* elf32-h8300 (h8_relax_section): Add new relaxation of mov
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 /* If a new weak symbol definition comes from a regular file and the
1266 old symbol comes from a dynamic library, we treat the new one as
1267 strong. Similarly, an old weak symbol definition from a regular
1268 file is treated as strong when the new symbol comes from a dynamic
1269 library. Further, an old weak symbol from a dynamic library is
1270 treated as strong if the new symbol is from a dynamic library.
1271 This reflects the way glibc's ld.so works.
1272
1273 Do this before setting *type_change_ok or *size_change_ok so that
1274 we warn properly when dynamic library symbols are overridden. */
1275
1276 if (newdef && !newdyn && olddyn)
1277 newweak = FALSE;
1278 if (olddef && newdyn)
1279 oldweak = FALSE;
1280
1281 /* Allow changes between different types of function symbol. */
1282 if (newfunc && oldfunc)
1283 *type_change_ok = TRUE;
1284
1285 /* It's OK to change the type if either the existing symbol or the
1286 new symbol is weak. A type change is also OK if the old symbol
1287 is undefined and the new symbol is defined. */
1288
1289 if (oldweak
1290 || newweak
1291 || (newdef
1292 && h->root.type == bfd_link_hash_undefined))
1293 *type_change_ok = TRUE;
1294
1295 /* It's OK to change the size if either the existing symbol or the
1296 new symbol is weak, or if the old symbol is undefined. */
1297
1298 if (*type_change_ok
1299 || h->root.type == bfd_link_hash_undefined)
1300 *size_change_ok = TRUE;
1301
1302 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1303 symbol, respectively, appears to be a common symbol in a dynamic
1304 object. If a symbol appears in an uninitialized section, and is
1305 not weak, and is not a function, then it may be a common symbol
1306 which was resolved when the dynamic object was created. We want
1307 to treat such symbols specially, because they raise special
1308 considerations when setting the symbol size: if the symbol
1309 appears as a common symbol in a regular object, and the size in
1310 the regular object is larger, we must make sure that we use the
1311 larger size. This problematic case can always be avoided in C,
1312 but it must be handled correctly when using Fortran shared
1313 libraries.
1314
1315 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1316 likewise for OLDDYNCOMMON and OLDDEF.
1317
1318 Note that this test is just a heuristic, and that it is quite
1319 possible to have an uninitialized symbol in a shared object which
1320 is really a definition, rather than a common symbol. This could
1321 lead to some minor confusion when the symbol really is a common
1322 symbol in some regular object. However, I think it will be
1323 harmless. */
1324
1325 if (newdyn
1326 && newdef
1327 && !newweak
1328 && (sec->flags & SEC_ALLOC) != 0
1329 && (sec->flags & SEC_LOAD) == 0
1330 && sym->st_size > 0
1331 && !newfunc)
1332 newdyncommon = TRUE;
1333 else
1334 newdyncommon = FALSE;
1335
1336 if (olddyn
1337 && olddef
1338 && h->root.type == bfd_link_hash_defined
1339 && h->def_dynamic
1340 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1341 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1342 && h->size > 0
1343 && !oldfunc)
1344 olddyncommon = TRUE;
1345 else
1346 olddyncommon = FALSE;
1347
1348 /* We now know everything about the old and new symbols. We ask the
1349 backend to check if we can merge them. */
1350 if (bed->merge_symbol
1351 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1352 pold_alignment, skip, override,
1353 type_change_ok, size_change_ok,
1354 &newdyn, &newdef, &newdyncommon, &newweak,
1355 abfd, &sec,
1356 &olddyn, &olddef, &olddyncommon, &oldweak,
1357 oldbfd, &oldsec))
1358 return FALSE;
1359
1360 /* If both the old and the new symbols look like common symbols in a
1361 dynamic object, set the size of the symbol to the larger of the
1362 two. */
1363
1364 if (olddyncommon
1365 && newdyncommon
1366 && sym->st_size != h->size)
1367 {
1368 /* Since we think we have two common symbols, issue a multiple
1369 common warning if desired. Note that we only warn if the
1370 size is different. If the size is the same, we simply let
1371 the old symbol override the new one as normally happens with
1372 symbols defined in dynamic objects. */
1373
1374 if (! ((*info->callbacks->multiple_common)
1375 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1376 return FALSE;
1377
1378 if (sym->st_size > h->size)
1379 h->size = sym->st_size;
1380
1381 *size_change_ok = TRUE;
1382 }
1383
1384 /* If we are looking at a dynamic object, and we have found a
1385 definition, we need to see if the symbol was already defined by
1386 some other object. If so, we want to use the existing
1387 definition, and we do not want to report a multiple symbol
1388 definition error; we do this by clobbering *PSEC to be
1389 bfd_und_section_ptr.
1390
1391 We treat a common symbol as a definition if the symbol in the
1392 shared library is a function, since common symbols always
1393 represent variables; this can cause confusion in principle, but
1394 any such confusion would seem to indicate an erroneous program or
1395 shared library. We also permit a common symbol in a regular
1396 object to override a weak symbol in a shared object. */
1397
1398 if (newdyn
1399 && newdef
1400 && (olddef
1401 || (h->root.type == bfd_link_hash_common
1402 && (newweak || newfunc))))
1403 {
1404 *override = TRUE;
1405 newdef = FALSE;
1406 newdyncommon = FALSE;
1407
1408 *psec = sec = bfd_und_section_ptr;
1409 *size_change_ok = TRUE;
1410
1411 /* If we get here when the old symbol is a common symbol, then
1412 we are explicitly letting it override a weak symbol or
1413 function in a dynamic object, and we don't want to warn about
1414 a type change. If the old symbol is a defined symbol, a type
1415 change warning may still be appropriate. */
1416
1417 if (h->root.type == bfd_link_hash_common)
1418 *type_change_ok = TRUE;
1419 }
1420
1421 /* Handle the special case of an old common symbol merging with a
1422 new symbol which looks like a common symbol in a shared object.
1423 We change *PSEC and *PVALUE to make the new symbol look like a
1424 common symbol, and let _bfd_generic_link_add_one_symbol do the
1425 right thing. */
1426
1427 if (newdyncommon
1428 && h->root.type == bfd_link_hash_common)
1429 {
1430 *override = TRUE;
1431 newdef = FALSE;
1432 newdyncommon = FALSE;
1433 *pvalue = sym->st_size;
1434 *psec = sec = bed->common_section (oldsec);
1435 *size_change_ok = TRUE;
1436 }
1437
1438 /* Skip weak definitions of symbols that are already defined. */
1439 if (newdef && olddef && newweak)
1440 {
1441 /* Don't skip new non-IR weak syms. */
1442 if (!(oldbfd != NULL
1443 && (oldbfd->flags & BFD_PLUGIN) != 0
1444 && (abfd->flags & BFD_PLUGIN) == 0))
1445 *skip = TRUE;
1446
1447 /* Merge st_other. If the symbol already has a dynamic index,
1448 but visibility says it should not be visible, turn it into a
1449 local symbol. */
1450 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1451 if (h->dynindx != -1)
1452 switch (ELF_ST_VISIBILITY (h->other))
1453 {
1454 case STV_INTERNAL:
1455 case STV_HIDDEN:
1456 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1457 break;
1458 }
1459 }
1460
1461 /* If the old symbol is from a dynamic object, and the new symbol is
1462 a definition which is not from a dynamic object, then the new
1463 symbol overrides the old symbol. Symbols from regular files
1464 always take precedence over symbols from dynamic objects, even if
1465 they are defined after the dynamic object in the link.
1466
1467 As above, we again permit a common symbol in a regular object to
1468 override a definition in a shared object if the shared object
1469 symbol is a function or is weak. */
1470
1471 flip = NULL;
1472 if (!newdyn
1473 && (newdef
1474 || (bfd_is_com_section (sec)
1475 && (oldweak || oldfunc)))
1476 && olddyn
1477 && olddef
1478 && h->def_dynamic)
1479 {
1480 /* Change the hash table entry to undefined, and let
1481 _bfd_generic_link_add_one_symbol do the right thing with the
1482 new definition. */
1483
1484 h->root.type = bfd_link_hash_undefined;
1485 h->root.u.undef.abfd = h->root.u.def.section->owner;
1486 *size_change_ok = TRUE;
1487
1488 olddef = FALSE;
1489 olddyncommon = FALSE;
1490
1491 /* We again permit a type change when a common symbol may be
1492 overriding a function. */
1493
1494 if (bfd_is_com_section (sec))
1495 {
1496 if (oldfunc)
1497 {
1498 /* If a common symbol overrides a function, make sure
1499 that it isn't defined dynamically nor has type
1500 function. */
1501 h->def_dynamic = 0;
1502 h->type = STT_NOTYPE;
1503 }
1504 *type_change_ok = TRUE;
1505 }
1506
1507 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1508 flip = *sym_hash;
1509 else
1510 /* This union may have been set to be non-NULL when this symbol
1511 was seen in a dynamic object. We must force the union to be
1512 NULL, so that it is correct for a regular symbol. */
1513 h->verinfo.vertree = NULL;
1514 }
1515
1516 /* Handle the special case of a new common symbol merging with an
1517 old symbol that looks like it might be a common symbol defined in
1518 a shared object. Note that we have already handled the case in
1519 which a new common symbol should simply override the definition
1520 in the shared library. */
1521
1522 if (! newdyn
1523 && bfd_is_com_section (sec)
1524 && olddyncommon)
1525 {
1526 /* It would be best if we could set the hash table entry to a
1527 common symbol, but we don't know what to use for the section
1528 or the alignment. */
1529 if (! ((*info->callbacks->multiple_common)
1530 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1531 return FALSE;
1532
1533 /* If the presumed common symbol in the dynamic object is
1534 larger, pretend that the new symbol has its size. */
1535
1536 if (h->size > *pvalue)
1537 *pvalue = h->size;
1538
1539 /* We need to remember the alignment required by the symbol
1540 in the dynamic object. */
1541 BFD_ASSERT (pold_alignment);
1542 *pold_alignment = h->root.u.def.section->alignment_power;
1543
1544 olddef = FALSE;
1545 olddyncommon = FALSE;
1546
1547 h->root.type = bfd_link_hash_undefined;
1548 h->root.u.undef.abfd = h->root.u.def.section->owner;
1549
1550 *size_change_ok = TRUE;
1551 *type_change_ok = TRUE;
1552
1553 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1554 flip = *sym_hash;
1555 else
1556 h->verinfo.vertree = NULL;
1557 }
1558
1559 if (flip != NULL)
1560 {
1561 /* Handle the case where we had a versioned symbol in a dynamic
1562 library and now find a definition in a normal object. In this
1563 case, we make the versioned symbol point to the normal one. */
1564 flip->root.type = h->root.type;
1565 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1566 h->root.type = bfd_link_hash_indirect;
1567 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1568 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1569 if (h->def_dynamic)
1570 {
1571 h->def_dynamic = 0;
1572 flip->ref_dynamic = 1;
1573 }
1574 }
1575
1576 return TRUE;
1577 }
1578
1579 /* This function is called to create an indirect symbol from the
1580 default for the symbol with the default version if needed. The
1581 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1582 set DYNSYM if the new indirect symbol is dynamic. */
1583
1584 static bfd_boolean
1585 _bfd_elf_add_default_symbol (bfd *abfd,
1586 struct bfd_link_info *info,
1587 struct elf_link_hash_entry *h,
1588 const char *name,
1589 Elf_Internal_Sym *sym,
1590 asection **psec,
1591 bfd_vma *value,
1592 bfd_boolean *dynsym,
1593 bfd_boolean override)
1594 {
1595 bfd_boolean type_change_ok;
1596 bfd_boolean size_change_ok;
1597 bfd_boolean skip;
1598 char *shortname;
1599 struct elf_link_hash_entry *hi;
1600 struct bfd_link_hash_entry *bh;
1601 const struct elf_backend_data *bed;
1602 bfd_boolean collect;
1603 bfd_boolean dynamic;
1604 char *p;
1605 size_t len, shortlen;
1606 asection *sec;
1607
1608 /* If this symbol has a version, and it is the default version, we
1609 create an indirect symbol from the default name to the fully
1610 decorated name. This will cause external references which do not
1611 specify a version to be bound to this version of the symbol. */
1612 p = strchr (name, ELF_VER_CHR);
1613 if (p == NULL || p[1] != ELF_VER_CHR)
1614 return TRUE;
1615
1616 if (override)
1617 {
1618 /* We are overridden by an old definition. We need to check if we
1619 need to create the indirect symbol from the default name. */
1620 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1621 FALSE, FALSE);
1622 BFD_ASSERT (hi != NULL);
1623 if (hi == h)
1624 return TRUE;
1625 while (hi->root.type == bfd_link_hash_indirect
1626 || hi->root.type == bfd_link_hash_warning)
1627 {
1628 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1629 if (hi == h)
1630 return TRUE;
1631 }
1632 }
1633
1634 bed = get_elf_backend_data (abfd);
1635 collect = bed->collect;
1636 dynamic = (abfd->flags & DYNAMIC) != 0;
1637
1638 shortlen = p - name;
1639 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1640 if (shortname == NULL)
1641 return FALSE;
1642 memcpy (shortname, name, shortlen);
1643 shortname[shortlen] = '\0';
1644
1645 /* We are going to create a new symbol. Merge it with any existing
1646 symbol with this name. For the purposes of the merge, act as
1647 though we were defining the symbol we just defined, although we
1648 actually going to define an indirect symbol. */
1649 type_change_ok = FALSE;
1650 size_change_ok = FALSE;
1651 sec = *psec;
1652 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1653 NULL, NULL, &hi, &skip, &override,
1654 &type_change_ok, &size_change_ok))
1655 return FALSE;
1656
1657 if (skip)
1658 goto nondefault;
1659
1660 if (! override)
1661 {
1662 bh = &hi->root;
1663 if (! (_bfd_generic_link_add_one_symbol
1664 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1665 0, name, FALSE, collect, &bh)))
1666 return FALSE;
1667 hi = (struct elf_link_hash_entry *) bh;
1668 }
1669 else
1670 {
1671 /* In this case the symbol named SHORTNAME is overriding the
1672 indirect symbol we want to add. We were planning on making
1673 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1674 is the name without a version. NAME is the fully versioned
1675 name, and it is the default version.
1676
1677 Overriding means that we already saw a definition for the
1678 symbol SHORTNAME in a regular object, and it is overriding
1679 the symbol defined in the dynamic object.
1680
1681 When this happens, we actually want to change NAME, the
1682 symbol we just added, to refer to SHORTNAME. This will cause
1683 references to NAME in the shared object to become references
1684 to SHORTNAME in the regular object. This is what we expect
1685 when we override a function in a shared object: that the
1686 references in the shared object will be mapped to the
1687 definition in the regular object. */
1688
1689 while (hi->root.type == bfd_link_hash_indirect
1690 || hi->root.type == bfd_link_hash_warning)
1691 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1692
1693 h->root.type = bfd_link_hash_indirect;
1694 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1695 if (h->def_dynamic)
1696 {
1697 h->def_dynamic = 0;
1698 hi->ref_dynamic = 1;
1699 if (hi->ref_regular
1700 || hi->def_regular)
1701 {
1702 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1703 return FALSE;
1704 }
1705 }
1706
1707 /* Now set HI to H, so that the following code will set the
1708 other fields correctly. */
1709 hi = h;
1710 }
1711
1712 /* Check if HI is a warning symbol. */
1713 if (hi->root.type == bfd_link_hash_warning)
1714 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1715
1716 /* If there is a duplicate definition somewhere, then HI may not
1717 point to an indirect symbol. We will have reported an error to
1718 the user in that case. */
1719
1720 if (hi->root.type == bfd_link_hash_indirect)
1721 {
1722 struct elf_link_hash_entry *ht;
1723
1724 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1725 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1726
1727 /* See if the new flags lead us to realize that the symbol must
1728 be dynamic. */
1729 if (! *dynsym)
1730 {
1731 if (! dynamic)
1732 {
1733 if (! info->executable
1734 || hi->def_dynamic
1735 || hi->ref_dynamic)
1736 *dynsym = TRUE;
1737 }
1738 else
1739 {
1740 if (hi->ref_regular)
1741 *dynsym = TRUE;
1742 }
1743 }
1744 }
1745
1746 /* We also need to define an indirection from the nondefault version
1747 of the symbol. */
1748
1749 nondefault:
1750 len = strlen (name);
1751 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1752 if (shortname == NULL)
1753 return FALSE;
1754 memcpy (shortname, name, shortlen);
1755 memcpy (shortname + shortlen, p + 1, len - shortlen);
1756
1757 /* Once again, merge with any existing symbol. */
1758 type_change_ok = FALSE;
1759 size_change_ok = FALSE;
1760 sec = *psec;
1761 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1762 NULL, NULL, &hi, &skip, &override,
1763 &type_change_ok, &size_change_ok))
1764 return FALSE;
1765
1766 if (skip)
1767 return TRUE;
1768
1769 if (override)
1770 {
1771 /* Here SHORTNAME is a versioned name, so we don't expect to see
1772 the type of override we do in the case above unless it is
1773 overridden by a versioned definition. */
1774 if (hi->root.type != bfd_link_hash_defined
1775 && hi->root.type != bfd_link_hash_defweak)
1776 (*_bfd_error_handler)
1777 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1778 abfd, shortname);
1779 }
1780 else
1781 {
1782 bh = &hi->root;
1783 if (! (_bfd_generic_link_add_one_symbol
1784 (info, abfd, shortname, BSF_INDIRECT,
1785 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1786 return FALSE;
1787 hi = (struct elf_link_hash_entry *) bh;
1788
1789 /* If there is a duplicate definition somewhere, then HI may not
1790 point to an indirect symbol. We will have reported an error
1791 to the user in that case. */
1792
1793 if (hi->root.type == bfd_link_hash_indirect)
1794 {
1795 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1796
1797 /* See if the new flags lead us to realize that the symbol
1798 must be dynamic. */
1799 if (! *dynsym)
1800 {
1801 if (! dynamic)
1802 {
1803 if (! info->executable
1804 || hi->ref_dynamic)
1805 *dynsym = TRUE;
1806 }
1807 else
1808 {
1809 if (hi->ref_regular)
1810 *dynsym = TRUE;
1811 }
1812 }
1813 }
1814 }
1815
1816 return TRUE;
1817 }
1818 \f
1819 /* This routine is used to export all defined symbols into the dynamic
1820 symbol table. It is called via elf_link_hash_traverse. */
1821
1822 static bfd_boolean
1823 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1824 {
1825 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1826
1827 /* Ignore indirect symbols. These are added by the versioning code. */
1828 if (h->root.type == bfd_link_hash_indirect)
1829 return TRUE;
1830
1831 /* Ignore this if we won't export it. */
1832 if (!eif->info->export_dynamic && !h->dynamic)
1833 return TRUE;
1834
1835 if (h->dynindx == -1
1836 && (h->def_regular || h->ref_regular)
1837 && ! bfd_hide_sym_by_version (eif->info->version_info,
1838 h->root.root.string))
1839 {
1840 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1841 {
1842 eif->failed = TRUE;
1843 return FALSE;
1844 }
1845 }
1846
1847 return TRUE;
1848 }
1849 \f
1850 /* Look through the symbols which are defined in other shared
1851 libraries and referenced here. Update the list of version
1852 dependencies. This will be put into the .gnu.version_r section.
1853 This function is called via elf_link_hash_traverse. */
1854
1855 static bfd_boolean
1856 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1857 void *data)
1858 {
1859 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1860 Elf_Internal_Verneed *t;
1861 Elf_Internal_Vernaux *a;
1862 bfd_size_type amt;
1863
1864 /* We only care about symbols defined in shared objects with version
1865 information. */
1866 if (!h->def_dynamic
1867 || h->def_regular
1868 || h->dynindx == -1
1869 || h->verinfo.verdef == NULL)
1870 return TRUE;
1871
1872 /* See if we already know about this version. */
1873 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1874 t != NULL;
1875 t = t->vn_nextref)
1876 {
1877 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1878 continue;
1879
1880 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1881 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1882 return TRUE;
1883
1884 break;
1885 }
1886
1887 /* This is a new version. Add it to tree we are building. */
1888
1889 if (t == NULL)
1890 {
1891 amt = sizeof *t;
1892 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893 if (t == NULL)
1894 {
1895 rinfo->failed = TRUE;
1896 return FALSE;
1897 }
1898
1899 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1900 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1901 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 }
1903
1904 amt = sizeof *a;
1905 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1906 if (a == NULL)
1907 {
1908 rinfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 /* Note that we are copying a string pointer here, and testing it
1913 above. If bfd_elf_string_from_elf_section is ever changed to
1914 discard the string data when low in memory, this will have to be
1915 fixed. */
1916 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917
1918 a->vna_flags = h->verinfo.verdef->vd_flags;
1919 a->vna_nextptr = t->vn_auxptr;
1920
1921 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1922 ++rinfo->vers;
1923
1924 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1925
1926 t->vn_auxptr = a;
1927
1928 return TRUE;
1929 }
1930
1931 /* Figure out appropriate versions for all the symbols. We may not
1932 have the version number script until we have read all of the input
1933 files, so until that point we don't know which symbols should be
1934 local. This function is called via elf_link_hash_traverse. */
1935
1936 static bfd_boolean
1937 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 {
1939 struct elf_info_failed *sinfo;
1940 struct bfd_link_info *info;
1941 const struct elf_backend_data *bed;
1942 struct elf_info_failed eif;
1943 char *p;
1944 bfd_size_type amt;
1945
1946 sinfo = (struct elf_info_failed *) data;
1947 info = sinfo->info;
1948
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953 {
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1957 }
1958
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
1961 if (!h->def_regular)
1962 return TRUE;
1963
1964 bed = get_elf_backend_data (info->output_bfd);
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1967 {
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1970
1971 hidden = TRUE;
1972
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1977 {
1978 hidden = FALSE;
1979 ++p;
1980 }
1981
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1984 {
1985 if (hidden)
1986 h->hidden = 1;
1987 return TRUE;
1988 }
1989
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1992 {
1993 if (strcmp (t->name, p) == 0)
1994 {
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1998
1999 len = p - h->root.root.string;
2000 alc = (char *) bfd_malloc (len);
2001 if (alc == NULL)
2002 {
2003 sinfo->failed = TRUE;
2004 return FALSE;
2005 }
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2010
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2014
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
2017
2018 /* See if there is anything to force this symbol to
2019 local scope. */
2020 if (d == NULL && t->locals.list != NULL)
2021 {
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2027 }
2028
2029 free (alc);
2030 break;
2031 }
2032 }
2033
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t == NULL && info->executable)
2037 {
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2040
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2045
2046 amt = sizeof *t;
2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 if (t == NULL)
2049 {
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 t->name = p;
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2057
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->info->version_info != NULL
2061 && sinfo->info->version_info->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->info->version_info;
2064 *pp != NULL;
2065 pp = &(*pp)->next)
2066 ++version_index;
2067 t->vernum = version_index;
2068
2069 *pp = t;
2070
2071 h->verinfo.vertree = t;
2072 }
2073 else if (t == NULL)
2074 {
2075 /* We could not find the version for a symbol when
2076 generating a shared archive. Return an error. */
2077 (*_bfd_error_handler)
2078 (_("%B: version node not found for symbol %s"),
2079 info->output_bfd, h->root.root.string);
2080 bfd_set_error (bfd_error_bad_value);
2081 sinfo->failed = TRUE;
2082 return FALSE;
2083 }
2084
2085 if (hidden)
2086 h->hidden = 1;
2087 }
2088
2089 /* If we don't have a version for this symbol, see if we can find
2090 something. */
2091 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2092 {
2093 bfd_boolean hide;
2094
2095 h->verinfo.vertree
2096 = bfd_find_version_for_sym (sinfo->info->version_info,
2097 h->root.root.string, &hide);
2098 if (h->verinfo.vertree != NULL && hide)
2099 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 }
2101
2102 return TRUE;
2103 }
2104 \f
2105 /* Read and swap the relocs from the section indicated by SHDR. This
2106 may be either a REL or a RELA section. The relocations are
2107 translated into RELA relocations and stored in INTERNAL_RELOCS,
2108 which should have already been allocated to contain enough space.
2109 The EXTERNAL_RELOCS are a buffer where the external form of the
2110 relocations should be stored.
2111
2112 Returns FALSE if something goes wrong. */
2113
2114 static bfd_boolean
2115 elf_link_read_relocs_from_section (bfd *abfd,
2116 asection *sec,
2117 Elf_Internal_Shdr *shdr,
2118 void *external_relocs,
2119 Elf_Internal_Rela *internal_relocs)
2120 {
2121 const struct elf_backend_data *bed;
2122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2123 const bfd_byte *erela;
2124 const bfd_byte *erelaend;
2125 Elf_Internal_Rela *irela;
2126 Elf_Internal_Shdr *symtab_hdr;
2127 size_t nsyms;
2128
2129 /* Position ourselves at the start of the section. */
2130 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2131 return FALSE;
2132
2133 /* Read the relocations. */
2134 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2135 return FALSE;
2136
2137 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2138 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2139
2140 bed = get_elf_backend_data (abfd);
2141
2142 /* Convert the external relocations to the internal format. */
2143 if (shdr->sh_entsize == bed->s->sizeof_rel)
2144 swap_in = bed->s->swap_reloc_in;
2145 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2146 swap_in = bed->s->swap_reloca_in;
2147 else
2148 {
2149 bfd_set_error (bfd_error_wrong_format);
2150 return FALSE;
2151 }
2152
2153 erela = (const bfd_byte *) external_relocs;
2154 erelaend = erela + shdr->sh_size;
2155 irela = internal_relocs;
2156 while (erela < erelaend)
2157 {
2158 bfd_vma r_symndx;
2159
2160 (*swap_in) (abfd, erela, irela);
2161 r_symndx = ELF32_R_SYM (irela->r_info);
2162 if (bed->s->arch_size == 64)
2163 r_symndx >>= 24;
2164 if (nsyms > 0)
2165 {
2166 if ((size_t) r_symndx >= nsyms)
2167 {
2168 (*_bfd_error_handler)
2169 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2170 " for offset 0x%lx in section `%A'"),
2171 abfd, sec,
2172 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173 bfd_set_error (bfd_error_bad_value);
2174 return FALSE;
2175 }
2176 }
2177 else if (r_symndx != STN_UNDEF)
2178 {
2179 (*_bfd_error_handler)
2180 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2181 " when the object file has no symbol table"),
2182 abfd, sec,
2183 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2184 bfd_set_error (bfd_error_bad_value);
2185 return FALSE;
2186 }
2187 irela += bed->s->int_rels_per_ext_rel;
2188 erela += shdr->sh_entsize;
2189 }
2190
2191 return TRUE;
2192 }
2193
2194 /* Read and swap the relocs for a section O. They may have been
2195 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2196 not NULL, they are used as buffers to read into. They are known to
2197 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2198 the return value is allocated using either malloc or bfd_alloc,
2199 according to the KEEP_MEMORY argument. If O has two relocation
2200 sections (both REL and RELA relocations), then the REL_HDR
2201 relocations will appear first in INTERNAL_RELOCS, followed by the
2202 RELA_HDR relocations. */
2203
2204 Elf_Internal_Rela *
2205 _bfd_elf_link_read_relocs (bfd *abfd,
2206 asection *o,
2207 void *external_relocs,
2208 Elf_Internal_Rela *internal_relocs,
2209 bfd_boolean keep_memory)
2210 {
2211 void *alloc1 = NULL;
2212 Elf_Internal_Rela *alloc2 = NULL;
2213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2214 struct bfd_elf_section_data *esdo = elf_section_data (o);
2215 Elf_Internal_Rela *internal_rela_relocs;
2216
2217 if (esdo->relocs != NULL)
2218 return esdo->relocs;
2219
2220 if (o->reloc_count == 0)
2221 return NULL;
2222
2223 if (internal_relocs == NULL)
2224 {
2225 bfd_size_type size;
2226
2227 size = o->reloc_count;
2228 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2229 if (keep_memory)
2230 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2231 else
2232 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2233 if (internal_relocs == NULL)
2234 goto error_return;
2235 }
2236
2237 if (external_relocs == NULL)
2238 {
2239 bfd_size_type size = 0;
2240
2241 if (esdo->rel.hdr)
2242 size += esdo->rel.hdr->sh_size;
2243 if (esdo->rela.hdr)
2244 size += esdo->rela.hdr->sh_size;
2245
2246 alloc1 = bfd_malloc (size);
2247 if (alloc1 == NULL)
2248 goto error_return;
2249 external_relocs = alloc1;
2250 }
2251
2252 internal_rela_relocs = internal_relocs;
2253 if (esdo->rel.hdr)
2254 {
2255 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2256 external_relocs,
2257 internal_relocs))
2258 goto error_return;
2259 external_relocs = (((bfd_byte *) external_relocs)
2260 + esdo->rel.hdr->sh_size);
2261 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2262 * bed->s->int_rels_per_ext_rel);
2263 }
2264
2265 if (esdo->rela.hdr
2266 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2267 external_relocs,
2268 internal_rela_relocs)))
2269 goto error_return;
2270
2271 /* Cache the results for next time, if we can. */
2272 if (keep_memory)
2273 esdo->relocs = internal_relocs;
2274
2275 if (alloc1 != NULL)
2276 free (alloc1);
2277
2278 /* Don't free alloc2, since if it was allocated we are passing it
2279 back (under the name of internal_relocs). */
2280
2281 return internal_relocs;
2282
2283 error_return:
2284 if (alloc1 != NULL)
2285 free (alloc1);
2286 if (alloc2 != NULL)
2287 {
2288 if (keep_memory)
2289 bfd_release (abfd, alloc2);
2290 else
2291 free (alloc2);
2292 }
2293 return NULL;
2294 }
2295
2296 /* Compute the size of, and allocate space for, REL_HDR which is the
2297 section header for a section containing relocations for O. */
2298
2299 static bfd_boolean
2300 _bfd_elf_link_size_reloc_section (bfd *abfd,
2301 struct bfd_elf_section_reloc_data *reldata)
2302 {
2303 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2304
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2307
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2315
2316 if (reldata->hashes == NULL && reldata->count)
2317 {
2318 struct elf_link_hash_entry **p;
2319
2320 p = (struct elf_link_hash_entry **)
2321 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2322 if (p == NULL)
2323 return FALSE;
2324
2325 reldata->hashes = p;
2326 }
2327
2328 return TRUE;
2329 }
2330
2331 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2332 originated from the section given by INPUT_REL_HDR) to the
2333 OUTPUT_BFD. */
2334
2335 bfd_boolean
2336 _bfd_elf_link_output_relocs (bfd *output_bfd,
2337 asection *input_section,
2338 Elf_Internal_Shdr *input_rel_hdr,
2339 Elf_Internal_Rela *internal_relocs,
2340 struct elf_link_hash_entry **rel_hash
2341 ATTRIBUTE_UNUSED)
2342 {
2343 Elf_Internal_Rela *irela;
2344 Elf_Internal_Rela *irelaend;
2345 bfd_byte *erel;
2346 struct bfd_elf_section_reloc_data *output_reldata;
2347 asection *output_section;
2348 const struct elf_backend_data *bed;
2349 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2350 struct bfd_elf_section_data *esdo;
2351
2352 output_section = input_section->output_section;
2353
2354 bed = get_elf_backend_data (output_bfd);
2355 esdo = elf_section_data (output_section);
2356 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2357 {
2358 output_reldata = &esdo->rel;
2359 swap_out = bed->s->swap_reloc_out;
2360 }
2361 else if (esdo->rela.hdr
2362 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2363 {
2364 output_reldata = &esdo->rela;
2365 swap_out = bed->s->swap_reloca_out;
2366 }
2367 else
2368 {
2369 (*_bfd_error_handler)
2370 (_("%B: relocation size mismatch in %B section %A"),
2371 output_bfd, input_section->owner, input_section);
2372 bfd_set_error (bfd_error_wrong_format);
2373 return FALSE;
2374 }
2375
2376 erel = output_reldata->hdr->contents;
2377 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2378 irela = internal_relocs;
2379 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2380 * bed->s->int_rels_per_ext_rel);
2381 while (irela < irelaend)
2382 {
2383 (*swap_out) (output_bfd, irela, erel);
2384 irela += bed->s->int_rels_per_ext_rel;
2385 erel += input_rel_hdr->sh_entsize;
2386 }
2387
2388 /* Bump the counter, so that we know where to add the next set of
2389 relocations. */
2390 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2391
2392 return TRUE;
2393 }
2394 \f
2395 /* Make weak undefined symbols in PIE dynamic. */
2396
2397 bfd_boolean
2398 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2399 struct elf_link_hash_entry *h)
2400 {
2401 if (info->pie
2402 && h->dynindx == -1
2403 && h->root.type == bfd_link_hash_undefweak)
2404 return bfd_elf_link_record_dynamic_symbol (info, h);
2405
2406 return TRUE;
2407 }
2408
2409 /* Fix up the flags for a symbol. This handles various cases which
2410 can only be fixed after all the input files are seen. This is
2411 currently called by both adjust_dynamic_symbol and
2412 assign_sym_version, which is unnecessary but perhaps more robust in
2413 the face of future changes. */
2414
2415 static bfd_boolean
2416 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2417 struct elf_info_failed *eif)
2418 {
2419 const struct elf_backend_data *bed;
2420
2421 /* If this symbol was mentioned in a non-ELF file, try to set
2422 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2423 permit a non-ELF file to correctly refer to a symbol defined in
2424 an ELF dynamic object. */
2425 if (h->non_elf)
2426 {
2427 while (h->root.type == bfd_link_hash_indirect)
2428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2429
2430 if (h->root.type != bfd_link_hash_defined
2431 && h->root.type != bfd_link_hash_defweak)
2432 {
2433 h->ref_regular = 1;
2434 h->ref_regular_nonweak = 1;
2435 }
2436 else
2437 {
2438 if (h->root.u.def.section->owner != NULL
2439 && (bfd_get_flavour (h->root.u.def.section->owner)
2440 == bfd_target_elf_flavour))
2441 {
2442 h->ref_regular = 1;
2443 h->ref_regular_nonweak = 1;
2444 }
2445 else
2446 h->def_regular = 1;
2447 }
2448
2449 if (h->dynindx == -1
2450 && (h->def_dynamic
2451 || h->ref_dynamic))
2452 {
2453 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2454 {
2455 eif->failed = TRUE;
2456 return FALSE;
2457 }
2458 }
2459 }
2460 else
2461 {
2462 /* Unfortunately, NON_ELF is only correct if the symbol
2463 was first seen in a non-ELF file. Fortunately, if the symbol
2464 was first seen in an ELF file, we're probably OK unless the
2465 symbol was defined in a non-ELF file. Catch that case here.
2466 FIXME: We're still in trouble if the symbol was first seen in
2467 a dynamic object, and then later in a non-ELF regular object. */
2468 if ((h->root.type == bfd_link_hash_defined
2469 || h->root.type == bfd_link_hash_defweak)
2470 && !h->def_regular
2471 && (h->root.u.def.section->owner != NULL
2472 ? (bfd_get_flavour (h->root.u.def.section->owner)
2473 != bfd_target_elf_flavour)
2474 : (bfd_is_abs_section (h->root.u.def.section)
2475 && !h->def_dynamic)))
2476 h->def_regular = 1;
2477 }
2478
2479 /* Backend specific symbol fixup. */
2480 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2481 if (bed->elf_backend_fixup_symbol
2482 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2483 return FALSE;
2484
2485 /* If this is a final link, and the symbol was defined as a common
2486 symbol in a regular object file, and there was no definition in
2487 any dynamic object, then the linker will have allocated space for
2488 the symbol in a common section but the DEF_REGULAR
2489 flag will not have been set. */
2490 if (h->root.type == bfd_link_hash_defined
2491 && !h->def_regular
2492 && h->ref_regular
2493 && !h->def_dynamic
2494 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2495 h->def_regular = 1;
2496
2497 /* If -Bsymbolic was used (which means to bind references to global
2498 symbols to the definition within the shared object), and this
2499 symbol was defined in a regular object, then it actually doesn't
2500 need a PLT entry. Likewise, if the symbol has non-default
2501 visibility. If the symbol has hidden or internal visibility, we
2502 will force it local. */
2503 if (h->needs_plt
2504 && eif->info->shared
2505 && is_elf_hash_table (eif->info->hash)
2506 && (SYMBOLIC_BIND (eif->info, h)
2507 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2508 && h->def_regular)
2509 {
2510 bfd_boolean force_local;
2511
2512 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2513 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2514 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2515 }
2516
2517 /* If a weak undefined symbol has non-default visibility, we also
2518 hide it from the dynamic linker. */
2519 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2520 && h->root.type == bfd_link_hash_undefweak)
2521 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2522
2523 /* If this is a weak defined symbol in a dynamic object, and we know
2524 the real definition in the dynamic object, copy interesting flags
2525 over to the real definition. */
2526 if (h->u.weakdef != NULL)
2527 {
2528 /* If the real definition is defined by a regular object file,
2529 don't do anything special. See the longer description in
2530 _bfd_elf_adjust_dynamic_symbol, below. */
2531 if (h->u.weakdef->def_regular)
2532 h->u.weakdef = NULL;
2533 else
2534 {
2535 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2536
2537 while (h->root.type == bfd_link_hash_indirect)
2538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539
2540 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2541 || h->root.type == bfd_link_hash_defweak);
2542 BFD_ASSERT (weakdef->def_dynamic);
2543 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2544 || weakdef->root.type == bfd_link_hash_defweak);
2545 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2546 }
2547 }
2548
2549 return TRUE;
2550 }
2551
2552 /* Make the backend pick a good value for a dynamic symbol. This is
2553 called via elf_link_hash_traverse, and also calls itself
2554 recursively. */
2555
2556 static bfd_boolean
2557 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2558 {
2559 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2560 bfd *dynobj;
2561 const struct elf_backend_data *bed;
2562
2563 if (! is_elf_hash_table (eif->info->hash))
2564 return FALSE;
2565
2566 /* Ignore indirect symbols. These are added by the versioning code. */
2567 if (h->root.type == bfd_link_hash_indirect)
2568 return TRUE;
2569
2570 /* Fix the symbol flags. */
2571 if (! _bfd_elf_fix_symbol_flags (h, eif))
2572 return FALSE;
2573
2574 /* If this symbol does not require a PLT entry, and it is not
2575 defined by a dynamic object, or is not referenced by a regular
2576 object, ignore it. We do have to handle a weak defined symbol,
2577 even if no regular object refers to it, if we decided to add it
2578 to the dynamic symbol table. FIXME: Do we normally need to worry
2579 about symbols which are defined by one dynamic object and
2580 referenced by another one? */
2581 if (!h->needs_plt
2582 && h->type != STT_GNU_IFUNC
2583 && (h->def_regular
2584 || !h->def_dynamic
2585 || (!h->ref_regular
2586 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2587 {
2588 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2589 return TRUE;
2590 }
2591
2592 /* If we've already adjusted this symbol, don't do it again. This
2593 can happen via a recursive call. */
2594 if (h->dynamic_adjusted)
2595 return TRUE;
2596
2597 /* Don't look at this symbol again. Note that we must set this
2598 after checking the above conditions, because we may look at a
2599 symbol once, decide not to do anything, and then get called
2600 recursively later after REF_REGULAR is set below. */
2601 h->dynamic_adjusted = 1;
2602
2603 /* If this is a weak definition, and we know a real definition, and
2604 the real symbol is not itself defined by a regular object file,
2605 then get a good value for the real definition. We handle the
2606 real symbol first, for the convenience of the backend routine.
2607
2608 Note that there is a confusing case here. If the real definition
2609 is defined by a regular object file, we don't get the real symbol
2610 from the dynamic object, but we do get the weak symbol. If the
2611 processor backend uses a COPY reloc, then if some routine in the
2612 dynamic object changes the real symbol, we will not see that
2613 change in the corresponding weak symbol. This is the way other
2614 ELF linkers work as well, and seems to be a result of the shared
2615 library model.
2616
2617 I will clarify this issue. Most SVR4 shared libraries define the
2618 variable _timezone and define timezone as a weak synonym. The
2619 tzset call changes _timezone. If you write
2620 extern int timezone;
2621 int _timezone = 5;
2622 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2623 you might expect that, since timezone is a synonym for _timezone,
2624 the same number will print both times. However, if the processor
2625 backend uses a COPY reloc, then actually timezone will be copied
2626 into your process image, and, since you define _timezone
2627 yourself, _timezone will not. Thus timezone and _timezone will
2628 wind up at different memory locations. The tzset call will set
2629 _timezone, leaving timezone unchanged. */
2630
2631 if (h->u.weakdef != NULL)
2632 {
2633 /* If we get to this point, there is an implicit reference to
2634 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2635 h->u.weakdef->ref_regular = 1;
2636
2637 /* Ensure that the backend adjust_dynamic_symbol function sees
2638 H->U.WEAKDEF before H by recursively calling ourselves. */
2639 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2640 return FALSE;
2641 }
2642
2643 /* If a symbol has no type and no size and does not require a PLT
2644 entry, then we are probably about to do the wrong thing here: we
2645 are probably going to create a COPY reloc for an empty object.
2646 This case can arise when a shared object is built with assembly
2647 code, and the assembly code fails to set the symbol type. */
2648 if (h->size == 0
2649 && h->type == STT_NOTYPE
2650 && !h->needs_plt)
2651 (*_bfd_error_handler)
2652 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2653 h->root.root.string);
2654
2655 dynobj = elf_hash_table (eif->info)->dynobj;
2656 bed = get_elf_backend_data (dynobj);
2657
2658 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2659 {
2660 eif->failed = TRUE;
2661 return FALSE;
2662 }
2663
2664 return TRUE;
2665 }
2666
2667 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2668 DYNBSS. */
2669
2670 bfd_boolean
2671 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2672 asection *dynbss)
2673 {
2674 unsigned int power_of_two;
2675 bfd_vma mask;
2676 asection *sec = h->root.u.def.section;
2677
2678 /* The section aligment of definition is the maximum alignment
2679 requirement of symbols defined in the section. Since we don't
2680 know the symbol alignment requirement, we start with the
2681 maximum alignment and check low bits of the symbol address
2682 for the minimum alignment. */
2683 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2684 mask = ((bfd_vma) 1 << power_of_two) - 1;
2685 while ((h->root.u.def.value & mask) != 0)
2686 {
2687 mask >>= 1;
2688 --power_of_two;
2689 }
2690
2691 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2692 dynbss))
2693 {
2694 /* Adjust the section alignment if needed. */
2695 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2696 power_of_two))
2697 return FALSE;
2698 }
2699
2700 /* We make sure that the symbol will be aligned properly. */
2701 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2702
2703 /* Define the symbol as being at this point in DYNBSS. */
2704 h->root.u.def.section = dynbss;
2705 h->root.u.def.value = dynbss->size;
2706
2707 /* Increment the size of DYNBSS to make room for the symbol. */
2708 dynbss->size += h->size;
2709
2710 return TRUE;
2711 }
2712
2713 /* Adjust all external symbols pointing into SEC_MERGE sections
2714 to reflect the object merging within the sections. */
2715
2716 static bfd_boolean
2717 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2718 {
2719 asection *sec;
2720
2721 if ((h->root.type == bfd_link_hash_defined
2722 || h->root.type == bfd_link_hash_defweak)
2723 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2724 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2725 {
2726 bfd *output_bfd = (bfd *) data;
2727
2728 h->root.u.def.value =
2729 _bfd_merged_section_offset (output_bfd,
2730 &h->root.u.def.section,
2731 elf_section_data (sec)->sec_info,
2732 h->root.u.def.value);
2733 }
2734
2735 return TRUE;
2736 }
2737
2738 /* Returns false if the symbol referred to by H should be considered
2739 to resolve local to the current module, and true if it should be
2740 considered to bind dynamically. */
2741
2742 bfd_boolean
2743 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2744 struct bfd_link_info *info,
2745 bfd_boolean not_local_protected)
2746 {
2747 bfd_boolean binding_stays_local_p;
2748 const struct elf_backend_data *bed;
2749 struct elf_link_hash_table *hash_table;
2750
2751 if (h == NULL)
2752 return FALSE;
2753
2754 while (h->root.type == bfd_link_hash_indirect
2755 || h->root.type == bfd_link_hash_warning)
2756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2757
2758 /* If it was forced local, then clearly it's not dynamic. */
2759 if (h->dynindx == -1)
2760 return FALSE;
2761 if (h->forced_local)
2762 return FALSE;
2763
2764 /* Identify the cases where name binding rules say that a
2765 visible symbol resolves locally. */
2766 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2767
2768 switch (ELF_ST_VISIBILITY (h->other))
2769 {
2770 case STV_INTERNAL:
2771 case STV_HIDDEN:
2772 return FALSE;
2773
2774 case STV_PROTECTED:
2775 hash_table = elf_hash_table (info);
2776 if (!is_elf_hash_table (hash_table))
2777 return FALSE;
2778
2779 bed = get_elf_backend_data (hash_table->dynobj);
2780
2781 /* Proper resolution for function pointer equality may require
2782 that these symbols perhaps be resolved dynamically, even though
2783 we should be resolving them to the current module. */
2784 if (!not_local_protected || !bed->is_function_type (h->type))
2785 binding_stays_local_p = TRUE;
2786 break;
2787
2788 default:
2789 break;
2790 }
2791
2792 /* If it isn't defined locally, then clearly it's dynamic. */
2793 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2794 return TRUE;
2795
2796 /* Otherwise, the symbol is dynamic if binding rules don't tell
2797 us that it remains local. */
2798 return !binding_stays_local_p;
2799 }
2800
2801 /* Return true if the symbol referred to by H should be considered
2802 to resolve local to the current module, and false otherwise. Differs
2803 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2804 undefined symbols. The two functions are virtually identical except
2805 for the place where forced_local and dynindx == -1 are tested. If
2806 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2807 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2808 the symbol is local only for defined symbols.
