bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1362 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1363 return FALSE;
1364
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1367
1368 *size_change_ok = TRUE;
1369 }
1370
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1377
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1384
1385 if (newdyn
1386 && newdef
1387 && (olddef
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1390 {
1391 *override = TRUE;
1392 newdef = FALSE;
1393 newdyncommon = FALSE;
1394
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1397
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1403
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1406 }
1407
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1412 right thing. */
1413
1414 if (newdyncommon
1415 && h->root.type == bfd_link_hash_common)
1416 {
1417 *override = TRUE;
1418 newdef = FALSE;
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1423 }
1424
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1427 {
1428 *skip = TRUE;
1429
1430 /* Merge st_other. If the symbol already has a dynamic index,
1431 but visibility says it should not be visible, turn it into a
1432 local symbol. */
1433 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1434 if (h->dynindx != -1)
1435 switch (ELF_ST_VISIBILITY (h->other))
1436 {
1437 case STV_INTERNAL:
1438 case STV_HIDDEN:
1439 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1440 break;
1441 }
1442 }
1443
1444 /* If the old symbol is from a dynamic object, and the new symbol is
1445 a definition which is not from a dynamic object, then the new
1446 symbol overrides the old symbol. Symbols from regular files
1447 always take precedence over symbols from dynamic objects, even if
1448 they are defined after the dynamic object in the link.
1449
1450 As above, we again permit a common symbol in a regular object to
1451 override a definition in a shared object if the shared object
1452 symbol is a function or is weak. */
1453
1454 flip = NULL;
1455 if (!newdyn
1456 && (newdef
1457 || (bfd_is_com_section (sec)
1458 && (oldweak || oldfunc)))
1459 && olddyn
1460 && olddef
1461 && h->def_dynamic)
1462 {
1463 /* Change the hash table entry to undefined, and let
1464 _bfd_generic_link_add_one_symbol do the right thing with the
1465 new definition. */
1466
1467 h->root.type = bfd_link_hash_undefined;
1468 h->root.u.undef.abfd = h->root.u.def.section->owner;
1469 *size_change_ok = TRUE;
1470
1471 olddef = FALSE;
1472 olddyncommon = FALSE;
1473
1474 /* We again permit a type change when a common symbol may be
1475 overriding a function. */
1476
1477 if (bfd_is_com_section (sec))
1478 {
1479 if (oldfunc)
1480 {
1481 /* If a common symbol overrides a function, make sure
1482 that it isn't defined dynamically nor has type
1483 function. */
1484 h->def_dynamic = 0;
1485 h->type = STT_NOTYPE;
1486 }
1487 *type_change_ok = TRUE;
1488 }
1489
1490 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1491 flip = *sym_hash;
1492 else
1493 /* This union may have been set to be non-NULL when this symbol
1494 was seen in a dynamic object. We must force the union to be
1495 NULL, so that it is correct for a regular symbol. */
1496 h->verinfo.vertree = NULL;
1497 }
1498
1499 /* Handle the special case of a new common symbol merging with an
1500 old symbol that looks like it might be a common symbol defined in
1501 a shared object. Note that we have already handled the case in
1502 which a new common symbol should simply override the definition
1503 in the shared library. */
1504
1505 if (! newdyn
1506 && bfd_is_com_section (sec)
1507 && olddyncommon)
1508 {
1509 /* It would be best if we could set the hash table entry to a
1510 common symbol, but we don't know what to use for the section
1511 or the alignment. */
1512 if (! ((*info->callbacks->multiple_common)
1513 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1514 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1515 return FALSE;
1516
1517 /* If the presumed common symbol in the dynamic object is
1518 larger, pretend that the new symbol has its size. */
1519
1520 if (h->size > *pvalue)
1521 *pvalue = h->size;
1522
1523 /* We need to remember the alignment required by the symbol
1524 in the dynamic object. */
1525 BFD_ASSERT (pold_alignment);
1526 *pold_alignment = h->root.u.def.section->alignment_power;
1527
1528 olddef = FALSE;
1529 olddyncommon = FALSE;
1530
1531 h->root.type = bfd_link_hash_undefined;
1532 h->root.u.undef.abfd = h->root.u.def.section->owner;
1533
1534 *size_change_ok = TRUE;
1535 *type_change_ok = TRUE;
1536
1537 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1538 flip = *sym_hash;
1539 else
1540 h->verinfo.vertree = NULL;
1541 }
1542
1543 if (flip != NULL)
1544 {
1545 /* Handle the case where we had a versioned symbol in a dynamic
1546 library and now find a definition in a normal object. In this
1547 case, we make the versioned symbol point to the normal one. */
1548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (info->shared
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (info->shared
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2323 if (p == NULL)
2324 return FALSE;
2325
2326 elf_section_data (o)->rel_hashes = p;
2327 }
2328
2329 return TRUE;
2330 }
2331
2332 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2333 originated from the section given by INPUT_REL_HDR) to the
2334 OUTPUT_BFD. */
2335
2336 bfd_boolean
2337 _bfd_elf_link_output_relocs (bfd *output_bfd,
2338 asection *input_section,
2339 Elf_Internal_Shdr *input_rel_hdr,
2340 Elf_Internal_Rela *internal_relocs,
2341 struct elf_link_hash_entry **rel_hash
2342 ATTRIBUTE_UNUSED)
2343 {
2344 Elf_Internal_Rela *irela;
2345 Elf_Internal_Rela *irelaend;
2346 bfd_byte *erel;
2347 Elf_Internal_Shdr *output_rel_hdr;
2348 asection *output_section;
2349 unsigned int *rel_countp = NULL;
2350 const struct elf_backend_data *bed;
2351 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2352
2353 output_section = input_section->output_section;
2354 output_rel_hdr = NULL;
2355
2356 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2357 == input_rel_hdr->sh_entsize)
2358 {
2359 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2360 rel_countp = &elf_section_data (output_section)->rel_count;
2361 }
2362 else if (elf_section_data (output_section)->rel_hdr2
2363 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2364 == input_rel_hdr->sh_entsize))
2365 {
2366 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2367 rel_countp = &elf_section_data (output_section)->rel_count2;
2368 }
2369 else
2370 {
2371 (*_bfd_error_handler)
2372 (_("%B: relocation size mismatch in %B section %A"),
2373 output_bfd, input_section->owner, input_section);
2374 bfd_set_error (bfd_error_wrong_format);
2375 return FALSE;
2376 }
2377
2378 bed = get_elf_backend_data (output_bfd);
2379 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2380 swap_out = bed->s->swap_reloc_out;
2381 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2382 swap_out = bed->s->swap_reloca_out;
2383 else
2384 abort ();
2385
2386 erel = output_rel_hdr->contents;
2387 erel += *rel_countp * input_rel_hdr->sh_entsize;
2388 irela = internal_relocs;
2389 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2390 * bed->s->int_rels_per_ext_rel);
2391 while (irela < irelaend)
2392 {
2393 (*swap_out) (output_bfd, irela, erel);
2394 irela += bed->s->int_rels_per_ext_rel;
2395 erel += input_rel_hdr->sh_entsize;
2396 }
2397
2398 /* Bump the counter, so that we know where to add the next set of
2399 relocations. */
2400 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2401
2402 return TRUE;
2403 }
2404 \f
2405 /* Make weak undefined symbols in PIE dynamic. */
2406
2407 bfd_boolean
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2409 struct elf_link_hash_entry *h)
2410 {
2411 if (info->pie
2412 && h->dynindx == -1
2413 && h->root.type == bfd_link_hash_undefweak)
2414 return bfd_elf_link_record_dynamic_symbol (info, h);
2415
2416 return TRUE;
2417 }
2418
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2424
2425 static bfd_boolean
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2427 struct elf_info_failed *eif)
2428 {
2429 const struct elf_backend_data *bed;
2430
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2435 if (h->non_elf)
2436 {
2437 while (h->root.type == bfd_link_hash_indirect)
2438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2439
2440 if (h->root.type != bfd_link_hash_defined
2441 && h->root.type != bfd_link_hash_defweak)
2442 {
2443 h->ref_regular = 1;
2444 h->ref_regular_nonweak = 1;
2445 }
2446 else
2447 {
2448 if (h->root.u.def.section->owner != NULL
2449 && (bfd_get_flavour (h->root.u.def.section->owner)
2450 == bfd_target_elf_flavour))
2451 {
2452 h->ref_regular = 1;
2453 h->ref_regular_nonweak = 1;
2454 }
2455 else
2456 h->def_regular = 1;
2457 }
2458
2459 if (h->dynindx == -1
2460 && (h->def_dynamic
2461 || h->ref_dynamic))
2462 {
2463 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2464 {
2465 eif->failed = TRUE;
2466 return FALSE;
2467 }
2468 }
2469 }
2470 else
2471 {
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h->root.type == bfd_link_hash_defined
2479 || h->root.type == bfd_link_hash_defweak)
2480 && !h->def_regular
2481 && (h->root.u.def.section->owner != NULL
2482 ? (bfd_get_flavour (h->root.u.def.section->owner)
2483 != bfd_target_elf_flavour)
2484 : (bfd_is_abs_section (h->root.u.def.section)
2485 && !h->def_dynamic)))
2486 h->def_regular = 1;
2487 }
2488
2489 /* Backend specific symbol fixup. */
2490 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2491 if (bed->elf_backend_fixup_symbol
2492 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2493 return FALSE;
2494
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h->root.type == bfd_link_hash_defined
2501 && !h->def_regular
2502 && h->ref_regular
2503 && !h->def_dynamic
2504 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2505 h->def_regular = 1;
2506
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2513 if (h->needs_plt
2514 && eif->info->shared
2515 && is_elf_hash_table (eif->info->hash)
2516 && (SYMBOLIC_BIND (eif->info, h)
2517 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2518 && h->def_regular)
2519 {
2520 bfd_boolean force_local;
2521
2522 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2525 }
2526
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2530 && h->root.type == bfd_link_hash_undefweak)
2531 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2532
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h->u.weakdef != NULL)
2537 {
2538 struct elf_link_hash_entry *weakdef;
2539
2540 weakdef = h->u.weakdef;
2541 if (h->root.type == bfd_link_hash_indirect)
2542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2543
2544 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2545 || h->root.type == bfd_link_hash_defweak);
2546 BFD_ASSERT (weakdef->def_dynamic);
2547
2548 /* If the real definition is defined by a regular object file,
2549 don't do anything special. See the longer description in
2550 _bfd_elf_adjust_dynamic_symbol, below. */
2551 if (weakdef->def_regular)
2552 h->u.weakdef = NULL;
2553 else
2554 {
2555 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2556 || weakdef->root.type == bfd_link_hash_defweak);
2557 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2558 }
2559 }
2560
2561 return TRUE;
2562 }
2563
2564 /* Make the backend pick a good value for a dynamic symbol. This is
2565 called via elf_link_hash_traverse, and also calls itself
2566 recursively. */
2567
2568 static bfd_boolean
2569 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2570 {
2571 struct elf_info_failed *eif = data;
2572 bfd *dynobj;
2573 const struct elf_backend_data *bed;
2574
2575 if (! is_elf_hash_table (eif->info->hash))
2576 return FALSE;
2577
2578 if (h->root.type == bfd_link_hash_warning)
2579 {
2580 h->got = elf_hash_table (eif->info)->init_got_offset;
2581 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2582
2583 /* When warning symbols are created, they **replace** the "real"
2584 entry in the hash table, thus we never get to see the real
2585 symbol in a hash traversal. So look at it now. */
2586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2587 }
2588
2589 /* Ignore indirect symbols. These are added by the versioning code. */
2590 if (h->root.type == bfd_link_hash_indirect)
2591 return TRUE;
2592
2593 /* Fix the symbol flags. */
2594 if (! _bfd_elf_fix_symbol_flags (h, eif))
2595 return FALSE;
2596
2597 /* If this symbol does not require a PLT entry, and it is not
2598 defined by a dynamic object, or is not referenced by a regular
2599 object, ignore it. We do have to handle a weak defined symbol,
2600 even if no regular object refers to it, if we decided to add it
2601 to the dynamic symbol table. FIXME: Do we normally need to worry
2602 about symbols which are defined by one dynamic object and
2603 referenced by another one? */
2604 if (!h->needs_plt
2605 && (h->def_regular
2606 || !h->def_dynamic
2607 || (!h->ref_regular
2608 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2609 {
2610 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2611 return TRUE;
2612 }
2613
2614 /* If we've already adjusted this symbol, don't do it again. This
2615 can happen via a recursive call. */
2616 if (h->dynamic_adjusted)
2617 return TRUE;
2618
2619 /* Don't look at this symbol again. Note that we must set this
2620 after checking the above conditions, because we may look at a
2621 symbol once, decide not to do anything, and then get called
2622 recursively later after REF_REGULAR is set below. */
2623 h->dynamic_adjusted = 1;
2624
2625 /* If this is a weak definition, and we know a real definition, and
2626 the real symbol is not itself defined by a regular object file,
2627 then get a good value for the real definition. We handle the
2628 real symbol first, for the convenience of the backend routine.
2629
2630 Note that there is a confusing case here. If the real definition
2631 is defined by a regular object file, we don't get the real symbol
2632 from the dynamic object, but we do get the weak symbol. If the
2633 processor backend uses a COPY reloc, then if some routine in the
2634 dynamic object changes the real symbol, we will not see that
2635 change in the corresponding weak symbol. This is the way other
2636 ELF linkers work as well, and seems to be a result of the shared
2637 library model.
2638
2639 I will clarify this issue. Most SVR4 shared libraries define the
2640 variable _timezone and define timezone as a weak synonym. The
2641 tzset call changes _timezone. If you write
2642 extern int timezone;
2643 int _timezone = 5;
2644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2645 you might expect that, since timezone is a synonym for _timezone,
2646 the same number will print both times. However, if the processor
2647 backend uses a COPY reloc, then actually timezone will be copied
2648 into your process image, and, since you define _timezone
2649 yourself, _timezone will not. Thus timezone and _timezone will
2650 wind up at different memory locations. The tzset call will set
2651 _timezone, leaving timezone unchanged. */
2652
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If we get to this point, we know there is an implicit
2656 reference by a regular object file via the weak symbol H.
2657 FIXME: Is this really true? What if the traversal finds
2658 H->U.WEAKDEF before it finds H? */
2659 h->u.weakdef->ref_regular = 1;
2660
2661 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2662 return FALSE;
2663 }
2664
2665 /* If a symbol has no type and no size and does not require a PLT
2666 entry, then we are probably about to do the wrong thing here: we
2667 are probably going to create a COPY reloc for an empty object.
2668 This case can arise when a shared object is built with assembly
2669 code, and the assembly code fails to set the symbol type. */
2670 if (h->size == 0
2671 && h->type == STT_NOTYPE
2672 && !h->needs_plt)
2673 (*_bfd_error_handler)
2674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2675 h->root.root.string);
2676
2677 dynobj = elf_hash_table (eif->info)->dynobj;
2678 bed = get_elf_backend_data (dynobj);
2679
2680 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2681 {
2682 eif->failed = TRUE;
2683 return FALSE;
2684 }
2685
2686 return TRUE;
2687 }
2688
2689 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2690 DYNBSS. */
2691
2692 bfd_boolean
2693 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2694 asection *dynbss)
2695 {
2696 unsigned int power_of_two;
2697 bfd_vma mask;
2698 asection *sec = h->root.u.def.section;
2699
2700 /* The section aligment of definition is the maximum alignment
2701 requirement of symbols defined in the section. Since we don't
2702 know the symbol alignment requirement, we start with the
2703 maximum alignment and check low bits of the symbol address
2704 for the minimum alignment. */
2705 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2706 mask = ((bfd_vma) 1 << power_of_two) - 1;
2707 while ((h->root.u.def.value & mask) != 0)
2708 {
2709 mask >>= 1;
2710 --power_of_two;
2711 }
2712
2713 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2714 dynbss))
2715 {
2716 /* Adjust the section alignment if needed. */
2717 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2718 power_of_two))
2719 return FALSE;
2720 }
2721
2722 /* We make sure that the symbol will be aligned properly. */
2723 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2724
2725 /* Define the symbol as being at this point in DYNBSS. */
2726 h->root.u.def.section = dynbss;
2727 h->root.u.def.value = dynbss->size;
2728
2729 /* Increment the size of DYNBSS to make room for the symbol. */
2730 dynbss->size += h->size;
2731
2732 return TRUE;
2733 }
2734
2735 /* Adjust all external symbols pointing into SEC_MERGE sections
2736 to reflect the object merging within the sections. */
2737
2738 static bfd_boolean
2739 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2740 {
2741 asection *sec;
2742
2743 if (h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 if ((h->root.type == bfd_link_hash_defined
2747 || h->root.type == bfd_link_hash_defweak)
2748 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2749 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2750 {
2751 bfd *output_bfd = data;
2752
2753 h->root.u.def.value =
2754 _bfd_merged_section_offset (output_bfd,
2755 &h->root.u.def.section,
2756 elf_section_data (sec)->sec_info,
2757 h->root.u.def.value);
2758 }
2759
2760 return TRUE;
2761 }
2762
2763 /* Returns false if the symbol referred to by H should be considered
2764 to resolve local to the current module, and true if it should be
2765 considered to bind dynamically. */
2766
2767 bfd_boolean
2768 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2769 struct bfd_link_info *info,
2770 bfd_boolean ignore_protected)
2771 {
2772 bfd_boolean binding_stays_local_p;
2773 const struct elf_backend_data *bed;
2774 struct elf_link_hash_table *hash_table;
2775
2776 if (h == NULL)
2777 return FALSE;
2778
2779 while (h->root.type == bfd_link_hash_indirect
2780 || h->root.type == bfd_link_hash_warning)
2781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2782
2783 /* If it was forced local, then clearly it's not dynamic. */
2784 if (h->dynindx == -1)
2785 return FALSE;
2786 if (h->forced_local)
2787 return FALSE;
2788
2789 /* Identify the cases where name binding rules say that a
2790 visible symbol resolves locally. */
2791 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2792
2793 switch (ELF_ST_VISIBILITY (h->other))
2794 {
2795 case STV_INTERNAL:
2796 case STV_HIDDEN:
2797 return FALSE;
2798
2799 case STV_PROTECTED:
2800 hash_table = elf_hash_table (info);
2801 if (!is_elf_hash_table (hash_table))
2802 return FALSE;
2803
2804 bed = get_elf_backend_data (hash_table->dynobj);
2805
2806 /* Proper resolution for function pointer equality may require
2807 that these symbols perhaps be resolved dynamically, even though
2808 we should be resolving them to the current module. */
2809 if (!ignore_protected || !bed->is_function_type (h->type))
2810 binding_stays_local_p = TRUE;
2811 break;
2812
2813 default:
2814 break;
2815 }
2816
2817 /* If it isn't defined locally, then clearly it's dynamic. */
2818 if (!h->def_regular)
2819 return TRUE;
2820
2821 /* Otherwise, the symbol is dynamic if binding rules don't tell
2822 us that it remains local. */
2823 return !binding_stays_local_p;
2824 }
2825
2826 /* Return true if the symbol referred to by H should be considered
2827 to resolve local to the current module, and false otherwise. Differs
2828 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2829 undefined symbols and weak symbols. */
2830
2831 bfd_boolean
2832 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2833 struct bfd_link_info *info,
2834 bfd_boolean local_protected)
2835 {
2836 const struct elf_backend_data *bed;
2837 struct elf_link_hash_table *hash_table;
2838
2839 /* If it's a local sym, of course we resolve locally. */
2840 if (h == NULL)
2841 return TRUE;
2842
2843 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2845 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2846 return TRUE;
2847
2848 /* Common symbols that become definitions don't get the DEF_REGULAR
2849 flag set, so test it first, and don't bail out. */
2850 if (ELF_COMMON_DEF_P (h))
2851 /* Do nothing. */;
2852 /* If we don't have a definition in a regular file, then we can't
2853 resolve locally. The sym is either undefined or dynamic. */
2854 else if (!h->def_regular)
2855 return FALSE;
2856
2857 /* Forced local symbols resolve locally. */
2858 if (h->forced_local)
2859 return TRUE;
2860
2861 /* As do non-dynamic symbols. */
2862 if (h->dynindx == -1)
2863 return TRUE;
2864
2865 /* At this point, we know the symbol is defined and dynamic. In an
2866 executable it must resolve locally, likewise when building symbolic
2867 shared libraries. */
2868 if (info->executable || SYMBOLIC_BIND (info, h))
2869 return TRUE;
2870
2871 /* Now deal with defined dynamic symbols in shared libraries. Ones
2872 with default visibility might not resolve locally. */
2873 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2874 return FALSE;
2875
2876 hash_table = elf_hash_table (info);
2877 if (!is_elf_hash_table (hash_table))
2878 return TRUE;
2879
2880 bed = get_elf_backend_data (hash_table->dynobj);
2881
2882 /* STV_PROTECTED non-function symbols are local. */
2883 if (!bed->is_function_type (h->type))
2884 return TRUE;
2885
2886 /* Function pointer equality tests may require that STV_PROTECTED
2887 symbols be treated as dynamic symbols, even when we know that the
2888 dynamic linker will resolve them locally. */
2889 return local_protected;
2890 }
2891
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2894
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2897 {
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2900
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 break;
2904 tls = sec;
2905
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2909
2910 elf_hash_table (info)->tls_sec = tls;
2911
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2914 if (tls != NULL)
2915 tls->alignment_power = align;
2916
2917 return tls;
2918 }
2919
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 static bfd_boolean
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2924 {
2925 const struct elf_backend_data *bed;
2926
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2930 return FALSE;
2931
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2935 return FALSE;
2936
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2939 return FALSE;
2940
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2944 return FALSE;
2945
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2950
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2952
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2956 return FALSE;
2957
2958 return TRUE;
2959 }
2960
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2964 static bfd_boolean
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2966 {
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2974 bfd_boolean result;
2975
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (abfd == NULL)
2978 return FALSE;
2979
2980 if (! bfd_check_format (abfd, bfd_object))
2981 return FALSE;
2982
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2988 return FALSE;
2989
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2993 else
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2995
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2997
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3001 {
3002 extsymcount = symcount;
3003 extsymoff = 0;
3004 }
3005 else
3006 {
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3009 }
3010
3011 if (extsymcount == 0)
3012 return FALSE;
3013
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3016 NULL, NULL, NULL);
3017 if (isymbuf == NULL)
3018 return FALSE;
3019
3020 /* Scan the symbol table looking for SYMDEF. */
3021 result = FALSE;
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 {
3024 const char *name;
3025
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3027 isym->st_name);
3028 if (name == NULL)
3029 break;
3030
3031 if (strcmp (name, symdef->name) == 0)
3032 {
3033 result = is_global_data_symbol_definition (abfd, isym);
3034 break;
3035 }
3036 }
3037
3038 free (isymbuf);
3039
3040 return result;
3041 }
3042 \f
3043 /* Add an entry to the .dynamic table. */
3044
3045 bfd_boolean
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 bfd_vma tag,
3048 bfd_vma val)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3052 asection *s;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3056
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3059 return FALSE;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3064
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3068 return FALSE;
3069
3070 dyn.d_tag = tag;
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3073
3074 s->size = newsize;
3075 s->contents = newcontents;
3076
3077 return TRUE;
3078 }
3079
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083
3084 static int
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3087 const char *soname,
3088 bfd_boolean do_it)
3089 {
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3093
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3095 return -1;
3096
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3148 return TRUE;
3149
3150 return FALSE;
3151 }
3152
3153 /* Sort symbol by value and section. */
3154 static int
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3156 {
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3160
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3164 if (vdiff != 0)
3165 return vdiff > 0 ? 1 : -1;
3166 else
3167 {
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3169 if (sdiff != 0)
3170 return sdiff > 0 ? 1 : -1;
3171 }
3172 return 0;
3173 }
3174
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3177
3178 static bfd_boolean
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3180 {
3181 struct elf_strtab_hash *dynstr = data;
3182
3183 if (h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 if (h->dynindx != -1)
3187 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3188 return TRUE;
3189 }
3190
3191 /* Assign string offsets in .dynstr, update all structures referencing
3192 them. */
3193
3194 static bfd_boolean
3195 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3196 {
3197 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3198 struct elf_link_local_dynamic_entry *entry;
3199 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3200 bfd *dynobj = hash_table->dynobj;
3201 asection *sdyn;
3202 bfd_size_type size;
3203 const struct elf_backend_data *bed;
3204 bfd_byte *extdyn;
3205
3206 _bfd_elf_strtab_finalize (dynstr);
3207 size = _bfd_elf_strtab_size (dynstr);
3208
3209 bed = get_elf_backend_data (dynobj);
3210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3211 BFD_ASSERT (sdyn != NULL);
3212
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn = sdyn->contents;
3215 extdyn < sdyn->contents + sdyn->size;
3216 extdyn += bed->s->sizeof_dyn)
3217 {
3218 Elf_Internal_Dyn dyn;
3219
3220 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3221 switch (dyn.d_tag)
3222 {
3223 case DT_STRSZ:
3224 dyn.d_un.d_val = size;
3225 break;
3226 case DT_NEEDED:
3227 case DT_SONAME:
3228 case DT_RPATH:
3229 case DT_RUNPATH:
3230 case DT_FILTER:
3231 case DT_AUXILIARY:
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3233 break;
3234 default:
3235 continue;
3236 }
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 }
3239
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3244
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3256
3257 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 &def);
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 continue;
3266 for (i = 0; i < def.vd_cnt; ++i)
3267 {
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 defaux.vda_name);
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3275 }
3276 }
3277 while (def.vd_next);
3278 }
3279
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3282 {
3283 asection *s;
3284 bfd_byte *p;
3285 bfd_size_type i;
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3288
3289 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3290 p = s->contents;
3291 do
3292 {
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 &need);
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3300 {
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 needaux.vna_name);
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3306 &needaux,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3309 }
3310 }
3311 while (need.vn_next);
3312 }
3313
3314 return TRUE;
3315 }
3316 \f
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3319 the same target. */
3320
3321 bfd_boolean
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3324 {
3325 return input == output;
3326 }
3327
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3331
3332 bfd_boolean
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3335 {
3336 const struct elf_backend_data *obed, *ibed;
3337
3338 if (input == output)
3339 return TRUE;
3340
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3343
3344 if (ibed->arch != obed->arch)
3345 return FALSE;
3346
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3349 }
3350
3351 /* Add symbols from an ELF object file to the linker hash table. */
3352
3353 static bfd_boolean
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 {
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3374 bfd_size_type amt;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3380 void *old_hash;
3381 void *old_ent;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3385 size_t tabsize = 0;
3386 size_t hashsize = 0;
3387
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3390
3391 if ((abfd->flags & DYNAMIC) == 0)
3392 dynamic = FALSE;
3393 else
3394 {
3395 dynamic = TRUE;
3396
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3403 {
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3406 else
3407 bfd_set_error (bfd_error_wrong_format);
3408 goto error_return;
3409 }
3410 }
3411
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3422
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info->executable)
3428 {
3429 asection *s;
3430
3431 for (s = abfd->sections; s != NULL; s = s->next)
3432 {
3433 const char *name;
3434
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3437 {
3438 char *msg;
3439 bfd_size_type sz;
3440
3441 name += sizeof ".gnu.warning." - 1;
3442
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3451 link. */
3452 if (dynamic)
3453 {
3454 struct elf_link_hash_entry *h;
3455
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3457
3458 /* FIXME: What about bfd_link_hash_common? */
3459 if (h != NULL
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3462 {
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3466 s->size = 0;
3467 continue;
3468 }
3469 }
3470
3471 sz = s->size;
3472 msg = bfd_alloc (abfd, sz + 1);
3473 if (msg == NULL)
3474 goto error_return;
3475
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3477 goto error_return;
3478
3479 msg[sz] = '\0';
3480
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3484 goto error_return;
3485
3486 if (! info->relocatable)
3487 {
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3490 s->size = 0;
3491
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3495 }
3496 }
3497 }
3498 }
3499
3500 add_needed = TRUE;
3501 if (! dynamic)
3502 {
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3508 if (info->shared
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3512 {
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3514 goto error_return;
3515 }
3516 }
3517 else if (!is_elf_hash_table (htab))
3518 goto error_return;
3519 else
3520 {
3521 asection *s;
3522 const char *soname = NULL;
3523 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3524 int ret;
3525
3526 /* ld --just-symbols and dynamic objects don't mix very well.
3527 ld shouldn't allow it. */
3528 if ((s = abfd->sections) != NULL
3529 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3530 abort ();
3531
3532 /* If this dynamic lib was specified on the command line with
3533 --as-needed in effect, then we don't want to add a DT_NEEDED
3534 tag unless the lib is actually used. Similary for libs brought
3535 in by another lib's DT_NEEDED. When --no-add-needed is used
3536 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3537 any dynamic library in DT_NEEDED tags in the dynamic lib at
3538 all. */
3539 add_needed = (elf_dyn_lib_class (abfd)
3540 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3541 | DYN_NO_NEEDED)) == 0;
3542
3543 s = bfd_get_section_by_name (abfd, ".dynamic");
3544 if (s != NULL)
3545 {
3546 bfd_byte *dynbuf;
3547 bfd_byte *extdyn;
3548 unsigned int elfsec;
3549 unsigned long shlink;
3550
3551 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3552 {
3553 error_free_dyn:
3554 free (dynbuf);
3555 goto error_return;
3556 }
3557
3558 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3559 if (elfsec == SHN_BAD)
3560 goto error_free_dyn;
3561 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3562
3563 for (extdyn = dynbuf;
3564 extdyn < dynbuf + s->size;
3565 extdyn += bed->s->sizeof_dyn)
3566 {
3567 Elf_Internal_Dyn dyn;
3568
3569 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3570 if (dyn.d_tag == DT_SONAME)
3571 {
3572 unsigned int tagv = dyn.d_un.d_val;
3573 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (soname == NULL)
3575 goto error_free_dyn;
3576 }
3577 if (dyn.d_tag == DT_NEEDED)
3578 {
3579 struct bfd_link_needed_list *n, **pn;
3580 char *fnm, *anm;
3581 unsigned int tagv = dyn.d_un.d_val;
3582
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = bfd_alloc (abfd, amt);
3590 if (anm == NULL)
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3593 n->name = anm;
3594 n->by = abfd;
3595 n->next = NULL;
3596 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3597 ;
3598 *pn = n;
3599 }
3600 if (dyn.d_tag == DT_RUNPATH)
3601 {
3602 struct bfd_link_needed_list *n, **pn;
3603 char *fnm, *anm;
3604 unsigned int tagv = dyn.d_un.d_val;
3605
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = bfd_alloc (abfd, amt);
3613 if (anm == NULL)
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3616 n->name = anm;
3617 n->by = abfd;
3618 n->next = NULL;
3619 for (pn = & runpath;
3620 *pn != NULL;
3621 pn = &(*pn)->next)
3622 ;
3623 *pn = n;
3624 }
3625 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3626 if (!runpath && dyn.d_tag == DT_RPATH)
3627 {
3628 struct bfd_link_needed_list *n, **pn;
3629 char *fnm, *anm;
3630 unsigned int tagv = dyn.d_un.d_val;
3631
3632 amt = sizeof (struct bfd_link_needed_list);
3633 n = bfd_alloc (abfd, amt);
3634 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3635 if (n == NULL || fnm == NULL)
3636 goto error_free_dyn;
3637 amt = strlen (fnm) + 1;
3638 anm = bfd_alloc (abfd, amt);
3639 if (anm == NULL)
3640 goto error_free_dyn;
3641 memcpy (anm, fnm, amt);
3642 n->name = anm;
3643 n->by = abfd;
3644 n->next = NULL;
3645 for (pn = & rpath;
3646 *pn != NULL;
3647 pn = &(*pn)->next)
3648 ;
3649 *pn = n;
3650 }
3651 }
3652
3653 free (dynbuf);
3654 }
3655
3656 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3657 frees all more recently bfd_alloc'd blocks as well. */
3658 if (runpath)
3659 rpath = runpath;
3660
3661 if (rpath)
3662 {
3663 struct bfd_link_needed_list **pn;
3664 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3665 ;
3666 *pn = rpath;
3667 }
3668
3669 /* We do not want to include any of the sections in a dynamic
3670 object in the output file. We hack by simply clobbering the
3671 list of sections in the BFD. This could be handled more
3672 cleanly by, say, a new section flag; the existing
3673 SEC_NEVER_LOAD flag is not the one we want, because that one
3674 still implies that the section takes up space in the output
3675 file. */
3676 bfd_section_list_clear (abfd);
3677
3678 /* Find the name to use in a DT_NEEDED entry that refers to this
3679 object. If the object has a DT_SONAME entry, we use it.
