ELF final_write_processing
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
181 return FALSE;
182 htab->sgotplt = s;
183 }
184
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
187
188 if (bed->want_got_sym)
189 {
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
197 if (h == NULL)
198 return FALSE;
199 }
200
201 return TRUE;
202 }
203 \f
204 /* Create a strtab to hold the dynamic symbol names. */
205 static bfd_boolean
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
207 {
208 struct elf_link_hash_table *hash_table;
209
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
212 {
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
218 {
219 bfd *ibfd;
220 asection *s;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
905
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
909
910 /* There shouldn't be section relative relocations
911 against any other section. */
912 default:
913 return TRUE;
914 }
915 }
916
917 bfd_boolean
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
922 {
923 return TRUE;
924 }
925
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
934
935 static unsigned long
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
939 {
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
942
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
945 {
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
947 asection *p;
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
953 {
954 ++dynsymcount;
955 if (do_sec)
956 elf_section_data (p)->dynindx = dynsymcount;
957 }
958 else if (do_sec)
959 elf_section_data (p)->dynindx = 0;
960 }
961 if (do_sec)
962 *section_sym_count = dynsymcount;
963
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
966 &dynsymcount);
967
968 if (elf_hash_table (info)->dynlocal)
969 {
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
973 }
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
975
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
978 &dynsymcount);
979
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
983 .dynamic section. */
984 dynsymcount++;
985
986 elf_hash_table (info)->dynsymcount = dynsymcount;
987 return dynsymcount;
988 }
989
990 /* Merge st_other field. */
991
992 static void
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
996 {
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
998
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1003 dynamic);
1004
1005 if (!dynamic)
1006 {
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1009
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1014 }
1015 else if (definition
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1019 }
1020
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1033
1034 static bfd_boolean
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1037 const char *name,
1038 Elf_Internal_Sym *sym,
1039 asection **psec,
1040 bfd_vma *pvalue,
1041 struct elf_link_hash_entry **sym_hash,
1042 bfd **poldbfd,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1045 bfd_boolean *skip,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1050 {
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1055 int bind;
1056 bfd *oldbfd;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1060 char *new_version;
1061 bfd_boolean default_sym = *matched;
1062
1063 *skip = FALSE;
1064 *override = FALSE;
1065
1066 sec = *psec;
1067 bind = ELF_ST_BIND (sym->st_info);
1068
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1071 else
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1074 if (h == NULL)
1075 return FALSE;
1076 *sym_hash = h;
1077
1078 bed = get_elf_backend_data (abfd);
1079
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1082 {
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1085 if (new_version)
1086 {
1087 if (h->versioned == unknown)
1088 {
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1091 else
1092 h->versioned = versioned;
1093 }
1094 new_version += 1;
1095 if (new_version[0] == '\0')
1096 new_version = NULL;
1097 }
1098 else
1099 h->versioned = unversioned;
1100 }
1101 else
1102 new_version = NULL;
1103
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1106 hi = h;
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1110
1111 if (!*matched)
1112 {
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1114 *matched = TRUE;
1115 else
1116 {
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1125 aren't hidden. */
1126 *matched = TRUE;
1127 else
1128 {
1129 /* OLD_VERSION is the symbol version of the existing
1130 symbol. */
1131 char *old_version;
1132
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1135 ELF_VER_CHR) + 1;
1136 else
1137 old_version = NULL;
1138
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1145 }
1146 }
1147 }
1148
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1150 existing symbol. */
1151
1152 oldbfd = NULL;
1153 oldsec = NULL;
1154 switch (h->root.type)
1155 {
1156 default:
1157 break;
1158
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1162 break;
1163
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1168 break;
1169
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1173 if (pold_alignment)
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1175 break;
1176 }
1177 if (poldbfd && *poldbfd == NULL)
1178 *poldbfd = oldbfd;
1179
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1184 if (pold_weak)
1185 *pold_weak = oldweak;
1186
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1189 symbols. */
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1191
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1194
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1196
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1204 if (newdyn)
1205 {
1206 if (bfd_is_und_section (sec))
1207 {
1208 if (bind != STB_WEAK)
1209 {
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1212 }
1213 }
1214 else
1215 {
1216 /* Update the existing symbol only if they match. */
1217 if (*matched)
1218 h->dynamic_def = 1;
1219 hi->dynamic_def = 1;
1220 }
1221 }
1222
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1226
1227 if (h->root.type == bfd_link_hash_new)
1228 {
1229 h->non_elf = 0;
1230 return TRUE;
1231 }
1232
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1239 if (abfd == oldbfd
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1243 return TRUE;
1244
1245 olddyn = FALSE;
1246 if (oldbfd != NULL)
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1249 {
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1253 }
1254
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1257 if (oldbfd != NULL
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1260 {
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1263 }
1264
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1267
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1269
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1273
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1276
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1279
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1282
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1289 {
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1295 if (newdyn
1296 && !olddyn)
1297 {
1298 *skip = TRUE;
1299 return TRUE;
1300 }
1301
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1304 dynamic state. */
1305 if (hi != h
1306 && !newdyn
1307 && olddyn)
1308 {
1309 h = hi;
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1312 h->ref_dynamic = 0;
1313 h->def_dynamic = 0;
1314 h->dynamic_def = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1316 {
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1319 }
1320 else
1321 {
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1324 }
1325 return TRUE;
1326 }
1327 }
1328
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1332 if (oldbfd != NULL
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1337 {
1338 bfd *ntbfd, *tbfd;
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1341
1342 if (h->type == STT_TLS)
1343 {
1344 ntbfd = abfd;
1345 ntsec = sec;
1346 ntdef = newdef;
1347 tbfd = oldbfd;
1348 tsec = oldsec;
1349 tdef = olddef;
1350 }
1351 else
1352 {
1353 ntbfd = oldbfd;
1354 ntsec = oldsec;
1355 ntdef = olddef;
1356 tbfd = abfd;
1357 tsec = sec;
1358 tdef = newdef;
1359 }
1360
1361 if (tdef && ntdef)
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1368 _bfd_error_handler
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1373 else if (tdef)
1374 _bfd_error_handler
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1379 else
1380 _bfd_error_handler
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1385
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1388 }
1389
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1392 if (newdyn
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1395 {
1396 *skip = TRUE;
1397 /* Make sure this symbol is dynamic. */
1398 h->ref_dynamic = 1;
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1402
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1406 else
1407 return TRUE;
1408 }
1409 else if (!newdyn
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1411 && h->def_dynamic)
1412 {
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1417 {
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1422 if (h->ref_regular)
1423 {
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1427
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1430 {
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1435 h->ref_dynamic = 0;
1436 }
1437 else
1438 h->ref_dynamic = 1;
1439
1440 h->def_dynamic = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1442 h->size = 0;
1443 h->type = 0;
1444
1445 h = hi;
1446 }
1447 else
1448 h = hi;
1449 }
1450
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1459 {
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1462 }
1463 else
1464 {
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1467 }
1468
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1470 {
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1475 h->ref_dynamic = 0;
1476 }
1477 else
1478 h->ref_dynamic = 1;
1479 h->def_dynamic = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1481 h->size = 0;
1482 h->type = 0;
1483 return TRUE;
1484 }
1485
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1493
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1498
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1501
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1503 newweak = FALSE;
1504 if (olddef && newdyn)
1505 oldweak = FALSE;
1506
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1510
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1514
1515 if (oldweak
1516 || newweak
1517 || (newdef
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1520
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1523
1524 if (*type_change_ok
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1527
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1539 libraries.
1540
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1543
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1549 harmless. */
1550
1551 if (newdyn
1552 && newdef
1553 && !newweak
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1556 && sym->st_size > 0
1557 && !newfunc)
1558 newdyncommon = TRUE;
1559 else
1560 newdyncommon = FALSE;
1561
1562 if (olddyn
1563 && olddef
1564 && h->root.type == bfd_link_hash_defined
1565 && h->def_dynamic
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1568 && h->size > 0
1569 && !oldfunc)
1570 olddyncommon = TRUE;
1571 else
1572 olddyncommon = FALSE;
1573
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1577 {
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1579 return FALSE;
1580 sec = *psec;
1581 }
1582
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1587 && !(oldbfd != NULL
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1590 {
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1594 *skip = TRUE;
1595 return TRUE;
1596 }
1597
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1600 two. */
1601
1602 if (olddyncommon
1603 && newdyncommon
1604 && sym->st_size != h->size)
1605 {
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1611
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1616
1617 *size_change_ok = TRUE;
1618 }
1619
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1626
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1633
1634 if (newdyn
1635 && newdef
1636 && (olddef
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1639 {
1640 *override = TRUE;
1641 newdef = FALSE;
1642 newdyncommon = FALSE;
1643
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1646
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1652
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1655 }
1656
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1661 right thing. */
1662
1663 if (newdyncommon
1664 && h->root.type == bfd_link_hash_common)
1665 {
1666 *override = TRUE;
1667 newdef = FALSE;
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1672 }
1673
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1676 {
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1681 {
1682 newdef = FALSE;
1683 *skip = TRUE;
1684 }
1685
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1688 local symbol. */
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1692 {
1693 case STV_INTERNAL:
1694 case STV_HIDDEN:
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1696 break;
1697 }
1698 }
1699
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1705
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1709
1710 flip = NULL;
1711 if (!newdyn
1712 && (newdef
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1715 && olddyn
1716 && olddef
1717 && h->def_dynamic)
1718 {
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1721 new definition. */
1722
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1726
1727 olddef = FALSE;
1728 olddyncommon = FALSE;
1729
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1732
1733 if (bfd_is_com_section (sec))
1734 {
1735 if (oldfunc)
1736 {
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1739 function. */
1740 h->def_dynamic = 0;
1741 h->type = STT_NOTYPE;
1742 }
1743 *type_change_ok = TRUE;
1744 }
1745
1746 if (hi->root.type == bfd_link_hash_indirect)
1747 flip = hi;
1748 else
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1753 }
1754
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1760
1761 if (! newdyn
1762 && bfd_is_com_section (sec)
1763 && olddyncommon)
1764 {
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1770
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1773
1774 if (h->size > *pvalue)
1775 *pvalue = h->size;
1776
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1781
1782 olddef = FALSE;
1783 olddyncommon = FALSE;
1784
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1787
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1790
1791 if (hi->root.type == bfd_link_hash_indirect)
1792 flip = hi;
1793 else
1794 h->verinfo.vertree = NULL;
1795 }
1796
1797 if (flip != NULL)
1798 {
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1807 if (h->def_dynamic)
1808 {
1809 h->def_dynamic = 0;
1810 flip->ref_dynamic = 1;
1811 }
1812 }
1813
1814 return TRUE;
1815 }
1816
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1821
1822 static bfd_boolean
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1826 const char *name,
1827 Elf_Internal_Sym *sym,
1828 asection *sec,
1829 bfd_vma value,
1830 bfd **poldbfd,
1831 bfd_boolean *dynsym)
1832 {
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1835 bfd_boolean skip;
1836 char *shortname;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1843 char *p;
1844 size_t len, shortlen;
1845 asection *tmp_sec;
1846 bfd_boolean matched;
1847
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1849 return TRUE;
1850
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1857 {
1858 if (p == NULL)
1859 {
1860 h->versioned = unversioned;
1861 return TRUE;
1862 }
1863 else
1864 {
1865 if (p[1] != ELF_VER_CHR)
1866 {
1867 h->versioned = versioned_hidden;
1868 return TRUE;
1869 }
1870 else
1871 h->versioned = versioned;
1872 }
1873 }
1874 else
1875 {
1876 /* PR ld/19073: We may see an unversioned definition after the
1877 default version. */
1878 if (p == NULL)
1879 return TRUE;
1880 }
1881
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1885
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1889 return FALSE;
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1892
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1899 matched = TRUE;
1900 tmp_sec = sec;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1904 return FALSE;
1905
1906 if (skip)
1907 goto nondefault;
1908
1909 if (hi->def_regular)
1910 {
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1917 {
1918 bfd_boolean hide;
1919
1920 hi->verinfo.vertree
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1924 {
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1926 goto nondefault;
1927 }
1928 }
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1931 goto nondefault;
1932 }
1933
1934 if (! override)
1935 {
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1938 {
1939 bh = &hi->root;
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1943 {
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1946 it. */
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1949 }
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1954 return FALSE;
1955 hi = (struct elf_link_hash_entry *) bh;
1956 }
1957 }
1958 else
1959 {
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1965
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1969
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1977
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1981
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1984 if (h->def_dynamic)
1985 {
1986 h->def_dynamic = 0;
1987 hi->ref_dynamic = 1;
1988 if (hi->ref_regular
1989 || hi->def_regular)
1990 {
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1992 return FALSE;
1993 }
1994 }
1995
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
1998 hi = h;
1999 }
2000
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2004
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2008
2009 if (hi->root.type == bfd_link_hash_indirect)
2010 {
2011 struct elf_link_hash_entry *ht;
2012
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2015
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2021
2022 /* See if the new flags lead us to realize that the symbol must
2023 be dynamic. */
2024 if (! *dynsym)
2025 {
2026 if (! dynamic)
2027 {
2028 if (! bfd_link_executable (info)
2029 || hi->def_dynamic
2030 || hi->ref_dynamic)
2031 *dynsym = TRUE;
2032 }
2033 else
2034 {
2035 if (hi->ref_regular)
2036 *dynsym = TRUE;
2037 }
2038 }
2039 }
2040
2041 /* We also need to define an indirection from the nondefault version
2042 of the symbol. */
2043
2044 nondefault:
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2048 return FALSE;
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2051
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2055 tmp_sec = sec;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2059 return FALSE;
2060
2061 if (skip)
2062 return TRUE;
2063
2064 if (override)
2065 {
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2071 _bfd_error_handler
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2074 abfd, shortname);
2075 }
2076 else
2077 {
2078 bh = &hi->root;
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2082 return FALSE;
2083 hi = (struct elf_link_hash_entry *) bh;
2084
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2088
2089 if (hi->root.type == bfd_link_hash_indirect)
2090 {
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2094
2095 /* See if the new flags lead us to realize that the symbol
2096 must be dynamic. */
2097 if (! *dynsym)
2098 {
2099 if (! dynamic)
2100 {
2101 if (! bfd_link_executable (info)
2102 || hi->ref_dynamic)
2103 *dynsym = TRUE;
2104 }
2105 else
2106 {
2107 if (hi->ref_regular)
2108 *dynsym = TRUE;
2109 }
2110 }
2111 }
2112 }
2113
2114 return TRUE;
2115 }
2116 \f
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2119
2120 static bfd_boolean
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2122 {
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2124
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2127 return TRUE;
2128
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2131 return TRUE;
2132
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2137 {
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2139 {
2140 eif->failed = TRUE;
2141 return FALSE;
2142 }
2143 }
2144
2145 return TRUE;
2146 }
2147 \f
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2152
2153 static bfd_boolean
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2155 void *data)
2156 {
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2160 bfd_size_type amt;
2161
2162 /* We only care about symbols defined in shared objects with version
2163 information. */
2164 if (!h->def_dynamic
2165 || h->def_regular
2166 || h->dynindx == -1
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2170 return TRUE;
2171
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2174 t != NULL;
2175 t = t->vn_nextref)
2176 {
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2178 continue;
2179
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2182 return TRUE;
2183
2184 break;
2185 }
2186
2187 /* This is a new version. Add it to tree we are building. */
2188
2189 if (t == NULL)
2190 {
2191 amt = sizeof *t;
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2193 if (t == NULL)
2194 {
2195 rinfo->failed = TRUE;
2196 return FALSE;
2197 }
2198
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2202 }
2203
2204 amt = sizeof *a;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2206 if (a == NULL)
2207 {
2208 rinfo->failed = TRUE;
2209 return FALSE;
2210 }
2211
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2215 fixed. */
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2217
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2220
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2222 ++rinfo->vers;
2223
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2225
2226 t->vn_auxptr = a;
2227
2228 return TRUE;
2229 }
2230
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2233
2234 static bfd_boolean
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2239 bfd_boolean *hide)
2240 {
2241 struct bfd_elf_version_tree *t;
2242
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2245 {
2246 if (strcmp (t->name, version_p) == 0)
2247 {
2248 size_t len;
2249 char *alc;
2250 struct bfd_elf_version_expr *d;
2251
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2254 if (alc == NULL)
2255 return FALSE;
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2260
2261 h->verinfo.vertree = t;
2262 t->used = TRUE;
2263 d = NULL;
2264
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2267
2268 /* See if there is anything to force this symbol to
2269 local scope. */
2270 if (d == NULL && t->locals.list != NULL)
2271 {
2272 d = (*t->match) (&t->locals, NULL, alc);
2273 if (d != NULL
2274 && h->dynindx != -1
2275 && ! info->export_dynamic)
2276 *hide = TRUE;
2277 }
2278
2279 free (alc);
2280 break;
2281 }
2282 }
2283
2284 *t_p = t;
2285
2286 return TRUE;
2287 }
2288
2289 /* Return TRUE if the symbol H is hidden by version script. */
2290
2291 bfd_boolean
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2294 {
2295 const char *p;
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2299
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2302 return TRUE;
2303
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2306 {
2307 struct bfd_elf_version_tree *t;
2308
2309 ++p;
2310 if (*p == ELF_VER_CHR)
2311 ++p;
2312
2313 if (*p != '\0'
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2315 && hide)
2316 {
2317 if (hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2319 return TRUE;
2320 }
2321 }
2322
2323 /* If we don't have a version for this symbol, see if we can find
2324 something. */
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2326 {
2327 h->verinfo.vertree
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2331 {
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2333 return TRUE;
2334 }
2335 }
2336
2337 return FALSE;
2338 }
2339
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2344
2345 static bfd_boolean
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2347 {
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2352 char *p;
2353 bfd_boolean hide;
2354
2355 sinfo = (struct elf_info_failed *) data;
2356 info = sinfo->info;
2357
2358 /* Fix the symbol flags. */
2359 eif.failed = FALSE;
2360 eif.info = info;
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2362 {
2363 if (eif.failed)
2364 sinfo->failed = TRUE;
2365 return FALSE;
2366 }
2367
2368 bed = get_elf_backend_data (info->output_bfd);
2369
2370 /* We only need version numbers for symbols defined in regular
2371 objects. */
2372 if (!h->def_regular)
2373 {
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 return TRUE;
2380 }
2381
2382 hide = FALSE;
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2385 {
2386 struct bfd_elf_version_tree *t;
2387
2388 ++p;
2389 if (*p == ELF_VER_CHR)
2390 ++p;
2391
2392 /* If there is no version string, we can just return out. */
2393 if (*p == '\0')
2394 return TRUE;
2395
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2397 {
2398 sinfo->failed = TRUE;
2399 return FALSE;
2400 }
2401
2402 if (hide)
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2404
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2408 {
2409 struct bfd_elf_version_tree **pp;
2410 int version_index;
2411
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2415 return TRUE;
2416
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2418 sizeof *t);
2419 if (t == NULL)
2420 {
2421 sinfo->failed = TRUE;
2422 return FALSE;
2423 }
2424
2425 t->name = p;
2426 t->name_indx = (unsigned int) -1;
2427 t->used = TRUE;
2428
2429 version_index = 1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2433 version_index = 0;
2434 for (pp = &sinfo->info->version_info;
2435 *pp != NULL;
2436 pp = &(*pp)->next)
2437 ++version_index;
2438 t->vernum = version_index;
2439
2440 *pp = t;
2441
2442 h->verinfo.vertree = t;
2443 }
2444 else if (t == NULL)
2445 {
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2448 _bfd_error_handler
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2454 return FALSE;
2455 }
2456 }
2457
2458 /* If we don't have a version for this symbol, see if we can find
2459 something. */
2460 if (!hide
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2463 {
2464 h->verinfo.vertree
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2469 }
2470
2471 return TRUE;
2472 }
2473 \f
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2480
2481 Returns FALSE if something goes wrong. */
2482
2483 static bfd_boolean
2484 elf_link_read_relocs_from_section (bfd *abfd,
2485 asection *sec,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2489 {
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2496 size_t nsyms;
2497
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2500 return FALSE;
2501
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2504 return FALSE;
2505
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2508
2509 bed = get_elf_backend_data (abfd);
2510
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2516 else
2517 {
2518 bfd_set_error (bfd_error_wrong_format);
2519 return FALSE;
2520 }
2521
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2528 {
2529 bfd_vma r_symndx;
2530
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2534 r_symndx >>= 24;
2535 if (nsyms > 0)
2536 {
2537 if ((size_t) r_symndx >= nsyms)
2538 {
2539 _bfd_error_handler
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2546 return FALSE;
2547 }
2548 }
2549 else if (r_symndx != STN_UNDEF)
2550 {
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2559 return FALSE;
2560 }
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2577
2578 Elf_Internal_Rela *
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2580 asection *o,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2584 {
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2590
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2593
2594 if (o->reloc_count == 0)
2595 return NULL;
2596
2597 if (internal_relocs == NULL)
2598 {
2599 bfd_size_type size;
2600
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2602 if (keep_memory)
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2604 else
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608 }
2609
2610 if (external_relocs == NULL)
2611 {
2612 bfd_size_type size = 0;
2613
2614 if (esdo->rel.hdr)
2615 size += esdo->rel.hdr->sh_size;
2616 if (esdo->rela.hdr)
2617 size += esdo->rela.hdr->sh_size;
2618
2619 alloc1 = bfd_malloc (size);
2620 if (alloc1 == NULL)
2621 goto error_return;
2622 external_relocs = alloc1;
2623 }
2624
2625 internal_rela_relocs = internal_relocs;
2626 if (esdo->rel.hdr)
2627 {
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2629 external_relocs,
2630 internal_relocs))
2631 goto error_return;
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2636 }
2637
2638 if (esdo->rela.hdr
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2640 external_relocs,
2641 internal_rela_relocs)))
2642 goto error_return;
2643
2644 /* Cache the results for next time, if we can. */
2645 if (keep_memory)
2646 esdo->relocs = internal_relocs;
2647
2648 if (alloc1 != NULL)
2649 free (alloc1);
2650
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2653
2654 return internal_relocs;
2655
2656 error_return:
2657 if (alloc1 != NULL)
2658 free (alloc1);
2659 if (alloc2 != NULL)
2660 {
2661 if (keep_memory)
2662 bfd_release (abfd, alloc2);
2663 else
2664 free (alloc2);
2665 }
2666 return NULL;
2667 }
2668
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2671
2672 static bfd_boolean
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2675 {
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2677
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2680
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2687 return FALSE;
2688
2689 if (reldata->hashes == NULL && reldata->count)
2690 {
2691 struct elf_link_hash_entry **p;
2692
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2695 if (p == NULL)
2696 return FALSE;
2697
2698 reldata->hashes = p;
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2706 OUTPUT_BFD. */
2707
2708 bfd_boolean
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2714 ATTRIBUTE_UNUSED)
2715 {
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2718 bfd_byte *erel;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2724
2725 output_section = input_section->output_section;
2726
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2730 {
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2733 }
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2736 {
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2739 }
2740 else
2741 {
2742 _bfd_error_handler
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2756 {
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2760 }
2761
2762 /* Bump the counter, so that we know where to add the next set of
2763 relocations. */
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2765
2766 return TRUE;
2767 }
2768 \f
2769 /* Make weak undefined symbols in PIE dynamic. */
2770
2771 bfd_boolean
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2774 {
2775 if (bfd_link_pie (info)
2776 && h->dynindx == -1
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2779
2780 return TRUE;
2781 }
2782
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2788
2789 static bfd_boolean
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2792 {
2793 const struct elf_backend_data *bed;
2794
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2799 if (h->non_elf)
2800 {
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2803
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2806 {
2807 h->ref_regular = 1;
2808 h->ref_regular_nonweak = 1;
2809 }
2810 else
2811 {
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2815 {
2816 h->ref_regular = 1;
2817 h->ref_regular_nonweak = 1;
2818 }
2819 else
2820 h->def_regular = 1;
2821 }
2822
2823 if (h->dynindx == -1
2824 && (h->def_dynamic
2825 || h->ref_dynamic))
2826 {
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2828 {
2829 eif->failed = TRUE;
2830 return FALSE;
2831 }
2832 }
2833 }
2834 else
2835 {
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2844 && !h->def_regular
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2850 h->def_regular = 1;
2851 }
2852
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2857 return FALSE;
2858
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2865 && !h->def_regular
2866 && h->ref_regular
2867 && !h->def_dynamic
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2869 h->def_regular = 1;
2870
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2880
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2883 exported. */
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2887 && !h->dynamic
2888 && !h->ref_dynamic
2889 && h->def_regular)
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2891
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2903 && h->def_regular)
2904 {
2905 bfd_boolean force_local;
2906
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2910 }
2911
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2916 {
2917 struct elf_link_hash_entry *def = weakdef (h);
2918
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2922 bfd_link_hash_defined as it was when put on the alias list
2923 then it must have originally been a versioned symbol (for
2924 which a non-versioned indirect symbol is created) and later
2925 a definition for the non-versioned symbol is found. In that
2926 case the indirection is flipped with the versioned symbol
2927 becoming an indirect pointing at the non-versioned symbol.
2928 Thus, not an alias any more. */
2929 if (def->def_regular
2930 || def->root.type != bfd_link_hash_defined)
2931 {
2932 h = def;
2933 while ((h = h->u.alias) != def)
2934 h->is_weakalias = 0;
2935 }
2936 else
2937 {
2938 while (h->root.type == bfd_link_hash_indirect)
2939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2941 || h->root.type == bfd_link_hash_defweak);
2942 BFD_ASSERT (def->def_dynamic);
2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2944 }
2945 }
2946
2947 return TRUE;
2948 }
2949
2950 /* Make the backend pick a good value for a dynamic symbol. This is
2951 called via elf_link_hash_traverse, and also calls itself
2952 recursively. */
2953
2954 static bfd_boolean
2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2956 {
2957 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2958 struct elf_link_hash_table *htab;
2959 const struct elf_backend_data *bed;
2960
2961 if (! is_elf_hash_table (eif->info->hash))
2962 return FALSE;
2963
2964 /* Ignore indirect symbols. These are added by the versioning code. */
2965 if (h->root.type == bfd_link_hash_indirect)
2966 return TRUE;
2967
2968 /* Fix the symbol flags. */
2969 if (! _bfd_elf_fix_symbol_flags (h, eif))
2970 return FALSE;
2971
2972 htab = elf_hash_table (eif->info);
2973 bed = get_elf_backend_data (htab->dynobj);
2974
2975 if (h->root.type == bfd_link_hash_undefweak)
2976 {
2977 if (eif->info->dynamic_undefined_weak == 0)
2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2979 else if (eif->info->dynamic_undefined_weak > 0
2980 && h->ref_regular
2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2982 && !bfd_hide_sym_by_version (eif->info->version_info,
2983 h->root.root.string))
2984 {
2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2986 {
2987 eif->failed = TRUE;
2988 return FALSE;
2989 }
2990 }
2991 }
2992
2993 /* If this symbol does not require a PLT entry, and it is not
2994 defined by a dynamic object, or is not referenced by a regular
2995 object, ignore it. We do have to handle a weak defined symbol,
2996 even if no regular object refers to it, if we decided to add it
2997 to the dynamic symbol table. FIXME: Do we normally need to worry
2998 about symbols which are defined by one dynamic object and
2999 referenced by another one? */
3000 if (!h->needs_plt
3001 && h->type != STT_GNU_IFUNC
3002 && (h->def_regular
3003 || !h->def_dynamic
3004 || (!h->ref_regular
3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3006 {
3007 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3008 return TRUE;
3009 }
3010
3011 /* If we've already adjusted this symbol, don't do it again. This
3012 can happen via a recursive call. */
3013 if (h->dynamic_adjusted)
3014 return TRUE;
3015
3016 /* Don't look at this symbol again. Note that we must set this
3017 after checking the above conditions, because we may look at a
3018 symbol once, decide not to do anything, and then get called
3019 recursively later after REF_REGULAR is set below. */
3020 h->dynamic_adjusted = 1;
3021
3022 /* If this is a weak definition, and we know a real definition, and
3023 the real symbol is not itself defined by a regular object file,
3024 then get a good value for the real definition. We handle the
3025 real symbol first, for the convenience of the backend routine.
3026
3027 Note that there is a confusing case here. If the real definition
3028 is defined by a regular object file, we don't get the real symbol
3029 from the dynamic object, but we do get the weak symbol. If the
3030 processor backend uses a COPY reloc, then if some routine in the
3031 dynamic object changes the real symbol, we will not see that
3032 change in the corresponding weak symbol. This is the way other
3033 ELF linkers work as well, and seems to be a result of the shared
3034 library model.
3035
3036 I will clarify this issue. Most SVR4 shared libraries define the
3037 variable _timezone and define timezone as a weak synonym. The
3038 tzset call changes _timezone. If you write
3039 extern int timezone;
3040 int _timezone = 5;
3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3042 you might expect that, since timezone is a synonym for _timezone,
3043 the same number will print both times. However, if the processor
3044 backend uses a COPY reloc, then actually timezone will be copied
3045 into your process image, and, since you define _timezone
3046 yourself, _timezone will not. Thus timezone and _timezone will
3047 wind up at different memory locations. The tzset call will set
3048 _timezone, leaving timezone unchanged. */
3049
3050 if (h->is_weakalias)
3051 {
3052 struct elf_link_hash_entry *def = weakdef (h);
3053
3054 /* If we get to this point, there is an implicit reference to
3055 the alias by a regular object file via the weak symbol H. */
3056 def->ref_regular = 1;
3057
3058 /* Ensure that the backend adjust_dynamic_symbol function sees
3059 the strong alias before H by recursively calling ourselves. */
3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3061 return FALSE;
3062 }
3063
3064 /* If a symbol has no type and no size and does not require a PLT
3065 entry, then we are probably about to do the wrong thing here: we
3066 are probably going to create a COPY reloc for an empty object.