2809 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2810 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2811 treatment of undefined weak symbols. For those that do not make
2812 undefined weak symbols dynamic, both functions may return false. */
2813
2814 bfd_boolean
2815 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2816 struct bfd_link_info *info,
2817 bfd_boolean local_protected)
2818 {
2819 const struct elf_backend_data *bed;
2820 struct elf_link_hash_table *hash_table;
2821
2822 /* If it's a local sym, of course we resolve locally. */
2823 if (h == NULL)
2824 return TRUE;
2825
2826 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2827 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2828 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2829 return TRUE;
2830
2831 /* Common symbols that become definitions don't get the DEF_REGULAR
2832 flag set, so test it first, and don't bail out. */
2833 if (ELF_COMMON_DEF_P (h))
2834 /* Do nothing. */;
2835 /* If we don't have a definition in a regular file, then we can't
2836 resolve locally. The sym is either undefined or dynamic. */
2837 else if (!h->def_regular)
2838 return FALSE;
2839
2840 /* Forced local symbols resolve locally. */
2841 if (h->forced_local)
2842 return TRUE;
2843
2844 /* As do non-dynamic symbols. */
2845 if (h->dynindx == -1)
2846 return TRUE;
2847
2848 /* At this point, we know the symbol is defined and dynamic. In an
2849 executable it must resolve locally, likewise when building symbolic
2850 shared libraries. */
2851 if (info->executable || SYMBOLIC_BIND (info, h))
2852 return TRUE;
2853
2854 /* Now deal with defined dynamic symbols in shared libraries. Ones
2855 with default visibility might not resolve locally. */
2856 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2857 return FALSE;
2858
2859 hash_table = elf_hash_table (info);
2860 if (!is_elf_hash_table (hash_table))
2861 return TRUE;
2862
2863 bed = get_elf_backend_data (hash_table->dynobj);
2864
2865 /* STV_PROTECTED non-function symbols are local. */
2866 if (!bed->is_function_type (h->type))
2867 return TRUE;
2868
2869 /* Function pointer equality tests may require that STV_PROTECTED
2870 symbols be treated as dynamic symbols. If the address of a
2871 function not defined in an executable is set to that function's
2872 plt entry in the executable, then the address of the function in
2873 a shared library must also be the plt entry in the executable. */
2874 return local_protected;
2875 }
2876
2877 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2878 aligned. Returns the first TLS output section. */
2879
2880 struct bfd_section *
2881 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2882 {
2883 struct bfd_section *sec, *tls;
2884 unsigned int align = 0;
2885
2886 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2887 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2888 break;
2889 tls = sec;
2890
2891 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2892 if (sec->alignment_power > align)
2893 align = sec->alignment_power;
2894
2895 elf_hash_table (info)->tls_sec = tls;
2896
2897 /* Ensure the alignment of the first section is the largest alignment,
2898 so that the tls segment starts aligned. */
2899 if (tls != NULL)
2900 tls->alignment_power = align;
2901
2902 return tls;
2903 }
2904
2905 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2906 static bfd_boolean
2907 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2908 Elf_Internal_Sym *sym)
2909 {
2910 const struct elf_backend_data *bed;
2911
2912 /* Local symbols do not count, but target specific ones might. */
2913 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2914 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2915 return FALSE;
2916
2917 bed = get_elf_backend_data (abfd);
2918 /* Function symbols do not count. */
2919 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2920 return FALSE;
2921
2922 /* If the section is undefined, then so is the symbol. */
2923 if (sym->st_shndx == SHN_UNDEF)
2924 return FALSE;
2925
2926 /* If the symbol is defined in the common section, then
2927 it is a common definition and so does not count. */
2928 if (bed->common_definition (sym))
2929 return FALSE;
2930
2931 /* If the symbol is in a target specific section then we
2932 must rely upon the backend to tell us what it is. */
2933 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2934 /* FIXME - this function is not coded yet:
2935
2936 return _bfd_is_global_symbol_definition (abfd, sym);
2937
2938 Instead for now assume that the definition is not global,
2939 Even if this is wrong, at least the linker will behave
2940 in the same way that it used to do. */
2941 return FALSE;
2942
2943 return TRUE;
2944 }
2945
2946 /* Search the symbol table of the archive element of the archive ABFD
2947 whose archive map contains a mention of SYMDEF, and determine if
2948 the symbol is defined in this element. */
2949 static bfd_boolean
2950 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2951 {
2952 Elf_Internal_Shdr * hdr;
2953 bfd_size_type symcount;
2954 bfd_size_type extsymcount;
2955 bfd_size_type extsymoff;
2956 Elf_Internal_Sym *isymbuf;
2957 Elf_Internal_Sym *isym;
2958 Elf_Internal_Sym *isymend;
2959 bfd_boolean result;
2960
2961 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2962 if (abfd == NULL)
2963 return FALSE;
2964
2965 if (! bfd_check_format (abfd, bfd_object))
2966 return FALSE;
2967
2968 /* If we have already included the element containing this symbol in the
2969 link then we do not need to include it again. Just claim that any symbol
2970 it contains is not a definition, so that our caller will not decide to
2971 (re)include this element. */
2972 if (abfd->archive_pass)
2973 return FALSE;
2974
2975 /* Select the appropriate symbol table. */
2976 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2977 hdr = &elf_tdata (abfd)->symtab_hdr;
2978 else
2979 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2980
2981 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2982
2983 /* The sh_info field of the symtab header tells us where the
2984 external symbols start. We don't care about the local symbols. */
2985 if (elf_bad_symtab (abfd))
2986 {
2987 extsymcount = symcount;
2988 extsymoff = 0;
2989 }
2990 else
2991 {
2992 extsymcount = symcount - hdr->sh_info;
2993 extsymoff = hdr->sh_info;
2994 }
2995
2996 if (extsymcount == 0)
2997 return FALSE;
2998
2999 /* Read in the symbol table. */
3000 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3001 NULL, NULL, NULL);
3002 if (isymbuf == NULL)
3003 return FALSE;
3004
3005 /* Scan the symbol table looking for SYMDEF. */
3006 result = FALSE;
3007 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3008 {
3009 const char *name;
3010
3011 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3012 isym->st_name);
3013 if (name == NULL)
3014 break;
3015
3016 if (strcmp (name, symdef->name) == 0)
3017 {
3018 result = is_global_data_symbol_definition (abfd, isym);
3019 break;
3020 }
3021 }
3022
3023 free (isymbuf);
3024
3025 return result;
3026 }
3027 \f
3028 /* Add an entry to the .dynamic table. */
3029
3030 bfd_boolean
3031 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3032 bfd_vma tag,
3033 bfd_vma val)
3034 {
3035 struct elf_link_hash_table *hash_table;
3036 const struct elf_backend_data *bed;
3037 asection *s;
3038 bfd_size_type newsize;
3039 bfd_byte *newcontents;
3040 Elf_Internal_Dyn dyn;
3041
3042 hash_table = elf_hash_table (info);
3043 if (! is_elf_hash_table (hash_table))
3044 return FALSE;
3045
3046 bed = get_elf_backend_data (hash_table->dynobj);
3047 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3048 BFD_ASSERT (s != NULL);
3049
3050 newsize = s->size + bed->s->sizeof_dyn;
3051 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3052 if (newcontents == NULL)
3053 return FALSE;
3054
3055 dyn.d_tag = tag;
3056 dyn.d_un.d_val = val;
3057 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3058
3059 s->size = newsize;
3060 s->contents = newcontents;
3061
3062 return TRUE;
3063 }
3064
3065 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3066 otherwise just check whether one already exists. Returns -1 on error,
3067 1 if a DT_NEEDED tag already exists, and 0 on success. */
3068
3069 static int
3070 elf_add_dt_needed_tag (bfd *abfd,
3071 struct bfd_link_info *info,
3072 const char *soname,
3073 bfd_boolean do_it)
3074 {
3075 struct elf_link_hash_table *hash_table;
3076 bfd_size_type strindex;
3077
3078 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3079 return -1;
3080
3081 hash_table = elf_hash_table (info);
3082 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3083 if (strindex == (bfd_size_type) -1)
3084 return -1;
3085
3086 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3087 {
3088 asection *sdyn;
3089 const struct elf_backend_data *bed;
3090 bfd_byte *extdyn;
3091
3092 bed = get_elf_backend_data (hash_table->dynobj);
3093 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3094 if (sdyn != NULL)
3095 for (extdyn = sdyn->contents;
3096 extdyn < sdyn->contents + sdyn->size;
3097 extdyn += bed->s->sizeof_dyn)
3098 {
3099 Elf_Internal_Dyn dyn;
3100
3101 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3102 if (dyn.d_tag == DT_NEEDED
3103 && dyn.d_un.d_val == strindex)
3104 {
3105 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3106 return 1;
3107 }
3108 }
3109 }
3110
3111 if (do_it)
3112 {
3113 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3114 return -1;
3115
3116 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3117 return -1;
3118 }
3119 else
3120 /* We were just checking for existence of the tag. */
3121 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3122
3123 return 0;
3124 }
3125
3126 static bfd_boolean
3127 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3128 {
3129 for (; needed != NULL; needed = needed->next)
3130 if (strcmp (soname, needed->name) == 0)
3131 return TRUE;
3132
3133 return FALSE;
3134 }
3135
3136 /* Sort symbol by value, section, and size. */
3137 static int
3138 elf_sort_symbol (const void *arg1, const void *arg2)
3139 {
3140 const struct elf_link_hash_entry *h1;
3141 const struct elf_link_hash_entry *h2;
3142 bfd_signed_vma vdiff;
3143
3144 h1 = *(const struct elf_link_hash_entry **) arg1;
3145 h2 = *(const struct elf_link_hash_entry **) arg2;
3146 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3147 if (vdiff != 0)
3148 return vdiff > 0 ? 1 : -1;
3149 else
3150 {
3151 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3152 if (sdiff != 0)
3153 return sdiff > 0 ? 1 : -1;
3154 }
3155 vdiff = h1->size - h2->size;
3156 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3157 }
3158
3159 /* This function is used to adjust offsets into .dynstr for
3160 dynamic symbols. This is called via elf_link_hash_traverse. */
3161
3162 static bfd_boolean
3163 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3164 {
3165 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3166
3167 if (h->dynindx != -1)
3168 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3169 return TRUE;
3170 }
3171
3172 /* Assign string offsets in .dynstr, update all structures referencing
3173 them. */
3174
3175 static bfd_boolean
3176 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3177 {
3178 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3179 struct elf_link_local_dynamic_entry *entry;
3180 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3181 bfd *dynobj = hash_table->dynobj;
3182 asection *sdyn;
3183 bfd_size_type size;
3184 const struct elf_backend_data *bed;
3185 bfd_byte *extdyn;
3186
3187 _bfd_elf_strtab_finalize (dynstr);
3188 size = _bfd_elf_strtab_size (dynstr);
3189
3190 bed = get_elf_backend_data (dynobj);
3191 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3192 BFD_ASSERT (sdyn != NULL);
3193
3194 /* Update all .dynamic entries referencing .dynstr strings. */
3195 for (extdyn = sdyn->contents;
3196 extdyn < sdyn->contents + sdyn->size;
3197 extdyn += bed->s->sizeof_dyn)
3198 {
3199 Elf_Internal_Dyn dyn;
3200
3201 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3202 switch (dyn.d_tag)
3203 {
3204 case DT_STRSZ:
3205 dyn.d_un.d_val = size;
3206 break;
3207 case DT_NEEDED:
3208 case DT_SONAME:
3209 case DT_RPATH:
3210 case DT_RUNPATH:
3211 case DT_FILTER:
3212 case DT_AUXILIARY:
3213 case DT_AUDIT:
3214 case DT_DEPAUDIT:
3215 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3216 break;
3217 default:
3218 continue;
3219 }
3220 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3221 }
3222
3223 /* Now update local dynamic symbols. */
3224 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3225 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3226 entry->isym.st_name);
3227
3228 /* And the rest of dynamic symbols. */
3229 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3230
3231 /* Adjust version definitions. */
3232 if (elf_tdata (output_bfd)->cverdefs)
3233 {
3234 asection *s;
3235 bfd_byte *p;
3236 bfd_size_type i;
3237 Elf_Internal_Verdef def;
3238 Elf_Internal_Verdaux defaux;
3239
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3241 p = s->contents;
3242 do
3243 {
3244 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3245 &def);
3246 p += sizeof (Elf_External_Verdef);
3247 if (def.vd_aux != sizeof (Elf_External_Verdef))
3248 continue;
3249 for (i = 0; i < def.vd_cnt; ++i)
3250 {
3251 _bfd_elf_swap_verdaux_in (output_bfd,
3252 (Elf_External_Verdaux *) p, &defaux);
3253 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3254 defaux.vda_name);
3255 _bfd_elf_swap_verdaux_out (output_bfd,
3256 &defaux, (Elf_External_Verdaux *) p);
3257 p += sizeof (Elf_External_Verdaux);
3258 }
3259 }
3260 while (def.vd_next);
3261 }
3262
3263 /* Adjust version references. */
3264 if (elf_tdata (output_bfd)->verref)
3265 {
3266 asection *s;
3267 bfd_byte *p;
3268 bfd_size_type i;
3269 Elf_Internal_Verneed need;
3270 Elf_Internal_Vernaux needaux;
3271
3272 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3273 p = s->contents;
3274 do
3275 {
3276 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3277 &need);
3278 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3279 _bfd_elf_swap_verneed_out (output_bfd, &need,
3280 (Elf_External_Verneed *) p);
3281 p += sizeof (Elf_External_Verneed);
3282 for (i = 0; i < need.vn_cnt; ++i)
3283 {
3284 _bfd_elf_swap_vernaux_in (output_bfd,
3285 (Elf_External_Vernaux *) p, &needaux);
3286 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3287 needaux.vna_name);
3288 _bfd_elf_swap_vernaux_out (output_bfd,
3289 &needaux,
3290 (Elf_External_Vernaux *) p);
3291 p += sizeof (Elf_External_Vernaux);
3292 }
3293 }
3294 while (need.vn_next);
3295 }
3296
3297 return TRUE;
3298 }
3299 \f
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301 The default is to only match when the INPUT and OUTPUT are exactly
3302 the same target. */
3303
3304 bfd_boolean
3305 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3306 const bfd_target *output)
3307 {
3308 return input == output;
3309 }
3310
3311 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3312 This version is used when different targets for the same architecture
3313 are virtually identical. */
3314
3315 bfd_boolean
3316 _bfd_elf_relocs_compatible (const bfd_target *input,
3317 const bfd_target *output)
3318 {
3319 const struct elf_backend_data *obed, *ibed;
3320
3321 if (input == output)
3322 return TRUE;
3323
3324 ibed = xvec_get_elf_backend_data (input);
3325 obed = xvec_get_elf_backend_data (output);
3326
3327 if (ibed->arch != obed->arch)
3328 return FALSE;
3329
3330 /* If both backends are using this function, deem them compatible. */
3331 return ibed->relocs_compatible == obed->relocs_compatible;
3332 }
3333
3334 /* Add symbols from an ELF object file to the linker hash table. */
3335
3336 static bfd_boolean
3337 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 Elf_Internal_Ehdr *ehdr;
3340 Elf_Internal_Shdr *hdr;
3341 bfd_size_type symcount;
3342 bfd_size_type extsymcount;
3343 bfd_size_type extsymoff;
3344 struct elf_link_hash_entry **sym_hash;
3345 bfd_boolean dynamic;
3346 Elf_External_Versym *extversym = NULL;
3347 Elf_External_Versym *ever;
3348 struct elf_link_hash_entry *weaks;
3349 struct elf_link_hash_entry **nondeflt_vers = NULL;
3350 bfd_size_type nondeflt_vers_cnt = 0;
3351 Elf_Internal_Sym *isymbuf = NULL;
3352 Elf_Internal_Sym *isym;
3353 Elf_Internal_Sym *isymend;
3354 const struct elf_backend_data *bed;
3355 bfd_boolean add_needed;
3356 struct elf_link_hash_table *htab;
3357 bfd_size_type amt;
3358 void *alloc_mark = NULL;
3359 struct bfd_hash_entry **old_table = NULL;
3360 unsigned int old_size = 0;
3361 unsigned int old_count = 0;
3362 void *old_tab = NULL;
3363 void *old_hash;
3364 void *old_ent;
3365 struct bfd_link_hash_entry *old_undefs = NULL;
3366 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3367 long old_dynsymcount = 0;
3368 bfd_size_type old_dynstr_size = 0;
3369 size_t tabsize = 0;
3370 size_t hashsize = 0;
3371
3372 htab = elf_hash_table (info);
3373 bed = get_elf_backend_data (abfd);
3374
3375 if ((abfd->flags & DYNAMIC) == 0)
3376 dynamic = FALSE;
3377 else
3378 {
3379 dynamic = TRUE;
3380
3381 /* You can't use -r against a dynamic object. Also, there's no
3382 hope of using a dynamic object which does not exactly match
3383 the format of the output file. */
3384 if (info->relocatable
3385 || !is_elf_hash_table (htab)
3386 || info->output_bfd->xvec != abfd->xvec)
3387 {
3388 if (info->relocatable)
3389 bfd_set_error (bfd_error_invalid_operation);
3390 else
3391 bfd_set_error (bfd_error_wrong_format);
3392 goto error_return;
3393 }
3394 }
3395
3396 ehdr = elf_elfheader (abfd);
3397 if (info->warn_alternate_em
3398 && bed->elf_machine_code != ehdr->e_machine
3399 && ((bed->elf_machine_alt1 != 0
3400 && ehdr->e_machine == bed->elf_machine_alt1)
3401 || (bed->elf_machine_alt2 != 0
3402 && ehdr->e_machine == bed->elf_machine_alt2)))
3403 info->callbacks->einfo
3404 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3405 ehdr->e_machine, abfd, bed->elf_machine_code);
3406
3407 /* As a GNU extension, any input sections which are named
3408 .gnu.warning.SYMBOL are treated as warning symbols for the given
3409 symbol. This differs from .gnu.warning sections, which generate
3410 warnings when they are included in an output file. */
3411 /* PR 12761: Also generate this warning when building shared libraries. */
3412 if (info->executable || info->shared)
3413 {
3414 asection *s;
3415
3416 for (s = abfd->sections; s != NULL; s = s->next)
3417 {
3418 const char *name;
3419
3420 name = bfd_get_section_name (abfd, s);
3421 if (CONST_STRNEQ (name, ".gnu.warning."))
3422 {
3423 char *msg;
3424 bfd_size_type sz;
3425
3426 name += sizeof ".gnu.warning." - 1;
3427
3428 /* If this is a shared object, then look up the symbol
3429 in the hash table. If it is there, and it is already
3430 been defined, then we will not be using the entry
3431 from this shared object, so we don't need to warn.
3432 FIXME: If we see the definition in a regular object
3433 later on, we will warn, but we shouldn't. The only
3434 fix is to keep track of what warnings we are supposed
3435 to emit, and then handle them all at the end of the
3436 link. */
3437 if (dynamic)
3438 {
3439 struct elf_link_hash_entry *h;
3440
3441 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3442
3443 /* FIXME: What about bfd_link_hash_common? */
3444 if (h != NULL
3445 && (h->root.type == bfd_link_hash_defined
3446 || h->root.type == bfd_link_hash_defweak))
3447 {
3448 /* We don't want to issue this warning. Clobber
3449 the section size so that the warning does not
3450 get copied into the output file. */
3451 s->size = 0;
3452 continue;
3453 }
3454 }
3455
3456 sz = s->size;
3457 msg = (char *) bfd_alloc (abfd, sz + 1);
3458 if (msg == NULL)
3459 goto error_return;
3460
3461 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3462 goto error_return;
3463
3464 msg[sz] = '\0';
3465
3466 if (! (_bfd_generic_link_add_one_symbol
3467 (info, abfd, name, BSF_WARNING, s, 0, msg,
3468 FALSE, bed->collect, NULL)))
3469 goto error_return;
3470
3471 if (! info->relocatable)
3472 {
3473 /* Clobber the section size so that the warning does
3474 not get copied into the output file. */
3475 s->size = 0;
3476
3477 /* Also set SEC_EXCLUDE, so that symbols defined in
3478 the warning section don't get copied to the output. */
3479 s->flags |= SEC_EXCLUDE;
3480 }
3481 }
3482 }
3483 }
3484
3485 add_needed = TRUE;
3486 if (! dynamic)
3487 {
3488 /* If we are creating a shared library, create all the dynamic
3489 sections immediately. We need to attach them to something,
3490 so we attach them to this BFD, provided it is the right
3491 format. FIXME: If there are no input BFD's of the same
3492 format as the output, we can't make a shared library. */
3493 if (info->shared
3494 && is_elf_hash_table (htab)
3495 && info->output_bfd->xvec == abfd->xvec
3496 && !htab->dynamic_sections_created)
3497 {
3498 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3499 goto error_return;
3500 }
3501 }
3502 else if (!is_elf_hash_table (htab))
3503 goto error_return;
3504 else
3505 {
3506 asection *s;
3507 const char *soname = NULL;
3508 char *audit = NULL;
3509 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3510 int ret;
3511
3512 /* ld --just-symbols and dynamic objects don't mix very well.
3513 ld shouldn't allow it. */
3514 if ((s = abfd->sections) != NULL
3515 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3516 abort ();
3517
3518 /* If this dynamic lib was specified on the command line with
3519 --as-needed in effect, then we don't want to add a DT_NEEDED
3520 tag unless the lib is actually used. Similary for libs brought
3521 in by another lib's DT_NEEDED. When --no-add-needed is used
3522 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3523 any dynamic library in DT_NEEDED tags in the dynamic lib at
3524 all. */
3525 add_needed = (elf_dyn_lib_class (abfd)
3526 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3527 | DYN_NO_NEEDED)) == 0;
3528
3529 s = bfd_get_section_by_name (abfd, ".dynamic");
3530 if (s != NULL)
3531 {
3532 bfd_byte *dynbuf;
3533 bfd_byte *extdyn;
3534 unsigned int elfsec;
3535 unsigned long shlink;
3536
3537 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3538 {
3539 error_free_dyn:
3540 free (dynbuf);
3541 goto error_return;
3542 }
3543
3544 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3545 if (elfsec == SHN_BAD)
3546 goto error_free_dyn;
3547 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3548
3549 for (extdyn = dynbuf;
3550 extdyn < dynbuf + s->size;
3551 extdyn += bed->s->sizeof_dyn)
3552 {
3553 Elf_Internal_Dyn dyn;
3554
3555 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3556 if (dyn.d_tag == DT_SONAME)
3557 {
3558 unsigned int tagv = dyn.d_un.d_val;
3559 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 if (soname == NULL)
3561 goto error_free_dyn;
3562 }
3563 if (dyn.d_tag == DT_NEEDED)
3564 {
3565 struct bfd_link_needed_list *n, **pn;
3566 char *fnm, *anm;
3567 unsigned int tagv = dyn.d_un.d_val;
3568
3569 amt = sizeof (struct bfd_link_needed_list);
3570 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3571 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3572 if (n == NULL || fnm == NULL)
3573 goto error_free_dyn;
3574 amt = strlen (fnm) + 1;
3575 anm = (char *) bfd_alloc (abfd, amt);
3576 if (anm == NULL)
3577 goto error_free_dyn;
3578 memcpy (anm, fnm, amt);
3579 n->name = anm;
3580 n->by = abfd;
3581 n->next = NULL;
3582 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3583 ;
3584 *pn = n;
3585 }
3586 if (dyn.d_tag == DT_RUNPATH)
3587 {
3588 struct bfd_link_needed_list *n, **pn;
3589 char *fnm, *anm;
3590 unsigned int tagv = dyn.d_un.d_val;
3591
3592 amt = sizeof (struct bfd_link_needed_list);
3593 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 if (n == NULL || fnm == NULL)
3596 goto error_free_dyn;
3597 amt = strlen (fnm) + 1;
3598 anm = (char *) bfd_alloc (abfd, amt);
3599 if (anm == NULL)
3600 goto error_free_dyn;
3601 memcpy (anm, fnm, amt);
3602 n->name = anm;
3603 n->by = abfd;
3604 n->next = NULL;
3605 for (pn = & runpath;
3606 *pn != NULL;
3607 pn = &(*pn)->next)
3608 ;
3609 *pn = n;
3610 }
3611 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3612 if (!runpath && dyn.d_tag == DT_RPATH)
3613 {
3614 struct bfd_link_needed_list *n, **pn;
3615 char *fnm, *anm;
3616 unsigned int tagv = dyn.d_un.d_val;
3617
3618 amt = sizeof (struct bfd_link_needed_list);
3619 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3620 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3621 if (n == NULL || fnm == NULL)
3622 goto error_free_dyn;
3623 amt = strlen (fnm) + 1;
3624 anm = (char *) bfd_alloc (abfd, amt);
3625 if (anm == NULL)
3626 goto error_free_dyn;
3627 memcpy (anm, fnm, amt);
3628 n->name = anm;
3629 n->by = abfd;
3630 n->next = NULL;
3631 for (pn = & rpath;
3632 *pn != NULL;
3633 pn = &(*pn)->next)
3634 ;
3635 *pn = n;
3636 }
3637 if (dyn.d_tag == DT_AUDIT)
3638 {
3639 unsigned int tagv = dyn.d_un.d_val;
3640 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 }
3642 }
3643
3644 free (dynbuf);
3645 }
3646
3647 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3648 frees all more recently bfd_alloc'd blocks as well. */
3649 if (runpath)
3650 rpath = runpath;
3651
3652 if (rpath)
3653 {
3654 struct bfd_link_needed_list **pn;
3655 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3656 ;
3657 *pn = rpath;
3658 }
3659
3660 /* We do not want to include any of the sections in a dynamic
3661 object in the output file. We hack by simply clobbering the
3662 list of sections in the BFD. This could be handled more
3663 cleanly by, say, a new section flag; the existing
3664 SEC_NEVER_LOAD flag is not the one we want, because that one
3665 still implies that the section takes up space in the output
3666 file. */
3667 bfd_section_list_clear (abfd);
3668
3669 /* Find the name to use in a DT_NEEDED entry that refers to this
3670 object. If the object has a DT_SONAME entry, we use it.
3671 Otherwise, if the generic linker stuck something in
3672 elf_dt_name, we use that. Otherwise, we just use the file
3673 name. */
3674 if (soname == NULL || *soname == '\0')
3675 {
3676 soname = elf_dt_name (abfd);
3677 if (soname == NULL || *soname == '\0')
3678 soname = bfd_get_filename (abfd);
3679 }
3680
3681 /* Save the SONAME because sometimes the linker emulation code
3682 will need to know it. */
3683 elf_dt_name (abfd) = soname;
3684
3685 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3686 if (ret < 0)
3687 goto error_return;
3688
3689 /* If we have already included this dynamic object in the
3690 link, just ignore it. There is no reason to include a
3691 particular dynamic object more than once. */
3692 if (ret > 0)
3693 return TRUE;
3694
3695 /* Save the DT_AUDIT entry for the linker emulation code. */
3696 elf_dt_audit (abfd) = audit;
3697 }
3698
3699 /* If this is a dynamic object, we always link against the .dynsym
3700 symbol table, not the .symtab symbol table. The dynamic linker
3701 will only see the .dynsym symbol table, so there is no reason to
3702 look at .symtab for a dynamic object. */
3703
3704 if (! dynamic || elf_dynsymtab (abfd) == 0)
3705 hdr = &elf_tdata (abfd)->symtab_hdr;
3706 else
3707 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3708
3709 symcount = hdr->sh_size / bed->s->sizeof_sym;
3710
3711 /* The sh_info field of the symtab header tells us where the
3712 external symbols start. We don't care about the local symbols at
3713 this point. */
3714 if (elf_bad_symtab (abfd))
3715 {
3716 extsymcount = symcount;
3717 extsymoff = 0;
3718 }
3719 else
3720 {
3721 extsymcount = symcount - hdr->sh_info;
3722 extsymoff = hdr->sh_info;
3723 }
3724
3725 sym_hash = NULL;
3726 if (extsymcount != 0)
3727 {
3728 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3729 NULL, NULL, NULL);
3730 if (isymbuf == NULL)
3731 goto error_return;
3732
3733 /* We store a pointer to the hash table entry for each external
3734 symbol. */
3735 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3736 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3737 if (sym_hash == NULL)
3738 goto error_free_sym;
3739 elf_sym_hashes (abfd) = sym_hash;
3740 }
3741
3742 if (dynamic)
3743 {
3744 /* Read in any version definitions. */
3745 if (!_bfd_elf_slurp_version_tables (abfd,
3746 info->default_imported_symver))
3747 goto error_free_sym;
3748
3749 /* Read in the symbol versions, but don't bother to convert them
3750 to internal format. */
3751 if (elf_dynversym (abfd) != 0)
3752 {
3753 Elf_Internal_Shdr *versymhdr;
3754
3755 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3756 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3757 if (extversym == NULL)
3758 goto error_free_sym;
3759 amt = versymhdr->sh_size;
3760 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3761 || bfd_bread (extversym, amt, abfd) != amt)
3762 goto error_free_vers;
3763 }
3764 }
3765
3766 /* If we are loading an as-needed shared lib, save the symbol table
3767 state before we start adding symbols. If the lib turns out
3768 to be unneeded, restore the state. */
3769 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3770 {
3771 unsigned int i;
3772 size_t entsize;
3773
3774 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3775 {
3776 struct bfd_hash_entry *p;
3777 struct elf_link_hash_entry *h;
3778
3779 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3780 {
3781 h = (struct elf_link_hash_entry *) p;
3782 entsize += htab->root.table.entsize;
3783 if (h->root.type == bfd_link_hash_warning)
3784 entsize += htab->root.table.entsize;
3785 }
3786 }
3787
3788 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3789 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3790 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3791 if (old_tab == NULL)
3792 goto error_free_vers;
3793
3794 /* Remember the current objalloc pointer, so that all mem for
3795 symbols added can later be reclaimed. */
3796 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3797 if (alloc_mark == NULL)
3798 goto error_free_vers;
3799
3800 /* Make a special call to the linker "notice" function to
3801 tell it that we are about to handle an as-needed lib. */
3802 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3803 notice_as_needed, 0, NULL))
3804 goto error_free_vers;
3805
3806 /* Clone the symbol table and sym hashes. Remember some
3807 pointers into the symbol table, and dynamic symbol count. */
3808 old_hash = (char *) old_tab + tabsize;
3809 old_ent = (char *) old_hash + hashsize;
3810 memcpy (old_tab, htab->root.table.table, tabsize);
3811 memcpy (old_hash, sym_hash, hashsize);
3812 old_undefs = htab->root.undefs;
3813 old_undefs_tail = htab->root.undefs_tail;
3814 old_table = htab->root.table.table;
3815 old_size = htab->root.table.size;
3816 old_count = htab->root.table.count;
3817 old_dynsymcount = htab->dynsymcount;
3818 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3819
3820 for (i = 0; i < htab->root.table.size; i++)
3821 {
3822 struct bfd_hash_entry *p;
3823 struct elf_link_hash_entry *h;
3824
3825 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3826 {
3827 memcpy (old_ent, p, htab->root.table.entsize);
3828 old_ent = (char *) old_ent + htab->root.table.entsize;
3829 h = (struct elf_link_hash_entry *) p;
3830 if (h->root.type == bfd_link_hash_warning)
3831 {
3832 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 }
3835 }
3836 }
3837 }
3838
3839 weaks = NULL;
3840 ever = extversym != NULL ? extversym + extsymoff : NULL;
3841 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3842 isym < isymend;
3843 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3844 {
3845 int bind;
3846 bfd_vma value;
3847 asection *sec, *new_sec;
3848 flagword flags;
3849 const char *name;
3850 struct elf_link_hash_entry *h;
3851 struct elf_link_hash_entry *hi;
3852 bfd_boolean definition;
3853 bfd_boolean size_change_ok;
3854 bfd_boolean type_change_ok;
3855 bfd_boolean new_weakdef;
3856 bfd_boolean new_weak;
3857 bfd_boolean old_weak;
3858 bfd_boolean override;
3859 bfd_boolean common;
3860 unsigned int old_alignment;
3861 bfd *old_bfd;
3862 bfd * undef_bfd = NULL;
3863
3864 override = FALSE;
3865
3866 flags = BSF_NO_FLAGS;
3867 sec = NULL;
3868 value = isym->st_value;
3869 *sym_hash = NULL;
3870 common = bed->common_definition (isym);
3871
3872 bind = ELF_ST_BIND (isym->st_info);
3873 switch (bind)
3874 {
3875 case STB_LOCAL:
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3879 screws this up. */
3880 continue;
3881
3882 case STB_GLOBAL:
3883 if (isym->st_shndx != SHN_UNDEF && !common)
3884 flags = BSF_GLOBAL;
3885 break;
3886
3887 case STB_WEAK:
3888 flags = BSF_WEAK;
3889 break;
3890
3891 case STB_GNU_UNIQUE:
3892 flags = BSF_GNU_UNIQUE;
3893 break;
3894
3895 default:
3896 /* Leave it up to the processor backend. */
3897 break;
3898 }
3899
3900 if (isym->st_shndx == SHN_UNDEF)
3901 sec = bfd_und_section_ptr;
3902 else if (isym->st_shndx == SHN_ABS)
3903 sec = bfd_abs_section_ptr;
3904 else if (isym->st_shndx == SHN_COMMON)
3905 {
3906 sec = bfd_com_section_ptr;
3907 /* What ELF calls the size we call the value. What ELF
3908 calls the value we call the alignment. */
3909 value = isym->st_size;
3910 }
3911 else
3912 {
3913 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3914 if (sec == NULL)
3915 sec = bfd_abs_section_ptr;
3916 else if (discarded_section (sec))
3917 {
3918 /* Symbols from discarded section are undefined. We keep
3919 its visibility. */
3920 sec = bfd_und_section_ptr;
3921 isym->st_shndx = SHN_UNDEF;
3922 }
3923 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3924 value -= sec->vma;
3925 }
3926
3927 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3928 isym->st_name);
3929 if (name == NULL)
3930 goto error_free_vers;
3931
3932 if (isym->st_shndx == SHN_COMMON
3933 && (abfd->flags & BFD_PLUGIN) != 0)
3934 {
3935 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3936
3937 if (xc == NULL)
3938 {
3939 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3940 | SEC_EXCLUDE);
3941 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3942 if (xc == NULL)
3943 goto error_free_vers;
3944 }
3945 sec = xc;
3946 }
3947 else if (isym->st_shndx == SHN_COMMON
3948 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && !info->relocatable)
3950 {
3951 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952
3953 if (tcomm == NULL)
3954 {
3955 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3956 | SEC_LINKER_CREATED);
3957 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3958 if (tcomm == NULL)
3959 goto error_free_vers;
3960 }
3961 sec = tcomm;
3962 }
3963 else if (bed->elf_add_symbol_hook)
3964 {
3965 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3966 &sec, &value))
3967 goto error_free_vers;
3968
3969 /* The hook function sets the name to NULL if this symbol
3970 should be skipped for some reason. */
3971 if (name == NULL)
3972 continue;
3973 }
3974
3975 /* Sanity check that all possibilities were handled. */
3976 if (sec == NULL)
3977 {
3978 bfd_set_error (bfd_error_bad_value);
3979 goto error_free_vers;
3980 }
3981
3982 if (bfd_is_und_section (sec)
3983 || bfd_is_com_section (sec))
3984 definition = FALSE;
3985 else
3986 definition = TRUE;
3987
3988 size_change_ok = FALSE;
3989 type_change_ok = bed->type_change_ok;
3990 old_weak = FALSE;
3991 old_alignment = 0;
3992 old_bfd = NULL;
3993 new_sec = sec;
3994
3995 if (is_elf_hash_table (htab))
3996 {
3997 Elf_Internal_Versym iver;
3998 unsigned int vernum = 0;
3999 bfd_boolean skip;
4000
4001 /* If this is a definition of a symbol which was previously
4002 referenced, then make a note of the bfd that contained the
4003 reference. This is used if we need to refer to the source
4004 of the reference later on. */
4005 if (! bfd_is_und_section (sec))
4006 {
4007 h = elf_link_hash_lookup (elf_hash_table (info), name,
4008 FALSE, FALSE, FALSE);
4009
4010 if (h != NULL
4011 && (h->root.type == bfd_link_hash_undefined
4012 || h->root.type == bfd_link_hash_undefweak)
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4015 }
4016
4017 if (ever == NULL)
4018 {
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4024 }
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4029
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4039 {
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4043
4044 if (isym->st_shndx != SHN_UNDEF)
4045 {
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4053
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064 else
4065 {
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4071
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4076 {
4077 Elf_Internal_Vernaux *a;
4078
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 {
4081 if (a->vna_other == vernum)
4082 {
4083 verstr = a->vna_nodename;
4084 break;
4085 }
4086 }
4087 if (a != NULL)
4088 break;
4089 }
4090 if (verstr == NULL)
4091 {
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4097 }
4098 }
4099
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4106
4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4120
4121 name = newname;
4122 }
4123
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved reference to the current symbol. */
4126 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 {
4128 h = elf_link_hash_lookup (elf_hash_table (info), name,
4129 FALSE, FALSE, FALSE);
4130
4131 if (h != NULL
4132 && (h->root.type == bfd_link_hash_undefined
4133 || h->root.type == bfd_link_hash_undefweak)
4134 && h->root.u.undef.abfd)
4135 undef_bfd = h->root.u.undef.abfd;
4136 }
4137
4138 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 &value, &old_weak, &old_alignment,
4140 sym_hash, &skip, &override,
4141 &type_change_ok, &size_change_ok))
4142 goto error_free_vers;
4143
4144 if (skip)
4145 continue;
4146
4147 if (override)
4148 definition = FALSE;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 /* Remember the old alignment if this is a common symbol, so
4156 that we don't reduce the alignment later on. We can't
4157 check later, because _bfd_generic_link_add_one_symbol
4158 will set a default for the alignment which we want to
4159 override. We also remember the old bfd where the existing
4160 definition comes from. */
4161 switch (h->root.type)
4162 {
4163 default:
4164 break;
4165
4166 case bfd_link_hash_defined:
4167 case bfd_link_hash_defweak:
4168 old_bfd = h->root.u.def.section->owner;
4169 break;
4170
4171 case bfd_link_hash_common:
4172 old_bfd = h->root.u.c.p->section->owner;
4173 old_alignment = h->root.u.c.p->alignment_power;
4174 break;
4175 }
4176
4177 if (elf_tdata (abfd)->verdef != NULL
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 /* We need to make sure that indirect symbol dynamic flags are
4190 updated. */
4191 hi = h;
4192 while (h->root.type == bfd_link_hash_indirect
4193 || h->root.type == bfd_link_hash_warning)
4194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195
4196 *sym_hash = h;
4197
4198 new_weak = (flags & BSF_WEAK) != 0;
4199 new_weakdef = FALSE;
4200 if (dynamic
4201 && definition
4202 && new_weak
4203 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4204 && is_elf_hash_table (htab)
4205 && h->u.weakdef == NULL)
4206 {
4207 /* Keep a list of all weak defined non function symbols from
4208 a dynamic object, using the weakdef field. Later in this
4209 function we will set the weakdef field to the correct
4210 value. We only put non-function symbols from dynamic
4211 objects on this list, because that happens to be the only
4212 time we need to know the normal symbol corresponding to a
4213 weak symbol, and the information is time consuming to
4214 figure out. If the weakdef field is not already NULL,
4215 then this symbol was already defined by some previous
4216 dynamic object, and we will be using that previous
4217 definition anyhow. */
4218
4219 h->u.weakdef = weaks;
4220 weaks = h;
4221 new_weakdef = TRUE;
4222 }
4223
4224 /* Set the alignment of a common symbol. */
4225 if ((common || bfd_is_com_section (sec))
4226 && h->root.type == bfd_link_hash_common)
4227 {
4228 unsigned int align;
4229
4230 if (common)
4231 align = bfd_log2 (isym->st_value);
4232 else
4233 {
4234 /* The new symbol is a common symbol in a shared object.