3680 Otherwise, if the generic linker stuck something in
3681 elf_dt_name, we use that. Otherwise, we just use the file
3682 name. */
3683 if (soname == NULL || *soname == '\0')
3684 {
3685 soname = elf_dt_name (abfd);
3686 if (soname == NULL || *soname == '\0')
3687 soname = bfd_get_filename (abfd);
3688 }
3689
3690 /* Save the SONAME because sometimes the linker emulation code
3691 will need to know it. */
3692 elf_dt_name (abfd) = soname;
3693
3694 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3695 if (ret < 0)
3696 goto error_return;
3697
3698 /* If we have already included this dynamic object in the
3699 link, just ignore it. There is no reason to include a
3700 particular dynamic object more than once. */
3701 if (ret > 0)
3702 return TRUE;
3703 }
3704
3705 /* If this is a dynamic object, we always link against the .dynsym
3706 symbol table, not the .symtab symbol table. The dynamic linker
3707 will only see the .dynsym symbol table, so there is no reason to
3708 look at .symtab for a dynamic object. */
3709
3710 if (! dynamic || elf_dynsymtab (abfd) == 0)
3711 hdr = &elf_tdata (abfd)->symtab_hdr;
3712 else
3713 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3714
3715 symcount = hdr->sh_size / bed->s->sizeof_sym;
3716
3717 /* The sh_info field of the symtab header tells us where the
3718 external symbols start. We don't care about the local symbols at
3719 this point. */
3720 if (elf_bad_symtab (abfd))
3721 {
3722 extsymcount = symcount;
3723 extsymoff = 0;
3724 }
3725 else
3726 {
3727 extsymcount = symcount - hdr->sh_info;
3728 extsymoff = hdr->sh_info;
3729 }
3730
3731 sym_hash = NULL;
3732 if (extsymcount != 0)
3733 {
3734 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3735 NULL, NULL, NULL);
3736 if (isymbuf == NULL)
3737 goto error_return;
3738
3739 /* We store a pointer to the hash table entry for each external
3740 symbol. */
3741 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3742 sym_hash = bfd_alloc (abfd, amt);
3743 if (sym_hash == NULL)
3744 goto error_free_sym;
3745 elf_sym_hashes (abfd) = sym_hash;
3746 }
3747
3748 if (dynamic)
3749 {
3750 /* Read in any version definitions. */
3751 if (!_bfd_elf_slurp_version_tables (abfd,
3752 info->default_imported_symver))
3753 goto error_free_sym;
3754
3755 /* Read in the symbol versions, but don't bother to convert them
3756 to internal format. */
3757 if (elf_dynversym (abfd) != 0)
3758 {
3759 Elf_Internal_Shdr *versymhdr;
3760
3761 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3762 extversym = bfd_malloc (versymhdr->sh_size);
3763 if (extversym == NULL)
3764 goto error_free_sym;
3765 amt = versymhdr->sh_size;
3766 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3767 || bfd_bread (extversym, amt, abfd) != amt)
3768 goto error_free_vers;
3769 }
3770 }
3771
3772 /* If we are loading an as-needed shared lib, save the symbol table
3773 state before we start adding symbols. If the lib turns out
3774 to be unneeded, restore the state. */
3775 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3776 {
3777 unsigned int i;
3778 size_t entsize;
3779
3780 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3781 {
3782 struct bfd_hash_entry *p;
3783 struct elf_link_hash_entry *h;
3784
3785 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3786 {
3787 h = (struct elf_link_hash_entry *) p;
3788 entsize += htab->root.table.entsize;
3789 if (h->root.type == bfd_link_hash_warning)
3790 entsize += htab->root.table.entsize;
3791 }
3792 }
3793
3794 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3795 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3796 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3797 if (old_tab == NULL)
3798 goto error_free_vers;
3799
3800 /* Remember the current objalloc pointer, so that all mem for
3801 symbols added can later be reclaimed. */
3802 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3803 if (alloc_mark == NULL)
3804 goto error_free_vers;
3805
3806 /* Make a special call to the linker "notice" function to
3807 tell it that we are about to handle an as-needed lib. */
3808 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3809 notice_as_needed))
3810 goto error_free_vers;
3811
3812 /* Clone the symbol table and sym hashes. Remember some
3813 pointers into the symbol table, and dynamic symbol count. */
3814 old_hash = (char *) old_tab + tabsize;
3815 old_ent = (char *) old_hash + hashsize;
3816 memcpy (old_tab, htab->root.table.table, tabsize);
3817 memcpy (old_hash, sym_hash, hashsize);
3818 old_undefs = htab->root.undefs;
3819 old_undefs_tail = htab->root.undefs_tail;
3820 old_table = htab->root.table.table;
3821 old_size = htab->root.table.size;
3822 old_count = htab->root.table.count;
3823 old_dynsymcount = htab->dynsymcount;
3824
3825 for (i = 0; i < htab->root.table.size; i++)
3826 {
3827 struct bfd_hash_entry *p;
3828 struct elf_link_hash_entry *h;
3829
3830 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3831 {
3832 memcpy (old_ent, p, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 h = (struct elf_link_hash_entry *) p;
3835 if (h->root.type == bfd_link_hash_warning)
3836 {
3837 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3839 }
3840 }
3841 }
3842 }
3843
3844 weaks = NULL;
3845 ever = extversym != NULL ? extversym + extsymoff : NULL;
3846 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3847 isym < isymend;
3848 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3849 {
3850 int bind;
3851 bfd_vma value;
3852 asection *sec, *new_sec;
3853 flagword flags;
3854 const char *name;
3855 struct elf_link_hash_entry *h;
3856 bfd_boolean definition;
3857 bfd_boolean size_change_ok;
3858 bfd_boolean type_change_ok;
3859 bfd_boolean new_weakdef;
3860 bfd_boolean override;
3861 bfd_boolean common;
3862 unsigned int old_alignment;
3863 bfd *old_bfd;
3864
3865 override = FALSE;
3866
3867 flags = BSF_NO_FLAGS;
3868 sec = NULL;
3869 value = isym->st_value;
3870 *sym_hash = NULL;
3871 common = bed->common_definition (isym);
3872
3873 bind = ELF_ST_BIND (isym->st_info);
3874 if (bind == STB_LOCAL)
3875 {
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3879 screws this up. */
3880 continue;
3881 }
3882 else if (bind == STB_GLOBAL)
3883 {
3884 if (isym->st_shndx != SHN_UNDEF && !common)
3885 flags = BSF_GLOBAL;
3886 }
3887 else if (bind == STB_WEAK)
3888 flags = BSF_WEAK;
3889 else
3890 {
3891 /* Leave it up to the processor backend. */
3892 }
3893
3894 if (isym->st_shndx == SHN_UNDEF)
3895 sec = bfd_und_section_ptr;
3896 else if (isym->st_shndx == SHN_ABS)
3897 sec = bfd_abs_section_ptr;
3898 else if (isym->st_shndx == SHN_COMMON)
3899 {
3900 sec = bfd_com_section_ptr;
3901 /* What ELF calls the size we call the value. What ELF
3902 calls the value we call the alignment. */
3903 value = isym->st_size;
3904 }
3905 else
3906 {
3907 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3908 if (sec == NULL)
3909 sec = bfd_abs_section_ptr;
3910 else if (sec->kept_section)
3911 {
3912 /* Symbols from discarded section are undefined. We keep
3913 its visibility. */
3914 sec = bfd_und_section_ptr;
3915 isym->st_shndx = SHN_UNDEF;
3916 }
3917 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3918 value -= sec->vma;
3919 }
3920
3921 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3922 isym->st_name);
3923 if (name == NULL)
3924 goto error_free_vers;
3925
3926 if (isym->st_shndx == SHN_COMMON
3927 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3928 && !info->relocatable)
3929 {
3930 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3931
3932 if (tcomm == NULL)
3933 {
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3935 (SEC_ALLOC
3936 | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED
3938 | SEC_THREAD_LOCAL));
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 if (ever == NULL)
3982 {
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3986 else
3987 iver.vs_vers = 0;
3988 }
3989 else
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3991
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3993
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4000 || (vernum > 1
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4003 {
4004 const char *verstr;
4005 size_t namelen, verlen, newlen;
4006 char *newname, *p;
4007
4008 if (isym->st_shndx != SHN_UNDEF)
4009 {
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4011 verstr = NULL;
4012 else if (vernum > 1)
4013 verstr =
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4015 else
4016 verstr = "";
4017
4018 if (verstr == NULL)
4019 {
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4022 abfd, name, vernum,
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4026 }
4027 }
4028 else
4029 {
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4033 at 0. */
4034 Elf_Internal_Verneed *t;
4035
4036 verstr = NULL;
4037 for (t = elf_tdata (abfd)->verref;
4038 t != NULL;
4039 t = t->vn_nextref)
4040 {
4041 Elf_Internal_Vernaux *a;
4042
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4044 {
4045 if (a->vna_other == vernum)
4046 {
4047 verstr = a->vna_nodename;
4048 break;
4049 }
4050 }
4051 if (a != NULL)
4052 break;
4053 }
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4069 ++newlen;
4070
4071 newname = bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4076 *p++ = ELF_VER_CHR;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4082 *p++ = ELF_VER_CHR;
4083 memcpy (p, verstr, verlen + 1);
4084
4085 name = newname;
4086 }
4087
4088 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4089 &value, &old_alignment,
4090 sym_hash, &skip, &override,
4091 &type_change_ok, &size_change_ok))
4092 goto error_free_vers;
4093
4094 if (skip)
4095 continue;
4096
4097 if (override)
4098 definition = FALSE;
4099
4100 h = *sym_hash;
4101 while (h->root.type == bfd_link_hash_indirect
4102 || h->root.type == bfd_link_hash_warning)
4103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4104
4105 /* Remember the old alignment if this is a common symbol, so
4106 that we don't reduce the alignment later on. We can't
4107 check later, because _bfd_generic_link_add_one_symbol
4108 will set a default for the alignment which we want to
4109 override. We also remember the old bfd where the existing
4110 definition comes from. */
4111 switch (h->root.type)
4112 {
4113 default:
4114 break;
4115
4116 case bfd_link_hash_defined:
4117 case bfd_link_hash_defweak:
4118 old_bfd = h->root.u.def.section->owner;
4119 break;
4120
4121 case bfd_link_hash_common:
4122 old_bfd = h->root.u.c.p->section->owner;
4123 old_alignment = h->root.u.c.p->alignment_power;
4124 break;
4125 }
4126
4127 if (elf_tdata (abfd)->verdef != NULL
4128 && ! override
4129 && vernum > 1
4130 && definition)
4131 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4132 }
4133
4134 if (! (_bfd_generic_link_add_one_symbol
4135 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4136 (struct bfd_link_hash_entry **) sym_hash)))
4137 goto error_free_vers;
4138
4139 h = *sym_hash;
4140 while (h->root.type == bfd_link_hash_indirect
4141 || h->root.type == bfd_link_hash_warning)
4142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4143 *sym_hash = h;
4144
4145 new_weakdef = FALSE;
4146 if (dynamic
4147 && definition
4148 && (flags & BSF_WEAK) != 0
4149 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4150 && is_elf_hash_table (htab)
4151 && h->u.weakdef == NULL)
4152 {
4153 /* Keep a list of all weak defined non function symbols from
4154 a dynamic object, using the weakdef field. Later in this
4155 function we will set the weakdef field to the correct
4156 value. We only put non-function symbols from dynamic
4157 objects on this list, because that happens to be the only
4158 time we need to know the normal symbol corresponding to a
4159 weak symbol, and the information is time consuming to
4160 figure out. If the weakdef field is not already NULL,
4161 then this symbol was already defined by some previous
4162 dynamic object, and we will be using that previous
4163 definition anyhow. */
4164
4165 h->u.weakdef = weaks;
4166 weaks = h;
4167 new_weakdef = TRUE;
4168 }
4169
4170 /* Set the alignment of a common symbol. */
4171 if ((common || bfd_is_com_section (sec))
4172 && h->root.type == bfd_link_hash_common)
4173 {
4174 unsigned int align;
4175
4176 if (common)
4177 align = bfd_log2 (isym->st_value);
4178 else
4179 {
4180 /* The new symbol is a common symbol in a shared object.
4181 We need to get the alignment from the section. */
4182 align = new_sec->alignment_power;
4183 }
4184 if (align > old_alignment
4185 /* Permit an alignment power of zero if an alignment of one
4186 is specified and no other alignments have been specified. */
4187 || (isym->st_value == 1 && old_alignment == 0))
4188 h->root.u.c.p->alignment_power = align;
4189 else
4190 h->root.u.c.p->alignment_power = old_alignment;
4191 }
4192
4193 if (is_elf_hash_table (htab))
4194 {
4195 bfd_boolean dynsym;
4196
4197 /* Check the alignment when a common symbol is involved. This
4198 can change when a common symbol is overridden by a normal
4199 definition or a common symbol is ignored due to the old
4200 normal definition. We need to make sure the maximum
4201 alignment is maintained. */
4202 if ((old_alignment || common)
4203 && h->root.type != bfd_link_hash_common)
4204 {
4205 unsigned int common_align;
4206 unsigned int normal_align;
4207 unsigned int symbol_align;
4208 bfd *normal_bfd;
4209 bfd *common_bfd;
4210
4211 symbol_align = ffs (h->root.u.def.value) - 1;
4212 if (h->root.u.def.section->owner != NULL
4213 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4214 {
4215 normal_align = h->root.u.def.section->alignment_power;
4216 if (normal_align > symbol_align)
4217 normal_align = symbol_align;
4218 }
4219 else
4220 normal_align = symbol_align;
4221
4222 if (old_alignment)
4223 {
4224 common_align = old_alignment;
4225 common_bfd = old_bfd;
4226 normal_bfd = abfd;
4227 }
4228 else
4229 {
4230 common_align = bfd_log2 (isym->st_value);
4231 common_bfd = abfd;
4232 normal_bfd = old_bfd;
4233 }
4234
4235 if (normal_align < common_align)
4236 {
4237 /* PR binutils/2735 */
4238 if (normal_bfd == NULL)
4239 (*_bfd_error_handler)
4240 (_("Warning: alignment %u of common symbol `%s' in %B"
4241 " is greater than the alignment (%u) of its section %A"),
4242 common_bfd, h->root.u.def.section,
4243 1 << common_align, name, 1 << normal_align);
4244 else
4245 (*_bfd_error_handler)
4246 (_("Warning: alignment %u of symbol `%s' in %B"
4247 " is smaller than %u in %B"),
4248 normal_bfd, common_bfd,
4249 1 << normal_align, name, 1 << common_align);
4250 }
4251 }
4252
4253 /* Remember the symbol size if it isn't undefined. */
4254 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4255 && (definition || h->size == 0))
4256 {
4257 if (h->size != 0
4258 && h->size != isym->st_size
4259 && ! size_change_ok)
4260 (*_bfd_error_handler)
4261 (_("Warning: size of symbol `%s' changed"
4262 " from %lu in %B to %lu in %B"),
4263 old_bfd, abfd,
4264 name, (unsigned long) h->size,
4265 (unsigned long) isym->st_size);
4266
4267 h->size = isym->st_size;
4268 }
4269
4270 /* If this is a common symbol, then we always want H->SIZE
4271 to be the size of the common symbol. The code just above
4272 won't fix the size if a common symbol becomes larger. We
4273 don't warn about a size change here, because that is
4274 covered by --warn-common. Allow changed between different
4275 function types. */
4276 if (h->root.type == bfd_link_hash_common)
4277 h->size = h->root.u.c.size;
4278
4279 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4280 && (definition || h->type == STT_NOTYPE))
4281 {
4282 unsigned int type = ELF_ST_TYPE (isym->st_info);
4283
4284 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4285 symbol. */
4286 if (type == STT_GNU_IFUNC
4287 && (abfd->flags & DYNAMIC) != 0)
4288 type = STT_FUNC;
4289
4290 if (h->type != type)
4291 {
4292 if (h->type != STT_NOTYPE && ! type_change_ok)
4293 (*_bfd_error_handler)
4294 (_("Warning: type of symbol `%s' changed"
4295 " from %d to %d in %B"),
4296 abfd, name, h->type, type);
4297
4298 h->type = type;
4299 }
4300 }
4301
4302 /* Merge st_other field. */
4303 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4304
4305 /* Set a flag in the hash table entry indicating the type of
4306 reference or definition we just found. Keep a count of
4307 the number of dynamic symbols we find. A dynamic symbol
4308 is one which is referenced or defined by both a regular
4309 object and a shared object. */
4310 dynsym = FALSE;
4311 if (! dynamic)
4312 {
4313 if (! definition)
4314 {
4315 h->ref_regular = 1;
4316 if (bind != STB_WEAK)
4317 h->ref_regular_nonweak = 1;
4318 }
4319 else
4320 {
4321 h->def_regular = 1;
4322 if (h->def_dynamic)
4323 {
4324 h->def_dynamic = 0;
4325 h->ref_dynamic = 1;
4326 h->dynamic_def = 1;
4327 }
4328 }
4329 if (! info->executable
4330 || h->def_dynamic
4331 || h->ref_dynamic)
4332 dynsym = TRUE;
4333 }
4334 else
4335 {
4336 if (! definition)
4337 h->ref_dynamic = 1;
4338 else
4339 h->def_dynamic = 1;
4340 if (h->def_regular
4341 || h->ref_regular
4342 || (h->u.weakdef != NULL
4343 && ! new_weakdef
4344 && h->u.weakdef->dynindx != -1))
4345 dynsym = TRUE;
4346 }
4347
4348 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4349 {
4350 /* We don't want to make debug symbol dynamic. */
4351 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4352 dynsym = FALSE;
4353 }
4354
4355 /* Check to see if we need to add an indirect symbol for
4356 the default name. */
4357 if (definition || h->root.type == bfd_link_hash_common)
4358 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4359 &sec, &value, &dynsym,
4360 override))
4361 goto error_free_vers;
4362
4363 if (definition && !dynamic)
4364 {
4365 char *p = strchr (name, ELF_VER_CHR);
4366 if (p != NULL && p[1] != ELF_VER_CHR)
4367 {
4368 /* Queue non-default versions so that .symver x, x@FOO
4369 aliases can be checked. */
4370 if (!nondeflt_vers)
4371 {
4372 amt = ((isymend - isym + 1)
4373 * sizeof (struct elf_link_hash_entry *));
4374 nondeflt_vers = bfd_malloc (amt);
4375 if (!nondeflt_vers)
4376 goto error_free_vers;
4377 }
4378 nondeflt_vers[nondeflt_vers_cnt++] = h;
4379 }
4380 }
4381
4382 if (dynsym && h->dynindx == -1)
4383 {
4384 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4385 goto error_free_vers;
4386 if (h->u.weakdef != NULL
4387 && ! new_weakdef
4388 && h->u.weakdef->dynindx == -1)
4389 {
4390 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4391 goto error_free_vers;
4392 }
4393 }
4394 else if (dynsym && h->dynindx != -1)
4395 /* If the symbol already has a dynamic index, but
4396 visibility says it should not be visible, turn it into
4397 a local symbol. */
4398 switch (ELF_ST_VISIBILITY (h->other))
4399 {
4400 case STV_INTERNAL:
4401 case STV_HIDDEN:
4402 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4403 dynsym = FALSE;
4404 break;
4405 }
4406
4407 if (!add_needed
4408 && definition
4409 && ((dynsym
4410 && h->ref_regular)
4411 || (h->ref_dynamic
4412 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4413 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4414 {
4415 int ret;
4416 const char *soname = elf_dt_name (abfd);
4417
4418 /* A symbol from a library loaded via DT_NEEDED of some
4419 other library is referenced by a regular object.
4420 Add a DT_NEEDED entry for it. Issue an error if
4421 --no-add-needed is used. */
4422 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4423 {
4424 (*_bfd_error_handler)
4425 (_("%s: invalid DSO for symbol `%s' definition"),
4426 abfd, name);
4427 bfd_set_error (bfd_error_bad_value);
4428 goto error_free_vers;
4429 }
4430
4431 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4432
4433 add_needed = TRUE;
4434 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4435 if (ret < 0)
4436 goto error_free_vers;
4437
4438 BFD_ASSERT (ret == 0);
4439 }
4440 }
4441 }
4442
4443 if (extversym != NULL)
4444 {
4445 free (extversym);
4446 extversym = NULL;
4447 }
4448
4449 if (isymbuf != NULL)
4450 {
4451 free (isymbuf);
4452 isymbuf = NULL;
4453 }
4454
4455 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4456 {
4457 unsigned int i;
4458
4459 /* Restore the symbol table. */
4460 if (bed->as_needed_cleanup)
4461 (*bed->as_needed_cleanup) (abfd, info);
4462 old_hash = (char *) old_tab + tabsize;
4463 old_ent = (char *) old_hash + hashsize;
4464 sym_hash = elf_sym_hashes (abfd);
4465 htab->root.table.table = old_table;
4466 htab->root.table.size = old_size;
4467 htab->root.table.count = old_count;
4468 memcpy (htab->root.table.table, old_tab, tabsize);
4469 memcpy (sym_hash, old_hash, hashsize);
4470 htab->root.undefs = old_undefs;
4471 htab->root.undefs_tail = old_undefs_tail;
4472 for (i = 0; i < htab->root.table.size; i++)
4473 {
4474 struct bfd_hash_entry *p;
4475 struct elf_link_hash_entry *h;
4476
4477 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4478 {
4479 h = (struct elf_link_hash_entry *) p;
4480 if (h->root.type == bfd_link_hash_warning)
4481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4482 if (h->dynindx >= old_dynsymcount)
4483 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4484
4485 memcpy (p, old_ent, htab->root.table.entsize);
4486 old_ent = (char *) old_ent + htab->root.table.entsize;
4487 h = (struct elf_link_hash_entry *) p;
4488 if (h->root.type == bfd_link_hash_warning)
4489 {
4490 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4491 old_ent = (char *) old_ent + htab->root.table.entsize;
4492 }
4493 }
4494 }
4495
4496 /* Make a special call to the linker "notice" function to
4497 tell it that symbols added for crefs may need to be removed. */
4498 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4499 notice_not_needed))
4500 goto error_free_vers;
4501
4502 free (old_tab);
4503 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4504 alloc_mark);
4505 if (nondeflt_vers != NULL)
4506 free (nondeflt_vers);
4507 return TRUE;
4508 }
4509
4510 if (old_tab != NULL)
4511 {
4512 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4513 notice_needed))
4514 goto error_free_vers;
4515 free (old_tab);
4516 old_tab = NULL;
4517 }
4518
4519 /* Now that all the symbols from this input file are created, handle
4520 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4521 if (nondeflt_vers != NULL)
4522 {
4523 bfd_size_type cnt, symidx;
4524
4525 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4526 {
4527 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4528 char *shortname, *p;
4529
4530 p = strchr (h->root.root.string, ELF_VER_CHR);
4531 if (p == NULL
4532 || (h->root.type != bfd_link_hash_defined
4533 && h->root.type != bfd_link_hash_defweak))
4534 continue;
4535
4536 amt = p - h->root.root.string;
4537 shortname = bfd_malloc (amt + 1);
4538 if (!shortname)
4539 goto error_free_vers;
4540 memcpy (shortname, h->root.root.string, amt);
4541 shortname[amt] = '\0';
4542
4543 hi = (struct elf_link_hash_entry *)
4544 bfd_link_hash_lookup (&htab->root, shortname,
4545 FALSE, FALSE, FALSE);
4546 if (hi != NULL
4547 && hi->root.type == h->root.type
4548 && hi->root.u.def.value == h->root.u.def.value
4549 && hi->root.u.def.section == h->root.u.def.section)
4550 {
4551 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4552 hi->root.type = bfd_link_hash_indirect;
4553 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4554 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4555 sym_hash = elf_sym_hashes (abfd);
4556 if (sym_hash)
4557 for (symidx = 0; symidx < extsymcount; ++symidx)
4558 if (sym_hash[symidx] == hi)
4559 {
4560 sym_hash[symidx] = h;
4561 break;
4562 }
4563 }
4564 free (shortname);
4565 }
4566 free (nondeflt_vers);
4567 nondeflt_vers = NULL;
4568 }
4569
4570 /* Now set the weakdefs field correctly for all the weak defined
4571 symbols we found. The only way to do this is to search all the
4572 symbols. Since we only need the information for non functions in
4573 dynamic objects, that's the only time we actually put anything on
4574 the list WEAKS. We need this information so that if a regular
4575 object refers to a symbol defined weakly in a dynamic object, the
4576 real symbol in the dynamic object is also put in the dynamic
4577 symbols; we also must arrange for both symbols to point to the
4578 same memory location. We could handle the general case of symbol
4579 aliasing, but a general symbol alias can only be generated in
4580 assembler code, handling it correctly would be very time
4581 consuming, and other ELF linkers don't handle general aliasing
4582 either. */
4583 if (weaks != NULL)
4584 {
4585 struct elf_link_hash_entry **hpp;
4586 struct elf_link_hash_entry **hppend;
4587 struct elf_link_hash_entry **sorted_sym_hash;
4588 struct elf_link_hash_entry *h;
4589 size_t sym_count;
4590
4591 /* Since we have to search the whole symbol list for each weak
4592 defined symbol, search time for N weak defined symbols will be
4593 O(N^2). Binary search will cut it down to O(NlogN). */
4594 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4595 sorted_sym_hash = bfd_malloc (amt);
4596 if (sorted_sym_hash == NULL)
4597 goto error_return;
4598 sym_hash = sorted_sym_hash;
4599 hpp = elf_sym_hashes (abfd);
4600 hppend = hpp + extsymcount;
4601 sym_count = 0;
4602 for (; hpp < hppend; hpp++)
4603 {
4604 h = *hpp;
4605 if (h != NULL
4606 && h->root.type == bfd_link_hash_defined
4607 && !bed->is_function_type (h->type))
4608 {
4609 *sym_hash = h;
4610 sym_hash++;
4611 sym_count++;
4612 }
4613 }
4614
4615 qsort (sorted_sym_hash, sym_count,
4616 sizeof (struct elf_link_hash_entry *),
4617 elf_sort_symbol);
4618
4619 while (weaks != NULL)
4620 {
4621 struct elf_link_hash_entry *hlook;
4622 asection *slook;
4623 bfd_vma vlook;
4624 long ilook;
4625 size_t i, j, idx;
4626
4627 hlook = weaks;
4628 weaks = hlook->u.weakdef;
4629 hlook->u.weakdef = NULL;
4630
4631 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4632 || hlook->root.type == bfd_link_hash_defweak
4633 || hlook->root.type == bfd_link_hash_common
4634 || hlook->root.type == bfd_link_hash_indirect);
4635 slook = hlook->root.u.def.section;
4636 vlook = hlook->root.u.def.value;
4637
4638 ilook = -1;
4639 i = 0;
4640 j = sym_count;
4641 while (i < j)
4642 {
4643 bfd_signed_vma vdiff;
4644 idx = (i + j) / 2;
4645 h = sorted_sym_hash [idx];
4646 vdiff = vlook - h->root.u.def.value;
4647 if (vdiff < 0)
4648 j = idx;
4649 else if (vdiff > 0)
4650 i = idx + 1;
4651 else
4652 {
4653 long sdiff = slook->id - h->root.u.def.section->id;
4654 if (sdiff < 0)
4655 j = idx;
4656 else if (sdiff > 0)
4657 i = idx + 1;
4658 else
4659 {
4660 ilook = idx;
4661 break;
4662 }
4663 }
4664 }
4665
4666 /* We didn't find a value/section match. */
4667 if (ilook == -1)
4668 continue;
4669
4670 for (i = ilook; i < sym_count; i++)
4671 {
4672 h = sorted_sym_hash [i];
4673
4674 /* Stop if value or section doesn't match. */
4675 if (h->root.u.def.value != vlook
4676 || h->root.u.def.section != slook)
4677 break;
4678 else if (h != hlook)
4679 {
4680 hlook->u.weakdef = h;
4681
4682 /* If the weak definition is in the list of dynamic
4683 symbols, make sure the real definition is put
4684 there as well. */
4685 if (hlook->dynindx != -1 && h->dynindx == -1)
4686 {
4687 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4688 {
4689 err_free_sym_hash:
4690 free (sorted_sym_hash);
4691 goto error_return;
4692 }
4693 }
4694
4695 /* If the real definition is in the list of dynamic
4696 symbols, make sure the weak definition is put
4697 there as well. If we don't do this, then the
4698 dynamic loader might not merge the entries for the
4699 real definition and the weak definition. */
4700 if (h->dynindx != -1 && hlook->dynindx == -1)
4701 {
4702 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4703 goto err_free_sym_hash;
4704 }
4705 break;
4706 }
4707 }
4708 }
4709
4710 free (sorted_sym_hash);
4711 }
4712
4713 if (bed->check_directives
4714 && !(*bed->check_directives) (abfd, info))
4715 return FALSE;
4716
4717 /* If this object is the same format as the output object, and it is
4718 not a shared library, then let the backend look through the
4719 relocs.
4720
4721 This is required to build global offset table entries and to
4722 arrange for dynamic relocs. It is not required for the
4723 particular common case of linking non PIC code, even when linking
4724 against shared libraries, but unfortunately there is no way of
4725 knowing whether an object file has been compiled PIC or not.
4726 Looking through the relocs is not particularly time consuming.
4727 The problem is that we must either (1) keep the relocs in memory,
4728 which causes the linker to require additional runtime memory or
4729 (2) read the relocs twice from the input file, which wastes time.
4730 This would be a good case for using mmap.
4731
4732 I have no idea how to handle linking PIC code into a file of a
4733 different format. It probably can't be done. */
4734 if (! dynamic
4735 && is_elf_hash_table (htab)
4736 && bed->check_relocs != NULL
4737 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4738 {
4739 asection *o;
4740
4741 for (o = abfd->sections; o != NULL; o = o->next)
4742 {
4743 Elf_Internal_Rela *internal_relocs;
4744 bfd_boolean ok;
4745
4746 if ((o->flags & SEC_RELOC) == 0
4747 || o->reloc_count == 0
4748 || ((info->strip == strip_all || info->strip == strip_debugger)
4749 && (o->flags & SEC_DEBUGGING) != 0)
4750 || bfd_is_abs_section (o->output_section))
4751 continue;
4752
4753 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4754 info->keep_memory);
4755 if (internal_relocs == NULL)
4756 goto error_return;
4757
4758 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4759
4760 if (elf_section_data (o)->relocs != internal_relocs)
4761 free (internal_relocs);
4762
4763 if (! ok)
4764 goto error_return;
4765 }
4766 }
4767
4768 /* If this is a non-traditional link, try to optimize the handling
4769 of the .stab/.stabstr sections. */
4770 if (! dynamic
4771 && ! info->traditional_format
4772 && is_elf_hash_table (htab)
4773 && (info->strip != strip_all && info->strip != strip_debugger))
4774 {
4775 asection *stabstr;
4776
4777 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4778 if (stabstr != NULL)
4779 {
4780 bfd_size_type string_offset = 0;
4781 asection *stab;
4782
4783 for (stab = abfd->sections; stab; stab = stab->next)
4784 if (CONST_STRNEQ (stab->name, ".stab")
4785 && (!stab->name[5] ||
4786 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4787 && (stab->flags & SEC_MERGE) == 0
4788 && !bfd_is_abs_section (stab->output_section))
4789 {
4790 struct bfd_elf_section_data *secdata;
4791
4792 secdata = elf_section_data (stab);
4793 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4794 stabstr, &secdata->sec_info,
4795 &string_offset))
4796 goto error_return;
4797 if (secdata->sec_info)
4798 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4799 }
4800 }
4801 }
4802
4803 if (is_elf_hash_table (htab) && add_needed)
4804 {
4805 /* Add this bfd to the loaded list. */
4806 struct elf_link_loaded_list *n;
4807
4808 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4809 if (n == NULL)
4810 goto error_return;
4811 n->abfd = abfd;
4812 n->next = htab->loaded;
4813 htab->loaded = n;
4814 }
4815
4816 return TRUE;
4817
4818 error_free_vers:
4819 if (old_tab != NULL)
4820 free (old_tab);
4821 if (nondeflt_vers != NULL)
4822 free (nondeflt_vers);
4823 if (extversym != NULL)
4824 free (extversym);
4825 error_free_sym:
4826 if (isymbuf != NULL)
4827 free (isymbuf);
4828 error_return:
4829 return FALSE;
4830 }
4831
4832 /* Return the linker hash table entry of a symbol that might be
4833 satisfied by an archive symbol. Return -1 on error. */
4834
4835 struct elf_link_hash_entry *
4836 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4837 struct bfd_link_info *info,
4838 const char *name)
4839 {
4840 struct elf_link_hash_entry *h;
4841 char *p, *copy;
4842 size_t len, first;
4843
4844 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4845 if (h != NULL)
4846 return h;
4847
4848 /* If this is a default version (the name contains @@), look up the
4849 symbol again with only one `@' as well as without the version.
4850 The effect is that references to the symbol with and without the
4851 version will be matched by the default symbol in the archive. */
4852
4853 p = strchr (name, ELF_VER_CHR);
4854 if (p == NULL || p[1] != ELF_VER_CHR)
4855 return h;
4856
4857 /* First check with only one `@'. */
4858 len = strlen (name);
4859 copy = bfd_alloc (abfd, len);
4860 if (copy == NULL)
4861 return (struct elf_link_hash_entry *) 0 - 1;
4862
4863 first = p - name + 1;
4864 memcpy (copy, name, first);
4865 memcpy (copy + first, name + first + 1, len - first);
4866
4867 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4868 if (h == NULL)
4869 {
4870 /* We also need to check references to the symbol without the
4871 version. */
4872 copy[first - 1] = '\0';
4873 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4874 FALSE, FALSE, FALSE);
4875 }
4876
4877 bfd_release (abfd, copy);
4878 return h;
4879 }
4880
4881 /* Add symbols from an ELF archive file to the linker hash table. We
4882 don't use _bfd_generic_link_add_archive_symbols because of a
4883 problem which arises on UnixWare. The UnixWare libc.so is an
4884 archive which includes an entry libc.so.1 which defines a bunch of
4885 symbols. The libc.so archive also includes a number of other
4886 object files, which also define symbols, some of which are the same
4887 as those defined in libc.so.1. Correct linking requires that we
4888 consider each object file in turn, and include it if it defines any
4889 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4890 this; it looks through the list of undefined symbols, and includes
4891 any object file which defines them. When this algorithm is used on
4892 UnixWare, it winds up pulling in libc.so.1 early and defining a
4893 bunch of symbols. This means that some of the other objects in the
4894 archive are not included in the link, which is incorrect since they
4895 precede libc.so.1 in the archive.
4896
4897 Fortunately, ELF archive handling is simpler than that done by
4898 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4899 oddities. In ELF, if we find a symbol in the archive map, and the
4900 symbol is currently undefined, we know that we must pull in that
4901 object file.
4902
4903 Unfortunately, we do have to make multiple passes over the symbol
4904 table until nothing further is resolved. */
4905
4906 static bfd_boolean
4907 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4908 {
4909 symindex c;
4910 bfd_boolean *defined = NULL;
4911 bfd_boolean *included = NULL;
4912 carsym *symdefs;
4913 bfd_boolean loop;
4914 bfd_size_type amt;
4915 const struct elf_backend_data *bed;
4916 struct elf_link_hash_entry * (*archive_symbol_lookup)
4917 (bfd *, struct bfd_link_info *, const char *);
4918
4919 if (! bfd_has_map (abfd))
4920 {
4921 /* An empty archive is a special case. */
4922 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4923 return TRUE;
4924 bfd_set_error (bfd_error_no_armap);
4925 return FALSE;
4926 }
4927
4928 /* Keep track of all symbols we know to be already defined, and all
4929 files we know to be already included. This is to speed up the
4930 second and subsequent passes. */
4931 c = bfd_ardata (abfd)->symdef_count;
4932 if (c == 0)
4933 return TRUE;
4934 amt = c;
4935 amt *= sizeof (bfd_boolean);
4936 defined = bfd_zmalloc (amt);
4937 included = bfd_zmalloc (amt);
4938 if (defined == NULL || included == NULL)
4939 goto error_return;
4940
4941 symdefs = bfd_ardata (abfd)->symdefs;
4942 bed = get_elf_backend_data (abfd);
4943 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4944
4945 do
4946 {
4947 file_ptr last;
4948 symindex i;
4949 carsym *symdef;
4950 carsym *symdefend;
4951
4952 loop = FALSE;
4953 last = -1;
4954
4955 symdef = symdefs;
4956 symdefend = symdef + c;
4957 for (i = 0; symdef < symdefend; symdef++, i++)
4958 {
4959 struct elf_link_hash_entry *h;
4960 bfd *element;
4961 struct bfd_link_hash_entry *undefs_tail;
4962 symindex mark;
4963
4964 if (defined[i] || included[i])
4965 continue;
4966 if (symdef->file_offset == last)
4967 {
4968 included[i] = TRUE;
4969 continue;
4970 }
4971
4972 h = archive_symbol_lookup (abfd, info, symdef->name);
4973 if (h == (struct elf_link_hash_entry *) 0 - 1)
4974 goto error_return;
4975
4976 if (h == NULL)
4977 continue;
4978
4979 if (h->root.type == bfd_link_hash_common)
4980 {
4981 /* We currently have a common symbol. The archive map contains
4982 a reference to this symbol, so we may want to include it. We
4983 only want to include it however, if this archive element
4984 contains a definition of the symbol, not just another common
4985 declaration of it.
