gdb/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* Mark if a symbol has a definition in a dynamic object or is
899 weak in all dynamic objects. */
900
901 static void
902 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry *h,
903 asection *sec, int bind)
904 {
905 if (!h->dynamic_def)
906 {
907 if (!bfd_is_und_section (sec))
908 h->dynamic_def = 1;
909 else
910 {
911 /* Check if this symbol is weak in all dynamic objects. If it
912 is the first time we see it in a dynamic object, we mark
913 if it is weak. Otherwise, we clear it. */
914 if (!h->ref_dynamic)
915 {
916 if (bind == STB_WEAK)
917 h->dynamic_weak = 1;
918 }
919 else if (bind != STB_WEAK)
920 h->dynamic_weak = 0;
921 }
922 }
923 }
924
925 /* This function is called when we want to define a new symbol. It
926 handles the various cases which arise when we find a definition in
927 a dynamic object, or when there is already a definition in a
928 dynamic object. The new symbol is described by NAME, SYM, PSEC,
929 and PVALUE. We set SYM_HASH to the hash table entry. We set
930 OVERRIDE if the old symbol is overriding a new definition. We set
931 TYPE_CHANGE_OK if it is OK for the type to change. We set
932 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
933 change, we mean that we shouldn't warn if the type or size does
934 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
935 object is overridden by a regular object. */
936
937 bfd_boolean
938 _bfd_elf_merge_symbol (bfd *abfd,
939 struct bfd_link_info *info,
940 const char *name,
941 Elf_Internal_Sym *sym,
942 asection **psec,
943 bfd_vma *pvalue,
944 bfd_boolean *pold_weak,
945 unsigned int *pold_alignment,
946 struct elf_link_hash_entry **sym_hash,
947 bfd_boolean *skip,
948 bfd_boolean *override,
949 bfd_boolean *type_change_ok,
950 bfd_boolean *size_change_ok)
951 {
952 asection *sec, *oldsec;
953 struct elf_link_hash_entry *h;
954 struct elf_link_hash_entry *hi;
955 struct elf_link_hash_entry *flip;
956 int bind;
957 bfd *oldbfd;
958 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
959 bfd_boolean newweak, oldweak, newfunc, oldfunc;
960 const struct elf_backend_data *bed;
961
962 *skip = FALSE;
963 *override = FALSE;
964
965 sec = *psec;
966 bind = ELF_ST_BIND (sym->st_info);
967
968 /* Silently discard TLS symbols from --just-syms. There's no way to
969 combine a static TLS block with a new TLS block for this executable. */
970 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
971 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
972 {
973 *skip = TRUE;
974 return TRUE;
975 }
976
977 if (! bfd_is_und_section (sec))
978 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
979 else
980 h = ((struct elf_link_hash_entry *)
981 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
982 if (h == NULL)
983 return FALSE;
984 *sym_hash = h;
985
986 bed = get_elf_backend_data (abfd);
987
988 /* This code is for coping with dynamic objects, and is only useful
989 if we are doing an ELF link. */
990 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
991 return TRUE;
992
993 /* For merging, we only care about real symbols. But we need to make
994 sure that indirect symbol dynamic flags are updated. */
995 hi = h;
996 while (h->root.type == bfd_link_hash_indirect
997 || h->root.type == bfd_link_hash_warning)
998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
999
1000 /* We have to check it for every instance since the first few may be
1001 refereences and not all compilers emit symbol type for undefined
1002 symbols. */
1003 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1004
1005 /* If we just created the symbol, mark it as being an ELF symbol.
1006 Other than that, there is nothing to do--there is no merge issue
1007 with a newly defined symbol--so we just return. */
1008
1009 if (h->root.type == bfd_link_hash_new)
1010 {
1011 h->non_elf = 0;
1012 return TRUE;
1013 }
1014
1015 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1016 existing symbol. */
1017
1018 switch (h->root.type)
1019 {
1020 default:
1021 oldbfd = NULL;
1022 oldsec = NULL;
1023 break;
1024
1025 case bfd_link_hash_undefined:
1026 case bfd_link_hash_undefweak:
1027 oldbfd = h->root.u.undef.abfd;
1028 oldsec = NULL;
1029 break;
1030
1031 case bfd_link_hash_defined:
1032 case bfd_link_hash_defweak:
1033 oldbfd = h->root.u.def.section->owner;
1034 oldsec = h->root.u.def.section;
1035 break;
1036
1037 case bfd_link_hash_common:
1038 oldbfd = h->root.u.c.p->section->owner;
1039 oldsec = h->root.u.c.p->section;
1040 break;
1041 }
1042
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1047 if (pold_weak)
1048 *pold_weak = oldweak;
1049
1050 /* In cases involving weak versioned symbols, we may wind up trying
1051 to merge a symbol with itself. Catch that here, to avoid the
1052 confusion that results if we try to override a symbol with
1053 itself. The additional tests catch cases like
1054 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1055 dynamic object, which we do want to handle here. */
1056 if (abfd == oldbfd
1057 && (newweak || oldweak)
1058 && ((abfd->flags & DYNAMIC) == 0
1059 || !h->def_regular))
1060 return TRUE;
1061
1062 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1063 respectively, is from a dynamic object. */
1064
1065 newdyn = (abfd->flags & DYNAMIC) != 0;
1066
1067 olddyn = FALSE;
1068 if (oldbfd != NULL)
1069 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1070 else if (oldsec != NULL)
1071 {
1072 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1073 indices used by MIPS ELF. */
1074 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1075 }
1076
1077 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1078 respectively, appear to be a definition rather than reference. */
1079
1080 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1081
1082 olddef = (h->root.type != bfd_link_hash_undefined
1083 && h->root.type != bfd_link_hash_undefweak
1084 && h->root.type != bfd_link_hash_common);
1085
1086 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1087 respectively, appear to be a function. */
1088
1089 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1090 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1091
1092 oldfunc = (h->type != STT_NOTYPE
1093 && bed->is_function_type (h->type));
1094
1095 /* When we try to create a default indirect symbol from the dynamic
1096 definition with the default version, we skip it if its type and
1097 the type of existing regular definition mismatch. We only do it
1098 if the existing regular definition won't be dynamic. */
1099 if (pold_alignment == NULL
1100 && !info->shared
1101 && !info->export_dynamic
1102 && !h->ref_dynamic
1103 && newdyn
1104 && newdef
1105 && !olddyn
1106 && (olddef || h->root.type == bfd_link_hash_common)
1107 && ELF_ST_TYPE (sym->st_info) != h->type
1108 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1109 && h->type != STT_NOTYPE
1110 && !(newfunc && oldfunc))
1111 {
1112 *skip = TRUE;
1113 return TRUE;
1114 }
1115
1116 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1117 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1118 *type_change_ok = TRUE;
1119
1120 /* Check TLS symbol. We don't check undefined symbol introduced by
1121 "ld -u". */
1122 else if (oldbfd != NULL
1123 && ELF_ST_TYPE (sym->st_info) != h->type
1124 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1125 {
1126 bfd *ntbfd, *tbfd;
1127 bfd_boolean ntdef, tdef;
1128 asection *ntsec, *tsec;
1129
1130 if (h->type == STT_TLS)
1131 {
1132 ntbfd = abfd;
1133 ntsec = sec;
1134 ntdef = newdef;
1135 tbfd = oldbfd;
1136 tsec = oldsec;
1137 tdef = olddef;
1138 }
1139 else
1140 {
1141 ntbfd = oldbfd;
1142 ntsec = oldsec;
1143 ntdef = olddef;
1144 tbfd = abfd;
1145 tsec = sec;
1146 tdef = newdef;
1147 }
1148
1149 if (tdef && ntdef)
1150 (*_bfd_error_handler)
1151 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1152 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1153 else if (!tdef && !ntdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1156 tbfd, ntbfd, h->root.root.string);
1157 else if (tdef)
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1160 tbfd, tsec, ntbfd, h->root.root.string);
1161 else
1162 (*_bfd_error_handler)
1163 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1164 tbfd, ntbfd, ntsec, h->root.root.string);
1165
1166 bfd_set_error (bfd_error_bad_value);
1167 return FALSE;
1168 }
1169
1170 /* We need to remember if a symbol has a definition in a dynamic
1171 object or is weak in all dynamic objects. Internal and hidden
1172 visibility will make it unavailable to dynamic objects. */
1173 if (newdyn)
1174 {
1175 _bfd_elf_mark_dynamic_def_weak (h, sec, bind);
1176 if (h != hi)
1177 _bfd_elf_mark_dynamic_def_weak (hi, sec, bind);
1178 }
1179
1180 /* If the old symbol has non-default visibility, we ignore the new
1181 definition from a dynamic object. */
1182 if (newdyn
1183 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1184 && !bfd_is_und_section (sec))
1185 {
1186 *skip = TRUE;
1187 /* Make sure this symbol is dynamic. */
1188 h->ref_dynamic = 1;
1189 hi->ref_dynamic = 1;
1190 /* A protected symbol has external availability. Make sure it is
1191 recorded as dynamic.
1192
1193 FIXME: Should we check type and size for protected symbol? */
1194 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1195 return bfd_elf_link_record_dynamic_symbol (info, h);
1196 else
1197 return TRUE;
1198 }
1199 else if (!newdyn
1200 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1201 && h->def_dynamic)
1202 {
1203 /* If the new symbol with non-default visibility comes from a
1204 relocatable file and the old definition comes from a dynamic
1205 object, we remove the old definition. */
1206 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1207 {
1208 /* Handle the case where the old dynamic definition is
1209 default versioned. We need to copy the symbol info from
1210 the symbol with default version to the normal one if it
1211 was referenced before. */
1212 if (h->ref_regular)
1213 {
1214 struct elf_link_hash_entry *vh = *sym_hash;
1215
1216 vh->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1219
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1222 {
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1227 h->ref_dynamic = 0;
1228 }
1229 else
1230 h->ref_dynamic = 1;
1231
1232 h->def_dynamic = 0;
1233 h->dynamic_def = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1235 h->size = 0;
1236 h->type = 0;
1237
1238 h = vh;
1239 }
1240 else
1241 h = *sym_hash;
1242 }
1243
1244 /* If the old symbol was undefined before, then it will still be
1245 on the undefs list. If the new symbol is undefined or
1246 common, we can't make it bfd_link_hash_new here, because new
1247 undefined or common symbols will be added to the undefs list
1248 by _bfd_generic_link_add_one_symbol. Symbols may not be
1249 added twice to the undefs list. Also, if the new symbol is
1250 undefweak then we don't want to lose the strong undef. */
1251 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1252 {
1253 h->root.type = bfd_link_hash_undefined;
1254 h->root.u.undef.abfd = abfd;
1255 }
1256 else
1257 {
1258 h->root.type = bfd_link_hash_new;
1259 h->root.u.undef.abfd = NULL;
1260 }
1261
1262 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1263 {
1264 /* If the new symbol is hidden or internal, completely undo
1265 any dynamic link state. */
1266 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1267 h->forced_local = 0;
1268 h->ref_dynamic = 0;
1269 }
1270 else
1271 h->ref_dynamic = 1;
1272 h->def_dynamic = 0;
1273 h->dynamic_def = 0;
1274 /* FIXME: Should we check type and size for protected symbol? */
1275 h->size = 0;
1276 h->type = 0;
1277 return TRUE;
1278 }
1279
1280 if (bind == STB_GNU_UNIQUE)
1281 h->unique_global = 1;
1282
1283 /* If a new weak symbol definition comes from a regular file and the
1284 old symbol comes from a dynamic library, we treat the new one as
1285 strong. Similarly, an old weak symbol definition from a regular
1286 file is treated as strong when the new symbol comes from a dynamic
1287 library. Further, an old weak symbol from a dynamic library is
1288 treated as strong if the new symbol is from a dynamic library.
1289 This reflects the way glibc's ld.so works.
1290
1291 Do this before setting *type_change_ok or *size_change_ok so that
1292 we warn properly when dynamic library symbols are overridden. */
1293
1294 if (newdef && !newdyn && olddyn)
1295 newweak = FALSE;
1296 if (olddef && newdyn)
1297 oldweak = FALSE;
1298
1299 /* Allow changes between different types of function symbol. */
1300 if (newfunc && oldfunc)
1301 *type_change_ok = TRUE;
1302
1303 /* It's OK to change the type if either the existing symbol or the
1304 new symbol is weak. A type change is also OK if the old symbol
1305 is undefined and the new symbol is defined. */
1306
1307 if (oldweak
1308 || newweak
1309 || (newdef
1310 && h->root.type == bfd_link_hash_undefined))
1311 *type_change_ok = TRUE;
1312
1313 /* It's OK to change the size if either the existing symbol or the
1314 new symbol is weak, or if the old symbol is undefined. */
1315
1316 if (*type_change_ok
1317 || h->root.type == bfd_link_hash_undefined)
1318 *size_change_ok = TRUE;
1319
1320 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1321 symbol, respectively, appears to be a common symbol in a dynamic
1322 object. If a symbol appears in an uninitialized section, and is
1323 not weak, and is not a function, then it may be a common symbol
1324 which was resolved when the dynamic object was created. We want
1325 to treat such symbols specially, because they raise special
1326 considerations when setting the symbol size: if the symbol
1327 appears as a common symbol in a regular object, and the size in
1328 the regular object is larger, we must make sure that we use the
1329 larger size. This problematic case can always be avoided in C,
1330 but it must be handled correctly when using Fortran shared
1331 libraries.
1332
1333 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1334 likewise for OLDDYNCOMMON and OLDDEF.
1335
1336 Note that this test is just a heuristic, and that it is quite
1337 possible to have an uninitialized symbol in a shared object which
1338 is really a definition, rather than a common symbol. This could
1339 lead to some minor confusion when the symbol really is a common
1340 symbol in some regular object. However, I think it will be
1341 harmless. */
1342
1343 if (newdyn
1344 && newdef
1345 && !newweak
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (sec->flags & SEC_LOAD) == 0
1348 && sym->st_size > 0
1349 && !newfunc)
1350 newdyncommon = TRUE;
1351 else
1352 newdyncommon = FALSE;
1353
1354 if (olddyn
1355 && olddef
1356 && h->root.type == bfd_link_hash_defined
1357 && h->def_dynamic
1358 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1359 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1360 && h->size > 0
1361 && !oldfunc)
1362 olddyncommon = TRUE;
1363 else
1364 olddyncommon = FALSE;
1365
1366 /* We now know everything about the old and new symbols. We ask the
1367 backend to check if we can merge them. */
1368 if (bed->merge_symbol
1369 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1370 pold_alignment, skip, override,
1371 type_change_ok, size_change_ok,
1372 &newdyn, &newdef, &newdyncommon, &newweak,
1373 abfd, &sec,
1374 &olddyn, &olddef, &olddyncommon, &oldweak,
1375 oldbfd, &oldsec))
1376 return FALSE;
1377
1378 /* If both the old and the new symbols look like common symbols in a
1379 dynamic object, set the size of the symbol to the larger of the
1380 two. */
1381
1382 if (olddyncommon
1383 && newdyncommon
1384 && sym->st_size != h->size)
1385 {
1386 /* Since we think we have two common symbols, issue a multiple
1387 common warning if desired. Note that we only warn if the
1388 size is different. If the size is the same, we simply let
1389 the old symbol override the new one as normally happens with
1390 symbols defined in dynamic objects. */
1391
1392 if (! ((*info->callbacks->multiple_common)
1393 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1394 return FALSE;
1395
1396 if (sym->st_size > h->size)
1397 h->size = sym->st_size;
1398
1399 *size_change_ok = TRUE;
1400 }
1401
1402 /* If we are looking at a dynamic object, and we have found a
1403 definition, we need to see if the symbol was already defined by
1404 some other object. If so, we want to use the existing
1405 definition, and we do not want to report a multiple symbol
1406 definition error; we do this by clobbering *PSEC to be
1407 bfd_und_section_ptr.
1408
1409 We treat a common symbol as a definition if the symbol in the
1410 shared library is a function, since common symbols always
1411 represent variables; this can cause confusion in principle, but
1412 any such confusion would seem to indicate an erroneous program or
1413 shared library. We also permit a common symbol in a regular
1414 object to override a weak symbol in a shared object. */
1415
1416 if (newdyn
1417 && newdef
1418 && (olddef
1419 || (h->root.type == bfd_link_hash_common
1420 && (newweak || newfunc))))
1421 {
1422 *override = TRUE;
1423 newdef = FALSE;
1424 newdyncommon = FALSE;
1425
1426 *psec = sec = bfd_und_section_ptr;
1427 *size_change_ok = TRUE;
1428
1429 /* If we get here when the old symbol is a common symbol, then
1430 we are explicitly letting it override a weak symbol or
1431 function in a dynamic object, and we don't want to warn about
1432 a type change. If the old symbol is a defined symbol, a type
1433 change warning may still be appropriate. */
1434
1435 if (h->root.type == bfd_link_hash_common)
1436 *type_change_ok = TRUE;
1437 }
1438
1439 /* Handle the special case of an old common symbol merging with a
1440 new symbol which looks like a common symbol in a shared object.
1441 We change *PSEC and *PVALUE to make the new symbol look like a
1442 common symbol, and let _bfd_generic_link_add_one_symbol do the
1443 right thing. */
1444
1445 if (newdyncommon
1446 && h->root.type == bfd_link_hash_common)
1447 {
1448 *override = TRUE;
1449 newdef = FALSE;
1450 newdyncommon = FALSE;
1451 *pvalue = sym->st_size;
1452 *psec = sec = bed->common_section (oldsec);
1453 *size_change_ok = TRUE;
1454 }
1455
1456 /* Skip weak definitions of symbols that are already defined. */
1457 if (newdef && olddef && newweak)
1458 {
1459 /* Don't skip new non-IR weak syms. */
1460 if (!(oldbfd != NULL
1461 && (oldbfd->flags & BFD_PLUGIN) != 0
1462 && (abfd->flags & BFD_PLUGIN) == 0))
1463 *skip = TRUE;
1464
1465 /* Merge st_other. If the symbol already has a dynamic index,
1466 but visibility says it should not be visible, turn it into a
1467 local symbol. */
1468 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1469 if (h->dynindx != -1)
1470 switch (ELF_ST_VISIBILITY (h->other))
1471 {
1472 case STV_INTERNAL:
1473 case STV_HIDDEN:
1474 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1475 break;
1476 }
1477 }
1478
1479 /* If the old symbol is from a dynamic object, and the new symbol is
1480 a definition which is not from a dynamic object, then the new
1481 symbol overrides the old symbol. Symbols from regular files
1482 always take precedence over symbols from dynamic objects, even if
1483 they are defined after the dynamic object in the link.
1484
1485 As above, we again permit a common symbol in a regular object to
1486 override a definition in a shared object if the shared object
1487 symbol is a function or is weak. */
1488
1489 flip = NULL;
1490 if (!newdyn
1491 && (newdef
1492 || (bfd_is_com_section (sec)
1493 && (oldweak || oldfunc)))
1494 && olddyn
1495 && olddef
1496 && h->def_dynamic)
1497 {
1498 /* Change the hash table entry to undefined, and let
1499 _bfd_generic_link_add_one_symbol do the right thing with the
1500 new definition. */
1501
1502 h->root.type = bfd_link_hash_undefined;
1503 h->root.u.undef.abfd = h->root.u.def.section->owner;
1504 *size_change_ok = TRUE;
1505
1506 olddef = FALSE;
1507 olddyncommon = FALSE;
1508
1509 /* We again permit a type change when a common symbol may be
1510 overriding a function. */
1511
1512 if (bfd_is_com_section (sec))
1513 {
1514 if (oldfunc)
1515 {
1516 /* If a common symbol overrides a function, make sure
1517 that it isn't defined dynamically nor has type
1518 function. */
1519 h->def_dynamic = 0;
1520 h->type = STT_NOTYPE;
1521 }
1522 *type_change_ok = TRUE;
1523 }
1524
1525 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1526 flip = *sym_hash;
1527 else
1528 /* This union may have been set to be non-NULL when this symbol
1529 was seen in a dynamic object. We must force the union to be
1530 NULL, so that it is correct for a regular symbol. */
1531 h->verinfo.vertree = NULL;
1532 }
1533
1534 /* Handle the special case of a new common symbol merging with an
1535 old symbol that looks like it might be a common symbol defined in
1536 a shared object. Note that we have already handled the case in
1537 which a new common symbol should simply override the definition
1538 in the shared library. */
1539
1540 if (! newdyn
1541 && bfd_is_com_section (sec)
1542 && olddyncommon)
1543 {
1544 /* It would be best if we could set the hash table entry to a
1545 common symbol, but we don't know what to use for the section
1546 or the alignment. */
1547 if (! ((*info->callbacks->multiple_common)
1548 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1549 return FALSE;
1550
1551 /* If the presumed common symbol in the dynamic object is
1552 larger, pretend that the new symbol has its size. */
1553
1554 if (h->size > *pvalue)
1555 *pvalue = h->size;
1556
1557 /* We need to remember the alignment required by the symbol
1558 in the dynamic object. */
1559 BFD_ASSERT (pold_alignment);
1560 *pold_alignment = h->root.u.def.section->alignment_power;
1561
1562 olddef = FALSE;
1563 olddyncommon = FALSE;
1564
1565 h->root.type = bfd_link_hash_undefined;
1566 h->root.u.undef.abfd = h->root.u.def.section->owner;
1567
1568 *size_change_ok = TRUE;
1569 *type_change_ok = TRUE;
1570
1571 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1572 flip = *sym_hash;
1573 else
1574 h->verinfo.vertree = NULL;
1575 }
1576
1577 if (flip != NULL)
1578 {
1579 /* Handle the case where we had a versioned symbol in a dynamic
1580 library and now find a definition in a normal object. In this
1581 case, we make the versioned symbol point to the normal one. */
1582 flip->root.type = h->root.type;
1583 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1584 h->root.type = bfd_link_hash_indirect;
1585 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1586 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1587 if (h->def_dynamic)
1588 {
1589 h->def_dynamic = 0;
1590 flip->ref_dynamic = 1;
1591 }
1592 }
1593
1594 return TRUE;
1595 }
1596
1597 /* This function is called to create an indirect symbol from the
1598 default for the symbol with the default version if needed. The
1599 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1600 set DYNSYM if the new indirect symbol is dynamic. */
1601
1602 static bfd_boolean
1603 _bfd_elf_add_default_symbol (bfd *abfd,
1604 struct bfd_link_info *info,
1605 struct elf_link_hash_entry *h,
1606 const char *name,
1607 Elf_Internal_Sym *sym,
1608 asection **psec,
1609 bfd_vma *value,
1610 bfd_boolean *dynsym,
1611 bfd_boolean override)
1612 {
1613 bfd_boolean type_change_ok;
1614 bfd_boolean size_change_ok;
1615 bfd_boolean skip;
1616 char *shortname;
1617 struct elf_link_hash_entry *hi;
1618 struct bfd_link_hash_entry *bh;
1619 const struct elf_backend_data *bed;
1620 bfd_boolean collect;
1621 bfd_boolean dynamic;
1622 char *p;
1623 size_t len, shortlen;
1624 asection *sec;
1625
1626 /* If this symbol has a version, and it is the default version, we
1627 create an indirect symbol from the default name to the fully
1628 decorated name. This will cause external references which do not
1629 specify a version to be bound to this version of the symbol. */
1630 p = strchr (name, ELF_VER_CHR);
1631 if (p == NULL || p[1] != ELF_VER_CHR)
1632 return TRUE;
1633
1634 if (override)
1635 {
1636 /* We are overridden by an old definition. We need to check if we
1637 need to create the indirect symbol from the default name. */
1638 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1639 FALSE, FALSE);
1640 BFD_ASSERT (hi != NULL);
1641 if (hi == h)
1642 return TRUE;
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 {
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647 if (hi == h)
1648 return TRUE;
1649 }
1650 }
1651
1652 bed = get_elf_backend_data (abfd);
1653 collect = bed->collect;
1654 dynamic = (abfd->flags & DYNAMIC) != 0;
1655
1656 shortlen = p - name;
1657 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1658 if (shortname == NULL)
1659 return FALSE;
1660 memcpy (shortname, name, shortlen);
1661 shortname[shortlen] = '\0';
1662
1663 /* We are going to create a new symbol. Merge it with any existing
1664 symbol with this name. For the purposes of the merge, act as
1665 though we were defining the symbol we just defined, although we
1666 actually going to define an indirect symbol. */
1667 type_change_ok = FALSE;
1668 size_change_ok = FALSE;
1669 sec = *psec;
1670 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1671 NULL, NULL, &hi, &skip, &override,
1672 &type_change_ok, &size_change_ok))
1673 return FALSE;
1674
1675 if (skip)
1676 goto nondefault;
1677
1678 if (! override)
1679 {
1680 bh = &hi->root;
1681 if (! (_bfd_generic_link_add_one_symbol
1682 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1683 0, name, FALSE, collect, &bh)))
1684 return FALSE;
1685 hi = (struct elf_link_hash_entry *) bh;
1686 }
1687 else
1688 {
1689 /* In this case the symbol named SHORTNAME is overriding the
1690 indirect symbol we want to add. We were planning on making
1691 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1692 is the name without a version. NAME is the fully versioned
1693 name, and it is the default version.
1694
1695 Overriding means that we already saw a definition for the
1696 symbol SHORTNAME in a regular object, and it is overriding
1697 the symbol defined in the dynamic object.
1698
1699 When this happens, we actually want to change NAME, the
1700 symbol we just added, to refer to SHORTNAME. This will cause
1701 references to NAME in the shared object to become references
1702 to SHORTNAME in the regular object. This is what we expect
1703 when we override a function in a shared object: that the
1704 references in the shared object will be mapped to the
1705 definition in the regular object. */
1706
1707 while (hi->root.type == bfd_link_hash_indirect
1708 || hi->root.type == bfd_link_hash_warning)
1709 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710
1711 h->root.type = bfd_link_hash_indirect;
1712 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1713 if (h->def_dynamic)
1714 {
1715 h->def_dynamic = 0;
1716 hi->ref_dynamic = 1;
1717 if (hi->ref_regular
1718 || hi->def_regular)
1719 {
1720 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1721 return FALSE;
1722 }
1723 }
1724
1725 /* Now set HI to H, so that the following code will set the
1726 other fields correctly. */
1727 hi = h;
1728 }
1729
1730 /* Check if HI is a warning symbol. */
1731 if (hi->root.type == bfd_link_hash_warning)
1732 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1733
1734 /* If there is a duplicate definition somewhere, then HI may not
1735 point to an indirect symbol. We will have reported an error to
1736 the user in that case. */
1737
1738 if (hi->root.type == bfd_link_hash_indirect)
1739 {
1740 struct elf_link_hash_entry *ht;
1741
1742 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1743 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1744
1745 /* See if the new flags lead us to realize that the symbol must
1746 be dynamic. */
1747 if (! *dynsym)
1748 {
1749 if (! dynamic)
1750 {
1751 if (! info->executable
1752 || hi->def_dynamic
1753 || hi->ref_dynamic)
1754 *dynsym = TRUE;
1755 }
1756 else
1757 {
1758 if (hi->ref_regular)
1759 *dynsym = TRUE;
1760 }
1761 }
1762 }
1763
1764 /* We also need to define an indirection from the nondefault version
1765 of the symbol. */
1766
1767 nondefault:
1768 len = strlen (name);
1769 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 if (shortname == NULL)
1771 return FALSE;
1772 memcpy (shortname, name, shortlen);
1773 memcpy (shortname + shortlen, p + 1, len - shortlen);
1774
1775 /* Once again, merge with any existing symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1778 sec = *psec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1780 NULL, NULL, &hi, &skip, &override,
1781 &type_change_ok, &size_change_ok))
1782 return FALSE;
1783
1784 if (skip)
1785 return TRUE;
1786
1787 if (override)
1788 {
1789 /* Here SHORTNAME is a versioned name, so we don't expect to see
1790 the type of override we do in the case above unless it is
1791 overridden by a versioned definition. */
1792 if (hi->root.type != bfd_link_hash_defined
1793 && hi->root.type != bfd_link_hash_defweak)
1794 (*_bfd_error_handler)
1795 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1796 abfd, shortname);
1797 }
1798 else
1799 {
1800 bh = &hi->root;
1801 if (! (_bfd_generic_link_add_one_symbol
1802 (info, abfd, shortname, BSF_INDIRECT,
1803 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1804 return FALSE;
1805 hi = (struct elf_link_hash_entry *) bh;
1806
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error
1809 to the user in that case. */
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 {
1813 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1814
1815 /* See if the new flags lead us to realize that the symbol
1816 must be dynamic. */
1817 if (! *dynsym)
1818 {
1819 if (! dynamic)
1820 {
1821 if (! info->executable
1822 || hi->ref_dynamic)
1823 *dynsym = TRUE;
1824 }
1825 else
1826 {
1827 if (hi->ref_regular)
1828 *dynsym = TRUE;
1829 }
1830 }
1831 }
1832 }
1833
1834 return TRUE;
1835 }
1836 \f
1837 /* This routine is used to export all defined symbols into the dynamic
1838 symbol table. It is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1844
1845 /* Ignore indirect symbols. These are added by the versioning code. */
1846 if (h->root.type == bfd_link_hash_indirect)
1847 return TRUE;
1848
1849 /* Ignore this if we won't export it. */
1850 if (!eif->info->export_dynamic && !h->dynamic)
1851 return TRUE;
1852
1853 if (h->dynindx == -1
1854 && (h->def_regular || h->ref_regular)
1855 && ! bfd_hide_sym_by_version (eif->info->version_info,
1856 h->root.root.string))
1857 {
1858 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1859 {
1860 eif->failed = TRUE;
1861 return FALSE;
1862 }
1863 }
1864
1865 return TRUE;
1866 }
1867 \f
1868 /* Look through the symbols which are defined in other shared
1869 libraries and referenced here. Update the list of version
1870 dependencies. This will be put into the .gnu.version_r section.
1871 This function is called via elf_link_hash_traverse. */
1872
1873 static bfd_boolean
1874 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1875 void *data)
1876 {
1877 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1878 Elf_Internal_Verneed *t;
1879 Elf_Internal_Vernaux *a;
1880 bfd_size_type amt;
1881
1882 /* We only care about symbols defined in shared objects with version
1883 information. */
1884 if (!h->def_dynamic
1885 || h->def_regular
1886 || h->dynindx == -1
1887 || h->verinfo.verdef == NULL)
1888 return TRUE;
1889
1890 /* See if we already know about this version. */
1891 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1892 t != NULL;
1893 t = t->vn_nextref)
1894 {
1895 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1896 continue;
1897
1898 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1899 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1900 return TRUE;
1901
1902 break;
1903 }
1904
1905 /* This is a new version. Add it to tree we are building. */
1906
1907 if (t == NULL)
1908 {
1909 amt = sizeof *t;
1910 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1911 if (t == NULL)
1912 {
1913 rinfo->failed = TRUE;
1914 return FALSE;
1915 }
1916
1917 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1918 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1919 elf_tdata (rinfo->info->output_bfd)->verref = t;
1920 }
1921
1922 amt = sizeof *a;
1923 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1924 if (a == NULL)
1925 {
1926 rinfo->failed = TRUE;
1927 return FALSE;
1928 }
1929
1930 /* Note that we are copying a string pointer here, and testing it
1931 above. If bfd_elf_string_from_elf_section is ever changed to
1932 discard the string data when low in memory, this will have to be
1933 fixed. */
1934 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1935
1936 a->vna_flags = h->verinfo.verdef->vd_flags;
1937 a->vna_nextptr = t->vn_auxptr;
1938
1939 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1940 ++rinfo->vers;
1941
1942 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1943
1944 t->vn_auxptr = a;
1945
1946 return TRUE;
1947 }
1948
1949 /* Figure out appropriate versions for all the symbols. We may not
1950 have the version number script until we have read all of the input
1951 files, so until that point we don't know which symbols should be
1952 local. This function is called via elf_link_hash_traverse. */
1953
1954 static bfd_boolean
1955 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1956 {
1957 struct elf_info_failed *sinfo;
1958 struct bfd_link_info *info;
1959 const struct elf_backend_data *bed;
1960 struct elf_info_failed eif;
1961 char *p;
1962 bfd_size_type amt;
1963
1964 sinfo = (struct elf_info_failed *) data;
1965 info = sinfo->info;
1966
1967 /* Fix the symbol flags. */
1968 eif.failed = FALSE;
1969 eif.info = info;
1970 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1971 {
1972 if (eif.failed)
1973 sinfo->failed = TRUE;
1974 return FALSE;
1975 }
1976
1977 /* We only need version numbers for symbols defined in regular
1978 objects. */
1979 if (!h->def_regular)
1980 return TRUE;
1981
1982 bed = get_elf_backend_data (info->output_bfd);
1983 p = strchr (h->root.root.string, ELF_VER_CHR);
1984 if (p != NULL && h->verinfo.vertree == NULL)
1985 {
1986 struct bfd_elf_version_tree *t;
1987 bfd_boolean hidden;
1988
1989 hidden = TRUE;
1990
1991 /* There are two consecutive ELF_VER_CHR characters if this is
1992 not a hidden symbol. */
1993 ++p;
1994 if (*p == ELF_VER_CHR)
1995 {
1996 hidden = FALSE;
1997 ++p;
1998 }
1999
2000 /* If there is no version string, we can just return out. */
2001 if (*p == '\0')
2002 {
2003 if (hidden)
2004 h->hidden = 1;
2005 return TRUE;
2006 }
2007
2008 /* Look for the version. If we find it, it is no longer weak. */
2009 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2010 {
2011 if (strcmp (t->name, p) == 0)
2012 {
2013 size_t len;
2014 char *alc;
2015 struct bfd_elf_version_expr *d;
2016
2017 len = p - h->root.root.string;
2018 alc = (char *) bfd_malloc (len);
2019 if (alc == NULL)
2020 {
2021 sinfo->failed = TRUE;
2022 return FALSE;
2023 }
2024 memcpy (alc, h->root.root.string, len - 1);
2025 alc[len - 1] = '\0';
2026 if (alc[len - 2] == ELF_VER_CHR)
2027 alc[len - 2] = '\0';
2028
2029 h->verinfo.vertree = t;
2030 t->used = TRUE;
2031 d = NULL;
2032
2033 if (t->globals.list != NULL)
2034 d = (*t->match) (&t->globals, NULL, alc);
2035
2036 /* See if there is anything to force this symbol to
2037 local scope. */
2038 if (d == NULL && t->locals.list != NULL)
2039 {
2040 d = (*t->match) (&t->locals, NULL, alc);
2041 if (d != NULL
2042 && h->dynindx != -1
2043 && ! info->export_dynamic)
2044 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2045 }
2046
2047 free (alc);
2048 break;
2049 }
2050 }
2051
2052 /* If we are building an application, we need to create a
2053 version node for this version. */
2054 if (t == NULL && info->executable)
2055 {
2056 struct bfd_elf_version_tree **pp;
2057 int version_index;
2058
2059 /* If we aren't going to export this symbol, we don't need
2060 to worry about it. */
2061 if (h->dynindx == -1)
2062 return TRUE;
2063
2064 amt = sizeof *t;
2065 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2066 if (t == NULL)
2067 {
2068 sinfo->failed = TRUE;
2069 return FALSE;
2070 }
2071
2072 t->name = p;
2073 t->name_indx = (unsigned int) -1;
2074 t->used = TRUE;
2075
2076 version_index = 1;
2077 /* Don't count anonymous version tag. */
2078 if (sinfo->info->version_info != NULL
2079 && sinfo->info->version_info->vernum == 0)
2080 version_index = 0;
2081 for (pp = &sinfo->info->version_info;
2082 *pp != NULL;
2083 pp = &(*pp)->next)
2084 ++version_index;
2085 t->vernum = version_index;
2086
2087 *pp = t;
2088
2089 h->verinfo.vertree = t;
2090 }
2091 else if (t == NULL)
2092 {
2093 /* We could not find the version for a symbol when
2094 generating a shared archive. Return an error. */
2095 (*_bfd_error_handler)
2096 (_("%B: version node not found for symbol %s"),
2097 info->output_bfd, h->root.root.string);
2098 bfd_set_error (bfd_error_bad_value);
2099 sinfo->failed = TRUE;
2100 return FALSE;
2101 }
2102
2103 if (hidden)
2104 h->hidden = 1;
2105 }
2106
2107 /* If we don't have a version for this symbol, see if we can find
2108 something. */
2109 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2110 {
2111 bfd_boolean hide;
2112
2113 h->verinfo.vertree
2114 = bfd_find_version_for_sym (sinfo->info->version_info,
2115 h->root.root.string, &hide);
2116 if (h->verinfo.vertree != NULL && hide)
2117 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2118 }
2119
2120 return TRUE;
2121 }
2122 \f
2123 /* Read and swap the relocs from the section indicated by SHDR. This
2124 may be either a REL or a RELA section. The relocations are
2125 translated into RELA relocations and stored in INTERNAL_RELOCS,
2126 which should have already been allocated to contain enough space.
2127 The EXTERNAL_RELOCS are a buffer where the external form of the
2128 relocations should be stored.
2129
2130 Returns FALSE if something goes wrong. */
2131
2132 static bfd_boolean
2133 elf_link_read_relocs_from_section (bfd *abfd,
2134 asection *sec,
2135 Elf_Internal_Shdr *shdr,
2136 void *external_relocs,
2137 Elf_Internal_Rela *internal_relocs)
2138 {
2139 const struct elf_backend_data *bed;
2140 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2141 const bfd_byte *erela;
2142 const bfd_byte *erelaend;
2143 Elf_Internal_Rela *irela;
2144 Elf_Internal_Shdr *symtab_hdr;
2145 size_t nsyms;
2146
2147 /* Position ourselves at the start of the section. */
2148 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2149 return FALSE;
2150
2151 /* Read the relocations. */
2152 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2153 return FALSE;
2154
2155 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2156 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2157
2158 bed = get_elf_backend_data (abfd);
2159
2160 /* Convert the external relocations to the internal format. */
2161 if (shdr->sh_entsize == bed->s->sizeof_rel)
2162 swap_in = bed->s->swap_reloc_in;
2163 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2164 swap_in = bed->s->swap_reloca_in;
2165 else
2166 {
2167 bfd_set_error (bfd_error_wrong_format);
2168 return FALSE;
2169 }
2170
2171 erela = (const bfd_byte *) external_relocs;
2172 erelaend = erela + shdr->sh_size;
2173 irela = internal_relocs;
2174 while (erela < erelaend)
2175 {
2176 bfd_vma r_symndx;
2177
2178 (*swap_in) (abfd, erela, irela);
2179 r_symndx = ELF32_R_SYM (irela->r_info);
2180 if (bed->s->arch_size == 64)
2181 r_symndx >>= 24;
2182 if (nsyms > 0)
2183 {
2184 if ((size_t) r_symndx >= nsyms)
2185 {
2186 (*_bfd_error_handler)
2187 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2188 " for offset 0x%lx in section `%A'"),
2189 abfd, sec,
2190 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2191 bfd_set_error (bfd_error_bad_value);
2192 return FALSE;
2193 }
2194 }
2195 else if (r_symndx != STN_UNDEF)
2196 {
2197 (*_bfd_error_handler)
2198 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2199 " when the object file has no symbol table"),
2200 abfd, sec,
2201 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2202 bfd_set_error (bfd_error_bad_value);
2203 return FALSE;
2204 }
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erela += shdr->sh_entsize;
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* Read and swap the relocs for a section O. They may have been
2213 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2214 not NULL, they are used as buffers to read into. They are known to
2215 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2216 the return value is allocated using either malloc or bfd_alloc,
2217 according to the KEEP_MEMORY argument. If O has two relocation
2218 sections (both REL and RELA relocations), then the REL_HDR
2219 relocations will appear first in INTERNAL_RELOCS, followed by the
2220 RELA_HDR relocations. */
2221
2222 Elf_Internal_Rela *
2223 _bfd_elf_link_read_relocs (bfd *abfd,
2224 asection *o,
2225 void *external_relocs,
2226 Elf_Internal_Rela *internal_relocs,
2227 bfd_boolean keep_memory)
2228 {
2229 void *alloc1 = NULL;
2230 Elf_Internal_Rela *alloc2 = NULL;
2231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2232 struct bfd_elf_section_data *esdo = elf_section_data (o);
2233 Elf_Internal_Rela *internal_rela_relocs;
2234
2235 if (esdo->relocs != NULL)
2236 return esdo->relocs;
2237
2238 if (o->reloc_count == 0)
2239 return NULL;
2240
2241 if (internal_relocs == NULL)
2242 {
2243 bfd_size_type size;
2244
2245 size = o->reloc_count;
2246 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2247 if (keep_memory)
2248 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2249 else
2250 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2251 if (internal_relocs == NULL)
2252 goto error_return;
2253 }
2254
2255 if (external_relocs == NULL)
2256 {
2257 bfd_size_type size = 0;
2258
2259 if (esdo->rel.hdr)
2260 size += esdo->rel.hdr->sh_size;
2261 if (esdo->rela.hdr)
2262 size += esdo->rela.hdr->sh_size;
2263
2264 alloc1 = bfd_malloc (size);
2265 if (alloc1 == NULL)
2266 goto error_return;
2267 external_relocs = alloc1;
2268 }
2269
2270 internal_rela_relocs = internal_relocs;
2271 if (esdo->rel.hdr)
2272 {
2273 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2274 external_relocs,
2275 internal_relocs))
2276 goto error_return;
2277 external_relocs = (((bfd_byte *) external_relocs)
2278 + esdo->rel.hdr->sh_size);
2279 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2280 * bed->s->int_rels_per_ext_rel);
2281 }
2282
2283 if (esdo->rela.hdr
2284 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2285 external_relocs,
2286 internal_rela_relocs)))
2287 goto error_return;
2288
2289 /* Cache the results for next time, if we can. */
2290 if (keep_memory)
2291 esdo->relocs = internal_relocs;
2292
2293 if (alloc1 != NULL)
2294 free (alloc1);
2295
2296 /* Don't free alloc2, since if it was allocated we are passing it
2297 back (under the name of internal_relocs). */
2298
2299 return internal_relocs;
2300
2301 error_return:
2302 if (alloc1 != NULL)
2303 free (alloc1);
2304 if (alloc2 != NULL)
2305 {
2306 if (keep_memory)
2307 bfd_release (abfd, alloc2);
2308 else
2309 free (alloc2);
2310 }
2311 return NULL;
2312 }
2313
2314 /* Compute the size of, and allocate space for, REL_HDR which is the
2315 section header for a section containing relocations for O. */
2316
2317 static bfd_boolean
2318 _bfd_elf_link_size_reloc_section (bfd *abfd,
2319 struct bfd_elf_section_reloc_data *reldata)
2320 {
2321 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2322
2323 /* That allows us to calculate the size of the section. */
2324 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2325
2326 /* The contents field must last into write_object_contents, so we
2327 allocate it with bfd_alloc rather than malloc. Also since we
2328 cannot be sure that the contents will actually be filled in,
2329 we zero the allocated space. */
2330 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2331 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2332 return FALSE;
2333
2334 if (reldata->hashes == NULL && reldata->count)
2335 {
2336 struct elf_link_hash_entry **p;
2337
2338 p = (struct elf_link_hash_entry **)
2339 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2340 if (p == NULL)
2341 return FALSE;
2342
2343 reldata->hashes = p;
2344 }
2345
2346 return TRUE;
2347 }
2348
2349 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2350 originated from the section given by INPUT_REL_HDR) to the
2351 OUTPUT_BFD. */
2352
2353 bfd_boolean
2354 _bfd_elf_link_output_relocs (bfd *output_bfd,
2355 asection *input_section,
2356 Elf_Internal_Shdr *input_rel_hdr,
2357 Elf_Internal_Rela *internal_relocs,
2358 struct elf_link_hash_entry **rel_hash
2359 ATTRIBUTE_UNUSED)
2360 {
2361 Elf_Internal_Rela *irela;
2362 Elf_Internal_Rela *irelaend;
2363 bfd_byte *erel;
2364 struct bfd_elf_section_reloc_data *output_reldata;
2365 asection *output_section;
2366 const struct elf_backend_data *bed;
2367 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2368 struct bfd_elf_section_data *esdo;
2369
2370 output_section = input_section->output_section;
2371
2372 bed = get_elf_backend_data (output_bfd);
2373 esdo = elf_section_data (output_section);
2374 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2375 {
2376 output_reldata = &esdo->rel;
2377 swap_out = bed->s->swap_reloc_out;
2378 }
2379 else if (esdo->rela.hdr
2380 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2381 {
2382 output_reldata = &esdo->rela;
2383 swap_out = bed->s->swap_reloca_out;
2384 }
2385 else
2386 {
2387 (*_bfd_error_handler)
2388 (_("%B: relocation size mismatch in %B section %A"),
2389 output_bfd, input_section->owner, input_section);
2390 bfd_set_error (bfd_error_wrong_format);
2391 return FALSE;
2392 }
2393
2394 erel = output_reldata->hdr->contents;
2395 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2396 irela = internal_relocs;
2397 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2398 * bed->s->int_rels_per_ext_rel);
2399 while (irela < irelaend)
2400 {
2401 (*swap_out) (output_bfd, irela, erel);
2402 irela += bed->s->int_rels_per_ext_rel;
2403 erel += input_rel_hdr->sh_entsize;
2404 }
2405
2406 /* Bump the counter, so that we know where to add the next set of
2407 relocations. */
2408 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2409
2410 return TRUE;
2411 }
2412 \f
2413 /* Make weak undefined symbols in PIE dynamic. */
2414
2415 bfd_boolean
2416 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2417 struct elf_link_hash_entry *h)
2418 {
2419 if (info->pie
2420 && h->dynindx == -1
2421 && h->root.type == bfd_link_hash_undefweak)
2422 return bfd_elf_link_record_dynamic_symbol (info, h);
2423
2424 return TRUE;
2425 }
2426
2427 /* Fix up the flags for a symbol. This handles various cases which
2428 can only be fixed after all the input files are seen. This is
2429 currently called by both adjust_dynamic_symbol and
2430 assign_sym_version, which is unnecessary but perhaps more robust in
2431 the face of future changes. */
2432
2433 static bfd_boolean
2434 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2435 struct elf_info_failed *eif)
2436 {
2437 const struct elf_backend_data *bed;
2438
2439 /* If this symbol was mentioned in a non-ELF file, try to set
2440 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2441 permit a non-ELF file to correctly refer to a symbol defined in
2442 an ELF dynamic object. */
2443 if (h->non_elf)
2444 {
2445 while (h->root.type == bfd_link_hash_indirect)
2446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2447
2448 if (h->root.type != bfd_link_hash_defined
2449 && h->root.type != bfd_link_hash_defweak)
2450 {
2451 h->ref_regular = 1;
2452 h->ref_regular_nonweak = 1;
2453 }
2454 else
2455 {
2456 if (h->root.u.def.section->owner != NULL
2457 && (bfd_get_flavour (h->root.u.def.section->owner)
2458 == bfd_target_elf_flavour))
2459 {
2460 h->ref_regular = 1;
2461 h->ref_regular_nonweak = 1;
2462 }
2463 else
2464 h->def_regular = 1;
2465 }
2466
2467 if (h->dynindx == -1
2468 && (h->def_dynamic
2469 || h->ref_dynamic))
2470 {
2471 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2472 {
2473 eif->failed = TRUE;
2474 return FALSE;
2475 }
2476 }
2477 }
2478 else
2479 {
2480 /* Unfortunately, NON_ELF is only correct if the symbol
2481 was first seen in a non-ELF file. Fortunately, if the symbol
2482 was first seen in an ELF file, we're probably OK unless the
2483 symbol was defined in a non-ELF file. Catch that case here.
