 bfd_vma vlook;
4565 long ilook;
4566 size_t i, j, idx;
4567
4568 hlook = weaks;
4569 weaks = hlook->u.weakdef;
4570 hlook->u.weakdef = NULL;
4571
4572 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4573 || hlook->root.type == bfd_link_hash_defweak
4574 || hlook->root.type == bfd_link_hash_common
4575 || hlook->root.type == bfd_link_hash_indirect);
4576 slook = hlook->root.u.def.section;
4577 vlook = hlook->root.u.def.value;
4578
4579 ilook = -1;
4580 i = 0;
4581 j = sym_count;
4582 while (i < j)
4583 {
4584 bfd_signed_vma vdiff;
4585 idx = (i + j) / 2;
4586 h = sorted_sym_hash [idx];
4587 vdiff = vlook - h->root.u.def.value;
4588 if (vdiff < 0)
4589 j = idx;
4590 else if (vdiff > 0)
4591 i = idx + 1;
4592 else
4593 {
4594 long sdiff = slook->id - h->root.u.def.section->id;
4595 if (sdiff < 0)
4596 j = idx;
4597 else if (sdiff > 0)
4598 i = idx + 1;
4599 else
4600 {
4601 ilook = idx;
4602 break;
4603 }
4604 }
4605 }
4606
4607 /* We didn't find a value/section match. */
4608 if (ilook == -1)
4609 continue;
4610
4611 for (i = ilook; i < sym_count; i++)
4612 {
4613 h = sorted_sym_hash [i];
4614
4615 /* Stop if value or section doesn't match. */
4616 if (h->root.u.def.value != vlook
4617 || h->root.u.def.section != slook)
4618 break;
4619 else if (h != hlook)
4620 {
4621 hlook->u.weakdef = h;
4622
4623 /* If the weak definition is in the list of dynamic
4624 symbols, make sure the real definition is put
4625 there as well. */
4626 if (hlook->dynindx != -1 && h->dynindx == -1)
4627 {
4628 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4629 goto error_return;
4630 }
4631
4632 /* If the real definition is in the list of dynamic
4633 symbols, make sure the weak definition is put
4634 there as well. If we don't do this, then the
4635 dynamic loader might not merge the entries for the
4636 real definition and the weak definition. */
4637 if (h->dynindx != -1 && hlook->dynindx == -1)
4638 {
4639 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4640 goto error_return;
4641 }
4642 break;
4643 }
4644 }
4645 }
4646
4647 free (sorted_sym_hash);
4648 }
4649
4650 if (bed->check_directives)
4651 (*bed->check_directives) (abfd, info);
4652
4653 /* If this object is the same format as the output object, and it is
4654 not a shared library, then let the backend look through the
4655 relocs.
4656
4657 This is required to build global offset table entries and to
4658 arrange for dynamic relocs. It is not required for the
4659 particular common case of linking non PIC code, even when linking
4660 against shared libraries, but unfortunately there is no way of
4661 knowing whether an object file has been compiled PIC or not.
4662 Looking through the relocs is not particularly time consuming.
4663 The problem is that we must either (1) keep the relocs in memory,
4664 which causes the linker to require additional runtime memory or
4665 (2) read the relocs twice from the input file, which wastes time.
4666 This would be a good case for using mmap.
4667
4668 I have no idea how to handle linking PIC code into a file of a
4669 different format. It probably can't be done. */
4670 if (! dynamic
4671 && is_elf_hash_table (htab)
4672 && bed->check_relocs != NULL
4673 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4674 {
4675 asection *o;
4676
4677 for (o = abfd->sections; o != NULL; o = o->next)
4678 {
4679 Elf_Internal_Rela *internal_relocs;
4680 bfd_boolean ok;
4681
4682 if ((o->flags & SEC_RELOC) == 0
4683 || o->reloc_count == 0
4684 || ((info->strip == strip_all || info->strip == strip_debugger)
4685 && (o->flags & SEC_DEBUGGING) != 0)
4686 || bfd_is_abs_section (o->output_section))
4687 continue;
4688
4689 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4690 info->keep_memory);
4691 if (internal_relocs == NULL)
4692 goto error_return;
4693
4694 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4695
4696 if (elf_section_data (o)->relocs != internal_relocs)
4697 free (internal_relocs);
4698
4699 if (! ok)
4700 goto error_return;
4701 }
4702 }
4703
4704 /* If this is a non-traditional link, try to optimize the handling
4705 of the .stab/.stabstr sections. */
4706 if (! dynamic
4707 && ! info->traditional_format
4708 && is_elf_hash_table (htab)
4709 && (info->strip != strip_all && info->strip != strip_debugger))
4710 {
4711 asection *stabstr;
4712
4713 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4714 if (stabstr != NULL)
4715 {
4716 bfd_size_type string_offset = 0;
4717 asection *stab;
4718
4719 for (stab = abfd->sections; stab; stab = stab->next)
4720 if (CONST_STRNEQ (stab->name, ".stab")
4721 && (!stab->name[5] ||
4722 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4723 && (stab->flags & SEC_MERGE) == 0
4724 && !bfd_is_abs_section (stab->output_section))
4725 {
4726 struct bfd_elf_section_data *secdata;
4727
4728 secdata = elf_section_data (stab);
4729 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4730 stabstr, &secdata->sec_info,
4731 &string_offset))
4732 goto error_return;
4733 if (secdata->sec_info)
4734 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4735 }
4736 }
4737 }
4738
4739 if (is_elf_hash_table (htab) && add_needed)
4740 {
4741 /* Add this bfd to the loaded list. */
4742 struct elf_link_loaded_list *n;
4743
4744 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4745 if (n == NULL)
4746 goto error_return;
4747 n->abfd = abfd;
4748 n->next = htab->loaded;
4749 htab->loaded = n;
4750 }
4751
4752 return TRUE;
4753
4754 error_free_vers:
4755 if (old_tab != NULL)
4756 free (old_tab);
4757 if (nondeflt_vers != NULL)
4758 free (nondeflt_vers);
4759 if (extversym != NULL)
4760 free (extversym);
4761 error_free_sym:
4762 if (isymbuf != NULL)
4763 free (isymbuf);
4764 error_return:
4765 return FALSE;
4766 }
4767
4768 /* Return the linker hash table entry of a symbol that might be
4769 satisfied by an archive symbol. Return -1 on error. */
4770
4771 struct elf_link_hash_entry *
4772 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4773 struct bfd_link_info *info,
4774 const char *name)
4775 {
4776 struct elf_link_hash_entry *h;
4777 char *p, *copy;
4778 size_t len, first;
4779
4780 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4781 if (h != NULL)
4782 return h;
4783
4784 /* If this is a default version (the name contains @@), look up the
4785 symbol again with only one `@' as well as without the version.
4786 The effect is that references to the symbol with and without the
4787 version will be matched by the default symbol in the archive. */
4788
4789 p = strchr (name, ELF_VER_CHR);
4790 if (p == NULL || p[1] != ELF_VER_CHR)
4791 return h;
4792
4793 /* First check with only one `@'. */
4794 len = strlen (name);
4795 copy = bfd_alloc (abfd, len);
4796 if (copy == NULL)
4797 return (struct elf_link_hash_entry *) 0 - 1;
4798
4799 first = p - name + 1;
4800 memcpy (copy, name, first);
4801 memcpy (copy + first, name + first + 1, len - first);
4802
4803 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4804 if (h == NULL)
4805 {
4806 /* We also need to check references to the symbol without the
4807 version. */
4808 copy[first - 1] = '\0';
4809 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4810 FALSE, FALSE, FALSE);
4811 }
4812
4813 bfd_release (abfd, copy);
4814 return h;
4815 }
4816
4817 /* Add symbols from an ELF archive file to the linker hash table. We
4818 don't use _bfd_generic_link_add_archive_symbols because of a
4819 problem which arises on UnixWare. The UnixWare libc.so is an
4820 archive which includes an entry libc.so.1 which defines a bunch of
4821 symbols. The libc.so archive also includes a number of other
4822 object files, which also define symbols, some of which are the same
4823 as those defined in libc.so.1. Correct linking requires that we
4824 consider each object file in turn, and include it if it defines any
4825 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4826 this; it looks through the list of undefined symbols, and includes
4827 any object file which defines them. When this algorithm is used on
4828 UnixWare, it winds up pulling in libc.so.1 early and defining a
4829 bunch of symbols. This means that some of the other objects in the
4830 archive are not included in the link, which is incorrect since they
4831 precede libc.so.1 in the archive.
4832
4833 Fortunately, ELF archive handling is simpler than that done by
4834 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4835 oddities. In ELF, if we find a symbol in the archive map, and the
4836 symbol is currently undefined, we know that we must pull in that
4837 object file.
4838
4839 Unfortunately, we do have to make multiple passes over the symbol
4840 table until nothing further is resolved. */
4841
4842 static bfd_boolean
4843 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4844 {
4845 symindex c;
4846 bfd_boolean *defined = NULL;
4847 bfd_boolean *included = NULL;
4848 carsym *symdefs;
4849 bfd_boolean loop;
4850 bfd_size_type amt;
4851 const struct elf_backend_data *bed;
4852 struct elf_link_hash_entry * (*archive_symbol_lookup)
4853 (bfd *, struct bfd_link_info *, const char *);
4854
4855 if (! bfd_has_map (abfd))
4856 {
4857 /* An empty archive is a special case. */
4858 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4859 return TRUE;
4860 bfd_set_error (bfd_error_no_armap);
4861 return FALSE;
4862 }
4863
4864 /* Keep track of all symbols we know to be already defined, and all
4865 files we know to be already included. This is to speed up the
4866 second and subsequent passes. */
4867 c = bfd_ardata (abfd)->symdef_count;
4868 if (c == 0)
4869 return TRUE;
4870 amt = c;
4871 amt *= sizeof (bfd_boolean);
4872 defined = bfd_zmalloc (amt);
4873 included = bfd_zmalloc (amt);
4874 if (defined == NULL || included == NULL)
4875 goto error_return;
4876
4877 symdefs = bfd_ardata (abfd)->symdefs;
4878 bed = get_elf_backend_data (abfd);
4879 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4880
4881 do
4882 {
4883 file_ptr last;
4884 symindex i;
4885 carsym *symdef;
4886 carsym *symdefend;
4887
4888 loop = FALSE;
4889 last = -1;
4890
4891 symdef = symdefs;
4892 symdefend = symdef + c;
4893 for (i = 0; symdef < symdefend; symdef++, i++)
4894 {
4895 struct elf_link_hash_entry *h;
4896 bfd *element;
4897 struct bfd_link_hash_entry *undefs_tail;
4898 symindex mark;
4899
4900 if (defined[i] || included[i])
4901 continue;
4902 if (symdef->file_offset == last)
4903 {
4904 included[i] = TRUE;
4905 continue;
4906 }
4907
4908 h = archive_symbol_lookup (abfd, info, symdef->name);
4909 if (h == (struct elf_link_hash_entry *) 0 - 1)
4910 goto error_return;
4911
4912 if (h == NULL)
4913 continue;
4914
4915 if (h->root.type == bfd_link_hash_common)
4916 {
4917 /* We currently have a common symbol. The archive map contains
4918 a reference to this symbol, so we may want to include it. We
4919 only want to include it however, if this archive element
4920 contains a definition of the symbol, not just another common
4921 declaration of it.
4922
4923 Unfortunately some archivers (including GNU ar) will put
4924 declarations of common symbols into their archive maps, as
4925 well as real definitions, so we cannot just go by the archive
4926 map alone. Instead we must read in the element's symbol
4927 table and check that to see what kind of symbol definition
4928 this is. */
4929 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4930 continue;
4931 }
4932 else if (h->root.type != bfd_link_hash_undefined)
4933 {
4934 if (h->root.type != bfd_link_hash_undefweak)
4935 defined[i] = TRUE;
4936 continue;
4937 }
4938
4939 /* We need to include this archive member. */
4940 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4941 if (element == NULL)
4942 goto error_return;
4943
4944 if (! bfd_check_format (element, bfd_object))
4945 goto error_return;
4946
4947 /* Doublecheck that we have not included this object
4948 already--it should be impossible, but there may be
4949 something wrong with the archive. */
4950 if (element->archive_pass != 0)
4951 {
4952 bfd_set_error (bfd_error_bad_value);
4953 goto error_return;
4954 }
4955 element->archive_pass = 1;
4956
4957 undefs_tail = info->hash->undefs_tail;
4958
4959 if (! (*info->callbacks->add_archive_element) (info, element,
4960 symdef->name))
4961 goto error_return;
4962 if (! bfd_link_add_symbols (element, info))
4963 goto error_return;
4964
4965 /* If there are any new undefined symbols, we need to make
4966 another pass through the archive in order to see whether
4967 they can be defined. FIXME: This isn't perfect, because
4968 common symbols wind up on undefs_tail and because an
4969 undefined symbol which is defined later on in this pass
4970 does not require another pass. This isn't a bug, but it
4971 does make the code less efficient than it could be. */
4972 if (undefs_tail != info->hash->undefs_tail)
4973 loop = TRUE;
4974
4975 /* Look backward to mark all symbols from this object file
4976 which we have already seen in this pass. */
4977 mark = i;
4978 do
4979 {
4980 included[mark] = TRUE;
4981 if (mark == 0)
4982 break;
4983 --mark;
4984 }
4985 while (symdefs[mark].file_offset == symdef->file_offset);
4986
4987 /* We mark subsequent symbols from this object file as we go
4988 on through the loop. */
4989 last = symdef->file_offset;
4990 }
4991 }
4992 while (loop);
4993
4994 free (defined);
4995 free (included);
4996
4997 return TRUE;
4998
4999 error_return:
5000 if (defined != NULL)
5001 free (defined);
5002 if (included != NULL)
5003 free (included);
5004 return FALSE;
5005 }
5006
5007 /* Given an ELF BFD, add symbols to the global hash table as
5008 appropriate. */
5009
5010 bfd_boolean
5011 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5012 {
5013 switch (bfd_get_format (abfd))
5014 {
5015 case bfd_object:
5016 return elf_link_add_object_symbols (abfd, info);
5017 case bfd_archive:
5018 return elf_link_add_archive_symbols (abfd, info);
5019 default:
5020 bfd_set_error (bfd_error_wrong_format);
5021 return FALSE;
5022 }
5023 }
5024 \f
5025 struct hash_codes_info
5026 {
5027 unsigned long *hashcodes;
5028 bfd_boolean error;
5029 };
5030
5031 /* This function will be called though elf_link_hash_traverse to store
5032 all hash value of the exported symbols in an array. */
5033
5034 static bfd_boolean
5035 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5036 {
5037 struct hash_codes_info *inf = data;
5038 const char *name;
5039 char *p;
5040 unsigned long ha;
5041 char *alc = NULL;
5042
5043 if (h->root.type == bfd_link_hash_warning)
5044 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5045
5046 /* Ignore indirect symbols. These are added by the versioning code. */
5047 if (h->dynindx == -1)
5048 return TRUE;
5049
5050 name = h->root.root.string;
5051 p = strchr (name, ELF_VER_CHR);
5052 if (p != NULL)
5053 {
5054 alc = bfd_malloc (p - name + 1);
5055 if (alc == NULL)
5056 {
5057 inf->error = TRUE;
5058 return FALSE;
5059 }
5060 memcpy (alc, name, p - name);
5061 alc[p - name] = '\0';
5062 name = alc;
5063 }
5064
5065 /* Compute the hash value. */
5066 ha = bfd_elf_hash (name);
5067
5068 /* Store the found hash value in the array given as the argument. */
5069 *(inf->hashcodes)++ = ha;
5070
5071 /* And store it in the struct so that we can put it in the hash table
5072 later. */
5073 h->u.elf_hash_value = ha;
5074
5075 if (alc != NULL)
5076 free (alc);
5077
5078 return TRUE;
5079 }
5080
5081 struct collect_gnu_hash_codes
5082 {
5083 bfd *output_bfd;
5084 const struct elf_backend_data *bed;
5085 unsigned long int nsyms;
5086 unsigned long int maskbits;
5087 unsigned long int *hashcodes;
5088 unsigned long int *hashval;
5089 unsigned long int *indx;
5090 unsigned long int *counts;
5091 bfd_vma *bitmask;
5092 bfd_byte *contents;
5093 long int min_dynindx;
5094 unsigned long int bucketcount;
5095 unsigned long int symindx;
5096 long int local_indx;
5097 long int shift1, shift2;
5098 unsigned long int mask;
5099 bfd_boolean error;
5100 };
5101
5102 /* This function will be called though elf_link_hash_traverse to store
5103 all hash value of the exported symbols in an array. */
5104
5105 static bfd_boolean
5106 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5107 {
5108 struct collect_gnu_hash_codes *s = data;
5109 const char *name;
5110 char *p;
5111 unsigned long ha;
5112 char *alc = NULL;
5113
5114 if (h->root.type == bfd_link_hash_warning)
5115 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5116
5117 /* Ignore indirect symbols. These are added by the versioning code. */
5118 if (h->dynindx == -1)
5119 return TRUE;
5120
5121 /* Ignore also local symbols and undefined symbols. */
5122 if (! (*s->bed->elf_hash_symbol) (h))
5123 return TRUE;
5124
5125 name = h->root.root.string;
5126 p = strchr (name, ELF_VER_CHR);
5127 if (p != NULL)
5128 {
5129 alc = bfd_malloc (p - name + 1);
5130 if (alc == NULL)
5131 {
5132 s->error = TRUE;
5133 return FALSE;
5134 }
5135 memcpy (alc, name, p - name);
5136 alc[p - name] = '\0';
5137 name = alc;
5138 }
5139
5140 /* Compute the hash value. */
5141 ha = bfd_elf_gnu_hash (name);
5142
5143 /* Store the found hash value in the array for compute_bucket_count,
5144 and also for .dynsym reordering purposes. */
5145 s->hashcodes[s->nsyms] = ha;
5146 s->hashval[h->dynindx] = ha;
5147 ++s->nsyms;
5148 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5149 s->min_dynindx = h->dynindx;
5150
5151 if (alc != NULL)
5152 free (alc);
5153
5154 return TRUE;
5155 }
5156
5157 /* This function will be called though elf_link_hash_traverse to do
5158 final dynaminc symbol renumbering. */
5159
5160 static bfd_boolean
5161 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5162 {
5163 struct collect_gnu_hash_codes *s = data;
5164 unsigned long int bucket;
5165 unsigned long int val;
5166
5167 if (h->root.type == bfd_link_hash_warning)
5168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5169
5170 /* Ignore indirect symbols. */
5171 if (h->dynindx == -1)
5172 return TRUE;
5173
5174 /* Ignore also local symbols and undefined symbols. */
5175 if (! (*s->bed->elf_hash_symbol) (h))
5176 {
5177 if (h->dynindx >= s->min_dynindx)
5178 h->dynindx = s->local_indx++;
5179 return TRUE;
5180 }
5181
5182 bucket = s->hashval[h->dynindx] % s->bucketcount;
5183 val = (s->hashval[h->dynindx] >> s->shift1)
5184 & ((s->maskbits >> s->shift1) - 1);
5185 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5186 s->bitmask[val]
5187 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5188 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5189 if (s->counts[bucket] == 1)
5190 /* Last element terminates the chain. */
5191 val |= 1;
5192 bfd_put_32 (s->output_bfd, val,
5193 s->contents + (s->indx[bucket] - s->symindx) * 4);
5194 --s->counts[bucket];
5195 h->dynindx = s->indx[bucket]++;
5196 return TRUE;
5197 }
5198
5199 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5200
5201 bfd_boolean
5202 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5203 {
5204 return !(h->forced_local
5205 || h->root.type == bfd_link_hash_undefined
5206 || h->root.type == bfd_link_hash_undefweak
5207 || ((h->root.type == bfd_link_hash_defined
5208 || h->root.type == bfd_link_hash_defweak)
5209 && h->root.u.def.section->output_section == NULL));
5210 }
5211
5212 /* Array used to determine the number of hash table buckets to use
5213 based on the number of symbols there are. If there are fewer than
5214 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5215 fewer than 37 we use 17 buckets, and so forth. We never use more
5216 than 32771 buckets. */
5217
5218 static const size_t elf_buckets[] =
5219 {
5220 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5221 16411, 32771, 0
5222 };
5223
5224 /* Compute bucket count for hashing table. We do not use a static set
5225 of possible tables sizes anymore. Instead we determine for all
5226 possible reasonable sizes of the table the outcome (i.e., the
5227 number of collisions etc) and choose the best solution. The
5228 weighting functions are not too simple to allow the table to grow
5229 without bounds. Instead one of the weighting factors is the size.