4986
4987 Unfortunately some archivers (including GNU ar) will put
4988 declarations of common symbols into their archive maps, as
4989 well as real definitions, so we cannot just go by the archive
4990 map alone. Instead we must read in the element's symbol
4991 table and check that to see what kind of symbol definition
4992 this is. */
4993 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4994 continue;
4995 }
4996 else if (h->root.type != bfd_link_hash_undefined)
4997 {
4998 if (h->root.type != bfd_link_hash_undefweak)
4999 defined[i] = TRUE;
5000 continue;
5001 }
5002
5003 /* We need to include this archive member. */
5004 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5005 if (element == NULL)
5006 goto error_return;
5007
5008 if (! bfd_check_format (element, bfd_object))
5009 goto error_return;
5010
5011 /* Doublecheck that we have not included this object
5012 already--it should be impossible, but there may be
5013 something wrong with the archive. */
5014 if (element->archive_pass != 0)
5015 {
5016 bfd_set_error (bfd_error_bad_value);
5017 goto error_return;
5018 }
5019 element->archive_pass = 1;
5020
5021 undefs_tail = info->hash->undefs_tail;
5022
5023 if (! (*info->callbacks->add_archive_element) (info, element,
5024 symdef->name))
5025 goto error_return;
5026 if (! bfd_link_add_symbols (element, info))
5027 goto error_return;
5028
5029 /* If there are any new undefined symbols, we need to make
5030 another pass through the archive in order to see whether
5031 they can be defined. FIXME: This isn't perfect, because
5032 common symbols wind up on undefs_tail and because an
5033 undefined symbol which is defined later on in this pass
5034 does not require another pass. This isn't a bug, but it
5035 does make the code less efficient than it could be. */
5036 if (undefs_tail != info->hash->undefs_tail)
5037 loop = TRUE;
5038
5039 /* Look backward to mark all symbols from this object file
5040 which we have already seen in this pass. */
5041 mark = i;
5042 do
5043 {
5044 included[mark] = TRUE;
5045 if (mark == 0)
5046 break;
5047 --mark;
5048 }
5049 while (symdefs[mark].file_offset == symdef->file_offset);
5050
5051 /* We mark subsequent symbols from this object file as we go
5052 on through the loop. */
5053 last = symdef->file_offset;
5054 }
5055 }
5056 while (loop);
5057
5058 free (defined);
5059 free (included);
5060
5061 return TRUE;
5062
5063 error_return:
5064 if (defined != NULL)
5065 free (defined);
5066 if (included != NULL)
5067 free (included);
5068 return FALSE;
5069 }
5070
5071 /* Given an ELF BFD, add symbols to the global hash table as
5072 appropriate. */
5073
5074 bfd_boolean
5075 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5076 {
5077 switch (bfd_get_format (abfd))
5078 {
5079 case bfd_object:
5080 return elf_link_add_object_symbols (abfd, info);
5081 case bfd_archive:
5082 return elf_link_add_archive_symbols (abfd, info);
5083 default:
5084 bfd_set_error (bfd_error_wrong_format);
5085 return FALSE;
5086 }
5087 }
5088 \f
5089 struct hash_codes_info
5090 {
5091 unsigned long *hashcodes;
5092 bfd_boolean error;
5093 };
5094
5095 /* This function will be called though elf_link_hash_traverse to store
5096 all hash value of the exported symbols in an array. */
5097
5098 static bfd_boolean
5099 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5100 {
5101 struct hash_codes_info *inf = data;
5102 const char *name;
5103 char *p;
5104 unsigned long ha;
5105 char *alc = NULL;
5106
5107 if (h->root.type == bfd_link_hash_warning)
5108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5109
5110 /* Ignore indirect symbols. These are added by the versioning code. */
5111 if (h->dynindx == -1)
5112 return TRUE;
5113
5114 name = h->root.root.string;
5115 p = strchr (name, ELF_VER_CHR);
5116 if (p != NULL)
5117 {
5118 alc = bfd_malloc (p - name + 1);
5119 if (alc == NULL)
5120 {
5121 inf->error = TRUE;
5122 return FALSE;
5123 }
5124 memcpy (alc, name, p - name);
5125 alc[p - name] = '\0';
5126 name = alc;
5127 }
5128
5129 /* Compute the hash value. */
5130 ha = bfd_elf_hash (name);
5131
5132 /* Store the found hash value in the array given as the argument. */
5133 *(inf->hashcodes)++ = ha;
5134
5135 /* And store it in the struct so that we can put it in the hash table
5136 later. */
5137 h->u.elf_hash_value = ha;
5138
5139 if (alc != NULL)
5140 free (alc);
5141
5142 return TRUE;
5143 }
5144
5145 struct collect_gnu_hash_codes
5146 {
5147 bfd *output_bfd;
5148 const struct elf_backend_data *bed;
5149 unsigned long int nsyms;
5150 unsigned long int maskbits;
5151 unsigned long int *hashcodes;
5152 unsigned long int *hashval;
5153 unsigned long int *indx;
5154 unsigned long int *counts;
5155 bfd_vma *bitmask;
5156 bfd_byte *contents;
5157 long int min_dynindx;
5158 unsigned long int bucketcount;
5159 unsigned long int symindx;
5160 long int local_indx;
5161 long int shift1, shift2;
5162 unsigned long int mask;
5163 bfd_boolean error;
5164 };
5165
5166 /* This function will be called though elf_link_hash_traverse to store
5167 all hash value of the exported symbols in an array. */
5168
5169 static bfd_boolean
5170 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5171 {
5172 struct collect_gnu_hash_codes *s = data;
5173 const char *name;
5174 char *p;
5175 unsigned long ha;
5176 char *alc = NULL;
5177
5178 if (h->root.type == bfd_link_hash_warning)
5179 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5180
5181 /* Ignore indirect symbols. These are added by the versioning code. */
5182 if (h->dynindx == -1)
5183 return TRUE;
5184
5185 /* Ignore also local symbols and undefined symbols. */
5186 if (! (*s->bed->elf_hash_symbol) (h))
5187 return TRUE;
5188
5189 name = h->root.root.string;
5190 p = strchr (name, ELF_VER_CHR);
5191 if (p != NULL)
5192 {
5193 alc = bfd_malloc (p - name + 1);
5194 if (alc == NULL)
5195 {
5196 s->error = TRUE;
5197 return FALSE;
5198 }
5199 memcpy (alc, name, p - name);
5200 alc[p - name] = '\0';
5201 name = alc;
5202 }
5203
5204 /* Compute the hash value. */
5205 ha = bfd_elf_gnu_hash (name);
5206
5207 /* Store the found hash value in the array for compute_bucket_count,
5208 and also for .dynsym reordering purposes. */
5209 s->hashcodes[s->nsyms] = ha;
5210 s->hashval[h->dynindx] = ha;
5211 ++s->nsyms;
5212 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5213 s->min_dynindx = h->dynindx;
5214
5215 if (alc != NULL)
5216 free (alc);
5217
5218 return TRUE;
5219 }
5220
5221 /* This function will be called though elf_link_hash_traverse to do
5222 final dynaminc symbol renumbering. */
5223
5224 static bfd_boolean
5225 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5226 {
5227 struct collect_gnu_hash_codes *s = data;
5228 unsigned long int bucket;
5229 unsigned long int val;
5230
5231 if (h->root.type == bfd_link_hash_warning)
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5233
5234 /* Ignore indirect symbols. */
5235 if (h->dynindx == -1)
5236 return TRUE;
5237
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5240 {
5241 if (h->dynindx >= s->min_dynindx)
5242 h->dynindx = s->local_indx++;
5243 return TRUE;
5244 }
5245
5246 bucket = s->hashval[h->dynindx] % s->bucketcount;
5247 val = (s->hashval[h->dynindx] >> s->shift1)
5248 & ((s->maskbits >> s->shift1) - 1);
5249 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5250 s->bitmask[val]
5251 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5252 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5253 if (s->counts[bucket] == 1)
5254 /* Last element terminates the chain. */
5255 val |= 1;
5256 bfd_put_32 (s->output_bfd, val,
5257 s->contents + (s->indx[bucket] - s->symindx) * 4);
5258 --s->counts[bucket];
5259 h->dynindx = s->indx[bucket]++;
5260 return TRUE;
5261 }
5262
5263 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5264
5265 bfd_boolean
5266 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5267 {
5268 return !(h->forced_local
5269 || h->root.type == bfd_link_hash_undefined
5270 || h->root.type == bfd_link_hash_undefweak
5271 || ((h->root.type == bfd_link_hash_defined
5272 || h->root.type == bfd_link_hash_defweak)
5273 && h->root.u.def.section->output_section == NULL));
5274 }
5275
5276 /* Array used to determine the number of hash table buckets to use
5277 based on the number of symbols there are. If there are fewer than
5278 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5279 fewer than 37 we use 17 buckets, and so forth. We never use more
5280 than 32771 buckets. */
5281
5282 static const size_t elf_buckets[] =
5283 {
5284 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5285 16411, 32771, 0
5286 };
5287
5288 /* Compute bucket count for hashing table. We do not use a static set
5289 of possible tables sizes anymore. Instead we determine for all
5290 possible reasonable sizes of the table the outcome (i.e., the
5291 number of collisions etc) and choose the best solution. The
5292 weighting functions are not too simple to allow the table to grow
5293 without bounds. Instead one of the weighting factors is the size.
5294 Therefore the result is always a good payoff between few collisions
5295 (= short chain lengths) and table size. */
5296 static size_t
5297 compute_bucket_count (struct bfd_link_info *info,
5298 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5299 unsigned long int nsyms,
5300 int gnu_hash)
5301 {
5302 size_t best_size = 0;
5303 unsigned long int i;
5304
5305 /* We have a problem here. The following code to optimize the table
5306 size requires an integer type with more the 32 bits. If
5307 BFD_HOST_U_64_BIT is set we know about such a type. */
5308 #ifdef BFD_HOST_U_64_BIT
5309 if (info->optimize)
5310 {
5311 size_t minsize;
5312 size_t maxsize;
5313 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5314 bfd *dynobj = elf_hash_table (info)->dynobj;
5315 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5316 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5317 unsigned long int *counts;
5318 bfd_size_type amt;
5319
5320 /* Possible optimization parameters: if we have NSYMS symbols we say
5321 that the hashing table must at least have NSYMS/4 and at most
5322 2*NSYMS buckets. */
5323 minsize = nsyms / 4;
5324 if (minsize == 0)
5325 minsize = 1;
5326 best_size = maxsize = nsyms * 2;
5327 if (gnu_hash)
5328 {
5329 if (minsize < 2)
5330 minsize = 2;
5331 if ((best_size & 31) == 0)
5332 ++best_size;
5333 }
5334
5335 /* Create array where we count the collisions in. We must use bfd_malloc
5336 since the size could be large. */
5337 amt = maxsize;
5338 amt *= sizeof (unsigned long int);
5339 counts = bfd_malloc (amt);
5340 if (counts == NULL)
5341 return 0;
5342
5343 /* Compute the "optimal" size for the hash table. The criteria is a
5344 minimal chain length. The minor criteria is (of course) the size
5345 of the table. */
5346 for (i = minsize; i < maxsize; ++i)
5347 {
5348 /* Walk through the array of hashcodes and count the collisions. */
5349 BFD_HOST_U_64_BIT max;
5350 unsigned long int j;
5351 unsigned long int fact;
5352
5353 if (gnu_hash && (i & 31) == 0)
5354 continue;
5355
5356 memset (counts, '\0', i * sizeof (unsigned long int));
5357
5358 /* Determine how often each hash bucket is used. */
5359 for (j = 0; j < nsyms; ++j)
5360 ++counts[hashcodes[j] % i];
5361
5362 /* For the weight function we need some information about the
5363 pagesize on the target. This is information need not be 100%
5364 accurate. Since this information is not available (so far) we
5365 define it here to a reasonable default value. If it is crucial
5366 to have a better value some day simply define this value. */
5367 # ifndef BFD_TARGET_PAGESIZE
5368 # define BFD_TARGET_PAGESIZE (4096)
5369 # endif
5370
5371 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5372 and the chains. */
5373 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5374
5375 # if 1
5376 /* Variant 1: optimize for short chains. We add the squares
5377 of all the chain lengths (which favors many small chain
5378 over a few long chains). */
5379 for (j = 0; j < i; ++j)
5380 max += counts[j] * counts[j];
5381
5382 /* This adds penalties for the overall size of the table. */
5383 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5384 max *= fact * fact;
5385 # else
5386 /* Variant 2: Optimize a lot more for small table. Here we
5387 also add squares of the size but we also add penalties for
5388 empty slots (the +1 term). */
5389 for (j = 0; j < i; ++j)
5390 max += (1 + counts[j]) * (1 + counts[j]);
5391
5392 /* The overall size of the table is considered, but not as
5393 strong as in variant 1, where it is squared. */
5394 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5395 max *= fact;
5396 # endif
5397
5398 /* Compare with current best results. */
5399 if (max < best_chlen)
5400 {
5401 best_chlen = max;
5402 best_size = i;
5403 }
5404 }
5405
5406 free (counts);
5407 }
5408 else
5409 #endif /* defined (BFD_HOST_U_64_BIT) */
5410 {
5411 /* This is the fallback solution if no 64bit type is available or if we
5412 are not supposed to spend much time on optimizations. We select the
5413 bucket count using a fixed set of numbers. */
5414 for (i = 0; elf_buckets[i] != 0; i++)
5415 {
5416 best_size = elf_buckets[i];
5417 if (nsyms < elf_buckets[i + 1])
5418 break;
5419 }
5420 if (gnu_hash && best_size < 2)
5421 best_size = 2;
5422 }
5423
5424 return best_size;
5425 }
5426
5427 /* Set up the sizes and contents of the ELF dynamic sections. This is
5428 called by the ELF linker emulation before_allocation routine. We
5429 must set the sizes of the sections before the linker sets the
5430 addresses of the various sections. */
5431
5432 bfd_boolean
5433 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5434 const char *soname,
5435 const char *rpath,
5436 const char *filter_shlib,
5437 const char * const *auxiliary_filters,
5438 struct bfd_link_info *info,
5439 asection **sinterpptr,
5440 struct bfd_elf_version_tree *verdefs)
5441 {
5442 bfd_size_type soname_indx;
5443 bfd *dynobj;
5444 const struct elf_backend_data *bed;
5445 struct elf_info_failed asvinfo;
5446
5447 *sinterpptr = NULL;
5448
5449 soname_indx = (bfd_size_type) -1;
5450
5451 if (!is_elf_hash_table (info->hash))
5452 return TRUE;
5453
5454 bed = get_elf_backend_data (output_bfd);
5455 if (info->execstack)
5456 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5457 else if (info->noexecstack)
5458 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5459 else
5460 {
5461 bfd *inputobj;
5462 asection *notesec = NULL;
5463 int exec = 0;
5464
5465 for (inputobj = info->input_bfds;
5466 inputobj;
5467 inputobj = inputobj->link_next)
5468 {
5469 asection *s;
5470
5471 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5472 continue;
5473 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5474 if (s)
5475 {
5476 if (s->flags & SEC_CODE)
5477 exec = PF_X;
5478 notesec = s;
5479 }
5480 else if (bed->default_execstack)
5481 exec = PF_X;
5482 }
5483 if (notesec)
5484 {
5485 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5486 if (exec && info->relocatable
5487 && notesec->output_section != bfd_abs_section_ptr)
5488 notesec->output_section->flags |= SEC_CODE;
5489 }
5490 }
5491
5492 /* Any syms created from now on start with -1 in
5493 got.refcount/offset and plt.refcount/offset. */
5494 elf_hash_table (info)->init_got_refcount
5495 = elf_hash_table (info)->init_got_offset;
5496 elf_hash_table (info)->init_plt_refcount
5497 = elf_hash_table (info)->init_plt_offset;
5498
5499 /* The backend may have to create some sections regardless of whether
5500 we're dynamic or not. */
5501 if (bed->elf_backend_always_size_sections
5502 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5503 return FALSE;
5504
5505 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5506 return FALSE;
5507
5508 dynobj = elf_hash_table (info)->dynobj;
5509
5510 /* If there were no dynamic objects in the link, there is nothing to
5511 do here. */
5512 if (dynobj == NULL)
5513 return TRUE;
5514
5515 if (elf_hash_table (info)->dynamic_sections_created)
5516 {
5517 struct elf_info_failed eif;
5518 struct elf_link_hash_entry *h;
5519 asection *dynstr;
5520 struct bfd_elf_version_tree *t;
5521 struct bfd_elf_version_expr *d;
5522 asection *s;
5523 bfd_boolean all_defined;
5524
5525 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5526 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5527
5528 if (soname != NULL)
5529 {
5530 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5531 soname, TRUE);
5532 if (soname_indx == (bfd_size_type) -1
5533 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5534 return FALSE;
5535 }
5536
5537 if (info->symbolic)
5538 {
5539 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5540 return FALSE;
5541 info->flags |= DF_SYMBOLIC;
5542 }
5543
5544 if (rpath != NULL)
5545 {
5546 bfd_size_type indx;
5547
5548 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5549 TRUE);
5550 if (indx == (bfd_size_type) -1
5551 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5552 return FALSE;
5553
5554 if (info->new_dtags)
5555 {
5556 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5557 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5558 return FALSE;
5559 }
5560 }
5561
5562 if (filter_shlib != NULL)
5563 {
5564 bfd_size_type indx;
5565
5566 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5567 filter_shlib, TRUE);
5568 if (indx == (bfd_size_type) -1
5569 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5570 return FALSE;
5571 }
5572
5573 if (auxiliary_filters != NULL)
5574 {
5575 const char * const *p;
5576
5577 for (p = auxiliary_filters; *p != NULL; p++)
5578 {
5579 bfd_size_type indx;
5580
5581 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5582 *p, TRUE);
5583 if (indx == (bfd_size_type) -1
5584 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5585 return FALSE;
5586 }
5587 }
5588
5589 eif.info = info;
5590 eif.verdefs = verdefs;
5591 eif.failed = FALSE;
5592
5593 /* If we are supposed to export all symbols into the dynamic symbol
5594 table (this is not the normal case), then do so. */
5595 if (info->export_dynamic
5596 || (info->executable && info->dynamic))
5597 {
5598 elf_link_hash_traverse (elf_hash_table (info),
5599 _bfd_elf_export_symbol,
5600 &eif);
5601 if (eif.failed)
5602 return FALSE;
5603 }
5604
5605 /* Make all global versions with definition. */
5606 for (t = verdefs; t != NULL; t = t->next)
5607 for (d = t->globals.list; d != NULL; d = d->next)
5608 if (!d->symver && d->literal)
5609 {
5610 const char *verstr, *name;
5611 size_t namelen, verlen, newlen;
5612 char *newname, *p;
5613 struct elf_link_hash_entry *newh;
5614
5615 name = d->pattern;
5616 namelen = strlen (name);
5617 verstr = t->name;
5618 verlen = strlen (verstr);
5619 newlen = namelen + verlen + 3;
5620
5621 newname = bfd_malloc (newlen);
5622 if (newname == NULL)
5623 return FALSE;
5624 memcpy (newname, name, namelen);
5625
5626 /* Check the hidden versioned definition. */
5627 p = newname + namelen;
5628 *p++ = ELF_VER_CHR;
5629 memcpy (p, verstr, verlen + 1);
5630 newh = elf_link_hash_lookup (elf_hash_table (info),
5631 newname, FALSE, FALSE,
5632 FALSE);
5633 if (newh == NULL
5634 || (newh->root.type != bfd_link_hash_defined
5635 && newh->root.type != bfd_link_hash_defweak))
5636 {
5637 /* Check the default versioned definition. */
5638 *p++ = ELF_VER_CHR;
5639 memcpy (p, verstr, verlen + 1);
5640 newh = elf_link_hash_lookup (elf_hash_table (info),
5641 newname, FALSE, FALSE,
5642 FALSE);
5643 }
5644 free (newname);
5645
5646 /* Mark this version if there is a definition and it is
5647 not defined in a shared object. */
5648 if (newh != NULL
5649 && !newh->def_dynamic
5650 && (newh->root.type == bfd_link_hash_defined
5651 || newh->root.type == bfd_link_hash_defweak))
5652 d->symver = 1;
5653 }
5654
5655 /* Attach all the symbols to their version information. */
5656 asvinfo.info = info;
5657 asvinfo.verdefs = verdefs;
5658 asvinfo.failed = FALSE;
5659
5660 elf_link_hash_traverse (elf_hash_table (info),
5661 _bfd_elf_link_assign_sym_version,
5662 &asvinfo);
5663 if (asvinfo.failed)
5664 return FALSE;
5665
5666 if (!info->allow_undefined_version)
5667 {
5668 /* Check if all global versions have a definition. */
5669 all_defined = TRUE;
5670 for (t = verdefs; t != NULL; t = t->next)
5671 for (d = t->globals.list; d != NULL; d = d->next)
5672 if (d->literal && !d->symver && !d->script)
5673 {
5674 (*_bfd_error_handler)
5675 (_("%s: undefined version: %s"),
5676 d->pattern, t->name);
5677 all_defined = FALSE;
5678 }
5679
5680 if (!all_defined)
5681 {
5682 bfd_set_error (bfd_error_bad_value);
5683 return FALSE;
5684 }
5685 }
5686
5687 /* Find all symbols which were defined in a dynamic object and make
5688 the backend pick a reasonable value for them. */
5689 elf_link_hash_traverse (elf_hash_table (info),
5690 _bfd_elf_adjust_dynamic_symbol,
5691 &eif);
5692 if (eif.failed)
5693 return FALSE;
5694
5695 /* Add some entries to the .dynamic section. We fill in some of the
5696 values later, in bfd_elf_final_link, but we must add the entries
5697 now so that we know the final size of the .dynamic section. */
5698
5699 /* If there are initialization and/or finalization functions to
5700 call then add the corresponding DT_INIT/DT_FINI entries. */
5701 h = (info->init_function
5702 ? elf_link_hash_lookup (elf_hash_table (info),
5703 info->init_function, FALSE,
5704 FALSE, FALSE)
5705 : NULL);
5706 if (h != NULL
5707 && (h->ref_regular
5708 || h->def_regular))
5709 {
5710 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5711 return FALSE;
5712 }
5713 h = (info->fini_function
5714 ? elf_link_hash_lookup (elf_hash_table (info),
5715 info->fini_function, FALSE,
5716 FALSE, FALSE)
5717 : NULL);
5718 if (h != NULL
5719 && (h->ref_regular
5720 || h->def_regular))
5721 {
5722 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5723 return FALSE;
5724 }
5725
5726 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5727 if (s != NULL && s->linker_has_input)
5728 {
5729 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5730 if (! info->executable)
5731 {
5732 bfd *sub;
5733 asection *o;
5734
5735 for (sub = info->input_bfds; sub != NULL;
5736 sub = sub->link_next)
5737 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5738 for (o = sub->sections; o != NULL; o = o->next)
5739 if (elf_section_data (o)->this_hdr.sh_type
5740 == SHT_PREINIT_ARRAY)
5741 {
5742 (*_bfd_error_handler)
5743 (_("%B: .preinit_array section is not allowed in DSO"),
5744 sub);
5745 break;
5746 }
5747
5748 bfd_set_error (bfd_error_nonrepresentable_section);
5749 return FALSE;
5750 }
5751
5752 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5753 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5754 return FALSE;
5755 }
5756 s = bfd_get_section_by_name (output_bfd, ".init_array");
5757 if (s != NULL && s->linker_has_input)
5758 {
5759 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5760 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5761 return FALSE;
5762 }
5763 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5764 if (s != NULL && s->linker_has_input)
5765 {
5766 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5767 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5768 return FALSE;
5769 }
5770
5771 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5772 /* If .dynstr is excluded from the link, we don't want any of
5773 these tags. Strictly, we should be checking each section
5774 individually; This quick check covers for the case where
5775 someone does a /DISCARD/ : { *(*) }. */
5776 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5777 {
5778 bfd_size_type strsize;
5779
5780 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5781 if ((info->emit_hash
5782 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5783 || (info->emit_gnu_hash
5784 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5785 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5786 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5787 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5788 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5789 bed->s->sizeof_sym))
5790 return FALSE;
5791 }
5792 }
5793
5794 /* The backend must work out the sizes of all the other dynamic
5795 sections. */
5796 if (bed->elf_backend_size_dynamic_sections
5797 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5798 return FALSE;
5799
5800 if (elf_hash_table (info)->dynamic_sections_created)
5801 {
5802 unsigned long section_sym_count;
5803 asection *s;
5804
5805 /* Set up the version definition section. */
5806 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5807 BFD_ASSERT (s != NULL);
5808
5809 /* We may have created additional version definitions if we are
5810 just linking a regular application. */
5811 verdefs = asvinfo.verdefs;
5812
5813 /* Skip anonymous version tag. */
5814 if (verdefs != NULL && verdefs->vernum == 0)
5815 verdefs = verdefs->next;
5816
5817 if (verdefs == NULL && !info->create_default_symver)
5818 s->flags |= SEC_EXCLUDE;
5819 else
5820 {
5821 unsigned int cdefs;
5822 bfd_size_type size;
5823 struct bfd_elf_version_tree *t;
5824 bfd_byte *p;
5825 Elf_Internal_Verdef def;
5826 Elf_Internal_Verdaux defaux;
5827 struct bfd_link_hash_entry *bh;
5828 struct elf_link_hash_entry *h;
5829 const char *name;
5830
5831 cdefs = 0;
5832 size = 0;
5833
5834 /* Make space for the base version. */
5835 size += sizeof (Elf_External_Verdef);
5836 size += sizeof (Elf_External_Verdaux);
5837 ++cdefs;
5838
5839 /* Make space for the default version. */
5840 if (info->create_default_symver)
5841 {
5842 size += sizeof (Elf_External_Verdef);
5843 ++cdefs;
5844 }
5845
5846 for (t = verdefs; t != NULL; t = t->next)
5847 {
5848 struct bfd_elf_version_deps *n;
5849
5850 size += sizeof (Elf_External_Verdef);
5851 size += sizeof (Elf_External_Verdaux);
5852 ++cdefs;
5853
5854 for (n = t->deps; n != NULL; n = n->next)
5855 size += sizeof (Elf_External_Verdaux);
5856 }
5857
5858 s->size = size;
5859 s->contents = bfd_alloc (output_bfd, s->size);
5860 if (s->contents == NULL && s->size != 0)
5861 return FALSE;
5862
5863 /* Fill in the version definition section. */
5864
5865 p = s->contents;
5866
5867 def.vd_version = VER_DEF_CURRENT;
5868 def.vd_flags = VER_FLG_BASE;
5869 def.vd_ndx = 1;
5870 def.vd_cnt = 1;
5871 if (info->create_default_symver)
5872 {
5873 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5874 def.vd_next = sizeof (Elf_External_Verdef);
5875 }
5876 else
5877 {
5878 def.vd_aux = sizeof (Elf_External_Verdef);
5879 def.vd_next = (sizeof (Elf_External_Verdef)
5880 + sizeof (Elf_External_Verdaux));
5881 }
5882
5883 if (soname_indx != (bfd_size_type) -1)
5884 {
5885 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5886 soname_indx);
5887 def.vd_hash = bfd_elf_hash (soname);
5888 defaux.vda_name = soname_indx;
5889 name = soname;
5890 }
5891 else
5892 {
5893 bfd_size_type indx;
5894
5895 name = lbasename (output_bfd->filename);
5896 def.vd_hash = bfd_elf_hash (name);
5897 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5898 name, FALSE);
5899 if (indx == (bfd_size_type) -1)
5900 return FALSE;
5901 defaux.vda_name = indx;
5902 }
5903 defaux.vda_next = 0;
5904
5905 _bfd_elf_swap_verdef_out (output_bfd, &def,
5906 (Elf_External_Verdef *) p);
5907 p += sizeof (Elf_External_Verdef);
5908 if (info->create_default_symver)
5909 {
5910 /* Add a symbol representing this version. */
5911 bh = NULL;
5912 if (! (_bfd_generic_link_add_one_symbol
5913 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5914 0, NULL, FALSE,
5915 get_elf_backend_data (dynobj)->collect, &bh)))
5916 return FALSE;
5917 h = (struct elf_link_hash_entry *) bh;
5918 h->non_elf = 0;
5919 h->def_regular = 1;
5920 h->type = STT_OBJECT;
5921 h->verinfo.vertree = NULL;
5922
5923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5924 return FALSE;
5925
5926 /* Create a duplicate of the base version with the same
5927 aux block, but different flags. */
5928 def.vd_flags = 0;
5929 def.vd_ndx = 2;
5930 def.vd_aux = sizeof (Elf_External_Verdef);
5931 if (verdefs)
5932 def.vd_next = (sizeof (Elf_External_Verdef)
5933 + sizeof (Elf_External_Verdaux));
5934 else
5935 def.vd_next = 0;
5936 _bfd_elf_swap_verdef_out (output_bfd, &def,
5937 (Elf_External_Verdef *) p);
5938 p += sizeof (Elf_External_Verdef);
5939 }
5940 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5941 (Elf_External_Verdaux *) p);
5942 p += sizeof (Elf_External_Verdaux);
5943
5944 for (t = verdefs; t != NULL; t = t->next)
5945 {
5946 unsigned int cdeps;
5947 struct bfd_elf_version_deps *n;
5948
5949 cdeps = 0;
5950 for (n = t->deps; n != NULL; n = n->next)
5951 ++cdeps;
5952
5953 /* Add a symbol representing this version. */
5954 bh = NULL;
5955 if (! (_bfd_generic_link_add_one_symbol
5956 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5957 0, NULL, FALSE,
5958 get_elf_backend_data (dynobj)->collect, &bh)))
5959 return FALSE;
5960 h = (struct elf_link_hash_entry *) bh;
5961 h->non_elf = 0;
5962 h->def_regular = 1;
5963 h->type = STT_OBJECT;
5964 h->verinfo.vertree = t;
5965
5966 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5967 return FALSE;
5968
5969 def.vd_version = VER_DEF_CURRENT;
5970 def.vd_flags = 0;
5971 if (t->globals.list == NULL
5972 && t->locals.list == NULL
5973 && ! t->used)
5974 def.vd_flags |= VER_FLG_WEAK;
5975 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5976 def.vd_cnt = cdeps + 1;
5977 def.vd_hash = bfd_elf_hash (t->name);
5978 def.vd_aux = sizeof (Elf_External_Verdef);
5979 def.vd_next = 0;
5980 if (t->next != NULL)
5981 def.vd_next = (sizeof (Elf_External_Verdef)
5982 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5983
5984 _bfd_elf_swap_verdef_out (output_bfd, &def,
5985 (Elf_External_Verdef *) p);
5986 p += sizeof (Elf_External_Verdef);
5987
5988 defaux.vda_name = h->dynstr_index;
5989 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5990 h->dynstr_index);
5991 defaux.vda_next = 0;
5992 if (t->deps != NULL)
5993 defaux.vda_next = sizeof (Elf_External_Verdaux);
5994 t->name_indx = defaux.vda_name;
5995
5996 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5997 (Elf_External_Verdaux *) p);
5998 p += sizeof (Elf_External_Verdaux);
5999
6000 for (n = t->deps; n != NULL; n = n->next)
6001 {
6002 if (n->version_needed == NULL)
6003 {
6004 /* This can happen if there was an error in the
6005 version script. */
6006 defaux.vda_name = 0;
6007 }
6008 else
6009 {
6010 defaux.vda_name = n->version_needed->name_indx;
6011 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6012 defaux.vda_name);
6013 }
6014 if (n->next == NULL)
6015 defaux.vda_next = 0;
6016 else
6017 defaux.vda_next = sizeof (Elf_External_Verdaux);
6018
6019 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6020 (Elf_External_Verdaux *) p);
6021 p += sizeof (Elf_External_Verdaux);
6022 }
6023 }
6024
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6027 return FALSE;
6028
6029 elf_tdata (output_bfd)->cverdefs = cdefs;
6030 }
6031
6032 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6033 {
6034 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6035 return FALSE;
6036 }
6037 else if (info->flags & DF_BIND_NOW)
6038 {
6039 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6040 return FALSE;
6041 }
6042
6043 if (info->flags_1)
6044 {
6045 if (info->executable)
6046 info->flags_1 &= ~ (DF_1_INITFIRST
6047 | DF_1_NODELETE
6048 | DF_1_NOOPEN);
6049 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6050 return FALSE;
6051 }
6052
6053 /* Work out the size of the version reference section. */
6054
6055 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6056 BFD_ASSERT (s != NULL);
6057 {
6058 struct elf_find_verdep_info sinfo;
6059
6060 sinfo.info = info;
6061 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6062 if (sinfo.vers == 0)
6063 sinfo.vers = 1;
6064 sinfo.failed = FALSE;
6065
6066 elf_link_hash_traverse (elf_hash_table (info),
6067 _bfd_elf_link_find_version_dependencies,
6068 &sinfo);
6069 if (sinfo.failed)
6070 return FALSE;
6071
6072 if (elf_tdata (output_bfd)->verref == NULL)
6073 s->flags |= SEC_EXCLUDE;
6074 else
6075 {
6076 Elf_Internal_Verneed *t;
6077 unsigned int size;
6078 unsigned int crefs;
6079 bfd_byte *p;
6080
6081 /* Build the version definition section. */
6082 size = 0;
6083 crefs = 0;
6084 for (t = elf_tdata (output_bfd)->verref;
6085 t != NULL;
6086 t = t->vn_nextref)
6087 {
6088 Elf_Internal_Vernaux *a;
6089
6090 size += sizeof (Elf_External_Verneed);
6091 ++crefs;
6092 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6093 size += sizeof (Elf_External_Vernaux);
6094 }
6095
6096 s->size = size;
6097 s->contents = bfd_alloc (output_bfd, s->size);
6098 if (s->contents == NULL)
6099 return FALSE;
6100
6101 p = s->contents;
6102 for (t = elf_tdata (output_bfd)->verref;
6103 t != NULL;
6104 t = t->vn_nextref)
6105 {
6106 unsigned int caux;
6107 Elf_Internal_Vernaux *a;
6108 bfd_size_type indx;
6109
6110 caux = 0;
6111 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6112 ++caux;
6113
6114 t->vn_version = VER_NEED_CURRENT;
6115 t->vn_cnt = caux;
6116 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6117 elf_dt_name (t->vn_bfd) != NULL
6118 ? elf_dt_name (t->vn_bfd)
6119 : lbasename (t->vn_bfd->filename),
6120 FALSE);
6121 if (indx == (bfd_size_type) -1)
6122 return FALSE;
6123 t->vn_file = indx;
6124 t->vn_aux = sizeof (Elf_External_Verneed);
6125 if (t->vn_nextref == NULL)
6126 t->vn_next = 0;
6127 else
6128 t->vn_next = (sizeof (Elf_External_Verneed)
6129 + caux * sizeof (Elf_External_Vernaux));
6130
6131 _bfd_elf_swap_verneed_out (output_bfd, t,
6132 (Elf_External_Verneed *) p);
6133 p += sizeof (Elf_External_Verneed);
6134
6135 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6136 {
6137 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6138 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6139 a->vna_nodename, FALSE);
6140 if (indx == (bfd_size_type) -1)
6141 return FALSE;
6142 a->vna_name = indx;
6143 if (a->vna_nextptr == NULL)
6144 a->vna_next = 0;
6145 else
6146 a->vna_next = sizeof (Elf_External_Vernaux);
6147
6148 _bfd_elf_swap_vernaux_out (output_bfd, a,
6149 (Elf_External_Vernaux *) p);
6150 p += sizeof (Elf_External_Vernaux);
6151 }
6152 }
6153
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6155 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6156 return FALSE;
6157
6158 elf_tdata (output_bfd)->cverrefs = crefs;
6159 }
6160 }
6161
6162 if ((elf_tdata (output_bfd)->cverrefs == 0
6163 && elf_tdata (output_bfd)->cverdefs == 0)
6164 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6165 &section_sym_count) == 0)
6166 {
6167 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6168 s->flags |= SEC_EXCLUDE;
6169 }
6170 }
6171 return TRUE;
6172 }
6173
6174 /* Find the first non-excluded output section. We'll use its
6175 section symbol for some emitted relocs. */
6176 void
6177 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6178 {
6179 asection *s;
6180
6181 for (s = output_bfd->sections; s != NULL; s = s->next)
6182 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6183 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6184 {
6185 elf_hash_table (info)->text_index_section = s;
6186 break;
6187 }
6188 }
6189
6190 /* Find two non-excluded output sections, one for code, one for data.
6191 We'll use their section symbols for some emitted relocs. */
6192 void
6193 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6194 {
6195 asection *s;
6196
6197 /* Data first, since setting text_index_section changes
6198 _bfd_elf_link_omit_section_dynsym. */
6199 for (s = output_bfd->sections; s != NULL; s = s->next)
6200 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6201 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6202 {
6203 elf_hash_table (info)->data_index_section = s;
6204 break;
6205 }
6206
6207 for (s = output_bfd->sections; s != NULL; s = s->next)
6208 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6209 == (SEC_ALLOC | SEC_READONLY))
6210 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6211 {
6212 elf_hash_table (info)->text_index_section = s;
6213 break;
6214 }
6215
6216 if (elf_hash_table (info)->text_index_section == NULL)
6217 elf_hash_table (info)->text_index_section
6218 = elf_hash_table (info)->data_index_section;
6219 }
6220
6221 bfd_boolean
6222 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6223 {
6224 const struct elf_backend_data *bed;
6225
6226 if (!is_elf_hash_table (info->hash))
6227 return TRUE;
6228
6229 bed = get_elf_backend_data (output_bfd);
6230 (*bed->elf_backend_init_index_section) (output_bfd, info);
6231
6232 if (elf_hash_table (info)->dynamic_sections_created)
6233 {
6234 bfd *dynobj;
6235 asection *s;
6236 bfd_size_type dynsymcount;
6237 unsigned long section_sym_count;
6238 unsigned int dtagcount;
6239
6240 dynobj = elf_hash_table (info)->dynobj;
6241
6242 /* Assign dynsym indicies. In a shared library we generate a
6243 section symbol for each output section, which come first.
6244 Next come all of the back-end allocated local dynamic syms,
6245 followed by the rest of the global symbols. */
6246
6247 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6248 &section_sym_count);
6249
6250 /* Work out the size of the symbol version section. */
6251 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6252 BFD_ASSERT (s != NULL);
6253 if (dynsymcount != 0
6254 && (s->flags & SEC_EXCLUDE) == 0)
6255 {
6256 s->size = dynsymcount * sizeof (Elf_External_Versym);
6257 s->contents = bfd_zalloc (output_bfd, s->size);
6258 if (s->contents == NULL)
6259 return FALSE;
6260
6261 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6262 return FALSE;
6263 }
6264
6265 /* Set the size of the .dynsym and .hash sections. We counted
6266 the number of dynamic symbols in elf_link_add_object_symbols.
6267 We will build the contents of .dynsym and .hash when we build
6268 the final symbol table, because until then we do not know the
6269 correct value to give the symbols. We built the .dynstr
6270 section as we went along in elf_link_add_object_symbols. */
6271 s = bfd_get_section_by_name (dynobj, ".dynsym");
6272 BFD_ASSERT (s != NULL);
6273 s->size = dynsymcount * bed->s->sizeof_sym;
6274
6275 if (dynsymcount != 0)
6276 {
6277 s->contents = bfd_alloc (output_bfd, s->size);
6278 if (s->contents == NULL)
6279 return FALSE;
6280
6281 /* The first entry in .dynsym is a dummy symbol.