2484 FIXME: We're still in trouble if the symbol was first seen in
2485 a dynamic object, and then later in a non-ELF regular object. */
2486 if ((h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak)
2488 && !h->def_regular
2489 && (h->root.u.def.section->owner != NULL
2490 ? (bfd_get_flavour (h->root.u.def.section->owner)
2491 != bfd_target_elf_flavour)
2492 : (bfd_is_abs_section (h->root.u.def.section)
2493 && !h->def_dynamic)))
2494 h->def_regular = 1;
2495 }
2496
2497 /* Backend specific symbol fixup. */
2498 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2499 if (bed->elf_backend_fixup_symbol
2500 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2501 return FALSE;
2502
2503 /* If this is a final link, and the symbol was defined as a common
2504 symbol in a regular object file, and there was no definition in
2505 any dynamic object, then the linker will have allocated space for
2506 the symbol in a common section but the DEF_REGULAR
2507 flag will not have been set. */
2508 if (h->root.type == bfd_link_hash_defined
2509 && !h->def_regular
2510 && h->ref_regular
2511 && !h->def_dynamic
2512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2513 h->def_regular = 1;
2514
2515 /* If -Bsymbolic was used (which means to bind references to global
2516 symbols to the definition within the shared object), and this
2517 symbol was defined in a regular object, then it actually doesn't
2518 need a PLT entry. Likewise, if the symbol has non-default
2519 visibility. If the symbol has hidden or internal visibility, we
2520 will force it local. */
2521 if (h->needs_plt
2522 && eif->info->shared
2523 && is_elf_hash_table (eif->info->hash)
2524 && (SYMBOLIC_BIND (eif->info, h)
2525 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2526 && h->def_regular)
2527 {
2528 bfd_boolean force_local;
2529
2530 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2531 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2533 }
2534
2535 /* If a weak undefined symbol has non-default visibility, we also
2536 hide it from the dynamic linker. */
2537 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2538 && h->root.type == bfd_link_hash_undefweak)
2539 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2540
2541 /* If this is a weak defined symbol in a dynamic object, and we know
2542 the real definition in the dynamic object, copy interesting flags
2543 over to the real definition. */
2544 if (h->u.weakdef != NULL)
2545 {
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (h->u.weakdef->def_regular)
2550 h->u.weakdef = NULL;
2551 else
2552 {
2553 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2554
2555 while (h->root.type == bfd_link_hash_indirect)
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2557
2558 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2559 || h->root.type == bfd_link_hash_defweak);
2560 BFD_ASSERT (weakdef->def_dynamic);
2561 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2562 || weakdef->root.type == bfd_link_hash_defweak);
2563 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2564 }
2565 }
2566
2567 return TRUE;
2568 }
2569
2570 /* Make the backend pick a good value for a dynamic symbol. This is
2571 called via elf_link_hash_traverse, and also calls itself
2572 recursively. */
2573
2574 static bfd_boolean
2575 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2576 {
2577 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2578 bfd *dynobj;
2579 const struct elf_backend_data *bed;
2580
2581 if (! is_elf_hash_table (eif->info->hash))
2582 return FALSE;
2583
2584 /* Ignore indirect symbols. These are added by the versioning code. */
2585 if (h->root.type == bfd_link_hash_indirect)
2586 return TRUE;
2587
2588 /* Fix the symbol flags. */
2589 if (! _bfd_elf_fix_symbol_flags (h, eif))
2590 return FALSE;
2591
2592 /* If this symbol does not require a PLT entry, and it is not
2593 defined by a dynamic object, or is not referenced by a regular
2594 object, ignore it. We do have to handle a weak defined symbol,
2595 even if no regular object refers to it, if we decided to add it
2596 to the dynamic symbol table. FIXME: Do we normally need to worry
2597 about symbols which are defined by one dynamic object and
2598 referenced by another one? */
2599 if (!h->needs_plt
2600 && h->type != STT_GNU_IFUNC
2601 && (h->def_regular
2602 || !h->def_dynamic
2603 || (!h->ref_regular
2604 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2605 {
2606 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2607 return TRUE;
2608 }
2609
2610 /* If we've already adjusted this symbol, don't do it again. This
2611 can happen via a recursive call. */
2612 if (h->dynamic_adjusted)
2613 return TRUE;
2614
2615 /* Don't look at this symbol again. Note that we must set this
2616 after checking the above conditions, because we may look at a
2617 symbol once, decide not to do anything, and then get called
2618 recursively later after REF_REGULAR is set below. */
2619 h->dynamic_adjusted = 1;
2620
2621 /* If this is a weak definition, and we know a real definition, and
2622 the real symbol is not itself defined by a regular object file,
2623 then get a good value for the real definition. We handle the
2624 real symbol first, for the convenience of the backend routine.
2625
2626 Note that there is a confusing case here. If the real definition
2627 is defined by a regular object file, we don't get the real symbol
2628 from the dynamic object, but we do get the weak symbol. If the
2629 processor backend uses a COPY reloc, then if some routine in the
2630 dynamic object changes the real symbol, we will not see that
2631 change in the corresponding weak symbol. This is the way other
2632 ELF linkers work as well, and seems to be a result of the shared
2633 library model.
2634
2635 I will clarify this issue. Most SVR4 shared libraries define the
2636 variable _timezone and define timezone as a weak synonym. The
2637 tzset call changes _timezone. If you write
2638 extern int timezone;
2639 int _timezone = 5;
2640 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2641 you might expect that, since timezone is a synonym for _timezone,
2642 the same number will print both times. However, if the processor
2643 backend uses a COPY reloc, then actually timezone will be copied
2644 into your process image, and, since you define _timezone
2645 yourself, _timezone will not. Thus timezone and _timezone will
2646 wind up at different memory locations. The tzset call will set
2647 _timezone, leaving timezone unchanged. */
2648
2649 if (h->u.weakdef != NULL)
2650 {
2651 /* If we get to this point, there is an implicit reference to
2652 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2653 h->u.weakdef->ref_regular = 1;
2654
2655 /* Ensure that the backend adjust_dynamic_symbol function sees
2656 H->U.WEAKDEF before H by recursively calling ourselves. */
2657 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2658 return FALSE;
2659 }
2660
2661 /* If a symbol has no type and no size and does not require a PLT
2662 entry, then we are probably about to do the wrong thing here: we
2663 are probably going to create a COPY reloc for an empty object.
2664 This case can arise when a shared object is built with assembly
2665 code, and the assembly code fails to set the symbol type. */
2666 if (h->size == 0
2667 && h->type == STT_NOTYPE
2668 && !h->needs_plt)
2669 (*_bfd_error_handler)
2670 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2671 h->root.root.string);
2672
2673 dynobj = elf_hash_table (eif->info)->dynobj;
2674 bed = get_elf_backend_data (dynobj);
2675
2676 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2677 {
2678 eif->failed = TRUE;
2679 return FALSE;
2680 }
2681
2682 return TRUE;
2683 }
2684
2685 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2686 DYNBSS. */
2687
2688 bfd_boolean
2689 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2690 asection *dynbss)
2691 {
2692 unsigned int power_of_two;
2693 bfd_vma mask;
2694 asection *sec = h->root.u.def.section;
2695
2696 /* The section aligment of definition is the maximum alignment
2697 requirement of symbols defined in the section. Since we don't
2698 know the symbol alignment requirement, we start with the
2699 maximum alignment and check low bits of the symbol address
2700 for the minimum alignment. */
2701 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2702 mask = ((bfd_vma) 1 << power_of_two) - 1;
2703 while ((h->root.u.def.value & mask) != 0)
2704 {
2705 mask >>= 1;
2706 --power_of_two;
2707 }
2708
2709 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2710 dynbss))
2711 {
2712 /* Adjust the section alignment if needed. */
2713 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2714 power_of_two))
2715 return FALSE;
2716 }
2717
2718 /* We make sure that the symbol will be aligned properly. */
2719 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2720
2721 /* Define the symbol as being at this point in DYNBSS. */
2722 h->root.u.def.section = dynbss;
2723 h->root.u.def.value = dynbss->size;
2724
2725 /* Increment the size of DYNBSS to make room for the symbol. */
2726 dynbss->size += h->size;
2727
2728 return TRUE;
2729 }
2730
2731 /* Adjust all external symbols pointing into SEC_MERGE sections
2732 to reflect the object merging within the sections. */
2733
2734 static bfd_boolean
2735 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2736 {
2737 asection *sec;
2738
2739 if ((h->root.type == bfd_link_hash_defined
2740 || h->root.type == bfd_link_hash_defweak)
2741 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2742 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2743 {
2744 bfd *output_bfd = (bfd *) data;
2745
2746 h->root.u.def.value =
2747 _bfd_merged_section_offset (output_bfd,
2748 &h->root.u.def.section,
2749 elf_section_data (sec)->sec_info,
2750 h->root.u.def.value);
2751 }
2752
2753 return TRUE;
2754 }
2755
2756 /* Returns false if the symbol referred to by H should be considered
2757 to resolve local to the current module, and true if it should be
2758 considered to bind dynamically. */
2759
2760 bfd_boolean
2761 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2762 struct bfd_link_info *info,
2763 bfd_boolean not_local_protected)
2764 {
2765 bfd_boolean binding_stays_local_p;
2766 const struct elf_backend_data *bed;
2767 struct elf_link_hash_table *hash_table;
2768
2769 if (h == NULL)
2770 return FALSE;
2771
2772 while (h->root.type == bfd_link_hash_indirect
2773 || h->root.type == bfd_link_hash_warning)
2774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2775
2776 /* If it was forced local, then clearly it's not dynamic. */
2777 if (h->dynindx == -1)
2778 return FALSE;
2779 if (h->forced_local)
2780 return FALSE;
2781
2782 /* Identify the cases where name binding rules say that a
2783 visible symbol resolves locally. */
2784 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2785
2786 switch (ELF_ST_VISIBILITY (h->other))
2787 {
2788 case STV_INTERNAL:
2789 case STV_HIDDEN:
2790 return FALSE;
2791
2792 case STV_PROTECTED:
2793 hash_table = elf_hash_table (info);
2794 if (!is_elf_hash_table (hash_table))
2795 return FALSE;
2796
2797 bed = get_elf_backend_data (hash_table->dynobj);
2798
2799 /* Proper resolution for function pointer equality may require
2800 that these symbols perhaps be resolved dynamically, even though
2801 we should be resolving them to the current module. */
2802 if (!not_local_protected || !bed->is_function_type (h->type))
2803 binding_stays_local_p = TRUE;
2804 break;
2805
2806 default:
2807 break;
2808 }
2809
2810 /* If it isn't defined locally, then clearly it's dynamic. */
2811 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2812 return TRUE;
2813
2814 /* Otherwise, the symbol is dynamic if binding rules don't tell
2815 us that it remains local. */
2816 return !binding_stays_local_p;
2817 }
2818
2819 /* Return true if the symbol referred to by H should be considered
2820 to resolve local to the current module, and false otherwise. Differs
2821 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2822 undefined symbols. The two functions are virtually identical except
2823 for the place where forced_local and dynindx == -1 are tested. If
2824 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2825 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2826 the symbol is local only for defined symbols.
2827 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2828 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2829 treatment of undefined weak symbols. For those that do not make
2830 undefined weak symbols dynamic, both functions may return false. */
2831
2832 bfd_boolean
2833 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2834 struct bfd_link_info *info,
2835 bfd_boolean local_protected)
2836 {
2837 const struct elf_backend_data *bed;
2838 struct elf_link_hash_table *hash_table;
2839
2840 /* If it's a local sym, of course we resolve locally. */
2841 if (h == NULL)
2842 return TRUE;
2843
2844 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2845 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2846 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2847 return TRUE;
2848
2849 /* Common symbols that become definitions don't get the DEF_REGULAR
2850 flag set, so test it first, and don't bail out. */
2851 if (ELF_COMMON_DEF_P (h))
2852 /* Do nothing. */;
2853 /* If we don't have a definition in a regular file, then we can't
2854 resolve locally. The sym is either undefined or dynamic. */
2855 else if (!h->def_regular)
2856 return FALSE;
2857
2858 /* Forced local symbols resolve locally. */
2859 if (h->forced_local)
2860 return TRUE;
2861
2862 /* As do non-dynamic symbols. */
2863 if (h->dynindx == -1)
2864 return TRUE;
2865
2866 /* At this point, we know the symbol is defined and dynamic. In an
2867 executable it must resolve locally, likewise when building symbolic
2868 shared libraries. */
2869 if (info->executable || SYMBOLIC_BIND (info, h))
2870 return TRUE;
2871
2872 /* Now deal with defined dynamic symbols in shared libraries. Ones
2873 with default visibility might not resolve locally. */
2874 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2875 return FALSE;
2876
2877 hash_table = elf_hash_table (info);
2878 if (!is_elf_hash_table (hash_table))
2879 return TRUE;
2880
2881 bed = get_elf_backend_data (hash_table->dynobj);
2882
2883 /* STV_PROTECTED non-function symbols are local. */
2884 if (!bed->is_function_type (h->type))
2885 return TRUE;
2886
2887 /* Function pointer equality tests may require that STV_PROTECTED
2888 symbols be treated as dynamic symbols. If the address of a
2889 function not defined in an executable is set to that function's
2890 plt entry in the executable, then the address of the function in
2891 a shared library must also be the plt entry in the executable. */
2892 return local_protected;
2893 }
2894
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900 {
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921 }
2922
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927 {
2928 const struct elf_backend_data *bed;
2929
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962 }
2963
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969 {
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044 }
3045 \f
3046 /* Add an entry to the .dynamic table. */
3047
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3076
3077 s->size = newsize;
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081 }
3082
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3092 {
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
3120
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
3129 }
3130
3131 if (do_it)
3132 {
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144 }
3145
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148 {
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154 }
3155
3156 /* Sort symbol by value, section, and size. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3159 {
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
3175 vdiff = h1->size - h2->size;
3176 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3177 }
3178
3179 /* This function is used to adjust offsets into .dynstr for
3180 dynamic symbols. This is called via elf_link_hash_traverse. */
3181
3182 static bfd_boolean
3183 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3184 {
3185 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3186
3187 if (h->dynindx != -1)
3188 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3189 return TRUE;
3190 }
3191
3192 /* Assign string offsets in .dynstr, update all structures referencing
3193 them. */
3194
3195 static bfd_boolean
3196 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3197 {
3198 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3199 struct elf_link_local_dynamic_entry *entry;
3200 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3201 bfd *dynobj = hash_table->dynobj;
3202 asection *sdyn;
3203 bfd_size_type size;
3204 const struct elf_backend_data *bed;
3205 bfd_byte *extdyn;
3206
3207 _bfd_elf_strtab_finalize (dynstr);
3208 size = _bfd_elf_strtab_size (dynstr);
3209
3210 bed = get_elf_backend_data (dynobj);
3211 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3212 BFD_ASSERT (sdyn != NULL);
3213
3214 /* Update all .dynamic entries referencing .dynstr strings. */
3215 for (extdyn = sdyn->contents;
3216 extdyn < sdyn->contents + sdyn->size;
3217 extdyn += bed->s->sizeof_dyn)
3218 {
3219 Elf_Internal_Dyn dyn;
3220
3221 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3222 switch (dyn.d_tag)
3223 {
3224 case DT_STRSZ:
3225 dyn.d_un.d_val = size;
3226 break;
3227 case DT_NEEDED:
3228 case DT_SONAME:
3229 case DT_RPATH:
3230 case DT_RUNPATH:
3231 case DT_FILTER:
3232 case DT_AUXILIARY:
3233 case DT_AUDIT:
3234 case DT_DEPAUDIT:
3235 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3236 break;
3237 default:
3238 continue;
3239 }
3240 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3241 }
3242
3243 /* Now update local dynamic symbols. */
3244 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3245 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3246 entry->isym.st_name);
3247
3248 /* And the rest of dynamic symbols. */
3249 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3250
3251 /* Adjust version definitions. */
3252 if (elf_tdata (output_bfd)->cverdefs)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verdef def;
3258 Elf_Internal_Verdaux defaux;
3259
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3265 &def);
3266 p += sizeof (Elf_External_Verdef);
3267 if (def.vd_aux != sizeof (Elf_External_Verdef))
3268 continue;
3269 for (i = 0; i < def.vd_cnt; ++i)
3270 {
3271 _bfd_elf_swap_verdaux_in (output_bfd,
3272 (Elf_External_Verdaux *) p, &defaux);
3273 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3274 defaux.vda_name);
3275 _bfd_elf_swap_verdaux_out (output_bfd,
3276 &defaux, (Elf_External_Verdaux *) p);
3277 p += sizeof (Elf_External_Verdaux);
3278 }
3279 }
3280 while (def.vd_next);
3281 }
3282
3283 /* Adjust version references. */
3284 if (elf_tdata (output_bfd)->verref)
3285 {
3286 asection *s;
3287 bfd_byte *p;
3288 bfd_size_type i;
3289 Elf_Internal_Verneed need;
3290 Elf_Internal_Vernaux needaux;
3291
3292 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3293 p = s->contents;
3294 do
3295 {
3296 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3297 &need);
3298 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3299 _bfd_elf_swap_verneed_out (output_bfd, &need,
3300 (Elf_External_Verneed *) p);
3301 p += sizeof (Elf_External_Verneed);
3302 for (i = 0; i < need.vn_cnt; ++i)
3303 {
3304 _bfd_elf_swap_vernaux_in (output_bfd,
3305 (Elf_External_Vernaux *) p, &needaux);
3306 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3307 needaux.vna_name);
3308 _bfd_elf_swap_vernaux_out (output_bfd,
3309 &needaux,
3310 (Elf_External_Vernaux *) p);
3311 p += sizeof (Elf_External_Vernaux);
3312 }
3313 }
3314 while (need.vn_next);
3315 }
3316
3317 return TRUE;
3318 }
3319 \f
3320 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3321 The default is to only match when the INPUT and OUTPUT are exactly
3322 the same target. */
3323
3324 bfd_boolean
3325 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3326 const bfd_target *output)
3327 {
3328 return input == output;
3329 }
3330
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 This version is used when different targets for the same architecture
3333 are virtually identical. */
3334
3335 bfd_boolean
3336 _bfd_elf_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3338 {
3339 const struct elf_backend_data *obed, *ibed;
3340
3341 if (input == output)
3342 return TRUE;
3343
3344 ibed = xvec_get_elf_backend_data (input);
3345 obed = xvec_get_elf_backend_data (output);
3346
3347 if (ibed->arch != obed->arch)
3348 return FALSE;
3349
3350 /* If both backends are using this function, deem them compatible. */
3351 return ibed->relocs_compatible == obed->relocs_compatible;
3352 }
3353
3354 /* Add symbols from an ELF object file to the linker hash table. */
3355
3356 static bfd_boolean
3357 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3358 {
3359 Elf_Internal_Ehdr *ehdr;
3360 Elf_Internal_Shdr *hdr;
3361 bfd_size_type symcount;
3362 bfd_size_type extsymcount;
3363 bfd_size_type extsymoff;
3364 struct elf_link_hash_entry **sym_hash;
3365 bfd_boolean dynamic;
3366 Elf_External_Versym *extversym = NULL;
3367 Elf_External_Versym *ever;
3368 struct elf_link_hash_entry *weaks;
3369 struct elf_link_hash_entry **nondeflt_vers = NULL;
3370 bfd_size_type nondeflt_vers_cnt = 0;
3371 Elf_Internal_Sym *isymbuf = NULL;
3372 Elf_Internal_Sym *isym;
3373 Elf_Internal_Sym *isymend;
3374 const struct elf_backend_data *bed;
3375 bfd_boolean add_needed;
3376 struct elf_link_hash_table *htab;
3377 bfd_size_type amt;
3378 void *alloc_mark = NULL;
3379 struct bfd_hash_entry **old_table = NULL;
3380 unsigned int old_size = 0;
3381 unsigned int old_count = 0;
3382 void *old_tab = NULL;
3383 void *old_hash;
3384 void *old_ent;
3385 struct bfd_link_hash_entry *old_undefs = NULL;
3386 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3387 long old_dynsymcount = 0;
3388 size_t tabsize = 0;
3389 size_t hashsize = 0;
3390
3391 htab = elf_hash_table (info);
3392 bed = get_elf_backend_data (abfd);
3393
3394 if ((abfd->flags & DYNAMIC) == 0)
3395 dynamic = FALSE;
3396 else
3397 {
3398 dynamic = TRUE;
3399
3400 /* You can't use -r against a dynamic object. Also, there's no
3401 hope of using a dynamic object which does not exactly match
3402 the format of the output file. */
3403 if (info->relocatable
3404 || !is_elf_hash_table (htab)
3405 || info->output_bfd->xvec != abfd->xvec)
3406 {
3407 if (info->relocatable)
3408 bfd_set_error (bfd_error_invalid_operation);
3409 else
3410 bfd_set_error (bfd_error_wrong_format);
3411 goto error_return;
3412 }
3413 }
3414
3415 ehdr = elf_elfheader (abfd);
3416 if (info->warn_alternate_em
3417 && bed->elf_machine_code != ehdr->e_machine
3418 && ((bed->elf_machine_alt1 != 0
3419 && ehdr->e_machine == bed->elf_machine_alt1)
3420 || (bed->elf_machine_alt2 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt2)))
3422 info->callbacks->einfo
3423 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3424 ehdr->e_machine, abfd, bed->elf_machine_code);
3425
3426 /* As a GNU extension, any input sections which are named
3427 .gnu.warning.SYMBOL are treated as warning symbols for the given
3428 symbol. This differs from .gnu.warning sections, which generate
3429 warnings when they are included in an output file. */
3430 /* PR 12761: Also generate this warning when building shared libraries. */
3431 if (info->executable || info->shared)
3432 {
3433 asection *s;
3434
3435 for (s = abfd->sections; s != NULL; s = s->next)
3436 {
3437 const char *name;
3438
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 {
3442 char *msg;
3443 bfd_size_type sz;
3444
3445 name += sizeof ".gnu.warning." - 1;
3446
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3455 link. */
3456 if (dynamic)
3457 {
3458 struct elf_link_hash_entry *h;
3459
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3461
3462 /* FIXME: What about bfd_link_hash_common? */
3463 if (h != NULL
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3466 {
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3470 s->size = 0;
3471 continue;
3472 }
3473 }
3474
3475 sz = s->size;
3476 msg = (char *) bfd_alloc (abfd, sz + 1);
3477 if (msg == NULL)
3478 goto error_return;
3479
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 goto error_return;
3482
3483 msg[sz] = '\0';
3484
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3488 goto error_return;
3489
3490 if (! info->relocatable)
3491 {
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3494 s->size = 0;
3495
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3499 }
3500 }
3501 }
3502 }
3503
3504 add_needed = TRUE;
3505 if (! dynamic)
3506 {
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3512 if (info->shared
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3516 {
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3518 goto error_return;
3519 }
3520 }
3521 else if (!is_elf_hash_table (htab))
3522 goto error_return;
3523 else
3524 {
3525 asection *s;
3526 const char *soname = NULL;
3527 char *audit = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529 int ret;
3530
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3535 abort ();
3536
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 all. */
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3547
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 if (s != NULL)
3550 {
3551 bfd_byte *dynbuf;
3552 bfd_byte *extdyn;
3553 unsigned int elfsec;
3554 unsigned long shlink;
3555
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 {
3558 error_free_dyn:
3559 free (dynbuf);
3560 goto error_return;
3561 }
3562
3563 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 if (elfsec == SHN_BAD)
3565 goto error_free_dyn;
3566 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3567
3568 for (extdyn = dynbuf;
3569 extdyn < dynbuf + s->size;
3570 extdyn += bed->s->sizeof_dyn)
3571 {
3572 Elf_Internal_Dyn dyn;
3573
3574 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 if (dyn.d_tag == DT_SONAME)
3576 {
3577 unsigned int tagv = dyn.d_un.d_val;
3578 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (soname == NULL)
3580 goto error_free_dyn;
3581 }
3582 if (dyn.d_tag == DT_NEEDED)
3583 {
3584 struct bfd_link_needed_list *n, **pn;
3585 char *fnm, *anm;
3586 unsigned int tagv = dyn.d_un.d_val;
3587
3588 amt = sizeof (struct bfd_link_needed_list);
3589 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 if (n == NULL || fnm == NULL)
3592 goto error_free_dyn;
3593 amt = strlen (fnm) + 1;
3594 anm = (char *) bfd_alloc (abfd, amt);
3595 if (anm == NULL)
3596 goto error_free_dyn;
3597 memcpy (anm, fnm, amt);
3598 n->name = anm;
3599 n->by = abfd;
3600 n->next = NULL;
3601 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3602 ;
3603 *pn = n;
3604 }
3605 if (dyn.d_tag == DT_RUNPATH)
3606 {
3607 struct bfd_link_needed_list *n, **pn;
3608 char *fnm, *anm;
3609 unsigned int tagv = dyn.d_un.d_val;
3610
3611 amt = sizeof (struct bfd_link_needed_list);
3612 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 if (n == NULL || fnm == NULL)
3615 goto error_free_dyn;
3616 amt = strlen (fnm) + 1;
3617 anm = (char *) bfd_alloc (abfd, amt);
3618 if (anm == NULL)
3619 goto error_free_dyn;
3620 memcpy (anm, fnm, amt);
3621 n->name = anm;
3622 n->by = abfd;
3623 n->next = NULL;
3624 for (pn = & runpath;
3625 *pn != NULL;
3626 pn = &(*pn)->next)
3627 ;
3628 *pn = n;
3629 }
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath && dyn.d_tag == DT_RPATH)
3632 {
3633 struct bfd_link_needed_list *n, **pn;
3634 char *fnm, *anm;
3635 unsigned int tagv = dyn.d_un.d_val;
3636
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3644 if (anm == NULL)
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = & rpath;
3651 *pn != NULL;
3652 pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 if (dyn.d_tag == DT_AUDIT)
3657 {
3658 unsigned int tagv = dyn.d_un.d_val;
3659 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3660 }
3661 }
3662
3663 free (dynbuf);
3664 }
3665
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3668 if (runpath)
3669 rpath = runpath;
3670
3671 if (rpath)
3672 {
3673 struct bfd_link_needed_list **pn;
3674 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3675 ;
3676 *pn = rpath;
3677 }
3678
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3685 file. */
3686 bfd_section_list_clear (abfd);
3687
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3692 name. */
3693 if (soname == NULL || *soname == '\0')
3694 {
3695 soname = elf_dt_name (abfd);
3696 if (soname == NULL || *soname == '\0')
3697 soname = bfd_get_filename (abfd);
3698 }
3699
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd) = soname;
3703
3704 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3705 if (ret < 0)
3706 goto error_return;
3707
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3711 if (ret > 0)
3712 return TRUE;
3713
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd) = audit;
3716 }
3717
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3722
3723 if (! dynamic || elf_dynsymtab (abfd) == 0)
3724 hdr = &elf_tdata (abfd)->symtab_hdr;
3725 else
3726 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3727
3728 symcount = hdr->sh_size / bed->s->sizeof_sym;
3729
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3732 this point. */
3733 if (elf_bad_symtab (abfd))
3734 {
3735 extsymcount = symcount;
3736 extsymoff = 0;
3737 }
3738 else
3739 {
3740 extsymcount = symcount - hdr->sh_info;
3741 extsymoff = hdr->sh_info;
3742 }
3743
3744 sym_hash = NULL;
3745 if (extsymcount != 0)
3746 {
3747 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3748 NULL, NULL, NULL);
3749 if (isymbuf == NULL)
3750 goto error_return;
3751
3752 /* We store a pointer to the hash table entry for each external
3753 symbol. */
3754 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3755 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3756 if (sym_hash == NULL)
3757 goto error_free_sym;
3758 elf_sym_hashes (abfd) = sym_hash;
3759 }
3760
3761 if (dynamic)
3762 {
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd,
3765 info->default_imported_symver))
3766 goto error_free_sym;
3767
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd) != 0)
3771 {
3772 Elf_Internal_Shdr *versymhdr;
3773
3774 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3775 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3776 if (extversym == NULL)
3777 goto error_free_sym;
3778 amt = versymhdr->sh_size;
3779 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3780 || bfd_bread (extversym, amt, abfd) != amt)
3781 goto error_free_vers;
3782 }
3783 }
3784
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3789 {
3790 unsigned int i;
3791 size_t entsize;
3792
3793 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 h = (struct elf_link_hash_entry *) p;
3801 entsize += htab->root.table.entsize;
3802 if (h->root.type == bfd_link_hash_warning)
3803 entsize += htab->root.table.entsize;
3804 }
3805 }
3806
3807 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3808 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3809 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3810 if (old_tab == NULL)
3811 goto error_free_vers;
3812
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3816 if (alloc_mark == NULL)
3817 goto error_free_vers;
3818
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3822 notice_as_needed, 0, NULL))
3823 goto error_free_vers;
3824
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash = (char *) old_tab + tabsize;
3828 old_ent = (char *) old_hash + hashsize;
3829 memcpy (old_tab, htab->root.table.table, tabsize);
3830 memcpy (old_hash, sym_hash, hashsize);
3831 old_undefs = htab->root.undefs;
3832 old_undefs_tail = htab->root.undefs_tail;
3833 old_table = htab->root.table.table;
3834 old_size = htab->root.table.size;
3835 old_count = htab->root.table.count;
3836 old_dynsymcount = htab->dynsymcount;
3837
3838 for (i = 0; i < htab->root.table.size; i++)
3839 {
3840 struct bfd_hash_entry *p;
3841 struct elf_link_hash_entry *h;
3842
3843 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3844 {
3845 memcpy (old_ent, p, htab->root.table.entsize);
3846 old_ent = (char *) old_ent + htab->root.table.entsize;
3847 h = (struct elf_link_hash_entry *) p;
3848 if (h->root.type == bfd_link_hash_warning)
3849 {
3850 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
3852 }
3853 }
3854 }
3855 }
3856
3857 weaks = NULL;
3858 ever = extversym != NULL ? extversym + extsymoff : NULL;
3859 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3860 isym < isymend;
3861 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3862 {
3863 int bind;
3864 bfd_vma value;
3865 asection *sec, *new_sec;
3866 flagword flags;
3867 const char *name;
3868 struct elf_link_hash_entry *h;
3869 struct elf_link_hash_entry *hi;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean new_weak;
3875 bfd_boolean old_weak;
3876 bfd_boolean override;
3877 bfd_boolean common;
3878 unsigned int old_alignment;
3879 bfd *old_bfd;
3880 bfd * undef_bfd = NULL;
3881
3882 override = FALSE;
3883
3884 flags = BSF_NO_FLAGS;
3885 sec = NULL;
3886 value = isym->st_value;
3887 *sym_hash = NULL;
3888 common = bed->common_definition (isym);
3889
3890 bind = ELF_ST_BIND (isym->st_info);
3891 switch (bind)
3892 {
3893 case STB_LOCAL:
3894 /* This should be impossible, since ELF requires that all
3895 global symbols follow all local symbols, and that sh_info
3896 point to the first global symbol. Unfortunately, Irix 5
3897 screws this up. */
3898 continue;
3899
3900 case STB_GLOBAL:
3901 if (isym->st_shndx != SHN_UNDEF && !common)
3902 flags = BSF_GLOBAL;
3903 break;
3904
3905 case STB_WEAK:
3906 flags = BSF_WEAK;
3907 break;
3908
3909 case STB_GNU_UNIQUE:
3910 flags = BSF_GNU_UNIQUE;
3911 break;
3912
3913 default:
3914 /* Leave it up to the processor backend. */
3915 break;
3916 }
3917
3918 if (isym->st_shndx == SHN_UNDEF)
3919 sec = bfd_und_section_ptr;
3920 else if (isym->st_shndx == SHN_ABS)
3921 sec = bfd_abs_section_ptr;
3922 else if (isym->st_shndx == SHN_COMMON)
3923 {
3924 sec = bfd_com_section_ptr;
3925 /* What ELF calls the size we call the value. What ELF
3926 calls the value we call the alignment. */
3927 value = isym->st_size;
3928 }
3929 else
3930 {
3931 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3932 if (sec == NULL)
3933 sec = bfd_abs_section_ptr;
3934 else if (discarded_section (sec))
3935 {
3936 /* Symbols from discarded section are undefined. We keep
3937 its visibility. */
3938 sec = bfd_und_section_ptr;
3939 isym->st_shndx = SHN_UNDEF;
3940 }
3941 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3942 value -= sec->vma;
3943 }
3944
3945 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3946 isym->st_name);
3947 if (name == NULL)
3948 goto error_free_vers;
3949
3950 if (isym->st_shndx == SHN_COMMON
3951 && (abfd->flags & BFD_PLUGIN) != 0)
3952 {
3953 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3954
3955 if (xc == NULL)
3956 {
3957 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3958 | SEC_EXCLUDE);
3959 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3960 if (xc == NULL)
3961 goto error_free_vers;
3962 }
3963 sec = xc;
3964 }
3965 else if (isym->st_shndx == SHN_COMMON
3966 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3967 && !info->relocatable)
3968 {
3969 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3970
3971 if (tcomm == NULL)
3972 {
3973 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3974 | SEC_LINKER_CREATED);
3975 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3976 if (tcomm == NULL)
3977 goto error_free_vers;
3978 }
3979 sec = tcomm;
3980 }
3981 else if (bed->elf_add_symbol_hook)
3982 {
3983 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3984 &sec, &value))
3985 goto error_free_vers;
3986
3987 /* The hook function sets the name to NULL if this symbol
3988 should be skipped for some reason. */
3989 if (name == NULL)
3990 continue;
3991 }
3992
3993 /* Sanity check that all possibilities were handled. */
3994 if (sec == NULL)
3995 {
3996 bfd_set_error (bfd_error_bad_value);
3997 goto error_free_vers;
3998 }
3999
4000 if (bfd_is_und_section (sec)
4001 || bfd_is_com_section (sec))
4002 definition = FALSE;
4003 else
4004 definition = TRUE;
4005
4006 size_change_ok = FALSE;
4007 type_change_ok = bed->type_change_ok;
4008 old_weak = FALSE;
4009 old_alignment = 0;
4010 old_bfd = NULL;
4011 new_sec = sec;
4012
4013 if (is_elf_hash_table (htab))
4014 {
4015 Elf_Internal_Versym iver;
4016 unsigned int vernum = 0;
4017 bfd_boolean skip;
4018
4019 /* If this is a definition of a symbol which was previously
4020 referenced in a non-weak manner then make a note of the bfd
4021 that contained the reference. This is used if we need to
4022 refer to the source of the reference later on. */
4023 if (! bfd_is_und_section (sec))
4024 {
4025 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4026
4027 if (h != NULL
4028 && h->root.type == bfd_link_hash_undefined
4029 && h->root.u.undef.abfd)
4030 undef_bfd = h->root.u.undef.abfd;
4031 }
4032
4033 if (ever == NULL)
4034 {
4035 if (info->default_imported_symver)
4036 /* Use the default symbol version created earlier. */
4037 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4038 else
4039 iver.vs_vers = 0;
4040 }
4041 else
4042 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4043
4044 vernum = iver.vs_vers & VERSYM_VERSION;
4045
4046 /* If this is a hidden symbol, or if it is not version
4047 1, we append the version name to the symbol name.
4048 However, we do not modify a non-hidden absolute symbol
4049 if it is not a function, because it might be the version
4050 symbol itself. FIXME: What if it isn't? */
4051 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4052 || (vernum > 1
4053 && (!bfd_is_abs_section (sec)
4054 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4055 {
4056 const char *verstr;
4057 size_t namelen, verlen, newlen;
4058 char *newname, *p;
4059
4060 if (isym->st_shndx != SHN_UNDEF)
4061 {
4062 if (vernum > elf_tdata (abfd)->cverdefs)
4063 verstr = NULL;
4064 else if (vernum > 1)
4065 verstr =
4066 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4067 else
4068 verstr = "";
4069
4070 if (verstr == NULL)
4071 {
4072 (*_bfd_error_handler)
4073 (_("%B: %s: invalid version %u (max %d)"),
4074 abfd, name, vernum,
4075 elf_tdata (abfd)->cverdefs);
4076 bfd_set_error (bfd_error_bad_value);
4077 goto error_free_vers;
4078 }
4079 }
4080 else
4081 {
4082 /* We cannot simply test for the number of
4083 entries in the VERNEED section since the
4084 numbers for the needed versions do not start
4085 at 0. */
4086 Elf_Internal_Verneed *t;
4087
4088 verstr = NULL;
4089 for (t = elf_tdata (abfd)->verref;
4090 t != NULL;
4091 t = t->vn_nextref)
4092 {
4093 Elf_Internal_Vernaux *a;
4094
4095 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4096 {
4097 if (a->vna_other == vernum)
4098 {
4099 verstr = a->vna_nodename;
4100 break;
4101 }
4102 }
4103 if (a != NULL)
4104 break;
4105 }
4106 if (verstr == NULL)
4107 {
4108 (*_bfd_error_handler)
4109 (_("%B: %s: invalid needed version %d"),
4110 abfd, name, vernum);
4111 bfd_set_error (bfd_error_bad_value);
4112 goto error_free_vers;
4113 }
4114 }
4115
4116 namelen = strlen (name);
4117 verlen = strlen (verstr);
4118 newlen = namelen + verlen + 2;
4119 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4120 && isym->st_shndx != SHN_UNDEF)
4121 ++newlen;
4122
4123 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4124 if (newname == NULL)
4125 goto error_free_vers;
4126 memcpy (newname, name, namelen);
4127 p = newname + namelen;
4128 *p++ = ELF_VER_CHR;
4129 /* If this is a defined non-hidden version symbol,
4130 we add another @ to the name. This indicates the
4131 default version of the symbol. */
4132 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4133 && isym->st_shndx != SHN_UNDEF)
4134 *p++ = ELF_VER_CHR;
4135 memcpy (p, verstr, verlen + 1);
4136
4137 name = newname;
4138 }
4139
4140 /* If necessary, make a second attempt to locate the bfd
4141 containing an unresolved, non-weak reference to the
4142 current symbol. */
4143 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4144 {
4145 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4146
4147 if (h != NULL
4148 && h->root.type == bfd_link_hash_undefined
4149 && h->root.u.undef.abfd)
4150 undef_bfd = h->root.u.undef.abfd;
4151 }
4152
4153 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4154 &value, &old_weak, &old_alignment,
4155 sym_hash, &skip, &override,
4156 &type_change_ok, &size_change_ok))
4157 goto error_free_vers;
4158
4159 if (skip)
4160 continue;
4161
4162 if (override)
4163 definition = FALSE;
4164
4165 h = *sym_hash;
4166 while (h->root.type == bfd_link_hash_indirect
4167 || h->root.type == bfd_link_hash_warning)
4168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4169
4170 /* Remember the old alignment if this is a common symbol, so
4171 that we don't reduce the alignment later on. We can't
4172 check later, because _bfd_generic_link_add_one_symbol
4173 will set a default for the alignment which we want to
4174 override. We also remember the old bfd where the existing
4175 definition comes from. */
4176 switch (h->root.type)
4177 {
4178 default:
4179 break;
4180
4181 case bfd_link_hash_defined:
4182 case bfd_link_hash_defweak:
4183 old_bfd = h->root.u.def.section->owner;
4184 break;
4185
4186 case bfd_link_hash_common:
4187 old_bfd = h->root.u.c.p->section->owner;
4188 old_alignment = h->root.u.c.p->alignment_power;
4189 break;
4190 }
4191
4192 if (elf_tdata (abfd)->verdef != NULL
4193 && ! override
4194 && vernum > 1
4195 && definition)
4196 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4197 }
4198
4199 if (! (_bfd_generic_link_add_one_symbol
4200 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4201 (struct bfd_link_hash_entry **) sym_hash)))
4202 goto error_free_vers;
4203
4204 h = *sym_hash;
4205 /* We need to make sure that indirect symbol dynamic flags are
4206 updated. */
4207 hi = h;
4208 while (h->root.type == bfd_link_hash_indirect
4209 || h->root.type == bfd_link_hash_warning)
4210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4211
4212 *sym_hash = h;
4213 if (is_elf_hash_table (htab))
4214 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4215
4216 new_weak = (flags & BSF_WEAK) != 0;
4217 new_weakdef = FALSE;
4218 if (dynamic
4219 && definition
4220 && new_weak
4221 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4222 && is_elf_hash_table (htab)
4223 && h->u.weakdef == NULL)
4224 {
4225 /* Keep a list of all weak defined non function symbols from
4226 a dynamic object, using the weakdef field. Later in this
4227 function we will set the weakdef field to the correct
4228 value. We only put non-function symbols from dynamic
4229 objects on this list, because that happens to be the only
4230 time we need to know the normal symbol corresponding to a
4231 weak symbol, and the information is time consuming to
4232 figure out. If the weakdef field is not already NULL,
4233 then this symbol was already defined by some previous
4234 dynamic object, and we will be using that previous
4235 definition anyhow. */
4236
4237 h->u.weakdef = weaks;
4238 weaks = h;
4239 new_weakdef = TRUE;
4240 }
4241
4242 /* Set the alignment of a common symbol. */
4243 if ((common || bfd_is_com_section (sec))
4244 && h->root.type == bfd_link_hash_common)
4245 {
4246 unsigned int align;
4247
4248 if (common)
4249 align = bfd_log2 (isym->st_value);
4250 else
4251 {
4252 /* The new symbol is a common symbol in a shared object.