3067 This case can arise when a shared object is built with assembly
3068 code, and the assembly code fails to set the symbol type. */
3069 if (h->size == 0
3070 && h->type == STT_NOTYPE
3071 && !h->needs_plt)
3072 _bfd_error_handler
3073 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3074 h->root.root.string);
3075
3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3077 {
3078 eif->failed = TRUE;
3079 return FALSE;
3080 }
3081
3082 return TRUE;
3083 }
3084
3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3086 DYNBSS. */
3087
3088 bfd_boolean
3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3090 struct elf_link_hash_entry *h,
3091 asection *dynbss)
3092 {
3093 unsigned int power_of_two;
3094 bfd_vma mask;
3095 asection *sec = h->root.u.def.section;
3096
3097 /* The section alignment of the definition is the maximum alignment
3098 requirement of symbols defined in the section. Since we don't
3099 know the symbol alignment requirement, we start with the
3100 maximum alignment and check low bits of the symbol address
3101 for the minimum alignment. */
3102 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3103 mask = ((bfd_vma) 1 << power_of_two) - 1;
3104 while ((h->root.u.def.value & mask) != 0)
3105 {
3106 mask >>= 1;
3107 --power_of_two;
3108 }
3109
3110 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3111 dynbss))
3112 {
3113 /* Adjust the section alignment if needed. */
3114 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3115 power_of_two))
3116 return FALSE;
3117 }
3118
3119 /* We make sure that the symbol will be aligned properly. */
3120 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3121
3122 /* Define the symbol as being at this point in DYNBSS. */
3123 h->root.u.def.section = dynbss;
3124 h->root.u.def.value = dynbss->size;
3125
3126 /* Increment the size of DYNBSS to make room for the symbol. */
3127 dynbss->size += h->size;
3128
3129 /* No error if extern_protected_data is true. */
3130 if (h->protected_def
3131 && (!info->extern_protected_data
3132 || (info->extern_protected_data < 0
3133 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3134 info->callbacks->einfo
3135 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3136 h->root.root.string);
3137
3138 return TRUE;
3139 }
3140
3141 /* Adjust all external symbols pointing into SEC_MERGE sections
3142 to reflect the object merging within the sections. */
3143
3144 static bfd_boolean
3145 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3146 {
3147 asection *sec;
3148
3149 if ((h->root.type == bfd_link_hash_defined
3150 || h->root.type == bfd_link_hash_defweak)
3151 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3152 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3153 {
3154 bfd *output_bfd = (bfd *) data;
3155
3156 h->root.u.def.value =
3157 _bfd_merged_section_offset (output_bfd,
3158 &h->root.u.def.section,
3159 elf_section_data (sec)->sec_info,
3160 h->root.u.def.value);
3161 }
3162
3163 return TRUE;
3164 }
3165
3166 /* Returns false if the symbol referred to by H should be considered
3167 to resolve local to the current module, and true if it should be
3168 considered to bind dynamically. */
3169
3170 bfd_boolean
3171 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3172 struct bfd_link_info *info,
3173 bfd_boolean not_local_protected)
3174 {
3175 bfd_boolean binding_stays_local_p;
3176 const struct elf_backend_data *bed;
3177 struct elf_link_hash_table *hash_table;
3178
3179 if (h == NULL)
3180 return FALSE;
3181
3182 while (h->root.type == bfd_link_hash_indirect
3183 || h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 /* If it was forced local, then clearly it's not dynamic. */
3187 if (h->dynindx == -1)
3188 return FALSE;
3189 if (h->forced_local)
3190 return FALSE;
3191
3192 /* Identify the cases where name binding rules say that a
3193 visible symbol resolves locally. */
3194 binding_stays_local_p = (bfd_link_executable (info)
3195 || SYMBOLIC_BIND (info, h));
3196
3197 switch (ELF_ST_VISIBILITY (h->other))
3198 {
3199 case STV_INTERNAL:
3200 case STV_HIDDEN:
3201 return FALSE;
3202
3203 case STV_PROTECTED:
3204 hash_table = elf_hash_table (info);
3205 if (!is_elf_hash_table (hash_table))
3206 return FALSE;
3207
3208 bed = get_elf_backend_data (hash_table->dynobj);
3209
3210 /* Proper resolution for function pointer equality may require
3211 that these symbols perhaps be resolved dynamically, even though
3212 we should be resolving them to the current module. */
3213 if (!not_local_protected || !bed->is_function_type (h->type))
3214 binding_stays_local_p = TRUE;
3215 break;
3216
3217 default:
3218 break;
3219 }
3220
3221 /* If it isn't defined locally, then clearly it's dynamic. */
3222 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3223 return TRUE;
3224
3225 /* Otherwise, the symbol is dynamic if binding rules don't tell
3226 us that it remains local. */
3227 return !binding_stays_local_p;
3228 }
3229
3230 /* Return true if the symbol referred to by H should be considered
3231 to resolve local to the current module, and false otherwise. Differs
3232 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3233 undefined symbols. The two functions are virtually identical except
3234 for the place where dynindx == -1 is tested. If that test is true,
3235 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3236 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3237 defined symbols.
3238 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3239 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3240 treatment of undefined weak symbols. For those that do not make
3241 undefined weak symbols dynamic, both functions may return false. */
3242
3243 bfd_boolean
3244 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3245 struct bfd_link_info *info,
3246 bfd_boolean local_protected)
3247 {
3248 const struct elf_backend_data *bed;
3249 struct elf_link_hash_table *hash_table;
3250
3251 /* If it's a local sym, of course we resolve locally. */
3252 if (h == NULL)
3253 return TRUE;
3254
3255 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3256 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3257 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3258 return TRUE;
3259
3260 /* Forced local symbols resolve locally. */
3261 if (h->forced_local)
3262 return TRUE;
3263
3264 /* Common symbols that become definitions don't get the DEF_REGULAR
3265 flag set, so test it first, and don't bail out. */
3266 if (ELF_COMMON_DEF_P (h))
3267 /* Do nothing. */;
3268 /* If we don't have a definition in a regular file, then we can't
3269 resolve locally. The sym is either undefined or dynamic. */
3270 else if (!h->def_regular)
3271 return FALSE;
3272
3273 /* Non-dynamic symbols resolve locally. */
3274 if (h->dynindx == -1)
3275 return TRUE;
3276
3277 /* At this point, we know the symbol is defined and dynamic. In an
3278 executable it must resolve locally, likewise when building symbolic
3279 shared libraries. */
3280 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3281 return TRUE;
3282
3283 /* Now deal with defined dynamic symbols in shared libraries. Ones
3284 with default visibility might not resolve locally. */
3285 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3286 return FALSE;
3287
3288 hash_table = elf_hash_table (info);
3289 if (!is_elf_hash_table (hash_table))
3290 return TRUE;
3291
3292 bed = get_elf_backend_data (hash_table->dynobj);
3293
3294 /* If extern_protected_data is false, STV_PROTECTED non-function
3295 symbols are local. */
3296 if ((!info->extern_protected_data
3297 || (info->extern_protected_data < 0
3298 && !bed->extern_protected_data))
3299 && !bed->is_function_type (h->type))
3300 return TRUE;
3301
3302 /* Function pointer equality tests may require that STV_PROTECTED
3303 symbols be treated as dynamic symbols. If the address of a
3304 function not defined in an executable is set to that function's
3305 plt entry in the executable, then the address of the function in
3306 a shared library must also be the plt entry in the executable. */
3307 return local_protected;
3308 }
3309
3310 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3311 aligned. Returns the first TLS output section. */
3312
3313 struct bfd_section *
3314 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3315 {
3316 struct bfd_section *sec, *tls;
3317 unsigned int align = 0;
3318
3319 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3320 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3321 break;
3322 tls = sec;
3323
3324 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3325 if (sec->alignment_power > align)
3326 align = sec->alignment_power;
3327
3328 elf_hash_table (info)->tls_sec = tls;
3329
3330 /* Ensure the alignment of the first section is the largest alignment,
3331 so that the tls segment starts aligned. */
3332 if (tls != NULL)
3333 tls->alignment_power = align;
3334
3335 return tls;
3336 }
3337
3338 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3339 static bfd_boolean
3340 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3341 Elf_Internal_Sym *sym)
3342 {
3343 const struct elf_backend_data *bed;
3344
3345 /* Local symbols do not count, but target specific ones might. */
3346 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3347 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3348 return FALSE;
3349
3350 bed = get_elf_backend_data (abfd);
3351 /* Function symbols do not count. */
3352 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3353 return FALSE;
3354
3355 /* If the section is undefined, then so is the symbol. */
3356 if (sym->st_shndx == SHN_UNDEF)
3357 return FALSE;
3358
3359 /* If the symbol is defined in the common section, then
3360 it is a common definition and so does not count. */
3361 if (bed->common_definition (sym))
3362 return FALSE;
3363
3364 /* If the symbol is in a target specific section then we
3365 must rely upon the backend to tell us what it is. */
3366 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3367 /* FIXME - this function is not coded yet:
3368
3369 return _bfd_is_global_symbol_definition (abfd, sym);
3370
3371 Instead for now assume that the definition is not global,
3372 Even if this is wrong, at least the linker will behave
3373 in the same way that it used to do. */
3374 return FALSE;
3375
3376 return TRUE;
3377 }
3378
3379 /* Search the symbol table of the archive element of the archive ABFD
3380 whose archive map contains a mention of SYMDEF, and determine if
3381 the symbol is defined in this element. */
3382 static bfd_boolean
3383 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3384 {
3385 Elf_Internal_Shdr * hdr;
3386 size_t symcount;
3387 size_t extsymcount;
3388 size_t extsymoff;
3389 Elf_Internal_Sym *isymbuf;
3390 Elf_Internal_Sym *isym;
3391 Elf_Internal_Sym *isymend;
3392 bfd_boolean result;
3393
3394 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3395 if (abfd == NULL)
3396 return FALSE;
3397
3398 if (! bfd_check_format (abfd, bfd_object))
3399 return FALSE;
3400
3401 /* Select the appropriate symbol table. If we don't know if the
3402 object file is an IR object, give linker LTO plugin a chance to
3403 get the correct symbol table. */
3404 if (abfd->plugin_format == bfd_plugin_yes
3405 #if BFD_SUPPORTS_PLUGINS
3406 || (abfd->plugin_format == bfd_plugin_unknown
3407 && bfd_link_plugin_object_p (abfd))
3408 #endif
3409 )
3410 {
3411 /* Use the IR symbol table if the object has been claimed by
3412 plugin. */
3413 abfd = abfd->plugin_dummy_bfd;
3414 hdr = &elf_tdata (abfd)->symtab_hdr;
3415 }
3416 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3417 hdr = &elf_tdata (abfd)->symtab_hdr;
3418 else
3419 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3420
3421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3422
3423 /* The sh_info field of the symtab header tells us where the
3424 external symbols start. We don't care about the local symbols. */
3425 if (elf_bad_symtab (abfd))
3426 {
3427 extsymcount = symcount;
3428 extsymoff = 0;
3429 }
3430 else
3431 {
3432 extsymcount = symcount - hdr->sh_info;
3433 extsymoff = hdr->sh_info;
3434 }
3435
3436 if (extsymcount == 0)
3437 return FALSE;
3438
3439 /* Read in the symbol table. */
3440 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3441 NULL, NULL, NULL);
3442 if (isymbuf == NULL)
3443 return FALSE;
3444
3445 /* Scan the symbol table looking for SYMDEF. */
3446 result = FALSE;
3447 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3448 {
3449 const char *name;
3450
3451 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3452 isym->st_name);
3453 if (name == NULL)
3454 break;
3455
3456 if (strcmp (name, symdef->name) == 0)
3457 {
3458 result = is_global_data_symbol_definition (abfd, isym);
3459 break;
3460 }
3461 }
3462
3463 free (isymbuf);
3464
3465 return result;
3466 }
3467 \f
3468 /* Add an entry to the .dynamic table. */
3469
3470 bfd_boolean
3471 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3472 bfd_vma tag,
3473 bfd_vma val)
3474 {
3475 struct elf_link_hash_table *hash_table;
3476 const struct elf_backend_data *bed;
3477 asection *s;
3478 bfd_size_type newsize;
3479 bfd_byte *newcontents;
3480 Elf_Internal_Dyn dyn;
3481
3482 hash_table = elf_hash_table (info);
3483 if (! is_elf_hash_table (hash_table))
3484 return FALSE;
3485
3486 if (tag == DT_RELA || tag == DT_REL)
3487 hash_table->dynamic_relocs = TRUE;
3488
3489 bed = get_elf_backend_data (hash_table->dynobj);
3490 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3491 BFD_ASSERT (s != NULL);
3492
3493 newsize = s->size + bed->s->sizeof_dyn;
3494 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3495 if (newcontents == NULL)
3496 return FALSE;
3497
3498 dyn.d_tag = tag;
3499 dyn.d_un.d_val = val;
3500 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3501
3502 s->size = newsize;
3503 s->contents = newcontents;
3504
3505 return TRUE;
3506 }
3507
3508 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3509 otherwise just check whether one already exists. Returns -1 on error,
3510 1 if a DT_NEEDED tag already exists, and 0 on success. */
3511
3512 static int
3513 elf_add_dt_needed_tag (bfd *abfd,
3514 struct bfd_link_info *info,
3515 const char *soname,
3516 bfd_boolean do_it)
3517 {
3518 struct elf_link_hash_table *hash_table;
3519 size_t strindex;
3520
3521 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3522 return -1;
3523
3524 hash_table = elf_hash_table (info);
3525 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3526 if (strindex == (size_t) -1)
3527 return -1;
3528
3529 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3530 {
3531 asection *sdyn;
3532 const struct elf_backend_data *bed;
3533 bfd_byte *extdyn;
3534
3535 bed = get_elf_backend_data (hash_table->dynobj);
3536 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3537 if (sdyn != NULL)
3538 for (extdyn = sdyn->contents;
3539 extdyn < sdyn->contents + sdyn->size;
3540 extdyn += bed->s->sizeof_dyn)
3541 {
3542 Elf_Internal_Dyn dyn;
3543
3544 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3545 if (dyn.d_tag == DT_NEEDED
3546 && dyn.d_un.d_val == strindex)
3547 {
3548 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3549 return 1;
3550 }
3551 }
3552 }
3553
3554 if (do_it)
3555 {
3556 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3557 return -1;
3558
3559 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3560 return -1;
3561 }
3562 else
3563 /* We were just checking for existence of the tag. */
3564 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3565
3566 return 0;
3567 }
3568
3569 /* Return true if SONAME is on the needed list between NEEDED and STOP
3570 (or the end of list if STOP is NULL), and needed by a library that
3571 will be loaded. */
3572
3573 static bfd_boolean
3574 on_needed_list (const char *soname,
3575 struct bfd_link_needed_list *needed,
3576 struct bfd_link_needed_list *stop)
3577 {
3578 struct bfd_link_needed_list *look;
3579 for (look = needed; look != stop; look = look->next)
3580 if (strcmp (soname, look->name) == 0
3581 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3582 /* If needed by a library that itself is not directly
3583 needed, recursively check whether that library is
3584 indirectly needed. Since we add DT_NEEDED entries to
3585 the end of the list, library dependencies appear after
3586 the library. Therefore search prior to the current
3587 LOOK, preventing possible infinite recursion. */
3588 || on_needed_list (elf_dt_name (look->by), needed, look)))
3589 return TRUE;
3590
3591 return FALSE;
3592 }
3593
3594 /* Sort symbol by value, section, and size. */
3595 static int
3596 elf_sort_symbol (const void *arg1, const void *arg2)
3597 {
3598 const struct elf_link_hash_entry *h1;
3599 const struct elf_link_hash_entry *h2;
3600 bfd_signed_vma vdiff;
3601
3602 h1 = *(const struct elf_link_hash_entry **) arg1;
3603 h2 = *(const struct elf_link_hash_entry **) arg2;
3604 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3605 if (vdiff != 0)
3606 return vdiff > 0 ? 1 : -1;
3607 else
3608 {
3609 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3610 if (sdiff != 0)
3611 return sdiff > 0 ? 1 : -1;
3612 }
3613 vdiff = h1->size - h2->size;
3614 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3615 }
3616
3617 /* This function is used to adjust offsets into .dynstr for
3618 dynamic symbols. This is called via elf_link_hash_traverse. */
3619
3620 static bfd_boolean
3621 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3622 {
3623 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3624
3625 if (h->dynindx != -1)
3626 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3627 return TRUE;
3628 }
3629
3630 /* Assign string offsets in .dynstr, update all structures referencing
3631 them. */
3632
3633 static bfd_boolean
3634 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3635 {
3636 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3637 struct elf_link_local_dynamic_entry *entry;
3638 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3639 bfd *dynobj = hash_table->dynobj;
3640 asection *sdyn;
3641 bfd_size_type size;
3642 const struct elf_backend_data *bed;
3643 bfd_byte *extdyn;
3644
3645 _bfd_elf_strtab_finalize (dynstr);
3646 size = _bfd_elf_strtab_size (dynstr);
3647
3648 bed = get_elf_backend_data (dynobj);
3649 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3650 BFD_ASSERT (sdyn != NULL);
3651
3652 /* Update all .dynamic entries referencing .dynstr strings. */
3653 for (extdyn = sdyn->contents;
3654 extdyn < sdyn->contents + sdyn->size;
3655 extdyn += bed->s->sizeof_dyn)
3656 {
3657 Elf_Internal_Dyn dyn;
3658
3659 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3660 switch (dyn.d_tag)
3661 {
3662 case DT_STRSZ:
3663 dyn.d_un.d_val = size;
3664 break;
3665 case DT_NEEDED:
3666 case DT_SONAME:
3667 case DT_RPATH:
3668 case DT_RUNPATH:
3669 case DT_FILTER:
3670 case DT_AUXILIARY:
3671 case DT_AUDIT:
3672 case DT_DEPAUDIT:
3673 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3674 break;
3675 default:
3676 continue;
3677 }
3678 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3679 }
3680
3681 /* Now update local dynamic symbols. */
3682 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3683 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3684 entry->isym.st_name);
3685
3686 /* And the rest of dynamic symbols. */
3687 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3688
3689 /* Adjust version definitions. */
3690 if (elf_tdata (output_bfd)->cverdefs)
3691 {
3692 asection *s;
3693 bfd_byte *p;
3694 size_t i;
3695 Elf_Internal_Verdef def;
3696 Elf_Internal_Verdaux defaux;
3697
3698 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3699 p = s->contents;
3700 do
3701 {
3702 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3703 &def);
3704 p += sizeof (Elf_External_Verdef);
3705 if (def.vd_aux != sizeof (Elf_External_Verdef))
3706 continue;
3707 for (i = 0; i < def.vd_cnt; ++i)
3708 {
3709 _bfd_elf_swap_verdaux_in (output_bfd,
3710 (Elf_External_Verdaux *) p, &defaux);
3711 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3712 defaux.vda_name);
3713 _bfd_elf_swap_verdaux_out (output_bfd,
3714 &defaux, (Elf_External_Verdaux *) p);
3715 p += sizeof (Elf_External_Verdaux);
3716 }
3717 }
3718 while (def.vd_next);
3719 }
3720
3721 /* Adjust version references. */
3722 if (elf_tdata (output_bfd)->verref)
3723 {
3724 asection *s;
3725 bfd_byte *p;
3726 size_t i;
3727 Elf_Internal_Verneed need;
3728 Elf_Internal_Vernaux needaux;
3729
3730 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3731 p = s->contents;
3732 do
3733 {
3734 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3735 &need);
3736 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3737 _bfd_elf_swap_verneed_out (output_bfd, &need,
3738 (Elf_External_Verneed *) p);
3739 p += sizeof (Elf_External_Verneed);
3740 for (i = 0; i < need.vn_cnt; ++i)
3741 {
3742 _bfd_elf_swap_vernaux_in (output_bfd,
3743 (Elf_External_Vernaux *) p, &needaux);
3744 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3745 needaux.vna_name);
3746 _bfd_elf_swap_vernaux_out (output_bfd,
3747 &needaux,
3748 (Elf_External_Vernaux *) p);
3749 p += sizeof (Elf_External_Vernaux);
3750 }
3751 }
3752 while (need.vn_next);
3753 }
3754
3755 return TRUE;
3756 }
3757 \f
3758 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3759 The default is to only match when the INPUT and OUTPUT are exactly
3760 the same target. */
3761
3762 bfd_boolean
3763 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3764 const bfd_target *output)
3765 {
3766 return input == output;
3767 }
3768
3769 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3770 This version is used when different targets for the same architecture
3771 are virtually identical. */
3772
3773 bfd_boolean
3774 _bfd_elf_relocs_compatible (const bfd_target *input,
3775 const bfd_target *output)
3776 {
3777 const struct elf_backend_data *obed, *ibed;
3778
3779 if (input == output)
3780 return TRUE;
3781
3782 ibed = xvec_get_elf_backend_data (input);
3783 obed = xvec_get_elf_backend_data (output);
3784
3785 if (ibed->arch != obed->arch)
3786 return FALSE;
3787
3788 /* If both backends are using this function, deem them compatible. */
3789 return ibed->relocs_compatible == obed->relocs_compatible;
3790 }
3791
3792 /* Make a special call to the linker "notice" function to tell it that
3793 we are about to handle an as-needed lib, or have finished
3794 processing the lib. */
3795
3796 bfd_boolean
3797 _bfd_elf_notice_as_needed (bfd *ibfd,
3798 struct bfd_link_info *info,
3799 enum notice_asneeded_action act)
3800 {
3801 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3802 }
3803
3804 /* Check relocations an ELF object file. */
3805
3806 bfd_boolean
3807 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3808 {
3809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3810 struct elf_link_hash_table *htab = elf_hash_table (info);
3811
3812 /* If this object is the same format as the output object, and it is
3813 not a shared library, then let the backend look through the
3814 relocs.
3815
3816 This is required to build global offset table entries and to
3817 arrange for dynamic relocs. It is not required for the
3818 particular common case of linking non PIC code, even when linking
3819 against shared libraries, but unfortunately there is no way of
3820 knowing whether an object file has been compiled PIC or not.
3821 Looking through the relocs is not particularly time consuming.
3822 The problem is that we must either (1) keep the relocs in memory,
3823 which causes the linker to require additional runtime memory or
3824 (2) read the relocs twice from the input file, which wastes time.
3825 This would be a good case for using mmap.
3826
3827 I have no idea how to handle linking PIC code into a file of a
3828 different format. It probably can't be done. */
3829 if ((abfd->flags & DYNAMIC) == 0
3830 && is_elf_hash_table (htab)
3831 && bed->check_relocs != NULL
3832 && elf_object_id (abfd) == elf_hash_table_id (htab)
3833 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3834 {
3835 asection *o;
3836
3837 for (o = abfd->sections; o != NULL; o = o->next)
3838 {
3839 Elf_Internal_Rela *internal_relocs;
3840 bfd_boolean ok;
3841
3842 /* Don't check relocations in excluded sections. */
3843 if ((o->flags & SEC_RELOC) == 0
3844 || (o->flags & SEC_EXCLUDE) != 0
3845 || o->reloc_count == 0
3846 || ((info->strip == strip_all || info->strip == strip_debugger)
3847 && (o->flags & SEC_DEBUGGING) != 0)
3848 || bfd_is_abs_section (o->output_section))
3849 continue;
3850
3851 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3852 info->keep_memory);
3853 if (internal_relocs == NULL)
3854 return FALSE;
3855
3856 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3857
3858 if (elf_section_data (o)->relocs != internal_relocs)
3859 free (internal_relocs);
3860
3861 if (! ok)
3862 return FALSE;
3863 }
3864 }
3865
3866 return TRUE;
3867 }
3868
3869 /* Add symbols from an ELF object file to the linker hash table. */
3870
3871 static bfd_boolean
3872 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3873 {
3874 Elf_Internal_Ehdr *ehdr;
3875 Elf_Internal_Shdr *hdr;
3876 size_t symcount;
3877 size_t extsymcount;
3878 size_t extsymoff;
3879 struct elf_link_hash_entry **sym_hash;
3880 bfd_boolean dynamic;
3881 Elf_External_Versym *extversym = NULL;
3882 Elf_External_Versym *extversym_end = NULL;
3883 Elf_External_Versym *ever;
3884 struct elf_link_hash_entry *weaks;
3885 struct elf_link_hash_entry **nondeflt_vers = NULL;
3886 size_t nondeflt_vers_cnt = 0;
3887 Elf_Internal_Sym *isymbuf = NULL;
3888 Elf_Internal_Sym *isym;
3889 Elf_Internal_Sym *isymend;
3890 const struct elf_backend_data *bed;
3891 bfd_boolean add_needed;
3892 struct elf_link_hash_table *htab;
3893 bfd_size_type amt;
3894 void *alloc_mark = NULL;
3895 struct bfd_hash_entry **old_table = NULL;
3896 unsigned int old_size = 0;
3897 unsigned int old_count = 0;
3898 void *old_tab = NULL;
3899 void *old_ent;
3900 struct bfd_link_hash_entry *old_undefs = NULL;
3901 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3902 void *old_strtab = NULL;
3903 size_t tabsize = 0;
3904 asection *s;
3905 bfd_boolean just_syms;
3906
3907 htab = elf_hash_table (info);
3908 bed = get_elf_backend_data (abfd);
3909
3910 if ((abfd->flags & DYNAMIC) == 0)
3911 dynamic = FALSE;
3912 else
3913 {
3914 dynamic = TRUE;
3915
3916 /* You can't use -r against a dynamic object. Also, there's no
3917 hope of using a dynamic object which does not exactly match
3918 the format of the output file. */
3919 if (bfd_link_relocatable (info)
3920 || !is_elf_hash_table (htab)
3921 || info->output_bfd->xvec != abfd->xvec)
3922 {
3923 if (bfd_link_relocatable (info))
3924 bfd_set_error (bfd_error_invalid_operation);
3925 else
3926 bfd_set_error (bfd_error_wrong_format);
3927 goto error_return;
3928 }
3929 }
3930
3931 ehdr = elf_elfheader (abfd);
3932 if (info->warn_alternate_em
3933 && bed->elf_machine_code != ehdr->e_machine
3934 && ((bed->elf_machine_alt1 != 0
3935 && ehdr->e_machine == bed->elf_machine_alt1)
3936 || (bed->elf_machine_alt2 != 0
3937 && ehdr->e_machine == bed->elf_machine_alt2)))
3938 _bfd_error_handler
3939 /* xgettext:c-format */
3940 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3941 ehdr->e_machine, abfd, bed->elf_machine_code);
3942
3943 /* As a GNU extension, any input sections which are named
3944 .gnu.warning.SYMBOL are treated as warning symbols for the given
3945 symbol. This differs from .gnu.warning sections, which generate
3946 warnings when they are included in an output file. */
3947 /* PR 12761: Also generate this warning when building shared libraries. */
3948 for (s = abfd->sections; s != NULL; s = s->next)
3949 {
3950 const char *name;
3951
3952 name = bfd_get_section_name (abfd, s);
3953 if (CONST_STRNEQ (name, ".gnu.warning."))
3954 {
3955 char *msg;
3956 bfd_size_type sz;
3957
3958 name += sizeof ".gnu.warning." - 1;
3959
3960 /* If this is a shared object, then look up the symbol
3961 in the hash table. If it is there, and it is already
3962 been defined, then we will not be using the entry
3963 from this shared object, so we don't need to warn.
3964 FIXME: If we see the definition in a regular object
3965 later on, we will warn, but we shouldn't. The only
3966 fix is to keep track of what warnings we are supposed
3967 to emit, and then handle them all at the end of the
3968 link. */
3969 if (dynamic)
3970 {
3971 struct elf_link_hash_entry *h;
3972
3973 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3974
3975 /* FIXME: What about bfd_link_hash_common? */
3976 if (h != NULL
3977 && (h->root.type == bfd_link_hash_defined
3978 || h->root.type == bfd_link_hash_defweak))
3979 continue;
3980 }
3981
3982 sz = s->size;
3983 msg = (char *) bfd_alloc (abfd, sz + 1);
3984 if (msg == NULL)
3985 goto error_return;
3986
3987 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3988 goto error_return;
3989
3990 msg[sz] = '\0';
3991
3992 if (! (_bfd_generic_link_add_one_symbol
3993 (info, abfd, name, BSF_WARNING, s, 0, msg,
3994 FALSE, bed->collect, NULL)))
3995 goto error_return;
3996
3997 if (bfd_link_executable (info))
3998 {
3999 /* Clobber the section size so that the warning does
4000 not get copied into the output file. */
4001 s->size = 0;
4002
4003 /* Also set SEC_EXCLUDE, so that symbols defined in
4004 the warning section don't get copied to the output. */
4005 s->flags |= SEC_EXCLUDE;
4006 }
4007 }
4008 }
4009
4010 just_syms = ((s = abfd->sections) != NULL
4011 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4012
4013 add_needed = TRUE;
4014 if (! dynamic)
4015 {
4016 /* If we are creating a shared library, create all the dynamic
4017 sections immediately. We need to attach them to something,
4018 so we attach them to this BFD, provided it is the right
4019 format and is not from ld --just-symbols. Always create the
4020 dynamic sections for -E/--dynamic-list. FIXME: If there
4021 are no input BFD's of the same format as the output, we can't
4022 make a shared library. */
4023 if (!just_syms
4024 && (bfd_link_pic (info)
4025 || (!bfd_link_relocatable (info)
4026 && info->nointerp
4027 && (info->export_dynamic || info->dynamic)))
4028 && is_elf_hash_table (htab)
4029 && info->output_bfd->xvec == abfd->xvec
4030 && !htab->dynamic_sections_created)
4031 {
4032 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4033 goto error_return;
4034 }
4035 }
4036 else if (!is_elf_hash_table (htab))
4037 goto error_return;
4038 else
4039 {
4040 const char *soname = NULL;
4041 char *audit = NULL;
4042 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4043 const Elf_Internal_Phdr *phdr;
4044 int ret;
4045
4046 /* ld --just-symbols and dynamic objects don't mix very well.
4047 ld shouldn't allow it. */
4048 if (just_syms)
4049 abort ();
4050
4051 /* If this dynamic lib was specified on the command line with
4052 --as-needed in effect, then we don't want to add a DT_NEEDED
4053 tag unless the lib is actually used. Similary for libs brought
4054 in by another lib's DT_NEEDED. When --no-add-needed is used
4055 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4056 any dynamic library in DT_NEEDED tags in the dynamic lib at
4057 all. */
4058 add_needed = (elf_dyn_lib_class (abfd)
4059 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4060 | DYN_NO_NEEDED)) == 0;
4061
4062 s = bfd_get_section_by_name (abfd, ".dynamic");
4063 if (s != NULL)
4064 {
4065 bfd_byte *dynbuf;
4066 bfd_byte *extdyn;
4067 unsigned int elfsec;
4068 unsigned long shlink;
4069
4070 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4071 {
4072 error_free_dyn:
4073 free (dynbuf);
4074 goto error_return;
4075 }
4076
4077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4078 if (elfsec == SHN_BAD)
4079 goto error_free_dyn;
4080 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4081
4082 for (extdyn = dynbuf;
4083 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4084 extdyn += bed->s->sizeof_dyn)
4085 {
4086 Elf_Internal_Dyn dyn;
4087
4088 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4089 if (dyn.d_tag == DT_SONAME)
4090 {
4091 unsigned int tagv = dyn.d_un.d_val;
4092 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4093 if (soname == NULL)
4094 goto error_free_dyn;
4095 }
4096 if (dyn.d_tag == DT_NEEDED)
4097 {
4098 struct bfd_link_needed_list *n, **pn;
4099 char *fnm, *anm;
4100 unsigned int tagv = dyn.d_un.d_val;
4101
4102 amt = sizeof (struct bfd_link_needed_list);
4103 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4104 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4105 if (n == NULL || fnm == NULL)
4106 goto error_free_dyn;
4107 amt = strlen (fnm) + 1;
4108 anm = (char *) bfd_alloc (abfd, amt);
4109 if (anm == NULL)
4110 goto error_free_dyn;
4111 memcpy (anm, fnm, amt);
4112 n->name = anm;
4113 n->by = abfd;
4114 n->next = NULL;
4115 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4116 ;
4117 *pn = n;
4118 }
4119 if (dyn.d_tag == DT_RUNPATH)
4120 {
4121 struct bfd_link_needed_list *n, **pn;
4122 char *fnm, *anm;
4123 unsigned int tagv = dyn.d_un.d_val;
4124
4125 amt = sizeof (struct bfd_link_needed_list);
4126 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4127 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4128 if (n == NULL || fnm == NULL)
4129 goto error_free_dyn;
4130 amt = strlen (fnm) + 1;
4131 anm = (char *) bfd_alloc (abfd, amt);
4132 if (anm == NULL)
4133 goto error_free_dyn;
4134 memcpy (anm, fnm, amt);
4135 n->name = anm;
4136 n->by = abfd;
4137 n->next = NULL;
4138 for (pn = & runpath;
4139 *pn != NULL;
4140 pn = &(*pn)->next)
4141 ;
4142 *pn = n;
4143 }
4144 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4145 if (!runpath && dyn.d_tag == DT_RPATH)
4146 {
4147 struct bfd_link_needed_list *n, **pn;
4148 char *fnm, *anm;
4149 unsigned int tagv = dyn.d_un.d_val;
4150
4151 amt = sizeof (struct bfd_link_needed_list);
4152 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4153 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4154 if (n == NULL || fnm == NULL)
4155 goto error_free_dyn;
4156 amt = strlen (fnm) + 1;
4157 anm = (char *) bfd_alloc (abfd, amt);
4158 if (anm == NULL)
4159 goto error_free_dyn;
4160 memcpy (anm, fnm, amt);
4161 n->name = anm;
4162 n->by = abfd;
4163 n->next = NULL;
4164 for (pn = & rpath;
4165 *pn != NULL;
4166 pn = &(*pn)->next)
4167 ;
4168 *pn = n;
4169 }
4170 if (dyn.d_tag == DT_AUDIT)
4171 {
4172 unsigned int tagv = dyn.d_un.d_val;
4173 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4174 }
4175 }
4176
4177 free (dynbuf);
4178 }
4179
4180 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4181 frees all more recently bfd_alloc'd blocks as well. */
4182 if (runpath)
4183 rpath = runpath;
4184
4185 if (rpath)
4186 {
4187 struct bfd_link_needed_list **pn;
4188 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4189 ;
4190 *pn = rpath;
4191 }
4192
4193 /* If we have a PT_GNU_RELRO program header, mark as read-only
4194 all sections contained fully therein. This makes relro
4195 shared library sections appear as they will at run-time. */
4196 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4197 while (phdr-- > elf_tdata (abfd)->phdr)
4198 if (phdr->p_type == PT_GNU_RELRO)
4199 {
4200 for (s = abfd->sections; s != NULL; s = s->next)
4201 if ((s->flags & SEC_ALLOC) != 0
4202 && s->vma >= phdr->p_vaddr
4203 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4204 s->flags |= SEC_READONLY;
4205 break;
4206 }
4207
4208 /* We do not want to include any of the sections in a dynamic
4209 object in the output file. We hack by simply clobbering the
4210 list of sections in the BFD. This could be handled more
4211 cleanly by, say, a new section flag; the existing
4212 SEC_NEVER_LOAD flag is not the one we want, because that one
4213 still implies that the section takes up space in the output
4214 file. */
4215 bfd_section_list_clear (abfd);
4216
4217 /* Find the name to use in a DT_NEEDED entry that refers to this
4218 object. If the object has a DT_SONAME entry, we use it.