6282 Clear all the section syms, in case we don't output them all. */
6283 ++section_sym_count;
6284 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6285 }
6286
6287 elf_hash_table (info)->bucketcount = 0;
6288
6289 /* Compute the size of the hashing table. As a side effect this
6290 computes the hash values for all the names we export. */
6291 if (info->emit_hash)
6292 {
6293 unsigned long int *hashcodes;
6294 struct hash_codes_info hashinf;
6295 bfd_size_type amt;
6296 unsigned long int nsyms;
6297 size_t bucketcount;
6298 size_t hash_entry_size;
6299
6300 /* Compute the hash values for all exported symbols. At the same
6301 time store the values in an array so that we could use them for
6302 optimizations. */
6303 amt = dynsymcount * sizeof (unsigned long int);
6304 hashcodes = bfd_malloc (amt);
6305 if (hashcodes == NULL)
6306 return FALSE;
6307 hashinf.hashcodes = hashcodes;
6308 hashinf.error = FALSE;
6309
6310 /* Put all hash values in HASHCODES. */
6311 elf_link_hash_traverse (elf_hash_table (info),
6312 elf_collect_hash_codes, &hashinf);
6313 if (hashinf.error)
6314 {
6315 free (hashcodes);
6316 return FALSE;
6317 }
6318
6319 nsyms = hashinf.hashcodes - hashcodes;
6320 bucketcount
6321 = compute_bucket_count (info, hashcodes, nsyms, 0);
6322 free (hashcodes);
6323
6324 if (bucketcount == 0)
6325 return FALSE;
6326
6327 elf_hash_table (info)->bucketcount = bucketcount;
6328
6329 s = bfd_get_section_by_name (dynobj, ".hash");
6330 BFD_ASSERT (s != NULL);
6331 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6332 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6333 s->contents = bfd_zalloc (output_bfd, s->size);
6334 if (s->contents == NULL)
6335 return FALSE;
6336
6337 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6338 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6339 s->contents + hash_entry_size);
6340 }
6341
6342 if (info->emit_gnu_hash)
6343 {
6344 size_t i, cnt;
6345 unsigned char *contents;
6346 struct collect_gnu_hash_codes cinfo;
6347 bfd_size_type amt;
6348 size_t bucketcount;
6349
6350 memset (&cinfo, 0, sizeof (cinfo));
6351
6352 /* Compute the hash values for all exported symbols. At the same
6353 time store the values in an array so that we could use them for
6354 optimizations. */
6355 amt = dynsymcount * 2 * sizeof (unsigned long int);
6356 cinfo.hashcodes = bfd_malloc (amt);
6357 if (cinfo.hashcodes == NULL)
6358 return FALSE;
6359
6360 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6361 cinfo.min_dynindx = -1;
6362 cinfo.output_bfd = output_bfd;
6363 cinfo.bed = bed;
6364
6365 /* Put all hash values in HASHCODES. */
6366 elf_link_hash_traverse (elf_hash_table (info),
6367 elf_collect_gnu_hash_codes, &cinfo);
6368 if (cinfo.error)
6369 {
6370 free (cinfo.hashcodes);
6371 return FALSE;
6372 }
6373
6374 bucketcount
6375 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6376
6377 if (bucketcount == 0)
6378 {
6379 free (cinfo.hashcodes);
6380 return FALSE;
6381 }
6382
6383 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6384 BFD_ASSERT (s != NULL);
6385
6386 if (cinfo.nsyms == 0)
6387 {
6388 /* Empty .gnu.hash section is special. */
6389 BFD_ASSERT (cinfo.min_dynindx == -1);
6390 free (cinfo.hashcodes);
6391 s->size = 5 * 4 + bed->s->arch_size / 8;
6392 contents = bfd_zalloc (output_bfd, s->size);
6393 if (contents == NULL)
6394 return FALSE;
6395 s->contents = contents;
6396 /* 1 empty bucket. */
6397 bfd_put_32 (output_bfd, 1, contents);
6398 /* SYMIDX above the special symbol 0. */
6399 bfd_put_32 (output_bfd, 1, contents + 4);
6400 /* Just one word for bitmask. */
6401 bfd_put_32 (output_bfd, 1, contents + 8);
6402 /* Only hash fn bloom filter. */
6403 bfd_put_32 (output_bfd, 0, contents + 12);
6404 /* No hashes are valid - empty bitmask. */
6405 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6406 /* No hashes in the only bucket. */
6407 bfd_put_32 (output_bfd, 0,
6408 contents + 16 + bed->s->arch_size / 8);
6409 }
6410 else
6411 {
6412 unsigned long int maskwords, maskbitslog2;
6413 BFD_ASSERT (cinfo.min_dynindx != -1);
6414
6415 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6416 if (maskbitslog2 < 3)
6417 maskbitslog2 = 5;
6418 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6419 maskbitslog2 = maskbitslog2 + 3;
6420 else
6421 maskbitslog2 = maskbitslog2 + 2;
6422 if (bed->s->arch_size == 64)
6423 {
6424 if (maskbitslog2 == 5)
6425 maskbitslog2 = 6;
6426 cinfo.shift1 = 6;
6427 }
6428 else
6429 cinfo.shift1 = 5;
6430 cinfo.mask = (1 << cinfo.shift1) - 1;
6431 cinfo.shift2 = maskbitslog2;
6432 cinfo.maskbits = 1 << maskbitslog2;
6433 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6434 amt = bucketcount * sizeof (unsigned long int) * 2;
6435 amt += maskwords * sizeof (bfd_vma);
6436 cinfo.bitmask = bfd_malloc (amt);
6437 if (cinfo.bitmask == NULL)
6438 {
6439 free (cinfo.hashcodes);
6440 return FALSE;
6441 }
6442
6443 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6444 cinfo.indx = cinfo.counts + bucketcount;
6445 cinfo.symindx = dynsymcount - cinfo.nsyms;
6446 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6447
6448 /* Determine how often each hash bucket is used. */
6449 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6450 for (i = 0; i < cinfo.nsyms; ++i)
6451 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6452
6453 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6454 if (cinfo.counts[i] != 0)
6455 {
6456 cinfo.indx[i] = cnt;
6457 cnt += cinfo.counts[i];
6458 }
6459 BFD_ASSERT (cnt == dynsymcount);
6460 cinfo.bucketcount = bucketcount;
6461 cinfo.local_indx = cinfo.min_dynindx;
6462
6463 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6464 s->size += cinfo.maskbits / 8;
6465 contents = bfd_zalloc (output_bfd, s->size);
6466 if (contents == NULL)
6467 {
6468 free (cinfo.bitmask);
6469 free (cinfo.hashcodes);
6470 return FALSE;
6471 }
6472
6473 s->contents = contents;
6474 bfd_put_32 (output_bfd, bucketcount, contents);
6475 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6476 bfd_put_32 (output_bfd, maskwords, contents + 8);
6477 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6478 contents += 16 + cinfo.maskbits / 8;
6479
6480 for (i = 0; i < bucketcount; ++i)
6481 {
6482 if (cinfo.counts[i] == 0)
6483 bfd_put_32 (output_bfd, 0, contents);
6484 else
6485 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6486 contents += 4;
6487 }
6488
6489 cinfo.contents = contents;
6490
6491 /* Renumber dynamic symbols, populate .gnu.hash section. */
6492 elf_link_hash_traverse (elf_hash_table (info),
6493 elf_renumber_gnu_hash_syms, &cinfo);
6494
6495 contents = s->contents + 16;
6496 for (i = 0; i < maskwords; ++i)
6497 {
6498 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6499 contents);
6500 contents += bed->s->arch_size / 8;
6501 }
6502
6503 free (cinfo.bitmask);
6504 free (cinfo.hashcodes);
6505 }
6506 }
6507
6508 s = bfd_get_section_by_name (dynobj, ".dynstr");
6509 BFD_ASSERT (s != NULL);
6510
6511 elf_finalize_dynstr (output_bfd, info);
6512
6513 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6514
6515 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6516 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6517 return FALSE;
6518 }
6519
6520 return TRUE;
6521 }
6522 \f
6523 /* Indicate that we are only retrieving symbol values from this
6524 section. */
6525
6526 void
6527 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6528 {
6529 if (is_elf_hash_table (info->hash))
6530 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6531 _bfd_generic_link_just_syms (sec, info);
6532 }
6533
6534 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6535
6536 static void
6537 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6538 asection *sec)
6539 {
6540 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6541 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6542 }
6543
6544 /* Finish SHF_MERGE section merging. */
6545
6546 bfd_boolean
6547 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6548 {
6549 bfd *ibfd;
6550 asection *sec;
6551
6552 if (!is_elf_hash_table (info->hash))
6553 return FALSE;
6554
6555 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6556 if ((ibfd->flags & DYNAMIC) == 0)
6557 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6558 if ((sec->flags & SEC_MERGE) != 0
6559 && !bfd_is_abs_section (sec->output_section))
6560 {
6561 struct bfd_elf_section_data *secdata;
6562
6563 secdata = elf_section_data (sec);
6564 if (! _bfd_add_merge_section (abfd,
6565 &elf_hash_table (info)->merge_info,
6566 sec, &secdata->sec_info))
6567 return FALSE;
6568 else if (secdata->sec_info)
6569 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6570 }
6571
6572 if (elf_hash_table (info)->merge_info != NULL)
6573 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6574 merge_sections_remove_hook);
6575 return TRUE;
6576 }
6577
6578 /* Create an entry in an ELF linker hash table. */
6579
6580 struct bfd_hash_entry *
6581 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6582 struct bfd_hash_table *table,
6583 const char *string)
6584 {
6585 /* Allocate the structure if it has not already been allocated by a
6586 subclass. */
6587 if (entry == NULL)
6588 {
6589 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6590 if (entry == NULL)
6591 return entry;
6592 }
6593
6594 /* Call the allocation method of the superclass. */
6595 entry = _bfd_link_hash_newfunc (entry, table, string);
6596 if (entry != NULL)
6597 {
6598 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6599 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6600
6601 /* Set local fields. */
6602 ret->indx = -1;
6603 ret->dynindx = -1;
6604 ret->got = htab->init_got_refcount;
6605 ret->plt = htab->init_plt_refcount;
6606 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6607 - offsetof (struct elf_link_hash_entry, size)));
6608 /* Assume that we have been called by a non-ELF symbol reader.
6609 This flag is then reset by the code which reads an ELF input
6610 file. This ensures that a symbol created by a non-ELF symbol
6611 reader will have the flag set correctly. */
6612 ret->non_elf = 1;
6613 }
6614
6615 return entry;
6616 }
6617
6618 /* Copy data from an indirect symbol to its direct symbol, hiding the
6619 old indirect symbol. Also used for copying flags to a weakdef. */
6620
6621 void
6622 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6623 struct elf_link_hash_entry *dir,
6624 struct elf_link_hash_entry *ind)
6625 {
6626 struct elf_link_hash_table *htab;
6627
6628 /* Copy down any references that we may have already seen to the
6629 symbol which just became indirect. */
6630
6631 dir->ref_dynamic |= ind->ref_dynamic;
6632 dir->ref_regular |= ind->ref_regular;
6633 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6634 dir->non_got_ref |= ind->non_got_ref;
6635 dir->needs_plt |= ind->needs_plt;
6636 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6637
6638 if (ind->root.type != bfd_link_hash_indirect)
6639 return;
6640
6641 /* Copy over the global and procedure linkage table refcount entries.
6642 These may have been already set up by a check_relocs routine. */
6643 htab = elf_hash_table (info);
6644 if (ind->got.refcount > htab->init_got_refcount.refcount)
6645 {
6646 if (dir->got.refcount < 0)
6647 dir->got.refcount = 0;
6648 dir->got.refcount += ind->got.refcount;
6649 ind->got.refcount = htab->init_got_refcount.refcount;
6650 }
6651
6652 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6653 {
6654 if (dir->plt.refcount < 0)
6655 dir->plt.refcount = 0;
6656 dir->plt.refcount += ind->plt.refcount;
6657 ind->plt.refcount = htab->init_plt_refcount.refcount;
6658 }
6659
6660 if (ind->dynindx != -1)
6661 {
6662 if (dir->dynindx != -1)
6663 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6664 dir->dynindx = ind->dynindx;
6665 dir->dynstr_index = ind->dynstr_index;
6666 ind->dynindx = -1;
6667 ind->dynstr_index = 0;
6668 }
6669 }
6670
6671 void
6672 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6673 struct elf_link_hash_entry *h,
6674 bfd_boolean force_local)
6675 {
6676 /* STT_GNU_IFUNC symbol must go through PLT. */
6677 if (h->type != STT_GNU_IFUNC)
6678 {
6679 h->plt = elf_hash_table (info)->init_plt_offset;
6680 h->needs_plt = 0;
6681 }
6682 if (force_local)
6683 {
6684 h->forced_local = 1;
6685 if (h->dynindx != -1)
6686 {
6687 h->dynindx = -1;
6688 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6689 h->dynstr_index);
6690 }
6691 }
6692 }
6693
6694 /* Initialize an ELF linker hash table. */
6695
6696 bfd_boolean
6697 _bfd_elf_link_hash_table_init
6698 (struct elf_link_hash_table *table,
6699 bfd *abfd,
6700 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6701 struct bfd_hash_table *,
6702 const char *),
6703 unsigned int entsize)
6704 {
6705 bfd_boolean ret;
6706 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6707
6708 memset (table, 0, sizeof * table);
6709 table->init_got_refcount.refcount = can_refcount - 1;
6710 table->init_plt_refcount.refcount = can_refcount - 1;
6711 table->init_got_offset.offset = -(bfd_vma) 1;
6712 table->init_plt_offset.offset = -(bfd_vma) 1;
6713 /* The first dynamic symbol is a dummy. */
6714 table->dynsymcount = 1;
6715
6716 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6717 table->root.type = bfd_link_elf_hash_table;
6718
6719 return ret;
6720 }
6721
6722 /* Create an ELF linker hash table. */
6723
6724 struct bfd_link_hash_table *
6725 _bfd_elf_link_hash_table_create (bfd *abfd)
6726 {
6727 struct elf_link_hash_table *ret;
6728 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6729
6730 ret = bfd_malloc (amt);
6731 if (ret == NULL)
6732 return NULL;
6733
6734 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6735 sizeof (struct elf_link_hash_entry)))
6736 {
6737 free (ret);
6738 return NULL;
6739 }
6740
6741 return &ret->root;
6742 }
6743
6744 /* This is a hook for the ELF emulation code in the generic linker to
6745 tell the backend linker what file name to use for the DT_NEEDED
6746 entry for a dynamic object. */
6747
6748 void
6749 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6750 {
6751 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6752 && bfd_get_format (abfd) == bfd_object)
6753 elf_dt_name (abfd) = name;
6754 }
6755
6756 int
6757 bfd_elf_get_dyn_lib_class (bfd *abfd)
6758 {
6759 int lib_class;
6760 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6761 && bfd_get_format (abfd) == bfd_object)
6762 lib_class = elf_dyn_lib_class (abfd);
6763 else
6764 lib_class = 0;
6765 return lib_class;
6766 }
6767
6768 void
6769 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6770 {
6771 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6772 && bfd_get_format (abfd) == bfd_object)
6773 elf_dyn_lib_class (abfd) = lib_class;
6774 }
6775
6776 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6777 the linker ELF emulation code. */
6778
6779 struct bfd_link_needed_list *
6780 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6781 struct bfd_link_info *info)
6782 {
6783 if (! is_elf_hash_table (info->hash))
6784 return NULL;
6785 return elf_hash_table (info)->needed;
6786 }
6787
6788 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6789 hook for the linker ELF emulation code. */
6790
6791 struct bfd_link_needed_list *
6792 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6793 struct bfd_link_info *info)
6794 {
6795 if (! is_elf_hash_table (info->hash))
6796 return NULL;
6797 return elf_hash_table (info)->runpath;
6798 }
6799
6800 /* Get the name actually used for a dynamic object for a link. This
6801 is the SONAME entry if there is one. Otherwise, it is the string
6802 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6803
6804 const char *
6805 bfd_elf_get_dt_soname (bfd *abfd)
6806 {
6807 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6808 && bfd_get_format (abfd) == bfd_object)
6809 return elf_dt_name (abfd);
6810 return NULL;
6811 }
6812
6813 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6814 the ELF linker emulation code. */
6815
6816 bfd_boolean
6817 bfd_elf_get_bfd_needed_list (bfd *abfd,
6818 struct bfd_link_needed_list **pneeded)
6819 {
6820 asection *s;
6821 bfd_byte *dynbuf = NULL;
6822 unsigned int elfsec;
6823 unsigned long shlink;
6824 bfd_byte *extdyn, *extdynend;
6825 size_t extdynsize;
6826 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6827
6828 *pneeded = NULL;
6829
6830 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6831 || bfd_get_format (abfd) != bfd_object)
6832 return TRUE;
6833
6834 s = bfd_get_section_by_name (abfd, ".dynamic");
6835 if (s == NULL || s->size == 0)
6836 return TRUE;
6837
6838 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6839 goto error_return;
6840
6841 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6842 if (elfsec == SHN_BAD)
6843 goto error_return;
6844
6845 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6846
6847 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6848 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6849
6850 extdyn = dynbuf;
6851 extdynend = extdyn + s->size;
6852 for (; extdyn < extdynend; extdyn += extdynsize)
6853 {
6854 Elf_Internal_Dyn dyn;
6855
6856 (*swap_dyn_in) (abfd, extdyn, &dyn);
6857
6858 if (dyn.d_tag == DT_NULL)
6859 break;
6860
6861 if (dyn.d_tag == DT_NEEDED)
6862 {
6863 const char *string;
6864 struct bfd_link_needed_list *l;
6865 unsigned int tagv = dyn.d_un.d_val;
6866 bfd_size_type amt;
6867
6868 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6869 if (string == NULL)
6870 goto error_return;
6871
6872 amt = sizeof *l;
6873 l = bfd_alloc (abfd, amt);
6874 if (l == NULL)
6875 goto error_return;
6876
6877 l->by = abfd;
6878 l->name = string;
6879 l->next = *pneeded;
6880 *pneeded = l;
6881 }
6882 }
6883
6884 free (dynbuf);
6885
6886 return TRUE;
6887
6888 error_return:
6889 if (dynbuf != NULL)
6890 free (dynbuf);
6891 return FALSE;
6892 }
6893
6894 struct elf_symbuf_symbol
6895 {
6896 unsigned long st_name; /* Symbol name, index in string tbl */
6897 unsigned char st_info; /* Type and binding attributes */
6898 unsigned char st_other; /* Visibilty, and target specific */
6899 };
6900
6901 struct elf_symbuf_head
6902 {
6903 struct elf_symbuf_symbol *ssym;
6904 bfd_size_type count;
6905 unsigned int st_shndx;
6906 };
6907
6908 struct elf_symbol
6909 {
6910 union
6911 {
6912 Elf_Internal_Sym *isym;
6913 struct elf_symbuf_symbol *ssym;
6914 } u;
6915 const char *name;
6916 };
6917
6918 /* Sort references to symbols by ascending section number. */
6919
6920 static int
6921 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6922 {
6923 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6924 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6925
6926 return s1->st_shndx - s2->st_shndx;
6927 }
6928
6929 static int
6930 elf_sym_name_compare (const void *arg1, const void *arg2)
6931 {
6932 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6933 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6934 return strcmp (s1->name, s2->name);
6935 }
6936
6937 static struct elf_symbuf_head *
6938 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6939 {
6940 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6941 struct elf_symbuf_symbol *ssym;
6942 struct elf_symbuf_head *ssymbuf, *ssymhead;
6943 bfd_size_type i, shndx_count, total_size;
6944
6945 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6946 if (indbuf == NULL)
6947 return NULL;
6948
6949 for (ind = indbuf, i = 0; i < symcount; i++)
6950 if (isymbuf[i].st_shndx != SHN_UNDEF)
6951 *ind++ = &isymbuf[i];
6952 indbufend = ind;
6953
6954 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6955 elf_sort_elf_symbol);
6956
6957 shndx_count = 0;
6958 if (indbufend > indbuf)
6959 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6960 if (ind[0]->st_shndx != ind[1]->st_shndx)
6961 shndx_count++;
6962
6963 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6964 + (indbufend - indbuf) * sizeof (*ssym));
6965 ssymbuf = bfd_malloc (total_size);
6966 if (ssymbuf == NULL)
6967 {
6968 free (indbuf);
6969 return NULL;
6970 }
6971
6972 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6973 ssymbuf->ssym = NULL;
6974 ssymbuf->count = shndx_count;
6975 ssymbuf->st_shndx = 0;
6976 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6977 {
6978 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6979 {
6980 ssymhead++;
6981 ssymhead->ssym = ssym;
6982 ssymhead->count = 0;
6983 ssymhead->st_shndx = (*ind)->st_shndx;
6984 }
6985 ssym->st_name = (*ind)->st_name;
6986 ssym->st_info = (*ind)->st_info;
6987 ssym->st_other = (*ind)->st_other;
6988 ssymhead->count++;
6989 }
6990 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6991 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6992 == total_size));
6993
6994 free (indbuf);
6995 return ssymbuf;
6996 }
6997
6998 /* Check if 2 sections define the same set of local and global
6999 symbols. */
7000
7001 static bfd_boolean
7002 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7003 struct bfd_link_info *info)
7004 {
7005 bfd *bfd1, *bfd2;
7006 const struct elf_backend_data *bed1, *bed2;
7007 Elf_Internal_Shdr *hdr1, *hdr2;
7008 bfd_size_type symcount1, symcount2;
7009 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7010 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7011 Elf_Internal_Sym *isym, *isymend;
7012 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7013 bfd_size_type count1, count2, i;
7014 unsigned int shndx1, shndx2;
7015 bfd_boolean result;
7016
7017 bfd1 = sec1->owner;
7018 bfd2 = sec2->owner;
7019
7020 /* Both sections have to be in ELF. */
7021 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7022 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7023 return FALSE;
7024
7025 if (elf_section_type (sec1) != elf_section_type (sec2))
7026 return FALSE;
7027
7028 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7029 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7030 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7031 return FALSE;
7032
7033 bed1 = get_elf_backend_data (bfd1);
7034 bed2 = get_elf_backend_data (bfd2);
7035 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7036 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7037 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7038 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7039
7040 if (symcount1 == 0 || symcount2 == 0)
7041 return FALSE;
7042
7043 result = FALSE;
7044 isymbuf1 = NULL;
7045 isymbuf2 = NULL;
7046 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7047 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7048
7049 if (ssymbuf1 == NULL)
7050 {
7051 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7052 NULL, NULL, NULL);
7053 if (isymbuf1 == NULL)
7054 goto done;
7055
7056 if (!info->reduce_memory_overheads)
7057 elf_tdata (bfd1)->symbuf = ssymbuf1
7058 = elf_create_symbuf (symcount1, isymbuf1);
7059 }
7060
7061 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7062 {
7063 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7064 NULL, NULL, NULL);
7065 if (isymbuf2 == NULL)
7066 goto done;
7067
7068 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7069 elf_tdata (bfd2)->symbuf = ssymbuf2
7070 = elf_create_symbuf (symcount2, isymbuf2);
7071 }
7072
7073 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7074 {
7075 /* Optimized faster version. */
7076 bfd_size_type lo, hi, mid;
7077 struct elf_symbol *symp;
7078 struct elf_symbuf_symbol *ssym, *ssymend;
7079
7080 lo = 0;
7081 hi = ssymbuf1->count;
7082 ssymbuf1++;
7083 count1 = 0;
7084 while (lo < hi)
7085 {
7086 mid = (lo + hi) / 2;
7087 if (shndx1 < ssymbuf1[mid].st_shndx)
7088 hi = mid;
7089 else if (shndx1 > ssymbuf1[mid].st_shndx)
7090 lo = mid + 1;
7091 else
7092 {
7093 count1 = ssymbuf1[mid].count;
7094 ssymbuf1 += mid;
7095 break;
7096 }
7097 }
7098
7099 lo = 0;
7100 hi = ssymbuf2->count;
7101 ssymbuf2++;
7102 count2 = 0;
7103 while (lo < hi)
7104 {
7105 mid = (lo + hi) / 2;
7106 if (shndx2 < ssymbuf2[mid].st_shndx)
7107 hi = mid;
7108 else if (shndx2 > ssymbuf2[mid].st_shndx)
7109 lo = mid + 1;
7110 else
7111 {
7112 count2 = ssymbuf2[mid].count;
7113 ssymbuf2 += mid;
7114 break;
7115 }
7116 }
7117
7118 if (count1 == 0 || count2 == 0 || count1 != count2)
7119 goto done;
7120
7121 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7122 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7123 if (symtable1 == NULL || symtable2 == NULL)
7124 goto done;
7125
7126 symp = symtable1;
7127 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7128 ssym < ssymend; ssym++, symp++)
7129 {
7130 symp->u.ssym = ssym;
7131 symp->name = bfd_elf_string_from_elf_section (bfd1,
7132 hdr1->sh_link,
7133 ssym->st_name);
7134 }
7135
7136 symp = symtable2;
7137 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7138 ssym < ssymend; ssym++, symp++)
7139 {
7140 symp->u.ssym = ssym;
7141 symp->name = bfd_elf_string_from_elf_section (bfd2,
7142 hdr2->sh_link,
7143 ssym->st_name);
7144 }
7145
7146 /* Sort symbol by name. */
7147 qsort (symtable1, count1, sizeof (struct elf_symbol),
7148 elf_sym_name_compare);
7149 qsort (symtable2, count1, sizeof (struct elf_symbol),
7150 elf_sym_name_compare);
7151
7152 for (i = 0; i < count1; i++)
7153 /* Two symbols must have the same binding, type and name. */
7154 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7155 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7156 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7157 goto done;
7158
7159 result = TRUE;
7160 goto done;
7161 }
7162
7163 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7164 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7165 if (symtable1 == NULL || symtable2 == NULL)
7166 goto done;
7167
7168 /* Count definitions in the section. */
7169 count1 = 0;
7170 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7171 if (isym->st_shndx == shndx1)
7172 symtable1[count1++].u.isym = isym;
7173
7174 count2 = 0;
7175 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7176 if (isym->st_shndx == shndx2)
7177 symtable2[count2++].u.isym = isym;
7178
7179 if (count1 == 0 || count2 == 0 || count1 != count2)
7180 goto done;
7181
7182 for (i = 0; i < count1; i++)
7183 symtable1[i].name
7184 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7185 symtable1[i].u.isym->st_name);
7186
7187 for (i = 0; i < count2; i++)
7188 symtable2[i].name
7189 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7190 symtable2[i].u.isym->st_name);
7191
7192 /* Sort symbol by name. */
7193 qsort (symtable1, count1, sizeof (struct elf_symbol),
7194 elf_sym_name_compare);
7195 qsort (symtable2, count1, sizeof (struct elf_symbol),
7196 elf_sym_name_compare);
7197
7198 for (i = 0; i < count1; i++)
7199 /* Two symbols must have the same binding, type and name. */
7200 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7201 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7202 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7203 goto done;
7204
7205 result = TRUE;
7206
7207 done:
7208 if (symtable1)
7209 free (symtable1);
7210 if (symtable2)
7211 free (symtable2);
7212 if (isymbuf1)
7213 free (isymbuf1);
7214 if (isymbuf2)
7215 free (isymbuf2);
7216
7217 return result;
7218 }
7219
7220 /* Return TRUE if 2 section types are compatible. */
7221
7222 bfd_boolean
7223 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7224 bfd *bbfd, const asection *bsec)
7225 {
7226 if (asec == NULL
7227 || bsec == NULL
7228 || abfd->xvec->flavour != bfd_target_elf_flavour
7229 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7230 return TRUE;
7231
7232 return elf_section_type (asec) == elf_section_type (bsec);
7233 }
7234 \f
7235 /* Final phase of ELF linker. */
7236
7237 /* A structure we use to avoid passing large numbers of arguments. */
7238
7239 struct elf_final_link_info
7240 {
7241 /* General link information. */
7242 struct bfd_link_info *info;
7243 /* Output BFD. */
7244 bfd *output_bfd;
7245 /* Symbol string table. */
7246 struct bfd_strtab_hash *symstrtab;
7247 /* .dynsym section. */
7248 asection *dynsym_sec;
7249 /* .hash section. */
7250 asection *hash_sec;
7251 /* symbol version section (.gnu.version). */
7252 asection *symver_sec;
7253 /* Buffer large enough to hold contents of any section. */
7254 bfd_byte *contents;
7255 /* Buffer large enough to hold external relocs of any section. */
7256 void *external_relocs;
7257 /* Buffer large enough to hold internal relocs of any section. */
7258 Elf_Internal_Rela *internal_relocs;
7259 /* Buffer large enough to hold external local symbols of any input
7260 BFD. */
7261 bfd_byte *external_syms;
7262 /* And a buffer for symbol section indices. */
7263 Elf_External_Sym_Shndx *locsym_shndx;
7264 /* Buffer large enough to hold internal local symbols of any input
7265 BFD. */
7266 Elf_Internal_Sym *internal_syms;
7267 /* Array large enough to hold a symbol index for each local symbol
7268 of any input BFD. */
7269 long *indices;
7270 /* Array large enough to hold a section pointer for each local
7271 symbol of any input BFD. */
7272 asection **sections;
7273 /* Buffer to hold swapped out symbols. */
7274 bfd_byte *symbuf;
7275 /* And one for symbol section indices. */
7276 Elf_External_Sym_Shndx *symshndxbuf;
7277 /* Number of swapped out symbols in buffer. */
7278 size_t symbuf_count;
7279 /* Number of symbols which fit in symbuf. */
7280 size_t symbuf_size;
7281 /* And same for symshndxbuf. */
7282 size_t shndxbuf_size;
7283 };
7284
7285 /* This struct is used to pass information to elf_link_output_extsym. */
7286
7287 struct elf_outext_info
7288 {
7289 bfd_boolean failed;
7290 bfd_boolean localsyms;
7291 struct elf_final_link_info *finfo;
7292 };
7293
7294
7295 /* Support for evaluating a complex relocation.
7296
7297 Complex relocations are generalized, self-describing relocations. The
7298 implementation of them consists of two parts: complex symbols, and the
7299 relocations themselves.
7300
7301 The relocations are use a reserved elf-wide relocation type code (R_RELC
7302 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7303 information (start bit, end bit, word width, etc) into the addend. This
7304 information is extracted from CGEN-generated operand tables within gas.
7305
7306 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7307 internal) representing prefix-notation expressions, including but not
7308 limited to those sorts of expressions normally encoded as addends in the
7309 addend field. The symbol mangling format is:
7310
7311 <node> := <literal>
7312 | <unary-operator> ':' <node>
7313 | <binary-operator> ':' <node> ':' <node>
7314 ;
7315
7316 <literal> := 's' <digits=N> ':' <N character symbol name>
7317 | 'S' <digits=N> ':' <N character section name>
7318 | '#' <hexdigits>
7319 ;
7320
7321 <binary-operator> := as in C
7322 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7323
7324 static void
7325 set_symbol_value (bfd *bfd_with_globals,
7326 Elf_Internal_Sym *isymbuf,
7327 size_t locsymcount,
7328 size_t symidx,
7329 bfd_vma val)
7330 {
7331 struct elf_link_hash_entry **sym_hashes;
7332 struct elf_link_hash_entry *h;
7333 size_t extsymoff = locsymcount;
7334
7335 if (symidx < locsymcount)
7336 {
7337 Elf_Internal_Sym *sym;
7338
7339 sym = isymbuf + symidx;
7340 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7341 {
7342 /* It is a local symbol: move it to the
7343 "absolute" section and give it a value. */
7344 sym->st_shndx = SHN_ABS;
7345 sym->st_value = val;
7346 return;
7347 }
7348 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7349 extsymoff = 0;
7350 }
7351
7352 /* It is a global symbol: set its link type
7353 to "defined" and give it a value. */
7354
7355 sym_hashes = elf_sym_hashes (bfd_with_globals);
7356 h = sym_hashes [symidx - extsymoff];
7357 while (h->root.type == bfd_link_hash_indirect
7358 || h->root.type == bfd_link_hash_warning)
7359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7360 h->root.type = bfd_link_hash_defined;
7361 h->root.u.def.value = val;
7362 h->root.u.def.section = bfd_abs_section_ptr;
7363 }
7364
7365 static bfd_boolean
7366 resolve_symbol (const char *name,
7367 bfd *input_bfd,
7368 struct elf_final_link_info *finfo,
7369 bfd_vma *result,
7370 Elf_Internal_Sym *isymbuf,
7371 size_t locsymcount)
7372 {
7373 Elf_Internal_Sym *sym;
7374 struct bfd_link_hash_entry *global_entry;
7375 const char *candidate = NULL;
7376 Elf_Internal_Shdr *symtab_hdr;
7377 size_t i;
7378
7379 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7380
7381 for (i = 0; i < locsymcount; ++ i)
7382 {
7383 sym = isymbuf + i;
7384
7385 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7386 continue;
7387
7388 candidate = bfd_elf_string_from_elf_section (input_bfd,
7389 symtab_hdr->sh_link,
7390 sym->st_name);
7391 #ifdef DEBUG
7392 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7393 name, candidate, (unsigned long) sym->st_value);
7394 #endif
7395 if (candidate && strcmp (candidate, name) == 0)
7396 {
7397 asection *sec = finfo->sections [i];
7398
7399 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7400 *result += sec->output_offset + sec->output_section->vma;
7401 #ifdef DEBUG
7402 printf ("Found symbol with value %8.8lx\n",
7403 (unsigned long) *result);
7404 #endif
7405 return TRUE;
7406 }
7407 }
7408
7409 /* Hmm, haven't found it yet. perhaps it is a global. */
7410 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7411 FALSE, FALSE, TRUE);
7412 if (!global_entry)
7413 return FALSE;
7414
7415 if (global_entry->type == bfd_link_hash_defined
7416 || global_entry->type == bfd_link_hash_defweak)
7417 {
7418 *result = (global_entry->u.def.value
7419 + global_entry->u.def.section->output_section->vma
7420 + global_entry->u.def.section->output_offset);
7421 #ifdef DEBUG
7422 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7423 global_entry->root.string, (unsigned long) *result);
7424 #endif
7425 return TRUE;
7426 }
7427
7428 return FALSE;
7429 }
7430
7431 static bfd_boolean
7432 resolve_section (const char *name,
7433 asection *sections,
7434 bfd_vma *result)
7435 {
7436 asection *curr;
7437 unsigned int len;
7438
7439 for (curr = sections; curr; curr = curr->next)
7440 if (strcmp (curr->name, name) == 0)
7441 {
7442 *result = curr->vma;
7443 return TRUE;
7444 }
7445
7446 /* Hmm. still haven't found it. try pseudo-section names. */
7447 for (curr = sections; curr; curr = curr->next)
7448 {
7449 len = strlen (curr->name);
7450 if (len > strlen (name))
7451 continue;
7452
7453 if (strncmp (curr->name, name, len) == 0)
7454 {
7455 if (strncmp (".end", name + len, 4) == 0)
7456 {
7457 *result = curr->vma + curr->size;
7458 return TRUE;
7459 }
7460
7461 /* Insert more pseudo-section names here, if you like. */
7462 }
7463 }
7464
7465 return FALSE;
7466 }
7467
7468 static void
7469 undefined_reference (const char *reftype, const char *name)
7470 {
7471 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7472 reftype, name);
7473 }
7474
7475 static bfd_boolean
7476 eval_symbol (bfd_vma *result,
7477 const char **symp,
7478 bfd *input_bfd,
7479 struct elf_final_link_info *finfo,
7480 bfd_vma dot,
7481 Elf_Internal_Sym *isymbuf,
7482 size_t locsymcount,
7483 int signed_p)
7484 {
7485 size_t len;
7486 size_t symlen;
7487 bfd_vma a;
7488 bfd_vma b;
7489 char symbuf[4096];
7490 const char *sym = *symp;
7491 const char *symend;
7492 bfd_boolean symbol_is_section = FALSE;
7493
7494 len = strlen (sym);
7495 symend = sym + len;
7496
7497 if (len < 1 || len > sizeof (symbuf))
7498 {
7499 bfd_set_error (bfd_error_invalid_operation);
7500 return FALSE;
7501 }
7502
7503 switch (* sym)
7504 {
7505 case '.':
7506 *result = dot;
7507 *symp = sym + 1;
7508 return TRUE;
7509
7510 case '#':
7511 ++sym;
7512 *result = strtoul (sym, (char **) symp, 16);
7513 return TRUE;
7514
7515 case 'S':
7516 symbol_is_section = TRUE;
7517 case 's':
7518 ++sym;
7519 symlen = strtol (sym, (char **) symp, 10);
7520 sym = *symp + 1; /* Skip the trailing ':'. */
7521
7522 if (symend < sym || symlen + 1 > sizeof (symbuf))
7523 {
7524 bfd_set_error (bfd_error_invalid_operation);
7525 return FALSE;
7526 }
7527
7528 memcpy (symbuf, sym, symlen);
7529 symbuf[symlen] = '\0';
7530 *symp = sym + symlen;
7531
7532 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7533 the symbol as a section, or vice-versa. so we're pretty liberal in our
7534 interpretation here; section means "try section first", not "must be a
7535 section", and likewise with symbol. */
7536
7537 if (symbol_is_section)
7538 {
7539 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7540 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7541 isymbuf, locsymcount))
7542 {
7543 undefined_reference ("section", symbuf);
7544 return FALSE;
7545 }
7546 }
7547 else
7548 {
7549 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7550 isymbuf, locsymcount)
7551 && !resolve_section (symbuf, finfo->output_bfd->sections,
7552 result))
7553 {
7554 undefined_reference ("symbol", symbuf);
7555 return FALSE;
7556 }
7557 }
7558
7559 return TRUE;
7560
7561 /* All that remains are operators. */
7562
7563 #define UNARY_OP(op) \
7564 if (strncmp (sym, #op, strlen (#op)) == 0) \
7565 { \
7566 sym += strlen (#op); \
7567 if (*sym == ':') \
7568 ++sym; \
7569 *symp = sym; \
7570 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7571 isymbuf, locsymcount, signed_p)) \
7572 return FALSE; \
7573 if (signed_p) \
7574 *result = op ((bfd_signed_vma) a); \
7575 else \
7576 *result = op a; \
7577 return TRUE; \
7578 }
7579
7580 #define BINARY_OP(op) \
7581 if (strncmp (sym, #op, strlen (#op)) == 0) \
7582 { \
7583 sym += strlen (#op); \
7584 if (*sym == ':') \
7585 ++sym; \
7586 *symp = sym; \
7587 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7588 isymbuf, locsymcount, signed_p)) \
7589 return FALSE; \
7590 ++*symp; \
7591 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7592 isymbuf, locsymcount, signed_p)) \
7593 return FALSE; \
7594 if (signed_p) \
7595 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7596 else \
7597 *result = a op b; \
7598 return TRUE; \
7599 }
7600
7601 default:
7602 UNARY_OP (0-);
7603 BINARY_OP (<<);
7604 BINARY_OP (>>);
7605 BINARY_OP (==);
7606 BINARY_OP (!=);
7607 BINARY_OP (<=);
7608 BINARY_OP (>=);
7609 BINARY_OP (&&);
7610 BINARY_OP (||);
7611 UNARY_OP (~);
7612 UNARY_OP (!);
7613 BINARY_OP (*);
7614 BINARY_OP (/);
7615 BINARY_OP (%);
7616 BINARY_OP (^);
7617 BINARY_OP (|);
7618 BINARY_OP (&);
7619 BINARY_OP (+);
7620 BINARY_OP (-);
7621 BINARY_OP (<);
7622 BINARY_OP (>);
7623 #undef UNARY_OP
7624 #undef BINARY_OP
7625 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7626 bfd_set_error (bfd_error_invalid_operation);
7627 return FALSE;
7628 }
7629 }
7630
7631 static void
7632 put_value (bfd_vma size,
7633 unsigned long chunksz,
7634 bfd *input_bfd,
7635 bfd_vma x,
7636 bfd_byte *location)
7637 {
7638 location += (size - chunksz);
7639
7640 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7641 {
7642 switch (chunksz)
7643 {
7644 default:
7645 case 0:
7646 abort ();
7647 case 1:
7648 bfd_put_8 (input_bfd, x, location);
7649 break;
7650 case 2:
7651 bfd_put_16 (input_bfd, x, location);
7652 break;
7653 case 4:
7654 bfd_put_32 (input_bfd, x, location);
7655 break;
7656 case 8:
7657 #ifdef BFD64
7658 bfd_put_64 (input_bfd, x, location);
7659 #else
7660 abort ();
7661 #endif
7662 break;
7663 }
7664 }
7665 }
7666
7667 static bfd_vma
7668 get_value (bfd_vma size,
7669 unsigned long chunksz,
7670 bfd *input_bfd,
7671 bfd_byte *location)
7672 {
7673 bfd_vma x = 0;
7674
7675 for (; size; size -= chunksz, location += chunksz)
7676 {
7677 switch (chunksz)
7678 {
7679 default:
7680 case 0:
7681 abort ();
7682 case 1:
7683 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7684 break;
7685 case 2:
7686 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7687 break;
7688 case 4:
7689 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7690 break;
7691 case 8:
7692 #ifdef BFD64
7693 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7694 #else
7695 abort ();
7696 #endif
7697 break;
7698 }
7699 }
7700 return x;
7701 }
7702
7703 static void
7704 decode_complex_addend (unsigned long *start, /* in bits */
7705 unsigned long *oplen, /* in bits */
7706 unsigned long *len, /* in bits */
7707 unsigned long *wordsz, /* in bytes */
7708 unsigned long *chunksz, /* in bytes */
7709 unsigned long *lsb0_p,
7710 unsigned long *signed_p,
7711 unsigned long *trunc_p,
7712 unsigned long encoded)
7713 {
7714 * start = encoded & 0x3F;
7715 * len = (encoded >> 6) & 0x3F;
7716 * oplen = (encoded >> 12) & 0x3F;
7717 * wordsz = (encoded >> 18) & 0xF;
7718 * chunksz = (encoded >> 22) & 0xF;
7719 * lsb0_p = (encoded >> 27) & 1;
7720 * signed_p = (encoded >> 28) & 1;
7721 * trunc_p = (encoded >> 29) & 1;
7722 }
7723
7724 bfd_reloc_status_type
7725 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7726 asection *input_section ATTRIBUTE_UNUSED,
7727 bfd_byte *contents,
7728 Elf_Internal_Rela *rel,
7729 bfd_vma relocation)
7730 {
7731 bfd_vma shift, x, mask;
7732 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7733 bfd_reloc_status_type r;
7734
7735 /* Perform this reloc, since it is complex.