4253 We need to get the alignment from the section. */
4254 align = new_sec->alignment_power;
4255 }
4256 if (align > old_alignment)
4257 h->root.u.c.p->alignment_power = align;
4258 else
4259 h->root.u.c.p->alignment_power = old_alignment;
4260 }
4261
4262 if (is_elf_hash_table (htab))
4263 {
4264 bfd_boolean dynsym;
4265
4266 /* Check the alignment when a common symbol is involved. This
4267 can change when a common symbol is overridden by a normal
4268 definition or a common symbol is ignored due to the old
4269 normal definition. We need to make sure the maximum
4270 alignment is maintained. */
4271 if ((old_alignment || common)
4272 && h->root.type != bfd_link_hash_common)
4273 {
4274 unsigned int common_align;
4275 unsigned int normal_align;
4276 unsigned int symbol_align;
4277 bfd *normal_bfd;
4278 bfd *common_bfd;
4279
4280 symbol_align = ffs (h->root.u.def.value) - 1;
4281 if (h->root.u.def.section->owner != NULL
4282 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4283 {
4284 normal_align = h->root.u.def.section->alignment_power;
4285 if (normal_align > symbol_align)
4286 normal_align = symbol_align;
4287 }
4288 else
4289 normal_align = symbol_align;
4290
4291 if (old_alignment)
4292 {
4293 common_align = old_alignment;
4294 common_bfd = old_bfd;
4295 normal_bfd = abfd;
4296 }
4297 else
4298 {
4299 common_align = bfd_log2 (isym->st_value);
4300 common_bfd = abfd;
4301 normal_bfd = old_bfd;
4302 }
4303
4304 if (normal_align < common_align)
4305 {
4306 /* PR binutils/2735 */
4307 if (normal_bfd == NULL)
4308 (*_bfd_error_handler)
4309 (_("Warning: alignment %u of common symbol `%s' in %B"
4310 " is greater than the alignment (%u) of its section %A"),
4311 common_bfd, h->root.u.def.section,
4312 1 << common_align, name, 1 << normal_align);
4313 else
4314 (*_bfd_error_handler)
4315 (_("Warning: alignment %u of symbol `%s' in %B"
4316 " is smaller than %u in %B"),
4317 normal_bfd, common_bfd,
4318 1 << normal_align, name, 1 << common_align);
4319 }
4320 }
4321
4322 /* Remember the symbol size if it isn't undefined. */
4323 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4324 && (definition || h->size == 0))
4325 {
4326 if (h->size != 0
4327 && h->size != isym->st_size
4328 && ! size_change_ok)
4329 (*_bfd_error_handler)
4330 (_("Warning: size of symbol `%s' changed"
4331 " from %lu in %B to %lu in %B"),
4332 old_bfd, abfd,
4333 name, (unsigned long) h->size,
4334 (unsigned long) isym->st_size);
4335
4336 h->size = isym->st_size;
4337 }
4338
4339 /* If this is a common symbol, then we always want H->SIZE
4340 to be the size of the common symbol. The code just above
4341 won't fix the size if a common symbol becomes larger. We
4342 don't warn about a size change here, because that is
4343 covered by --warn-common. Allow changed between different
4344 function types. */
4345 if (h->root.type == bfd_link_hash_common)
4346 h->size = h->root.u.c.size;
4347
4348 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4349 && ((definition && !new_weak)
4350 || (old_weak && h->root.type == bfd_link_hash_common)
4351 || h->type == STT_NOTYPE))
4352 {
4353 unsigned int type = ELF_ST_TYPE (isym->st_info);
4354
4355 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4356 symbol. */
4357 if (type == STT_GNU_IFUNC
4358 && (abfd->flags & DYNAMIC) != 0)
4359 type = STT_FUNC;
4360
4361 if (h->type != type)
4362 {
4363 if (h->type != STT_NOTYPE && ! type_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: type of symbol `%s' changed"
4366 " from %d to %d in %B"),
4367 abfd, name, h->type, type);
4368
4369 h->type = type;
4370 }
4371 }
4372
4373 /* Merge st_other field. */
4374 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4375
4376 /* Set a flag in the hash table entry indicating the type of
4377 reference or definition we just found. Keep a count of
4378 the number of dynamic symbols we find. A dynamic symbol
4379 is one which is referenced or defined by both a regular
4380 object and a shared object. */
4381 dynsym = FALSE;
4382 if (! dynamic)
4383 {
4384 if (! definition)
4385 {
4386 h->ref_regular = 1;
4387 if (bind != STB_WEAK)
4388 h->ref_regular_nonweak = 1;
4389 }
4390 else
4391 {
4392 h->def_regular = 1;
4393 if (h->def_dynamic)
4394 {
4395 h->def_dynamic = 0;
4396 h->ref_dynamic = 1;
4397 }
4398 }
4399
4400 /* If the indirect symbol has been forced local, don't
4401 make the real symbol dynamic. */
4402 if ((h == hi || !hi->forced_local)
4403 && (! info->executable
4404 || h->def_dynamic
4405 || h->ref_dynamic))
4406 dynsym = TRUE;
4407 }
4408 else
4409 {
4410 if (! definition)
4411 {
4412 h->ref_dynamic = 1;
4413 hi->ref_dynamic = 1;
4414 }
4415 else
4416 {
4417 h->def_dynamic = 1;
4418 h->dynamic_def = 1;
4419 hi->def_dynamic = 1;
4420 hi->dynamic_def = 1;
4421 }
4422
4423 /* If the indirect symbol has been forced local, don't
4424 make the real symbol dynamic. */
4425 if ((h == hi || !hi->forced_local)
4426 && (h->def_regular
4427 || h->ref_regular
4428 || (h->u.weakdef != NULL
4429 && ! new_weakdef
4430 && h->u.weakdef->dynindx != -1)))
4431 dynsym = TRUE;
4432 }
4433
4434 /* We don't want to make debug symbol dynamic. */
4435 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4436 dynsym = FALSE;
4437
4438 /* Nor should we make plugin symbols dynamic. */
4439 if ((abfd->flags & BFD_PLUGIN) != 0)
4440 dynsym = FALSE;
4441
4442 if (definition)
4443 h->target_internal = isym->st_target_internal;
4444
4445 /* Check to see if we need to add an indirect symbol for
4446 the default name. */
4447 if (definition || h->root.type == bfd_link_hash_common)
4448 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4449 &sec, &value, &dynsym,
4450 override))
4451 goto error_free_vers;
4452
4453 if (definition && !dynamic)
4454 {
4455 char *p = strchr (name, ELF_VER_CHR);
4456 if (p != NULL && p[1] != ELF_VER_CHR)
4457 {
4458 /* Queue non-default versions so that .symver x, x@FOO
4459 aliases can be checked. */
4460 if (!nondeflt_vers)
4461 {
4462 amt = ((isymend - isym + 1)
4463 * sizeof (struct elf_link_hash_entry *));
4464 nondeflt_vers =
4465 (struct elf_link_hash_entry **) bfd_malloc (amt);
4466 if (!nondeflt_vers)
4467 goto error_free_vers;
4468 }
4469 nondeflt_vers[nondeflt_vers_cnt++] = h;
4470 }
4471 }
4472
4473 if (dynsym && h->dynindx == -1)
4474 {
4475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4476 goto error_free_vers;
4477 if (h->u.weakdef != NULL
4478 && ! new_weakdef
4479 && h->u.weakdef->dynindx == -1)
4480 {
4481 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4482 goto error_free_vers;
4483 }
4484 }
4485 else if (dynsym && h->dynindx != -1)
4486 /* If the symbol already has a dynamic index, but
4487 visibility says it should not be visible, turn it into
4488 a local symbol. */
4489 switch (ELF_ST_VISIBILITY (h->other))
4490 {
4491 case STV_INTERNAL:
4492 case STV_HIDDEN:
4493 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4494 dynsym = FALSE;
4495 break;
4496 }
4497
4498 if (!add_needed
4499 && definition
4500 && ((dynsym
4501 && h->ref_regular)
4502 || (h->ref_dynamic
4503 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4504 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4505 {
4506 int ret;
4507 const char *soname = elf_dt_name (abfd);
4508
4509 /* A symbol from a library loaded via DT_NEEDED of some
4510 other library is referenced by a regular object.
4511 Add a DT_NEEDED entry for it. Issue an error if
4512 --no-add-needed is used and the reference was not
4513 a weak one. */
4514 if (undef_bfd != NULL
4515 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4516 {
4517 (*_bfd_error_handler)
4518 (_("%B: undefined reference to symbol '%s'"),
4519 undef_bfd, name);
4520 (*_bfd_error_handler)
4521 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4522 abfd, name);
4523 bfd_set_error (bfd_error_invalid_operation);
4524 goto error_free_vers;
4525 }
4526
4527 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4528 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4529
4530 add_needed = TRUE;
4531 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4532 if (ret < 0)
4533 goto error_free_vers;
4534
4535 BFD_ASSERT (ret == 0);
4536 }
4537 }
4538 }
4539
4540 if (extversym != NULL)
4541 {
4542 free (extversym);
4543 extversym = NULL;
4544 }
4545
4546 if (isymbuf != NULL)
4547 {
4548 free (isymbuf);
4549 isymbuf = NULL;
4550 }
4551
4552 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4553 {
4554 unsigned int i;
4555
4556 /* Restore the symbol table. */
4557 if (bed->as_needed_cleanup)
4558 (*bed->as_needed_cleanup) (abfd, info);
4559 old_hash = (char *) old_tab + tabsize;
4560 old_ent = (char *) old_hash + hashsize;
4561 sym_hash = elf_sym_hashes (abfd);
4562 htab->root.table.table = old_table;
4563 htab->root.table.size = old_size;
4564 htab->root.table.count = old_count;
4565 memcpy (htab->root.table.table, old_tab, tabsize);
4566 memcpy (sym_hash, old_hash, hashsize);
4567 htab->root.undefs = old_undefs;
4568 htab->root.undefs_tail = old_undefs_tail;
4569 for (i = 0; i < htab->root.table.size; i++)
4570 {
4571 struct bfd_hash_entry *p;
4572 struct elf_link_hash_entry *h;
4573 bfd_size_type size;
4574 unsigned int alignment_power;
4575
4576 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4577 {
4578 h = (struct elf_link_hash_entry *) p;
4579 if (h->root.type == bfd_link_hash_warning)
4580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4581 if (h->dynindx >= old_dynsymcount)
4582 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4583
4584 /* Preserve the maximum alignment and size for common
4585 symbols even if this dynamic lib isn't on DT_NEEDED
4586 since it can still be loaded at the run-time by another
4587 dynamic lib. */
4588 if (h->root.type == bfd_link_hash_common)
4589 {
4590 size = h->root.u.c.size;
4591 alignment_power = h->root.u.c.p->alignment_power;
4592 }
4593 else
4594 {
4595 size = 0;
4596 alignment_power = 0;
4597 }
4598 memcpy (p, old_ent, htab->root.table.entsize);
4599 old_ent = (char *) old_ent + htab->root.table.entsize;
4600 h = (struct elf_link_hash_entry *) p;
4601 if (h->root.type == bfd_link_hash_warning)
4602 {
4603 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4604 old_ent = (char *) old_ent + htab->root.table.entsize;
4605 }
4606 else if (h->root.type == bfd_link_hash_common)
4607 {
4608 if (size > h->root.u.c.size)
4609 h->root.u.c.size = size;
4610 if (alignment_power > h->root.u.c.p->alignment_power)
4611 h->root.u.c.p->alignment_power = alignment_power;
4612 }
4613 }
4614 }
4615
4616 /* Make a special call to the linker "notice" function to
4617 tell it that symbols added for crefs may need to be removed. */
4618 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4619 notice_not_needed, 0, NULL))
4620 goto error_free_vers;
4621
4622 free (old_tab);
4623 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4624 alloc_mark);
4625 if (nondeflt_vers != NULL)
4626 free (nondeflt_vers);
4627 return TRUE;
4628 }
4629
4630 if (old_tab != NULL)
4631 {
4632 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4633 notice_needed, 0, NULL))
4634 goto error_free_vers;
4635 free (old_tab);
4636 old_tab = NULL;
4637 }
4638
4639 /* Now that all the symbols from this input file are created, handle
4640 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4641 if (nondeflt_vers != NULL)
4642 {
4643 bfd_size_type cnt, symidx;
4644
4645 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4646 {
4647 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4648 char *shortname, *p;
4649
4650 p = strchr (h->root.root.string, ELF_VER_CHR);
4651 if (p == NULL
4652 || (h->root.type != bfd_link_hash_defined
4653 && h->root.type != bfd_link_hash_defweak))
4654 continue;
4655
4656 amt = p - h->root.root.string;
4657 shortname = (char *) bfd_malloc (amt + 1);
4658 if (!shortname)
4659 goto error_free_vers;
4660 memcpy (shortname, h->root.root.string, amt);
4661 shortname[amt] = '\0';
4662
4663 hi = (struct elf_link_hash_entry *)
4664 bfd_link_hash_lookup (&htab->root, shortname,
4665 FALSE, FALSE, FALSE);
4666 if (hi != NULL
4667 && hi->root.type == h->root.type
4668 && hi->root.u.def.value == h->root.u.def.value
4669 && hi->root.u.def.section == h->root.u.def.section)
4670 {
4671 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4672 hi->root.type = bfd_link_hash_indirect;
4673 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4674 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4675 sym_hash = elf_sym_hashes (abfd);
4676 if (sym_hash)
4677 for (symidx = 0; symidx < extsymcount; ++symidx)
4678 if (sym_hash[symidx] == hi)
4679 {
4680 sym_hash[symidx] = h;
4681 break;
4682 }
4683 }
4684 free (shortname);
4685 }
4686 free (nondeflt_vers);
4687 nondeflt_vers = NULL;
4688 }
4689
4690 /* Now set the weakdefs field correctly for all the weak defined
4691 symbols we found. The only way to do this is to search all the
4692 symbols. Since we only need the information for non functions in
4693 dynamic objects, that's the only time we actually put anything on
4694 the list WEAKS. We need this information so that if a regular
4695 object refers to a symbol defined weakly in a dynamic object, the
4696 real symbol in the dynamic object is also put in the dynamic
4697 symbols; we also must arrange for both symbols to point to the
4698 same memory location. We could handle the general case of symbol
4699 aliasing, but a general symbol alias can only be generated in
4700 assembler code, handling it correctly would be very time
4701 consuming, and other ELF linkers don't handle general aliasing
4702 either. */
4703 if (weaks != NULL)
4704 {
4705 struct elf_link_hash_entry **hpp;
4706 struct elf_link_hash_entry **hppend;
4707 struct elf_link_hash_entry **sorted_sym_hash;
4708 struct elf_link_hash_entry *h;
4709 size_t sym_count;
4710
4711 /* Since we have to search the whole symbol list for each weak
4712 defined symbol, search time for N weak defined symbols will be
4713 O(N^2). Binary search will cut it down to O(NlogN). */
4714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4715 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4716 if (sorted_sym_hash == NULL)
4717 goto error_return;
4718 sym_hash = sorted_sym_hash;
4719 hpp = elf_sym_hashes (abfd);
4720 hppend = hpp + extsymcount;
4721 sym_count = 0;
4722 for (; hpp < hppend; hpp++)
4723 {
4724 h = *hpp;
4725 if (h != NULL
4726 && h->root.type == bfd_link_hash_defined
4727 && !bed->is_function_type (h->type))
4728 {
4729 *sym_hash = h;
4730 sym_hash++;
4731 sym_count++;
4732 }
4733 }
4734
4735 qsort (sorted_sym_hash, sym_count,
4736 sizeof (struct elf_link_hash_entry *),
4737 elf_sort_symbol);
4738
4739 while (weaks != NULL)
4740 {
4741 struct elf_link_hash_entry *hlook;
4742 asection *slook;
4743 bfd_vma vlook;
4744 size_t i, j, idx;
4745
4746 hlook = weaks;
4747 weaks = hlook->u.weakdef;
4748 hlook->u.weakdef = NULL;
4749
4750 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4751 || hlook->root.type == bfd_link_hash_defweak
4752 || hlook->root.type == bfd_link_hash_common
4753 || hlook->root.type == bfd_link_hash_indirect);
4754 slook = hlook->root.u.def.section;
4755 vlook = hlook->root.u.def.value;
4756
4757 i = 0;
4758 j = sym_count;
4759 while (i != j)
4760 {
4761 bfd_signed_vma vdiff;
4762 idx = (i + j) / 2;
4763 h = sorted_sym_hash[idx];
4764 vdiff = vlook - h->root.u.def.value;
4765 if (vdiff < 0)
4766 j = idx;
4767 else if (vdiff > 0)
4768 i = idx + 1;
4769 else
4770 {
4771 long sdiff = slook->id - h->root.u.def.section->id;
4772 if (sdiff < 0)
4773 j = idx;
4774 else if (sdiff > 0)
4775 i = idx + 1;
4776 else
4777 break;
4778 }
4779 }
4780
4781 /* We didn't find a value/section match. */
4782 if (i == j)
4783 continue;
4784
4785 /* With multiple aliases, or when the weak symbol is already
4786 strongly defined, we have multiple matching symbols and
4787 the binary search above may land on any of them. Step
4788 one past the matching symbol(s). */
4789 while (++idx != j)
4790 {
4791 h = sorted_sym_hash[idx];
4792 if (h->root.u.def.section != slook
4793 || h->root.u.def.value != vlook)
4794 break;
4795 }
4796
4797 /* Now look back over the aliases. Since we sorted by size
4798 as well as value and section, we'll choose the one with
4799 the largest size. */
4800 while (idx-- != i)
4801 {
4802 h = sorted_sym_hash[idx];
4803
4804 /* Stop if value or section doesn't match. */
4805 if (h->root.u.def.section != slook
4806 || h->root.u.def.value != vlook)
4807 break;
4808 else if (h != hlook)
4809 {
4810 hlook->u.weakdef = h;
4811
4812 /* If the weak definition is in the list of dynamic
4813 symbols, make sure the real definition is put
4814 there as well. */
4815 if (hlook->dynindx != -1 && h->dynindx == -1)
4816 {
4817 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4818 {
4819 err_free_sym_hash:
4820 free (sorted_sym_hash);
4821 goto error_return;
4822 }
4823 }
4824
4825 /* If the real definition is in the list of dynamic
4826 symbols, make sure the weak definition is put
4827 there as well. If we don't do this, then the
4828 dynamic loader might not merge the entries for the
4829 real definition and the weak definition. */
4830 if (h->dynindx != -1 && hlook->dynindx == -1)
4831 {
4832 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4833 goto err_free_sym_hash;
4834 }
4835 break;
4836 }
4837 }
4838 }
4839
4840 free (sorted_sym_hash);
4841 }
4842
4843 if (bed->check_directives
4844 && !(*bed->check_directives) (abfd, info))
4845 return FALSE;
4846
4847 /* If this object is the same format as the output object, and it is
4848 not a shared library, then let the backend look through the
4849 relocs.
4850
4851 This is required to build global offset table entries and to
4852 arrange for dynamic relocs. It is not required for the
4853 particular common case of linking non PIC code, even when linking
4854 against shared libraries, but unfortunately there is no way of
4855 knowing whether an object file has been compiled PIC or not.
4856 Looking through the relocs is not particularly time consuming.
4857 The problem is that we must either (1) keep the relocs in memory,
4858 which causes the linker to require additional runtime memory or
4859 (2) read the relocs twice from the input file, which wastes time.
4860 This would be a good case for using mmap.
4861
4862 I have no idea how to handle linking PIC code into a file of a
4863 different format. It probably can't be done. */
4864 if (! dynamic
4865 && is_elf_hash_table (htab)
4866 && bed->check_relocs != NULL
4867 && elf_object_id (abfd) == elf_hash_table_id (htab)
4868 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4869 {
4870 asection *o;
4871
4872 for (o = abfd->sections; o != NULL; o = o->next)
4873 {
4874 Elf_Internal_Rela *internal_relocs;
4875 bfd_boolean ok;
4876
4877 if ((o->flags & SEC_RELOC) == 0
4878 || o->reloc_count == 0
4879 || ((info->strip == strip_all || info->strip == strip_debugger)
4880 && (o->flags & SEC_DEBUGGING) != 0)
4881 || bfd_is_abs_section (o->output_section))
4882 continue;
4883
4884 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4885 info->keep_memory);
4886 if (internal_relocs == NULL)
4887 goto error_return;
4888
4889 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4890
4891 if (elf_section_data (o)->relocs != internal_relocs)
4892 free (internal_relocs);
4893
4894 if (! ok)
4895 goto error_return;
4896 }
4897 }
4898
4899 /* If this is a non-traditional link, try to optimize the handling
4900 of the .stab/.stabstr sections. */
4901 if (! dynamic
4902 && ! info->traditional_format
4903 && is_elf_hash_table (htab)
4904 && (info->strip != strip_all && info->strip != strip_debugger))
4905 {
4906 asection *stabstr;
4907
4908 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4909 if (stabstr != NULL)
4910 {
4911 bfd_size_type string_offset = 0;
4912 asection *stab;
4913
4914 for (stab = abfd->sections; stab; stab = stab->next)
4915 if (CONST_STRNEQ (stab->name, ".stab")
4916 && (!stab->name[5] ||
4917 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4918 && (stab->flags & SEC_MERGE) == 0
4919 && !bfd_is_abs_section (stab->output_section))
4920 {
4921 struct bfd_elf_section_data *secdata;
4922
4923 secdata = elf_section_data (stab);
4924 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4925 stabstr, &secdata->sec_info,
4926 &string_offset))
4927 goto error_return;
4928 if (secdata->sec_info)
4929 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4930 }
4931 }
4932 }
4933
4934 if (is_elf_hash_table (htab) && add_needed)
4935 {
4936 /* Add this bfd to the loaded list. */
4937 struct elf_link_loaded_list *n;
4938
4939 n = (struct elf_link_loaded_list *)
4940 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4941 if (n == NULL)
4942 goto error_return;
4943 n->abfd = abfd;
4944 n->next = htab->loaded;
4945 htab->loaded = n;
4946 }
4947
4948 return TRUE;
4949
4950 error_free_vers:
4951 if (old_tab != NULL)
4952 free (old_tab);
4953 if (nondeflt_vers != NULL)
4954 free (nondeflt_vers);
4955 if (extversym != NULL)
4956 free (extversym);
4957 error_free_sym:
4958 if (isymbuf != NULL)
4959 free (isymbuf);
4960 error_return:
4961 return FALSE;
4962 }
4963
4964 /* Return the linker hash table entry of a symbol that might be
4965 satisfied by an archive symbol. Return -1 on error. */
4966
4967 struct elf_link_hash_entry *
4968 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4969 struct bfd_link_info *info,
4970 const char *name)
4971 {
4972 struct elf_link_hash_entry *h;
4973 char *p, *copy;
4974 size_t len, first;
4975
4976 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4977 if (h != NULL)
4978 return h;
4979
4980 /* If this is a default version (the name contains @@), look up the
4981 symbol again with only one `@' as well as without the version.
4982 The effect is that references to the symbol with and without the
4983 version will be matched by the default symbol in the archive. */
4984
4985 p = strchr (name, ELF_VER_CHR);
4986 if (p == NULL || p[1] != ELF_VER_CHR)
4987 return h;
4988
4989 /* First check with only one `@'. */
4990 len = strlen (name);
4991 copy = (char *) bfd_alloc (abfd, len);
4992 if (copy == NULL)
4993 return (struct elf_link_hash_entry *) 0 - 1;
4994
4995 first = p - name + 1;
4996 memcpy (copy, name, first);
4997 memcpy (copy + first, name + first + 1, len - first);
4998
4999 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5000 if (h == NULL)
5001 {
5002 /* We also need to check references to the symbol without the
5003 version. */
5004 copy[first - 1] = '\0';
5005 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5006 FALSE, FALSE, TRUE);
5007 }
5008
5009 bfd_release (abfd, copy);
5010 return h;
5011 }
5012
5013 /* Add symbols from an ELF archive file to the linker hash table. We
5014 don't use _bfd_generic_link_add_archive_symbols because of a
5015 problem which arises on UnixWare. The UnixWare libc.so is an
5016 archive which includes an entry libc.so.1 which defines a bunch of
5017 symbols. The libc.so archive also includes a number of other
5018 object files, which also define symbols, some of which are the same
5019 as those defined in libc.so.1. Correct linking requires that we
5020 consider each object file in turn, and include it if it defines any
5021 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5022 this; it looks through the list of undefined symbols, and includes
5023 any object file which defines them. When this algorithm is used on
5024 UnixWare, it winds up pulling in libc.so.1 early and defining a
5025 bunch of symbols. This means that some of the other objects in the
5026 archive are not included in the link, which is incorrect since they
5027 precede libc.so.1 in the archive.
5028
5029 Fortunately, ELF archive handling is simpler than that done by
5030 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5031 oddities. In ELF, if we find a symbol in the archive map, and the
5032 symbol is currently undefined, we know that we must pull in that
5033 object file.
5034
5035 Unfortunately, we do have to make multiple passes over the symbol
5036 table until nothing further is resolved. */
5037
5038 static bfd_boolean
5039 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5040 {
5041 symindex c;
5042 bfd_boolean *defined = NULL;
5043 bfd_boolean *included = NULL;
5044 carsym *symdefs;
5045 bfd_boolean loop;
5046 bfd_size_type amt;
5047 const struct elf_backend_data *bed;
5048 struct elf_link_hash_entry * (*archive_symbol_lookup)
5049 (bfd *, struct bfd_link_info *, const char *);
5050
5051 if (! bfd_has_map (abfd))
5052 {
5053 /* An empty archive is a special case. */
5054 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5055 return TRUE;
5056 bfd_set_error (bfd_error_no_armap);
5057 return FALSE;
5058 }
5059
5060 /* Keep track of all symbols we know to be already defined, and all
5061 files we know to be already included. This is to speed up the
5062 second and subsequent passes. */
5063 c = bfd_ardata (abfd)->symdef_count;
5064 if (c == 0)
5065 return TRUE;
5066 amt = c;
5067 amt *= sizeof (bfd_boolean);
5068 defined = (bfd_boolean *) bfd_zmalloc (amt);
5069 included = (bfd_boolean *) bfd_zmalloc (amt);
5070 if (defined == NULL || included == NULL)
5071 goto error_return;
5072
5073 symdefs = bfd_ardata (abfd)->symdefs;
5074 bed = get_elf_backend_data (abfd);
5075 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5076
5077 do
5078 {
5079 file_ptr last;
5080 symindex i;
5081 carsym *symdef;
5082 carsym *symdefend;
5083
5084 loop = FALSE;
5085 last = -1;
5086
5087 symdef = symdefs;
5088 symdefend = symdef + c;
5089 for (i = 0; symdef < symdefend; symdef++, i++)
5090 {
5091 struct elf_link_hash_entry *h;
5092 bfd *element;
5093 struct bfd_link_hash_entry *undefs_tail;
5094 symindex mark;
5095
5096 if (defined[i] || included[i])
5097 continue;
5098 if (symdef->file_offset == last)
5099 {
5100 included[i] = TRUE;
5101 continue;
5102 }
5103
5104 h = archive_symbol_lookup (abfd, info, symdef->name);
5105 if (h == (struct elf_link_hash_entry *) 0 - 1)
5106 goto error_return;
5107
5108 if (h == NULL)
5109 continue;
5110
5111 if (h->root.type == bfd_link_hash_common)
5112 {
5113 /* We currently have a common symbol. The archive map contains
5114 a reference to this symbol, so we may want to include it. We
5115 only want to include it however, if this archive element
5116 contains a definition of the symbol, not just another common
5117 declaration of it.
5118
5119 Unfortunately some archivers (including GNU ar) will put
5120 declarations of common symbols into their archive maps, as
5121 well as real definitions, so we cannot just go by the archive
5122 map alone. Instead we must read in the element's symbol
5123 table and check that to see what kind of symbol definition
5124 this is. */
5125 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5126 continue;
5127 }
5128 else if (h->root.type != bfd_link_hash_undefined)
5129 {
5130 if (h->root.type != bfd_link_hash_undefweak)
5131 defined[i] = TRUE;
5132 continue;
5133 }
5134
5135 /* We need to include this archive member. */
5136 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5137 if (element == NULL)
5138 goto error_return;
5139
5140 if (! bfd_check_format (element, bfd_object))
5141 goto error_return;
5142
5143 /* Doublecheck that we have not included this object
5144 already--it should be impossible, but there may be
5145 something wrong with the archive. */
5146 if (element->archive_pass != 0)
5147 {
5148 bfd_set_error (bfd_error_bad_value);
5149 goto error_return;
5150 }
5151 element->archive_pass = 1;
5152
5153 undefs_tail = info->hash->undefs_tail;
5154
5155 if (!(*info->callbacks
5156 ->add_archive_element) (info, element, symdef->name, &element))
5157 goto error_return;
5158 if (!bfd_link_add_symbols (element, info))
5159 goto error_return;
5160
5161 /* If there are any new undefined symbols, we need to make
5162 another pass through the archive in order to see whether
5163 they can be defined. FIXME: This isn't perfect, because
5164 common symbols wind up on undefs_tail and because an
5165 undefined symbol which is defined later on in this pass
5166 does not require another pass. This isn't a bug, but it
5167 does make the code less efficient than it could be. */
5168 if (undefs_tail != info->hash->undefs_tail)
5169 loop = TRUE;
5170
5171 /* Look backward to mark all symbols from this object file
5172 which we have already seen in this pass. */
5173 mark = i;
5174 do
5175 {
5176 included[mark] = TRUE;
5177 if (mark == 0)
5178 break;
5179 --mark;
5180 }
5181 while (symdefs[mark].file_offset == symdef->file_offset);
5182
5183 /* We mark subsequent symbols from this object file as we go
5184 on through the loop. */
5185 last = symdef->file_offset;
5186 }
5187 }
5188 while (loop);
5189
5190 free (defined);
5191 free (included);
5192
5193 return TRUE;
5194
5195 error_return:
5196 if (defined != NULL)
5197 free (defined);
5198 if (included != NULL)
5199 free (included);
5200 return FALSE;
5201 }
5202
5203 /* Given an ELF BFD, add symbols to the global hash table as
5204 appropriate. */
5205
5206 bfd_boolean
5207 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5208 {
5209 switch (bfd_get_format (abfd))
5210 {
5211 case bfd_object:
5212 return elf_link_add_object_symbols (abfd, info);
5213 case bfd_archive:
5214 return elf_link_add_archive_symbols (abfd, info);
5215 default:
5216 bfd_set_error (bfd_error_wrong_format);
5217 return FALSE;
5218 }
5219 }
5220 \f
5221 struct hash_codes_info
5222 {
5223 unsigned long *hashcodes;
5224 bfd_boolean error;
5225 };
5226
5227 /* This function will be called though elf_link_hash_traverse to store
5228 all hash value of the exported symbols in an array. */
5229
5230 static bfd_boolean
5231 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5232 {
5233 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5234 const char *name;
5235 char *p;
5236 unsigned long ha;
5237 char *alc = NULL;
5238
5239 /* Ignore indirect symbols. These are added by the versioning code. */
5240 if (h->dynindx == -1)
5241 return TRUE;
5242
5243 name = h->root.root.string;
5244 p = strchr (name, ELF_VER_CHR);
5245 if (p != NULL)
5246 {
5247 alc = (char *) bfd_malloc (p - name + 1);
5248 if (alc == NULL)
5249 {
5250 inf->error = TRUE;
5251 return FALSE;
5252 }
5253 memcpy (alc, name, p - name);
5254 alc[p - name] = '\0';
5255 name = alc;
5256 }
5257
5258 /* Compute the hash value. */
5259 ha = bfd_elf_hash (name);
5260
5261 /* Store the found hash value in the array given as the argument. */
5262 *(inf->hashcodes)++ = ha;
5263
5264 /* And store it in the struct so that we can put it in the hash table
5265 later. */
5266 h->u.elf_hash_value = ha;
5267
5268 if (alc != NULL)
5269 free (alc);
5270
5271 return TRUE;
5272 }
5273
5274 struct collect_gnu_hash_codes
5275 {
5276 bfd *output_bfd;
5277 const struct elf_backend_data *bed;
5278 unsigned long int nsyms;
5279 unsigned long int maskbits;
5280 unsigned long int *hashcodes;
5281 unsigned long int *hashval;
5282 unsigned long int *indx;
5283 unsigned long int *counts;
5284 bfd_vma *bitmask;
5285 bfd_byte *contents;
5286 long int min_dynindx;
5287 unsigned long int bucketcount;
5288 unsigned long int symindx;
5289 long int local_indx;
5290 long int shift1, shift2;
5291 unsigned long int mask;
5292 bfd_boolean error;
5293 };
5294
5295 /* This function will be called though elf_link_hash_traverse to store
5296 all hash value of the exported symbols in an array. */
5297
5298 static bfd_boolean
5299 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5300 {
5301 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5302 const char *name;
5303 char *p;
5304 unsigned long ha;
5305 char *alc = NULL;
5306
5307 /* Ignore indirect symbols. These are added by the versioning code. */
5308 if (h->dynindx == -1)
5309 return TRUE;
5310
5311 /* Ignore also local symbols and undefined symbols. */
5312 if (! (*s->bed->elf_hash_symbol) (h))
5313 return TRUE;
5314
5315 name = h->root.root.string;
5316 p = strchr (name, ELF_VER_CHR);
5317 if (p != NULL)
5318 {
5319 alc = (char *) bfd_malloc (p - name + 1);
5320 if (alc == NULL)
5321 {
5322 s->error = TRUE;
5323 return FALSE;
5324 }
5325 memcpy (alc, name, p - name);
5326 alc[p - name] = '\0';
5327 name = alc;
5328 }
5329
5330 /* Compute the hash value. */
5331 ha = bfd_elf_gnu_hash (name);
5332
5333 /* Store the found hash value in the array for compute_bucket_count,
5334 and also for .dynsym reordering purposes. */
5335 s->hashcodes[s->nsyms] = ha;
5336 s->hashval[h->dynindx] = ha;
5337 ++s->nsyms;
5338 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5339 s->min_dynindx = h->dynindx;
5340
5341 if (alc != NULL)
5342 free (alc);
5343
5344 return TRUE;
5345 }
5346
5347 /* This function will be called though elf_link_hash_traverse to do
5348 final dynaminc symbol renumbering. */
5349
5350 static bfd_boolean
5351 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5352 {
5353 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5354 unsigned long int bucket;
5355 unsigned long int val;
5356
5357 /* Ignore indirect symbols. */
5358 if (h->dynindx == -1)
5359 return TRUE;
5360
5361 /* Ignore also local symbols and undefined symbols. */
5362 if (! (*s->bed->elf_hash_symbol) (h))
5363 {
5364 if (h->dynindx >= s->min_dynindx)
5365 h->dynindx = s->local_indx++;
5366 return TRUE;
5367 }
5368
5369 bucket = s->hashval[h->dynindx] % s->bucketcount;
5370 val = (s->hashval[h->dynindx] >> s->shift1)
5371 & ((s->maskbits >> s->shift1) - 1);
5372 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5373 s->bitmask[val]
5374 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5375 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5376 if (s->counts[bucket] == 1)
5377 /* Last element terminates the chain. */
5378 val |= 1;
5379 bfd_put_32 (s->output_bfd, val,
5380 s->contents + (s->indx[bucket] - s->symindx) * 4);
5381 --s->counts[bucket];
5382 h->dynindx = s->indx[bucket]++;
5383 return TRUE;
5384 }
5385
5386 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5387
5388 bfd_boolean
5389 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5390 {
5391 return !(h->forced_local
5392 || h->root.type == bfd_link_hash_undefined
5393 || h->root.type == bfd_link_hash_undefweak
5394 || ((h->root.type == bfd_link_hash_defined
5395 || h->root.type == bfd_link_hash_defweak)
5396 && h->root.u.def.section->output_section == NULL));
5397 }
5398
5399 /* Array used to determine the number of hash table buckets to use
5400 based on the number of symbols there are. If there are fewer than
5401 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5402 fewer than 37 we use 17 buckets, and so forth. We never use more
5403 than 32771 buckets. */
5404
5405 static const size_t elf_buckets[] =
5406 {
5407 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5408 16411, 32771, 0
5409 };
5410
5411 /* Compute bucket count for hashing table. We do not use a static set
5412 of possible tables sizes anymore. Instead we determine for all
5413 possible reasonable sizes of the table the outcome (i.e., the
5414 number of collisions etc) and choose the best solution. The
5415 weighting functions are not too simple to allow the table to grow
5416 without bounds. Instead one of the weighting factors is the size.