4235 We need to get the alignment from the section. */
4236 align = new_sec->alignment_power;
4237 }
4238 if (align > old_alignment)
4239 h->root.u.c.p->alignment_power = align;
4240 else
4241 h->root.u.c.p->alignment_power = old_alignment;
4242 }
4243
4244 if (is_elf_hash_table (htab))
4245 {
4246 bfd_boolean dynsym;
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 symbol_align = ffs (h->root.u.def.value) - 1;
4263 if (h->root.u.def.section->owner != NULL
4264 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 {
4266 normal_align = h->root.u.def.section->alignment_power;
4267 if (normal_align > symbol_align)
4268 normal_align = symbol_align;
4269 }
4270 else
4271 normal_align = symbol_align;
4272
4273 if (old_alignment)
4274 {
4275 common_align = old_alignment;
4276 common_bfd = old_bfd;
4277 normal_bfd = abfd;
4278 }
4279 else
4280 {
4281 common_align = bfd_log2 (isym->st_value);
4282 common_bfd = abfd;
4283 normal_bfd = old_bfd;
4284 }
4285
4286 if (normal_align < common_align)
4287 {
4288 /* PR binutils/2735 */
4289 if (normal_bfd == NULL)
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of common symbol `%s' in %B"
4292 " is greater than the alignment (%u) of its section %A"),
4293 common_bfd, h->root.u.def.section,
4294 1 << common_align, name, 1 << normal_align);
4295 else
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of symbol `%s' in %B"
4298 " is smaller than %u in %B"),
4299 normal_bfd, common_bfd,
4300 1 << normal_align, name, 1 << common_align);
4301 }
4302 }
4303
4304 /* Remember the symbol size if it isn't undefined. */
4305 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4306 && (definition || h->size == 0))
4307 {
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changed between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && ((definition && !new_weak)
4332 || (old_weak && h->root.type == bfd_link_hash_common)
4333 || h->type == STT_NOTYPE))
4334 {
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 symbol. */
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4341 type = STT_FUNC;
4342
4343 if (h->type != type)
4344 {
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4350
4351 h->type = type;
4352 }
4353 }
4354
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357
4358 /* Set a flag in the hash table entry indicating the type of
4359 reference or definition we just found. Keep a count of
4360 the number of dynamic symbols we find. A dynamic symbol
4361 is one which is referenced or defined by both a regular
4362 object and a shared object. */
4363 dynsym = FALSE;
4364 if (! dynamic)
4365 {
4366 if (! definition)
4367 {
4368 h->ref_regular = 1;
4369 if (bind != STB_WEAK)
4370 h->ref_regular_nonweak = 1;
4371 }
4372 else
4373 {
4374 h->def_regular = 1;
4375 if (h->def_dynamic)
4376 {
4377 h->def_dynamic = 0;
4378 h->ref_dynamic = 1;
4379 }
4380 }
4381
4382 /* If the indirect symbol has been forced local, don't
4383 make the real symbol dynamic. */
4384 if ((h == hi || !hi->forced_local)
4385 && (! info->executable
4386 || h->def_dynamic
4387 || h->ref_dynamic))
4388 dynsym = TRUE;
4389 }
4390 else
4391 {
4392 if (! definition)
4393 {
4394 h->ref_dynamic = 1;
4395 hi->ref_dynamic = 1;
4396 }
4397 else
4398 {
4399 h->def_dynamic = 1;
4400 hi->def_dynamic = 1;
4401 }
4402
4403 /* If the indirect symbol has been forced local, don't
4404 make the real symbol dynamic. */
4405 if ((h == hi || !hi->forced_local)
4406 && (h->def_regular
4407 || h->ref_regular
4408 || (h->u.weakdef != NULL
4409 && ! new_weakdef
4410 && h->u.weakdef->dynindx != -1)))
4411 dynsym = TRUE;
4412 }
4413
4414 /* We don't want to make debug symbol dynamic. */
4415 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4416 dynsym = FALSE;
4417
4418 /* Nor should we make plugin symbols dynamic. */
4419 if ((abfd->flags & BFD_PLUGIN) != 0)
4420 dynsym = FALSE;
4421
4422 if (definition)
4423 {
4424 h->target_internal = isym->st_target_internal;
4425 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4426 }
4427
4428 /* Check to see if we need to add an indirect symbol for
4429 the default name. */
4430 if (definition || h->root.type == bfd_link_hash_common)
4431 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4432 &sec, &value, &dynsym,
4433 override))
4434 goto error_free_vers;
4435
4436 if (definition && !dynamic)
4437 {
4438 char *p = strchr (name, ELF_VER_CHR);
4439 if (p != NULL && p[1] != ELF_VER_CHR)
4440 {
4441 /* Queue non-default versions so that .symver x, x@FOO
4442 aliases can be checked. */
4443 if (!nondeflt_vers)
4444 {
4445 amt = ((isymend - isym + 1)
4446 * sizeof (struct elf_link_hash_entry *));
4447 nondeflt_vers =
4448 (struct elf_link_hash_entry **) bfd_malloc (amt);
4449 if (!nondeflt_vers)
4450 goto error_free_vers;
4451 }
4452 nondeflt_vers[nondeflt_vers_cnt++] = h;
4453 }
4454 }
4455
4456 if (dynsym && h->dynindx == -1)
4457 {
4458 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4459 goto error_free_vers;
4460 if (h->u.weakdef != NULL
4461 && ! new_weakdef
4462 && h->u.weakdef->dynindx == -1)
4463 {
4464 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4465 goto error_free_vers;
4466 }
4467 }
4468 else if (dynsym && h->dynindx != -1)
4469 /* If the symbol already has a dynamic index, but
4470 visibility says it should not be visible, turn it into
4471 a local symbol. */
4472 switch (ELF_ST_VISIBILITY (h->other))
4473 {
4474 case STV_INTERNAL:
4475 case STV_HIDDEN:
4476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4477 dynsym = FALSE;
4478 break;
4479 }
4480
4481 /* Don't add DT_NEEDED for references from the dummy bfd. */
4482 if (!add_needed
4483 && definition
4484 && ((dynsym
4485 && h->ref_regular_nonweak
4486 && (undef_bfd == NULL
4487 || (undef_bfd->flags & BFD_PLUGIN) == 0))
4488 || (h->ref_dynamic_nonweak
4489 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4490 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4491 {
4492 int ret;
4493 const char *soname = elf_dt_name (abfd);
4494
4495 /* A symbol from a library loaded via DT_NEEDED of some
4496 other library is referenced by a regular object.
4497 Add a DT_NEEDED entry for it. Issue an error if
4498 --no-add-needed is used and the reference was not
4499 a weak one. */
4500 if (undef_bfd != NULL
4501 && h->ref_regular_nonweak
4502 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4503 {
4504 (*_bfd_error_handler)
4505 (_("%B: undefined reference to symbol '%s'"),
4506 undef_bfd, name);
4507 (*_bfd_error_handler)
4508 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4509 abfd, name);
4510 bfd_set_error (bfd_error_invalid_operation);
4511 goto error_free_vers;
4512 }
4513
4514 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4515 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4516
4517 add_needed = TRUE;
4518 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4519 if (ret < 0)
4520 goto error_free_vers;
4521
4522 BFD_ASSERT (ret == 0);
4523 }
4524 }
4525 }
4526
4527 if (extversym != NULL)
4528 {
4529 free (extversym);
4530 extversym = NULL;
4531 }
4532
4533 if (isymbuf != NULL)
4534 {
4535 free (isymbuf);
4536 isymbuf = NULL;
4537 }
4538
4539 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4540 {
4541 unsigned int i;
4542
4543 /* Restore the symbol table. */
4544 if (bed->as_needed_cleanup)
4545 (*bed->as_needed_cleanup) (abfd, info);
4546 old_hash = (char *) old_tab + tabsize;
4547 old_ent = (char *) old_hash + hashsize;
4548 sym_hash = elf_sym_hashes (abfd);
4549 htab->root.table.table = old_table;
4550 htab->root.table.size = old_size;
4551 htab->root.table.count = old_count;
4552 memcpy (htab->root.table.table, old_tab, tabsize);
4553 memcpy (sym_hash, old_hash, hashsize);
4554 htab->root.undefs = old_undefs;
4555 htab->root.undefs_tail = old_undefs_tail;
4556 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4557 for (i = 0; i < htab->root.table.size; i++)
4558 {
4559 struct bfd_hash_entry *p;
4560 struct elf_link_hash_entry *h;
4561 bfd_size_type size;
4562 unsigned int alignment_power;
4563
4564 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4565 {
4566 h = (struct elf_link_hash_entry *) p;
4567 if (h->root.type == bfd_link_hash_warning)
4568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4569 if (h->dynindx >= old_dynsymcount
4570 && h->dynstr_index < old_dynstr_size)
4571 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4572
4573 /* Preserve the maximum alignment and size for common
4574 symbols even if this dynamic lib isn't on DT_NEEDED
4575 since it can still be loaded at run time by another
4576 dynamic lib. */
4577 if (h->root.type == bfd_link_hash_common)
4578 {
4579 size = h->root.u.c.size;
4580 alignment_power = h->root.u.c.p->alignment_power;
4581 }
4582 else
4583 {
4584 size = 0;
4585 alignment_power = 0;
4586 }
4587 memcpy (p, old_ent, htab->root.table.entsize);
4588 old_ent = (char *) old_ent + htab->root.table.entsize;
4589 h = (struct elf_link_hash_entry *) p;
4590 if (h->root.type == bfd_link_hash_warning)
4591 {
4592 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4593 old_ent = (char *) old_ent + htab->root.table.entsize;
4594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4595 }
4596 if (h->root.type == bfd_link_hash_common)
4597 {
4598 if (size > h->root.u.c.size)
4599 h->root.u.c.size = size;
4600 if (alignment_power > h->root.u.c.p->alignment_power)
4601 h->root.u.c.p->alignment_power = alignment_power;
4602 }
4603 }
4604 }
4605
4606 /* Make a special call to the linker "notice" function to
4607 tell it that symbols added for crefs may need to be removed. */
4608 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4609 notice_not_needed, 0, NULL))
4610 goto error_free_vers;
4611
4612 free (old_tab);
4613 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4614 alloc_mark);
4615 if (nondeflt_vers != NULL)
4616 free (nondeflt_vers);
4617 return TRUE;
4618 }
4619
4620 if (old_tab != NULL)
4621 {
4622 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4623 notice_needed, 0, NULL))
4624 goto error_free_vers;
4625 free (old_tab);
4626 old_tab = NULL;
4627 }
4628
4629 /* Now that all the symbols from this input file are created, handle
4630 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4631 if (nondeflt_vers != NULL)
4632 {
4633 bfd_size_type cnt, symidx;
4634
4635 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4636 {
4637 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4638 char *shortname, *p;
4639
4640 p = strchr (h->root.root.string, ELF_VER_CHR);
4641 if (p == NULL
4642 || (h->root.type != bfd_link_hash_defined
4643 && h->root.type != bfd_link_hash_defweak))
4644 continue;
4645
4646 amt = p - h->root.root.string;
4647 shortname = (char *) bfd_malloc (amt + 1);
4648 if (!shortname)
4649 goto error_free_vers;
4650 memcpy (shortname, h->root.root.string, amt);
4651 shortname[amt] = '\0';
4652
4653 hi = (struct elf_link_hash_entry *)
4654 bfd_link_hash_lookup (&htab->root, shortname,
4655 FALSE, FALSE, FALSE);
4656 if (hi != NULL
4657 && hi->root.type == h->root.type
4658 && hi->root.u.def.value == h->root.u.def.value
4659 && hi->root.u.def.section == h->root.u.def.section)
4660 {
4661 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4662 hi->root.type = bfd_link_hash_indirect;
4663 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4664 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4665 sym_hash = elf_sym_hashes (abfd);
4666 if (sym_hash)
4667 for (symidx = 0; symidx < extsymcount; ++symidx)
4668 if (sym_hash[symidx] == hi)
4669 {
4670 sym_hash[symidx] = h;
4671 break;
4672 }
4673 }
4674 free (shortname);
4675 }
4676 free (nondeflt_vers);
4677 nondeflt_vers = NULL;
4678 }
4679
4680 /* Now set the weakdefs field correctly for all the weak defined
4681 symbols we found. The only way to do this is to search all the
4682 symbols. Since we only need the information for non functions in
4683 dynamic objects, that's the only time we actually put anything on
4684 the list WEAKS. We need this information so that if a regular
4685 object refers to a symbol defined weakly in a dynamic object, the
4686 real symbol in the dynamic object is also put in the dynamic
4687 symbols; we also must arrange for both symbols to point to the
4688 same memory location. We could handle the general case of symbol
4689 aliasing, but a general symbol alias can only be generated in
4690 assembler code, handling it correctly would be very time
4691 consuming, and other ELF linkers don't handle general aliasing
4692 either. */
4693 if (weaks != NULL)
4694 {
4695 struct elf_link_hash_entry **hpp;
4696 struct elf_link_hash_entry **hppend;
4697 struct elf_link_hash_entry **sorted_sym_hash;
4698 struct elf_link_hash_entry *h;
4699 size_t sym_count;
4700
4701 /* Since we have to search the whole symbol list for each weak
4702 defined symbol, search time for N weak defined symbols will be
4703 O(N^2). Binary search will cut it down to O(NlogN). */
4704 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4705 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4706 if (sorted_sym_hash == NULL)
4707 goto error_return;
4708 sym_hash = sorted_sym_hash;
4709 hpp = elf_sym_hashes (abfd);
4710 hppend = hpp + extsymcount;
4711 sym_count = 0;
4712 for (; hpp < hppend; hpp++)
4713 {
4714 h = *hpp;
4715 if (h != NULL
4716 && h->root.type == bfd_link_hash_defined
4717 && !bed->is_function_type (h->type))
4718 {
4719 *sym_hash = h;
4720 sym_hash++;
4721 sym_count++;
4722 }
4723 }
4724
4725 qsort (sorted_sym_hash, sym_count,
4726 sizeof (struct elf_link_hash_entry *),
4727 elf_sort_symbol);
4728
4729 while (weaks != NULL)
4730 {
4731 struct elf_link_hash_entry *hlook;
4732 asection *slook;
4733 bfd_vma vlook;
4734 size_t i, j, idx;
4735
4736 hlook = weaks;
4737 weaks = hlook->u.weakdef;
4738 hlook->u.weakdef = NULL;
4739
4740 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4741 || hlook->root.type == bfd_link_hash_defweak
4742 || hlook->root.type == bfd_link_hash_common
4743 || hlook->root.type == bfd_link_hash_indirect);
4744 slook = hlook->root.u.def.section;
4745 vlook = hlook->root.u.def.value;
4746
4747 i = 0;
4748 j = sym_count;
4749 while (i != j)
4750 {
4751 bfd_signed_vma vdiff;
4752 idx = (i + j) / 2;
4753 h = sorted_sym_hash[idx];
4754 vdiff = vlook - h->root.u.def.value;
4755 if (vdiff < 0)
4756 j = idx;
4757 else if (vdiff > 0)
4758 i = idx + 1;
4759 else
4760 {
4761 long sdiff = slook->id - h->root.u.def.section->id;
4762 if (sdiff < 0)
4763 j = idx;
4764 else if (sdiff > 0)
4765 i = idx + 1;
4766 else
4767 break;
4768 }
4769 }
4770
4771 /* We didn't find a value/section match. */
4772 if (i == j)
4773 continue;
4774
4775 /* With multiple aliases, or when the weak symbol is already
4776 strongly defined, we have multiple matching symbols and
4777 the binary search above may land on any of them. Step
4778 one past the matching symbol(s). */
4779 while (++idx != j)
4780 {
4781 h = sorted_sym_hash[idx];
4782 if (h->root.u.def.section != slook
4783 || h->root.u.def.value != vlook)
4784 break;
4785 }
4786
4787 /* Now look back over the aliases. Since we sorted by size
4788 as well as value and section, we'll choose the one with
4789 the largest size. */
4790 while (idx-- != i)
4791 {
4792 h = sorted_sym_hash[idx];
4793
4794 /* Stop if value or section doesn't match. */
4795 if (h->root.u.def.section != slook
4796 || h->root.u.def.value != vlook)
4797 break;
4798 else if (h != hlook)
4799 {
4800 hlook->u.weakdef = h;
4801
4802 /* If the weak definition is in the list of dynamic
4803 symbols, make sure the real definition is put
4804 there as well. */
4805 if (hlook->dynindx != -1 && h->dynindx == -1)
4806 {
4807 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4808 {
4809 err_free_sym_hash:
4810 free (sorted_sym_hash);
4811 goto error_return;
4812 }
4813 }
4814
4815 /* If the real definition is in the list of dynamic
4816 symbols, make sure the weak definition is put
4817 there as well. If we don't do this, then the
4818 dynamic loader might not merge the entries for the
4819 real definition and the weak definition. */
4820 if (h->dynindx != -1 && hlook->dynindx == -1)
4821 {
4822 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4823 goto err_free_sym_hash;
4824 }
4825 break;
4826 }
4827 }
4828 }
4829
4830 free (sorted_sym_hash);
4831 }
4832
4833 if (bed->check_directives
4834 && !(*bed->check_directives) (abfd, info))
4835 return FALSE;
4836
4837 /* If this object is the same format as the output object, and it is
4838 not a shared library, then let the backend look through the
4839 relocs.
4840
4841 This is required to build global offset table entries and to
4842 arrange for dynamic relocs. It is not required for the
4843 particular common case of linking non PIC code, even when linking
4844 against shared libraries, but unfortunately there is no way of
4845 knowing whether an object file has been compiled PIC or not.
4846 Looking through the relocs is not particularly time consuming.
4847 The problem is that we must either (1) keep the relocs in memory,
4848 which causes the linker to require additional runtime memory or
4849 (2) read the relocs twice from the input file, which wastes time.
4850 This would be a good case for using mmap.
4851
4852 I have no idea how to handle linking PIC code into a file of a
4853 different format. It probably can't be done. */
4854 if (! dynamic
4855 && is_elf_hash_table (htab)
4856 && bed->check_relocs != NULL
4857 && elf_object_id (abfd) == elf_hash_table_id (htab)
4858 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4859 {
4860 asection *o;
4861
4862 for (o = abfd->sections; o != NULL; o = o->next)
4863 {
4864 Elf_Internal_Rela *internal_relocs;
4865 bfd_boolean ok;
4866
4867 if ((o->flags & SEC_RELOC) == 0
4868 || o->reloc_count == 0
4869 || ((info->strip == strip_all || info->strip == strip_debugger)
4870 && (o->flags & SEC_DEBUGGING) != 0)
4871 || bfd_is_abs_section (o->output_section))
4872 continue;
4873
4874 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4875 info->keep_memory);
4876 if (internal_relocs == NULL)
4877 goto error_return;
4878
4879 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4880
4881 if (elf_section_data (o)->relocs != internal_relocs)
4882 free (internal_relocs);
4883
4884 if (! ok)
4885 goto error_return;
4886 }
4887 }
4888
4889 /* If this is a non-traditional link, try to optimize the handling
4890 of the .stab/.stabstr sections. */
4891 if (! dynamic
4892 && ! info->traditional_format
4893 && is_elf_hash_table (htab)
4894 && (info->strip != strip_all && info->strip != strip_debugger))
4895 {
4896 asection *stabstr;
4897
4898 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4899 if (stabstr != NULL)
4900 {
4901 bfd_size_type string_offset = 0;
4902 asection *stab;
4903
4904 for (stab = abfd->sections; stab; stab = stab->next)
4905 if (CONST_STRNEQ (stab->name, ".stab")
4906 && (!stab->name[5] ||
4907 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4908 && (stab->flags & SEC_MERGE) == 0
4909 && !bfd_is_abs_section (stab->output_section))
4910 {
4911 struct bfd_elf_section_data *secdata;
4912
4913 secdata = elf_section_data (stab);
4914 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4915 stabstr, &secdata->sec_info,
4916 &string_offset))
4917 goto error_return;
4918 if (secdata->sec_info)
4919 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4920 }
4921 }
4922 }
4923
4924 if (is_elf_hash_table (htab) && add_needed)
4925 {
4926 /* Add this bfd to the loaded list. */
4927 struct elf_link_loaded_list *n;
4928
4929 n = (struct elf_link_loaded_list *)
4930 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4931 if (n == NULL)
4932 goto error_return;
4933 n->abfd = abfd;
4934 n->next = htab->loaded;
4935 htab->loaded = n;
4936 }
4937
4938 return TRUE;
4939
4940 error_free_vers:
4941 if (old_tab != NULL)
4942 free (old_tab);
4943 if (nondeflt_vers != NULL)
4944 free (nondeflt_vers);
4945 if (extversym != NULL)
4946 free (extversym);
4947 error_free_sym:
4948 if (isymbuf != NULL)
4949 free (isymbuf);
4950 error_return:
4951 return FALSE;
4952 }
4953
4954 /* Return the linker hash table entry of a symbol that might be
4955 satisfied by an archive symbol. Return -1 on error. */
4956
4957 struct elf_link_hash_entry *
4958 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4959 struct bfd_link_info *info,
4960 const char *name)
4961 {
4962 struct elf_link_hash_entry *h;
4963 char *p, *copy;
4964 size_t len, first;
4965
4966 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4967 if (h != NULL)
4968 return h;
4969
4970 /* If this is a default version (the name contains @@), look up the
4971 symbol again with only one `@' as well as without the version.
4972 The effect is that references to the symbol with and without the
4973 version will be matched by the default symbol in the archive. */
4974
4975 p = strchr (name, ELF_VER_CHR);
4976 if (p == NULL || p[1] != ELF_VER_CHR)
4977 return h;
4978
4979 /* First check with only one `@'. */
4980 len = strlen (name);
4981 copy = (char *) bfd_alloc (abfd, len);
4982 if (copy == NULL)
4983 return (struct elf_link_hash_entry *) 0 - 1;
4984
4985 first = p - name + 1;
4986 memcpy (copy, name, first);
4987 memcpy (copy + first, name + first + 1, len - first);
4988
4989 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4990 if (h == NULL)
4991 {
4992 /* We also need to check references to the symbol without the
4993 version. */
4994 copy[first - 1] = '\0';
4995 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4996 FALSE, FALSE, TRUE);
4997 }
4998
4999 bfd_release (abfd, copy);
5000 return h;
5001 }
5002
5003 /* Add symbols from an ELF archive file to the linker hash table. We
5004 don't use _bfd_generic_link_add_archive_symbols because of a
5005 problem which arises on UnixWare. The UnixWare libc.so is an
5006 archive which includes an entry libc.so.1 which defines a bunch of
5007 symbols. The libc.so archive also includes a number of other
5008 object files, which also define symbols, some of which are the same
5009 as those defined in libc.so.1. Correct linking requires that we
5010 consider each object file in turn, and include it if it defines any
5011 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5012 this; it looks through the list of undefined symbols, and includes
5013 any object file which defines them. When this algorithm is used on
5014 UnixWare, it winds up pulling in libc.so.1 early and defining a
5015 bunch of symbols. This means that some of the other objects in the
5016 archive are not included in the link, which is incorrect since they
5017 precede libc.so.1 in the archive.
5018
5019 Fortunately, ELF archive handling is simpler than that done by
5020 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5021 oddities. In ELF, if we find a symbol in the archive map, and the
5022 symbol is currently undefined, we know that we must pull in that
5023 object file.
5024
5025 Unfortunately, we do have to make multiple passes over the symbol
5026 table until nothing further is resolved. */
5027
5028 static bfd_boolean
5029 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5030 {
5031 symindex c;
5032 bfd_boolean *defined = NULL;
5033 bfd_boolean *included = NULL;
5034 carsym *symdefs;
5035 bfd_boolean loop;
5036 bfd_size_type amt;
5037 const struct elf_backend_data *bed;
5038 struct elf_link_hash_entry * (*archive_symbol_lookup)
5039 (bfd *, struct bfd_link_info *, const char *);
5040
5041 if (! bfd_has_map (abfd))
5042 {
5043 /* An empty archive is a special case. */
5044 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5045 return TRUE;
5046 bfd_set_error (bfd_error_no_armap);
5047 return FALSE;
5048 }
5049
5050 /* Keep track of all symbols we know to be already defined, and all
5051 files we know to be already included. This is to speed up the
5052 second and subsequent passes. */
5053 c = bfd_ardata (abfd)->symdef_count;
5054 if (c == 0)
5055 return TRUE;
5056 amt = c;
5057 amt *= sizeof (bfd_boolean);
5058 defined = (bfd_boolean *) bfd_zmalloc (amt);
5059 included = (bfd_boolean *) bfd_zmalloc (amt);
5060 if (defined == NULL || included == NULL)
5061 goto error_return;
5062
5063 symdefs = bfd_ardata (abfd)->symdefs;
5064 bed = get_elf_backend_data (abfd);
5065 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5066
5067 do
5068 {
5069 file_ptr last;
5070 symindex i;
5071 carsym *symdef;
5072 carsym *symdefend;
5073
5074 loop = FALSE;
5075 last = -1;
5076
5077 symdef = symdefs;
5078 symdefend = symdef + c;
5079 for (i = 0; symdef < symdefend; symdef++, i++)
5080 {
5081 struct elf_link_hash_entry *h;
5082 bfd *element;
5083 struct bfd_link_hash_entry *undefs_tail;
5084 symindex mark;
5085
5086 if (defined[i] || included[i])
5087 continue;
5088 if (symdef->file_offset == last)
5089 {
5090 included[i] = TRUE;
5091 continue;
5092 }
5093
5094 h = archive_symbol_lookup (abfd, info, symdef->name);
5095 if (h == (struct elf_link_hash_entry *) 0 - 1)
5096 goto error_return;
5097
5098 if (h == NULL)
5099 continue;
5100
5101 if (h->root.type == bfd_link_hash_common)
5102 {
5103 /* We currently have a common symbol. The archive map contains
5104 a reference to this symbol, so we may want to include it. We
5105 only want to include it however, if this archive element
5106 contains a definition of the symbol, not just another common
5107 declaration of it.
5108
5109 Unfortunately some archivers (including GNU ar) will put
5110 declarations of common symbols into their archive maps, as
5111 well as real definitions, so we cannot just go by the archive
5112 map alone. Instead we must read in the element's symbol
5113 table and check that to see what kind of symbol definition
5114 this is. */
5115 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5116 continue;
5117 }
5118 else if (h->root.type != bfd_link_hash_undefined)
5119 {
5120 if (h->root.type != bfd_link_hash_undefweak)
5121 defined[i] = TRUE;
5122 continue;
5123 }
5124
5125 /* We need to include this archive member. */
5126 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5127 if (element == NULL)
5128 goto error_return;
5129
5130 if (! bfd_check_format (element, bfd_object))
5131 goto error_return;
5132
5133 /* Doublecheck that we have not included this object
5134 already--it should be impossible, but there may be
5135 something wrong with the archive. */
5136 if (element->archive_pass != 0)
5137 {
5138 bfd_set_error (bfd_error_bad_value);
5139 goto error_return;
5140 }
5141 element->archive_pass = 1;
5142
5143 undefs_tail = info->hash->undefs_tail;
5144
5145 if (!(*info->callbacks
5146 ->add_archive_element) (info, element, symdef->name, &element))
5147 goto error_return;
5148 if (!bfd_link_add_symbols (element, info))
5149 goto error_return;
5150
5151 /* If there are any new undefined symbols, we need to make
5152 another pass through the archive in order to see whether
5153 they can be defined. FIXME: This isn't perfect, because
5154 common symbols wind up on undefs_tail and because an
5155 undefined symbol which is defined later on in this pass
5156 does not require another pass. This isn't a bug, but it
5157 does make the code less efficient than it could be. */
5158 if (undefs_tail != info->hash->undefs_tail)
5159 loop = TRUE;
5160
5161 /* Look backward to mark all symbols from this object file
5162 which we have already seen in this pass. */
5163 mark = i;
5164 do
5165 {
5166 included[mark] = TRUE;
5167 if (mark == 0)
5168 break;
5169 --mark;
5170 }
5171 while (symdefs[mark].file_offset == symdef->file_offset);
5172
5173 /* We mark subsequent symbols from this object file as we go
5174 on through the loop. */
5175 last = symdef->file_offset;
5176 }
5177 }
5178 while (loop);
5179
5180 free (defined);
5181 free (included);
5182
5183 return TRUE;
5184
5185 error_return:
5186 if (defined != NULL)
5187 free (defined);
5188 if (included != NULL)
5189 free (included);
5190 return FALSE;
5191 }
5192
5193 /* Given an ELF BFD, add symbols to the global hash table as
5194 appropriate. */
5195
5196 bfd_boolean
5197 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5198 {
5199 switch (bfd_get_format (abfd))
5200 {
5201 case bfd_object:
5202 return elf_link_add_object_symbols (abfd, info);
5203 case bfd_archive:
5204 return elf_link_add_archive_symbols (abfd, info);
5205 default:
5206 bfd_set_error (bfd_error_wrong_format);
5207 return FALSE;
5208 }
5209 }
5210 \f
5211 struct hash_codes_info
5212 {
5213 unsigned long *hashcodes;
5214 bfd_boolean error;
5215 };
5216
5217 /* This function will be called though elf_link_hash_traverse to store
5218 all hash value of the exported symbols in an array. */
5219
5220 static bfd_boolean
5221 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5222 {
5223 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5224 const char *name;
5225 char *p;
5226 unsigned long ha;
5227 char *alc = NULL;
5228
5229 /* Ignore indirect symbols. These are added by the versioning code. */
5230 if (h->dynindx == -1)
5231 return TRUE;
5232
5233 name = h->root.root.string;
5234 p = strchr (name, ELF_VER_CHR);
5235 if (p != NULL)
5236 {
5237 alc = (char *) bfd_malloc (p - name + 1);
5238 if (alc == NULL)
5239 {
5240 inf->error = TRUE;
5241 return FALSE;
5242 }
5243 memcpy (alc, name, p - name);
5244 alc[p - name] = '\0';
5245 name = alc;
5246 }
5247
5248 /* Compute the hash value. */
5249 ha = bfd_elf_hash (name);
5250
5251 /* Store the found hash value in the array given as the argument. */
5252 *(inf->hashcodes)++ = ha;
5253
5254 /* And store it in the struct so that we can put it in the hash table
5255 later. */
5256 h->u.elf_hash_value = ha;
5257
5258 if (alc != NULL)
5259 free (alc);
5260
5261 return TRUE;
5262 }
5263
5264 struct collect_gnu_hash_codes
5265 {
5266 bfd *output_bfd;
5267 const struct elf_backend_data *bed;
5268 unsigned long int nsyms;
5269 unsigned long int maskbits;
5270 unsigned long int *hashcodes;
5271 unsigned long int *hashval;
5272 unsigned long int *indx;
5273 unsigned long int *counts;
5274 bfd_vma *bitmask;
5275 bfd_byte *contents;
5276 long int min_dynindx;
5277 unsigned long int bucketcount;
5278 unsigned long int symindx;
5279 long int local_indx;
5280 long int shift1, shift2;
5281 unsigned long int mask;
5282 bfd_boolean error;
5283 };
5284
5285 /* This function will be called though elf_link_hash_traverse to store
5286 all hash value of the exported symbols in an array. */
5287
5288 static bfd_boolean
5289 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5290 {
5291 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5292 const char *name;
5293 char *p;
5294 unsigned long ha;
5295 char *alc = NULL;
5296
5297 /* Ignore indirect symbols. These are added by the versioning code. */
5298 if (h->dynindx == -1)
5299 return TRUE;
5300
5301 /* Ignore also local symbols and undefined symbols. */
5302 if (! (*s->bed->elf_hash_symbol) (h))
5303 return TRUE;
5304
5305 name = h->root.root.string;
5306 p = strchr (name, ELF_VER_CHR);
5307 if (p != NULL)
5308 {
5309 alc = (char *) bfd_malloc (p - name + 1);
5310 if (alc == NULL)
5311 {
5312 s->error = TRUE;
5313 return FALSE;
5314 }
5315 memcpy (alc, name, p - name);
5316 alc[p - name] = '\0';
5317 name = alc;
5318 }
5319
5320 /* Compute the hash value. */
5321 ha = bfd_elf_gnu_hash (name);
5322
5323 /* Store the found hash value in the array for compute_bucket_count,
5324 and also for .dynsym reordering purposes. */
5325 s->hashcodes[s->nsyms] = ha;
5326 s->hashval[h->dynindx] = ha;
5327 ++s->nsyms;
5328 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5329 s->min_dynindx = h->dynindx;
5330
5331 if (alc != NULL)
5332 free (alc);
5333
5334 return TRUE;
5335 }
5336
5337 /* This function will be called though elf_link_hash_traverse to do
5338 final dynaminc symbol renumbering. */
5339
5340 static bfd_boolean
5341 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5342 {
5343 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5344 unsigned long int bucket;
5345 unsigned long int val;
5346
5347 /* Ignore indirect symbols. */
5348 if (h->dynindx == -1)
5349 return TRUE;
5350
5351 /* Ignore also local symbols and undefined symbols. */
5352 if (! (*s->bed->elf_hash_symbol) (h))
5353 {
5354 if (h->dynindx >= s->min_dynindx)
5355 h->dynindx = s->local_indx++;
5356 return TRUE;
5357 }
5358
5359 bucket = s->hashval[h->dynindx] % s->bucketcount;
5360 val = (s->hashval[h->dynindx] >> s->shift1)
5361 & ((s->maskbits >> s->shift1) - 1);
5362 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5363 s->bitmask[val]
5364 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5365 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5366 if (s->counts[bucket] == 1)
5367 /* Last element terminates the chain. */
5368 val |= 1;
5369 bfd_put_32 (s->output_bfd, val,
5370 s->contents + (s->indx[bucket] - s->symindx) * 4);
5371 --s->counts[bucket];
5372 h->dynindx = s->indx[bucket]++;
5373 return TRUE;
5374 }
5375
5376 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5377
5378 bfd_boolean
5379 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5380 {
5381 return !(h->forced_local
5382 || h->root.type == bfd_link_hash_undefined
5383 || h->root.type == bfd_link_hash_undefweak
5384 || ((h->root.type == bfd_link_hash_defined
5385 || h->root.type == bfd_link_hash_defweak)
5386 && h->root.u.def.section->output_section == NULL));
5387 }
5388
5389 /* Array used to determine the number of hash table buckets to use
5390 based on the number of symbols there are. If there are fewer than
5391 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5392 fewer than 37 we use 17 buckets, and so forth. We never use more
5393 than 32771 buckets. */
5394
5395 static const size_t elf_buckets[] =
5396 {
5397 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5398 16411, 32771, 0
5399 };
5400
5401 /* Compute bucket count for hashing table. We do not use a static set
5402 of possible tables sizes anymore. Instead we determine for all
5403 possible reasonable sizes of the table the outcome (i.e., the
5404 number of collisions etc) and choose the best solution. The
5405 weighting functions are not too simple to allow the table to grow
5406 without bounds. Instead one of the weighting factors is the size.