7736 (this is not to say that it necessarily refers to a complex
7737 symbol; merely that it is a self-describing CGEN based reloc.
7738 i.e. the addend has the complete reloc information (bit start, end,
7739 word size, etc) encoded within it.). */
7740
7741 decode_complex_addend (&start, &oplen, &len, &wordsz,
7742 &chunksz, &lsb0_p, &signed_p,
7743 &trunc_p, rel->r_addend);
7744
7745 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7746
7747 if (lsb0_p)
7748 shift = (start + 1) - len;
7749 else
7750 shift = (8 * wordsz) - (start + len);
7751
7752 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7753
7754 #ifdef DEBUG
7755 printf ("Doing complex reloc: "
7756 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7757 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7758 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7759 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7760 oplen, x, mask, relocation);
7761 #endif
7762
7763 r = bfd_reloc_ok;
7764 if (! trunc_p)
7765 /* Now do an overflow check. */
7766 r = bfd_check_overflow ((signed_p
7767 ? complain_overflow_signed
7768 : complain_overflow_unsigned),
7769 len, 0, (8 * wordsz),
7770 relocation);
7771
7772 /* Do the deed. */
7773 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7774
7775 #ifdef DEBUG
7776 printf (" relocation: %8.8lx\n"
7777 " shifted mask: %8.8lx\n"
7778 " shifted/masked reloc: %8.8lx\n"
7779 " result: %8.8lx\n",
7780 relocation, (mask << shift),
7781 ((relocation & mask) << shift), x);
7782 #endif
7783 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7784 return r;
7785 }
7786
7787 /* When performing a relocatable link, the input relocations are
7788 preserved. But, if they reference global symbols, the indices
7789 referenced must be updated. Update all the relocations in
7790 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7791
7792 static void
7793 elf_link_adjust_relocs (bfd *abfd,
7794 Elf_Internal_Shdr *rel_hdr,
7795 unsigned int count,
7796 struct elf_link_hash_entry **rel_hash)
7797 {
7798 unsigned int i;
7799 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7800 bfd_byte *erela;
7801 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7802 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7803 bfd_vma r_type_mask;
7804 int r_sym_shift;
7805
7806 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7807 {
7808 swap_in = bed->s->swap_reloc_in;
7809 swap_out = bed->s->swap_reloc_out;
7810 }
7811 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7812 {
7813 swap_in = bed->s->swap_reloca_in;
7814 swap_out = bed->s->swap_reloca_out;
7815 }
7816 else
7817 abort ();
7818
7819 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7820 abort ();
7821
7822 if (bed->s->arch_size == 32)
7823 {
7824 r_type_mask = 0xff;
7825 r_sym_shift = 8;
7826 }
7827 else
7828 {
7829 r_type_mask = 0xffffffff;
7830 r_sym_shift = 32;
7831 }
7832
7833 erela = rel_hdr->contents;
7834 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7835 {
7836 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7837 unsigned int j;
7838
7839 if (*rel_hash == NULL)
7840 continue;
7841
7842 BFD_ASSERT ((*rel_hash)->indx >= 0);
7843
7844 (*swap_in) (abfd, erela, irela);
7845 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7846 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7847 | (irela[j].r_info & r_type_mask));
7848 (*swap_out) (abfd, irela, erela);
7849 }
7850 }
7851
7852 struct elf_link_sort_rela
7853 {
7854 union {
7855 bfd_vma offset;
7856 bfd_vma sym_mask;
7857 } u;
7858 enum elf_reloc_type_class type;
7859 /* We use this as an array of size int_rels_per_ext_rel. */
7860 Elf_Internal_Rela rela[1];
7861 };
7862
7863 static int
7864 elf_link_sort_cmp1 (const void *A, const void *B)
7865 {
7866 const struct elf_link_sort_rela *a = A;
7867 const struct elf_link_sort_rela *b = B;
7868 int relativea, relativeb;
7869
7870 relativea = a->type == reloc_class_relative;
7871 relativeb = b->type == reloc_class_relative;
7872
7873 if (relativea < relativeb)
7874 return 1;
7875 if (relativea > relativeb)
7876 return -1;
7877 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7878 return -1;
7879 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7880 return 1;
7881 if (a->rela->r_offset < b->rela->r_offset)
7882 return -1;
7883 if (a->rela->r_offset > b->rela->r_offset)
7884 return 1;
7885 return 0;
7886 }
7887
7888 static int
7889 elf_link_sort_cmp2 (const void *A, const void *B)
7890 {
7891 const struct elf_link_sort_rela *a = A;
7892 const struct elf_link_sort_rela *b = B;
7893 int copya, copyb;
7894
7895 if (a->u.offset < b->u.offset)
7896 return -1;
7897 if (a->u.offset > b->u.offset)
7898 return 1;
7899 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7900 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7901 if (copya < copyb)
7902 return -1;
7903 if (copya > copyb)
7904 return 1;
7905 if (a->rela->r_offset < b->rela->r_offset)
7906 return -1;
7907 if (a->rela->r_offset > b->rela->r_offset)
7908 return 1;
7909 return 0;
7910 }
7911
7912 static size_t
7913 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7914 {
7915 asection *dynamic_relocs;
7916 asection *rela_dyn;
7917 asection *rel_dyn;
7918 bfd_size_type count, size;
7919 size_t i, ret, sort_elt, ext_size;
7920 bfd_byte *sort, *s_non_relative, *p;
7921 struct elf_link_sort_rela *sq;
7922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7923 int i2e = bed->s->int_rels_per_ext_rel;
7924 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7925 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7926 struct bfd_link_order *lo;
7927 bfd_vma r_sym_mask;
7928 bfd_boolean use_rela;
7929
7930 /* Find a dynamic reloc section. */
7931 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7932 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7933 if (rela_dyn != NULL && rela_dyn->size > 0
7934 && rel_dyn != NULL && rel_dyn->size > 0)
7935 {
7936 bfd_boolean use_rela_initialised = FALSE;
7937
7938 /* This is just here to stop gcc from complaining.
7939 It's initialization checking code is not perfect. */
7940 use_rela = TRUE;
7941
7942 /* Both sections are present. Examine the sizes
7943 of the indirect sections to help us choose. */
7944 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7945 if (lo->type == bfd_indirect_link_order)
7946 {
7947 asection *o = lo->u.indirect.section;
7948
7949 if ((o->size % bed->s->sizeof_rela) == 0)
7950 {
7951 if ((o->size % bed->s->sizeof_rel) == 0)
7952 /* Section size is divisible by both rel and rela sizes.
7953 It is of no help to us. */
7954 ;
7955 else
7956 {
7957 /* Section size is only divisible by rela. */
7958 if (use_rela_initialised && (use_rela == FALSE))
7959 {
7960 _bfd_error_handler
7961 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7962 bfd_set_error (bfd_error_invalid_operation);
7963 return 0;
7964 }
7965 else
7966 {
7967 use_rela = TRUE;
7968 use_rela_initialised = TRUE;
7969 }
7970 }
7971 }
7972 else if ((o->size % bed->s->sizeof_rel) == 0)
7973 {
7974 /* Section size is only divisible by rel. */
7975 if (use_rela_initialised && (use_rela == TRUE))
7976 {
7977 _bfd_error_handler
7978 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7979 bfd_set_error (bfd_error_invalid_operation);
7980 return 0;
7981 }
7982 else
7983 {
7984 use_rela = FALSE;
7985 use_rela_initialised = TRUE;
7986 }
7987 }
7988 else
7989 {
7990 /* The section size is not divisible by either - something is wrong. */
7991 _bfd_error_handler
7992 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7993 bfd_set_error (bfd_error_invalid_operation);
7994 return 0;
7995 }
7996 }
7997
7998 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7999 if (lo->type == bfd_indirect_link_order)
8000 {
8001 asection *o = lo->u.indirect.section;
8002
8003 if ((o->size % bed->s->sizeof_rela) == 0)
8004 {
8005 if ((o->size % bed->s->sizeof_rel) == 0)
8006 /* Section size is divisible by both rel and rela sizes.
8007 It is of no help to us. */
8008 ;
8009 else
8010 {
8011 /* Section size is only divisible by rela. */
8012 if (use_rela_initialised && (use_rela == FALSE))
8013 {
8014 _bfd_error_handler
8015 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8016 bfd_set_error (bfd_error_invalid_operation);
8017 return 0;
8018 }
8019 else
8020 {
8021 use_rela = TRUE;
8022 use_rela_initialised = TRUE;
8023 }
8024 }
8025 }
8026 else if ((o->size % bed->s->sizeof_rel) == 0)
8027 {
8028 /* Section size is only divisible by rel. */
8029 if (use_rela_initialised && (use_rela == TRUE))
8030 {
8031 _bfd_error_handler
8032 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8033 bfd_set_error (bfd_error_invalid_operation);
8034 return 0;
8035 }
8036 else
8037 {
8038 use_rela = FALSE;
8039 use_rela_initialised = TRUE;
8040 }
8041 }
8042 else
8043 {
8044 /* The section size is not divisible by either - something is wrong. */
8045 _bfd_error_handler
8046 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8047 bfd_set_error (bfd_error_invalid_operation);
8048 return 0;
8049 }
8050 }
8051
8052 if (! use_rela_initialised)
8053 /* Make a guess. */
8054 use_rela = TRUE;
8055 }
8056 else if (rela_dyn != NULL && rela_dyn->size > 0)
8057 use_rela = TRUE;
8058 else if (rel_dyn != NULL && rel_dyn->size > 0)
8059 use_rela = FALSE;
8060 else
8061 return 0;
8062
8063 if (use_rela)
8064 {
8065 dynamic_relocs = rela_dyn;
8066 ext_size = bed->s->sizeof_rela;
8067 swap_in = bed->s->swap_reloca_in;
8068 swap_out = bed->s->swap_reloca_out;
8069 }
8070 else
8071 {
8072 dynamic_relocs = rel_dyn;
8073 ext_size = bed->s->sizeof_rel;
8074 swap_in = bed->s->swap_reloc_in;
8075 swap_out = bed->s->swap_reloc_out;
8076 }
8077
8078 size = 0;
8079 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8080 if (lo->type == bfd_indirect_link_order)
8081 size += lo->u.indirect.section->size;
8082
8083 if (size != dynamic_relocs->size)
8084 return 0;
8085
8086 sort_elt = (sizeof (struct elf_link_sort_rela)
8087 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8088
8089 count = dynamic_relocs->size / ext_size;
8090 if (count == 0)
8091 return 0;
8092 sort = bfd_zmalloc (sort_elt * count);
8093
8094 if (sort == NULL)
8095 {
8096 (*info->callbacks->warning)
8097 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8098 return 0;
8099 }
8100
8101 if (bed->s->arch_size == 32)
8102 r_sym_mask = ~(bfd_vma) 0xff;
8103 else
8104 r_sym_mask = ~(bfd_vma) 0xffffffff;
8105
8106 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8107 if (lo->type == bfd_indirect_link_order)
8108 {
8109 bfd_byte *erel, *erelend;
8110 asection *o = lo->u.indirect.section;
8111
8112 if (o->contents == NULL && o->size != 0)
8113 {
8114 /* This is a reloc section that is being handled as a normal
8115 section. See bfd_section_from_shdr. We can't combine
8116 relocs in this case. */
8117 free (sort);
8118 return 0;
8119 }
8120 erel = o->contents;
8121 erelend = o->contents + o->size;
8122 p = sort + o->output_offset / ext_size * sort_elt;
8123
8124 while (erel < erelend)
8125 {
8126 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8127
8128 (*swap_in) (abfd, erel, s->rela);
8129 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8130 s->u.sym_mask = r_sym_mask;
8131 p += sort_elt;
8132 erel += ext_size;
8133 }
8134 }
8135
8136 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8137
8138 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8139 {
8140 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8141 if (s->type != reloc_class_relative)
8142 break;
8143 }
8144 ret = i;
8145 s_non_relative = p;
8146
8147 sq = (struct elf_link_sort_rela *) s_non_relative;
8148 for (; i < count; i++, p += sort_elt)
8149 {
8150 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8151 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8152 sq = sp;
8153 sp->u.offset = sq->rela->r_offset;
8154 }
8155
8156 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8157
8158 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8159 if (lo->type == bfd_indirect_link_order)
8160 {
8161 bfd_byte *erel, *erelend;
8162 asection *o = lo->u.indirect.section;
8163
8164 erel = o->contents;
8165 erelend = o->contents + o->size;
8166 p = sort + o->output_offset / ext_size * sort_elt;
8167 while (erel < erelend)
8168 {
8169 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8170 (*swap_out) (abfd, s->rela, erel);
8171 p += sort_elt;
8172 erel += ext_size;
8173 }
8174 }
8175
8176 free (sort);
8177 *psec = dynamic_relocs;
8178 return ret;
8179 }
8180
8181 /* Flush the output symbols to the file. */
8182
8183 static bfd_boolean
8184 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8185 const struct elf_backend_data *bed)
8186 {
8187 if (finfo->symbuf_count > 0)
8188 {
8189 Elf_Internal_Shdr *hdr;
8190 file_ptr pos;
8191 bfd_size_type amt;
8192
8193 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8194 pos = hdr->sh_offset + hdr->sh_size;
8195 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8196 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8197 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8198 return FALSE;
8199
8200 hdr->sh_size += amt;
8201 finfo->symbuf_count = 0;
8202 }
8203
8204 return TRUE;
8205 }
8206
8207 /* Add a symbol to the output symbol table. */
8208
8209 static int
8210 elf_link_output_sym (struct elf_final_link_info *finfo,
8211 const char *name,
8212 Elf_Internal_Sym *elfsym,
8213 asection *input_sec,
8214 struct elf_link_hash_entry *h)
8215 {
8216 bfd_byte *dest;
8217 Elf_External_Sym_Shndx *destshndx;
8218 int (*output_symbol_hook)
8219 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8220 struct elf_link_hash_entry *);
8221 const struct elf_backend_data *bed;
8222
8223 bed = get_elf_backend_data (finfo->output_bfd);
8224 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8225 if (output_symbol_hook != NULL)
8226 {
8227 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8228 if (ret != 1)
8229 return ret;
8230 }
8231
8232 if (name == NULL || *name == '\0')
8233 elfsym->st_name = 0;
8234 else if (input_sec->flags & SEC_EXCLUDE)
8235 elfsym->st_name = 0;
8236 else
8237 {
8238 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8239 name, TRUE, FALSE);
8240 if (elfsym->st_name == (unsigned long) -1)
8241 return 0;
8242 }
8243
8244 if (finfo->symbuf_count >= finfo->symbuf_size)
8245 {
8246 if (! elf_link_flush_output_syms (finfo, bed))
8247 return 0;
8248 }
8249
8250 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8251 destshndx = finfo->symshndxbuf;
8252 if (destshndx != NULL)
8253 {
8254 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8255 {
8256 bfd_size_type amt;
8257
8258 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8259 destshndx = bfd_realloc (destshndx, amt * 2);
8260 if (destshndx == NULL)
8261 return 0;
8262 finfo->symshndxbuf = destshndx;
8263 memset ((char *) destshndx + amt, 0, amt);
8264 finfo->shndxbuf_size *= 2;
8265 }
8266 destshndx += bfd_get_symcount (finfo->output_bfd);
8267 }
8268
8269 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8270 finfo->symbuf_count += 1;
8271 bfd_get_symcount (finfo->output_bfd) += 1;
8272
8273 return 1;
8274 }
8275
8276 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8277
8278 static bfd_boolean
8279 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8280 {
8281 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8282 && sym->st_shndx < SHN_LORESERVE)
8283 {
8284 /* The gABI doesn't support dynamic symbols in output sections
8285 beyond 64k. */
8286 (*_bfd_error_handler)
8287 (_("%B: Too many sections: %d (>= %d)"),
8288 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8289 bfd_set_error (bfd_error_nonrepresentable_section);
8290 return FALSE;
8291 }
8292 return TRUE;
8293 }
8294
8295 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8296 allowing an unsatisfied unversioned symbol in the DSO to match a
8297 versioned symbol that would normally require an explicit version.
8298 We also handle the case that a DSO references a hidden symbol
8299 which may be satisfied by a versioned symbol in another DSO. */
8300
8301 static bfd_boolean
8302 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8303 const struct elf_backend_data *bed,
8304 struct elf_link_hash_entry *h)
8305 {
8306 bfd *abfd;
8307 struct elf_link_loaded_list *loaded;
8308
8309 if (!is_elf_hash_table (info->hash))
8310 return FALSE;
8311
8312 switch (h->root.type)
8313 {
8314 default:
8315 abfd = NULL;
8316 break;
8317
8318 case bfd_link_hash_undefined:
8319 case bfd_link_hash_undefweak:
8320 abfd = h->root.u.undef.abfd;
8321 if ((abfd->flags & DYNAMIC) == 0
8322 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8323 return FALSE;
8324 break;
8325
8326 case bfd_link_hash_defined:
8327 case bfd_link_hash_defweak:
8328 abfd = h->root.u.def.section->owner;
8329 break;
8330
8331 case bfd_link_hash_common:
8332 abfd = h->root.u.c.p->section->owner;
8333 break;
8334 }
8335 BFD_ASSERT (abfd != NULL);
8336
8337 for (loaded = elf_hash_table (info)->loaded;
8338 loaded != NULL;
8339 loaded = loaded->next)
8340 {
8341 bfd *input;
8342 Elf_Internal_Shdr *hdr;
8343 bfd_size_type symcount;
8344 bfd_size_type extsymcount;
8345 bfd_size_type extsymoff;
8346 Elf_Internal_Shdr *versymhdr;
8347 Elf_Internal_Sym *isym;
8348 Elf_Internal_Sym *isymend;
8349 Elf_Internal_Sym *isymbuf;
8350 Elf_External_Versym *ever;
8351 Elf_External_Versym *extversym;
8352
8353 input = loaded->abfd;
8354
8355 /* We check each DSO for a possible hidden versioned definition. */
8356 if (input == abfd
8357 || (input->flags & DYNAMIC) == 0
8358 || elf_dynversym (input) == 0)
8359 continue;
8360
8361 hdr = &elf_tdata (input)->dynsymtab_hdr;
8362
8363 symcount = hdr->sh_size / bed->s->sizeof_sym;
8364 if (elf_bad_symtab (input))
8365 {
8366 extsymcount = symcount;
8367 extsymoff = 0;
8368 }
8369 else
8370 {
8371 extsymcount = symcount - hdr->sh_info;
8372 extsymoff = hdr->sh_info;
8373 }
8374
8375 if (extsymcount == 0)
8376 continue;
8377
8378 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8379 NULL, NULL, NULL);
8380 if (isymbuf == NULL)
8381 return FALSE;
8382
8383 /* Read in any version definitions. */
8384 versymhdr = &elf_tdata (input)->dynversym_hdr;
8385 extversym = bfd_malloc (versymhdr->sh_size);
8386 if (extversym == NULL)
8387 goto error_ret;
8388
8389 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8390 || (bfd_bread (extversym, versymhdr->sh_size, input)
8391 != versymhdr->sh_size))
8392 {
8393 free (extversym);
8394 error_ret:
8395 free (isymbuf);
8396 return FALSE;
8397 }
8398
8399 ever = extversym + extsymoff;
8400 isymend = isymbuf + extsymcount;
8401 for (isym = isymbuf; isym < isymend; isym++, ever++)
8402 {
8403 const char *name;
8404 Elf_Internal_Versym iver;
8405 unsigned short version_index;
8406
8407 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8408 || isym->st_shndx == SHN_UNDEF)
8409 continue;
8410
8411 name = bfd_elf_string_from_elf_section (input,
8412 hdr->sh_link,
8413 isym->st_name);
8414 if (strcmp (name, h->root.root.string) != 0)
8415 continue;
8416
8417 _bfd_elf_swap_versym_in (input, ever, &iver);
8418
8419 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8420 {
8421 /* If we have a non-hidden versioned sym, then it should
8422 have provided a definition for the undefined sym. */
8423 abort ();
8424 }
8425
8426 version_index = iver.vs_vers & VERSYM_VERSION;
8427 if (version_index == 1 || version_index == 2)
8428 {
8429 /* This is the base or first version. We can use it. */
8430 free (extversym);
8431 free (isymbuf);
8432 return TRUE;
8433 }
8434 }
8435
8436 free (extversym);
8437 free (isymbuf);
8438 }
8439
8440 return FALSE;
8441 }
8442
8443 /* Add an external symbol to the symbol table. This is called from
8444 the hash table traversal routine. When generating a shared object,
8445 we go through the symbol table twice. The first time we output
8446 anything that might have been forced to local scope in a version
8447 script. The second time we output the symbols that are still
8448 global symbols. */
8449
8450 static bfd_boolean
8451 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8452 {
8453 struct elf_outext_info *eoinfo = data;
8454 struct elf_final_link_info *finfo = eoinfo->finfo;
8455 bfd_boolean strip;
8456 Elf_Internal_Sym sym;
8457 asection *input_sec;
8458 const struct elf_backend_data *bed;
8459 long indx;
8460 int ret;
8461
8462 if (h->root.type == bfd_link_hash_warning)
8463 {
8464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8465 if (h->root.type == bfd_link_hash_new)
8466 return TRUE;
8467 }
8468
8469 /* Decide whether to output this symbol in this pass. */
8470 if (eoinfo->localsyms)
8471 {
8472 if (!h->forced_local)
8473 return TRUE;
8474 }
8475 else
8476 {
8477 if (h->forced_local)
8478 return TRUE;
8479 }
8480
8481 bed = get_elf_backend_data (finfo->output_bfd);
8482
8483 if (h->root.type == bfd_link_hash_undefined)
8484 {
8485 /* If we have an undefined symbol reference here then it must have
8486 come from a shared library that is being linked in. (Undefined
8487 references in regular files have already been handled). */
8488 bfd_boolean ignore_undef = FALSE;
8489
8490 /* Some symbols may be special in that the fact that they're
8491 undefined can be safely ignored - let backend determine that. */
8492 if (bed->elf_backend_ignore_undef_symbol)
8493 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8494
8495 /* If we are reporting errors for this situation then do so now. */
8496 if (ignore_undef == FALSE
8497 && h->ref_dynamic
8498 && ! h->ref_regular
8499 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8500 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8501 {
8502 if (! (finfo->info->callbacks->undefined_symbol
8503 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8504 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8505 {
8506 eoinfo->failed = TRUE;
8507 return FALSE;
8508 }
8509 }
8510 }
8511
8512 /* We should also warn if a forced local symbol is referenced from
8513 shared libraries. */
8514 if (! finfo->info->relocatable
8515 && (! finfo->info->shared)
8516 && h->forced_local
8517 && h->ref_dynamic
8518 && !h->dynamic_def
8519 && !h->dynamic_weak
8520 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8521 {
8522 (*_bfd_error_handler)
8523 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8524 finfo->output_bfd,
8525 h->root.u.def.section == bfd_abs_section_ptr
8526 ? finfo->output_bfd : h->root.u.def.section->owner,
8527 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8528 ? "internal"
8529 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8530 ? "hidden" : "local",
8531 h->root.root.string);
8532 eoinfo->failed = TRUE;
8533 return FALSE;
8534 }
8535
8536 /* We don't want to output symbols that have never been mentioned by
8537 a regular file, or that we have been told to strip. However, if
8538 h->indx is set to -2, the symbol is used by a reloc and we must
8539 output it. */
8540 if (h->indx == -2)
8541 strip = FALSE;
8542 else if ((h->def_dynamic
8543 || h->ref_dynamic
8544 || h->root.type == bfd_link_hash_new)
8545 && !h->def_regular
8546 && !h->ref_regular)
8547 strip = TRUE;
8548 else if (finfo->info->strip == strip_all)
8549 strip = TRUE;
8550 else if (finfo->info->strip == strip_some
8551 && bfd_hash_lookup (finfo->info->keep_hash,
8552 h->root.root.string, FALSE, FALSE) == NULL)
8553 strip = TRUE;
8554 else if (finfo->info->strip_discarded
8555 && (h->root.type == bfd_link_hash_defined
8556 || h->root.type == bfd_link_hash_defweak)
8557 && elf_discarded_section (h->root.u.def.section))
8558 strip = TRUE;
8559 else
8560 strip = FALSE;
8561
8562 /* If we're stripping it, and it's not a dynamic symbol, there's
8563 nothing else to do unless it is a forced local symbol. */
8564 if (strip
8565 && h->dynindx == -1
8566 && !h->forced_local)
8567 return TRUE;
8568
8569 sym.st_value = 0;
8570 sym.st_size = h->size;
8571 sym.st_other = h->other;
8572 if (h->forced_local)
8573 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8574 else if (h->root.type == bfd_link_hash_undefweak
8575 || h->root.type == bfd_link_hash_defweak)
8576 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8577 else
8578 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8579
8580 switch (h->root.type)
8581 {
8582 default:
8583 case bfd_link_hash_new:
8584 case bfd_link_hash_warning:
8585 abort ();
8586 return FALSE;
8587
8588 case bfd_link_hash_undefined:
8589 case bfd_link_hash_undefweak:
8590 input_sec = bfd_und_section_ptr;
8591 sym.st_shndx = SHN_UNDEF;
8592 break;
8593
8594 case bfd_link_hash_defined:
8595 case bfd_link_hash_defweak:
8596 {
8597 input_sec = h->root.u.def.section;
8598 if (input_sec->output_section != NULL)
8599 {
8600 sym.st_shndx =
8601 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8602 input_sec->output_section);
8603 if (sym.st_shndx == SHN_BAD)
8604 {
8605 (*_bfd_error_handler)
8606 (_("%B: could not find output section %A for input section %A"),
8607 finfo->output_bfd, input_sec->output_section, input_sec);
8608 eoinfo->failed = TRUE;
8609 return FALSE;
8610 }
8611
8612 /* ELF symbols in relocatable files are section relative,
8613 but in nonrelocatable files they are virtual
8614 addresses. */
8615 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8616 if (! finfo->info->relocatable)
8617 {
8618 sym.st_value += input_sec->output_section->vma;
8619 if (h->type == STT_TLS)
8620 {
8621 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8622 if (tls_sec != NULL)
8623 sym.st_value -= tls_sec->vma;
8624 else
8625 {
8626 /* The TLS section may have been garbage collected. */
8627 BFD_ASSERT (finfo->info->gc_sections
8628 && !input_sec->gc_mark);
8629 }
8630 }
8631 }
8632 }
8633 else
8634 {
8635 BFD_ASSERT (input_sec->owner == NULL
8636 || (input_sec->owner->flags & DYNAMIC) != 0);
8637 sym.st_shndx = SHN_UNDEF;
8638 input_sec = bfd_und_section_ptr;
8639 }
8640 }
8641 break;
8642
8643 case bfd_link_hash_common:
8644 input_sec = h->root.u.c.p->section;
8645 sym.st_shndx = bed->common_section_index (input_sec);
8646 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8647 break;
8648
8649 case bfd_link_hash_indirect:
8650 /* These symbols are created by symbol versioning. They point
8651 to the decorated version of the name. For example, if the
8652 symbol foo@@GNU_1.2 is the default, which should be used when
8653 foo is used with no version, then we add an indirect symbol
8654 foo which points to foo@@GNU_1.2. We ignore these symbols,
8655 since the indirected symbol is already in the hash table. */
8656 return TRUE;
8657 }
8658
8659 /* Give the processor backend a chance to tweak the symbol value,
8660 and also to finish up anything that needs to be done for this
8661 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8662 forced local syms when non-shared is due to a historical quirk.
8663 STT_GNU_IFUNC symbol must go through PLT. */
8664 if ((h->type == STT_GNU_IFUNC
8665 && h->def_regular
8666 && !finfo->info->relocatable)
8667 || ((h->dynindx != -1
8668 || h->forced_local)
8669 && ((finfo->info->shared
8670 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8671 || h->root.type != bfd_link_hash_undefweak))
8672 || !h->forced_local)
8673 && elf_hash_table (finfo->info)->dynamic_sections_created))
8674 {
8675 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8676 (finfo->output_bfd, finfo->info, h, &sym)))
8677 {
8678 eoinfo->failed = TRUE;
8679 return FALSE;
8680 }
8681 }
8682
8683 /* If we are marking the symbol as undefined, and there are no
8684 non-weak references to this symbol from a regular object, then
8685 mark the symbol as weak undefined; if there are non-weak
8686 references, mark the symbol as strong. We can't do this earlier,
8687 because it might not be marked as undefined until the
8688 finish_dynamic_symbol routine gets through with it. */
8689 if (sym.st_shndx == SHN_UNDEF
8690 && h->ref_regular
8691 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8692 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8693 {
8694 int bindtype;
8695 unsigned int type = ELF_ST_TYPE (sym.st_info);
8696
8697 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8698 if (type == STT_GNU_IFUNC)
8699 type = STT_FUNC;
8700
8701 if (h->ref_regular_nonweak)
8702 bindtype = STB_GLOBAL;
8703 else
8704 bindtype = STB_WEAK;
8705 sym.st_info = ELF_ST_INFO (bindtype, type);
8706 }
8707
8708 /* If this is a symbol defined in a dynamic library, don't use the
8709 symbol size from the dynamic library. Relinking an executable
8710 against a new library may introduce gratuitous changes in the
8711 executable's symbols if we keep the size. */
8712 if (sym.st_shndx == SHN_UNDEF
8713 && !h->def_regular
8714 && h->def_dynamic)
8715 sym.st_size = 0;
8716
8717 /* If a non-weak symbol with non-default visibility is not defined
8718 locally, it is a fatal error. */
8719 if (! finfo->info->relocatable
8720 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8721 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8722 && h->root.type == bfd_link_hash_undefined
8723 && !h->def_regular)
8724 {
8725 (*_bfd_error_handler)
8726 (_("%B: %s symbol `%s' isn't defined"),
8727 finfo->output_bfd,
8728 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8729 ? "protected"
8730 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8731 ? "internal" : "hidden",
8732 h->root.root.string);
8733 eoinfo->failed = TRUE;
8734 return FALSE;
8735 }
8736
8737 /* If this symbol should be put in the .dynsym section, then put it
8738 there now. We already know the symbol index. We also fill in
8739 the entry in the .hash section. */
8740 if (h->dynindx != -1
8741 && elf_hash_table (finfo->info)->dynamic_sections_created)
8742 {
8743 bfd_byte *esym;
8744
8745 sym.st_name = h->dynstr_index;
8746 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8747 if (! check_dynsym (finfo->output_bfd, &sym))
8748 {
8749 eoinfo->failed = TRUE;
8750 return FALSE;
8751 }
8752 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8753
8754 if (finfo->hash_sec != NULL)
8755 {
8756 size_t hash_entry_size;
8757 bfd_byte *bucketpos;
8758 bfd_vma chain;
8759 size_t bucketcount;
8760 size_t bucket;
8761
8762 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8763 bucket = h->u.elf_hash_value % bucketcount;
8764
8765 hash_entry_size
8766 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8767 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8768 + (bucket + 2) * hash_entry_size);
8769 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8770 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8771 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8772 ((bfd_byte *) finfo->hash_sec->contents
8773 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8774 }
8775
8776 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8777 {
8778 Elf_Internal_Versym iversym;
8779 Elf_External_Versym *eversym;
8780
8781 if (!h->def_regular)
8782 {
8783 if (h->verinfo.verdef == NULL)
8784 iversym.vs_vers = 0;
8785 else
8786 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8787 }
8788 else
8789 {
8790 if (h->verinfo.vertree == NULL)
8791 iversym.vs_vers = 1;
8792 else
8793 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8794 if (finfo->info->create_default_symver)
8795 iversym.vs_vers++;
8796 }
8797
8798 if (h->hidden)
8799 iversym.vs_vers |= VERSYM_HIDDEN;
8800
8801 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8802 eversym += h->dynindx;
8803 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8804 }
8805 }
8806
8807 /* If we're stripping it, then it was just a dynamic symbol, and
8808 there's nothing else to do. */
8809 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8810 return TRUE;
8811
8812 indx = bfd_get_symcount (finfo->output_bfd);
8813 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8814 if (ret == 0)
8815 {
8816 eoinfo->failed = TRUE;
8817 return FALSE;
8818 }
8819 else if (ret == 1)
8820 h->indx = indx;
8821 else if (h->indx == -2)
8822 abort();
8823
8824 return TRUE;
8825 }
8826
8827 /* Return TRUE if special handling is done for relocs in SEC against
8828 symbols defined in discarded sections. */
8829
8830 static bfd_boolean
8831 elf_section_ignore_discarded_relocs (asection *sec)
8832 {
8833 const struct elf_backend_data *bed;
8834
8835 switch (sec->sec_info_type)
8836 {
8837 case ELF_INFO_TYPE_STABS:
8838 case ELF_INFO_TYPE_EH_FRAME:
8839 return TRUE;
8840 default:
8841 break;
8842 }
8843
8844 bed = get_elf_backend_data (sec->owner);
8845 if (bed->elf_backend_ignore_discarded_relocs != NULL
8846 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8847 return TRUE;
8848
8849 return FALSE;
8850 }
8851
8852 /* Return a mask saying how ld should treat relocations in SEC against
8853 symbols defined in discarded sections. If this function returns
8854 COMPLAIN set, ld will issue a warning message. If this function
8855 returns PRETEND set, and the discarded section was link-once and the
8856 same size as the kept link-once section, ld will pretend that the
8857 symbol was actually defined in the kept section. Otherwise ld will
8858 zero the reloc (at least that is the intent, but some cooperation by
8859 the target dependent code is needed, particularly for REL targets). */
8860
8861 unsigned int
8862 _bfd_elf_default_action_discarded (asection *sec)
8863 {
8864 if (sec->flags & SEC_DEBUGGING)
8865 return PRETEND;
8866
8867 if (strcmp (".eh_frame", sec->name) == 0)
8868 return 0;
8869
8870 if (strcmp (".gcc_except_table", sec->name) == 0)
8871 return 0;
8872
8873 return COMPLAIN | PRETEND;
8874 }
8875
8876 /* Find a match between a section and a member of a section group. */
8877
8878 static asection *
8879 match_group_member (asection *sec, asection *group,
8880 struct bfd_link_info *info)
8881 {
8882 asection *first = elf_next_in_group (group);
8883 asection *s = first;
8884
8885 while (s != NULL)
8886 {
8887 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8888 return s;
8889
8890 s = elf_next_in_group (s);
8891 if (s == first)
8892 break;
8893 }
8894
8895 return NULL;
8896 }
8897
8898 /* Check if the kept section of a discarded section SEC can be used
8899 to replace it. Return the replacement if it is OK. Otherwise return
8900 NULL. */
8901
8902 asection *
8903 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8904 {
8905 asection *kept;
8906
8907 kept = sec->kept_section;
8908 if (kept != NULL)
8909 {
8910 if ((kept->flags & SEC_GROUP) != 0)
8911 kept = match_group_member (sec, kept, info);
8912 if (kept != NULL
8913 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8914 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8915 kept = NULL;
8916 sec->kept_section = kept;
8917 }
8918 return kept;
8919 }
8920
8921 /* Link an input file into the linker output file. This function
8922 handles all the sections and relocations of the input file at once.