4219 Otherwise, if the generic linker stuck something in
4220 elf_dt_name, we use that. Otherwise, we just use the file
4221 name. */
4222 if (soname == NULL || *soname == '\0')
4223 {
4224 soname = elf_dt_name (abfd);
4225 if (soname == NULL || *soname == '\0')
4226 soname = bfd_get_filename (abfd);
4227 }
4228
4229 /* Save the SONAME because sometimes the linker emulation code
4230 will need to know it. */
4231 elf_dt_name (abfd) = soname;
4232
4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4234 if (ret < 0)
4235 goto error_return;
4236
4237 /* If we have already included this dynamic object in the
4238 link, just ignore it. There is no reason to include a
4239 particular dynamic object more than once. */
4240 if (ret > 0)
4241 return TRUE;
4242
4243 /* Save the DT_AUDIT entry for the linker emulation code. */
4244 elf_dt_audit (abfd) = audit;
4245 }
4246
4247 /* If this is a dynamic object, we always link against the .dynsym
4248 symbol table, not the .symtab symbol table. The dynamic linker
4249 will only see the .dynsym symbol table, so there is no reason to
4250 look at .symtab for a dynamic object. */
4251
4252 if (! dynamic || elf_dynsymtab (abfd) == 0)
4253 hdr = &elf_tdata (abfd)->symtab_hdr;
4254 else
4255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4256
4257 symcount = hdr->sh_size / bed->s->sizeof_sym;
4258
4259 /* The sh_info field of the symtab header tells us where the
4260 external symbols start. We don't care about the local symbols at
4261 this point. */
4262 if (elf_bad_symtab (abfd))
4263 {
4264 extsymcount = symcount;
4265 extsymoff = 0;
4266 }
4267 else
4268 {
4269 extsymcount = symcount - hdr->sh_info;
4270 extsymoff = hdr->sh_info;
4271 }
4272
4273 sym_hash = elf_sym_hashes (abfd);
4274 if (extsymcount != 0)
4275 {
4276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4277 NULL, NULL, NULL);
4278 if (isymbuf == NULL)
4279 goto error_return;
4280
4281 if (sym_hash == NULL)
4282 {
4283 /* We store a pointer to the hash table entry for each
4284 external symbol. */
4285 amt = extsymcount;
4286 amt *= sizeof (struct elf_link_hash_entry *);
4287 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4288 if (sym_hash == NULL)
4289 goto error_free_sym;
4290 elf_sym_hashes (abfd) = sym_hash;
4291 }
4292 }
4293
4294 if (dynamic)
4295 {
4296 /* Read in any version definitions. */
4297 if (!_bfd_elf_slurp_version_tables (abfd,
4298 info->default_imported_symver))
4299 goto error_free_sym;
4300
4301 /* Read in the symbol versions, but don't bother to convert them
4302 to internal format. */
4303 if (elf_dynversym (abfd) != 0)
4304 {
4305 Elf_Internal_Shdr *versymhdr;
4306
4307 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4308 amt = versymhdr->sh_size;
4309 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4310 if (extversym == NULL)
4311 goto error_free_sym;
4312 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4313 || bfd_bread (extversym, amt, abfd) != amt)
4314 goto error_free_vers;
4315 extversym_end = extversym + (amt / sizeof (* extversym));
4316 }
4317 }
4318
4319 /* If we are loading an as-needed shared lib, save the symbol table
4320 state before we start adding symbols. If the lib turns out
4321 to be unneeded, restore the state. */
4322 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4323 {
4324 unsigned int i;
4325 size_t entsize;
4326
4327 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4328 {
4329 struct bfd_hash_entry *p;
4330 struct elf_link_hash_entry *h;
4331
4332 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4333 {
4334 h = (struct elf_link_hash_entry *) p;
4335 entsize += htab->root.table.entsize;
4336 if (h->root.type == bfd_link_hash_warning)
4337 entsize += htab->root.table.entsize;
4338 }
4339 }
4340
4341 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4342 old_tab = bfd_malloc (tabsize + entsize);
4343 if (old_tab == NULL)
4344 goto error_free_vers;
4345
4346 /* Remember the current objalloc pointer, so that all mem for
4347 symbols added can later be reclaimed. */
4348 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4349 if (alloc_mark == NULL)
4350 goto error_free_vers;
4351
4352 /* Make a special call to the linker "notice" function to
4353 tell it that we are about to handle an as-needed lib. */
4354 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4355 goto error_free_vers;
4356
4357 /* Clone the symbol table. Remember some pointers into the
4358 symbol table, and dynamic symbol count. */
4359 old_ent = (char *) old_tab + tabsize;
4360 memcpy (old_tab, htab->root.table.table, tabsize);
4361 old_undefs = htab->root.undefs;
4362 old_undefs_tail = htab->root.undefs_tail;
4363 old_table = htab->root.table.table;
4364 old_size = htab->root.table.size;
4365 old_count = htab->root.table.count;
4366 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4367 if (old_strtab == NULL)
4368 goto error_free_vers;
4369
4370 for (i = 0; i < htab->root.table.size; i++)
4371 {
4372 struct bfd_hash_entry *p;
4373 struct elf_link_hash_entry *h;
4374
4375 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4376 {
4377 memcpy (old_ent, p, htab->root.table.entsize);
4378 old_ent = (char *) old_ent + htab->root.table.entsize;
4379 h = (struct elf_link_hash_entry *) p;
4380 if (h->root.type == bfd_link_hash_warning)
4381 {
4382 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4383 old_ent = (char *) old_ent + htab->root.table.entsize;
4384 }
4385 }
4386 }
4387 }
4388
4389 weaks = NULL;
4390 if (extversym == NULL)
4391 ever = NULL;
4392 else if (extversym + extsymoff < extversym_end)
4393 ever = extversym + extsymoff;
4394 else
4395 {
4396 /* xgettext:c-format */
4397 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4398 abfd, (long) extsymoff,
4399 (long) (extversym_end - extversym) / sizeof (* extversym));
4400 bfd_set_error (bfd_error_bad_value);
4401 goto error_free_vers;
4402 }
4403
4404 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4405 isym < isymend;
4406 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4407 {
4408 int bind;
4409 bfd_vma value;
4410 asection *sec, *new_sec;
4411 flagword flags;
4412 const char *name;
4413 struct elf_link_hash_entry *h;
4414 struct elf_link_hash_entry *hi;
4415 bfd_boolean definition;
4416 bfd_boolean size_change_ok;
4417 bfd_boolean type_change_ok;
4418 bfd_boolean new_weak;
4419 bfd_boolean old_weak;
4420 bfd_boolean override;
4421 bfd_boolean common;
4422 bfd_boolean discarded;
4423 unsigned int old_alignment;
4424 bfd *old_bfd;
4425 bfd_boolean matched;
4426
4427 override = FALSE;
4428
4429 flags = BSF_NO_FLAGS;
4430 sec = NULL;
4431 value = isym->st_value;
4432 common = bed->common_definition (isym);
4433 if (common && info->inhibit_common_definition)
4434 {
4435 /* Treat common symbol as undefined for --no-define-common. */
4436 isym->st_shndx = SHN_UNDEF;
4437 common = FALSE;
4438 }
4439 discarded = FALSE;
4440
4441 bind = ELF_ST_BIND (isym->st_info);
4442 switch (bind)
4443 {
4444 case STB_LOCAL:
4445 /* This should be impossible, since ELF requires that all
4446 global symbols follow all local symbols, and that sh_info
4447 point to the first global symbol. Unfortunately, Irix 5
4448 screws this up. */
4449 if (elf_bad_symtab (abfd))
4450 continue;
4451
4452 /* If we aren't prepared to handle locals within the globals
4453 then we'll likely segfault on a NULL section. */
4454 bfd_set_error (bfd_error_bad_value);
4455 goto error_free_vers;
4456
4457 case STB_GLOBAL:
4458 if (isym->st_shndx != SHN_UNDEF && !common)
4459 flags = BSF_GLOBAL;
4460 break;
4461
4462 case STB_WEAK:
4463 flags = BSF_WEAK;
4464 break;
4465
4466 case STB_GNU_UNIQUE:
4467 flags = BSF_GNU_UNIQUE;
4468 break;
4469
4470 default:
4471 /* Leave it up to the processor backend. */
4472 break;
4473 }
4474
4475 if (isym->st_shndx == SHN_UNDEF)
4476 sec = bfd_und_section_ptr;
4477 else if (isym->st_shndx == SHN_ABS)
4478 sec = bfd_abs_section_ptr;
4479 else if (isym->st_shndx == SHN_COMMON)
4480 {
4481 sec = bfd_com_section_ptr;
4482 /* What ELF calls the size we call the value. What ELF
4483 calls the value we call the alignment. */
4484 value = isym->st_size;
4485 }
4486 else
4487 {
4488 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4489 if (sec == NULL)
4490 sec = bfd_abs_section_ptr;
4491 else if (discarded_section (sec))
4492 {
4493 /* Symbols from discarded section are undefined. We keep
4494 its visibility. */
4495 sec = bfd_und_section_ptr;
4496 discarded = TRUE;
4497 isym->st_shndx = SHN_UNDEF;
4498 }
4499 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4500 value -= sec->vma;
4501 }
4502
4503 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4504 isym->st_name);
4505 if (name == NULL)
4506 goto error_free_vers;
4507
4508 if (isym->st_shndx == SHN_COMMON
4509 && (abfd->flags & BFD_PLUGIN) != 0)
4510 {
4511 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4512
4513 if (xc == NULL)
4514 {
4515 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4516 | SEC_EXCLUDE);
4517 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4518 if (xc == NULL)
4519 goto error_free_vers;
4520 }
4521 sec = xc;
4522 }
4523 else if (isym->st_shndx == SHN_COMMON
4524 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4525 && !bfd_link_relocatable (info))
4526 {
4527 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4528
4529 if (tcomm == NULL)
4530 {
4531 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4532 | SEC_LINKER_CREATED);
4533 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4534 if (tcomm == NULL)
4535 goto error_free_vers;
4536 }
4537 sec = tcomm;
4538 }
4539 else if (bed->elf_add_symbol_hook)
4540 {
4541 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4542 &sec, &value))
4543 goto error_free_vers;
4544
4545 /* The hook function sets the name to NULL if this symbol
4546 should be skipped for some reason. */
4547 if (name == NULL)
4548 continue;
4549 }
4550
4551 /* Sanity check that all possibilities were handled. */
4552 if (sec == NULL)
4553 {
4554 bfd_set_error (bfd_error_bad_value);
4555 goto error_free_vers;
4556 }
4557
4558 /* Silently discard TLS symbols from --just-syms. There's
4559 no way to combine a static TLS block with a new TLS block
4560 for this executable. */
4561 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4562 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4563 continue;
4564
4565 if (bfd_is_und_section (sec)
4566 || bfd_is_com_section (sec))
4567 definition = FALSE;
4568 else
4569 definition = TRUE;
4570
4571 size_change_ok = FALSE;
4572 type_change_ok = bed->type_change_ok;
4573 old_weak = FALSE;
4574 matched = FALSE;
4575 old_alignment = 0;
4576 old_bfd = NULL;
4577 new_sec = sec;
4578
4579 if (is_elf_hash_table (htab))
4580 {
4581 Elf_Internal_Versym iver;
4582 unsigned int vernum = 0;
4583 bfd_boolean skip;
4584
4585 if (ever == NULL)
4586 {
4587 if (info->default_imported_symver)
4588 /* Use the default symbol version created earlier. */
4589 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4590 else
4591 iver.vs_vers = 0;
4592 }
4593 else if (ever >= extversym_end)
4594 {
4595 /* xgettext:c-format */
4596 _bfd_error_handler (_("%pB: not enough version information"),
4597 abfd);
4598 bfd_set_error (bfd_error_bad_value);
4599 goto error_free_vers;
4600 }
4601 else
4602 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4603
4604 vernum = iver.vs_vers & VERSYM_VERSION;
4605
4606 /* If this is a hidden symbol, or if it is not version
4607 1, we append the version name to the symbol name.
4608 However, we do not modify a non-hidden absolute symbol
4609 if it is not a function, because it might be the version
4610 symbol itself. FIXME: What if it isn't? */
4611 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4612 || (vernum > 1
4613 && (!bfd_is_abs_section (sec)
4614 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4615 {
4616 const char *verstr;
4617 size_t namelen, verlen, newlen;
4618 char *newname, *p;
4619
4620 if (isym->st_shndx != SHN_UNDEF)
4621 {
4622 if (vernum > elf_tdata (abfd)->cverdefs)
4623 verstr = NULL;
4624 else if (vernum > 1)
4625 verstr =
4626 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4627 else
4628 verstr = "";
4629
4630 if (verstr == NULL)
4631 {
4632 _bfd_error_handler
4633 /* xgettext:c-format */
4634 (_("%pB: %s: invalid version %u (max %d)"),
4635 abfd, name, vernum,
4636 elf_tdata (abfd)->cverdefs);
4637 bfd_set_error (bfd_error_bad_value);
4638 goto error_free_vers;
4639 }
4640 }
4641 else
4642 {
4643 /* We cannot simply test for the number of
4644 entries in the VERNEED section since the
4645 numbers for the needed versions do not start
4646 at 0. */
4647 Elf_Internal_Verneed *t;
4648
4649 verstr = NULL;
4650 for (t = elf_tdata (abfd)->verref;
4651 t != NULL;
4652 t = t->vn_nextref)
4653 {
4654 Elf_Internal_Vernaux *a;
4655
4656 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4657 {
4658 if (a->vna_other == vernum)
4659 {
4660 verstr = a->vna_nodename;
4661 break;
4662 }
4663 }
4664 if (a != NULL)
4665 break;
4666 }
4667 if (verstr == NULL)
4668 {
4669 _bfd_error_handler
4670 /* xgettext:c-format */
4671 (_("%pB: %s: invalid needed version %d"),
4672 abfd, name, vernum);
4673 bfd_set_error (bfd_error_bad_value);
4674 goto error_free_vers;
4675 }
4676 }
4677
4678 namelen = strlen (name);
4679 verlen = strlen (verstr);
4680 newlen = namelen + verlen + 2;
4681 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4682 && isym->st_shndx != SHN_UNDEF)
4683 ++newlen;
4684
4685 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4686 if (newname == NULL)
4687 goto error_free_vers;
4688 memcpy (newname, name, namelen);
4689 p = newname + namelen;
4690 *p++ = ELF_VER_CHR;
4691 /* If this is a defined non-hidden version symbol,
4692 we add another @ to the name. This indicates the
4693 default version of the symbol. */
4694 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4695 && isym->st_shndx != SHN_UNDEF)
4696 *p++ = ELF_VER_CHR;
4697 memcpy (p, verstr, verlen + 1);
4698
4699 name = newname;
4700 }
4701
4702 /* If this symbol has default visibility and the user has
4703 requested we not re-export it, then mark it as hidden. */
4704 if (!bfd_is_und_section (sec)
4705 && !dynamic
4706 && abfd->no_export
4707 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4708 isym->st_other = (STV_HIDDEN
4709 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4710
4711 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4712 sym_hash, &old_bfd, &old_weak,
4713 &old_alignment, &skip, &override,
4714 &type_change_ok, &size_change_ok,
4715 &matched))
4716 goto error_free_vers;
4717
4718 if (skip)
4719 continue;
4720
4721 /* Override a definition only if the new symbol matches the
4722 existing one. */
4723 if (override && matched)
4724 definition = FALSE;
4725
4726 h = *sym_hash;
4727 while (h->root.type == bfd_link_hash_indirect
4728 || h->root.type == bfd_link_hash_warning)
4729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4730
4731 if (elf_tdata (abfd)->verdef != NULL
4732 && vernum > 1
4733 && definition)
4734 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4735 }
4736
4737 if (! (_bfd_generic_link_add_one_symbol
4738 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4739 (struct bfd_link_hash_entry **) sym_hash)))
4740 goto error_free_vers;
4741
4742 h = *sym_hash;
4743 /* We need to make sure that indirect symbol dynamic flags are
4744 updated. */
4745 hi = h;
4746 while (h->root.type == bfd_link_hash_indirect
4747 || h->root.type == bfd_link_hash_warning)
4748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4749
4750 /* Setting the index to -3 tells elf_link_output_extsym that
4751 this symbol is defined in a discarded section. */
4752 if (discarded)
4753 h->indx = -3;
4754
4755 *sym_hash = h;
4756
4757 new_weak = (flags & BSF_WEAK) != 0;
4758 if (dynamic
4759 && definition
4760 && new_weak
4761 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4762 && is_elf_hash_table (htab)
4763 && h->u.alias == NULL)
4764 {
4765 /* Keep a list of all weak defined non function symbols from
4766 a dynamic object, using the alias field. Later in this
4767 function we will set the alias field to the correct
4768 value. We only put non-function symbols from dynamic
4769 objects on this list, because that happens to be the only
4770 time we need to know the normal symbol corresponding to a
4771 weak symbol, and the information is time consuming to
4772 figure out. If the alias field is not already NULL,
4773 then this symbol was already defined by some previous
4774 dynamic object, and we will be using that previous
4775 definition anyhow. */
4776
4777 h->u.alias = weaks;
4778 weaks = h;
4779 }
4780
4781 /* Set the alignment of a common symbol. */
4782 if ((common || bfd_is_com_section (sec))
4783 && h->root.type == bfd_link_hash_common)
4784 {
4785 unsigned int align;
4786
4787 if (common)
4788 align = bfd_log2 (isym->st_value);
4789 else
4790 {
4791 /* The new symbol is a common symbol in a shared object.
4792 We need to get the alignment from the section. */
4793 align = new_sec->alignment_power;
4794 }
4795 if (align > old_alignment)
4796 h->root.u.c.p->alignment_power = align;
4797 else
4798 h->root.u.c.p->alignment_power = old_alignment;
4799 }
4800
4801 if (is_elf_hash_table (htab))
4802 {
4803 /* Set a flag in the hash table entry indicating the type of
4804 reference or definition we just found. A dynamic symbol
4805 is one which is referenced or defined by both a regular
4806 object and a shared object. */
4807 bfd_boolean dynsym = FALSE;
4808
4809 /* Plugin symbols aren't normal. Don't set def_regular or
4810 ref_regular for them, or make them dynamic. */
4811 if ((abfd->flags & BFD_PLUGIN) != 0)
4812 ;
4813 else if (! dynamic)
4814 {
4815 if (! definition)
4816 {
4817 h->ref_regular = 1;
4818 if (bind != STB_WEAK)
4819 h->ref_regular_nonweak = 1;
4820 }
4821 else
4822 {
4823 h->def_regular = 1;
4824 if (h->def_dynamic)
4825 {
4826 h->def_dynamic = 0;
4827 h->ref_dynamic = 1;
4828 }
4829 }
4830
4831 /* If the indirect symbol has been forced local, don't
4832 make the real symbol dynamic. */
4833 if ((h == hi || !hi->forced_local)
4834 && (bfd_link_dll (info)
4835 || h->def_dynamic
4836 || h->ref_dynamic))
4837 dynsym = TRUE;
4838 }
4839 else
4840 {
4841 if (! definition)
4842 {
4843 h->ref_dynamic = 1;
4844 hi->ref_dynamic = 1;
4845 }
4846 else
4847 {
4848 h->def_dynamic = 1;
4849 hi->def_dynamic = 1;
4850 }
4851
4852 /* If the indirect symbol has been forced local, don't
4853 make the real symbol dynamic. */
4854 if ((h == hi || !hi->forced_local)
4855 && (h->def_regular
4856 || h->ref_regular
4857 || (h->is_weakalias
4858 && weakdef (h)->dynindx != -1)))
4859 dynsym = TRUE;
4860 }
4861
4862 /* Check to see if we need to add an indirect symbol for
4863 the default name. */
4864 if (definition
4865 || (!override && h->root.type == bfd_link_hash_common))
4866 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4867 sec, value, &old_bfd, &dynsym))
4868 goto error_free_vers;
4869
4870 /* Check the alignment when a common symbol is involved. This
4871 can change when a common symbol is overridden by a normal
4872 definition or a common symbol is ignored due to the old
4873 normal definition. We need to make sure the maximum
4874 alignment is maintained. */
4875 if ((old_alignment || common)
4876 && h->root.type != bfd_link_hash_common)
4877 {
4878 unsigned int common_align;
4879 unsigned int normal_align;
4880 unsigned int symbol_align;
4881 bfd *normal_bfd;
4882 bfd *common_bfd;
4883
4884 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4885 || h->root.type == bfd_link_hash_defweak);
4886
4887 symbol_align = ffs (h->root.u.def.value) - 1;
4888 if (h->root.u.def.section->owner != NULL
4889 && (h->root.u.def.section->owner->flags
4890 & (DYNAMIC | BFD_PLUGIN)) == 0)
4891 {
4892 normal_align = h->root.u.def.section->alignment_power;
4893 if (normal_align > symbol_align)
4894 normal_align = symbol_align;
4895 }
4896 else
4897 normal_align = symbol_align;
4898
4899 if (old_alignment)
4900 {
4901 common_align = old_alignment;
4902 common_bfd = old_bfd;
4903 normal_bfd = abfd;
4904 }
4905 else
4906 {
4907 common_align = bfd_log2 (isym->st_value);
4908 common_bfd = abfd;
4909 normal_bfd = old_bfd;
4910 }
4911
4912 if (normal_align < common_align)
4913 {
4914 /* PR binutils/2735 */
4915 if (normal_bfd == NULL)
4916 _bfd_error_handler
4917 /* xgettext:c-format */
4918 (_("warning: alignment %u of common symbol `%s' in %pB is"
4919 " greater than the alignment (%u) of its section %pA"),
4920 1 << common_align, name, common_bfd,
4921 1 << normal_align, h->root.u.def.section);
4922 else
4923 _bfd_error_handler
4924 /* xgettext:c-format */
4925 (_("warning: alignment %u of symbol `%s' in %pB"
4926 " is smaller than %u in %pB"),
4927 1 << normal_align, name, normal_bfd,
4928 1 << common_align, common_bfd);
4929 }
4930 }
4931
4932 /* Remember the symbol size if it isn't undefined. */
4933 if (isym->st_size != 0
4934 && isym->st_shndx != SHN_UNDEF
4935 && (definition || h->size == 0))
4936 {
4937 if (h->size != 0
4938 && h->size != isym->st_size
4939 && ! size_change_ok)
4940 _bfd_error_handler
4941 /* xgettext:c-format */
4942 (_("warning: size of symbol `%s' changed"
4943 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4944 name, (uint64_t) h->size, old_bfd,
4945 (uint64_t) isym->st_size, abfd);
4946
4947 h->size = isym->st_size;
4948 }
4949
4950 /* If this is a common symbol, then we always want H->SIZE
4951 to be the size of the common symbol. The code just above
4952 won't fix the size if a common symbol becomes larger. We
4953 don't warn about a size change here, because that is
4954 covered by --warn-common. Allow changes between different
4955 function types. */
4956 if (h->root.type == bfd_link_hash_common)
4957 h->size = h->root.u.c.size;
4958
4959 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4960 && ((definition && !new_weak)
4961 || (old_weak && h->root.type == bfd_link_hash_common)
4962 || h->type == STT_NOTYPE))
4963 {
4964 unsigned int type = ELF_ST_TYPE (isym->st_info);
4965
4966 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4967 symbol. */
4968 if (type == STT_GNU_IFUNC
4969 && (abfd->flags & DYNAMIC) != 0)
4970 type = STT_FUNC;
4971
4972 if (h->type != type)
4973 {
4974 if (h->type != STT_NOTYPE && ! type_change_ok)
4975 /* xgettext:c-format */
4976 _bfd_error_handler
4977 (_("warning: type of symbol `%s' changed"
4978 " from %d to %d in %pB"),
4979 name, h->type, type, abfd);
4980
4981 h->type = type;
4982 }
4983 }
4984
4985 /* Merge st_other field. */
4986 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4987
4988 /* We don't want to make debug symbol dynamic. */
4989 if (definition
4990 && (sec->flags & SEC_DEBUGGING)
4991 && !bfd_link_relocatable (info))
4992 dynsym = FALSE;
4993
4994 /* Nor should we make plugin symbols dynamic. */
4995 if ((abfd->flags & BFD_PLUGIN) != 0)
4996 dynsym = FALSE;
4997
4998 if (definition)
4999 {
5000 h->target_internal = isym->st_target_internal;
5001 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5002 }
5003
5004 if (definition && !dynamic)
5005 {
5006 char *p = strchr (name, ELF_VER_CHR);
5007 if (p != NULL && p[1] != ELF_VER_CHR)
5008 {
5009 /* Queue non-default versions so that .symver x, x@FOO
5010 aliases can be checked. */
5011 if (!nondeflt_vers)
5012 {
5013 amt = ((isymend - isym + 1)
5014 * sizeof (struct elf_link_hash_entry *));
5015 nondeflt_vers
5016 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5017 if (!nondeflt_vers)
5018 goto error_free_vers;
5019 }
5020 nondeflt_vers[nondeflt_vers_cnt++] = h;
5021 }
5022 }
5023
5024 if (dynsym && h->dynindx == -1)
5025 {
5026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5027 goto error_free_vers;
5028 if (h->is_weakalias
5029 && weakdef (h)->dynindx == -1)
5030 {
5031 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5032 goto error_free_vers;
5033 }
5034 }
5035 else if (h->dynindx != -1)
5036 /* If the symbol already has a dynamic index, but
5037 visibility says it should not be visible, turn it into
5038 a local symbol. */
5039 switch (ELF_ST_VISIBILITY (h->other))
5040 {
5041 case STV_INTERNAL:
5042 case STV_HIDDEN:
5043 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5044 dynsym = FALSE;
5045 break;
5046 }
5047
5048 /* Don't add DT_NEEDED for references from the dummy bfd nor
5049 for unmatched symbol. */
5050 if (!add_needed
5051 && matched
5052 && definition
5053 && ((dynsym
5054 && h->ref_regular_nonweak
5055 && (old_bfd == NULL
5056 || (old_bfd->flags & BFD_PLUGIN) == 0))
5057 || (h->ref_dynamic_nonweak
5058 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5059 && !on_needed_list (elf_dt_name (abfd),
5060 htab->needed, NULL))))
5061 {
5062 int ret;
5063 const char *soname = elf_dt_name (abfd);
5064
5065 info->callbacks->minfo ("%!", soname, old_bfd,
5066 h->root.root.string);
5067
5068 /* A symbol from a library loaded via DT_NEEDED of some
5069 other library is referenced by a regular object.