5417 Therefore the result is always a good payoff between few collisions
5418 (= short chain lengths) and table size. */
5419 static size_t
5420 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5421 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5422 unsigned long int nsyms,
5423 int gnu_hash)
5424 {
5425 size_t best_size = 0;
5426 unsigned long int i;
5427
5428 /* We have a problem here. The following code to optimize the table
5429 size requires an integer type with more the 32 bits. If
5430 BFD_HOST_U_64_BIT is set we know about such a type. */
5431 #ifdef BFD_HOST_U_64_BIT
5432 if (info->optimize)
5433 {
5434 size_t minsize;
5435 size_t maxsize;
5436 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5437 bfd *dynobj = elf_hash_table (info)->dynobj;
5438 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5439 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5440 unsigned long int *counts;
5441 bfd_size_type amt;
5442 unsigned int no_improvement_count = 0;
5443
5444 /* Possible optimization parameters: if we have NSYMS symbols we say
5445 that the hashing table must at least have NSYMS/4 and at most
5446 2*NSYMS buckets. */
5447 minsize = nsyms / 4;
5448 if (minsize == 0)
5449 minsize = 1;
5450 best_size = maxsize = nsyms * 2;
5451 if (gnu_hash)
5452 {
5453 if (minsize < 2)
5454 minsize = 2;
5455 if ((best_size & 31) == 0)
5456 ++best_size;
5457 }
5458
5459 /* Create array where we count the collisions in. We must use bfd_malloc
5460 since the size could be large. */
5461 amt = maxsize;
5462 amt *= sizeof (unsigned long int);
5463 counts = (unsigned long int *) bfd_malloc (amt);
5464 if (counts == NULL)
5465 return 0;
5466
5467 /* Compute the "optimal" size for the hash table. The criteria is a
5468 minimal chain length. The minor criteria is (of course) the size
5469 of the table. */
5470 for (i = minsize; i < maxsize; ++i)
5471 {
5472 /* Walk through the array of hashcodes and count the collisions. */
5473 BFD_HOST_U_64_BIT max;
5474 unsigned long int j;
5475 unsigned long int fact;
5476
5477 if (gnu_hash && (i & 31) == 0)
5478 continue;
5479
5480 memset (counts, '\0', i * sizeof (unsigned long int));
5481
5482 /* Determine how often each hash bucket is used. */
5483 for (j = 0; j < nsyms; ++j)
5484 ++counts[hashcodes[j] % i];
5485
5486 /* For the weight function we need some information about the
5487 pagesize on the target. This is information need not be 100%
5488 accurate. Since this information is not available (so far) we
5489 define it here to a reasonable default value. If it is crucial
5490 to have a better value some day simply define this value. */
5491 # ifndef BFD_TARGET_PAGESIZE
5492 # define BFD_TARGET_PAGESIZE (4096)
5493 # endif
5494
5495 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5496 and the chains. */
5497 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5498
5499 # if 1
5500 /* Variant 1: optimize for short chains. We add the squares
5501 of all the chain lengths (which favors many small chain
5502 over a few long chains). */
5503 for (j = 0; j < i; ++j)
5504 max += counts[j] * counts[j];
5505
5506 /* This adds penalties for the overall size of the table. */
5507 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5508 max *= fact * fact;
5509 # else
5510 /* Variant 2: Optimize a lot more for small table. Here we
5511 also add squares of the size but we also add penalties for
5512 empty slots (the +1 term). */
5513 for (j = 0; j < i; ++j)
5514 max += (1 + counts[j]) * (1 + counts[j]);
5515
5516 /* The overall size of the table is considered, but not as
5517 strong as in variant 1, where it is squared. */
5518 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5519 max *= fact;
5520 # endif
5521
5522 /* Compare with current best results. */
5523 if (max < best_chlen)
5524 {
5525 best_chlen = max;
5526 best_size = i;
5527 no_improvement_count = 0;
5528 }
5529 /* PR 11843: Avoid futile long searches for the best bucket size
5530 when there are a large number of symbols. */
5531 else if (++no_improvement_count == 100)
5532 break;
5533 }
5534
5535 free (counts);
5536 }
5537 else
5538 #endif /* defined (BFD_HOST_U_64_BIT) */
5539 {
5540 /* This is the fallback solution if no 64bit type is available or if we
5541 are not supposed to spend much time on optimizations. We select the
5542 bucket count using a fixed set of numbers. */
5543 for (i = 0; elf_buckets[i] != 0; i++)
5544 {
5545 best_size = elf_buckets[i];
5546 if (nsyms < elf_buckets[i + 1])
5547 break;
5548 }
5549 if (gnu_hash && best_size < 2)
5550 best_size = 2;
5551 }
5552
5553 return best_size;
5554 }
5555
5556 /* Size any SHT_GROUP section for ld -r. */
5557
5558 bfd_boolean
5559 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5560 {
5561 bfd *ibfd;
5562
5563 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5564 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5565 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5566 return FALSE;
5567 return TRUE;
5568 }
5569
5570 /* Set a default stack segment size. The value in INFO wins. If it
5571 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5572 undefined it is initialized. */
5573
5574 bfd_boolean
5575 bfd_elf_stack_segment_size (bfd *output_bfd,
5576 struct bfd_link_info *info,
5577 const char *legacy_symbol,
5578 bfd_vma default_size)
5579 {
5580 struct elf_link_hash_entry *h = NULL;
5581
5582 /* Look for legacy symbol. */
5583 if (legacy_symbol)
5584 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5585 FALSE, FALSE, FALSE);
5586 if (h && (h->root.type == bfd_link_hash_defined
5587 || h->root.type == bfd_link_hash_defweak)
5588 && h->def_regular
5589 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5590 {
5591 /* The symbol has no type if specified on the command line. */
5592 h->type = STT_OBJECT;
5593 if (info->stacksize)
5594 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5595 output_bfd, legacy_symbol);
5596 else if (h->root.u.def.section != bfd_abs_section_ptr)
5597 (*_bfd_error_handler) (_("%B: %s not absolute"),
5598 output_bfd, legacy_symbol);
5599 else
5600 info->stacksize = h->root.u.def.value;
5601 }
5602
5603 if (!info->stacksize)
5604 /* If the user didn't set a size, or explicitly inhibit the
5605 size, set it now. */
5606 info->stacksize = default_size;
5607
5608 /* Provide the legacy symbol, if it is referenced. */
5609 if (h && (h->root.type == bfd_link_hash_undefined
5610 || h->root.type == bfd_link_hash_undefweak))
5611 {
5612 struct bfd_link_hash_entry *bh = NULL;
5613
5614 if (!(_bfd_generic_link_add_one_symbol
5615 (info, output_bfd, legacy_symbol,
5616 BSF_GLOBAL, bfd_abs_section_ptr,
5617 info->stacksize >= 0 ? info->stacksize : 0,
5618 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5619 return FALSE;
5620
5621 h = (struct elf_link_hash_entry *) bh;
5622 h->def_regular = 1;
5623 h->type = STT_OBJECT;
5624 }
5625
5626 return TRUE;
5627 }
5628
5629 /* Set up the sizes and contents of the ELF dynamic sections. This is
5630 called by the ELF linker emulation before_allocation routine. We
5631 must set the sizes of the sections before the linker sets the
5632 addresses of the various sections. */
5633
5634 bfd_boolean
5635 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5636 const char *soname,
5637 const char *rpath,
5638 const char *filter_shlib,
5639 const char *audit,
5640 const char *depaudit,
5641 const char * const *auxiliary_filters,
5642 struct bfd_link_info *info,
5643 asection **sinterpptr)
5644 {
5645 bfd_size_type soname_indx;
5646 bfd *dynobj;
5647 const struct elf_backend_data *bed;
5648 struct elf_info_failed asvinfo;
5649
5650 *sinterpptr = NULL;
5651
5652 soname_indx = (bfd_size_type) -1;
5653
5654 if (!is_elf_hash_table (info->hash))
5655 return TRUE;
5656
5657 bed = get_elf_backend_data (output_bfd);
5658
5659 /* Any syms created from now on start with -1 in
5660 got.refcount/offset and plt.refcount/offset. */
5661 elf_hash_table (info)->init_got_refcount
5662 = elf_hash_table (info)->init_got_offset;
5663 elf_hash_table (info)->init_plt_refcount
5664 = elf_hash_table (info)->init_plt_offset;
5665
5666 if (info->relocatable
5667 && !_bfd_elf_size_group_sections (info))
5668 return FALSE;
5669
5670 /* The backend may have to create some sections regardless of whether
5671 we're dynamic or not. */
5672 if (bed->elf_backend_always_size_sections
5673 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5674 return FALSE;
5675
5676 /* Determine any GNU_STACK segment requirements, after the backend
5677 has had a chance to set a default segment size. */
5678 if (info->execstack)
5679 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5680 else if (info->noexecstack)
5681 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5682 else
5683 {
5684 bfd *inputobj;
5685 asection *notesec = NULL;
5686 int exec = 0;
5687
5688 for (inputobj = info->input_bfds;
5689 inputobj;
5690 inputobj = inputobj->link_next)
5691 {
5692 asection *s;
5693
5694 if (inputobj->flags
5695 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5696 continue;
5697 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5698 if (s)
5699 {
5700 if (s->flags & SEC_CODE)
5701 exec = PF_X;
5702 notesec = s;
5703 }
5704 else if (bed->default_execstack)
5705 exec = PF_X;
5706 }
5707 if (notesec || info->stacksize > 0)
5708 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5709 if (notesec && exec && info->relocatable
5710 && notesec->output_section != bfd_abs_section_ptr)
5711 notesec->output_section->flags |= SEC_CODE;
5712 }
5713
5714 dynobj = elf_hash_table (info)->dynobj;
5715
5716 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5717 {
5718 struct elf_info_failed eif;
5719 struct elf_link_hash_entry *h;
5720 asection *dynstr;
5721 struct bfd_elf_version_tree *t;
5722 struct bfd_elf_version_expr *d;
5723 asection *s;
5724 bfd_boolean all_defined;
5725
5726 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5727 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5728
5729 if (soname != NULL)
5730 {
5731 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5732 soname, TRUE);
5733 if (soname_indx == (bfd_size_type) -1
5734 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5735 return FALSE;
5736 }
5737
5738 if (info->symbolic)
5739 {
5740 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5741 return FALSE;
5742 info->flags |= DF_SYMBOLIC;
5743 }
5744
5745 if (rpath != NULL)
5746 {
5747 bfd_size_type indx;
5748
5749 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5750 TRUE);
5751 if (indx == (bfd_size_type) -1
5752 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5753 return FALSE;
5754
5755 if (info->new_dtags)
5756 {
5757 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5758 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5759 return FALSE;
5760 }
5761 }
5762
5763 if (filter_shlib != NULL)
5764 {
5765 bfd_size_type indx;
5766
5767 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5768 filter_shlib, TRUE);
5769 if (indx == (bfd_size_type) -1
5770 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5771 return FALSE;
5772 }
5773
5774 if (auxiliary_filters != NULL)
5775 {
5776 const char * const *p;
5777
5778 for (p = auxiliary_filters; *p != NULL; p++)
5779 {
5780 bfd_size_type indx;
5781
5782 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5783 *p, TRUE);
5784 if (indx == (bfd_size_type) -1
5785 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5786 return FALSE;
5787 }
5788 }
5789
5790 if (audit != NULL)
5791 {
5792 bfd_size_type indx;
5793
5794 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5795 TRUE);
5796 if (indx == (bfd_size_type) -1
5797 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5798 return FALSE;
5799 }
5800
5801 if (depaudit != NULL)
5802 {
5803 bfd_size_type indx;
5804
5805 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5806 TRUE);
5807 if (indx == (bfd_size_type) -1
5808 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5809 return FALSE;
5810 }
5811
5812 eif.info = info;
5813 eif.failed = FALSE;
5814
5815 /* If we are supposed to export all symbols into the dynamic symbol
5816 table (this is not the normal case), then do so. */
5817 if (info->export_dynamic
5818 || (info->executable && info->dynamic))
5819 {
5820 elf_link_hash_traverse (elf_hash_table (info),
5821 _bfd_elf_export_symbol,
5822 &eif);
5823 if (eif.failed)
5824 return FALSE;
5825 }
5826
5827 /* Make all global versions with definition. */
5828 for (t = info->version_info; t != NULL; t = t->next)
5829 for (d = t->globals.list; d != NULL; d = d->next)
5830 if (!d->symver && d->literal)
5831 {
5832 const char *verstr, *name;
5833 size_t namelen, verlen, newlen;
5834 char *newname, *p, leading_char;
5835 struct elf_link_hash_entry *newh;
5836
5837 leading_char = bfd_get_symbol_leading_char (output_bfd);
5838 name = d->pattern;
5839 namelen = strlen (name) + (leading_char != '\0');
5840 verstr = t->name;
5841 verlen = strlen (verstr);
5842 newlen = namelen + verlen + 3;
5843
5844 newname = (char *) bfd_malloc (newlen);
5845 if (newname == NULL)
5846 return FALSE;
5847 newname[0] = leading_char;
5848 memcpy (newname + (leading_char != '\0'), name, namelen);
5849
5850 /* Check the hidden versioned definition. */
5851 p = newname + namelen;
5852 *p++ = ELF_VER_CHR;
5853 memcpy (p, verstr, verlen + 1);
5854 newh = elf_link_hash_lookup (elf_hash_table (info),
5855 newname, FALSE, FALSE,
5856 FALSE);
5857 if (newh == NULL
5858 || (newh->root.type != bfd_link_hash_defined
5859 && newh->root.type != bfd_link_hash_defweak))
5860 {
5861 /* Check the default versioned definition. */
5862 *p++ = ELF_VER_CHR;
5863 memcpy (p, verstr, verlen + 1);
5864 newh = elf_link_hash_lookup (elf_hash_table (info),
5865 newname, FALSE, FALSE,
5866 FALSE);
5867 }
5868 free (newname);
5869
5870 /* Mark this version if there is a definition and it is
5871 not defined in a shared object. */
5872 if (newh != NULL
5873 && !newh->def_dynamic
5874 && (newh->root.type == bfd_link_hash_defined
5875 || newh->root.type == bfd_link_hash_defweak))
5876 d->symver = 1;
5877 }
5878
5879 /* Attach all the symbols to their version information. */
5880 asvinfo.info = info;
5881 asvinfo.failed = FALSE;
5882
5883 elf_link_hash_traverse (elf_hash_table (info),
5884 _bfd_elf_link_assign_sym_version,
5885 &asvinfo);
5886 if (asvinfo.failed)
5887 return FALSE;
5888
5889 if (!info->allow_undefined_version)
5890 {
5891 /* Check if all global versions have a definition. */
5892 all_defined = TRUE;
5893 for (t = info->version_info; t != NULL; t = t->next)
5894 for (d = t->globals.list; d != NULL; d = d->next)
5895 if (d->literal && !d->symver && !d->script)
5896 {
5897 (*_bfd_error_handler)
5898 (_("%s: undefined version: %s"),
5899 d->pattern, t->name);
5900 all_defined = FALSE;
5901 }
5902
5903 if (!all_defined)
5904 {
5905 bfd_set_error (bfd_error_bad_value);
5906 return FALSE;
5907 }
5908 }
5909
5910 /* Find all symbols which were defined in a dynamic object and make
5911 the backend pick a reasonable value for them. */
5912 elf_link_hash_traverse (elf_hash_table (info),
5913 _bfd_elf_adjust_dynamic_symbol,
5914 &eif);
5915 if (eif.failed)
5916 return FALSE;
5917
5918 /* Add some entries to the .dynamic section. We fill in some of the
5919 values later, in bfd_elf_final_link, but we must add the entries
5920 now so that we know the final size of the .dynamic section. */
5921
5922 /* If there are initialization and/or finalization functions to
5923 call then add the corresponding DT_INIT/DT_FINI entries. */
5924 h = (info->init_function
5925 ? elf_link_hash_lookup (elf_hash_table (info),
5926 info->init_function, FALSE,
5927 FALSE, FALSE)
5928 : NULL);
5929 if (h != NULL
5930 && (h->ref_regular
5931 || h->def_regular))
5932 {
5933 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5934 return FALSE;
5935 }
5936 h = (info->fini_function
5937 ? elf_link_hash_lookup (elf_hash_table (info),
5938 info->fini_function, FALSE,
5939 FALSE, FALSE)
5940 : NULL);
5941 if (h != NULL
5942 && (h->ref_regular
5943 || h->def_regular))
5944 {
5945 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5946 return FALSE;
5947 }
5948
5949 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5950 if (s != NULL && s->linker_has_input)
5951 {
5952 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5953 if (! info->executable)
5954 {
5955 bfd *sub;
5956 asection *o;
5957
5958 for (sub = info->input_bfds; sub != NULL;
5959 sub = sub->link_next)
5960 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5961 for (o = sub->sections; o != NULL; o = o->next)
5962 if (elf_section_data (o)->this_hdr.sh_type
5963 == SHT_PREINIT_ARRAY)
5964 {
5965 (*_bfd_error_handler)
5966 (_("%B: .preinit_array section is not allowed in DSO"),
5967 sub);
5968 break;
5969 }
5970
5971 bfd_set_error (bfd_error_nonrepresentable_section);
5972 return FALSE;
5973 }
5974
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5976 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5977 return FALSE;
5978 }
5979 s = bfd_get_section_by_name (output_bfd, ".init_array");
5980 if (s != NULL && s->linker_has_input)
5981 {
5982 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5983 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5984 return FALSE;
5985 }
5986 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5987 if (s != NULL && s->linker_has_input)
5988 {
5989 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5990 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5991 return FALSE;
5992 }
5993
5994 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5995 /* If .dynstr is excluded from the link, we don't want any of
5996 these tags. Strictly, we should be checking each section
5997 individually; This quick check covers for the case where
5998 someone does a /DISCARD/ : { *(*) }. */
5999 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6000 {
6001 bfd_size_type strsize;
6002
6003 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6004 if ((info->emit_hash
6005 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6006 || (info->emit_gnu_hash
6007 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6008 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6009 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6010 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6011 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6012 bed->s->sizeof_sym))
6013 return FALSE;
6014 }
6015 }
6016
6017 /* The backend must work out the sizes of all the other dynamic
6018 sections. */
6019 if (dynobj != NULL
6020 && bed->elf_backend_size_dynamic_sections != NULL
6021 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6022 return FALSE;
6023
6024 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6025 return FALSE;
6026
6027 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6028 {
6029 unsigned long section_sym_count;
6030 struct bfd_elf_version_tree *verdefs;
6031 asection *s;
6032
6033 /* Set up the version definition section. */
6034 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6035 BFD_ASSERT (s != NULL);
6036
6037 /* We may have created additional version definitions if we are
6038 just linking a regular application. */
6039 verdefs = info->version_info;
6040
6041 /* Skip anonymous version tag. */
6042 if (verdefs != NULL && verdefs->vernum == 0)
6043 verdefs = verdefs->next;
6044
6045 if (verdefs == NULL && !info->create_default_symver)
6046 s->flags |= SEC_EXCLUDE;
6047 else
6048 {
6049 unsigned int cdefs;
6050 bfd_size_type size;
6051 struct bfd_elf_version_tree *t;
6052 bfd_byte *p;
6053 Elf_Internal_Verdef def;
6054 Elf_Internal_Verdaux defaux;
6055 struct bfd_link_hash_entry *bh;
6056 struct elf_link_hash_entry *h;
6057 const char *name;
6058
6059 cdefs = 0;
6060 size = 0;
6061
6062 /* Make space for the base version. */
6063 size += sizeof (Elf_External_Verdef);
6064 size += sizeof (Elf_External_Verdaux);
6065 ++cdefs;
6066
6067 /* Make space for the default version. */
6068 if (info->create_default_symver)
6069 {
6070 size += sizeof (Elf_External_Verdef);
6071 ++cdefs;
6072 }
6073
6074 for (t = verdefs; t != NULL; t = t->next)
6075 {
6076 struct bfd_elf_version_deps *n;
6077
6078 /* Don't emit base version twice. */
6079 if (t->vernum == 0)
6080 continue;
6081
6082 size += sizeof (Elf_External_Verdef);
6083 size += sizeof (Elf_External_Verdaux);
6084 ++cdefs;
6085
6086 for (n = t->deps; n != NULL; n = n->next)
6087 size += sizeof (Elf_External_Verdaux);
6088 }
6089
6090 s->size = size;
6091 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6092 if (s->contents == NULL && s->size != 0)
6093 return FALSE;
6094
6095 /* Fill in the version definition section. */
6096
6097 p = s->contents;
6098
6099 def.vd_version = VER_DEF_CURRENT;
6100 def.vd_flags = VER_FLG_BASE;
6101 def.vd_ndx = 1;
6102 def.vd_cnt = 1;
6103 if (info->create_default_symver)
6104 {
6105 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6106 def.vd_next = sizeof (Elf_External_Verdef);
6107 }
6108 else
6109 {
6110 def.vd_aux = sizeof (Elf_External_Verdef);
6111 def.vd_next = (sizeof (Elf_External_Verdef)
6112 + sizeof (Elf_External_Verdaux));
6113 }
6114
6115 if (soname_indx != (bfd_size_type) -1)
6116 {
6117 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6118 soname_indx);
6119 def.vd_hash = bfd_elf_hash (soname);
6120 defaux.vda_name = soname_indx;
6121 name = soname;
6122 }
6123 else
6124 {
6125 bfd_size_type indx;
6126
6127 name = lbasename (output_bfd->filename);
6128 def.vd_hash = bfd_elf_hash (name);
6129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6130 name, FALSE);
6131 if (indx == (bfd_size_type) -1)
6132 return FALSE;
6133 defaux.vda_name = indx;
6134 }
6135 defaux.vda_next = 0;
6136
6137 _bfd_elf_swap_verdef_out (output_bfd, &def,
6138 (Elf_External_Verdef *) p);
6139 p += sizeof (Elf_External_Verdef);
6140 if (info->create_default_symver)
6141 {
6142 /* Add a symbol representing this version. */
6143 bh = NULL;
6144 if (! (_bfd_generic_link_add_one_symbol
6145 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6146 0, NULL, FALSE,
6147 get_elf_backend_data (dynobj)->collect, &bh)))
6148 return FALSE;
6149 h = (struct elf_link_hash_entry *) bh;
6150 h->non_elf = 0;
6151 h->def_regular = 1;
6152 h->type = STT_OBJECT;
6153 h->verinfo.vertree = NULL;
6154
6155 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6156 return FALSE;
6157
6158 /* Create a duplicate of the base version with the same
6159 aux block, but different flags. */
6160 def.vd_flags = 0;
6161 def.vd_ndx = 2;
6162 def.vd_aux = sizeof (Elf_External_Verdef);
6163 if (verdefs)
6164 def.vd_next = (sizeof (Elf_External_Verdef)
6165 + sizeof (Elf_External_Verdaux));
6166 else
6167 def.vd_next = 0;
6168 _bfd_elf_swap_verdef_out (output_bfd, &def,
6169 (Elf_External_Verdef *) p);
6170 p += sizeof (Elf_External_Verdef);
6171 }
6172 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6173 (Elf_External_Verdaux *) p);
6174 p += sizeof (Elf_External_Verdaux);
6175
6176 for (t = verdefs; t != NULL; t = t->next)
6177 {
6178 unsigned int cdeps;
6179 struct bfd_elf_version_deps *n;
6180
6181 /* Don't emit the base version twice. */
6182 if (t->vernum == 0)
6183 continue;
6184
6185 cdeps = 0;
6186 for (n = t->deps; n != NULL; n = n->next)
6187 ++cdeps;
6188
6189 /* Add a symbol representing this version. */
6190 bh = NULL;
6191 if (! (_bfd_generic_link_add_one_symbol
6192 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6193 0, NULL, FALSE,
6194 get_elf_backend_data (dynobj)->collect, &bh)))
6195 return FALSE;
6196 h = (struct elf_link_hash_entry *) bh;
6197 h->non_elf = 0;
6198 h->def_regular = 1;
6199 h->type = STT_OBJECT;
6200 h->verinfo.vertree = t;
6201
6202 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6203 return FALSE;
6204
6205 def.vd_version = VER_DEF_CURRENT;
6206 def.vd_flags = 0;
6207 if (t->globals.list == NULL
6208 && t->locals.list == NULL
6209 && ! t->used)
6210 def.vd_flags |= VER_FLG_WEAK;
6211 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6212 def.vd_cnt = cdeps + 1;
6213 def.vd_hash = bfd_elf_hash (t->name);
6214 def.vd_aux = sizeof (Elf_External_Verdef);
6215 def.vd_next = 0;
6216
6217 /* If a basever node is next, it *must* be the last node in
6218 the chain, otherwise Verdef construction breaks. */
6219 if (t->next != NULL && t->next->vernum == 0)
6220 BFD_ASSERT (t->next->next == NULL);
6221
6222 if (t->next != NULL && t->next->vernum != 0)
6223 def.vd_next = (sizeof (Elf_External_Verdef)
6224 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6225
6226 _bfd_elf_swap_verdef_out (output_bfd, &def,
6227 (Elf_External_Verdef *) p);
6228 p += sizeof (Elf_External_Verdef);
6229
6230 defaux.vda_name = h->dynstr_index;
6231 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6232 h->dynstr_index);
6233 defaux.vda_next = 0;
6234 if (t->deps != NULL)
6235 defaux.vda_next = sizeof (Elf_External_Verdaux);
6236 t->name_indx = defaux.vda_name;
6237
6238 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6239 (Elf_External_Verdaux *) p);
6240 p += sizeof (Elf_External_Verdaux);
6241
6242 for (n = t->deps; n != NULL; n = n->next)
6243 {
6244 if (n->version_needed == NULL)
6245 {
6246 /* This can happen if there was an error in the
6247 version script. */
6248 defaux.vda_name = 0;
6249 }
6250 else
6251 {
6252 defaux.vda_name = n->version_needed->name_indx;
6253 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6254 defaux.vda_name);
6255 }
6256 if (n->next == NULL)
6257 defaux.vda_next = 0;
6258 else
6259 defaux.vda_next = sizeof (Elf_External_Verdaux);
6260
6261 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6262 (Elf_External_Verdaux *) p);
6263 p += sizeof (Elf_External_Verdaux);
6264 }
6265 }
6266
6267 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6268 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6269 return FALSE;
6270
6271 elf_tdata (output_bfd)->cverdefs = cdefs;
6272 }
6273
6274 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6275 {
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6277 return FALSE;
6278 }
6279 else if (info->flags & DF_BIND_NOW)
6280 {
6281 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6282 return FALSE;
6283 }
6284
6285 if (info->flags_1)
6286 {
6287 if (info->executable)
6288 info->flags_1 &= ~ (DF_1_INITFIRST
6289 | DF_1_NODELETE
6290 | DF_1_NOOPEN);
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6292 return FALSE;
6293 }
6294
6295 /* Work out the size of the version reference section. */
6296
6297 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6298 BFD_ASSERT (s != NULL);
6299 {
6300 struct elf_find_verdep_info sinfo;
6301
6302 sinfo.info = info;
6303 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6304 if (sinfo.vers == 0)
6305 sinfo.vers = 1;
6306 sinfo.failed = FALSE;
6307
6308 elf_link_hash_traverse (elf_hash_table (info),
6309 _bfd_elf_link_find_version_dependencies,
6310 &sinfo);
6311 if (sinfo.failed)
6312 return FALSE;
6313
6314 if (elf_tdata (output_bfd)->verref == NULL)
6315 s->flags |= SEC_EXCLUDE;
6316 else
6317 {
6318 Elf_Internal_Verneed *t;
6319 unsigned int size;
6320 unsigned int crefs;
6321 bfd_byte *p;
6322
6323 /* Build the version dependency section. */
6324 size = 0;
6325 crefs = 0;
6326 for (t = elf_tdata (output_bfd)->verref;
6327 t != NULL;
6328 t = t->vn_nextref)
6329 {
6330 Elf_Internal_Vernaux *a;
6331
6332 size += sizeof (Elf_External_Verneed);
6333 ++crefs;
6334 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6335 size += sizeof (Elf_External_Vernaux);
6336 }
6337
6338 s->size = size;
6339 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6340 if (s->contents == NULL)
6341 return FALSE;
6342
6343 p = s->contents;
6344 for (t = elf_tdata (output_bfd)->verref;
6345 t != NULL;
6346 t = t->vn_nextref)
6347 {
6348 unsigned int caux;
6349 Elf_Internal_Vernaux *a;
6350 bfd_size_type indx;
6351
6352 caux = 0;
6353 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6354 ++caux;
6355
6356 t->vn_version = VER_NEED_CURRENT;
6357 t->vn_cnt = caux;
6358 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6359 elf_dt_name (t->vn_bfd) != NULL
6360 ? elf_dt_name (t->vn_bfd)
6361 : lbasename (t->vn_bfd->filename),
6362 FALSE);
6363 if (indx == (bfd_size_type) -1)
6364 return FALSE;
6365 t->vn_file = indx;
6366 t->vn_aux = sizeof (Elf_External_Verneed);
6367 if (t->vn_nextref == NULL)
6368 t->vn_next = 0;
6369 else
6370 t->vn_next = (sizeof (Elf_External_Verneed)
6371 + caux * sizeof (Elf_External_Vernaux));
6372
6373 _bfd_elf_swap_verneed_out (output_bfd, t,
6374 (Elf_External_Verneed *) p);
6375 p += sizeof (Elf_External_Verneed);
6376
6377 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6378 {
6379 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6380 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6381 a->vna_nodename, FALSE);
6382 if (indx == (bfd_size_type) -1)
6383 return FALSE;
6384 a->vna_name = indx;
6385 if (a->vna_nextptr == NULL)
6386 a->vna_next = 0;
6387 else
6388 a->vna_next = sizeof (Elf_External_Vernaux);
6389
6390 _bfd_elf_swap_vernaux_out (output_bfd, a,
6391 (Elf_External_Vernaux *) p);
6392 p += sizeof (Elf_External_Vernaux);
6393 }
6394 }
6395
6396 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6397 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6398 return FALSE;
6399
6400 elf_tdata (output_bfd)->cverrefs = crefs;
6401 }
6402 }
6403
6404 if ((elf_tdata (output_bfd)->cverrefs == 0
6405 && elf_tdata (output_bfd)->cverdefs == 0)
6406 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6407 &section_sym_count) == 0)
6408 {
6409 s = bfd_get_linker_section (dynobj, ".gnu.version");
6410 s->flags |= SEC_EXCLUDE;
6411 }
6412 }
6413 return TRUE;
6414 }
6415
6416 /* Find the first non-excluded output section. We'll use its
6417 section symbol for some emitted relocs. */
6418 void
6419 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6420 {
6421 asection *s;
6422
6423 for (s = output_bfd->sections; s != NULL; s = s->next)
6424 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6425 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6426 {
6427 elf_hash_table (info)->text_index_section = s;
6428 break;
6429 }
6430 }
6431
6432 /* Find two non-excluded output sections, one for code, one for data.
6433 We'll use their section symbols for some emitted relocs. */
6434 void
6435 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6436 {
6437 asection *s;
6438
6439 /* Data first, since setting text_index_section changes
6440 _bfd_elf_link_omit_section_dynsym. */
6441 for (s = output_bfd->sections; s != NULL; s = s->next)
6442 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6443 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6444 {
6445 elf_hash_table (info)->data_index_section = s;
6446 break;
6447 }
6448
6449 for (s = output_bfd->sections; s != NULL; s = s->next)
6450 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6451 == (SEC_ALLOC | SEC_READONLY))
6452 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6453 {
6454 elf_hash_table (info)->text_index_section = s;
6455 break;
6456 }
6457
6458 if (elf_hash_table (info)->text_index_section == NULL)
6459 elf_hash_table (info)->text_index_section
6460 = elf_hash_table (info)->data_index_section;
6461 }
6462
6463 bfd_boolean
6464 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6465 {
6466 const struct elf_backend_data *bed;
6467
6468 if (!is_elf_hash_table (info->hash))
6469 return TRUE;
6470
6471 bed = get_elf_backend_data (output_bfd);
6472 (*bed->elf_backend_init_index_section) (output_bfd, info);
6473
6474 if (elf_hash_table (info)->dynamic_sections_created)
6475 {
6476 bfd *dynobj;
6477 asection *s;
6478 bfd_size_type dynsymcount;
6479 unsigned long section_sym_count;
6480 unsigned int dtagcount;
6481
6482 dynobj = elf_hash_table (info)->dynobj;
6483
6484 /* Assign dynsym indicies. In a shared library we generate a
6485 section symbol for each output section, which come first.
6486 Next come all of the back-end allocated local dynamic syms,
6487 followed by the rest of the global symbols. */
6488
6489 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6490 &section_sym_count);
6491
6492 /* Work out the size of the symbol version section. */
6493 s = bfd_get_linker_section (dynobj, ".gnu.version");
6494 BFD_ASSERT (s != NULL);
6495 if (dynsymcount != 0
6496 && (s->flags & SEC_EXCLUDE) == 0)
6497 {
6498 s->size = dynsymcount * sizeof (Elf_External_Versym);
6499 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6500 if (s->contents == NULL)
6501 return FALSE;
6502
6503 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6504 return FALSE;
6505 }
6506
6507 /* Set the size of the .dynsym and .hash sections. We counted
6508 the number of dynamic symbols in elf_link_add_object_symbols.
6509 We will build the contents of .dynsym and .hash when we build
6510 the final symbol table, because until then we do not know the
6511 correct value to give the symbols. We built the .dynstr
6512 section as we went along in elf_link_add_object_symbols. */
6513 s = bfd_get_linker_section (dynobj, ".dynsym");
6514 BFD_ASSERT (s != NULL);
6515 s->size = dynsymcount * bed->s->sizeof_sym;
6516
6517 if (dynsymcount != 0)
6518 {
6519 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6520 if (s->contents == NULL)
6521 return FALSE;
6522
6523 /* The first entry in .dynsym is a dummy symbol.
6524 Clear all the section syms, in case we don't output them all. */
6525 ++section_sym_count;
6526 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6527 }
6528
6529 elf_hash_table (info)->bucketcount = 0;
6530
6531 /* Compute the size of the hashing table. As a side effect this
6532 computes the hash values for all the names we export. */
6533 if (info->emit_hash)
6534 {
6535 unsigned long int *hashcodes;
6536 struct hash_codes_info hashinf;
6537 bfd_size_type amt;
6538 unsigned long int nsyms;
6539 size_t bucketcount;
6540 size_t hash_entry_size;
6541
6542 /* Compute the hash values for all exported symbols. At the same
6543 time store the values in an array so that we could use them for
6544 optimizations. */
6545 amt = dynsymcount * sizeof (unsigned long int);
6546 hashcodes = (unsigned long int *) bfd_malloc (amt);
6547 if (hashcodes == NULL)
6548 return FALSE;
6549 hashinf.hashcodes = hashcodes;
6550 hashinf.error = FALSE;
6551
6552 /* Put all hash values in HASHCODES. */
6553 elf_link_hash_traverse (elf_hash_table (info),
6554 elf_collect_hash_codes, &hashinf);
6555 if (hashinf.error)
6556 {
6557 free (hashcodes);
6558 return FALSE;
6559 }
6560
6561 nsyms = hashinf.hashcodes - hashcodes;
6562 bucketcount
6563 = compute_bucket_count (info, hashcodes, nsyms, 0);
6564 free (hashcodes);
6565
6566 if (bucketcount == 0)
6567 return FALSE;
6568
6569 elf_hash_table (info)->bucketcount = bucketcount;
6570
6571 s = bfd_get_linker_section (dynobj, ".hash");
6572 BFD_ASSERT (s != NULL);
6573 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6574 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6575 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6576 if (s->contents == NULL)
6577 return FALSE;
6578
6579 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6580 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6581 s->contents + hash_entry_size);
6582 }
6583
6584 if (info->emit_gnu_hash)
6585 {
6586 size_t i, cnt;
6587 unsigned char *contents;
6588 struct collect_gnu_hash_codes cinfo;
6589 bfd_size_type amt;
6590 size_t bucketcount;
6591
6592 memset (&cinfo, 0, sizeof (cinfo));
6593
6594 /* Compute the hash values for all exported symbols. At the same
6595 time store the values in an array so that we could use them for
6596 optimizations. */
6597 amt = dynsymcount * 2 * sizeof (unsigned long int);
6598 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6599 if (cinfo.hashcodes == NULL)
6600 return FALSE;
6601
6602 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6603 cinfo.min_dynindx = -1;
6604 cinfo.output_bfd = output_bfd;
6605 cinfo.bed = bed;
6606
6607 /* Put all hash values in HASHCODES. */
6608 elf_link_hash_traverse (elf_hash_table (info),
6609 elf_collect_gnu_hash_codes, &cinfo);
6610 if (cinfo.error)
6611 {
6612 free (cinfo.hashcodes);
6613 return FALSE;
6614 }
6615
6616 bucketcount
6617 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6618
6619 if (bucketcount == 0)
6620 {
6621 free (cinfo.hashcodes);
6622 return FALSE;
6623 }
6624
6625 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6626 BFD_ASSERT (s != NULL);
6627
6628 if (cinfo.nsyms == 0)
6629 {
6630 /* Empty .gnu.hash section is special. */
6631 BFD_ASSERT (cinfo.min_dynindx == -1);
6632 free (cinfo.hashcodes);
6633 s->size = 5 * 4 + bed->s->arch_size / 8;
6634 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6635 if (contents == NULL)
6636 return FALSE;
6637 s->contents = contents;
6638 /* 1 empty bucket. */
6639 bfd_put_32 (output_bfd, 1, contents);
6640 /* SYMIDX above the special symbol 0. */
6641 bfd_put_32 (output_bfd, 1, contents + 4);
6642 /* Just one word for bitmask. */
6643 bfd_put_32 (output_bfd, 1, contents + 8);
6644 /* Only hash fn bloom filter. */
6645 bfd_put_32 (output_bfd, 0, contents + 12);
6646 /* No hashes are valid - empty bitmask. */
6647 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6648 /* No hashes in the only bucket. */
6649 bfd_put_32 (output_bfd, 0,
6650 contents + 16 + bed->s->arch_size / 8);
6651 }
6652 else
6653 {
6654 unsigned long int maskwords, maskbitslog2, x;
6655 BFD_ASSERT (cinfo.min_dynindx != -1);
6656
6657 x = cinfo.nsyms;
6658 maskbitslog2 = 1;
6659 while ((x >>= 1) != 0)
6660 ++maskbitslog2;
6661 if (maskbitslog2 < 3)
6662 maskbitslog2 = 5;
6663 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6664 maskbitslog2 = maskbitslog2 + 3;
6665 else
6666 maskbitslog2 = maskbitslog2 + 2;
6667 if (bed->s->arch_size == 64)
6668 {
6669 if (maskbitslog2 == 5)
6670 maskbitslog2 = 6;
6671 cinfo.shift1 = 6;
6672 }
6673 else
6674 cinfo.shift1 = 5;
6675 cinfo.mask = (1 << cinfo.shift1) - 1;
6676 cinfo.shift2 = maskbitslog2;
6677 cinfo.maskbits = 1 << maskbitslog2;
6678 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6679 amt = bucketcount * sizeof (unsigned long int) * 2;
6680 amt += maskwords * sizeof (bfd_vma);
6681 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6682 if (cinfo.bitmask == NULL)
6683 {
6684 free (cinfo.hashcodes);
6685 return FALSE;
6686 }
6687
6688 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6689 cinfo.indx = cinfo.counts + bucketcount;
6690 cinfo.symindx = dynsymcount - cinfo.nsyms;
6691 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6692
6693 /* Determine how often each hash bucket is used. */
6694 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6695 for (i = 0; i < cinfo.nsyms; ++i)
6696 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6697
6698 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6699 if (cinfo.counts[i] != 0)
6700 {
6701 cinfo.indx[i] = cnt;
6702 cnt += cinfo.counts[i];
6703 }
6704 BFD_ASSERT (cnt == dynsymcount);
6705 cinfo.bucketcount = bucketcount;
6706 cinfo.local_indx = cinfo.min_dynindx;
6707
6708 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6709 s->size += cinfo.maskbits / 8;
6710 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6711 if (contents == NULL)
6712 {
6713 free (cinfo.bitmask);
6714 free (cinfo.hashcodes);
6715 return FALSE;
6716 }
6717
6718 s->contents = contents;
6719 bfd_put_32 (output_bfd, bucketcount, contents);
6720 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6721 bfd_put_32 (output_bfd, maskwords, contents + 8);
6722 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6723 contents += 16 + cinfo.maskbits / 8;
6724
6725 for (i = 0; i < bucketcount; ++i)
6726 {
6727 if (cinfo.counts[i] == 0)
6728 bfd_put_32 (output_bfd, 0, contents);
6729 else
6730 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6731 contents += 4;
6732 }
6733
6734 cinfo.contents = contents;
6735
6736 /* Renumber dynamic symbols, populate .gnu.hash section. */
6737 elf_link_hash_traverse (elf_hash_table (info),
6738 elf_renumber_gnu_hash_syms, &cinfo);
6739
6740 contents = s->contents + 16;
6741 for (i = 0; i < maskwords; ++i)
6742 {
6743 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6744 contents);
6745 contents += bed->s->arch_size / 8;
6746 }
6747
6748 free (cinfo.bitmask);
6749 free (cinfo.hashcodes);
6750 }
6751 }
6752
6753 s = bfd_get_linker_section (dynobj, ".dynstr");
6754 BFD_ASSERT (s != NULL);
6755
6756 elf_finalize_dynstr (output_bfd, info);
6757
6758 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6759
6760 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6761 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6762 return FALSE;
6763 }
6764
6765 return TRUE;
6766 }
6767 \f
6768 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6769
6770 static void
6771 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6772 asection *sec)
6773 {
6774 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6775 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6776 }
6777
6778 /* Finish SHF_MERGE section merging. */
6779
6780 bfd_boolean
6781 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6782 {
6783 bfd *ibfd;
6784 asection *sec;
6785
6786 if (!is_elf_hash_table (info->hash))
6787 return FALSE;
6788
6789 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6790 if ((ibfd->flags & DYNAMIC) == 0)
6791 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6792 if ((sec->flags & SEC_MERGE) != 0
6793 && !bfd_is_abs_section (sec->output_section))
6794 {
6795 struct bfd_elf_section_data *secdata;
6796
6797 secdata = elf_section_data (sec);
6798 if (! _bfd_add_merge_section (abfd,
6799 &elf_hash_table (info)->merge_info,
6800 sec, &secdata->sec_info))
6801 return FALSE;
6802 else if (secdata->sec_info)
6803 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6804 }
6805
6806 if (elf_hash_table (info)->merge_info != NULL)
6807 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6808 merge_sections_remove_hook);
6809 return TRUE;
6810 }
6811
6812 /* Create an entry in an ELF linker hash table. */
6813
6814 struct bfd_hash_entry *
6815 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6816 struct bfd_hash_table *table,
6817 const char *string)
6818 {
6819 /* Allocate the structure if it has not already been allocated by a
6820 subclass. */
6821 if (entry == NULL)
6822 {
6823 entry = (struct bfd_hash_entry *)
6824 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6825 if (entry == NULL)
6826 return entry;
6827 }
6828
6829 /* Call the allocation method of the superclass. */
6830 entry = _bfd_link_hash_newfunc (entry, table, string);
6831 if (entry != NULL)
6832 {
6833 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6834 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6835
6836 /* Set local fields. */
6837 ret->indx = -1;
6838 ret->dynindx = -1;
6839 ret->got = htab->init_got_refcount;
6840 ret->plt = htab->init_plt_refcount;
6841 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6842 - offsetof (struct elf_link_hash_entry, size)));
6843 /* Assume that we have been called by a non-ELF symbol reader.
6844 This flag is then reset by the code which reads an ELF input
6845 file. This ensures that a symbol created by a non-ELF symbol
6846 reader will have the flag set correctly. */
6847 ret->non_elf = 1;
6848 }
6849
6850 return entry;
6851 }
6852
6853 /* Copy data from an indirect symbol to its direct symbol, hiding the
6854 old indirect symbol. Also used for copying flags to a weakdef. */
6855
6856 void
6857 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6858 struct elf_link_hash_entry *dir,
6859 struct elf_link_hash_entry *ind)
6860 {
6861 struct elf_link_hash_table *htab;
6862
6863 /* Copy down any references that we may have already seen to the
6864 symbol which just became indirect. */
6865
6866 dir->ref_dynamic |= ind->ref_dynamic;
6867 dir->ref_regular |= ind->ref_regular;
6868 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6869 dir->non_got_ref |= ind->non_got_ref;
6870 dir->needs_plt |= ind->needs_plt;
6871 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6872
6873 if (ind->root.type != bfd_link_hash_indirect)
6874 return;
6875
6876 /* Copy over the global and procedure linkage table refcount entries.