5230 Therefore the result is always a good payoff between few collisions
5231 (= short chain lengths) and table size. */
5232 static size_t
5233 compute_bucket_count (struct bfd_link_info *info,
5234 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5235 unsigned long int nsyms,
5236 int gnu_hash)
5237 {
5238 size_t best_size = 0;
5239 unsigned long int i;
5240
5241 /* We have a problem here. The following code to optimize the table
5242 size requires an integer type with more the 32 bits. If
5243 BFD_HOST_U_64_BIT is set we know about such a type. */
5244 #ifdef BFD_HOST_U_64_BIT
5245 if (info->optimize)
5246 {
5247 size_t minsize;
5248 size_t maxsize;
5249 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5250 bfd *dynobj = elf_hash_table (info)->dynobj;
5251 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5252 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5253 unsigned long int *counts;
5254 bfd_size_type amt;
5255
5256 /* Possible optimization parameters: if we have NSYMS symbols we say
5257 that the hashing table must at least have NSYMS/4 and at most
5258 2*NSYMS buckets. */
5259 minsize = nsyms / 4;
5260 if (minsize == 0)
5261 minsize = 1;
5262 best_size = maxsize = nsyms * 2;
5263 if (gnu_hash)
5264 {
5265 if (minsize < 2)
5266 minsize = 2;
5267 if ((best_size & 31) == 0)
5268 ++best_size;
5269 }
5270
5271 /* Create array where we count the collisions in. We must use bfd_malloc
5272 since the size could be large. */
5273 amt = maxsize;
5274 amt *= sizeof (unsigned long int);
5275 counts = bfd_malloc (amt);
5276 if (counts == NULL)
5277 return 0;
5278
5279 /* Compute the "optimal" size for the hash table. The criteria is a
5280 minimal chain length. The minor criteria is (of course) the size
5281 of the table. */
5282 for (i = minsize; i < maxsize; ++i)
5283 {
5284 /* Walk through the array of hashcodes and count the collisions. */
5285 BFD_HOST_U_64_BIT max;
5286 unsigned long int j;
5287 unsigned long int fact;
5288
5289 if (gnu_hash && (i & 31) == 0)
5290 continue;
5291
5292 memset (counts, '\0', i * sizeof (unsigned long int));
5293
5294 /* Determine how often each hash bucket is used. */
5295 for (j = 0; j < nsyms; ++j)
5296 ++counts[hashcodes[j] % i];
5297
5298 /* For the weight function we need some information about the
5299 pagesize on the target. This is information need not be 100%
5300 accurate. Since this information is not available (so far) we
5301 define it here to a reasonable default value. If it is crucial
5302 to have a better value some day simply define this value. */
5303 # ifndef BFD_TARGET_PAGESIZE
5304 # define BFD_TARGET_PAGESIZE (4096)
5305 # endif
5306
5307 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5308 and the chains. */
5309 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5310
5311 # if 1
5312 /* Variant 1: optimize for short chains. We add the squares
5313 of all the chain lengths (which favors many small chain
5314 over a few long chains). */
5315 for (j = 0; j < i; ++j)
5316 max += counts[j] * counts[j];
5317
5318 /* This adds penalties for the overall size of the table. */
5319 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5320 max *= fact * fact;
5321 # else
5322 /* Variant 2: Optimize a lot more for small table. Here we
5323 also add squares of the size but we also add penalties for
5324 empty slots (the +1 term). */
5325 for (j = 0; j < i; ++j)
5326 max += (1 + counts[j]) * (1 + counts[j]);
5327
5328 /* The overall size of the table is considered, but not as
5329 strong as in variant 1, where it is squared. */
5330 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5331 max *= fact;
5332 # endif
5333
5334 /* Compare with current best results. */
5335 if (max < best_chlen)
5336 {
5337 best_chlen = max;
5338 best_size = i;
5339 }
5340 }
5341
5342 free (counts);
5343 }
5344 else
5345 #endif /* defined (BFD_HOST_U_64_BIT) */
5346 {
5347 /* This is the fallback solution if no 64bit type is available or if we
5348 are not supposed to spend much time on optimizations. We select the
5349 bucket count using a fixed set of numbers. */
5350 for (i = 0; elf_buckets[i] != 0; i++)
5351 {
5352 best_size = elf_buckets[i];
5353 if (nsyms < elf_buckets[i + 1])
5354 break;
5355 }
5356 if (gnu_hash && best_size < 2)
5357 best_size = 2;
5358 }
5359
5360 return best_size;
5361 }
5362
5363 /* Set up the sizes and contents of the ELF dynamic sections. This is
5364 called by the ELF linker emulation before_allocation routine. We
5365 must set the sizes of the sections before the linker sets the
5366 addresses of the various sections. */
5367
5368 bfd_boolean
5369 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5370 const char *soname,
5371 const char *rpath,
5372 const char *filter_shlib,
5373 const char * const *auxiliary_filters,
5374 struct bfd_link_info *info,
5375 asection **sinterpptr,
5376 struct bfd_elf_version_tree *verdefs)
5377 {
5378 bfd_size_type soname_indx;
5379 bfd *dynobj;
5380 const struct elf_backend_data *bed;
5381 struct elf_assign_sym_version_info asvinfo;
5382
5383 *sinterpptr = NULL;
5384
5385 soname_indx = (bfd_size_type) -1;
5386
5387 if (!is_elf_hash_table (info->hash))
5388 return TRUE;
5389
5390 bed = get_elf_backend_data (output_bfd);
5391 if (info->execstack)
5392 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5393 else if (info->noexecstack)
5394 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5395 else
5396 {
5397 bfd *inputobj;
5398 asection *notesec = NULL;
5399 int exec = 0;
5400
5401 for (inputobj = info->input_bfds;
5402 inputobj;
5403 inputobj = inputobj->link_next)
5404 {
5405 asection *s;
5406
5407 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5408 continue;
5409 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5410 if (s)
5411 {
5412 if (s->flags & SEC_CODE)
5413 exec = PF_X;
5414 notesec = s;
5415 }
5416 else if (bed->default_execstack)
5417 exec = PF_X;
5418 }
5419 if (notesec)
5420 {
5421 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5422 if (exec && info->relocatable
5423 && notesec->output_section != bfd_abs_section_ptr)
5424 notesec->output_section->flags |= SEC_CODE;
5425 }
5426 }
5427
5428 /* Any syms created from now on start with -1 in
5429 got.refcount/offset and plt.refcount/offset. */
5430 elf_hash_table (info)->init_got_refcount
5431 = elf_hash_table (info)->init_got_offset;
5432 elf_hash_table (info)->init_plt_refcount
5433 = elf_hash_table (info)->init_plt_offset;
5434
5435 /* The backend may have to create some sections regardless of whether
5436 we're dynamic or not. */
5437 if (bed->elf_backend_always_size_sections
5438 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5439 return FALSE;
5440
5441 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5442 return FALSE;
5443
5444 dynobj = elf_hash_table (info)->dynobj;
5445
5446 /* If there were no dynamic objects in the link, there is nothing to
5447 do here. */
5448 if (dynobj == NULL)
5449 return TRUE;
5450
5451 if (elf_hash_table (info)->dynamic_sections_created)
5452 {
5453 struct elf_info_failed eif;
5454 struct elf_link_hash_entry *h;
5455 asection *dynstr;
5456 struct bfd_elf_version_tree *t;
5457 struct bfd_elf_version_expr *d;
5458 asection *s;
5459 bfd_boolean all_defined;
5460
5461 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5462 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5463
5464 if (soname != NULL)
5465 {
5466 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5467 soname, TRUE);
5468 if (soname_indx == (bfd_size_type) -1
5469 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5470 return FALSE;
5471 }
5472
5473 if (info->symbolic)
5474 {
5475 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5476 return FALSE;
5477 info->flags |= DF_SYMBOLIC;
5478 }
5479
5480 if (rpath != NULL)
5481 {
5482 bfd_size_type indx;
5483
5484 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5485 TRUE);
5486 if (indx == (bfd_size_type) -1
5487 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5488 return FALSE;
5489
5490 if (info->new_dtags)
5491 {
5492 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5493 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5494 return FALSE;
5495 }
5496 }
5497
5498 if (filter_shlib != NULL)
5499 {
5500 bfd_size_type indx;
5501
5502 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5503 filter_shlib, TRUE);
5504 if (indx == (bfd_size_type) -1
5505 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5506 return FALSE;
5507 }
5508
5509 if (auxiliary_filters != NULL)
5510 {
5511 const char * const *p;
5512
5513 for (p = auxiliary_filters; *p != NULL; p++)
5514 {
5515 bfd_size_type indx;
5516
5517 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5518 *p, TRUE);
5519 if (indx == (bfd_size_type) -1
5520 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5521 return FALSE;
5522 }
5523 }
5524
5525 eif.info = info;
5526 eif.verdefs = verdefs;
5527 eif.failed = FALSE;
5528
5529 /* If we are supposed to export all symbols into the dynamic symbol
5530 table (this is not the normal case), then do so. */
5531 if (info->export_dynamic
5532 || (info->executable && info->dynamic))
5533 {
5534 elf_link_hash_traverse (elf_hash_table (info),
5535 _bfd_elf_export_symbol,
5536 &eif);
5537 if (eif.failed)
5538 return FALSE;
5539 }
5540
5541 /* Make all global versions with definition. */
5542 for (t = verdefs; t != NULL; t = t->next)
5543 for (d = t->globals.list; d != NULL; d = d->next)
5544 if (!d->symver && d->symbol)
5545 {
5546 const char *verstr, *name;
5547 size_t namelen, verlen, newlen;
5548 char *newname, *p;
5549 struct elf_link_hash_entry *newh;
5550
5551 name = d->symbol;
5552 namelen = strlen (name);
5553 verstr = t->name;
5554 verlen = strlen (verstr);
5555 newlen = namelen + verlen + 3;
5556
5557 newname = bfd_malloc (newlen);
5558 if (newname == NULL)
5559 return FALSE;
5560 memcpy (newname, name, namelen);
5561
5562 /* Check the hidden versioned definition. */
5563 p = newname + namelen;
5564 *p++ = ELF_VER_CHR;
5565 memcpy (p, verstr, verlen + 1);
5566 newh = elf_link_hash_lookup (elf_hash_table (info),
5567 newname, FALSE, FALSE,
5568 FALSE);
5569 if (newh == NULL
5570 || (newh->root.type != bfd_link_hash_defined
5571 && newh->root.type != bfd_link_hash_defweak))
5572 {
5573 /* Check the default versioned definition. */
5574 *p++ = ELF_VER_CHR;
5575 memcpy (p, verstr, verlen + 1);
5576 newh = elf_link_hash_lookup (elf_hash_table (info),
5577 newname, FALSE, FALSE,
5578 FALSE);
5579 }
5580 free (newname);
5581
5582 /* Mark this version if there is a definition and it is
5583 not defined in a shared object. */
5584 if (newh != NULL
5585 && !newh->def_dynamic
5586 && (newh->root.type == bfd_link_hash_defined
5587 || newh->root.type == bfd_link_hash_defweak))
5588 d->symver = 1;
5589 }
5590
5591 /* Attach all the symbols to their version information. */
5592 asvinfo.output_bfd = output_bfd;
5593 asvinfo.info = info;
5594 asvinfo.verdefs = verdefs;
5595 asvinfo.failed = FALSE;
5596
5597 elf_link_hash_traverse (elf_hash_table (info),
5598 _bfd_elf_link_assign_sym_version,
5599 &asvinfo);
5600 if (asvinfo.failed)
5601 return FALSE;
5602
5603 if (!info->allow_undefined_version)
5604 {
5605 /* Check if all global versions have a definition. */
5606 all_defined = TRUE;
5607 for (t = verdefs; t != NULL; t = t->next)
5608 for (d = t->globals.list; d != NULL; d = d->next)
5609 if (!d->symver && !d->script)
5610 {
5611 (*_bfd_error_handler)
5612 (_("%s: undefined version: %s"),
5613 d->pattern, t->name);
5614 all_defined = FALSE;
5615 }
5616
5617 if (!all_defined)
5618 {
5619 bfd_set_error (bfd_error_bad_value);
5620 return FALSE;
5621 }
5622 }
5623
5624 /* Find all symbols which were defined in a dynamic object and make
5625 the backend pick a reasonable value for them. */
5626 elf_link_hash_traverse (elf_hash_table (info),
5627 _bfd_elf_adjust_dynamic_symbol,
5628 &eif);
5629 if (eif.failed)
5630 return FALSE;
5631
5632 /* Add some entries to the .dynamic section. We fill in some of the
5633 values later, in bfd_elf_final_link, but we must add the entries
5634 now so that we know the final size of the .dynamic section. */
5635
5636 /* If there are initialization and/or finalization functions to
5637 call then add the corresponding DT_INIT/DT_FINI entries. */
5638 h = (info->init_function
5639 ? elf_link_hash_lookup (elf_hash_table (info),
5640 info->init_function, FALSE,
5641 FALSE, FALSE)
5642 : NULL);
5643 if (h != NULL
5644 && (h->ref_regular
5645 || h->def_regular))
5646 {
5647 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5648 return FALSE;
5649 }
5650 h = (info->fini_function
5651 ? elf_link_hash_lookup (elf_hash_table (info),
5652 info->fini_function, FALSE,
5653 FALSE, FALSE)
5654 : NULL);
5655 if (h != NULL
5656 && (h->ref_regular
5657 || h->def_regular))
5658 {
5659 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5660 return FALSE;
5661 }
5662
5663 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5664 if (s != NULL && s->linker_has_input)
5665 {
5666 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5667 if (! info->executable)
5668 {
5669 bfd *sub;
5670 asection *o;
5671
5672 for (sub = info->input_bfds; sub != NULL;
5673 sub = sub->link_next)
5674 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5675 for (o = sub->sections; o != NULL; o = o->next)
5676 if (elf_section_data (o)->this_hdr.sh_type
5677 == SHT_PREINIT_ARRAY)
5678 {
5679 (*_bfd_error_handler)
5680 (_("%B: .preinit_array section is not allowed in DSO"),
5681 sub);
5682 break;
5683 }
5684
5685 bfd_set_error (bfd_error_nonrepresentable_section);
5686 return FALSE;
5687 }
5688
5689 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5690 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5691 return FALSE;
5692 }
5693 s = bfd_get_section_by_name (output_bfd, ".init_array");
5694 if (s != NULL && s->linker_has_input)
5695 {
5696 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5697 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5698 return FALSE;
5699 }
5700 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5701 if (s != NULL && s->linker_has_input)
5702 {
5703 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5704 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5705 return FALSE;
5706 }
5707
5708 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5709 /* If .dynstr is excluded from the link, we don't want any of
5710 these tags. Strictly, we should be checking each section
5711 individually; This quick check covers for the case where
5712 someone does a /DISCARD/ : { *(*) }. */
5713 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5714 {
5715 bfd_size_type strsize;
5716
5717 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5718 if ((info->emit_hash
5719 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5720 || (info->emit_gnu_hash
5721 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5722 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5723 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5724 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5725 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5726 bed->s->sizeof_sym))
5727 return FALSE;
5728 }
5729 }
5730
5731 /* The backend must work out the sizes of all the other dynamic
5732 sections. */
5733 if (bed->elf_backend_size_dynamic_sections
5734 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5735 return FALSE;
5736
5737 if (elf_hash_table (info)->dynamic_sections_created)
5738 {
5739 unsigned long section_sym_count;
5740 asection *s;
5741
5742 /* Set up the version definition section. */
5743 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5744 BFD_ASSERT (s != NULL);
5745
5746 /* We may have created additional version definitions if we are
5747 just linking a regular application. */
5748 verdefs = asvinfo.verdefs;
5749
5750 /* Skip anonymous version tag. */
5751 if (verdefs != NULL && verdefs->vernum == 0)
5752 verdefs = verdefs->next;
5753
5754 if (verdefs == NULL && !info->create_default_symver)
5755 s->flags |= SEC_EXCLUDE;
5756 else
5757 {
5758 unsigned int cdefs;
5759 bfd_size_type size;
5760 struct bfd_elf_version_tree *t;
5761 bfd_byte *p;
5762 Elf_Internal_Verdef def;
5763 Elf_Internal_Verdaux defaux;
5764 struct bfd_link_hash_entry *bh;
5765 struct elf_link_hash_entry *h;
5766 const char *name;
5767
5768 cdefs = 0;
5769 size = 0;
5770
5771 /* Make space for the base version. */
5772 size += sizeof (Elf_External_Verdef);
5773 size += sizeof (Elf_External_Verdaux);
5774 ++cdefs;
5775
5776 /* Make space for the default version. */
5777 if (info->create_default_symver)
5778 {
5779 size += sizeof (Elf_External_Verdef);
5780 ++cdefs;
5781 }
5782
5783 for (t = verdefs; t != NULL; t = t->next)
5784 {
5785 struct bfd_elf_version_deps *n;
5786
5787 size += sizeof (Elf_External_Verdef);
5788 size += sizeof (Elf_External_Verdaux);
5789 ++cdefs;
5790
5791 for (n = t->deps; n != NULL; n = n->next)
5792 size += sizeof (Elf_External_Verdaux);
5793 }
5794
5795 s->size = size;
5796 s->contents = bfd_alloc (output_bfd, s->size);
5797 if (s->contents == NULL && s->size != 0)
5798 return FALSE;
5799
5800 /* Fill in the version definition section. */
5801
5802 p = s->contents;
5803
5804 def.vd_version = VER_DEF_CURRENT;
5805 def.vd_flags = VER_FLG_BASE;
5806 def.vd_ndx = 1;
5807 def.vd_cnt = 1;
5808 if (info->create_default_symver)
5809 {
5810 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5811 def.vd_next = sizeof (Elf_External_Verdef);
5812 }
5813 else
5814 {
5815 def.vd_aux = sizeof (Elf_External_Verdef);
5816 def.vd_next = (sizeof (Elf_External_Verdef)
5817 + sizeof (Elf_External_Verdaux));
5818 }
5819
5820 if (soname_indx != (bfd_size_type) -1)
5821 {
5822 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5823 soname_indx);
5824 def.vd_hash = bfd_elf_hash (soname);
5825 defaux.vda_name = soname_indx;
5826 name = soname;
5827 }
5828 else
5829 {
5830 bfd_size_type indx;
5831
5832 name = lbasename (output_bfd->filename);
5833 def.vd_hash = bfd_elf_hash (name);
5834 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5835 name, FALSE);
5836 if (indx == (bfd_size_type) -1)
5837 return FALSE;
5838 defaux.vda_name = indx;
5839 }
5840 defaux.vda_next = 0;
5841
5842 _bfd_elf_swap_verdef_out (output_bfd, &def,
5843 (Elf_External_Verdef *) p);
5844 p += sizeof (Elf_External_Verdef);
5845 if (info->create_default_symver)
5846 {
5847 /* Add a symbol representing this version. */
5848 bh = NULL;
5849 if (! (_bfd_generic_link_add_one_symbol
5850 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5851 0, NULL, FALSE,
5852 get_elf_backend_data (dynobj)->collect, &bh)))
5853 return FALSE;
5854 h = (struct elf_link_hash_entry *) bh;
5855 h->non_elf = 0;
5856 h->def_regular = 1;
5857 h->type = STT_OBJECT;
5858 h->verinfo.vertree = NULL;
5859
5860 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5861 return FALSE;
5862
5863 /* Create a duplicate of the base version with the same
5864 aux block, but different flags. */
5865 def.vd_flags = 0;
5866 def.vd_ndx = 2;
5867 def.vd_aux = sizeof (Elf_External_Verdef);
5868 if (verdefs)
5869 def.vd_next = (sizeof (Elf_External_Verdef)
5870 + sizeof (Elf_External_Verdaux));
5871 else
5872 def.vd_next = 0;
5873 _bfd_elf_swap_verdef_out (output_bfd, &def,
5874 (Elf_External_Verdef *) p);
5875 p += sizeof (Elf_External_Verdef);
5876 }
5877 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5878 (Elf_External_Verdaux *) p);
5879 p += sizeof (Elf_External_Verdaux);
5880
5881 for (t = verdefs; t != NULL; t = t->next)
5882 {
5883 unsigned int cdeps;
5884 struct bfd_elf_version_deps *n;
5885
5886 cdeps = 0;
5887 for (n = t->deps; n != NULL; n = n->next)
5888 ++cdeps;
5889
5890 /* Add a symbol representing this version. */
5891 bh = NULL;
5892 if (! (_bfd_generic_link_add_one_symbol
5893 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5894 0, NULL, FALSE,
5895 get_elf_backend_data (dynobj)->collect, &bh)))
5896 return FALSE;
5897 h = (struct elf_link_hash_entry *) bh;
5898 h->non_elf = 0;
5899 h->def_regular = 1;
5900 h->type = STT_OBJECT;
5901 h->verinfo.vertree = t;
5902
5903 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5904 return FALSE;
5905
5906 def.vd_version = VER_DEF_CURRENT;
5907 def.vd_flags = 0;
5908 if (t->globals.list == NULL
5909 && t->locals.list == NULL
5910 && ! t->used)
5911 def.vd_flags |= VER_FLG_WEAK;
5912 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5913 def.vd_cnt = cdeps + 1;
5914 def.vd_hash = bfd_elf_hash (t->name);
5915 def.vd_aux = sizeof (Elf_External_Verdef);
5916 def.vd_next = 0;
5917 if (t->next != NULL)
5918 def.vd_next = (sizeof (Elf_External_Verdef)
5919 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5920
5921 _bfd_elf_swap_verdef_out (output_bfd, &def,
5922 (Elf_External_Verdef *) p);
5923 p += sizeof (Elf_External_Verdef);
5924
5925 defaux.vda_name = h->dynstr_index;
5926 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5927 h->dynstr_index);
5928 defaux.vda_next = 0;
5929 if (t->deps != NULL)
5930 defaux.vda_next = sizeof (Elf_External_Verdaux);
5931 t->name_indx = defaux.vda_name;
5932
5933 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5934 (Elf_External_Verdaux *) p);
5935 p += sizeof (Elf_External_Verdaux);
5936
5937 for (n = t->deps; n != NULL; n = n->next)
5938 {
5939 if (n->version_needed == NULL)
5940 {
5941 /* This can happen if there was an error in the
5942 version script. */
5943 defaux.vda_name = 0;
5944 }
5945 else
5946 {
5947 defaux.vda_name = n->version_needed->name_indx;
5948 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5949 defaux.vda_name);
5950 }
5951 if (n->next == NULL)
5952 defaux.vda_next = 0;
5953 else
5954 defaux.vda_next = sizeof (Elf_External_Verdaux);
5955
5956 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5957 (Elf_External_Verdaux *) p);
5958 p += sizeof (Elf_External_Verdaux);
5959 }
5960 }
5961
5962 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5963 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5964 return FALSE;
5965
5966 elf_tdata (output_bfd)->cverdefs = cdefs;
5967 }
5968
5969 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5970 {
5971 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5972 return FALSE;
5973 }
5974 else if (info->flags & DF_BIND_NOW)
5975 {
5976 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5977 return FALSE;
5978 }
5979
5980 if (info->flags_1)
5981 {
5982 if (info->executable)
5983 info->flags_1 &= ~ (DF_1_INITFIRST
5984 | DF_1_NODELETE
5985 | DF_1_NOOPEN);
5986 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5987 return FALSE;
5988 }
5989
5990 /* Work out the size of the version reference section. */
5991
5992 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5993 BFD_ASSERT (s != NULL);
5994 {
5995 struct elf_find_verdep_info sinfo;
5996
5997 sinfo.output_bfd = output_bfd;
5998 sinfo.info = info;
5999 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6000 if (sinfo.vers == 0)
6001 sinfo.vers = 1;
6002 sinfo.failed = FALSE;
6003
6004 elf_link_hash_traverse (elf_hash_table (info),
6005 _bfd_elf_link_find_version_dependencies,
6006 &sinfo);
6007 if (sinfo.failed)
6008 return FALSE;
6009
6010 if (elf_tdata (output_bfd)->verref == NULL)
6011 s->flags |= SEC_EXCLUDE;
6012 else
6013 {
6014 Elf_Internal_Verneed *t;
6015 unsigned int size;
6016 unsigned int crefs;
6017 bfd_byte *p;
6018
6019 /* Build the version definition section. */
6020 size = 0;
6021 crefs = 0;
6022 for (t = elf_tdata (output_bfd)->verref;
6023 t != NULL;
6024 t = t->vn_nextref)
6025 {
6026 Elf_Internal_Vernaux *a;
6027
6028 size += sizeof (Elf_External_Verneed);
6029 ++crefs;
6030 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6031 size += sizeof (Elf_External_Vernaux);
6032 }
6033
6034 s->size = size;
6035 s->contents = bfd_alloc (output_bfd, s->size);
6036 if (s->contents == NULL)
6037 return FALSE;
6038
6039 p = s->contents;
6040 for (t = elf_tdata (output_bfd)->verref;
6041 t != NULL;
6042 t = t->vn_nextref)
6043 {
6044 unsigned int caux;
6045 Elf_Internal_Vernaux *a;
6046 bfd_size_type indx;
6047
6048 caux = 0;
6049 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6050 ++caux;
6051
6052 t->vn_version = VER_NEED_CURRENT;
6053 t->vn_cnt = caux;
6054 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6055 elf_dt_name (t->vn_bfd) != NULL
6056 ? elf_dt_name (t->vn_bfd)
6057 : lbasename (t->vn_bfd->filename),
6058 FALSE);
6059 if (indx == (bfd_size_type) -1)
6060 return FALSE;
6061 t->vn_file = indx;
6062 t->vn_aux = sizeof (Elf_External_Verneed);
6063 if (t->vn_nextref == NULL)
6064 t->vn_next = 0;
6065 else
6066 t->vn_next = (sizeof (Elf_External_Verneed)
6067 + caux * sizeof (Elf_External_Vernaux));
6068
6069 _bfd_elf_swap_verneed_out (output_bfd, t,
6070 (Elf_External_Verneed *) p);
6071 p += sizeof (Elf_External_Verneed);
6072
6073 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6074 {
6075 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6076 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6077 a->vna_nodename, FALSE);
6078 if (indx == (bfd_size_type) -1)
6079 return FALSE;
6080 a->vna_name = indx;
6081 if (a->vna_nextptr == NULL)
6082 a->vna_next = 0;
6083 else
6084 a->vna_next = sizeof (Elf_External_Vernaux);
6085
6086 _bfd_elf_swap_vernaux_out (output_bfd, a,
6087 (Elf_External_Vernaux *) p);
6088 p += sizeof (Elf_External_Vernaux);
6089 }
6090 }
6091
6092 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6093 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6094 return FALSE;
6095
6096 elf_tdata (output_bfd)->cverrefs = crefs;
6097 }
6098 }
6099
6100 if ((elf_tdata (output_bfd)->cverrefs == 0
6101 && elf_tdata (output_bfd)->cverdefs == 0)
6102 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6103 &section_sym_count) == 0)
6104 {
6105 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6106 s->flags |= SEC_EXCLUDE;
6107 }
6108 }
6109 return TRUE;
6110 }
6111
6112 /* Find the first non-excluded output section. We'll use its
6113 section symbol for some emitted relocs. */
6114 void
6115 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6116 {
6117 asection *s;
6118
6119 for (s = output_bfd->sections; s != NULL; s = s->next)
6120 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6121 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6122 {
6123 elf_hash_table (info)->text_index_section = s;
6124 break;
6125 }
6126 }
6127
6128 /* Find two non-excluded output sections, one for code, one for data.
6129 We'll use their section symbols for some emitted relocs. */
6130 void
6131 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6132 {
6133 asection *s;
6134
6135 for (s = output_bfd->sections; s != NULL; s = s->next)
6136 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6137 == (SEC_ALLOC | SEC_READONLY))
6138 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6139 {
6140 elf_hash_table (info)->text_index_section = s;
6141 break;
6142 }
6143
6144 for (s = output_bfd->sections; s != NULL; s = s->next)
6145 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6146 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6147 {
6148 elf_hash_table (info)->data_index_section = s;
6149 break;
6150 }
6151
6152 if (elf_hash_table (info)->text_index_section == NULL)
6153 elf_hash_table (info)->text_index_section
6154 = elf_hash_table (info)->data_index_section;
6155 }
6156
6157 bfd_boolean
6158 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6159 {
6160 const struct elf_backend_data *bed;
6161
6162 if (!is_elf_hash_table (info->hash))
6163 return TRUE;
6164
6165 bed = get_elf_backend_data (output_bfd);
6166 (*bed->elf_backend_init_index_section) (output_bfd, info);
6167
6168 if (elf_hash_table (info)->dynamic_sections_created)
6169 {
6170 bfd *dynobj;
6171 asection *s;
6172 bfd_size_type dynsymcount;
6173 unsigned long section_sym_count;
6174 unsigned int dtagcount;
6175
6176 dynobj = elf_hash_table (info)->dynobj;
6177
6178 /* Assign dynsym indicies. In a shared library we generate a
6179 section symbol for each output section, which come first.
6180 Next come all of the back-end allocated local dynamic syms,
6181 followed by the rest of the global symbols. */
6182
6183 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6184 &section_sym_count);
6185
6186 /* Work out the size of the symbol version section. */
6187 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6188 BFD_ASSERT (s != NULL);
6189 if (dynsymcount != 0
6190 && (s->flags & SEC_EXCLUDE) == 0)
6191 {
6192 s->size = dynsymcount * sizeof (Elf_External_Versym);
6193 s->contents = bfd_zalloc (output_bfd, s->size);
6194 if (s->contents == NULL)
6195 return FALSE;
6196
6197 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6198 return FALSE;
6199 }
6200
6201 /* Set the size of the .dynsym and .hash sections. We counted
6202 the number of dynamic symbols in elf_link_add_object_symbols.
6203 We will build the contents of .dynsym and .hash when we build
6204 the final symbol table, because until then we do not know the
6205 correct value to give the symbols. We built the .dynstr
6206 section as we went along in elf_link_add_object_symbols. */
6207 s = bfd_get_section_by_name (dynobj, ".dynsym");
6208 BFD_ASSERT (s != NULL);
6209 s->size = dynsymcount * bed->s->sizeof_sym;
6210
6211 if (dynsymcount != 0)
6212 {
6213 s->contents = bfd_alloc (output_bfd, s->size);
6214 if (s->contents == NULL)
6215 return FALSE;
6216
6217 /* The first entry in .dynsym is a dummy symbol.
6218 Clear all the section syms, in case we don't output them all. */
6219 ++section_sym_count;
6220 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6221 }
6222
6223 elf_hash_table (info)->bucketcount = 0;
6224
6225 /* Compute the size of the hashing table. As a side effect this
6226 computes the hash values for all the names we export. */
6227 if (info->emit_hash)
6228 {
6229 unsigned long int *hashcodes;
6230 struct hash_codes_info hashinf;
6231 bfd_size_type amt;
6232 unsigned long int nsyms;
6233 size_t bucketcount;
6234 size_t hash_entry_size;
6235
6236 /* Compute the hash values for all exported symbols. At the same
6237 time store the values in an array so that we could use them for
6238 optimizations. */
6239 amt = dynsymcount * sizeof (unsigned long int);
6240 hashcodes = bfd_malloc (amt);
6241 if (hashcodes == NULL)
6242 return FALSE;
6243 hashinf.hashcodes = hashcodes;
6244 hashinf.error = FALSE;
6245
6246 /* Put all hash values in HASHCODES. */
6247 elf_link_hash_traverse (elf_hash_table (info),
6248 elf_collect_hash_codes, &hashinf);
6249 if (hashinf.error)
6250 return FALSE;
6251
6252 nsyms = hashinf.hashcodes - hashcodes;
6253 bucketcount
6254 = compute_bucket_count (info, hashcodes, nsyms, 0);
6255 free (hashcodes);
6256
6257 if (bucketcount == 0)
6258 return FALSE;
6259
6260 elf_hash_table (info)->bucketcount = bucketcount;
6261
6262 s = bfd_get_section_by_name (dynobj, ".hash");
6263 BFD_ASSERT (s != NULL);
6264 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6265 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6266 s->contents = bfd_zalloc (output_bfd, s->size);
6267 if (s->contents == NULL)
6268 return FALSE;
6269
6270 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6271 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6272 s->contents + hash_entry_size);
6273 }
6274
6275 if (info->emit_gnu_hash)
6276 {
6277 size_t i, cnt;
6278 unsigned char *contents;
6279 struct collect_gnu_hash_codes cinfo;
6280 bfd_size_type amt;
6281 size_t bucketcount;
6282
6283 memset (&cinfo, 0, sizeof (cinfo));
6284
6285 /* Compute the hash values for all exported symbols. At the same
6286 time store the values in an array so that we could use them for
6287 optimizations. */
6288 amt = dynsymcount * 2 * sizeof (unsigned long int);
6289 cinfo.hashcodes = bfd_malloc (amt);
6290 if (cinfo.hashcodes == NULL)
6291 return FALSE;
6292
6293 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6294 cinfo.min_dynindx = -1;
6295 cinfo.output_bfd = output_bfd;
6296 cinfo.bed = bed;
6297
6298 /* Put all hash values in HASHCODES. */
6299 elf_link_hash_traverse (elf_hash_table (info),
6300 elf_collect_gnu_hash_codes, &cinfo);
6301 if (cinfo.error)
6302 return FALSE;
6303
6304 bucketcount
6305 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6306
6307 if (bucketcount == 0)
6308 {
6309 free (cinfo.hashcodes);
6310 return FALSE;
6311 }
6312
6313 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6314 BFD_ASSERT (s != NULL);
6315
6316 if (cinfo.nsyms == 0)
6317 {
6318 /* Empty .gnu.hash section is special. */
6319 BFD_ASSERT (cinfo.min_dynindx == -1);
6320 free (cinfo.hashcodes);
6321 s->size = 5 * 4 + bed->s->arch_size / 8;
6322 contents = bfd_zalloc (output_bfd, s->size);
6323 if (contents == NULL)
6324 return FALSE;
6325 s->contents = contents;
6326 /* 1 empty bucket. */
6327 bfd_put_32 (output_bfd, 1, contents);
6328 /* SYMIDX above the special symbol 0. */
6329 bfd_put_32 (output_bfd, 1, contents + 4);
6330 /* Just one word for bitmask. */
6331 bfd_put_32 (output_bfd, 1, contents + 8);
6332 /* Only hash fn bloom filter. */
6333 bfd_put_32 (output_bfd, 0, contents + 12);
6334 /* No hashes are valid - empty bitmask. */
6335 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6336 /* No hashes in the only bucket. */
6337 bfd_put_32 (output_bfd, 0,
6338 contents + 16 + bed->s->arch_size / 8);
6339 }
6340 else
6341 {
6342 unsigned long int maskwords, maskbitslog2;
6343 BFD_ASSERT (cinfo.min_dynindx != -1);
6344
6345 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6346 if (maskbitslog2 < 3)
6347 maskbitslog2 = 5;
6348 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6349 maskbitslog2 = maskbitslog2 + 3;
6350 else
6351 maskbitslog2 = maskbitslog2 + 2;
6352 if (bed->s->arch_size == 64)
6353 {
6354 if (maskbitslog2 == 5)
6355 maskbitslog2 = 6;
6356 cinfo.shift1 = 6;
6357 }
6358 else
6359 cinfo.shift1 = 5;
6360 cinfo.mask = (1 << cinfo.shift1) - 1;
6361 cinfo.shift2 = maskbitslog2;
6362 cinfo.maskbits = 1 << maskbitslog2;
6363 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6364 amt = bucketcount * sizeof (unsigned long int) * 2;
6365 amt += maskwords * sizeof (bfd_vma);
6366 cinfo.bitmask = bfd_malloc (amt);
6367 if (cinfo.bitmask == NULL)
6368 {
6369 free (cinfo.hashcodes);
6370 return FALSE;
6371 }
6372
6373 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6374 cinfo.indx = cinfo.counts + bucketcount;
6375 cinfo.symindx = dynsymcount - cinfo.nsyms;
6376 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6377
6378 /* Determine how often each hash bucket is used. */
6379 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6380 for (i = 0; i < cinfo.nsyms; ++i)
6381 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6382
6383 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6384 if (cinfo.counts[i] != 0)
6385 {
6386 cinfo.indx[i] = cnt;
6387 cnt += cinfo.counts[i];
6388 }
6389 BFD_ASSERT (cnt == dynsymcount);
6390 cinfo.bucketcount = bucketcount;
6391 cinfo.local_indx = cinfo.min_dynindx;
6392
6393 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6394 s->size += cinfo.maskbits / 8;
6395 contents = bfd_zalloc (output_bfd, s->size);
6396 if (contents == NULL)
6397 {
6398 free (cinfo.bitmask);
6399 free (cinfo.hashcodes);
6400 return FALSE;
6401 }
6402
6403 s->contents = contents;
6404 bfd_put_32 (output_bfd, bucketcount, contents);
6405 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6406 bfd_put_32 (output_bfd, maskwords, contents + 8);
6407 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6408 contents += 16 + cinfo.maskbits / 8;
6409
6410 for (i = 0; i < bucketcount; ++i)
6411 {
6412 if (cinfo.counts[i] == 0)
6413 bfd_put_32 (output_bfd, 0, contents);
6414 else
6415 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6416 contents += 4;
6417 }
6418
6419 cinfo.contents = contents;
6420
6421 /* Renumber dynamic symbols, populate .gnu.hash section. */
6422 elf_link_hash_traverse (elf_hash_table (info),
6423 elf_renumber_gnu_hash_syms, &cinfo);
6424
6425 contents = s->contents + 16;
6426 for (i = 0; i < maskwords; ++i)
6427 {
6428 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6429 contents);
6430 contents += bed->s->arch_size / 8;
6431 }
6432
6433 free (cinfo.bitmask);
6434 free (cinfo.hashcodes);
6435 }
6436 }
6437
6438 s = bfd_get_section_by_name (dynobj, ".dynstr");
6439 BFD_ASSERT (s != NULL);
6440
6441 elf_finalize_dynstr (output_bfd, info);
6442
6443 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6444
6445 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6446 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6447 return FALSE;
6448 }
6449
6450 return TRUE;
6451 }
6452 \f
6453 /* Indicate that we are only retrieving symbol values from this
6454 section. */
6455
6456 void
6457 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6458 {
6459 if (is_elf_hash_table (info->hash))
6460 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6461 _bfd_generic_link_just_syms (sec, info);
6462 }
6463
6464 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6465
6466 static void
6467 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6468 asection *sec)
6469 {
6470 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6471 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6472 }
6473
6474 /* Finish SHF_MERGE section merging. */
6475
6476 bfd_boolean
6477 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6478 {
6479 bfd *ibfd;
6480 asection *sec;
6481
6482 if (!is_elf_hash_table (info->hash))
6483 return FALSE;
6484
6485 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6486 if ((ibfd->flags & DYNAMIC) == 0)
6487 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6488 if ((sec->flags & SEC_MERGE) != 0
6489 && !bfd_is_abs_section (sec->output_section))
6490 {
6491 struct bfd_elf_section_data *secdata;
6492
6493 secdata = elf_section_data (sec);
6494 if (! _bfd_add_merge_section (abfd,
6495 &elf_hash_table (info)->merge_info,
6496 sec, &secdata->sec_info))
6497 return FALSE;
6498 else if (secdata->sec_info)
6499 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6500 }
6501
6502 if (elf_hash_table (info)->merge_info != NULL)
6503 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6504 merge_sections_remove_hook);
6505 return TRUE;
6506 }
6507
6508 /* Create an entry in an ELF linker hash table. */
6509
6510 struct bfd_hash_entry *
6511 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6512 struct bfd_hash_table *table,
6513 const char *string)
6514 {
6515 /* Allocate the structure if it has not already been allocated by a
6516 subclass. */
6517 if (entry == NULL)
6518 {
6519 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6520 if (entry == NULL)
6521 return entry;
6522 }
6523
6524 /* Call the allocation method of the superclass. */
6525 entry = _bfd_link_hash_newfunc (entry, table, string);
6526 if (entry != NULL)
6527 {
6528 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6529 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6530
6531 /* Set local fields. */
6532 ret->indx = -1;
6533 ret->dynindx = -1;
6534 ret->got = htab->init_got_refcount;
6535 ret->plt = htab->init_plt_refcount;
6536 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6537 - offsetof (struct elf_link_hash_entry, size)));
6538 /* Assume that we have been called by a non-ELF symbol reader.