5407 Therefore the result is always a good payoff between few collisions
5408 (= short chain lengths) and table size. */
5409 static size_t
5410 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5411 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5412 unsigned long int nsyms,
5413 int gnu_hash)
5414 {
5415 size_t best_size = 0;
5416 unsigned long int i;
5417
5418 /* We have a problem here. The following code to optimize the table
5419 size requires an integer type with more the 32 bits. If
5420 BFD_HOST_U_64_BIT is set we know about such a type. */
5421 #ifdef BFD_HOST_U_64_BIT
5422 if (info->optimize)
5423 {
5424 size_t minsize;
5425 size_t maxsize;
5426 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5427 bfd *dynobj = elf_hash_table (info)->dynobj;
5428 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5429 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5430 unsigned long int *counts;
5431 bfd_size_type amt;
5432 unsigned int no_improvement_count = 0;
5433
5434 /* Possible optimization parameters: if we have NSYMS symbols we say
5435 that the hashing table must at least have NSYMS/4 and at most
5436 2*NSYMS buckets. */
5437 minsize = nsyms / 4;
5438 if (minsize == 0)
5439 minsize = 1;
5440 best_size = maxsize = nsyms * 2;
5441 if (gnu_hash)
5442 {
5443 if (minsize < 2)
5444 minsize = 2;
5445 if ((best_size & 31) == 0)
5446 ++best_size;
5447 }
5448
5449 /* Create array where we count the collisions in. We must use bfd_malloc
5450 since the size could be large. */
5451 amt = maxsize;
5452 amt *= sizeof (unsigned long int);
5453 counts = (unsigned long int *) bfd_malloc (amt);
5454 if (counts == NULL)
5455 return 0;
5456
5457 /* Compute the "optimal" size for the hash table. The criteria is a
5458 minimal chain length. The minor criteria is (of course) the size
5459 of the table. */
5460 for (i = minsize; i < maxsize; ++i)
5461 {
5462 /* Walk through the array of hashcodes and count the collisions. */
5463 BFD_HOST_U_64_BIT max;
5464 unsigned long int j;
5465 unsigned long int fact;
5466
5467 if (gnu_hash && (i & 31) == 0)
5468 continue;
5469
5470 memset (counts, '\0', i * sizeof (unsigned long int));
5471
5472 /* Determine how often each hash bucket is used. */
5473 for (j = 0; j < nsyms; ++j)
5474 ++counts[hashcodes[j] % i];
5475
5476 /* For the weight function we need some information about the
5477 pagesize on the target. This is information need not be 100%
5478 accurate. Since this information is not available (so far) we
5479 define it here to a reasonable default value. If it is crucial
5480 to have a better value some day simply define this value. */
5481 # ifndef BFD_TARGET_PAGESIZE
5482 # define BFD_TARGET_PAGESIZE (4096)
5483 # endif
5484
5485 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5486 and the chains. */
5487 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5488
5489 # if 1
5490 /* Variant 1: optimize for short chains. We add the squares
5491 of all the chain lengths (which favors many small chain
5492 over a few long chains). */
5493 for (j = 0; j < i; ++j)
5494 max += counts[j] * counts[j];
5495
5496 /* This adds penalties for the overall size of the table. */
5497 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5498 max *= fact * fact;
5499 # else
5500 /* Variant 2: Optimize a lot more for small table. Here we
5501 also add squares of the size but we also add penalties for
5502 empty slots (the +1 term). */
5503 for (j = 0; j < i; ++j)
5504 max += (1 + counts[j]) * (1 + counts[j]);
5505
5506 /* The overall size of the table is considered, but not as
5507 strong as in variant 1, where it is squared. */
5508 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5509 max *= fact;
5510 # endif
5511
5512 /* Compare with current best results. */
5513 if (max < best_chlen)
5514 {
5515 best_chlen = max;
5516 best_size = i;
5517 no_improvement_count = 0;
5518 }
5519 /* PR 11843: Avoid futile long searches for the best bucket size
5520 when there are a large number of symbols. */
5521 else if (++no_improvement_count == 100)
5522 break;
5523 }
5524
5525 free (counts);
5526 }
5527 else
5528 #endif /* defined (BFD_HOST_U_64_BIT) */
5529 {
5530 /* This is the fallback solution if no 64bit type is available or if we
5531 are not supposed to spend much time on optimizations. We select the
5532 bucket count using a fixed set of numbers. */
5533 for (i = 0; elf_buckets[i] != 0; i++)
5534 {
5535 best_size = elf_buckets[i];
5536 if (nsyms < elf_buckets[i + 1])
5537 break;
5538 }
5539 if (gnu_hash && best_size < 2)
5540 best_size = 2;
5541 }
5542
5543 return best_size;
5544 }
5545
5546 /* Size any SHT_GROUP section for ld -r. */
5547
5548 bfd_boolean
5549 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5550 {
5551 bfd *ibfd;
5552
5553 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5554 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5555 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5556 return FALSE;
5557 return TRUE;
5558 }
5559
5560 /* Set a default stack segment size. The value in INFO wins. If it
5561 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5562 undefined it is initialized. */
5563
5564 bfd_boolean
5565 bfd_elf_stack_segment_size (bfd *output_bfd,
5566 struct bfd_link_info *info,
5567 const char *legacy_symbol,
5568 bfd_vma default_size)
5569 {
5570 struct elf_link_hash_entry *h = NULL;
5571
5572 /* Look for legacy symbol. */
5573 if (legacy_symbol)
5574 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5575 FALSE, FALSE, FALSE);
5576 if (h && (h->root.type == bfd_link_hash_defined
5577 || h->root.type == bfd_link_hash_defweak)
5578 && h->def_regular
5579 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5580 {
5581 /* The symbol has no type if specified on the command line. */
5582 h->type = STT_OBJECT;
5583 if (info->stacksize)
5584 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5585 output_bfd, legacy_symbol);
5586 else if (h->root.u.def.section != bfd_abs_section_ptr)
5587 (*_bfd_error_handler) (_("%B: %s not absolute"),
5588 output_bfd, legacy_symbol);
5589 else
5590 info->stacksize = h->root.u.def.value;
5591 }
5592
5593 if (!info->stacksize)
5594 /* If the user didn't set a size, or explicitly inhibit the
5595 size, set it now. */
5596 info->stacksize = default_size;
5597
5598 /* Provide the legacy symbol, if it is referenced. */
5599 if (h && (h->root.type == bfd_link_hash_undefined
5600 || h->root.type == bfd_link_hash_undefweak))
5601 {
5602 struct bfd_link_hash_entry *bh = NULL;
5603
5604 if (!(_bfd_generic_link_add_one_symbol
5605 (info, output_bfd, legacy_symbol,
5606 BSF_GLOBAL, bfd_abs_section_ptr,
5607 info->stacksize >= 0 ? info->stacksize : 0,
5608 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5609 return FALSE;
5610
5611 h = (struct elf_link_hash_entry *) bh;
5612 h->def_regular = 1;
5613 h->type = STT_OBJECT;
5614 }
5615
5616 return TRUE;
5617 }
5618
5619 /* Set up the sizes and contents of the ELF dynamic sections. This is
5620 called by the ELF linker emulation before_allocation routine. We
5621 must set the sizes of the sections before the linker sets the
5622 addresses of the various sections. */
5623
5624 bfd_boolean
5625 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5626 const char *soname,
5627 const char *rpath,
5628 const char *filter_shlib,
5629 const char *audit,
5630 const char *depaudit,
5631 const char * const *auxiliary_filters,
5632 struct bfd_link_info *info,
5633 asection **sinterpptr)
5634 {
5635 bfd_size_type soname_indx;
5636 bfd *dynobj;
5637 const struct elf_backend_data *bed;
5638 struct elf_info_failed asvinfo;
5639
5640 *sinterpptr = NULL;
5641
5642 soname_indx = (bfd_size_type) -1;
5643
5644 if (!is_elf_hash_table (info->hash))
5645 return TRUE;
5646
5647 bed = get_elf_backend_data (output_bfd);
5648
5649 /* Any syms created from now on start with -1 in
5650 got.refcount/offset and plt.refcount/offset. */
5651 elf_hash_table (info)->init_got_refcount
5652 = elf_hash_table (info)->init_got_offset;
5653 elf_hash_table (info)->init_plt_refcount
5654 = elf_hash_table (info)->init_plt_offset;
5655
5656 if (info->relocatable
5657 && !_bfd_elf_size_group_sections (info))
5658 return FALSE;
5659
5660 /* The backend may have to create some sections regardless of whether
5661 we're dynamic or not. */
5662 if (bed->elf_backend_always_size_sections
5663 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5664 return FALSE;
5665
5666 /* Determine any GNU_STACK segment requirements, after the backend
5667 has had a chance to set a default segment size. */
5668 if (info->execstack)
5669 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5670 else if (info->noexecstack)
5671 elf_stack_flags (output_bfd) = PF_R | PF_W;
5672 else
5673 {
5674 bfd *inputobj;
5675 asection *notesec = NULL;
5676 int exec = 0;
5677
5678 for (inputobj = info->input_bfds;
5679 inputobj;
5680 inputobj = inputobj->link_next)
5681 {
5682 asection *s;
5683
5684 if (inputobj->flags
5685 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5686 continue;
5687 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5688 if (s)
5689 {
5690 if (s->flags & SEC_CODE)
5691 exec = PF_X;
5692 notesec = s;
5693 }
5694 else if (bed->default_execstack)
5695 exec = PF_X;
5696 }
5697 if (notesec || info->stacksize > 0)
5698 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5699 if (notesec && exec && info->relocatable
5700 && notesec->output_section != bfd_abs_section_ptr)
5701 notesec->output_section->flags |= SEC_CODE;
5702 }
5703
5704 dynobj = elf_hash_table (info)->dynobj;
5705
5706 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5707 {
5708 struct elf_info_failed eif;
5709 struct elf_link_hash_entry *h;
5710 asection *dynstr;
5711 struct bfd_elf_version_tree *t;
5712 struct bfd_elf_version_expr *d;
5713 asection *s;
5714 bfd_boolean all_defined;
5715
5716 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5717 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5718
5719 if (soname != NULL)
5720 {
5721 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5722 soname, TRUE);
5723 if (soname_indx == (bfd_size_type) -1
5724 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5725 return FALSE;
5726 }
5727
5728 if (info->symbolic)
5729 {
5730 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5731 return FALSE;
5732 info->flags |= DF_SYMBOLIC;
5733 }
5734
5735 if (rpath != NULL)
5736 {
5737 bfd_size_type indx;
5738 bfd_vma tag;
5739
5740 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5741 TRUE);
5742 if (indx == (bfd_size_type) -1)
5743 return FALSE;
5744
5745 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5746 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5747 return FALSE;
5748 }
5749
5750 if (filter_shlib != NULL)
5751 {
5752 bfd_size_type indx;
5753
5754 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5755 filter_shlib, TRUE);
5756 if (indx == (bfd_size_type) -1
5757 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5758 return FALSE;
5759 }
5760
5761 if (auxiliary_filters != NULL)
5762 {
5763 const char * const *p;
5764
5765 for (p = auxiliary_filters; *p != NULL; p++)
5766 {
5767 bfd_size_type indx;
5768
5769 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5770 *p, TRUE);
5771 if (indx == (bfd_size_type) -1
5772 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5773 return FALSE;
5774 }
5775 }
5776
5777 if (audit != NULL)
5778 {
5779 bfd_size_type indx;
5780
5781 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5782 TRUE);
5783 if (indx == (bfd_size_type) -1
5784 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5785 return FALSE;
5786 }
5787
5788 if (depaudit != NULL)
5789 {
5790 bfd_size_type indx;
5791
5792 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5793 TRUE);
5794 if (indx == (bfd_size_type) -1
5795 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5796 return FALSE;
5797 }
5798
5799 eif.info = info;
5800 eif.failed = FALSE;
5801
5802 /* If we are supposed to export all symbols into the dynamic symbol
5803 table (this is not the normal case), then do so. */
5804 if (info->export_dynamic
5805 || (info->executable && info->dynamic))
5806 {
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_export_symbol,
5809 &eif);
5810 if (eif.failed)
5811 return FALSE;
5812 }
5813
5814 /* Make all global versions with definition. */
5815 for (t = info->version_info; t != NULL; t = t->next)
5816 for (d = t->globals.list; d != NULL; d = d->next)
5817 if (!d->symver && d->literal)
5818 {
5819 const char *verstr, *name;
5820 size_t namelen, verlen, newlen;
5821 char *newname, *p, leading_char;
5822 struct elf_link_hash_entry *newh;
5823
5824 leading_char = bfd_get_symbol_leading_char (output_bfd);
5825 name = d->pattern;
5826 namelen = strlen (name) + (leading_char != '\0');
5827 verstr = t->name;
5828 verlen = strlen (verstr);
5829 newlen = namelen + verlen + 3;
5830
5831 newname = (char *) bfd_malloc (newlen);
5832 if (newname == NULL)
5833 return FALSE;
5834 newname[0] = leading_char;
5835 memcpy (newname + (leading_char != '\0'), name, namelen);
5836
5837 /* Check the hidden versioned definition. */
5838 p = newname + namelen;
5839 *p++ = ELF_VER_CHR;
5840 memcpy (p, verstr, verlen + 1);
5841 newh = elf_link_hash_lookup (elf_hash_table (info),
5842 newname, FALSE, FALSE,
5843 FALSE);
5844 if (newh == NULL
5845 || (newh->root.type != bfd_link_hash_defined
5846 && newh->root.type != bfd_link_hash_defweak))
5847 {
5848 /* Check the default versioned definition. */
5849 *p++ = ELF_VER_CHR;
5850 memcpy (p, verstr, verlen + 1);
5851 newh = elf_link_hash_lookup (elf_hash_table (info),
5852 newname, FALSE, FALSE,
5853 FALSE);
5854 }
5855 free (newname);
5856
5857 /* Mark this version if there is a definition and it is
5858 not defined in a shared object. */
5859 if (newh != NULL
5860 && !newh->def_dynamic
5861 && (newh->root.type == bfd_link_hash_defined
5862 || newh->root.type == bfd_link_hash_defweak))
5863 d->symver = 1;
5864 }
5865
5866 /* Attach all the symbols to their version information. */
5867 asvinfo.info = info;
5868 asvinfo.failed = FALSE;
5869
5870 elf_link_hash_traverse (elf_hash_table (info),
5871 _bfd_elf_link_assign_sym_version,
5872 &asvinfo);
5873 if (asvinfo.failed)
5874 return FALSE;
5875
5876 if (!info->allow_undefined_version)
5877 {
5878 /* Check if all global versions have a definition. */
5879 all_defined = TRUE;
5880 for (t = info->version_info; t != NULL; t = t->next)
5881 for (d = t->globals.list; d != NULL; d = d->next)
5882 if (d->literal && !d->symver && !d->script)
5883 {
5884 (*_bfd_error_handler)
5885 (_("%s: undefined version: %s"),
5886 d->pattern, t->name);
5887 all_defined = FALSE;
5888 }
5889
5890 if (!all_defined)
5891 {
5892 bfd_set_error (bfd_error_bad_value);
5893 return FALSE;
5894 }
5895 }
5896
5897 /* Find all symbols which were defined in a dynamic object and make
5898 the backend pick a reasonable value for them. */
5899 elf_link_hash_traverse (elf_hash_table (info),
5900 _bfd_elf_adjust_dynamic_symbol,
5901 &eif);
5902 if (eif.failed)
5903 return FALSE;
5904
5905 /* Add some entries to the .dynamic section. We fill in some of the
5906 values later, in bfd_elf_final_link, but we must add the entries
5907 now so that we know the final size of the .dynamic section. */
5908
5909 /* If there are initialization and/or finalization functions to
5910 call then add the corresponding DT_INIT/DT_FINI entries. */
5911 h = (info->init_function
5912 ? elf_link_hash_lookup (elf_hash_table (info),
5913 info->init_function, FALSE,
5914 FALSE, FALSE)
5915 : NULL);
5916 if (h != NULL
5917 && (h->ref_regular
5918 || h->def_regular))
5919 {
5920 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5921 return FALSE;
5922 }
5923 h = (info->fini_function
5924 ? elf_link_hash_lookup (elf_hash_table (info),
5925 info->fini_function, FALSE,
5926 FALSE, FALSE)
5927 : NULL);
5928 if (h != NULL
5929 && (h->ref_regular
5930 || h->def_regular))
5931 {
5932 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5933 return FALSE;
5934 }
5935
5936 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5937 if (s != NULL && s->linker_has_input)
5938 {
5939 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5940 if (! info->executable)
5941 {
5942 bfd *sub;
5943 asection *o;
5944
5945 for (sub = info->input_bfds; sub != NULL;
5946 sub = sub->link_next)
5947 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5948 for (o = sub->sections; o != NULL; o = o->next)
5949 if (elf_section_data (o)->this_hdr.sh_type
5950 == SHT_PREINIT_ARRAY)
5951 {
5952 (*_bfd_error_handler)
5953 (_("%B: .preinit_array section is not allowed in DSO"),
5954 sub);
5955 break;
5956 }
5957
5958 bfd_set_error (bfd_error_nonrepresentable_section);
5959 return FALSE;
5960 }
5961
5962 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5963 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5964 return FALSE;
5965 }
5966 s = bfd_get_section_by_name (output_bfd, ".init_array");
5967 if (s != NULL && s->linker_has_input)
5968 {
5969 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5970 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5971 return FALSE;
5972 }
5973 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5974 if (s != NULL && s->linker_has_input)
5975 {
5976 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5977 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5978 return FALSE;
5979 }
5980
5981 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5982 /* If .dynstr is excluded from the link, we don't want any of
5983 these tags. Strictly, we should be checking each section
5984 individually; This quick check covers for the case where
5985 someone does a /DISCARD/ : { *(*) }. */
5986 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5987 {
5988 bfd_size_type strsize;
5989
5990 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5991 if ((info->emit_hash
5992 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5993 || (info->emit_gnu_hash
5994 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5995 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5997 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5998 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5999 bed->s->sizeof_sym))
6000 return FALSE;
6001 }
6002 }
6003
6004 /* The backend must work out the sizes of all the other dynamic
6005 sections. */
6006 if (dynobj != NULL
6007 && bed->elf_backend_size_dynamic_sections != NULL
6008 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6009 return FALSE;
6010
6011 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6012 return FALSE;
6013
6014 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6015 {
6016 unsigned long section_sym_count;
6017 struct bfd_elf_version_tree *verdefs;
6018 asection *s;
6019
6020 /* Set up the version definition section. */
6021 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6022 BFD_ASSERT (s != NULL);
6023
6024 /* We may have created additional version definitions if we are
6025 just linking a regular application. */
6026 verdefs = info->version_info;
6027
6028 /* Skip anonymous version tag. */
6029 if (verdefs != NULL && verdefs->vernum == 0)
6030 verdefs = verdefs->next;
6031
6032 if (verdefs == NULL && !info->create_default_symver)
6033 s->flags |= SEC_EXCLUDE;
6034 else
6035 {
6036 unsigned int cdefs;
6037 bfd_size_type size;
6038 struct bfd_elf_version_tree *t;
6039 bfd_byte *p;
6040 Elf_Internal_Verdef def;
6041 Elf_Internal_Verdaux defaux;
6042 struct bfd_link_hash_entry *bh;
6043 struct elf_link_hash_entry *h;
6044 const char *name;
6045
6046 cdefs = 0;
6047 size = 0;
6048
6049 /* Make space for the base version. */
6050 size += sizeof (Elf_External_Verdef);
6051 size += sizeof (Elf_External_Verdaux);
6052 ++cdefs;
6053
6054 /* Make space for the default version. */
6055 if (info->create_default_symver)
6056 {
6057 size += sizeof (Elf_External_Verdef);
6058 ++cdefs;
6059 }
6060
6061 for (t = verdefs; t != NULL; t = t->next)
6062 {
6063 struct bfd_elf_version_deps *n;
6064
6065 /* Don't emit base version twice. */
6066 if (t->vernum == 0)
6067 continue;
6068
6069 size += sizeof (Elf_External_Verdef);
6070 size += sizeof (Elf_External_Verdaux);
6071 ++cdefs;
6072
6073 for (n = t->deps; n != NULL; n = n->next)
6074 size += sizeof (Elf_External_Verdaux);
6075 }
6076
6077 s->size = size;
6078 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6079 if (s->contents == NULL && s->size != 0)
6080 return FALSE;
6081
6082 /* Fill in the version definition section. */
6083
6084 p = s->contents;
6085
6086 def.vd_version = VER_DEF_CURRENT;
6087 def.vd_flags = VER_FLG_BASE;
6088 def.vd_ndx = 1;
6089 def.vd_cnt = 1;
6090 if (info->create_default_symver)
6091 {
6092 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6093 def.vd_next = sizeof (Elf_External_Verdef);
6094 }
6095 else
6096 {
6097 def.vd_aux = sizeof (Elf_External_Verdef);
6098 def.vd_next = (sizeof (Elf_External_Verdef)
6099 + sizeof (Elf_External_Verdaux));
6100 }
6101
6102 if (soname_indx != (bfd_size_type) -1)
6103 {
6104 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6105 soname_indx);
6106 def.vd_hash = bfd_elf_hash (soname);
6107 defaux.vda_name = soname_indx;
6108 name = soname;
6109 }
6110 else
6111 {
6112 bfd_size_type indx;
6113
6114 name = lbasename (output_bfd->filename);
6115 def.vd_hash = bfd_elf_hash (name);
6116 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6117 name, FALSE);
6118 if (indx == (bfd_size_type) -1)
6119 return FALSE;
6120 defaux.vda_name = indx;
6121 }
6122 defaux.vda_next = 0;
6123
6124 _bfd_elf_swap_verdef_out (output_bfd, &def,
6125 (Elf_External_Verdef *) p);
6126 p += sizeof (Elf_External_Verdef);
6127 if (info->create_default_symver)
6128 {
6129 /* Add a symbol representing this version. */
6130 bh = NULL;
6131 if (! (_bfd_generic_link_add_one_symbol
6132 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6133 0, NULL, FALSE,
6134 get_elf_backend_data (dynobj)->collect, &bh)))
6135 return FALSE;
6136 h = (struct elf_link_hash_entry *) bh;
6137 h->non_elf = 0;
6138 h->def_regular = 1;
6139 h->type = STT_OBJECT;
6140 h->verinfo.vertree = NULL;
6141
6142 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6143 return FALSE;
6144
6145 /* Create a duplicate of the base version with the same
6146 aux block, but different flags. */
6147 def.vd_flags = 0;
6148 def.vd_ndx = 2;
6149 def.vd_aux = sizeof (Elf_External_Verdef);
6150 if (verdefs)
6151 def.vd_next = (sizeof (Elf_External_Verdef)
6152 + sizeof (Elf_External_Verdaux));
6153 else
6154 def.vd_next = 0;
6155 _bfd_elf_swap_verdef_out (output_bfd, &def,
6156 (Elf_External_Verdef *) p);
6157 p += sizeof (Elf_External_Verdef);
6158 }
6159 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6160 (Elf_External_Verdaux *) p);
6161 p += sizeof (Elf_External_Verdaux);
6162
6163 for (t = verdefs; t != NULL; t = t->next)
6164 {
6165 unsigned int cdeps;
6166 struct bfd_elf_version_deps *n;
6167
6168 /* Don't emit the base version twice. */
6169 if (t->vernum == 0)
6170 continue;
6171
6172 cdeps = 0;
6173 for (n = t->deps; n != NULL; n = n->next)
6174 ++cdeps;
6175
6176 /* Add a symbol representing this version. */
6177 bh = NULL;
6178 if (! (_bfd_generic_link_add_one_symbol
6179 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6180 0, NULL, FALSE,
6181 get_elf_backend_data (dynobj)->collect, &bh)))
6182 return FALSE;
6183 h = (struct elf_link_hash_entry *) bh;
6184 h->non_elf = 0;
6185 h->def_regular = 1;
6186 h->type = STT_OBJECT;
6187 h->verinfo.vertree = t;
6188
6189 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6190 return FALSE;
6191
6192 def.vd_version = VER_DEF_CURRENT;
6193 def.vd_flags = 0;
6194 if (t->globals.list == NULL
6195 && t->locals.list == NULL
6196 && ! t->used)
6197 def.vd_flags |= VER_FLG_WEAK;
6198 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6199 def.vd_cnt = cdeps + 1;
6200 def.vd_hash = bfd_elf_hash (t->name);
6201 def.vd_aux = sizeof (Elf_External_Verdef);
6202 def.vd_next = 0;
6203
6204 /* If a basever node is next, it *must* be the last node in
6205 the chain, otherwise Verdef construction breaks. */
6206 if (t->next != NULL && t->next->vernum == 0)
6207 BFD_ASSERT (t->next->next == NULL);
6208
6209 if (t->next != NULL && t->next->vernum != 0)
6210 def.vd_next = (sizeof (Elf_External_Verdef)
6211 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6212
6213 _bfd_elf_swap_verdef_out (output_bfd, &def,
6214 (Elf_External_Verdef *) p);
6215 p += sizeof (Elf_External_Verdef);
6216
6217 defaux.vda_name = h->dynstr_index;
6218 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6219 h->dynstr_index);
6220 defaux.vda_next = 0;
6221 if (t->deps != NULL)
6222 defaux.vda_next = sizeof (Elf_External_Verdaux);
6223 t->name_indx = defaux.vda_name;
6224
6225 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6226 (Elf_External_Verdaux *) p);
6227 p += sizeof (Elf_External_Verdaux);
6228
6229 for (n = t->deps; n != NULL; n = n->next)
6230 {
6231 if (n->version_needed == NULL)
6232 {
6233 /* This can happen if there was an error in the
6234 version script. */
6235 defaux.vda_name = 0;
6236 }
6237 else
6238 {
6239 defaux.vda_name = n->version_needed->name_indx;
6240 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6241 defaux.vda_name);
6242 }
6243 if (n->next == NULL)
6244 defaux.vda_next = 0;
6245 else
6246 defaux.vda_next = sizeof (Elf_External_Verdaux);
6247
6248 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6249 (Elf_External_Verdaux *) p);
6250 p += sizeof (Elf_External_Verdaux);
6251 }
6252 }
6253
6254 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6255 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6256 return FALSE;
6257
6258 elf_tdata (output_bfd)->cverdefs = cdefs;
6259 }
6260
6261 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6262 {
6263 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6264 return FALSE;
6265 }
6266 else if (info->flags & DF_BIND_NOW)
6267 {
6268 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6269 return FALSE;
6270 }
6271
6272 if (info->flags_1)
6273 {
6274 if (info->executable)
6275 info->flags_1 &= ~ (DF_1_INITFIRST
6276 | DF_1_NODELETE
6277 | DF_1_NOOPEN);
6278 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6279 return FALSE;
6280 }
6281
6282 /* Work out the size of the version reference section. */
6283
6284 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6285 BFD_ASSERT (s != NULL);
6286 {
6287 struct elf_find_verdep_info sinfo;
6288
6289 sinfo.info = info;
6290 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6291 if (sinfo.vers == 0)
6292 sinfo.vers = 1;
6293 sinfo.failed = FALSE;
6294
6295 elf_link_hash_traverse (elf_hash_table (info),
6296 _bfd_elf_link_find_version_dependencies,
6297 &sinfo);
6298 if (sinfo.failed)
6299 return FALSE;
6300
6301 if (elf_tdata (output_bfd)->verref == NULL)
6302 s->flags |= SEC_EXCLUDE;
6303 else
6304 {
6305 Elf_Internal_Verneed *t;
6306 unsigned int size;
6307 unsigned int crefs;
6308 bfd_byte *p;
6309
6310 /* Build the version dependency section. */
6311 size = 0;
6312 crefs = 0;
6313 for (t = elf_tdata (output_bfd)->verref;
6314 t != NULL;
6315 t = t->vn_nextref)
6316 {
6317 Elf_Internal_Vernaux *a;
6318
6319 size += sizeof (Elf_External_Verneed);
6320 ++crefs;
6321 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6322 size += sizeof (Elf_External_Vernaux);
6323 }
6324
6325 s->size = size;
6326 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6327 if (s->contents == NULL)
6328 return FALSE;
6329
6330 p = s->contents;
6331 for (t = elf_tdata (output_bfd)->verref;
6332 t != NULL;
6333 t = t->vn_nextref)
6334 {
6335 unsigned int caux;
6336 Elf_Internal_Vernaux *a;
6337 bfd_size_type indx;
6338
6339 caux = 0;
6340 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6341 ++caux;
6342
6343 t->vn_version = VER_NEED_CURRENT;
6344 t->vn_cnt = caux;
6345 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6346 elf_dt_name (t->vn_bfd) != NULL
6347 ? elf_dt_name (t->vn_bfd)
6348 : lbasename (t->vn_bfd->filename),
6349 FALSE);
6350 if (indx == (bfd_size_type) -1)
6351 return FALSE;
6352 t->vn_file = indx;
6353 t->vn_aux = sizeof (Elf_External_Verneed);
6354 if (t->vn_nextref == NULL)
6355 t->vn_next = 0;
6356 else
6357 t->vn_next = (sizeof (Elf_External_Verneed)
6358 + caux * sizeof (Elf_External_Vernaux));
6359
6360 _bfd_elf_swap_verneed_out (output_bfd, t,
6361 (Elf_External_Verneed *) p);
6362 p += sizeof (Elf_External_Verneed);
6363
6364 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6365 {
6366 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6367 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6368 a->vna_nodename, FALSE);
6369 if (indx == (bfd_size_type) -1)
6370 return FALSE;
6371 a->vna_name = indx;
6372 if (a->vna_nextptr == NULL)
6373 a->vna_next = 0;
6374 else
6375 a->vna_next = sizeof (Elf_External_Vernaux);
6376
6377 _bfd_elf_swap_vernaux_out (output_bfd, a,
6378 (Elf_External_Vernaux *) p);
6379 p += sizeof (Elf_External_Vernaux);
6380 }
6381 }
6382
6383 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6384 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6385 return FALSE;
6386
6387 elf_tdata (output_bfd)->cverrefs = crefs;
6388 }
6389 }
6390
6391 if ((elf_tdata (output_bfd)->cverrefs == 0
6392 && elf_tdata (output_bfd)->cverdefs == 0)
6393 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6394 &section_sym_count) == 0)
6395 {
6396 s = bfd_get_linker_section (dynobj, ".gnu.version");
6397 s->flags |= SEC_EXCLUDE;
6398 }
6399 }
6400 return TRUE;
6401 }
6402
6403 /* Find the first non-excluded output section. We'll use its
6404 section symbol for some emitted relocs. */
6405 void
6406 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6407 {
6408 asection *s;
6409
6410 for (s = output_bfd->sections; s != NULL; s = s->next)
6411 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6412 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6413 {
6414 elf_hash_table (info)->text_index_section = s;
6415 break;
6416 }
6417 }
6418
6419 /* Find two non-excluded output sections, one for code, one for data.
6420 We'll use their section symbols for some emitted relocs. */
6421 void
6422 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6423 {
6424 asection *s;
6425
6426 /* Data first, since setting text_index_section changes
6427 _bfd_elf_link_omit_section_dynsym. */
6428 for (s = output_bfd->sections; s != NULL; s = s->next)
6429 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6430 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6431 {
6432 elf_hash_table (info)->data_index_section = s;
6433 break;
6434 }
6435
6436 for (s = output_bfd->sections; s != NULL; s = s->next)
6437 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6438 == (SEC_ALLOC | SEC_READONLY))
6439 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6440 {
6441 elf_hash_table (info)->text_index_section = s;
6442 break;
6443 }
6444
6445 if (elf_hash_table (info)->text_index_section == NULL)
6446 elf_hash_table (info)->text_index_section
6447 = elf_hash_table (info)->data_index_section;
6448 }
6449
6450 bfd_boolean
6451 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6452 {
6453 const struct elf_backend_data *bed;
6454
6455 if (!is_elf_hash_table (info->hash))
6456 return TRUE;
6457
6458 bed = get_elf_backend_data (output_bfd);
6459 (*bed->elf_backend_init_index_section) (output_bfd, info);
6460
6461 if (elf_hash_table (info)->dynamic_sections_created)
6462 {
6463 bfd *dynobj;
6464 asection *s;
6465 bfd_size_type dynsymcount;
6466 unsigned long section_sym_count;
6467 unsigned int dtagcount;
6468
6469 dynobj = elf_hash_table (info)->dynobj;
6470
6471 /* Assign dynsym indicies. In a shared library we generate a
6472 section symbol for each output section, which come first.
6473 Next come all of the back-end allocated local dynamic syms,
6474 followed by the rest of the global symbols. */
6475
6476 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6477 &section_sym_count);
6478
6479 /* Work out the size of the symbol version section. */
6480 s = bfd_get_linker_section (dynobj, ".gnu.version");
6481 BFD_ASSERT (s != NULL);
6482 if (dynsymcount != 0
6483 && (s->flags & SEC_EXCLUDE) == 0)
6484 {
6485 s->size = dynsymcount * sizeof (Elf_External_Versym);
6486 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6487 if (s->contents == NULL)
6488 return FALSE;
6489
6490 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6491 return FALSE;
6492 }
6493
6494 /* Set the size of the .dynsym and .hash sections. We counted
6495 the number of dynamic symbols in elf_link_add_object_symbols.
6496 We will build the contents of .dynsym and .hash when we build
6497 the final symbol table, because until then we do not know the
6498 correct value to give the symbols. We built the .dynstr
6499 section as we went along in elf_link_add_object_symbols. */
6500 s = bfd_get_linker_section (dynobj, ".dynsym");
6501 BFD_ASSERT (s != NULL);
6502 s->size = dynsymcount * bed->s->sizeof_sym;
6503
6504 if (dynsymcount != 0)
6505 {
6506 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6507 if (s->contents == NULL)
6508 return FALSE;
6509
6510 /* The first entry in .dynsym is a dummy symbol.
6511 Clear all the section syms, in case we don't output them all. */
6512 ++section_sym_count;
6513 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6514 }
6515
6516 elf_hash_table (info)->bucketcount = 0;
6517
6518 /* Compute the size of the hashing table. As a side effect this
6519 computes the hash values for all the names we export. */
6520 if (info->emit_hash)
6521 {
6522 unsigned long int *hashcodes;
6523 struct hash_codes_info hashinf;
6524 bfd_size_type amt;
6525 unsigned long int nsyms;
6526 size_t bucketcount;
6527 size_t hash_entry_size;
6528
6529 /* Compute the hash values for all exported symbols. At the same
6530 time store the values in an array so that we could use them for
6531 optimizations. */
6532 amt = dynsymcount * sizeof (unsigned long int);
6533 hashcodes = (unsigned long int *) bfd_malloc (amt);
6534 if (hashcodes == NULL)
6535 return FALSE;
6536 hashinf.hashcodes = hashcodes;
6537 hashinf.error = FALSE;
6538
6539 /* Put all hash values in HASHCODES. */
6540 elf_link_hash_traverse (elf_hash_table (info),
6541 elf_collect_hash_codes, &hashinf);
6542 if (hashinf.error)
6543 {
6544 free (hashcodes);
6545 return FALSE;
6546 }
6547
6548 nsyms = hashinf.hashcodes - hashcodes;
6549 bucketcount
6550 = compute_bucket_count (info, hashcodes, nsyms, 0);
6551 free (hashcodes);
6552
6553 if (bucketcount == 0)
6554 return FALSE;
6555
6556 elf_hash_table (info)->bucketcount = bucketcount;
6557
6558 s = bfd_get_linker_section (dynobj, ".hash");
6559 BFD_ASSERT (s != NULL);
6560 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6561 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6562 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6563 if (s->contents == NULL)
6564 return FALSE;
6565
6566 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6567 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6568 s->contents + hash_entry_size);
6569 }
6570
6571 if (info->emit_gnu_hash)
6572 {
6573 size_t i, cnt;
6574 unsigned char *contents;
6575 struct collect_gnu_hash_codes cinfo;
6576 bfd_size_type amt;
6577 size_t bucketcount;
6578
6579 memset (&cinfo, 0, sizeof (cinfo));
6580
6581 /* Compute the hash values for all exported symbols. At the same
6582 time store the values in an array so that we could use them for
6583 optimizations. */
6584 amt = dynsymcount * 2 * sizeof (unsigned long int);
6585 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6586 if (cinfo.hashcodes == NULL)
6587 return FALSE;
6588
6589 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6590 cinfo.min_dynindx = -1;
6591 cinfo.output_bfd = output_bfd;
6592 cinfo.bed = bed;
6593
6594 /* Put all hash values in HASHCODES. */
6595 elf_link_hash_traverse (elf_hash_table (info),
6596 elf_collect_gnu_hash_codes, &cinfo);
6597 if (cinfo.error)
6598 {
6599 free (cinfo.hashcodes);
6600 return FALSE;
6601 }
6602
6603 bucketcount
6604 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6605
6606 if (bucketcount == 0)
6607 {
6608 free (cinfo.hashcodes);
6609 return FALSE;
6610 }
6611
6612 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6613 BFD_ASSERT (s != NULL);
6614
6615 if (cinfo.nsyms == 0)
6616 {
6617 /* Empty .gnu.hash section is special. */
6618 BFD_ASSERT (cinfo.min_dynindx == -1);
6619 free (cinfo.hashcodes);
6620 s->size = 5 * 4 + bed->s->arch_size / 8;
6621 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6622 if (contents == NULL)
6623 return FALSE;
6624 s->contents = contents;
6625 /* 1 empty bucket. */
6626 bfd_put_32 (output_bfd, 1, contents);
6627 /* SYMIDX above the special symbol 0. */
6628 bfd_put_32 (output_bfd, 1, contents + 4);
6629 /* Just one word for bitmask. */
6630 bfd_put_32 (output_bfd, 1, contents + 8);
6631 /* Only hash fn bloom filter. */
6632 bfd_put_32 (output_bfd, 0, contents + 12);
6633 /* No hashes are valid - empty bitmask. */
6634 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6635 /* No hashes in the only bucket. */
6636 bfd_put_32 (output_bfd, 0,
6637 contents + 16 + bed->s->arch_size / 8);
6638 }
6639 else
6640 {
6641 unsigned long int maskwords, maskbitslog2, x;
6642 BFD_ASSERT (cinfo.min_dynindx != -1);
6643
6644 x = cinfo.nsyms;
6645 maskbitslog2 = 1;
6646 while ((x >>= 1) != 0)
6647 ++maskbitslog2;
6648 if (maskbitslog2 < 3)
6649 maskbitslog2 = 5;
6650 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6651 maskbitslog2 = maskbitslog2 + 3;
6652 else
6653 maskbitslog2 = maskbitslog2 + 2;
6654 if (bed->s->arch_size == 64)
6655 {
6656 if (maskbitslog2 == 5)
6657 maskbitslog2 = 6;
6658 cinfo.shift1 = 6;
6659 }
6660 else
6661 cinfo.shift1 = 5;
6662 cinfo.mask = (1 << cinfo.shift1) - 1;
6663 cinfo.shift2 = maskbitslog2;
6664 cinfo.maskbits = 1 << maskbitslog2;
6665 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6666 amt = bucketcount * sizeof (unsigned long int) * 2;
6667 amt += maskwords * sizeof (bfd_vma);
6668 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6669 if (cinfo.bitmask == NULL)
6670 {
6671 free (cinfo.hashcodes);
6672 return FALSE;
6673 }
6674
6675 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6676 cinfo.indx = cinfo.counts + bucketcount;
6677 cinfo.symindx = dynsymcount - cinfo.nsyms;
6678 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6679
6680 /* Determine how often each hash bucket is used. */
6681 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6682 for (i = 0; i < cinfo.nsyms; ++i)
6683 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6684
6685 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6686 if (cinfo.counts[i] != 0)
6687 {
6688 cinfo.indx[i] = cnt;
6689 cnt += cinfo.counts[i];
6690 }
6691 BFD_ASSERT (cnt == dynsymcount);
6692 cinfo.bucketcount = bucketcount;
6693 cinfo.local_indx = cinfo.min_dynindx;
6694
6695 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6696 s->size += cinfo.maskbits / 8;
6697 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6698 if (contents == NULL)
6699 {
6700 free (cinfo.bitmask);
6701 free (cinfo.hashcodes);
6702 return FALSE;
6703 }
6704
6705 s->contents = contents;
6706 bfd_put_32 (output_bfd, bucketcount, contents);
6707 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6708 bfd_put_32 (output_bfd, maskwords, contents + 8);
6709 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6710 contents += 16 + cinfo.maskbits / 8;
6711
6712 for (i = 0; i < bucketcount; ++i)
6713 {
6714 if (cinfo.counts[i] == 0)
6715 bfd_put_32 (output_bfd, 0, contents);
6716 else
6717 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6718 contents += 4;
6719 }
6720
6721 cinfo.contents = contents;
6722
6723 /* Renumber dynamic symbols, populate .gnu.hash section. */
6724 elf_link_hash_traverse (elf_hash_table (info),
6725 elf_renumber_gnu_hash_syms, &cinfo);
6726
6727 contents = s->contents + 16;
6728 for (i = 0; i < maskwords; ++i)
6729 {
6730 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6731 contents);
6732 contents += bed->s->arch_size / 8;
6733 }
6734
6735 free (cinfo.bitmask);
6736 free (cinfo.hashcodes);
6737 }
6738 }
6739
6740 s = bfd_get_linker_section (dynobj, ".dynstr");
6741 BFD_ASSERT (s != NULL);
6742
6743 elf_finalize_dynstr (output_bfd, info);
6744
6745 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6746
6747 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6748 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6749 return FALSE;
6750 }
6751
6752 return TRUE;
6753 }
6754 \f
6755 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6756
6757 static void
6758 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6759 asection *sec)
6760 {
6761 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6762 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6763 }
6764
6765 /* Finish SHF_MERGE section merging. */
6766
6767 bfd_boolean
6768 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6769 {
6770 bfd *ibfd;
6771 asection *sec;
6772
6773 if (!is_elf_hash_table (info->hash))
6774 return FALSE;
6775
6776 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6777 if ((ibfd->flags & DYNAMIC) == 0)
6778 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6779 if ((sec->flags & SEC_MERGE) != 0
6780 && !bfd_is_abs_section (sec->output_section))
6781 {
6782 struct bfd_elf_section_data *secdata;
6783
6784 secdata = elf_section_data (sec);
6785 if (! _bfd_add_merge_section (abfd,
6786 &elf_hash_table (info)->merge_info,
6787 sec, &secdata->sec_info))
6788 return FALSE;
6789 else if (secdata->sec_info)
6790 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6791 }
6792
6793 if (elf_hash_table (info)->merge_info != NULL)
6794 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6795 merge_sections_remove_hook);
6796 return TRUE;
6797 }
6798
6799 /* Create an entry in an ELF linker hash table. */
6800
6801 struct bfd_hash_entry *
6802 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6803 struct bfd_hash_table *table,
6804 const char *string)
6805 {
6806 /* Allocate the structure if it has not already been allocated by a
6807 subclass. */
6808 if (entry == NULL)
6809 {
6810 entry = (struct bfd_hash_entry *)
6811 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6812 if (entry == NULL)
6813 return entry;
6814 }
6815
6816 /* Call the allocation method of the superclass. */
6817 entry = _bfd_link_hash_newfunc (entry, table, string);
6818 if (entry != NULL)
6819 {
6820 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6821 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6822
6823 /* Set local fields. */
6824 ret->indx = -1;
6825 ret->dynindx = -1;
6826 ret->got = htab->init_got_refcount;
6827 ret->plt = htab->init_plt_refcount;
6828 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6829 - offsetof (struct elf_link_hash_entry, size)));
6830 /* Assume that we have been called by a non-ELF symbol reader.
6831 This flag is then reset by the code which reads an ELF input
6832 file. This ensures that a symbol created by a non-ELF symbol
6833 reader will have the flag set correctly. */
6834 ret->non_elf = 1;
6835 }
6836
6837 return entry;
6838 }
6839
6840 /* Copy data from an indirect symbol to its direct symbol, hiding the
6841 old indirect symbol. Also used for copying flags to a weakdef. */
6842
6843 void
6844 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6845 struct elf_link_hash_entry *dir,
6846 struct elf_link_hash_entry *ind)
6847 {
6848 struct elf_link_hash_table *htab;
6849
6850 /* Copy down any references that we may have already seen to the
6851 symbol which just became indirect. */
6852
6853 dir->ref_dynamic |= ind->ref_dynamic;
6854 dir->ref_regular |= ind->ref_regular;
6855 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6856 dir->non_got_ref |= ind->non_got_ref;
6857 dir->needs_plt |= ind->needs_plt;
6858 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6859
6860 if (ind->root.type != bfd_link_hash_indirect)
6861 return;
6862
6863 /* Copy over the global and procedure linkage table refcount entries.