6877 These may have been already set up by a check_relocs routine. */
6878 htab = elf_hash_table (info);
6879 if (ind->got.refcount > htab->init_got_refcount.refcount)
6880 {
6881 if (dir->got.refcount < 0)
6882 dir->got.refcount = 0;
6883 dir->got.refcount += ind->got.refcount;
6884 ind->got.refcount = htab->init_got_refcount.refcount;
6885 }
6886
6887 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6888 {
6889 if (dir->plt.refcount < 0)
6890 dir->plt.refcount = 0;
6891 dir->plt.refcount += ind->plt.refcount;
6892 ind->plt.refcount = htab->init_plt_refcount.refcount;
6893 }
6894
6895 if (ind->dynindx != -1)
6896 {
6897 if (dir->dynindx != -1)
6898 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6899 dir->dynindx = ind->dynindx;
6900 dir->dynstr_index = ind->dynstr_index;
6901 ind->dynindx = -1;
6902 ind->dynstr_index = 0;
6903 }
6904 }
6905
6906 void
6907 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6908 struct elf_link_hash_entry *h,
6909 bfd_boolean force_local)
6910 {
6911 /* STT_GNU_IFUNC symbol must go through PLT. */
6912 if (h->type != STT_GNU_IFUNC)
6913 {
6914 h->plt = elf_hash_table (info)->init_plt_offset;
6915 h->needs_plt = 0;
6916 }
6917 if (force_local)
6918 {
6919 h->forced_local = 1;
6920 if (h->dynindx != -1)
6921 {
6922 h->dynindx = -1;
6923 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6924 h->dynstr_index);
6925 }
6926 }
6927 }
6928
6929 /* Initialize an ELF linker hash table. */
6930
6931 bfd_boolean
6932 _bfd_elf_link_hash_table_init
6933 (struct elf_link_hash_table *table,
6934 bfd *abfd,
6935 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6936 struct bfd_hash_table *,
6937 const char *),
6938 unsigned int entsize,
6939 enum elf_target_id target_id)
6940 {
6941 bfd_boolean ret;
6942 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6943
6944 memset (table, 0, sizeof * table);
6945 table->init_got_refcount.refcount = can_refcount - 1;
6946 table->init_plt_refcount.refcount = can_refcount - 1;
6947 table->init_got_offset.offset = -(bfd_vma) 1;
6948 table->init_plt_offset.offset = -(bfd_vma) 1;
6949 /* The first dynamic symbol is a dummy. */
6950 table->dynsymcount = 1;
6951
6952 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6953
6954 table->root.type = bfd_link_elf_hash_table;
6955 table->hash_table_id = target_id;
6956
6957 return ret;
6958 }
6959
6960 /* Create an ELF linker hash table. */
6961
6962 struct bfd_link_hash_table *
6963 _bfd_elf_link_hash_table_create (bfd *abfd)
6964 {
6965 struct elf_link_hash_table *ret;
6966 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6967
6968 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6969 if (ret == NULL)
6970 return NULL;
6971
6972 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6973 sizeof (struct elf_link_hash_entry),
6974 GENERIC_ELF_DATA))
6975 {
6976 free (ret);
6977 return NULL;
6978 }
6979
6980 return &ret->root;
6981 }
6982
6983 /* This is a hook for the ELF emulation code in the generic linker to
6984 tell the backend linker what file name to use for the DT_NEEDED
6985 entry for a dynamic object. */
6986
6987 void
6988 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6989 {
6990 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6991 && bfd_get_format (abfd) == bfd_object)
6992 elf_dt_name (abfd) = name;
6993 }
6994
6995 int
6996 bfd_elf_get_dyn_lib_class (bfd *abfd)
6997 {
6998 int lib_class;
6999 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7000 && bfd_get_format (abfd) == bfd_object)
7001 lib_class = elf_dyn_lib_class (abfd);
7002 else
7003 lib_class = 0;
7004 return lib_class;
7005 }
7006
7007 void
7008 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7009 {
7010 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7011 && bfd_get_format (abfd) == bfd_object)
7012 elf_dyn_lib_class (abfd) = lib_class;
7013 }
7014
7015 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7016 the linker ELF emulation code. */
7017
7018 struct bfd_link_needed_list *
7019 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7020 struct bfd_link_info *info)
7021 {
7022 if (! is_elf_hash_table (info->hash))
7023 return NULL;
7024 return elf_hash_table (info)->needed;
7025 }
7026
7027 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7028 hook for the linker ELF emulation code. */
7029
7030 struct bfd_link_needed_list *
7031 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7032 struct bfd_link_info *info)
7033 {
7034 if (! is_elf_hash_table (info->hash))
7035 return NULL;
7036 return elf_hash_table (info)->runpath;
7037 }
7038
7039 /* Get the name actually used for a dynamic object for a link. This
7040 is the SONAME entry if there is one. Otherwise, it is the string
7041 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7042
7043 const char *
7044 bfd_elf_get_dt_soname (bfd *abfd)
7045 {
7046 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7047 && bfd_get_format (abfd) == bfd_object)
7048 return elf_dt_name (abfd);
7049 return NULL;
7050 }
7051
7052 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7053 the ELF linker emulation code. */
7054
7055 bfd_boolean
7056 bfd_elf_get_bfd_needed_list (bfd *abfd,
7057 struct bfd_link_needed_list **pneeded)
7058 {
7059 asection *s;
7060 bfd_byte *dynbuf = NULL;
7061 unsigned int elfsec;
7062 unsigned long shlink;
7063 bfd_byte *extdyn, *extdynend;
7064 size_t extdynsize;
7065 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7066
7067 *pneeded = NULL;
7068
7069 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7070 || bfd_get_format (abfd) != bfd_object)
7071 return TRUE;
7072
7073 s = bfd_get_section_by_name (abfd, ".dynamic");
7074 if (s == NULL || s->size == 0)
7075 return TRUE;
7076
7077 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7078 goto error_return;
7079
7080 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7081 if (elfsec == SHN_BAD)
7082 goto error_return;
7083
7084 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7085
7086 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7087 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7088
7089 extdyn = dynbuf;
7090 extdynend = extdyn + s->size;
7091 for (; extdyn < extdynend; extdyn += extdynsize)
7092 {
7093 Elf_Internal_Dyn dyn;
7094
7095 (*swap_dyn_in) (abfd, extdyn, &dyn);
7096
7097 if (dyn.d_tag == DT_NULL)
7098 break;
7099
7100 if (dyn.d_tag == DT_NEEDED)
7101 {
7102 const char *string;
7103 struct bfd_link_needed_list *l;
7104 unsigned int tagv = dyn.d_un.d_val;
7105 bfd_size_type amt;
7106
7107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7108 if (string == NULL)
7109 goto error_return;
7110
7111 amt = sizeof *l;
7112 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7113 if (l == NULL)
7114 goto error_return;
7115
7116 l->by = abfd;
7117 l->name = string;
7118 l->next = *pneeded;
7119 *pneeded = l;
7120 }
7121 }
7122
7123 free (dynbuf);
7124
7125 return TRUE;
7126
7127 error_return:
7128 if (dynbuf != NULL)
7129 free (dynbuf);
7130 return FALSE;
7131 }
7132
7133 struct elf_symbuf_symbol
7134 {
7135 unsigned long st_name; /* Symbol name, index in string tbl */
7136 unsigned char st_info; /* Type and binding attributes */
7137 unsigned char st_other; /* Visibilty, and target specific */
7138 };
7139
7140 struct elf_symbuf_head
7141 {
7142 struct elf_symbuf_symbol *ssym;
7143 bfd_size_type count;
7144 unsigned int st_shndx;
7145 };
7146
7147 struct elf_symbol
7148 {
7149 union
7150 {
7151 Elf_Internal_Sym *isym;
7152 struct elf_symbuf_symbol *ssym;
7153 } u;
7154 const char *name;
7155 };
7156
7157 /* Sort references to symbols by ascending section number. */
7158
7159 static int
7160 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7161 {
7162 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7163 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7164
7165 return s1->st_shndx - s2->st_shndx;
7166 }
7167
7168 static int
7169 elf_sym_name_compare (const void *arg1, const void *arg2)
7170 {
7171 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7172 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7173 return strcmp (s1->name, s2->name);
7174 }
7175
7176 static struct elf_symbuf_head *
7177 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7178 {
7179 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7180 struct elf_symbuf_symbol *ssym;
7181 struct elf_symbuf_head *ssymbuf, *ssymhead;
7182 bfd_size_type i, shndx_count, total_size;
7183
7184 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7185 if (indbuf == NULL)
7186 return NULL;
7187
7188 for (ind = indbuf, i = 0; i < symcount; i++)
7189 if (isymbuf[i].st_shndx != SHN_UNDEF)
7190 *ind++ = &isymbuf[i];
7191 indbufend = ind;
7192
7193 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7194 elf_sort_elf_symbol);
7195
7196 shndx_count = 0;
7197 if (indbufend > indbuf)
7198 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7199 if (ind[0]->st_shndx != ind[1]->st_shndx)
7200 shndx_count++;
7201
7202 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7203 + (indbufend - indbuf) * sizeof (*ssym));
7204 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7205 if (ssymbuf == NULL)
7206 {
7207 free (indbuf);
7208 return NULL;
7209 }
7210
7211 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7212 ssymbuf->ssym = NULL;
7213 ssymbuf->count = shndx_count;
7214 ssymbuf->st_shndx = 0;
7215 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7216 {
7217 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7218 {
7219 ssymhead++;
7220 ssymhead->ssym = ssym;
7221 ssymhead->count = 0;
7222 ssymhead->st_shndx = (*ind)->st_shndx;
7223 }
7224 ssym->st_name = (*ind)->st_name;
7225 ssym->st_info = (*ind)->st_info;
7226 ssym->st_other = (*ind)->st_other;
7227 ssymhead->count++;
7228 }
7229 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7230 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7231 == total_size));
7232
7233 free (indbuf);
7234 return ssymbuf;
7235 }
7236
7237 /* Check if 2 sections define the same set of local and global
7238 symbols. */
7239
7240 static bfd_boolean
7241 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7242 struct bfd_link_info *info)
7243 {
7244 bfd *bfd1, *bfd2;
7245 const struct elf_backend_data *bed1, *bed2;
7246 Elf_Internal_Shdr *hdr1, *hdr2;
7247 bfd_size_type symcount1, symcount2;
7248 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7249 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7250 Elf_Internal_Sym *isym, *isymend;
7251 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7252 bfd_size_type count1, count2, i;
7253 unsigned int shndx1, shndx2;
7254 bfd_boolean result;
7255
7256 bfd1 = sec1->owner;
7257 bfd2 = sec2->owner;
7258
7259 /* Both sections have to be in ELF. */
7260 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7261 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7262 return FALSE;
7263
7264 if (elf_section_type (sec1) != elf_section_type (sec2))
7265 return FALSE;
7266
7267 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7268 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7269 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7270 return FALSE;
7271
7272 bed1 = get_elf_backend_data (bfd1);
7273 bed2 = get_elf_backend_data (bfd2);
7274 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7275 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7276 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7277 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7278
7279 if (symcount1 == 0 || symcount2 == 0)
7280 return FALSE;
7281
7282 result = FALSE;
7283 isymbuf1 = NULL;
7284 isymbuf2 = NULL;
7285 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7286 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7287
7288 if (ssymbuf1 == NULL)
7289 {
7290 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7291 NULL, NULL, NULL);
7292 if (isymbuf1 == NULL)
7293 goto done;
7294
7295 if (!info->reduce_memory_overheads)
7296 elf_tdata (bfd1)->symbuf = ssymbuf1
7297 = elf_create_symbuf (symcount1, isymbuf1);
7298 }
7299
7300 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7301 {
7302 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7303 NULL, NULL, NULL);
7304 if (isymbuf2 == NULL)
7305 goto done;
7306
7307 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7308 elf_tdata (bfd2)->symbuf = ssymbuf2
7309 = elf_create_symbuf (symcount2, isymbuf2);
7310 }
7311
7312 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7313 {
7314 /* Optimized faster version. */
7315 bfd_size_type lo, hi, mid;
7316 struct elf_symbol *symp;
7317 struct elf_symbuf_symbol *ssym, *ssymend;
7318
7319 lo = 0;
7320 hi = ssymbuf1->count;
7321 ssymbuf1++;
7322 count1 = 0;
7323 while (lo < hi)
7324 {
7325 mid = (lo + hi) / 2;
7326 if (shndx1 < ssymbuf1[mid].st_shndx)
7327 hi = mid;
7328 else if (shndx1 > ssymbuf1[mid].st_shndx)
7329 lo = mid + 1;
7330 else
7331 {
7332 count1 = ssymbuf1[mid].count;
7333 ssymbuf1 += mid;
7334 break;
7335 }
7336 }
7337
7338 lo = 0;
7339 hi = ssymbuf2->count;
7340 ssymbuf2++;
7341 count2 = 0;
7342 while (lo < hi)
7343 {
7344 mid = (lo + hi) / 2;
7345 if (shndx2 < ssymbuf2[mid].st_shndx)
7346 hi = mid;
7347 else if (shndx2 > ssymbuf2[mid].st_shndx)
7348 lo = mid + 1;
7349 else
7350 {
7351 count2 = ssymbuf2[mid].count;
7352 ssymbuf2 += mid;
7353 break;
7354 }
7355 }
7356
7357 if (count1 == 0 || count2 == 0 || count1 != count2)
7358 goto done;
7359
7360 symtable1 = (struct elf_symbol *)
7361 bfd_malloc (count1 * sizeof (struct elf_symbol));
7362 symtable2 = (struct elf_symbol *)
7363 bfd_malloc (count2 * sizeof (struct elf_symbol));
7364 if (symtable1 == NULL || symtable2 == NULL)
7365 goto done;
7366
7367 symp = symtable1;
7368 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7369 ssym < ssymend; ssym++, symp++)
7370 {
7371 symp->u.ssym = ssym;
7372 symp->name = bfd_elf_string_from_elf_section (bfd1,
7373 hdr1->sh_link,
7374 ssym->st_name);
7375 }
7376
7377 symp = symtable2;
7378 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7379 ssym < ssymend; ssym++, symp++)
7380 {
7381 symp->u.ssym = ssym;
7382 symp->name = bfd_elf_string_from_elf_section (bfd2,
7383 hdr2->sh_link,
7384 ssym->st_name);
7385 }
7386
7387 /* Sort symbol by name. */
7388 qsort (symtable1, count1, sizeof (struct elf_symbol),
7389 elf_sym_name_compare);
7390 qsort (symtable2, count1, sizeof (struct elf_symbol),
7391 elf_sym_name_compare);
7392
7393 for (i = 0; i < count1; i++)
7394 /* Two symbols must have the same binding, type and name. */
7395 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7396 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7397 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7398 goto done;
7399
7400 result = TRUE;
7401 goto done;
7402 }
7403
7404 symtable1 = (struct elf_symbol *)
7405 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7406 symtable2 = (struct elf_symbol *)
7407 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7408 if (symtable1 == NULL || symtable2 == NULL)
7409 goto done;
7410
7411 /* Count definitions in the section. */
7412 count1 = 0;
7413 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7414 if (isym->st_shndx == shndx1)
7415 symtable1[count1++].u.isym = isym;
7416
7417 count2 = 0;
7418 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7419 if (isym->st_shndx == shndx2)
7420 symtable2[count2++].u.isym = isym;
7421
7422 if (count1 == 0 || count2 == 0 || count1 != count2)
7423 goto done;
7424
7425 for (i = 0; i < count1; i++)
7426 symtable1[i].name
7427 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7428 symtable1[i].u.isym->st_name);
7429
7430 for (i = 0; i < count2; i++)
7431 symtable2[i].name
7432 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7433 symtable2[i].u.isym->st_name);
7434
7435 /* Sort symbol by name. */
7436 qsort (symtable1, count1, sizeof (struct elf_symbol),
7437 elf_sym_name_compare);
7438 qsort (symtable2, count1, sizeof (struct elf_symbol),
7439 elf_sym_name_compare);
7440
7441 for (i = 0; i < count1; i++)
7442 /* Two symbols must have the same binding, type and name. */
7443 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7444 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7445 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7446 goto done;
7447
7448 result = TRUE;
7449
7450 done:
7451 if (symtable1)
7452 free (symtable1);
7453 if (symtable2)
7454 free (symtable2);
7455 if (isymbuf1)
7456 free (isymbuf1);
7457 if (isymbuf2)
7458 free (isymbuf2);
7459
7460 return result;
7461 }
7462
7463 /* Return TRUE if 2 section types are compatible. */
7464
7465 bfd_boolean
7466 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7467 bfd *bbfd, const asection *bsec)
7468 {
7469 if (asec == NULL
7470 || bsec == NULL
7471 || abfd->xvec->flavour != bfd_target_elf_flavour
7472 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7473 return TRUE;
7474
7475 return elf_section_type (asec) == elf_section_type (bsec);
7476 }
7477 \f
7478 /* Final phase of ELF linker. */
7479
7480 /* A structure we use to avoid passing large numbers of arguments. */
7481
7482 struct elf_final_link_info
7483 {
7484 /* General link information. */
7485 struct bfd_link_info *info;
7486 /* Output BFD. */
7487 bfd *output_bfd;
7488 /* Symbol string table. */
7489 struct bfd_strtab_hash *symstrtab;
7490 /* .dynsym section. */
7491 asection *dynsym_sec;
7492 /* .hash section. */
7493 asection *hash_sec;
7494 /* symbol version section (.gnu.version). */
7495 asection *symver_sec;
7496 /* Buffer large enough to hold contents of any section. */
7497 bfd_byte *contents;
7498 /* Buffer large enough to hold external relocs of any section. */
7499 void *external_relocs;
7500 /* Buffer large enough to hold internal relocs of any section. */
7501 Elf_Internal_Rela *internal_relocs;
7502 /* Buffer large enough to hold external local symbols of any input
7503 BFD. */
7504 bfd_byte *external_syms;
7505 /* And a buffer for symbol section indices. */
7506 Elf_External_Sym_Shndx *locsym_shndx;
7507 /* Buffer large enough to hold internal local symbols of any input
7508 BFD. */
7509 Elf_Internal_Sym *internal_syms;
7510 /* Array large enough to hold a symbol index for each local symbol
7511 of any input BFD. */
7512 long *indices;
7513 /* Array large enough to hold a section pointer for each local
7514 symbol of any input BFD. */
7515 asection **sections;
7516 /* Buffer to hold swapped out symbols. */
7517 bfd_byte *symbuf;
7518 /* And one for symbol section indices. */
7519 Elf_External_Sym_Shndx *symshndxbuf;
7520 /* Number of swapped out symbols in buffer. */
7521 size_t symbuf_count;
7522 /* Number of symbols which fit in symbuf. */
7523 size_t symbuf_size;
7524 /* And same for symshndxbuf. */
7525 size_t shndxbuf_size;
7526 /* Number of STT_FILE syms seen. */
7527 size_t filesym_count;
7528 };
7529
7530 /* This struct is used to pass information to elf_link_output_extsym. */
7531
7532 struct elf_outext_info
7533 {
7534 bfd_boolean failed;
7535 bfd_boolean localsyms;
7536 bfd_boolean need_second_pass;
7537 bfd_boolean second_pass;
7538 struct elf_final_link_info *flinfo;
7539 };
7540
7541
7542 /* Support for evaluating a complex relocation.
7543
7544 Complex relocations are generalized, self-describing relocations. The
7545 implementation of them consists of two parts: complex symbols, and the
7546 relocations themselves.
7547
7548 The relocations are use a reserved elf-wide relocation type code (R_RELC
7549 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7550 information (start bit, end bit, word width, etc) into the addend. This
7551 information is extracted from CGEN-generated operand tables within gas.
7552
7553 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7554 internal) representing prefix-notation expressions, including but not
7555 limited to those sorts of expressions normally encoded as addends in the
7556 addend field. The symbol mangling format is:
7557
7558 <node> := <literal>
7559 | <unary-operator> ':' <node>
7560 | <binary-operator> ':' <node> ':' <node>
7561 ;
7562
7563 <literal> := 's' <digits=N> ':' <N character symbol name>
7564 | 'S' <digits=N> ':' <N character section name>
7565 | '#' <hexdigits>
7566 ;
7567
7568 <binary-operator> := as in C
7569 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7570
7571 static void
7572 set_symbol_value (bfd *bfd_with_globals,
7573 Elf_Internal_Sym *isymbuf,
7574 size_t locsymcount,
7575 size_t symidx,
7576 bfd_vma val)
7577 {
7578 struct elf_link_hash_entry **sym_hashes;
7579 struct elf_link_hash_entry *h;
7580 size_t extsymoff = locsymcount;
7581
7582 if (symidx < locsymcount)
7583 {
7584 Elf_Internal_Sym *sym;
7585
7586 sym = isymbuf + symidx;
7587 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7588 {
7589 /* It is a local symbol: move it to the
7590 "absolute" section and give it a value. */
7591 sym->st_shndx = SHN_ABS;
7592 sym->st_value = val;
7593 return;
7594 }
7595 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7596 extsymoff = 0;
7597 }
7598
7599 /* It is a global symbol: set its link type
7600 to "defined" and give it a value. */
7601
7602 sym_hashes = elf_sym_hashes (bfd_with_globals);
7603 h = sym_hashes [symidx - extsymoff];
7604 while (h->root.type == bfd_link_hash_indirect
7605 || h->root.type == bfd_link_hash_warning)
7606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7607 h->root.type = bfd_link_hash_defined;
7608 h->root.u.def.value = val;
7609 h->root.u.def.section = bfd_abs_section_ptr;
7610 }
7611
7612 static bfd_boolean
7613 resolve_symbol (const char *name,
7614 bfd *input_bfd,
7615 struct elf_final_link_info *flinfo,
7616 bfd_vma *result,
7617 Elf_Internal_Sym *isymbuf,
7618 size_t locsymcount)
7619 {
7620 Elf_Internal_Sym *sym;
7621 struct bfd_link_hash_entry *global_entry;
7622 const char *candidate = NULL;
7623 Elf_Internal_Shdr *symtab_hdr;
7624 size_t i;
7625
7626 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7627
7628 for (i = 0; i < locsymcount; ++ i)
7629 {
7630 sym = isymbuf + i;
7631
7632 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7633 continue;
7634
7635 candidate = bfd_elf_string_from_elf_section (input_bfd,
7636 symtab_hdr->sh_link,
7637 sym->st_name);
7638 #ifdef DEBUG
7639 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7640 name, candidate, (unsigned long) sym->st_value);
7641 #endif
7642 if (candidate && strcmp (candidate, name) == 0)
7643 {
7644 asection *sec = flinfo->sections [i];
7645
7646 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7647 *result += sec->output_offset + sec->output_section->vma;
7648 #ifdef DEBUG
7649 printf ("Found symbol with value %8.8lx\n",
7650 (unsigned long) *result);
7651 #endif
7652 return TRUE;
7653 }
7654 }
7655
7656 /* Hmm, haven't found it yet. perhaps it is a global. */
7657 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7658 FALSE, FALSE, TRUE);
7659 if (!global_entry)
7660 return FALSE;
7661
7662 if (global_entry->type == bfd_link_hash_defined
7663 || global_entry->type == bfd_link_hash_defweak)
7664 {
7665 *result = (global_entry->u.def.value
7666 + global_entry->u.def.section->output_section->vma
7667 + global_entry->u.def.section->output_offset);
7668 #ifdef DEBUG
7669 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7670 global_entry->root.string, (unsigned long) *result);
7671 #endif
7672 return TRUE;
7673 }
7674
7675 return FALSE;
7676 }
7677
7678 static bfd_boolean
7679 resolve_section (const char *name,
7680 asection *sections,
7681 bfd_vma *result)
7682 {
7683 asection *curr;
7684 unsigned int len;
7685
7686 for (curr = sections; curr; curr = curr->next)
7687 if (strcmp (curr->name, name) == 0)
7688 {
7689 *result = curr->vma;
7690 return TRUE;
7691 }
7692
7693 /* Hmm. still haven't found it. try pseudo-section names. */
7694 for (curr = sections; curr; curr = curr->next)
7695 {
7696 len = strlen (curr->name);
7697 if (len > strlen (name))
7698 continue;
7699
7700 if (strncmp (curr->name, name, len) == 0)
7701 {
7702 if (strncmp (".end", name + len, 4) == 0)
7703 {
7704 *result = curr->vma + curr->size;
7705 return TRUE;
7706 }
7707
7708 /* Insert more pseudo-section names here, if you like. */
7709 }
7710 }
7711
7712 return FALSE;
7713 }
7714
7715 static void
7716 undefined_reference (const char *reftype, const char *name)
7717 {
7718 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7719 reftype, name);
7720 }
7721
7722 static bfd_boolean
7723 eval_symbol (bfd_vma *result,
7724 const char **symp,
7725 bfd *input_bfd,
7726 struct elf_final_link_info *flinfo,
7727 bfd_vma dot,
7728 Elf_Internal_Sym *isymbuf,
7729 size_t locsymcount,
7730 int signed_p)
7731 {
7732 size_t len;
7733 size_t symlen;
7734 bfd_vma a;
7735 bfd_vma b;
7736 char symbuf[4096];
7737 const char *sym = *symp;
7738 const char *symend;
7739 bfd_boolean symbol_is_section = FALSE;
7740
7741 len = strlen (sym);
7742 symend = sym + len;
7743
7744 if (len < 1 || len > sizeof (symbuf))
7745 {
7746 bfd_set_error (bfd_error_invalid_operation);
7747 return FALSE;
7748 }
7749
7750 switch (* sym)
7751 {
7752 case '.':
7753 *result = dot;
7754 *symp = sym + 1;
7755 return TRUE;
7756
7757 case '#':
7758 ++sym;
7759 *result = strtoul (sym, (char **) symp, 16);
7760 return TRUE;
7761
7762 case 'S':
7763 symbol_is_section = TRUE;
7764 case 's':
7765 ++sym;
7766 symlen = strtol (sym, (char **) symp, 10);
7767 sym = *symp + 1; /* Skip the trailing ':'. */
7768
7769 if (symend < sym || symlen + 1 > sizeof (symbuf))
7770 {
7771 bfd_set_error (bfd_error_invalid_operation);
7772 return FALSE;
7773 }
7774
7775 memcpy (symbuf, sym, symlen);
7776 symbuf[symlen] = '\0';
7777 *symp = sym + symlen;
7778
7779 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7780 the symbol as a section, or vice-versa. so we're pretty liberal in our
7781 interpretation here; section means "try section first", not "must be a
7782 section", and likewise with symbol. */
7783
7784 if (symbol_is_section)
7785 {
7786 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7787 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7788 isymbuf, locsymcount))
7789 {
7790 undefined_reference ("section", symbuf);
7791 return FALSE;
7792 }
7793 }
7794 else
7795 {
7796 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7797 isymbuf, locsymcount)
7798 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7799 result))
7800 {
7801 undefined_reference ("symbol", symbuf);
7802 return FALSE;
7803 }
7804 }
7805
7806 return TRUE;
7807
7808 /* All that remains are operators. */
7809
7810 #define UNARY_OP(op) \
7811 if (strncmp (sym, #op, strlen (#op)) == 0) \
7812 { \
7813 sym += strlen (#op); \
7814 if (*sym == ':') \
7815 ++sym; \
7816 *symp = sym; \
7817 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7818 isymbuf, locsymcount, signed_p)) \
7819 return FALSE; \
7820 if (signed_p) \
7821 *result = op ((bfd_signed_vma) a); \
7822 else \
7823 *result = op a; \
7824 return TRUE; \
7825 }
7826
7827 #define BINARY_OP(op) \
7828 if (strncmp (sym, #op, strlen (#op)) == 0) \
7829 { \
7830 sym += strlen (#op); \
7831 if (*sym == ':') \
7832 ++sym; \
7833 *symp = sym; \
7834 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7835 isymbuf, locsymcount, signed_p)) \
7836 return FALSE; \
7837 ++*symp; \
7838 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7839 isymbuf, locsymcount, signed_p)) \
7840 return FALSE; \
7841 if (signed_p) \
7842 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7843 else \
7844 *result = a op b; \
7845 return TRUE; \
7846 }
7847
7848 default:
7849 UNARY_OP (0-);
7850 BINARY_OP (<<);
7851 BINARY_OP (>>);
7852 BINARY_OP (==);
7853 BINARY_OP (!=);
7854 BINARY_OP (<=);
7855 BINARY_OP (>=);
7856 BINARY_OP (&&);
7857 BINARY_OP (||);
7858 UNARY_OP (~);
7859 UNARY_OP (!);
7860 BINARY_OP (*);
7861 BINARY_OP (/);
7862 BINARY_OP (%);
7863 BINARY_OP (^);
7864 BINARY_OP (|);
7865 BINARY_OP (&);
7866 BINARY_OP (+);
7867 BINARY_OP (-);
7868 BINARY_OP (<);
7869 BINARY_OP (>);
7870 #undef UNARY_OP
7871 #undef BINARY_OP
7872 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7873 bfd_set_error (bfd_error_invalid_operation);
7874 return FALSE;
7875 }
7876 }
7877
7878 static void
7879 put_value (bfd_vma size,
7880 unsigned long chunksz,
7881 bfd *input_bfd,
7882 bfd_vma x,
7883 bfd_byte *location)
7884 {
7885 location += (size - chunksz);
7886
7887 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7888 {
7889 switch (chunksz)
7890 {
7891 default:
7892 case 0:
7893 abort ();
7894 case 1:
7895 bfd_put_8 (input_bfd, x, location);
7896 break;
7897 case 2:
7898 bfd_put_16 (input_bfd, x, location);
7899 break;
7900 case 4:
7901 bfd_put_32 (input_bfd, x, location);
7902 break;
7903 case 8:
7904 #ifdef BFD64
7905 bfd_put_64 (input_bfd, x, location);
7906 #else
7907 abort ();
7908 #endif
7909 break;
7910 }
7911 }
7912 }
7913
7914 static bfd_vma
7915 get_value (bfd_vma size,
7916 unsigned long chunksz,
7917 bfd *input_bfd,
7918 bfd_byte *location)
7919 {
7920 bfd_vma x = 0;
7921
7922 for (; size; size -= chunksz, location += chunksz)
7923 {
7924 switch (chunksz)
7925 {
7926 default:
7927 case 0:
7928 abort ();
7929 case 1:
7930 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7931 break;
7932 case 2:
7933 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7934 break;
7935 case 4:
7936 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7937 break;
7938 case 8:
7939 #ifdef BFD64
7940 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7941 #else
7942 abort ();
7943 #endif
7944 break;
7945 }
7946 }
7947 return x;
7948 }
7949
7950 static void
7951 decode_complex_addend (unsigned long *start, /* in bits */
7952 unsigned long *oplen, /* in bits */
7953 unsigned long *len, /* in bits */
7954 unsigned long *wordsz, /* in bytes */
7955 unsigned long *chunksz, /* in bytes */
7956 unsigned long *lsb0_p,
7957 unsigned long *signed_p,
7958 unsigned long *trunc_p,
7959 unsigned long encoded)
7960 {
7961 * start = encoded & 0x3F;
7962 * len = (encoded >> 6) & 0x3F;
7963 * oplen = (encoded >> 12) & 0x3F;
7964 * wordsz = (encoded >> 18) & 0xF;
7965 * chunksz = (encoded >> 22) & 0xF;
7966 * lsb0_p = (encoded >> 27) & 1;
7967 * signed_p = (encoded >> 28) & 1;
7968 * trunc_p = (encoded >> 29) & 1;
7969 }
7970
7971 bfd_reloc_status_type
7972 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7973 asection *input_section ATTRIBUTE_UNUSED,
7974 bfd_byte *contents,
7975 Elf_Internal_Rela *rel,
7976 bfd_vma relocation)
7977 {
7978 bfd_vma shift, x, mask;
7979 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7980 bfd_reloc_status_type r;
7981
7982 /* Perform this reloc, since it is complex.
7983 (this is not to say that it necessarily refers to a complex
7984 symbol; merely that it is a self-describing CGEN based reloc.
7985 i.e. the addend has the complete reloc information (bit start, end,
7986 word size, etc) encoded within it.). */
7987
7988 decode_complex_addend (&start, &oplen, &len, &wordsz,
7989 &chunksz, &lsb0_p, &signed_p,
7990 &trunc_p, rel->r_addend);
7991
7992 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7993
7994 if (lsb0_p)
7995 shift = (start + 1) - len;
7996 else
7997 shift = (8 * wordsz) - (start + len);
7998
7999 /* FIXME: octets_per_byte. */
8000 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8001
8002 #ifdef DEBUG
8003 printf ("Doing complex reloc: "
8004 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8005 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8006 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8007 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8008 oplen, (unsigned long) x, (unsigned long) mask,
8009 (unsigned long) relocation);
8010 #endif
8011
8012 r = bfd_reloc_ok;
8013 if (! trunc_p)
8014 /* Now do an overflow check. */
8015 r = bfd_check_overflow ((signed_p
8016 ? complain_overflow_signed
8017 : complain_overflow_unsigned),
8018 len, 0, (8 * wordsz),
8019 relocation);
8020
8021 /* Do the deed. */
8022 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8023
8024 #ifdef DEBUG
8025 printf (" relocation: %8.8lx\n"
8026 " shifted mask: %8.8lx\n"
8027 " shifted/masked reloc: %8.8lx\n"
8028 " result: %8.8lx\n",
8029 (unsigned long) relocation, (unsigned long) (mask << shift),
8030 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8031 #endif
8032 /* FIXME: octets_per_byte. */
8033 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8034 return r;
8035 }
8036
8037 /* When performing a relocatable link, the input relocations are
8038 preserved. But, if they reference global symbols, the indices
8039 referenced must be updated. Update all the relocations found in
8040 RELDATA. */
8041
8042 static void
8043 elf_link_adjust_relocs (bfd *abfd,
8044 struct bfd_elf_section_reloc_data *reldata)
8045 {
8046 unsigned int i;
8047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8048 bfd_byte *erela;
8049 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8050 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8051 bfd_vma r_type_mask;
8052 int r_sym_shift;
8053 unsigned int count = reldata->count;
8054 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8055
8056 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8057 {
8058 swap_in = bed->s->swap_reloc_in;
8059 swap_out = bed->s->swap_reloc_out;
8060 }
8061 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8062 {
8063 swap_in = bed->s->swap_reloca_in;
8064 swap_out = bed->s->swap_reloca_out;
8065 }
8066 else
8067 abort ();
8068
8069 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8070 abort ();
8071
8072 if (bed->s->arch_size == 32)
8073 {
8074 r_type_mask = 0xff;
8075 r_sym_shift = 8;
8076 }
8077 else
8078 {
8079 r_type_mask = 0xffffffff;
8080 r_sym_shift = 32;
8081 }
8082
8083 erela = reldata->hdr->contents;
8084 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8085 {
8086 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8087 unsigned int j;
8088
8089 if (*rel_hash == NULL)
8090 continue;
8091
8092 BFD_ASSERT ((*rel_hash)->indx >= 0);
8093
8094 (*swap_in) (abfd, erela, irela);
8095 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8096 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8097 | (irela[j].r_info & r_type_mask));
8098 (*swap_out) (abfd, irela, erela);
8099 }
8100 }
8101
8102 struct elf_link_sort_rela
8103 {
8104 union {
8105 bfd_vma offset;
8106 bfd_vma sym_mask;
8107 } u;
8108 enum elf_reloc_type_class type;
8109 /* We use this as an array of size int_rels_per_ext_rel. */
8110 Elf_Internal_Rela rela[1];
8111 };
8112
8113 static int
8114 elf_link_sort_cmp1 (const void *A, const void *B)
8115 {
8116 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8117 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8118 int relativea, relativeb;
8119
8120 relativea = a->type == reloc_class_relative;
8121 relativeb = b->type == reloc_class_relative;
8122
8123 if (relativea < relativeb)
8124 return 1;
8125 if (relativea > relativeb)
8126 return -1;
8127 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8128 return -1;
8129 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8130 return 1;
8131 if (a->rela->r_offset < b->rela->r_offset)
8132 return -1;
8133 if (a->rela->r_offset > b->rela->r_offset)
8134 return 1;
8135 return 0;
8136 }
8137
8138 static int
8139 elf_link_sort_cmp2 (const void *A, const void *B)
8140 {
8141 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8142 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8143 int copya, copyb;
8144
8145 if (a->u.offset < b->u.offset)
8146 return -1;
8147 if (a->u.offset > b->u.offset)
8148 return 1;
8149 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8150 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8151 if (copya < copyb)
8152 return -1;
8153 if (copya > copyb)
8154 return 1;
8155 if (a->rela->r_offset < b->rela->r_offset)
8156 return -1;
8157 if (a->rela->r_offset > b->rela->r_offset)
8158 return 1;
8159 return 0;
8160 }
8161
8162 static size_t
8163 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8164 {
8165 asection *dynamic_relocs;
8166 asection *rela_dyn;
8167 asection *rel_dyn;
8168 bfd_size_type count, size;
8169 size_t i, ret, sort_elt, ext_size;
8170 bfd_byte *sort, *s_non_relative, *p;
8171 struct elf_link_sort_rela *sq;
8172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8173 int i2e = bed->s->int_rels_per_ext_rel;
8174 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8175 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8176 struct bfd_link_order *lo;
8177 bfd_vma r_sym_mask;
8178 bfd_boolean use_rela;
8179
8180 /* Find a dynamic reloc section. */
8181 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8182 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8183 if (rela_dyn != NULL && rela_dyn->size > 0
8184 && rel_dyn != NULL && rel_dyn->size > 0)
8185 {
8186 bfd_boolean use_rela_initialised = FALSE;
8187
8188 /* This is just here to stop gcc from complaining.
8189 It's initialization checking code is not perfect. */
8190 use_rela = TRUE;
8191
8192 /* Both sections are present. Examine the sizes
8193 of the indirect sections to help us choose. */
8194 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8195 if (lo->type == bfd_indirect_link_order)
8196 {
8197 asection *o = lo->u.indirect.section;
8198
8199 if ((o->size % bed->s->sizeof_rela) == 0)
8200 {
8201 if ((o->size % bed->s->sizeof_rel) == 0)
8202 /* Section size is divisible by both rel and rela sizes.
8203 It is of no help to us. */
8204 ;
8205 else
8206 {
8207 /* Section size is only divisible by rela. */
8208 if (use_rela_initialised && (use_rela == FALSE))
8209 {
8210 _bfd_error_handler
8211 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8212 bfd_set_error (bfd_error_invalid_operation);
8213 return 0;
8214 }
8215 else
8216 {
8217 use_rela = TRUE;
8218 use_rela_initialised = TRUE;
8219 }
8220 }
8221 }
8222 else if ((o->size % bed->s->sizeof_rel) == 0)
8223 {
8224 /* Section size is only divisible by rel. */
8225 if (use_rela_initialised && (use_rela == TRUE))
8226 {
8227 _bfd_error_handler
8228 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8229 bfd_set_error (bfd_error_invalid_operation);
8230 return 0;
8231 }
8232 else
8233 {
8234 use_rela = FALSE;
8235 use_rela_initialised = TRUE;
8236 }
8237 }
8238 else
8239 {
8240 /* The section size is not divisible by either - something is wrong. */
8241 _bfd_error_handler
8242 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8243 bfd_set_error (bfd_error_invalid_operation);
8244 return 0;
8245 }
8246 }
8247
8248 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8249 if (lo->type == bfd_indirect_link_order)
8250 {
8251 asection *o = lo->u.indirect.section;
8252
8253 if ((o->size % bed->s->sizeof_rela) == 0)
8254 {
8255 if ((o->size % bed->s->sizeof_rel) == 0)
8256 /* Section size is divisible by both rel and rela sizes.
8257 It is of no help to us. */
8258 ;
8259 else
8260 {
8261 /* Section size is only divisible by rela. */
8262 if (use_rela_initialised && (use_rela == FALSE))
8263 {
8264 _bfd_error_handler
8265 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8266 bfd_set_error (bfd_error_invalid_operation);
8267 return 0;
8268 }
8269 else
8270 {
8271 use_rela = TRUE;
8272 use_rela_initialised = TRUE;
8273 }
8274 }
8275 }
8276 else if ((o->size % bed->s->sizeof_rel) == 0)
8277 {
8278 /* Section size is only divisible by rel. */
8279 if (use_rela_initialised && (use_rela == TRUE))
8280 {
8281 _bfd_error_handler
8282 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return 0;
8285 }
8286 else
8287 {
8288 use_rela = FALSE;
8289 use_rela_initialised = TRUE;
8290 }
8291 }
8292 else
8293 {
8294 /* The section size is not divisible by either - something is wrong. */
8295 _bfd_error_handler
8296 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8297 bfd_set_error (bfd_error_invalid_operation);
8298 return 0;
8299 }
8300 }
8301
8302 if (! use_rela_initialised)
8303 /* Make a guess. */
8304 use_rela = TRUE;
8305 }
8306 else if (rela_dyn != NULL && rela_dyn->size > 0)
8307 use_rela = TRUE;
8308 else if (rel_dyn != NULL && rel_dyn->size > 0)
8309 use_rela = FALSE;
8310 else
8311 return 0;
8312
8313 if (use_rela)
8314 {
8315 dynamic_relocs = rela_dyn;
8316 ext_size = bed->s->sizeof_rela;
8317 swap_in = bed->s->swap_reloca_in;
8318 swap_out = bed->s->swap_reloca_out;
8319 }
8320 else
8321 {
8322 dynamic_relocs = rel_dyn;
8323 ext_size = bed->s->sizeof_rel;
8324 swap_in = bed->s->swap_reloc_in;
8325 swap_out = bed->s->swap_reloc_out;
8326 }
8327
8328 size = 0;
8329 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8330 if (lo->type == bfd_indirect_link_order)
8331 size += lo->u.indirect.section->size;
8332
8333 if (size != dynamic_relocs->size)
8334 return 0;
8335
8336 sort_elt = (sizeof (struct elf_link_sort_rela)
8337 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8338
8339 count = dynamic_relocs->size / ext_size;
8340 if (count == 0)
8341 return 0;
8342 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8343
8344 if (sort == NULL)
8345 {
8346 (*info->callbacks->warning)
8347 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8348 return 0;
8349 }
8350
8351 if (bed->s->arch_size == 32)
8352 r_sym_mask = ~(bfd_vma) 0xff;
8353 else
8354 r_sym_mask = ~(bfd_vma) 0xffffffff;
8355
8356 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8357 if (lo->type == bfd_indirect_link_order)
8358 {
8359 bfd_byte *erel, *erelend;
8360 asection *o = lo->u.indirect.section;
8361
8362 if (o->contents == NULL && o->size != 0)
8363 {
8364 /* This is a reloc section that is being handled as a normal
8365 section. See bfd_section_from_shdr. We can't combine
8366 relocs in this case. */
8367 free (sort);
8368 return 0;
8369 }
8370 erel = o->contents;
8371 erelend = o->contents + o->size;
8372 /* FIXME: octets_per_byte. */
8373 p = sort + o->output_offset / ext_size * sort_elt;
8374
8375 while (erel < erelend)
8376 {
8377 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8378
8379 (*swap_in) (abfd, erel, s->rela);
8380 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8381 s->u.sym_mask = r_sym_mask;
8382 p += sort_elt;
8383 erel += ext_size;
8384 }
8385 }
8386
8387 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8388
8389 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8390 {
8391 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8392 if (s->type != reloc_class_relative)
8393 break;
8394 }
8395 ret = i;
8396 s_non_relative = p;
8397
8398 sq = (struct elf_link_sort_rela *) s_non_relative;
8399 for (; i < count; i++, p += sort_elt)
8400 {
8401 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8402 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8403 sq = sp;
8404 sp->u.offset = sq->rela->r_offset;
8405 }
8406
8407 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8408
8409 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8410 if (lo->type == bfd_indirect_link_order)
8411 {
8412 bfd_byte *erel, *erelend;
8413 asection *o = lo->u.indirect.section;
8414
8415 erel = o->contents;
8416 erelend = o->contents + o->size;
8417 /* FIXME: octets_per_byte. */
8418 p = sort + o->output_offset / ext_size * sort_elt;
8419 while (erel < erelend)
8420 {
8421 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8422 (*swap_out) (abfd, s->rela, erel);
8423 p += sort_elt;
8424 erel += ext_size;
8425 }
8426 }
8427
8428 free (sort);
8429 *psec = dynamic_relocs;
8430 return ret;
8431 }
8432
8433 /* Flush the output symbols to the file. */
8434
8435 static bfd_boolean
8436 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8437 const struct elf_backend_data *bed)
8438 {
8439 if (flinfo->symbuf_count > 0)
8440 {
8441 Elf_Internal_Shdr *hdr;
8442 file_ptr pos;
8443 bfd_size_type amt;
8444
8445 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8446 pos = hdr->sh_offset + hdr->sh_size;
8447 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8448 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8449 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8450 return FALSE;
8451
8452 hdr->sh_size += amt;
8453 flinfo->symbuf_count = 0;
8454 }
8455
8456 return TRUE;
8457 }
8458
8459 /* Add a symbol to the output symbol table. */
8460
8461 static int
8462 elf_link_output_sym (struct elf_final_link_info *flinfo,
8463 const char *name,
8464 Elf_Internal_Sym *elfsym,
8465 asection *input_sec,
8466 struct elf_link_hash_entry *h)
8467 {
8468 bfd_byte *dest;
8469 Elf_External_Sym_Shndx *destshndx;
8470 int (*output_symbol_hook)
8471 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8472 struct elf_link_hash_entry *);
8473 const struct elf_backend_data *bed;
8474
8475 bed = get_elf_backend_data (flinfo->output_bfd);
8476 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8477 if (output_symbol_hook != NULL)
8478 {
8479 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8480 if (ret != 1)
8481 return ret;
8482 }
8483
8484 if (name == NULL || *name == '\0')
8485 elfsym->st_name = 0;
8486 else if (input_sec->flags & SEC_EXCLUDE)
8487 elfsym->st_name = 0;
8488 else
8489 {
8490 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8491 name, TRUE, FALSE);
8492 if (elfsym->st_name == (unsigned long) -1)
8493 return 0;
8494 }
8495
8496 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8497 {
8498 if (! elf_link_flush_output_syms (flinfo, bed))
8499 return 0;
8500 }
8501
8502 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8503 destshndx = flinfo->symshndxbuf;
8504 if (destshndx != NULL)
8505 {
8506 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8507 {
8508 bfd_size_type amt;
8509
8510 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8511 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8512 amt * 2);
8513 if (destshndx == NULL)
8514 return 0;
8515 flinfo->symshndxbuf = destshndx;
8516 memset ((char *) destshndx + amt, 0, amt);
8517 flinfo->shndxbuf_size *= 2;
8518 }
8519 destshndx += bfd_get_symcount (flinfo->output_bfd);
8520 }
8521
8522 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8523 flinfo->symbuf_count += 1;
8524 bfd_get_symcount (flinfo->output_bfd) += 1;
8525
8526 return 1;
8527 }
8528
8529 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8530
8531 static bfd_boolean
8532 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8533 {
8534 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8535 && sym->st_shndx < SHN_LORESERVE)
8536 {
8537 /* The gABI doesn't support dynamic symbols in output sections
8538 beyond 64k. */
8539 (*_bfd_error_handler)
8540 (_("%B: Too many sections: %d (>= %d)"),
8541 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8542 bfd_set_error (bfd_error_nonrepresentable_section);
8543 return FALSE;
8544 }
8545 return TRUE;
8546 }
8547
8548 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8549 allowing an unsatisfied unversioned symbol in the DSO to match a
8550 versioned symbol that would normally require an explicit version.
8551 We also handle the case that a DSO references a hidden symbol
8552 which may be satisfied by a versioned symbol in another DSO. */
8553
8554 static bfd_boolean
8555 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8556 const struct elf_backend_data *bed,
8557 struct elf_link_hash_entry *h)
8558 {
8559 bfd *abfd;
8560 struct elf_link_loaded_list *loaded;
8561
8562 if (!is_elf_hash_table (info->hash))
8563 return FALSE;
8564
8565 /* Check indirect symbol. */
8566 while (h->root.type == bfd_link_hash_indirect)
8567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8568
8569 switch (h->root.type)
8570 {
8571 default:
8572 abfd = NULL;
8573 break;
8574
8575 case bfd_link_hash_undefined:
8576 case bfd_link_hash_undefweak:
8577 abfd = h->root.u.undef.abfd;
8578 if ((abfd->flags & DYNAMIC) == 0
8579 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8580 return FALSE;
8581 break;
8582
8583 case bfd_link_hash_defined:
8584 case bfd_link_hash_defweak:
8585 abfd = h->root.u.def.section->owner;
8586 break;
8587
8588 case bfd_link_hash_common:
8589 abfd = h->root.u.c.p->section->owner;
8590 break;
8591 }
8592 BFD_ASSERT (abfd != NULL);
8593
8594 for (loaded = elf_hash_table (info)->loaded;
8595 loaded != NULL;
8596 loaded = loaded->next)
8597 {
8598 bfd *input;
8599 Elf_Internal_Shdr *hdr;
8600 bfd_size_type symcount;
8601 bfd_size_type extsymcount;
8602 bfd_size_type extsymoff;
8603 Elf_Internal_Shdr *versymhdr;
8604 Elf_Internal_Sym *isym;
8605 Elf_Internal_Sym *isymend;
8606 Elf_Internal_Sym *isymbuf;
8607 Elf_External_Versym *ever;
8608 Elf_External_Versym *extversym;
8609
8610 input = loaded->abfd;
8611
8612 /* We check each DSO for a possible hidden versioned definition. */
8613 if (input == abfd
8614 || (input->flags & DYNAMIC) == 0
8615 || elf_dynversym (input) == 0)
8616 continue;
8617
8618 hdr = &elf_tdata (input)->dynsymtab_hdr;
8619
8620 symcount = hdr->sh_size / bed->s->sizeof_sym;
8621 if (elf_bad_symtab (input))
8622 {
8623 extsymcount = symcount;
8624 extsymoff = 0;
8625 }
8626 else
8627 {
8628 extsymcount = symcount - hdr->sh_info;
8629 extsymoff = hdr->sh_info;
8630 }
8631
8632 if (extsymcount == 0)
8633 continue;
8634
8635 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8636 NULL, NULL, NULL);
8637 if (isymbuf == NULL)
8638 return FALSE;
8639
8640 /* Read in any version definitions. */
8641 versymhdr = &elf_tdata (input)->dynversym_hdr;
8642 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8643 if (extversym == NULL)
8644 goto error_ret;
8645
8646 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8647 || (bfd_bread (extversym, versymhdr->sh_size, input)
8648 != versymhdr->sh_size))
8649 {
8650 free (extversym);
8651 error_ret:
8652 free (isymbuf);
8653 return FALSE;
8654 }
8655
8656 ever = extversym + extsymoff;
8657 isymend = isymbuf + extsymcount;
8658 for (isym = isymbuf; isym < isymend; isym++, ever++)
8659 {
8660 const char *name;
8661 Elf_Internal_Versym iver;
8662 unsigned short version_index;
8663
8664 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8665 || isym->st_shndx == SHN_UNDEF)
8666 continue;
8667
8668 name = bfd_elf_string_from_elf_section (input,
8669 hdr->sh_link,
8670 isym->st_name);
8671 if (strcmp (name, h->root.root.string) != 0)
8672 continue;
8673
8674 _bfd_elf_swap_versym_in (input, ever, &iver);
8675
8676 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8677 && !(h->def_regular
8678 && h->forced_local))
8679 {
8680 /* If we have a non-hidden versioned sym, then it should
8681 have provided a definition for the undefined sym unless
8682 it is defined in a non-shared object and forced local.