6539 This flag is then reset by the code which reads an ELF input
6540 file. This ensures that a symbol created by a non-ELF symbol
6541 reader will have the flag set correctly. */
6542 ret->non_elf = 1;
6543 }
6544
6545 return entry;
6546 }
6547
6548 /* Copy data from an indirect symbol to its direct symbol, hiding the
6549 old indirect symbol. Also used for copying flags to a weakdef. */
6550
6551 void
6552 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6553 struct elf_link_hash_entry *dir,
6554 struct elf_link_hash_entry *ind)
6555 {
6556 struct elf_link_hash_table *htab;
6557
6558 /* Copy down any references that we may have already seen to the
6559 symbol which just became indirect. */
6560
6561 dir->ref_dynamic |= ind->ref_dynamic;
6562 dir->ref_regular |= ind->ref_regular;
6563 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6564 dir->non_got_ref |= ind->non_got_ref;
6565 dir->needs_plt |= ind->needs_plt;
6566 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6567
6568 if (ind->root.type != bfd_link_hash_indirect)
6569 return;
6570
6571 /* Copy over the global and procedure linkage table refcount entries.
6572 These may have been already set up by a check_relocs routine. */
6573 htab = elf_hash_table (info);
6574 if (ind->got.refcount > htab->init_got_refcount.refcount)
6575 {
6576 if (dir->got.refcount < 0)
6577 dir->got.refcount = 0;
6578 dir->got.refcount += ind->got.refcount;
6579 ind->got.refcount = htab->init_got_refcount.refcount;
6580 }
6581
6582 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6583 {
6584 if (dir->plt.refcount < 0)
6585 dir->plt.refcount = 0;
6586 dir->plt.refcount += ind->plt.refcount;
6587 ind->plt.refcount = htab->init_plt_refcount.refcount;
6588 }
6589
6590 if (ind->dynindx != -1)
6591 {
6592 if (dir->dynindx != -1)
6593 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6594 dir->dynindx = ind->dynindx;
6595 dir->dynstr_index = ind->dynstr_index;
6596 ind->dynindx = -1;
6597 ind->dynstr_index = 0;
6598 }
6599 }
6600
6601 void
6602 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6603 struct elf_link_hash_entry *h,
6604 bfd_boolean force_local)
6605 {
6606 h->plt = elf_hash_table (info)->init_plt_offset;
6607 h->needs_plt = 0;
6608 if (force_local)
6609 {
6610 h->forced_local = 1;
6611 if (h->dynindx != -1)
6612 {
6613 h->dynindx = -1;
6614 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6615 h->dynstr_index);
6616 }
6617 }
6618 }
6619
6620 /* Initialize an ELF linker hash table. */
6621
6622 bfd_boolean
6623 _bfd_elf_link_hash_table_init
6624 (struct elf_link_hash_table *table,
6625 bfd *abfd,
6626 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6627 struct bfd_hash_table *,
6628 const char *),
6629 unsigned int entsize)
6630 {
6631 bfd_boolean ret;
6632 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6633
6634 memset (table, 0, sizeof * table);
6635 table->init_got_refcount.refcount = can_refcount - 1;
6636 table->init_plt_refcount.refcount = can_refcount - 1;
6637 table->init_got_offset.offset = -(bfd_vma) 1;
6638 table->init_plt_offset.offset = -(bfd_vma) 1;
6639 /* The first dynamic symbol is a dummy. */
6640 table->dynsymcount = 1;
6641
6642 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6643 table->root.type = bfd_link_elf_hash_table;
6644
6645 return ret;
6646 }
6647
6648 /* Create an ELF linker hash table. */
6649
6650 struct bfd_link_hash_table *
6651 _bfd_elf_link_hash_table_create (bfd *abfd)
6652 {
6653 struct elf_link_hash_table *ret;
6654 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6655
6656 ret = bfd_malloc (amt);
6657 if (ret == NULL)
6658 return NULL;
6659
6660 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6661 sizeof (struct elf_link_hash_entry)))
6662 {
6663 free (ret);
6664 return NULL;
6665 }
6666
6667 return &ret->root;
6668 }
6669
6670 /* This is a hook for the ELF emulation code in the generic linker to
6671 tell the backend linker what file name to use for the DT_NEEDED
6672 entry for a dynamic object. */
6673
6674 void
6675 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6676 {
6677 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6678 && bfd_get_format (abfd) == bfd_object)
6679 elf_dt_name (abfd) = name;
6680 }
6681
6682 int
6683 bfd_elf_get_dyn_lib_class (bfd *abfd)
6684 {
6685 int lib_class;
6686 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6687 && bfd_get_format (abfd) == bfd_object)
6688 lib_class = elf_dyn_lib_class (abfd);
6689 else
6690 lib_class = 0;
6691 return lib_class;
6692 }
6693
6694 void
6695 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6696 {
6697 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6698 && bfd_get_format (abfd) == bfd_object)
6699 elf_dyn_lib_class (abfd) = lib_class;
6700 }
6701
6702 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6703 the linker ELF emulation code. */
6704
6705 struct bfd_link_needed_list *
6706 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6707 struct bfd_link_info *info)
6708 {
6709 if (! is_elf_hash_table (info->hash))
6710 return NULL;
6711 return elf_hash_table (info)->needed;
6712 }
6713
6714 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6715 hook for the linker ELF emulation code. */
6716
6717 struct bfd_link_needed_list *
6718 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6719 struct bfd_link_info *info)
6720 {
6721 if (! is_elf_hash_table (info->hash))
6722 return NULL;
6723 return elf_hash_table (info)->runpath;
6724 }
6725
6726 /* Get the name actually used for a dynamic object for a link. This
6727 is the SONAME entry if there is one. Otherwise, it is the string
6728 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6729
6730 const char *
6731 bfd_elf_get_dt_soname (bfd *abfd)
6732 {
6733 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6734 && bfd_get_format (abfd) == bfd_object)
6735 return elf_dt_name (abfd);
6736 return NULL;
6737 }
6738
6739 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6740 the ELF linker emulation code. */
6741
6742 bfd_boolean
6743 bfd_elf_get_bfd_needed_list (bfd *abfd,
6744 struct bfd_link_needed_list **pneeded)
6745 {
6746 asection *s;
6747 bfd_byte *dynbuf = NULL;
6748 unsigned int elfsec;
6749 unsigned long shlink;
6750 bfd_byte *extdyn, *extdynend;
6751 size_t extdynsize;
6752 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6753
6754 *pneeded = NULL;
6755
6756 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6757 || bfd_get_format (abfd) != bfd_object)
6758 return TRUE;
6759
6760 s = bfd_get_section_by_name (abfd, ".dynamic");
6761 if (s == NULL || s->size == 0)
6762 return TRUE;
6763
6764 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6765 goto error_return;
6766
6767 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6768 if (elfsec == SHN_BAD)
6769 goto error_return;
6770
6771 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6772
6773 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6774 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6775
6776 extdyn = dynbuf;
6777 extdynend = extdyn + s->size;
6778 for (; extdyn < extdynend; extdyn += extdynsize)
6779 {
6780 Elf_Internal_Dyn dyn;
6781
6782 (*swap_dyn_in) (abfd, extdyn, &dyn);
6783
6784 if (dyn.d_tag == DT_NULL)
6785 break;
6786
6787 if (dyn.d_tag == DT_NEEDED)
6788 {
6789 const char *string;
6790 struct bfd_link_needed_list *l;
6791 unsigned int tagv = dyn.d_un.d_val;
6792 bfd_size_type amt;
6793
6794 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6795 if (string == NULL)
6796 goto error_return;
6797
6798 amt = sizeof *l;
6799 l = bfd_alloc (abfd, amt);
6800 if (l == NULL)
6801 goto error_return;
6802
6803 l->by = abfd;
6804 l->name = string;
6805 l->next = *pneeded;
6806 *pneeded = l;
6807 }
6808 }
6809
6810 free (dynbuf);
6811
6812 return TRUE;
6813
6814 error_return:
6815 if (dynbuf != NULL)
6816 free (dynbuf);
6817 return FALSE;
6818 }
6819
6820 struct elf_symbuf_symbol
6821 {
6822 unsigned long st_name; /* Symbol name, index in string tbl */
6823 unsigned char st_info; /* Type and binding attributes */
6824 unsigned char st_other; /* Visibilty, and target specific */
6825 };
6826
6827 struct elf_symbuf_head
6828 {
6829 struct elf_symbuf_symbol *ssym;
6830 bfd_size_type count;
6831 unsigned int st_shndx;
6832 };
6833
6834 struct elf_symbol
6835 {
6836 union
6837 {
6838 Elf_Internal_Sym *isym;
6839 struct elf_symbuf_symbol *ssym;
6840 } u;
6841 const char *name;
6842 };
6843
6844 /* Sort references to symbols by ascending section number. */
6845
6846 static int
6847 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6848 {
6849 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6850 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6851
6852 return s1->st_shndx - s2->st_shndx;
6853 }
6854
6855 static int
6856 elf_sym_name_compare (const void *arg1, const void *arg2)
6857 {
6858 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6859 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6860 return strcmp (s1->name, s2->name);
6861 }
6862
6863 static struct elf_symbuf_head *
6864 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6865 {
6866 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6867 struct elf_symbuf_symbol *ssym;
6868 struct elf_symbuf_head *ssymbuf, *ssymhead;
6869 bfd_size_type i, shndx_count, total_size;
6870
6871 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6872 if (indbuf == NULL)
6873 return NULL;
6874
6875 for (ind = indbuf, i = 0; i < symcount; i++)
6876 if (isymbuf[i].st_shndx != SHN_UNDEF)
6877 *ind++ = &isymbuf[i];
6878 indbufend = ind;
6879
6880 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6881 elf_sort_elf_symbol);
6882
6883 shndx_count = 0;
6884 if (indbufend > indbuf)
6885 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6886 if (ind[0]->st_shndx != ind[1]->st_shndx)
6887 shndx_count++;
6888
6889 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6890 + (indbufend - indbuf) * sizeof (*ssym));
6891 ssymbuf = bfd_malloc (total_size);
6892 if (ssymbuf == NULL)
6893 {
6894 free (indbuf);
6895 return NULL;
6896 }
6897
6898 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6899 ssymbuf->ssym = NULL;
6900 ssymbuf->count = shndx_count;
6901 ssymbuf->st_shndx = 0;
6902 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6903 {
6904 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6905 {
6906 ssymhead++;
6907 ssymhead->ssym = ssym;
6908 ssymhead->count = 0;
6909 ssymhead->st_shndx = (*ind)->st_shndx;
6910 }
6911 ssym->st_name = (*ind)->st_name;
6912 ssym->st_info = (*ind)->st_info;
6913 ssym->st_other = (*ind)->st_other;
6914 ssymhead->count++;
6915 }
6916 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6917 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6918 == total_size));
6919
6920 free (indbuf);
6921 return ssymbuf;
6922 }
6923
6924 /* Check if 2 sections define the same set of local and global
6925 symbols. */
6926
6927 static bfd_boolean
6928 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6929 struct bfd_link_info *info)
6930 {
6931 bfd *bfd1, *bfd2;
6932 const struct elf_backend_data *bed1, *bed2;
6933 Elf_Internal_Shdr *hdr1, *hdr2;
6934 bfd_size_type symcount1, symcount2;
6935 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6936 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6937 Elf_Internal_Sym *isym, *isymend;
6938 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6939 bfd_size_type count1, count2, i;
6940 unsigned int shndx1, shndx2;
6941 bfd_boolean result;
6942
6943 bfd1 = sec1->owner;
6944 bfd2 = sec2->owner;
6945
6946 /* Both sections have to be in ELF. */
6947 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6948 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6949 return FALSE;
6950
6951 if (elf_section_type (sec1) != elf_section_type (sec2))
6952 return FALSE;
6953
6954 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6955 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6956 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
6957 return FALSE;
6958
6959 bed1 = get_elf_backend_data (bfd1);
6960 bed2 = get_elf_backend_data (bfd2);
6961 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6962 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6963 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6964 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6965
6966 if (symcount1 == 0 || symcount2 == 0)
6967 return FALSE;
6968
6969 result = FALSE;
6970 isymbuf1 = NULL;
6971 isymbuf2 = NULL;
6972 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6973 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6974
6975 if (ssymbuf1 == NULL)
6976 {
6977 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6978 NULL, NULL, NULL);
6979 if (isymbuf1 == NULL)
6980 goto done;
6981
6982 if (!info->reduce_memory_overheads)
6983 elf_tdata (bfd1)->symbuf = ssymbuf1
6984 = elf_create_symbuf (symcount1, isymbuf1);
6985 }
6986
6987 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6988 {
6989 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6990 NULL, NULL, NULL);
6991 if (isymbuf2 == NULL)
6992 goto done;
6993
6994 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6995 elf_tdata (bfd2)->symbuf = ssymbuf2
6996 = elf_create_symbuf (symcount2, isymbuf2);
6997 }
6998
6999 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7000 {
7001 /* Optimized faster version. */
7002 bfd_size_type lo, hi, mid;
7003 struct elf_symbol *symp;
7004 struct elf_symbuf_symbol *ssym, *ssymend;
7005
7006 lo = 0;
7007 hi = ssymbuf1->count;
7008 ssymbuf1++;
7009 count1 = 0;
7010 while (lo < hi)
7011 {
7012 mid = (lo + hi) / 2;
7013 if (shndx1 < ssymbuf1[mid].st_shndx)
7014 hi = mid;
7015 else if (shndx1 > ssymbuf1[mid].st_shndx)
7016 lo = mid + 1;
7017 else
7018 {
7019 count1 = ssymbuf1[mid].count;
7020 ssymbuf1 += mid;
7021 break;
7022 }
7023 }
7024
7025 lo = 0;
7026 hi = ssymbuf2->count;
7027 ssymbuf2++;
7028 count2 = 0;
7029 while (lo < hi)
7030 {
7031 mid = (lo + hi) / 2;
7032 if (shndx2 < ssymbuf2[mid].st_shndx)
7033 hi = mid;
7034 else if (shndx2 > ssymbuf2[mid].st_shndx)
7035 lo = mid + 1;
7036 else
7037 {
7038 count2 = ssymbuf2[mid].count;
7039 ssymbuf2 += mid;
7040 break;
7041 }
7042 }
7043
7044 if (count1 == 0 || count2 == 0 || count1 != count2)
7045 goto done;
7046
7047 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7048 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7049 if (symtable1 == NULL || symtable2 == NULL)
7050 goto done;
7051
7052 symp = symtable1;
7053 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7054 ssym < ssymend; ssym++, symp++)
7055 {
7056 symp->u.ssym = ssym;
7057 symp->name = bfd_elf_string_from_elf_section (bfd1,
7058 hdr1->sh_link,
7059 ssym->st_name);
7060 }
7061
7062 symp = symtable2;
7063 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7064 ssym < ssymend; ssym++, symp++)
7065 {
7066 symp->u.ssym = ssym;
7067 symp->name = bfd_elf_string_from_elf_section (bfd2,
7068 hdr2->sh_link,
7069 ssym->st_name);
7070 }
7071
7072 /* Sort symbol by name. */
7073 qsort (symtable1, count1, sizeof (struct elf_symbol),
7074 elf_sym_name_compare);
7075 qsort (symtable2, count1, sizeof (struct elf_symbol),
7076 elf_sym_name_compare);
7077
7078 for (i = 0; i < count1; i++)
7079 /* Two symbols must have the same binding, type and name. */
7080 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7081 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7082 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7083 goto done;
7084
7085 result = TRUE;
7086 goto done;
7087 }
7088
7089 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7090 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7091 if (symtable1 == NULL || symtable2 == NULL)
7092 goto done;
7093
7094 /* Count definitions in the section. */
7095 count1 = 0;
7096 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7097 if (isym->st_shndx == shndx1)
7098 symtable1[count1++].u.isym = isym;
7099
7100 count2 = 0;
7101 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7102 if (isym->st_shndx == shndx2)
7103 symtable2[count2++].u.isym = isym;
7104
7105 if (count1 == 0 || count2 == 0 || count1 != count2)
7106 goto done;
7107
7108 for (i = 0; i < count1; i++)
7109 symtable1[i].name
7110 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7111 symtable1[i].u.isym->st_name);
7112
7113 for (i = 0; i < count2; i++)
7114 symtable2[i].name
7115 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7116 symtable2[i].u.isym->st_name);
7117
7118 /* Sort symbol by name. */
7119 qsort (symtable1, count1, sizeof (struct elf_symbol),
7120 elf_sym_name_compare);
7121 qsort (symtable2, count1, sizeof (struct elf_symbol),
7122 elf_sym_name_compare);
7123
7124 for (i = 0; i < count1; i++)
7125 /* Two symbols must have the same binding, type and name. */
7126 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7127 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7128 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7129 goto done;
7130
7131 result = TRUE;
7132
7133 done:
7134 if (symtable1)
7135 free (symtable1);
7136 if (symtable2)
7137 free (symtable2);
7138 if (isymbuf1)
7139 free (isymbuf1);
7140 if (isymbuf2)
7141 free (isymbuf2);
7142
7143 return result;
7144 }
7145
7146 /* Return TRUE if 2 section types are compatible. */
7147
7148 bfd_boolean
7149 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7150 bfd *bbfd, const asection *bsec)
7151 {
7152 if (asec == NULL
7153 || bsec == NULL
7154 || abfd->xvec->flavour != bfd_target_elf_flavour
7155 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7156 return TRUE;
7157
7158 return elf_section_type (asec) == elf_section_type (bsec);
7159 }
7160 \f
7161 /* Final phase of ELF linker. */
7162
7163 /* A structure we use to avoid passing large numbers of arguments. */
7164
7165 struct elf_final_link_info
7166 {
7167 /* General link information. */
7168 struct bfd_link_info *info;
7169 /* Output BFD. */
7170 bfd *output_bfd;
7171 /* Symbol string table. */
7172 struct bfd_strtab_hash *symstrtab;
7173 /* .dynsym section. */
7174 asection *dynsym_sec;
7175 /* .hash section. */
7176 asection *hash_sec;
7177 /* symbol version section (.gnu.version). */
7178 asection *symver_sec;
7179 /* Buffer large enough to hold contents of any section. */
7180 bfd_byte *contents;
7181 /* Buffer large enough to hold external relocs of any section. */
7182 void *external_relocs;
7183 /* Buffer large enough to hold internal relocs of any section. */
7184 Elf_Internal_Rela *internal_relocs;
7185 /* Buffer large enough to hold external local symbols of any input
7186 BFD. */
7187 bfd_byte *external_syms;
7188 /* And a buffer for symbol section indices. */
7189 Elf_External_Sym_Shndx *locsym_shndx;
7190 /* Buffer large enough to hold internal local symbols of any input
7191 BFD. */
7192 Elf_Internal_Sym *internal_syms;
7193 /* Array large enough to hold a symbol index for each local symbol
7194 of any input BFD. */
7195 long *indices;
7196 /* Array large enough to hold a section pointer for each local
7197 symbol of any input BFD. */
7198 asection **sections;
7199 /* Buffer to hold swapped out symbols. */
7200 bfd_byte *symbuf;
7201 /* And one for symbol section indices. */
7202 Elf_External_Sym_Shndx *symshndxbuf;
7203 /* Number of swapped out symbols in buffer. */
7204 size_t symbuf_count;
7205 /* Number of symbols which fit in symbuf. */
7206 size_t symbuf_size;
7207 /* And same for symshndxbuf. */
7208 size_t shndxbuf_size;
7209 };
7210
7211 /* This struct is used to pass information to elf_link_output_extsym. */
7212
7213 struct elf_outext_info
7214 {
7215 bfd_boolean failed;
7216 bfd_boolean localsyms;
7217 struct elf_final_link_info *finfo;
7218 };
7219
7220
7221 /* Support for evaluating a complex relocation.
7222
7223 Complex relocations are generalized, self-describing relocations. The
7224 implementation of them consists of two parts: complex symbols, and the
7225 relocations themselves.
7226
7227 The relocations are use a reserved elf-wide relocation type code (R_RELC
7228 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7229 information (start bit, end bit, word width, etc) into the addend. This
7230 information is extracted from CGEN-generated operand tables within gas.