6864 These may have been already set up by a check_relocs routine. */
6865 htab = elf_hash_table (info);
6866 if (ind->got.refcount > htab->init_got_refcount.refcount)
6867 {
6868 if (dir->got.refcount < 0)
6869 dir->got.refcount = 0;
6870 dir->got.refcount += ind->got.refcount;
6871 ind->got.refcount = htab->init_got_refcount.refcount;
6872 }
6873
6874 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6875 {
6876 if (dir->plt.refcount < 0)
6877 dir->plt.refcount = 0;
6878 dir->plt.refcount += ind->plt.refcount;
6879 ind->plt.refcount = htab->init_plt_refcount.refcount;
6880 }
6881
6882 if (ind->dynindx != -1)
6883 {
6884 if (dir->dynindx != -1)
6885 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6886 dir->dynindx = ind->dynindx;
6887 dir->dynstr_index = ind->dynstr_index;
6888 ind->dynindx = -1;
6889 ind->dynstr_index = 0;
6890 }
6891 }
6892
6893 void
6894 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6895 struct elf_link_hash_entry *h,
6896 bfd_boolean force_local)
6897 {
6898 /* STT_GNU_IFUNC symbol must go through PLT. */
6899 if (h->type != STT_GNU_IFUNC)
6900 {
6901 h->plt = elf_hash_table (info)->init_plt_offset;
6902 h->needs_plt = 0;
6903 }
6904 if (force_local)
6905 {
6906 h->forced_local = 1;
6907 if (h->dynindx != -1)
6908 {
6909 h->dynindx = -1;
6910 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6911 h->dynstr_index);
6912 }
6913 }
6914 }
6915
6916 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6917 caller. */
6918
6919 bfd_boolean
6920 _bfd_elf_link_hash_table_init
6921 (struct elf_link_hash_table *table,
6922 bfd *abfd,
6923 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6924 struct bfd_hash_table *,
6925 const char *),
6926 unsigned int entsize,
6927 enum elf_target_id target_id)
6928 {
6929 bfd_boolean ret;
6930 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6931
6932 table->init_got_refcount.refcount = can_refcount - 1;
6933 table->init_plt_refcount.refcount = can_refcount - 1;
6934 table->init_got_offset.offset = -(bfd_vma) 1;
6935 table->init_plt_offset.offset = -(bfd_vma) 1;
6936 /* The first dynamic symbol is a dummy. */
6937 table->dynsymcount = 1;
6938
6939 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6940
6941 table->root.type = bfd_link_elf_hash_table;
6942 table->hash_table_id = target_id;
6943
6944 return ret;
6945 }
6946
6947 /* Create an ELF linker hash table. */
6948
6949 struct bfd_link_hash_table *
6950 _bfd_elf_link_hash_table_create (bfd *abfd)
6951 {
6952 struct elf_link_hash_table *ret;
6953 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6954
6955 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6956 if (ret == NULL)
6957 return NULL;
6958
6959 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6960 sizeof (struct elf_link_hash_entry),
6961 GENERIC_ELF_DATA))
6962 {
6963 free (ret);
6964 return NULL;
6965 }
6966
6967 return &ret->root;
6968 }
6969
6970 /* Destroy an ELF linker hash table. */
6971
6972 void
6973 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6974 {
6975 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6976 if (htab->dynstr != NULL)
6977 _bfd_elf_strtab_free (htab->dynstr);
6978 _bfd_merge_sections_free (htab->merge_info);
6979 _bfd_generic_link_hash_table_free (hash);
6980 }
6981
6982 /* This is a hook for the ELF emulation code in the generic linker to
6983 tell the backend linker what file name to use for the DT_NEEDED
6984 entry for a dynamic object. */
6985
6986 void
6987 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6988 {
6989 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6990 && bfd_get_format (abfd) == bfd_object)
6991 elf_dt_name (abfd) = name;
6992 }
6993
6994 int
6995 bfd_elf_get_dyn_lib_class (bfd *abfd)
6996 {
6997 int lib_class;
6998 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6999 && bfd_get_format (abfd) == bfd_object)
7000 lib_class = elf_dyn_lib_class (abfd);
7001 else
7002 lib_class = 0;
7003 return lib_class;
7004 }
7005
7006 void
7007 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7008 {
7009 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7010 && bfd_get_format (abfd) == bfd_object)
7011 elf_dyn_lib_class (abfd) = lib_class;
7012 }
7013
7014 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7015 the linker ELF emulation code. */
7016
7017 struct bfd_link_needed_list *
7018 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7019 struct bfd_link_info *info)
7020 {
7021 if (! is_elf_hash_table (info->hash))
7022 return NULL;
7023 return elf_hash_table (info)->needed;
7024 }
7025
7026 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7027 hook for the linker ELF emulation code. */
7028
7029 struct bfd_link_needed_list *
7030 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7031 struct bfd_link_info *info)
7032 {
7033 if (! is_elf_hash_table (info->hash))
7034 return NULL;
7035 return elf_hash_table (info)->runpath;
7036 }
7037
7038 /* Get the name actually used for a dynamic object for a link. This
7039 is the SONAME entry if there is one. Otherwise, it is the string
7040 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7041
7042 const char *
7043 bfd_elf_get_dt_soname (bfd *abfd)
7044 {
7045 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7046 && bfd_get_format (abfd) == bfd_object)
7047 return elf_dt_name (abfd);
7048 return NULL;
7049 }
7050
7051 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7052 the ELF linker emulation code. */
7053
7054 bfd_boolean
7055 bfd_elf_get_bfd_needed_list (bfd *abfd,
7056 struct bfd_link_needed_list **pneeded)
7057 {
7058 asection *s;
7059 bfd_byte *dynbuf = NULL;
7060 unsigned int elfsec;
7061 unsigned long shlink;
7062 bfd_byte *extdyn, *extdynend;
7063 size_t extdynsize;
7064 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7065
7066 *pneeded = NULL;
7067
7068 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7069 || bfd_get_format (abfd) != bfd_object)
7070 return TRUE;
7071
7072 s = bfd_get_section_by_name (abfd, ".dynamic");
7073 if (s == NULL || s->size == 0)
7074 return TRUE;
7075
7076 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7077 goto error_return;
7078
7079 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7080 if (elfsec == SHN_BAD)
7081 goto error_return;
7082
7083 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7084
7085 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7086 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7087
7088 extdyn = dynbuf;
7089 extdynend = extdyn + s->size;
7090 for (; extdyn < extdynend; extdyn += extdynsize)
7091 {
7092 Elf_Internal_Dyn dyn;
7093
7094 (*swap_dyn_in) (abfd, extdyn, &dyn);
7095
7096 if (dyn.d_tag == DT_NULL)
7097 break;
7098
7099 if (dyn.d_tag == DT_NEEDED)
7100 {
7101 const char *string;
7102 struct bfd_link_needed_list *l;
7103 unsigned int tagv = dyn.d_un.d_val;
7104 bfd_size_type amt;
7105
7106 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7107 if (string == NULL)
7108 goto error_return;
7109
7110 amt = sizeof *l;
7111 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7112 if (l == NULL)
7113 goto error_return;
7114
7115 l->by = abfd;
7116 l->name = string;
7117 l->next = *pneeded;
7118 *pneeded = l;
7119 }
7120 }
7121
7122 free (dynbuf);
7123
7124 return TRUE;
7125
7126 error_return:
7127 if (dynbuf != NULL)
7128 free (dynbuf);
7129 return FALSE;
7130 }
7131
7132 struct elf_symbuf_symbol
7133 {
7134 unsigned long st_name; /* Symbol name, index in string tbl */
7135 unsigned char st_info; /* Type and binding attributes */
7136 unsigned char st_other; /* Visibilty, and target specific */
7137 };
7138
7139 struct elf_symbuf_head
7140 {
7141 struct elf_symbuf_symbol *ssym;
7142 bfd_size_type count;
7143 unsigned int st_shndx;
7144 };
7145
7146 struct elf_symbol
7147 {
7148 union
7149 {
7150 Elf_Internal_Sym *isym;
7151 struct elf_symbuf_symbol *ssym;
7152 } u;
7153 const char *name;
7154 };
7155
7156 /* Sort references to symbols by ascending section number. */
7157
7158 static int
7159 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7160 {
7161 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7162 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7163
7164 return s1->st_shndx - s2->st_shndx;
7165 }
7166
7167 static int
7168 elf_sym_name_compare (const void *arg1, const void *arg2)
7169 {
7170 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7171 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7172 return strcmp (s1->name, s2->name);
7173 }
7174
7175 static struct elf_symbuf_head *
7176 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7177 {
7178 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7179 struct elf_symbuf_symbol *ssym;
7180 struct elf_symbuf_head *ssymbuf, *ssymhead;
7181 bfd_size_type i, shndx_count, total_size;
7182
7183 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7184 if (indbuf == NULL)
7185 return NULL;
7186
7187 for (ind = indbuf, i = 0; i < symcount; i++)
7188 if (isymbuf[i].st_shndx != SHN_UNDEF)
7189 *ind++ = &isymbuf[i];
7190 indbufend = ind;
7191
7192 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7193 elf_sort_elf_symbol);
7194
7195 shndx_count = 0;
7196 if (indbufend > indbuf)
7197 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7198 if (ind[0]->st_shndx != ind[1]->st_shndx)
7199 shndx_count++;
7200
7201 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7202 + (indbufend - indbuf) * sizeof (*ssym));
7203 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7204 if (ssymbuf == NULL)
7205 {
7206 free (indbuf);
7207 return NULL;
7208 }
7209
7210 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7211 ssymbuf->ssym = NULL;
7212 ssymbuf->count = shndx_count;
7213 ssymbuf->st_shndx = 0;
7214 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7215 {
7216 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7217 {
7218 ssymhead++;
7219 ssymhead->ssym = ssym;
7220 ssymhead->count = 0;
7221 ssymhead->st_shndx = (*ind)->st_shndx;
7222 }
7223 ssym->st_name = (*ind)->st_name;
7224 ssym->st_info = (*ind)->st_info;
7225 ssym->st_other = (*ind)->st_other;
7226 ssymhead->count++;
7227 }
7228 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7229 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7230 == total_size));
7231
7232 free (indbuf);
7233 return ssymbuf;
7234 }
7235
7236 /* Check if 2 sections define the same set of local and global
7237 symbols. */
7238
7239 static bfd_boolean
7240 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7241 struct bfd_link_info *info)
7242 {
7243 bfd *bfd1, *bfd2;
7244 const struct elf_backend_data *bed1, *bed2;
7245 Elf_Internal_Shdr *hdr1, *hdr2;
7246 bfd_size_type symcount1, symcount2;
7247 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7248 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7249 Elf_Internal_Sym *isym, *isymend;
7250 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7251 bfd_size_type count1, count2, i;
7252 unsigned int shndx1, shndx2;
7253 bfd_boolean result;
7254
7255 bfd1 = sec1->owner;
7256 bfd2 = sec2->owner;
7257
7258 /* Both sections have to be in ELF. */
7259 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7260 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7261 return FALSE;
7262
7263 if (elf_section_type (sec1) != elf_section_type (sec2))
7264 return FALSE;
7265
7266 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7267 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7268 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7269 return FALSE;
7270
7271 bed1 = get_elf_backend_data (bfd1);
7272 bed2 = get_elf_backend_data (bfd2);
7273 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7274 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7275 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7276 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7277
7278 if (symcount1 == 0 || symcount2 == 0)
7279 return FALSE;
7280
7281 result = FALSE;
7282 isymbuf1 = NULL;
7283 isymbuf2 = NULL;
7284 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7285 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7286
7287 if (ssymbuf1 == NULL)
7288 {
7289 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7290 NULL, NULL, NULL);
7291 if (isymbuf1 == NULL)
7292 goto done;
7293
7294 if (!info->reduce_memory_overheads)
7295 elf_tdata (bfd1)->symbuf = ssymbuf1
7296 = elf_create_symbuf (symcount1, isymbuf1);
7297 }
7298
7299 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7300 {
7301 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7302 NULL, NULL, NULL);
7303 if (isymbuf2 == NULL)
7304 goto done;
7305
7306 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7307 elf_tdata (bfd2)->symbuf = ssymbuf2
7308 = elf_create_symbuf (symcount2, isymbuf2);
7309 }
7310
7311 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7312 {
7313 /* Optimized faster version. */
7314 bfd_size_type lo, hi, mid;
7315 struct elf_symbol *symp;
7316 struct elf_symbuf_symbol *ssym, *ssymend;
7317
7318 lo = 0;
7319 hi = ssymbuf1->count;
7320 ssymbuf1++;
7321 count1 = 0;
7322 while (lo < hi)
7323 {
7324 mid = (lo + hi) / 2;
7325 if (shndx1 < ssymbuf1[mid].st_shndx)
7326 hi = mid;
7327 else if (shndx1 > ssymbuf1[mid].st_shndx)
7328 lo = mid + 1;
7329 else
7330 {
7331 count1 = ssymbuf1[mid].count;
7332 ssymbuf1 += mid;
7333 break;
7334 }
7335 }
7336
7337 lo = 0;
7338 hi = ssymbuf2->count;
7339 ssymbuf2++;
7340 count2 = 0;
7341 while (lo < hi)
7342 {
7343 mid = (lo + hi) / 2;
7344 if (shndx2 < ssymbuf2[mid].st_shndx)
7345 hi = mid;
7346 else if (shndx2 > ssymbuf2[mid].st_shndx)
7347 lo = mid + 1;
7348 else
7349 {
7350 count2 = ssymbuf2[mid].count;
7351 ssymbuf2 += mid;
7352 break;
7353 }
7354 }
7355
7356 if (count1 == 0 || count2 == 0 || count1 != count2)
7357 goto done;
7358
7359 symtable1 = (struct elf_symbol *)
7360 bfd_malloc (count1 * sizeof (struct elf_symbol));
7361 symtable2 = (struct elf_symbol *)
7362 bfd_malloc (count2 * sizeof (struct elf_symbol));
7363 if (symtable1 == NULL || symtable2 == NULL)
7364 goto done;
7365
7366 symp = symtable1;
7367 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7368 ssym < ssymend; ssym++, symp++)
7369 {
7370 symp->u.ssym = ssym;
7371 symp->name = bfd_elf_string_from_elf_section (bfd1,
7372 hdr1->sh_link,
7373 ssym->st_name);
7374 }
7375
7376 symp = symtable2;
7377 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7378 ssym < ssymend; ssym++, symp++)
7379 {
7380 symp->u.ssym = ssym;
7381 symp->name = bfd_elf_string_from_elf_section (bfd2,
7382 hdr2->sh_link,
7383 ssym->st_name);
7384 }
7385
7386 /* Sort symbol by name. */
7387 qsort (symtable1, count1, sizeof (struct elf_symbol),
7388 elf_sym_name_compare);
7389 qsort (symtable2, count1, sizeof (struct elf_symbol),
7390 elf_sym_name_compare);
7391
7392 for (i = 0; i < count1; i++)
7393 /* Two symbols must have the same binding, type and name. */
7394 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7395 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7396 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7397 goto done;
7398
7399 result = TRUE;
7400 goto done;
7401 }
7402
7403 symtable1 = (struct elf_symbol *)
7404 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7405 symtable2 = (struct elf_symbol *)
7406 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7407 if (symtable1 == NULL || symtable2 == NULL)
7408 goto done;
7409
7410 /* Count definitions in the section. */
7411 count1 = 0;
7412 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7413 if (isym->st_shndx == shndx1)
7414 symtable1[count1++].u.isym = isym;
7415
7416 count2 = 0;
7417 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7418 if (isym->st_shndx == shndx2)
7419 symtable2[count2++].u.isym = isym;
7420
7421 if (count1 == 0 || count2 == 0 || count1 != count2)
7422 goto done;
7423
7424 for (i = 0; i < count1; i++)
7425 symtable1[i].name
7426 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7427 symtable1[i].u.isym->st_name);
7428
7429 for (i = 0; i < count2; i++)
7430 symtable2[i].name
7431 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7432 symtable2[i].u.isym->st_name);
7433
7434 /* Sort symbol by name. */
7435 qsort (symtable1, count1, sizeof (struct elf_symbol),
7436 elf_sym_name_compare);
7437 qsort (symtable2, count1, sizeof (struct elf_symbol),
7438 elf_sym_name_compare);
7439
7440 for (i = 0; i < count1; i++)
7441 /* Two symbols must have the same binding, type and name. */
7442 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7443 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7444 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7445 goto done;
7446
7447 result = TRUE;
7448
7449 done:
7450 if (symtable1)
7451 free (symtable1);
7452 if (symtable2)
7453 free (symtable2);
7454 if (isymbuf1)
7455 free (isymbuf1);
7456 if (isymbuf2)
7457 free (isymbuf2);
7458
7459 return result;
7460 }
7461
7462 /* Return TRUE if 2 section types are compatible. */
7463
7464 bfd_boolean
7465 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7466 bfd *bbfd, const asection *bsec)
7467 {
7468 if (asec == NULL
7469 || bsec == NULL
7470 || abfd->xvec->flavour != bfd_target_elf_flavour
7471 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7472 return TRUE;
7473
7474 return elf_section_type (asec) == elf_section_type (bsec);
7475 }
7476 \f
7477 /* Final phase of ELF linker. */
7478
7479 /* A structure we use to avoid passing large numbers of arguments. */
7480
7481 struct elf_final_link_info
7482 {
7483 /* General link information. */
7484 struct bfd_link_info *info;
7485 /* Output BFD. */
7486 bfd *output_bfd;
7487 /* Symbol string table. */
7488 struct bfd_strtab_hash *symstrtab;
7489 /* .dynsym section. */
7490 asection *dynsym_sec;
7491 /* .hash section. */
7492 asection *hash_sec;
7493 /* symbol version section (.gnu.version). */
7494 asection *symver_sec;
7495 /* Buffer large enough to hold contents of any section. */
7496 bfd_byte *contents;
7497 /* Buffer large enough to hold external relocs of any section. */
7498 void *external_relocs;
7499 /* Buffer large enough to hold internal relocs of any section. */
7500 Elf_Internal_Rela *internal_relocs;
7501 /* Buffer large enough to hold external local symbols of any input
7502 BFD. */
7503 bfd_byte *external_syms;
7504 /* And a buffer for symbol section indices. */
7505 Elf_External_Sym_Shndx *locsym_shndx;
7506 /* Buffer large enough to hold internal local symbols of any input
7507 BFD. */
7508 Elf_Internal_Sym *internal_syms;
7509 /* Array large enough to hold a symbol index for each local symbol
7510 of any input BFD. */
7511 long *indices;
7512 /* Array large enough to hold a section pointer for each local
7513 symbol of any input BFD. */
7514 asection **sections;
7515 /* Buffer to hold swapped out symbols. */
7516 bfd_byte *symbuf;
7517 /* And one for symbol section indices. */
7518 Elf_External_Sym_Shndx *symshndxbuf;
7519 /* Number of swapped out symbols in buffer. */
7520 size_t symbuf_count;
7521 /* Number of symbols which fit in symbuf. */
7522 size_t symbuf_size;
7523 /* And same for symshndxbuf. */
7524 size_t shndxbuf_size;
7525 /* Number of STT_FILE syms seen. */
7526 size_t filesym_count;
7527 };
7528
7529 /* This struct is used to pass information to elf_link_output_extsym. */
7530
7531 struct elf_outext_info
7532 {
7533 bfd_boolean failed;
7534 bfd_boolean localsyms;
7535 bfd_boolean need_second_pass;
7536 bfd_boolean second_pass;
7537 struct elf_final_link_info *flinfo;
7538 };
7539
7540
7541 /* Support for evaluating a complex relocation.
7542
7543 Complex relocations are generalized, self-describing relocations. The
7544 implementation of them consists of two parts: complex symbols, and the
7545 relocations themselves.
7546
7547 The relocations are use a reserved elf-wide relocation type code (R_RELC
7548 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7549 information (start bit, end bit, word width, etc) into the addend. This
7550 information is extracted from CGEN-generated operand tables within gas.
7551
7552 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7553 internal) representing prefix-notation expressions, including but not
7554 limited to those sorts of expressions normally encoded as addends in the
7555 addend field. The symbol mangling format is:
7556
7557 <node> := <literal>
7558 | <unary-operator> ':' <node>
7559 | <binary-operator> ':' <node> ':' <node>
7560 ;
7561
7562 <literal> := 's' <digits=N> ':' <N character symbol name>
7563 | 'S' <digits=N> ':' <N character section name>
7564 | '#' <hexdigits>
7565 ;
7566
7567 <binary-operator> := as in C
7568 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7569
7570 static void
7571 set_symbol_value (bfd *bfd_with_globals,
7572 Elf_Internal_Sym *isymbuf,
7573 size_t locsymcount,
7574 size_t symidx,
7575 bfd_vma val)
7576 {
7577 struct elf_link_hash_entry **sym_hashes;
7578 struct elf_link_hash_entry *h;
7579 size_t extsymoff = locsymcount;
7580
7581 if (symidx < locsymcount)
7582 {
7583 Elf_Internal_Sym *sym;
7584
7585 sym = isymbuf + symidx;
7586 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7587 {
7588 /* It is a local symbol: move it to the
7589 "absolute" section and give it a value. */
7590 sym->st_shndx = SHN_ABS;
7591 sym->st_value = val;
7592 return;
7593 }
7594 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7595 extsymoff = 0;
7596 }
7597
7598 /* It is a global symbol: set its link type
7599 to "defined" and give it a value. */
7600
7601 sym_hashes = elf_sym_hashes (bfd_with_globals);
7602 h = sym_hashes [symidx - extsymoff];
7603 while (h->root.type == bfd_link_hash_indirect
7604 || h->root.type == bfd_link_hash_warning)
7605 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7606 h->root.type = bfd_link_hash_defined;
7607 h->root.u.def.value = val;
7608 h->root.u.def.section = bfd_abs_section_ptr;
7609 }
7610
7611 static bfd_boolean
7612 resolve_symbol (const char *name,
7613 bfd *input_bfd,
7614 struct elf_final_link_info *flinfo,
7615 bfd_vma *result,
7616 Elf_Internal_Sym *isymbuf,
7617 size_t locsymcount)
7618 {
7619 Elf_Internal_Sym *sym;
7620 struct bfd_link_hash_entry *global_entry;
7621 const char *candidate = NULL;
7622 Elf_Internal_Shdr *symtab_hdr;
7623 size_t i;
7624
7625 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7626
7627 for (i = 0; i < locsymcount; ++ i)
7628 {
7629 sym = isymbuf + i;
7630
7631 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7632 continue;
7633
7634 candidate = bfd_elf_string_from_elf_section (input_bfd,
7635 symtab_hdr->sh_link,
7636 sym->st_name);
7637 #ifdef DEBUG
7638 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7639 name, candidate, (unsigned long) sym->st_value);
7640 #endif
7641 if (candidate && strcmp (candidate, name) == 0)
7642 {
7643 asection *sec = flinfo->sections [i];
7644
7645 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7646 *result += sec->output_offset + sec->output_section->vma;
7647 #ifdef DEBUG
7648 printf ("Found symbol with value %8.8lx\n",
7649 (unsigned long) *result);
7650 #endif
7651 return TRUE;
7652 }
7653 }
7654
7655 /* Hmm, haven't found it yet. perhaps it is a global. */
7656 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7657 FALSE, FALSE, TRUE);
7658 if (!global_entry)
7659 return FALSE;
7660
7661 if (global_entry->type == bfd_link_hash_defined
7662 || global_entry->type == bfd_link_hash_defweak)
7663 {
7664 *result = (global_entry->u.def.value
7665 + global_entry->u.def.section->output_section->vma
7666 + global_entry->u.def.section->output_offset);
7667 #ifdef DEBUG
7668 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7669 global_entry->root.string, (unsigned long) *result);
7670 #endif
7671 return TRUE;
7672 }
7673
7674 return FALSE;
7675 }
7676
7677 static bfd_boolean
7678 resolve_section (const char *name,
7679 asection *sections,
7680 bfd_vma *result)
7681 {
7682 asection *curr;
7683 unsigned int len;
7684
7685 for (curr = sections; curr; curr = curr->next)
7686 if (strcmp (curr->name, name) == 0)
7687 {
7688 *result = curr->vma;
7689 return TRUE;
7690 }
7691
7692 /* Hmm. still haven't found it. try pseudo-section names. */
7693 for (curr = sections; curr; curr = curr->next)
7694 {
7695 len = strlen (curr->name);
7696 if (len > strlen (name))
7697 continue;
7698
7699 if (strncmp (curr->name, name, len) == 0)
7700 {
7701 if (strncmp (".end", name + len, 4) == 0)
7702 {
7703 *result = curr->vma + curr->size;
7704 return TRUE;
7705 }
7706
7707 /* Insert more pseudo-section names here, if you like. */
7708 }
7709 }
7710
7711 return FALSE;
7712 }
7713
7714 static void
7715 undefined_reference (const char *reftype, const char *name)
7716 {
7717 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7718 reftype, name);
7719 }
7720
7721 static bfd_boolean
7722 eval_symbol (bfd_vma *result,
7723 const char **symp,
7724 bfd *input_bfd,
7725 struct elf_final_link_info *flinfo,
7726 bfd_vma dot,
7727 Elf_Internal_Sym *isymbuf,
7728 size_t locsymcount,
7729 int signed_p)
7730 {
7731 size_t len;
7732 size_t symlen;
7733 bfd_vma a;
7734 bfd_vma b;
7735 char symbuf[4096];
7736 const char *sym = *symp;
7737 const char *symend;
7738 bfd_boolean symbol_is_section = FALSE;
7739
7740 len = strlen (sym);
7741 symend = sym + len;
7742
7743 if (len < 1 || len > sizeof (symbuf))
7744 {
7745 bfd_set_error (bfd_error_invalid_operation);
7746 return FALSE;
7747 }
7748
7749 switch (* sym)
7750 {
7751 case '.':
7752 *result = dot;
7753 *symp = sym + 1;
7754 return TRUE;
7755
7756 case '#':
7757 ++sym;
7758 *result = strtoul (sym, (char **) symp, 16);
7759 return TRUE;
7760
7761 case 'S':
7762 symbol_is_section = TRUE;
7763 case 's':
7764 ++sym;
7765 symlen = strtol (sym, (char **) symp, 10);
7766 sym = *symp + 1; /* Skip the trailing ':'. */
7767
7768 if (symend < sym || symlen + 1 > sizeof (symbuf))
7769 {
7770 bfd_set_error (bfd_error_invalid_operation);
7771 return FALSE;
7772 }
7773
7774 memcpy (symbuf, sym, symlen);
7775 symbuf[symlen] = '\0';
7776 *symp = sym + symlen;
7777
7778 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7779 the symbol as a section, or vice-versa. so we're pretty liberal in our
7780 interpretation here; section means "try section first", not "must be a
7781 section", and likewise with symbol. */
7782
7783 if (symbol_is_section)
7784 {
7785 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7786 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7787 isymbuf, locsymcount))
7788 {
7789 undefined_reference ("section", symbuf);
7790 return FALSE;
7791 }
7792 }
7793 else
7794 {
7795 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7796 isymbuf, locsymcount)
7797 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7798 result))
7799 {
7800 undefined_reference ("symbol", symbuf);
7801 return FALSE;
7802 }
7803 }
7804
7805 return TRUE;
7806
7807 /* All that remains are operators. */
7808
7809 #define UNARY_OP(op) \
7810 if (strncmp (sym, #op, strlen (#op)) == 0) \
7811 { \
7812 sym += strlen (#op); \
7813 if (*sym == ':') \
7814 ++sym; \
7815 *symp = sym; \
7816 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7817 isymbuf, locsymcount, signed_p)) \
7818 return FALSE; \
7819 if (signed_p) \
7820 *result = op ((bfd_signed_vma) a); \
7821 else \
7822 *result = op a; \
7823 return TRUE; \
7824 }
7825
7826 #define BINARY_OP(op) \
7827 if (strncmp (sym, #op, strlen (#op)) == 0) \
7828 { \
7829 sym += strlen (#op); \
7830 if (*sym == ':') \
7831 ++sym; \
7832 *symp = sym; \
7833 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7834 isymbuf, locsymcount, signed_p)) \
7835 return FALSE; \
7836 ++*symp; \
7837 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7838 isymbuf, locsymcount, signed_p)) \
7839 return FALSE; \
7840 if (signed_p) \
7841 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7842 else \
7843 *result = a op b; \
7844 return TRUE; \
7845 }
7846
7847 default:
7848 UNARY_OP (0-);
7849 BINARY_OP (<<);
7850 BINARY_OP (>>);
7851 BINARY_OP (==);
7852 BINARY_OP (!=);
7853 BINARY_OP (<=);
7854 BINARY_OP (>=);
7855 BINARY_OP (&&);
7856 BINARY_OP (||);
7857 UNARY_OP (~);
7858 UNARY_OP (!);
7859 BINARY_OP (*);
7860 BINARY_OP (/);
7861 BINARY_OP (%);
7862 BINARY_OP (^);
7863 BINARY_OP (|);
7864 BINARY_OP (&);
7865 BINARY_OP (+);
7866 BINARY_OP (-);
7867 BINARY_OP (<);
7868 BINARY_OP (>);
7869 #undef UNARY_OP
7870 #undef BINARY_OP
7871 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7872 bfd_set_error (bfd_error_invalid_operation);
7873 return FALSE;
7874 }
7875 }
7876
7877 static void
7878 put_value (bfd_vma size,
7879 unsigned long chunksz,
7880 bfd *input_bfd,
7881 bfd_vma x,
7882 bfd_byte *location)
7883 {
7884 location += (size - chunksz);
7885
7886 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7887 {
7888 switch (chunksz)
7889 {
7890 default:
7891 case 0:
7892 abort ();
7893 case 1:
7894 bfd_put_8 (input_bfd, x, location);
7895 break;
7896 case 2:
7897 bfd_put_16 (input_bfd, x, location);
7898 break;
7899 case 4:
7900 bfd_put_32 (input_bfd, x, location);
7901 break;
7902 case 8:
7903 #ifdef BFD64
7904 bfd_put_64 (input_bfd, x, location);
7905 #else
7906 abort ();
7907 #endif
7908 break;
7909 }
7910 }
7911 }
7912
7913 static bfd_vma
7914 get_value (bfd_vma size,
7915 unsigned long chunksz,
7916 bfd *input_bfd,
7917 bfd_byte *location)
7918 {
7919 int shift;
7920 bfd_vma x = 0;
7921
7922 /* Sanity checks. */
7923 BFD_ASSERT (chunksz <= sizeof (x)
7924 && size >= chunksz
7925 && chunksz != 0
7926 && (size % chunksz) == 0
7927 && input_bfd != NULL
7928 && location != NULL);
7929
7930 if (chunksz == sizeof (x))
7931 {
7932 BFD_ASSERT (size == chunksz);
7933
7934 /* Make sure that we do not perform an undefined shift operation.
7935 We know that size == chunksz so there will only be one iteration
7936 of the loop below. */
7937 shift = 0;
7938 }
7939 else
7940 shift = 8 * chunksz;
7941
7942 for (; size; size -= chunksz, location += chunksz)
7943 {
7944 switch (chunksz)
7945 {
7946 case 1:
7947 x = (x << shift) | bfd_get_8 (input_bfd, location);
7948 break;
7949 case 2:
7950 x = (x << shift) | bfd_get_16 (input_bfd, location);
7951 break;
7952 case 4:
7953 x = (x << shift) | bfd_get_32 (input_bfd, location);
7954 break;
7955 #ifdef BFD64
7956 case 8:
7957 x = (x << shift) | bfd_get_64 (input_bfd, location);
7958 break;
7959 #endif
7960 default:
7961 abort ();
7962 }
7963 }
7964 return x;
7965 }
7966
7967 static void
7968 decode_complex_addend (unsigned long *start, /* in bits */
7969 unsigned long *oplen, /* in bits */
7970 unsigned long *len, /* in bits */
7971 unsigned long *wordsz, /* in bytes */
7972 unsigned long *chunksz, /* in bytes */
7973 unsigned long *lsb0_p,
7974 unsigned long *signed_p,
7975 unsigned long *trunc_p,
7976 unsigned long encoded)
7977 {
7978 * start = encoded & 0x3F;
7979 * len = (encoded >> 6) & 0x3F;
7980 * oplen = (encoded >> 12) & 0x3F;
7981 * wordsz = (encoded >> 18) & 0xF;
7982 * chunksz = (encoded >> 22) & 0xF;
7983 * lsb0_p = (encoded >> 27) & 1;
7984 * signed_p = (encoded >> 28) & 1;
7985 * trunc_p = (encoded >> 29) & 1;
7986 }
7987
7988 bfd_reloc_status_type
7989 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7990 asection *input_section ATTRIBUTE_UNUSED,
7991 bfd_byte *contents,
7992 Elf_Internal_Rela *rel,
7993 bfd_vma relocation)
7994 {
7995 bfd_vma shift, x, mask;
7996 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7997 bfd_reloc_status_type r;
7998
7999 /* Perform this reloc, since it is complex.
8000 (this is not to say that it necessarily refers to a complex
8001 symbol; merely that it is a self-describing CGEN based reloc.
8002 i.e. the addend has the complete reloc information (bit start, end,
8003 word size, etc) encoded within it.). */
8004
8005 decode_complex_addend (&start, &oplen, &len, &wordsz,
8006 &chunksz, &lsb0_p, &signed_p,
8007 &trunc_p, rel->r_addend);
8008
8009 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8010
8011 if (lsb0_p)
8012 shift = (start + 1) - len;
8013 else
8014 shift = (8 * wordsz) - (start + len);
8015
8016 /* FIXME: octets_per_byte. */
8017 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8018
8019 #ifdef DEBUG
8020 printf ("Doing complex reloc: "
8021 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8022 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8023 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8024 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8025 oplen, (unsigned long) x, (unsigned long) mask,
8026 (unsigned long) relocation);
8027 #endif
8028
8029 r = bfd_reloc_ok;
8030 if (! trunc_p)
8031 /* Now do an overflow check. */
8032 r = bfd_check_overflow ((signed_p
8033 ? complain_overflow_signed
8034 : complain_overflow_unsigned),
8035 len, 0, (8 * wordsz),
8036 relocation);
8037
8038 /* Do the deed. */
8039 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8040
8041 #ifdef DEBUG
8042 printf (" relocation: %8.8lx\n"
8043 " shifted mask: %8.8lx\n"
8044 " shifted/masked reloc: %8.8lx\n"
8045 " result: %8.8lx\n",
8046 (unsigned long) relocation, (unsigned long) (mask << shift),
8047 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8048 #endif
8049 /* FIXME: octets_per_byte. */
8050 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8051 return r;
8052 }
8053
8054 /* When performing a relocatable link, the input relocations are
8055 preserved. But, if they reference global symbols, the indices
8056 referenced must be updated. Update all the relocations found in
8057 RELDATA. */
8058
8059 static void
8060 elf_link_adjust_relocs (bfd *abfd,
8061 struct bfd_elf_section_reloc_data *reldata)
8062 {
8063 unsigned int i;
8064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8065 bfd_byte *erela;
8066 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8067 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8068 bfd_vma r_type_mask;
8069 int r_sym_shift;
8070 unsigned int count = reldata->count;
8071 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8072
8073 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8074 {
8075 swap_in = bed->s->swap_reloc_in;
8076 swap_out = bed->s->swap_reloc_out;
8077 }
8078 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8079 {
8080 swap_in = bed->s->swap_reloca_in;
8081 swap_out = bed->s->swap_reloca_out;
8082 }
8083 else
8084 abort ();
8085
8086 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8087 abort ();
8088
8089 if (bed->s->arch_size == 32)
8090 {
8091 r_type_mask = 0xff;
8092 r_sym_shift = 8;
8093 }
8094 else
8095 {
8096 r_type_mask = 0xffffffff;
8097 r_sym_shift = 32;
8098 }
8099
8100 erela = reldata->hdr->contents;
8101 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8102 {
8103 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8104 unsigned int j;
8105
8106 if (*rel_hash == NULL)
8107 continue;
8108
8109 BFD_ASSERT ((*rel_hash)->indx >= 0);
8110
8111 (*swap_in) (abfd, erela, irela);
8112 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8113 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8114 | (irela[j].r_info & r_type_mask));
8115 (*swap_out) (abfd, irela, erela);
8116 }
8117 }
8118
8119 struct elf_link_sort_rela
8120 {
8121 union {
8122 bfd_vma offset;
8123 bfd_vma sym_mask;
8124 } u;
8125 enum elf_reloc_type_class type;
8126 /* We use this as an array of size int_rels_per_ext_rel. */
8127 Elf_Internal_Rela rela[1];
8128 };
8129
8130 static int
8131 elf_link_sort_cmp1 (const void *A, const void *B)
8132 {
8133 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8134 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8135 int relativea, relativeb;
8136
8137 relativea = a->type == reloc_class_relative;
8138 relativeb = b->type == reloc_class_relative;
8139
8140 if (relativea < relativeb)
8141 return 1;
8142 if (relativea > relativeb)
8143 return -1;
8144 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8145 return -1;
8146 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8147 return 1;
8148 if (a->rela->r_offset < b->rela->r_offset)
8149 return -1;
8150 if (a->rela->r_offset > b->rela->r_offset)
8151 return 1;
8152 return 0;
8153 }
8154
8155 static int
8156 elf_link_sort_cmp2 (const void *A, const void *B)
8157 {
8158 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8159 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8160 int copya, copyb;
8161
8162 if (a->u.offset < b->u.offset)
8163 return -1;
8164 if (a->u.offset > b->u.offset)
8165 return 1;
8166 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8167 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8168 if (copya < copyb)
8169 return -1;
8170 if (copya > copyb)
8171 return 1;
8172 if (a->rela->r_offset < b->rela->r_offset)
8173 return -1;
8174 if (a->rela->r_offset > b->rela->r_offset)
8175 return 1;
8176 return 0;
8177 }
8178
8179 static size_t
8180 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8181 {
8182 asection *dynamic_relocs;
8183 asection *rela_dyn;
8184 asection *rel_dyn;
8185 bfd_size_type count, size;
8186 size_t i, ret, sort_elt, ext_size;
8187 bfd_byte *sort, *s_non_relative, *p;
8188 struct elf_link_sort_rela *sq;
8189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8190 int i2e = bed->s->int_rels_per_ext_rel;
8191 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8192 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8193 struct bfd_link_order *lo;
8194 bfd_vma r_sym_mask;
8195 bfd_boolean use_rela;
8196
8197 /* Find a dynamic reloc section. */
8198 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8199 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8200 if (rela_dyn != NULL && rela_dyn->size > 0
8201 && rel_dyn != NULL && rel_dyn->size > 0)
8202 {
8203 bfd_boolean use_rela_initialised = FALSE;
8204
8205 /* This is just here to stop gcc from complaining.
8206 It's initialization checking code is not perfect. */
8207 use_rela = TRUE;
8208
8209 /* Both sections are present. Examine the sizes
8210 of the indirect sections to help us choose. */
8211 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8212 if (lo->type == bfd_indirect_link_order)
8213 {
8214 asection *o = lo->u.indirect.section;
8215
8216 if ((o->size % bed->s->sizeof_rela) == 0)
8217 {
8218 if ((o->size % bed->s->sizeof_rel) == 0)
8219 /* Section size is divisible by both rel and rela sizes.
8220 It is of no help to us. */
8221 ;
8222 else
8223 {
8224 /* Section size is only divisible by rela. */
8225 if (use_rela_initialised && (use_rela == FALSE))
8226 {
8227 _bfd_error_handler
8228 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8229 bfd_set_error (bfd_error_invalid_operation);
8230 return 0;
8231 }
8232 else
8233 {
8234 use_rela = TRUE;
8235 use_rela_initialised = TRUE;
8236 }
8237 }
8238 }
8239 else if ((o->size % bed->s->sizeof_rel) == 0)
8240 {
8241 /* Section size is only divisible by rel. */
8242 if (use_rela_initialised && (use_rela == TRUE))
8243 {
8244 _bfd_error_handler
8245 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8246 bfd_set_error (bfd_error_invalid_operation);
8247 return 0;
8248 }
8249 else
8250 {
8251 use_rela = FALSE;
8252 use_rela_initialised = TRUE;
8253 }
8254 }
8255 else
8256 {
8257 /* The section size is not divisible by either - something is wrong. */
8258 _bfd_error_handler
8259 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8260 bfd_set_error (bfd_error_invalid_operation);
8261 return 0;
8262 }
8263 }
8264
8265 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8266 if (lo->type == bfd_indirect_link_order)
8267 {
8268 asection *o = lo->u.indirect.section;
8269
8270 if ((o->size % bed->s->sizeof_rela) == 0)
8271 {
8272 if ((o->size % bed->s->sizeof_rel) == 0)
8273 /* Section size is divisible by both rel and rela sizes.
8274 It is of no help to us. */
8275 ;
8276 else
8277 {
8278 /* Section size is only divisible by rela. */
8279 if (use_rela_initialised && (use_rela == FALSE))
8280 {
8281 _bfd_error_handler
8282 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return 0;
8285 }
8286 else
8287 {
8288 use_rela = TRUE;
8289 use_rela_initialised = TRUE;
8290 }
8291 }
8292 }
8293 else if ((o->size % bed->s->sizeof_rel) == 0)
8294 {
8295 /* Section size is only divisible by rel. */
8296 if (use_rela_initialised && (use_rela == TRUE))
8297 {
8298 _bfd_error_handler
8299 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8300 bfd_set_error (bfd_error_invalid_operation);
8301 return 0;
8302 }
8303 else
8304 {
8305 use_rela = FALSE;
8306 use_rela_initialised = TRUE;
8307 }
8308 }
8309 else
8310 {
8311 /* The section size is not divisible by either - something is wrong. */
8312 _bfd_error_handler
8313 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8314 bfd_set_error (bfd_error_invalid_operation);
8315 return 0;
8316 }
8317 }
8318
8319 if (! use_rela_initialised)
8320 /* Make a guess. */
8321 use_rela = TRUE;
8322 }
8323 else if (rela_dyn != NULL && rela_dyn->size > 0)
8324 use_rela = TRUE;
8325 else if (rel_dyn != NULL && rel_dyn->size > 0)
8326 use_rela = FALSE;
8327 else
8328 return 0;
8329
8330 if (use_rela)
8331 {
8332 dynamic_relocs = rela_dyn;
8333 ext_size = bed->s->sizeof_rela;
8334 swap_in = bed->s->swap_reloca_in;
8335 swap_out = bed->s->swap_reloca_out;
8336 }
8337 else
8338 {
8339 dynamic_relocs = rel_dyn;
8340 ext_size = bed->s->sizeof_rel;
8341 swap_in = bed->s->swap_reloc_in;
8342 swap_out = bed->s->swap_reloc_out;
8343 }
8344
8345 size = 0;
8346 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8347 if (lo->type == bfd_indirect_link_order)
8348 size += lo->u.indirect.section->size;
8349
8350 if (size != dynamic_relocs->size)
8351 return 0;
8352
8353 sort_elt = (sizeof (struct elf_link_sort_rela)
8354 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8355
8356 count = dynamic_relocs->size / ext_size;
8357 if (count == 0)
8358 return 0;
8359 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8360
8361 if (sort == NULL)
8362 {
8363 (*info->callbacks->warning)
8364 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8365 return 0;
8366 }
8367
8368 if (bed->s->arch_size == 32)
8369 r_sym_mask = ~(bfd_vma) 0xff;
8370 else
8371 r_sym_mask = ~(bfd_vma) 0xffffffff;
8372
8373 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8374 if (lo->type == bfd_indirect_link_order)
8375 {
8376 bfd_byte *erel, *erelend;
8377 asection *o = lo->u.indirect.section;
8378
8379 if (o->contents == NULL && o->size != 0)
8380 {
8381 /* This is a reloc section that is being handled as a normal
8382 section. See bfd_section_from_shdr. We can't combine
8383 relocs in this case. */
8384 free (sort);
8385 return 0;
8386 }
8387 erel = o->contents;
8388 erelend = o->contents + o->size;
8389 /* FIXME: octets_per_byte. */
8390 p = sort + o->output_offset / ext_size * sort_elt;
8391
8392 while (erel < erelend)
8393 {
8394 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8395
8396 (*swap_in) (abfd, erel, s->rela);
8397 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8398 s->u.sym_mask = r_sym_mask;
8399 p += sort_elt;
8400 erel += ext_size;
8401 }
8402 }
8403
8404 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8405
8406 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8407 {
8408 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8409 if (s->type != reloc_class_relative)
8410 break;
8411 }
8412 ret = i;
8413 s_non_relative = p;
8414
8415 sq = (struct elf_link_sort_rela *) s_non_relative;
8416 for (; i < count; i++, p += sort_elt)
8417 {
8418 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8419 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8420 sq = sp;
8421 sp->u.offset = sq->rela->r_offset;
8422 }
8423
8424 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8425
8426 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8427 if (lo->type == bfd_indirect_link_order)
8428 {
8429 bfd_byte *erel, *erelend;
8430 asection *o = lo->u.indirect.section;
8431
8432 erel = o->contents;
8433 erelend = o->contents + o->size;
8434 /* FIXME: octets_per_byte. */
8435 p = sort + o->output_offset / ext_size * sort_elt;
8436 while (erel < erelend)
8437 {
8438 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8439 (*swap_out) (abfd, s->rela, erel);
8440 p += sort_elt;
8441 erel += ext_size;
8442 }
8443 }
8444
8445 free (sort);
8446 *psec = dynamic_relocs;
8447 return ret;
8448 }
8449
8450 /* Flush the output symbols to the file. */
8451
8452 static bfd_boolean
8453 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8454 const struct elf_backend_data *bed)
8455 {
8456 if (flinfo->symbuf_count > 0)
8457 {
8458 Elf_Internal_Shdr *hdr;
8459 file_ptr pos;
8460 bfd_size_type amt;
8461
8462 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8463 pos = hdr->sh_offset + hdr->sh_size;
8464 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8465 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8466 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8467 return FALSE;
8468
8469 hdr->sh_size += amt;
8470 flinfo->symbuf_count = 0;
8471 }
8472
8473 return TRUE;
8474 }
8475
8476 /* Add a symbol to the output symbol table. */
8477
8478 static int
8479 elf_link_output_sym (struct elf_final_link_info *flinfo,
8480 const char *name,
8481 Elf_Internal_Sym *elfsym,
8482 asection *input_sec,
8483 struct elf_link_hash_entry *h)
8484 {
8485 bfd_byte *dest;
8486 Elf_External_Sym_Shndx *destshndx;
8487 int (*output_symbol_hook)
8488 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8489 struct elf_link_hash_entry *);
8490 const struct elf_backend_data *bed;
8491
8492 bed = get_elf_backend_data (flinfo->output_bfd);
8493 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8494 if (output_symbol_hook != NULL)
8495 {
8496 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8497 if (ret != 1)
8498 return ret;
8499 }
8500
8501 if (name == NULL || *name == '\0')
8502 elfsym->st_name = 0;
8503 else if (input_sec->flags & SEC_EXCLUDE)
8504 elfsym->st_name = 0;
8505 else
8506 {
8507 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8508 name, TRUE, FALSE);
8509 if (elfsym->st_name == (unsigned long) -1)
8510 return 0;
8511 }
8512
8513 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8514 {
8515 if (! elf_link_flush_output_syms (flinfo, bed))
8516 return 0;
8517 }
8518
8519 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8520 destshndx = flinfo->symshndxbuf;
8521 if (destshndx != NULL)
8522 {
8523 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8524 {
8525 bfd_size_type amt;
8526
8527 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8528 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8529 amt * 2);
8530 if (destshndx == NULL)
8531 return 0;
8532 flinfo->symshndxbuf = destshndx;
8533 memset ((char *) destshndx + amt, 0, amt);
8534 flinfo->shndxbuf_size *= 2;
8535 }
8536 destshndx += bfd_get_symcount (flinfo->output_bfd);
8537 }
8538
8539 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8540 flinfo->symbuf_count += 1;
8541 bfd_get_symcount (flinfo->output_bfd) += 1;
8542
8543 return 1;
8544 }
8545
8546 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8547
8548 static bfd_boolean
8549 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8550 {
8551 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8552 && sym->st_shndx < SHN_LORESERVE)
8553 {
8554 /* The gABI doesn't support dynamic symbols in output sections
8555 beyond 64k. */
8556 (*_bfd_error_handler)
8557 (_("%B: Too many sections: %d (>= %d)"),
8558 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8559 bfd_set_error (bfd_error_nonrepresentable_section);
8560 return FALSE;
8561 }
8562 return TRUE;
8563 }
8564
8565 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8566 allowing an unsatisfied unversioned symbol in the DSO to match a
8567 versioned symbol that would normally require an explicit version.
8568 We also handle the case that a DSO references a hidden symbol
8569 which may be satisfied by a versioned symbol in another DSO. */
8570
8571 static bfd_boolean
8572 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8573 const struct elf_backend_data *bed,
8574 struct elf_link_hash_entry *h)
8575 {
8576 bfd *abfd;
8577 struct elf_link_loaded_list *loaded;
8578
8579 if (!is_elf_hash_table (info->hash))
8580 return FALSE;
8581
8582 /* Check indirect symbol. */
8583 while (h->root.type == bfd_link_hash_indirect)
8584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8585
8586 switch (h->root.type)
8587 {
8588 default:
8589 abfd = NULL;
8590 break;
8591
8592 case bfd_link_hash_undefined:
8593 case bfd_link_hash_undefweak:
8594 abfd = h->root.u.undef.abfd;
8595 if ((abfd->flags & DYNAMIC) == 0
8596 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8597 return FALSE;
8598 break;
8599
8600 case bfd_link_hash_defined:
8601 case bfd_link_hash_defweak:
8602 abfd = h->root.u.def.section->owner;
8603 break;
8604
8605 case bfd_link_hash_common:
8606 abfd = h->root.u.c.p->section->owner;
8607 break;
8608 }
8609 BFD_ASSERT (abfd != NULL);
8610
8611 for (loaded = elf_hash_table (info)->loaded;
8612 loaded != NULL;
8613 loaded = loaded->next)
8614 {
8615 bfd *input;
8616 Elf_Internal_Shdr *hdr;
8617 bfd_size_type symcount;
8618 bfd_size_type extsymcount;
8619 bfd_size_type extsymoff;
8620 Elf_Internal_Shdr *versymhdr;
8621 Elf_Internal_Sym *isym;
8622 Elf_Internal_Sym *isymend;
8623 Elf_Internal_Sym *isymbuf;
8624 Elf_External_Versym *ever;
8625 Elf_External_Versym *extversym;
8626
8627 input = loaded->abfd;
8628
8629 /* We check each DSO for a possible hidden versioned definition. */
8630 if (input == abfd
8631 || (input->flags & DYNAMIC) == 0
8632 || elf_dynversym (input) == 0)
8633 continue;
8634
8635 hdr = &elf_tdata (input)->dynsymtab_hdr;
8636
8637 symcount = hdr->sh_size / bed->s->sizeof_sym;
8638 if (elf_bad_symtab (input))
8639 {
8640 extsymcount = symcount;
8641 extsymoff = 0;
8642 }
8643 else
8644 {
8645 extsymcount = symcount - hdr->sh_info;
8646 extsymoff = hdr->sh_info;
8647 }
8648
8649 if (extsymcount == 0)
8650 continue;
8651
8652 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8653 NULL, NULL, NULL);
8654 if (isymbuf == NULL)
8655 return FALSE;
8656
8657 /* Read in any version definitions. */
8658 versymhdr = &elf_tdata (input)->dynversym_hdr;
8659 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8660 if (extversym == NULL)
8661 goto error_ret;
8662
8663 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8664 || (bfd_bread (extversym, versymhdr->sh_size, input)
8665 != versymhdr->sh_size))
8666 {
8667 free (extversym);
8668 error_ret:
8669 free (isymbuf);
8670 return FALSE;
8671 }
8672
8673 ever = extversym + extsymoff;
8674 isymend = isymbuf + extsymcount;
8675 for (isym = isymbuf; isym < isymend; isym++, ever++)
8676 {
8677 const char *name;
8678 Elf_Internal_Versym iver;
8679 unsigned short version_index;
8680
8681 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8682 || isym->st_shndx == SHN_UNDEF)
8683 continue;
8684
8685 name = bfd_elf_string_from_elf_section (input,
8686 hdr->sh_link,
8687 isym->st_name);
8688 if (strcmp (name, h->root.root.string) != 0)
8689 continue;
8690
8691 _bfd_elf_swap_versym_in (input, ever, &iver);
8692
8693 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8694 && !(h->def_regular
8695 && h->forced_local))
8696 {
8697 /* If we have a non-hidden versioned sym, then it should
8698 have provided a definition for the undefined sym unless
8699 it is defined in a non-shared object and forced local.