8923 This is so that we only have to read the local symbols once, and
8924 don't have to keep them in memory. */
8925
8926 static bfd_boolean
8927 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8928 {
8929 int (*relocate_section)
8930 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8931 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8932 bfd *output_bfd;
8933 Elf_Internal_Shdr *symtab_hdr;
8934 size_t locsymcount;
8935 size_t extsymoff;
8936 Elf_Internal_Sym *isymbuf;
8937 Elf_Internal_Sym *isym;
8938 Elf_Internal_Sym *isymend;
8939 long *pindex;
8940 asection **ppsection;
8941 asection *o;
8942 const struct elf_backend_data *bed;
8943 struct elf_link_hash_entry **sym_hashes;
8944
8945 output_bfd = finfo->output_bfd;
8946 bed = get_elf_backend_data (output_bfd);
8947 relocate_section = bed->elf_backend_relocate_section;
8948
8949 /* If this is a dynamic object, we don't want to do anything here:
8950 we don't want the local symbols, and we don't want the section
8951 contents. */
8952 if ((input_bfd->flags & DYNAMIC) != 0)
8953 return TRUE;
8954
8955 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8956 if (elf_bad_symtab (input_bfd))
8957 {
8958 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8959 extsymoff = 0;
8960 }
8961 else
8962 {
8963 locsymcount = symtab_hdr->sh_info;
8964 extsymoff = symtab_hdr->sh_info;
8965 }
8966
8967 /* Read the local symbols. */
8968 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8969 if (isymbuf == NULL && locsymcount != 0)
8970 {
8971 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8972 finfo->internal_syms,
8973 finfo->external_syms,
8974 finfo->locsym_shndx);
8975 if (isymbuf == NULL)
8976 return FALSE;
8977 }
8978
8979 /* Find local symbol sections and adjust values of symbols in
8980 SEC_MERGE sections. Write out those local symbols we know are
8981 going into the output file. */
8982 isymend = isymbuf + locsymcount;
8983 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8984 isym < isymend;
8985 isym++, pindex++, ppsection++)
8986 {
8987 asection *isec;
8988 const char *name;
8989 Elf_Internal_Sym osym;
8990 long indx;
8991 int ret;
8992
8993 *pindex = -1;
8994
8995 if (elf_bad_symtab (input_bfd))
8996 {
8997 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8998 {
8999 *ppsection = NULL;
9000 continue;
9001 }
9002 }
9003
9004 if (isym->st_shndx == SHN_UNDEF)
9005 isec = bfd_und_section_ptr;
9006 else if (isym->st_shndx == SHN_ABS)
9007 isec = bfd_abs_section_ptr;
9008 else if (isym->st_shndx == SHN_COMMON)
9009 isec = bfd_com_section_ptr;
9010 else
9011 {
9012 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9013 if (isec == NULL)
9014 {
9015 /* Don't attempt to output symbols with st_shnx in the
9016 reserved range other than SHN_ABS and SHN_COMMON. */
9017 *ppsection = NULL;
9018 continue;
9019 }
9020 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9021 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9022 isym->st_value =
9023 _bfd_merged_section_offset (output_bfd, &isec,
9024 elf_section_data (isec)->sec_info,
9025 isym->st_value);
9026 }
9027
9028 *ppsection = isec;
9029
9030 /* Don't output the first, undefined, symbol. */
9031 if (ppsection == finfo->sections)
9032 continue;
9033
9034 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9035 {
9036 /* We never output section symbols. Instead, we use the
9037 section symbol of the corresponding section in the output
9038 file. */
9039 continue;
9040 }
9041
9042 /* If we are stripping all symbols, we don't want to output this
9043 one. */
9044 if (finfo->info->strip == strip_all)
9045 continue;
9046
9047 /* If we are discarding all local symbols, we don't want to
9048 output this one. If we are generating a relocatable output
9049 file, then some of the local symbols may be required by
9050 relocs; we output them below as we discover that they are
9051 needed. */
9052 if (finfo->info->discard == discard_all)
9053 continue;
9054
9055 /* If this symbol is defined in a section which we are
9056 discarding, we don't need to keep it. */
9057 if (isym->st_shndx != SHN_UNDEF
9058 && isym->st_shndx < SHN_LORESERVE
9059 && bfd_section_removed_from_list (output_bfd,
9060 isec->output_section))
9061 continue;
9062
9063 /* Get the name of the symbol. */
9064 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9065 isym->st_name);
9066 if (name == NULL)
9067 return FALSE;
9068
9069 /* See if we are discarding symbols with this name. */
9070 if ((finfo->info->strip == strip_some
9071 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9072 == NULL))
9073 || (((finfo->info->discard == discard_sec_merge
9074 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9075 || finfo->info->discard == discard_l)
9076 && bfd_is_local_label_name (input_bfd, name)))
9077 continue;
9078
9079 osym = *isym;
9080
9081 /* Adjust the section index for the output file. */
9082 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9083 isec->output_section);
9084 if (osym.st_shndx == SHN_BAD)
9085 return FALSE;
9086
9087 /* ELF symbols in relocatable files are section relative, but
9088 in executable files they are virtual addresses. Note that
9089 this code assumes that all ELF sections have an associated
9090 BFD section with a reasonable value for output_offset; below
9091 we assume that they also have a reasonable value for
9092 output_section. Any special sections must be set up to meet
9093 these requirements. */
9094 osym.st_value += isec->output_offset;
9095 if (! finfo->info->relocatable)
9096 {
9097 osym.st_value += isec->output_section->vma;
9098 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9099 {
9100 /* STT_TLS symbols are relative to PT_TLS segment base. */
9101 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9102 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9103 }
9104 }
9105
9106 indx = bfd_get_symcount (output_bfd);
9107 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9108 if (ret == 0)
9109 return FALSE;
9110 else if (ret == 1)
9111 *pindex = indx;
9112 }
9113
9114 /* Relocate the contents of each section. */
9115 sym_hashes = elf_sym_hashes (input_bfd);
9116 for (o = input_bfd->sections; o != NULL; o = o->next)
9117 {
9118 bfd_byte *contents;
9119
9120 if (! o->linker_mark)
9121 {
9122 /* This section was omitted from the link. */
9123 continue;
9124 }
9125
9126 if (finfo->info->relocatable
9127 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9128 {
9129 /* Deal with the group signature symbol. */
9130 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9131 unsigned long symndx = sec_data->this_hdr.sh_info;
9132 asection *osec = o->output_section;
9133
9134 if (symndx >= locsymcount
9135 || (elf_bad_symtab (input_bfd)
9136 && finfo->sections[symndx] == NULL))
9137 {
9138 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9139 while (h->root.type == bfd_link_hash_indirect
9140 || h->root.type == bfd_link_hash_warning)
9141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9142 /* Arrange for symbol to be output. */
9143 h->indx = -2;
9144 elf_section_data (osec)->this_hdr.sh_info = -2;
9145 }
9146 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9147 {
9148 /* We'll use the output section target_index. */
9149 asection *sec = finfo->sections[symndx]->output_section;
9150 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9151 }
9152 else
9153 {
9154 if (finfo->indices[symndx] == -1)
9155 {
9156 /* Otherwise output the local symbol now. */
9157 Elf_Internal_Sym sym = isymbuf[symndx];
9158 asection *sec = finfo->sections[symndx]->output_section;
9159 const char *name;
9160 long indx;
9161 int ret;
9162
9163 name = bfd_elf_string_from_elf_section (input_bfd,
9164 symtab_hdr->sh_link,
9165 sym.st_name);
9166 if (name == NULL)
9167 return FALSE;
9168
9169 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9170 sec);
9171 if (sym.st_shndx == SHN_BAD)
9172 return FALSE;
9173
9174 sym.st_value += o->output_offset;
9175
9176 indx = bfd_get_symcount (output_bfd);
9177 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9178 if (ret == 0)
9179 return FALSE;
9180 else if (ret == 1)
9181 finfo->indices[symndx] = indx;
9182 else
9183 abort ();
9184 }
9185 elf_section_data (osec)->this_hdr.sh_info
9186 = finfo->indices[symndx];
9187 }
9188 }
9189
9190 if ((o->flags & SEC_HAS_CONTENTS) == 0
9191 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9192 continue;
9193
9194 if ((o->flags & SEC_LINKER_CREATED) != 0)
9195 {
9196 /* Section was created by _bfd_elf_link_create_dynamic_sections
9197 or somesuch. */
9198 continue;
9199 }
9200
9201 /* Get the contents of the section. They have been cached by a
9202 relaxation routine. Note that o is a section in an input
9203 file, so the contents field will not have been set by any of
9204 the routines which work on output files. */
9205 if (elf_section_data (o)->this_hdr.contents != NULL)
9206 contents = elf_section_data (o)->this_hdr.contents;
9207 else
9208 {
9209 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9210
9211 contents = finfo->contents;
9212 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9213 return FALSE;
9214 }
9215
9216 if ((o->flags & SEC_RELOC) != 0)
9217 {
9218 Elf_Internal_Rela *internal_relocs;
9219 Elf_Internal_Rela *rel, *relend;
9220 bfd_vma r_type_mask;
9221 int r_sym_shift;
9222 int action_discarded;
9223 int ret;
9224
9225 /* Get the swapped relocs. */
9226 internal_relocs
9227 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9228 finfo->internal_relocs, FALSE);
9229 if (internal_relocs == NULL
9230 && o->reloc_count > 0)
9231 return FALSE;
9232
9233 if (bed->s->arch_size == 32)
9234 {
9235 r_type_mask = 0xff;
9236 r_sym_shift = 8;
9237 }
9238 else
9239 {
9240 r_type_mask = 0xffffffff;
9241 r_sym_shift = 32;
9242 }
9243
9244 action_discarded = -1;
9245 if (!elf_section_ignore_discarded_relocs (o))
9246 action_discarded = (*bed->action_discarded) (o);
9247
9248 /* Run through the relocs evaluating complex reloc symbols and
9249 looking for relocs against symbols from discarded sections
9250 or section symbols from removed link-once sections.
9251 Complain about relocs against discarded sections. Zero
9252 relocs against removed link-once sections. */
9253
9254 rel = internal_relocs;
9255 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9256 for ( ; rel < relend; rel++)
9257 {
9258 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9259 unsigned int s_type;
9260 asection **ps, *sec;
9261 struct elf_link_hash_entry *h = NULL;
9262 const char *sym_name;
9263
9264 if (r_symndx == STN_UNDEF)
9265 continue;
9266
9267 if (r_symndx >= locsymcount
9268 || (elf_bad_symtab (input_bfd)
9269 && finfo->sections[r_symndx] == NULL))
9270 {
9271 h = sym_hashes[r_symndx - extsymoff];
9272
9273 /* Badly formatted input files can contain relocs that
9274 reference non-existant symbols. Check here so that
9275 we do not seg fault. */
9276 if (h == NULL)
9277 {
9278 char buffer [32];
9279
9280 sprintf_vma (buffer, rel->r_info);
9281 (*_bfd_error_handler)
9282 (_("error: %B contains a reloc (0x%s) for section %A "
9283 "that references a non-existent global symbol"),
9284 input_bfd, o, buffer);
9285 bfd_set_error (bfd_error_bad_value);
9286 return FALSE;
9287 }
9288
9289 while (h->root.type == bfd_link_hash_indirect
9290 || h->root.type == bfd_link_hash_warning)
9291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9292
9293 s_type = h->type;
9294
9295 ps = NULL;
9296 if (h->root.type == bfd_link_hash_defined
9297 || h->root.type == bfd_link_hash_defweak)
9298 ps = &h->root.u.def.section;
9299
9300 sym_name = h->root.root.string;
9301 }
9302 else
9303 {
9304 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9305
9306 s_type = ELF_ST_TYPE (sym->st_info);
9307 ps = &finfo->sections[r_symndx];
9308 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9309 sym, *ps);
9310 }
9311
9312 if ((s_type == STT_RELC || s_type == STT_SRELC)
9313 && !finfo->info->relocatable)
9314 {
9315 bfd_vma val;
9316 bfd_vma dot = (rel->r_offset
9317 + o->output_offset + o->output_section->vma);
9318 #ifdef DEBUG
9319 printf ("Encountered a complex symbol!");
9320 printf (" (input_bfd %s, section %s, reloc %ld\n",
9321 input_bfd->filename, o->name, rel - internal_relocs);
9322 printf (" symbol: idx %8.8lx, name %s\n",
9323 r_symndx, sym_name);
9324 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9325 (unsigned long) rel->r_info,
9326 (unsigned long) rel->r_offset);
9327 #endif
9328 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9329 isymbuf, locsymcount, s_type == STT_SRELC))
9330 return FALSE;
9331
9332 /* Symbol evaluated OK. Update to absolute value. */
9333 set_symbol_value (input_bfd, isymbuf, locsymcount,
9334 r_symndx, val);
9335 continue;
9336 }
9337
9338 if (action_discarded != -1 && ps != NULL)
9339 {
9340 /* Complain if the definition comes from a
9341 discarded section. */
9342 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9343 {
9344 BFD_ASSERT (r_symndx != 0);
9345 if (action_discarded & COMPLAIN)
9346 (*finfo->info->callbacks->einfo)
9347 (_("%X`%s' referenced in section `%A' of %B: "
9348 "defined in discarded section `%A' of %B\n"),
9349 sym_name, o, input_bfd, sec, sec->owner);
9350
9351 /* Try to do the best we can to support buggy old
9352 versions of gcc. Pretend that the symbol is
9353 really defined in the kept linkonce section.
9354 FIXME: This is quite broken. Modifying the
9355 symbol here means we will be changing all later
9356 uses of the symbol, not just in this section. */
9357 if (action_discarded & PRETEND)
9358 {
9359 asection *kept;
9360
9361 kept = _bfd_elf_check_kept_section (sec,
9362 finfo->info);
9363 if (kept != NULL)
9364 {
9365 *ps = kept;
9366 continue;
9367 }
9368 }
9369 }
9370 }
9371 }
9372
9373 /* Relocate the section by invoking a back end routine.
9374
9375 The back end routine is responsible for adjusting the
9376 section contents as necessary, and (if using Rela relocs
9377 and generating a relocatable output file) adjusting the
9378 reloc addend as necessary.
9379
9380 The back end routine does not have to worry about setting
9381 the reloc address or the reloc symbol index.
9382
9383 The back end routine is given a pointer to the swapped in
9384 internal symbols, and can access the hash table entries
9385 for the external symbols via elf_sym_hashes (input_bfd).
9386
9387 When generating relocatable output, the back end routine
9388 must handle STB_LOCAL/STT_SECTION symbols specially. The
9389 output symbol is going to be a section symbol
9390 corresponding to the output section, which will require
9391 the addend to be adjusted. */
9392
9393 ret = (*relocate_section) (output_bfd, finfo->info,
9394 input_bfd, o, contents,
9395 internal_relocs,
9396 isymbuf,
9397 finfo->sections);
9398 if (!ret)
9399 return FALSE;
9400
9401 if (ret == 2
9402 || finfo->info->relocatable
9403 || finfo->info->emitrelocations)
9404 {
9405 Elf_Internal_Rela *irela;
9406 Elf_Internal_Rela *irelaend;
9407 bfd_vma last_offset;
9408 struct elf_link_hash_entry **rel_hash;
9409 struct elf_link_hash_entry **rel_hash_list;
9410 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9411 unsigned int next_erel;
9412 bfd_boolean rela_normal;
9413
9414 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9415 rela_normal = (bed->rela_normal
9416 && (input_rel_hdr->sh_entsize
9417 == bed->s->sizeof_rela));
9418
9419 /* Adjust the reloc addresses and symbol indices. */
9420
9421 irela = internal_relocs;
9422 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9423 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9424 + elf_section_data (o->output_section)->rel_count
9425 + elf_section_data (o->output_section)->rel_count2);
9426 rel_hash_list = rel_hash;
9427 last_offset = o->output_offset;
9428 if (!finfo->info->relocatable)
9429 last_offset += o->output_section->vma;
9430 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9431 {
9432 unsigned long r_symndx;
9433 asection *sec;
9434 Elf_Internal_Sym sym;
9435
9436 if (next_erel == bed->s->int_rels_per_ext_rel)
9437 {
9438 rel_hash++;
9439 next_erel = 0;
9440 }
9441
9442 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9443 finfo->info, o,
9444 irela->r_offset);
9445 if (irela->r_offset >= (bfd_vma) -2)
9446 {
9447 /* This is a reloc for a deleted entry or somesuch.
9448 Turn it into an R_*_NONE reloc, at the same
9449 offset as the last reloc. elf_eh_frame.c and
9450 bfd_elf_discard_info rely on reloc offsets
9451 being ordered. */
9452 irela->r_offset = last_offset;
9453 irela->r_info = 0;
9454 irela->r_addend = 0;
9455 continue;
9456 }
9457
9458 irela->r_offset += o->output_offset;
9459
9460 /* Relocs in an executable have to be virtual addresses. */
9461 if (!finfo->info->relocatable)
9462 irela->r_offset += o->output_section->vma;
9463
9464 last_offset = irela->r_offset;
9465
9466 r_symndx = irela->r_info >> r_sym_shift;
9467 if (r_symndx == STN_UNDEF)
9468 continue;
9469
9470 if (r_symndx >= locsymcount
9471 || (elf_bad_symtab (input_bfd)
9472 && finfo->sections[r_symndx] == NULL))
9473 {
9474 struct elf_link_hash_entry *rh;
9475 unsigned long indx;
9476
9477 /* This is a reloc against a global symbol. We
9478 have not yet output all the local symbols, so
9479 we do not know the symbol index of any global
9480 symbol. We set the rel_hash entry for this
9481 reloc to point to the global hash table entry
9482 for this symbol. The symbol index is then
9483 set at the end of bfd_elf_final_link. */
9484 indx = r_symndx - extsymoff;
9485 rh = elf_sym_hashes (input_bfd)[indx];
9486 while (rh->root.type == bfd_link_hash_indirect
9487 || rh->root.type == bfd_link_hash_warning)
9488 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9489
9490 /* Setting the index to -2 tells
9491 elf_link_output_extsym that this symbol is
9492 used by a reloc. */
9493 BFD_ASSERT (rh->indx < 0);
9494 rh->indx = -2;
9495
9496 *rel_hash = rh;
9497
9498 continue;
9499 }
9500
9501 /* This is a reloc against a local symbol. */
9502
9503 *rel_hash = NULL;
9504 sym = isymbuf[r_symndx];
9505 sec = finfo->sections[r_symndx];
9506 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9507 {
9508 /* I suppose the backend ought to fill in the
9509 section of any STT_SECTION symbol against a
9510 processor specific section. */
9511 r_symndx = 0;
9512 if (bfd_is_abs_section (sec))
9513 ;
9514 else if (sec == NULL || sec->owner == NULL)
9515 {
9516 bfd_set_error (bfd_error_bad_value);
9517 return FALSE;
9518 }
9519 else
9520 {
9521 asection *osec = sec->output_section;
9522
9523 /* If we have discarded a section, the output
9524 section will be the absolute section. In
9525 case of discarded SEC_MERGE sections, use
9526 the kept section. relocate_section should
9527 have already handled discarded linkonce
9528 sections. */
9529 if (bfd_is_abs_section (osec)
9530 && sec->kept_section != NULL
9531 && sec->kept_section->output_section != NULL)
9532 {
9533 osec = sec->kept_section->output_section;
9534 irela->r_addend -= osec->vma;
9535 }
9536
9537 if (!bfd_is_abs_section (osec))
9538 {
9539 r_symndx = osec->target_index;
9540 if (r_symndx == 0)
9541 {
9542 struct elf_link_hash_table *htab;
9543 asection *oi;
9544
9545 htab = elf_hash_table (finfo->info);
9546 oi = htab->text_index_section;
9547 if ((osec->flags & SEC_READONLY) == 0
9548 && htab->data_index_section != NULL)
9549 oi = htab->data_index_section;
9550
9551 if (oi != NULL)
9552 {
9553 irela->r_addend += osec->vma - oi->vma;
9554 r_symndx = oi->target_index;
9555 }
9556 }
9557
9558 BFD_ASSERT (r_symndx != 0);
9559 }
9560 }
9561
9562 /* Adjust the addend according to where the
9563 section winds up in the output section. */
9564 if (rela_normal)
9565 irela->r_addend += sec->output_offset;
9566 }
9567 else
9568 {
9569 if (finfo->indices[r_symndx] == -1)
9570 {
9571 unsigned long shlink;
9572 const char *name;
9573 asection *osec;
9574 long indx;
9575
9576 if (finfo->info->strip == strip_all)
9577 {
9578 /* You can't do ld -r -s. */
9579 bfd_set_error (bfd_error_invalid_operation);
9580 return FALSE;
9581 }
9582
9583 /* This symbol was skipped earlier, but
9584 since it is needed by a reloc, we
9585 must output it now. */
9586 shlink = symtab_hdr->sh_link;
9587 name = (bfd_elf_string_from_elf_section
9588 (input_bfd, shlink, sym.st_name));
9589 if (name == NULL)
9590 return FALSE;
9591
9592 osec = sec->output_section;
9593 sym.st_shndx =
9594 _bfd_elf_section_from_bfd_section (output_bfd,
9595 osec);
9596 if (sym.st_shndx == SHN_BAD)
9597 return FALSE;
9598
9599 sym.st_value += sec->output_offset;
9600 if (! finfo->info->relocatable)
9601 {
9602 sym.st_value += osec->vma;
9603 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9604 {
9605 /* STT_TLS symbols are relative to PT_TLS
9606 segment base. */
9607 BFD_ASSERT (elf_hash_table (finfo->info)
9608 ->tls_sec != NULL);
9609 sym.st_value -= (elf_hash_table (finfo->info)
9610 ->tls_sec->vma);
9611 }
9612 }
9613
9614 indx = bfd_get_symcount (output_bfd);
9615 ret = elf_link_output_sym (finfo, name, &sym, sec,
9616 NULL);
9617 if (ret == 0)
9618 return FALSE;
9619 else if (ret == 1)
9620 finfo->indices[r_symndx] = indx;
9621 else
9622 abort ();
9623 }
9624
9625 r_symndx = finfo->indices[r_symndx];
9626 }
9627
9628 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9629 | (irela->r_info & r_type_mask));
9630 }
9631
9632 /* Swap out the relocs. */
9633 if (input_rel_hdr->sh_size != 0
9634 && !bed->elf_backend_emit_relocs (output_bfd, o,
9635 input_rel_hdr,
9636 internal_relocs,
9637 rel_hash_list))
9638 return FALSE;
9639
9640 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9641 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9642 {
9643 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9644 * bed->s->int_rels_per_ext_rel);
9645 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9646 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9647 input_rel_hdr2,
9648 internal_relocs,
9649 rel_hash_list))
9650 return FALSE;
9651 }
9652 }
9653 }
9654
9655 /* Write out the modified section contents. */
9656 if (bed->elf_backend_write_section
9657 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9658 contents))
9659 {
9660 /* Section written out. */
9661 }
9662 else switch (o->sec_info_type)
9663 {
9664 case ELF_INFO_TYPE_STABS:
9665 if (! (_bfd_write_section_stabs
9666 (output_bfd,
9667 &elf_hash_table (finfo->info)->stab_info,
9668 o, &elf_section_data (o)->sec_info, contents)))
9669 return FALSE;
9670 break;
9671 case ELF_INFO_TYPE_MERGE:
9672 if (! _bfd_write_merged_section (output_bfd, o,
9673 elf_section_data (o)->sec_info))
9674 return FALSE;
9675 break;
9676 case ELF_INFO_TYPE_EH_FRAME:
9677 {
9678 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9679 o, contents))
9680 return FALSE;
9681 }
9682 break;
9683 default:
9684 {
9685 if (! (o->flags & SEC_EXCLUDE)
9686 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9687 && ! bfd_set_section_contents (output_bfd, o->output_section,
9688 contents,
9689 (file_ptr) o->output_offset,
9690 o->size))
9691 return FALSE;
9692 }
9693 break;
9694 }
9695 }
9696
9697 return TRUE;
9698 }
9699
9700 /* Generate a reloc when linking an ELF file. This is a reloc
9701 requested by the linker, and does not come from any input file. This
9702 is used to build constructor and destructor tables when linking
9703 with -Ur. */
9704
9705 static bfd_boolean
9706 elf_reloc_link_order (bfd *output_bfd,
9707 struct bfd_link_info *info,
9708 asection *output_section,
9709 struct bfd_link_order *link_order)
9710 {
9711 reloc_howto_type *howto;
9712 long indx;
9713 bfd_vma offset;
9714 bfd_vma addend;
9715 struct elf_link_hash_entry **rel_hash_ptr;
9716 Elf_Internal_Shdr *rel_hdr;
9717 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9718 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9719 bfd_byte *erel;
9720 unsigned int i;
9721
9722 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9723 if (howto == NULL)
9724 {
9725 bfd_set_error (bfd_error_bad_value);
9726 return FALSE;
9727 }
9728
9729 addend = link_order->u.reloc.p->addend;
9730
9731 /* Figure out the symbol index. */
9732 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9733 + elf_section_data (output_section)->rel_count
9734 + elf_section_data (output_section)->rel_count2);
9735 if (link_order->type == bfd_section_reloc_link_order)
9736 {
9737 indx = link_order->u.reloc.p->u.section->target_index;
9738 BFD_ASSERT (indx != 0);
9739 *rel_hash_ptr = NULL;
9740 }
9741 else
9742 {
9743 struct elf_link_hash_entry *h;
9744
9745 /* Treat a reloc against a defined symbol as though it were
9746 actually against the section. */
9747 h = ((struct elf_link_hash_entry *)
9748 bfd_wrapped_link_hash_lookup (output_bfd, info,
9749 link_order->u.reloc.p->u.name,
9750 FALSE, FALSE, TRUE));
9751 if (h != NULL
9752 && (h->root.type == bfd_link_hash_defined
9753 || h->root.type == bfd_link_hash_defweak))
9754 {
9755 asection *section;
9756
9757 section = h->root.u.def.section;
9758 indx = section->output_section->target_index;
9759 *rel_hash_ptr = NULL;
9760 /* It seems that we ought to add the symbol value to the
9761 addend here, but in practice it has already been added
9762 because it was passed to constructor_callback. */
9763 addend += section->output_section->vma + section->output_offset;
9764 }
9765 else if (h != NULL)
9766 {
9767 /* Setting the index to -2 tells elf_link_output_extsym that
9768 this symbol is used by a reloc. */
9769 h->indx = -2;
9770 *rel_hash_ptr = h;
9771 indx = 0;
9772 }
9773 else
9774 {
9775 if (! ((*info->callbacks->unattached_reloc)
9776 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9777 return FALSE;
9778 indx = 0;
9779 }
9780 }
9781
9782 /* If this is an inplace reloc, we must write the addend into the
9783 object file. */
9784 if (howto->partial_inplace && addend != 0)
9785 {
9786 bfd_size_type size;
9787 bfd_reloc_status_type rstat;
9788 bfd_byte *buf;
9789 bfd_boolean ok;
9790 const char *sym_name;
9791
9792 size = bfd_get_reloc_size (howto);
9793 buf = bfd_zmalloc (size);
9794 if (buf == NULL)
9795 return FALSE;
9796 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9797 switch (rstat)
9798 {
9799 case bfd_reloc_ok:
9800 break;
9801
9802 default:
9803 case bfd_reloc_outofrange:
9804 abort ();
9805
9806 case bfd_reloc_overflow:
9807 if (link_order->type == bfd_section_reloc_link_order)
9808 sym_name = bfd_section_name (output_bfd,
9809 link_order->u.reloc.p->u.section);
9810 else
9811 sym_name = link_order->u.reloc.p->u.name;
9812 if (! ((*info->callbacks->reloc_overflow)
9813 (info, NULL, sym_name, howto->name, addend, NULL,
9814 NULL, (bfd_vma) 0)))
9815 {
9816 free (buf);
9817 return FALSE;
9818 }
9819 break;
9820 }
9821 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9822 link_order->offset, size);
9823 free (buf);
9824 if (! ok)
9825 return FALSE;
9826 }
9827
9828 /* The address of a reloc is relative to the section in a
9829 relocatable file, and is a virtual address in an executable
9830 file. */
9831 offset = link_order->offset;
9832 if (! info->relocatable)
9833 offset += output_section->vma;
9834
9835 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9836 {
9837 irel[i].r_offset = offset;
9838 irel[i].r_info = 0;
9839 irel[i].r_addend = 0;
9840 }
9841 if (bed->s->arch_size == 32)
9842 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9843 else
9844 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9845
9846 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9847 erel = rel_hdr->contents;
9848 if (rel_hdr->sh_type == SHT_REL)
9849 {
9850 erel += (elf_section_data (output_section)->rel_count
9851 * bed->s->sizeof_rel);
9852 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9853 }
9854 else
9855 {
9856 irel[0].r_addend = addend;
9857 erel += (elf_section_data (output_section)->rel_count
9858 * bed->s->sizeof_rela);
9859 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9860 }
9861
9862 ++elf_section_data (output_section)->rel_count;
9863
9864 return TRUE;
9865 }
9866
9867
9868 /* Get the output vma of the section pointed to by the sh_link field. */
9869
9870 static bfd_vma
9871 elf_get_linked_section_vma (struct bfd_link_order *p)
9872 {
9873 Elf_Internal_Shdr **elf_shdrp;
9874 asection *s;
9875 int elfsec;
9876
9877 s = p->u.indirect.section;
9878 elf_shdrp = elf_elfsections (s->owner);
9879 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9880 elfsec = elf_shdrp[elfsec]->sh_link;
9881 /* PR 290:
9882 The Intel C compiler generates SHT_IA_64_UNWIND with
9883 SHF_LINK_ORDER. But it doesn't set the sh_link or
9884 sh_info fields. Hence we could get the situation
9885 where elfsec is 0. */
9886 if (elfsec == 0)
9887 {
9888 const struct elf_backend_data *bed
9889 = get_elf_backend_data (s->owner);
9890 if (bed->link_order_error_handler)
9891 bed->link_order_error_handler
9892 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9893 return 0;
9894 }
9895 else
9896 {
9897 s = elf_shdrp[elfsec]->bfd_section;
9898 return s->output_section->vma + s->output_offset;
9899 }
9900 }
9901
9902
9903 /* Compare two sections based on the locations of the sections they are
9904 linked to. Used by elf_fixup_link_order. */
9905
9906 static int
9907 compare_link_order (const void * a, const void * b)
9908 {
9909 bfd_vma apos;
9910 bfd_vma bpos;
9911
9912 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9913 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9914 if (apos < bpos)
9915 return -1;
9916 return apos > bpos;
9917 }
9918
9919
9920 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9921 order as their linked sections. Returns false if this could not be done
9922 because an output section includes both ordered and unordered
9923 sections. Ideally we'd do this in the linker proper. */
9924
9925 static bfd_boolean
9926 elf_fixup_link_order (bfd *abfd, asection *o)
9927 {
9928 int seen_linkorder;
9929 int seen_other;
9930 int n;
9931 struct bfd_link_order *p;
9932 bfd *sub;
9933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9934 unsigned elfsec;
9935 struct bfd_link_order **sections;
9936 asection *s, *other_sec, *linkorder_sec;
9937 bfd_vma offset;
9938
9939 other_sec = NULL;
9940 linkorder_sec = NULL;
9941 seen_other = 0;
9942 seen_linkorder = 0;
9943 for (p = o->map_head.link_order; p != NULL; p = p->next)
9944 {
9945 if (p->type == bfd_indirect_link_order)
9946 {
9947 s = p->u.indirect.section;
9948 sub = s->owner;
9949 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9950 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9951 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9952 && elfsec < elf_numsections (sub)
9953 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9954 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9955 {
9956 seen_linkorder++;
9957 linkorder_sec = s;
9958 }
9959 else
9960 {
9961 seen_other++;
9962 other_sec = s;
9963 }
9964 }
9965 else
9966 seen_other++;
9967
9968 if (seen_other && seen_linkorder)
9969 {
9970 if (other_sec && linkorder_sec)
9971 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9972 o, linkorder_sec,
9973 linkorder_sec->owner, other_sec,
9974 other_sec->owner);
9975 else
9976 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9977 o);
9978 bfd_set_error (bfd_error_bad_value);
9979 return FALSE;
9980 }
9981 }
9982
9983 if (!seen_linkorder)
9984 return TRUE;
9985
9986 sections = (struct bfd_link_order **)
9987 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9988 if (sections == NULL)
9989 return FALSE;
9990 seen_linkorder = 0;
9991
9992 for (p = o->map_head.link_order; p != NULL; p = p->next)
9993 {
9994 sections[seen_linkorder++] = p;
9995 }
9996 /* Sort the input sections in the order of their linked section. */
9997 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9998 compare_link_order);
9999
10000 /* Change the offsets of the sections. */
10001 offset = 0;
10002 for (n = 0; n < seen_linkorder; n++)
10003 {
10004 s = sections[n]->u.indirect.section;
10005 offset &= ~(bfd_vma) 0 << s->alignment_power;
10006 s->output_offset = offset;
10007 sections[n]->offset = offset;
10008 offset += sections[n]->size;
10009 }
10010
10011 free (sections);
10012 return TRUE;
10013 }
10014
10015
10016 /* Do the final step of an ELF link. */
10017
10018 bfd_boolean
10019 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10020 {
10021 bfd_boolean dynamic;
10022 bfd_boolean emit_relocs;
10023 bfd *dynobj;
10024 struct elf_final_link_info finfo;
10025 register asection *o;
10026 register struct bfd_link_order *p;
10027 register bfd *sub;
10028 bfd_size_type max_contents_size;
10029 bfd_size_type max_external_reloc_size;
10030 bfd_size_type max_internal_reloc_count;
10031 bfd_size_type max_sym_count;
10032 bfd_size_type max_sym_shndx_count;
10033 file_ptr off;
10034 Elf_Internal_Sym elfsym;
10035 unsigned int i;
10036 Elf_Internal_Shdr *symtab_hdr;
10037 Elf_Internal_Shdr *symtab_shndx_hdr;
10038 Elf_Internal_Shdr *symstrtab_hdr;
10039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10040 struct elf_outext_info eoinfo;
10041 bfd_boolean merged;
10042 size_t relativecount = 0;
10043 asection *reldyn = 0;
10044 bfd_size_type amt;
10045 asection *attr_section = NULL;
10046 bfd_vma attr_size = 0;
10047 const char *std_attrs_section;
10048
10049 if (! is_elf_hash_table (info->hash))
10050 return FALSE;
10051
10052 if (info->shared)
10053 abfd->flags |= DYNAMIC;
10054
10055 dynamic = elf_hash_table (info)->dynamic_sections_created;
10056 dynobj = elf_hash_table (info)->dynobj;
10057
10058 emit_relocs = (info->relocatable
10059 || info->emitrelocations);
10060
10061 finfo.info = info;
10062 finfo.output_bfd = abfd;
10063 finfo.symstrtab = _bfd_elf_stringtab_init ();
10064 if (finfo.symstrtab == NULL)
10065 return FALSE;
10066
10067 if (! dynamic)
10068 {
10069 finfo.dynsym_sec = NULL;
10070 finfo.hash_sec = NULL;
10071 finfo.symver_sec = NULL;
10072 }
10073 else
10074 {
10075 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10076 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10077 BFD_ASSERT (finfo.dynsym_sec != NULL);
10078 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10079 /* Note that it is OK if symver_sec is NULL. */
10080 }
10081
10082 finfo.contents = NULL;
10083 finfo.external_relocs = NULL;
10084 finfo.internal_relocs = NULL;
10085 finfo.external_syms = NULL;
10086 finfo.locsym_shndx = NULL;
10087 finfo.internal_syms = NULL;
10088 finfo.indices = NULL;
10089 finfo.sections = NULL;
10090 finfo.symbuf = NULL;
10091 finfo.symshndxbuf = NULL;
10092 finfo.symbuf_count = 0;
10093 finfo.shndxbuf_size = 0;
10094
10095 /* The object attributes have been merged. Remove the input
10096 sections from the link, and set the contents of the output
10097 secton. */
10098 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10099 for (o = abfd->sections; o != NULL; o = o->next)
10100 {
10101 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10102 || strcmp (o->name, ".gnu.attributes") == 0)
10103 {
10104 for (p = o->map_head.link_order; p != NULL; p = p->next)
10105 {
10106 asection *input_section;
10107
10108 if (p->type != bfd_indirect_link_order)
10109 continue;
10110 input_section = p->u.indirect.section;
10111 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10112 elf_link_input_bfd ignores this section. */
10113 input_section->flags &= ~SEC_HAS_CONTENTS;
10114 }
10115
10116 attr_size = bfd_elf_obj_attr_size (abfd);
10117 if (attr_size)
10118 {
10119 bfd_set_section_size (abfd, o, attr_size);
10120 attr_section = o;
10121 /* Skip this section later on. */
10122 o->map_head.link_order = NULL;
10123 }
10124 else
10125 o->flags |= SEC_EXCLUDE;
10126 }
10127 }
10128
10129 /* Count up the number of relocations we will output for each output
10130 section, so that we know the sizes of the reloc sections. We
10131 also figure out some maximum sizes. */
10132 max_contents_size = 0;
10133 max_external_reloc_size = 0;
10134 max_internal_reloc_count = 0;
10135 max_sym_count = 0;
10136 max_sym_shndx_count = 0;
10137 merged = FALSE;
10138 for (o = abfd->sections; o != NULL; o = o->next)
10139 {
10140 struct bfd_elf_section_data *esdo = elf_section_data (o);
10141 o->reloc_count = 0;
10142
10143 for (p = o->map_head.link_order; p != NULL; p = p->next)
10144 {
10145 unsigned int reloc_count = 0;
10146 struct bfd_elf_section_data *esdi = NULL;
10147 unsigned int *rel_count1;
10148
10149 if (p->type == bfd_section_reloc_link_order
10150 || p->type == bfd_symbol_reloc_link_order)
10151 reloc_count = 1;
10152 else if (p->type == bfd_indirect_link_order)
10153 {
10154 asection *sec;
10155
10156 sec = p->u.indirect.section;
10157 esdi = elf_section_data (sec);
10158
10159 /* Mark all sections which are to be included in the
10160 link. This will normally be every section. We need
10161 to do this so that we can identify any sections which
10162 the linker has decided to not include. */
10163 sec->linker_mark = TRUE;
10164
10165 if (sec->flags & SEC_MERGE)
10166 merged = TRUE;
10167
10168 if (info->relocatable || info->emitrelocations)
10169 reloc_count = sec->reloc_count;
10170 else if (bed->elf_backend_count_relocs)
10171 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10172
10173 if (sec->rawsize > max_contents_size)
10174 max_contents_size = sec->rawsize;
10175 if (sec->size > max_contents_size)
10176 max_contents_size = sec->size;
10177
10178 /* We are interested in just local symbols, not all
10179 symbols. */
10180 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10181 && (sec->owner->flags & DYNAMIC) == 0)
10182 {
10183 size_t sym_count;
10184
10185 if (elf_bad_symtab (sec->owner))
10186 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10187 / bed->s->sizeof_sym);
10188 else
10189 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10190
10191 if (sym_count > max_sym_count)
10192 max_sym_count = sym_count;
10193
10194 if (sym_count > max_sym_shndx_count
10195 && elf_symtab_shndx (sec->owner) != 0)
10196 max_sym_shndx_count = sym_count;
10197
10198 if ((sec->flags & SEC_RELOC) != 0)
10199 {
10200 size_t ext_size;
10201
10202 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10203 if (ext_size > max_external_reloc_size)
10204 max_external_reloc_size = ext_size;
10205 if (sec->reloc_count > max_internal_reloc_count)
10206 max_internal_reloc_count = sec->reloc_count;
10207 }
10208 }
10209 }
10210
10211 if (reloc_count == 0)
10212 continue;
10213
10214 o->reloc_count += reloc_count;
10215
10216 /* MIPS may have a mix of REL and RELA relocs on sections.