7231
7232 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7233 internal) representing prefix-notation expressions, including but not
7234 limited to those sorts of expressions normally encoded as addends in the
7235 addend field. The symbol mangling format is:
7236
7237 <node> := <literal>
7238 | <unary-operator> ':' <node>
7239 | <binary-operator> ':' <node> ':' <node>
7240 ;
7241
7242 <literal> := 's' <digits=N> ':' <N character symbol name>
7243 | 'S' <digits=N> ':' <N character section name>
7244 | '#' <hexdigits>
7245 ;
7246
7247 <binary-operator> := as in C
7248 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7249
7250 static void
7251 set_symbol_value (bfd *bfd_with_globals,
7252 Elf_Internal_Sym *isymbuf,
7253 size_t locsymcount,
7254 size_t symidx,
7255 bfd_vma val)
7256 {
7257 struct elf_link_hash_entry **sym_hashes;
7258 struct elf_link_hash_entry *h;
7259 size_t extsymoff = locsymcount;
7260
7261 if (symidx < locsymcount)
7262 {
7263 Elf_Internal_Sym *sym;
7264
7265 sym = isymbuf + symidx;
7266 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7267 {
7268 /* It is a local symbol: move it to the
7269 "absolute" section and give it a value. */
7270 sym->st_shndx = SHN_ABS;
7271 sym->st_value = val;
7272 return;
7273 }
7274 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7275 extsymoff = 0;
7276 }
7277
7278 /* It is a global symbol: set its link type
7279 to "defined" and give it a value. */
7280
7281 sym_hashes = elf_sym_hashes (bfd_with_globals);
7282 h = sym_hashes [symidx - extsymoff];
7283 while (h->root.type == bfd_link_hash_indirect
7284 || h->root.type == bfd_link_hash_warning)
7285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7286 h->root.type = bfd_link_hash_defined;
7287 h->root.u.def.value = val;
7288 h->root.u.def.section = bfd_abs_section_ptr;
7289 }
7290
7291 static bfd_boolean
7292 resolve_symbol (const char *name,
7293 bfd *input_bfd,
7294 struct elf_final_link_info *finfo,
7295 bfd_vma *result,
7296 Elf_Internal_Sym *isymbuf,
7297 size_t locsymcount)
7298 {
7299 Elf_Internal_Sym *sym;
7300 struct bfd_link_hash_entry *global_entry;
7301 const char *candidate = NULL;
7302 Elf_Internal_Shdr *symtab_hdr;
7303 size_t i;
7304
7305 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7306
7307 for (i = 0; i < locsymcount; ++ i)
7308 {
7309 sym = isymbuf + i;
7310
7311 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7312 continue;
7313
7314 candidate = bfd_elf_string_from_elf_section (input_bfd,
7315 symtab_hdr->sh_link,
7316 sym->st_name);
7317 #ifdef DEBUG
7318 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7319 name, candidate, (unsigned long) sym->st_value);
7320 #endif
7321 if (candidate && strcmp (candidate, name) == 0)
7322 {
7323 asection *sec = finfo->sections [i];
7324
7325 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7326 *result += sec->output_offset + sec->output_section->vma;
7327 #ifdef DEBUG
7328 printf ("Found symbol with value %8.8lx\n",
7329 (unsigned long) *result);
7330 #endif
7331 return TRUE;
7332 }
7333 }
7334
7335 /* Hmm, haven't found it yet. perhaps it is a global. */
7336 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7337 FALSE, FALSE, TRUE);
7338 if (!global_entry)
7339 return FALSE;
7340
7341 if (global_entry->type == bfd_link_hash_defined
7342 || global_entry->type == bfd_link_hash_defweak)
7343 {
7344 *result = (global_entry->u.def.value
7345 + global_entry->u.def.section->output_section->vma
7346 + global_entry->u.def.section->output_offset);
7347 #ifdef DEBUG
7348 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7349 global_entry->root.string, (unsigned long) *result);
7350 #endif
7351 return TRUE;
7352 }
7353
7354 return FALSE;
7355 }
7356
7357 static bfd_boolean
7358 resolve_section (const char *name,
7359 asection *sections,
7360 bfd_vma *result)
7361 {
7362 asection *curr;
7363 unsigned int len;
7364
7365 for (curr = sections; curr; curr = curr->next)
7366 if (strcmp (curr->name, name) == 0)
7367 {
7368 *result = curr->vma;
7369 return TRUE;
7370 }
7371
7372 /* Hmm. still haven't found it. try pseudo-section names. */
7373 for (curr = sections; curr; curr = curr->next)
7374 {
7375 len = strlen (curr->name);
7376 if (len > strlen (name))
7377 continue;
7378
7379 if (strncmp (curr->name, name, len) == 0)
7380 {
7381 if (strncmp (".end", name + len, 4) == 0)
7382 {
7383 *result = curr->vma + curr->size;
7384 return TRUE;
7385 }
7386
7387 /* Insert more pseudo-section names here, if you like. */
7388 }
7389 }
7390
7391 return FALSE;
7392 }
7393
7394 static void
7395 undefined_reference (const char *reftype, const char *name)
7396 {
7397 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7398 reftype, name);
7399 }
7400
7401 static bfd_boolean
7402 eval_symbol (bfd_vma *result,
7403 const char **symp,
7404 bfd *input_bfd,
7405 struct elf_final_link_info *finfo,
7406 bfd_vma dot,
7407 Elf_Internal_Sym *isymbuf,
7408 size_t locsymcount,
7409 int signed_p)
7410 {
7411 size_t len;
7412 size_t symlen;
7413 bfd_vma a;
7414 bfd_vma b;
7415 char symbuf[4096];
7416 const char *sym = *symp;
7417 const char *symend;
7418 bfd_boolean symbol_is_section = FALSE;
7419
7420 len = strlen (sym);
7421 symend = sym + len;
7422
7423 if (len < 1 || len > sizeof (symbuf))
7424 {
7425 bfd_set_error (bfd_error_invalid_operation);
7426 return FALSE;
7427 }
7428
7429 switch (* sym)
7430 {
7431 case '.':
7432 *result = dot;
7433 *symp = sym + 1;
7434 return TRUE;
7435
7436 case '#':
7437 ++sym;
7438 *result = strtoul (sym, (char **) symp, 16);
7439 return TRUE;
7440
7441 case 'S':
7442 symbol_is_section = TRUE;
7443 case 's':
7444 ++sym;
7445 symlen = strtol (sym, (char **) symp, 10);
7446 sym = *symp + 1; /* Skip the trailing ':'. */
7447
7448 if (symend < sym || symlen + 1 > sizeof (symbuf))
7449 {
7450 bfd_set_error (bfd_error_invalid_operation);
7451 return FALSE;
7452 }
7453
7454 memcpy (symbuf, sym, symlen);
7455 symbuf[symlen] = '\0';
7456 *symp = sym + symlen;
7457
7458 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7459 the symbol as a section, or vice-versa. so we're pretty liberal in our
7460 interpretation here; section means "try section first", not "must be a
7461 section", and likewise with symbol. */
7462
7463 if (symbol_is_section)
7464 {
7465 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7466 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7467 isymbuf, locsymcount))
7468 {
7469 undefined_reference ("section", symbuf);
7470 return FALSE;
7471 }
7472 }
7473 else
7474 {
7475 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7476 isymbuf, locsymcount)
7477 && !resolve_section (symbuf, finfo->output_bfd->sections,
7478 result))
7479 {
7480 undefined_reference ("symbol", symbuf);
7481 return FALSE;
7482 }
7483 }
7484
7485 return TRUE;
7486
7487 /* All that remains are operators. */
7488
7489 #define UNARY_OP(op) \
7490 if (strncmp (sym, #op, strlen (#op)) == 0) \
7491 { \
7492 sym += strlen (#op); \
7493 if (*sym == ':') \
7494 ++sym; \
7495 *symp = sym; \
7496 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7497 isymbuf, locsymcount, signed_p)) \
7498 return FALSE; \
7499 if (signed_p) \
7500 *result = op ((bfd_signed_vma) a); \
7501 else \
7502 *result = op a; \
7503 return TRUE; \
7504 }
7505
7506 #define BINARY_OP(op) \
7507 if (strncmp (sym, #op, strlen (#op)) == 0) \
7508 { \
7509 sym += strlen (#op); \
7510 if (*sym == ':') \
7511 ++sym; \
7512 *symp = sym; \
7513 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7514 isymbuf, locsymcount, signed_p)) \
7515 return FALSE; \
7516 ++*symp; \
7517 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7518 isymbuf, locsymcount, signed_p)) \
7519 return FALSE; \
7520 if (signed_p) \
7521 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7522 else \
7523 *result = a op b; \
7524 return TRUE; \
7525 }
7526
7527 default:
7528 UNARY_OP (0-);
7529 BINARY_OP (<<);
7530 BINARY_OP (>>);
7531 BINARY_OP (==);
7532 BINARY_OP (!=);
7533 BINARY_OP (<=);
7534 BINARY_OP (>=);
7535 BINARY_OP (&&);
7536 BINARY_OP (||);
7537 UNARY_OP (~);
7538 UNARY_OP (!);
7539 BINARY_OP (*);
7540 BINARY_OP (/);
7541 BINARY_OP (%);
7542 BINARY_OP (^);
7543 BINARY_OP (|);
7544 BINARY_OP (&);
7545 BINARY_OP (+);
7546 BINARY_OP (-);
7547 BINARY_OP (<);
7548 BINARY_OP (>);
7549 #undef UNARY_OP
7550 #undef BINARY_OP
7551 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7552 bfd_set_error (bfd_error_invalid_operation);
7553 return FALSE;
7554 }
7555 }
7556
7557 static void
7558 put_value (bfd_vma size,
7559 unsigned long chunksz,
7560 bfd *input_bfd,
7561 bfd_vma x,
7562 bfd_byte *location)
7563 {
7564 location += (size - chunksz);
7565
7566 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7567 {
7568 switch (chunksz)
7569 {
7570 default:
7571 case 0:
7572 abort ();
7573 case 1:
7574 bfd_put_8 (input_bfd, x, location);
7575 break;
7576 case 2:
7577 bfd_put_16 (input_bfd, x, location);
7578 break;
7579 case 4:
7580 bfd_put_32 (input_bfd, x, location);
7581 break;
7582 case 8:
7583 #ifdef BFD64
7584 bfd_put_64 (input_bfd, x, location);
7585 #else
7586 abort ();
7587 #endif
7588 break;
7589 }
7590 }
7591 }
7592
7593 static bfd_vma
7594 get_value (bfd_vma size,
7595 unsigned long chunksz,
7596 bfd *input_bfd,
7597 bfd_byte *location)
7598 {
7599 bfd_vma x = 0;
7600
7601 for (; size; size -= chunksz, location += chunksz)
7602 {
7603 switch (chunksz)
7604 {
7605 default:
7606 case 0:
7607 abort ();
7608 case 1:
7609 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7610 break;
7611 case 2:
7612 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7613 break;
7614 case 4:
7615 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7616 break;
7617 case 8:
7618 #ifdef BFD64
7619 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7620 #else
7621 abort ();
7622 #endif
7623 break;
7624 }
7625 }
7626 return x;
7627 }
7628
7629 static void
7630 decode_complex_addend (unsigned long *start, /* in bits */
7631 unsigned long *oplen, /* in bits */
7632 unsigned long *len, /* in bits */
7633 unsigned long *wordsz, /* in bytes */
7634 unsigned long *chunksz, /* in bytes */
7635 unsigned long *lsb0_p,
7636 unsigned long *signed_p,
7637 unsigned long *trunc_p,
7638 unsigned long encoded)
7639 {
7640 * start = encoded & 0x3F;
7641 * len = (encoded >> 6) & 0x3F;
7642 * oplen = (encoded >> 12) & 0x3F;
7643 * wordsz = (encoded >> 18) & 0xF;
7644 * chunksz = (encoded >> 22) & 0xF;
7645 * lsb0_p = (encoded >> 27) & 1;
7646 * signed_p = (encoded >> 28) & 1;
7647 * trunc_p = (encoded >> 29) & 1;
7648 }
7649
7650 bfd_reloc_status_type
7651 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7652 asection *input_section ATTRIBUTE_UNUSED,
7653 bfd_byte *contents,
7654 Elf_Internal_Rela *rel,
7655 bfd_vma relocation)
7656 {
7657 bfd_vma shift, x, mask;
7658 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7659 bfd_reloc_status_type r;
7660
7661 /* Perform this reloc, since it is complex.
7662 (this is not to say that it necessarily refers to a complex
7663 symbol; merely that it is a self-describing CGEN based reloc.
7664 i.e. the addend has the complete reloc information (bit start, end,
7665 word size, etc) encoded within it.). */
7666
7667 decode_complex_addend (&start, &oplen, &len, &wordsz,
7668 &chunksz, &lsb0_p, &signed_p,
7669 &trunc_p, rel->r_addend);
7670
7671 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7672
7673 if (lsb0_p)
7674 shift = (start + 1) - len;
7675 else
7676 shift = (8 * wordsz) - (start + len);
7677
7678 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7679
7680 #ifdef DEBUG
7681 printf ("Doing complex reloc: "
7682 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7683 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7684 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7685 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7686 oplen, x, mask, relocation);
7687 #endif
7688
7689 r = bfd_reloc_ok;
7690 if (! trunc_p)
7691 /* Now do an overflow check. */
7692 r = bfd_check_overflow ((signed_p
7693 ? complain_overflow_signed
7694 : complain_overflow_unsigned),
7695 len, 0, (8 * wordsz),
7696 relocation);
7697
7698 /* Do the deed. */
7699 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7700
7701 #ifdef DEBUG
7702 printf (" relocation: %8.8lx\n"
7703 " shifted mask: %8.8lx\n"
7704 " shifted/masked reloc: %8.8lx\n"
7705 " result: %8.8lx\n",
7706 relocation, (mask << shift),
7707 ((relocation & mask) << shift), x);
7708 #endif
7709 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7710 return r;
7711 }
7712
7713 /* When performing a relocatable link, the input relocations are
7714 preserved. But, if they reference global symbols, the indices
7715 referenced must be updated. Update all the relocations in
7716 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7717
7718 static void
7719 elf_link_adjust_relocs (bfd *abfd,
7720 Elf_Internal_Shdr *rel_hdr,
7721 unsigned int count,
7722 struct elf_link_hash_entry **rel_hash)
7723 {
7724 unsigned int i;
7725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7726 bfd_byte *erela;
7727 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7728 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7729 bfd_vma r_type_mask;
7730 int r_sym_shift;
7731
7732 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7733 {
7734 swap_in = bed->s->swap_reloc_in;
7735 swap_out = bed->s->swap_reloc_out;
7736 }
7737 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7738 {
7739 swap_in = bed->s->swap_reloca_in;
7740 swap_out = bed->s->swap_reloca_out;
7741 }
7742 else
7743 abort ();
7744
7745 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7746 abort ();
7747
7748 if (bed->s->arch_size == 32)
7749 {
7750 r_type_mask = 0xff;
7751 r_sym_shift = 8;
7752 }
7753 else
7754 {
7755 r_type_mask = 0xffffffff;
7756 r_sym_shift = 32;
7757 }
7758
7759 erela = rel_hdr->contents;
7760 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7761 {
7762 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7763 unsigned int j;
7764
7765 if (*rel_hash == NULL)
7766 continue;
7767
7768 BFD_ASSERT ((*rel_hash)->indx >= 0);
7769
7770 (*swap_in) (abfd, erela, irela);
7771 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7772 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7773 | (irela[j].r_info & r_type_mask));
7774 (*swap_out) (abfd, irela, erela);
7775 }
7776 }
7777
7778 struct elf_link_sort_rela
7779 {
7780 union {
7781 bfd_vma offset;
7782 bfd_vma sym_mask;
7783 } u;
7784 enum elf_reloc_type_class type;
7785 /* We use this as an array of size int_rels_per_ext_rel. */
7786 Elf_Internal_Rela rela[1];
7787 };
7788
7789 static int
7790 elf_link_sort_cmp1 (const void *A, const void *B)
7791 {
7792 const struct elf_link_sort_rela *a = A;
7793 const struct elf_link_sort_rela *b = B;
7794 int relativea, relativeb;
7795
7796 relativea = a->type == reloc_class_relative;
7797 relativeb = b->type == reloc_class_relative;
7798
7799 if (relativea < relativeb)
7800 return 1;
7801 if (relativea > relativeb)
7802 return -1;
7803 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7804 return -1;
7805 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7806 return 1;
7807 if (a->rela->r_offset < b->rela->r_offset)
7808 return -1;
7809 if (a->rela->r_offset > b->rela->r_offset)
7810 return 1;
7811 return 0;
7812 }
7813
7814 static int
7815 elf_link_sort_cmp2 (const void *A, const void *B)
7816 {
7817 const struct elf_link_sort_rela *a = A;
7818 const struct elf_link_sort_rela *b = B;
7819 int copya, copyb;
7820
7821 if (a->u.offset < b->u.offset)
7822 return -1;
7823 if (a->u.offset > b->u.offset)
7824 return 1;
7825 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7826 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7827 if (copya < copyb)
7828 return -1;
7829 if (copya > copyb)
7830 return 1;
7831 if (a->rela->r_offset < b->rela->r_offset)
7832 return -1;
7833 if (a->rela->r_offset > b->rela->r_offset)
7834 return 1;
7835 return 0;
7836 }
7837
7838 static size_t
7839 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7840 {
7841 asection *dynamic_relocs;
7842 asection *rela_dyn;
7843 asection *rel_dyn;
7844 bfd_size_type count, size;
7845 size_t i, ret, sort_elt, ext_size;
7846 bfd_byte *sort, *s_non_relative, *p;
7847 struct elf_link_sort_rela *sq;
7848 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7849 int i2e = bed->s->int_rels_per_ext_rel;
7850 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7851 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7852 struct bfd_link_order *lo;
7853 bfd_vma r_sym_mask;
7854 bfd_boolean use_rela;
7855
7856 /* Find a dynamic reloc section. */
7857 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7858 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7859 if (rela_dyn != NULL && rela_dyn->size > 0
7860 && rel_dyn != NULL && rel_dyn->size > 0)
7861 {
7862 bfd_boolean use_rela_initialised = FALSE;
7863
7864 /* This is just here to stop gcc from complaining.
7865 It's initialization checking code is not perfect. */
7866 use_rela = TRUE;
7867
7868 /* Both sections are present. Examine the sizes
7869 of the indirect sections to help us choose. */
7870 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7871 if (lo->type == bfd_indirect_link_order)
7872 {
7873 asection *o = lo->u.indirect.section;
7874
7875 if ((o->size % bed->s->sizeof_rela) == 0)
7876 {
7877 if ((o->size % bed->s->sizeof_rel) == 0)
7878 /* Section size is divisible by both rel and rela sizes.
7879 It is of no help to us. */
7880 ;
7881 else
7882 {
7883 /* Section size is only divisible by rela. */
7884 if (use_rela_initialised && (use_rela == FALSE))
7885 {
7886 _bfd_error_handler
7887 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7888 bfd_set_error (bfd_error_invalid_operation);
7889 return 0;
7890 }
7891 else
7892 {
7893 use_rela = TRUE;
7894 use_rela_initialised = TRUE;
7895 }
7896 }
7897 }
7898 else if ((o->size % bed->s->sizeof_rel) == 0)
7899 {
7900 /* Section size is only divisible by rel. */
7901 if (use_rela_initialised && (use_rela == TRUE))
7902 {
7903 _bfd_error_handler
7904 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7905 bfd_set_error (bfd_error_invalid_operation);
7906 return 0;
7907 }
7908 else
7909 {
7910 use_rela = FALSE;
7911 use_rela_initialised = TRUE;
7912 }
7913 }
7914 else
7915 {
7916 /* The section size is not divisible by either - something is wrong. */
7917 _bfd_error_handler
7918 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7919 bfd_set_error (bfd_error_invalid_operation);
7920 return 0;
7921 }
7922 }
7923
7924 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7925 if (lo->type == bfd_indirect_link_order)
7926 {
7927 asection *o = lo->u.indirect.section;
7928
7929 if ((o->size % bed->s->sizeof_rela) == 0)
7930 {
7931 if ((o->size % bed->s->sizeof_rel) == 0)
7932 /* Section size is divisible by both rel and rela sizes.
7933 It is of no help to us. */
7934 ;
7935 else
7936 {
7937 /* Section size is only divisible by rela. */
7938 if (use_rela_initialised && (use_rela == FALSE))
7939 {
7940 _bfd_error_handler
7941 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7942 bfd_set_error (bfd_error_invalid_operation);
7943 return 0;
7944 }
7945 else
7946 {
7947 use_rela = TRUE;
7948 use_rela_initialised = TRUE;
7949 }
7950 }
7951 }
7952 else if ((o->size % bed->s->sizeof_rel) == 0)
7953 {
7954 /* Section size is only divisible by rel. */
7955 if (use_rela_initialised && (use_rela == TRUE))
7956 {
7957 _bfd_error_handler
7958 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7959 bfd_set_error (bfd_error_invalid_operation);
7960 return 0;
7961 }
7962 else
7963 {
7964 use_rela = FALSE;
7965 use_rela_initialised = TRUE;
7966 }
7967 }
7968 else
7969 {
7970 /* The section size is not divisible by either - something is wrong. */
7971 _bfd_error_handler
7972 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7973 bfd_set_error (bfd_error_invalid_operation);
7974 return 0;
7975 }
7976 }
7977
7978 if (! use_rela_initialised)
7979 /* Make a guess. */
7980 use_rela = TRUE;
7981 }
7982 else if (rela_dyn != NULL && rela_dyn->size > 0)
7983 use_rela = TRUE;
7984 else if (rel_dyn != NULL && rel_dyn->size > 0)
7985 use_rela = FALSE;
7986 else
7987 return 0;
7988
7989 if (use_rela)
7990 {
7991 dynamic_relocs = rela_dyn;
7992 ext_size = bed->s->sizeof_rela;
7993 swap_in = bed->s->swap_reloca_in;
7994 swap_out = bed->s->swap_reloca_out;
7995 }
7996 else
7997 {
7998 dynamic_relocs = rel_dyn;
7999 ext_size = bed->s->sizeof_rel;
8000 swap_in = bed->s->swap_reloc_in;
8001 swap_out = bed->s->swap_reloc_out;
8002 }
8003
8004 size = 0;
8005 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8006 if (lo->type == bfd_indirect_link_order)
8007 size += lo->u.indirect.section->size;
8008
8009 if (size != dynamic_relocs->size)
8010 return 0;
8011
8012 sort_elt = (sizeof (struct elf_link_sort_rela)
8013 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8014
8015 count = dynamic_relocs->size / ext_size;
8016 sort = bfd_zmalloc (sort_elt * count);
8017
8018 if (sort == NULL)
8019 {
8020 (*info->callbacks->warning)
8021 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8022 return 0;
8023 }
8024
8025 if (bed->s->arch_size == 32)
8026 r_sym_mask = ~(bfd_vma) 0xff;
8027 else
8028 r_sym_mask = ~(bfd_vma) 0xffffffff;
8029
8030 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8031 if (lo->type == bfd_indirect_link_order)
8032 {
8033 bfd_byte *erel, *erelend;
8034 asection *o = lo->u.indirect.section;
8035
8036 if (o->contents == NULL && o->size != 0)
8037 {
8038 /* This is a reloc section that is being handled as a normal
8039 section. See bfd_section_from_shdr. We can't combine
8040 relocs in this case. */
8041 free (sort);
8042 return 0;
8043 }
8044 erel = o->contents;
8045 erelend = o->contents + o->size;
8046 p = sort + o->output_offset / ext_size * sort_elt;
8047
8048 while (erel < erelend)
8049 {
8050 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8051
8052 (*swap_in) (abfd, erel, s->rela);
8053 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8054 s->u.sym_mask = r_sym_mask;
8055 p += sort_elt;
8056 erel += ext_size;
8057 }
8058 }
8059
8060 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8061
8062 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8063 {
8064 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8065 if (s->type != reloc_class_relative)
8066 break;
8067 }
8068 ret = i;
8069 s_non_relative = p;
8070
8071 sq = (struct elf_link_sort_rela *) s_non_relative;
8072 for (; i < count; i++, p += sort_elt)
8073 {
8074 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8075 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8076 sq = sp;
8077 sp->u.offset = sq->rela->r_offset;
8078 }
8079
8080 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8081
8082 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8083 if (lo->type == bfd_indirect_link_order)
8084 {
8085 bfd_byte *erel, *erelend;
8086 asection *o = lo->u.indirect.section;
8087
8088 erel = o->contents;
8089 erelend = o->contents + o->size;
8090 p = sort + o->output_offset / ext_size * sort_elt;
8091 while (erel < erelend)
8092 {
8093 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8094 (*swap_out) (abfd, s->rela, erel);
8095 p += sort_elt;
8096 erel += ext_size;
8097 }
8098 }
8099
8100 free (sort);
8101 *psec = dynamic_relocs;
8102 return ret;
8103 }
8104
8105 /* Flush the output symbols to the file. */
8106
8107 static bfd_boolean
8108 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8109 const struct elf_backend_data *bed)
8110 {
8111 if (finfo->symbuf_count > 0)
8112 {
8113 Elf_Internal_Shdr *hdr;
8114 file_ptr pos;
8115 bfd_size_type amt;
8116
8117 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8118 pos = hdr->sh_offset + hdr->sh_size;
8119 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8120 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8121 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8122 return FALSE;
8123
8124 hdr->sh_size += amt;
8125 finfo->symbuf_count = 0;
8126 }
8127
8128 return TRUE;
8129 }
8130
8131 /* Add a symbol to the output symbol table. */
8132
8133 static bfd_boolean
8134 elf_link_output_sym (struct elf_final_link_info *finfo,
8135 const char *name,
8136 Elf_Internal_Sym *elfsym,
8137 asection *input_sec,
8138 struct elf_link_hash_entry *h)
8139 {
8140 bfd_byte *dest;
8141 Elf_External_Sym_Shndx *destshndx;
8142 bfd_boolean (*output_symbol_hook)
8143 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8144 struct elf_link_hash_entry *);
8145 const struct elf_backend_data *bed;
8146
8147 bed = get_elf_backend_data (finfo->output_bfd);
8148 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8149 if (output_symbol_hook != NULL)
8150 {
8151 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8152 return FALSE;
8153 }
8154
8155 if (name == NULL || *name == '\0')
8156 elfsym->st_name = 0;
8157 else if (input_sec->flags & SEC_EXCLUDE)
8158 elfsym->st_name = 0;
8159 else
8160 {
8161 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8162 name, TRUE, FALSE);
8163 if (elfsym->st_name == (unsigned long) -1)
8164 return FALSE;
8165 }
8166
8167 if (finfo->symbuf_count >= finfo->symbuf_size)
8168 {
8169 if (! elf_link_flush_output_syms (finfo, bed))
8170 return FALSE;
8171 }
8172
8173 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8174 destshndx = finfo->symshndxbuf;
8175 if (destshndx != NULL)
8176 {
8177 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8178 {
8179 bfd_size_type amt;
8180
8181 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8182 destshndx = bfd_realloc (destshndx, amt * 2);
8183 if (destshndx == NULL)
8184 return FALSE;
8185 finfo->symshndxbuf = destshndx;
8186 memset ((char *) destshndx + amt, 0, amt);
8187 finfo->shndxbuf_size *= 2;
8188 }
8189 destshndx += bfd_get_symcount (finfo->output_bfd);
8190 }
8191
8192 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8193 finfo->symbuf_count += 1;
8194 bfd_get_symcount (finfo->output_bfd) += 1;
8195
8196 return TRUE;
8197 }
8198
8199 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8200
8201 static bfd_boolean
8202 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8203 {
8204 if (sym->st_shndx > SHN_HIRESERVE)
8205 {
8206 /* The gABI doesn't support dynamic symbols in output sections
8207 beyond 64k. */
8208 (*_bfd_error_handler)
8209 (_("%B: Too many sections: %d (>= %d)"),
8210 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8211 bfd_set_error (bfd_error_nonrepresentable_section);
8212 return FALSE;
8213 }
8214 return TRUE;
8215 }
8216
8217 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8218 allowing an unsatisfied unversioned symbol in the DSO to match a
8219 versioned symbol that would normally require an explicit version.