8700 */
8701 abort ();
8702 }
8703
8704 version_index = iver.vs_vers & VERSYM_VERSION;
8705 if (version_index == 1 || version_index == 2)
8706 {
8707 /* This is the base or first version. We can use it. */
8708 free (extversym);
8709 free (isymbuf);
8710 return TRUE;
8711 }
8712 }
8713
8714 free (extversym);
8715 free (isymbuf);
8716 }
8717
8718 return FALSE;
8719 }
8720
8721 /* Add an external symbol to the symbol table. This is called from
8722 the hash table traversal routine. When generating a shared object,
8723 we go through the symbol table twice. The first time we output
8724 anything that might have been forced to local scope in a version
8725 script. The second time we output the symbols that are still
8726 global symbols. */
8727
8728 static bfd_boolean
8729 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8730 {
8731 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8732 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8733 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8734 bfd_boolean strip;
8735 Elf_Internal_Sym sym;
8736 asection *input_sec;
8737 const struct elf_backend_data *bed;
8738 long indx;
8739 int ret;
8740
8741 if (h->root.type == bfd_link_hash_warning)
8742 {
8743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8744 if (h->root.type == bfd_link_hash_new)
8745 return TRUE;
8746 }
8747
8748 /* Decide whether to output this symbol in this pass. */
8749 if (eoinfo->localsyms)
8750 {
8751 if (!h->forced_local)
8752 return TRUE;
8753 if (eoinfo->second_pass
8754 && !((h->root.type == bfd_link_hash_defined
8755 || h->root.type == bfd_link_hash_defweak)
8756 && h->root.u.def.section->output_section != NULL))
8757 return TRUE;
8758 }
8759 else
8760 {
8761 if (h->forced_local)
8762 return TRUE;
8763 }
8764
8765 bed = get_elf_backend_data (flinfo->output_bfd);
8766
8767 if (h->root.type == bfd_link_hash_undefined)
8768 {
8769 /* If we have an undefined symbol reference here then it must have
8770 come from a shared library that is being linked in. (Undefined
8771 references in regular files have already been handled unless
8772 they are in unreferenced sections which are removed by garbage
8773 collection). */
8774 bfd_boolean ignore_undef = FALSE;
8775
8776 /* Some symbols may be special in that the fact that they're
8777 undefined can be safely ignored - let backend determine that. */
8778 if (bed->elf_backend_ignore_undef_symbol)
8779 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8780
8781 /* If we are reporting errors for this situation then do so now. */
8782 if (!ignore_undef
8783 && h->ref_dynamic
8784 && (!h->ref_regular || flinfo->info->gc_sections)
8785 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8786 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8787 {
8788 if (!(flinfo->info->callbacks->undefined_symbol
8789 (flinfo->info, h->root.root.string,
8790 h->ref_regular ? NULL : h->root.u.undef.abfd,
8791 NULL, 0,
8792 (flinfo->info->unresolved_syms_in_shared_libs
8793 == RM_GENERATE_ERROR))))
8794 {
8795 bfd_set_error (bfd_error_bad_value);
8796 eoinfo->failed = TRUE;
8797 return FALSE;
8798 }
8799 }
8800 }
8801
8802 /* We should also warn if a forced local symbol is referenced from
8803 shared libraries. */
8804 if (!flinfo->info->relocatable
8805 && flinfo->info->executable
8806 && h->forced_local
8807 && h->ref_dynamic
8808 && h->def_regular
8809 && !h->dynamic_def
8810 && h->ref_dynamic_nonweak
8811 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8812 {
8813 bfd *def_bfd;
8814 const char *msg;
8815 struct elf_link_hash_entry *hi = h;
8816
8817 /* Check indirect symbol. */
8818 while (hi->root.type == bfd_link_hash_indirect)
8819 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8820
8821 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8822 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8823 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8824 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8825 else
8826 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8827 def_bfd = flinfo->output_bfd;
8828 if (hi->root.u.def.section != bfd_abs_section_ptr)
8829 def_bfd = hi->root.u.def.section->owner;
8830 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8831 h->root.root.string);
8832 bfd_set_error (bfd_error_bad_value);
8833 eoinfo->failed = TRUE;
8834 return FALSE;
8835 }
8836
8837 /* We don't want to output symbols that have never been mentioned by
8838 a regular file, or that we have been told to strip. However, if
8839 h->indx is set to -2, the symbol is used by a reloc and we must
8840 output it. */
8841 if (h->indx == -2)
8842 strip = FALSE;
8843 else if ((h->def_dynamic
8844 || h->ref_dynamic
8845 || h->root.type == bfd_link_hash_new)
8846 && !h->def_regular
8847 && !h->ref_regular)
8848 strip = TRUE;
8849 else if (flinfo->info->strip == strip_all)
8850 strip = TRUE;
8851 else if (flinfo->info->strip == strip_some
8852 && bfd_hash_lookup (flinfo->info->keep_hash,
8853 h->root.root.string, FALSE, FALSE) == NULL)
8854 strip = TRUE;
8855 else if ((h->root.type == bfd_link_hash_defined
8856 || h->root.type == bfd_link_hash_defweak)
8857 && ((flinfo->info->strip_discarded
8858 && discarded_section (h->root.u.def.section))
8859 || (h->root.u.def.section->owner != NULL
8860 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8861 strip = TRUE;
8862 else if ((h->root.type == bfd_link_hash_undefined
8863 || h->root.type == bfd_link_hash_undefweak)
8864 && h->root.u.undef.abfd != NULL
8865 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8866 strip = TRUE;
8867 else
8868 strip = FALSE;
8869
8870 /* If we're stripping it, and it's not a dynamic symbol, there's
8871 nothing else to do unless it is a forced local symbol or a
8872 STT_GNU_IFUNC symbol. */
8873 if (strip
8874 && h->dynindx == -1
8875 && h->type != STT_GNU_IFUNC
8876 && !h->forced_local)
8877 return TRUE;
8878
8879 sym.st_value = 0;
8880 sym.st_size = h->size;
8881 sym.st_other = h->other;
8882 if (h->forced_local)
8883 {
8884 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8885 /* Turn off visibility on local symbol. */
8886 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8887 }
8888 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8889 else if (h->unique_global && h->def_regular)
8890 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8891 else if (h->root.type == bfd_link_hash_undefweak
8892 || h->root.type == bfd_link_hash_defweak)
8893 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8894 else
8895 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8896 sym.st_target_internal = h->target_internal;
8897
8898 switch (h->root.type)
8899 {
8900 default:
8901 case bfd_link_hash_new:
8902 case bfd_link_hash_warning:
8903 abort ();
8904 return FALSE;
8905
8906 case bfd_link_hash_undefined:
8907 case bfd_link_hash_undefweak:
8908 input_sec = bfd_und_section_ptr;
8909 sym.st_shndx = SHN_UNDEF;
8910 break;
8911
8912 case bfd_link_hash_defined:
8913 case bfd_link_hash_defweak:
8914 {
8915 input_sec = h->root.u.def.section;
8916 if (input_sec->output_section != NULL)
8917 {
8918 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8919 {
8920 bfd_boolean second_pass_sym
8921 = (input_sec->owner == flinfo->output_bfd
8922 || input_sec->owner == NULL
8923 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8924 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8925
8926 eoinfo->need_second_pass |= second_pass_sym;
8927 if (eoinfo->second_pass != second_pass_sym)
8928 return TRUE;
8929 }
8930
8931 sym.st_shndx =
8932 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8933 input_sec->output_section);
8934 if (sym.st_shndx == SHN_BAD)
8935 {
8936 (*_bfd_error_handler)
8937 (_("%B: could not find output section %A for input section %A"),
8938 flinfo->output_bfd, input_sec->output_section, input_sec);
8939 bfd_set_error (bfd_error_nonrepresentable_section);
8940 eoinfo->failed = TRUE;
8941 return FALSE;
8942 }
8943
8944 /* ELF symbols in relocatable files are section relative,
8945 but in nonrelocatable files they are virtual
8946 addresses. */
8947 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8948 if (!flinfo->info->relocatable)
8949 {
8950 sym.st_value += input_sec->output_section->vma;
8951 if (h->type == STT_TLS)
8952 {
8953 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8954 if (tls_sec != NULL)
8955 sym.st_value -= tls_sec->vma;
8956 else
8957 {
8958 /* The TLS section may have been garbage collected. */
8959 BFD_ASSERT (flinfo->info->gc_sections
8960 && !input_sec->gc_mark);
8961 }
8962 }
8963 }
8964 }
8965 else
8966 {
8967 BFD_ASSERT (input_sec->owner == NULL
8968 || (input_sec->owner->flags & DYNAMIC) != 0);
8969 sym.st_shndx = SHN_UNDEF;
8970 input_sec = bfd_und_section_ptr;
8971 }
8972 }
8973 break;
8974
8975 case bfd_link_hash_common:
8976 input_sec = h->root.u.c.p->section;
8977 sym.st_shndx = bed->common_section_index (input_sec);
8978 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8979 break;
8980
8981 case bfd_link_hash_indirect:
8982 /* These symbols are created by symbol versioning. They point
8983 to the decorated version of the name. For example, if the
8984 symbol foo@@GNU_1.2 is the default, which should be used when
8985 foo is used with no version, then we add an indirect symbol
8986 foo which points to foo@@GNU_1.2. We ignore these symbols,
8987 since the indirected symbol is already in the hash table. */
8988 return TRUE;
8989 }
8990
8991 /* Give the processor backend a chance to tweak the symbol value,
8992 and also to finish up anything that needs to be done for this
8993 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8994 forced local syms when non-shared is due to a historical quirk.
8995 STT_GNU_IFUNC symbol must go through PLT. */
8996 if ((h->type == STT_GNU_IFUNC
8997 && h->def_regular
8998 && !flinfo->info->relocatable)
8999 || ((h->dynindx != -1
9000 || h->forced_local)
9001 && ((flinfo->info->shared
9002 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9003 || h->root.type != bfd_link_hash_undefweak))
9004 || !h->forced_local)
9005 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9006 {
9007 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9008 (flinfo->output_bfd, flinfo->info, h, &sym)))
9009 {
9010 eoinfo->failed = TRUE;
9011 return FALSE;
9012 }
9013 }
9014
9015 /* If we are marking the symbol as undefined, and there are no
9016 non-weak references to this symbol from a regular object, then
9017 mark the symbol as weak undefined; if there are non-weak
9018 references, mark the symbol as strong. We can't do this earlier,
9019 because it might not be marked as undefined until the
9020 finish_dynamic_symbol routine gets through with it. */
9021 if (sym.st_shndx == SHN_UNDEF
9022 && h->ref_regular
9023 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9024 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9025 {
9026 int bindtype;
9027 unsigned int type = ELF_ST_TYPE (sym.st_info);
9028
9029 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9030 if (type == STT_GNU_IFUNC)
9031 type = STT_FUNC;
9032
9033 if (h->ref_regular_nonweak)
9034 bindtype = STB_GLOBAL;
9035 else
9036 bindtype = STB_WEAK;
9037 sym.st_info = ELF_ST_INFO (bindtype, type);
9038 }
9039
9040 /* If this is a symbol defined in a dynamic library, don't use the
9041 symbol size from the dynamic library. Relinking an executable
9042 against a new library may introduce gratuitous changes in the
9043 executable's symbols if we keep the size. */
9044 if (sym.st_shndx == SHN_UNDEF
9045 && !h->def_regular
9046 && h->def_dynamic)
9047 sym.st_size = 0;
9048
9049 /* If a non-weak symbol with non-default visibility is not defined
9050 locally, it is a fatal error. */
9051 if (!flinfo->info->relocatable
9052 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9053 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9054 && h->root.type == bfd_link_hash_undefined
9055 && !h->def_regular)
9056 {
9057 const char *msg;
9058
9059 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9060 msg = _("%B: protected symbol `%s' isn't defined");
9061 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9062 msg = _("%B: internal symbol `%s' isn't defined");
9063 else
9064 msg = _("%B: hidden symbol `%s' isn't defined");
9065 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9066 bfd_set_error (bfd_error_bad_value);
9067 eoinfo->failed = TRUE;
9068 return FALSE;
9069 }
9070
9071 /* If this symbol should be put in the .dynsym section, then put it
9072 there now. We already know the symbol index. We also fill in
9073 the entry in the .hash section. */
9074 if (flinfo->dynsym_sec != NULL
9075 && h->dynindx != -1
9076 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9077 {
9078 bfd_byte *esym;
9079
9080 /* Since there is no version information in the dynamic string,
9081 if there is no version info in symbol version section, we will
9082 have a run-time problem. */
9083 if (h->verinfo.verdef == NULL)
9084 {
9085 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9086
9087 if (p && p [1] != '\0')
9088 {
9089 (*_bfd_error_handler)
9090 (_("%B: No symbol version section for versioned symbol `%s'"),
9091 flinfo->output_bfd, h->root.root.string);
9092 eoinfo->failed = TRUE;
9093 return FALSE;
9094 }
9095 }
9096
9097 sym.st_name = h->dynstr_index;
9098 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9099 if (!check_dynsym (flinfo->output_bfd, &sym))
9100 {
9101 eoinfo->failed = TRUE;
9102 return FALSE;
9103 }
9104 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9105
9106 if (flinfo->hash_sec != NULL)
9107 {
9108 size_t hash_entry_size;
9109 bfd_byte *bucketpos;
9110 bfd_vma chain;
9111 size_t bucketcount;
9112 size_t bucket;
9113
9114 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9115 bucket = h->u.elf_hash_value % bucketcount;
9116
9117 hash_entry_size
9118 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9119 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9120 + (bucket + 2) * hash_entry_size);
9121 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9122 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9123 bucketpos);
9124 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9125 ((bfd_byte *) flinfo->hash_sec->contents
9126 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9127 }
9128
9129 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9130 {
9131 Elf_Internal_Versym iversym;
9132 Elf_External_Versym *eversym;
9133
9134 if (!h->def_regular)
9135 {
9136 if (h->verinfo.verdef == NULL)
9137 iversym.vs_vers = 0;
9138 else
9139 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9140 }
9141 else
9142 {
9143 if (h->verinfo.vertree == NULL)
9144 iversym.vs_vers = 1;
9145 else
9146 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9147 if (flinfo->info->create_default_symver)
9148 iversym.vs_vers++;
9149 }
9150
9151 if (h->hidden)
9152 iversym.vs_vers |= VERSYM_HIDDEN;
9153
9154 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9155 eversym += h->dynindx;
9156 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9157 }
9158 }
9159
9160 /* If we're stripping it, then it was just a dynamic symbol, and
9161 there's nothing else to do. */
9162 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9163 return TRUE;
9164
9165 indx = bfd_get_symcount (flinfo->output_bfd);
9166 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9167 if (ret == 0)
9168 {
9169 eoinfo->failed = TRUE;
9170 return FALSE;
9171 }
9172 else if (ret == 1)
9173 h->indx = indx;
9174 else if (h->indx == -2)
9175 abort();
9176
9177 return TRUE;
9178 }
9179
9180 /* Return TRUE if special handling is done for relocs in SEC against
9181 symbols defined in discarded sections. */
9182
9183 static bfd_boolean
9184 elf_section_ignore_discarded_relocs (asection *sec)
9185 {
9186 const struct elf_backend_data *bed;
9187
9188 switch (sec->sec_info_type)
9189 {
9190 case SEC_INFO_TYPE_STABS:
9191 case SEC_INFO_TYPE_EH_FRAME:
9192 return TRUE;
9193 default:
9194 break;
9195 }
9196
9197 bed = get_elf_backend_data (sec->owner);
9198 if (bed->elf_backend_ignore_discarded_relocs != NULL
9199 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9200 return TRUE;
9201
9202 return FALSE;
9203 }
9204
9205 /* Return a mask saying how ld should treat relocations in SEC against
9206 symbols defined in discarded sections. If this function returns
9207 COMPLAIN set, ld will issue a warning message. If this function
9208 returns PRETEND set, and the discarded section was link-once and the
9209 same size as the kept link-once section, ld will pretend that the
9210 symbol was actually defined in the kept section. Otherwise ld will
9211 zero the reloc (at least that is the intent, but some cooperation by
9212 the target dependent code is needed, particularly for REL targets). */
9213
9214 unsigned int
9215 _bfd_elf_default_action_discarded (asection *sec)
9216 {
9217 if (sec->flags & SEC_DEBUGGING)
9218 return PRETEND;
9219
9220 if (strcmp (".eh_frame", sec->name) == 0)
9221 return 0;
9222
9223 if (strcmp (".gcc_except_table", sec->name) == 0)
9224 return 0;
9225
9226 return COMPLAIN | PRETEND;
9227 }
9228
9229 /* Find a match between a section and a member of a section group. */
9230
9231 static asection *
9232 match_group_member (asection *sec, asection *group,
9233 struct bfd_link_info *info)
9234 {
9235 asection *first = elf_next_in_group (group);
9236 asection *s = first;
9237
9238 while (s != NULL)
9239 {
9240 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9241 return s;
9242
9243 s = elf_next_in_group (s);
9244 if (s == first)
9245 break;
9246 }
9247
9248 return NULL;
9249 }
9250
9251 /* Check if the kept section of a discarded section SEC can be used
9252 to replace it. Return the replacement if it is OK. Otherwise return
9253 NULL. */
9254
9255 asection *
9256 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9257 {
9258 asection *kept;
9259
9260 kept = sec->kept_section;
9261 if (kept != NULL)
9262 {
9263 if ((kept->flags & SEC_GROUP) != 0)
9264 kept = match_group_member (sec, kept, info);
9265 if (kept != NULL
9266 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9267 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9268 kept = NULL;
9269 sec->kept_section = kept;
9270 }
9271 return kept;
9272 }
9273
9274 /* Link an input file into the linker output file. This function
9275 handles all the sections and relocations of the input file at once.
9276 This is so that we only have to read the local symbols once, and
9277 don't have to keep them in memory. */
9278
9279 static bfd_boolean
9280 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9281 {
9282 int (*relocate_section)
9283 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9284 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9285 bfd *output_bfd;
9286 Elf_Internal_Shdr *symtab_hdr;
9287 size_t locsymcount;
9288 size_t extsymoff;
9289 Elf_Internal_Sym *isymbuf;
9290 Elf_Internal_Sym *isym;
9291 Elf_Internal_Sym *isymend;
9292 long *pindex;
9293 asection **ppsection;
9294 asection *o;
9295 const struct elf_backend_data *bed;
9296 struct elf_link_hash_entry **sym_hashes;
9297 bfd_size_type address_size;
9298 bfd_vma r_type_mask;
9299 int r_sym_shift;
9300 bfd_boolean have_file_sym = FALSE;
9301
9302 output_bfd = flinfo->output_bfd;
9303 bed = get_elf_backend_data (output_bfd);
9304 relocate_section = bed->elf_backend_relocate_section;
9305
9306 /* If this is a dynamic object, we don't want to do anything here:
9307 we don't want the local symbols, and we don't want the section
9308 contents. */
9309 if ((input_bfd->flags & DYNAMIC) != 0)
9310 return TRUE;
9311
9312 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9313 if (elf_bad_symtab (input_bfd))
9314 {
9315 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9316 extsymoff = 0;
9317 }
9318 else
9319 {
9320 locsymcount = symtab_hdr->sh_info;
9321 extsymoff = symtab_hdr->sh_info;
9322 }
9323
9324 /* Read the local symbols. */
9325 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9326 if (isymbuf == NULL && locsymcount != 0)
9327 {
9328 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9329 flinfo->internal_syms,
9330 flinfo->external_syms,
9331 flinfo->locsym_shndx);
9332 if (isymbuf == NULL)
9333 return FALSE;
9334 }
9335
9336 /* Find local symbol sections and adjust values of symbols in
9337 SEC_MERGE sections. Write out those local symbols we know are
9338 going into the output file. */
9339 isymend = isymbuf + locsymcount;
9340 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9341 isym < isymend;
9342 isym++, pindex++, ppsection++)
9343 {
9344 asection *isec;
9345 const char *name;
9346 Elf_Internal_Sym osym;
9347 long indx;
9348 int ret;
9349
9350 *pindex = -1;
9351
9352 if (elf_bad_symtab (input_bfd))
9353 {
9354 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9355 {
9356 *ppsection = NULL;
9357 continue;
9358 }
9359 }
9360
9361 if (isym->st_shndx == SHN_UNDEF)
9362 isec = bfd_und_section_ptr;
9363 else if (isym->st_shndx == SHN_ABS)
9364 isec = bfd_abs_section_ptr;
9365 else if (isym->st_shndx == SHN_COMMON)
9366 isec = bfd_com_section_ptr;
9367 else
9368 {
9369 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9370 if (isec == NULL)
9371 {
9372 /* Don't attempt to output symbols with st_shnx in the
9373 reserved range other than SHN_ABS and SHN_COMMON. */
9374 *ppsection = NULL;
9375 continue;
9376 }
9377 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9378 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9379 isym->st_value =
9380 _bfd_merged_section_offset (output_bfd, &isec,
9381 elf_section_data (isec)->sec_info,
9382 isym->st_value);
9383 }
9384
9385 *ppsection = isec;
9386
9387 /* Don't output the first, undefined, symbol. */
9388 if (ppsection == flinfo->sections)
9389 continue;
9390
9391 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9392 {
9393 /* We never output section symbols. Instead, we use the
9394 section symbol of the corresponding section in the output
9395 file. */
9396 continue;
9397 }
9398
9399 /* If we are stripping all symbols, we don't want to output this
9400 one. */
9401 if (flinfo->info->strip == strip_all)
9402 continue;
9403
9404 /* If we are discarding all local symbols, we don't want to
9405 output this one. If we are generating a relocatable output
9406 file, then some of the local symbols may be required by
9407 relocs; we output them below as we discover that they are
9408 needed. */
9409 if (flinfo->info->discard == discard_all)
9410 continue;
9411
9412 /* If this symbol is defined in a section which we are
9413 discarding, we don't need to keep it. */
9414 if (isym->st_shndx != SHN_UNDEF
9415 && isym->st_shndx < SHN_LORESERVE
9416 && bfd_section_removed_from_list (output_bfd,
9417 isec->output_section))
9418 continue;
9419
9420 /* Get the name of the symbol. */
9421 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9422 isym->st_name);
9423 if (name == NULL)
9424 return FALSE;
9425
9426 /* See if we are discarding symbols with this name. */
9427 if ((flinfo->info->strip == strip_some
9428 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9429 == NULL))
9430 || (((flinfo->info->discard == discard_sec_merge
9431 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9432 || flinfo->info->discard == discard_l)
9433 && bfd_is_local_label_name (input_bfd, name)))
9434 continue;
9435
9436 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9437 {
9438 have_file_sym = TRUE;
9439 flinfo->filesym_count += 1;
9440 }
9441 if (!have_file_sym)
9442 {
9443 /* In the absence of debug info, bfd_find_nearest_line uses
9444 FILE symbols to determine the source file for local
9445 function symbols. Provide a FILE symbol here if input
9446 files lack such, so that their symbols won't be
9447 associated with a previous input file. It's not the
9448 source file, but the best we can do. */
9449 have_file_sym = TRUE;
9450 flinfo->filesym_count += 1;
9451 memset (&osym, 0, sizeof (osym));
9452 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9453 osym.st_shndx = SHN_ABS;
9454 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9455 bfd_abs_section_ptr, NULL))
9456 return FALSE;
9457 }
9458
9459 osym = *isym;
9460
9461 /* Adjust the section index for the output file. */
9462 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9463 isec->output_section);
9464 if (osym.st_shndx == SHN_BAD)
9465 return FALSE;
9466
9467 /* ELF symbols in relocatable files are section relative, but
9468 in executable files they are virtual addresses. Note that
9469 this code assumes that all ELF sections have an associated
9470 BFD section with a reasonable value for output_offset; below
9471 we assume that they also have a reasonable value for
9472 output_section. Any special sections must be set up to meet
9473 these requirements. */
9474 osym.st_value += isec->output_offset;
9475 if (!flinfo->info->relocatable)
9476 {
9477 osym.st_value += isec->output_section->vma;
9478 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9479 {
9480 /* STT_TLS symbols are relative to PT_TLS segment base. */
9481 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9482 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9483 }
9484 }
9485
9486 indx = bfd_get_symcount (output_bfd);
9487 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9488 if (ret == 0)
9489 return FALSE;
9490 else if (ret == 1)
9491 *pindex = indx;
9492 }
9493
9494 if (bed->s->arch_size == 32)
9495 {
9496 r_type_mask = 0xff;
9497 r_sym_shift = 8;
9498 address_size = 4;
9499 }
9500 else
9501 {
9502 r_type_mask = 0xffffffff;
9503 r_sym_shift = 32;
9504 address_size = 8;
9505 }
9506
9507 /* Relocate the contents of each section. */
9508 sym_hashes = elf_sym_hashes (input_bfd);
9509 for (o = input_bfd->sections; o != NULL; o = o->next)
9510 {
9511 bfd_byte *contents;
9512
9513 if (! o->linker_mark)
9514 {
9515 /* This section was omitted from the link. */
9516 continue;
9517 }
9518
9519 if (flinfo->info->relocatable
9520 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9521 {
9522 /* Deal with the group signature symbol. */
9523 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9524 unsigned long symndx = sec_data->this_hdr.sh_info;
9525 asection *osec = o->output_section;
9526
9527 if (symndx >= locsymcount
9528 || (elf_bad_symtab (input_bfd)
9529 && flinfo->sections[symndx] == NULL))
9530 {
9531 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9532 while (h->root.type == bfd_link_hash_indirect
9533 || h->root.type == bfd_link_hash_warning)
9534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9535 /* Arrange for symbol to be output. */
9536 h->indx = -2;
9537 elf_section_data (osec)->this_hdr.sh_info = -2;
9538 }
9539 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9540 {
9541 /* We'll use the output section target_index. */
9542 asection *sec = flinfo->sections[symndx]->output_section;
9543 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9544 }
9545 else
9546 {
9547 if (flinfo->indices[symndx] == -1)
9548 {
9549 /* Otherwise output the local symbol now. */
9550 Elf_Internal_Sym sym = isymbuf[symndx];
9551 asection *sec = flinfo->sections[symndx]->output_section;
9552 const char *name;
9553 long indx;
9554 int ret;
9555
9556 name = bfd_elf_string_from_elf_section (input_bfd,
9557 symtab_hdr->sh_link,
9558 sym.st_name);
9559 if (name == NULL)
9560 return FALSE;
9561
9562 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9563 sec);
9564 if (sym.st_shndx == SHN_BAD)
9565 return FALSE;
9566
9567 sym.st_value += o->output_offset;
9568
9569 indx = bfd_get_symcount (output_bfd);
9570 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9571 if (ret == 0)
9572 return FALSE;
9573 else if (ret == 1)
9574 flinfo->indices[symndx] = indx;
9575 else
9576 abort ();
9577 }
9578 elf_section_data (osec)->this_hdr.sh_info
9579 = flinfo->indices[symndx];
9580 }
9581 }
9582
9583 if ((o->flags & SEC_HAS_CONTENTS) == 0
9584 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9585 continue;
9586
9587 if ((o->flags & SEC_LINKER_CREATED) != 0)
9588 {
9589 /* Section was created by _bfd_elf_link_create_dynamic_sections
9590 or somesuch. */
9591 continue;
9592 }
9593
9594 /* Get the contents of the section. They have been cached by a
9595 relaxation routine. Note that o is a section in an input
9596 file, so the contents field will not have been set by any of
9597 the routines which work on output files. */
9598 if (elf_section_data (o)->this_hdr.contents != NULL)
9599 contents = elf_section_data (o)->this_hdr.contents;
9600 else
9601 {
9602 contents = flinfo->contents;
9603 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9604 return FALSE;
9605 }
9606
9607 if ((o->flags & SEC_RELOC) != 0)
9608 {
9609 Elf_Internal_Rela *internal_relocs;
9610 Elf_Internal_Rela *rel, *relend;
9611 int action_discarded;
9612 int ret;
9613
9614 /* Get the swapped relocs. */
9615 internal_relocs
9616 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9617 flinfo->internal_relocs, FALSE);
9618 if (internal_relocs == NULL
9619 && o->reloc_count > 0)
9620 return FALSE;
9621
9622 /* We need to reverse-copy input .ctors/.dtors sections if
9623 they are placed in .init_array/.finit_array for output. */
9624 if (o->size > address_size
9625 && ((strncmp (o->name, ".ctors", 6) == 0
9626 && strcmp (o->output_section->name,
9627 ".init_array") == 0)
9628 || (strncmp (o->name, ".dtors", 6) == 0
9629 && strcmp (o->output_section->name,
9630 ".fini_array") == 0))
9631 && (o->name[6] == 0 || o->name[6] == '.'))
9632 {
9633 if (o->size != o->reloc_count * address_size)
9634 {
9635 (*_bfd_error_handler)
9636 (_("error: %B: size of section %A is not "
9637 "multiple of address size"),
9638 input_bfd, o);
9639 bfd_set_error (bfd_error_on_input);
9640 return FALSE;
9641 }
9642 o->flags |= SEC_ELF_REVERSE_COPY;
9643 }
9644
9645 action_discarded = -1;
9646 if (!elf_section_ignore_discarded_relocs (o))
9647 action_discarded = (*bed->action_discarded) (o);
9648
9649 /* Run through the relocs evaluating complex reloc symbols and
9650 looking for relocs against symbols from discarded sections
9651 or section symbols from removed link-once sections.
9652 Complain about relocs against discarded sections. Zero
9653 relocs against removed link-once sections. */
9654
9655 rel = internal_relocs;
9656 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9657 for ( ; rel < relend; rel++)
9658 {
9659 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9660 unsigned int s_type;
9661 asection **ps, *sec;
9662 struct elf_link_hash_entry *h = NULL;
9663 const char *sym_name;
9664
9665 if (r_symndx == STN_UNDEF)
9666 continue;
9667
9668 if (r_symndx >= locsymcount
9669 || (elf_bad_symtab (input_bfd)
9670 && flinfo->sections[r_symndx] == NULL))
9671 {
9672 h = sym_hashes[r_symndx - extsymoff];
9673
9674 /* Badly formatted input files can contain relocs that
9675 reference non-existant symbols. Check here so that
9676 we do not seg fault. */
9677 if (h == NULL)
9678 {
9679 char buffer [32];
9680
9681 sprintf_vma (buffer, rel->r_info);
9682 (*_bfd_error_handler)
9683 (_("error: %B contains a reloc (0x%s) for section %A "
9684 "that references a non-existent global symbol"),
9685 input_bfd, o, buffer);
9686 bfd_set_error (bfd_error_bad_value);
9687 return FALSE;
9688 }
9689
9690 while (h->root.type == bfd_link_hash_indirect
9691 || h->root.type == bfd_link_hash_warning)
9692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9693
9694 s_type = h->type;
9695
9696 ps = NULL;
9697 if (h->root.type == bfd_link_hash_defined
9698 || h->root.type == bfd_link_hash_defweak)
9699 ps = &h->root.u.def.section;
9700
9701 sym_name = h->root.root.string;
9702 }
9703 else
9704 {
9705 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9706
9707 s_type = ELF_ST_TYPE (sym->st_info);
9708 ps = &flinfo->sections[r_symndx];
9709 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9710 sym, *ps);
9711 }
9712
9713 if ((s_type == STT_RELC || s_type == STT_SRELC)
9714 && !flinfo->info->relocatable)
9715 {
9716 bfd_vma val;
9717 bfd_vma dot = (rel->r_offset
9718 + o->output_offset + o->output_section->vma);
9719 #ifdef DEBUG
9720 printf ("Encountered a complex symbol!");
9721 printf (" (input_bfd %s, section %s, reloc %ld\n",
9722 input_bfd->filename, o->name,
9723 (long) (rel - internal_relocs));
9724 printf (" symbol: idx %8.8lx, name %s\n",
9725 r_symndx, sym_name);
9726 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9727 (unsigned long) rel->r_info,
9728 (unsigned long) rel->r_offset);
9729 #endif
9730 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9731 isymbuf, locsymcount, s_type == STT_SRELC))
9732 return FALSE;
9733
9734 /* Symbol evaluated OK. Update to absolute value. */
9735 set_symbol_value (input_bfd, isymbuf, locsymcount,
9736 r_symndx, val);
9737 continue;
9738 }
9739
9740 if (action_discarded != -1 && ps != NULL)
9741 {
9742 /* Complain if the definition comes from a
9743 discarded section. */
9744 if ((sec = *ps) != NULL && discarded_section (sec))
9745 {
9746 BFD_ASSERT (r_symndx != STN_UNDEF);
9747 if (action_discarded & COMPLAIN)
9748 (*flinfo->info->callbacks->einfo)
9749 (_("%X`%s' referenced in section `%A' of %B: "
9750 "defined in discarded section `%A' of %B\n"),
9751 sym_name, o, input_bfd, sec, sec->owner);
9752
9753 /* Try to do the best we can to support buggy old
9754 versions of gcc. Pretend that the symbol is
9755 really defined in the kept linkonce section.
9756 FIXME: This is quite broken. Modifying the
9757 symbol here means we will be changing all later
9758 uses of the symbol, not just in this section. */
9759 if (action_discarded & PRETEND)
9760 {
9761 asection *kept;
9762
9763 kept = _bfd_elf_check_kept_section (sec,
9764 flinfo->info);
9765 if (kept != NULL)
9766 {
9767 *ps = kept;
9768 continue;
9769 }
9770 }
9771 }
9772 }
9773 }
9774
9775 /* Relocate the section by invoking a back end routine.
9776
9777 The back end routine is responsible for adjusting the
9778 section contents as necessary, and (if using Rela relocs
9779 and generating a relocatable output file) adjusting the
9780 reloc addend as necessary.
9781
9782 The back end routine does not have to worry about setting
9783 the reloc address or the reloc symbol index.
9784
9785 The back end routine is given a pointer to the swapped in
9786 internal symbols, and can access the hash table entries
9787 for the external symbols via elf_sym_hashes (input_bfd).
9788
9789 When generating relocatable output, the back end routine
9790 must handle STB_LOCAL/STT_SECTION symbols specially. The
9791 output symbol is going to be a section symbol
9792 corresponding to the output section, which will require
9793 the addend to be adjusted. */
9794
9795 ret = (*relocate_section) (output_bfd, flinfo->info,
9796 input_bfd, o, contents,
9797 internal_relocs,
9798 isymbuf,
9799 flinfo->sections);
9800 if (!ret)
9801 return FALSE;
9802
9803 if (ret == 2
9804 || flinfo->info->relocatable
9805 || flinfo->info->emitrelocations)
9806 {
9807 Elf_Internal_Rela *irela;
9808 Elf_Internal_Rela *irelaend, *irelamid;
9809 bfd_vma last_offset;
9810 struct elf_link_hash_entry **rel_hash;
9811 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9812 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9813 unsigned int next_erel;
9814 bfd_boolean rela_normal;
9815 struct bfd_elf_section_data *esdi, *esdo;
9816
9817 esdi = elf_section_data (o);
9818 esdo = elf_section_data (o->output_section);
9819 rela_normal = FALSE;
9820
9821 /* Adjust the reloc addresses and symbol indices. */
9822
9823 irela = internal_relocs;
9824 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9825 rel_hash = esdo->rel.hashes + esdo->rel.count;
9826 /* We start processing the REL relocs, if any. When we reach
9827 IRELAMID in the loop, we switch to the RELA relocs. */
9828 irelamid = irela;
9829 if (esdi->rel.hdr != NULL)
9830 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9831 * bed->s->int_rels_per_ext_rel);
9832 rel_hash_list = rel_hash;
9833 rela_hash_list = NULL;
9834 last_offset = o->output_offset;
9835 if (!flinfo->info->relocatable)
9836 last_offset += o->output_section->vma;
9837 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9838 {
9839 unsigned long r_symndx;
9840 asection *sec;
9841 Elf_Internal_Sym sym;
9842
9843 if (next_erel == bed->s->int_rels_per_ext_rel)
9844 {
9845 rel_hash++;
9846 next_erel = 0;
9847 }
9848
9849 if (irela == irelamid)
9850 {
9851 rel_hash = esdo->rela.hashes + esdo->rela.count;
9852 rela_hash_list = rel_hash;
9853 rela_normal = bed->rela_normal;
9854 }
9855
9856 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9857 flinfo->info, o,
9858 irela->r_offset);
9859 if (irela->r_offset >= (bfd_vma) -2)
9860 {
9861 /* This is a reloc for a deleted entry or somesuch.