8683 */
8684 abort ();
8685 }
8686
8687 version_index = iver.vs_vers & VERSYM_VERSION;
8688 if (version_index == 1 || version_index == 2)
8689 {
8690 /* This is the base or first version. We can use it. */
8691 free (extversym);
8692 free (isymbuf);
8693 return TRUE;
8694 }
8695 }
8696
8697 free (extversym);
8698 free (isymbuf);
8699 }
8700
8701 return FALSE;
8702 }
8703
8704 /* Add an external symbol to the symbol table. This is called from
8705 the hash table traversal routine. When generating a shared object,
8706 we go through the symbol table twice. The first time we output
8707 anything that might have been forced to local scope in a version
8708 script. The second time we output the symbols that are still
8709 global symbols. */
8710
8711 static bfd_boolean
8712 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8713 {
8714 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8715 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8716 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8717 bfd_boolean strip;
8718 Elf_Internal_Sym sym;
8719 asection *input_sec;
8720 const struct elf_backend_data *bed;
8721 long indx;
8722 int ret;
8723
8724 if (h->root.type == bfd_link_hash_warning)
8725 {
8726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8727 if (h->root.type == bfd_link_hash_new)
8728 return TRUE;
8729 }
8730
8731 /* Decide whether to output this symbol in this pass. */
8732 if (eoinfo->localsyms)
8733 {
8734 if (!h->forced_local)
8735 return TRUE;
8736 if (eoinfo->second_pass
8737 && !((h->root.type == bfd_link_hash_defined
8738 || h->root.type == bfd_link_hash_defweak)
8739 && h->root.u.def.section->output_section != NULL))
8740 return TRUE;
8741 }
8742 else
8743 {
8744 if (h->forced_local)
8745 return TRUE;
8746 }
8747
8748 bed = get_elf_backend_data (flinfo->output_bfd);
8749
8750 if (h->root.type == bfd_link_hash_undefined)
8751 {
8752 /* If we have an undefined symbol reference here then it must have
8753 come from a shared library that is being linked in. (Undefined
8754 references in regular files have already been handled unless
8755 they are in unreferenced sections which are removed by garbage
8756 collection). */
8757 bfd_boolean ignore_undef = FALSE;
8758
8759 /* Some symbols may be special in that the fact that they're
8760 undefined can be safely ignored - let backend determine that. */
8761 if (bed->elf_backend_ignore_undef_symbol)
8762 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8763
8764 /* If we are reporting errors for this situation then do so now. */
8765 if (!ignore_undef
8766 && h->ref_dynamic
8767 && (!h->ref_regular || flinfo->info->gc_sections)
8768 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8769 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8770 {
8771 if (!(flinfo->info->callbacks->undefined_symbol
8772 (flinfo->info, h->root.root.string,
8773 h->ref_regular ? NULL : h->root.u.undef.abfd,
8774 NULL, 0,
8775 (flinfo->info->unresolved_syms_in_shared_libs
8776 == RM_GENERATE_ERROR))))
8777 {
8778 bfd_set_error (bfd_error_bad_value);
8779 eoinfo->failed = TRUE;
8780 return FALSE;
8781 }
8782 }
8783 }
8784
8785 /* We should also warn if a forced local symbol is referenced from
8786 shared libraries. */
8787 if (!flinfo->info->relocatable
8788 && flinfo->info->executable
8789 && h->forced_local
8790 && h->ref_dynamic
8791 && h->def_regular
8792 && !h->dynamic_def
8793 && !h->dynamic_weak
8794 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8795 {
8796 bfd *def_bfd;
8797 const char *msg;
8798 struct elf_link_hash_entry *hi = h;
8799
8800 /* Check indirect symbol. */
8801 while (hi->root.type == bfd_link_hash_indirect)
8802 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8803
8804 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8805 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8806 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8807 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8808 else
8809 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8810 def_bfd = flinfo->output_bfd;
8811 if (hi->root.u.def.section != bfd_abs_section_ptr)
8812 def_bfd = hi->root.u.def.section->owner;
8813 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8814 h->root.root.string);
8815 bfd_set_error (bfd_error_bad_value);
8816 eoinfo->failed = TRUE;
8817 return FALSE;
8818 }
8819
8820 /* We don't want to output symbols that have never been mentioned by
8821 a regular file, or that we have been told to strip. However, if
8822 h->indx is set to -2, the symbol is used by a reloc and we must
8823 output it. */
8824 if (h->indx == -2)
8825 strip = FALSE;
8826 else if ((h->def_dynamic
8827 || h->ref_dynamic
8828 || h->root.type == bfd_link_hash_new)
8829 && !h->def_regular
8830 && !h->ref_regular)
8831 strip = TRUE;
8832 else if (flinfo->info->strip == strip_all)
8833 strip = TRUE;
8834 else if (flinfo->info->strip == strip_some
8835 && bfd_hash_lookup (flinfo->info->keep_hash,
8836 h->root.root.string, FALSE, FALSE) == NULL)
8837 strip = TRUE;
8838 else if ((h->root.type == bfd_link_hash_defined
8839 || h->root.type == bfd_link_hash_defweak)
8840 && ((flinfo->info->strip_discarded
8841 && discarded_section (h->root.u.def.section))
8842 || (h->root.u.def.section->owner != NULL
8843 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8844 strip = TRUE;
8845 else if ((h->root.type == bfd_link_hash_undefined
8846 || h->root.type == bfd_link_hash_undefweak)
8847 && h->root.u.undef.abfd != NULL
8848 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8849 strip = TRUE;
8850 else
8851 strip = FALSE;
8852
8853 /* If we're stripping it, and it's not a dynamic symbol, there's
8854 nothing else to do unless it is a forced local symbol or a
8855 STT_GNU_IFUNC symbol. */
8856 if (strip
8857 && h->dynindx == -1
8858 && h->type != STT_GNU_IFUNC
8859 && !h->forced_local)
8860 return TRUE;
8861
8862 sym.st_value = 0;
8863 sym.st_size = h->size;
8864 sym.st_other = h->other;
8865 if (h->forced_local)
8866 {
8867 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8868 /* Turn off visibility on local symbol. */
8869 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8870 }
8871 else if (h->unique_global)
8872 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8873 else if (h->root.type == bfd_link_hash_undefweak
8874 || h->root.type == bfd_link_hash_defweak)
8875 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8876 else
8877 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8878 sym.st_target_internal = h->target_internal;
8879
8880 switch (h->root.type)
8881 {
8882 default:
8883 case bfd_link_hash_new:
8884 case bfd_link_hash_warning:
8885 abort ();
8886 return FALSE;
8887
8888 case bfd_link_hash_undefined:
8889 case bfd_link_hash_undefweak:
8890 input_sec = bfd_und_section_ptr;
8891 sym.st_shndx = SHN_UNDEF;
8892 break;
8893
8894 case bfd_link_hash_defined:
8895 case bfd_link_hash_defweak:
8896 {
8897 input_sec = h->root.u.def.section;
8898 if (input_sec->output_section != NULL)
8899 {
8900 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8901 {
8902 bfd_boolean second_pass_sym
8903 = (input_sec->owner == flinfo->output_bfd
8904 || input_sec->owner == NULL
8905 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8906 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8907
8908 eoinfo->need_second_pass |= second_pass_sym;
8909 if (eoinfo->second_pass != second_pass_sym)
8910 return TRUE;
8911 }
8912
8913 sym.st_shndx =
8914 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8915 input_sec->output_section);
8916 if (sym.st_shndx == SHN_BAD)
8917 {
8918 (*_bfd_error_handler)
8919 (_("%B: could not find output section %A for input section %A"),
8920 flinfo->output_bfd, input_sec->output_section, input_sec);
8921 bfd_set_error (bfd_error_nonrepresentable_section);
8922 eoinfo->failed = TRUE;
8923 return FALSE;
8924 }
8925
8926 /* ELF symbols in relocatable files are section relative,
8927 but in nonrelocatable files they are virtual
8928 addresses. */
8929 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8930 if (!flinfo->info->relocatable)
8931 {
8932 sym.st_value += input_sec->output_section->vma;
8933 if (h->type == STT_TLS)
8934 {
8935 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8936 if (tls_sec != NULL)
8937 sym.st_value -= tls_sec->vma;
8938 else
8939 {
8940 /* The TLS section may have been garbage collected. */
8941 BFD_ASSERT (flinfo->info->gc_sections
8942 && !input_sec->gc_mark);
8943 }
8944 }
8945 }
8946 }
8947 else
8948 {
8949 BFD_ASSERT (input_sec->owner == NULL
8950 || (input_sec->owner->flags & DYNAMIC) != 0);
8951 sym.st_shndx = SHN_UNDEF;
8952 input_sec = bfd_und_section_ptr;
8953 }
8954 }
8955 break;
8956
8957 case bfd_link_hash_common:
8958 input_sec = h->root.u.c.p->section;
8959 sym.st_shndx = bed->common_section_index (input_sec);
8960 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8961 break;
8962
8963 case bfd_link_hash_indirect:
8964 /* These symbols are created by symbol versioning. They point
8965 to the decorated version of the name. For example, if the
8966 symbol foo@@GNU_1.2 is the default, which should be used when
8967 foo is used with no version, then we add an indirect symbol
8968 foo which points to foo@@GNU_1.2. We ignore these symbols,
8969 since the indirected symbol is already in the hash table. */
8970 return TRUE;
8971 }
8972
8973 /* Give the processor backend a chance to tweak the symbol value,
8974 and also to finish up anything that needs to be done for this
8975 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8976 forced local syms when non-shared is due to a historical quirk.
8977 STT_GNU_IFUNC symbol must go through PLT. */
8978 if ((h->type == STT_GNU_IFUNC
8979 && h->def_regular
8980 && !flinfo->info->relocatable)
8981 || ((h->dynindx != -1
8982 || h->forced_local)
8983 && ((flinfo->info->shared
8984 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8985 || h->root.type != bfd_link_hash_undefweak))
8986 || !h->forced_local)
8987 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8988 {
8989 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8990 (flinfo->output_bfd, flinfo->info, h, &sym)))
8991 {
8992 eoinfo->failed = TRUE;
8993 return FALSE;
8994 }
8995 }
8996
8997 /* If we are marking the symbol as undefined, and there are no
8998 non-weak references to this symbol from a regular object, then
8999 mark the symbol as weak undefined; if there are non-weak
9000 references, mark the symbol as strong. We can't do this earlier,
9001 because it might not be marked as undefined until the
9002 finish_dynamic_symbol routine gets through with it. */
9003 if (sym.st_shndx == SHN_UNDEF
9004 && h->ref_regular
9005 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9006 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9007 {
9008 int bindtype;
9009 unsigned int type = ELF_ST_TYPE (sym.st_info);
9010
9011 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9012 if (type == STT_GNU_IFUNC)
9013 type = STT_FUNC;
9014
9015 if (h->ref_regular_nonweak)
9016 bindtype = STB_GLOBAL;
9017 else
9018 bindtype = STB_WEAK;
9019 sym.st_info = ELF_ST_INFO (bindtype, type);
9020 }
9021
9022 /* If this is a symbol defined in a dynamic library, don't use the
9023 symbol size from the dynamic library. Relinking an executable
9024 against a new library may introduce gratuitous changes in the
9025 executable's symbols if we keep the size. */
9026 if (sym.st_shndx == SHN_UNDEF
9027 && !h->def_regular
9028 && h->def_dynamic)
9029 sym.st_size = 0;
9030
9031 /* If a non-weak symbol with non-default visibility is not defined
9032 locally, it is a fatal error. */
9033 if (!flinfo->info->relocatable
9034 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9035 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9036 && h->root.type == bfd_link_hash_undefined
9037 && !h->def_regular)
9038 {
9039 const char *msg;
9040
9041 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9042 msg = _("%B: protected symbol `%s' isn't defined");
9043 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9044 msg = _("%B: internal symbol `%s' isn't defined");
9045 else
9046 msg = _("%B: hidden symbol `%s' isn't defined");
9047 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9048 bfd_set_error (bfd_error_bad_value);
9049 eoinfo->failed = TRUE;
9050 return FALSE;
9051 }
9052
9053 /* If this symbol should be put in the .dynsym section, then put it
9054 there now. We already know the symbol index. We also fill in
9055 the entry in the .hash section. */
9056 if (flinfo->dynsym_sec != NULL
9057 && h->dynindx != -1
9058 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9059 {
9060 bfd_byte *esym;
9061
9062 /* Since there is no version information in the dynamic string,
9063 if there is no version info in symbol version section, we will
9064 have a run-time problem. */
9065 if (h->verinfo.verdef == NULL)
9066 {
9067 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9068
9069 if (p && p [1] != '\0')
9070 {
9071 (*_bfd_error_handler)
9072 (_("%B: No symbol version section for versioned symbol `%s'"),
9073 flinfo->output_bfd, h->root.root.string);
9074 eoinfo->failed = TRUE;
9075 return FALSE;
9076 }
9077 }
9078
9079 sym.st_name = h->dynstr_index;
9080 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9081 if (!check_dynsym (flinfo->output_bfd, &sym))
9082 {
9083 eoinfo->failed = TRUE;
9084 return FALSE;
9085 }
9086 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9087
9088 if (flinfo->hash_sec != NULL)
9089 {
9090 size_t hash_entry_size;
9091 bfd_byte *bucketpos;
9092 bfd_vma chain;
9093 size_t bucketcount;
9094 size_t bucket;
9095
9096 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9097 bucket = h->u.elf_hash_value % bucketcount;
9098
9099 hash_entry_size
9100 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9101 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9102 + (bucket + 2) * hash_entry_size);
9103 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9104 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9105 bucketpos);
9106 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9107 ((bfd_byte *) flinfo->hash_sec->contents
9108 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9109 }
9110
9111 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9112 {
9113 Elf_Internal_Versym iversym;
9114 Elf_External_Versym *eversym;
9115
9116 if (!h->def_regular)
9117 {
9118 if (h->verinfo.verdef == NULL)
9119 iversym.vs_vers = 0;
9120 else
9121 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9122 }
9123 else
9124 {
9125 if (h->verinfo.vertree == NULL)
9126 iversym.vs_vers = 1;
9127 else
9128 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9129 if (flinfo->info->create_default_symver)
9130 iversym.vs_vers++;
9131 }
9132
9133 if (h->hidden)
9134 iversym.vs_vers |= VERSYM_HIDDEN;
9135
9136 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9137 eversym += h->dynindx;
9138 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9139 }
9140 }
9141
9142 /* If we're stripping it, then it was just a dynamic symbol, and
9143 there's nothing else to do. */
9144 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9145 return TRUE;
9146
9147 indx = bfd_get_symcount (flinfo->output_bfd);
9148 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9149 if (ret == 0)
9150 {
9151 eoinfo->failed = TRUE;
9152 return FALSE;
9153 }
9154 else if (ret == 1)
9155 h->indx = indx;
9156 else if (h->indx == -2)
9157 abort();
9158
9159 return TRUE;
9160 }
9161
9162 /* Return TRUE if special handling is done for relocs in SEC against
9163 symbols defined in discarded sections. */
9164
9165 static bfd_boolean
9166 elf_section_ignore_discarded_relocs (asection *sec)
9167 {
9168 const struct elf_backend_data *bed;
9169
9170 switch (sec->sec_info_type)
9171 {
9172 case SEC_INFO_TYPE_STABS:
9173 case SEC_INFO_TYPE_EH_FRAME:
9174 return TRUE;
9175 default:
9176 break;
9177 }
9178
9179 bed = get_elf_backend_data (sec->owner);
9180 if (bed->elf_backend_ignore_discarded_relocs != NULL
9181 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9182 return TRUE;
9183
9184 return FALSE;
9185 }
9186
9187 /* Return a mask saying how ld should treat relocations in SEC against
9188 symbols defined in discarded sections. If this function returns
9189 COMPLAIN set, ld will issue a warning message. If this function
9190 returns PRETEND set, and the discarded section was link-once and the
9191 same size as the kept link-once section, ld will pretend that the
9192 symbol was actually defined in the kept section. Otherwise ld will
9193 zero the reloc (at least that is the intent, but some cooperation by
9194 the target dependent code is needed, particularly for REL targets). */
9195
9196 unsigned int
9197 _bfd_elf_default_action_discarded (asection *sec)
9198 {
9199 if (sec->flags & SEC_DEBUGGING)
9200 return PRETEND;
9201
9202 if (strcmp (".eh_frame", sec->name) == 0)
9203 return 0;
9204
9205 if (strcmp (".gcc_except_table", sec->name) == 0)
9206 return 0;
9207
9208 return COMPLAIN | PRETEND;
9209 }
9210
9211 /* Find a match between a section and a member of a section group. */
9212
9213 static asection *
9214 match_group_member (asection *sec, asection *group,
9215 struct bfd_link_info *info)
9216 {
9217 asection *first = elf_next_in_group (group);
9218 asection *s = first;
9219
9220 while (s != NULL)
9221 {
9222 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9223 return s;
9224
9225 s = elf_next_in_group (s);
9226 if (s == first)
9227 break;
9228 }
9229
9230 return NULL;
9231 }
9232
9233 /* Check if the kept section of a discarded section SEC can be used
9234 to replace it. Return the replacement if it is OK. Otherwise return
9235 NULL. */
9236
9237 asection *
9238 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9239 {
9240 asection *kept;
9241
9242 kept = sec->kept_section;
9243 if (kept != NULL)
9244 {
9245 if ((kept->flags & SEC_GROUP) != 0)
9246 kept = match_group_member (sec, kept, info);
9247 if (kept != NULL
9248 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9249 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9250 kept = NULL;
9251 sec->kept_section = kept;
9252 }
9253 return kept;
9254 }
9255
9256 /* Link an input file into the linker output file. This function
9257 handles all the sections and relocations of the input file at once.
9258 This is so that we only have to read the local symbols once, and
9259 don't have to keep them in memory. */
9260
9261 static bfd_boolean
9262 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9263 {
9264 int (*relocate_section)
9265 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9266 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9267 bfd *output_bfd;
9268 Elf_Internal_Shdr *symtab_hdr;
9269 size_t locsymcount;
9270 size_t extsymoff;
9271 Elf_Internal_Sym *isymbuf;
9272 Elf_Internal_Sym *isym;
9273 Elf_Internal_Sym *isymend;
9274 long *pindex;
9275 asection **ppsection;
9276 asection *o;
9277 const struct elf_backend_data *bed;
9278 struct elf_link_hash_entry **sym_hashes;
9279 bfd_size_type address_size;
9280 bfd_vma r_type_mask;
9281 int r_sym_shift;
9282 bfd_boolean have_file_sym = FALSE;
9283
9284 output_bfd = flinfo->output_bfd;
9285 bed = get_elf_backend_data (output_bfd);
9286 relocate_section = bed->elf_backend_relocate_section;
9287
9288 /* If this is a dynamic object, we don't want to do anything here:
9289 we don't want the local symbols, and we don't want the section
9290 contents. */
9291 if ((input_bfd->flags & DYNAMIC) != 0)
9292 return TRUE;
9293
9294 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9295 if (elf_bad_symtab (input_bfd))
9296 {
9297 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9298 extsymoff = 0;
9299 }
9300 else
9301 {
9302 locsymcount = symtab_hdr->sh_info;
9303 extsymoff = symtab_hdr->sh_info;
9304 }
9305
9306 /* Read the local symbols. */
9307 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9308 if (isymbuf == NULL && locsymcount != 0)
9309 {
9310 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9311 flinfo->internal_syms,
9312 flinfo->external_syms,
9313 flinfo->locsym_shndx);
9314 if (isymbuf == NULL)
9315 return FALSE;
9316 }
9317
9318 /* Find local symbol sections and adjust values of symbols in
9319 SEC_MERGE sections. Write out those local symbols we know are
9320 going into the output file. */
9321 isymend = isymbuf + locsymcount;
9322 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9323 isym < isymend;
9324 isym++, pindex++, ppsection++)
9325 {
9326 asection *isec;
9327 const char *name;
9328 Elf_Internal_Sym osym;
9329 long indx;
9330 int ret;
9331
9332 *pindex = -1;
9333
9334 if (elf_bad_symtab (input_bfd))
9335 {
9336 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9337 {
9338 *ppsection = NULL;
9339 continue;
9340 }
9341 }
9342
9343 if (isym->st_shndx == SHN_UNDEF)
9344 isec = bfd_und_section_ptr;
9345 else if (isym->st_shndx == SHN_ABS)
9346 isec = bfd_abs_section_ptr;
9347 else if (isym->st_shndx == SHN_COMMON)
9348 isec = bfd_com_section_ptr;
9349 else
9350 {
9351 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9352 if (isec == NULL)
9353 {
9354 /* Don't attempt to output symbols with st_shnx in the
9355 reserved range other than SHN_ABS and SHN_COMMON. */
9356 *ppsection = NULL;
9357 continue;
9358 }
9359 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9360 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9361 isym->st_value =
9362 _bfd_merged_section_offset (output_bfd, &isec,
9363 elf_section_data (isec)->sec_info,
9364 isym->st_value);
9365 }
9366
9367 *ppsection = isec;
9368
9369 /* Don't output the first, undefined, symbol. */
9370 if (ppsection == flinfo->sections)
9371 continue;
9372
9373 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9374 {
9375 /* We never output section symbols. Instead, we use the
9376 section symbol of the corresponding section in the output
9377 file. */
9378 continue;
9379 }
9380
9381 /* If we are stripping all symbols, we don't want to output this
9382 one. */
9383 if (flinfo->info->strip == strip_all)
9384 continue;
9385
9386 /* If we are discarding all local symbols, we don't want to
9387 output this one. If we are generating a relocatable output
9388 file, then some of the local symbols may be required by
9389 relocs; we output them below as we discover that they are
9390 needed. */
9391 if (flinfo->info->discard == discard_all)
9392 continue;
9393
9394 /* If this symbol is defined in a section which we are
9395 discarding, we don't need to keep it. */
9396 if (isym->st_shndx != SHN_UNDEF
9397 && isym->st_shndx < SHN_LORESERVE
9398 && bfd_section_removed_from_list (output_bfd,
9399 isec->output_section))
9400 continue;
9401
9402 /* Get the name of the symbol. */
9403 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9404 isym->st_name);
9405 if (name == NULL)
9406 return FALSE;
9407
9408 /* See if we are discarding symbols with this name. */
9409 if ((flinfo->info->strip == strip_some
9410 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9411 == NULL))
9412 || (((flinfo->info->discard == discard_sec_merge
9413 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9414 || flinfo->info->discard == discard_l)
9415 && bfd_is_local_label_name (input_bfd, name)))
9416 continue;
9417
9418 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9419 {
9420 have_file_sym = TRUE;
9421 flinfo->filesym_count += 1;
9422 }
9423 if (!have_file_sym)
9424 {
9425 /* In the absence of debug info, bfd_find_nearest_line uses
9426 FILE symbols to determine the source file for local
9427 function symbols. Provide a FILE symbol here if input
9428 files lack such, so that their symbols won't be
9429 associated with a previous input file. It's not the
9430 source file, but the best we can do. */
9431 have_file_sym = TRUE;
9432 flinfo->filesym_count += 1;
9433 memset (&osym, 0, sizeof (osym));
9434 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9435 osym.st_shndx = SHN_ABS;
9436 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9437 bfd_abs_section_ptr, NULL))
9438 return FALSE;
9439 }
9440
9441 osym = *isym;
9442
9443 /* Adjust the section index for the output file. */
9444 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9445 isec->output_section);
9446 if (osym.st_shndx == SHN_BAD)
9447 return FALSE;
9448
9449 /* ELF symbols in relocatable files are section relative, but
9450 in executable files they are virtual addresses. Note that
9451 this code assumes that all ELF sections have an associated
9452 BFD section with a reasonable value for output_offset; below
9453 we assume that they also have a reasonable value for
9454 output_section. Any special sections must be set up to meet
9455 these requirements. */
9456 osym.st_value += isec->output_offset;
9457 if (!flinfo->info->relocatable)
9458 {
9459 osym.st_value += isec->output_section->vma;
9460 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9461 {
9462 /* STT_TLS symbols are relative to PT_TLS segment base. */
9463 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9464 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9465 }
9466 }
9467
9468 indx = bfd_get_symcount (output_bfd);
9469 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9470 if (ret == 0)
9471 return FALSE;
9472 else if (ret == 1)
9473 *pindex = indx;
9474 }
9475
9476 if (bed->s->arch_size == 32)
9477 {
9478 r_type_mask = 0xff;
9479 r_sym_shift = 8;
9480 address_size = 4;
9481 }
9482 else
9483 {
9484 r_type_mask = 0xffffffff;
9485 r_sym_shift = 32;
9486 address_size = 8;
9487 }
9488
9489 /* Relocate the contents of each section. */
9490 sym_hashes = elf_sym_hashes (input_bfd);
9491 for (o = input_bfd->sections; o != NULL; o = o->next)
9492 {
9493 bfd_byte *contents;
9494
9495 if (! o->linker_mark)
9496 {
9497 /* This section was omitted from the link. */
9498 continue;
9499 }
9500
9501 if (flinfo->info->relocatable
9502 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9503 {
9504 /* Deal with the group signature symbol. */
9505 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9506 unsigned long symndx = sec_data->this_hdr.sh_info;
9507 asection *osec = o->output_section;
9508
9509 if (symndx >= locsymcount
9510 || (elf_bad_symtab (input_bfd)
9511 && flinfo->sections[symndx] == NULL))
9512 {
9513 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9514 while (h->root.type == bfd_link_hash_indirect
9515 || h->root.type == bfd_link_hash_warning)
9516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9517 /* Arrange for symbol to be output. */
9518 h->indx = -2;
9519 elf_section_data (osec)->this_hdr.sh_info = -2;
9520 }
9521 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9522 {
9523 /* We'll use the output section target_index. */
9524 asection *sec = flinfo->sections[symndx]->output_section;
9525 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9526 }
9527 else
9528 {
9529 if (flinfo->indices[symndx] == -1)
9530 {
9531 /* Otherwise output the local symbol now. */
9532 Elf_Internal_Sym sym = isymbuf[symndx];
9533 asection *sec = flinfo->sections[symndx]->output_section;
9534 const char *name;
9535 long indx;
9536 int ret;
9537
9538 name = bfd_elf_string_from_elf_section (input_bfd,
9539 symtab_hdr->sh_link,
9540 sym.st_name);
9541 if (name == NULL)
9542 return FALSE;
9543
9544 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9545 sec);
9546 if (sym.st_shndx == SHN_BAD)
9547 return FALSE;
9548
9549 sym.st_value += o->output_offset;
9550
9551 indx = bfd_get_symcount (output_bfd);
9552 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9553 if (ret == 0)
9554 return FALSE;
9555 else if (ret == 1)
9556 flinfo->indices[symndx] = indx;
9557 else
9558 abort ();
9559 }
9560 elf_section_data (osec)->this_hdr.sh_info
9561 = flinfo->indices[symndx];
9562 }
9563 }
9564
9565 if ((o->flags & SEC_HAS_CONTENTS) == 0
9566 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9567 continue;
9568
9569 if ((o->flags & SEC_LINKER_CREATED) != 0)
9570 {
9571 /* Section was created by _bfd_elf_link_create_dynamic_sections
9572 or somesuch. */
9573 continue;
9574 }
9575
9576 /* Get the contents of the section. They have been cached by a
9577 relaxation routine. Note that o is a section in an input
9578 file, so the contents field will not have been set by any of
9579 the routines which work on output files. */
9580 if (elf_section_data (o)->this_hdr.contents != NULL)
9581 contents = elf_section_data (o)->this_hdr.contents;
9582 else
9583 {
9584 contents = flinfo->contents;
9585 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9586 return FALSE;
9587 }
9588
9589 if ((o->flags & SEC_RELOC) != 0)
9590 {
9591 Elf_Internal_Rela *internal_relocs;
9592 Elf_Internal_Rela *rel, *relend;
9593 int action_discarded;
9594 int ret;
9595
9596 /* Get the swapped relocs. */
9597 internal_relocs
9598 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9599 flinfo->internal_relocs, FALSE);
9600 if (internal_relocs == NULL
9601 && o->reloc_count > 0)
9602 return FALSE;
9603
9604 /* We need to reverse-copy input .ctors/.dtors sections if
9605 they are placed in .init_array/.finit_array for output. */
9606 if (o->size > address_size
9607 && ((strncmp (o->name, ".ctors", 6) == 0
9608 && strcmp (o->output_section->name,
9609 ".init_array") == 0)
9610 || (strncmp (o->name, ".dtors", 6) == 0
9611 && strcmp (o->output_section->name,
9612 ".fini_array") == 0))
9613 && (o->name[6] == 0 || o->name[6] == '.'))
9614 {
9615 if (o->size != o->reloc_count * address_size)
9616 {
9617 (*_bfd_error_handler)
9618 (_("error: %B: size of section %A is not "
9619 "multiple of address size"),
9620 input_bfd, o);
9621 bfd_set_error (bfd_error_on_input);
9622 return FALSE;
9623 }
9624 o->flags |= SEC_ELF_REVERSE_COPY;
9625 }
9626
9627 action_discarded = -1;
9628 if (!elf_section_ignore_discarded_relocs (o))
9629 action_discarded = (*bed->action_discarded) (o);
9630
9631 /* Run through the relocs evaluating complex reloc symbols and
9632 looking for relocs against symbols from discarded sections
9633 or section symbols from removed link-once sections.
9634 Complain about relocs against discarded sections. Zero
9635 relocs against removed link-once sections. */
9636
9637 rel = internal_relocs;
9638 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9639 for ( ; rel < relend; rel++)
9640 {
9641 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9642 unsigned int s_type;
9643 asection **ps, *sec;
9644 struct elf_link_hash_entry *h = NULL;
9645 const char *sym_name;
9646
9647 if (r_symndx == STN_UNDEF)
9648 continue;
9649
9650 if (r_symndx >= locsymcount
9651 || (elf_bad_symtab (input_bfd)
9652 && flinfo->sections[r_symndx] == NULL))
9653 {
9654 h = sym_hashes[r_symndx - extsymoff];
9655
9656 /* Badly formatted input files can contain relocs that
9657 reference non-existant symbols. Check here so that
9658 we do not seg fault. */
9659 if (h == NULL)
9660 {
9661 char buffer [32];
9662
9663 sprintf_vma (buffer, rel->r_info);
9664 (*_bfd_error_handler)
9665 (_("error: %B contains a reloc (0x%s) for section %A "
9666 "that references a non-existent global symbol"),
9667 input_bfd, o, buffer);
9668 bfd_set_error (bfd_error_bad_value);
9669 return FALSE;
9670 }
9671
9672 while (h->root.type == bfd_link_hash_indirect
9673 || h->root.type == bfd_link_hash_warning)
9674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9675
9676 s_type = h->type;
9677
9678 ps = NULL;
9679 if (h->root.type == bfd_link_hash_defined
9680 || h->root.type == bfd_link_hash_defweak)
9681 ps = &h->root.u.def.section;
9682
9683 sym_name = h->root.root.string;
9684 }
9685 else
9686 {
9687 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9688
9689 s_type = ELF_ST_TYPE (sym->st_info);
9690 ps = &flinfo->sections[r_symndx];
9691 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9692 sym, *ps);
9693 }
9694
9695 if ((s_type == STT_RELC || s_type == STT_SRELC)
9696 && !flinfo->info->relocatable)
9697 {
9698 bfd_vma val;
9699 bfd_vma dot = (rel->r_offset
9700 + o->output_offset + o->output_section->vma);
9701 #ifdef DEBUG
9702 printf ("Encountered a complex symbol!");
9703 printf (" (input_bfd %s, section %s, reloc %ld\n",
9704 input_bfd->filename, o->name,
9705 (long) (rel - internal_relocs));
9706 printf (" symbol: idx %8.8lx, name %s\n",
9707 r_symndx, sym_name);
9708 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9709 (unsigned long) rel->r_info,
9710 (unsigned long) rel->r_offset);
9711 #endif
9712 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9713 isymbuf, locsymcount, s_type == STT_SRELC))
9714 return FALSE;
9715
9716 /* Symbol evaluated OK. Update to absolute value. */
9717 set_symbol_value (input_bfd, isymbuf, locsymcount,
9718 r_symndx, val);
9719 continue;
9720 }
9721
9722 if (action_discarded != -1 && ps != NULL)
9723 {
9724 /* Complain if the definition comes from a
9725 discarded section. */
9726 if ((sec = *ps) != NULL && discarded_section (sec))
9727 {
9728 BFD_ASSERT (r_symndx != STN_UNDEF);
9729 if (action_discarded & COMPLAIN)
9730 (*flinfo->info->callbacks->einfo)
9731 (_("%X`%s' referenced in section `%A' of %B: "
9732 "defined in discarded section `%A' of %B\n"),
9733 sym_name, o, input_bfd, sec, sec->owner);
9734
9735 /* Try to do the best we can to support buggy old
9736 versions of gcc. Pretend that the symbol is
9737 really defined in the kept linkonce section.
9738 FIXME: This is quite broken. Modifying the
9739 symbol here means we will be changing all later
9740 uses of the symbol, not just in this section. */
9741 if (action_discarded & PRETEND)
9742 {
9743 asection *kept;
9744
9745 kept = _bfd_elf_check_kept_section (sec,
9746 flinfo->info);
9747 if (kept != NULL)
9748 {
9749 *ps = kept;
9750 continue;
9751 }
9752 }
9753 }
9754 }
9755 }
9756
9757 /* Relocate the section by invoking a back end routine.
9758
9759 The back end routine is responsible for adjusting the
9760 section contents as necessary, and (if using Rela relocs
9761 and generating a relocatable output file) adjusting the
9762 reloc addend as necessary.
9763
9764 The back end routine does not have to worry about setting
9765 the reloc address or the reloc symbol index.
9766
9767 The back end routine is given a pointer to the swapped in
9768 internal symbols, and can access the hash table entries
9769 for the external symbols via elf_sym_hashes (input_bfd).
9770
9771 When generating relocatable output, the back end routine
9772 must handle STB_LOCAL/STT_SECTION symbols specially. The
9773 output symbol is going to be a section symbol
9774 corresponding to the output section, which will require
9775 the addend to be adjusted. */
9776
9777 ret = (*relocate_section) (output_bfd, flinfo->info,
9778 input_bfd, o, contents,
9779 internal_relocs,
9780 isymbuf,
9781 flinfo->sections);
9782 if (!ret)
9783 return FALSE;
9784
9785 if (ret == 2
9786 || flinfo->info->relocatable
9787 || flinfo->info->emitrelocations)
9788 {
9789 Elf_Internal_Rela *irela;
9790 Elf_Internal_Rela *irelaend, *irelamid;
9791 bfd_vma last_offset;
9792 struct elf_link_hash_entry **rel_hash;
9793 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9794 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9795 unsigned int next_erel;
9796 bfd_boolean rela_normal;
9797 struct bfd_elf_section_data *esdi, *esdo;
9798
9799 esdi = elf_section_data (o);
9800 esdo = elf_section_data (o->output_section);
9801 rela_normal = FALSE;
9802
9803 /* Adjust the reloc addresses and symbol indices. */
9804
9805 irela = internal_relocs;
9806 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9807 rel_hash = esdo->rel.hashes + esdo->rel.count;
9808 /* We start processing the REL relocs, if any. When we reach
9809 IRELAMID in the loop, we switch to the RELA relocs. */
9810 irelamid = irela;
9811 if (esdi->rel.hdr != NULL)
9812 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9813 * bed->s->int_rels_per_ext_rel);
9814 rel_hash_list = rel_hash;
9815 rela_hash_list = NULL;
9816 last_offset = o->output_offset;
9817 if (!flinfo->info->relocatable)
9818 last_offset += o->output_section->vma;
9819 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9820 {
9821 unsigned long r_symndx;
9822 asection *sec;
9823 Elf_Internal_Sym sym;
9824
9825 if (next_erel == bed->s->int_rels_per_ext_rel)
9826 {
9827 rel_hash++;
9828 next_erel = 0;
9829 }
9830
9831 if (irela == irelamid)
9832 {
9833 rel_hash = esdo->rela.hashes + esdo->rela.count;
9834 rela_hash_list = rel_hash;
9835 rela_normal = bed->rela_normal;
9836 }
9837
9838 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9839 flinfo->info, o,
9840 irela->r_offset);
9841 if (irela->r_offset >= (bfd_vma) -2)
9842 {
9843 /* This is a reloc for a deleted entry or somesuch.