8220 We also handle the case that a DSO references a hidden symbol
8221 which may be satisfied by a versioned symbol in another DSO. */
8222
8223 static bfd_boolean
8224 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8225 const struct elf_backend_data *bed,
8226 struct elf_link_hash_entry *h)
8227 {
8228 bfd *abfd;
8229 struct elf_link_loaded_list *loaded;
8230
8231 if (!is_elf_hash_table (info->hash))
8232 return FALSE;
8233
8234 switch (h->root.type)
8235 {
8236 default:
8237 abfd = NULL;
8238 break;
8239
8240 case bfd_link_hash_undefined:
8241 case bfd_link_hash_undefweak:
8242 abfd = h->root.u.undef.abfd;
8243 if ((abfd->flags & DYNAMIC) == 0
8244 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8245 return FALSE;
8246 break;
8247
8248 case bfd_link_hash_defined:
8249 case bfd_link_hash_defweak:
8250 abfd = h->root.u.def.section->owner;
8251 break;
8252
8253 case bfd_link_hash_common:
8254 abfd = h->root.u.c.p->section->owner;
8255 break;
8256 }
8257 BFD_ASSERT (abfd != NULL);
8258
8259 for (loaded = elf_hash_table (info)->loaded;
8260 loaded != NULL;
8261 loaded = loaded->next)
8262 {
8263 bfd *input;
8264 Elf_Internal_Shdr *hdr;
8265 bfd_size_type symcount;
8266 bfd_size_type extsymcount;
8267 bfd_size_type extsymoff;
8268 Elf_Internal_Shdr *versymhdr;
8269 Elf_Internal_Sym *isym;
8270 Elf_Internal_Sym *isymend;
8271 Elf_Internal_Sym *isymbuf;
8272 Elf_External_Versym *ever;
8273 Elf_External_Versym *extversym;
8274
8275 input = loaded->abfd;
8276
8277 /* We check each DSO for a possible hidden versioned definition. */
8278 if (input == abfd
8279 || (input->flags & DYNAMIC) == 0
8280 || elf_dynversym (input) == 0)
8281 continue;
8282
8283 hdr = &elf_tdata (input)->dynsymtab_hdr;
8284
8285 symcount = hdr->sh_size / bed->s->sizeof_sym;
8286 if (elf_bad_symtab (input))
8287 {
8288 extsymcount = symcount;
8289 extsymoff = 0;
8290 }
8291 else
8292 {
8293 extsymcount = symcount - hdr->sh_info;
8294 extsymoff = hdr->sh_info;
8295 }
8296
8297 if (extsymcount == 0)
8298 continue;
8299
8300 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8301 NULL, NULL, NULL);
8302 if (isymbuf == NULL)
8303 return FALSE;
8304
8305 /* Read in any version definitions. */
8306 versymhdr = &elf_tdata (input)->dynversym_hdr;
8307 extversym = bfd_malloc (versymhdr->sh_size);
8308 if (extversym == NULL)
8309 goto error_ret;
8310
8311 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8312 || (bfd_bread (extversym, versymhdr->sh_size, input)
8313 != versymhdr->sh_size))
8314 {
8315 free (extversym);
8316 error_ret:
8317 free (isymbuf);
8318 return FALSE;
8319 }
8320
8321 ever = extversym + extsymoff;
8322 isymend = isymbuf + extsymcount;
8323 for (isym = isymbuf; isym < isymend; isym++, ever++)
8324 {
8325 const char *name;
8326 Elf_Internal_Versym iver;
8327 unsigned short version_index;
8328
8329 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8330 || isym->st_shndx == SHN_UNDEF)
8331 continue;
8332
8333 name = bfd_elf_string_from_elf_section (input,
8334 hdr->sh_link,
8335 isym->st_name);
8336 if (strcmp (name, h->root.root.string) != 0)
8337 continue;
8338
8339 _bfd_elf_swap_versym_in (input, ever, &iver);
8340
8341 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8342 {
8343 /* If we have a non-hidden versioned sym, then it should
8344 have provided a definition for the undefined sym. */
8345 abort ();
8346 }
8347
8348 version_index = iver.vs_vers & VERSYM_VERSION;
8349 if (version_index == 1 || version_index == 2)
8350 {
8351 /* This is the base or first version. We can use it. */
8352 free (extversym);
8353 free (isymbuf);
8354 return TRUE;
8355 }
8356 }
8357
8358 free (extversym);
8359 free (isymbuf);
8360 }
8361
8362 return FALSE;
8363 }
8364
8365 /* Add an external symbol to the symbol table. This is called from
8366 the hash table traversal routine. When generating a shared object,
8367 we go through the symbol table twice. The first time we output
8368 anything that might have been forced to local scope in a version
8369 script. The second time we output the symbols that are still
8370 global symbols. */
8371
8372 static bfd_boolean
8373 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8374 {
8375 struct elf_outext_info *eoinfo = data;
8376 struct elf_final_link_info *finfo = eoinfo->finfo;
8377 bfd_boolean strip;
8378 Elf_Internal_Sym sym;
8379 asection *input_sec;
8380 const struct elf_backend_data *bed;
8381
8382 if (h->root.type == bfd_link_hash_warning)
8383 {
8384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8385 if (h->root.type == bfd_link_hash_new)
8386 return TRUE;
8387 }
8388
8389 /* Decide whether to output this symbol in this pass. */
8390 if (eoinfo->localsyms)
8391 {
8392 if (!h->forced_local)
8393 return TRUE;
8394 }
8395 else
8396 {
8397 if (h->forced_local)
8398 return TRUE;
8399 }
8400
8401 bed = get_elf_backend_data (finfo->output_bfd);
8402
8403 if (h->root.type == bfd_link_hash_undefined)
8404 {
8405 /* If we have an undefined symbol reference here then it must have
8406 come from a shared library that is being linked in. (Undefined
8407 references in regular files have already been handled). */
8408 bfd_boolean ignore_undef = FALSE;
8409
8410 /* Some symbols may be special in that the fact that they're
8411 undefined can be safely ignored - let backend determine that. */
8412 if (bed->elf_backend_ignore_undef_symbol)
8413 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8414
8415 /* If we are reporting errors for this situation then do so now. */
8416 if (ignore_undef == FALSE
8417 && h->ref_dynamic
8418 && ! h->ref_regular
8419 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8420 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8421 {
8422 if (! (finfo->info->callbacks->undefined_symbol
8423 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8424 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8425 {
8426 eoinfo->failed = TRUE;
8427 return FALSE;
8428 }
8429 }
8430 }
8431
8432 /* We should also warn if a forced local symbol is referenced from
8433 shared libraries. */
8434 if (! finfo->info->relocatable
8435 && (! finfo->info->shared)
8436 && h->forced_local
8437 && h->ref_dynamic
8438 && !h->dynamic_def
8439 && !h->dynamic_weak
8440 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8441 {
8442 (*_bfd_error_handler)
8443 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8444 finfo->output_bfd,
8445 h->root.u.def.section == bfd_abs_section_ptr
8446 ? finfo->output_bfd : h->root.u.def.section->owner,
8447 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8448 ? "internal"
8449 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8450 ? "hidden" : "local",
8451 h->root.root.string);
8452 eoinfo->failed = TRUE;
8453 return FALSE;
8454 }
8455
8456 /* We don't want to output symbols that have never been mentioned by
8457 a regular file, or that we have been told to strip. However, if
8458 h->indx is set to -2, the symbol is used by a reloc and we must
8459 output it. */
8460 if (h->indx == -2)
8461 strip = FALSE;
8462 else if ((h->def_dynamic
8463 || h->ref_dynamic
8464 || h->root.type == bfd_link_hash_new)
8465 && !h->def_regular
8466 && !h->ref_regular)
8467 strip = TRUE;
8468 else if (finfo->info->strip == strip_all)
8469 strip = TRUE;
8470 else if (finfo->info->strip == strip_some
8471 && bfd_hash_lookup (finfo->info->keep_hash,
8472 h->root.root.string, FALSE, FALSE) == NULL)
8473 strip = TRUE;
8474 else if (finfo->info->strip_discarded
8475 && (h->root.type == bfd_link_hash_defined
8476 || h->root.type == bfd_link_hash_defweak)
8477 && elf_discarded_section (h->root.u.def.section))
8478 strip = TRUE;
8479 else
8480 strip = FALSE;
8481
8482 /* If we're stripping it, and it's not a dynamic symbol, there's
8483 nothing else to do unless it is a forced local symbol. */
8484 if (strip
8485 && h->dynindx == -1
8486 && !h->forced_local)
8487 return TRUE;
8488
8489 sym.st_value = 0;
8490 sym.st_size = h->size;
8491 sym.st_other = h->other;
8492 if (h->forced_local)
8493 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8494 else if (h->root.type == bfd_link_hash_undefweak
8495 || h->root.type == bfd_link_hash_defweak)
8496 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8497 else
8498 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8499
8500 switch (h->root.type)
8501 {
8502 default:
8503 case bfd_link_hash_new:
8504 case bfd_link_hash_warning:
8505 abort ();
8506 return FALSE;
8507
8508 case bfd_link_hash_undefined:
8509 case bfd_link_hash_undefweak:
8510 input_sec = bfd_und_section_ptr;
8511 sym.st_shndx = SHN_UNDEF;
8512 break;
8513
8514 case bfd_link_hash_defined:
8515 case bfd_link_hash_defweak:
8516 {
8517 input_sec = h->root.u.def.section;
8518 if (input_sec->output_section != NULL)
8519 {
8520 sym.st_shndx =
8521 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8522 input_sec->output_section);
8523 if (sym.st_shndx == SHN_BAD)
8524 {
8525 (*_bfd_error_handler)
8526 (_("%B: could not find output section %A for input section %A"),
8527 finfo->output_bfd, input_sec->output_section, input_sec);
8528 eoinfo->failed = TRUE;
8529 return FALSE;
8530 }
8531
8532 /* ELF symbols in relocatable files are section relative,
8533 but in nonrelocatable files they are virtual
8534 addresses. */
8535 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8536 if (! finfo->info->relocatable)
8537 {
8538 sym.st_value += input_sec->output_section->vma;
8539 if (h->type == STT_TLS)
8540 {
8541 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8542 if (tls_sec != NULL)
8543 sym.st_value -= tls_sec->vma;
8544 else
8545 {
8546 /* The TLS section may have been garbage collected. */
8547 BFD_ASSERT (finfo->info->gc_sections
8548 && !input_sec->gc_mark);
8549 }
8550 }
8551 }
8552 }
8553 else
8554 {
8555 BFD_ASSERT (input_sec->owner == NULL
8556 || (input_sec->owner->flags & DYNAMIC) != 0);
8557 sym.st_shndx = SHN_UNDEF;
8558 input_sec = bfd_und_section_ptr;
8559 }
8560 }
8561 break;
8562
8563 case bfd_link_hash_common:
8564 input_sec = h->root.u.c.p->section;
8565 sym.st_shndx = bed->common_section_index (input_sec);
8566 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8567 break;
8568
8569 case bfd_link_hash_indirect:
8570 /* These symbols are created by symbol versioning. They point
8571 to the decorated version of the name. For example, if the
8572 symbol foo@@GNU_1.2 is the default, which should be used when
8573 foo is used with no version, then we add an indirect symbol
8574 foo which points to foo@@GNU_1.2. We ignore these symbols,
8575 since the indirected symbol is already in the hash table. */
8576 return TRUE;
8577 }
8578
8579 /* Give the processor backend a chance to tweak the symbol value,
8580 and also to finish up anything that needs to be done for this
8581 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8582 forced local syms when non-shared is due to a historical quirk. */
8583 if ((h->dynindx != -1
8584 || h->forced_local)
8585 && ((finfo->info->shared
8586 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8587 || h->root.type != bfd_link_hash_undefweak))
8588 || !h->forced_local)
8589 && elf_hash_table (finfo->info)->dynamic_sections_created)
8590 {
8591 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8592 (finfo->output_bfd, finfo->info, h, &sym)))
8593 {
8594 eoinfo->failed = TRUE;
8595 return FALSE;
8596 }
8597 }
8598
8599 /* If we are marking the symbol as undefined, and there are no
8600 non-weak references to this symbol from a regular object, then
8601 mark the symbol as weak undefined; if there are non-weak
8602 references, mark the symbol as strong. We can't do this earlier,
8603 because it might not be marked as undefined until the
8604 finish_dynamic_symbol routine gets through with it. */
8605 if (sym.st_shndx == SHN_UNDEF
8606 && h->ref_regular
8607 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8608 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8609 {
8610 int bindtype;
8611
8612 if (h->ref_regular_nonweak)
8613 bindtype = STB_GLOBAL;
8614 else
8615 bindtype = STB_WEAK;
8616 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8617 }
8618
8619 /* If a non-weak symbol with non-default visibility is not defined
8620 locally, it is a fatal error. */
8621 if (! finfo->info->relocatable
8622 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8623 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8624 && h->root.type == bfd_link_hash_undefined
8625 && !h->def_regular)
8626 {
8627 (*_bfd_error_handler)
8628 (_("%B: %s symbol `%s' isn't defined"),
8629 finfo->output_bfd,
8630 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8631 ? "protected"
8632 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8633 ? "internal" : "hidden",
8634 h->root.root.string);
8635 eoinfo->failed = TRUE;
8636 return FALSE;
8637 }
8638
8639 /* If this symbol should be put in the .dynsym section, then put it
8640 there now. We already know the symbol index. We also fill in
8641 the entry in the .hash section. */
8642 if (h->dynindx != -1
8643 && elf_hash_table (finfo->info)->dynamic_sections_created)
8644 {
8645 bfd_byte *esym;
8646
8647 sym.st_name = h->dynstr_index;
8648 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8649 if (! check_dynsym (finfo->output_bfd, &sym))
8650 {
8651 eoinfo->failed = TRUE;
8652 return FALSE;
8653 }
8654 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8655
8656 if (finfo->hash_sec != NULL)
8657 {
8658 size_t hash_entry_size;
8659 bfd_byte *bucketpos;
8660 bfd_vma chain;
8661 size_t bucketcount;
8662 size_t bucket;
8663
8664 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8665 bucket = h->u.elf_hash_value % bucketcount;
8666
8667 hash_entry_size
8668 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8669 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8670 + (bucket + 2) * hash_entry_size);
8671 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8672 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8673 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8674 ((bfd_byte *) finfo->hash_sec->contents
8675 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8676 }
8677
8678 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8679 {
8680 Elf_Internal_Versym iversym;
8681 Elf_External_Versym *eversym;
8682
8683 if (!h->def_regular)
8684 {
8685 if (h->verinfo.verdef == NULL)
8686 iversym.vs_vers = 0;
8687 else
8688 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8689 }
8690 else
8691 {
8692 if (h->verinfo.vertree == NULL)
8693 iversym.vs_vers = 1;
8694 else
8695 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8696 if (finfo->info->create_default_symver)
8697 iversym.vs_vers++;
8698 }
8699
8700 if (h->hidden)
8701 iversym.vs_vers |= VERSYM_HIDDEN;
8702
8703 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8704 eversym += h->dynindx;
8705 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8706 }
8707 }
8708
8709 /* If we're stripping it, then it was just a dynamic symbol, and
8710 there's nothing else to do. */
8711 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8712 return TRUE;
8713
8714 h->indx = bfd_get_symcount (finfo->output_bfd);
8715
8716 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8717 {
8718 eoinfo->failed = TRUE;
8719 return FALSE;
8720 }
8721
8722 return TRUE;
8723 }
8724
8725 /* Return TRUE if special handling is done for relocs in SEC against
8726 symbols defined in discarded sections. */
8727
8728 static bfd_boolean
8729 elf_section_ignore_discarded_relocs (asection *sec)
8730 {
8731 const struct elf_backend_data *bed;
8732
8733 switch (sec->sec_info_type)
8734 {
8735 case ELF_INFO_TYPE_STABS:
8736 case ELF_INFO_TYPE_EH_FRAME:
8737 return TRUE;
8738 default:
8739 break;
8740 }
8741
8742 bed = get_elf_backend_data (sec->owner);
8743 if (bed->elf_backend_ignore_discarded_relocs != NULL
8744 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8745 return TRUE;
8746
8747 return FALSE;
8748 }
8749
8750 /* Return a mask saying how ld should treat relocations in SEC against
8751 symbols defined in discarded sections. If this function returns
8752 COMPLAIN set, ld will issue a warning message. If this function
8753 returns PRETEND set, and the discarded section was link-once and the
8754 same size as the kept link-once section, ld will pretend that the
8755 symbol was actually defined in the kept section. Otherwise ld will
8756 zero the reloc (at least that is the intent, but some cooperation by
8757 the target dependent code is needed, particularly for REL targets). */
8758
8759 unsigned int
8760 _bfd_elf_default_action_discarded (asection *sec)
8761 {
8762 if (sec->flags & SEC_DEBUGGING)
8763 return PRETEND;
8764
8765 if (strcmp (".eh_frame", sec->name) == 0)
8766 return 0;
8767
8768 if (strcmp (".gcc_except_table", sec->name) == 0)
8769 return 0;
8770
8771 return COMPLAIN | PRETEND;
8772 }
8773
8774 /* Find a match between a section and a member of a section group. */
8775
8776 static asection *
8777 match_group_member (asection *sec, asection *group,
8778 struct bfd_link_info *info)
8779 {
8780 asection *first = elf_next_in_group (group);
8781 asection *s = first;
8782
8783 while (s != NULL)
8784 {
8785 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8786 return s;
8787
8788 s = elf_next_in_group (s);
8789 if (s == first)
8790 break;
8791 }
8792
8793 return NULL;
8794 }
8795
8796 /* Check if the kept section of a discarded section SEC can be used
8797 to replace it. Return the replacement if it is OK. Otherwise return
8798 NULL. */
8799
8800 asection *
8801 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8802 {
8803 asection *kept;
8804
8805 kept = sec->kept_section;
8806 if (kept != NULL)
8807 {
8808 if ((kept->flags & SEC_GROUP) != 0)
8809 kept = match_group_member (sec, kept, info);
8810 if (kept != NULL
8811 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8812 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8813 kept = NULL;
8814 sec->kept_section = kept;
8815 }
8816 return kept;
8817 }
8818
8819 /* Link an input file into the linker output file. This function
8820 handles all the sections and relocations of the input file at once.
8821 This is so that we only have to read the local symbols once, and
8822 don't have to keep them in memory. */
8823
8824 static bfd_boolean
8825 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8826 {
8827 int (*relocate_section)
8828 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8829 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8830 bfd *output_bfd;
8831 Elf_Internal_Shdr *symtab_hdr;
8832 size_t locsymcount;
8833 size_t extsymoff;
8834 Elf_Internal_Sym *isymbuf;
8835 Elf_Internal_Sym *isym;
8836 Elf_Internal_Sym *isymend;
8837 long *pindex;
8838 asection **ppsection;
8839 asection *o;
8840 const struct elf_backend_data *bed;
8841 struct elf_link_hash_entry **sym_hashes;
8842
8843 output_bfd = finfo->output_bfd;
8844 bed = get_elf_backend_data (output_bfd);
8845 relocate_section = bed->elf_backend_relocate_section;
8846
8847 /* If this is a dynamic object, we don't want to do anything here:
8848 we don't want the local symbols, and we don't want the section
8849 contents. */
8850 if ((input_bfd->flags & DYNAMIC) != 0)
8851 return TRUE;
8852
8853 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8854 if (elf_bad_symtab (input_bfd))
8855 {
8856 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8857 extsymoff = 0;
8858 }
8859 else
8860 {
8861 locsymcount = symtab_hdr->sh_info;
8862 extsymoff = symtab_hdr->sh_info;
8863 }
8864
8865 /* Read the local symbols. */
8866 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8867 if (isymbuf == NULL && locsymcount != 0)
8868 {
8869 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8870 finfo->internal_syms,
8871 finfo->external_syms,
8872 finfo->locsym_shndx);
8873 if (isymbuf == NULL)
8874 return FALSE;
8875 }
8876
8877 /* Find local symbol sections and adjust values of symbols in
8878 SEC_MERGE sections. Write out those local symbols we know are
8879 going into the output file. */
8880 isymend = isymbuf + locsymcount;
8881 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8882 isym < isymend;
8883 isym++, pindex++, ppsection++)
8884 {
8885 asection *isec;
8886 const char *name;
8887 Elf_Internal_Sym osym;
8888
8889 *pindex = -1;
8890
8891 if (elf_bad_symtab (input_bfd))
8892 {
8893 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8894 {
8895 *ppsection = NULL;
8896 continue;
8897 }
8898 }
8899
8900 if (isym->st_shndx == SHN_UNDEF)
8901 isec = bfd_und_section_ptr;
8902 else if (isym->st_shndx == SHN_ABS)
8903 isec = bfd_abs_section_ptr;
8904 else if (isym->st_shndx == SHN_COMMON)
8905 isec = bfd_com_section_ptr;
8906 else
8907 {
8908 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8909 if (isec == NULL)
8910 {
8911 /* Don't attempt to output symbols with st_shnx in the
8912 reserved range other than SHN_ABS and SHN_COMMON. */
8913 *ppsection = NULL;
8914 continue;
8915 }
8916 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8917 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8918 isym->st_value =
8919 _bfd_merged_section_offset (output_bfd, &isec,
8920 elf_section_data (isec)->sec_info,
8921 isym->st_value);
8922 }
8923
8924 *ppsection = isec;
8925
8926 /* Don't output the first, undefined, symbol. */
8927 if (ppsection == finfo->sections)
8928 continue;
8929
8930 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8931 {
8932 /* We never output section symbols. Instead, we use the
8933 section symbol of the corresponding section in the output
8934 file. */
8935 continue;
8936 }
8937
8938 /* If we are stripping all symbols, we don't want to output this
8939 one. */
8940 if (finfo->info->strip == strip_all)
8941 continue;
8942
8943 /* If we are discarding all local symbols, we don't want to
8944 output this one. If we are generating a relocatable output
8945 file, then some of the local symbols may be required by
8946 relocs; we output them below as we discover that they are
8947 needed. */
8948 if (finfo->info->discard == discard_all)
8949 continue;
8950
8951 /* If this symbol is defined in a section which we are
8952 discarding, we don't need to keep it. */
8953 if (isym->st_shndx != SHN_UNDEF
8954 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8955 && (isec == NULL
8956 || bfd_section_removed_from_list (output_bfd,
8957 isec->output_section)))
8958 continue;
8959
8960 /* Get the name of the symbol. */
8961 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8962 isym->st_name);
8963 if (name == NULL)
8964 return FALSE;
8965
8966 /* See if we are discarding symbols with this name. */
8967 if ((finfo->info->strip == strip_some
8968 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8969 == NULL))
8970 || (((finfo->info->discard == discard_sec_merge
8971 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8972 || finfo->info->discard == discard_l)
8973 && bfd_is_local_label_name (input_bfd, name)))
8974 continue;
8975
8976 /* If we get here, we are going to output this symbol. */
8977
8978 osym = *isym;
8979
8980 /* Adjust the section index for the output file. */
8981 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8982 isec->output_section);
8983 if (osym.st_shndx == SHN_BAD)
8984 return FALSE;
8985
8986 *pindex = bfd_get_symcount (output_bfd);
8987
8988 /* ELF symbols in relocatable files are section relative, but
8989 in executable files they are virtual addresses. Note that
8990 this code assumes that all ELF sections have an associated
8991 BFD section with a reasonable value for output_offset; below
8992 we assume that they also have a reasonable value for
8993 output_section. Any special sections must be set up to meet
8994 these requirements. */
8995 osym.st_value += isec->output_offset;
8996 if (! finfo->info->relocatable)
8997 {
8998 osym.st_value += isec->output_section->vma;
8999 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9000 {
9001 /* STT_TLS symbols are relative to PT_TLS segment base. */
9002 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9003 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9004 }
9005 }
9006
9007 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9008 return FALSE;
9009 }
9010
9011 /* Relocate the contents of each section. */
9012 sym_hashes = elf_sym_hashes (input_bfd);
9013 for (o = input_bfd->sections; o != NULL; o = o->next)
9014 {
9015 bfd_byte *contents;
9016
9017 if (! o->linker_mark)
9018 {
9019 /* This section was omitted from the link. */
9020 continue;
9021 }
9022
9023 if ((o->flags & SEC_HAS_CONTENTS) == 0
9024 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9025 continue;
9026
9027 if ((o->flags & SEC_LINKER_CREATED) != 0)
9028 {
9029 /* Section was created by _bfd_elf_link_create_dynamic_sections
9030 or somesuch. */
9031 continue;
9032 }
9033
9034 /* Get the contents of the section. They have been cached by a
9035 relaxation routine. Note that o is a section in an input
9036 file, so the contents field will not have been set by any of
9037 the routines which work on output files. */
9038 if (elf_section_data (o)->this_hdr.contents != NULL)
9039 contents = elf_section_data (o)->this_hdr.contents;
9040 else
9041 {
9042 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9043
9044 contents = finfo->contents;
9045 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9046 return FALSE;
9047 }
9048
9049 if ((o->flags & SEC_RELOC) != 0)
9050 {
9051 Elf_Internal_Rela *internal_relocs;
9052 Elf_Internal_Rela *rel, *relend;
9053 bfd_vma r_type_mask;
9054 int r_sym_shift;
9055 int action_discarded;
9056 int ret;
9057
9058 /* Get the swapped relocs. */
9059 internal_relocs
9060 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9061 finfo->internal_relocs, FALSE);
9062 if (internal_relocs == NULL
9063 && o->reloc_count > 0)
9064 return FALSE;
9065
9066 if (bed->s->arch_size == 32)
9067 {
9068 r_type_mask = 0xff;
9069 r_sym_shift = 8;
9070 }
9071 else
9072 {
9073 r_type_mask = 0xffffffff;
9074 r_sym_shift = 32;
9075 }
9076
9077 action_discarded = -1;
9078 if (!elf_section_ignore_discarded_relocs (o))
9079 action_discarded = (*bed->action_discarded) (o);
9080
9081 /* Run through the relocs evaluating complex reloc symbols and
9082 looking for relocs against symbols from discarded sections
9083 or section symbols from removed link-once sections.
9084 Complain about relocs against discarded sections. Zero
9085 relocs against removed link-once sections. */
9086
9087 rel = internal_relocs;
9088 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9089 for ( ; rel < relend; rel++)
9090 {
9091 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9092 unsigned int s_type;
9093 asection **ps, *sec;
9094 struct elf_link_hash_entry *h = NULL;
9095 const char *sym_name;
9096
9097 if (r_symndx == STN_UNDEF)
9098 continue;
9099
9100 if (r_symndx >= locsymcount
9101 || (elf_bad_symtab (input_bfd)
9102 && finfo->sections[r_symndx] == NULL))
9103 {
9104 h = sym_hashes[r_symndx - extsymoff];
9105
9106 /* Badly formatted input files can contain relocs that
9107 reference non-existant symbols. Check here so that
9108 we do not seg fault. */
9109 if (h == NULL)
9110 {
9111 char buffer [32];
9112
9113 sprintf_vma (buffer, rel->r_info);
9114 (*_bfd_error_handler)
9115 (_("error: %B contains a reloc (0x%s) for section %A "
9116 "that references a non-existent global symbol"),
9117 input_bfd, o, buffer);
9118 bfd_set_error (bfd_error_bad_value);
9119 return FALSE;
9120 }
9121
9122 while (h->root.type == bfd_link_hash_indirect
9123 || h->root.type == bfd_link_hash_warning)
9124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9125
9126 s_type = h->type;
9127
9128 ps = NULL;
9129 if (h->root.type == bfd_link_hash_defined
9130 || h->root.type == bfd_link_hash_defweak)
9131 ps = &h->root.u.def.section;
9132
9133 sym_name = h->root.root.string;
9134 }
9135 else
9136 {
9137 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9138
9139 s_type = ELF_ST_TYPE (sym->st_info);
9140 ps = &finfo->sections[r_symndx];
9141 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9142 sym, *ps);
9143 }
9144
9145 if (s_type == STT_RELC || s_type == STT_SRELC)
9146 {
9147 bfd_vma val;
9148 bfd_vma dot = (rel->r_offset
9149 + o->output_offset + o->output_section->vma);
9150 #ifdef DEBUG
9151 printf ("Encountered a complex symbol!");
9152 printf (" (input_bfd %s, section %s, reloc %ld\n",
9153 input_bfd->filename, o->name, rel - internal_relocs);
9154 printf (" symbol: idx %8.8lx, name %s\n",
9155 r_symndx, sym_name);
9156 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9157 (unsigned long) rel->r_info,
9158 (unsigned long) rel->r_offset);
9159 #endif
9160 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9161 isymbuf, locsymcount, s_type == STT_SRELC))
9162 return FALSE;
9163
9164 /* Symbol evaluated OK. Update to absolute value. */
9165 set_symbol_value (input_bfd, isymbuf, locsymcount,
9166 r_symndx, val);
9167 continue;
9168 }
9169
9170 if (action_discarded != -1 && ps != NULL)
9171 {
9172 /* Complain if the definition comes from a
9173 discarded section. */
9174 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9175 {
9176 BFD_ASSERT (r_symndx != 0);
9177 if (action_discarded & COMPLAIN)
9178 (*finfo->info->callbacks->einfo)
9179 (_("%X`%s' referenced in section `%A' of %B: "
9180 "defined in discarded section `%A' of %B\n"),
9181 sym_name, o, input_bfd, sec, sec->owner);
9182
9183 /* Try to do the best we can to support buggy old
9184 versions of gcc. Pretend that the symbol is
9185 really defined in the kept linkonce section.
9186 FIXME: This is quite broken. Modifying the
9187 symbol here means we will be changing all later
9188 uses of the symbol, not just in this section. */
9189 if (action_discarded & PRETEND)
9190 {
9191 asection *kept;
9192
9193 kept = _bfd_elf_check_kept_section (sec,
9194 finfo->info);
9195 if (kept != NULL)
9196 {
9197 *ps = kept;
9198 continue;
9199 }
9200 }
9201 }
9202 }
9203 }
9204
9205 /* Relocate the section by invoking a back end routine.
9206
9207 The back end routine is responsible for adjusting the
9208 section contents as necessary, and (if using Rela relocs
9209 and generating a relocatable output file) adjusting the
9210 reloc addend as necessary.
9211
9212 The back end routine does not have to worry about setting
9213 the reloc address or the reloc symbol index.
9214
9215 The back end routine is given a pointer to the swapped in
9216 internal symbols, and can access the hash table entries
9217 for the external symbols via elf_sym_hashes (input_bfd).
9218
9219 When generating relocatable output, the back end routine
9220 must handle STB_LOCAL/STT_SECTION symbols specially. The
9221 output symbol is going to be a section symbol
9222 corresponding to the output section, which will require
9223 the addend to be adjusted. */
9224
9225 ret = (*relocate_section) (output_bfd, finfo->info,
9226 input_bfd, o, contents,
9227 internal_relocs,
9228 isymbuf,
9229 finfo->sections);
9230 if (!ret)
9231 return FALSE;
9232
9233 if (ret == 2
9234 || finfo->info->relocatable
9235 || finfo->info->emitrelocations)
9236 {
9237 Elf_Internal_Rela *irela;
9238 Elf_Internal_Rela *irelaend;
9239 bfd_vma last_offset;
9240 struct elf_link_hash_entry **rel_hash;
9241 struct elf_link_hash_entry **rel_hash_list;
9242 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9243 unsigned int next_erel;
9244 bfd_boolean rela_normal;
9245
9246 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9247 rela_normal = (bed->rela_normal
9248 && (input_rel_hdr->sh_entsize
9249 == bed->s->sizeof_rela));
9250
9251 /* Adjust the reloc addresses and symbol indices. */
9252
9253 irela = internal_relocs;
9254 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9255 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9256 + elf_section_data (o->output_section)->rel_count
9257 + elf_section_data (o->output_section)->rel_count2);
9258 rel_hash_list = rel_hash;
9259 last_offset = o->output_offset;
9260 if (!finfo->info->relocatable)
9261 last_offset += o->output_section->vma;
9262 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9263 {
9264 unsigned long r_symndx;
9265 asection *sec;
9266 Elf_Internal_Sym sym;
9267
9268 if (next_erel == bed->s->int_rels_per_ext_rel)
9269 {
9270 rel_hash++;
9271 next_erel = 0;
9272 }
9273
9274 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9275 finfo->info, o,
9276 irela->r_offset);
9277 if (irela->r_offset >= (bfd_vma) -2)
9278 {
9279 /* This is a reloc for a deleted entry or somesuch.