5070 Add a DT_NEEDED entry for it. Issue an error if
5071 --no-add-needed is used and the reference was not
5072 a weak one. */
5073 if (old_bfd != NULL
5074 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5075 {
5076 _bfd_error_handler
5077 /* xgettext:c-format */
5078 (_("%pB: undefined reference to symbol '%s'"),
5079 old_bfd, name);
5080 bfd_set_error (bfd_error_missing_dso);
5081 goto error_free_vers;
5082 }
5083
5084 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5085 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5086
5087 add_needed = TRUE;
5088 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5089 if (ret < 0)
5090 goto error_free_vers;
5091
5092 BFD_ASSERT (ret == 0);
5093 }
5094 }
5095 }
5096
5097 if (info->lto_plugin_active
5098 && !bfd_link_relocatable (info)
5099 && (abfd->flags & BFD_PLUGIN) == 0
5100 && !just_syms
5101 && extsymcount)
5102 {
5103 int r_sym_shift;
5104
5105 if (bed->s->arch_size == 32)
5106 r_sym_shift = 8;
5107 else
5108 r_sym_shift = 32;
5109
5110 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5111 referenced in regular objects so that linker plugin will get
5112 the correct symbol resolution. */
5113
5114 sym_hash = elf_sym_hashes (abfd);
5115 for (s = abfd->sections; s != NULL; s = s->next)
5116 {
5117 Elf_Internal_Rela *internal_relocs;
5118 Elf_Internal_Rela *rel, *relend;
5119
5120 /* Don't check relocations in excluded sections. */
5121 if ((s->flags & SEC_RELOC) == 0
5122 || s->reloc_count == 0
5123 || (s->flags & SEC_EXCLUDE) != 0
5124 || ((info->strip == strip_all
5125 || info->strip == strip_debugger)
5126 && (s->flags & SEC_DEBUGGING) != 0))
5127 continue;
5128
5129 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5130 NULL,
5131 info->keep_memory);
5132 if (internal_relocs == NULL)
5133 goto error_free_vers;
5134
5135 rel = internal_relocs;
5136 relend = rel + s->reloc_count;
5137 for ( ; rel < relend; rel++)
5138 {
5139 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5140 struct elf_link_hash_entry *h;
5141
5142 /* Skip local symbols. */
5143 if (r_symndx < extsymoff)
5144 continue;
5145
5146 h = sym_hash[r_symndx - extsymoff];
5147 if (h != NULL)
5148 h->root.non_ir_ref_regular = 1;
5149 }
5150
5151 if (elf_section_data (s)->relocs != internal_relocs)
5152 free (internal_relocs);
5153 }
5154 }
5155
5156 if (extversym != NULL)
5157 {
5158 free (extversym);
5159 extversym = NULL;
5160 }
5161
5162 if (isymbuf != NULL)
5163 {
5164 free (isymbuf);
5165 isymbuf = NULL;
5166 }
5167
5168 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5169 {
5170 unsigned int i;
5171
5172 /* Restore the symbol table. */
5173 old_ent = (char *) old_tab + tabsize;
5174 memset (elf_sym_hashes (abfd), 0,
5175 extsymcount * sizeof (struct elf_link_hash_entry *));
5176 htab->root.table.table = old_table;
5177 htab->root.table.size = old_size;
5178 htab->root.table.count = old_count;
5179 memcpy (htab->root.table.table, old_tab, tabsize);
5180 htab->root.undefs = old_undefs;
5181 htab->root.undefs_tail = old_undefs_tail;
5182 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5183 free (old_strtab);
5184 old_strtab = NULL;
5185 for (i = 0; i < htab->root.table.size; i++)
5186 {
5187 struct bfd_hash_entry *p;
5188 struct elf_link_hash_entry *h;
5189 bfd_size_type size;
5190 unsigned int alignment_power;
5191 unsigned int non_ir_ref_dynamic;
5192
5193 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5194 {
5195 h = (struct elf_link_hash_entry *) p;
5196 if (h->root.type == bfd_link_hash_warning)
5197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5198
5199 /* Preserve the maximum alignment and size for common
5200 symbols even if this dynamic lib isn't on DT_NEEDED
5201 since it can still be loaded at run time by another
5202 dynamic lib. */
5203 if (h->root.type == bfd_link_hash_common)
5204 {
5205 size = h->root.u.c.size;
5206 alignment_power = h->root.u.c.p->alignment_power;
5207 }
5208 else
5209 {
5210 size = 0;
5211 alignment_power = 0;
5212 }
5213 /* Preserve non_ir_ref_dynamic so that this symbol
5214 will be exported when the dynamic lib becomes needed
5215 in the second pass. */
5216 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5217 memcpy (p, old_ent, htab->root.table.entsize);
5218 old_ent = (char *) old_ent + htab->root.table.entsize;
5219 h = (struct elf_link_hash_entry *) p;
5220 if (h->root.type == bfd_link_hash_warning)
5221 {
5222 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5223 old_ent = (char *) old_ent + htab->root.table.entsize;
5224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5225 }
5226 if (h->root.type == bfd_link_hash_common)
5227 {
5228 if (size > h->root.u.c.size)
5229 h->root.u.c.size = size;
5230 if (alignment_power > h->root.u.c.p->alignment_power)
5231 h->root.u.c.p->alignment_power = alignment_power;
5232 }
5233 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5234 }
5235 }
5236
5237 /* Make a special call to the linker "notice" function to
5238 tell it that symbols added for crefs may need to be removed. */
5239 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5240 goto error_free_vers;
5241
5242 free (old_tab);
5243 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5244 alloc_mark);
5245 if (nondeflt_vers != NULL)
5246 free (nondeflt_vers);
5247 return TRUE;
5248 }
5249
5250 if (old_tab != NULL)
5251 {
5252 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5253 goto error_free_vers;
5254 free (old_tab);
5255 old_tab = NULL;
5256 }
5257
5258 /* Now that all the symbols from this input file are created, if
5259 not performing a relocatable link, handle .symver foo, foo@BAR
5260 such that any relocs against foo become foo@BAR. */
5261 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5262 {
5263 size_t cnt, symidx;
5264
5265 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5266 {
5267 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5268 char *shortname, *p;
5269
5270 p = strchr (h->root.root.string, ELF_VER_CHR);
5271 if (p == NULL
5272 || (h->root.type != bfd_link_hash_defined
5273 && h->root.type != bfd_link_hash_defweak))
5274 continue;
5275
5276 amt = p - h->root.root.string;
5277 shortname = (char *) bfd_malloc (amt + 1);
5278 if (!shortname)
5279 goto error_free_vers;
5280 memcpy (shortname, h->root.root.string, amt);
5281 shortname[amt] = '\0';
5282
5283 hi = (struct elf_link_hash_entry *)
5284 bfd_link_hash_lookup (&htab->root, shortname,
5285 FALSE, FALSE, FALSE);
5286 if (hi != NULL
5287 && hi->root.type == h->root.type
5288 && hi->root.u.def.value == h->root.u.def.value
5289 && hi->root.u.def.section == h->root.u.def.section)
5290 {
5291 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5292 hi->root.type = bfd_link_hash_indirect;
5293 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5294 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5295 sym_hash = elf_sym_hashes (abfd);
5296 if (sym_hash)
5297 for (symidx = 0; symidx < extsymcount; ++symidx)
5298 if (sym_hash[symidx] == hi)
5299 {
5300 sym_hash[symidx] = h;
5301 break;
5302 }
5303 }
5304 free (shortname);
5305 }
5306 free (nondeflt_vers);
5307 nondeflt_vers = NULL;
5308 }
5309
5310 /* Now set the alias field correctly for all the weak defined
5311 symbols we found. The only way to do this is to search all the
5312 symbols. Since we only need the information for non functions in
5313 dynamic objects, that's the only time we actually put anything on
5314 the list WEAKS. We need this information so that if a regular
5315 object refers to a symbol defined weakly in a dynamic object, the
5316 real symbol in the dynamic object is also put in the dynamic
5317 symbols; we also must arrange for both symbols to point to the
5318 same memory location. We could handle the general case of symbol
5319 aliasing, but a general symbol alias can only be generated in
5320 assembler code, handling it correctly would be very time
5321 consuming, and other ELF linkers don't handle general aliasing
5322 either. */
5323 if (weaks != NULL)
5324 {
5325 struct elf_link_hash_entry **hpp;
5326 struct elf_link_hash_entry **hppend;
5327 struct elf_link_hash_entry **sorted_sym_hash;
5328 struct elf_link_hash_entry *h;
5329 size_t sym_count;
5330
5331 /* Since we have to search the whole symbol list for each weak
5332 defined symbol, search time for N weak defined symbols will be
5333 O(N^2). Binary search will cut it down to O(NlogN). */
5334 amt = extsymcount;
5335 amt *= sizeof (struct elf_link_hash_entry *);
5336 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5337 if (sorted_sym_hash == NULL)
5338 goto error_return;
5339 sym_hash = sorted_sym_hash;
5340 hpp = elf_sym_hashes (abfd);
5341 hppend = hpp + extsymcount;
5342 sym_count = 0;
5343 for (; hpp < hppend; hpp++)
5344 {
5345 h = *hpp;
5346 if (h != NULL
5347 && h->root.type == bfd_link_hash_defined
5348 && !bed->is_function_type (h->type))
5349 {
5350 *sym_hash = h;
5351 sym_hash++;
5352 sym_count++;
5353 }
5354 }
5355
5356 qsort (sorted_sym_hash, sym_count,
5357 sizeof (struct elf_link_hash_entry *),
5358 elf_sort_symbol);
5359
5360 while (weaks != NULL)
5361 {
5362 struct elf_link_hash_entry *hlook;
5363 asection *slook;
5364 bfd_vma vlook;
5365 size_t i, j, idx = 0;
5366
5367 hlook = weaks;
5368 weaks = hlook->u.alias;
5369 hlook->u.alias = NULL;
5370
5371 if (hlook->root.type != bfd_link_hash_defined
5372 && hlook->root.type != bfd_link_hash_defweak)
5373 continue;
5374
5375 slook = hlook->root.u.def.section;
5376 vlook = hlook->root.u.def.value;
5377
5378 i = 0;
5379 j = sym_count;
5380 while (i != j)
5381 {
5382 bfd_signed_vma vdiff;
5383 idx = (i + j) / 2;
5384 h = sorted_sym_hash[idx];
5385 vdiff = vlook - h->root.u.def.value;
5386 if (vdiff < 0)
5387 j = idx;
5388 else if (vdiff > 0)
5389 i = idx + 1;
5390 else
5391 {
5392 int sdiff = slook->id - h->root.u.def.section->id;
5393 if (sdiff < 0)
5394 j = idx;
5395 else if (sdiff > 0)
5396 i = idx + 1;
5397 else
5398 break;
5399 }
5400 }
5401
5402 /* We didn't find a value/section match. */
5403 if (i == j)
5404 continue;
5405
5406 /* With multiple aliases, or when the weak symbol is already
5407 strongly defined, we have multiple matching symbols and
5408 the binary search above may land on any of them. Step
5409 one past the matching symbol(s). */
5410 while (++idx != j)
5411 {
5412 h = sorted_sym_hash[idx];
5413 if (h->root.u.def.section != slook
5414 || h->root.u.def.value != vlook)
5415 break;
5416 }
5417
5418 /* Now look back over the aliases. Since we sorted by size
5419 as well as value and section, we'll choose the one with
5420 the largest size. */
5421 while (idx-- != i)
5422 {
5423 h = sorted_sym_hash[idx];
5424
5425 /* Stop if value or section doesn't match. */
5426 if (h->root.u.def.section != slook
5427 || h->root.u.def.value != vlook)
5428 break;
5429 else if (h != hlook)
5430 {
5431 struct elf_link_hash_entry *t;
5432
5433 hlook->u.alias = h;
5434 hlook->is_weakalias = 1;
5435 t = h;
5436 if (t->u.alias != NULL)
5437 while (t->u.alias != h)
5438 t = t->u.alias;
5439 t->u.alias = hlook;
5440
5441 /* If the weak definition is in the list of dynamic
5442 symbols, make sure the real definition is put
5443 there as well. */
5444 if (hlook->dynindx != -1 && h->dynindx == -1)
5445 {
5446 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5447 {
5448 err_free_sym_hash:
5449 free (sorted_sym_hash);
5450 goto error_return;
5451 }
5452 }
5453
5454 /* If the real definition is in the list of dynamic
5455 symbols, make sure the weak definition is put
5456 there as well. If we don't do this, then the
5457 dynamic loader might not merge the entries for the
5458 real definition and the weak definition. */
5459 if (h->dynindx != -1 && hlook->dynindx == -1)
5460 {
5461 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5462 goto err_free_sym_hash;
5463 }
5464 break;
5465 }
5466 }
5467 }
5468
5469 free (sorted_sym_hash);
5470 }
5471
5472 if (bed->check_directives
5473 && !(*bed->check_directives) (abfd, info))
5474 return FALSE;
5475
5476 /* If this is a non-traditional link, try to optimize the handling
5477 of the .stab/.stabstr sections. */
5478 if (! dynamic
5479 && ! info->traditional_format
5480 && is_elf_hash_table (htab)
5481 && (info->strip != strip_all && info->strip != strip_debugger))
5482 {
5483 asection *stabstr;
5484
5485 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5486 if (stabstr != NULL)
5487 {
5488 bfd_size_type string_offset = 0;
5489 asection *stab;
5490
5491 for (stab = abfd->sections; stab; stab = stab->next)
5492 if (CONST_STRNEQ (stab->name, ".stab")
5493 && (!stab->name[5] ||
5494 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5495 && (stab->flags & SEC_MERGE) == 0
5496 && !bfd_is_abs_section (stab->output_section))
5497 {
5498 struct bfd_elf_section_data *secdata;
5499
5500 secdata = elf_section_data (stab);
5501 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5502 stabstr, &secdata->sec_info,
5503 &string_offset))
5504 goto error_return;
5505 if (secdata->sec_info)
5506 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5507 }
5508 }
5509 }
5510
5511 if (is_elf_hash_table (htab) && add_needed)
5512 {
5513 /* Add this bfd to the loaded list. */
5514 struct elf_link_loaded_list *n;
5515
5516 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5517 if (n == NULL)
5518 goto error_return;
5519 n->abfd = abfd;
5520 n->next = htab->loaded;
5521 htab->loaded = n;
5522 }
5523
5524 return TRUE;
5525
5526 error_free_vers:
5527 if (old_tab != NULL)
5528 free (old_tab);
5529 if (old_strtab != NULL)
5530 free (old_strtab);
5531 if (nondeflt_vers != NULL)
5532 free (nondeflt_vers);
5533 if (extversym != NULL)
5534 free (extversym);
5535 error_free_sym:
5536 if (isymbuf != NULL)
5537 free (isymbuf);
5538 error_return:
5539 return FALSE;
5540 }
5541
5542 /* Return the linker hash table entry of a symbol that might be
5543 satisfied by an archive symbol. Return -1 on error. */
5544
5545 struct elf_link_hash_entry *
5546 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5547 struct bfd_link_info *info,
5548 const char *name)
5549 {
5550 struct elf_link_hash_entry *h;
5551 char *p, *copy;
5552 size_t len, first;
5553
5554 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5555 if (h != NULL)
5556 return h;
5557
5558 /* If this is a default version (the name contains @@), look up the
5559 symbol again with only one `@' as well as without the version.
5560 The effect is that references to the symbol with and without the
5561 version will be matched by the default symbol in the archive. */
5562
5563 p = strchr (name, ELF_VER_CHR);
5564 if (p == NULL || p[1] != ELF_VER_CHR)
5565 return h;
5566
5567 /* First check with only one `@'. */
5568 len = strlen (name);
5569 copy = (char *) bfd_alloc (abfd, len);
5570 if (copy == NULL)
5571 return (struct elf_link_hash_entry *) -1;
5572
5573 first = p - name + 1;
5574 memcpy (copy, name, first);
5575 memcpy (copy + first, name + first + 1, len - first);
5576
5577 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5578 if (h == NULL)
5579 {
5580 /* We also need to check references to the symbol without the
5581 version. */
5582 copy[first - 1] = '\0';
5583 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5584 FALSE, FALSE, TRUE);
5585 }
5586
5587 bfd_release (abfd, copy);
5588 return h;
5589 }
5590
5591 /* Add symbols from an ELF archive file to the linker hash table. We
5592 don't use _bfd_generic_link_add_archive_symbols because we need to
5593 handle versioned symbols.
5594
5595 Fortunately, ELF archive handling is simpler than that done by
5596 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5597 oddities. In ELF, if we find a symbol in the archive map, and the
5598 symbol is currently undefined, we know that we must pull in that
5599 object file.
5600
5601 Unfortunately, we do have to make multiple passes over the symbol
5602 table until nothing further is resolved. */
5603
5604 static bfd_boolean
5605 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5606 {
5607 symindex c;
5608 unsigned char *included = NULL;
5609 carsym *symdefs;
5610 bfd_boolean loop;
5611 bfd_size_type amt;
5612 const struct elf_backend_data *bed;
5613 struct elf_link_hash_entry * (*archive_symbol_lookup)
5614 (bfd *, struct bfd_link_info *, const char *);
5615
5616 if (! bfd_has_map (abfd))
5617 {
5618 /* An empty archive is a special case. */
5619 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5620 return TRUE;
5621 bfd_set_error (bfd_error_no_armap);
5622 return FALSE;
5623 }
5624
5625 /* Keep track of all symbols we know to be already defined, and all
5626 files we know to be already included. This is to speed up the
5627 second and subsequent passes. */
5628 c = bfd_ardata (abfd)->symdef_count;
5629 if (c == 0)
5630 return TRUE;
5631 amt = c;
5632 amt *= sizeof (*included);
5633 included = (unsigned char *) bfd_zmalloc (amt);
5634 if (included == NULL)
5635 return FALSE;
5636
5637 symdefs = bfd_ardata (abfd)->symdefs;
5638 bed = get_elf_backend_data (abfd);
5639 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5640
5641 do
5642 {
5643 file_ptr last;
5644 symindex i;
5645 carsym *symdef;
5646 carsym *symdefend;
5647
5648 loop = FALSE;
5649 last = -1;
5650
5651 symdef = symdefs;
5652 symdefend = symdef + c;
5653 for (i = 0; symdef < symdefend; symdef++, i++)
5654 {
5655 struct elf_link_hash_entry *h;
5656 bfd *element;
5657 struct bfd_link_hash_entry *undefs_tail;
5658 symindex mark;
5659
5660 if (included[i])
5661 continue;
5662 if (symdef->file_offset == last)
5663 {
5664 included[i] = TRUE;
5665 continue;
5666 }
5667
5668 h = archive_symbol_lookup (abfd, info, symdef->name);
5669 if (h == (struct elf_link_hash_entry *) -1)
5670 goto error_return;
5671
5672 if (h == NULL)
5673 continue;
5674
5675 if (h->root.type == bfd_link_hash_common)
5676 {
5677 /* We currently have a common symbol. The archive map contains
5678 a reference to this symbol, so we may want to include it. We
5679 only want to include it however, if this archive element
5680 contains a definition of the symbol, not just another common
5681 declaration of it.
5682
5683 Unfortunately some archivers (including GNU ar) will put
5684 declarations of common symbols into their archive maps, as
5685 well as real definitions, so we cannot just go by the archive
5686 map alone. Instead we must read in the element's symbol
5687 table and check that to see what kind of symbol definition
5688 this is. */
5689 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5690 continue;
5691 }
5692 else if (h->root.type != bfd_link_hash_undefined)
5693 {
5694 if (h->root.type != bfd_link_hash_undefweak)
5695 /* Symbol must be defined. Don't check it again. */
5696 included[i] = TRUE;
5697 continue;
5698 }
5699
5700 /* We need to include this archive member. */
5701 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5702 if (element == NULL)
5703 goto error_return;
5704
5705 if (! bfd_check_format (element, bfd_object))
5706 goto error_return;
5707
5708 undefs_tail = info->hash->undefs_tail;
5709
5710 if (!(*info->callbacks
5711 ->add_archive_element) (info, element, symdef->name, &element))
5712 continue;
5713 if (!bfd_link_add_symbols (element, info))
5714 goto error_return;
5715
5716 /* If there are any new undefined symbols, we need to make
5717 another pass through the archive in order to see whether
5718 they can be defined. FIXME: This isn't perfect, because
5719 common symbols wind up on undefs_tail and because an
5720 undefined symbol which is defined later on in this pass
5721 does not require another pass. This isn't a bug, but it
5722 does make the code less efficient than it could be. */
5723 if (undefs_tail != info->hash->undefs_tail)
5724 loop = TRUE;
5725
5726 /* Look backward to mark all symbols from this object file
5727 which we have already seen in this pass. */
5728 mark = i;
5729 do
5730 {
5731 included[mark] = TRUE;
5732 if (mark == 0)
5733 break;
5734 --mark;
5735 }
5736 while (symdefs[mark].file_offset == symdef->file_offset);
5737
5738 /* We mark subsequent symbols from this object file as we go
5739 on through the loop. */
5740 last = symdef->file_offset;
5741 }
5742 }
5743 while (loop);
5744
5745 free (included);
5746
5747 return TRUE;
5748
5749 error_return:
5750 if (included != NULL)
5751 free (included);
5752 return FALSE;
5753 }
5754
5755 /* Given an ELF BFD, add symbols to the global hash table as
5756 appropriate. */
5757
5758 bfd_boolean
5759 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5760 {
5761 switch (bfd_get_format (abfd))
5762 {
5763 case bfd_object:
5764 return elf_link_add_object_symbols (abfd, info);
5765 case bfd_archive:
5766 return elf_link_add_archive_symbols (abfd, info);
5767 default:
5768 bfd_set_error (bfd_error_wrong_format);
5769 return FALSE;
5770 }
5771 }
5772 \f
5773 struct hash_codes_info
5774 {
5775 unsigned long *hashcodes;
5776 bfd_boolean error;
5777 };
5778
5779 /* This function will be called though elf_link_hash_traverse to store
5780 all hash value of the exported symbols in an array. */
5781
5782 static bfd_boolean
5783 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5784 {
5785 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5786 const char *name;
5787 unsigned long ha;
5788 char *alc = NULL;
5789
5790 /* Ignore indirect symbols. These are added by the versioning code. */
5791 if (h->dynindx == -1)
5792 return TRUE;
5793
5794 name = h->root.root.string;
5795 if (h->versioned >= versioned)
5796 {
5797 char *p = strchr (name, ELF_VER_CHR);
5798 if (p != NULL)
5799 {
5800 alc = (char *) bfd_malloc (p - name + 1);
5801 if (alc == NULL)
5802 {
5803 inf->error = TRUE;
5804 return FALSE;
5805 }
5806 memcpy (alc, name, p - name);
5807 alc[p - name] = '\0';
5808 name = alc;
5809 }
5810 }
5811
5812 /* Compute the hash value. */
5813 ha = bfd_elf_hash (name);
5814
5815 /* Store the found hash value in the array given as the argument. */
5816 *(inf->hashcodes)++ = ha;
5817
5818 /* And store it in the struct so that we can put it in the hash table
5819 later. */
5820 h->u.elf_hash_value = ha;
5821
5822 if (alc != NULL)
5823 free (alc);
5824
5825 return TRUE;
5826 }
5827
5828 struct collect_gnu_hash_codes
5829 {
5830 bfd *output_bfd;
5831 const struct elf_backend_data *bed;
5832 unsigned long int nsyms;
5833 unsigned long int maskbits;
5834 unsigned long int *hashcodes;
5835 unsigned long int *hashval;
5836 unsigned long int *indx;
5837 unsigned long int *counts;
5838 bfd_vma *bitmask;
5839 bfd_byte *contents;
5840 long int min_dynindx;
5841 unsigned long int bucketcount;
5842 unsigned long int symindx;
5843 long int local_indx;
5844 long int shift1, shift2;
5845 unsigned long int mask;
5846 bfd_boolean error;
5847 };
5848
5849 /* This function will be called though elf_link_hash_traverse to store
5850 all hash value of the exported symbols in an array. */
5851
5852 static bfd_boolean
5853 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5854 {
5855 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5856 const char *name;
5857 unsigned long ha;
5858 char *alc = NULL;
5859
5860 /* Ignore indirect symbols. These are added by the versioning code. */
5861 if (h->dynindx == -1)
5862 return TRUE;
5863
5864 /* Ignore also local symbols and undefined symbols. */
5865 if (! (*s->bed->elf_hash_symbol) (h))
5866 return TRUE;
5867
5868 name = h->root.root.string;
5869 if (h->versioned >= versioned)
5870 {
5871 char *p = strchr (name, ELF_VER_CHR);
5872 if (p != NULL)
5873 {
5874 alc = (char *) bfd_malloc (p - name + 1);
5875 if (alc == NULL)
5876 {
5877 s->error = TRUE;
5878 return FALSE;
5879 }
5880 memcpy (alc, name, p - name);
5881 alc[p - name] = '\0';
5882 name = alc;
5883 }
5884 }
5885
5886 /* Compute the hash value. */
5887 ha = bfd_elf_gnu_hash (name);
5888
5889 /* Store the found hash value in the array for compute_bucket_count,
5890 and also for .dynsym reordering purposes. */
5891 s->hashcodes[s->nsyms] = ha;
5892 s->hashval[h->dynindx] = ha;
5893 ++s->nsyms;
5894 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5895 s->min_dynindx = h->dynindx;
5896
5897 if (alc != NULL)
5898 free (alc);
5899
5900 return TRUE;
5901 }
5902
5903 /* This function will be called though elf_link_hash_traverse to do
5904 final dynaminc symbol renumbering. */
5905
5906 static bfd_boolean
5907 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5908 {
5909 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5910 unsigned long int bucket;
5911 unsigned long int val;
5912
5913 /* Ignore indirect symbols. */
5914 if (h->dynindx == -1)
5915 return TRUE;
5916
5917 /* Ignore also local symbols and undefined symbols. */
5918 if (! (*s->bed->elf_hash_symbol) (h))
5919 {
5920 if (h->dynindx >= s->min_dynindx)
5921 h->dynindx = s->local_indx++;
5922 return TRUE;
5923 }
5924
5925 bucket = s->hashval[h->dynindx] % s->bucketcount;
5926 val = (s->hashval[h->dynindx] >> s->shift1)
5927 & ((s->maskbits >> s->shift1) - 1);
5928 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5929 s->bitmask[val]
5930 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5931 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5932 if (s->counts[bucket] == 1)
5933 /* Last element terminates the chain. */
5934 val |= 1;
5935 bfd_put_32 (s->output_bfd, val,
5936 s->contents + (s->indx[bucket] - s->symindx) * 4);
5937 --s->counts[bucket];
5938 h->dynindx = s->indx[bucket]++;
5939 return TRUE;
5940 }
5941
5942 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5943
5944 bfd_boolean
5945 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5946 {
5947 return !(h->forced_local
5948 || h->root.type == bfd_link_hash_undefined
5949 || h->root.type == bfd_link_hash_undefweak
5950 || ((h->root.type == bfd_link_hash_defined
5951 || h->root.type == bfd_link_hash_defweak)
5952 && h->root.u.def.section->output_section == NULL));
5953 }
5954
5955 /* Array used to determine the number of hash table buckets to use
5956 based on the number of symbols there are. If there are fewer than
5957 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5958 fewer than 37 we use 17 buckets, and so forth. We never use more
5959 than 32771 buckets. */
5960
5961 static const size_t elf_buckets[] =
5962 {
5963 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5964 16411, 32771, 0
5965 };
5966
5967 /* Compute bucket count for hashing table. We do not use a static set
5968 of possible tables sizes anymore. Instead we determine for all
5969 possible reasonable sizes of the table the outcome (i.e., the
5970 number of collisions etc) and choose the best solution. The
5971 weighting functions are not too simple to allow the table to grow
5972 without bounds. Instead one of the weighting factors is the size.