9844 Turn it into an R_*_NONE reloc, at the same
9845 offset as the last reloc. elf_eh_frame.c and
9846 bfd_elf_discard_info rely on reloc offsets
9847 being ordered. */
9848 irela->r_offset = last_offset;
9849 irela->r_info = 0;
9850 irela->r_addend = 0;
9851 continue;
9852 }
9853
9854 irela->r_offset += o->output_offset;
9855
9856 /* Relocs in an executable have to be virtual addresses. */
9857 if (!flinfo->info->relocatable)
9858 irela->r_offset += o->output_section->vma;
9859
9860 last_offset = irela->r_offset;
9861
9862 r_symndx = irela->r_info >> r_sym_shift;
9863 if (r_symndx == STN_UNDEF)
9864 continue;
9865
9866 if (r_symndx >= locsymcount
9867 || (elf_bad_symtab (input_bfd)
9868 && flinfo->sections[r_symndx] == NULL))
9869 {
9870 struct elf_link_hash_entry *rh;
9871 unsigned long indx;
9872
9873 /* This is a reloc against a global symbol. We
9874 have not yet output all the local symbols, so
9875 we do not know the symbol index of any global
9876 symbol. We set the rel_hash entry for this
9877 reloc to point to the global hash table entry
9878 for this symbol. The symbol index is then
9879 set at the end of bfd_elf_final_link. */
9880 indx = r_symndx - extsymoff;
9881 rh = elf_sym_hashes (input_bfd)[indx];
9882 while (rh->root.type == bfd_link_hash_indirect
9883 || rh->root.type == bfd_link_hash_warning)
9884 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9885
9886 /* Setting the index to -2 tells
9887 elf_link_output_extsym that this symbol is
9888 used by a reloc. */
9889 BFD_ASSERT (rh->indx < 0);
9890 rh->indx = -2;
9891
9892 *rel_hash = rh;
9893
9894 continue;
9895 }
9896
9897 /* This is a reloc against a local symbol. */
9898
9899 *rel_hash = NULL;
9900 sym = isymbuf[r_symndx];
9901 sec = flinfo->sections[r_symndx];
9902 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9903 {
9904 /* I suppose the backend ought to fill in the
9905 section of any STT_SECTION symbol against a
9906 processor specific section. */
9907 r_symndx = STN_UNDEF;
9908 if (bfd_is_abs_section (sec))
9909 ;
9910 else if (sec == NULL || sec->owner == NULL)
9911 {
9912 bfd_set_error (bfd_error_bad_value);
9913 return FALSE;
9914 }
9915 else
9916 {
9917 asection *osec = sec->output_section;
9918
9919 /* If we have discarded a section, the output
9920 section will be the absolute section. In
9921 case of discarded SEC_MERGE sections, use
9922 the kept section. relocate_section should
9923 have already handled discarded linkonce
9924 sections. */
9925 if (bfd_is_abs_section (osec)
9926 && sec->kept_section != NULL
9927 && sec->kept_section->output_section != NULL)
9928 {
9929 osec = sec->kept_section->output_section;
9930 irela->r_addend -= osec->vma;
9931 }
9932
9933 if (!bfd_is_abs_section (osec))
9934 {
9935 r_symndx = osec->target_index;
9936 if (r_symndx == STN_UNDEF)
9937 {
9938 irela->r_addend += osec->vma;
9939 osec = _bfd_nearby_section (output_bfd, osec,
9940 osec->vma);
9941 irela->r_addend -= osec->vma;
9942 r_symndx = osec->target_index;
9943 }
9944 }
9945 }
9946
9947 /* Adjust the addend according to where the
9948 section winds up in the output section. */
9949 if (rela_normal)
9950 irela->r_addend += sec->output_offset;
9951 }
9952 else
9953 {
9954 if (flinfo->indices[r_symndx] == -1)
9955 {
9956 unsigned long shlink;
9957 const char *name;
9958 asection *osec;
9959 long indx;
9960
9961 if (flinfo->info->strip == strip_all)
9962 {
9963 /* You can't do ld -r -s. */
9964 bfd_set_error (bfd_error_invalid_operation);
9965 return FALSE;
9966 }
9967
9968 /* This symbol was skipped earlier, but
9969 since it is needed by a reloc, we
9970 must output it now. */
9971 shlink = symtab_hdr->sh_link;
9972 name = (bfd_elf_string_from_elf_section
9973 (input_bfd, shlink, sym.st_name));
9974 if (name == NULL)
9975 return FALSE;
9976
9977 osec = sec->output_section;
9978 sym.st_shndx =
9979 _bfd_elf_section_from_bfd_section (output_bfd,
9980 osec);
9981 if (sym.st_shndx == SHN_BAD)
9982 return FALSE;
9983
9984 sym.st_value += sec->output_offset;
9985 if (!flinfo->info->relocatable)
9986 {
9987 sym.st_value += osec->vma;
9988 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9989 {
9990 /* STT_TLS symbols are relative to PT_TLS
9991 segment base. */
9992 BFD_ASSERT (elf_hash_table (flinfo->info)
9993 ->tls_sec != NULL);
9994 sym.st_value -= (elf_hash_table (flinfo->info)
9995 ->tls_sec->vma);
9996 }
9997 }
9998
9999 indx = bfd_get_symcount (output_bfd);
10000 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10001 NULL);
10002 if (ret == 0)
10003 return FALSE;
10004 else if (ret == 1)
10005 flinfo->indices[r_symndx] = indx;
10006 else
10007 abort ();
10008 }
10009
10010 r_symndx = flinfo->indices[r_symndx];
10011 }
10012
10013 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10014 | (irela->r_info & r_type_mask));
10015 }
10016
10017 /* Swap out the relocs. */
10018 input_rel_hdr = esdi->rel.hdr;
10019 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10020 {
10021 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10022 input_rel_hdr,
10023 internal_relocs,
10024 rel_hash_list))
10025 return FALSE;
10026 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10027 * bed->s->int_rels_per_ext_rel);
10028 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10029 }
10030
10031 input_rela_hdr = esdi->rela.hdr;
10032 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10033 {
10034 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10035 input_rela_hdr,
10036 internal_relocs,
10037 rela_hash_list))
10038 return FALSE;
10039 }
10040 }
10041 }
10042
10043 /* Write out the modified section contents. */
10044 if (bed->elf_backend_write_section
10045 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10046 contents))
10047 {
10048 /* Section written out. */
10049 }
10050 else switch (o->sec_info_type)
10051 {
10052 case SEC_INFO_TYPE_STABS:
10053 if (! (_bfd_write_section_stabs
10054 (output_bfd,
10055 &elf_hash_table (flinfo->info)->stab_info,
10056 o, &elf_section_data (o)->sec_info, contents)))
10057 return FALSE;
10058 break;
10059 case SEC_INFO_TYPE_MERGE:
10060 if (! _bfd_write_merged_section (output_bfd, o,
10061 elf_section_data (o)->sec_info))
10062 return FALSE;
10063 break;
10064 case SEC_INFO_TYPE_EH_FRAME:
10065 {
10066 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10067 o, contents))
10068 return FALSE;
10069 }
10070 break;
10071 default:
10072 {
10073 /* FIXME: octets_per_byte. */
10074 if (! (o->flags & SEC_EXCLUDE))
10075 {
10076 file_ptr offset = (file_ptr) o->output_offset;
10077 bfd_size_type todo = o->size;
10078 if ((o->flags & SEC_ELF_REVERSE_COPY))
10079 {
10080 /* Reverse-copy input section to output. */
10081 do
10082 {
10083 todo -= address_size;
10084 if (! bfd_set_section_contents (output_bfd,
10085 o->output_section,
10086 contents + todo,
10087 offset,
10088 address_size))
10089 return FALSE;
10090 if (todo == 0)
10091 break;
10092 offset += address_size;
10093 }
10094 while (1);
10095 }
10096 else if (! bfd_set_section_contents (output_bfd,
10097 o->output_section,
10098 contents,
10099 offset, todo))
10100 return FALSE;
10101 }
10102 }
10103 break;
10104 }
10105 }
10106
10107 return TRUE;
10108 }
10109
10110 /* Generate a reloc when linking an ELF file. This is a reloc
10111 requested by the linker, and does not come from any input file. This
10112 is used to build constructor and destructor tables when linking
10113 with -Ur. */
10114
10115 static bfd_boolean
10116 elf_reloc_link_order (bfd *output_bfd,
10117 struct bfd_link_info *info,
10118 asection *output_section,
10119 struct bfd_link_order *link_order)
10120 {
10121 reloc_howto_type *howto;
10122 long indx;
10123 bfd_vma offset;
10124 bfd_vma addend;
10125 struct bfd_elf_section_reloc_data *reldata;
10126 struct elf_link_hash_entry **rel_hash_ptr;
10127 Elf_Internal_Shdr *rel_hdr;
10128 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10129 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10130 bfd_byte *erel;
10131 unsigned int i;
10132 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10133
10134 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10135 if (howto == NULL)
10136 {
10137 bfd_set_error (bfd_error_bad_value);
10138 return FALSE;
10139 }
10140
10141 addend = link_order->u.reloc.p->addend;
10142
10143 if (esdo->rel.hdr)
10144 reldata = &esdo->rel;
10145 else if (esdo->rela.hdr)
10146 reldata = &esdo->rela;
10147 else
10148 {
10149 reldata = NULL;
10150 BFD_ASSERT (0);
10151 }
10152
10153 /* Figure out the symbol index. */
10154 rel_hash_ptr = reldata->hashes + reldata->count;
10155 if (link_order->type == bfd_section_reloc_link_order)
10156 {
10157 indx = link_order->u.reloc.p->u.section->target_index;
10158 BFD_ASSERT (indx != 0);
10159 *rel_hash_ptr = NULL;
10160 }
10161 else
10162 {
10163 struct elf_link_hash_entry *h;
10164
10165 /* Treat a reloc against a defined symbol as though it were
10166 actually against the section. */
10167 h = ((struct elf_link_hash_entry *)
10168 bfd_wrapped_link_hash_lookup (output_bfd, info,
10169 link_order->u.reloc.p->u.name,
10170 FALSE, FALSE, TRUE));
10171 if (h != NULL
10172 && (h->root.type == bfd_link_hash_defined
10173 || h->root.type == bfd_link_hash_defweak))
10174 {
10175 asection *section;
10176
10177 section = h->root.u.def.section;
10178 indx = section->output_section->target_index;
10179 *rel_hash_ptr = NULL;
10180 /* It seems that we ought to add the symbol value to the
10181 addend here, but in practice it has already been added
10182 because it was passed to constructor_callback. */
10183 addend += section->output_section->vma + section->output_offset;
10184 }
10185 else if (h != NULL)
10186 {
10187 /* Setting the index to -2 tells elf_link_output_extsym that
10188 this symbol is used by a reloc. */
10189 h->indx = -2;
10190 *rel_hash_ptr = h;
10191 indx = 0;
10192 }
10193 else
10194 {
10195 if (! ((*info->callbacks->unattached_reloc)
10196 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10197 return FALSE;
10198 indx = 0;
10199 }
10200 }
10201
10202 /* If this is an inplace reloc, we must write the addend into the
10203 object file. */
10204 if (howto->partial_inplace && addend != 0)
10205 {
10206 bfd_size_type size;
10207 bfd_reloc_status_type rstat;
10208 bfd_byte *buf;
10209 bfd_boolean ok;
10210 const char *sym_name;
10211
10212 size = (bfd_size_type) bfd_get_reloc_size (howto);
10213 buf = (bfd_byte *) bfd_zmalloc (size);
10214 if (buf == NULL)
10215 return FALSE;
10216 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10217 switch (rstat)
10218 {
10219 case bfd_reloc_ok:
10220 break;
10221
10222 default:
10223 case bfd_reloc_outofrange:
10224 abort ();
10225
10226 case bfd_reloc_overflow:
10227 if (link_order->type == bfd_section_reloc_link_order)
10228 sym_name = bfd_section_name (output_bfd,
10229 link_order->u.reloc.p->u.section);
10230 else
10231 sym_name = link_order->u.reloc.p->u.name;
10232 if (! ((*info->callbacks->reloc_overflow)
10233 (info, NULL, sym_name, howto->name, addend, NULL,
10234 NULL, (bfd_vma) 0)))
10235 {
10236 free (buf);
10237 return FALSE;
10238 }
10239 break;
10240 }
10241 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10242 link_order->offset, size);
10243 free (buf);
10244 if (! ok)
10245 return FALSE;
10246 }
10247
10248 /* The address of a reloc is relative to the section in a
10249 relocatable file, and is a virtual address in an executable
10250 file. */
10251 offset = link_order->offset;
10252 if (! info->relocatable)
10253 offset += output_section->vma;
10254
10255 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10256 {
10257 irel[i].r_offset = offset;
10258 irel[i].r_info = 0;
10259 irel[i].r_addend = 0;
10260 }
10261 if (bed->s->arch_size == 32)
10262 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10263 else
10264 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10265
10266 rel_hdr = reldata->hdr;
10267 erel = rel_hdr->contents;
10268 if (rel_hdr->sh_type == SHT_REL)
10269 {
10270 erel += reldata->count * bed->s->sizeof_rel;
10271 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10272 }
10273 else
10274 {
10275 irel[0].r_addend = addend;
10276 erel += reldata->count * bed->s->sizeof_rela;
10277 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10278 }
10279
10280 ++reldata->count;
10281
10282 return TRUE;
10283 }
10284
10285
10286 /* Get the output vma of the section pointed to by the sh_link field. */
10287
10288 static bfd_vma
10289 elf_get_linked_section_vma (struct bfd_link_order *p)
10290 {
10291 Elf_Internal_Shdr **elf_shdrp;
10292 asection *s;
10293 int elfsec;
10294
10295 s = p->u.indirect.section;
10296 elf_shdrp = elf_elfsections (s->owner);
10297 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10298 elfsec = elf_shdrp[elfsec]->sh_link;
10299 /* PR 290:
10300 The Intel C compiler generates SHT_IA_64_UNWIND with
10301 SHF_LINK_ORDER. But it doesn't set the sh_link or
10302 sh_info fields. Hence we could get the situation
10303 where elfsec is 0. */
10304 if (elfsec == 0)
10305 {
10306 const struct elf_backend_data *bed
10307 = get_elf_backend_data (s->owner);
10308 if (bed->link_order_error_handler)
10309 bed->link_order_error_handler
10310 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10311 return 0;
10312 }
10313 else
10314 {
10315 s = elf_shdrp[elfsec]->bfd_section;
10316 return s->output_section->vma + s->output_offset;
10317 }
10318 }
10319
10320
10321 /* Compare two sections based on the locations of the sections they are
10322 linked to. Used by elf_fixup_link_order. */
10323
10324 static int
10325 compare_link_order (const void * a, const void * b)
10326 {
10327 bfd_vma apos;
10328 bfd_vma bpos;
10329
10330 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10331 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10332 if (apos < bpos)
10333 return -1;
10334 return apos > bpos;
10335 }
10336
10337
10338 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10339 order as their linked sections. Returns false if this could not be done
10340 because an output section includes both ordered and unordered
10341 sections. Ideally we'd do this in the linker proper. */
10342
10343 static bfd_boolean
10344 elf_fixup_link_order (bfd *abfd, asection *o)
10345 {
10346 int seen_linkorder;
10347 int seen_other;
10348 int n;
10349 struct bfd_link_order *p;
10350 bfd *sub;
10351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10352 unsigned elfsec;
10353 struct bfd_link_order **sections;
10354 asection *s, *other_sec, *linkorder_sec;
10355 bfd_vma offset;
10356
10357 other_sec = NULL;
10358 linkorder_sec = NULL;
10359 seen_other = 0;
10360 seen_linkorder = 0;
10361 for (p = o->map_head.link_order; p != NULL; p = p->next)
10362 {
10363 if (p->type == bfd_indirect_link_order)
10364 {
10365 s = p->u.indirect.section;
10366 sub = s->owner;
10367 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10368 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10369 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10370 && elfsec < elf_numsections (sub)
10371 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10372 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10373 {
10374 seen_linkorder++;
10375 linkorder_sec = s;
10376 }
10377 else
10378 {
10379 seen_other++;
10380 other_sec = s;
10381 }
10382 }
10383 else
10384 seen_other++;
10385
10386 if (seen_other && seen_linkorder)
10387 {
10388 if (other_sec && linkorder_sec)
10389 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10390 o, linkorder_sec,
10391 linkorder_sec->owner, other_sec,
10392 other_sec->owner);
10393 else
10394 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10395 o);
10396 bfd_set_error (bfd_error_bad_value);
10397 return FALSE;
10398 }
10399 }
10400
10401 if (!seen_linkorder)
10402 return TRUE;
10403
10404 sections = (struct bfd_link_order **)
10405 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10406 if (sections == NULL)
10407 return FALSE;
10408 seen_linkorder = 0;
10409
10410 for (p = o->map_head.link_order; p != NULL; p = p->next)
10411 {
10412 sections[seen_linkorder++] = p;
10413 }
10414 /* Sort the input sections in the order of their linked section. */
10415 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10416 compare_link_order);
10417
10418 /* Change the offsets of the sections. */
10419 offset = 0;
10420 for (n = 0; n < seen_linkorder; n++)
10421 {
10422 s = sections[n]->u.indirect.section;
10423 offset &= ~(bfd_vma) 0 << s->alignment_power;
10424 s->output_offset = offset;
10425 sections[n]->offset = offset;
10426 /* FIXME: octets_per_byte. */
10427 offset += sections[n]->size;
10428 }
10429
10430 free (sections);
10431 return TRUE;
10432 }
10433
10434
10435 /* Do the final step of an ELF link. */
10436
10437 bfd_boolean
10438 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10439 {
10440 bfd_boolean dynamic;
10441 bfd_boolean emit_relocs;
10442 bfd *dynobj;
10443 struct elf_final_link_info flinfo;
10444 asection *o;
10445 struct bfd_link_order *p;
10446 bfd *sub;
10447 bfd_size_type max_contents_size;
10448 bfd_size_type max_external_reloc_size;
10449 bfd_size_type max_internal_reloc_count;
10450 bfd_size_type max_sym_count;
10451 bfd_size_type max_sym_shndx_count;
10452 file_ptr off;
10453 Elf_Internal_Sym elfsym;
10454 unsigned int i;
10455 Elf_Internal_Shdr *symtab_hdr;
10456 Elf_Internal_Shdr *symtab_shndx_hdr;
10457 Elf_Internal_Shdr *symstrtab_hdr;
10458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10459 struct elf_outext_info eoinfo;
10460 bfd_boolean merged;
10461 size_t relativecount = 0;
10462 asection *reldyn = 0;
10463 bfd_size_type amt;
10464 asection *attr_section = NULL;
10465 bfd_vma attr_size = 0;
10466 const char *std_attrs_section;
10467
10468 if (! is_elf_hash_table (info->hash))
10469 return FALSE;
10470
10471 if (info->shared)
10472 abfd->flags |= DYNAMIC;
10473
10474 dynamic = elf_hash_table (info)->dynamic_sections_created;
10475 dynobj = elf_hash_table (info)->dynobj;
10476
10477 emit_relocs = (info->relocatable
10478 || info->emitrelocations);
10479
10480 flinfo.info = info;
10481 flinfo.output_bfd = abfd;
10482 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10483 if (flinfo.symstrtab == NULL)
10484 return FALSE;
10485
10486 if (! dynamic)
10487 {
10488 flinfo.dynsym_sec = NULL;
10489 flinfo.hash_sec = NULL;
10490 flinfo.symver_sec = NULL;
10491 }
10492 else
10493 {
10494 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10495 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10496 /* Note that dynsym_sec can be NULL (on VMS). */
10497 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10498 /* Note that it is OK if symver_sec is NULL. */
10499 }
10500
10501 flinfo.contents = NULL;
10502 flinfo.external_relocs = NULL;
10503 flinfo.internal_relocs = NULL;
10504 flinfo.external_syms = NULL;
10505 flinfo.locsym_shndx = NULL;
10506 flinfo.internal_syms = NULL;
10507 flinfo.indices = NULL;
10508 flinfo.sections = NULL;
10509 flinfo.symbuf = NULL;
10510 flinfo.symshndxbuf = NULL;
10511 flinfo.symbuf_count = 0;
10512 flinfo.shndxbuf_size = 0;
10513 flinfo.filesym_count = 0;
10514
10515 /* The object attributes have been merged. Remove the input
10516 sections from the link, and set the contents of the output
10517 secton. */
10518 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10519 for (o = abfd->sections; o != NULL; o = o->next)
10520 {
10521 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10522 || strcmp (o->name, ".gnu.attributes") == 0)
10523 {
10524 for (p = o->map_head.link_order; p != NULL; p = p->next)
10525 {
10526 asection *input_section;
10527
10528 if (p->type != bfd_indirect_link_order)
10529 continue;
10530 input_section = p->u.indirect.section;
10531 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10532 elf_link_input_bfd ignores this section. */
10533 input_section->flags &= ~SEC_HAS_CONTENTS;
10534 }
10535
10536 attr_size = bfd_elf_obj_attr_size (abfd);
10537 if (attr_size)
10538 {
10539 bfd_set_section_size (abfd, o, attr_size);
10540 attr_section = o;
10541 /* Skip this section later on. */
10542 o->map_head.link_order = NULL;
10543 }
10544 else
10545 o->flags |= SEC_EXCLUDE;
10546 }
10547 }
10548
10549 /* Count up the number of relocations we will output for each output
10550 section, so that we know the sizes of the reloc sections. We
10551 also figure out some maximum sizes. */
10552 max_contents_size = 0;
10553 max_external_reloc_size = 0;
10554 max_internal_reloc_count = 0;
10555 max_sym_count = 0;
10556 max_sym_shndx_count = 0;
10557 merged = FALSE;
10558 for (o = abfd->sections; o != NULL; o = o->next)
10559 {
10560 struct bfd_elf_section_data *esdo = elf_section_data (o);
10561 o->reloc_count = 0;
10562
10563 for (p = o->map_head.link_order; p != NULL; p = p->next)
10564 {
10565 unsigned int reloc_count = 0;
10566 struct bfd_elf_section_data *esdi = NULL;
10567
10568 if (p->type == bfd_section_reloc_link_order
10569 || p->type == bfd_symbol_reloc_link_order)
10570 reloc_count = 1;
10571 else if (p->type == bfd_indirect_link_order)
10572 {
10573 asection *sec;
10574
10575 sec = p->u.indirect.section;
10576 esdi = elf_section_data (sec);
10577
10578 /* Mark all sections which are to be included in the
10579 link. This will normally be every section. We need
10580 to do this so that we can identify any sections which
10581 the linker has decided to not include. */
10582 sec->linker_mark = TRUE;
10583
10584 if (sec->flags & SEC_MERGE)
10585 merged = TRUE;
10586
10587 if (esdo->this_hdr.sh_type == SHT_REL
10588 || esdo->this_hdr.sh_type == SHT_RELA)
10589 /* Some backends use reloc_count in relocation sections
10590 to count particular types of relocs. Of course,
10591 reloc sections themselves can't have relocations. */
10592 reloc_count = 0;
10593 else if (info->relocatable || info->emitrelocations)
10594 reloc_count = sec->reloc_count;
10595 else if (bed->elf_backend_count_relocs)
10596 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10597
10598 if (sec->rawsize > max_contents_size)
10599 max_contents_size = sec->rawsize;
10600 if (sec->size > max_contents_size)
10601 max_contents_size = sec->size;
10602
10603 /* We are interested in just local symbols, not all
10604 symbols. */
10605 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10606 && (sec->owner->flags & DYNAMIC) == 0)
10607 {
10608 size_t sym_count;
10609
10610 if (elf_bad_symtab (sec->owner))
10611 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10612 / bed->s->sizeof_sym);
10613 else
10614 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10615
10616 if (sym_count > max_sym_count)
10617 max_sym_count = sym_count;
10618
10619 if (sym_count > max_sym_shndx_count
10620 && elf_symtab_shndx (sec->owner) != 0)
10621 max_sym_shndx_count = sym_count;
10622
10623 if ((sec->flags & SEC_RELOC) != 0)
10624 {
10625 size_t ext_size = 0;
10626
10627 if (esdi->rel.hdr != NULL)
10628 ext_size = esdi->rel.hdr->sh_size;
10629 if (esdi->rela.hdr != NULL)
10630 ext_size += esdi->rela.hdr->sh_size;
10631
10632 if (ext_size > max_external_reloc_size)
10633 max_external_reloc_size = ext_size;
10634 if (sec->reloc_count > max_internal_reloc_count)
10635 max_internal_reloc_count = sec->reloc_count;
10636 }
10637 }
10638 }
10639
10640 if (reloc_count == 0)
10641 continue;
10642
10643 o->reloc_count += reloc_count;
10644
10645 if (p->type == bfd_indirect_link_order
10646 && (info->relocatable || info->emitrelocations))
10647 {
10648 if (esdi->rel.hdr)
10649 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10650 if (esdi->rela.hdr)
10651 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10652 }
10653 else
10654 {
10655 if (o->use_rela_p)
10656 esdo->rela.count += reloc_count;
10657 else
10658 esdo->rel.count += reloc_count;
10659 }
10660 }
10661
10662 if (o->reloc_count > 0)
10663 o->flags |= SEC_RELOC;
10664 else
10665 {
10666 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10667 set it (this is probably a bug) and if it is set
10668 assign_section_numbers will create a reloc section. */
10669 o->flags &=~ SEC_RELOC;
10670 }
10671
10672 /* If the SEC_ALLOC flag is not set, force the section VMA to
10673 zero. This is done in elf_fake_sections as well, but forcing
10674 the VMA to 0 here will ensure that relocs against these
10675 sections are handled correctly. */
10676 if ((o->flags & SEC_ALLOC) == 0
10677 && ! o->user_set_vma)
10678 o->vma = 0;
10679 }
10680
10681 if (! info->relocatable && merged)
10682 elf_link_hash_traverse (elf_hash_table (info),
10683 _bfd_elf_link_sec_merge_syms, abfd);
10684
10685 /* Figure out the file positions for everything but the symbol table
10686 and the relocs. We set symcount to force assign_section_numbers
10687 to create a symbol table. */
10688 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10689 BFD_ASSERT (! abfd->output_has_begun);
10690 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10691 goto error_return;
10692
10693 /* Set sizes, and assign file positions for reloc sections. */
10694 for (o = abfd->sections; o != NULL; o = o->next)
10695 {
10696 struct bfd_elf_section_data *esdo = elf_section_data (o);
10697 if ((o->flags & SEC_RELOC) != 0)
10698 {
10699 if (esdo->rel.hdr
10700 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10701 goto error_return;
10702
10703 if (esdo->rela.hdr
10704 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10705 goto error_return;
10706 }
10707
10708 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10709 to count upwards while actually outputting the relocations. */
10710 esdo->rel.count = 0;
10711 esdo->rela.count = 0;
10712 }
10713
10714 _bfd_elf_assign_file_positions_for_relocs (abfd);
10715
10716 /* We have now assigned file positions for all the sections except
10717 .symtab and .strtab. We start the .symtab section at the current
10718 file position, and write directly to it. We build the .strtab
10719 section in memory. */
10720 bfd_get_symcount (abfd) = 0;
10721 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10722 /* sh_name is set in prep_headers. */
10723 symtab_hdr->sh_type = SHT_SYMTAB;
10724 /* sh_flags, sh_addr and sh_size all start off zero. */
10725 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10726 /* sh_link is set in assign_section_numbers. */
10727 /* sh_info is set below. */
10728 /* sh_offset is set just below. */
10729 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10730
10731 off = elf_tdata (abfd)->next_file_pos;
10732 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10733
10734 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10735 incorrect. We do not yet know the size of the .symtab section.
10736 We correct next_file_pos below, after we do know the size. */
10737
10738 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10739 continuously seeking to the right position in the file. */
10740 if (! info->keep_memory || max_sym_count < 20)
10741 flinfo.symbuf_size = 20;
10742 else
10743 flinfo.symbuf_size = max_sym_count;
10744 amt = flinfo.symbuf_size;
10745 amt *= bed->s->sizeof_sym;
10746 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10747 if (flinfo.symbuf == NULL)
10748 goto error_return;
10749 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10750 {
10751 /* Wild guess at number of output symbols. realloc'd as needed. */
10752 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10753 flinfo.shndxbuf_size = amt;
10754 amt *= sizeof (Elf_External_Sym_Shndx);
10755 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10756 if (flinfo.symshndxbuf == NULL)
10757 goto error_return;
10758 }
10759
10760 /* Start writing out the symbol table. The first symbol is always a
10761 dummy symbol. */
10762 if (info->strip != strip_all
10763 || emit_relocs)
10764 {
10765 elfsym.st_value = 0;
10766 elfsym.st_size = 0;
10767 elfsym.st_info = 0;
10768 elfsym.st_other = 0;
10769 elfsym.st_shndx = SHN_UNDEF;
10770 elfsym.st_target_internal = 0;
10771 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10772 NULL) != 1)
10773 goto error_return;
10774 }
10775
10776 /* Output a symbol for each section. We output these even if we are
10777 discarding local symbols, since they are used for relocs. These
10778 symbols have no names. We store the index of each one in the
10779 index field of the section, so that we can find it again when
10780 outputting relocs. */
10781 if (info->strip != strip_all
10782 || emit_relocs)
10783 {
10784 elfsym.st_size = 0;
10785 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10786 elfsym.st_other = 0;
10787 elfsym.st_value = 0;
10788 elfsym.st_target_internal = 0;
10789 for (i = 1; i < elf_numsections (abfd); i++)
10790 {
10791 o = bfd_section_from_elf_index (abfd, i);
10792 if (o != NULL)
10793 {
10794 o->target_index = bfd_get_symcount (abfd);
10795 elfsym.st_shndx = i;
10796 if (!info->relocatable)
10797 elfsym.st_value = o->vma;
10798 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10799 goto error_return;
10800 }
10801 }
10802 }
10803
10804 /* Allocate some memory to hold information read in from the input
10805 files. */
10806 if (max_contents_size != 0)
10807 {
10808 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10809 if (flinfo.contents == NULL)
10810 goto error_return;
10811 }
10812
10813 if (max_external_reloc_size != 0)
10814 {
10815 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10816 if (flinfo.external_relocs == NULL)
10817 goto error_return;
10818 }
10819
10820 if (max_internal_reloc_count != 0)
10821 {
10822 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10823 amt *= sizeof (Elf_Internal_Rela);
10824 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10825 if (flinfo.internal_relocs == NULL)
10826 goto error_return;
10827 }
10828
10829 if (max_sym_count != 0)
10830 {
10831 amt = max_sym_count * bed->s->sizeof_sym;
10832 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10833 if (flinfo.external_syms == NULL)
10834 goto error_return;
10835
10836 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10837 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10838 if (flinfo.internal_syms == NULL)
10839 goto error_return;
10840
10841 amt = max_sym_count * sizeof (long);
10842 flinfo.indices = (long int *) bfd_malloc (amt);
10843 if (flinfo.indices == NULL)
10844 goto error_return;
10845
10846 amt = max_sym_count * sizeof (asection *);
10847 flinfo.sections = (asection **) bfd_malloc (amt);
10848 if (flinfo.sections == NULL)
10849 goto error_return;
10850 }
10851
10852 if (max_sym_shndx_count != 0)
10853 {
10854 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10855 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10856 if (flinfo.locsym_shndx == NULL)
10857 goto error_return;
10858 }
10859
10860 if (elf_hash_table (info)->tls_sec)
10861 {
10862 bfd_vma base, end = 0;
10863 asection *sec;
10864
10865 for (sec = elf_hash_table (info)->tls_sec;
10866 sec && (sec->flags & SEC_THREAD_LOCAL);
10867 sec = sec->next)
10868 {
10869 bfd_size_type size = sec->size;
10870
10871 if (size == 0
10872 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10873 {
10874 struct bfd_link_order *ord = sec->map_tail.link_order;
10875
10876 if (ord != NULL)
10877 size = ord->offset + ord->size;
10878 }
10879 end = sec->vma + size;
10880 }
10881 base = elf_hash_table (info)->tls_sec->vma;
10882 /* Only align end of TLS section if static TLS doesn't have special
10883 alignment requirements. */
10884 if (bed->static_tls_alignment == 1)
10885 end = align_power (end,
10886 elf_hash_table (info)->tls_sec->alignment_power);
10887 elf_hash_table (info)->tls_size = end - base;
10888 }
10889
10890 /* Reorder SHF_LINK_ORDER sections. */
10891 for (o = abfd->sections; o != NULL; o = o->next)
10892 {
10893 if (!elf_fixup_link_order (abfd, o))
10894 return FALSE;
10895 }
10896
10897 /* Since ELF permits relocations to be against local symbols, we
10898 must have the local symbols available when we do the relocations.
10899 Since we would rather only read the local symbols once, and we
10900 would rather not keep them in memory, we handle all the
10901 relocations for a single input file at the same time.
10902
10903 Unfortunately, there is no way to know the total number of local
10904 symbols until we have seen all of them, and the local symbol
10905 indices precede the global symbol indices. This means that when
10906 we are generating relocatable output, and we see a reloc against
10907 a global symbol, we can not know the symbol index until we have
10908 finished examining all the local symbols to see which ones we are
10909 going to output. To deal with this, we keep the relocations in
10910 memory, and don't output them until the end of the link. This is
10911 an unfortunate waste of memory, but I don't see a good way around
10912 it. Fortunately, it only happens when performing a relocatable
10913 link, which is not the common case. FIXME: If keep_memory is set
10914 we could write the relocs out and then read them again; I don't
10915 know how bad the memory loss will be. */
10916
10917 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10918 sub->output_has_begun = FALSE;
10919 for (o = abfd->sections; o != NULL; o = o->next)
10920 {
10921 for (p = o->map_head.link_order; p != NULL; p = p->next)
10922 {
10923 if (p->type == bfd_indirect_link_order
10924 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10925 == bfd_target_elf_flavour)
10926 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10927 {
10928 if (! sub->output_has_begun)
10929 {
10930 if (! elf_link_input_bfd (&flinfo, sub))
10931 goto error_return;
10932 sub->output_has_begun = TRUE;
10933 }
10934 }
10935 else if (p->type == bfd_section_reloc_link_order
10936 || p->type == bfd_symbol_reloc_link_order)
10937 {
10938 if (! elf_reloc_link_order (abfd, info, o, p))
10939 goto error_return;
10940 }
10941 else
10942 {
10943 if (! _bfd_default_link_order (abfd, info, o, p))
10944 {
10945 if (p->type == bfd_indirect_link_order
10946 && (bfd_get_flavour (sub)
10947 == bfd_target_elf_flavour)
10948 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10949 != bed->s->elfclass))
10950 {
10951 const char *iclass, *oclass;
10952
10953 if (bed->s->elfclass == ELFCLASS64)
10954 {
10955 iclass = "ELFCLASS32";
10956 oclass = "ELFCLASS64";
10957 }
10958 else
10959 {
10960 iclass = "ELFCLASS64";
10961 oclass = "ELFCLASS32";
10962 }
10963
10964 bfd_set_error (bfd_error_wrong_format);
10965 (*_bfd_error_handler)
10966 (_("%B: file class %s incompatible with %s"),
10967 sub, iclass, oclass);
10968 }
10969
10970 goto error_return;
10971 }
10972 }
10973 }
10974 }
10975
10976 /* Free symbol buffer if needed. */
10977 if (!info->reduce_memory_overheads)
10978 {
10979 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10980 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10981 && elf_tdata (sub)->symbuf)
10982 {
10983 free (elf_tdata (sub)->symbuf);
10984 elf_tdata (sub)->symbuf = NULL;
10985 }
10986 }
10987
10988 /* Output a FILE symbol so that following locals are not associated
10989 with the wrong input file. */
10990 memset (&elfsym, 0, sizeof (elfsym));
10991 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10992 elfsym.st_shndx = SHN_ABS;
10993
10994 if (flinfo.filesym_count > 1
10995 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10996 bfd_und_section_ptr, NULL))
10997 return FALSE;
10998
10999 /* Output any global symbols that got converted to local in a
11000 version script or due to symbol visibility. We do this in a
11001 separate step since ELF requires all local symbols to appear
11002 prior to any global symbols. FIXME: We should only do this if
11003 some global symbols were, in fact, converted to become local.
11004 FIXME: Will this work correctly with the Irix 5 linker? */
11005 eoinfo.failed = FALSE;
11006 eoinfo.flinfo = &flinfo;
11007 eoinfo.localsyms = TRUE;
11008 eoinfo.need_second_pass = FALSE;
11009 eoinfo.second_pass = FALSE;
11010 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11011 if (eoinfo.failed)
11012 return FALSE;
11013
11014 if (flinfo.filesym_count == 1
11015 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11016 bfd_und_section_ptr, NULL))
11017 return FALSE;
11018
11019 if (eoinfo.need_second_pass)
11020 {
11021 eoinfo.second_pass = TRUE;
11022 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11023 if (eoinfo.failed)
11024 return FALSE;
11025 }
11026
11027 /* If backend needs to output some local symbols not present in the hash
11028 table, do it now. */
11029 if (bed->elf_backend_output_arch_local_syms)
11030 {
11031 typedef int (*out_sym_func)
11032 (void *, const char *, Elf_Internal_Sym *, asection *,
11033 struct elf_link_hash_entry *);
11034
11035 if (! ((*bed->elf_backend_output_arch_local_syms)
11036 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11037 return FALSE;
11038 }
11039
11040 /* That wrote out all the local symbols. Finish up the symbol table
11041 with the global symbols. Even if we want to strip everything we
11042 can, we still need to deal with those global symbols that got
11043 converted to local in a version script. */
11044
11045 /* The sh_info field records the index of the first non local symbol. */
11046 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11047
11048 if (dynamic
11049 && flinfo.dynsym_sec != NULL
11050 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11051 {
11052 Elf_Internal_Sym sym;
11053 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11054 long last_local = 0;
11055
11056 /* Write out the section symbols for the output sections. */
11057 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11058 {
11059 asection *s;
11060
11061 sym.st_size = 0;
11062 sym.st_name = 0;
11063 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11064 sym.st_other = 0;
11065 sym.st_target_internal = 0;
11066
11067 for (s = abfd->sections; s != NULL; s = s->next)
11068 {
11069 int indx;
11070 bfd_byte *dest;
11071 long dynindx;
11072
11073 dynindx = elf_section_data (s)->dynindx;
11074 if (dynindx <= 0)
11075 continue;
11076 indx = elf_section_data (s)->this_idx;
11077 BFD_ASSERT (indx > 0);
11078 sym.st_shndx = indx;
11079 if (! check_dynsym (abfd, &sym))
11080 return FALSE;
11081 sym.st_value = s->vma;
11082 dest = dynsym + dynindx * bed->s->sizeof_sym;
11083 if (last_local < dynindx)
11084 last_local = dynindx;
11085 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11086 }
11087 }
11088
11089 /* Write out the local dynsyms. */
11090 if (elf_hash_table (info)->dynlocal)
11091 {
11092 struct elf_link_local_dynamic_entry *e;
11093 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11094 {
11095 asection *s;
11096 bfd_byte *dest;
11097
11098 /* Copy the internal symbol and turn off visibility.