9280 Turn it into an R_*_NONE reloc, at the same
9281 offset as the last reloc. elf_eh_frame.c and
9282 bfd_elf_discard_info rely on reloc offsets
9283 being ordered. */
9284 irela->r_offset = last_offset;
9285 irela->r_info = 0;
9286 irela->r_addend = 0;
9287 continue;
9288 }
9289
9290 irela->r_offset += o->output_offset;
9291
9292 /* Relocs in an executable have to be virtual addresses. */
9293 if (!finfo->info->relocatable)
9294 irela->r_offset += o->output_section->vma;
9295
9296 last_offset = irela->r_offset;
9297
9298 r_symndx = irela->r_info >> r_sym_shift;
9299 if (r_symndx == STN_UNDEF)
9300 continue;
9301
9302 if (r_symndx >= locsymcount
9303 || (elf_bad_symtab (input_bfd)
9304 && finfo->sections[r_symndx] == NULL))
9305 {
9306 struct elf_link_hash_entry *rh;
9307 unsigned long indx;
9308
9309 /* This is a reloc against a global symbol. We
9310 have not yet output all the local symbols, so
9311 we do not know the symbol index of any global
9312 symbol. We set the rel_hash entry for this
9313 reloc to point to the global hash table entry
9314 for this symbol. The symbol index is then
9315 set at the end of bfd_elf_final_link. */
9316 indx = r_symndx - extsymoff;
9317 rh = elf_sym_hashes (input_bfd)[indx];
9318 while (rh->root.type == bfd_link_hash_indirect
9319 || rh->root.type == bfd_link_hash_warning)
9320 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9321
9322 /* Setting the index to -2 tells
9323 elf_link_output_extsym that this symbol is
9324 used by a reloc. */
9325 BFD_ASSERT (rh->indx < 0);
9326 rh->indx = -2;
9327
9328 *rel_hash = rh;
9329
9330 continue;
9331 }
9332
9333 /* This is a reloc against a local symbol. */
9334
9335 *rel_hash = NULL;
9336 sym = isymbuf[r_symndx];
9337 sec = finfo->sections[r_symndx];
9338 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9339 {
9340 /* I suppose the backend ought to fill in the
9341 section of any STT_SECTION symbol against a
9342 processor specific section. */
9343 r_symndx = 0;
9344 if (bfd_is_abs_section (sec))
9345 ;
9346 else if (sec == NULL || sec->owner == NULL)
9347 {
9348 bfd_set_error (bfd_error_bad_value);
9349 return FALSE;
9350 }
9351 else
9352 {
9353 asection *osec = sec->output_section;
9354
9355 /* If we have discarded a section, the output
9356 section will be the absolute section. In
9357 case of discarded SEC_MERGE sections, use
9358 the kept section. relocate_section should
9359 have already handled discarded linkonce
9360 sections. */
9361 if (bfd_is_abs_section (osec)
9362 && sec->kept_section != NULL
9363 && sec->kept_section->output_section != NULL)
9364 {
9365 osec = sec->kept_section->output_section;
9366 irela->r_addend -= osec->vma;
9367 }
9368
9369 if (!bfd_is_abs_section (osec))
9370 {
9371 r_symndx = osec->target_index;
9372 if (r_symndx == 0)
9373 {
9374 struct elf_link_hash_table *htab;
9375 asection *oi;
9376
9377 htab = elf_hash_table (finfo->info);
9378 oi = htab->text_index_section;
9379 if ((osec->flags & SEC_READONLY) == 0
9380 && htab->data_index_section != NULL)
9381 oi = htab->data_index_section;
9382
9383 if (oi != NULL)
9384 {
9385 irela->r_addend += osec->vma - oi->vma;
9386 r_symndx = oi->target_index;
9387 }
9388 }
9389
9390 BFD_ASSERT (r_symndx != 0);
9391 }
9392 }
9393
9394 /* Adjust the addend according to where the
9395 section winds up in the output section. */
9396 if (rela_normal)
9397 irela->r_addend += sec->output_offset;
9398 }
9399 else
9400 {
9401 if (finfo->indices[r_symndx] == -1)
9402 {
9403 unsigned long shlink;
9404 const char *name;
9405 asection *osec;
9406
9407 if (finfo->info->strip == strip_all)
9408 {
9409 /* You can't do ld -r -s. */
9410 bfd_set_error (bfd_error_invalid_operation);
9411 return FALSE;
9412 }
9413
9414 /* This symbol was skipped earlier, but
9415 since it is needed by a reloc, we
9416 must output it now. */
9417 shlink = symtab_hdr->sh_link;
9418 name = (bfd_elf_string_from_elf_section
9419 (input_bfd, shlink, sym.st_name));
9420 if (name == NULL)
9421 return FALSE;
9422
9423 osec = sec->output_section;
9424 sym.st_shndx =
9425 _bfd_elf_section_from_bfd_section (output_bfd,
9426 osec);
9427 if (sym.st_shndx == SHN_BAD)
9428 return FALSE;
9429
9430 sym.st_value += sec->output_offset;
9431 if (! finfo->info->relocatable)
9432 {
9433 sym.st_value += osec->vma;
9434 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9435 {
9436 /* STT_TLS symbols are relative to PT_TLS
9437 segment base. */
9438 BFD_ASSERT (elf_hash_table (finfo->info)
9439 ->tls_sec != NULL);
9440 sym.st_value -= (elf_hash_table (finfo->info)
9441 ->tls_sec->vma);
9442 }
9443 }
9444
9445 finfo->indices[r_symndx]
9446 = bfd_get_symcount (output_bfd);
9447
9448 if (! elf_link_output_sym (finfo, name, &sym, sec,
9449 NULL))
9450 return FALSE;
9451 }
9452
9453 r_symndx = finfo->indices[r_symndx];
9454 }
9455
9456 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9457 | (irela->r_info & r_type_mask));
9458 }
9459
9460 /* Swap out the relocs. */
9461 if (input_rel_hdr->sh_size != 0
9462 && !bed->elf_backend_emit_relocs (output_bfd, o,
9463 input_rel_hdr,
9464 internal_relocs,
9465 rel_hash_list))
9466 return FALSE;
9467
9468 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9469 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9470 {
9471 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9472 * bed->s->int_rels_per_ext_rel);
9473 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9474 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9475 input_rel_hdr2,
9476 internal_relocs,
9477 rel_hash_list))
9478 return FALSE;
9479 }
9480 }
9481 }
9482
9483 /* Write out the modified section contents. */
9484 if (bed->elf_backend_write_section
9485 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9486 contents))
9487 {
9488 /* Section written out. */
9489 }
9490 else switch (o->sec_info_type)
9491 {
9492 case ELF_INFO_TYPE_STABS:
9493 if (! (_bfd_write_section_stabs
9494 (output_bfd,
9495 &elf_hash_table (finfo->info)->stab_info,
9496 o, &elf_section_data (o)->sec_info, contents)))
9497 return FALSE;
9498 break;
9499 case ELF_INFO_TYPE_MERGE:
9500 if (! _bfd_write_merged_section (output_bfd, o,
9501 elf_section_data (o)->sec_info))
9502 return FALSE;
9503 break;
9504 case ELF_INFO_TYPE_EH_FRAME:
9505 {
9506 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9507 o, contents))
9508 return FALSE;
9509 }
9510 break;
9511 default:
9512 {
9513 if (! (o->flags & SEC_EXCLUDE)
9514 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9515 && ! bfd_set_section_contents (output_bfd, o->output_section,
9516 contents,
9517 (file_ptr) o->output_offset,
9518 o->size))
9519 return FALSE;
9520 }
9521 break;
9522 }
9523 }
9524
9525 return TRUE;
9526 }
9527
9528 /* Generate a reloc when linking an ELF file. This is a reloc
9529 requested by the linker, and does not come from any input file. This
9530 is used to build constructor and destructor tables when linking
9531 with -Ur. */
9532
9533 static bfd_boolean
9534 elf_reloc_link_order (bfd *output_bfd,
9535 struct bfd_link_info *info,
9536 asection *output_section,
9537 struct bfd_link_order *link_order)
9538 {
9539 reloc_howto_type *howto;
9540 long indx;
9541 bfd_vma offset;
9542 bfd_vma addend;
9543 struct elf_link_hash_entry **rel_hash_ptr;
9544 Elf_Internal_Shdr *rel_hdr;
9545 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9546 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9547 bfd_byte *erel;
9548 unsigned int i;
9549
9550 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9551 if (howto == NULL)
9552 {
9553 bfd_set_error (bfd_error_bad_value);
9554 return FALSE;
9555 }
9556
9557 addend = link_order->u.reloc.p->addend;
9558
9559 /* Figure out the symbol index. */
9560 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9561 + elf_section_data (output_section)->rel_count
9562 + elf_section_data (output_section)->rel_count2);
9563 if (link_order->type == bfd_section_reloc_link_order)
9564 {
9565 indx = link_order->u.reloc.p->u.section->target_index;
9566 BFD_ASSERT (indx != 0);
9567 *rel_hash_ptr = NULL;
9568 }
9569 else
9570 {
9571 struct elf_link_hash_entry *h;
9572
9573 /* Treat a reloc against a defined symbol as though it were
9574 actually against the section. */
9575 h = ((struct elf_link_hash_entry *)
9576 bfd_wrapped_link_hash_lookup (output_bfd, info,
9577 link_order->u.reloc.p->u.name,
9578 FALSE, FALSE, TRUE));
9579 if (h != NULL
9580 && (h->root.type == bfd_link_hash_defined
9581 || h->root.type == bfd_link_hash_defweak))
9582 {
9583 asection *section;
9584
9585 section = h->root.u.def.section;
9586 indx = section->output_section->target_index;
9587 *rel_hash_ptr = NULL;
9588 /* It seems that we ought to add the symbol value to the
9589 addend here, but in practice it has already been added
9590 because it was passed to constructor_callback. */
9591 addend += section->output_section->vma + section->output_offset;
9592 }
9593 else if (h != NULL)
9594 {
9595 /* Setting the index to -2 tells elf_link_output_extsym that
9596 this symbol is used by a reloc. */
9597 h->indx = -2;
9598 *rel_hash_ptr = h;
9599 indx = 0;
9600 }
9601 else
9602 {
9603 if (! ((*info->callbacks->unattached_reloc)
9604 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9605 return FALSE;
9606 indx = 0;
9607 }
9608 }
9609
9610 /* If this is an inplace reloc, we must write the addend into the
9611 object file. */
9612 if (howto->partial_inplace && addend != 0)
9613 {
9614 bfd_size_type size;
9615 bfd_reloc_status_type rstat;
9616 bfd_byte *buf;
9617 bfd_boolean ok;
9618 const char *sym_name;
9619
9620 size = bfd_get_reloc_size (howto);
9621 buf = bfd_zmalloc (size);
9622 if (buf == NULL)
9623 return FALSE;
9624 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9625 switch (rstat)
9626 {
9627 case bfd_reloc_ok:
9628 break;
9629
9630 default:
9631 case bfd_reloc_outofrange:
9632 abort ();
9633
9634 case bfd_reloc_overflow:
9635 if (link_order->type == bfd_section_reloc_link_order)
9636 sym_name = bfd_section_name (output_bfd,
9637 link_order->u.reloc.p->u.section);
9638 else
9639 sym_name = link_order->u.reloc.p->u.name;
9640 if (! ((*info->callbacks->reloc_overflow)
9641 (info, NULL, sym_name, howto->name, addend, NULL,
9642 NULL, (bfd_vma) 0)))
9643 {
9644 free (buf);
9645 return FALSE;
9646 }
9647 break;
9648 }
9649 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9650 link_order->offset, size);
9651 free (buf);
9652 if (! ok)
9653 return FALSE;
9654 }
9655
9656 /* The address of a reloc is relative to the section in a
9657 relocatable file, and is a virtual address in an executable
9658 file. */
9659 offset = link_order->offset;
9660 if (! info->relocatable)
9661 offset += output_section->vma;
9662
9663 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9664 {
9665 irel[i].r_offset = offset;
9666 irel[i].r_info = 0;
9667 irel[i].r_addend = 0;
9668 }
9669 if (bed->s->arch_size == 32)
9670 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9671 else
9672 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9673
9674 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9675 erel = rel_hdr->contents;
9676 if (rel_hdr->sh_type == SHT_REL)
9677 {
9678 erel += (elf_section_data (output_section)->rel_count
9679 * bed->s->sizeof_rel);
9680 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9681 }
9682 else
9683 {
9684 irel[0].r_addend = addend;
9685 erel += (elf_section_data (output_section)->rel_count
9686 * bed->s->sizeof_rela);
9687 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9688 }
9689
9690 ++elf_section_data (output_section)->rel_count;
9691
9692 return TRUE;
9693 }
9694
9695
9696 /* Get the output vma of the section pointed to by the sh_link field. */
9697
9698 static bfd_vma
9699 elf_get_linked_section_vma (struct bfd_link_order *p)
9700 {
9701 Elf_Internal_Shdr **elf_shdrp;
9702 asection *s;
9703 int elfsec;
9704
9705 s = p->u.indirect.section;
9706 elf_shdrp = elf_elfsections (s->owner);
9707 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9708 elfsec = elf_shdrp[elfsec]->sh_link;
9709 /* PR 290:
9710 The Intel C compiler generates SHT_IA_64_UNWIND with
9711 SHF_LINK_ORDER. But it doesn't set the sh_link or
9712 sh_info fields. Hence we could get the situation
9713 where elfsec is 0. */
9714 if (elfsec == 0)
9715 {
9716 const struct elf_backend_data *bed
9717 = get_elf_backend_data (s->owner);
9718 if (bed->link_order_error_handler)
9719 bed->link_order_error_handler
9720 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9721 return 0;
9722 }
9723 else
9724 {
9725 s = elf_shdrp[elfsec]->bfd_section;
9726 return s->output_section->vma + s->output_offset;
9727 }
9728 }
9729
9730
9731 /* Compare two sections based on the locations of the sections they are
9732 linked to. Used by elf_fixup_link_order. */
9733
9734 static int
9735 compare_link_order (const void * a, const void * b)
9736 {
9737 bfd_vma apos;
9738 bfd_vma bpos;
9739
9740 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9741 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9742 if (apos < bpos)
9743 return -1;
9744 return apos > bpos;
9745 }
9746
9747
9748 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9749 order as their linked sections. Returns false if this could not be done
9750 because an output section includes both ordered and unordered
9751 sections. Ideally we'd do this in the linker proper. */
9752
9753 static bfd_boolean
9754 elf_fixup_link_order (bfd *abfd, asection *o)
9755 {
9756 int seen_linkorder;
9757 int seen_other;
9758 int n;
9759 struct bfd_link_order *p;
9760 bfd *sub;
9761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9762 unsigned elfsec;
9763 struct bfd_link_order **sections;
9764 asection *s, *other_sec, *linkorder_sec;
9765 bfd_vma offset;
9766
9767 other_sec = NULL;
9768 linkorder_sec = NULL;
9769 seen_other = 0;
9770 seen_linkorder = 0;
9771 for (p = o->map_head.link_order; p != NULL; p = p->next)
9772 {
9773 if (p->type == bfd_indirect_link_order)
9774 {
9775 s = p->u.indirect.section;
9776 sub = s->owner;
9777 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9778 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9779 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9780 && elfsec < elf_numsections (sub)
9781 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9782 {
9783 seen_linkorder++;
9784 linkorder_sec = s;
9785 }
9786 else
9787 {
9788 seen_other++;
9789 other_sec = s;
9790 }
9791 }
9792 else
9793 seen_other++;
9794
9795 if (seen_other && seen_linkorder)
9796 {
9797 if (other_sec && linkorder_sec)
9798 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9799 o, linkorder_sec,
9800 linkorder_sec->owner, other_sec,
9801 other_sec->owner);
9802 else
9803 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9804 o);
9805 bfd_set_error (bfd_error_bad_value);
9806 return FALSE;
9807 }
9808 }
9809
9810 if (!seen_linkorder)
9811 return TRUE;
9812
9813 sections = (struct bfd_link_order **)
9814 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9815 if (sections == NULL)
9816 return FALSE;
9817 seen_linkorder = 0;
9818
9819 for (p = o->map_head.link_order; p != NULL; p = p->next)
9820 {
9821 sections[seen_linkorder++] = p;
9822 }
9823 /* Sort the input sections in the order of their linked section. */
9824 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9825 compare_link_order);
9826
9827 /* Change the offsets of the sections. */
9828 offset = 0;
9829 for (n = 0; n < seen_linkorder; n++)
9830 {
9831 s = sections[n]->u.indirect.section;
9832 offset &= ~(bfd_vma) 0 << s->alignment_power;
9833 s->output_offset = offset;
9834 sections[n]->offset = offset;
9835 offset += sections[n]->size;
9836 }
9837
9838 return TRUE;
9839 }
9840
9841
9842 /* Do the final step of an ELF link. */
9843
9844 bfd_boolean
9845 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9846 {
9847 bfd_boolean dynamic;
9848 bfd_boolean emit_relocs;
9849 bfd *dynobj;
9850 struct elf_final_link_info finfo;
9851 register asection *o;
9852 register struct bfd_link_order *p;
9853 register bfd *sub;
9854 bfd_size_type max_contents_size;
9855 bfd_size_type max_external_reloc_size;
9856 bfd_size_type max_internal_reloc_count;
9857 bfd_size_type max_sym_count;
9858 bfd_size_type max_sym_shndx_count;
9859 file_ptr off;
9860 Elf_Internal_Sym elfsym;
9861 unsigned int i;
9862 Elf_Internal_Shdr *symtab_hdr;
9863 Elf_Internal_Shdr *symtab_shndx_hdr;
9864 Elf_Internal_Shdr *symstrtab_hdr;
9865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9866 struct elf_outext_info eoinfo;
9867 bfd_boolean merged;
9868 size_t relativecount = 0;
9869 asection *reldyn = 0;
9870 bfd_size_type amt;
9871 asection *attr_section = NULL;
9872 bfd_vma attr_size = 0;
9873 const char *std_attrs_section;
9874
9875 if (! is_elf_hash_table (info->hash))
9876 return FALSE;
9877
9878 if (info->shared)
9879 abfd->flags |= DYNAMIC;
9880
9881 dynamic = elf_hash_table (info)->dynamic_sections_created;
9882 dynobj = elf_hash_table (info)->dynobj;
9883
9884 emit_relocs = (info->relocatable
9885 || info->emitrelocations);
9886
9887 finfo.info = info;
9888 finfo.output_bfd = abfd;
9889 finfo.symstrtab = _bfd_elf_stringtab_init ();
9890 if (finfo.symstrtab == NULL)
9891 return FALSE;
9892
9893 if (! dynamic)
9894 {
9895 finfo.dynsym_sec = NULL;
9896 finfo.hash_sec = NULL;
9897 finfo.symver_sec = NULL;
9898 }
9899 else
9900 {
9901 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9902 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9903 BFD_ASSERT (finfo.dynsym_sec != NULL);
9904 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9905 /* Note that it is OK if symver_sec is NULL. */
9906 }
9907
9908 finfo.contents = NULL;
9909 finfo.external_relocs = NULL;
9910 finfo.internal_relocs = NULL;
9911 finfo.external_syms = NULL;
9912 finfo.locsym_shndx = NULL;
9913 finfo.internal_syms = NULL;
9914 finfo.indices = NULL;
9915 finfo.sections = NULL;
9916 finfo.symbuf = NULL;
9917 finfo.symshndxbuf = NULL;
9918 finfo.symbuf_count = 0;
9919 finfo.shndxbuf_size = 0;
9920
9921 /* The object attributes have been merged. Remove the input
9922 sections from the link, and set the contents of the output
9923 secton. */
9924 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9925 for (o = abfd->sections; o != NULL; o = o->next)
9926 {
9927 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9928 || strcmp (o->name, ".gnu.attributes") == 0)
9929 {
9930 for (p = o->map_head.link_order; p != NULL; p = p->next)
9931 {
9932 asection *input_section;
9933
9934 if (p->type != bfd_indirect_link_order)
9935 continue;
9936 input_section = p->u.indirect.section;
9937 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9938 elf_link_input_bfd ignores this section. */
9939 input_section->flags &= ~SEC_HAS_CONTENTS;
9940 }
9941
9942 attr_size = bfd_elf_obj_attr_size (abfd);
9943 if (attr_size)
9944 {
9945 bfd_set_section_size (abfd, o, attr_size);
9946 attr_section = o;
9947 /* Skip this section later on. */
9948 o->map_head.link_order = NULL;
9949 }
9950 else
9951 o->flags |= SEC_EXCLUDE;
9952 }
9953 }
9954
9955 /* Count up the number of relocations we will output for each output
9956 section, so that we know the sizes of the reloc sections. We
9957 also figure out some maximum sizes. */
9958 max_contents_size = 0;
9959 max_external_reloc_size = 0;
9960 max_internal_reloc_count = 0;
9961 max_sym_count = 0;
9962 max_sym_shndx_count = 0;
9963 merged = FALSE;
9964 for (o = abfd->sections; o != NULL; o = o->next)
9965 {
9966 struct bfd_elf_section_data *esdo = elf_section_data (o);
9967 o->reloc_count = 0;
9968
9969 for (p = o->map_head.link_order; p != NULL; p = p->next)
9970 {
9971 unsigned int reloc_count = 0;
9972 struct bfd_elf_section_data *esdi = NULL;
9973 unsigned int *rel_count1;
9974
9975 if (p->type == bfd_section_reloc_link_order
9976 || p->type == bfd_symbol_reloc_link_order)
9977 reloc_count = 1;
9978 else if (p->type == bfd_indirect_link_order)
9979 {
9980 asection *sec;
9981
9982 sec = p->u.indirect.section;
9983 esdi = elf_section_data (sec);
9984
9985 /* Mark all sections which are to be included in the
9986 link. This will normally be every section. We need
9987 to do this so that we can identify any sections which
9988 the linker has decided to not include. */
9989 sec->linker_mark = TRUE;
9990
9991 if (sec->flags & SEC_MERGE)
9992 merged = TRUE;
9993
9994 if (info->relocatable || info->emitrelocations)
9995 reloc_count = sec->reloc_count;
9996 else if (bed->elf_backend_count_relocs)
9997 {
9998 Elf_Internal_Rela * relocs;
9999
10000 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10001 NULL, NULL,
10002 info->keep_memory);
10003
10004 if (relocs != NULL)
10005 {
10006 reloc_count
10007 = (*bed->elf_backend_count_relocs) (sec, relocs);
10008
10009 if (elf_section_data (sec)->relocs != relocs)
10010 free (relocs);
10011 }
10012 }
10013
10014 if (sec->rawsize > max_contents_size)
10015 max_contents_size = sec->rawsize;
10016 if (sec->size > max_contents_size)
10017 max_contents_size = sec->size;
10018
10019 /* We are interested in just local symbols, not all
10020 symbols. */
10021 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10022 && (sec->owner->flags & DYNAMIC) == 0)
10023 {
10024 size_t sym_count;
10025
10026 if (elf_bad_symtab (sec->owner))
10027 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10028 / bed->s->sizeof_sym);
10029 else
10030 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10031
10032 if (sym_count > max_sym_count)
10033 max_sym_count = sym_count;
10034
10035 if (sym_count > max_sym_shndx_count
10036 && elf_symtab_shndx (sec->owner) != 0)
10037 max_sym_shndx_count = sym_count;
10038
10039 if ((sec->flags & SEC_RELOC) != 0)
10040 {
10041 size_t ext_size;
10042
10043 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10044 if (ext_size > max_external_reloc_size)
10045 max_external_reloc_size = ext_size;
10046 if (sec->reloc_count > max_internal_reloc_count)
10047 max_internal_reloc_count = sec->reloc_count;
10048 }
10049 }
10050 }
10051
10052 if (reloc_count == 0)
10053 continue;
10054
10055 o->reloc_count += reloc_count;
10056
10057 /* MIPS may have a mix of REL and RELA relocs on sections.
10058 To support this curious ABI we keep reloc counts in
10059 elf_section_data too. We must be careful to add the
10060 relocations from the input section to the right output
10061 count. FIXME: Get rid of one count. We have
10062 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10063 rel_count1 = &esdo->rel_count;
10064 if (esdi != NULL)
10065 {
10066 bfd_boolean same_size;
10067 bfd_size_type entsize1;
10068
10069 entsize1 = esdi->rel_hdr.sh_entsize;
10070 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10071 || entsize1 == bed->s->sizeof_rela);
10072 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10073
10074 if (!same_size)
10075 rel_count1 = &esdo->rel_count2;
10076
10077 if (esdi->rel_hdr2 != NULL)
10078 {
10079 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10080 unsigned int alt_count;
10081 unsigned int *rel_count2;
10082
10083 BFD_ASSERT (entsize2 != entsize1
10084 && (entsize2 == bed->s->sizeof_rel
10085 || entsize2 == bed->s->sizeof_rela));
10086
10087 rel_count2 = &esdo->rel_count2;
10088 if (!same_size)
10089 rel_count2 = &esdo->rel_count;
10090
10091 /* The following is probably too simplistic if the
10092 backend counts output relocs unusually. */
10093 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10094 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10095 *rel_count2 += alt_count;
10096 reloc_count -= alt_count;
10097 }
10098 }
10099 *rel_count1 += reloc_count;
10100 }
10101
10102 if (o->reloc_count > 0)
10103 o->flags |= SEC_RELOC;
10104 else
10105 {
10106 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10107 set it (this is probably a bug) and if it is set
10108 assign_section_numbers will create a reloc section. */
10109 o->flags &=~ SEC_RELOC;
10110 }
10111
10112 /* If the SEC_ALLOC flag is not set, force the section VMA to
10113 zero. This is done in elf_fake_sections as well, but forcing
10114 the VMA to 0 here will ensure that relocs against these
10115 sections are handled correctly. */
10116 if ((o->flags & SEC_ALLOC) == 0
10117 && ! o->user_set_vma)
10118 o->vma = 0;
10119 }
10120
10121 if (! info->relocatable && merged)
10122 elf_link_hash_traverse (elf_hash_table (info),
10123 _bfd_elf_link_sec_merge_syms, abfd);
10124
10125 /* Figure out the file positions for everything but the symbol table
10126 and the relocs. We set symcount to force assign_section_numbers
10127 to create a symbol table. */
10128 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10129 BFD_ASSERT (! abfd->output_has_begun);
10130 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10131 goto error_return;
10132
10133 /* Set sizes, and assign file positions for reloc sections. */
10134 for (o = abfd->sections; o != NULL; o = o->next)
10135 {
10136 if ((o->flags & SEC_RELOC) != 0)
10137 {
10138 if (!(_bfd_elf_link_size_reloc_section
10139 (abfd, &elf_section_data (o)->rel_hdr, o)))
10140 goto error_return;
10141
10142 if (elf_section_data (o)->rel_hdr2
10143 && !(_bfd_elf_link_size_reloc_section
10144 (abfd, elf_section_data (o)->rel_hdr2, o)))
10145 goto error_return;
10146 }
10147
10148 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10149 to count upwards while actually outputting the relocations. */
10150 elf_section_data (o)->rel_count = 0;
10151 elf_section_data (o)->rel_count2 = 0;
10152 }
10153
10154 _bfd_elf_assign_file_positions_for_relocs (abfd);
10155
10156 /* We have now assigned file positions for all the sections except
10157 .symtab and .strtab. We start the .symtab section at the current
10158 file position, and write directly to it. We build the .strtab
10159 section in memory. */
10160 bfd_get_symcount (abfd) = 0;
10161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10162 /* sh_name is set in prep_headers. */
10163 symtab_hdr->sh_type = SHT_SYMTAB;
10164 /* sh_flags, sh_addr and sh_size all start off zero. */
10165 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10166 /* sh_link is set in assign_section_numbers. */
10167 /* sh_info is set below. */
10168 /* sh_offset is set just below. */
10169 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10170
10171 off = elf_tdata (abfd)->next_file_pos;
10172 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10173
10174 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10175 incorrect. We do not yet know the size of the .symtab section.