5973 Therefore the result is always a good payoff between few collisions
5974 (= short chain lengths) and table size. */
5975 static size_t
5976 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5977 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5978 unsigned long int nsyms,
5979 int gnu_hash)
5980 {
5981 size_t best_size = 0;
5982 unsigned long int i;
5983
5984 /* We have a problem here. The following code to optimize the table
5985 size requires an integer type with more the 32 bits. If
5986 BFD_HOST_U_64_BIT is set we know about such a type. */
5987 #ifdef BFD_HOST_U_64_BIT
5988 if (info->optimize)
5989 {
5990 size_t minsize;
5991 size_t maxsize;
5992 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5993 bfd *dynobj = elf_hash_table (info)->dynobj;
5994 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5995 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5996 unsigned long int *counts;
5997 bfd_size_type amt;
5998 unsigned int no_improvement_count = 0;
5999
6000 /* Possible optimization parameters: if we have NSYMS symbols we say
6001 that the hashing table must at least have NSYMS/4 and at most
6002 2*NSYMS buckets. */
6003 minsize = nsyms / 4;
6004 if (minsize == 0)
6005 minsize = 1;
6006 best_size = maxsize = nsyms * 2;
6007 if (gnu_hash)
6008 {
6009 if (minsize < 2)
6010 minsize = 2;
6011 if ((best_size & 31) == 0)
6012 ++best_size;
6013 }
6014
6015 /* Create array where we count the collisions in. We must use bfd_malloc
6016 since the size could be large. */
6017 amt = maxsize;
6018 amt *= sizeof (unsigned long int);
6019 counts = (unsigned long int *) bfd_malloc (amt);
6020 if (counts == NULL)
6021 return 0;
6022
6023 /* Compute the "optimal" size for the hash table. The criteria is a
6024 minimal chain length. The minor criteria is (of course) the size
6025 of the table. */
6026 for (i = minsize; i < maxsize; ++i)
6027 {
6028 /* Walk through the array of hashcodes and count the collisions. */
6029 BFD_HOST_U_64_BIT max;
6030 unsigned long int j;
6031 unsigned long int fact;
6032
6033 if (gnu_hash && (i & 31) == 0)
6034 continue;
6035
6036 memset (counts, '\0', i * sizeof (unsigned long int));
6037
6038 /* Determine how often each hash bucket is used. */
6039 for (j = 0; j < nsyms; ++j)
6040 ++counts[hashcodes[j] % i];
6041
6042 /* For the weight function we need some information about the
6043 pagesize on the target. This is information need not be 100%
6044 accurate. Since this information is not available (so far) we
6045 define it here to a reasonable default value. If it is crucial
6046 to have a better value some day simply define this value. */
6047 # ifndef BFD_TARGET_PAGESIZE
6048 # define BFD_TARGET_PAGESIZE (4096)
6049 # endif
6050
6051 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6052 and the chains. */
6053 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6054
6055 # if 1
6056 /* Variant 1: optimize for short chains. We add the squares
6057 of all the chain lengths (which favors many small chain
6058 over a few long chains). */
6059 for (j = 0; j < i; ++j)
6060 max += counts[j] * counts[j];
6061
6062 /* This adds penalties for the overall size of the table. */
6063 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6064 max *= fact * fact;
6065 # else
6066 /* Variant 2: Optimize a lot more for small table. Here we
6067 also add squares of the size but we also add penalties for
6068 empty slots (the +1 term). */
6069 for (j = 0; j < i; ++j)
6070 max += (1 + counts[j]) * (1 + counts[j]);
6071
6072 /* The overall size of the table is considered, but not as
6073 strong as in variant 1, where it is squared. */
6074 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6075 max *= fact;
6076 # endif
6077
6078 /* Compare with current best results. */
6079 if (max < best_chlen)
6080 {
6081 best_chlen = max;
6082 best_size = i;
6083 no_improvement_count = 0;
6084 }
6085 /* PR 11843: Avoid futile long searches for the best bucket size
6086 when there are a large number of symbols. */
6087 else if (++no_improvement_count == 100)
6088 break;
6089 }
6090
6091 free (counts);
6092 }
6093 else
6094 #endif /* defined (BFD_HOST_U_64_BIT) */
6095 {
6096 /* This is the fallback solution if no 64bit type is available or if we
6097 are not supposed to spend much time on optimizations. We select the
6098 bucket count using a fixed set of numbers. */
6099 for (i = 0; elf_buckets[i] != 0; i++)
6100 {
6101 best_size = elf_buckets[i];
6102 if (nsyms < elf_buckets[i + 1])
6103 break;
6104 }
6105 if (gnu_hash && best_size < 2)
6106 best_size = 2;
6107 }
6108
6109 return best_size;
6110 }
6111
6112 /* Size any SHT_GROUP section for ld -r. */
6113
6114 bfd_boolean
6115 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6116 {
6117 bfd *ibfd;
6118 asection *s;
6119
6120 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6121 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6122 && (s = ibfd->sections) != NULL
6123 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6124 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6125 return FALSE;
6126 return TRUE;
6127 }
6128
6129 /* Set a default stack segment size. The value in INFO wins. If it
6130 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6131 undefined it is initialized. */
6132
6133 bfd_boolean
6134 bfd_elf_stack_segment_size (bfd *output_bfd,
6135 struct bfd_link_info *info,
6136 const char *legacy_symbol,
6137 bfd_vma default_size)
6138 {
6139 struct elf_link_hash_entry *h = NULL;
6140
6141 /* Look for legacy symbol. */
6142 if (legacy_symbol)
6143 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6144 FALSE, FALSE, FALSE);
6145 if (h && (h->root.type == bfd_link_hash_defined
6146 || h->root.type == bfd_link_hash_defweak)
6147 && h->def_regular
6148 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6149 {
6150 /* The symbol has no type if specified on the command line. */
6151 h->type = STT_OBJECT;
6152 if (info->stacksize)
6153 /* xgettext:c-format */
6154 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6155 output_bfd, legacy_symbol);
6156 else if (h->root.u.def.section != bfd_abs_section_ptr)
6157 /* xgettext:c-format */
6158 _bfd_error_handler (_("%pB: %s not absolute"),
6159 output_bfd, legacy_symbol);
6160 else
6161 info->stacksize = h->root.u.def.value;
6162 }
6163
6164 if (!info->stacksize)
6165 /* If the user didn't set a size, or explicitly inhibit the
6166 size, set it now. */
6167 info->stacksize = default_size;
6168
6169 /* Provide the legacy symbol, if it is referenced. */
6170 if (h && (h->root.type == bfd_link_hash_undefined
6171 || h->root.type == bfd_link_hash_undefweak))
6172 {
6173 struct bfd_link_hash_entry *bh = NULL;
6174
6175 if (!(_bfd_generic_link_add_one_symbol
6176 (info, output_bfd, legacy_symbol,
6177 BSF_GLOBAL, bfd_abs_section_ptr,
6178 info->stacksize >= 0 ? info->stacksize : 0,
6179 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6180 return FALSE;
6181
6182 h = (struct elf_link_hash_entry *) bh;
6183 h->def_regular = 1;
6184 h->type = STT_OBJECT;
6185 }
6186
6187 return TRUE;
6188 }
6189
6190 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6191
6192 struct elf_gc_sweep_symbol_info
6193 {
6194 struct bfd_link_info *info;
6195 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6196 bfd_boolean);
6197 };
6198
6199 static bfd_boolean
6200 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6201 {
6202 if (!h->mark
6203 && (((h->root.type == bfd_link_hash_defined
6204 || h->root.type == bfd_link_hash_defweak)
6205 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6206 && h->root.u.def.section->gc_mark))
6207 || h->root.type == bfd_link_hash_undefined
6208 || h->root.type == bfd_link_hash_undefweak))
6209 {
6210 struct elf_gc_sweep_symbol_info *inf;
6211
6212 inf = (struct elf_gc_sweep_symbol_info *) data;
6213 (*inf->hide_symbol) (inf->info, h, TRUE);
6214 h->def_regular = 0;
6215 h->ref_regular = 0;
6216 h->ref_regular_nonweak = 0;
6217 }
6218
6219 return TRUE;
6220 }
6221
6222 /* Set up the sizes and contents of the ELF dynamic sections. This is
6223 called by the ELF linker emulation before_allocation routine. We
6224 must set the sizes of the sections before the linker sets the
6225 addresses of the various sections. */
6226
6227 bfd_boolean
6228 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6229 const char *soname,
6230 const char *rpath,
6231 const char *filter_shlib,
6232 const char *audit,
6233 const char *depaudit,
6234 const char * const *auxiliary_filters,
6235 struct bfd_link_info *info,
6236 asection **sinterpptr)
6237 {
6238 bfd *dynobj;
6239 const struct elf_backend_data *bed;
6240
6241 *sinterpptr = NULL;
6242
6243 if (!is_elf_hash_table (info->hash))
6244 return TRUE;
6245
6246 dynobj = elf_hash_table (info)->dynobj;
6247
6248 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6249 {
6250 struct bfd_elf_version_tree *verdefs;
6251 struct elf_info_failed asvinfo;
6252 struct bfd_elf_version_tree *t;
6253 struct bfd_elf_version_expr *d;
6254 asection *s;
6255 size_t soname_indx;
6256
6257 /* If we are supposed to export all symbols into the dynamic symbol
6258 table (this is not the normal case), then do so. */
6259 if (info->export_dynamic
6260 || (bfd_link_executable (info) && info->dynamic))
6261 {
6262 struct elf_info_failed eif;
6263
6264 eif.info = info;
6265 eif.failed = FALSE;
6266 elf_link_hash_traverse (elf_hash_table (info),
6267 _bfd_elf_export_symbol,
6268 &eif);
6269 if (eif.failed)
6270 return FALSE;
6271 }
6272
6273 if (soname != NULL)
6274 {
6275 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 soname, TRUE);
6277 if (soname_indx == (size_t) -1
6278 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6279 return FALSE;
6280 }
6281 else
6282 soname_indx = (size_t) -1;
6283
6284 /* Make all global versions with definition. */
6285 for (t = info->version_info; t != NULL; t = t->next)
6286 for (d = t->globals.list; d != NULL; d = d->next)
6287 if (!d->symver && d->literal)
6288 {
6289 const char *verstr, *name;
6290 size_t namelen, verlen, newlen;
6291 char *newname, *p, leading_char;
6292 struct elf_link_hash_entry *newh;
6293
6294 leading_char = bfd_get_symbol_leading_char (output_bfd);
6295 name = d->pattern;
6296 namelen = strlen (name) + (leading_char != '\0');
6297 verstr = t->name;
6298 verlen = strlen (verstr);
6299 newlen = namelen + verlen + 3;
6300
6301 newname = (char *) bfd_malloc (newlen);
6302 if (newname == NULL)
6303 return FALSE;
6304 newname[0] = leading_char;
6305 memcpy (newname + (leading_char != '\0'), name, namelen);
6306
6307 /* Check the hidden versioned definition. */
6308 p = newname + namelen;
6309 *p++ = ELF_VER_CHR;
6310 memcpy (p, verstr, verlen + 1);
6311 newh = elf_link_hash_lookup (elf_hash_table (info),
6312 newname, FALSE, FALSE,
6313 FALSE);
6314 if (newh == NULL
6315 || (newh->root.type != bfd_link_hash_defined
6316 && newh->root.type != bfd_link_hash_defweak))
6317 {
6318 /* Check the default versioned definition. */
6319 *p++ = ELF_VER_CHR;
6320 memcpy (p, verstr, verlen + 1);
6321 newh = elf_link_hash_lookup (elf_hash_table (info),
6322 newname, FALSE, FALSE,
6323 FALSE);
6324 }
6325 free (newname);
6326
6327 /* Mark this version if there is a definition and it is
6328 not defined in a shared object. */
6329 if (newh != NULL
6330 && !newh->def_dynamic
6331 && (newh->root.type == bfd_link_hash_defined
6332 || newh->root.type == bfd_link_hash_defweak))
6333 d->symver = 1;
6334 }
6335
6336 /* Attach all the symbols to their version information. */
6337 asvinfo.info = info;
6338 asvinfo.failed = FALSE;
6339
6340 elf_link_hash_traverse (elf_hash_table (info),
6341 _bfd_elf_link_assign_sym_version,
6342 &asvinfo);
6343 if (asvinfo.failed)
6344 return FALSE;
6345
6346 if (!info->allow_undefined_version)
6347 {
6348 /* Check if all global versions have a definition. */
6349 bfd_boolean all_defined = TRUE;
6350 for (t = info->version_info; t != NULL; t = t->next)
6351 for (d = t->globals.list; d != NULL; d = d->next)
6352 if (d->literal && !d->symver && !d->script)
6353 {
6354 _bfd_error_handler
6355 (_("%s: undefined version: %s"),
6356 d->pattern, t->name);
6357 all_defined = FALSE;
6358 }
6359
6360 if (!all_defined)
6361 {
6362 bfd_set_error (bfd_error_bad_value);
6363 return FALSE;
6364 }
6365 }
6366
6367 /* Set up the version definition section. */
6368 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6369 BFD_ASSERT (s != NULL);
6370
6371 /* We may have created additional version definitions if we are
6372 just linking a regular application. */
6373 verdefs = info->version_info;
6374
6375 /* Skip anonymous version tag. */
6376 if (verdefs != NULL && verdefs->vernum == 0)
6377 verdefs = verdefs->next;
6378
6379 if (verdefs == NULL && !info->create_default_symver)
6380 s->flags |= SEC_EXCLUDE;
6381 else
6382 {
6383 unsigned int cdefs;
6384 bfd_size_type size;
6385 bfd_byte *p;
6386 Elf_Internal_Verdef def;
6387 Elf_Internal_Verdaux defaux;
6388 struct bfd_link_hash_entry *bh;
6389 struct elf_link_hash_entry *h;
6390 const char *name;
6391
6392 cdefs = 0;
6393 size = 0;
6394
6395 /* Make space for the base version. */
6396 size += sizeof (Elf_External_Verdef);
6397 size += sizeof (Elf_External_Verdaux);
6398 ++cdefs;
6399
6400 /* Make space for the default version. */
6401 if (info->create_default_symver)
6402 {
6403 size += sizeof (Elf_External_Verdef);
6404 ++cdefs;
6405 }
6406
6407 for (t = verdefs; t != NULL; t = t->next)
6408 {
6409 struct bfd_elf_version_deps *n;
6410
6411 /* Don't emit base version twice. */
6412 if (t->vernum == 0)
6413 continue;
6414
6415 size += sizeof (Elf_External_Verdef);
6416 size += sizeof (Elf_External_Verdaux);
6417 ++cdefs;
6418
6419 for (n = t->deps; n != NULL; n = n->next)
6420 size += sizeof (Elf_External_Verdaux);
6421 }
6422
6423 s->size = size;
6424 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6425 if (s->contents == NULL && s->size != 0)
6426 return FALSE;
6427
6428 /* Fill in the version definition section. */
6429
6430 p = s->contents;
6431
6432 def.vd_version = VER_DEF_CURRENT;
6433 def.vd_flags = VER_FLG_BASE;
6434 def.vd_ndx = 1;
6435 def.vd_cnt = 1;
6436 if (info->create_default_symver)
6437 {
6438 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6439 def.vd_next = sizeof (Elf_External_Verdef);
6440 }
6441 else
6442 {
6443 def.vd_aux = sizeof (Elf_External_Verdef);
6444 def.vd_next = (sizeof (Elf_External_Verdef)
6445 + sizeof (Elf_External_Verdaux));
6446 }
6447
6448 if (soname_indx != (size_t) -1)
6449 {
6450 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6451 soname_indx);
6452 def.vd_hash = bfd_elf_hash (soname);
6453 defaux.vda_name = soname_indx;
6454 name = soname;
6455 }
6456 else
6457 {
6458 size_t indx;
6459
6460 name = lbasename (output_bfd->filename);
6461 def.vd_hash = bfd_elf_hash (name);
6462 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6463 name, FALSE);
6464 if (indx == (size_t) -1)
6465 return FALSE;
6466 defaux.vda_name = indx;
6467 }
6468 defaux.vda_next = 0;
6469
6470 _bfd_elf_swap_verdef_out (output_bfd, &def,
6471 (Elf_External_Verdef *) p);
6472 p += sizeof (Elf_External_Verdef);
6473 if (info->create_default_symver)
6474 {
6475 /* Add a symbol representing this version. */
6476 bh = NULL;
6477 if (! (_bfd_generic_link_add_one_symbol
6478 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6479 0, NULL, FALSE,
6480 get_elf_backend_data (dynobj)->collect, &bh)))
6481 return FALSE;
6482 h = (struct elf_link_hash_entry *) bh;
6483 h->non_elf = 0;
6484 h->def_regular = 1;
6485 h->type = STT_OBJECT;
6486 h->verinfo.vertree = NULL;
6487
6488 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6489 return FALSE;
6490
6491 /* Create a duplicate of the base version with the same
6492 aux block, but different flags. */
6493 def.vd_flags = 0;
6494 def.vd_ndx = 2;
6495 def.vd_aux = sizeof (Elf_External_Verdef);
6496 if (verdefs)
6497 def.vd_next = (sizeof (Elf_External_Verdef)
6498 + sizeof (Elf_External_Verdaux));
6499 else
6500 def.vd_next = 0;
6501 _bfd_elf_swap_verdef_out (output_bfd, &def,
6502 (Elf_External_Verdef *) p);
6503 p += sizeof (Elf_External_Verdef);
6504 }
6505 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6506 (Elf_External_Verdaux *) p);
6507 p += sizeof (Elf_External_Verdaux);
6508
6509 for (t = verdefs; t != NULL; t = t->next)
6510 {
6511 unsigned int cdeps;
6512 struct bfd_elf_version_deps *n;
6513
6514 /* Don't emit the base version twice. */
6515 if (t->vernum == 0)
6516 continue;
6517
6518 cdeps = 0;
6519 for (n = t->deps; n != NULL; n = n->next)
6520 ++cdeps;
6521
6522 /* Add a symbol representing this version. */
6523 bh = NULL;
6524 if (! (_bfd_generic_link_add_one_symbol
6525 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6526 0, NULL, FALSE,
6527 get_elf_backend_data (dynobj)->collect, &bh)))
6528 return FALSE;
6529 h = (struct elf_link_hash_entry *) bh;
6530 h->non_elf = 0;
6531 h->def_regular = 1;
6532 h->type = STT_OBJECT;
6533 h->verinfo.vertree = t;
6534
6535 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6536 return FALSE;
6537
6538 def.vd_version = VER_DEF_CURRENT;
6539 def.vd_flags = 0;
6540 if (t->globals.list == NULL
6541 && t->locals.list == NULL
6542 && ! t->used)
6543 def.vd_flags |= VER_FLG_WEAK;
6544 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6545 def.vd_cnt = cdeps + 1;
6546 def.vd_hash = bfd_elf_hash (t->name);
6547 def.vd_aux = sizeof (Elf_External_Verdef);
6548 def.vd_next = 0;
6549
6550 /* If a basever node is next, it *must* be the last node in
6551 the chain, otherwise Verdef construction breaks. */
6552 if (t->next != NULL && t->next->vernum == 0)
6553 BFD_ASSERT (t->next->next == NULL);
6554
6555 if (t->next != NULL && t->next->vernum != 0)
6556 def.vd_next = (sizeof (Elf_External_Verdef)
6557 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6558
6559 _bfd_elf_swap_verdef_out (output_bfd, &def,
6560 (Elf_External_Verdef *) p);
6561 p += sizeof (Elf_External_Verdef);
6562
6563 defaux.vda_name = h->dynstr_index;
6564 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6565 h->dynstr_index);
6566 defaux.vda_next = 0;
6567 if (t->deps != NULL)
6568 defaux.vda_next = sizeof (Elf_External_Verdaux);
6569 t->name_indx = defaux.vda_name;
6570
6571 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6572 (Elf_External_Verdaux *) p);
6573 p += sizeof (Elf_External_Verdaux);
6574
6575 for (n = t->deps; n != NULL; n = n->next)
6576 {
6577 if (n->version_needed == NULL)
6578 {
6579 /* This can happen if there was an error in the
6580 version script. */
6581 defaux.vda_name = 0;
6582 }
6583 else
6584 {
6585 defaux.vda_name = n->version_needed->name_indx;
6586 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6587 defaux.vda_name);
6588 }
6589 if (n->next == NULL)
6590 defaux.vda_next = 0;
6591 else
6592 defaux.vda_next = sizeof (Elf_External_Verdaux);
6593
6594 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6595 (Elf_External_Verdaux *) p);
6596 p += sizeof (Elf_External_Verdaux);
6597 }
6598 }
6599
6600 elf_tdata (output_bfd)->cverdefs = cdefs;
6601 }
6602 }
6603
6604 bed = get_elf_backend_data (output_bfd);
6605
6606 if (info->gc_sections && bed->can_gc_sections)
6607 {
6608 struct elf_gc_sweep_symbol_info sweep_info;
6609
6610 /* Remove the symbols that were in the swept sections from the
6611 dynamic symbol table. */
6612 sweep_info.info = info;
6613 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6614 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6615 &sweep_info);
6616 }
6617
6618 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6619 {
6620 asection *s;
6621 struct elf_find_verdep_info sinfo;
6622
6623 /* Work out the size of the version reference section. */
6624
6625 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6626 BFD_ASSERT (s != NULL);
6627
6628 sinfo.info = info;
6629 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6630 if (sinfo.vers == 0)
6631 sinfo.vers = 1;
6632 sinfo.failed = FALSE;
6633
6634 elf_link_hash_traverse (elf_hash_table (info),
6635 _bfd_elf_link_find_version_dependencies,
6636 &sinfo);
6637 if (sinfo.failed)
6638 return FALSE;
6639
6640 if (elf_tdata (output_bfd)->verref == NULL)
6641 s->flags |= SEC_EXCLUDE;
6642 else
6643 {
6644 Elf_Internal_Verneed *vn;
6645 unsigned int size;
6646 unsigned int crefs;
6647 bfd_byte *p;
6648
6649 /* Build the version dependency section. */
6650 size = 0;
6651 crefs = 0;
6652 for (vn = elf_tdata (output_bfd)->verref;
6653 vn != NULL;
6654 vn = vn->vn_nextref)
6655 {
6656 Elf_Internal_Vernaux *a;
6657
6658 size += sizeof (Elf_External_Verneed);
6659 ++crefs;
6660 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6661 size += sizeof (Elf_External_Vernaux);
6662 }
6663
6664 s->size = size;
6665 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6666 if (s->contents == NULL)
6667 return FALSE;
6668
6669 p = s->contents;
6670 for (vn = elf_tdata (output_bfd)->verref;
6671 vn != NULL;
6672 vn = vn->vn_nextref)
6673 {
6674 unsigned int caux;
6675 Elf_Internal_Vernaux *a;
6676 size_t indx;
6677
6678 caux = 0;
6679 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6680 ++caux;
6681
6682 vn->vn_version = VER_NEED_CURRENT;
6683 vn->vn_cnt = caux;
6684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6685 elf_dt_name (vn->vn_bfd) != NULL
6686 ? elf_dt_name (vn->vn_bfd)
6687 : lbasename (vn->vn_bfd->filename),
6688 FALSE);
6689 if (indx == (size_t) -1)
6690 return FALSE;
6691 vn->vn_file = indx;
6692 vn->vn_aux = sizeof (Elf_External_Verneed);
6693 if (vn->vn_nextref == NULL)
6694 vn->vn_next = 0;
6695 else
6696 vn->vn_next = (sizeof (Elf_External_Verneed)
6697 + caux * sizeof (Elf_External_Vernaux));
6698
6699 _bfd_elf_swap_verneed_out (output_bfd, vn,
6700 (Elf_External_Verneed *) p);
6701 p += sizeof (Elf_External_Verneed);
6702
6703 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6704 {
6705 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6706 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6707 a->vna_nodename, FALSE);
6708 if (indx == (size_t) -1)
6709 return FALSE;
6710 a->vna_name = indx;
6711 if (a->vna_nextptr == NULL)
6712 a->vna_next = 0;
6713 else
6714 a->vna_next = sizeof (Elf_External_Vernaux);
6715
6716 _bfd_elf_swap_vernaux_out (output_bfd, a,
6717 (Elf_External_Vernaux *) p);
6718 p += sizeof (Elf_External_Vernaux);
6719 }
6720 }
6721
6722 elf_tdata (output_bfd)->cverrefs = crefs;
6723 }
6724 }
6725
6726 /* Any syms created from now on start with -1 in
6727 got.refcount/offset and plt.refcount/offset. */
6728 elf_hash_table (info)->init_got_refcount
6729 = elf_hash_table (info)->init_got_offset;
6730 elf_hash_table (info)->init_plt_refcount
6731 = elf_hash_table (info)->init_plt_offset;
6732
6733 if (bfd_link_relocatable (info)
6734 && !_bfd_elf_size_group_sections (info))
6735 return FALSE;
6736
6737 /* The backend may have to create some sections regardless of whether
6738 we're dynamic or not. */
6739 if (bed->elf_backend_always_size_sections
6740 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6741 return FALSE;
6742
6743 /* Determine any GNU_STACK segment requirements, after the backend
6744 has had a chance to set a default segment size. */
6745 if (info->execstack)
6746 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6747 else if (info->noexecstack)
6748 elf_stack_flags (output_bfd) = PF_R | PF_W;
6749 else
6750 {
6751 bfd *inputobj;
6752 asection *notesec = NULL;
6753 int exec = 0;
6754
6755 for (inputobj = info->input_bfds;
6756 inputobj;
6757 inputobj = inputobj->link.next)
6758 {
6759 asection *s;
6760
6761 if (inputobj->flags
6762 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6763 continue;
6764 s = inputobj->sections;
6765 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6766 continue;
6767
6768 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6769 if (s)
6770 {
6771 if (s->flags & SEC_CODE)
6772 exec = PF_X;
6773 notesec = s;
6774 }
6775 else if (bed->default_execstack)
6776 exec = PF_X;
6777 }
6778 if (notesec || info->stacksize > 0)
6779 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6780 if (notesec && exec && bfd_link_relocatable (info)
6781 && notesec->output_section != bfd_abs_section_ptr)
6782 notesec->output_section->flags |= SEC_CODE;
6783 }
6784
6785 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6786 {
6787 struct elf_info_failed eif;
6788 struct elf_link_hash_entry *h;
6789 asection *dynstr;
6790 asection *s;
6791
6792 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6793 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6794
6795 if (info->symbolic)
6796 {
6797 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6798 return FALSE;
6799 info->flags |= DF_SYMBOLIC;
6800 }
6801
6802 if (rpath != NULL)
6803 {
6804 size_t indx;
6805 bfd_vma tag;
6806
6807 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6808 TRUE);
6809 if (indx == (size_t) -1)
6810 return FALSE;
6811
6812 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6813 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6814 return FALSE;
6815 }
6816
6817 if (filter_shlib != NULL)
6818 {
6819 size_t indx;
6820
6821 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6822 filter_shlib, TRUE);
6823 if (indx == (size_t) -1
6824 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6825 return FALSE;
6826 }
6827
6828 if (auxiliary_filters != NULL)
6829 {
6830 const char * const *p;
6831
6832 for (p = auxiliary_filters; *p != NULL; p++)
6833 {
6834 size_t indx;
6835
6836 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6837 *p, TRUE);
6838 if (indx == (size_t) -1
6839 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6840 return FALSE;
6841 }
6842 }
6843
6844 if (audit != NULL)
6845 {
6846 size_t indx;
6847
6848 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6849 TRUE);
6850 if (indx == (size_t) -1
6851 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6852 return FALSE;
6853 }
6854
6855 if (depaudit != NULL)
6856 {
6857 size_t indx;
6858
6859 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6860 TRUE);
6861 if (indx == (size_t) -1
6862 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6863 return FALSE;
6864 }
6865
6866 eif.info = info;
6867 eif.failed = FALSE;
6868
6869 /* Find all symbols which were defined in a dynamic object and make
6870 the backend pick a reasonable value for them. */
6871 elf_link_hash_traverse (elf_hash_table (info),
6872 _bfd_elf_adjust_dynamic_symbol,
6873 &eif);
6874 if (eif.failed)
6875 return FALSE;
6876
6877 /* Add some entries to the .dynamic section. We fill in some of the
6878 values later, in bfd_elf_final_link, but we must add the entries
6879 now so that we know the final size of the .dynamic section. */
6880
6881 /* If there are initialization and/or finalization functions to
6882 call then add the corresponding DT_INIT/DT_FINI entries. */
6883 h = (info->init_function
6884 ? elf_link_hash_lookup (elf_hash_table (info),
6885 info->init_function, FALSE,
6886 FALSE, FALSE)
6887 : NULL);
6888 if (h != NULL
6889 && (h->ref_regular
6890 || h->def_regular))
6891 {
6892 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6893 return FALSE;
6894 }
6895 h = (info->fini_function
6896 ? elf_link_hash_lookup (elf_hash_table (info),
6897 info->fini_function, FALSE,
6898 FALSE, FALSE)
6899 : NULL);
6900 if (h != NULL
6901 && (h->ref_regular
6902 || h->def_regular))
6903 {
6904 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6905 return FALSE;
6906 }
6907
6908 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6909 if (s != NULL && s->linker_has_input)
6910 {
6911 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6912 if (! bfd_link_executable (info))
6913 {
6914 bfd *sub;
6915 asection *o;
6916
6917 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6918 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6919 && (o = sub->sections) != NULL
6920 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6921 for (o = sub->sections; o != NULL; o = o->next)
6922 if (elf_section_data (o)->this_hdr.sh_type
6923 == SHT_PREINIT_ARRAY)
6924 {
6925 _bfd_error_handler
6926 (_("%pB: .preinit_array section is not allowed in DSO"),
6927 sub);
6928 break;
6929 }
6930
6931 bfd_set_error (bfd_error_nonrepresentable_section);
6932 return FALSE;
6933 }
6934
6935 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6936 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6937 return FALSE;
6938 }
6939 s = bfd_get_section_by_name (output_bfd, ".init_array");
6940 if (s != NULL && s->linker_has_input)
6941 {
6942 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6943 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6944 return FALSE;
6945 }
6946 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6947 if (s != NULL && s->linker_has_input)
6948 {
6949 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6950 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6951 return FALSE;
6952 }
6953
6954 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6955 /* If .dynstr is excluded from the link, we don't want any of
6956 these tags. Strictly, we should be checking each section
6957 individually; This quick check covers for the case where
6958 someone does a /DISCARD/ : { *(*) }. */
6959 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6960 {
6961 bfd_size_type strsize;
6962
6963 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6964 if ((info->emit_hash
6965 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6966 || (info->emit_gnu_hash
6967 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6968 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6969 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6970 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6971 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6972 bed->s->sizeof_sym))
6973 return FALSE;
6974 }
6975 }
6976
6977 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6978 return FALSE;
6979
6980 /* The backend must work out the sizes of all the other dynamic
6981 sections. */
6982 if (dynobj != NULL
6983 && bed->elf_backend_size_dynamic_sections != NULL
6984 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6985 return FALSE;
6986
6987 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6988 {
6989 if (elf_tdata (output_bfd)->cverdefs)
6990 {
6991 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6992
6993 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6994 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6995 return FALSE;
6996 }
6997
6998 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6999 {
7000 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7001 return FALSE;
7002 }
7003 else if (info->flags & DF_BIND_NOW)
7004 {
7005 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7006 return FALSE;
7007 }
7008
7009 if (info->flags_1)
7010 {
7011 if (bfd_link_executable (info))
7012 info->flags_1 &= ~ (DF_1_INITFIRST
7013 | DF_1_NODELETE
7014 | DF_1_NOOPEN);
7015 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7016 return FALSE;
7017 }
7018
7019 if (elf_tdata (output_bfd)->cverrefs)
7020 {
7021 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7022
7023 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7024 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7025 return FALSE;
7026 }
7027
7028 if ((elf_tdata (output_bfd)->cverrefs == 0
7029 && elf_tdata (output_bfd)->cverdefs == 0)
7030 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7031 {
7032 asection *s;
7033
7034 s = bfd_get_linker_section (dynobj, ".gnu.version");
7035 s->flags |= SEC_EXCLUDE;
7036 }
7037 }
7038 return TRUE;
7039 }
7040
7041 /* Find the first non-excluded output section. We'll use its
7042 section symbol for some emitted relocs. */
7043 void
7044 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7045 {
7046 asection *s;
7047 asection *found = NULL;
7048
7049 for (s = output_bfd->sections; s != NULL; s = s->next)
7050 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7051 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7052 {
7053 found = s;
7054 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7055 break;
7056 }
7057 elf_hash_table (info)->text_index_section = found;
7058 }
7059
7060 /* Find two non-excluded output sections, one for code, one for data.
7061 We'll use their section symbols for some emitted relocs. */
7062 void
7063 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7064 {
7065 asection *s;
7066 asection *found = NULL;
7067
7068 /* Data first, since setting text_index_section changes
7069 _bfd_elf_omit_section_dynsym_default. */
7070 for (s = output_bfd->sections; s != NULL; s = s->next)
7071 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7072 && !(s->flags & SEC_READONLY)
7073 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7074 {
7075 found = s;
7076 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7077 break;
7078 }
7079 elf_hash_table (info)->data_index_section = found;
7080
7081 for (s = output_bfd->sections; s != NULL; s = s->next)
7082 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7083 && (s->flags & SEC_READONLY)
7084 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7085 {
7086 found = s;
7087 break;
7088 }
7089 elf_hash_table (info)->text_index_section = found;
7090 }
7091
7092 bfd_boolean
7093 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7094 {
7095 const struct elf_backend_data *bed;
7096 unsigned long section_sym_count;
7097 bfd_size_type dynsymcount = 0;
7098
7099 if (!is_elf_hash_table (info->hash))
7100 return TRUE;
7101
7102 bed = get_elf_backend_data (output_bfd);
7103 (*bed->elf_backend_init_index_section) (output_bfd, info);
7104
7105 /* Assign dynsym indices. In a shared library we generate a section
7106 symbol for each output section, which come first. Next come all
7107 of the back-end allocated local dynamic syms, followed by the rest
7108 of the global symbols.
7109
7110 This is usually not needed for static binaries, however backends
7111 can request to always do it, e.g. the MIPS backend uses dynamic
7112 symbol counts to lay out GOT, which will be produced in the
7113 presence of GOT relocations even in static binaries (holding fixed
7114 data in that case, to satisfy those relocations). */
7115
7116 if (elf_hash_table (info)->dynamic_sections_created
7117 || bed->always_renumber_dynsyms)
7118 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7119 &section_sym_count);
7120
7121 if (elf_hash_table (info)->dynamic_sections_created)
7122 {
7123 bfd *dynobj;
7124 asection *s;
7125 unsigned int dtagcount;
7126
7127 dynobj = elf_hash_table (info)->dynobj;
7128
7129 /* Work out the size of the symbol version section. */
7130 s = bfd_get_linker_section (dynobj, ".gnu.version");
7131 BFD_ASSERT (s != NULL);
7132 if ((s->flags & SEC_EXCLUDE) == 0)
7133 {
7134 s->size = dynsymcount * sizeof (Elf_External_Versym);
7135 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7136 if (s->contents == NULL)
7137 return FALSE;
7138
7139 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7140 return FALSE;
7141 }
7142
7143 /* Set the size of the .dynsym and .hash sections. We counted
7144 the number of dynamic symbols in elf_link_add_object_symbols.