10217 To support this curious ABI we keep reloc counts in
10218 elf_section_data too. We must be careful to add the
10219 relocations from the input section to the right output
10220 count. FIXME: Get rid of one count. We have
10221 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10222 rel_count1 = &esdo->rel_count;
10223 if (esdi != NULL)
10224 {
10225 bfd_boolean same_size;
10226 bfd_size_type entsize1;
10227
10228 entsize1 = esdi->rel_hdr.sh_entsize;
10229 /* PR 9827: If the header size has not been set yet then
10230 assume that it will match the output section's reloc type. */
10231 if (entsize1 == 0)
10232 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10233 else
10234 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10235 || entsize1 == bed->s->sizeof_rela);
10236 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10237
10238 if (!same_size)
10239 rel_count1 = &esdo->rel_count2;
10240
10241 if (esdi->rel_hdr2 != NULL)
10242 {
10243 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10244 unsigned int alt_count;
10245 unsigned int *rel_count2;
10246
10247 BFD_ASSERT (entsize2 != entsize1
10248 && (entsize2 == bed->s->sizeof_rel
10249 || entsize2 == bed->s->sizeof_rela));
10250
10251 rel_count2 = &esdo->rel_count2;
10252 if (!same_size)
10253 rel_count2 = &esdo->rel_count;
10254
10255 /* The following is probably too simplistic if the
10256 backend counts output relocs unusually. */
10257 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10258 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10259 *rel_count2 += alt_count;
10260 reloc_count -= alt_count;
10261 }
10262 }
10263 *rel_count1 += reloc_count;
10264 }
10265
10266 if (o->reloc_count > 0)
10267 o->flags |= SEC_RELOC;
10268 else
10269 {
10270 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10271 set it (this is probably a bug) and if it is set
10272 assign_section_numbers will create a reloc section. */
10273 o->flags &=~ SEC_RELOC;
10274 }
10275
10276 /* If the SEC_ALLOC flag is not set, force the section VMA to
10277 zero. This is done in elf_fake_sections as well, but forcing
10278 the VMA to 0 here will ensure that relocs against these
10279 sections are handled correctly. */
10280 if ((o->flags & SEC_ALLOC) == 0
10281 && ! o->user_set_vma)
10282 o->vma = 0;
10283 }
10284
10285 if (! info->relocatable && merged)
10286 elf_link_hash_traverse (elf_hash_table (info),
10287 _bfd_elf_link_sec_merge_syms, abfd);
10288
10289 /* Figure out the file positions for everything but the symbol table
10290 and the relocs. We set symcount to force assign_section_numbers
10291 to create a symbol table. */
10292 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10293 BFD_ASSERT (! abfd->output_has_begun);
10294 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10295 goto error_return;
10296
10297 /* Set sizes, and assign file positions for reloc sections. */
10298 for (o = abfd->sections; o != NULL; o = o->next)
10299 {
10300 if ((o->flags & SEC_RELOC) != 0)
10301 {
10302 if (!(_bfd_elf_link_size_reloc_section
10303 (abfd, &elf_section_data (o)->rel_hdr, o)))
10304 goto error_return;
10305
10306 if (elf_section_data (o)->rel_hdr2
10307 && !(_bfd_elf_link_size_reloc_section
10308 (abfd, elf_section_data (o)->rel_hdr2, o)))
10309 goto error_return;
10310 }
10311
10312 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10313 to count upwards while actually outputting the relocations. */
10314 elf_section_data (o)->rel_count = 0;
10315 elf_section_data (o)->rel_count2 = 0;
10316 }
10317
10318 _bfd_elf_assign_file_positions_for_relocs (abfd);
10319
10320 /* We have now assigned file positions for all the sections except
10321 .symtab and .strtab. We start the .symtab section at the current
10322 file position, and write directly to it. We build the .strtab
10323 section in memory. */
10324 bfd_get_symcount (abfd) = 0;
10325 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10326 /* sh_name is set in prep_headers. */
10327 symtab_hdr->sh_type = SHT_SYMTAB;
10328 /* sh_flags, sh_addr and sh_size all start off zero. */
10329 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10330 /* sh_link is set in assign_section_numbers. */
10331 /* sh_info is set below. */
10332 /* sh_offset is set just below. */
10333 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10334
10335 off = elf_tdata (abfd)->next_file_pos;
10336 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10337
10338 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10339 incorrect. We do not yet know the size of the .symtab section.
10340 We correct next_file_pos below, after we do know the size. */
10341
10342 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10343 continuously seeking to the right position in the file. */
10344 if (! info->keep_memory || max_sym_count < 20)
10345 finfo.symbuf_size = 20;
10346 else
10347 finfo.symbuf_size = max_sym_count;
10348 amt = finfo.symbuf_size;
10349 amt *= bed->s->sizeof_sym;
10350 finfo.symbuf = bfd_malloc (amt);
10351 if (finfo.symbuf == NULL)
10352 goto error_return;
10353 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10354 {
10355 /* Wild guess at number of output symbols. realloc'd as needed. */
10356 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10357 finfo.shndxbuf_size = amt;
10358 amt *= sizeof (Elf_External_Sym_Shndx);
10359 finfo.symshndxbuf = bfd_zmalloc (amt);
10360 if (finfo.symshndxbuf == NULL)
10361 goto error_return;
10362 }
10363
10364 /* Start writing out the symbol table. The first symbol is always a
10365 dummy symbol. */
10366 if (info->strip != strip_all
10367 || emit_relocs)
10368 {
10369 elfsym.st_value = 0;
10370 elfsym.st_size = 0;
10371 elfsym.st_info = 0;
10372 elfsym.st_other = 0;
10373 elfsym.st_shndx = SHN_UNDEF;
10374 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10375 NULL) != 1)
10376 goto error_return;
10377 }
10378
10379 /* Output a symbol for each section. We output these even if we are
10380 discarding local symbols, since they are used for relocs. These
10381 symbols have no names. We store the index of each one in the
10382 index field of the section, so that we can find it again when
10383 outputting relocs. */
10384 if (info->strip != strip_all
10385 || emit_relocs)
10386 {
10387 elfsym.st_size = 0;
10388 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10389 elfsym.st_other = 0;
10390 elfsym.st_value = 0;
10391 for (i = 1; i < elf_numsections (abfd); i++)
10392 {
10393 o = bfd_section_from_elf_index (abfd, i);
10394 if (o != NULL)
10395 {
10396 o->target_index = bfd_get_symcount (abfd);
10397 elfsym.st_shndx = i;
10398 if (!info->relocatable)
10399 elfsym.st_value = o->vma;
10400 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10401 goto error_return;
10402 }
10403 }
10404 }
10405
10406 /* Allocate some memory to hold information read in from the input
10407 files. */
10408 if (max_contents_size != 0)
10409 {
10410 finfo.contents = bfd_malloc (max_contents_size);
10411 if (finfo.contents == NULL)
10412 goto error_return;
10413 }
10414
10415 if (max_external_reloc_size != 0)
10416 {
10417 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10418 if (finfo.external_relocs == NULL)
10419 goto error_return;
10420 }
10421
10422 if (max_internal_reloc_count != 0)
10423 {
10424 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10425 amt *= sizeof (Elf_Internal_Rela);
10426 finfo.internal_relocs = bfd_malloc (amt);
10427 if (finfo.internal_relocs == NULL)
10428 goto error_return;
10429 }
10430
10431 if (max_sym_count != 0)
10432 {
10433 amt = max_sym_count * bed->s->sizeof_sym;
10434 finfo.external_syms = bfd_malloc (amt);
10435 if (finfo.external_syms == NULL)
10436 goto error_return;
10437
10438 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10439 finfo.internal_syms = bfd_malloc (amt);
10440 if (finfo.internal_syms == NULL)
10441 goto error_return;
10442
10443 amt = max_sym_count * sizeof (long);
10444 finfo.indices = bfd_malloc (amt);
10445 if (finfo.indices == NULL)
10446 goto error_return;
10447
10448 amt = max_sym_count * sizeof (asection *);
10449 finfo.sections = bfd_malloc (amt);
10450 if (finfo.sections == NULL)
10451 goto error_return;
10452 }
10453
10454 if (max_sym_shndx_count != 0)
10455 {
10456 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10457 finfo.locsym_shndx = bfd_malloc (amt);
10458 if (finfo.locsym_shndx == NULL)
10459 goto error_return;
10460 }
10461
10462 if (elf_hash_table (info)->tls_sec)
10463 {
10464 bfd_vma base, end = 0;
10465 asection *sec;
10466
10467 for (sec = elf_hash_table (info)->tls_sec;
10468 sec && (sec->flags & SEC_THREAD_LOCAL);
10469 sec = sec->next)
10470 {
10471 bfd_size_type size = sec->size;
10472
10473 if (size == 0
10474 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10475 {
10476 struct bfd_link_order *o = sec->map_tail.link_order;
10477 if (o != NULL)
10478 size = o->offset + o->size;
10479 }
10480 end = sec->vma + size;
10481 }
10482 base = elf_hash_table (info)->tls_sec->vma;
10483 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10484 elf_hash_table (info)->tls_size = end - base;
10485 }
10486
10487 /* Reorder SHF_LINK_ORDER sections. */
10488 for (o = abfd->sections; o != NULL; o = o->next)
10489 {
10490 if (!elf_fixup_link_order (abfd, o))
10491 return FALSE;
10492 }
10493
10494 /* Since ELF permits relocations to be against local symbols, we
10495 must have the local symbols available when we do the relocations.
10496 Since we would rather only read the local symbols once, and we
10497 would rather not keep them in memory, we handle all the
10498 relocations for a single input file at the same time.
10499
10500 Unfortunately, there is no way to know the total number of local
10501 symbols until we have seen all of them, and the local symbol
10502 indices precede the global symbol indices. This means that when
10503 we are generating relocatable output, and we see a reloc against
10504 a global symbol, we can not know the symbol index until we have
10505 finished examining all the local symbols to see which ones we are
10506 going to output. To deal with this, we keep the relocations in
10507 memory, and don't output them until the end of the link. This is
10508 an unfortunate waste of memory, but I don't see a good way around
10509 it. Fortunately, it only happens when performing a relocatable
10510 link, which is not the common case. FIXME: If keep_memory is set
10511 we could write the relocs out and then read them again; I don't
10512 know how bad the memory loss will be. */
10513
10514 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10515 sub->output_has_begun = FALSE;
10516 for (o = abfd->sections; o != NULL; o = o->next)
10517 {
10518 for (p = o->map_head.link_order; p != NULL; p = p->next)
10519 {
10520 if (p->type == bfd_indirect_link_order
10521 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10522 == bfd_target_elf_flavour)
10523 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10524 {
10525 if (! sub->output_has_begun)
10526 {
10527 if (! elf_link_input_bfd (&finfo, sub))
10528 goto error_return;
10529 sub->output_has_begun = TRUE;
10530 }
10531 }
10532 else if (p->type == bfd_section_reloc_link_order
10533 || p->type == bfd_symbol_reloc_link_order)
10534 {
10535 if (! elf_reloc_link_order (abfd, info, o, p))
10536 goto error_return;
10537 }
10538 else
10539 {
10540 if (! _bfd_default_link_order (abfd, info, o, p))
10541 goto error_return;
10542 }
10543 }
10544 }
10545
10546 /* Free symbol buffer if needed. */
10547 if (!info->reduce_memory_overheads)
10548 {
10549 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10550 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10551 && elf_tdata (sub)->symbuf)
10552 {
10553 free (elf_tdata (sub)->symbuf);
10554 elf_tdata (sub)->symbuf = NULL;
10555 }
10556 }
10557
10558 /* Output any global symbols that got converted to local in a
10559 version script or due to symbol visibility. We do this in a
10560 separate step since ELF requires all local symbols to appear
10561 prior to any global symbols. FIXME: We should only do this if
10562 some global symbols were, in fact, converted to become local.
10563 FIXME: Will this work correctly with the Irix 5 linker? */
10564 eoinfo.failed = FALSE;
10565 eoinfo.finfo = &finfo;
10566 eoinfo.localsyms = TRUE;
10567 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10568 &eoinfo);
10569 if (eoinfo.failed)
10570 return FALSE;
10571
10572 /* If backend needs to output some local symbols not present in the hash
10573 table, do it now. */
10574 if (bed->elf_backend_output_arch_local_syms)
10575 {
10576 typedef int (*out_sym_func)
10577 (void *, const char *, Elf_Internal_Sym *, asection *,
10578 struct elf_link_hash_entry *);
10579
10580 if (! ((*bed->elf_backend_output_arch_local_syms)
10581 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10582 return FALSE;
10583 }
10584
10585 /* That wrote out all the local symbols. Finish up the symbol table
10586 with the global symbols. Even if we want to strip everything we
10587 can, we still need to deal with those global symbols that got
10588 converted to local in a version script. */
10589
10590 /* The sh_info field records the index of the first non local symbol. */
10591 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10592
10593 if (dynamic
10594 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10595 {
10596 Elf_Internal_Sym sym;
10597 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10598 long last_local = 0;
10599
10600 /* Write out the section symbols for the output sections. */
10601 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10602 {
10603 asection *s;
10604
10605 sym.st_size = 0;
10606 sym.st_name = 0;
10607 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10608 sym.st_other = 0;
10609
10610 for (s = abfd->sections; s != NULL; s = s->next)
10611 {
10612 int indx;
10613 bfd_byte *dest;
10614 long dynindx;
10615
10616 dynindx = elf_section_data (s)->dynindx;
10617 if (dynindx <= 0)
10618 continue;
10619 indx = elf_section_data (s)->this_idx;
10620 BFD_ASSERT (indx > 0);
10621 sym.st_shndx = indx;
10622 if (! check_dynsym (abfd, &sym))
10623 return FALSE;
10624 sym.st_value = s->vma;
10625 dest = dynsym + dynindx * bed->s->sizeof_sym;
10626 if (last_local < dynindx)
10627 last_local = dynindx;
10628 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10629 }
10630 }
10631
10632 /* Write out the local dynsyms. */
10633 if (elf_hash_table (info)->dynlocal)
10634 {
10635 struct elf_link_local_dynamic_entry *e;
10636 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10637 {
10638 asection *s;
10639 bfd_byte *dest;
10640
10641 sym.st_size = e->isym.st_size;
10642 sym.st_other = e->isym.st_other;
10643
10644 /* Copy the internal symbol as is.
10645 Note that we saved a word of storage and overwrote
10646 the original st_name with the dynstr_index. */
10647 sym = e->isym;
10648
10649 s = bfd_section_from_elf_index (e->input_bfd,
10650 e->isym.st_shndx);
10651 if (s != NULL)
10652 {
10653 sym.st_shndx =
10654 elf_section_data (s->output_section)->this_idx;
10655 if (! check_dynsym (abfd, &sym))
10656 return FALSE;
10657 sym.st_value = (s->output_section->vma
10658 + s->output_offset
10659 + e->isym.st_value);
10660 }
10661
10662 if (last_local < e->dynindx)
10663 last_local = e->dynindx;
10664
10665 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10666 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10667 }
10668 }
10669
10670 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10671 last_local + 1;
10672 }
10673
10674 /* We get the global symbols from the hash table. */
10675 eoinfo.failed = FALSE;
10676 eoinfo.localsyms = FALSE;
10677 eoinfo.finfo = &finfo;
10678 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10679 &eoinfo);
10680 if (eoinfo.failed)
10681 return FALSE;
10682
10683 /* If backend needs to output some symbols not present in the hash
10684 table, do it now. */
10685 if (bed->elf_backend_output_arch_syms)
10686 {
10687 typedef int (*out_sym_func)
10688 (void *, const char *, Elf_Internal_Sym *, asection *,
10689 struct elf_link_hash_entry *);
10690
10691 if (! ((*bed->elf_backend_output_arch_syms)
10692 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10693 return FALSE;
10694 }
10695
10696 /* Flush all symbols to the file. */
10697 if (! elf_link_flush_output_syms (&finfo, bed))
10698 return FALSE;
10699
10700 /* Now we know the size of the symtab section. */
10701 off += symtab_hdr->sh_size;
10702
10703 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10704 if (symtab_shndx_hdr->sh_name != 0)
10705 {
10706 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10707 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10708 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10709 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10710 symtab_shndx_hdr->sh_size = amt;
10711
10712 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10713 off, TRUE);
10714
10715 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10716 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10717 return FALSE;
10718 }
10719
10720
10721 /* Finish up and write out the symbol string table (.strtab)
10722 section. */
10723 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10724 /* sh_name was set in prep_headers. */
10725 symstrtab_hdr->sh_type = SHT_STRTAB;
10726 symstrtab_hdr->sh_flags = 0;
10727 symstrtab_hdr->sh_addr = 0;
10728 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10729 symstrtab_hdr->sh_entsize = 0;
10730 symstrtab_hdr->sh_link = 0;
10731 symstrtab_hdr->sh_info = 0;
10732 /* sh_offset is set just below. */
10733 symstrtab_hdr->sh_addralign = 1;
10734
10735 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10736 elf_tdata (abfd)->next_file_pos = off;
10737
10738 if (bfd_get_symcount (abfd) > 0)
10739 {
10740 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10741 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10742 return FALSE;
10743 }
10744
10745 /* Adjust the relocs to have the correct symbol indices. */
10746 for (o = abfd->sections; o != NULL; o = o->next)
10747 {
10748 if ((o->flags & SEC_RELOC) == 0)
10749 continue;
10750
10751 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10752 elf_section_data (o)->rel_count,
10753 elf_section_data (o)->rel_hashes);
10754 if (elf_section_data (o)->rel_hdr2 != NULL)
10755 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10756 elf_section_data (o)->rel_count2,
10757 (elf_section_data (o)->rel_hashes
10758 + elf_section_data (o)->rel_count));
10759
10760 /* Set the reloc_count field to 0 to prevent write_relocs from
10761 trying to swap the relocs out itself. */
10762 o->reloc_count = 0;
10763 }
10764
10765 if (dynamic && info->combreloc && dynobj != NULL)
10766 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10767
10768 /* If we are linking against a dynamic object, or generating a
10769 shared library, finish up the dynamic linking information. */
10770 if (dynamic)
10771 {
10772 bfd_byte *dyncon, *dynconend;
10773
10774 /* Fix up .dynamic entries. */
10775 o = bfd_get_section_by_name (dynobj, ".dynamic");
10776 BFD_ASSERT (o != NULL);
10777
10778 dyncon = o->contents;
10779 dynconend = o->contents + o->size;
10780 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10781 {
10782 Elf_Internal_Dyn dyn;
10783 const char *name;
10784 unsigned int type;
10785
10786 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10787
10788 switch (dyn.d_tag)
10789 {
10790 default:
10791 continue;
10792 case DT_NULL:
10793 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10794 {
10795 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10796 {
10797 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10798 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10799 default: continue;
10800 }
10801 dyn.d_un.d_val = relativecount;
10802 relativecount = 0;
10803 break;
10804 }
10805 continue;
10806
10807 case DT_INIT:
10808 name = info->init_function;
10809 goto get_sym;
10810 case DT_FINI:
10811 name = info->fini_function;
10812 get_sym:
10813 {
10814 struct elf_link_hash_entry *h;
10815
10816 h = elf_link_hash_lookup (elf_hash_table (info), name,
10817 FALSE, FALSE, TRUE);
10818 if (h != NULL
10819 && (h->root.type == bfd_link_hash_defined
10820 || h->root.type == bfd_link_hash_defweak))
10821 {
10822 dyn.d_un.d_ptr = h->root.u.def.value;
10823 o = h->root.u.def.section;
10824 if (o->output_section != NULL)
10825 dyn.d_un.d_ptr += (o->output_section->vma
10826 + o->output_offset);
10827 else
10828 {
10829 /* The symbol is imported from another shared
10830 library and does not apply to this one. */
10831 dyn.d_un.d_ptr = 0;
10832 }
10833 break;
10834 }
10835 }
10836 continue;
10837
10838 case DT_PREINIT_ARRAYSZ:
10839 name = ".preinit_array";
10840 goto get_size;
10841 case DT_INIT_ARRAYSZ:
10842 name = ".init_array";
10843 goto get_size;
10844 case DT_FINI_ARRAYSZ:
10845 name = ".fini_array";
10846 get_size:
10847 o = bfd_get_section_by_name (abfd, name);
10848 if (o == NULL)
10849 {
10850 (*_bfd_error_handler)
10851 (_("%B: could not find output section %s"), abfd, name);
10852 goto error_return;
10853 }
10854 if (o->size == 0)
10855 (*_bfd_error_handler)
10856 (_("warning: %s section has zero size"), name);
10857 dyn.d_un.d_val = o->size;
10858 break;
10859
10860 case DT_PREINIT_ARRAY:
10861 name = ".preinit_array";
10862 goto get_vma;
10863 case DT_INIT_ARRAY:
10864 name = ".init_array";
10865 goto get_vma;
10866 case DT_FINI_ARRAY:
10867 name = ".fini_array";
10868 goto get_vma;
10869
10870 case DT_HASH:
10871 name = ".hash";
10872 goto get_vma;
10873 case DT_GNU_HASH:
10874 name = ".gnu.hash";
10875 goto get_vma;
10876 case DT_STRTAB:
10877 name = ".dynstr";
10878 goto get_vma;
10879 case DT_SYMTAB:
10880 name = ".dynsym";
10881 goto get_vma;
10882 case DT_VERDEF:
10883 name = ".gnu.version_d";
10884 goto get_vma;
10885 case DT_VERNEED:
10886 name = ".gnu.version_r";
10887 goto get_vma;
10888 case DT_VERSYM:
10889 name = ".gnu.version";
10890 get_vma:
10891 o = bfd_get_section_by_name (abfd, name);
10892 if (o == NULL)
10893 {
10894 (*_bfd_error_handler)
10895 (_("%B: could not find output section %s"), abfd, name);
10896 goto error_return;
10897 }
10898 dyn.d_un.d_ptr = o->vma;
10899 break;
10900
10901 case DT_REL:
10902 case DT_RELA:
10903 case DT_RELSZ:
10904 case DT_RELASZ:
10905 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10906 type = SHT_REL;
10907 else
10908 type = SHT_RELA;
10909 dyn.d_un.d_val = 0;
10910 dyn.d_un.d_ptr = 0;
10911 for (i = 1; i < elf_numsections (abfd); i++)
10912 {
10913 Elf_Internal_Shdr *hdr;
10914
10915 hdr = elf_elfsections (abfd)[i];
10916 if (hdr->sh_type == type
10917 && (hdr->sh_flags & SHF_ALLOC) != 0)
10918 {
10919 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10920 dyn.d_un.d_val += hdr->sh_size;
10921 else
10922 {
10923 if (dyn.d_un.d_ptr == 0
10924 || hdr->sh_addr < dyn.d_un.d_ptr)
10925 dyn.d_un.d_ptr = hdr->sh_addr;
10926 }
10927 }
10928 }
10929 break;
10930 }
10931 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10932 }
10933 }
10934
10935 /* If we have created any dynamic sections, then output them. */
10936 if (dynobj != NULL)
10937 {
10938 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10939 goto error_return;
10940
10941 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10942 if (info->warn_shared_textrel && info->shared)
10943 {
10944 bfd_byte *dyncon, *dynconend;
10945
10946 /* Fix up .dynamic entries. */
10947 o = bfd_get_section_by_name (dynobj, ".dynamic");
10948 BFD_ASSERT (o != NULL);
10949
10950 dyncon = o->contents;
10951 dynconend = o->contents + o->size;
10952 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10953 {
10954 Elf_Internal_Dyn dyn;
10955
10956 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10957
10958 if (dyn.d_tag == DT_TEXTREL)
10959 {
10960 info->callbacks->einfo
10961 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10962 break;
10963 }
10964 }
10965 }
10966
10967 for (o = dynobj->sections; o != NULL; o = o->next)
10968 {
10969 if ((o->flags & SEC_HAS_CONTENTS) == 0
10970 || o->size == 0
10971 || o->output_section == bfd_abs_section_ptr)
10972 continue;
10973 if ((o->flags & SEC_LINKER_CREATED) == 0)
10974 {
10975 /* At this point, we are only interested in sections
10976 created by _bfd_elf_link_create_dynamic_sections. */
10977 continue;
10978 }
10979 if (elf_hash_table (info)->stab_info.stabstr == o)
10980 continue;
10981 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10982 continue;
10983 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10984 != SHT_STRTAB)
10985 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10986 {
10987 if (! bfd_set_section_contents (abfd, o->output_section,
10988 o->contents,
10989 (file_ptr) o->output_offset,
10990 o->size))
10991 goto error_return;
10992 }
10993 else
10994 {
10995 /* The contents of the .dynstr section are actually in a
10996 stringtab. */
10997 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10998 if (bfd_seek (abfd, off, SEEK_SET) != 0
10999 || ! _bfd_elf_strtab_emit (abfd,
11000 elf_hash_table (info)->dynstr))
11001 goto error_return;
11002 }
11003 }
11004 }
11005
11006 if (info->relocatable)
11007 {
11008 bfd_boolean failed = FALSE;
11009
11010 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11011 if (failed)
11012 goto error_return;
11013 }
11014
11015 /* If we have optimized stabs strings, output them. */
11016 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11017 {
11018 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11019 goto error_return;
11020 }
11021
11022 if (info->eh_frame_hdr)
11023 {
11024 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11025 goto error_return;
11026 }
11027
11028 if (finfo.symstrtab != NULL)
11029 _bfd_stringtab_free (finfo.symstrtab);
11030 if (finfo.contents != NULL)
11031 free (finfo.contents);
11032 if (finfo.external_relocs != NULL)
11033 free (finfo.external_relocs);
11034 if (finfo.internal_relocs != NULL)
11035 free (finfo.internal_relocs);
11036 if (finfo.external_syms != NULL)
11037 free (finfo.external_syms);
11038 if (finfo.locsym_shndx != NULL)
11039 free (finfo.locsym_shndx);
11040 if (finfo.internal_syms != NULL)
11041 free (finfo.internal_syms);
11042 if (finfo.indices != NULL)
11043 free (finfo.indices);
11044 if (finfo.sections != NULL)
11045 free (finfo.sections);
11046 if (finfo.symbuf != NULL)
11047 free (finfo.symbuf);
11048 if (finfo.symshndxbuf != NULL)
11049 free (finfo.symshndxbuf);
11050 for (o = abfd->sections; o != NULL; o = o->next)
11051 {
11052 if ((o->flags & SEC_RELOC) != 0
11053 && elf_section_data (o)->rel_hashes != NULL)
11054 free (elf_section_data (o)->rel_hashes);
11055 }
11056
11057 elf_tdata (abfd)->linker = TRUE;
11058
11059 if (attr_section)
11060 {
11061 bfd_byte *contents = bfd_malloc (attr_size);
11062 if (contents == NULL)
11063 return FALSE; /* Bail out and fail. */
11064 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11065 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11066 free (contents);
11067 }
11068
11069 return TRUE;
11070
11071 error_return:
11072 if (finfo.symstrtab != NULL)
11073 _bfd_stringtab_free (finfo.symstrtab);
11074 if (finfo.contents != NULL)
11075 free (finfo.contents);
11076 if (finfo.external_relocs != NULL)
11077 free (finfo.external_relocs);
11078 if (finfo.internal_relocs != NULL)
11079 free (finfo.internal_relocs);
11080 if (finfo.external_syms != NULL)
11081 free (finfo.external_syms);
11082 if (finfo.locsym_shndx != NULL)
11083 free (finfo.locsym_shndx);
11084 if (finfo.internal_syms != NULL)
11085 free (finfo.internal_syms);
11086 if (finfo.indices != NULL)
11087 free (finfo.indices);
11088 if (finfo.sections != NULL)
11089 free (finfo.sections);
11090 if (finfo.symbuf != NULL)
11091 free (finfo.symbuf);
11092 if (finfo.symshndxbuf != NULL)
11093 free (finfo.symshndxbuf);
11094 for (o = abfd->sections; o != NULL; o = o->next)
11095 {
11096 if ((o->flags & SEC_RELOC) != 0
11097 && elf_section_data (o)->rel_hashes != NULL)
11098 free (elf_section_data (o)->rel_hashes);
11099 }
11100
11101 return FALSE;
11102 }
11103 \f
11104 /* Initialize COOKIE for input bfd ABFD. */
11105
11106 static bfd_boolean
11107 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11108 struct bfd_link_info *info, bfd *abfd)
11109 {
11110 Elf_Internal_Shdr *symtab_hdr;
11111 const struct elf_backend_data *bed;
11112
11113 bed = get_elf_backend_data (abfd);
11114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11115
11116 cookie->abfd = abfd;
11117 cookie->sym_hashes = elf_sym_hashes (abfd);
11118 cookie->bad_symtab = elf_bad_symtab (abfd);
11119 if (cookie->bad_symtab)
11120 {
11121 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11122 cookie->extsymoff = 0;
11123 }
11124 else
11125 {
11126 cookie->locsymcount = symtab_hdr->sh_info;
11127 cookie->extsymoff = symtab_hdr->sh_info;
11128 }
11129
11130 if (bed->s->arch_size == 32)
11131 cookie->r_sym_shift = 8;
11132 else
11133 cookie->r_sym_shift = 32;
11134
11135 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11136 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11137 {
11138 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11139 cookie->locsymcount, 0,
11140 NULL, NULL, NULL);
11141 if (cookie->locsyms == NULL)
11142 {
11143 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11144 return FALSE;
11145 }
11146 if (info->keep_memory)
11147 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11148 }
11149 return TRUE;
11150 }
11151
11152 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11153
11154 static void
11155 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11156 {
11157 Elf_Internal_Shdr *symtab_hdr;
11158
11159 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11160 if (cookie->locsyms != NULL
11161 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11162 free (cookie->locsyms);
11163 }
11164
11165 /* Initialize the relocation information in COOKIE for input section SEC
11166 of input bfd ABFD. */
11167
11168 static bfd_boolean
11169 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11170 struct bfd_link_info *info, bfd *abfd,
11171 asection *sec)
11172 {
11173 const struct elf_backend_data *bed;
11174
11175 if (sec->reloc_count == 0)
11176 {
11177 cookie->rels = NULL;
11178 cookie->relend = NULL;
11179 }
11180 else
11181 {
11182 bed = get_elf_backend_data (abfd);
11183
11184 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11185 info->keep_memory);
11186 if (cookie->rels == NULL)
11187 return FALSE;
11188 cookie->rel = cookie->rels;
11189 cookie->relend = (cookie->rels
11190 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11191 }
11192 cookie->rel = cookie->rels;
11193 return TRUE;
11194 }
11195
11196 /* Free the memory allocated by init_reloc_cookie_rels,
11197 if appropriate. */
11198
11199 static void
11200 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11201 asection *sec)
11202 {
11203 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11204 free (cookie->rels);
11205 }
11206
11207 /* Initialize the whole of COOKIE for input section SEC. */
11208
11209 static bfd_boolean
11210 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11211 struct bfd_link_info *info,
11212 asection *sec)
11213 {
11214 if (!init_reloc_cookie (cookie, info, sec->owner))
11215 goto error1;
11216 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11217 goto error2;
11218 return TRUE;
11219
11220 error2:
11221 fini_reloc_cookie (cookie, sec->owner);
11222 error1:
11223 return FALSE;
11224 }
11225
11226 /* Free the memory allocated by init_reloc_cookie_for_section,
11227 if appropriate. */
11228
11229 static void
11230 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11231 asection *sec)
11232 {
11233 fini_reloc_cookie_rels (cookie, sec);
11234 fini_reloc_cookie (cookie, sec->owner);
11235 }
11236 \f
11237 /* Garbage collect unused sections. */
11238
11239 /* Default gc_mark_hook. */
11240
11241 asection *
11242 _bfd_elf_gc_mark_hook (asection *sec,
11243 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11244 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11245 struct elf_link_hash_entry *h,
11246 Elf_Internal_Sym *sym)
11247 {
11248 if (h != NULL)
11249 {
11250 switch (h->root.type)
11251 {
11252 case bfd_link_hash_defined:
11253 case bfd_link_hash_defweak:
11254 return h->root.u.def.section;
11255
11256 case bfd_link_hash_common:
11257 return h->root.u.c.p->section;
11258
11259 default:
11260 break;
11261 }
11262 }
11263 else
11264 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11265
11266 return NULL;
11267 }
11268
11269 /* COOKIE->rel describes a relocation against section SEC, which is
11270 a section we've decided to keep. Return the section that contains
11271 the relocation symbol, or NULL if no section contains it. */
11272
11273 asection *
11274 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11275 elf_gc_mark_hook_fn gc_mark_hook,
11276 struct elf_reloc_cookie *cookie)
11277 {
11278 unsigned long r_symndx;
11279 struct elf_link_hash_entry *h;
11280
11281 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11282 if (r_symndx == 0)
11283 return NULL;
11284
11285 if (r_symndx >= cookie->locsymcount
11286 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11287 {
11288 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11289 while (h->root.type == bfd_link_hash_indirect
11290 || h->root.type == bfd_link_hash_warning)
11291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11292 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11293 }
11294
11295 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11296 &cookie->locsyms[r_symndx]);
11297 }
11298
11299 /* COOKIE->rel describes a relocation against section SEC, which is
11300 a section we've decided to keep. Mark the section that contains
11301 the relocation symbol. */
11302
11303 bfd_boolean
11304 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11305 asection *sec,
11306 elf_gc_mark_hook_fn gc_mark_hook,
11307 struct elf_reloc_cookie *cookie)
11308 {
11309 asection *rsec;
11310
11311 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11312 if (rsec && !rsec->gc_mark)
11313 {
11314 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11315 rsec->gc_mark = 1;
11316 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11317 return FALSE;
11318 }
11319 return TRUE;
11320 }
11321
11322 /* The mark phase of garbage collection. For a given section, mark
11323 it and any sections in this section's group, and all the sections
11324 which define symbols to which it refers. */
11325
11326 bfd_boolean
11327 _bfd_elf_gc_mark (struct bfd_link_info *info,
11328 asection *sec,
11329 elf_gc_mark_hook_fn gc_mark_hook)
11330 {
11331 bfd_boolean ret;
11332 asection *group_sec, *eh_frame;
11333
11334 sec->gc_mark = 1;
11335
11336 /* Mark all the sections in the group. */
11337 group_sec = elf_section_data (sec)->next_in_group;
11338 if (group_sec && !group_sec->gc_mark)
11339 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11340 return FALSE;
11341
11342 /* Look through the section relocs. */
11343 ret = TRUE;
11344 eh_frame = elf_eh_frame_section (sec->owner);
11345 if ((sec->flags & SEC_RELOC) != 0
11346 && sec->reloc_count > 0
11347 && sec != eh_frame)
11348 {
11349 struct elf_reloc_cookie cookie;
11350
11351 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11352 ret = FALSE;