9862 Turn it into an R_*_NONE reloc, at the same
9863 offset as the last reloc. elf_eh_frame.c and
9864 bfd_elf_discard_info rely on reloc offsets
9865 being ordered. */
9866 irela->r_offset = last_offset;
9867 irela->r_info = 0;
9868 irela->r_addend = 0;
9869 continue;
9870 }
9871
9872 irela->r_offset += o->output_offset;
9873
9874 /* Relocs in an executable have to be virtual addresses. */
9875 if (!flinfo->info->relocatable)
9876 irela->r_offset += o->output_section->vma;
9877
9878 last_offset = irela->r_offset;
9879
9880 r_symndx = irela->r_info >> r_sym_shift;
9881 if (r_symndx == STN_UNDEF)
9882 continue;
9883
9884 if (r_symndx >= locsymcount
9885 || (elf_bad_symtab (input_bfd)
9886 && flinfo->sections[r_symndx] == NULL))
9887 {
9888 struct elf_link_hash_entry *rh;
9889 unsigned long indx;
9890
9891 /* This is a reloc against a global symbol. We
9892 have not yet output all the local symbols, so
9893 we do not know the symbol index of any global
9894 symbol. We set the rel_hash entry for this
9895 reloc to point to the global hash table entry
9896 for this symbol. The symbol index is then
9897 set at the end of bfd_elf_final_link. */
9898 indx = r_symndx - extsymoff;
9899 rh = elf_sym_hashes (input_bfd)[indx];
9900 while (rh->root.type == bfd_link_hash_indirect
9901 || rh->root.type == bfd_link_hash_warning)
9902 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9903
9904 /* Setting the index to -2 tells
9905 elf_link_output_extsym that this symbol is
9906 used by a reloc. */
9907 BFD_ASSERT (rh->indx < 0);
9908 rh->indx = -2;
9909
9910 *rel_hash = rh;
9911
9912 continue;
9913 }
9914
9915 /* This is a reloc against a local symbol. */
9916
9917 *rel_hash = NULL;
9918 sym = isymbuf[r_symndx];
9919 sec = flinfo->sections[r_symndx];
9920 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9921 {
9922 /* I suppose the backend ought to fill in the
9923 section of any STT_SECTION symbol against a
9924 processor specific section. */
9925 r_symndx = STN_UNDEF;
9926 if (bfd_is_abs_section (sec))
9927 ;
9928 else if (sec == NULL || sec->owner == NULL)
9929 {
9930 bfd_set_error (bfd_error_bad_value);
9931 return FALSE;
9932 }
9933 else
9934 {
9935 asection *osec = sec->output_section;
9936
9937 /* If we have discarded a section, the output
9938 section will be the absolute section. In
9939 case of discarded SEC_MERGE sections, use
9940 the kept section. relocate_section should
9941 have already handled discarded linkonce
9942 sections. */
9943 if (bfd_is_abs_section (osec)
9944 && sec->kept_section != NULL
9945 && sec->kept_section->output_section != NULL)
9946 {
9947 osec = sec->kept_section->output_section;
9948 irela->r_addend -= osec->vma;
9949 }
9950
9951 if (!bfd_is_abs_section (osec))
9952 {
9953 r_symndx = osec->target_index;
9954 if (r_symndx == STN_UNDEF)
9955 {
9956 irela->r_addend += osec->vma;
9957 osec = _bfd_nearby_section (output_bfd, osec,
9958 osec->vma);
9959 irela->r_addend -= osec->vma;
9960 r_symndx = osec->target_index;
9961 }
9962 }
9963 }
9964
9965 /* Adjust the addend according to where the
9966 section winds up in the output section. */
9967 if (rela_normal)
9968 irela->r_addend += sec->output_offset;
9969 }
9970 else
9971 {
9972 if (flinfo->indices[r_symndx] == -1)
9973 {
9974 unsigned long shlink;
9975 const char *name;
9976 asection *osec;
9977 long indx;
9978
9979 if (flinfo->info->strip == strip_all)
9980 {
9981 /* You can't do ld -r -s. */
9982 bfd_set_error (bfd_error_invalid_operation);
9983 return FALSE;
9984 }
9985
9986 /* This symbol was skipped earlier, but
9987 since it is needed by a reloc, we
9988 must output it now. */
9989 shlink = symtab_hdr->sh_link;
9990 name = (bfd_elf_string_from_elf_section
9991 (input_bfd, shlink, sym.st_name));
9992 if (name == NULL)
9993 return FALSE;
9994
9995 osec = sec->output_section;
9996 sym.st_shndx =
9997 _bfd_elf_section_from_bfd_section (output_bfd,
9998 osec);
9999 if (sym.st_shndx == SHN_BAD)
10000 return FALSE;
10001
10002 sym.st_value += sec->output_offset;
10003 if (!flinfo->info->relocatable)
10004 {
10005 sym.st_value += osec->vma;
10006 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10007 {
10008 /* STT_TLS symbols are relative to PT_TLS
10009 segment base. */
10010 BFD_ASSERT (elf_hash_table (flinfo->info)
10011 ->tls_sec != NULL);
10012 sym.st_value -= (elf_hash_table (flinfo->info)
10013 ->tls_sec->vma);
10014 }
10015 }
10016
10017 indx = bfd_get_symcount (output_bfd);
10018 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10019 NULL);
10020 if (ret == 0)
10021 return FALSE;
10022 else if (ret == 1)
10023 flinfo->indices[r_symndx] = indx;
10024 else
10025 abort ();
10026 }
10027
10028 r_symndx = flinfo->indices[r_symndx];
10029 }
10030
10031 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10032 | (irela->r_info & r_type_mask));
10033 }
10034
10035 /* Swap out the relocs. */
10036 input_rel_hdr = esdi->rel.hdr;
10037 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10038 {
10039 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10040 input_rel_hdr,
10041 internal_relocs,
10042 rel_hash_list))
10043 return FALSE;
10044 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10045 * bed->s->int_rels_per_ext_rel);
10046 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10047 }
10048
10049 input_rela_hdr = esdi->rela.hdr;
10050 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10051 {
10052 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10053 input_rela_hdr,
10054 internal_relocs,
10055 rela_hash_list))
10056 return FALSE;
10057 }
10058 }
10059 }
10060
10061 /* Write out the modified section contents. */
10062 if (bed->elf_backend_write_section
10063 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10064 contents))
10065 {
10066 /* Section written out. */
10067 }
10068 else switch (o->sec_info_type)
10069 {
10070 case SEC_INFO_TYPE_STABS:
10071 if (! (_bfd_write_section_stabs
10072 (output_bfd,
10073 &elf_hash_table (flinfo->info)->stab_info,
10074 o, &elf_section_data (o)->sec_info, contents)))
10075 return FALSE;
10076 break;
10077 case SEC_INFO_TYPE_MERGE:
10078 if (! _bfd_write_merged_section (output_bfd, o,
10079 elf_section_data (o)->sec_info))
10080 return FALSE;
10081 break;
10082 case SEC_INFO_TYPE_EH_FRAME:
10083 {
10084 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10085 o, contents))
10086 return FALSE;
10087 }
10088 break;
10089 default:
10090 {
10091 /* FIXME: octets_per_byte. */
10092 if (! (o->flags & SEC_EXCLUDE))
10093 {
10094 file_ptr offset = (file_ptr) o->output_offset;
10095 bfd_size_type todo = o->size;
10096 if ((o->flags & SEC_ELF_REVERSE_COPY))
10097 {
10098 /* Reverse-copy input section to output. */
10099 do
10100 {
10101 todo -= address_size;
10102 if (! bfd_set_section_contents (output_bfd,
10103 o->output_section,
10104 contents + todo,
10105 offset,
10106 address_size))
10107 return FALSE;
10108 if (todo == 0)
10109 break;
10110 offset += address_size;
10111 }
10112 while (1);
10113 }
10114 else if (! bfd_set_section_contents (output_bfd,
10115 o->output_section,
10116 contents,
10117 offset, todo))
10118 return FALSE;
10119 }
10120 }
10121 break;
10122 }
10123 }
10124
10125 return TRUE;
10126 }
10127
10128 /* Generate a reloc when linking an ELF file. This is a reloc
10129 requested by the linker, and does not come from any input file. This
10130 is used to build constructor and destructor tables when linking
10131 with -Ur. */
10132
10133 static bfd_boolean
10134 elf_reloc_link_order (bfd *output_bfd,
10135 struct bfd_link_info *info,
10136 asection *output_section,
10137 struct bfd_link_order *link_order)
10138 {
10139 reloc_howto_type *howto;
10140 long indx;
10141 bfd_vma offset;
10142 bfd_vma addend;
10143 struct bfd_elf_section_reloc_data *reldata;
10144 struct elf_link_hash_entry **rel_hash_ptr;
10145 Elf_Internal_Shdr *rel_hdr;
10146 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10147 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10148 bfd_byte *erel;
10149 unsigned int i;
10150 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10151
10152 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10153 if (howto == NULL)
10154 {
10155 bfd_set_error (bfd_error_bad_value);
10156 return FALSE;
10157 }
10158
10159 addend = link_order->u.reloc.p->addend;
10160
10161 if (esdo->rel.hdr)
10162 reldata = &esdo->rel;
10163 else if (esdo->rela.hdr)
10164 reldata = &esdo->rela;
10165 else
10166 {
10167 reldata = NULL;
10168 BFD_ASSERT (0);
10169 }
10170
10171 /* Figure out the symbol index. */
10172 rel_hash_ptr = reldata->hashes + reldata->count;
10173 if (link_order->type == bfd_section_reloc_link_order)
10174 {
10175 indx = link_order->u.reloc.p->u.section->target_index;
10176 BFD_ASSERT (indx != 0);
10177 *rel_hash_ptr = NULL;
10178 }
10179 else
10180 {
10181 struct elf_link_hash_entry *h;
10182
10183 /* Treat a reloc against a defined symbol as though it were
10184 actually against the section. */
10185 h = ((struct elf_link_hash_entry *)
10186 bfd_wrapped_link_hash_lookup (output_bfd, info,
10187 link_order->u.reloc.p->u.name,
10188 FALSE, FALSE, TRUE));
10189 if (h != NULL
10190 && (h->root.type == bfd_link_hash_defined
10191 || h->root.type == bfd_link_hash_defweak))
10192 {
10193 asection *section;
10194
10195 section = h->root.u.def.section;
10196 indx = section->output_section->target_index;
10197 *rel_hash_ptr = NULL;
10198 /* It seems that we ought to add the symbol value to the
10199 addend here, but in practice it has already been added
10200 because it was passed to constructor_callback. */
10201 addend += section->output_section->vma + section->output_offset;
10202 }
10203 else if (h != NULL)
10204 {
10205 /* Setting the index to -2 tells elf_link_output_extsym that
10206 this symbol is used by a reloc. */
10207 h->indx = -2;
10208 *rel_hash_ptr = h;
10209 indx = 0;
10210 }
10211 else
10212 {
10213 if (! ((*info->callbacks->unattached_reloc)
10214 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10215 return FALSE;
10216 indx = 0;
10217 }
10218 }
10219
10220 /* If this is an inplace reloc, we must write the addend into the
10221 object file. */
10222 if (howto->partial_inplace && addend != 0)
10223 {
10224 bfd_size_type size;
10225 bfd_reloc_status_type rstat;
10226 bfd_byte *buf;
10227 bfd_boolean ok;
10228 const char *sym_name;
10229
10230 size = (bfd_size_type) bfd_get_reloc_size (howto);
10231 buf = (bfd_byte *) bfd_zmalloc (size);
10232 if (buf == NULL)
10233 return FALSE;
10234 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10235 switch (rstat)
10236 {
10237 case bfd_reloc_ok:
10238 break;
10239
10240 default:
10241 case bfd_reloc_outofrange:
10242 abort ();
10243
10244 case bfd_reloc_overflow:
10245 if (link_order->type == bfd_section_reloc_link_order)
10246 sym_name = bfd_section_name (output_bfd,
10247 link_order->u.reloc.p->u.section);
10248 else
10249 sym_name = link_order->u.reloc.p->u.name;
10250 if (! ((*info->callbacks->reloc_overflow)
10251 (info, NULL, sym_name, howto->name, addend, NULL,
10252 NULL, (bfd_vma) 0)))
10253 {
10254 free (buf);
10255 return FALSE;
10256 }
10257 break;
10258 }
10259 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10260 link_order->offset, size);
10261 free (buf);
10262 if (! ok)
10263 return FALSE;
10264 }
10265
10266 /* The address of a reloc is relative to the section in a
10267 relocatable file, and is a virtual address in an executable
10268 file. */
10269 offset = link_order->offset;
10270 if (! info->relocatable)
10271 offset += output_section->vma;
10272
10273 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10274 {
10275 irel[i].r_offset = offset;
10276 irel[i].r_info = 0;
10277 irel[i].r_addend = 0;
10278 }
10279 if (bed->s->arch_size == 32)
10280 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10281 else
10282 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10283
10284 rel_hdr = reldata->hdr;
10285 erel = rel_hdr->contents;
10286 if (rel_hdr->sh_type == SHT_REL)
10287 {
10288 erel += reldata->count * bed->s->sizeof_rel;
10289 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10290 }
10291 else
10292 {
10293 irel[0].r_addend = addend;
10294 erel += reldata->count * bed->s->sizeof_rela;
10295 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10296 }
10297
10298 ++reldata->count;
10299
10300 return TRUE;
10301 }
10302
10303
10304 /* Get the output vma of the section pointed to by the sh_link field. */
10305
10306 static bfd_vma
10307 elf_get_linked_section_vma (struct bfd_link_order *p)
10308 {
10309 Elf_Internal_Shdr **elf_shdrp;
10310 asection *s;
10311 int elfsec;
10312
10313 s = p->u.indirect.section;
10314 elf_shdrp = elf_elfsections (s->owner);
10315 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10316 elfsec = elf_shdrp[elfsec]->sh_link;
10317 /* PR 290:
10318 The Intel C compiler generates SHT_IA_64_UNWIND with
10319 SHF_LINK_ORDER. But it doesn't set the sh_link or
10320 sh_info fields. Hence we could get the situation
10321 where elfsec is 0. */
10322 if (elfsec == 0)
10323 {
10324 const struct elf_backend_data *bed
10325 = get_elf_backend_data (s->owner);
10326 if (bed->link_order_error_handler)
10327 bed->link_order_error_handler
10328 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10329 return 0;
10330 }
10331 else
10332 {
10333 s = elf_shdrp[elfsec]->bfd_section;
10334 return s->output_section->vma + s->output_offset;
10335 }
10336 }
10337
10338
10339 /* Compare two sections based on the locations of the sections they are
10340 linked to. Used by elf_fixup_link_order. */
10341
10342 static int
10343 compare_link_order (const void * a, const void * b)
10344 {
10345 bfd_vma apos;
10346 bfd_vma bpos;
10347
10348 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10349 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10350 if (apos < bpos)
10351 return -1;
10352 return apos > bpos;
10353 }
10354
10355
10356 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10357 order as their linked sections. Returns false if this could not be done
10358 because an output section includes both ordered and unordered
10359 sections. Ideally we'd do this in the linker proper. */
10360
10361 static bfd_boolean
10362 elf_fixup_link_order (bfd *abfd, asection *o)
10363 {
10364 int seen_linkorder;
10365 int seen_other;
10366 int n;
10367 struct bfd_link_order *p;
10368 bfd *sub;
10369 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10370 unsigned elfsec;
10371 struct bfd_link_order **sections;
10372 asection *s, *other_sec, *linkorder_sec;
10373 bfd_vma offset;
10374
10375 other_sec = NULL;
10376 linkorder_sec = NULL;
10377 seen_other = 0;
10378 seen_linkorder = 0;
10379 for (p = o->map_head.link_order; p != NULL; p = p->next)
10380 {
10381 if (p->type == bfd_indirect_link_order)
10382 {
10383 s = p->u.indirect.section;
10384 sub = s->owner;
10385 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10386 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10387 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10388 && elfsec < elf_numsections (sub)
10389 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10390 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10391 {
10392 seen_linkorder++;
10393 linkorder_sec = s;
10394 }
10395 else
10396 {
10397 seen_other++;
10398 other_sec = s;
10399 }
10400 }
10401 else
10402 seen_other++;
10403
10404 if (seen_other && seen_linkorder)
10405 {
10406 if (other_sec && linkorder_sec)
10407 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10408 o, linkorder_sec,
10409 linkorder_sec->owner, other_sec,
10410 other_sec->owner);
10411 else
10412 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10413 o);
10414 bfd_set_error (bfd_error_bad_value);
10415 return FALSE;
10416 }
10417 }
10418
10419 if (!seen_linkorder)
10420 return TRUE;
10421
10422 sections = (struct bfd_link_order **)
10423 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10424 if (sections == NULL)
10425 return FALSE;
10426 seen_linkorder = 0;
10427
10428 for (p = o->map_head.link_order; p != NULL; p = p->next)
10429 {
10430 sections[seen_linkorder++] = p;
10431 }
10432 /* Sort the input sections in the order of their linked section. */
10433 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10434 compare_link_order);
10435
10436 /* Change the offsets of the sections. */
10437 offset = 0;
10438 for (n = 0; n < seen_linkorder; n++)
10439 {
10440 s = sections[n]->u.indirect.section;
10441 offset &= ~(bfd_vma) 0 << s->alignment_power;
10442 s->output_offset = offset;
10443 sections[n]->offset = offset;
10444 /* FIXME: octets_per_byte. */
10445 offset += sections[n]->size;
10446 }
10447
10448 free (sections);
10449 return TRUE;
10450 }
10451
10452 static void
10453 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10454 {
10455 asection *o;
10456
10457 if (flinfo->symstrtab != NULL)
10458 _bfd_stringtab_free (flinfo->symstrtab);
10459 if (flinfo->contents != NULL)
10460 free (flinfo->contents);
10461 if (flinfo->external_relocs != NULL)
10462 free (flinfo->external_relocs);
10463 if (flinfo->internal_relocs != NULL)
10464 free (flinfo->internal_relocs);
10465 if (flinfo->external_syms != NULL)
10466 free (flinfo->external_syms);
10467 if (flinfo->locsym_shndx != NULL)
10468 free (flinfo->locsym_shndx);
10469 if (flinfo->internal_syms != NULL)
10470 free (flinfo->internal_syms);
10471 if (flinfo->indices != NULL)
10472 free (flinfo->indices);
10473 if (flinfo->sections != NULL)
10474 free (flinfo->sections);
10475 if (flinfo->symbuf != NULL)
10476 free (flinfo->symbuf);
10477 if (flinfo->symshndxbuf != NULL)
10478 free (flinfo->symshndxbuf);
10479 for (o = obfd->sections; o != NULL; o = o->next)
10480 {
10481 struct bfd_elf_section_data *esdo = elf_section_data (o);
10482 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10483 free (esdo->rel.hashes);
10484 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10485 free (esdo->rela.hashes);
10486 }
10487 }
10488
10489 /* Do the final step of an ELF link. */
10490
10491 bfd_boolean
10492 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10493 {
10494 bfd_boolean dynamic;
10495 bfd_boolean emit_relocs;
10496 bfd *dynobj;
10497 struct elf_final_link_info flinfo;
10498 asection *o;
10499 struct bfd_link_order *p;
10500 bfd *sub;
10501 bfd_size_type max_contents_size;
10502 bfd_size_type max_external_reloc_size;
10503 bfd_size_type max_internal_reloc_count;
10504 bfd_size_type max_sym_count;
10505 bfd_size_type max_sym_shndx_count;
10506 file_ptr off;
10507 Elf_Internal_Sym elfsym;
10508 unsigned int i;
10509 Elf_Internal_Shdr *symtab_hdr;
10510 Elf_Internal_Shdr *symtab_shndx_hdr;
10511 Elf_Internal_Shdr *symstrtab_hdr;
10512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10513 struct elf_outext_info eoinfo;
10514 bfd_boolean merged;
10515 size_t relativecount = 0;
10516 asection *reldyn = 0;
10517 bfd_size_type amt;
10518 asection *attr_section = NULL;
10519 bfd_vma attr_size = 0;
10520 const char *std_attrs_section;
10521
10522 if (! is_elf_hash_table (info->hash))
10523 return FALSE;
10524
10525 if (info->shared)
10526 abfd->flags |= DYNAMIC;
10527
10528 dynamic = elf_hash_table (info)->dynamic_sections_created;
10529 dynobj = elf_hash_table (info)->dynobj;
10530
10531 emit_relocs = (info->relocatable
10532 || info->emitrelocations);
10533
10534 flinfo.info = info;
10535 flinfo.output_bfd = abfd;
10536 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10537 if (flinfo.symstrtab == NULL)
10538 return FALSE;
10539
10540 if (! dynamic)
10541 {
10542 flinfo.dynsym_sec = NULL;
10543 flinfo.hash_sec = NULL;
10544 flinfo.symver_sec = NULL;
10545 }
10546 else
10547 {
10548 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10549 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10550 /* Note that dynsym_sec can be NULL (on VMS). */
10551 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10552 /* Note that it is OK if symver_sec is NULL. */
10553 }
10554
10555 flinfo.contents = NULL;
10556 flinfo.external_relocs = NULL;
10557 flinfo.internal_relocs = NULL;
10558 flinfo.external_syms = NULL;
10559 flinfo.locsym_shndx = NULL;
10560 flinfo.internal_syms = NULL;
10561 flinfo.indices = NULL;
10562 flinfo.sections = NULL;
10563 flinfo.symbuf = NULL;
10564 flinfo.symshndxbuf = NULL;
10565 flinfo.symbuf_count = 0;
10566 flinfo.shndxbuf_size = 0;
10567 flinfo.filesym_count = 0;
10568
10569 /* The object attributes have been merged. Remove the input
10570 sections from the link, and set the contents of the output
10571 secton. */
10572 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10573 for (o = abfd->sections; o != NULL; o = o->next)
10574 {
10575 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10576 || strcmp (o->name, ".gnu.attributes") == 0)
10577 {
10578 for (p = o->map_head.link_order; p != NULL; p = p->next)
10579 {
10580 asection *input_section;
10581
10582 if (p->type != bfd_indirect_link_order)
10583 continue;
10584 input_section = p->u.indirect.section;
10585 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10586 elf_link_input_bfd ignores this section. */
10587 input_section->flags &= ~SEC_HAS_CONTENTS;
10588 }
10589
10590 attr_size = bfd_elf_obj_attr_size (abfd);
10591 if (attr_size)
10592 {
10593 bfd_set_section_size (abfd, o, attr_size);
10594 attr_section = o;
10595 /* Skip this section later on. */
10596 o->map_head.link_order = NULL;
10597 }
10598 else
10599 o->flags |= SEC_EXCLUDE;
10600 }
10601 }
10602
10603 /* Count up the number of relocations we will output for each output
10604 section, so that we know the sizes of the reloc sections. We
10605 also figure out some maximum sizes. */
10606 max_contents_size = 0;
10607 max_external_reloc_size = 0;
10608 max_internal_reloc_count = 0;
10609 max_sym_count = 0;
10610 max_sym_shndx_count = 0;
10611 merged = FALSE;
10612 for (o = abfd->sections; o != NULL; o = o->next)
10613 {
10614 struct bfd_elf_section_data *esdo = elf_section_data (o);
10615 o->reloc_count = 0;
10616
10617 for (p = o->map_head.link_order; p != NULL; p = p->next)
10618 {
10619 unsigned int reloc_count = 0;
10620 struct bfd_elf_section_data *esdi = NULL;
10621
10622 if (p->type == bfd_section_reloc_link_order
10623 || p->type == bfd_symbol_reloc_link_order)
10624 reloc_count = 1;
10625 else if (p->type == bfd_indirect_link_order)
10626 {
10627 asection *sec;
10628
10629 sec = p->u.indirect.section;
10630 esdi = elf_section_data (sec);
10631
10632 /* Mark all sections which are to be included in the
10633 link. This will normally be every section. We need
10634 to do this so that we can identify any sections which
10635 the linker has decided to not include. */
10636 sec->linker_mark = TRUE;
10637
10638 if (sec->flags & SEC_MERGE)
10639 merged = TRUE;
10640
10641 if (esdo->this_hdr.sh_type == SHT_REL
10642 || esdo->this_hdr.sh_type == SHT_RELA)
10643 /* Some backends use reloc_count in relocation sections
10644 to count particular types of relocs. Of course,
10645 reloc sections themselves can't have relocations. */
10646 reloc_count = 0;
10647 else if (info->relocatable || info->emitrelocations)
10648 reloc_count = sec->reloc_count;
10649 else if (bed->elf_backend_count_relocs)
10650 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10651
10652 if (sec->rawsize > max_contents_size)
10653 max_contents_size = sec->rawsize;
10654 if (sec->size > max_contents_size)
10655 max_contents_size = sec->size;
10656
10657 /* We are interested in just local symbols, not all
10658 symbols. */
10659 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10660 && (sec->owner->flags & DYNAMIC) == 0)
10661 {
10662 size_t sym_count;
10663
10664 if (elf_bad_symtab (sec->owner))
10665 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10666 / bed->s->sizeof_sym);
10667 else
10668 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10669
10670 if (sym_count > max_sym_count)
10671 max_sym_count = sym_count;
10672
10673 if (sym_count > max_sym_shndx_count
10674 && elf_symtab_shndx (sec->owner) != 0)
10675 max_sym_shndx_count = sym_count;
10676
10677 if ((sec->flags & SEC_RELOC) != 0)
10678 {
10679 size_t ext_size = 0;
10680
10681 if (esdi->rel.hdr != NULL)
10682 ext_size = esdi->rel.hdr->sh_size;
10683 if (esdi->rela.hdr != NULL)
10684 ext_size += esdi->rela.hdr->sh_size;
10685
10686 if (ext_size > max_external_reloc_size)
10687 max_external_reloc_size = ext_size;
10688 if (sec->reloc_count > max_internal_reloc_count)
10689 max_internal_reloc_count = sec->reloc_count;
10690 }
10691 }
10692 }
10693
10694 if (reloc_count == 0)
10695 continue;
10696
10697 o->reloc_count += reloc_count;
10698
10699 if (p->type == bfd_indirect_link_order
10700 && (info->relocatable || info->emitrelocations))
10701 {
10702 if (esdi->rel.hdr)
10703 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10704 if (esdi->rela.hdr)
10705 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10706 }
10707 else
10708 {
10709 if (o->use_rela_p)
10710 esdo->rela.count += reloc_count;
10711 else
10712 esdo->rel.count += reloc_count;
10713 }
10714 }
10715
10716 if (o->reloc_count > 0)
10717 o->flags |= SEC_RELOC;
10718 else
10719 {
10720 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10721 set it (this is probably a bug) and if it is set
10722 assign_section_numbers will create a reloc section. */
10723 o->flags &=~ SEC_RELOC;
10724 }
10725
10726 /* If the SEC_ALLOC flag is not set, force the section VMA to
10727 zero. This is done in elf_fake_sections as well, but forcing
10728 the VMA to 0 here will ensure that relocs against these
10729 sections are handled correctly. */
10730 if ((o->flags & SEC_ALLOC) == 0
10731 && ! o->user_set_vma)
10732 o->vma = 0;
10733 }
10734
10735 if (! info->relocatable && merged)
10736 elf_link_hash_traverse (elf_hash_table (info),
10737 _bfd_elf_link_sec_merge_syms, abfd);
10738
10739 /* Figure out the file positions for everything but the symbol table
10740 and the relocs. We set symcount to force assign_section_numbers
10741 to create a symbol table. */
10742 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10743 BFD_ASSERT (! abfd->output_has_begun);
10744 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10745 goto error_return;
10746
10747 /* Set sizes, and assign file positions for reloc sections. */
10748 for (o = abfd->sections; o != NULL; o = o->next)
10749 {
10750 struct bfd_elf_section_data *esdo = elf_section_data (o);
10751 if ((o->flags & SEC_RELOC) != 0)
10752 {
10753 if (esdo->rel.hdr
10754 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10755 goto error_return;
10756
10757 if (esdo->rela.hdr
10758 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10759 goto error_return;
10760 }
10761
10762 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10763 to count upwards while actually outputting the relocations. */
10764 esdo->rel.count = 0;
10765 esdo->rela.count = 0;
10766 }
10767
10768 _bfd_elf_assign_file_positions_for_relocs (abfd);
10769
10770 /* We have now assigned file positions for all the sections except
10771 .symtab and .strtab. We start the .symtab section at the current
10772 file position, and write directly to it. We build the .strtab
10773 section in memory. */
10774 bfd_get_symcount (abfd) = 0;
10775 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10776 /* sh_name is set in prep_headers. */
10777 symtab_hdr->sh_type = SHT_SYMTAB;
10778 /* sh_flags, sh_addr and sh_size all start off zero. */
10779 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10780 /* sh_link is set in assign_section_numbers. */
10781 /* sh_info is set below. */
10782 /* sh_offset is set just below. */
10783 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10784
10785 off = elf_next_file_pos (abfd);
10786 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10787
10788 /* Note that at this point elf_next_file_pos (abfd) is
10789 incorrect. We do not yet know the size of the .symtab section.
10790 We correct next_file_pos below, after we do know the size. */
10791
10792 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10793 continuously seeking to the right position in the file. */
10794 if (! info->keep_memory || max_sym_count < 20)
10795 flinfo.symbuf_size = 20;
10796 else
10797 flinfo.symbuf_size = max_sym_count;
10798 amt = flinfo.symbuf_size;
10799 amt *= bed->s->sizeof_sym;
10800 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10801 if (flinfo.symbuf == NULL)
10802 goto error_return;
10803 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10804 {
10805 /* Wild guess at number of output symbols. realloc'd as needed. */
10806 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10807 flinfo.shndxbuf_size = amt;
10808 amt *= sizeof (Elf_External_Sym_Shndx);
10809 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10810 if (flinfo.symshndxbuf == NULL)
10811 goto error_return;
10812 }
10813
10814 /* Start writing out the symbol table. The first symbol is always a
10815 dummy symbol. */
10816 if (info->strip != strip_all
10817 || emit_relocs)
10818 {
10819 elfsym.st_value = 0;
10820 elfsym.st_size = 0;
10821 elfsym.st_info = 0;
10822 elfsym.st_other = 0;
10823 elfsym.st_shndx = SHN_UNDEF;
10824 elfsym.st_target_internal = 0;
10825 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10826 NULL) != 1)
10827 goto error_return;
10828 }
10829
10830 /* Output a symbol for each section. We output these even if we are
10831 discarding local symbols, since they are used for relocs. These
10832 symbols have no names. We store the index of each one in the
10833 index field of the section, so that we can find it again when
10834 outputting relocs. */
10835 if (info->strip != strip_all
10836 || emit_relocs)
10837 {
10838 elfsym.st_size = 0;
10839 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10840 elfsym.st_other = 0;
10841 elfsym.st_value = 0;
10842 elfsym.st_target_internal = 0;
10843 for (i = 1; i < elf_numsections (abfd); i++)
10844 {
10845 o = bfd_section_from_elf_index (abfd, i);
10846 if (o != NULL)
10847 {
10848 o->target_index = bfd_get_symcount (abfd);
10849 elfsym.st_shndx = i;
10850 if (!info->relocatable)
10851 elfsym.st_value = o->vma;
10852 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10853 goto error_return;
10854 }
10855 }
10856 }
10857
10858 /* Allocate some memory to hold information read in from the input
10859 files. */
10860 if (max_contents_size != 0)
10861 {
10862 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10863 if (flinfo.contents == NULL)
10864 goto error_return;
10865 }
10866
10867 if (max_external_reloc_size != 0)
10868 {
10869 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10870 if (flinfo.external_relocs == NULL)
10871 goto error_return;
10872 }
10873
10874 if (max_internal_reloc_count != 0)
10875 {
10876 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10877 amt *= sizeof (Elf_Internal_Rela);
10878 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10879 if (flinfo.internal_relocs == NULL)
10880 goto error_return;
10881 }
10882
10883 if (max_sym_count != 0)
10884 {
10885 amt = max_sym_count * bed->s->sizeof_sym;
10886 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10887 if (flinfo.external_syms == NULL)
10888 goto error_return;
10889
10890 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10891 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10892 if (flinfo.internal_syms == NULL)
10893 goto error_return;
10894
10895 amt = max_sym_count * sizeof (long);
10896 flinfo.indices = (long int *) bfd_malloc (amt);
10897 if (flinfo.indices == NULL)
10898 goto error_return;
10899
10900 amt = max_sym_count * sizeof (asection *);
10901 flinfo.sections = (asection **) bfd_malloc (amt);
10902 if (flinfo.sections == NULL)
10903 goto error_return;
10904 }
10905
10906 if (max_sym_shndx_count != 0)
10907 {
10908 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10909 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10910 if (flinfo.locsym_shndx == NULL)
10911 goto error_return;
10912 }
10913
10914 if (elf_hash_table (info)->tls_sec)
10915 {
10916 bfd_vma base, end = 0;
10917 asection *sec;
10918
10919 for (sec = elf_hash_table (info)->tls_sec;
10920 sec && (sec->flags & SEC_THREAD_LOCAL);
10921 sec = sec->next)
10922 {
10923 bfd_size_type size = sec->size;
10924
10925 if (size == 0
10926 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10927 {
10928 struct bfd_link_order *ord = sec->map_tail.link_order;
10929
10930 if (ord != NULL)
10931 size = ord->offset + ord->size;
10932 }
10933 end = sec->vma + size;
10934 }
10935 base = elf_hash_table (info)->tls_sec->vma;
10936 /* Only align end of TLS section if static TLS doesn't have special
10937 alignment requirements. */
10938 if (bed->static_tls_alignment == 1)
10939 end = align_power (end,
10940 elf_hash_table (info)->tls_sec->alignment_power);
10941 elf_hash_table (info)->tls_size = end - base;
10942 }
10943
10944 /* Reorder SHF_LINK_ORDER sections. */
10945 for (o = abfd->sections; o != NULL; o = o->next)
10946 {
10947 if (!elf_fixup_link_order (abfd, o))
10948 return FALSE;
10949 }
10950
10951 /* Since ELF permits relocations to be against local symbols, we
10952 must have the local symbols available when we do the relocations.
10953 Since we would rather only read the local symbols once, and we
10954 would rather not keep them in memory, we handle all the
10955 relocations for a single input file at the same time.
10956
10957 Unfortunately, there is no way to know the total number of local
10958 symbols until we have seen all of them, and the local symbol
10959 indices precede the global symbol indices. This means that when
10960 we are generating relocatable output, and we see a reloc against
10961 a global symbol, we can not know the symbol index until we have
10962 finished examining all the local symbols to see which ones we are
10963 going to output. To deal with this, we keep the relocations in
10964 memory, and don't output them until the end of the link. This is
10965 an unfortunate waste of memory, but I don't see a good way around
10966 it. Fortunately, it only happens when performing a relocatable
10967 link, which is not the common case. FIXME: If keep_memory is set
10968 we could write the relocs out and then read them again; I don't
10969 know how bad the memory loss will be. */
10970
10971 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10972 sub->output_has_begun = FALSE;
10973 for (o = abfd->sections; o != NULL; o = o->next)
10974 {
10975 for (p = o->map_head.link_order; p != NULL; p = p->next)
10976 {
10977 if (p->type == bfd_indirect_link_order
10978 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10979 == bfd_target_elf_flavour)
10980 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10981 {
10982 if (! sub->output_has_begun)
10983 {
10984 if (! elf_link_input_bfd (&flinfo, sub))
10985 goto error_return;
10986 sub->output_has_begun = TRUE;
10987 }
10988 }
10989 else if (p->type == bfd_section_reloc_link_order
10990 || p->type == bfd_symbol_reloc_link_order)
10991 {
10992 if (! elf_reloc_link_order (abfd, info, o, p))
10993 goto error_return;
10994 }
10995 else
10996 {
10997 if (! _bfd_default_link_order (abfd, info, o, p))
10998 {
10999 if (p->type == bfd_indirect_link_order
11000 && (bfd_get_flavour (sub)
11001 == bfd_target_elf_flavour)
11002 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11003 != bed->s->elfclass))
11004 {
11005 const char *iclass, *oclass;
11006
11007 if (bed->s->elfclass == ELFCLASS64)
11008 {
11009 iclass = "ELFCLASS32";
11010 oclass = "ELFCLASS64";
11011 }
11012 else
11013 {
11014 iclass = "ELFCLASS64";
11015 oclass = "ELFCLASS32";
11016 }
11017
11018 bfd_set_error (bfd_error_wrong_format);
11019 (*_bfd_error_handler)
11020 (_("%B: file class %s incompatible with %s"),
11021 sub, iclass, oclass);
11022 }
11023
11024 goto error_return;
11025 }
11026 }
11027 }
11028 }
11029
11030 /* Free symbol buffer if needed. */
11031 if (!info->reduce_memory_overheads)
11032 {
11033 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11034 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11035 && elf_tdata (sub)->symbuf)
11036 {
11037 free (elf_tdata (sub)->symbuf);
11038 elf_tdata (sub)->symbuf = NULL;
11039 }
11040 }
11041
11042 /* Output a FILE symbol so that following locals are not associated
11043 with the wrong input file. */
11044 memset (&elfsym, 0, sizeof (elfsym));
11045 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11046 elfsym.st_shndx = SHN_ABS;
11047
11048 if (flinfo.filesym_count > 1
11049 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11050 bfd_und_section_ptr, NULL))
11051 return FALSE;
11052
11053 /* Output any global symbols that got converted to local in a
11054 version script or due to symbol visibility. We do this in a
11055 separate step since ELF requires all local symbols to appear
11056 prior to any global symbols. FIXME: We should only do this if
11057 some global symbols were, in fact, converted to become local.
11058 FIXME: Will this work correctly with the Irix 5 linker? */
11059 eoinfo.failed = FALSE;
11060 eoinfo.flinfo = &flinfo;
11061 eoinfo.localsyms = TRUE;
11062 eoinfo.need_second_pass = FALSE;
11063 eoinfo.second_pass = FALSE;
11064 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11065 if (eoinfo.failed)
11066 return FALSE;
11067
11068 if (flinfo.filesym_count == 1
11069 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11070 bfd_und_section_ptr, NULL))
11071 return FALSE;
11072
11073 if (eoinfo.need_second_pass)
11074 {
11075 eoinfo.second_pass = TRUE;
11076 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11077 if (eoinfo.failed)
11078 return FALSE;
11079 }
11080
11081 /* If backend needs to output some local symbols not present in the hash
11082 table, do it now. */
11083 if (bed->elf_backend_output_arch_local_syms)
11084 {
11085 typedef int (*out_sym_func)
11086 (void *, const char *, Elf_Internal_Sym *, asection *,
11087 struct elf_link_hash_entry *);
11088
11089 if (! ((*bed->elf_backend_output_arch_local_syms)
11090 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11091 return FALSE;
11092 }
11093
11094 /* That wrote out all the local symbols. Finish up the symbol table
11095 with the global symbols. Even if we want to strip everything we
11096 can, we still need to deal with those global symbols that got
11097 converted to local in a version script. */
11098
11099 /* The sh_info field records the index of the first non local symbol. */
11100 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11101
11102 if (dynamic
11103 && flinfo.dynsym_sec != NULL
11104 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11105 {
11106 Elf_Internal_Sym sym;
11107 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11108 long last_local = 0;
11109
11110 /* Write out the section symbols for the output sections. */
11111 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11112 {
11113 asection *s;
11114
11115 sym.st_size = 0;
11116 sym.st_name = 0;
11117 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11118 sym.st_other = 0;
11119 sym.st_target_internal = 0;
11120
11121 for (s = abfd->sections; s != NULL; s = s->next)
11122 {
11123 int indx;
11124 bfd_byte *dest;
11125 long dynindx;
11126
11127 dynindx = elf_section_data (s)->dynindx;
11128 if (dynindx <= 0)
11129 continue;
11130 indx = elf_section_data (s)->this_idx;
11131 BFD_ASSERT (indx > 0);
11132 sym.st_shndx = indx;
11133 if (! check_dynsym (abfd, &sym))
11134 return FALSE;
11135 sym.st_value = s->vma;
11136 dest = dynsym + dynindx * bed->s->sizeof_sym;
11137 if (last_local < dynindx)
11138 last_local = dynindx;
11139 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11140 }
11141 }
11142
11143 /* Write out the local dynsyms. */
11144 if (elf_hash_table (info)->dynlocal)
11145 {
11146 struct elf_link_local_dynamic_entry *e;
11147 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11148 {
11149 asection *s;
11150 bfd_byte *dest;
11151
11152 /* Copy the internal symbol and turn off visibility.