7145 We will build the contents of .dynsym and .hash when we build
7146 the final symbol table, because until then we do not know the
7147 correct value to give the symbols. We built the .dynstr
7148 section as we went along in elf_link_add_object_symbols. */
7149 s = elf_hash_table (info)->dynsym;
7150 BFD_ASSERT (s != NULL);
7151 s->size = dynsymcount * bed->s->sizeof_sym;
7152
7153 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7154 if (s->contents == NULL)
7155 return FALSE;
7156
7157 /* The first entry in .dynsym is a dummy symbol. Clear all the
7158 section syms, in case we don't output them all. */
7159 ++section_sym_count;
7160 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7161
7162 elf_hash_table (info)->bucketcount = 0;
7163
7164 /* Compute the size of the hashing table. As a side effect this
7165 computes the hash values for all the names we export. */
7166 if (info->emit_hash)
7167 {
7168 unsigned long int *hashcodes;
7169 struct hash_codes_info hashinf;
7170 bfd_size_type amt;
7171 unsigned long int nsyms;
7172 size_t bucketcount;
7173 size_t hash_entry_size;
7174
7175 /* Compute the hash values for all exported symbols. At the same
7176 time store the values in an array so that we could use them for
7177 optimizations. */
7178 amt = dynsymcount * sizeof (unsigned long int);
7179 hashcodes = (unsigned long int *) bfd_malloc (amt);
7180 if (hashcodes == NULL)
7181 return FALSE;
7182 hashinf.hashcodes = hashcodes;
7183 hashinf.error = FALSE;
7184
7185 /* Put all hash values in HASHCODES. */
7186 elf_link_hash_traverse (elf_hash_table (info),
7187 elf_collect_hash_codes, &hashinf);
7188 if (hashinf.error)
7189 {
7190 free (hashcodes);
7191 return FALSE;
7192 }
7193
7194 nsyms = hashinf.hashcodes - hashcodes;
7195 bucketcount
7196 = compute_bucket_count (info, hashcodes, nsyms, 0);
7197 free (hashcodes);
7198
7199 if (bucketcount == 0 && nsyms > 0)
7200 return FALSE;
7201
7202 elf_hash_table (info)->bucketcount = bucketcount;
7203
7204 s = bfd_get_linker_section (dynobj, ".hash");
7205 BFD_ASSERT (s != NULL);
7206 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7207 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7208 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7209 if (s->contents == NULL)
7210 return FALSE;
7211
7212 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7213 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7214 s->contents + hash_entry_size);
7215 }
7216
7217 if (info->emit_gnu_hash)
7218 {
7219 size_t i, cnt;
7220 unsigned char *contents;
7221 struct collect_gnu_hash_codes cinfo;
7222 bfd_size_type amt;
7223 size_t bucketcount;
7224
7225 memset (&cinfo, 0, sizeof (cinfo));
7226
7227 /* Compute the hash values for all exported symbols. At the same
7228 time store the values in an array so that we could use them for
7229 optimizations. */
7230 amt = dynsymcount * 2 * sizeof (unsigned long int);
7231 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7232 if (cinfo.hashcodes == NULL)
7233 return FALSE;
7234
7235 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7236 cinfo.min_dynindx = -1;
7237 cinfo.output_bfd = output_bfd;
7238 cinfo.bed = bed;
7239
7240 /* Put all hash values in HASHCODES. */
7241 elf_link_hash_traverse (elf_hash_table (info),
7242 elf_collect_gnu_hash_codes, &cinfo);
7243 if (cinfo.error)
7244 {
7245 free (cinfo.hashcodes);
7246 return FALSE;
7247 }
7248
7249 bucketcount
7250 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7251
7252 if (bucketcount == 0)
7253 {
7254 free (cinfo.hashcodes);
7255 return FALSE;
7256 }
7257
7258 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7259 BFD_ASSERT (s != NULL);
7260
7261 if (cinfo.nsyms == 0)
7262 {
7263 /* Empty .gnu.hash section is special. */
7264 BFD_ASSERT (cinfo.min_dynindx == -1);
7265 free (cinfo.hashcodes);
7266 s->size = 5 * 4 + bed->s->arch_size / 8;
7267 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7268 if (contents == NULL)
7269 return FALSE;
7270 s->contents = contents;
7271 /* 1 empty bucket. */
7272 bfd_put_32 (output_bfd, 1, contents);
7273 /* SYMIDX above the special symbol 0. */
7274 bfd_put_32 (output_bfd, 1, contents + 4);
7275 /* Just one word for bitmask. */
7276 bfd_put_32 (output_bfd, 1, contents + 8);
7277 /* Only hash fn bloom filter. */
7278 bfd_put_32 (output_bfd, 0, contents + 12);
7279 /* No hashes are valid - empty bitmask. */
7280 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7281 /* No hashes in the only bucket. */
7282 bfd_put_32 (output_bfd, 0,
7283 contents + 16 + bed->s->arch_size / 8);
7284 }
7285 else
7286 {
7287 unsigned long int maskwords, maskbitslog2, x;
7288 BFD_ASSERT (cinfo.min_dynindx != -1);
7289
7290 x = cinfo.nsyms;
7291 maskbitslog2 = 1;
7292 while ((x >>= 1) != 0)
7293 ++maskbitslog2;
7294 if (maskbitslog2 < 3)
7295 maskbitslog2 = 5;
7296 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7297 maskbitslog2 = maskbitslog2 + 3;
7298 else
7299 maskbitslog2 = maskbitslog2 + 2;
7300 if (bed->s->arch_size == 64)
7301 {
7302 if (maskbitslog2 == 5)
7303 maskbitslog2 = 6;
7304 cinfo.shift1 = 6;
7305 }
7306 else
7307 cinfo.shift1 = 5;
7308 cinfo.mask = (1 << cinfo.shift1) - 1;
7309 cinfo.shift2 = maskbitslog2;
7310 cinfo.maskbits = 1 << maskbitslog2;
7311 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7312 amt = bucketcount * sizeof (unsigned long int) * 2;
7313 amt += maskwords * sizeof (bfd_vma);
7314 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7315 if (cinfo.bitmask == NULL)
7316 {
7317 free (cinfo.hashcodes);
7318 return FALSE;
7319 }
7320
7321 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7322 cinfo.indx = cinfo.counts + bucketcount;
7323 cinfo.symindx = dynsymcount - cinfo.nsyms;
7324 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7325
7326 /* Determine how often each hash bucket is used. */
7327 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7328 for (i = 0; i < cinfo.nsyms; ++i)
7329 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7330
7331 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7332 if (cinfo.counts[i] != 0)
7333 {
7334 cinfo.indx[i] = cnt;
7335 cnt += cinfo.counts[i];
7336 }
7337 BFD_ASSERT (cnt == dynsymcount);
7338 cinfo.bucketcount = bucketcount;
7339 cinfo.local_indx = cinfo.min_dynindx;
7340
7341 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7342 s->size += cinfo.maskbits / 8;
7343 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7344 if (contents == NULL)
7345 {
7346 free (cinfo.bitmask);
7347 free (cinfo.hashcodes);
7348 return FALSE;
7349 }
7350
7351 s->contents = contents;
7352 bfd_put_32 (output_bfd, bucketcount, contents);
7353 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7354 bfd_put_32 (output_bfd, maskwords, contents + 8);
7355 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7356 contents += 16 + cinfo.maskbits / 8;
7357
7358 for (i = 0; i < bucketcount; ++i)
7359 {
7360 if (cinfo.counts[i] == 0)
7361 bfd_put_32 (output_bfd, 0, contents);
7362 else
7363 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7364 contents += 4;
7365 }
7366
7367 cinfo.contents = contents;
7368
7369 /* Renumber dynamic symbols, populate .gnu.hash section. */
7370 elf_link_hash_traverse (elf_hash_table (info),
7371 elf_renumber_gnu_hash_syms, &cinfo);
7372
7373 contents = s->contents + 16;
7374 for (i = 0; i < maskwords; ++i)
7375 {
7376 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7377 contents);
7378 contents += bed->s->arch_size / 8;
7379 }
7380
7381 free (cinfo.bitmask);
7382 free (cinfo.hashcodes);
7383 }
7384 }
7385
7386 s = bfd_get_linker_section (dynobj, ".dynstr");
7387 BFD_ASSERT (s != NULL);
7388
7389 elf_finalize_dynstr (output_bfd, info);
7390
7391 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7392
7393 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7394 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7395 return FALSE;
7396 }
7397
7398 return TRUE;
7399 }
7400 \f
7401 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7402
7403 static void
7404 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7405 asection *sec)
7406 {
7407 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7408 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7409 }
7410
7411 /* Finish SHF_MERGE section merging. */
7412
7413 bfd_boolean
7414 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7415 {
7416 bfd *ibfd;
7417 asection *sec;
7418
7419 if (!is_elf_hash_table (info->hash))
7420 return FALSE;
7421
7422 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7423 if ((ibfd->flags & DYNAMIC) == 0
7424 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7425 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7426 == get_elf_backend_data (obfd)->s->elfclass))
7427 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7428 if ((sec->flags & SEC_MERGE) != 0
7429 && !bfd_is_abs_section (sec->output_section))
7430 {
7431 struct bfd_elf_section_data *secdata;
7432
7433 secdata = elf_section_data (sec);
7434 if (! _bfd_add_merge_section (obfd,
7435 &elf_hash_table (info)->merge_info,
7436 sec, &secdata->sec_info))
7437 return FALSE;
7438 else if (secdata->sec_info)
7439 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7440 }
7441
7442 if (elf_hash_table (info)->merge_info != NULL)
7443 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7444 merge_sections_remove_hook);
7445 return TRUE;
7446 }
7447
7448 /* Create an entry in an ELF linker hash table. */
7449
7450 struct bfd_hash_entry *
7451 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7452 struct bfd_hash_table *table,
7453 const char *string)
7454 {
7455 /* Allocate the structure if it has not already been allocated by a
7456 subclass. */
7457 if (entry == NULL)
7458 {
7459 entry = (struct bfd_hash_entry *)
7460 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7461 if (entry == NULL)
7462 return entry;
7463 }
7464
7465 /* Call the allocation method of the superclass. */
7466 entry = _bfd_link_hash_newfunc (entry, table, string);
7467 if (entry != NULL)
7468 {
7469 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7470 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7471
7472 /* Set local fields. */
7473 ret->indx = -1;
7474 ret->dynindx = -1;
7475 ret->got = htab->init_got_refcount;
7476 ret->plt = htab->init_plt_refcount;
7477 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7478 - offsetof (struct elf_link_hash_entry, size)));
7479 /* Assume that we have been called by a non-ELF symbol reader.
7480 This flag is then reset by the code which reads an ELF input
7481 file. This ensures that a symbol created by a non-ELF symbol
7482 reader will have the flag set correctly. */
7483 ret->non_elf = 1;
7484 }
7485
7486 return entry;
7487 }
7488
7489 /* Copy data from an indirect symbol to its direct symbol, hiding the
7490 old indirect symbol. Also used for copying flags to a weakdef. */
7491
7492 void
7493 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7494 struct elf_link_hash_entry *dir,
7495 struct elf_link_hash_entry *ind)
7496 {
7497 struct elf_link_hash_table *htab;
7498
7499 /* Copy down any references that we may have already seen to the
7500 symbol which just became indirect. */
7501
7502 if (dir->versioned != versioned_hidden)
7503 dir->ref_dynamic |= ind->ref_dynamic;
7504 dir->ref_regular |= ind->ref_regular;
7505 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7506 dir->non_got_ref |= ind->non_got_ref;
7507 dir->needs_plt |= ind->needs_plt;
7508 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7509
7510 if (ind->root.type != bfd_link_hash_indirect)
7511 return;
7512
7513 /* Copy over the global and procedure linkage table refcount entries.
7514 These may have been already set up by a check_relocs routine. */
7515 htab = elf_hash_table (info);
7516 if (ind->got.refcount > htab->init_got_refcount.refcount)
7517 {
7518 if (dir->got.refcount < 0)
7519 dir->got.refcount = 0;
7520 dir->got.refcount += ind->got.refcount;
7521 ind->got.refcount = htab->init_got_refcount.refcount;
7522 }
7523
7524 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7525 {
7526 if (dir->plt.refcount < 0)
7527 dir->plt.refcount = 0;
7528 dir->plt.refcount += ind->plt.refcount;
7529 ind->plt.refcount = htab->init_plt_refcount.refcount;
7530 }
7531
7532 if (ind->dynindx != -1)
7533 {
7534 if (dir->dynindx != -1)
7535 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7536 dir->dynindx = ind->dynindx;
7537 dir->dynstr_index = ind->dynstr_index;
7538 ind->dynindx = -1;
7539 ind->dynstr_index = 0;
7540 }
7541 }
7542
7543 void
7544 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7545 struct elf_link_hash_entry *h,
7546 bfd_boolean force_local)
7547 {
7548 /* STT_GNU_IFUNC symbol must go through PLT. */
7549 if (h->type != STT_GNU_IFUNC)
7550 {
7551 h->plt = elf_hash_table (info)->init_plt_offset;
7552 h->needs_plt = 0;
7553 }
7554 if (force_local)
7555 {
7556 h->forced_local = 1;
7557 if (h->dynindx != -1)
7558 {
7559 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7560 h->dynstr_index);
7561 h->dynindx = -1;
7562 h->dynstr_index = 0;
7563 }
7564 }
7565 }
7566
7567 /* Hide a symbol. */
7568
7569 void
7570 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7571 struct bfd_link_info *info,
7572 struct bfd_link_hash_entry *h)
7573 {
7574 if (is_elf_hash_table (info->hash))
7575 {
7576 const struct elf_backend_data *bed
7577 = get_elf_backend_data (output_bfd);
7578 struct elf_link_hash_entry *eh
7579 = (struct elf_link_hash_entry *) h;
7580 bed->elf_backend_hide_symbol (info, eh, TRUE);
7581 eh->def_dynamic = 0;
7582 eh->ref_dynamic = 0;
7583 eh->dynamic_def = 0;
7584 }
7585 }
7586
7587 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7588 caller. */
7589
7590 bfd_boolean
7591 _bfd_elf_link_hash_table_init
7592 (struct elf_link_hash_table *table,
7593 bfd *abfd,
7594 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7595 struct bfd_hash_table *,
7596 const char *),
7597 unsigned int entsize,
7598 enum elf_target_id target_id)
7599 {
7600 bfd_boolean ret;
7601 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7602
7603 table->init_got_refcount.refcount = can_refcount - 1;
7604 table->init_plt_refcount.refcount = can_refcount - 1;
7605 table->init_got_offset.offset = -(bfd_vma) 1;
7606 table->init_plt_offset.offset = -(bfd_vma) 1;
7607 /* The first dynamic symbol is a dummy. */
7608 table->dynsymcount = 1;
7609
7610 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7611
7612 table->root.type = bfd_link_elf_hash_table;
7613 table->hash_table_id = target_id;
7614
7615 return ret;
7616 }
7617
7618 /* Create an ELF linker hash table. */
7619
7620 struct bfd_link_hash_table *
7621 _bfd_elf_link_hash_table_create (bfd *abfd)
7622 {
7623 struct elf_link_hash_table *ret;
7624 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7625
7626 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7627 if (ret == NULL)
7628 return NULL;
7629
7630 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7631 sizeof (struct elf_link_hash_entry),
7632 GENERIC_ELF_DATA))
7633 {
7634 free (ret);
7635 return NULL;
7636 }
7637 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7638
7639 return &ret->root;
7640 }
7641
7642 /* Destroy an ELF linker hash table. */
7643
7644 void
7645 _bfd_elf_link_hash_table_free (bfd *obfd)
7646 {
7647 struct elf_link_hash_table *htab;
7648
7649 htab = (struct elf_link_hash_table *) obfd->link.hash;
7650 if (htab->dynstr != NULL)
7651 _bfd_elf_strtab_free (htab->dynstr);
7652 _bfd_merge_sections_free (htab->merge_info);
7653 _bfd_generic_link_hash_table_free (obfd);
7654 }
7655
7656 /* This is a hook for the ELF emulation code in the generic linker to
7657 tell the backend linker what file name to use for the DT_NEEDED
7658 entry for a dynamic object. */
7659
7660 void
7661 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7662 {
7663 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7664 && bfd_get_format (abfd) == bfd_object)
7665 elf_dt_name (abfd) = name;
7666 }
7667
7668 int
7669 bfd_elf_get_dyn_lib_class (bfd *abfd)
7670 {
7671 int lib_class;
7672 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7673 && bfd_get_format (abfd) == bfd_object)
7674 lib_class = elf_dyn_lib_class (abfd);
7675 else
7676 lib_class = 0;
7677 return lib_class;
7678 }
7679
7680 void
7681 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7682 {
7683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7684 && bfd_get_format (abfd) == bfd_object)
7685 elf_dyn_lib_class (abfd) = lib_class;
7686 }
7687
7688 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7689 the linker ELF emulation code. */
7690
7691 struct bfd_link_needed_list *
7692 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7693 struct bfd_link_info *info)
7694 {
7695 if (! is_elf_hash_table (info->hash))
7696 return NULL;
7697 return elf_hash_table (info)->needed;
7698 }
7699
7700 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7701 hook for the linker ELF emulation code. */
7702
7703 struct bfd_link_needed_list *
7704 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7705 struct bfd_link_info *info)
7706 {
7707 if (! is_elf_hash_table (info->hash))
7708 return NULL;
7709 return elf_hash_table (info)->runpath;
7710 }
7711
7712 /* Get the name actually used for a dynamic object for a link. This
7713 is the SONAME entry if there is one. Otherwise, it is the string
7714 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7715
7716 const char *
7717 bfd_elf_get_dt_soname (bfd *abfd)
7718 {
7719 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7720 && bfd_get_format (abfd) == bfd_object)
7721 return elf_dt_name (abfd);
7722 return NULL;
7723 }
7724
7725 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7726 the ELF linker emulation code. */
7727
7728 bfd_boolean
7729 bfd_elf_get_bfd_needed_list (bfd *abfd,
7730 struct bfd_link_needed_list **pneeded)
7731 {
7732 asection *s;
7733 bfd_byte *dynbuf = NULL;
7734 unsigned int elfsec;
7735 unsigned long shlink;
7736 bfd_byte *extdyn, *extdynend;
7737 size_t extdynsize;
7738 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7739
7740 *pneeded = NULL;
7741
7742 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7743 || bfd_get_format (abfd) != bfd_object)
7744 return TRUE;
7745
7746 s = bfd_get_section_by_name (abfd, ".dynamic");
7747 if (s == NULL || s->size == 0)
7748 return TRUE;
7749
7750 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7751 goto error_return;
7752
7753 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7754 if (elfsec == SHN_BAD)
7755 goto error_return;
7756
7757 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7758
7759 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7760 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7761
7762 extdyn = dynbuf;
7763 extdynend = extdyn + s->size;
7764 for (; extdyn < extdynend; extdyn += extdynsize)
7765 {
7766 Elf_Internal_Dyn dyn;
7767
7768 (*swap_dyn_in) (abfd, extdyn, &dyn);
7769
7770 if (dyn.d_tag == DT_NULL)
7771 break;
7772
7773 if (dyn.d_tag == DT_NEEDED)
7774 {
7775 const char *string;
7776 struct bfd_link_needed_list *l;
7777 unsigned int tagv = dyn.d_un.d_val;
7778 bfd_size_type amt;
7779
7780 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7781 if (string == NULL)
7782 goto error_return;
7783
7784 amt = sizeof *l;
7785 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7786 if (l == NULL)
7787 goto error_return;
7788
7789 l->by = abfd;
7790 l->name = string;
7791 l->next = *pneeded;
7792 *pneeded = l;
7793 }
7794 }
7795
7796 free (dynbuf);
7797
7798 return TRUE;
7799
7800 error_return:
7801 if (dynbuf != NULL)
7802 free (dynbuf);
7803 return FALSE;
7804 }
7805
7806 struct elf_symbuf_symbol
7807 {
7808 unsigned long st_name; /* Symbol name, index in string tbl */
7809 unsigned char st_info; /* Type and binding attributes */
7810 unsigned char st_other; /* Visibilty, and target specific */
7811 };
7812
7813 struct elf_symbuf_head
7814 {
7815 struct elf_symbuf_symbol *ssym;
7816 size_t count;
7817 unsigned int st_shndx;
7818 };
7819
7820 struct elf_symbol
7821 {
7822 union
7823 {
7824 Elf_Internal_Sym *isym;
7825 struct elf_symbuf_symbol *ssym;
7826 } u;
7827 const char *name;
7828 };
7829
7830 /* Sort references to symbols by ascending section number. */
7831
7832 static int
7833 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7834 {
7835 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7836 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7837
7838 return s1->st_shndx - s2->st_shndx;
7839 }
7840
7841 static int
7842 elf_sym_name_compare (const void *arg1, const void *arg2)
7843 {
7844 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7845 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7846 return strcmp (s1->name, s2->name);
7847 }
7848
7849 static struct elf_symbuf_head *
7850 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7851 {
7852 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7853 struct elf_symbuf_symbol *ssym;
7854 struct elf_symbuf_head *ssymbuf, *ssymhead;
7855 size_t i, shndx_count, total_size;
7856
7857 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7858 if (indbuf == NULL)
7859 return NULL;
7860
7861 for (ind = indbuf, i = 0; i < symcount; i++)
7862 if (isymbuf[i].st_shndx != SHN_UNDEF)
7863 *ind++ = &isymbuf[i];
7864 indbufend = ind;
7865
7866 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7867 elf_sort_elf_symbol);
7868
7869 shndx_count = 0;
7870 if (indbufend > indbuf)
7871 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7872 if (ind[0]->st_shndx != ind[1]->st_shndx)
7873 shndx_count++;
7874
7875 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7876 + (indbufend - indbuf) * sizeof (*ssym));
7877 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7878 if (ssymbuf == NULL)
7879 {
7880 free (indbuf);
7881 return NULL;
7882 }
7883
7884 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7885 ssymbuf->ssym = NULL;
7886 ssymbuf->count = shndx_count;
7887 ssymbuf->st_shndx = 0;
7888 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7889 {
7890 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7891 {
7892 ssymhead++;
7893 ssymhead->ssym = ssym;
7894 ssymhead->count = 0;
7895 ssymhead->st_shndx = (*ind)->st_shndx;
7896 }
7897 ssym->st_name = (*ind)->st_name;
7898 ssym->st_info = (*ind)->st_info;
7899 ssym->st_other = (*ind)->st_other;
7900 ssymhead->count++;
7901 }
7902 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7903 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7904 == total_size));
7905
7906 free (indbuf);
7907 return ssymbuf;
7908 }
7909
7910 /* Check if 2 sections define the same set of local and global
7911 symbols. */
7912
7913 static bfd_boolean
7914 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7915 struct bfd_link_info *info)
7916 {
7917 bfd *bfd1, *bfd2;
7918 const struct elf_backend_data *bed1, *bed2;
7919 Elf_Internal_Shdr *hdr1, *hdr2;
7920 size_t symcount1, symcount2;
7921 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7922 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7923 Elf_Internal_Sym *isym, *isymend;
7924 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7925 size_t count1, count2, i;
7926 unsigned int shndx1, shndx2;
7927 bfd_boolean result;
7928
7929 bfd1 = sec1->owner;
7930 bfd2 = sec2->owner;
7931
7932 /* Both sections have to be in ELF. */
7933 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7934 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7935 return FALSE;
7936
7937 if (elf_section_type (sec1) != elf_section_type (sec2))
7938 return FALSE;
7939
7940 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7941 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7942 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7943 return FALSE;
7944
7945 bed1 = get_elf_backend_data (bfd1);
7946 bed2 = get_elf_backend_data (bfd2);
7947 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7948 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7949 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7950 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7951
7952 if (symcount1 == 0 || symcount2 == 0)
7953 return FALSE;
7954
7955 result = FALSE;
7956 isymbuf1 = NULL;
7957 isymbuf2 = NULL;
7958 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7959 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7960
7961 if (ssymbuf1 == NULL)
7962 {
7963 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7964 NULL, NULL, NULL);
7965 if (isymbuf1 == NULL)
7966 goto done;
7967
7968 if (!info->reduce_memory_overheads)
7969 elf_tdata (bfd1)->symbuf = ssymbuf1
7970 = elf_create_symbuf (symcount1, isymbuf1);
7971 }
7972
7973 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7974 {
7975 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7976 NULL, NULL, NULL);
7977 if (isymbuf2 == NULL)
7978 goto done;
7979
7980 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7981 elf_tdata (bfd2)->symbuf = ssymbuf2
7982 = elf_create_symbuf (symcount2, isymbuf2);
7983 }
7984
7985 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7986 {
7987 /* Optimized faster version. */
7988 size_t lo, hi, mid;
7989 struct elf_symbol *symp;
7990 struct elf_symbuf_symbol *ssym, *ssymend;
7991
7992 lo = 0;
7993 hi = ssymbuf1->count;
7994 ssymbuf1++;
7995 count1 = 0;
7996 while (lo < hi)
7997 {
7998 mid = (lo + hi) / 2;
7999 if (shndx1 < ssymbuf1[mid].st_shndx)
8000 hi = mid;
8001 else if (shndx1 > ssymbuf1[mid].st_shndx)
8002 lo = mid + 1;
8003 else
8004 {
8005 count1 = ssymbuf1[mid].count;
8006 ssymbuf1 += mid;
8007 break;
8008 }
8009 }
8010
8011 lo = 0;
8012 hi = ssymbuf2->count;
8013 ssymbuf2++;
8014 count2 = 0;
8015 while (lo < hi)
8016 {
8017 mid = (lo + hi) / 2;
8018 if (shndx2 < ssymbuf2[mid].st_shndx)
8019 hi = mid;
8020 else if (shndx2 > ssymbuf2[mid].st_shndx)
8021 lo = mid + 1;
8022 else
8023 {
8024 count2 = ssymbuf2[mid].count;
8025 ssymbuf2 += mid;
8026 break;
8027 }
8028 }
8029
8030 if (count1 == 0 || count2 == 0 || count1 != count2)
8031 goto done;
8032
8033 symtable1
8034 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8035 symtable2
8036 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8037 if (symtable1 == NULL || symtable2 == NULL)
8038 goto done;
8039
8040 symp = symtable1;
8041 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8042 ssym < ssymend; ssym++, symp++)
8043 {
8044 symp->u.ssym = ssym;
8045 symp->name = bfd_elf_string_from_elf_section (bfd1,
8046 hdr1->sh_link,
8047 ssym->st_name);
8048 }
8049
8050 symp = symtable2;
8051 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8052 ssym < ssymend; ssym++, symp++)
8053 {
8054 symp->u.ssym = ssym;
8055 symp->name = bfd_elf_string_from_elf_section (bfd2,
8056 hdr2->sh_link,
8057 ssym->st_name);
8058 }
8059
8060 /* Sort symbol by name. */
8061 qsort (symtable1, count1, sizeof (struct elf_symbol),
8062 elf_sym_name_compare);
8063 qsort (symtable2, count1, sizeof (struct elf_symbol),
8064 elf_sym_name_compare);
8065
8066 for (i = 0; i < count1; i++)
8067 /* Two symbols must have the same binding, type and name. */
8068 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8069 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8070 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8071 goto done;
8072
8073 result = TRUE;
8074 goto done;
8075 }
8076
8077 symtable1 = (struct elf_symbol *)
8078 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8079 symtable2 = (struct elf_symbol *)
8080 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8081 if (symtable1 == NULL || symtable2 == NULL)
8082 goto done;
8083
8084 /* Count definitions in the section. */
8085 count1 = 0;
8086 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8087 if (isym->st_shndx == shndx1)
8088 symtable1[count1++].u.isym = isym;
8089
8090 count2 = 0;
8091 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8092 if (isym->st_shndx == shndx2)
8093 symtable2[count2++].u.isym = isym;
8094
8095 if (count1 == 0 || count2 == 0 || count1 != count2)
8096 goto done;
8097
8098 for (i = 0; i < count1; i++)
8099 symtable1[i].name
8100 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8101 symtable1[i].u.isym->st_name);
8102
8103 for (i = 0; i < count2; i++)
8104 symtable2[i].name
8105 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8106 symtable2[i].u.isym->st_name);
8107
8108 /* Sort symbol by name. */
8109 qsort (symtable1, count1, sizeof (struct elf_symbol),
8110 elf_sym_name_compare);
8111 qsort (symtable2, count1, sizeof (struct elf_symbol),
8112 elf_sym_name_compare);
8113
8114 for (i = 0; i < count1; i++)
8115 /* Two symbols must have the same binding, type and name. */
8116 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8117 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8118 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8119 goto done;
8120
8121 result = TRUE;
8122
8123 done:
8124 if (symtable1)
8125 free (symtable1);
8126 if (symtable2)
8127 free (symtable2);
8128 if (isymbuf1)
8129 free (isymbuf1);
8130 if (isymbuf2)
8131 free (isymbuf2);
8132
8133 return result;
8134 }
8135
8136 /* Return TRUE if 2 section types are compatible. */
8137
8138 bfd_boolean
8139 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8140 bfd *bbfd, const asection *bsec)
8141 {
8142 if (asec == NULL
8143 || bsec == NULL
8144 || abfd->xvec->flavour != bfd_target_elf_flavour
8145 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8146 return TRUE;
8147
8148 return elf_section_type (asec) == elf_section_type (bsec);
8149 }
8150 \f
8151 /* Final phase of ELF linker. */
8152
8153 /* A structure we use to avoid passing large numbers of arguments. */
8154
8155 struct elf_final_link_info
8156 {
8157 /* General link information. */
8158 struct bfd_link_info *info;
8159 /* Output BFD. */
8160 bfd *output_bfd;
8161 /* Symbol string table. */
8162 struct elf_strtab_hash *symstrtab;
8163 /* .hash section. */
8164 asection *hash_sec;
8165 /* symbol version section (.gnu.version). */
8166 asection *symver_sec;
8167 /* Buffer large enough to hold contents of any section. */
8168 bfd_byte *contents;
8169 /* Buffer large enough to hold external relocs of any section. */
8170 void *external_relocs;
8171 /* Buffer large enough to hold internal relocs of any section. */
8172 Elf_Internal_Rela *internal_relocs;
8173 /* Buffer large enough to hold external local symbols of any input
8174 BFD. */
8175 bfd_byte *external_syms;
8176 /* And a buffer for symbol section indices. */
8177 Elf_External_Sym_Shndx *locsym_shndx;
8178 /* Buffer large enough to hold internal local symbols of any input
8179 BFD. */
8180 Elf_Internal_Sym *internal_syms;
8181 /* Array large enough to hold a symbol index for each local symbol
8182 of any input BFD. */
8183 long *indices;
8184 /* Array large enough to hold a section pointer for each local
8185 symbol of any input BFD. */
8186 asection **sections;
8187 /* Buffer for SHT_SYMTAB_SHNDX section. */
8188 Elf_External_Sym_Shndx *symshndxbuf;
8189 /* Number of STT_FILE syms seen. */
8190 size_t filesym_count;
8191 };
8192
8193 /* This struct is used to pass information to elf_link_output_extsym. */
8194
8195 struct elf_outext_info
8196 {
8197 bfd_boolean failed;
8198 bfd_boolean localsyms;
8199 bfd_boolean file_sym_done;
8200 struct elf_final_link_info *flinfo;
8201 };
8202
8203
8204 /* Support for evaluating a complex relocation.
8205
8206 Complex relocations are generalized, self-describing relocations. The
8207 implementation of them consists of two parts: complex symbols, and the
8208 relocations themselves.
8209
8210 The relocations are use a reserved elf-wide relocation type code (R_RELC
8211 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8212 information (start bit, end bit, word width, etc) into the addend. This
8213 information is extracted from CGEN-generated operand tables within gas.