11353 else
11354 {
11355 for (; cookie.rel < cookie.relend; cookie.rel++)
11356 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11357 {
11358 ret = FALSE;
11359 break;
11360 }
11361 fini_reloc_cookie_for_section (&cookie, sec);
11362 }
11363 }
11364
11365 if (ret && eh_frame && elf_fde_list (sec))
11366 {
11367 struct elf_reloc_cookie cookie;
11368
11369 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11370 ret = FALSE;
11371 else
11372 {
11373 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11374 gc_mark_hook, &cookie))
11375 ret = FALSE;
11376 fini_reloc_cookie_for_section (&cookie, eh_frame);
11377 }
11378 }
11379
11380 return ret;
11381 }
11382
11383 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11384
11385 struct elf_gc_sweep_symbol_info
11386 {
11387 struct bfd_link_info *info;
11388 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11389 bfd_boolean);
11390 };
11391
11392 static bfd_boolean
11393 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11394 {
11395 if (h->root.type == bfd_link_hash_warning)
11396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11397
11398 if ((h->root.type == bfd_link_hash_defined
11399 || h->root.type == bfd_link_hash_defweak)
11400 && !h->root.u.def.section->gc_mark
11401 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11402 {
11403 struct elf_gc_sweep_symbol_info *inf = data;
11404 (*inf->hide_symbol) (inf->info, h, TRUE);
11405 }
11406
11407 return TRUE;
11408 }
11409
11410 /* The sweep phase of garbage collection. Remove all garbage sections. */
11411
11412 typedef bfd_boolean (*gc_sweep_hook_fn)
11413 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11414
11415 static bfd_boolean
11416 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11417 {
11418 bfd *sub;
11419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11420 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11421 unsigned long section_sym_count;
11422 struct elf_gc_sweep_symbol_info sweep_info;
11423
11424 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11425 {
11426 asection *o;
11427
11428 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11429 continue;
11430
11431 for (o = sub->sections; o != NULL; o = o->next)
11432 {
11433 /* When any section in a section group is kept, we keep all
11434 sections in the section group. If the first member of
11435 the section group is excluded, we will also exclude the
11436 group section. */
11437 if (o->flags & SEC_GROUP)
11438 {
11439 asection *first = elf_next_in_group (o);
11440 o->gc_mark = first->gc_mark;
11441 }
11442 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11443 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11444 {
11445 /* Keep debug and special sections. */
11446 o->gc_mark = 1;
11447 }
11448
11449 if (o->gc_mark)
11450 continue;
11451
11452 /* Skip sweeping sections already excluded. */
11453 if (o->flags & SEC_EXCLUDE)
11454 continue;
11455
11456 /* Since this is early in the link process, it is simple
11457 to remove a section from the output. */
11458 o->flags |= SEC_EXCLUDE;
11459
11460 if (info->print_gc_sections && o->size != 0)
11461 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11462
11463 /* But we also have to update some of the relocation
11464 info we collected before. */
11465 if (gc_sweep_hook
11466 && (o->flags & SEC_RELOC) != 0
11467 && o->reloc_count > 0
11468 && !bfd_is_abs_section (o->output_section))
11469 {
11470 Elf_Internal_Rela *internal_relocs;
11471 bfd_boolean r;
11472
11473 internal_relocs
11474 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11475 info->keep_memory);
11476 if (internal_relocs == NULL)
11477 return FALSE;
11478
11479 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11480
11481 if (elf_section_data (o)->relocs != internal_relocs)
11482 free (internal_relocs);
11483
11484 if (!r)
11485 return FALSE;
11486 }
11487 }
11488 }
11489
11490 /* Remove the symbols that were in the swept sections from the dynamic
11491 symbol table. GCFIXME: Anyone know how to get them out of the
11492 static symbol table as well? */
11493 sweep_info.info = info;
11494 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11495 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11496 &sweep_info);
11497
11498 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11499 return TRUE;
11500 }
11501
11502 /* Propagate collected vtable information. This is called through
11503 elf_link_hash_traverse. */
11504
11505 static bfd_boolean
11506 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11507 {
11508 if (h->root.type == bfd_link_hash_warning)
11509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11510
11511 /* Those that are not vtables. */
11512 if (h->vtable == NULL || h->vtable->parent == NULL)
11513 return TRUE;
11514
11515 /* Those vtables that do not have parents, we cannot merge. */
11516 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11517 return TRUE;
11518
11519 /* If we've already been done, exit. */
11520 if (h->vtable->used && h->vtable->used[-1])
11521 return TRUE;
11522
11523 /* Make sure the parent's table is up to date. */
11524 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11525
11526 if (h->vtable->used == NULL)
11527 {
11528 /* None of this table's entries were referenced. Re-use the
11529 parent's table. */
11530 h->vtable->used = h->vtable->parent->vtable->used;
11531 h->vtable->size = h->vtable->parent->vtable->size;
11532 }
11533 else
11534 {
11535 size_t n;
11536 bfd_boolean *cu, *pu;
11537
11538 /* Or the parent's entries into ours. */
11539 cu = h->vtable->used;
11540 cu[-1] = TRUE;
11541 pu = h->vtable->parent->vtable->used;
11542 if (pu != NULL)
11543 {
11544 const struct elf_backend_data *bed;
11545 unsigned int log_file_align;
11546
11547 bed = get_elf_backend_data (h->root.u.def.section->owner);
11548 log_file_align = bed->s->log_file_align;
11549 n = h->vtable->parent->vtable->size >> log_file_align;
11550 while (n--)
11551 {
11552 if (*pu)
11553 *cu = TRUE;
11554 pu++;
11555 cu++;
11556 }
11557 }
11558 }
11559
11560 return TRUE;
11561 }
11562
11563 static bfd_boolean
11564 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11565 {
11566 asection *sec;
11567 bfd_vma hstart, hend;
11568 Elf_Internal_Rela *relstart, *relend, *rel;
11569 const struct elf_backend_data *bed;
11570 unsigned int log_file_align;
11571
11572 if (h->root.type == bfd_link_hash_warning)
11573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11574
11575 /* Take care of both those symbols that do not describe vtables as
11576 well as those that are not loaded. */
11577 if (h->vtable == NULL || h->vtable->parent == NULL)
11578 return TRUE;
11579
11580 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11581 || h->root.type == bfd_link_hash_defweak);
11582
11583 sec = h->root.u.def.section;
11584 hstart = h->root.u.def.value;
11585 hend = hstart + h->size;
11586
11587 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11588 if (!relstart)
11589 return *(bfd_boolean *) okp = FALSE;
11590 bed = get_elf_backend_data (sec->owner);
11591 log_file_align = bed->s->log_file_align;
11592
11593 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11594
11595 for (rel = relstart; rel < relend; ++rel)
11596 if (rel->r_offset >= hstart && rel->r_offset < hend)
11597 {
11598 /* If the entry is in use, do nothing. */
11599 if (h->vtable->used
11600 && (rel->r_offset - hstart) < h->vtable->size)
11601 {
11602 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11603 if (h->vtable->used[entry])
11604 continue;
11605 }
11606 /* Otherwise, kill it. */
11607 rel->r_offset = rel->r_info = rel->r_addend = 0;
11608 }
11609
11610 return TRUE;
11611 }
11612
11613 /* Mark sections containing dynamically referenced symbols. When
11614 building shared libraries, we must assume that any visible symbol is
11615 referenced. */
11616
11617 bfd_boolean
11618 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11619 {
11620 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11621
11622 if (h->root.type == bfd_link_hash_warning)
11623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11624
11625 if ((h->root.type == bfd_link_hash_defined
11626 || h->root.type == bfd_link_hash_defweak)
11627 && (h->ref_dynamic
11628 || (!info->executable
11629 && h->def_regular
11630 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11631 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11632 h->root.u.def.section->flags |= SEC_KEEP;
11633
11634 return TRUE;
11635 }
11636
11637 /* Keep all sections containing symbols undefined on the command-line,
11638 and the section containing the entry symbol. */
11639
11640 void
11641 _bfd_elf_gc_keep (struct bfd_link_info *info)
11642 {
11643 struct bfd_sym_chain *sym;
11644
11645 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11646 {
11647 struct elf_link_hash_entry *h;
11648
11649 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11650 FALSE, FALSE, FALSE);
11651
11652 if (h != NULL
11653 && (h->root.type == bfd_link_hash_defined
11654 || h->root.type == bfd_link_hash_defweak)
11655 && !bfd_is_abs_section (h->root.u.def.section))
11656 h->root.u.def.section->flags |= SEC_KEEP;
11657 }
11658 }
11659
11660 /* Do mark and sweep of unused sections. */
11661
11662 bfd_boolean
11663 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11664 {
11665 bfd_boolean ok = TRUE;
11666 bfd *sub;
11667 elf_gc_mark_hook_fn gc_mark_hook;
11668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11669
11670 if (!bed->can_gc_sections
11671 || !is_elf_hash_table (info->hash))
11672 {
11673 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11674 return TRUE;
11675 }
11676
11677 bed->gc_keep (info);
11678
11679 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11680 at the .eh_frame section if we can mark the FDEs individually. */
11681 _bfd_elf_begin_eh_frame_parsing (info);
11682 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11683 {
11684 asection *sec;
11685 struct elf_reloc_cookie cookie;
11686
11687 sec = bfd_get_section_by_name (sub, ".eh_frame");
11688 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11689 {
11690 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11691 if (elf_section_data (sec)->sec_info)
11692 elf_eh_frame_section (sub) = sec;
11693 fini_reloc_cookie_for_section (&cookie, sec);
11694 }
11695 }
11696 _bfd_elf_end_eh_frame_parsing (info);
11697
11698 /* Apply transitive closure to the vtable entry usage info. */
11699 elf_link_hash_traverse (elf_hash_table (info),
11700 elf_gc_propagate_vtable_entries_used,
11701 &ok);
11702 if (!ok)
11703 return FALSE;
11704
11705 /* Kill the vtable relocations that were not used. */
11706 elf_link_hash_traverse (elf_hash_table (info),
11707 elf_gc_smash_unused_vtentry_relocs,
11708 &ok);
11709 if (!ok)
11710 return FALSE;
11711
11712 /* Mark dynamically referenced symbols. */
11713 if (elf_hash_table (info)->dynamic_sections_created)
11714 elf_link_hash_traverse (elf_hash_table (info),
11715 bed->gc_mark_dynamic_ref,
11716 info);
11717
11718 /* Grovel through relocs to find out who stays ... */
11719 gc_mark_hook = bed->gc_mark_hook;
11720 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11721 {
11722 asection *o;
11723
11724 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11725 continue;
11726
11727 for (o = sub->sections; o != NULL; o = o->next)
11728 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11729 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11730 return FALSE;
11731 }
11732
11733 /* Allow the backend to mark additional target specific sections. */
11734 if (bed->gc_mark_extra_sections)
11735 bed->gc_mark_extra_sections (info, gc_mark_hook);
11736
11737 /* ... and mark SEC_EXCLUDE for those that go. */
11738 return elf_gc_sweep (abfd, info);
11739 }
11740 \f
11741 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11742
11743 bfd_boolean
11744 bfd_elf_gc_record_vtinherit (bfd *abfd,
11745 asection *sec,
11746 struct elf_link_hash_entry *h,
11747 bfd_vma offset)
11748 {
11749 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11750 struct elf_link_hash_entry **search, *child;
11751 bfd_size_type extsymcount;
11752 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11753
11754 /* The sh_info field of the symtab header tells us where the
11755 external symbols start. We don't care about the local symbols at
11756 this point. */
11757 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11758 if (!elf_bad_symtab (abfd))
11759 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11760
11761 sym_hashes = elf_sym_hashes (abfd);
11762 sym_hashes_end = sym_hashes + extsymcount;
11763
11764 /* Hunt down the child symbol, which is in this section at the same
11765 offset as the relocation. */
11766 for (search = sym_hashes; search != sym_hashes_end; ++search)
11767 {
11768 if ((child = *search) != NULL
11769 && (child->root.type == bfd_link_hash_defined
11770 || child->root.type == bfd_link_hash_defweak)
11771 && child->root.u.def.section == sec
11772 && child->root.u.def.value == offset)
11773 goto win;
11774 }
11775
11776 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11777 abfd, sec, (unsigned long) offset);
11778 bfd_set_error (bfd_error_invalid_operation);
11779 return FALSE;
11780
11781 win:
11782 if (!child->vtable)
11783 {
11784 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11785 if (!child->vtable)
11786 return FALSE;
11787 }
11788 if (!h)
11789 {
11790 /* This *should* only be the absolute section. It could potentially
11791 be that someone has defined a non-global vtable though, which
11792 would be bad. It isn't worth paging in the local symbols to be
11793 sure though; that case should simply be handled by the assembler. */
11794
11795 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11796 }
11797 else
11798 child->vtable->parent = h;
11799
11800 return TRUE;
11801 }
11802
11803 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11804
11805 bfd_boolean
11806 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11807 asection *sec ATTRIBUTE_UNUSED,
11808 struct elf_link_hash_entry *h,
11809 bfd_vma addend)
11810 {
11811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11812 unsigned int log_file_align = bed->s->log_file_align;
11813
11814 if (!h->vtable)
11815 {
11816 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11817 if (!h->vtable)
11818 return FALSE;
11819 }
11820
11821 if (addend >= h->vtable->size)
11822 {
11823 size_t size, bytes, file_align;
11824 bfd_boolean *ptr = h->vtable->used;
11825
11826 /* While the symbol is undefined, we have to be prepared to handle
11827 a zero size. */
11828 file_align = 1 << log_file_align;
11829 if (h->root.type == bfd_link_hash_undefined)
11830 size = addend + file_align;
11831 else
11832 {
11833 size = h->size;
11834 if (addend >= size)
11835 {
11836 /* Oops! We've got a reference past the defined end of
11837 the table. This is probably a bug -- shall we warn? */
11838 size = addend + file_align;
11839 }
11840 }
11841 size = (size + file_align - 1) & -file_align;
11842
11843 /* Allocate one extra entry for use as a "done" flag for the
11844 consolidation pass. */
11845 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11846
11847 if (ptr)
11848 {
11849 ptr = bfd_realloc (ptr - 1, bytes);
11850
11851 if (ptr != NULL)
11852 {
11853 size_t oldbytes;
11854
11855 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11856 * sizeof (bfd_boolean));
11857 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11858 }
11859 }
11860 else
11861 ptr = bfd_zmalloc (bytes);
11862
11863 if (ptr == NULL)
11864 return FALSE;
11865
11866 /* And arrange for that done flag to be at index -1. */
11867 h->vtable->used = ptr + 1;
11868 h->vtable->size = size;
11869 }
11870
11871 h->vtable->used[addend >> log_file_align] = TRUE;
11872
11873 return TRUE;
11874 }
11875
11876 struct alloc_got_off_arg {
11877 bfd_vma gotoff;
11878 struct bfd_link_info *info;
11879 };
11880
11881 /* We need a special top-level link routine to convert got reference counts
11882 to real got offsets. */
11883
11884 static bfd_boolean
11885 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11886 {
11887 struct alloc_got_off_arg *gofarg = arg;
11888 bfd *obfd = gofarg->info->output_bfd;
11889 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11890
11891 if (h->root.type == bfd_link_hash_warning)
11892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11893
11894 if (h->got.refcount > 0)
11895 {
11896 h->got.offset = gofarg->gotoff;
11897 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11898 }
11899 else
11900 h->got.offset = (bfd_vma) -1;
11901
11902 return TRUE;
11903 }
11904
11905 /* And an accompanying bit to work out final got entry offsets once
11906 we're done. Should be called from final_link. */
11907
11908 bfd_boolean
11909 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11910 struct bfd_link_info *info)
11911 {
11912 bfd *i;
11913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11914 bfd_vma gotoff;
11915 struct alloc_got_off_arg gofarg;
11916
11917 BFD_ASSERT (abfd == info->output_bfd);
11918
11919 if (! is_elf_hash_table (info->hash))
11920 return FALSE;
11921
11922 /* The GOT offset is relative to the .got section, but the GOT header is
11923 put into the .got.plt section, if the backend uses it. */
11924 if (bed->want_got_plt)
11925 gotoff = 0;
11926 else
11927 gotoff = bed->got_header_size;
11928
11929 /* Do the local .got entries first. */
11930 for (i = info->input_bfds; i; i = i->link_next)
11931 {
11932 bfd_signed_vma *local_got;
11933 bfd_size_type j, locsymcount;
11934 Elf_Internal_Shdr *symtab_hdr;
11935
11936 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11937 continue;
11938
11939 local_got = elf_local_got_refcounts (i);
11940 if (!local_got)
11941 continue;
11942
11943 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11944 if (elf_bad_symtab (i))
11945 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11946 else
11947 locsymcount = symtab_hdr->sh_info;
11948
11949 for (j = 0; j < locsymcount; ++j)
11950 {
11951 if (local_got[j] > 0)
11952 {
11953 local_got[j] = gotoff;
11954 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11955 }
11956 else
11957 local_got[j] = (bfd_vma) -1;
11958 }
11959 }
11960
11961 /* Then the global .got entries. .plt refcounts are handled by
11962 adjust_dynamic_symbol */
11963 gofarg.gotoff = gotoff;
11964 gofarg.info = info;
11965 elf_link_hash_traverse (elf_hash_table (info),
11966 elf_gc_allocate_got_offsets,
11967 &gofarg);
11968 return TRUE;
11969 }
11970
11971 /* Many folk need no more in the way of final link than this, once
11972 got entry reference counting is enabled. */
11973
11974 bfd_boolean
11975 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11976 {
11977 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11978 return FALSE;
11979
11980 /* Invoke the regular ELF backend linker to do all the work. */
11981 return bfd_elf_final_link (abfd, info);
11982 }
11983
11984 bfd_boolean
11985 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11986 {
11987 struct elf_reloc_cookie *rcookie = cookie;
11988
11989 if (rcookie->bad_symtab)
11990 rcookie->rel = rcookie->rels;
11991
11992 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11993 {
11994 unsigned long r_symndx;
11995
11996 if (! rcookie->bad_symtab)
11997 if (rcookie->rel->r_offset > offset)
11998 return FALSE;
11999 if (rcookie->rel->r_offset != offset)
12000 continue;
12001
12002 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12003 if (r_symndx == SHN_UNDEF)
12004 return TRUE;
12005
12006 if (r_symndx >= rcookie->locsymcount
12007 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12008 {
12009 struct elf_link_hash_entry *h;
12010
12011 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12012
12013 while (h->root.type == bfd_link_hash_indirect
12014 || h->root.type == bfd_link_hash_warning)
12015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12016
12017 if ((h->root.type == bfd_link_hash_defined
12018 || h->root.type == bfd_link_hash_defweak)
12019 && elf_discarded_section (h->root.u.def.section))
12020 return TRUE;
12021 else
12022 return FALSE;
12023 }
12024 else
12025 {
12026 /* It's not a relocation against a global symbol,
12027 but it could be a relocation against a local
12028 symbol for a discarded section. */
12029 asection *isec;
12030 Elf_Internal_Sym *isym;
12031
12032 /* Need to: get the symbol; get the section. */
12033 isym = &rcookie->locsyms[r_symndx];
12034 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12035 if (isec != NULL && elf_discarded_section (isec))
12036 return TRUE;
12037 }
12038 return FALSE;
12039 }
12040 return FALSE;
12041 }
12042
12043 /* Discard unneeded references to discarded sections.
12044 Returns TRUE if any section's size was changed. */
12045 /* This function assumes that the relocations are in sorted order,
12046 which is true for all known assemblers. */
12047
12048 bfd_boolean
12049 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12050 {
12051 struct elf_reloc_cookie cookie;
12052 asection *stab, *eh;
12053 const struct elf_backend_data *bed;
12054 bfd *abfd;
12055 bfd_boolean ret = FALSE;
12056
12057 if (info->traditional_format
12058 || !is_elf_hash_table (info->hash))
12059 return FALSE;
12060
12061 _bfd_elf_begin_eh_frame_parsing (info);
12062 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12063 {
12064 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12065 continue;
12066
12067 bed = get_elf_backend_data (abfd);
12068
12069 if ((abfd->flags & DYNAMIC) != 0)
12070 continue;
12071
12072 eh = NULL;
12073 if (!info->relocatable)
12074 {
12075 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12076 if (eh != NULL
12077 && (eh->size == 0
12078 || bfd_is_abs_section (eh->output_section)))
12079 eh = NULL;
12080 }
12081
12082 stab = bfd_get_section_by_name (abfd, ".stab");
12083 if (stab != NULL
12084 && (stab->size == 0
12085 || bfd_is_abs_section (stab->output_section)
12086 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12087 stab = NULL;
12088
12089 if (stab == NULL
12090 && eh == NULL
12091 && bed->elf_backend_discard_info == NULL)
12092 continue;
12093
12094 if (!init_reloc_cookie (&cookie, info, abfd))
12095 return FALSE;
12096
12097 if (stab != NULL
12098 && stab->reloc_count > 0
12099 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12100 {
12101 if (_bfd_discard_section_stabs (abfd, stab,
12102 elf_section_data (stab)->sec_info,
12103 bfd_elf_reloc_symbol_deleted_p,
12104 &cookie))
12105 ret = TRUE;
12106 fini_reloc_cookie_rels (&cookie, stab);
12107 }
12108
12109 if (eh != NULL
12110 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12111 {
12112 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12113 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12114 bfd_elf_reloc_symbol_deleted_p,
12115 &cookie))
12116 ret = TRUE;
12117 fini_reloc_cookie_rels (&cookie, eh);
12118 }
12119
12120 if (bed->elf_backend_discard_info != NULL
12121 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12122 ret = TRUE;
12123
12124 fini_reloc_cookie (&cookie, abfd);
12125 }
12126 _bfd_elf_end_eh_frame_parsing (info);
12127
12128 if (info->eh_frame_hdr
12129 && !info->relocatable
12130 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12131 ret = TRUE;
12132
12133 return ret;
12134 }
12135
12136 /* For a SHT_GROUP section, return the group signature. For other
12137 sections, return the normal section name. */
12138
12139 static const char *
12140 section_signature (asection *sec)
12141 {
12142 if ((sec->flags & SEC_GROUP) != 0
12143 && elf_next_in_group (sec) != NULL
12144 && elf_group_name (elf_next_in_group (sec)) != NULL)
12145 return elf_group_name (elf_next_in_group (sec));
12146 return sec->name;
12147 }
12148
12149 void
12150 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12151 struct bfd_link_info *info)
12152 {
12153 flagword flags;
12154 const char *name, *p;
12155 struct bfd_section_already_linked *l;
12156 struct bfd_section_already_linked_hash_entry *already_linked_list;
12157
12158 if (sec->output_section == bfd_abs_section_ptr)
12159 return;
12160
12161 flags = sec->flags;
12162
12163 /* Return if it isn't a linkonce section. A comdat group section
12164 also has SEC_LINK_ONCE set. */
12165 if ((flags & SEC_LINK_ONCE) == 0)
12166 return;
12167
12168 /* Don't put group member sections on our list of already linked
12169 sections. They are handled as a group via their group section. */
12170 if (elf_sec_group (sec) != NULL)
12171 return;
12172
12173 /* FIXME: When doing a relocatable link, we may have trouble
12174 copying relocations in other sections that refer to local symbols
12175 in the section being discarded. Those relocations will have to
12176 be converted somehow; as of this writing I'm not sure that any of
12177 the backends handle that correctly.
12178
12179 It is tempting to instead not discard link once sections when
12180 doing a relocatable link (technically, they should be discarded
12181 whenever we are building constructors). However, that fails,
12182 because the linker winds up combining all the link once sections
12183 into a single large link once section, which defeats the purpose
12184 of having link once sections in the first place.
12185
12186 Also, not merging link once sections in a relocatable link
12187 causes trouble for MIPS ELF, which relies on link once semantics
12188 to handle the .reginfo section correctly. */
12189
12190 name = section_signature (sec);
12191
12192 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12193 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12194 p++;
12195 else
12196 p = name;
12197
12198 already_linked_list = bfd_section_already_linked_table_lookup (p);
12199
12200 for (l = already_linked_list->entry; l != NULL; l = l->next)
12201 {
12202 /* We may have 2 different types of sections on the list: group
12203 sections and linkonce sections. Match like sections. */
12204 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12205 && strcmp (name, section_signature (l->sec)) == 0
12206 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12207 {
12208 /* The section has already been linked. See if we should
12209 issue a warning. */
12210 switch (flags & SEC_LINK_DUPLICATES)
12211 {
12212 default:
12213 abort ();
12214
12215 case SEC_LINK_DUPLICATES_DISCARD:
12216 break;
12217
12218 case SEC_LINK_DUPLICATES_ONE_ONLY:
12219 (*_bfd_error_handler)
12220 (_("%B: ignoring duplicate section `%A'"),
12221 abfd, sec);
12222 break;
12223
12224 case SEC_LINK_DUPLICATES_SAME_SIZE:
12225 if (sec->size != l->sec->size)
12226 (*_bfd_error_handler)
12227 (_("%B: duplicate section `%A' has different size"),
12228 abfd, sec);
12229 break;
12230
12231 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12232 if (sec->size != l->sec->size)
12233 (*_bfd_error_handler)
12234 (_("%B: duplicate section `%A' has different size"),
12235 abfd, sec);
12236 else if (sec->size != 0)
12237 {
12238 bfd_byte *sec_contents, *l_sec_contents;
12239
12240 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12241 (*_bfd_error_handler)
12242 (_("%B: warning: could not read contents of section `%A'"),
12243 abfd, sec);
12244 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12245 &l_sec_contents))
12246 (*_bfd_error_handler)
12247 (_("%B: warning: could not read contents of section `%A'"),
12248 l->sec->owner, l->sec);
12249 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12250 (*_bfd_error_handler)
12251 (_("%B: warning: duplicate section `%A' has different contents"),
12252 abfd, sec);
12253
12254 if (sec_contents)
12255 free (sec_contents);
12256 if (l_sec_contents)
12257 free (l_sec_contents);
12258 }
12259 break;
12260 }
12261
12262 /* Set the output_section field so that lang_add_section
12263 does not create a lang_input_section structure for this
12264 section. Since there might be a symbol in the section
12265 being discarded, we must retain a pointer to the section
12266 which we are really going to use. */
12267 sec->output_section = bfd_abs_section_ptr;
12268 sec->kept_section = l->sec;
12269
12270 if (flags & SEC_GROUP)
12271 {
12272 asection *first = elf_next_in_group (sec);
12273 asection *s = first;
12274
12275 while (s != NULL)
12276 {
12277 s->output_section = bfd_abs_section_ptr;
12278 /* Record which group discards it. */
12279 s->kept_section = l->sec;
12280 s = elf_next_in_group (s);
12281 /* These lists are circular. */
12282 if (s == first)
12283 break;
12284 }
12285 }
12286
12287 return;
12288 }
12289 }
12290
12291 /* A single member comdat group section may be discarded by a
12292 linkonce section and vice versa. */
12293
12294 if ((flags & SEC_GROUP) != 0)
12295 {
12296 asection *first = elf_next_in_group (sec);
12297
12298 if (first != NULL && elf_next_in_group (first) == first)
12299 /* Check this single member group against linkonce sections. */
12300 for (l = already_linked_list->entry; l != NULL; l = l->next)
12301 if ((l->sec->flags & SEC_GROUP) == 0
12302 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12303 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12304 {
12305 first->output_section = bfd_abs_section_ptr;
12306 first->kept_section = l->sec;
12307 sec->output_section = bfd_abs_section_ptr;
12308 break;
12309 }
12310 }
12311 else
12312 /* Check this linkonce section against single member groups. */
12313 for (l = already_linked_list->entry; l != NULL; l = l->next)
12314 if (l->sec->flags & SEC_GROUP)
12315 {
12316 asection *first = elf_next_in_group (l->sec);
12317
12318 if (first != NULL
12319 && elf_next_in_group (first) == first
12320 && bfd_elf_match_symbols_in_sections (first, sec, info))
12321 {
12322 sec->output_section = bfd_abs_section_ptr;
12323 sec->kept_section = first;
12324 break;
12325 }
12326 }
12327
12328 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12329 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12330 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12331 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12332 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12333 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12334 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12335 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12336 The reverse order cannot happen as there is never a bfd with only the
12337 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12338 matter as here were are looking only for cross-bfd sections. */
12339
12340 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12341 for (l = already_linked_list->entry; l != NULL; l = l->next)
12342 if ((l->sec->flags & SEC_GROUP) == 0
12343 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12344 {
12345 if (abfd != l->sec->owner)
12346 sec->output_section = bfd_abs_section_ptr;
12347 break;
12348 }
12349
12350 /* This is the first section with this name. Record it. */
12351 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12352 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12353 }
12354
12355 bfd_boolean
12356 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12357 {
12358 return sym->st_shndx == SHN_COMMON;
12359 }
12360
12361 unsigned int
12362 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12363 {
12364 return SHN_COMMON;
12365 }
12366
12367 asection *
12368 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12369 {
12370 return bfd_com_section_ptr;
12371 }
12372
12373 bfd_vma
12374 _bfd_elf_default_got_elt_size (bfd *abfd,
12375 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12376 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12377 bfd *ibfd ATTRIBUTE_UNUSED,
12378 unsigned long symndx ATTRIBUTE_UNUSED)
12379 {
12380 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12381 return bed->s->arch_size / 8;
12382 }
12383
12384 /* Routines to support the creation of dynamic relocs. */
12385
12386 /* Return true if NAME is a name of a relocation
12387 section associated with section S. */
12388
12389 static bfd_boolean
12390 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12391 {
12392 if (rela)
12393 return CONST_STRNEQ (name, ".rela")
12394 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12395
12396 return CONST_STRNEQ (name, ".rel")
12397 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12398 }
12399
12400 /* Returns the name of the dynamic reloc section associated with SEC. */
12401
12402 static const char *
12403 get_dynamic_reloc_section_name (bfd * abfd,
12404 asection * sec,
12405 bfd_boolean is_rela)
12406 {
12407 const char * name;
12408 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12409 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12410
12411 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12412 if (name == NULL)
12413 return NULL;
12414
12415 if (! is_reloc_section (is_rela, name, sec))
12416 {
12417 static bfd_boolean complained = FALSE;
12418
12419 if (! complained)
12420 {
12421 (*_bfd_error_handler)
12422 (_("%B: bad relocation section name `%s\'"), abfd, name);
12423 complained = TRUE;
12424 }
12425 name = NULL;
12426 }
12427
12428 return name;
12429 }
12430
12431 /* Returns the dynamic reloc section associated with SEC.
12432 If necessary compute the name of the dynamic reloc section based
12433 on SEC's name (looked up in ABFD's string table) and the setting
12434 of IS_RELA. */
12435
12436 asection *
12437 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12438 asection * sec,
12439 bfd_boolean is_rela)
12440 {
12441 asection * reloc_sec = elf_section_data (sec)->sreloc;
12442
12443 if (reloc_sec == NULL)
12444 {
12445 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12446
12447 if (name != NULL)
12448 {
12449 reloc_sec = bfd_get_section_by_name (abfd, name);
12450
12451 if (reloc_sec != NULL)
12452 elf_section_data (sec)->sreloc = reloc_sec;
12453 }
12454 }
12455
12456 return reloc_sec;
12457 }
12458
12459 /* Returns the dynamic reloc section associated with SEC. If the
12460 section does not exist it is created and attached to the DYNOBJ
12461 bfd and stored in the SRELOC field of SEC's elf_section_data
12462 structure.
12463
12464 ALIGNMENT is the alignment for the newly created section and
12465 IS_RELA defines whether the name should be .rela.<SEC's name>
12466 or .rel.<SEC's name>. The section name is looked up in the
12467 string table associated with ABFD. */
12468
12469 asection *
12470 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12471 bfd * dynobj,
12472 unsigned int alignment,
12473 bfd * abfd,
12474 bfd_boolean is_rela)
12475 {
12476 asection * reloc_sec = elf_section_data (sec)->sreloc;
12477
12478 if (reloc_sec == NULL)
12479 {
12480 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12481
12482 if (name == NULL)
12483 return NULL;
12484
12485 reloc_sec = bfd_get_section_by_name (dynobj, name);
12486
12487 if (reloc_sec == NULL)
12488 {
12489 flagword flags;
12490
12491 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12492 if ((sec->flags & SEC_ALLOC) != 0)
12493 flags |= SEC_ALLOC | SEC_LOAD;
12494
12495 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12496 if (reloc_sec != NULL)
12497 {
12498 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12499 reloc_sec = NULL;
12500 }
12501 }
12502
12503 elf_section_data (sec)->sreloc = reloc_sec;
12504 }
12505
12506 return reloc_sec;
12507 }
This page took 0.347919 seconds and 4 git commands to generate.