11153 Note that we saved a word of storage and overwrote
11154 the original st_name with the dynstr_index. */
11155 sym = e->isym;
11156 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11157
11158 s = bfd_section_from_elf_index (e->input_bfd,
11159 e->isym.st_shndx);
11160 if (s != NULL)
11161 {
11162 sym.st_shndx =
11163 elf_section_data (s->output_section)->this_idx;
11164 if (! check_dynsym (abfd, &sym))
11165 return FALSE;
11166 sym.st_value = (s->output_section->vma
11167 + s->output_offset
11168 + e->isym.st_value);
11169 }
11170
11171 if (last_local < e->dynindx)
11172 last_local = e->dynindx;
11173
11174 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11175 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11176 }
11177 }
11178
11179 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11180 last_local + 1;
11181 }
11182
11183 /* We get the global symbols from the hash table. */
11184 eoinfo.failed = FALSE;
11185 eoinfo.localsyms = FALSE;
11186 eoinfo.flinfo = &flinfo;
11187 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11188 if (eoinfo.failed)
11189 return FALSE;
11190
11191 /* If backend needs to output some symbols not present in the hash
11192 table, do it now. */
11193 if (bed->elf_backend_output_arch_syms)
11194 {
11195 typedef int (*out_sym_func)
11196 (void *, const char *, Elf_Internal_Sym *, asection *,
11197 struct elf_link_hash_entry *);
11198
11199 if (! ((*bed->elf_backend_output_arch_syms)
11200 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11201 return FALSE;
11202 }
11203
11204 /* Flush all symbols to the file. */
11205 if (! elf_link_flush_output_syms (&flinfo, bed))
11206 return FALSE;
11207
11208 /* Now we know the size of the symtab section. */
11209 off += symtab_hdr->sh_size;
11210
11211 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11212 if (symtab_shndx_hdr->sh_name != 0)
11213 {
11214 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11215 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11216 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11217 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11218 symtab_shndx_hdr->sh_size = amt;
11219
11220 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11221 off, TRUE);
11222
11223 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11224 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11225 return FALSE;
11226 }
11227
11228
11229 /* Finish up and write out the symbol string table (.strtab)
11230 section. */
11231 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11232 /* sh_name was set in prep_headers. */
11233 symstrtab_hdr->sh_type = SHT_STRTAB;
11234 symstrtab_hdr->sh_flags = 0;
11235 symstrtab_hdr->sh_addr = 0;
11236 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11237 symstrtab_hdr->sh_entsize = 0;
11238 symstrtab_hdr->sh_link = 0;
11239 symstrtab_hdr->sh_info = 0;
11240 /* sh_offset is set just below. */
11241 symstrtab_hdr->sh_addralign = 1;
11242
11243 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11244 elf_next_file_pos (abfd) = off;
11245
11246 if (bfd_get_symcount (abfd) > 0)
11247 {
11248 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11249 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11250 return FALSE;
11251 }
11252
11253 /* Adjust the relocs to have the correct symbol indices. */
11254 for (o = abfd->sections; o != NULL; o = o->next)
11255 {
11256 struct bfd_elf_section_data *esdo = elf_section_data (o);
11257 if ((o->flags & SEC_RELOC) == 0)
11258 continue;
11259
11260 if (esdo->rel.hdr != NULL)
11261 elf_link_adjust_relocs (abfd, &esdo->rel);
11262 if (esdo->rela.hdr != NULL)
11263 elf_link_adjust_relocs (abfd, &esdo->rela);
11264
11265 /* Set the reloc_count field to 0 to prevent write_relocs from
11266 trying to swap the relocs out itself. */
11267 o->reloc_count = 0;
11268 }
11269
11270 if (dynamic && info->combreloc && dynobj != NULL)
11271 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11272
11273 /* If we are linking against a dynamic object, or generating a
11274 shared library, finish up the dynamic linking information. */
11275 if (dynamic)
11276 {
11277 bfd_byte *dyncon, *dynconend;
11278
11279 /* Fix up .dynamic entries. */
11280 o = bfd_get_linker_section (dynobj, ".dynamic");
11281 BFD_ASSERT (o != NULL);
11282
11283 dyncon = o->contents;
11284 dynconend = o->contents + o->size;
11285 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11286 {
11287 Elf_Internal_Dyn dyn;
11288 const char *name;
11289 unsigned int type;
11290
11291 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11292
11293 switch (dyn.d_tag)
11294 {
11295 default:
11296 continue;
11297 case DT_NULL:
11298 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11299 {
11300 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11301 {
11302 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11303 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11304 default: continue;
11305 }
11306 dyn.d_un.d_val = relativecount;
11307 relativecount = 0;
11308 break;
11309 }
11310 continue;
11311
11312 case DT_INIT:
11313 name = info->init_function;
11314 goto get_sym;
11315 case DT_FINI:
11316 name = info->fini_function;
11317 get_sym:
11318 {
11319 struct elf_link_hash_entry *h;
11320
11321 h = elf_link_hash_lookup (elf_hash_table (info), name,
11322 FALSE, FALSE, TRUE);
11323 if (h != NULL
11324 && (h->root.type == bfd_link_hash_defined
11325 || h->root.type == bfd_link_hash_defweak))
11326 {
11327 dyn.d_un.d_ptr = h->root.u.def.value;
11328 o = h->root.u.def.section;
11329 if (o->output_section != NULL)
11330 dyn.d_un.d_ptr += (o->output_section->vma
11331 + o->output_offset);
11332 else
11333 {
11334 /* The symbol is imported from another shared
11335 library and does not apply to this one. */
11336 dyn.d_un.d_ptr = 0;
11337 }
11338 break;
11339 }
11340 }
11341 continue;
11342
11343 case DT_PREINIT_ARRAYSZ:
11344 name = ".preinit_array";
11345 goto get_size;
11346 case DT_INIT_ARRAYSZ:
11347 name = ".init_array";
11348 goto get_size;
11349 case DT_FINI_ARRAYSZ:
11350 name = ".fini_array";
11351 get_size:
11352 o = bfd_get_section_by_name (abfd, name);
11353 if (o == NULL)
11354 {
11355 (*_bfd_error_handler)
11356 (_("%B: could not find output section %s"), abfd, name);
11357 goto error_return;
11358 }
11359 if (o->size == 0)
11360 (*_bfd_error_handler)
11361 (_("warning: %s section has zero size"), name);
11362 dyn.d_un.d_val = o->size;
11363 break;
11364
11365 case DT_PREINIT_ARRAY:
11366 name = ".preinit_array";
11367 goto get_vma;
11368 case DT_INIT_ARRAY:
11369 name = ".init_array";
11370 goto get_vma;
11371 case DT_FINI_ARRAY:
11372 name = ".fini_array";
11373 goto get_vma;
11374
11375 case DT_HASH:
11376 name = ".hash";
11377 goto get_vma;
11378 case DT_GNU_HASH:
11379 name = ".gnu.hash";
11380 goto get_vma;
11381 case DT_STRTAB:
11382 name = ".dynstr";
11383 goto get_vma;
11384 case DT_SYMTAB:
11385 name = ".dynsym";
11386 goto get_vma;
11387 case DT_VERDEF:
11388 name = ".gnu.version_d";
11389 goto get_vma;
11390 case DT_VERNEED:
11391 name = ".gnu.version_r";
11392 goto get_vma;
11393 case DT_VERSYM:
11394 name = ".gnu.version";
11395 get_vma:
11396 o = bfd_get_section_by_name (abfd, name);
11397 if (o == NULL)
11398 {
11399 (*_bfd_error_handler)
11400 (_("%B: could not find output section %s"), abfd, name);
11401 goto error_return;
11402 }
11403 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11404 {
11405 (*_bfd_error_handler)
11406 (_("warning: section '%s' is being made into a note"), name);
11407 bfd_set_error (bfd_error_nonrepresentable_section);
11408 goto error_return;
11409 }
11410 dyn.d_un.d_ptr = o->vma;
11411 break;
11412
11413 case DT_REL:
11414 case DT_RELA:
11415 case DT_RELSZ:
11416 case DT_RELASZ:
11417 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11418 type = SHT_REL;
11419 else
11420 type = SHT_RELA;
11421 dyn.d_un.d_val = 0;
11422 dyn.d_un.d_ptr = 0;
11423 for (i = 1; i < elf_numsections (abfd); i++)
11424 {
11425 Elf_Internal_Shdr *hdr;
11426
11427 hdr = elf_elfsections (abfd)[i];
11428 if (hdr->sh_type == type
11429 && (hdr->sh_flags & SHF_ALLOC) != 0)
11430 {
11431 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11432 dyn.d_un.d_val += hdr->sh_size;
11433 else
11434 {
11435 if (dyn.d_un.d_ptr == 0
11436 || hdr->sh_addr < dyn.d_un.d_ptr)
11437 dyn.d_un.d_ptr = hdr->sh_addr;
11438 }
11439 }
11440 }
11441 break;
11442 }
11443 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11444 }
11445 }
11446
11447 /* If we have created any dynamic sections, then output them. */
11448 if (dynobj != NULL)
11449 {
11450 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11451 goto error_return;
11452
11453 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11454 if (((info->warn_shared_textrel && info->shared)
11455 || info->error_textrel)
11456 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11457 {
11458 bfd_byte *dyncon, *dynconend;
11459
11460 dyncon = o->contents;
11461 dynconend = o->contents + o->size;
11462 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11463 {
11464 Elf_Internal_Dyn dyn;
11465
11466 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11467
11468 if (dyn.d_tag == DT_TEXTREL)
11469 {
11470 if (info->error_textrel)
11471 info->callbacks->einfo
11472 (_("%P%X: read-only segment has dynamic relocations.\n"));
11473 else
11474 info->callbacks->einfo
11475 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11476 break;
11477 }
11478 }
11479 }
11480
11481 for (o = dynobj->sections; o != NULL; o = o->next)
11482 {
11483 if ((o->flags & SEC_HAS_CONTENTS) == 0
11484 || o->size == 0
11485 || o->output_section == bfd_abs_section_ptr)
11486 continue;
11487 if ((o->flags & SEC_LINKER_CREATED) == 0)
11488 {
11489 /* At this point, we are only interested in sections
11490 created by _bfd_elf_link_create_dynamic_sections. */
11491 continue;
11492 }
11493 if (elf_hash_table (info)->stab_info.stabstr == o)
11494 continue;
11495 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11496 continue;
11497 if (strcmp (o->name, ".dynstr") != 0)
11498 {
11499 /* FIXME: octets_per_byte. */
11500 if (! bfd_set_section_contents (abfd, o->output_section,
11501 o->contents,
11502 (file_ptr) o->output_offset,
11503 o->size))
11504 goto error_return;
11505 }
11506 else
11507 {
11508 /* The contents of the .dynstr section are actually in a
11509 stringtab. */
11510 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11511 if (bfd_seek (abfd, off, SEEK_SET) != 0
11512 || ! _bfd_elf_strtab_emit (abfd,
11513 elf_hash_table (info)->dynstr))
11514 goto error_return;
11515 }
11516 }
11517 }
11518
11519 if (info->relocatable)
11520 {
11521 bfd_boolean failed = FALSE;
11522
11523 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11524 if (failed)
11525 goto error_return;
11526 }
11527
11528 /* If we have optimized stabs strings, output them. */
11529 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11530 {
11531 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11532 goto error_return;
11533 }
11534
11535 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11536 goto error_return;
11537
11538 elf_final_link_free (abfd, &flinfo);
11539
11540 elf_linker (abfd) = TRUE;
11541
11542 if (attr_section)
11543 {
11544 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11545 if (contents == NULL)
11546 return FALSE; /* Bail out and fail. */
11547 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11548 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11549 free (contents);
11550 }
11551
11552 return TRUE;
11553
11554 error_return:
11555 elf_final_link_free (abfd, &flinfo);
11556 return FALSE;
11557 }
11558 \f
11559 /* Initialize COOKIE for input bfd ABFD. */
11560
11561 static bfd_boolean
11562 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11563 struct bfd_link_info *info, bfd *abfd)
11564 {
11565 Elf_Internal_Shdr *symtab_hdr;
11566 const struct elf_backend_data *bed;
11567
11568 bed = get_elf_backend_data (abfd);
11569 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11570
11571 cookie->abfd = abfd;
11572 cookie->sym_hashes = elf_sym_hashes (abfd);
11573 cookie->bad_symtab = elf_bad_symtab (abfd);
11574 if (cookie->bad_symtab)
11575 {
11576 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11577 cookie->extsymoff = 0;
11578 }
11579 else
11580 {
11581 cookie->locsymcount = symtab_hdr->sh_info;
11582 cookie->extsymoff = symtab_hdr->sh_info;
11583 }
11584
11585 if (bed->s->arch_size == 32)
11586 cookie->r_sym_shift = 8;
11587 else
11588 cookie->r_sym_shift = 32;
11589
11590 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11591 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11592 {
11593 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11594 cookie->locsymcount, 0,
11595 NULL, NULL, NULL);
11596 if (cookie->locsyms == NULL)
11597 {
11598 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11599 return FALSE;
11600 }
11601 if (info->keep_memory)
11602 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11603 }
11604 return TRUE;
11605 }
11606
11607 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11608
11609 static void
11610 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11611 {
11612 Elf_Internal_Shdr *symtab_hdr;
11613
11614 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11615 if (cookie->locsyms != NULL
11616 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11617 free (cookie->locsyms);
11618 }
11619
11620 /* Initialize the relocation information in COOKIE for input section SEC
11621 of input bfd ABFD. */
11622
11623 static bfd_boolean
11624 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11625 struct bfd_link_info *info, bfd *abfd,
11626 asection *sec)
11627 {
11628 const struct elf_backend_data *bed;
11629
11630 if (sec->reloc_count == 0)
11631 {
11632 cookie->rels = NULL;
11633 cookie->relend = NULL;
11634 }
11635 else
11636 {
11637 bed = get_elf_backend_data (abfd);
11638
11639 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11640 info->keep_memory);
11641 if (cookie->rels == NULL)
11642 return FALSE;
11643 cookie->rel = cookie->rels;
11644 cookie->relend = (cookie->rels
11645 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11646 }
11647 cookie->rel = cookie->rels;
11648 return TRUE;
11649 }
11650
11651 /* Free the memory allocated by init_reloc_cookie_rels,
11652 if appropriate. */
11653
11654 static void
11655 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11656 asection *sec)
11657 {
11658 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11659 free (cookie->rels);
11660 }
11661
11662 /* Initialize the whole of COOKIE for input section SEC. */
11663
11664 static bfd_boolean
11665 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11666 struct bfd_link_info *info,
11667 asection *sec)
11668 {
11669 if (!init_reloc_cookie (cookie, info, sec->owner))
11670 goto error1;
11671 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11672 goto error2;
11673 return TRUE;
11674
11675 error2:
11676 fini_reloc_cookie (cookie, sec->owner);
11677 error1:
11678 return FALSE;
11679 }
11680
11681 /* Free the memory allocated by init_reloc_cookie_for_section,
11682 if appropriate. */
11683
11684 static void
11685 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11686 asection *sec)
11687 {
11688 fini_reloc_cookie_rels (cookie, sec);
11689 fini_reloc_cookie (cookie, sec->owner);
11690 }
11691 \f
11692 /* Garbage collect unused sections. */
11693
11694 /* Default gc_mark_hook. */
11695
11696 asection *
11697 _bfd_elf_gc_mark_hook (asection *sec,
11698 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11699 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11700 struct elf_link_hash_entry *h,
11701 Elf_Internal_Sym *sym)
11702 {
11703 const char *sec_name;
11704
11705 if (h != NULL)
11706 {
11707 switch (h->root.type)
11708 {
11709 case bfd_link_hash_defined:
11710 case bfd_link_hash_defweak:
11711 return h->root.u.def.section;
11712
11713 case bfd_link_hash_common:
11714 return h->root.u.c.p->section;
11715
11716 case bfd_link_hash_undefined:
11717 case bfd_link_hash_undefweak:
11718 /* To work around a glibc bug, keep all XXX input sections
11719 when there is an as yet undefined reference to __start_XXX
11720 or __stop_XXX symbols. The linker will later define such
11721 symbols for orphan input sections that have a name
11722 representable as a C identifier. */
11723 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11724 sec_name = h->root.root.string + 8;
11725 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11726 sec_name = h->root.root.string + 7;
11727 else
11728 sec_name = NULL;
11729
11730 if (sec_name && *sec_name != '\0')
11731 {
11732 bfd *i;
11733
11734 for (i = info->input_bfds; i; i = i->link_next)
11735 {
11736 sec = bfd_get_section_by_name (i, sec_name);
11737 if (sec)
11738 sec->flags |= SEC_KEEP;
11739 }
11740 }
11741 break;
11742
11743 default:
11744 break;
11745 }
11746 }
11747 else
11748 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11749
11750 return NULL;
11751 }
11752
11753 /* COOKIE->rel describes a relocation against section SEC, which is
11754 a section we've decided to keep. Return the section that contains
11755 the relocation symbol, or NULL if no section contains it. */
11756
11757 asection *
11758 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11759 elf_gc_mark_hook_fn gc_mark_hook,
11760 struct elf_reloc_cookie *cookie)
11761 {
11762 unsigned long r_symndx;
11763 struct elf_link_hash_entry *h;
11764
11765 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11766 if (r_symndx == STN_UNDEF)
11767 return NULL;
11768
11769 if (r_symndx >= cookie->locsymcount
11770 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11771 {
11772 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11773 while (h->root.type == bfd_link_hash_indirect
11774 || h->root.type == bfd_link_hash_warning)
11775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11776 h->mark = 1;
11777 /* If this symbol is weak and there is a non-weak definition, we
11778 keep the non-weak definition because many backends put
11779 dynamic reloc info on the non-weak definition for code
11780 handling copy relocs. */
11781 if (h->u.weakdef != NULL)
11782 h->u.weakdef->mark = 1;
11783 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11784 }
11785
11786 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11787 &cookie->locsyms[r_symndx]);
11788 }
11789
11790 /* COOKIE->rel describes a relocation against section SEC, which is
11791 a section we've decided to keep. Mark the section that contains
11792 the relocation symbol. */
11793
11794 bfd_boolean
11795 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11796 asection *sec,
11797 elf_gc_mark_hook_fn gc_mark_hook,
11798 struct elf_reloc_cookie *cookie)
11799 {
11800 asection *rsec;
11801
11802 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11803 if (rsec && !rsec->gc_mark)
11804 {
11805 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11806 || (rsec->owner->flags & DYNAMIC) != 0)
11807 rsec->gc_mark = 1;
11808 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11809 return FALSE;
11810 }
11811 return TRUE;
11812 }
11813
11814 /* The mark phase of garbage collection. For a given section, mark
11815 it and any sections in this section's group, and all the sections
11816 which define symbols to which it refers. */
11817
11818 bfd_boolean
11819 _bfd_elf_gc_mark (struct bfd_link_info *info,
11820 asection *sec,
11821 elf_gc_mark_hook_fn gc_mark_hook)
11822 {
11823 bfd_boolean ret;
11824 asection *group_sec, *eh_frame;
11825
11826 sec->gc_mark = 1;
11827
11828 /* Mark all the sections in the group. */
11829 group_sec = elf_section_data (sec)->next_in_group;
11830 if (group_sec && !group_sec->gc_mark)
11831 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11832 return FALSE;
11833
11834 /* Look through the section relocs. */
11835 ret = TRUE;
11836 eh_frame = elf_eh_frame_section (sec->owner);
11837 if ((sec->flags & SEC_RELOC) != 0
11838 && sec->reloc_count > 0
11839 && sec != eh_frame)
11840 {
11841 struct elf_reloc_cookie cookie;
11842
11843 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11844 ret = FALSE;
11845 else
11846 {
11847 for (; cookie.rel < cookie.relend; cookie.rel++)
11848 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11849 {
11850 ret = FALSE;
11851 break;
11852 }
11853 fini_reloc_cookie_for_section (&cookie, sec);
11854 }
11855 }
11856
11857 if (ret && eh_frame && elf_fde_list (sec))
11858 {
11859 struct elf_reloc_cookie cookie;
11860
11861 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11862 ret = FALSE;
11863 else
11864 {
11865 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11866 gc_mark_hook, &cookie))
11867 ret = FALSE;
11868 fini_reloc_cookie_for_section (&cookie, eh_frame);
11869 }
11870 }
11871
11872 return ret;
11873 }
11874
11875 /* Keep debug and special sections. */
11876
11877 bfd_boolean
11878 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11879 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11880 {
11881 bfd *ibfd;
11882
11883 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11884 {
11885 asection *isec;
11886 bfd_boolean some_kept;
11887
11888 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11889 continue;
11890
11891 /* Ensure all linker created sections are kept, and see whether
11892 any other section is already marked. */
11893 some_kept = FALSE;
11894 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11895 {
11896 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11897 isec->gc_mark = 1;
11898 else if (isec->gc_mark)
11899 some_kept = TRUE;
11900 }
11901
11902 /* If no section in this file will be kept, then we can
11903 toss out debug sections. */
11904 if (!some_kept)
11905 continue;
11906
11907 /* Keep debug and special sections like .comment when they are
11908 not part of a group, or when we have single-member groups. */
11909 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11910 if ((elf_next_in_group (isec) == NULL
11911 || elf_next_in_group (isec) == isec)
11912 && ((isec->flags & SEC_DEBUGGING) != 0
11913 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11914 isec->gc_mark = 1;
11915 }
11916 return TRUE;
11917 }
11918
11919 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11920
11921 struct elf_gc_sweep_symbol_info
11922 {
11923 struct bfd_link_info *info;
11924 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11925 bfd_boolean);
11926 };
11927
11928 static bfd_boolean
11929 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11930 {
11931 if (!h->mark
11932 && (((h->root.type == bfd_link_hash_defined
11933 || h->root.type == bfd_link_hash_defweak)
11934 && !(h->def_regular
11935 && h->root.u.def.section->gc_mark))
11936 || h->root.type == bfd_link_hash_undefined
11937 || h->root.type == bfd_link_hash_undefweak))
11938 {
11939 struct elf_gc_sweep_symbol_info *inf;
11940
11941 inf = (struct elf_gc_sweep_symbol_info *) data;
11942 (*inf->hide_symbol) (inf->info, h, TRUE);
11943 h->def_regular = 0;
11944 h->ref_regular = 0;
11945 h->ref_regular_nonweak = 0;
11946 }
11947
11948 return TRUE;
11949 }
11950
11951 /* The sweep phase of garbage collection. Remove all garbage sections. */
11952
11953 typedef bfd_boolean (*gc_sweep_hook_fn)
11954 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11955
11956 static bfd_boolean
11957 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11958 {
11959 bfd *sub;
11960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11961 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11962 unsigned long section_sym_count;
11963 struct elf_gc_sweep_symbol_info sweep_info;
11964
11965 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11966 {
11967 asection *o;
11968
11969 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11970 continue;
11971
11972 for (o = sub->sections; o != NULL; o = o->next)
11973 {
11974 /* When any section in a section group is kept, we keep all
11975 sections in the section group. If the first member of
11976 the section group is excluded, we will also exclude the
11977 group section. */
11978 if (o->flags & SEC_GROUP)
11979 {
11980 asection *first = elf_next_in_group (o);
11981 o->gc_mark = first->gc_mark;
11982 }
11983
11984 if (o->gc_mark)
11985 continue;
11986
11987 /* Skip sweeping sections already excluded. */
11988 if (o->flags & SEC_EXCLUDE)
11989 continue;
11990
11991 /* Since this is early in the link process, it is simple
11992 to remove a section from the output. */
11993 o->flags |= SEC_EXCLUDE;
11994
11995 if (info->print_gc_sections && o->size != 0)
11996 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11997
11998 /* But we also have to update some of the relocation
11999 info we collected before. */
12000 if (gc_sweep_hook
12001 && (o->flags & SEC_RELOC) != 0
12002 && o->reloc_count > 0
12003 && !bfd_is_abs_section (o->output_section))
12004 {
12005 Elf_Internal_Rela *internal_relocs;
12006 bfd_boolean r;
12007
12008 internal_relocs
12009 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12010 info->keep_memory);
12011 if (internal_relocs == NULL)
12012 return FALSE;
12013
12014 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12015
12016 if (elf_section_data (o)->relocs != internal_relocs)
12017 free (internal_relocs);
12018
12019 if (!r)
12020 return FALSE;
12021 }
12022 }
12023 }
12024
12025 /* Remove the symbols that were in the swept sections from the dynamic
12026 symbol table. GCFIXME: Anyone know how to get them out of the
12027 static symbol table as well? */
12028 sweep_info.info = info;
12029 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12030 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12031 &sweep_info);
12032
12033 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12034 return TRUE;
12035 }
12036
12037 /* Propagate collected vtable information. This is called through
12038 elf_link_hash_traverse. */
12039
12040 static bfd_boolean
12041 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12042 {
12043 /* Those that are not vtables. */
12044 if (h->vtable == NULL || h->vtable->parent == NULL)
12045 return TRUE;
12046
12047 /* Those vtables that do not have parents, we cannot merge. */
12048 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12049 return TRUE;
12050
12051 /* If we've already been done, exit. */
12052 if (h->vtable->used && h->vtable->used[-1])
12053 return TRUE;
12054
12055 /* Make sure the parent's table is up to date. */
12056 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12057
12058 if (h->vtable->used == NULL)
12059 {
12060 /* None of this table's entries were referenced. Re-use the
12061 parent's table. */
12062 h->vtable->used = h->vtable->parent->vtable->used;
12063 h->vtable->size = h->vtable->parent->vtable->size;
12064 }
12065 else
12066 {
12067 size_t n;
12068 bfd_boolean *cu, *pu;
12069
12070 /* Or the parent's entries into ours. */
12071 cu = h->vtable->used;
12072 cu[-1] = TRUE;
12073 pu = h->vtable->parent->vtable->used;
12074 if (pu != NULL)
12075 {
12076 const struct elf_backend_data *bed;
12077 unsigned int log_file_align;
12078
12079 bed = get_elf_backend_data (h->root.u.def.section->owner);
12080 log_file_align = bed->s->log_file_align;
12081 n = h->vtable->parent->vtable->size >> log_file_align;
12082 while (n--)
12083 {
12084 if (*pu)
12085 *cu = TRUE;
12086 pu++;
12087 cu++;
12088 }
12089 }
12090 }
12091
12092 return TRUE;
12093 }
12094
12095 static bfd_boolean
12096 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12097 {
12098 asection *sec;
12099 bfd_vma hstart, hend;
12100 Elf_Internal_Rela *relstart, *relend, *rel;
12101 const struct elf_backend_data *bed;
12102 unsigned int log_file_align;
12103
12104 /* Take care of both those symbols that do not describe vtables as
12105 well as those that are not loaded. */
12106 if (h->vtable == NULL || h->vtable->parent == NULL)
12107 return TRUE;
12108
12109 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12110 || h->root.type == bfd_link_hash_defweak);
12111
12112 sec = h->root.u.def.section;
12113 hstart = h->root.u.def.value;
12114 hend = hstart + h->size;
12115
12116 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12117 if (!relstart)
12118 return *(bfd_boolean *) okp = FALSE;
12119 bed = get_elf_backend_data (sec->owner);
12120 log_file_align = bed->s->log_file_align;
12121
12122 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12123
12124 for (rel = relstart; rel < relend; ++rel)
12125 if (rel->r_offset >= hstart && rel->r_offset < hend)
12126 {
12127 /* If the entry is in use, do nothing. */
12128 if (h->vtable->used
12129 && (rel->r_offset - hstart) < h->vtable->size)
12130 {
12131 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12132 if (h->vtable->used[entry])
12133 continue;
12134 }
12135 /* Otherwise, kill it. */
12136 rel->r_offset = rel->r_info = rel->r_addend = 0;
12137 }
12138
12139 return TRUE;
12140 }
12141
12142 /* Mark sections containing dynamically referenced symbols. When
12143 building shared libraries, we must assume that any visible symbol is
12144 referenced. */
12145
12146 bfd_boolean
12147 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12148 {
12149 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12150
12151 if ((h->root.type == bfd_link_hash_defined
12152 || h->root.type == bfd_link_hash_defweak)
12153 && (h->ref_dynamic
12154 || ((!info->executable || info->export_dynamic)
12155 && h->def_regular
12156 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12157 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12158 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12159 || !bfd_hide_sym_by_version (info->version_info,
12160 h->root.root.string)))))
12161 h->root.u.def.section->flags |= SEC_KEEP;
12162
12163 return TRUE;
12164 }
12165
12166 /* Keep all sections containing symbols undefined on the command-line,
12167 and the section containing the entry symbol. */
12168
12169 void
12170 _bfd_elf_gc_keep (struct bfd_link_info *info)
12171 {
12172 struct bfd_sym_chain *sym;
12173
12174 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12175 {
12176 struct elf_link_hash_entry *h;
12177
12178 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12179 FALSE, FALSE, FALSE);
12180
12181 if (h != NULL
12182 && (h->root.type == bfd_link_hash_defined
12183 || h->root.type == bfd_link_hash_defweak)
12184 && !bfd_is_abs_section (h->root.u.def.section))
12185 h->root.u.def.section->flags |= SEC_KEEP;
12186 }
12187 }
12188
12189 /* Do mark and sweep of unused sections. */
12190
12191 bfd_boolean
12192 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12193 {
12194 bfd_boolean ok = TRUE;
12195 bfd *sub;
12196 elf_gc_mark_hook_fn gc_mark_hook;
12197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12198
12199 if (!bed->can_gc_sections
12200 || !is_elf_hash_table (info->hash))
12201 {
12202 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12203 return TRUE;
12204 }
12205
12206 bed->gc_keep (info);
12207
12208 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12209 at the .eh_frame section if we can mark the FDEs individually. */
12210 _bfd_elf_begin_eh_frame_parsing (info);
12211 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12212 {
12213 asection *sec;
12214 struct elf_reloc_cookie cookie;
12215
12216 sec = bfd_get_section_by_name (sub, ".eh_frame");
12217 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12218 {
12219 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12220 if (elf_section_data (sec)->sec_info
12221 && (sec->flags & SEC_LINKER_CREATED) == 0)
12222 elf_eh_frame_section (sub) = sec;
12223 fini_reloc_cookie_for_section (&cookie, sec);
12224 sec = bfd_get_next_section_by_name (sec);
12225 }
12226 }
12227 _bfd_elf_end_eh_frame_parsing (info);
12228
12229 /* Apply transitive closure to the vtable entry usage info. */
12230 elf_link_hash_traverse (elf_hash_table (info),
12231 elf_gc_propagate_vtable_entries_used,
12232 &ok);
12233 if (!ok)
12234 return FALSE;
12235
12236 /* Kill the vtable relocations that were not used. */
12237 elf_link_hash_traverse (elf_hash_table (info),
12238 elf_gc_smash_unused_vtentry_relocs,
12239 &ok);
12240 if (!ok)
12241 return FALSE;
12242
12243 /* Mark dynamically referenced symbols. */
12244 if (elf_hash_table (info)->dynamic_sections_created)
12245 elf_link_hash_traverse (elf_hash_table (info),
12246 bed->gc_mark_dynamic_ref,
12247 info);
12248
12249 /* Grovel through relocs to find out who stays ... */
12250 gc_mark_hook = bed->gc_mark_hook;
12251 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12252 {
12253 asection *o;
12254
12255 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12256 continue;
12257
12258 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12259 Also treat note sections as a root, if the section is not part
12260 of a group. */
12261 for (o = sub->sections; o != NULL; o = o->next)
12262 if (!o->gc_mark
12263 && (o->flags & SEC_EXCLUDE) == 0
12264 && ((o->flags & SEC_KEEP) != 0
12265 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12266 && elf_next_in_group (o) == NULL )))
12267 {
12268 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12269 return FALSE;
12270 }
12271 }
12272
12273 /* Allow the backend to mark additional target specific sections. */
12274 bed->gc_mark_extra_sections (info, gc_mark_hook);
12275
12276 /* ... and mark SEC_EXCLUDE for those that go. */
12277 return elf_gc_sweep (abfd, info);
12278 }
12279 \f
12280 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12281
12282 bfd_boolean
12283 bfd_elf_gc_record_vtinherit (bfd *abfd,
12284 asection *sec,
12285 struct elf_link_hash_entry *h,
12286 bfd_vma offset)
12287 {
12288 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12289 struct elf_link_hash_entry **search, *child;
12290 bfd_size_type extsymcount;
12291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12292
12293 /* The sh_info field of the symtab header tells us where the
12294 external symbols start. We don't care about the local symbols at
12295 this point. */
12296 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12297 if (!elf_bad_symtab (abfd))
12298 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12299
12300 sym_hashes = elf_sym_hashes (abfd);
12301 sym_hashes_end = sym_hashes + extsymcount;
12302
12303 /* Hunt down the child symbol, which is in this section at the same
12304 offset as the relocation. */
12305 for (search = sym_hashes; search != sym_hashes_end; ++search)
12306 {
12307 if ((child = *search) != NULL
12308 && (child->root.type == bfd_link_hash_defined
12309 || child->root.type == bfd_link_hash_defweak)
12310 && child->root.u.def.section == sec
12311 && child->root.u.def.value == offset)
12312 goto win;
12313 }
12314
12315 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12316 abfd, sec, (unsigned long) offset);
12317 bfd_set_error (bfd_error_invalid_operation);
12318 return FALSE;
12319
12320 win:
12321 if (!child->vtable)
12322 {
12323 child->vtable = (struct elf_link_virtual_table_entry *)
12324 bfd_zalloc (abfd, sizeof (*child->vtable));
12325 if (!child->vtable)
12326 return FALSE;
12327 }
12328 if (!h)
12329 {
12330 /* This *should* only be the absolute section. It could potentially
12331 be that someone has defined a non-global vtable though, which
12332 would be bad. It isn't worth paging in the local symbols to be
12333 sure though; that case should simply be handled by the assembler. */
12334
12335 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12336 }
12337 else
12338 child->vtable->parent = h;
12339
12340 return TRUE;
12341 }
12342
12343 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12344
12345 bfd_boolean
12346 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12347 asection *sec ATTRIBUTE_UNUSED,
12348 struct elf_link_hash_entry *h,
12349 bfd_vma addend)
12350 {
12351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12352 unsigned int log_file_align = bed->s->log_file_align;
12353
12354 if (!h->vtable)
12355 {
12356 h->vtable = (struct elf_link_virtual_table_entry *)
12357 bfd_zalloc (abfd, sizeof (*h->vtable));
12358 if (!h->vtable)
12359 return FALSE;
12360 }
12361
12362 if (addend >= h->vtable->size)
12363 {
12364 size_t size, bytes, file_align;
12365 bfd_boolean *ptr = h->vtable->used;
12366
12367 /* While the symbol is undefined, we have to be prepared to handle
12368 a zero size. */
12369 file_align = 1 << log_file_align;
12370 if (h->root.type == bfd_link_hash_undefined)
12371 size = addend + file_align;
12372 else
12373 {
12374 size = h->size;
12375 if (addend >= size)
12376 {
12377 /* Oops! We've got a reference past the defined end of
12378 the table. This is probably a bug -- shall we warn? */
12379 size = addend + file_align;
12380 }
12381 }
12382 size = (size + file_align - 1) & -file_align;
12383
12384 /* Allocate one extra entry for use as a "done" flag for the
12385 consolidation pass. */
12386 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12387
12388 if (ptr)
12389 {
12390 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12391
12392 if (ptr != NULL)
12393 {
12394 size_t oldbytes;
12395
12396 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12397 * sizeof (bfd_boolean));
12398 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12399 }
12400 }
12401 else
12402 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12403
12404 if (ptr == NULL)
12405 return FALSE;
12406
12407 /* And arrange for that done flag to be at index -1. */
12408 h->vtable->used = ptr + 1;
12409 h->vtable->size = size;
12410 }
12411
12412 h->vtable->used[addend >> log_file_align] = TRUE;
12413
12414 return TRUE;
12415 }
12416
12417 /* Map an ELF section header flag to its corresponding string. */
12418 typedef struct
12419 {
12420 char *flag_name;
12421 flagword flag_value;
12422 } elf_flags_to_name_table;
12423
12424 static elf_flags_to_name_table elf_flags_to_names [] =
12425 {
12426 { "SHF_WRITE", SHF_WRITE },
12427 { "SHF_ALLOC", SHF_ALLOC },
12428 { "SHF_EXECINSTR", SHF_EXECINSTR },
12429 { "SHF_MERGE", SHF_MERGE },
12430 { "SHF_STRINGS", SHF_STRINGS },
12431 { "SHF_INFO_LINK", SHF_INFO_LINK},
12432 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12433 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12434 { "SHF_GROUP", SHF_GROUP },
12435 { "SHF_TLS", SHF_TLS },
12436 { "SHF_MASKOS", SHF_MASKOS },
12437 { "SHF_EXCLUDE", SHF_EXCLUDE },
12438 };
12439
12440 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12441 bfd_boolean
12442 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12443 struct flag_info *flaginfo,
12444 asection *section)
12445 {
12446 const bfd_vma sh_flags = elf_section_flags (section);
12447
12448 if (!flaginfo->flags_initialized)
12449 {
12450 bfd *obfd = info->output_bfd;
12451 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12452 struct flag_info_list *tf = flaginfo->flag_list;
12453 int with_hex = 0;
12454 int without_hex = 0;
12455
12456 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12457 {
12458 unsigned i;
12459 flagword (*lookup) (char *);
12460
12461 lookup = bed->elf_backend_lookup_section_flags_hook;
12462 if (lookup != NULL)
12463 {
12464 flagword hexval = (*lookup) ((char *) tf->name);
12465
12466 if (hexval != 0)
12467 {
12468 if (tf->with == with_flags)
12469 with_hex |= hexval;
12470 else if (tf->with == without_flags)
12471 without_hex |= hexval;
12472 tf->valid = TRUE;
12473 continue;
12474 }
12475 }
12476 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12477 {
12478 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12479 {
12480 if (tf->with == with_flags)
12481 with_hex |= elf_flags_to_names[i].flag_value;
12482 else if (tf->with == without_flags)
12483 without_hex |= elf_flags_to_names[i].flag_value;
12484 tf->valid = TRUE;
12485 break;
12486 }
12487 }
12488 if (!tf->valid)
12489 {
12490 info->callbacks->einfo
12491 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12492 return FALSE;
12493 }
12494 }
12495 flaginfo->flags_initialized = TRUE;
12496 flaginfo->only_with_flags |= with_hex;
12497 flaginfo->not_with_flags |= without_hex;
12498 }
12499
12500 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12501 return FALSE;
12502
12503 if ((flaginfo->not_with_flags & sh_flags) != 0)
12504 return FALSE;
12505
12506 return TRUE;
12507 }
12508
12509 struct alloc_got_off_arg {
12510 bfd_vma gotoff;
12511 struct bfd_link_info *info;
12512 };
12513
12514 /* We need a special top-level link routine to convert got reference counts
12515 to real got offsets. */
12516
12517 static bfd_boolean
12518 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12519 {
12520 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12521 bfd *obfd = gofarg->info->output_bfd;
12522 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12523
12524 if (h->got.refcount > 0)
12525 {
12526 h->got.offset = gofarg->gotoff;
12527 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12528 }
12529 else
12530 h->got.offset = (bfd_vma) -1;
12531
12532 return TRUE;
12533 }
12534
12535 /* And an accompanying bit to work out final got entry offsets once
12536 we're done. Should be called from final_link. */
12537
12538 bfd_boolean
12539 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12540 struct bfd_link_info *info)
12541 {
12542 bfd *i;
12543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12544 bfd_vma gotoff;
12545 struct alloc_got_off_arg gofarg;
12546
12547 BFD_ASSERT (abfd == info->output_bfd);
12548
12549 if (! is_elf_hash_table (info->hash))
12550 return FALSE;
12551
12552 /* The GOT offset is relative to the .got section, but the GOT header is
12553 put into the .got.plt section, if the backend uses it. */
12554 if (bed->want_got_plt)
12555 gotoff = 0;
12556 else
12557 gotoff = bed->got_header_size;
12558
12559 /* Do the local .got entries first. */
12560 for (i = info->input_bfds; i; i = i->link_next)
12561 {
12562 bfd_signed_vma *local_got;
12563 bfd_size_type j, locsymcount;
12564 Elf_Internal_Shdr *symtab_hdr;
12565
12566 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12567 continue;
12568
12569 local_got = elf_local_got_refcounts (i);
12570 if (!local_got)
12571 continue;
12572
12573 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12574 if (elf_bad_symtab (i))
12575 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12576 else
12577 locsymcount = symtab_hdr->sh_info;
12578
12579 for (j = 0; j < locsymcount; ++j)
12580 {
12581 if (local_got[j] > 0)
12582 {
12583 local_got[j] = gotoff;
12584 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12585 }
12586 else
12587 local_got[j] = (bfd_vma) -1;
12588 }
12589 }
12590
12591 /* Then the global .got entries. .plt refcounts are handled by
12592 adjust_dynamic_symbol */
12593 gofarg.gotoff = gotoff;
12594 gofarg.info = info;
12595 elf_link_hash_traverse (elf_hash_table (info),
12596 elf_gc_allocate_got_offsets,
12597 &gofarg);
12598 return TRUE;
12599 }
12600
12601 /* Many folk need no more in the way of final link than this, once
12602 got entry reference counting is enabled. */
12603
12604 bfd_boolean
12605 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12606 {
12607 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12608 return FALSE;
12609
12610 /* Invoke the regular ELF backend linker to do all the work. */
12611 return bfd_elf_final_link (abfd, info);
12612 }
12613
12614 bfd_boolean
12615 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12616 {
12617 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12618
12619 if (rcookie->bad_symtab)
12620 rcookie->rel = rcookie->rels;
12621
12622 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12623 {
12624 unsigned long r_symndx;
12625
12626 if (! rcookie->bad_symtab)
12627 if (rcookie->rel->r_offset > offset)
12628 return FALSE;
12629 if (rcookie->rel->r_offset != offset)
12630 continue;
12631
12632 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12633 if (r_symndx == STN_UNDEF)
12634 return TRUE;
12635
12636 if (r_symndx >= rcookie->locsymcount
12637 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12638 {
12639 struct elf_link_hash_entry *h;
12640
12641 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12642
12643 while (h->root.type == bfd_link_hash_indirect
12644 || h->root.type == bfd_link_hash_warning)
12645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12646
12647 if ((h->root.type == bfd_link_hash_defined
12648 || h->root.type == bfd_link_hash_defweak)
12649 && discarded_section (h->root.u.def.section))
12650 return TRUE;
12651 else
12652 return FALSE;
12653 }
12654 else
12655 {
12656 /* It's not a relocation against a global symbol,
12657 but it could be a relocation against a local
12658 symbol for a discarded section. */
12659 asection *isec;
12660 Elf_Internal_Sym *isym;
12661
12662 /* Need to: get the symbol; get the section. */
12663 isym = &rcookie->locsyms[r_symndx];
12664 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12665 if (isec != NULL && discarded_section (isec))
12666 return TRUE;
12667 }
12668 return FALSE;
12669 }
12670 return FALSE;
12671 }
12672
12673 /* Discard unneeded references to discarded sections.
12674 Returns TRUE if any section's size was changed. */
12675 /* This function assumes that the relocations are in sorted order,
12676 which is true for all known assemblers. */
12677
12678 bfd_boolean
12679 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12680 {
12681 struct elf_reloc_cookie cookie;
12682 asection *stab, *eh;
12683 const struct elf_backend_data *bed;
12684 bfd *abfd;
12685 bfd_boolean ret = FALSE;
12686
12687 if (info->traditional_format
12688 || !is_elf_hash_table (info->hash))
12689 return FALSE;
12690
12691 _bfd_elf_begin_eh_frame_parsing (info);
12692 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12693 {
12694 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12695 continue;
12696
12697 bed = get_elf_backend_data (abfd);
12698
12699 eh = NULL;
12700 if (!info->relocatable)
12701 {
12702 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12703 while (eh != NULL
12704 && (eh->size == 0
12705 || bfd_is_abs_section (eh->output_section)))
12706 eh = bfd_get_next_section_by_name (eh);
12707 }
12708
12709 stab = bfd_get_section_by_name (abfd, ".stab");
12710 if (stab != NULL
12711 && (stab->size == 0
12712 || bfd_is_abs_section (stab->output_section)
12713 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12714 stab = NULL;
12715
12716 if (stab == NULL
12717 && eh == NULL
12718 && bed->elf_backend_discard_info == NULL)
12719 continue;
12720
12721 if (!init_reloc_cookie (&cookie, info, abfd))
12722 return FALSE;
12723
12724 if (stab != NULL
12725 && stab->reloc_count > 0
12726 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12727 {
12728 if (_bfd_discard_section_stabs (abfd, stab,
12729 elf_section_data (stab)->sec_info,
12730 bfd_elf_reloc_symbol_deleted_p,
12731 &cookie))
12732 ret = TRUE;
12733 fini_reloc_cookie_rels (&cookie, stab);
12734 }
12735
12736 while (eh != NULL
12737 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12738 {
12739 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12740 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12741 bfd_elf_reloc_symbol_deleted_p,
12742 &cookie))
12743 ret = TRUE;
12744 fini_reloc_cookie_rels (&cookie, eh);
12745 eh = bfd_get_next_section_by_name (eh);
12746 }
12747
12748 if (bed->elf_backend_discard_info != NULL
12749 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12750 ret = TRUE;
12751
12752 fini_reloc_cookie (&cookie, abfd);
12753 }
12754 _bfd_elf_end_eh_frame_parsing (info);
12755
12756 if (info->eh_frame_hdr
12757 && !info->relocatable
12758 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12759 ret = TRUE;
12760
12761 return ret;
12762 }
12763
12764 bfd_boolean
12765 _bfd_elf_section_already_linked (bfd *abfd,
12766 asection *sec,
12767 struct bfd_link_info *info)
12768 {
12769 flagword flags;
12770 const char *name, *key;
12771 struct bfd_section_already_linked *l;
12772 struct bfd_section_already_linked_hash_entry *already_linked_list;
12773
12774 if (sec->output_section == bfd_abs_section_ptr)
12775 return FALSE;
12776
12777 flags = sec->flags;
12778
12779 /* Return if it isn't a linkonce section. A comdat group section
12780 also has SEC_LINK_ONCE set. */
12781 if ((flags & SEC_LINK_ONCE) == 0)
12782 return FALSE;
12783
12784 /* Don't put group member sections on our list of already linked
12785 sections. They are handled as a group via their group section. */
12786 if (elf_sec_group (sec) != NULL)
12787 return FALSE;
12788
12789 /* For a SHT_GROUP section, use the group signature as the key. */
12790 name = sec->name;
12791 if ((flags & SEC_GROUP) != 0
12792 && elf_next_in_group (sec) != NULL
12793 && elf_group_name (elf_next_in_group (sec)) != NULL)
12794 key = elf_group_name (elf_next_in_group (sec));
12795 else
12796 {
12797 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12798 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12799 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12800 key++;
12801 else
12802 /* Must be a user linkonce section that doesn't follow gcc's
12803 naming convention. In this case we won't be matching
12804 single member groups. */
12805 key = name;
12806 }
12807
12808 already_linked_list = bfd_section_already_linked_table_lookup (key);
12809
12810 for (l = already_linked_list->entry; l != NULL; l = l->next)
12811 {
12812 /* We may have 2 different types of sections on the list: group
12813 sections with a signature of <key> (<key> is some string),
12814 and linkonce sections named .gnu.linkonce.<type>.<key>.
12815 Match like sections. LTO plugin sections are an exception.
12816 They are always named .gnu.linkonce.t.<key> and match either
12817 type of section. */
12818 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12819 && ((flags & SEC_GROUP) != 0
12820 || strcmp (name, l->sec->name) == 0))
12821 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12822 {
12823 /* The section has already been linked. See if we should
12824 issue a warning. */
12825 if (!_bfd_handle_already_linked (sec, l, info))
12826 return FALSE;
12827
12828 if (flags & SEC_GROUP)
12829 {
12830 asection *first = elf_next_in_group (sec);
12831 asection *s = first;
12832
12833 while (s != NULL)
12834 {
12835 s->output_section = bfd_abs_section_ptr;
12836 /* Record which group discards it. */
12837 s->kept_section = l->sec;
12838 s = elf_next_in_group (s);
12839 /* These lists are circular. */
12840 if (s == first)
12841 break;
12842 }
12843 }
12844
12845 return TRUE;
12846 }
12847 }
12848
12849 /* A single member comdat group section may be discarded by a
12850 linkonce section and vice versa. */
12851 if ((flags & SEC_GROUP) != 0)
12852 {
12853 asection *first = elf_next_in_group (sec);
12854
12855 if (first != NULL && elf_next_in_group (first) == first)
12856 /* Check this single member group against linkonce sections. */
12857 for (l = already_linked_list->entry; l != NULL; l = l->next)
12858 if ((l->sec->flags & SEC_GROUP) == 0
12859 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12860 {
12861 first->output_section = bfd_abs_section_ptr;
12862 first->kept_section = l->sec;
12863 sec->output_section = bfd_abs_section_ptr;
12864 break;
12865 }
12866 }
12867 else
12868 /* Check this linkonce section against single member groups. */
12869 for (l = already_linked_list->entry; l != NULL; l = l->next)
12870 if (l->sec->flags & SEC_GROUP)
12871 {
12872 asection *first = elf_next_in_group (l->sec);
12873
12874 if (first != NULL
12875 && elf_next_in_group (first) == first
12876 && bfd_elf_match_symbols_in_sections (first, sec, info))
12877 {
12878 sec->output_section = bfd_abs_section_ptr;
12879 sec->kept_section = first;
12880 break;
12881 }
12882 }
12883
12884 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12885 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12886 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12887 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12888 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12889 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12890 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12891 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12892 The reverse order cannot happen as there is never a bfd with only the
12893 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12894 matter as here were are looking only for cross-bfd sections. */
12895
12896 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12897 for (l = already_linked_list->entry; l != NULL; l = l->next)
12898 if ((l->sec->flags & SEC_GROUP) == 0
12899 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12900 {
12901 if (abfd != l->sec->owner)
12902 sec->output_section = bfd_abs_section_ptr;
12903 break;
12904 }
12905
12906 /* This is the first section with this name. Record it. */
12907 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12908 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12909 return sec->output_section == bfd_abs_section_ptr;
12910 }
12911
12912 bfd_boolean
12913 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12914 {
12915 return sym->st_shndx == SHN_COMMON;
12916 }
12917
12918 unsigned int
12919 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12920 {
12921 return SHN_COMMON;
12922 }
12923
12924 asection *
12925 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12926 {
12927 return bfd_com_section_ptr;
12928 }
12929
12930 bfd_vma
12931 _bfd_elf_default_got_elt_size (bfd *abfd,
12932 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12933 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12934 bfd *ibfd ATTRIBUTE_UNUSED,
12935 unsigned long symndx ATTRIBUTE_UNUSED)
12936 {
12937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12938 return bed->s->arch_size / 8;
12939 }
12940
12941 /* Routines to support the creation of dynamic relocs. */
12942
12943 /* Returns the name of the dynamic reloc section associated with SEC. */
12944
12945 static const char *
12946 get_dynamic_reloc_section_name (bfd * abfd,
12947 asection * sec,
12948 bfd_boolean is_rela)
12949 {
12950 char *name;
12951 const char *old_name = bfd_get_section_name (NULL, sec);
12952 const char *prefix = is_rela ? ".rela" : ".rel";
12953
12954 if (old_name == NULL)
12955 return NULL;
12956
12957 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12958 sprintf (name, "%s%s", prefix, old_name);
12959
12960 return name;
12961 }
12962
12963 /* Returns the dynamic reloc section associated with SEC.
12964 If necessary compute the name of the dynamic reloc section based
12965 on SEC's name (looked up in ABFD's string table) and the setting
12966 of IS_RELA. */
12967
12968 asection *
12969 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12970 asection * sec,
12971 bfd_boolean is_rela)
12972 {
12973 asection * reloc_sec = elf_section_data (sec)->sreloc;
12974
12975 if (reloc_sec == NULL)
12976 {
12977 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12978
12979 if (name != NULL)
12980 {
12981 reloc_sec = bfd_get_linker_section (abfd, name);
12982
12983 if (reloc_sec != NULL)
12984 elf_section_data (sec)->sreloc = reloc_sec;
12985 }
12986 }
12987
12988 return reloc_sec;
12989 }
12990
12991 /* Returns the dynamic reloc section associated with SEC. If the
12992 section does not exist it is created and attached to the DYNOBJ
12993 bfd and stored in the SRELOC field of SEC's elf_section_data
12994 structure.
12995
12996 ALIGNMENT is the alignment for the newly created section and
12997 IS_RELA defines whether the name should be .rela.<SEC's name>
12998 or .rel.<SEC's name>. The section name is looked up in the
12999 string table associated with ABFD. */
13000
13001 asection *
13002 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13003 bfd * dynobj,
13004 unsigned int alignment,
13005 bfd * abfd,
13006 bfd_boolean is_rela)
13007 {
13008 asection * reloc_sec = elf_section_data (sec)->sreloc;
13009
13010 if (reloc_sec == NULL)
13011 {
13012 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13013
13014 if (name == NULL)
13015 return NULL;
13016
13017 reloc_sec = bfd_get_linker_section (dynobj, name);
13018
13019 if (reloc_sec == NULL)
13020 {
13021 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13022 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13023 if ((sec->flags & SEC_ALLOC) != 0)
13024 flags |= SEC_ALLOC | SEC_LOAD;
13025
13026 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13027 if (reloc_sec != NULL)
13028 {
13029 /* _bfd_elf_get_sec_type_attr chooses a section type by
13030 name. Override as it may be wrong, eg. for a user
13031 section named "auto" we'll get ".relauto" which is
13032 seen to be a .rela section. */
13033 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13034 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13035 reloc_sec = NULL;
13036 }
13037 }
13038
13039 elf_section_data (sec)->sreloc = reloc_sec;
13040 }
13041
13042 return reloc_sec;
13043 }
13044
13045 /* Copy the ELF symbol type associated with a linker hash entry. */
13046 void
13047 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13048 struct bfd_link_hash_entry * hdest,
13049 struct bfd_link_hash_entry * hsrc)
13050 {
13051 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13052 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13053
13054 ehdest->type = ehsrc->type;
13055 ehdest->target_internal = ehsrc->target_internal;
13056 }
13057
13058 /* Append a RELA relocation REL to section S in BFD. */
13059
13060 void
13061 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13062 {
13063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13064 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13065 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13066 bed->s->swap_reloca_out (abfd, rel, loc);
13067 }
13068
13069 /* Append a REL relocation REL to section S in BFD. */
13070
13071 void
13072 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13073 {
13074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13075 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13076 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13077 bed->s->swap_reloc_out (abfd, rel, loc);
13078 }
This page took 0.923979 seconds and 4 git commands to generate.