11099 Note that we saved a word of storage and overwrote
11100 the original st_name with the dynstr_index. */
11101 sym = e->isym;
11102 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11103
11104 s = bfd_section_from_elf_index (e->input_bfd,
11105 e->isym.st_shndx);
11106 if (s != NULL)
11107 {
11108 sym.st_shndx =
11109 elf_section_data (s->output_section)->this_idx;
11110 if (! check_dynsym (abfd, &sym))
11111 return FALSE;
11112 sym.st_value = (s->output_section->vma
11113 + s->output_offset
11114 + e->isym.st_value);
11115 }
11116
11117 if (last_local < e->dynindx)
11118 last_local = e->dynindx;
11119
11120 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11121 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11122 }
11123 }
11124
11125 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11126 last_local + 1;
11127 }
11128
11129 /* We get the global symbols from the hash table. */
11130 eoinfo.failed = FALSE;
11131 eoinfo.localsyms = FALSE;
11132 eoinfo.flinfo = &flinfo;
11133 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11134 if (eoinfo.failed)
11135 return FALSE;
11136
11137 /* If backend needs to output some symbols not present in the hash
11138 table, do it now. */
11139 if (bed->elf_backend_output_arch_syms)
11140 {
11141 typedef int (*out_sym_func)
11142 (void *, const char *, Elf_Internal_Sym *, asection *,
11143 struct elf_link_hash_entry *);
11144
11145 if (! ((*bed->elf_backend_output_arch_syms)
11146 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11147 return FALSE;
11148 }
11149
11150 /* Flush all symbols to the file. */
11151 if (! elf_link_flush_output_syms (&flinfo, bed))
11152 return FALSE;
11153
11154 /* Now we know the size of the symtab section. */
11155 off += symtab_hdr->sh_size;
11156
11157 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11158 if (symtab_shndx_hdr->sh_name != 0)
11159 {
11160 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11161 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11162 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11163 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11164 symtab_shndx_hdr->sh_size = amt;
11165
11166 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11167 off, TRUE);
11168
11169 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11170 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11171 return FALSE;
11172 }
11173
11174
11175 /* Finish up and write out the symbol string table (.strtab)
11176 section. */
11177 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11178 /* sh_name was set in prep_headers. */
11179 symstrtab_hdr->sh_type = SHT_STRTAB;
11180 symstrtab_hdr->sh_flags = 0;
11181 symstrtab_hdr->sh_addr = 0;
11182 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11183 symstrtab_hdr->sh_entsize = 0;
11184 symstrtab_hdr->sh_link = 0;
11185 symstrtab_hdr->sh_info = 0;
11186 /* sh_offset is set just below. */
11187 symstrtab_hdr->sh_addralign = 1;
11188
11189 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11190 elf_tdata (abfd)->next_file_pos = off;
11191
11192 if (bfd_get_symcount (abfd) > 0)
11193 {
11194 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11195 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11196 return FALSE;
11197 }
11198
11199 /* Adjust the relocs to have the correct symbol indices. */
11200 for (o = abfd->sections; o != NULL; o = o->next)
11201 {
11202 struct bfd_elf_section_data *esdo = elf_section_data (o);
11203 if ((o->flags & SEC_RELOC) == 0)
11204 continue;
11205
11206 if (esdo->rel.hdr != NULL)
11207 elf_link_adjust_relocs (abfd, &esdo->rel);
11208 if (esdo->rela.hdr != NULL)
11209 elf_link_adjust_relocs (abfd, &esdo->rela);
11210
11211 /* Set the reloc_count field to 0 to prevent write_relocs from
11212 trying to swap the relocs out itself. */
11213 o->reloc_count = 0;
11214 }
11215
11216 if (dynamic && info->combreloc && dynobj != NULL)
11217 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11218
11219 /* If we are linking against a dynamic object, or generating a
11220 shared library, finish up the dynamic linking information. */
11221 if (dynamic)
11222 {
11223 bfd_byte *dyncon, *dynconend;
11224
11225 /* Fix up .dynamic entries. */
11226 o = bfd_get_linker_section (dynobj, ".dynamic");
11227 BFD_ASSERT (o != NULL);
11228
11229 dyncon = o->contents;
11230 dynconend = o->contents + o->size;
11231 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11232 {
11233 Elf_Internal_Dyn dyn;
11234 const char *name;
11235 unsigned int type;
11236
11237 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11238
11239 switch (dyn.d_tag)
11240 {
11241 default:
11242 continue;
11243 case DT_NULL:
11244 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11245 {
11246 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11247 {
11248 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11249 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11250 default: continue;
11251 }
11252 dyn.d_un.d_val = relativecount;
11253 relativecount = 0;
11254 break;
11255 }
11256 continue;
11257
11258 case DT_INIT:
11259 name = info->init_function;
11260 goto get_sym;
11261 case DT_FINI:
11262 name = info->fini_function;
11263 get_sym:
11264 {
11265 struct elf_link_hash_entry *h;
11266
11267 h = elf_link_hash_lookup (elf_hash_table (info), name,
11268 FALSE, FALSE, TRUE);
11269 if (h != NULL
11270 && (h->root.type == bfd_link_hash_defined
11271 || h->root.type == bfd_link_hash_defweak))
11272 {
11273 dyn.d_un.d_ptr = h->root.u.def.value;
11274 o = h->root.u.def.section;
11275 if (o->output_section != NULL)
11276 dyn.d_un.d_ptr += (o->output_section->vma
11277 + o->output_offset);
11278 else
11279 {
11280 /* The symbol is imported from another shared
11281 library and does not apply to this one. */
11282 dyn.d_un.d_ptr = 0;
11283 }
11284 break;
11285 }
11286 }
11287 continue;
11288
11289 case DT_PREINIT_ARRAYSZ:
11290 name = ".preinit_array";
11291 goto get_size;
11292 case DT_INIT_ARRAYSZ:
11293 name = ".init_array";
11294 goto get_size;
11295 case DT_FINI_ARRAYSZ:
11296 name = ".fini_array";
11297 get_size:
11298 o = bfd_get_section_by_name (abfd, name);
11299 if (o == NULL)
11300 {
11301 (*_bfd_error_handler)
11302 (_("%B: could not find output section %s"), abfd, name);
11303 goto error_return;
11304 }
11305 if (o->size == 0)
11306 (*_bfd_error_handler)
11307 (_("warning: %s section has zero size"), name);
11308 dyn.d_un.d_val = o->size;
11309 break;
11310
11311 case DT_PREINIT_ARRAY:
11312 name = ".preinit_array";
11313 goto get_vma;
11314 case DT_INIT_ARRAY:
11315 name = ".init_array";
11316 goto get_vma;
11317 case DT_FINI_ARRAY:
11318 name = ".fini_array";
11319 goto get_vma;
11320
11321 case DT_HASH:
11322 name = ".hash";
11323 goto get_vma;
11324 case DT_GNU_HASH:
11325 name = ".gnu.hash";
11326 goto get_vma;
11327 case DT_STRTAB:
11328 name = ".dynstr";
11329 goto get_vma;
11330 case DT_SYMTAB:
11331 name = ".dynsym";
11332 goto get_vma;
11333 case DT_VERDEF:
11334 name = ".gnu.version_d";
11335 goto get_vma;
11336 case DT_VERNEED:
11337 name = ".gnu.version_r";
11338 goto get_vma;
11339 case DT_VERSYM:
11340 name = ".gnu.version";
11341 get_vma:
11342 o = bfd_get_section_by_name (abfd, name);
11343 if (o == NULL)
11344 {
11345 (*_bfd_error_handler)
11346 (_("%B: could not find output section %s"), abfd, name);
11347 goto error_return;
11348 }
11349 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11350 {
11351 (*_bfd_error_handler)
11352 (_("warning: section '%s' is being made into a note"), name);
11353 bfd_set_error (bfd_error_nonrepresentable_section);
11354 goto error_return;
11355 }
11356 dyn.d_un.d_ptr = o->vma;
11357 break;
11358
11359 case DT_REL:
11360 case DT_RELA:
11361 case DT_RELSZ:
11362 case DT_RELASZ:
11363 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11364 type = SHT_REL;
11365 else
11366 type = SHT_RELA;
11367 dyn.d_un.d_val = 0;
11368 dyn.d_un.d_ptr = 0;
11369 for (i = 1; i < elf_numsections (abfd); i++)
11370 {
11371 Elf_Internal_Shdr *hdr;
11372
11373 hdr = elf_elfsections (abfd)[i];
11374 if (hdr->sh_type == type
11375 && (hdr->sh_flags & SHF_ALLOC) != 0)
11376 {
11377 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11378 dyn.d_un.d_val += hdr->sh_size;
11379 else
11380 {
11381 if (dyn.d_un.d_ptr == 0
11382 || hdr->sh_addr < dyn.d_un.d_ptr)
11383 dyn.d_un.d_ptr = hdr->sh_addr;
11384 }
11385 }
11386 }
11387 break;
11388 }
11389 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11390 }
11391 }
11392
11393 /* If we have created any dynamic sections, then output them. */
11394 if (dynobj != NULL)
11395 {
11396 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11397 goto error_return;
11398
11399 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11400 if (((info->warn_shared_textrel && info->shared)
11401 || info->error_textrel)
11402 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11403 {
11404 bfd_byte *dyncon, *dynconend;
11405
11406 dyncon = o->contents;
11407 dynconend = o->contents + o->size;
11408 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11409 {
11410 Elf_Internal_Dyn dyn;
11411
11412 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11413
11414 if (dyn.d_tag == DT_TEXTREL)
11415 {
11416 if (info->error_textrel)
11417 info->callbacks->einfo
11418 (_("%P%X: read-only segment has dynamic relocations.\n"));
11419 else
11420 info->callbacks->einfo
11421 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11422 break;
11423 }
11424 }
11425 }
11426
11427 for (o = dynobj->sections; o != NULL; o = o->next)
11428 {
11429 if ((o->flags & SEC_HAS_CONTENTS) == 0
11430 || o->size == 0
11431 || o->output_section == bfd_abs_section_ptr)
11432 continue;
11433 if ((o->flags & SEC_LINKER_CREATED) == 0)
11434 {
11435 /* At this point, we are only interested in sections
11436 created by _bfd_elf_link_create_dynamic_sections. */
11437 continue;
11438 }
11439 if (elf_hash_table (info)->stab_info.stabstr == o)
11440 continue;
11441 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11442 continue;
11443 if (strcmp (o->name, ".dynstr") != 0)
11444 {
11445 /* FIXME: octets_per_byte. */
11446 if (! bfd_set_section_contents (abfd, o->output_section,
11447 o->contents,
11448 (file_ptr) o->output_offset,
11449 o->size))
11450 goto error_return;
11451 }
11452 else
11453 {
11454 /* The contents of the .dynstr section are actually in a
11455 stringtab. */
11456 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11457 if (bfd_seek (abfd, off, SEEK_SET) != 0
11458 || ! _bfd_elf_strtab_emit (abfd,
11459 elf_hash_table (info)->dynstr))
11460 goto error_return;
11461 }
11462 }
11463 }
11464
11465 if (info->relocatable)
11466 {
11467 bfd_boolean failed = FALSE;
11468
11469 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11470 if (failed)
11471 goto error_return;
11472 }
11473
11474 /* If we have optimized stabs strings, output them. */
11475 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11476 {
11477 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11478 goto error_return;
11479 }
11480
11481 if (info->eh_frame_hdr)
11482 {
11483 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11484 goto error_return;
11485 }
11486
11487 if (flinfo.symstrtab != NULL)
11488 _bfd_stringtab_free (flinfo.symstrtab);
11489 if (flinfo.contents != NULL)
11490 free (flinfo.contents);
11491 if (flinfo.external_relocs != NULL)
11492 free (flinfo.external_relocs);
11493 if (flinfo.internal_relocs != NULL)
11494 free (flinfo.internal_relocs);
11495 if (flinfo.external_syms != NULL)
11496 free (flinfo.external_syms);
11497 if (flinfo.locsym_shndx != NULL)
11498 free (flinfo.locsym_shndx);
11499 if (flinfo.internal_syms != NULL)
11500 free (flinfo.internal_syms);
11501 if (flinfo.indices != NULL)
11502 free (flinfo.indices);
11503 if (flinfo.sections != NULL)
11504 free (flinfo.sections);
11505 if (flinfo.symbuf != NULL)
11506 free (flinfo.symbuf);
11507 if (flinfo.symshndxbuf != NULL)
11508 free (flinfo.symshndxbuf);
11509 for (o = abfd->sections; o != NULL; o = o->next)
11510 {
11511 struct bfd_elf_section_data *esdo = elf_section_data (o);
11512 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11513 free (esdo->rel.hashes);
11514 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11515 free (esdo->rela.hashes);
11516 }
11517
11518 elf_tdata (abfd)->linker = TRUE;
11519
11520 if (attr_section)
11521 {
11522 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11523 if (contents == NULL)
11524 return FALSE; /* Bail out and fail. */
11525 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11526 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11527 free (contents);
11528 }
11529
11530 return TRUE;
11531
11532 error_return:
11533 if (flinfo.symstrtab != NULL)
11534 _bfd_stringtab_free (flinfo.symstrtab);
11535 if (flinfo.contents != NULL)
11536 free (flinfo.contents);
11537 if (flinfo.external_relocs != NULL)
11538 free (flinfo.external_relocs);
11539 if (flinfo.internal_relocs != NULL)
11540 free (flinfo.internal_relocs);
11541 if (flinfo.external_syms != NULL)
11542 free (flinfo.external_syms);
11543 if (flinfo.locsym_shndx != NULL)
11544 free (flinfo.locsym_shndx);
11545 if (flinfo.internal_syms != NULL)
11546 free (flinfo.internal_syms);
11547 if (flinfo.indices != NULL)
11548 free (flinfo.indices);
11549 if (flinfo.sections != NULL)
11550 free (flinfo.sections);
11551 if (flinfo.symbuf != NULL)
11552 free (flinfo.symbuf);
11553 if (flinfo.symshndxbuf != NULL)
11554 free (flinfo.symshndxbuf);
11555 for (o = abfd->sections; o != NULL; o = o->next)
11556 {
11557 struct bfd_elf_section_data *esdo = elf_section_data (o);
11558 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11559 free (esdo->rel.hashes);
11560 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11561 free (esdo->rela.hashes);
11562 }
11563
11564 return FALSE;
11565 }
11566 \f
11567 /* Initialize COOKIE for input bfd ABFD. */
11568
11569 static bfd_boolean
11570 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11571 struct bfd_link_info *info, bfd *abfd)
11572 {
11573 Elf_Internal_Shdr *symtab_hdr;
11574 const struct elf_backend_data *bed;
11575
11576 bed = get_elf_backend_data (abfd);
11577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11578
11579 cookie->abfd = abfd;
11580 cookie->sym_hashes = elf_sym_hashes (abfd);
11581 cookie->bad_symtab = elf_bad_symtab (abfd);
11582 if (cookie->bad_symtab)
11583 {
11584 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11585 cookie->extsymoff = 0;
11586 }
11587 else
11588 {
11589 cookie->locsymcount = symtab_hdr->sh_info;
11590 cookie->extsymoff = symtab_hdr->sh_info;
11591 }
11592
11593 if (bed->s->arch_size == 32)
11594 cookie->r_sym_shift = 8;
11595 else
11596 cookie->r_sym_shift = 32;
11597
11598 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11599 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11600 {
11601 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11602 cookie->locsymcount, 0,
11603 NULL, NULL, NULL);
11604 if (cookie->locsyms == NULL)
11605 {
11606 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11607 return FALSE;
11608 }
11609 if (info->keep_memory)
11610 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11611 }
11612 return TRUE;
11613 }
11614
11615 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11616
11617 static void
11618 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11619 {
11620 Elf_Internal_Shdr *symtab_hdr;
11621
11622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11623 if (cookie->locsyms != NULL
11624 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11625 free (cookie->locsyms);
11626 }
11627
11628 /* Initialize the relocation information in COOKIE for input section SEC
11629 of input bfd ABFD. */
11630
11631 static bfd_boolean
11632 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11633 struct bfd_link_info *info, bfd *abfd,
11634 asection *sec)
11635 {
11636 const struct elf_backend_data *bed;
11637
11638 if (sec->reloc_count == 0)
11639 {
11640 cookie->rels = NULL;
11641 cookie->relend = NULL;
11642 }
11643 else
11644 {
11645 bed = get_elf_backend_data (abfd);
11646
11647 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11648 info->keep_memory);
11649 if (cookie->rels == NULL)
11650 return FALSE;
11651 cookie->rel = cookie->rels;
11652 cookie->relend = (cookie->rels
11653 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11654 }
11655 cookie->rel = cookie->rels;
11656 return TRUE;
11657 }
11658
11659 /* Free the memory allocated by init_reloc_cookie_rels,
11660 if appropriate. */
11661
11662 static void
11663 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11664 asection *sec)
11665 {
11666 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11667 free (cookie->rels);
11668 }
11669
11670 /* Initialize the whole of COOKIE for input section SEC. */
11671
11672 static bfd_boolean
11673 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11674 struct bfd_link_info *info,
11675 asection *sec)
11676 {
11677 if (!init_reloc_cookie (cookie, info, sec->owner))
11678 goto error1;
11679 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11680 goto error2;
11681 return TRUE;
11682
11683 error2:
11684 fini_reloc_cookie (cookie, sec->owner);
11685 error1:
11686 return FALSE;
11687 }
11688
11689 /* Free the memory allocated by init_reloc_cookie_for_section,
11690 if appropriate. */
11691
11692 static void
11693 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11694 asection *sec)
11695 {
11696 fini_reloc_cookie_rels (cookie, sec);
11697 fini_reloc_cookie (cookie, sec->owner);
11698 }
11699 \f
11700 /* Garbage collect unused sections. */
11701
11702 /* Default gc_mark_hook. */
11703
11704 asection *
11705 _bfd_elf_gc_mark_hook (asection *sec,
11706 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11707 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11708 struct elf_link_hash_entry *h,
11709 Elf_Internal_Sym *sym)
11710 {
11711 const char *sec_name;
11712
11713 if (h != NULL)
11714 {
11715 switch (h->root.type)
11716 {
11717 case bfd_link_hash_defined:
11718 case bfd_link_hash_defweak:
11719 return h->root.u.def.section;
11720
11721 case bfd_link_hash_common:
11722 return h->root.u.c.p->section;
11723
11724 case bfd_link_hash_undefined:
11725 case bfd_link_hash_undefweak:
11726 /* To work around a glibc bug, keep all XXX input sections
11727 when there is an as yet undefined reference to __start_XXX
11728 or __stop_XXX symbols. The linker will later define such
11729 symbols for orphan input sections that have a name
11730 representable as a C identifier. */
11731 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11732 sec_name = h->root.root.string + 8;
11733 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11734 sec_name = h->root.root.string + 7;
11735 else
11736 sec_name = NULL;
11737
11738 if (sec_name && *sec_name != '\0')
11739 {
11740 bfd *i;
11741
11742 for (i = info->input_bfds; i; i = i->link_next)
11743 {
11744 sec = bfd_get_section_by_name (i, sec_name);
11745 if (sec)
11746 sec->flags |= SEC_KEEP;
11747 }
11748 }
11749 break;
11750
11751 default:
11752 break;
11753 }
11754 }
11755 else
11756 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11757
11758 return NULL;
11759 }
11760
11761 /* COOKIE->rel describes a relocation against section SEC, which is
11762 a section we've decided to keep. Return the section that contains
11763 the relocation symbol, or NULL if no section contains it. */
11764
11765 asection *
11766 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11767 elf_gc_mark_hook_fn gc_mark_hook,
11768 struct elf_reloc_cookie *cookie)
11769 {
11770 unsigned long r_symndx;
11771 struct elf_link_hash_entry *h;
11772
11773 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11774 if (r_symndx == STN_UNDEF)
11775 return NULL;
11776
11777 if (r_symndx >= cookie->locsymcount
11778 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11779 {
11780 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11781 while (h->root.type == bfd_link_hash_indirect
11782 || h->root.type == bfd_link_hash_warning)
11783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11784 h->mark = 1;
11785 /* If this symbol is weak and there is a non-weak definition, we
11786 keep the non-weak definition because many backends put
11787 dynamic reloc info on the non-weak definition for code
11788 handling copy relocs. */
11789 if (h->u.weakdef != NULL)
11790 h->u.weakdef->mark = 1;
11791 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11792 }
11793
11794 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11795 &cookie->locsyms[r_symndx]);
11796 }
11797
11798 /* COOKIE->rel describes a relocation against section SEC, which is
11799 a section we've decided to keep. Mark the section that contains
11800 the relocation symbol. */
11801
11802 bfd_boolean
11803 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11804 asection *sec,
11805 elf_gc_mark_hook_fn gc_mark_hook,
11806 struct elf_reloc_cookie *cookie)
11807 {
11808 asection *rsec;
11809
11810 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11811 if (rsec && !rsec->gc_mark)
11812 {
11813 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11814 || (rsec->owner->flags & DYNAMIC) != 0)
11815 rsec->gc_mark = 1;
11816 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11817 return FALSE;
11818 }
11819 return TRUE;
11820 }
11821
11822 /* The mark phase of garbage collection. For a given section, mark
11823 it and any sections in this section's group, and all the sections
11824 which define symbols to which it refers. */
11825
11826 bfd_boolean
11827 _bfd_elf_gc_mark (struct bfd_link_info *info,
11828 asection *sec,
11829 elf_gc_mark_hook_fn gc_mark_hook)
11830 {
11831 bfd_boolean ret;
11832 asection *group_sec, *eh_frame;
11833
11834 sec->gc_mark = 1;
11835
11836 /* Mark all the sections in the group. */
11837 group_sec = elf_section_data (sec)->next_in_group;
11838 if (group_sec && !group_sec->gc_mark)
11839 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11840 return FALSE;
11841
11842 /* Look through the section relocs. */
11843 ret = TRUE;
11844 eh_frame = elf_eh_frame_section (sec->owner);
11845 if ((sec->flags & SEC_RELOC) != 0
11846 && sec->reloc_count > 0
11847 && sec != eh_frame)
11848 {
11849 struct elf_reloc_cookie cookie;
11850
11851 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11852 ret = FALSE;
11853 else
11854 {
11855 for (; cookie.rel < cookie.relend; cookie.rel++)
11856 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11857 {
11858 ret = FALSE;
11859 break;
11860 }
11861 fini_reloc_cookie_for_section (&cookie, sec);
11862 }
11863 }
11864
11865 if (ret && eh_frame && elf_fde_list (sec))
11866 {
11867 struct elf_reloc_cookie cookie;
11868
11869 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11870 ret = FALSE;
11871 else
11872 {
11873 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11874 gc_mark_hook, &cookie))
11875 ret = FALSE;
11876 fini_reloc_cookie_for_section (&cookie, eh_frame);
11877 }
11878 }
11879
11880 return ret;
11881 }
11882
11883 /* Keep debug and special sections. */
11884
11885 bfd_boolean
11886 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11887 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11888 {
11889 bfd *ibfd;
11890
11891 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11892 {
11893 asection *isec;
11894 bfd_boolean some_kept;
11895
11896 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11897 continue;
11898
11899 /* Ensure all linker created sections are kept, and see whether
11900 any other section is already marked. */
11901 some_kept = FALSE;
11902 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11903 {
11904 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11905 isec->gc_mark = 1;
11906 else if (isec->gc_mark)
11907 some_kept = TRUE;
11908 }
11909
11910 /* If no section in this file will be kept, then we can
11911 toss out debug sections. */
11912 if (!some_kept)
11913 continue;
11914
11915 /* Keep debug and special sections like .comment when they are
11916 not part of a group, or when we have single-member groups. */
11917 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11918 if ((elf_next_in_group (isec) == NULL
11919 || elf_next_in_group (isec) == isec)
11920 && ((isec->flags & SEC_DEBUGGING) != 0
11921 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11922 isec->gc_mark = 1;
11923 }
11924 return TRUE;
11925 }
11926
11927 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11928
11929 struct elf_gc_sweep_symbol_info
11930 {
11931 struct bfd_link_info *info;
11932 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11933 bfd_boolean);
11934 };
11935
11936 static bfd_boolean
11937 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11938 {
11939 if (!h->mark
11940 && (((h->root.type == bfd_link_hash_defined
11941 || h->root.type == bfd_link_hash_defweak)
11942 && !(h->def_regular
11943 && h->root.u.def.section->gc_mark))
11944 || h->root.type == bfd_link_hash_undefined
11945 || h->root.type == bfd_link_hash_undefweak))
11946 {
11947 struct elf_gc_sweep_symbol_info *inf;
11948
11949 inf = (struct elf_gc_sweep_symbol_info *) data;
11950 (*inf->hide_symbol) (inf->info, h, TRUE);
11951 h->def_regular = 0;
11952 h->ref_regular = 0;
11953 h->ref_regular_nonweak = 0;
11954 }
11955
11956 return TRUE;
11957 }
11958
11959 /* The sweep phase of garbage collection. Remove all garbage sections. */
11960
11961 typedef bfd_boolean (*gc_sweep_hook_fn)
11962 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11963
11964 static bfd_boolean
11965 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11966 {
11967 bfd *sub;
11968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11969 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11970 unsigned long section_sym_count;
11971 struct elf_gc_sweep_symbol_info sweep_info;
11972
11973 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11974 {
11975 asection *o;
11976
11977 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11978 continue;
11979
11980 for (o = sub->sections; o != NULL; o = o->next)
11981 {
11982 /* When any section in a section group is kept, we keep all
11983 sections in the section group. If the first member of
11984 the section group is excluded, we will also exclude the
11985 group section. */
11986 if (o->flags & SEC_GROUP)
11987 {
11988 asection *first = elf_next_in_group (o);
11989 o->gc_mark = first->gc_mark;
11990 }
11991
11992 if (o->gc_mark)
11993 continue;
11994
11995 /* Skip sweeping sections already excluded. */
11996 if (o->flags & SEC_EXCLUDE)
11997 continue;
11998
11999 /* Since this is early in the link process, it is simple
12000 to remove a section from the output. */
12001 o->flags |= SEC_EXCLUDE;
12002
12003 if (info->print_gc_sections && o->size != 0)
12004 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12005
12006 /* But we also have to update some of the relocation
12007 info we collected before. */
12008 if (gc_sweep_hook
12009 && (o->flags & SEC_RELOC) != 0
12010 && o->reloc_count > 0
12011 && !bfd_is_abs_section (o->output_section))
12012 {
12013 Elf_Internal_Rela *internal_relocs;
12014 bfd_boolean r;
12015
12016 internal_relocs
12017 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12018 info->keep_memory);
12019 if (internal_relocs == NULL)
12020 return FALSE;
12021
12022 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12023
12024 if (elf_section_data (o)->relocs != internal_relocs)
12025 free (internal_relocs);
12026
12027 if (!r)
12028 return FALSE;
12029 }
12030 }
12031 }
12032
12033 /* Remove the symbols that were in the swept sections from the dynamic
12034 symbol table. GCFIXME: Anyone know how to get them out of the
12035 static symbol table as well? */
12036 sweep_info.info = info;
12037 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12038 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12039 &sweep_info);
12040
12041 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12042 return TRUE;
12043 }
12044
12045 /* Propagate collected vtable information. This is called through
12046 elf_link_hash_traverse. */
12047
12048 static bfd_boolean
12049 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12050 {
12051 /* Those that are not vtables. */
12052 if (h->vtable == NULL || h->vtable->parent == NULL)
12053 return TRUE;
12054
12055 /* Those vtables that do not have parents, we cannot merge. */
12056 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12057 return TRUE;
12058
12059 /* If we've already been done, exit. */
12060 if (h->vtable->used && h->vtable->used[-1])
12061 return TRUE;
12062
12063 /* Make sure the parent's table is up to date. */
12064 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12065
12066 if (h->vtable->used == NULL)
12067 {
12068 /* None of this table's entries were referenced. Re-use the
12069 parent's table. */
12070 h->vtable->used = h->vtable->parent->vtable->used;
12071 h->vtable->size = h->vtable->parent->vtable->size;
12072 }
12073 else
12074 {
12075 size_t n;
12076 bfd_boolean *cu, *pu;
12077
12078 /* Or the parent's entries into ours. */
12079 cu = h->vtable->used;
12080 cu[-1] = TRUE;
12081 pu = h->vtable->parent->vtable->used;
12082 if (pu != NULL)
12083 {
12084 const struct elf_backend_data *bed;
12085 unsigned int log_file_align;
12086
12087 bed = get_elf_backend_data (h->root.u.def.section->owner);
12088 log_file_align = bed->s->log_file_align;
12089 n = h->vtable->parent->vtable->size >> log_file_align;
12090 while (n--)
12091 {
12092 if (*pu)
12093 *cu = TRUE;
12094 pu++;
12095 cu++;
12096 }
12097 }
12098 }
12099
12100 return TRUE;
12101 }
12102
12103 static bfd_boolean
12104 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12105 {
12106 asection *sec;
12107 bfd_vma hstart, hend;
12108 Elf_Internal_Rela *relstart, *relend, *rel;
12109 const struct elf_backend_data *bed;
12110 unsigned int log_file_align;
12111
12112 /* Take care of both those symbols that do not describe vtables as
12113 well as those that are not loaded. */
12114 if (h->vtable == NULL || h->vtable->parent == NULL)
12115 return TRUE;
12116
12117 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12118 || h->root.type == bfd_link_hash_defweak);
12119
12120 sec = h->root.u.def.section;
12121 hstart = h->root.u.def.value;
12122 hend = hstart + h->size;
12123
12124 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12125 if (!relstart)
12126 return *(bfd_boolean *) okp = FALSE;
12127 bed = get_elf_backend_data (sec->owner);
12128 log_file_align = bed->s->log_file_align;
12129
12130 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12131
12132 for (rel = relstart; rel < relend; ++rel)
12133 if (rel->r_offset >= hstart && rel->r_offset < hend)
12134 {
12135 /* If the entry is in use, do nothing. */
12136 if (h->vtable->used
12137 && (rel->r_offset - hstart) < h->vtable->size)
12138 {
12139 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12140 if (h->vtable->used[entry])
12141 continue;
12142 }
12143 /* Otherwise, kill it. */
12144 rel->r_offset = rel->r_info = rel->r_addend = 0;
12145 }
12146
12147 return TRUE;
12148 }
12149
12150 /* Mark sections containing dynamically referenced symbols. When
12151 building shared libraries, we must assume that any visible symbol is
12152 referenced. */
12153
12154 bfd_boolean
12155 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12156 {
12157 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12158
12159 if ((h->root.type == bfd_link_hash_defined
12160 || h->root.type == bfd_link_hash_defweak)
12161 && (h->ref_dynamic
12162 || ((!info->executable || info->export_dynamic)
12163 && h->def_regular
12164 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12165 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12166 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12167 || !bfd_hide_sym_by_version (info->version_info,
12168 h->root.root.string)))))
12169 h->root.u.def.section->flags |= SEC_KEEP;
12170
12171 return TRUE;
12172 }
12173
12174 /* Keep all sections containing symbols undefined on the command-line,
12175 and the section containing the entry symbol. */
12176
12177 void
12178 _bfd_elf_gc_keep (struct bfd_link_info *info)
12179 {
12180 struct bfd_sym_chain *sym;
12181
12182 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12183 {
12184 struct elf_link_hash_entry *h;
12185
12186 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12187 FALSE, FALSE, FALSE);
12188
12189 if (h != NULL
12190 && (h->root.type == bfd_link_hash_defined
12191 || h->root.type == bfd_link_hash_defweak)
12192 && !bfd_is_abs_section (h->root.u.def.section))
12193 h->root.u.def.section->flags |= SEC_KEEP;
12194 }
12195 }
12196
12197 /* Do mark and sweep of unused sections. */
12198
12199 bfd_boolean
12200 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12201 {
12202 bfd_boolean ok = TRUE;
12203 bfd *sub;
12204 elf_gc_mark_hook_fn gc_mark_hook;
12205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12206
12207 if (!bed->can_gc_sections
12208 || !is_elf_hash_table (info->hash))
12209 {
12210 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12211 return TRUE;
12212 }
12213
12214 bed->gc_keep (info);
12215
12216 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12217 at the .eh_frame section if we can mark the FDEs individually. */
12218 _bfd_elf_begin_eh_frame_parsing (info);
12219 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12220 {
12221 asection *sec;
12222 struct elf_reloc_cookie cookie;
12223
12224 sec = bfd_get_section_by_name (sub, ".eh_frame");
12225 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12226 {
12227 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12228 if (elf_section_data (sec)->sec_info
12229 && (sec->flags & SEC_LINKER_CREATED) == 0)
12230 elf_eh_frame_section (sub) = sec;
12231 fini_reloc_cookie_for_section (&cookie, sec);
12232 sec = bfd_get_next_section_by_name (sec);
12233 }
12234 }
12235 _bfd_elf_end_eh_frame_parsing (info);
12236
12237 /* Apply transitive closure to the vtable entry usage info. */
12238 elf_link_hash_traverse (elf_hash_table (info),
12239 elf_gc_propagate_vtable_entries_used,
12240 &ok);
12241 if (!ok)
12242 return FALSE;
12243
12244 /* Kill the vtable relocations that were not used. */
12245 elf_link_hash_traverse (elf_hash_table (info),
12246 elf_gc_smash_unused_vtentry_relocs,
12247 &ok);
12248 if (!ok)
12249 return FALSE;
12250
12251 /* Mark dynamically referenced symbols. */
12252 if (elf_hash_table (info)->dynamic_sections_created)
12253 elf_link_hash_traverse (elf_hash_table (info),
12254 bed->gc_mark_dynamic_ref,
12255 info);
12256
12257 /* Grovel through relocs to find out who stays ... */
12258 gc_mark_hook = bed->gc_mark_hook;
12259 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12260 {
12261 asection *o;
12262
12263 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12264 continue;
12265
12266 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12267 Also treat note sections as a root, if the section is not part
12268 of a group. */
12269 for (o = sub->sections; o != NULL; o = o->next)
12270 if (!o->gc_mark
12271 && (o->flags & SEC_EXCLUDE) == 0
12272 && ((o->flags & SEC_KEEP) != 0
12273 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12274 && elf_next_in_group (o) == NULL )))
12275 {
12276 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12277 return FALSE;
12278 }
12279 }
12280
12281 /* Allow the backend to mark additional target specific sections. */
12282 bed->gc_mark_extra_sections (info, gc_mark_hook);
12283
12284 /* ... and mark SEC_EXCLUDE for those that go. */
12285 return elf_gc_sweep (abfd, info);
12286 }
12287 \f
12288 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12289
12290 bfd_boolean
12291 bfd_elf_gc_record_vtinherit (bfd *abfd,
12292 asection *sec,
12293 struct elf_link_hash_entry *h,
12294 bfd_vma offset)
12295 {
12296 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12297 struct elf_link_hash_entry **search, *child;
12298 bfd_size_type extsymcount;
12299 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12300
12301 /* The sh_info field of the symtab header tells us where the
12302 external symbols start. We don't care about the local symbols at
12303 this point. */
12304 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12305 if (!elf_bad_symtab (abfd))
12306 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12307
12308 sym_hashes = elf_sym_hashes (abfd);
12309 sym_hashes_end = sym_hashes + extsymcount;
12310
12311 /* Hunt down the child symbol, which is in this section at the same
12312 offset as the relocation. */
12313 for (search = sym_hashes; search != sym_hashes_end; ++search)
12314 {
12315 if ((child = *search) != NULL
12316 && (child->root.type == bfd_link_hash_defined
12317 || child->root.type == bfd_link_hash_defweak)
12318 && child->root.u.def.section == sec
12319 && child->root.u.def.value == offset)
12320 goto win;
12321 }
12322
12323 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12324 abfd, sec, (unsigned long) offset);
12325 bfd_set_error (bfd_error_invalid_operation);
12326 return FALSE;
12327
12328 win:
12329 if (!child->vtable)
12330 {
12331 child->vtable = (struct elf_link_virtual_table_entry *)
12332 bfd_zalloc (abfd, sizeof (*child->vtable));
12333 if (!child->vtable)
12334 return FALSE;
12335 }
12336 if (!h)
12337 {
12338 /* This *should* only be the absolute section. It could potentially
12339 be that someone has defined a non-global vtable though, which
12340 would be bad. It isn't worth paging in the local symbols to be
12341 sure though; that case should simply be handled by the assembler. */
12342
12343 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12344 }
12345 else
12346 child->vtable->parent = h;
12347
12348 return TRUE;
12349 }
12350
12351 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12352
12353 bfd_boolean
12354 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12355 asection *sec ATTRIBUTE_UNUSED,
12356 struct elf_link_hash_entry *h,
12357 bfd_vma addend)
12358 {
12359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12360 unsigned int log_file_align = bed->s->log_file_align;
12361
12362 if (!h->vtable)
12363 {
12364 h->vtable = (struct elf_link_virtual_table_entry *)
12365 bfd_zalloc (abfd, sizeof (*h->vtable));
12366 if (!h->vtable)
12367 return FALSE;
12368 }
12369
12370 if (addend >= h->vtable->size)
12371 {
12372 size_t size, bytes, file_align;
12373 bfd_boolean *ptr = h->vtable->used;
12374
12375 /* While the symbol is undefined, we have to be prepared to handle
12376 a zero size. */
12377 file_align = 1 << log_file_align;
12378 if (h->root.type == bfd_link_hash_undefined)
12379 size = addend + file_align;
12380 else
12381 {
12382 size = h->size;
12383 if (addend >= size)
12384 {
12385 /* Oops! We've got a reference past the defined end of
12386 the table. This is probably a bug -- shall we warn? */
12387 size = addend + file_align;
12388 }
12389 }
12390 size = (size + file_align - 1) & -file_align;
12391
12392 /* Allocate one extra entry for use as a "done" flag for the
12393 consolidation pass. */
12394 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12395
12396 if (ptr)
12397 {
12398 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12399
12400 if (ptr != NULL)
12401 {
12402 size_t oldbytes;
12403
12404 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12405 * sizeof (bfd_boolean));
12406 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12407 }
12408 }
12409 else
12410 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12411
12412 if (ptr == NULL)
12413 return FALSE;
12414
12415 /* And arrange for that done flag to be at index -1. */
12416 h->vtable->used = ptr + 1;
12417 h->vtable->size = size;
12418 }
12419
12420 h->vtable->used[addend >> log_file_align] = TRUE;
12421
12422 return TRUE;
12423 }
12424
12425 /* Map an ELF section header flag to its corresponding string. */
12426 typedef struct
12427 {
12428 char *flag_name;
12429 flagword flag_value;
12430 } elf_flags_to_name_table;
12431
12432 static elf_flags_to_name_table elf_flags_to_names [] =
12433 {
12434 { "SHF_WRITE", SHF_WRITE },
12435 { "SHF_ALLOC", SHF_ALLOC },
12436 { "SHF_EXECINSTR", SHF_EXECINSTR },
12437 { "SHF_MERGE", SHF_MERGE },
12438 { "SHF_STRINGS", SHF_STRINGS },
12439 { "SHF_INFO_LINK", SHF_INFO_LINK},
12440 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12441 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12442 { "SHF_GROUP", SHF_GROUP },
12443 { "SHF_TLS", SHF_TLS },
12444 { "SHF_MASKOS", SHF_MASKOS },
12445 { "SHF_EXCLUDE", SHF_EXCLUDE },
12446 };
12447
12448 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12449 bfd_boolean
12450 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12451 struct flag_info *flaginfo,
12452 asection *section)
12453 {
12454 const bfd_vma sh_flags = elf_section_flags (section);
12455
12456 if (!flaginfo->flags_initialized)
12457 {
12458 bfd *obfd = info->output_bfd;
12459 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12460 struct flag_info_list *tf = flaginfo->flag_list;
12461 int with_hex = 0;
12462 int without_hex = 0;
12463
12464 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12465 {
12466 unsigned i;
12467 flagword (*lookup) (char *);
12468
12469 lookup = bed->elf_backend_lookup_section_flags_hook;
12470 if (lookup != NULL)
12471 {
12472 flagword hexval = (*lookup) ((char *) tf->name);
12473
12474 if (hexval != 0)
12475 {
12476 if (tf->with == with_flags)
12477 with_hex |= hexval;
12478 else if (tf->with == without_flags)
12479 without_hex |= hexval;
12480 tf->valid = TRUE;
12481 continue;
12482 }
12483 }
12484 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12485 {
12486 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12487 {
12488 if (tf->with == with_flags)
12489 with_hex |= elf_flags_to_names[i].flag_value;
12490 else if (tf->with == without_flags)
12491 without_hex |= elf_flags_to_names[i].flag_value;
12492 tf->valid = TRUE;
12493 break;
12494 }
12495 }
12496 if (!tf->valid)
12497 {
12498 info->callbacks->einfo
12499 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12500 return FALSE;
12501 }
12502 }
12503 flaginfo->flags_initialized = TRUE;
12504 flaginfo->only_with_flags |= with_hex;
12505 flaginfo->not_with_flags |= without_hex;
12506 }
12507
12508 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12509 return FALSE;
12510
12511 if ((flaginfo->not_with_flags & sh_flags) != 0)
12512 return FALSE;
12513
12514 return TRUE;
12515 }
12516
12517 struct alloc_got_off_arg {
12518 bfd_vma gotoff;
12519 struct bfd_link_info *info;
12520 };
12521
12522 /* We need a special top-level link routine to convert got reference counts
12523 to real got offsets. */
12524
12525 static bfd_boolean
12526 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12527 {
12528 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12529 bfd *obfd = gofarg->info->output_bfd;
12530 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12531
12532 if (h->got.refcount > 0)
12533 {
12534 h->got.offset = gofarg->gotoff;
12535 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12536 }
12537 else
12538 h->got.offset = (bfd_vma) -1;
12539
12540 return TRUE;
12541 }
12542
12543 /* And an accompanying bit to work out final got entry offsets once
12544 we're done. Should be called from final_link. */
12545
12546 bfd_boolean
12547 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12548 struct bfd_link_info *info)
12549 {
12550 bfd *i;
12551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12552 bfd_vma gotoff;
12553 struct alloc_got_off_arg gofarg;
12554
12555 BFD_ASSERT (abfd == info->output_bfd);
12556
12557 if (! is_elf_hash_table (info->hash))
12558 return FALSE;
12559
12560 /* The GOT offset is relative to the .got section, but the GOT header is
12561 put into the .got.plt section, if the backend uses it. */
12562 if (bed->want_got_plt)
12563 gotoff = 0;
12564 else
12565 gotoff = bed->got_header_size;
12566
12567 /* Do the local .got entries first. */
12568 for (i = info->input_bfds; i; i = i->link_next)
12569 {
12570 bfd_signed_vma *local_got;
12571 bfd_size_type j, locsymcount;
12572 Elf_Internal_Shdr *symtab_hdr;
12573
12574 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12575 continue;
12576
12577 local_got = elf_local_got_refcounts (i);
12578 if (!local_got)
12579 continue;
12580
12581 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12582 if (elf_bad_symtab (i))
12583 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12584 else
12585 locsymcount = symtab_hdr->sh_info;
12586
12587 for (j = 0; j < locsymcount; ++j)
12588 {
12589 if (local_got[j] > 0)
12590 {
12591 local_got[j] = gotoff;
12592 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12593 }
12594 else
12595 local_got[j] = (bfd_vma) -1;
12596 }
12597 }
12598
12599 /* Then the global .got entries. .plt refcounts are handled by
12600 adjust_dynamic_symbol */
12601 gofarg.gotoff = gotoff;
12602 gofarg.info = info;
12603 elf_link_hash_traverse (elf_hash_table (info),
12604 elf_gc_allocate_got_offsets,
12605 &gofarg);
12606 return TRUE;
12607 }
12608
12609 /* Many folk need no more in the way of final link than this, once
12610 got entry reference counting is enabled. */
12611
12612 bfd_boolean
12613 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12614 {
12615 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12616 return FALSE;
12617
12618 /* Invoke the regular ELF backend linker to do all the work. */
12619 return bfd_elf_final_link (abfd, info);
12620 }
12621
12622 bfd_boolean
12623 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12624 {
12625 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12626
12627 if (rcookie->bad_symtab)
12628 rcookie->rel = rcookie->rels;
12629
12630 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12631 {
12632 unsigned long r_symndx;
12633
12634 if (! rcookie->bad_symtab)
12635 if (rcookie->rel->r_offset > offset)
12636 return FALSE;
12637 if (rcookie->rel->r_offset != offset)
12638 continue;
12639
12640 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12641 if (r_symndx == STN_UNDEF)
12642 return TRUE;
12643
12644 if (r_symndx >= rcookie->locsymcount
12645 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12646 {
12647 struct elf_link_hash_entry *h;
12648
12649 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12650
12651 while (h->root.type == bfd_link_hash_indirect
12652 || h->root.type == bfd_link_hash_warning)
12653 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12654
12655 if ((h->root.type == bfd_link_hash_defined
12656 || h->root.type == bfd_link_hash_defweak)
12657 && discarded_section (h->root.u.def.section))
12658 return TRUE;
12659 else
12660 return FALSE;
12661 }
12662 else
12663 {
12664 /* It's not a relocation against a global symbol,
12665 but it could be a relocation against a local
12666 symbol for a discarded section. */
12667 asection *isec;
12668 Elf_Internal_Sym *isym;
12669
12670 /* Need to: get the symbol; get the section. */
12671 isym = &rcookie->locsyms[r_symndx];
12672 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12673 if (isec != NULL && discarded_section (isec))
12674 return TRUE;
12675 }
12676 return FALSE;
12677 }
12678 return FALSE;
12679 }
12680
12681 /* Discard unneeded references to discarded sections.
12682 Returns TRUE if any section's size was changed. */
12683 /* This function assumes that the relocations are in sorted order,
12684 which is true for all known assemblers. */
12685
12686 bfd_boolean
12687 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12688 {
12689 struct elf_reloc_cookie cookie;
12690 asection *stab, *eh;
12691 const struct elf_backend_data *bed;
12692 bfd *abfd;
12693 bfd_boolean ret = FALSE;
12694
12695 if (info->traditional_format
12696 || !is_elf_hash_table (info->hash))
12697 return FALSE;
12698
12699 _bfd_elf_begin_eh_frame_parsing (info);
12700 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12701 {
12702 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12703 continue;
12704
12705 bed = get_elf_backend_data (abfd);
12706
12707 eh = NULL;
12708 if (!info->relocatable)
12709 {
12710 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12711 while (eh != NULL
12712 && (eh->size == 0
12713 || bfd_is_abs_section (eh->output_section)))
12714 eh = bfd_get_next_section_by_name (eh);
12715 }
12716
12717 stab = bfd_get_section_by_name (abfd, ".stab");
12718 if (stab != NULL
12719 && (stab->size == 0
12720 || bfd_is_abs_section (stab->output_section)
12721 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12722 stab = NULL;
12723
12724 if (stab == NULL
12725 && eh == NULL
12726 && bed->elf_backend_discard_info == NULL)
12727 continue;
12728
12729 if (!init_reloc_cookie (&cookie, info, abfd))
12730 return FALSE;
12731
12732 if (stab != NULL
12733 && stab->reloc_count > 0
12734 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12735 {
12736 if (_bfd_discard_section_stabs (abfd, stab,
12737 elf_section_data (stab)->sec_info,
12738 bfd_elf_reloc_symbol_deleted_p,
12739 &cookie))
12740 ret = TRUE;
12741 fini_reloc_cookie_rels (&cookie, stab);
12742 }
12743
12744 while (eh != NULL
12745 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12746 {
12747 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12748 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12749 bfd_elf_reloc_symbol_deleted_p,
12750 &cookie))
12751 ret = TRUE;
12752 fini_reloc_cookie_rels (&cookie, eh);
12753 eh = bfd_get_next_section_by_name (eh);
12754 }
12755
12756 if (bed->elf_backend_discard_info != NULL
12757 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12758 ret = TRUE;
12759
12760 fini_reloc_cookie (&cookie, abfd);
12761 }
12762 _bfd_elf_end_eh_frame_parsing (info);
12763
12764 if (info->eh_frame_hdr
12765 && !info->relocatable
12766 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12767 ret = TRUE;
12768
12769 return ret;
12770 }
12771
12772 bfd_boolean
12773 _bfd_elf_section_already_linked (bfd *abfd,
12774 asection *sec,
12775 struct bfd_link_info *info)
12776 {
12777 flagword flags;
12778 const char *name, *key;
12779 struct bfd_section_already_linked *l;
12780 struct bfd_section_already_linked_hash_entry *already_linked_list;
12781
12782 if (sec->output_section == bfd_abs_section_ptr)
12783 return FALSE;
12784
12785 flags = sec->flags;
12786
12787 /* Return if it isn't a linkonce section. A comdat group section
12788 also has SEC_LINK_ONCE set. */
12789 if ((flags & SEC_LINK_ONCE) == 0)
12790 return FALSE;
12791
12792 /* Don't put group member sections on our list of already linked
12793 sections. They are handled as a group via their group section. */
12794 if (elf_sec_group (sec) != NULL)
12795 return FALSE;
12796
12797 /* For a SHT_GROUP section, use the group signature as the key. */
12798 name = sec->name;
12799 if ((flags & SEC_GROUP) != 0
12800 && elf_next_in_group (sec) != NULL
12801 && elf_group_name (elf_next_in_group (sec)) != NULL)
12802 key = elf_group_name (elf_next_in_group (sec));
12803 else
12804 {
12805 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12806 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12807 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12808 key++;
12809 else
12810 /* Must be a user linkonce section that doesn't follow gcc's
12811 naming convention. In this case we won't be matching
12812 single member groups. */
12813 key = name;
12814 }
12815
12816 already_linked_list = bfd_section_already_linked_table_lookup (key);
12817
12818 for (l = already_linked_list->entry; l != NULL; l = l->next)
12819 {
12820 /* We may have 2 different types of sections on the list: group
12821 sections with a signature of <key> (<key> is some string),
12822 and linkonce sections named .gnu.linkonce.<type>.<key>.
12823 Match like sections. LTO plugin sections are an exception.
12824 They are always named .gnu.linkonce.t.<key> and match either
12825 type of section. */
12826 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12827 && ((flags & SEC_GROUP) != 0
12828 || strcmp (name, l->sec->name) == 0))
12829 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12830 {
12831 /* The section has already been linked. See if we should
12832 issue a warning. */
12833 if (!_bfd_handle_already_linked (sec, l, info))
12834 return FALSE;
12835
12836 if (flags & SEC_GROUP)
12837 {
12838 asection *first = elf_next_in_group (sec);
12839 asection *s = first;
12840
12841 while (s != NULL)
12842 {
12843 s->output_section = bfd_abs_section_ptr;
12844 /* Record which group discards it. */
12845 s->kept_section = l->sec;
12846 s = elf_next_in_group (s);
12847 /* These lists are circular. */
12848 if (s == first)
12849 break;
12850 }
12851 }
12852
12853 return TRUE;
12854 }
12855 }
12856
12857 /* A single member comdat group section may be discarded by a
12858 linkonce section and vice versa. */
12859 if ((flags & SEC_GROUP) != 0)
12860 {
12861 asection *first = elf_next_in_group (sec);
12862
12863 if (first != NULL && elf_next_in_group (first) == first)
12864 /* Check this single member group against linkonce sections. */
12865 for (l = already_linked_list->entry; l != NULL; l = l->next)
12866 if ((l->sec->flags & SEC_GROUP) == 0
12867 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12868 {
12869 first->output_section = bfd_abs_section_ptr;
12870 first->kept_section = l->sec;
12871 sec->output_section = bfd_abs_section_ptr;
12872 break;
12873 }
12874 }
12875 else
12876 /* Check this linkonce section against single member groups. */
12877 for (l = already_linked_list->entry; l != NULL; l = l->next)
12878 if (l->sec->flags & SEC_GROUP)
12879 {
12880 asection *first = elf_next_in_group (l->sec);
12881
12882 if (first != NULL
12883 && elf_next_in_group (first) == first
12884 && bfd_elf_match_symbols_in_sections (first, sec, info))
12885 {
12886 sec->output_section = bfd_abs_section_ptr;
12887 sec->kept_section = first;
12888 break;
12889 }
12890 }
12891
12892 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12893 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12894 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12895 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12896 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12897 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12898 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12899 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12900 The reverse order cannot happen as there is never a bfd with only the
12901 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12902 matter as here were are looking only for cross-bfd sections. */
12903
12904 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12905 for (l = already_linked_list->entry; l != NULL; l = l->next)
12906 if ((l->sec->flags & SEC_GROUP) == 0
12907 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12908 {
12909 if (abfd != l->sec->owner)
12910 sec->output_section = bfd_abs_section_ptr;
12911 break;
12912 }
12913
12914 /* This is the first section with this name. Record it. */
12915 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12916 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12917 return sec->output_section == bfd_abs_section_ptr;
12918 }
12919
12920 bfd_boolean
12921 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12922 {
12923 return sym->st_shndx == SHN_COMMON;
12924 }
12925
12926 unsigned int
12927 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12928 {
12929 return SHN_COMMON;
12930 }
12931
12932 asection *
12933 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12934 {
12935 return bfd_com_section_ptr;
12936 }
12937
12938 bfd_vma
12939 _bfd_elf_default_got_elt_size (bfd *abfd,
12940 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12941 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12942 bfd *ibfd ATTRIBUTE_UNUSED,
12943 unsigned long symndx ATTRIBUTE_UNUSED)
12944 {
12945 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12946 return bed->s->arch_size / 8;
12947 }
12948
12949 /* Routines to support the creation of dynamic relocs. */
12950
12951 /* Returns the name of the dynamic reloc section associated with SEC. */
12952
12953 static const char *
12954 get_dynamic_reloc_section_name (bfd * abfd,
12955 asection * sec,
12956 bfd_boolean is_rela)
12957 {
12958 char *name;
12959 const char *old_name = bfd_get_section_name (NULL, sec);
12960 const char *prefix = is_rela ? ".rela" : ".rel";
12961
12962 if (old_name == NULL)
12963 return NULL;
12964
12965 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12966 sprintf (name, "%s%s", prefix, old_name);
12967
12968 return name;
12969 }
12970
12971 /* Returns the dynamic reloc section associated with SEC.
12972 If necessary compute the name of the dynamic reloc section based
12973 on SEC's name (looked up in ABFD's string table) and the setting
12974 of IS_RELA. */
12975
12976 asection *
12977 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12978 asection * sec,
12979 bfd_boolean is_rela)
12980 {
12981 asection * reloc_sec = elf_section_data (sec)->sreloc;
12982
12983 if (reloc_sec == NULL)
12984 {
12985 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12986
12987 if (name != NULL)
12988 {
12989 reloc_sec = bfd_get_linker_section (abfd, name);
12990
12991 if (reloc_sec != NULL)
12992 elf_section_data (sec)->sreloc = reloc_sec;
12993 }
12994 }
12995
12996 return reloc_sec;
12997 }
12998
12999 /* Returns the dynamic reloc section associated with SEC. If the
13000 section does not exist it is created and attached to the DYNOBJ
13001 bfd and stored in the SRELOC field of SEC's elf_section_data
13002 structure.
13003
13004 ALIGNMENT is the alignment for the newly created section and
13005 IS_RELA defines whether the name should be .rela.<SEC's name>
13006 or .rel.<SEC's name>. The section name is looked up in the
13007 string table associated with ABFD. */
13008
13009 asection *
13010 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13011 bfd * dynobj,
13012 unsigned int alignment,
13013 bfd * abfd,
13014 bfd_boolean is_rela)
13015 {
13016 asection * reloc_sec = elf_section_data (sec)->sreloc;
13017
13018 if (reloc_sec == NULL)
13019 {
13020 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13021
13022 if (name == NULL)
13023 return NULL;
13024
13025 reloc_sec = bfd_get_linker_section (dynobj, name);
13026
13027 if (reloc_sec == NULL)
13028 {
13029 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13030 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13031 if ((sec->flags & SEC_ALLOC) != 0)
13032 flags |= SEC_ALLOC | SEC_LOAD;
13033
13034 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13035 if (reloc_sec != NULL)
13036 {
13037 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13038 reloc_sec = NULL;
13039 }
13040 }
13041
13042 elf_section_data (sec)->sreloc = reloc_sec;
13043 }
13044
13045 return reloc_sec;
13046 }
13047
13048 /* Copy the ELF symbol type associated with a linker hash entry. */
13049 void
13050 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13051 struct bfd_link_hash_entry * hdest,
13052 struct bfd_link_hash_entry * hsrc)
13053 {
13054 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13055 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13056
13057 ehdest->type = ehsrc->type;
13058 ehdest->target_internal = ehsrc->target_internal;
13059 }
13060
13061 /* Append a RELA relocation REL to section S in BFD. */
13062
13063 void
13064 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13065 {
13066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13067 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13068 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13069 bed->s->swap_reloca_out (abfd, rel, loc);
13070 }
13071
13072 /* Append a REL relocation REL to section S in BFD. */
13073
13074 void
13075 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13076 {
13077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13078 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13079 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13080 bed->s->swap_reloca_out (abfd, rel, loc);
13081 }
This page took 0.487369 seconds and 4 git commands to generate.