8214
8215 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8216 internal) representing prefix-notation expressions, including but not
8217 limited to those sorts of expressions normally encoded as addends in the
8218 addend field. The symbol mangling format is:
8219
8220 <node> := <literal>
8221 | <unary-operator> ':' <node>
8222 | <binary-operator> ':' <node> ':' <node>
8223 ;
8224
8225 <literal> := 's' <digits=N> ':' <N character symbol name>
8226 | 'S' <digits=N> ':' <N character section name>
8227 | '#' <hexdigits>
8228 ;
8229
8230 <binary-operator> := as in C
8231 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8232
8233 static void
8234 set_symbol_value (bfd *bfd_with_globals,
8235 Elf_Internal_Sym *isymbuf,
8236 size_t locsymcount,
8237 size_t symidx,
8238 bfd_vma val)
8239 {
8240 struct elf_link_hash_entry **sym_hashes;
8241 struct elf_link_hash_entry *h;
8242 size_t extsymoff = locsymcount;
8243
8244 if (symidx < locsymcount)
8245 {
8246 Elf_Internal_Sym *sym;
8247
8248 sym = isymbuf + symidx;
8249 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8250 {
8251 /* It is a local symbol: move it to the
8252 "absolute" section and give it a value. */
8253 sym->st_shndx = SHN_ABS;
8254 sym->st_value = val;
8255 return;
8256 }
8257 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8258 extsymoff = 0;
8259 }
8260
8261 /* It is a global symbol: set its link type
8262 to "defined" and give it a value. */
8263
8264 sym_hashes = elf_sym_hashes (bfd_with_globals);
8265 h = sym_hashes [symidx - extsymoff];
8266 while (h->root.type == bfd_link_hash_indirect
8267 || h->root.type == bfd_link_hash_warning)
8268 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8269 h->root.type = bfd_link_hash_defined;
8270 h->root.u.def.value = val;
8271 h->root.u.def.section = bfd_abs_section_ptr;
8272 }
8273
8274 static bfd_boolean
8275 resolve_symbol (const char *name,
8276 bfd *input_bfd,
8277 struct elf_final_link_info *flinfo,
8278 bfd_vma *result,
8279 Elf_Internal_Sym *isymbuf,
8280 size_t locsymcount)
8281 {
8282 Elf_Internal_Sym *sym;
8283 struct bfd_link_hash_entry *global_entry;
8284 const char *candidate = NULL;
8285 Elf_Internal_Shdr *symtab_hdr;
8286 size_t i;
8287
8288 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8289
8290 for (i = 0; i < locsymcount; ++ i)
8291 {
8292 sym = isymbuf + i;
8293
8294 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8295 continue;
8296
8297 candidate = bfd_elf_string_from_elf_section (input_bfd,
8298 symtab_hdr->sh_link,
8299 sym->st_name);
8300 #ifdef DEBUG
8301 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8302 name, candidate, (unsigned long) sym->st_value);
8303 #endif
8304 if (candidate && strcmp (candidate, name) == 0)
8305 {
8306 asection *sec = flinfo->sections [i];
8307
8308 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8309 *result += sec->output_offset + sec->output_section->vma;
8310 #ifdef DEBUG
8311 printf ("Found symbol with value %8.8lx\n",
8312 (unsigned long) *result);
8313 #endif
8314 return TRUE;
8315 }
8316 }
8317
8318 /* Hmm, haven't found it yet. perhaps it is a global. */
8319 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8320 FALSE, FALSE, TRUE);
8321 if (!global_entry)
8322 return FALSE;
8323
8324 if (global_entry->type == bfd_link_hash_defined
8325 || global_entry->type == bfd_link_hash_defweak)
8326 {
8327 *result = (global_entry->u.def.value
8328 + global_entry->u.def.section->output_section->vma
8329 + global_entry->u.def.section->output_offset);
8330 #ifdef DEBUG
8331 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8332 global_entry->root.string, (unsigned long) *result);
8333 #endif
8334 return TRUE;
8335 }
8336
8337 return FALSE;
8338 }
8339
8340 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8341 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8342 names like "foo.end" which is the end address of section "foo". */
8343
8344 static bfd_boolean
8345 resolve_section (const char *name,
8346 asection *sections,
8347 bfd_vma *result,
8348 bfd * abfd)
8349 {
8350 asection *curr;
8351 unsigned int len;
8352
8353 for (curr = sections; curr; curr = curr->next)
8354 if (strcmp (curr->name, name) == 0)
8355 {
8356 *result = curr->vma;
8357 return TRUE;
8358 }
8359
8360 /* Hmm. still haven't found it. try pseudo-section names. */
8361 /* FIXME: This could be coded more efficiently... */
8362 for (curr = sections; curr; curr = curr->next)
8363 {
8364 len = strlen (curr->name);
8365 if (len > strlen (name))
8366 continue;
8367
8368 if (strncmp (curr->name, name, len) == 0)
8369 {
8370 if (strncmp (".end", name + len, 4) == 0)
8371 {
8372 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8373 return TRUE;
8374 }
8375
8376 /* Insert more pseudo-section names here, if you like. */
8377 }
8378 }
8379
8380 return FALSE;
8381 }
8382
8383 static void
8384 undefined_reference (const char *reftype, const char *name)
8385 {
8386 /* xgettext:c-format */
8387 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8388 reftype, name);
8389 }
8390
8391 static bfd_boolean
8392 eval_symbol (bfd_vma *result,
8393 const char **symp,
8394 bfd *input_bfd,
8395 struct elf_final_link_info *flinfo,
8396 bfd_vma dot,
8397 Elf_Internal_Sym *isymbuf,
8398 size_t locsymcount,
8399 int signed_p)
8400 {
8401 size_t len;
8402 size_t symlen;
8403 bfd_vma a;
8404 bfd_vma b;
8405 char symbuf[4096];
8406 const char *sym = *symp;
8407 const char *symend;
8408 bfd_boolean symbol_is_section = FALSE;
8409
8410 len = strlen (sym);
8411 symend = sym + len;
8412
8413 if (len < 1 || len > sizeof (symbuf))
8414 {
8415 bfd_set_error (bfd_error_invalid_operation);
8416 return FALSE;
8417 }
8418
8419 switch (* sym)
8420 {
8421 case '.':
8422 *result = dot;
8423 *symp = sym + 1;
8424 return TRUE;
8425
8426 case '#':
8427 ++sym;
8428 *result = strtoul (sym, (char **) symp, 16);
8429 return TRUE;
8430
8431 case 'S':
8432 symbol_is_section = TRUE;
8433 /* Fall through. */
8434 case 's':
8435 ++sym;
8436 symlen = strtol (sym, (char **) symp, 10);
8437 sym = *symp + 1; /* Skip the trailing ':'. */
8438
8439 if (symend < sym || symlen + 1 > sizeof (symbuf))
8440 {
8441 bfd_set_error (bfd_error_invalid_operation);
8442 return FALSE;
8443 }
8444
8445 memcpy (symbuf, sym, symlen);
8446 symbuf[symlen] = '\0';
8447 *symp = sym + symlen;
8448
8449 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8450 the symbol as a section, or vice-versa. so we're pretty liberal in our
8451 interpretation here; section means "try section first", not "must be a
8452 section", and likewise with symbol. */
8453
8454 if (symbol_is_section)
8455 {
8456 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8457 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8458 isymbuf, locsymcount))
8459 {
8460 undefined_reference ("section", symbuf);
8461 return FALSE;
8462 }
8463 }
8464 else
8465 {
8466 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8467 isymbuf, locsymcount)
8468 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8469 result, input_bfd))
8470 {
8471 undefined_reference ("symbol", symbuf);
8472 return FALSE;
8473 }
8474 }
8475
8476 return TRUE;
8477
8478 /* All that remains are operators. */
8479
8480 #define UNARY_OP(op) \
8481 if (strncmp (sym, #op, strlen (#op)) == 0) \
8482 { \
8483 sym += strlen (#op); \
8484 if (*sym == ':') \
8485 ++sym; \
8486 *symp = sym; \
8487 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8488 isymbuf, locsymcount, signed_p)) \
8489 return FALSE; \
8490 if (signed_p) \
8491 *result = op ((bfd_signed_vma) a); \
8492 else \
8493 *result = op a; \
8494 return TRUE; \
8495 }
8496
8497 #define BINARY_OP(op) \
8498 if (strncmp (sym, #op, strlen (#op)) == 0) \
8499 { \
8500 sym += strlen (#op); \
8501 if (*sym == ':') \
8502 ++sym; \
8503 *symp = sym; \
8504 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8505 isymbuf, locsymcount, signed_p)) \
8506 return FALSE; \
8507 ++*symp; \
8508 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8509 isymbuf, locsymcount, signed_p)) \
8510 return FALSE; \
8511 if (signed_p) \
8512 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8513 else \
8514 *result = a op b; \
8515 return TRUE; \
8516 }
8517
8518 default:
8519 UNARY_OP (0-);
8520 BINARY_OP (<<);
8521 BINARY_OP (>>);
8522 BINARY_OP (==);
8523 BINARY_OP (!=);
8524 BINARY_OP (<=);
8525 BINARY_OP (>=);
8526 BINARY_OP (&&);
8527 BINARY_OP (||);
8528 UNARY_OP (~);
8529 UNARY_OP (!);
8530 BINARY_OP (*);
8531 BINARY_OP (/);
8532 BINARY_OP (%);
8533 BINARY_OP (^);
8534 BINARY_OP (|);
8535 BINARY_OP (&);
8536 BINARY_OP (+);
8537 BINARY_OP (-);
8538 BINARY_OP (<);
8539 BINARY_OP (>);
8540 #undef UNARY_OP
8541 #undef BINARY_OP
8542 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8543 bfd_set_error (bfd_error_invalid_operation);
8544 return FALSE;
8545 }
8546 }
8547
8548 static void
8549 put_value (bfd_vma size,
8550 unsigned long chunksz,
8551 bfd *input_bfd,
8552 bfd_vma x,
8553 bfd_byte *location)
8554 {
8555 location += (size - chunksz);
8556
8557 for (; size; size -= chunksz, location -= chunksz)
8558 {
8559 switch (chunksz)
8560 {
8561 case 1:
8562 bfd_put_8 (input_bfd, x, location);
8563 x >>= 8;
8564 break;
8565 case 2:
8566 bfd_put_16 (input_bfd, x, location);
8567 x >>= 16;
8568 break;
8569 case 4:
8570 bfd_put_32 (input_bfd, x, location);
8571 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8572 x >>= 16;
8573 x >>= 16;
8574 break;
8575 #ifdef BFD64
8576 case 8:
8577 bfd_put_64 (input_bfd, x, location);
8578 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8579 x >>= 32;
8580 x >>= 32;
8581 break;
8582 #endif
8583 default:
8584 abort ();
8585 break;
8586 }
8587 }
8588 }
8589
8590 static bfd_vma
8591 get_value (bfd_vma size,
8592 unsigned long chunksz,
8593 bfd *input_bfd,
8594 bfd_byte *location)
8595 {
8596 int shift;
8597 bfd_vma x = 0;
8598
8599 /* Sanity checks. */
8600 BFD_ASSERT (chunksz <= sizeof (x)
8601 && size >= chunksz
8602 && chunksz != 0
8603 && (size % chunksz) == 0
8604 && input_bfd != NULL
8605 && location != NULL);
8606
8607 if (chunksz == sizeof (x))
8608 {
8609 BFD_ASSERT (size == chunksz);
8610
8611 /* Make sure that we do not perform an undefined shift operation.
8612 We know that size == chunksz so there will only be one iteration
8613 of the loop below. */
8614 shift = 0;
8615 }
8616 else
8617 shift = 8 * chunksz;
8618
8619 for (; size; size -= chunksz, location += chunksz)
8620 {
8621 switch (chunksz)
8622 {
8623 case 1:
8624 x = (x << shift) | bfd_get_8 (input_bfd, location);
8625 break;
8626 case 2:
8627 x = (x << shift) | bfd_get_16 (input_bfd, location);
8628 break;
8629 case 4:
8630 x = (x << shift) | bfd_get_32 (input_bfd, location);
8631 break;
8632 #ifdef BFD64
8633 case 8:
8634 x = (x << shift) | bfd_get_64 (input_bfd, location);
8635 break;
8636 #endif
8637 default:
8638 abort ();
8639 }
8640 }
8641 return x;
8642 }
8643
8644 static void
8645 decode_complex_addend (unsigned long *start, /* in bits */
8646 unsigned long *oplen, /* in bits */
8647 unsigned long *len, /* in bits */
8648 unsigned long *wordsz, /* in bytes */
8649 unsigned long *chunksz, /* in bytes */
8650 unsigned long *lsb0_p,
8651 unsigned long *signed_p,
8652 unsigned long *trunc_p,
8653 unsigned long encoded)
8654 {
8655 * start = encoded & 0x3F;
8656 * len = (encoded >> 6) & 0x3F;
8657 * oplen = (encoded >> 12) & 0x3F;
8658 * wordsz = (encoded >> 18) & 0xF;
8659 * chunksz = (encoded >> 22) & 0xF;
8660 * lsb0_p = (encoded >> 27) & 1;
8661 * signed_p = (encoded >> 28) & 1;
8662 * trunc_p = (encoded >> 29) & 1;
8663 }
8664
8665 bfd_reloc_status_type
8666 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8667 asection *input_section ATTRIBUTE_UNUSED,
8668 bfd_byte *contents,
8669 Elf_Internal_Rela *rel,
8670 bfd_vma relocation)
8671 {
8672 bfd_vma shift, x, mask;
8673 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8674 bfd_reloc_status_type r;
8675
8676 /* Perform this reloc, since it is complex.
8677 (this is not to say that it necessarily refers to a complex
8678 symbol; merely that it is a self-describing CGEN based reloc.
8679 i.e. the addend has the complete reloc information (bit start, end,
8680 word size, etc) encoded within it.). */
8681
8682 decode_complex_addend (&start, &oplen, &len, &wordsz,
8683 &chunksz, &lsb0_p, &signed_p,
8684 &trunc_p, rel->r_addend);
8685
8686 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8687
8688 if (lsb0_p)
8689 shift = (start + 1) - len;
8690 else
8691 shift = (8 * wordsz) - (start + len);
8692
8693 x = get_value (wordsz, chunksz, input_bfd,
8694 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8695
8696 #ifdef DEBUG
8697 printf ("Doing complex reloc: "
8698 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8699 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8700 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8701 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8702 oplen, (unsigned long) x, (unsigned long) mask,
8703 (unsigned long) relocation);
8704 #endif
8705
8706 r = bfd_reloc_ok;
8707 if (! trunc_p)
8708 /* Now do an overflow check. */
8709 r = bfd_check_overflow ((signed_p
8710 ? complain_overflow_signed
8711 : complain_overflow_unsigned),
8712 len, 0, (8 * wordsz),
8713 relocation);
8714
8715 /* Do the deed. */
8716 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8717
8718 #ifdef DEBUG
8719 printf (" relocation: %8.8lx\n"
8720 " shifted mask: %8.8lx\n"
8721 " shifted/masked reloc: %8.8lx\n"
8722 " result: %8.8lx\n",
8723 (unsigned long) relocation, (unsigned long) (mask << shift),
8724 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8725 #endif
8726 put_value (wordsz, chunksz, input_bfd, x,
8727 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8728 return r;
8729 }
8730
8731 /* Functions to read r_offset from external (target order) reloc
8732 entry. Faster than bfd_getl32 et al, because we let the compiler
8733 know the value is aligned. */
8734
8735 static bfd_vma
8736 ext32l_r_offset (const void *p)
8737 {
8738 union aligned32
8739 {
8740 uint32_t v;
8741 unsigned char c[4];
8742 };
8743 const union aligned32 *a
8744 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8745
8746 uint32_t aval = ( (uint32_t) a->c[0]
8747 | (uint32_t) a->c[1] << 8
8748 | (uint32_t) a->c[2] << 16
8749 | (uint32_t) a->c[3] << 24);
8750 return aval;
8751 }
8752
8753 static bfd_vma
8754 ext32b_r_offset (const void *p)
8755 {
8756 union aligned32
8757 {
8758 uint32_t v;
8759 unsigned char c[4];
8760 };
8761 const union aligned32 *a
8762 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8763
8764 uint32_t aval = ( (uint32_t) a->c[0] << 24
8765 | (uint32_t) a->c[1] << 16
8766 | (uint32_t) a->c[2] << 8
8767 | (uint32_t) a->c[3]);
8768 return aval;
8769 }
8770
8771 #ifdef BFD_HOST_64_BIT
8772 static bfd_vma
8773 ext64l_r_offset (const void *p)
8774 {
8775 union aligned64
8776 {
8777 uint64_t v;
8778 unsigned char c[8];
8779 };
8780 const union aligned64 *a
8781 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8782
8783 uint64_t aval = ( (uint64_t) a->c[0]
8784 | (uint64_t) a->c[1] << 8
8785 | (uint64_t) a->c[2] << 16
8786 | (uint64_t) a->c[3] << 24
8787 | (uint64_t) a->c[4] << 32
8788 | (uint64_t) a->c[5] << 40
8789 | (uint64_t) a->c[6] << 48
8790 | (uint64_t) a->c[7] << 56);
8791 return aval;
8792 }
8793
8794 static bfd_vma
8795 ext64b_r_offset (const void *p)
8796 {
8797 union aligned64
8798 {
8799 uint64_t v;
8800 unsigned char c[8];
8801 };
8802 const union aligned64 *a
8803 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8804
8805 uint64_t aval = ( (uint64_t) a->c[0] << 56
8806 | (uint64_t) a->c[1] << 48
8807 | (uint64_t) a->c[2] << 40
8808 | (uint64_t) a->c[3] << 32
8809 | (uint64_t) a->c[4] << 24
8810 | (uint64_t) a->c[5] << 16
8811 | (uint64_t) a->c[6] << 8
8812 | (uint64_t) a->c[7]);
8813 return aval;
8814 }
8815 #endif
8816
8817 /* When performing a relocatable link, the input relocations are
8818 preserved. But, if they reference global symbols, the indices
8819 referenced must be updated. Update all the relocations found in
8820 RELDATA. */
8821
8822 static bfd_boolean
8823 elf_link_adjust_relocs (bfd *abfd,
8824 asection *sec,
8825 struct bfd_elf_section_reloc_data *reldata,
8826 bfd_boolean sort,
8827 struct bfd_link_info *info)
8828 {
8829 unsigned int i;
8830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8831 bfd_byte *erela;
8832 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8833 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8834 bfd_vma r_type_mask;
8835 int r_sym_shift;
8836 unsigned int count = reldata->count;
8837 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8838
8839 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8840 {
8841 swap_in = bed->s->swap_reloc_in;
8842 swap_out = bed->s->swap_reloc_out;
8843 }
8844 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8845 {
8846 swap_in = bed->s->swap_reloca_in;
8847 swap_out = bed->s->swap_reloca_out;
8848 }
8849 else
8850 abort ();
8851
8852 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8853 abort ();
8854
8855 if (bed->s->arch_size == 32)
8856 {
8857 r_type_mask = 0xff;
8858 r_sym_shift = 8;
8859 }
8860 else
8861 {
8862 r_type_mask = 0xffffffff;
8863 r_sym_shift = 32;
8864 }
8865
8866 erela = reldata->hdr->contents;
8867 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8868 {
8869 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8870 unsigned int j;
8871
8872 if (*rel_hash == NULL)
8873 continue;
8874
8875 if ((*rel_hash)->indx == -2
8876 && info->gc_sections
8877 && ! info->gc_keep_exported)
8878 {
8879 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8880 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8881 abfd, sec,
8882 (*rel_hash)->root.root.string);
8883 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8884 abfd, sec);
8885 bfd_set_error (bfd_error_invalid_operation);
8886 return FALSE;
8887 }
8888 BFD_ASSERT ((*rel_hash)->indx >= 0);
8889
8890 (*swap_in) (abfd, erela, irela);
8891 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8892 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8893 | (irela[j].r_info & r_type_mask));
8894 (*swap_out) (abfd, irela, erela);
8895 }
8896
8897 if (bed->elf_backend_update_relocs)
8898 (*bed->elf_backend_update_relocs) (sec, reldata);
8899
8900 if (sort && count != 0)
8901 {
8902 bfd_vma (*ext_r_off) (const void *);
8903 bfd_vma r_off;
8904 size_t elt_size;
8905 bfd_byte *base, *end, *p, *loc;
8906 bfd_byte *buf = NULL;
8907
8908 if (bed->s->arch_size == 32)
8909 {
8910 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8911 ext_r_off = ext32l_r_offset;
8912 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8913 ext_r_off = ext32b_r_offset;
8914 else
8915 abort ();
8916 }
8917 else
8918 {
8919 #ifdef BFD_HOST_64_BIT
8920 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8921 ext_r_off = ext64l_r_offset;
8922 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8923 ext_r_off = ext64b_r_offset;
8924 else
8925 #endif
8926 abort ();
8927 }
8928
8929 /* Must use a stable sort here. A modified insertion sort,
8930 since the relocs are mostly sorted already. */
8931 elt_size = reldata->hdr->sh_entsize;
8932 base = reldata->hdr->contents;
8933 end = base + count * elt_size;
8934 if (elt_size > sizeof (Elf64_External_Rela))
8935 abort ();
8936
8937 /* Ensure the first element is lowest. This acts as a sentinel,
8938 speeding the main loop below. */
8939 r_off = (*ext_r_off) (base);
8940 for (p = loc = base; (p += elt_size) < end; )
8941 {
8942 bfd_vma r_off2 = (*ext_r_off) (p);
8943 if (r_off > r_off2)
8944 {
8945 r_off = r_off2;
8946 loc = p;
8947 }
8948 }
8949 if (loc != base)
8950 {
8951 /* Don't just swap *base and *loc as that changes the order
8952 of the original base[0] and base[1] if they happen to
8953 have the same r_offset. */
8954 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8955 memcpy (onebuf, loc, elt_size);
8956 memmove (base + elt_size, base, loc - base);
8957 memcpy (base, onebuf, elt_size);
8958 }
8959
8960 for (p = base + elt_size; (p += elt_size) < end; )
8961 {
8962 /* base to p is sorted, *p is next to insert. */
8963 r_off = (*ext_r_off) (p);
8964 /* Search the sorted region for location to insert. */
8965 loc = p - elt_size;
8966 while (r_off < (*ext_r_off) (loc))
8967 loc -= elt_size;
8968 loc += elt_size;
8969 if (loc != p)
8970 {
8971 /* Chances are there is a run of relocs to insert here,
8972 from one of more input files. Files are not always
8973 linked in order due to the way elf_link_input_bfd is
8974 called. See pr17666. */
8975 size_t sortlen = p - loc;
8976 bfd_vma r_off2 = (*ext_r_off) (loc);
8977 size_t runlen = elt_size;
8978 size_t buf_size = 96 * 1024;
8979 while (p + runlen < end
8980 && (sortlen <= buf_size
8981 || runlen + elt_size <= buf_size)
8982 && r_off2 > (*ext_r_off) (p + runlen))
8983 runlen += elt_size;
8984 if (buf == NULL)
8985 {
8986 buf = bfd_malloc (buf_size);
8987 if (buf == NULL)
8988 return FALSE;
8989 }
8990 if (runlen < sortlen)
8991 {
8992 memcpy (buf, p, runlen);
8993 memmove (loc + runlen, loc, sortlen);
8994 memcpy (loc, buf, runlen);
8995 }
8996 else
8997 {
8998 memcpy (buf, loc, sortlen);
8999 memmove (loc, p, runlen);
9000 memcpy (loc + runlen, buf, sortlen);
9001 }
9002 p += runlen - elt_size;
9003 }
9004 }
9005 /* Hashes are no longer valid. */
9006 free (reldata->hashes);
9007 reldata->hashes = NULL;
9008 free (buf);
9009 }
9010 return TRUE;
9011 }
9012
9013 struct elf_link_sort_rela
9014 {
9015 union {
9016 bfd_vma offset;
9017 bfd_vma sym_mask;
9018 } u;
9019 enum elf_reloc_type_class type;
9020 /* We use this as an array of size int_rels_per_ext_rel. */
9021 Elf_Internal_Rela rela[1];
9022 };
9023
9024 static int
9025 elf_link_sort_cmp1 (const void *A, const void *B)
9026 {
9027 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9028 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9029 int relativea, relativeb;
9030
9031 relativea = a->type == reloc_class_relative;
9032 relativeb = b->type == reloc_class_relative;
9033
9034 if (relativea < relativeb)
9035 return 1;
9036 if (relativea > relativeb)
9037 return -1;
9038 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9039 return -1;
9040 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9041 return 1;
9042 if (a->rela->r_offset < b->rela->r_offset)
9043 return -1;
9044 if (a->rela->r_offset > b->rela->r_offset)
9045 return 1;
9046 return 0;
9047 }
9048
9049 static int
9050 elf_link_sort_cmp2 (const void *A, const void *B)
9051 {
9052 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9053 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9054
9055 if (a->type < b->type)
9056 return -1;
9057 if (a->type > b->type)
9058 return 1;
9059 if (a->u.offset < b->u.offset)
9060 return -1;
9061 if (a->u.offset > b->u.offset)
9062 return 1;
9063 if (a->rela->r_offset < b->rela->r_offset)
9064 return -1;
9065 if (a->rela->r_offset > b->rela->r_offset)
9066 return 1;
9067 return 0;
9068 }
9069
9070 static size_t
9071 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9072 {
9073 asection *dynamic_relocs;
9074 asection *rela_dyn;
9075 asection *rel_dyn;
9076 bfd_size_type count, size;
9077 size_t i, ret, sort_elt, ext_size;
9078 bfd_byte *sort, *s_non_relative, *p;
9079 struct elf_link_sort_rela *sq;
9080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9081 int i2e = bed->s->int_rels_per_ext_rel;
9082 unsigned int opb = bfd_octets_per_byte (abfd);
9083 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9084 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9085 struct bfd_link_order *lo;
9086 bfd_vma r_sym_mask;
9087 bfd_boolean use_rela;
9088
9089 /* Find a dynamic reloc section. */
9090 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9091 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9092 if (rela_dyn != NULL && rela_dyn->size > 0
9093 && rel_dyn != NULL && rel_dyn->size > 0)
9094 {
9095 bfd_boolean use_rela_initialised = FALSE;
9096
9097 /* This is just here to stop gcc from complaining.
9098 Its initialization checking code is not perfect. */
9099 use_rela = TRUE;
9100
9101 /* Both sections are present. Examine the sizes
9102 of the indirect sections to help us choose. */
9103 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9104 if (lo->type == bfd_indirect_link_order)
9105 {
9106 asection *o = lo->u.indirect.section;
9107
9108 if ((o->size % bed->s->sizeof_rela) == 0)
9109 {
9110 if ((o->size % bed->s->sizeof_rel) == 0)
9111 /* Section size is divisible by both rel and rela sizes.
9112 It is of no help to us. */
9113 ;
9114 else
9115 {
9116 /* Section size is only divisible by rela. */
9117 if (use_rela_initialised && !use_rela)
9118 {
9119 _bfd_error_handler (_("%pB: unable to sort relocs - "
9120 "they are in more than one size"),
9121 abfd);
9122 bfd_set_error (bfd_error_invalid_operation);
9123 return 0;
9124 }
9125 else
9126 {
9127 use_rela = TRUE;
9128 use_rela_initialised = TRUE;
9129 }
9130 }
9131 }
9132 else if ((o->size % bed->s->sizeof_rel) == 0)
9133 {
9134 /* Section size is only divisible by rel. */
9135 if (use_rela_initialised && use_rela)
9136 {
9137 _bfd_error_handler (_("%pB: unable to sort relocs - "
9138 "they are in more than one size"),
9139 abfd);
9140 bfd_set_error (bfd_error_invalid_operation);
9141 return 0;
9142 }
9143 else
9144 {
9145 use_rela = FALSE;
9146 use_rela_initialised = TRUE;
9147 }
9148 }
9149 else
9150 {
9151 /* The section size is not divisible by either -
9152 something is wrong. */
9153 _bfd_error_handler (_("%pB: unable to sort relocs - "
9154 "they are of an unknown size"), abfd);
9155 bfd_set_error (bfd_error_invalid_operation);
9156 return 0;
9157 }
9158 }
9159
9160 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9161 if (lo->type == bfd_indirect_link_order)
9162 {
9163 asection *o = lo->u.indirect.section;
9164
9165 if ((o->size % bed->s->sizeof_rela) == 0)
9166 {
9167 if ((o->size % bed->s->sizeof_rel) == 0)
9168 /* Section size is divisible by both rel and rela sizes.