10176 We correct next_file_pos below, after we do know the size. */
10177
10178 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10179 continuously seeking to the right position in the file. */
10180 if (! info->keep_memory || max_sym_count < 20)
10181 finfo.symbuf_size = 20;
10182 else
10183 finfo.symbuf_size = max_sym_count;
10184 amt = finfo.symbuf_size;
10185 amt *= bed->s->sizeof_sym;
10186 finfo.symbuf = bfd_malloc (amt);
10187 if (finfo.symbuf == NULL)
10188 goto error_return;
10189 if (elf_numsections (abfd) > SHN_LORESERVE)
10190 {
10191 /* Wild guess at number of output symbols. realloc'd as needed. */
10192 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10193 finfo.shndxbuf_size = amt;
10194 amt *= sizeof (Elf_External_Sym_Shndx);
10195 finfo.symshndxbuf = bfd_zmalloc (amt);
10196 if (finfo.symshndxbuf == NULL)
10197 goto error_return;
10198 }
10199
10200 /* Start writing out the symbol table. The first symbol is always a
10201 dummy symbol. */
10202 if (info->strip != strip_all
10203 || emit_relocs)
10204 {
10205 elfsym.st_value = 0;
10206 elfsym.st_size = 0;
10207 elfsym.st_info = 0;
10208 elfsym.st_other = 0;
10209 elfsym.st_shndx = SHN_UNDEF;
10210 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10211 NULL))
10212 goto error_return;
10213 }
10214
10215 /* Output a symbol for each section. We output these even if we are
10216 discarding local symbols, since they are used for relocs. These
10217 symbols have no names. We store the index of each one in the
10218 index field of the section, so that we can find it again when
10219 outputting relocs. */
10220 if (info->strip != strip_all
10221 || emit_relocs)
10222 {
10223 elfsym.st_size = 0;
10224 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10225 elfsym.st_other = 0;
10226 elfsym.st_value = 0;
10227 for (i = 1; i < elf_numsections (abfd); i++)
10228 {
10229 o = bfd_section_from_elf_index (abfd, i);
10230 if (o != NULL)
10231 {
10232 o->target_index = bfd_get_symcount (abfd);
10233 elfsym.st_shndx = i;
10234 if (!info->relocatable)
10235 elfsym.st_value = o->vma;
10236 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10237 goto error_return;
10238 }
10239 if (i == SHN_LORESERVE - 1)
10240 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10241 }
10242 }
10243
10244 /* Allocate some memory to hold information read in from the input
10245 files. */
10246 if (max_contents_size != 0)
10247 {
10248 finfo.contents = bfd_malloc (max_contents_size);
10249 if (finfo.contents == NULL)
10250 goto error_return;
10251 }
10252
10253 if (max_external_reloc_size != 0)
10254 {
10255 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10256 if (finfo.external_relocs == NULL)
10257 goto error_return;
10258 }
10259
10260 if (max_internal_reloc_count != 0)
10261 {
10262 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10263 amt *= sizeof (Elf_Internal_Rela);
10264 finfo.internal_relocs = bfd_malloc (amt);
10265 if (finfo.internal_relocs == NULL)
10266 goto error_return;
10267 }
10268
10269 if (max_sym_count != 0)
10270 {
10271 amt = max_sym_count * bed->s->sizeof_sym;
10272 finfo.external_syms = bfd_malloc (amt);
10273 if (finfo.external_syms == NULL)
10274 goto error_return;
10275
10276 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10277 finfo.internal_syms = bfd_malloc (amt);
10278 if (finfo.internal_syms == NULL)
10279 goto error_return;
10280
10281 amt = max_sym_count * sizeof (long);
10282 finfo.indices = bfd_malloc (amt);
10283 if (finfo.indices == NULL)
10284 goto error_return;
10285
10286 amt = max_sym_count * sizeof (asection *);
10287 finfo.sections = bfd_malloc (amt);
10288 if (finfo.sections == NULL)
10289 goto error_return;
10290 }
10291
10292 if (max_sym_shndx_count != 0)
10293 {
10294 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10295 finfo.locsym_shndx = bfd_malloc (amt);
10296 if (finfo.locsym_shndx == NULL)
10297 goto error_return;
10298 }
10299
10300 if (elf_hash_table (info)->tls_sec)
10301 {
10302 bfd_vma base, end = 0;
10303 asection *sec;
10304
10305 for (sec = elf_hash_table (info)->tls_sec;
10306 sec && (sec->flags & SEC_THREAD_LOCAL);
10307 sec = sec->next)
10308 {
10309 bfd_size_type size = sec->size;
10310
10311 if (size == 0
10312 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10313 {
10314 struct bfd_link_order *o = sec->map_tail.link_order;
10315 if (o != NULL)
10316 size = o->offset + o->size;
10317 }
10318 end = sec->vma + size;
10319 }
10320 base = elf_hash_table (info)->tls_sec->vma;
10321 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10322 elf_hash_table (info)->tls_size = end - base;
10323 }
10324
10325 /* Reorder SHF_LINK_ORDER sections. */
10326 for (o = abfd->sections; o != NULL; o = o->next)
10327 {
10328 if (!elf_fixup_link_order (abfd, o))
10329 return FALSE;
10330 }
10331
10332 /* Since ELF permits relocations to be against local symbols, we
10333 must have the local symbols available when we do the relocations.
10334 Since we would rather only read the local symbols once, and we
10335 would rather not keep them in memory, we handle all the
10336 relocations for a single input file at the same time.
10337
10338 Unfortunately, there is no way to know the total number of local
10339 symbols until we have seen all of them, and the local symbol
10340 indices precede the global symbol indices. This means that when
10341 we are generating relocatable output, and we see a reloc against
10342 a global symbol, we can not know the symbol index until we have
10343 finished examining all the local symbols to see which ones we are
10344 going to output. To deal with this, we keep the relocations in
10345 memory, and don't output them until the end of the link. This is
10346 an unfortunate waste of memory, but I don't see a good way around
10347 it. Fortunately, it only happens when performing a relocatable
10348 link, which is not the common case. FIXME: If keep_memory is set
10349 we could write the relocs out and then read them again; I don't
10350 know how bad the memory loss will be. */
10351
10352 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10353 sub->output_has_begun = FALSE;
10354 for (o = abfd->sections; o != NULL; o = o->next)
10355 {
10356 for (p = o->map_head.link_order; p != NULL; p = p->next)
10357 {
10358 if (p->type == bfd_indirect_link_order
10359 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10360 == bfd_target_elf_flavour)
10361 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10362 {
10363 if (! sub->output_has_begun)
10364 {
10365 if (! elf_link_input_bfd (&finfo, sub))
10366 goto error_return;
10367 sub->output_has_begun = TRUE;
10368 }
10369 }
10370 else if (p->type == bfd_section_reloc_link_order
10371 || p->type == bfd_symbol_reloc_link_order)
10372 {
10373 if (! elf_reloc_link_order (abfd, info, o, p))
10374 goto error_return;
10375 }
10376 else
10377 {
10378 if (! _bfd_default_link_order (abfd, info, o, p))
10379 goto error_return;
10380 }
10381 }
10382 }
10383
10384 /* Free symbol buffer if needed. */
10385 if (!info->reduce_memory_overheads)
10386 {
10387 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10388 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10389 && elf_tdata (sub)->symbuf)
10390 {
10391 free (elf_tdata (sub)->symbuf);
10392 elf_tdata (sub)->symbuf = NULL;
10393 }
10394 }
10395
10396 /* Output any global symbols that got converted to local in a
10397 version script or due to symbol visibility. We do this in a
10398 separate step since ELF requires all local symbols to appear
10399 prior to any global symbols. FIXME: We should only do this if
10400 some global symbols were, in fact, converted to become local.
10401 FIXME: Will this work correctly with the Irix 5 linker? */
10402 eoinfo.failed = FALSE;
10403 eoinfo.finfo = &finfo;
10404 eoinfo.localsyms = TRUE;
10405 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10406 &eoinfo);
10407 if (eoinfo.failed)
10408 return FALSE;
10409
10410 /* If backend needs to output some local symbols not present in the hash
10411 table, do it now. */
10412 if (bed->elf_backend_output_arch_local_syms)
10413 {
10414 typedef bfd_boolean (*out_sym_func)
10415 (void *, const char *, Elf_Internal_Sym *, asection *,
10416 struct elf_link_hash_entry *);
10417
10418 if (! ((*bed->elf_backend_output_arch_local_syms)
10419 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10420 return FALSE;
10421 }
10422
10423 /* That wrote out all the local symbols. Finish up the symbol table
10424 with the global symbols. Even if we want to strip everything we
10425 can, we still need to deal with those global symbols that got
10426 converted to local in a version script. */
10427
10428 /* The sh_info field records the index of the first non local symbol. */
10429 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10430
10431 if (dynamic
10432 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10433 {
10434 Elf_Internal_Sym sym;
10435 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10436 long last_local = 0;
10437
10438 /* Write out the section symbols for the output sections. */
10439 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10440 {
10441 asection *s;
10442
10443 sym.st_size = 0;
10444 sym.st_name = 0;
10445 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10446 sym.st_other = 0;
10447
10448 for (s = abfd->sections; s != NULL; s = s->next)
10449 {
10450 int indx;
10451 bfd_byte *dest;
10452 long dynindx;
10453
10454 dynindx = elf_section_data (s)->dynindx;
10455 if (dynindx <= 0)
10456 continue;
10457 indx = elf_section_data (s)->this_idx;
10458 BFD_ASSERT (indx > 0);
10459 sym.st_shndx = indx;
10460 if (! check_dynsym (abfd, &sym))
10461 return FALSE;
10462 sym.st_value = s->vma;
10463 dest = dynsym + dynindx * bed->s->sizeof_sym;
10464 if (last_local < dynindx)
10465 last_local = dynindx;
10466 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10467 }
10468 }
10469
10470 /* Write out the local dynsyms. */
10471 if (elf_hash_table (info)->dynlocal)
10472 {
10473 struct elf_link_local_dynamic_entry *e;
10474 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10475 {
10476 asection *s;
10477 bfd_byte *dest;
10478
10479 sym.st_size = e->isym.st_size;
10480 sym.st_other = e->isym.st_other;
10481
10482 /* Copy the internal symbol as is.
10483 Note that we saved a word of storage and overwrote
10484 the original st_name with the dynstr_index. */
10485 sym = e->isym;
10486
10487 s = bfd_section_from_elf_index (e->input_bfd,
10488 e->isym.st_shndx);
10489 if (s != NULL)
10490 {
10491 sym.st_shndx =
10492 elf_section_data (s->output_section)->this_idx;
10493 if (! check_dynsym (abfd, &sym))
10494 return FALSE;
10495 sym.st_value = (s->output_section->vma
10496 + s->output_offset
10497 + e->isym.st_value);
10498 }
10499
10500 if (last_local < e->dynindx)
10501 last_local = e->dynindx;
10502
10503 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10504 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10505 }
10506 }
10507
10508 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10509 last_local + 1;
10510 }
10511
10512 /* We get the global symbols from the hash table. */
10513 eoinfo.failed = FALSE;
10514 eoinfo.localsyms = FALSE;
10515 eoinfo.finfo = &finfo;
10516 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10517 &eoinfo);
10518 if (eoinfo.failed)
10519 return FALSE;
10520
10521 /* If backend needs to output some symbols not present in the hash
10522 table, do it now. */
10523 if (bed->elf_backend_output_arch_syms)
10524 {
10525 typedef bfd_boolean (*out_sym_func)
10526 (void *, const char *, Elf_Internal_Sym *, asection *,
10527 struct elf_link_hash_entry *);
10528
10529 if (! ((*bed->elf_backend_output_arch_syms)
10530 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10531 return FALSE;
10532 }
10533
10534 /* Flush all symbols to the file. */
10535 if (! elf_link_flush_output_syms (&finfo, bed))
10536 return FALSE;
10537
10538 /* Now we know the size of the symtab section. */
10539 off += symtab_hdr->sh_size;
10540
10541 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10542 if (symtab_shndx_hdr->sh_name != 0)
10543 {
10544 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10545 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10546 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10547 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10548 symtab_shndx_hdr->sh_size = amt;
10549
10550 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10551 off, TRUE);
10552
10553 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10554 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10555 return FALSE;
10556 }
10557
10558
10559 /* Finish up and write out the symbol string table (.strtab)
10560 section. */
10561 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10562 /* sh_name was set in prep_headers. */
10563 symstrtab_hdr->sh_type = SHT_STRTAB;
10564 symstrtab_hdr->sh_flags = 0;
10565 symstrtab_hdr->sh_addr = 0;
10566 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10567 symstrtab_hdr->sh_entsize = 0;
10568 symstrtab_hdr->sh_link = 0;
10569 symstrtab_hdr->sh_info = 0;
10570 /* sh_offset is set just below. */
10571 symstrtab_hdr->sh_addralign = 1;
10572
10573 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10574 elf_tdata (abfd)->next_file_pos = off;
10575
10576 if (bfd_get_symcount (abfd) > 0)
10577 {
10578 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10579 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10580 return FALSE;
10581 }
10582
10583 /* Adjust the relocs to have the correct symbol indices. */
10584 for (o = abfd->sections; o != NULL; o = o->next)
10585 {
10586 if ((o->flags & SEC_RELOC) == 0)
10587 continue;
10588
10589 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10590 elf_section_data (o)->rel_count,
10591 elf_section_data (o)->rel_hashes);
10592 if (elf_section_data (o)->rel_hdr2 != NULL)
10593 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10594 elf_section_data (o)->rel_count2,
10595 (elf_section_data (o)->rel_hashes
10596 + elf_section_data (o)->rel_count));
10597
10598 /* Set the reloc_count field to 0 to prevent write_relocs from
10599 trying to swap the relocs out itself. */
10600 o->reloc_count = 0;
10601 }
10602
10603 if (dynamic && info->combreloc && dynobj != NULL)
10604 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10605
10606 /* If we are linking against a dynamic object, or generating a
10607 shared library, finish up the dynamic linking information. */
10608 if (dynamic)
10609 {
10610 bfd_byte *dyncon, *dynconend;
10611
10612 /* Fix up .dynamic entries. */
10613 o = bfd_get_section_by_name (dynobj, ".dynamic");
10614 BFD_ASSERT (o != NULL);
10615
10616 dyncon = o->contents;
10617 dynconend = o->contents + o->size;
10618 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10619 {
10620 Elf_Internal_Dyn dyn;
10621 const char *name;
10622 unsigned int type;
10623
10624 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10625
10626 switch (dyn.d_tag)
10627 {
10628 default:
10629 continue;
10630 case DT_NULL:
10631 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10632 {
10633 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10634 {
10635 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10636 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10637 default: continue;
10638 }
10639 dyn.d_un.d_val = relativecount;
10640 relativecount = 0;
10641 break;
10642 }
10643 continue;
10644
10645 case DT_INIT:
10646 name = info->init_function;
10647 goto get_sym;
10648 case DT_FINI:
10649 name = info->fini_function;
10650 get_sym:
10651 {
10652 struct elf_link_hash_entry *h;
10653
10654 h = elf_link_hash_lookup (elf_hash_table (info), name,
10655 FALSE, FALSE, TRUE);
10656 if (h != NULL
10657 && (h->root.type == bfd_link_hash_defined
10658 || h->root.type == bfd_link_hash_defweak))
10659 {
10660 dyn.d_un.d_val = h->root.u.def.value;
10661 o = h->root.u.def.section;
10662 if (o->output_section != NULL)
10663 dyn.d_un.d_val += (o->output_section->vma
10664 + o->output_offset);
10665 else
10666 {
10667 /* The symbol is imported from another shared
10668 library and does not apply to this one. */
10669 dyn.d_un.d_val = 0;
10670 }
10671 break;
10672 }
10673 }
10674 continue;
10675
10676 case DT_PREINIT_ARRAYSZ:
10677 name = ".preinit_array";
10678 goto get_size;
10679 case DT_INIT_ARRAYSZ:
10680 name = ".init_array";
10681 goto get_size;
10682 case DT_FINI_ARRAYSZ:
10683 name = ".fini_array";
10684 get_size:
10685 o = bfd_get_section_by_name (abfd, name);
10686 if (o == NULL)
10687 {
10688 (*_bfd_error_handler)
10689 (_("%B: could not find output section %s"), abfd, name);
10690 goto error_return;
10691 }
10692 if (o->size == 0)
10693 (*_bfd_error_handler)
10694 (_("warning: %s section has zero size"), name);
10695 dyn.d_un.d_val = o->size;
10696 break;
10697
10698 case DT_PREINIT_ARRAY:
10699 name = ".preinit_array";
10700 goto get_vma;
10701 case DT_INIT_ARRAY:
10702 name = ".init_array";
10703 goto get_vma;
10704 case DT_FINI_ARRAY:
10705 name = ".fini_array";
10706 goto get_vma;
10707
10708 case DT_HASH:
10709 name = ".hash";
10710 goto get_vma;
10711 case DT_GNU_HASH:
10712 name = ".gnu.hash";
10713 goto get_vma;
10714 case DT_STRTAB:
10715 name = ".dynstr";
10716 goto get_vma;
10717 case DT_SYMTAB:
10718 name = ".dynsym";
10719 goto get_vma;
10720 case DT_VERDEF:
10721 name = ".gnu.version_d";
10722 goto get_vma;
10723 case DT_VERNEED:
10724 name = ".gnu.version_r";
10725 goto get_vma;
10726 case DT_VERSYM:
10727 name = ".gnu.version";
10728 get_vma:
10729 o = bfd_get_section_by_name (abfd, name);
10730 if (o == NULL)
10731 {
10732 (*_bfd_error_handler)
10733 (_("%B: could not find output section %s"), abfd, name);
10734 goto error_return;
10735 }
10736 dyn.d_un.d_ptr = o->vma;
10737 break;
10738
10739 case DT_REL:
10740 case DT_RELA:
10741 case DT_RELSZ:
10742 case DT_RELASZ:
10743 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10744 type = SHT_REL;
10745 else
10746 type = SHT_RELA;
10747 dyn.d_un.d_val = 0;
10748 for (i = 1; i < elf_numsections (abfd); i++)
10749 {
10750 Elf_Internal_Shdr *hdr;
10751
10752 hdr = elf_elfsections (abfd)[i];
10753 if (hdr->sh_type == type
10754 && (hdr->sh_flags & SHF_ALLOC) != 0)
10755 {
10756 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10757 dyn.d_un.d_val += hdr->sh_size;
10758 else
10759 {
10760 if (dyn.d_un.d_val == 0
10761 || hdr->sh_addr < dyn.d_un.d_val)
10762 dyn.d_un.d_val = hdr->sh_addr;
10763 }
10764 }
10765 }
10766 break;
10767 }
10768 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10769 }
10770 }
10771
10772 /* If we have created any dynamic sections, then output them. */
10773 if (dynobj != NULL)
10774 {
10775 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10776 goto error_return;
10777
10778 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10779 if (info->warn_shared_textrel && info->shared)
10780 {
10781 bfd_byte *dyncon, *dynconend;
10782
10783 /* Fix up .dynamic entries. */
10784 o = bfd_get_section_by_name (dynobj, ".dynamic");
10785 BFD_ASSERT (o != NULL);
10786
10787 dyncon = o->contents;
10788 dynconend = o->contents + o->size;
10789 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10790 {
10791 Elf_Internal_Dyn dyn;
10792
10793 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10794
10795 if (dyn.d_tag == DT_TEXTREL)
10796 {
10797 info->callbacks->einfo
10798 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10799 break;
10800 }
10801 }
10802 }
10803
10804 for (o = dynobj->sections; o != NULL; o = o->next)
10805 {
10806 if ((o->flags & SEC_HAS_CONTENTS) == 0
10807 || o->size == 0
10808 || o->output_section == bfd_abs_section_ptr)
10809 continue;
10810 if ((o->flags & SEC_LINKER_CREATED) == 0)
10811 {
10812 /* At this point, we are only interested in sections
10813 created by _bfd_elf_link_create_dynamic_sections. */
10814 continue;
10815 }
10816 if (elf_hash_table (info)->stab_info.stabstr == o)
10817 continue;
10818 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10819 continue;
10820 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10821 != SHT_STRTAB)
10822 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10823 {
10824 if (! bfd_set_section_contents (abfd, o->output_section,
10825 o->contents,
10826 (file_ptr) o->output_offset,
10827 o->size))
10828 goto error_return;
10829 }
10830 else
10831 {
10832 /* The contents of the .dynstr section are actually in a
10833 stringtab. */
10834 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10835 if (bfd_seek (abfd, off, SEEK_SET) != 0
10836 || ! _bfd_elf_strtab_emit (abfd,
10837 elf_hash_table (info)->dynstr))
10838 goto error_return;
10839 }
10840 }
10841 }
10842
10843 if (info->relocatable)
10844 {
10845 bfd_boolean failed = FALSE;
10846
10847 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10848 if (failed)
10849 goto error_return;
10850 }
10851
10852 /* If we have optimized stabs strings, output them. */
10853 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10854 {
10855 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10856 goto error_return;
10857 }
10858
10859 if (info->eh_frame_hdr)
10860 {
10861 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10862 goto error_return;
10863 }
10864
10865 if (finfo.symstrtab != NULL)
10866 _bfd_stringtab_free (finfo.symstrtab);
10867 if (finfo.contents != NULL)
10868 free (finfo.contents);
10869 if (finfo.external_relocs != NULL)
10870 free (finfo.external_relocs);
10871 if (finfo.internal_relocs != NULL)
10872 free (finfo.internal_relocs);
10873 if (finfo.external_syms != NULL)
10874 free (finfo.external_syms);
10875 if (finfo.locsym_shndx != NULL)
10876 free (finfo.locsym_shndx);
10877 if (finfo.internal_syms != NULL)
10878 free (finfo.internal_syms);
10879 if (finfo.indices != NULL)
10880 free (finfo.indices);
10881 if (finfo.sections != NULL)
10882 free (finfo.sections);
10883 if (finfo.symbuf != NULL)
10884 free (finfo.symbuf);
10885 if (finfo.symshndxbuf != NULL)
10886 free (finfo.symshndxbuf);
10887 for (o = abfd->sections; o != NULL; o = o->next)
10888 {
10889 if ((o->flags & SEC_RELOC) != 0
10890 && elf_section_data (o)->rel_hashes != NULL)
10891 free (elf_section_data (o)->rel_hashes);
10892 }
10893
10894 elf_tdata (abfd)->linker = TRUE;
10895
10896 if (attr_section)
10897 {
10898 bfd_byte *contents = bfd_malloc (attr_size);
10899 if (contents == NULL)
10900 return FALSE; /* Bail out and fail. */
10901 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10902 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10903 free (contents);
10904 }
10905
10906 return TRUE;
10907
10908 error_return:
10909 if (finfo.symstrtab != NULL)
10910 _bfd_stringtab_free (finfo.symstrtab);
10911 if (finfo.contents != NULL)
10912 free (finfo.contents);
10913 if (finfo.external_relocs != NULL)
10914 free (finfo.external_relocs);
10915 if (finfo.internal_relocs != NULL)
10916 free (finfo.internal_relocs);
10917 if (finfo.external_syms != NULL)
10918 free (finfo.external_syms);
10919 if (finfo.locsym_shndx != NULL)
10920 free (finfo.locsym_shndx);
10921 if (finfo.internal_syms != NULL)
10922 free (finfo.internal_syms);
10923 if (finfo.indices != NULL)
10924 free (finfo.indices);
10925 if (finfo.sections != NULL)
10926 free (finfo.sections);
10927 if (finfo.symbuf != NULL)
10928 free (finfo.symbuf);
10929 if (finfo.symshndxbuf != NULL)
10930 free (finfo.symshndxbuf);
10931 for (o = abfd->sections; o != NULL; o = o->next)
10932 {
10933 if ((o->flags & SEC_RELOC) != 0
10934 && elf_section_data (o)->rel_hashes != NULL)
10935 free (elf_section_data (o)->rel_hashes);
10936 }
10937
10938 return FALSE;
10939 }
10940 \f
10941 /* Initialize COOKIE for input bfd ABFD. */
10942
10943 static bfd_boolean
10944 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10945 struct bfd_link_info *info, bfd *abfd)
10946 {
10947 Elf_Internal_Shdr *symtab_hdr;
10948 const struct elf_backend_data *bed;
10949
10950 bed = get_elf_backend_data (abfd);
10951 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10952
10953 cookie->abfd = abfd;
10954 cookie->sym_hashes = elf_sym_hashes (abfd);
10955 cookie->bad_symtab = elf_bad_symtab (abfd);
10956 if (cookie->bad_symtab)
10957 {
10958 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10959 cookie->extsymoff = 0;
10960 }
10961 else
10962 {
10963 cookie->locsymcount = symtab_hdr->sh_info;
10964 cookie->extsymoff = symtab_hdr->sh_info;
10965 }
10966
10967 if (bed->s->arch_size == 32)
10968 cookie->r_sym_shift = 8;
10969 else
10970 cookie->r_sym_shift = 32;
10971
10972 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10973 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10974 {
10975 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10976 cookie->locsymcount, 0,
10977 NULL, NULL, NULL);
10978 if (cookie->locsyms == NULL)
10979 {
10980 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10981 return FALSE;
10982 }
10983 if (info->keep_memory)
10984 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10985 }
10986 return TRUE;
10987 }
10988
10989 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10990
10991 static void
10992 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
10993 {
10994 Elf_Internal_Shdr *symtab_hdr;
10995
10996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10997 if (cookie->locsyms != NULL
10998 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
10999 free (cookie->locsyms);
11000 }
11001
11002 /* Initialize the relocation information in COOKIE for input section SEC
11003 of input bfd ABFD. */
11004
11005 static bfd_boolean
11006 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11007 struct bfd_link_info *info, bfd *abfd,
11008 asection *sec)
11009 {
11010 const struct elf_backend_data *bed;
11011
11012 if (sec->reloc_count == 0)
11013 {
11014 cookie->rels = NULL;
11015 cookie->relend = NULL;
11016 }
11017 else
11018 {
11019 bed = get_elf_backend_data (abfd);
11020
11021 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11022 info->keep_memory);
11023 if (cookie->rels == NULL)
11024 return FALSE;
11025 cookie->rel = cookie->rels;
11026 cookie->relend = (cookie->rels
11027 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11028 }
11029 cookie->rel = cookie->rels;
11030 return TRUE;
11031 }
11032
11033 /* Free the memory allocated by init_reloc_cookie_rels,
11034 if appropriate. */
11035
11036 static void
11037 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11038 asection *sec)
11039 {
11040 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11041 free (cookie->rels);
11042 }
11043
11044 /* Initialize the whole of COOKIE for input section SEC. */
11045
11046 static bfd_boolean
11047 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11048 struct bfd_link_info *info,
11049 asection *sec)
11050 {
11051 if (!init_reloc_cookie (cookie, info, sec->owner))
11052 goto error1;
11053 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11054 goto error2;
11055 return TRUE;
11056
11057 error2:
11058 fini_reloc_cookie (cookie, sec->owner);
11059 error1:
11060 return FALSE;
11061 }
11062
11063 /* Free the memory allocated by init_reloc_cookie_for_section,
11064 if appropriate. */
11065
11066 static void
11067 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11068 asection *sec)
11069 {
11070 fini_reloc_cookie_rels (cookie, sec);
11071 fini_reloc_cookie (cookie, sec->owner);
11072 }
11073 \f
11074 /* Garbage collect unused sections. */
11075
11076 /* Default gc_mark_hook. */
11077
11078 asection *
11079 _bfd_elf_gc_mark_hook (asection *sec,
11080 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11081 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11082 struct elf_link_hash_entry *h,
11083 Elf_Internal_Sym *sym)
11084 {
11085 if (h != NULL)
11086 {
11087 switch (h->root.type)
11088 {
11089 case bfd_link_hash_defined:
11090 case bfd_link_hash_defweak:
11091 return h->root.u.def.section;
11092
11093 case bfd_link_hash_common:
11094 return h->root.u.c.p->section;
11095
11096 default:
11097 break;
11098 }
11099 }
11100 else
11101 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11102
11103 return NULL;
11104 }
11105
11106 /* COOKIE->rel describes a relocation against section SEC, which is
11107 a section we've decided to keep. Return the section that contains
11108 the relocation symbol, or NULL if no section contains it. */
11109
11110 asection *
11111 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11112 elf_gc_mark_hook_fn gc_mark_hook,
11113 struct elf_reloc_cookie *cookie)
11114 {
11115 unsigned long r_symndx;
11116 struct elf_link_hash_entry *h;
11117
11118 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11119 if (r_symndx == 0)
11120 return NULL;
11121
11122 if (r_symndx >= cookie->locsymcount
11123 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11124 {
11125 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11126 while (h->root.type == bfd_link_hash_indirect
11127 || h->root.type == bfd_link_hash_warning)
11128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11129 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11130 }
11131
11132 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11133 &cookie->locsyms[r_symndx]);
11134 }
11135
11136 /* COOKIE->rel describes a relocation against section SEC, which is
11137 a section we've decided to keep. Mark the section that contains
11138 the relocation symbol. */
11139
11140 bfd_boolean
11141 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11142 asection *sec,
11143 elf_gc_mark_hook_fn gc_mark_hook,
11144 struct elf_reloc_cookie *cookie)
11145 {
11146 asection *rsec;
11147
11148 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11149 if (rsec && !rsec->gc_mark)
11150 {
11151 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11152 rsec->gc_mark = 1;
11153 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11154 return FALSE;
11155 }
11156 return TRUE;
11157 }
11158
11159 /* The mark phase of garbage collection. For a given section, mark
11160 it and any sections in this section's group, and all the sections
11161 which define symbols to which it refers. */
11162
11163 bfd_boolean
11164 _bfd_elf_gc_mark (struct bfd_link_info *info,
11165 asection *sec,
11166 elf_gc_mark_hook_fn gc_mark_hook)
11167 {
11168 bfd_boolean ret;
11169 asection *group_sec, *eh_frame;
11170
11171 sec->gc_mark = 1;
11172
11173 /* Mark all the sections in the group. */
11174 group_sec = elf_section_data (sec)->next_in_group;
11175 if (group_sec && !group_sec->gc_mark)
11176 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11177 return FALSE;
11178
11179 /* Look through the section relocs. */
11180 ret = TRUE;
11181 eh_frame = elf_eh_frame_section (sec->owner);
11182 if ((sec->flags & SEC_RELOC) != 0
11183 && sec->reloc_count > 0
11184 && sec != eh_frame)
11185 {
11186 struct elf_reloc_cookie cookie;
11187
11188 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11189 ret = FALSE;
11190 else
11191 {
11192 for (; cookie.rel < cookie.relend; cookie.rel++)
11193 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11194 {
11195 ret = FALSE;
11196 break;
11197 }
11198 fini_reloc_cookie_for_section (&cookie, sec);
11199 }
11200 }
11201
11202 if (ret && eh_frame && elf_fde_list (sec))
11203 {
11204 struct elf_reloc_cookie cookie;
11205
11206 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11207 ret = FALSE;
11208 else
11209 {
11210 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11211 gc_mark_hook, &cookie))
11212 ret = FALSE;
11213 fini_reloc_cookie_for_section (&cookie, eh_frame);
11214 }
11215 }
11216
11217 return ret;
11218 }
11219
11220 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11221
11222 struct elf_gc_sweep_symbol_info
11223 {
11224 struct bfd_link_info *info;
11225 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11226 bfd_boolean);
11227 };
11228
11229 static bfd_boolean
11230 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11231 {
11232 if (h->root.type == bfd_link_hash_warning)
11233 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11234
11235 if ((h->root.type == bfd_link_hash_defined
11236 || h->root.type == bfd_link_hash_defweak)
11237 && !h->root.u.def.section->gc_mark
11238 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11239 {
11240 struct elf_gc_sweep_symbol_info *inf = data;
11241 (*inf->hide_symbol) (inf->info, h, TRUE);
11242 }
11243
11244 return TRUE;
11245 }
11246
11247 /* The sweep phase of garbage collection. Remove all garbage sections. */
11248
11249 typedef bfd_boolean (*gc_sweep_hook_fn)
11250 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11251
11252 static bfd_boolean
11253 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11254 {
11255 bfd *sub;
11256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11257 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11258 unsigned long section_sym_count;
11259 struct elf_gc_sweep_symbol_info sweep_info;
11260
11261 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11262 {
11263 asection *o;
11264
11265 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11266 continue;
11267
11268 for (o = sub->sections; o != NULL; o = o->next)
11269 {
11270 /* Keep debug and special sections. */
11271 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11272 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11273 o->gc_mark = 1;
11274
11275 if (o->gc_mark)
11276 continue;
11277
11278 /* Skip sweeping sections already excluded. */
11279 if (o->flags & SEC_EXCLUDE)
11280 continue;
11281
11282 /* Since this is early in the link process, it is simple
11283 to remove a section from the output. */
11284 o->flags |= SEC_EXCLUDE;
11285
11286 if (info->print_gc_sections && o->size != 0)
11287 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11288
11289 /* But we also have to update some of the relocation
11290 info we collected before. */
11291 if (gc_sweep_hook
11292 && (o->flags & SEC_RELOC) != 0
11293 && o->reloc_count > 0
11294 && !bfd_is_abs_section (o->output_section))
11295 {
11296 Elf_Internal_Rela *internal_relocs;
11297 bfd_boolean r;
11298
11299 internal_relocs
11300 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11301 info->keep_memory);
11302 if (internal_relocs == NULL)
11303 return FALSE;
11304
11305 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11306
11307 if (elf_section_data (o)->relocs != internal_relocs)
11308 free (internal_relocs);
11309
11310 if (!r)
11311 return FALSE;
11312 }
11313 }
11314 }
11315
11316 /* Remove the symbols that were in the swept sections from the dynamic
11317 symbol table. GCFIXME: Anyone know how to get them out of the
11318 static symbol table as well? */
11319 sweep_info.info = info;
11320 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11321 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11322 &sweep_info);
11323
11324 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11325 return TRUE;
11326 }
11327
11328 /* Propagate collected vtable information. This is called through
11329 elf_link_hash_traverse. */
11330
11331 static bfd_boolean
11332 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11333 {
11334 if (h->root.type == bfd_link_hash_warning)
11335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11336
11337 /* Those that are not vtables. */
11338 if (h->vtable == NULL || h->vtable->parent == NULL)
11339 return TRUE;
11340
11341 /* Those vtables that do not have parents, we cannot merge. */
11342 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11343 return TRUE;
11344
11345 /* If we've already been done, exit. */
11346 if (h->vtable->used && h->vtable->used[-1])
11347 return TRUE;
11348
11349 /* Make sure the parent's table is up to date. */
11350 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11351
11352 if (h->vtable->used == NULL)
11353 {
11354 /* None of this table's entries were referenced. Re-use the
11355 parent's table. */
11356 h->vtable->used = h->vtable->parent->vtable->used;
11357 h->vtable->size = h->vtable->parent->vtable->size;
11358 }
11359 else
11360 {
11361 size_t n;
11362 bfd_boolean *cu, *pu;
11363
11364 /* Or the parent's entries into ours. */
11365 cu = h->vtable->used;
11366 cu[-1] = TRUE;
11367 pu = h->vtable->parent->vtable->used;
11368 if (pu != NULL)
11369 {
11370 const struct elf_backend_data *bed;
11371 unsigned int log_file_align;
11372
11373 bed = get_elf_backend_data (h->root.u.def.section->owner);
11374 log_file_align = bed->s->log_file_align;
11375 n = h->vtable->parent->vtable->size >> log_file_align;
11376 while (n--)
11377 {
11378 if (*pu)
11379 *cu = TRUE;
11380 pu++;
11381 cu++;
11382 }
11383 }
11384 }
11385
11386 return TRUE;
11387 }
11388
11389 static bfd_boolean
11390 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11391 {
11392 asection *sec;
11393 bfd_vma hstart, hend;
11394 Elf_Internal_Rela *relstart, *relend, *rel;
11395 const struct elf_backend_data *bed;
11396 unsigned int log_file_align;
11397
11398 if (h->root.type == bfd_link_hash_warning)
11399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11400
11401 /* Take care of both those symbols that do not describe vtables as
11402 well as those that are not loaded. */
11403 if (h->vtable == NULL || h->vtable->parent == NULL)
11404 return TRUE;
11405
11406 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11407 || h->root.type == bfd_link_hash_defweak);
11408
11409 sec = h->root.u.def.section;
11410 hstart = h->root.u.def.value;
11411 hend = hstart + h->size;
11412
11413 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11414 if (!relstart)
11415 return *(bfd_boolean *) okp = FALSE;
11416 bed = get_elf_backend_data (sec->owner);
11417 log_file_align = bed->s->log_file_align;
11418
11419 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11420
11421 for (rel = relstart; rel < relend; ++rel)
11422 if (rel->r_offset >= hstart && rel->r_offset < hend)
11423 {
11424 /* If the entry is in use, do nothing. */
11425 if (h->vtable->used
11426 && (rel->r_offset - hstart) < h->vtable->size)
11427 {
11428 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11429 if (h->vtable->used[entry])
11430 continue;
11431 }
11432 /* Otherwise, kill it. */
11433 rel->r_offset = rel->r_info = rel->r_addend = 0;
11434 }
11435
11436 return TRUE;
11437 }
11438
11439 /* Mark sections containing dynamically referenced symbols. When
11440 building shared libraries, we must assume that any visible symbol is
11441 referenced. */
11442
11443 bfd_boolean
11444 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11445 {
11446 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11447
11448 if (h->root.type == bfd_link_hash_warning)
11449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11450
11451 if ((h->root.type == bfd_link_hash_defined
11452 || h->root.type == bfd_link_hash_defweak)
11453 && (h->ref_dynamic
11454 || (!info->executable
11455 && h->def_regular
11456 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11457 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11458 h->root.u.def.section->flags |= SEC_KEEP;
11459
11460 return TRUE;
11461 }
11462
11463 /* Keep all sections containing symbols undefined on the command-line,
11464 and the section containing the entry symbol. */
11465
11466 void
11467 _bfd_elf_gc_keep (struct bfd_link_info *info)
11468 {
11469 struct bfd_sym_chain *sym;
11470
11471 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11472 {
11473 struct elf_link_hash_entry *h;
11474
11475 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11476 FALSE, FALSE, FALSE);
11477
11478 if (h != NULL
11479 && (h->root.type == bfd_link_hash_defined
11480 || h->root.type == bfd_link_hash_defweak)
11481 && !bfd_is_abs_section (h->root.u.def.section))
11482 h->root.u.def.section->flags |= SEC_KEEP;
11483 }
11484 }
11485
11486 /* Do mark and sweep of unused sections. */
11487
11488 bfd_boolean
11489 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11490 {
11491 bfd_boolean ok = TRUE;
11492 bfd *sub;
11493 elf_gc_mark_hook_fn gc_mark_hook;
11494 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11495
11496 if (!bed->can_gc_sections
11497 || !is_elf_hash_table (info->hash))
11498 {
11499 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11500 return TRUE;
11501 }
11502
11503 bed->gc_keep (info);
11504
11505 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11506 at the .eh_frame section if we can mark the FDEs individually. */
11507 _bfd_elf_begin_eh_frame_parsing (info);
11508 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11509 {
11510 asection *sec;
11511 struct elf_reloc_cookie cookie;
11512
11513 sec = bfd_get_section_by_name (sub, ".eh_frame");
11514 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11515 {
11516 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11517 if (elf_section_data (sec)->sec_info)
11518 elf_eh_frame_section (sub) = sec;
11519 fini_reloc_cookie_for_section (&cookie, sec);
11520 }
11521 }
11522 _bfd_elf_end_eh_frame_parsing (info);
11523
11524 /* Apply transitive closure to the vtable entry usage info. */
11525 elf_link_hash_traverse (elf_hash_table (info),
11526 elf_gc_propagate_vtable_entries_used,
11527 &ok);
11528 if (!ok)
11529 return FALSE;
11530
11531 /* Kill the vtable relocations that were not used. */
11532 elf_link_hash_traverse (elf_hash_table (info),
11533 elf_gc_smash_unused_vtentry_relocs,
11534 &ok);
11535 if (!ok)
11536 return FALSE;
11537
11538 /* Mark dynamically referenced symbols. */
11539 if (elf_hash_table (info)->dynamic_sections_created)
11540 elf_link_hash_traverse (elf_hash_table (info),
11541 bed->gc_mark_dynamic_ref,
11542 info);
11543
11544 /* Grovel through relocs to find out who stays ... */
11545 gc_mark_hook = bed->gc_mark_hook;
11546 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11547 {
11548 asection *o;
11549
11550 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11551 continue;
11552
11553 for (o = sub->sections; o != NULL; o = o->next)
11554 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11555 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11556 return FALSE;
11557 }
11558
11559 /* Allow the backend to mark additional target specific sections. */
11560 if (bed->gc_mark_extra_sections)
11561 bed->gc_mark_extra_sections (info, gc_mark_hook);
11562
11563 /* ... and mark SEC_EXCLUDE for those that go. */
11564 return elf_gc_sweep (abfd, info);
11565 }
11566 \f
11567 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11568
11569 bfd_boolean
11570 bfd_elf_gc_record_vtinherit (bfd *abfd,
11571 asection *sec,
11572 struct elf_link_hash_entry *h,
11573 bfd_vma offset)
11574 {
11575 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11576 struct elf_link_hash_entry **search, *child;
11577 bfd_size_type extsymcount;
11578 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11579
11580 /* The sh_info field of the symtab header tells us where the
11581 external symbols start. We don't care about the local symbols at
11582 this point. */
11583 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11584 if (!elf_bad_symtab (abfd))
11585 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11586
11587 sym_hashes = elf_sym_hashes (abfd);
11588 sym_hashes_end = sym_hashes + extsymcount;
11589
11590 /* Hunt down the child symbol, which is in this section at the same
11591 offset as the relocation. */
11592 for (search = sym_hashes; search != sym_hashes_end; ++search)
11593 {
11594 if ((child = *search) != NULL
11595 && (child->root.type == bfd_link_hash_defined
11596 || child->root.type == bfd_link_hash_defweak)
11597 && child->root.u.def.section == sec
11598 && child->root.u.def.value == offset)
11599 goto win;
11600 }
11601
11602 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11603 abfd, sec, (unsigned long) offset);
11604 bfd_set_error (bfd_error_invalid_operation);
11605 return FALSE;
11606
11607 win:
11608 if (!child->vtable)
11609 {
11610 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11611 if (!child->vtable)
11612 return FALSE;
11613 }
11614 if (!h)
11615 {
11616 /* This *should* only be the absolute section. It could potentially
11617 be that someone has defined a non-global vtable though, which
11618 would be bad. It isn't worth paging in the local symbols to be
11619 sure though; that case should simply be handled by the assembler. */
11620
11621 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11622 }
11623 else
11624 child->vtable->parent = h;
11625
11626 return TRUE;
11627 }
11628
11629 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11630
11631 bfd_boolean
11632 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11633 asection *sec ATTRIBUTE_UNUSED,
11634 struct elf_link_hash_entry *h,
11635 bfd_vma addend)
11636 {
11637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11638 unsigned int log_file_align = bed->s->log_file_align;
11639
11640 if (!h->vtable)
11641 {
11642 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11643 if (!h->vtable)
11644 return FALSE;
11645 }
11646
11647 if (addend >= h->vtable->size)
11648 {
11649 size_t size, bytes, file_align;
11650 bfd_boolean *ptr = h->vtable->used;
11651
11652 /* While the symbol is undefined, we have to be prepared to handle
11653 a zero size. */
11654 file_align = 1 << log_file_align;
11655 if (h->root.type == bfd_link_hash_undefined)
11656 size = addend + file_align;
11657 else
11658 {
11659 size = h->size;
11660 if (addend >= size)
11661 {
11662 /* Oops! We've got a reference past the defined end of
11663 the table. This is probably a bug -- shall we warn? */
11664 size = addend + file_align;
11665 }
11666 }
11667 size = (size + file_align - 1) & -file_align;
11668
11669 /* Allocate one extra entry for use as a "done" flag for the
11670 consolidation pass. */
11671 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11672
11673 if (ptr)
11674 {
11675 ptr = bfd_realloc (ptr - 1, bytes);
11676
11677 if (ptr != NULL)
11678 {
11679 size_t oldbytes;
11680
11681 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11682 * sizeof (bfd_boolean));
11683 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11684 }
11685 }
11686 else
11687 ptr = bfd_zmalloc (bytes);
11688
11689 if (ptr == NULL)
11690 return FALSE;
11691
11692 /* And arrange for that done flag to be at index -1. */
11693 h->vtable->used = ptr + 1;
11694 h->vtable->size = size;
11695 }
11696
11697 h->vtable->used[addend >> log_file_align] = TRUE;
11698
11699 return TRUE;
11700 }
11701
11702 struct alloc_got_off_arg {
11703 bfd_vma gotoff;
11704 unsigned int got_elt_size;
11705 };
11706
11707 /* We need a special top-level link routine to convert got reference counts
11708 to real got offsets. */
11709
11710 static bfd_boolean
11711 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11712 {
11713 struct alloc_got_off_arg *gofarg = arg;
11714
11715 if (h->root.type == bfd_link_hash_warning)
11716 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11717
11718 if (h->got.refcount > 0)
11719 {
11720 h->got.offset = gofarg->gotoff;
11721 gofarg->gotoff += gofarg->got_elt_size;
11722 }
11723 else
11724 h->got.offset = (bfd_vma) -1;
11725
11726 return TRUE;
11727 }
11728
11729 /* And an accompanying bit to work out final got entry offsets once
11730 we're done. Should be called from final_link. */
11731
11732 bfd_boolean
11733 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11734 struct bfd_link_info *info)
11735 {
11736 bfd *i;
11737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11738 bfd_vma gotoff;
11739 unsigned int got_elt_size = bed->s->arch_size / 8;
11740 struct alloc_got_off_arg gofarg;
11741
11742 if (! is_elf_hash_table (info->hash))
11743 return FALSE;
11744
11745 /* The GOT offset is relative to the .got section, but the GOT header is
11746 put into the .got.plt section, if the backend uses it. */
11747 if (bed->want_got_plt)
11748 gotoff = 0;
11749 else
11750 gotoff = bed->got_header_size;
11751
11752 /* Do the local .got entries first. */
11753 for (i = info->input_bfds; i; i = i->link_next)
11754 {
11755 bfd_signed_vma *local_got;
11756 bfd_size_type j, locsymcount;
11757 Elf_Internal_Shdr *symtab_hdr;
11758
11759 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11760 continue;
11761
11762 local_got = elf_local_got_refcounts (i);
11763 if (!local_got)
11764 continue;
11765
11766 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11767 if (elf_bad_symtab (i))
11768 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11769 else
11770 locsymcount = symtab_hdr->sh_info;
11771
11772 for (j = 0; j < locsymcount; ++j)
11773 {
11774 if (local_got[j] > 0)
11775 {
11776 local_got[j] = gotoff;
11777 gotoff += got_elt_size;
11778 }
11779 else
11780 local_got[j] = (bfd_vma) -1;
11781 }
11782 }
11783
11784 /* Then the global .got entries. .plt refcounts are handled by
11785 adjust_dynamic_symbol */
11786 gofarg.gotoff = gotoff;
11787 gofarg.got_elt_size = got_elt_size;
11788 elf_link_hash_traverse (elf_hash_table (info),
11789 elf_gc_allocate_got_offsets,
11790 &gofarg);
11791 return TRUE;
11792 }
11793
11794 /* Many folk need no more in the way of final link than this, once
11795 got entry reference counting is enabled. */
11796
11797 bfd_boolean
11798 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11799 {
11800 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11801 return FALSE;
11802
11803 /* Invoke the regular ELF backend linker to do all the work. */
11804 return bfd_elf_final_link (abfd, info);
11805 }
11806
11807 bfd_boolean
11808 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11809 {
11810 struct elf_reloc_cookie *rcookie = cookie;
11811
11812 if (rcookie->bad_symtab)
11813 rcookie->rel = rcookie->rels;
11814
11815 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11816 {
11817 unsigned long r_symndx;
11818
11819 if (! rcookie->bad_symtab)
11820 if (rcookie->rel->r_offset > offset)
11821 return FALSE;
11822 if (rcookie->rel->r_offset != offset)
11823 continue;
11824
11825 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11826 if (r_symndx == SHN_UNDEF)
11827 return TRUE;
11828
11829 if (r_symndx >= rcookie->locsymcount
11830 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11831 {
11832 struct elf_link_hash_entry *h;
11833
11834 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11835
11836 while (h->root.type == bfd_link_hash_indirect
11837 || h->root.type == bfd_link_hash_warning)
11838 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11839
11840 if ((h->root.type == bfd_link_hash_defined
11841 || h->root.type == bfd_link_hash_defweak)
11842 && elf_discarded_section (h->root.u.def.section))
11843 return TRUE;
11844 else
11845 return FALSE;
11846 }
11847 else
11848 {
11849 /* It's not a relocation against a global symbol,
11850 but it could be a relocation against a local
11851 symbol for a discarded section. */
11852 asection *isec;
11853 Elf_Internal_Sym *isym;
11854
11855 /* Need to: get the symbol; get the section. */
11856 isym = &rcookie->locsyms[r_symndx];
11857 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11858 if (isec != NULL && elf_discarded_section (isec))
11859 return TRUE;
11860 }
11861 return FALSE;
11862 }
11863 return FALSE;
11864 }
11865
11866 /* Discard unneeded references to discarded sections.
11867 Returns TRUE if any section's size was changed. */
11868 /* This function assumes that the relocations are in sorted order,
11869 which is true for all known assemblers. */
11870
11871 bfd_boolean
11872 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11873 {
11874 struct elf_reloc_cookie cookie;
11875 asection *stab, *eh;
11876 const struct elf_backend_data *bed;
11877 bfd *abfd;
11878 bfd_boolean ret = FALSE;
11879
11880 if (info->traditional_format
11881 || !is_elf_hash_table (info->hash))
11882 return FALSE;
11883
11884 _bfd_elf_begin_eh_frame_parsing (info);
11885 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11886 {
11887 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11888 continue;
11889
11890 bed = get_elf_backend_data (abfd);
11891
11892 if ((abfd->flags & DYNAMIC) != 0)
11893 continue;
11894
11895 eh = NULL;
11896 if (!info->relocatable)
11897 {
11898 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11899 if (eh != NULL
11900 && (eh->size == 0
11901 || bfd_is_abs_section (eh->output_section)))
11902 eh = NULL;
11903 }
11904
11905 stab = bfd_get_section_by_name (abfd, ".stab");
11906 if (stab != NULL
11907 && (stab->size == 0
11908 || bfd_is_abs_section (stab->output_section)
11909 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11910 stab = NULL;
11911
11912 if (stab == NULL
11913 && eh == NULL
11914 && bed->elf_backend_discard_info == NULL)
11915 continue;
11916
11917 if (!init_reloc_cookie (&cookie, info, abfd))
11918 return FALSE;
11919
11920 if (stab != NULL
11921 && stab->reloc_count > 0
11922 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11923 {
11924 if (_bfd_discard_section_stabs (abfd, stab,
11925 elf_section_data (stab)->sec_info,
11926 bfd_elf_reloc_symbol_deleted_p,
11927 &cookie))
11928 ret = TRUE;
11929 fini_reloc_cookie_rels (&cookie, stab);
11930 }
11931
11932 if (eh != NULL
11933 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11934 {
11935 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11936 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11937 bfd_elf_reloc_symbol_deleted_p,
11938 &cookie))
11939 ret = TRUE;
11940 fini_reloc_cookie_rels (&cookie, eh);
11941 }
11942
11943 if (bed->elf_backend_discard_info != NULL
11944 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11945 ret = TRUE;
11946
11947 fini_reloc_cookie (&cookie, abfd);
11948 }
11949 _bfd_elf_end_eh_frame_parsing (info);
11950
11951 if (info->eh_frame_hdr
11952 && !info->relocatable
11953 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11954 ret = TRUE;
11955
11956 return ret;
11957 }
11958
11959 void
11960 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11961 struct bfd_link_info *info)
11962 {
11963 flagword flags;
11964 const char *name, *p;
11965 struct bfd_section_already_linked *l;
11966 struct bfd_section_already_linked_hash_entry *already_linked_list;
11967
11968 if (sec->output_section == bfd_abs_section_ptr)
11969 return;
11970
11971 flags = sec->flags;
11972
11973 /* Return if it isn't a linkonce section. A comdat group section
11974 also has SEC_LINK_ONCE set. */
11975 if ((flags & SEC_LINK_ONCE) == 0)
11976 return;
11977
11978 /* Don't put group member sections on our list of already linked
11979 sections. They are handled as a group via their group section. */
11980 if (elf_sec_group (sec) != NULL)
11981 return;
11982
11983 /* FIXME: When doing a relocatable link, we may have trouble
11984 copying relocations in other sections that refer to local symbols
11985 in the section being discarded. Those relocations will have to
11986 be converted somehow; as of this writing I'm not sure that any of
11987 the backends handle that correctly.
11988
11989 It is tempting to instead not discard link once sections when
11990 doing a relocatable link (technically, they should be discarded
11991 whenever we are building constructors). However, that fails,
11992 because the linker winds up combining all the link once sections
11993 into a single large link once section, which defeats the purpose
11994 of having link once sections in the first place.
11995
11996 Also, not merging link once sections in a relocatable link
11997 causes trouble for MIPS ELF, which relies on link once semantics
11998 to handle the .reginfo section correctly. */
11999
12000 name = bfd_get_section_name (abfd, sec);
12001
12002 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12003 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12004 p++;
12005 else
12006 p = name;
12007
12008 already_linked_list = bfd_section_already_linked_table_lookup (p);
12009
12010 for (l = already_linked_list->entry; l != NULL; l = l->next)
12011 {
12012 /* We may have 2 different types of sections on the list: group
12013 sections and linkonce sections. Match like sections. */
12014 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12015 && strcmp (name, l->sec->name) == 0
12016 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12017 {
12018 /* The section has already been linked. See if we should
12019 issue a warning. */
12020 switch (flags & SEC_LINK_DUPLICATES)
12021 {
12022 default:
12023 abort ();
12024
12025 case SEC_LINK_DUPLICATES_DISCARD:
12026 break;
12027
12028 case SEC_LINK_DUPLICATES_ONE_ONLY:
12029 (*_bfd_error_handler)
12030 (_("%B: ignoring duplicate section `%A'"),
12031 abfd, sec);
12032 break;
12033
12034 case SEC_LINK_DUPLICATES_SAME_SIZE:
12035 if (sec->size != l->sec->size)
12036 (*_bfd_error_handler)
12037 (_("%B: duplicate section `%A' has different size"),
12038 abfd, sec);
12039 break;
12040
12041 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12042 if (sec->size != l->sec->size)
12043 (*_bfd_error_handler)
12044 (_("%B: duplicate section `%A' has different size"),
12045 abfd, sec);
12046 else if (sec->size != 0)
12047 {
12048 bfd_byte *sec_contents, *l_sec_contents;
12049
12050 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12051 (*_bfd_error_handler)
12052 (_("%B: warning: could not read contents of section `%A'"),
12053 abfd, sec);
12054 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12055 &l_sec_contents))
12056 (*_bfd_error_handler)
12057 (_("%B: warning: could not read contents of section `%A'"),
12058 l->sec->owner, l->sec);
12059 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12060 (*_bfd_error_handler)
12061 (_("%B: warning: duplicate section `%A' has different contents"),
12062 abfd, sec);
12063
12064 if (sec_contents)
12065 free (sec_contents);
12066 if (l_sec_contents)
12067 free (l_sec_contents);
12068 }
12069 break;
12070 }
12071
12072 /* Set the output_section field so that lang_add_section
12073 does not create a lang_input_section structure for this
12074 section. Since there might be a symbol in the section
12075 being discarded, we must retain a pointer to the section
12076 which we are really going to use. */
12077 sec->output_section = bfd_abs_section_ptr;
12078 sec->kept_section = l->sec;
12079
12080 if (flags & SEC_GROUP)
12081 {
12082 asection *first = elf_next_in_group (sec);
12083 asection *s = first;
12084
12085 while (s != NULL)
12086 {
12087 s->output_section = bfd_abs_section_ptr;
12088 /* Record which group discards it. */
12089 s->kept_section = l->sec;
12090 s = elf_next_in_group (s);
12091 /* These lists are circular. */
12092 if (s == first)
12093 break;
12094 }
12095 }
12096
12097 return;
12098 }
12099 }
12100
12101 /* A single member comdat group section may be discarded by a
12102 linkonce section and vice versa. */
12103
12104 if ((flags & SEC_GROUP) != 0)
12105 {
12106 asection *first = elf_next_in_group (sec);
12107
12108 if (first != NULL && elf_next_in_group (first) == first)
12109 /* Check this single member group against linkonce sections. */
12110 for (l = already_linked_list->entry; l != NULL; l = l->next)
12111 if ((l->sec->flags & SEC_GROUP) == 0
12112 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12113 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12114 {
12115 first->output_section = bfd_abs_section_ptr;
12116 first->kept_section = l->sec;
12117 sec->output_section = bfd_abs_section_ptr;
12118 break;
12119 }
12120 }
12121 else
12122 /* Check this linkonce section against single member groups. */
12123 for (l = already_linked_list->entry; l != NULL; l = l->next)
12124 if (l->sec->flags & SEC_GROUP)
12125 {
12126 asection *first = elf_next_in_group (l->sec);
12127
12128 if (first != NULL
12129 && elf_next_in_group (first) == first
12130 && bfd_elf_match_symbols_in_sections (first, sec, info))
12131 {
12132 sec->output_section = bfd_abs_section_ptr;
12133 sec->kept_section = first;
12134 break;
12135 }
12136 }
12137
12138 /* This is the first section with this name. Record it. */
12139 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12140 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12141 }
12142
12143 bfd_boolean
12144 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12145 {
12146 return sym->st_shndx == SHN_COMMON;
12147 }
12148
12149 unsigned int
12150 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12151 {
12152 return SHN_COMMON;
12153 }
12154
12155 asection *
12156 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12157 {
12158 return bfd_com_section_ptr;
12159 }
This page took 0.564347 seconds and 4 git commands to generate.