9169 It is of no help to us. */
9170 ;
9171 else
9172 {
9173 /* Section size is only divisible by rela. */
9174 if (use_rela_initialised && !use_rela)
9175 {
9176 _bfd_error_handler (_("%pB: unable to sort relocs - "
9177 "they are in more than one size"),
9178 abfd);
9179 bfd_set_error (bfd_error_invalid_operation);
9180 return 0;
9181 }
9182 else
9183 {
9184 use_rela = TRUE;
9185 use_rela_initialised = TRUE;
9186 }
9187 }
9188 }
9189 else if ((o->size % bed->s->sizeof_rel) == 0)
9190 {
9191 /* Section size is only divisible by rel. */
9192 if (use_rela_initialised && use_rela)
9193 {
9194 _bfd_error_handler (_("%pB: unable to sort relocs - "
9195 "they are in more than one size"),
9196 abfd);
9197 bfd_set_error (bfd_error_invalid_operation);
9198 return 0;
9199 }
9200 else
9201 {
9202 use_rela = FALSE;
9203 use_rela_initialised = TRUE;
9204 }
9205 }
9206 else
9207 {
9208 /* The section size is not divisible by either -
9209 something is wrong. */
9210 _bfd_error_handler (_("%pB: unable to sort relocs - "
9211 "they are of an unknown size"), abfd);
9212 bfd_set_error (bfd_error_invalid_operation);
9213 return 0;
9214 }
9215 }
9216
9217 if (! use_rela_initialised)
9218 /* Make a guess. */
9219 use_rela = TRUE;
9220 }
9221 else if (rela_dyn != NULL && rela_dyn->size > 0)
9222 use_rela = TRUE;
9223 else if (rel_dyn != NULL && rel_dyn->size > 0)
9224 use_rela = FALSE;
9225 else
9226 return 0;
9227
9228 if (use_rela)
9229 {
9230 dynamic_relocs = rela_dyn;
9231 ext_size = bed->s->sizeof_rela;
9232 swap_in = bed->s->swap_reloca_in;
9233 swap_out = bed->s->swap_reloca_out;
9234 }
9235 else
9236 {
9237 dynamic_relocs = rel_dyn;
9238 ext_size = bed->s->sizeof_rel;
9239 swap_in = bed->s->swap_reloc_in;
9240 swap_out = bed->s->swap_reloc_out;
9241 }
9242
9243 size = 0;
9244 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9245 if (lo->type == bfd_indirect_link_order)
9246 size += lo->u.indirect.section->size;
9247
9248 if (size != dynamic_relocs->size)
9249 return 0;
9250
9251 sort_elt = (sizeof (struct elf_link_sort_rela)
9252 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9253
9254 count = dynamic_relocs->size / ext_size;
9255 if (count == 0)
9256 return 0;
9257 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9258
9259 if (sort == NULL)
9260 {
9261 (*info->callbacks->warning)
9262 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9263 return 0;
9264 }
9265
9266 if (bed->s->arch_size == 32)
9267 r_sym_mask = ~(bfd_vma) 0xff;
9268 else
9269 r_sym_mask = ~(bfd_vma) 0xffffffff;
9270
9271 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9272 if (lo->type == bfd_indirect_link_order)
9273 {
9274 bfd_byte *erel, *erelend;
9275 asection *o = lo->u.indirect.section;
9276
9277 if (o->contents == NULL && o->size != 0)
9278 {
9279 /* This is a reloc section that is being handled as a normal
9280 section. See bfd_section_from_shdr. We can't combine
9281 relocs in this case. */
9282 free (sort);
9283 return 0;
9284 }
9285 erel = o->contents;
9286 erelend = o->contents + o->size;
9287 p = sort + o->output_offset * opb / ext_size * sort_elt;
9288
9289 while (erel < erelend)
9290 {
9291 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9292
9293 (*swap_in) (abfd, erel, s->rela);
9294 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9295 s->u.sym_mask = r_sym_mask;
9296 p += sort_elt;
9297 erel += ext_size;
9298 }
9299 }
9300
9301 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9302
9303 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9304 {
9305 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9306 if (s->type != reloc_class_relative)
9307 break;
9308 }
9309 ret = i;
9310 s_non_relative = p;
9311
9312 sq = (struct elf_link_sort_rela *) s_non_relative;
9313 for (; i < count; i++, p += sort_elt)
9314 {
9315 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9316 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9317 sq = sp;
9318 sp->u.offset = sq->rela->r_offset;
9319 }
9320
9321 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9322
9323 struct elf_link_hash_table *htab = elf_hash_table (info);
9324 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9325 {
9326 /* We have plt relocs in .rela.dyn. */
9327 sq = (struct elf_link_sort_rela *) sort;
9328 for (i = 0; i < count; i++)
9329 if (sq[count - i - 1].type != reloc_class_plt)
9330 break;
9331 if (i != 0 && htab->srelplt->size == i * ext_size)
9332 {
9333 struct bfd_link_order **plo;
9334 /* Put srelplt link_order last. This is so the output_offset
9335 set in the next loop is correct for DT_JMPREL. */
9336 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9337 if ((*plo)->type == bfd_indirect_link_order
9338 && (*plo)->u.indirect.section == htab->srelplt)
9339 {
9340 lo = *plo;
9341 *plo = lo->next;
9342 }
9343 else
9344 plo = &(*plo)->next;
9345 *plo = lo;
9346 lo->next = NULL;
9347 dynamic_relocs->map_tail.link_order = lo;
9348 }
9349 }
9350
9351 p = sort;
9352 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9353 if (lo->type == bfd_indirect_link_order)
9354 {
9355 bfd_byte *erel, *erelend;
9356 asection *o = lo->u.indirect.section;
9357
9358 erel = o->contents;
9359 erelend = o->contents + o->size;
9360 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9361 while (erel < erelend)
9362 {
9363 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9364 (*swap_out) (abfd, s->rela, erel);
9365 p += sort_elt;
9366 erel += ext_size;
9367 }
9368 }
9369
9370 free (sort);
9371 *psec = dynamic_relocs;
9372 return ret;
9373 }
9374
9375 /* Add a symbol to the output symbol string table. */
9376
9377 static int
9378 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9379 const char *name,
9380 Elf_Internal_Sym *elfsym,
9381 asection *input_sec,
9382 struct elf_link_hash_entry *h)
9383 {
9384 int (*output_symbol_hook)
9385 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9386 struct elf_link_hash_entry *);
9387 struct elf_link_hash_table *hash_table;
9388 const struct elf_backend_data *bed;
9389 bfd_size_type strtabsize;
9390
9391 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9392
9393 bed = get_elf_backend_data (flinfo->output_bfd);
9394 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9395 if (output_symbol_hook != NULL)
9396 {
9397 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9398 if (ret != 1)
9399 return ret;
9400 }
9401
9402 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9403 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9404 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9405 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9406
9407 if (name == NULL
9408 || *name == '\0'
9409 || (input_sec->flags & SEC_EXCLUDE))
9410 elfsym->st_name = (unsigned long) -1;
9411 else
9412 {
9413 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9414 to get the final offset for st_name. */
9415 elfsym->st_name
9416 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9417 name, FALSE);
9418 if (elfsym->st_name == (unsigned long) -1)
9419 return 0;
9420 }
9421
9422 hash_table = elf_hash_table (flinfo->info);
9423 strtabsize = hash_table->strtabsize;
9424 if (strtabsize <= hash_table->strtabcount)
9425 {
9426 strtabsize += strtabsize;
9427 hash_table->strtabsize = strtabsize;
9428 strtabsize *= sizeof (*hash_table->strtab);
9429 hash_table->strtab
9430 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9431 strtabsize);
9432 if (hash_table->strtab == NULL)
9433 return 0;
9434 }
9435 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9436 hash_table->strtab[hash_table->strtabcount].dest_index
9437 = hash_table->strtabcount;
9438 hash_table->strtab[hash_table->strtabcount].destshndx_index
9439 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9440
9441 bfd_get_symcount (flinfo->output_bfd) += 1;
9442 hash_table->strtabcount += 1;
9443
9444 return 1;
9445 }
9446
9447 /* Swap symbols out to the symbol table and flush the output symbols to
9448 the file. */
9449
9450 static bfd_boolean
9451 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9452 {
9453 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9454 bfd_size_type amt;
9455 size_t i;
9456 const struct elf_backend_data *bed;
9457 bfd_byte *symbuf;
9458 Elf_Internal_Shdr *hdr;
9459 file_ptr pos;
9460 bfd_boolean ret;
9461
9462 if (!hash_table->strtabcount)
9463 return TRUE;
9464
9465 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9466
9467 bed = get_elf_backend_data (flinfo->output_bfd);
9468
9469 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9470 symbuf = (bfd_byte *) bfd_malloc (amt);
9471 if (symbuf == NULL)
9472 return FALSE;
9473
9474 if (flinfo->symshndxbuf)
9475 {
9476 amt = sizeof (Elf_External_Sym_Shndx);
9477 amt *= bfd_get_symcount (flinfo->output_bfd);
9478 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9479 if (flinfo->symshndxbuf == NULL)
9480 {
9481 free (symbuf);
9482 return FALSE;
9483 }
9484 }
9485
9486 for (i = 0; i < hash_table->strtabcount; i++)
9487 {
9488 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9489 if (elfsym->sym.st_name == (unsigned long) -1)
9490 elfsym->sym.st_name = 0;
9491 else
9492 elfsym->sym.st_name
9493 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9494 elfsym->sym.st_name);
9495 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9496 ((bfd_byte *) symbuf
9497 + (elfsym->dest_index
9498 * bed->s->sizeof_sym)),
9499 (flinfo->symshndxbuf
9500 + elfsym->destshndx_index));
9501 }
9502
9503 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9504 pos = hdr->sh_offset + hdr->sh_size;
9505 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9506 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9507 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9508 {
9509 hdr->sh_size += amt;
9510 ret = TRUE;
9511 }
9512 else
9513 ret = FALSE;
9514
9515 free (symbuf);
9516
9517 free (hash_table->strtab);
9518 hash_table->strtab = NULL;
9519
9520 return ret;
9521 }
9522
9523 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9524
9525 static bfd_boolean
9526 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9527 {
9528 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9529 && sym->st_shndx < SHN_LORESERVE)
9530 {
9531 /* The gABI doesn't support dynamic symbols in output sections
9532 beyond 64k. */
9533 _bfd_error_handler
9534 /* xgettext:c-format */
9535 (_("%pB: too many sections: %d (>= %d)"),
9536 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9537 bfd_set_error (bfd_error_nonrepresentable_section);
9538 return FALSE;
9539 }
9540 return TRUE;
9541 }
9542
9543 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9544 allowing an unsatisfied unversioned symbol in the DSO to match a
9545 versioned symbol that would normally require an explicit version.
9546 We also handle the case that a DSO references a hidden symbol
9547 which may be satisfied by a versioned symbol in another DSO. */
9548
9549 static bfd_boolean
9550 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9551 const struct elf_backend_data *bed,
9552 struct elf_link_hash_entry *h)
9553 {
9554 bfd *abfd;
9555 struct elf_link_loaded_list *loaded;
9556
9557 if (!is_elf_hash_table (info->hash))
9558 return FALSE;
9559
9560 /* Check indirect symbol. */
9561 while (h->root.type == bfd_link_hash_indirect)
9562 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9563
9564 switch (h->root.type)
9565 {
9566 default:
9567 abfd = NULL;
9568 break;
9569
9570 case bfd_link_hash_undefined:
9571 case bfd_link_hash_undefweak:
9572 abfd = h->root.u.undef.abfd;
9573 if (abfd == NULL
9574 || (abfd->flags & DYNAMIC) == 0
9575 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9576 return FALSE;
9577 break;
9578
9579 case bfd_link_hash_defined:
9580 case bfd_link_hash_defweak:
9581 abfd = h->root.u.def.section->owner;
9582 break;
9583
9584 case bfd_link_hash_common:
9585 abfd = h->root.u.c.p->section->owner;
9586 break;
9587 }
9588 BFD_ASSERT (abfd != NULL);
9589
9590 for (loaded = elf_hash_table (info)->loaded;
9591 loaded != NULL;
9592 loaded = loaded->next)
9593 {
9594 bfd *input;
9595 Elf_Internal_Shdr *hdr;
9596 size_t symcount;
9597 size_t extsymcount;
9598 size_t extsymoff;
9599 Elf_Internal_Shdr *versymhdr;
9600 Elf_Internal_Sym *isym;
9601 Elf_Internal_Sym *isymend;
9602 Elf_Internal_Sym *isymbuf;
9603 Elf_External_Versym *ever;
9604 Elf_External_Versym *extversym;
9605
9606 input = loaded->abfd;
9607
9608 /* We check each DSO for a possible hidden versioned definition. */
9609 if (input == abfd
9610 || (input->flags & DYNAMIC) == 0
9611 || elf_dynversym (input) == 0)
9612 continue;
9613
9614 hdr = &elf_tdata (input)->dynsymtab_hdr;
9615
9616 symcount = hdr->sh_size / bed->s->sizeof_sym;
9617 if (elf_bad_symtab (input))
9618 {
9619 extsymcount = symcount;
9620 extsymoff = 0;
9621 }
9622 else
9623 {
9624 extsymcount = symcount - hdr->sh_info;
9625 extsymoff = hdr->sh_info;
9626 }
9627
9628 if (extsymcount == 0)
9629 continue;
9630
9631 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9632 NULL, NULL, NULL);
9633 if (isymbuf == NULL)
9634 return FALSE;
9635
9636 /* Read in any version definitions. */
9637 versymhdr = &elf_tdata (input)->dynversym_hdr;
9638 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9639 if (extversym == NULL)
9640 goto error_ret;
9641
9642 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9643 || (bfd_bread (extversym, versymhdr->sh_size, input)
9644 != versymhdr->sh_size))
9645 {
9646 free (extversym);
9647 error_ret:
9648 free (isymbuf);
9649 return FALSE;
9650 }
9651
9652 ever = extversym + extsymoff;
9653 isymend = isymbuf + extsymcount;
9654 for (isym = isymbuf; isym < isymend; isym++, ever++)
9655 {
9656 const char *name;
9657 Elf_Internal_Versym iver;
9658 unsigned short version_index;
9659
9660 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9661 || isym->st_shndx == SHN_UNDEF)
9662 continue;
9663
9664 name = bfd_elf_string_from_elf_section (input,
9665 hdr->sh_link,
9666 isym->st_name);
9667 if (strcmp (name, h->root.root.string) != 0)
9668 continue;
9669
9670 _bfd_elf_swap_versym_in (input, ever, &iver);
9671
9672 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9673 && !(h->def_regular
9674 && h->forced_local))
9675 {
9676 /* If we have a non-hidden versioned sym, then it should
9677 have provided a definition for the undefined sym unless
9678 it is defined in a non-shared object and forced local.
9679 */
9680 abort ();
9681 }
9682
9683 version_index = iver.vs_vers & VERSYM_VERSION;
9684 if (version_index == 1 || version_index == 2)
9685 {
9686 /* This is the base or first version. We can use it. */
9687 free (extversym);
9688 free (isymbuf);
9689 return TRUE;
9690 }
9691 }
9692
9693 free (extversym);
9694 free (isymbuf);
9695 }
9696
9697 return FALSE;
9698 }
9699
9700 /* Convert ELF common symbol TYPE. */
9701
9702 static int
9703 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9704 {
9705 /* Commom symbol can only appear in relocatable link. */
9706 if (!bfd_link_relocatable (info))
9707 abort ();
9708 switch (info->elf_stt_common)
9709 {
9710 case unchanged:
9711 break;
9712 case elf_stt_common:
9713 type = STT_COMMON;
9714 break;
9715 case no_elf_stt_common:
9716 type = STT_OBJECT;
9717 break;
9718 }
9719 return type;
9720 }
9721
9722 /* Add an external symbol to the symbol table. This is called from
9723 the hash table traversal routine. When generating a shared object,
9724 we go through the symbol table twice. The first time we output
9725 anything that might have been forced to local scope in a version
9726 script. The second time we output the symbols that are still
9727 global symbols. */
9728
9729 static bfd_boolean
9730 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9731 {
9732 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9733 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9734 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9735 bfd_boolean strip;
9736 Elf_Internal_Sym sym;
9737 asection *input_sec;
9738 const struct elf_backend_data *bed;
9739 long indx;
9740 int ret;
9741 unsigned int type;
9742
9743 if (h->root.type == bfd_link_hash_warning)
9744 {
9745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9746 if (h->root.type == bfd_link_hash_new)
9747 return TRUE;
9748 }
9749
9750 /* Decide whether to output this symbol in this pass. */
9751 if (eoinfo->localsyms)
9752 {
9753 if (!h->forced_local)
9754 return TRUE;
9755 }
9756 else
9757 {
9758 if (h->forced_local)
9759 return TRUE;
9760 }
9761
9762 bed = get_elf_backend_data (flinfo->output_bfd);
9763
9764 if (h->root.type == bfd_link_hash_undefined)
9765 {
9766 /* If we have an undefined symbol reference here then it must have
9767 come from a shared library that is being linked in. (Undefined
9768 references in regular files have already been handled unless
9769 they are in unreferenced sections which are removed by garbage
9770 collection). */
9771 bfd_boolean ignore_undef = FALSE;
9772
9773 /* Some symbols may be special in that the fact that they're
9774 undefined can be safely ignored - let backend determine that. */
9775 if (bed->elf_backend_ignore_undef_symbol)
9776 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9777
9778 /* If we are reporting errors for this situation then do so now. */
9779 if (!ignore_undef
9780 && h->ref_dynamic_nonweak
9781 && (!h->ref_regular || flinfo->info->gc_sections)
9782 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9783 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9784 (*flinfo->info->callbacks->undefined_symbol)
9785 (flinfo->info, h->root.root.string,
9786 h->ref_regular ? NULL : h->root.u.undef.abfd,
9787 NULL, 0,
9788 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9789
9790 /* Strip a global symbol defined in a discarded section. */
9791 if (h->indx == -3)
9792 return TRUE;
9793 }
9794
9795 /* We should also warn if a forced local symbol is referenced from
9796 shared libraries. */
9797 if (bfd_link_executable (flinfo->info)
9798 && h->forced_local
9799 && h->ref_dynamic
9800 && h->def_regular
9801 && !h->dynamic_def
9802 && h->ref_dynamic_nonweak
9803 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9804 {
9805 bfd *def_bfd;
9806 const char *msg;
9807 struct elf_link_hash_entry *hi = h;
9808
9809 /* Check indirect symbol. */
9810 while (hi->root.type == bfd_link_hash_indirect)
9811 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9812
9813 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9814 /* xgettext:c-format */
9815 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9816 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9817 /* xgettext:c-format */
9818 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9819 else
9820 /* xgettext:c-format */
9821 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9822 def_bfd = flinfo->output_bfd;
9823 if (hi->root.u.def.section != bfd_abs_section_ptr)
9824 def_bfd = hi->root.u.def.section->owner;
9825 _bfd_error_handler (msg, flinfo->output_bfd,
9826 h->root.root.string, def_bfd);
9827 bfd_set_error (bfd_error_bad_value);
9828 eoinfo->failed = TRUE;
9829 return FALSE;
9830 }
9831
9832 /* We don't want to output symbols that have never been mentioned by
9833 a regular file, or that we have been told to strip. However, if
9834 h->indx is set to -2, the symbol is used by a reloc and we must
9835 output it. */
9836 strip = FALSE;
9837 if (h->indx == -2)
9838 ;
9839 else if ((h->def_dynamic
9840 || h->ref_dynamic
9841 || h->root.type == bfd_link_hash_new)
9842 && !h->def_regular
9843 && !h->ref_regular)
9844 strip = TRUE;
9845 else if (flinfo->info->strip == strip_all)
9846 strip = TRUE;
9847 else if (flinfo->info->strip == strip_some
9848 && bfd_hash_lookup (flinfo->info->keep_hash,
9849 h->root.root.string, FALSE, FALSE) == NULL)
9850 strip = TRUE;
9851 else if ((h->root.type == bfd_link_hash_defined
9852 || h->root.type == bfd_link_hash_defweak)
9853 && ((flinfo->info->strip_discarded
9854 && discarded_section (h->root.u.def.section))
9855 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9856 && h->root.u.def.section->owner != NULL
9857 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9858 strip = TRUE;
9859 else if ((h->root.type == bfd_link_hash_undefined
9860 || h->root.type == bfd_link_hash_undefweak)
9861 && h->root.u.undef.abfd != NULL
9862 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9863 strip = TRUE;
9864
9865 type = h->type;
9866
9867 /* If we're stripping it, and it's not a dynamic symbol, there's
9868 nothing else to do. However, if it is a forced local symbol or
9869 an ifunc symbol we need to give the backend finish_dynamic_symbol
9870 function a chance to make it dynamic. */
9871 if (strip
9872 && h->dynindx == -1
9873 && type != STT_GNU_IFUNC
9874 && !h->forced_local)
9875 return TRUE;
9876
9877 sym.st_value = 0;
9878 sym.st_size = h->size;
9879 sym.st_other = h->other;
9880 switch (h->root.type)
9881 {
9882 default:
9883 case bfd_link_hash_new:
9884 case bfd_link_hash_warning:
9885 abort ();
9886 return FALSE;
9887
9888 case bfd_link_hash_undefined:
9889 case bfd_link_hash_undefweak:
9890 input_sec = bfd_und_section_ptr;
9891 sym.st_shndx = SHN_UNDEF;
9892 break;
9893
9894 case bfd_link_hash_defined:
9895 case bfd_link_hash_defweak:
9896 {
9897 input_sec = h->root.u.def.section;
9898 if (input_sec->output_section != NULL)
9899 {
9900 sym.st_shndx =
9901 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9902 input_sec->output_section);
9903 if (sym.st_shndx == SHN_BAD)
9904 {
9905 _bfd_error_handler
9906 /* xgettext:c-format */
9907 (_("%pB: could not find output section %pA for input section %pA"),
9908 flinfo->output_bfd, input_sec->output_section, input_sec);
9909 bfd_set_error (bfd_error_nonrepresentable_section);
9910 eoinfo->failed = TRUE;
9911 return FALSE;
9912 }
9913
9914 /* ELF symbols in relocatable files are section relative,
9915 but in nonrelocatable files they are virtual
9916 addresses. */
9917 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9918 if (!bfd_link_relocatable (flinfo->info))
9919 {
9920 sym.st_value += input_sec->output_section->vma;
9921 if (h->type == STT_TLS)
9922 {
9923 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9924 if (tls_sec != NULL)
9925 sym.st_value -= tls_sec->vma;
9926 }
9927 }
9928 }
9929 else
9930 {
9931 BFD_ASSERT (input_sec->owner == NULL
9932 || (input_sec->owner->flags & DYNAMIC) != 0);
9933 sym.st_shndx = SHN_UNDEF;
9934 input_sec = bfd_und_section_ptr;
9935 }
9936 }
9937 break;
9938
9939 case bfd_link_hash_common:
9940 input_sec = h->root.u.c.p->section;
9941 sym.st_shndx = bed->common_section_index (input_sec);
9942 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9943 break;
9944
9945 case bfd_link_hash_indirect:
9946 /* These symbols are created by symbol versioning. They point
9947 to the decorated version of the name. For example, if the
9948 symbol foo@@GNU_1.2 is the default, which should be used when
9949 foo is used with no version, then we add an indirect symbol
9950 foo which points to foo@@GNU_1.2. We ignore these symbols,
9951 since the indirected symbol is already in the hash table. */
9952 return TRUE;
9953 }
9954
9955 if (type == STT_COMMON || type == STT_OBJECT)
9956 switch (h->root.type)
9957 {
9958 case bfd_link_hash_common:
9959 type = elf_link_convert_common_type (flinfo->info, type);
9960 break;
9961 case bfd_link_hash_defined:
9962 case bfd_link_hash_defweak:
9963 if (bed->common_definition (&sym))
9964 type = elf_link_convert_common_type (flinfo->info, type);
9965 else
9966 type = STT_OBJECT;
9967 break;
9968 case bfd_link_hash_undefined:
9969 case bfd_link_hash_undefweak:
9970 break;
9971 default:
9972 abort ();
9973 }
9974
9975 if (h->forced_local)
9976 {
9977 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9978 /* Turn off visibility on local symbol. */
9979 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9980 }
9981 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9982 else if (h->unique_global && h->def_regular)
9983 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9984 else if (h->root.type == bfd_link_hash_undefweak
9985 || h->root.type == bfd_link_hash_defweak)
9986 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9987 else
9988 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9989 sym.st_target_internal = h->target_internal;
9990
9991 /* Give the processor backend a chance to tweak the symbol value,
9992 and also to finish up anything that needs to be done for this
9993 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9994 forced local syms when non-shared is due to a historical quirk.
9995 STT_GNU_IFUNC symbol must go through PLT. */
9996 if ((h->type == STT_GNU_IFUNC
9997 && h->def_regular
9998 && !bfd_link_relocatable (flinfo->info))
9999 || ((h->dynindx != -1
10000 || h->forced_local)
10001 && ((bfd_link_pic (flinfo->info)
10002 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10003 || h->root.type != bfd_link_hash_undefweak))
10004 || !h->forced_local)
10005 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10006 {
10007 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10008 (flinfo->output_bfd, flinfo->info, h, &sym)))
10009 {
10010 eoinfo->failed = TRUE;
10011 return FALSE;
10012 }
10013 }
10014
10015 /* If we are marking the symbol as undefined, and there are no
10016 non-weak references to this symbol from a regular object, then
10017 mark the symbol as weak undefined; if there are non-weak
10018 references, mark the symbol as strong. We can't do this earlier,
10019 because it might not be marked as undefined until the
10020 finish_dynamic_symbol routine gets through with it. */
10021 if (sym.st_shndx == SHN_UNDEF
10022 && h->ref_regular
10023 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10024 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10025 {
10026 int bindtype;
10027 type = ELF_ST_TYPE (sym.st_info);
10028
10029 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10030 if (type == STT_GNU_IFUNC)
10031 type = STT_FUNC;
10032
10033 if (h->ref_regular_nonweak)
10034 bindtype = STB_GLOBAL;
10035 else
10036 bindtype = STB_WEAK;
10037 sym.st_info = ELF_ST_INFO (bindtype, type);
10038 }
10039
10040 /* If this is a symbol defined in a dynamic library, don't use the
10041 symbol size from the dynamic library. Relinking an executable
10042 against a new library may introduce gratuitous changes in the
10043 executable's symbols if we keep the size. */
10044 if (sym.st_shndx == SHN_UNDEF
10045 && !h->def_regular
10046 && h->def_dynamic)
10047 sym.st_size = 0;
10048
10049 /* If a non-weak symbol with non-default visibility is not defined
10050 locally, it is a fatal error. */
10051 if (!bfd_link_relocatable (flinfo->info)
10052 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10053 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10054 && h->root.type == bfd_link_hash_undefined
10055 && !h->def_regular)
10056 {
10057 const char *msg;
10058
10059 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10060 /* xgettext:c-format */
10061 msg = _("%pB: protected symbol `%s' isn't defined");
10062 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10063 /* xgettext:c-format */
10064 msg = _("%pB: internal symbol `%s' isn't defined");
10065 else
10066 /* xgettext:c-format */
10067 msg = _("%pB: hidden symbol `%s' isn't defined");
10068 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10069 bfd_set_error (bfd_error_bad_value);
10070 eoinfo->failed = TRUE;
10071 return FALSE;
10072 }
10073
10074 /* If this symbol should be put in the .dynsym section, then put it
10075 there now. We already know the symbol index. We also fill in
10076 the entry in the .hash section. */
10077 if (h->dynindx != -1
10078 && elf_hash_table (flinfo->info)->dynamic_sections_created
10079 && elf_hash_table (flinfo->info)->dynsym != NULL
10080 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10081 {
10082 bfd_byte *esym;
10083
10084 /* Since there is no version information in the dynamic string,
10085 if there is no version info in symbol version section, we will
10086 have a run-time problem if not linking executable, referenced
10087 by shared library, or not bound locally. */
10088 if (h->verinfo.verdef == NULL
10089 && (!bfd_link_executable (flinfo->info)
10090 || h->ref_dynamic
10091 || !h->def_regular))
10092 {
10093 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10094
10095 if (p && p [1] != '\0')
10096 {
10097 _bfd_error_handler
10098 /* xgettext:c-format */
10099 (_("%pB: no symbol version section for versioned symbol `%s'"),
10100 flinfo->output_bfd, h->root.root.string);
10101 eoinfo->failed = TRUE;
10102 return FALSE;
10103 }
10104 }
10105
10106 sym.st_name = h->dynstr_index;
10107 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10108 + h->dynindx * bed->s->sizeof_sym);
10109 if (!check_dynsym (flinfo->output_bfd, &sym))
10110 {
10111 eoinfo->failed = TRUE;
10112 return FALSE;
10113 }
10114 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10115
10116 if (flinfo->hash_sec != NULL)
10117 {
10118 size_t hash_entry_size;
10119 bfd_byte *bucketpos;
10120 bfd_vma chain;
10121 size_t bucketcount;
10122 size_t bucket;
10123
10124 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10125 bucket = h->u.elf_hash_value % bucketcount;
10126
10127 hash_entry_size
10128 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10129 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10130 + (bucket + 2) * hash_entry_size);
10131 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10132 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10133 bucketpos);
10134 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10135 ((bfd_byte *) flinfo->hash_sec->contents
10136 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10137 }
10138
10139 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10140 {
10141 Elf_Internal_Versym iversym;
10142 Elf_External_Versym *eversym;
10143
10144 if (!h->def_regular)
10145 {
10146 if (h->verinfo.verdef == NULL
10147 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10148 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10149 iversym.vs_vers = 0;
10150 else
10151 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10152 }
10153 else
10154 {
10155 if (h->verinfo.vertree == NULL)
10156 iversym.vs_vers = 1;
10157 else
10158 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10159 if (flinfo->info->create_default_symver)
10160 iversym.vs_vers++;
10161 }
10162
10163 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10164 defined locally. */
10165 if (h->versioned == versioned_hidden && h->def_regular)
10166 iversym.vs_vers |= VERSYM_HIDDEN;
10167
10168 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10169 eversym += h->dynindx;
10170 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10171 }
10172 }
10173
10174 /* If the symbol is undefined, and we didn't output it to .dynsym,
10175 strip it from .symtab too. Obviously we can't do this for
10176 relocatable output or when needed for --emit-relocs. */
10177 else if (input_sec == bfd_und_section_ptr
10178 && h->indx != -2
10179 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10180 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10181 && !bfd_link_relocatable (flinfo->info))
10182 return TRUE;
10183
10184 /* Also strip others that we couldn't earlier due to dynamic symbol
10185 processing. */
10186 if (strip)
10187 return TRUE;
10188 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10189 return TRUE;
10190
10191 /* Output a FILE symbol so that following locals are not associated
10192 with the wrong input file. We need one for forced local symbols
10193 if we've seen more than one FILE symbol or when we have exactly
10194 one FILE symbol but global symbols are present in a file other
10195 than the one with the FILE symbol. We also need one if linker
10196 defined symbols are present. In practice these conditions are
10197 always met, so just emit the FILE symbol unconditionally. */
10198 if (eoinfo->localsyms
10199 && !eoinfo->file_sym_done
10200 && eoinfo->flinfo->filesym_count != 0)
10201 {
10202 Elf_Internal_Sym fsym;
10203
10204 memset (&fsym, 0, sizeof (fsym));
10205 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10206 fsym.st_shndx = SHN_ABS;
10207 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10208 bfd_und_section_ptr, NULL))
10209 return FALSE;
10210
10211 eoinfo->file_sym_done = TRUE;
10212 }
10213
10214 indx = bfd_get_symcount (flinfo->output_bfd);
10215 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10216 input_sec, h);
10217 if (ret == 0)
10218 {
10219 eoinfo->failed = TRUE;
10220 return FALSE;
10221 }
10222 else if (ret == 1)
10223 h->indx = indx;
10224 else if (h->indx == -2)
10225 abort();
10226
10227 return TRUE;
10228 }
10229
10230 /* Return TRUE if special handling is done for relocs in SEC against
10231 symbols defined in discarded sections. */
10232
10233 static bfd_boolean
10234 elf_section_ignore_discarded_relocs (asection *sec)
10235 {
10236 const struct elf_backend_data *bed;
10237
10238 switch (sec->sec_info_type)
10239 {
10240 case SEC_INFO_TYPE_STABS:
10241 case SEC_INFO_TYPE_EH_FRAME:
10242 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10243 return TRUE;
10244 default:
10245 break;
10246 }
10247
10248 bed = get_elf_backend_data (sec->owner);
10249 if (bed->elf_backend_ignore_discarded_relocs != NULL
10250 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10251 return TRUE;
10252
10253 return FALSE;
10254 }
10255
10256 /* Return a mask saying how ld should treat relocations in SEC against
10257 symbols defined in discarded sections. If this function returns
10258 COMPLAIN set, ld will issue a warning message. If this function
10259 returns PRETEND set, and the discarded section was link-once and the
10260 same size as the kept link-once section, ld will pretend that the
10261 symbol was actually defined in the kept section. Otherwise ld will
10262 zero the reloc (at least that is the intent, but some cooperation by
10263 the target dependent code is needed, particularly for REL targets). */
10264
10265 unsigned int
10266 _bfd_elf_default_action_discarded (asection *sec)
10267 {
10268 if (sec->flags & SEC_DEBUGGING)
10269 return PRETEND;
10270
10271 if (strcmp (".eh_frame", sec->name) == 0)
10272 return 0;
10273
10274 if (strcmp (".gcc_except_table", sec->name) == 0)
10275 return 0;
10276
10277 return COMPLAIN | PRETEND;
10278 }
10279
10280 /* Find a match between a section and a member of a section group. */
10281
10282 static asection *
10283 match_group_member (asection *sec, asection *group,
10284 struct bfd_link_info *info)
10285 {
10286 asection *first = elf_next_in_group (group);
10287 asection *s = first;
10288
10289 while (s != NULL)
10290 {
10291 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10292 return s;
10293
10294 s = elf_next_in_group (s);
10295 if (s == first)
10296 break;
10297 }
10298
10299 return NULL;
10300 }
10301
10302 /* Check if the kept section of a discarded section SEC can be used
10303 to replace it. Return the replacement if it is OK. Otherwise return
10304 NULL. */
10305
10306 asection *
10307 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10308 {
10309 asection *kept;
10310
10311 kept = sec->kept_section;
10312 if (kept != NULL)
10313 {
10314 if ((kept->flags & SEC_GROUP) != 0)
10315 kept = match_group_member (sec, kept, info);
10316 if (kept != NULL
10317 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10318 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10319 kept = NULL;
10320 sec->kept_section = kept;
10321 }
10322 return kept;
10323 }
10324
10325 /* Link an input file into the linker output file. This function
10326 handles all the sections and relocations of the input file at once.
10327 This is so that we only have to read the local symbols once, and
10328 don't have to keep them in memory. */
10329
10330 static bfd_boolean
10331 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10332 {
10333 int (*relocate_section)
10334 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10335 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10336 bfd *output_bfd;
10337 Elf_Internal_Shdr *symtab_hdr;
10338 size_t locsymcount;
10339 size_t extsymoff;
10340 Elf_Internal_Sym *isymbuf;
10341 Elf_Internal_Sym *isym;
10342 Elf_Internal_Sym *isymend;
10343 long *pindex;
10344 asection **ppsection;
10345 asection *o;
10346 const struct elf_backend_data *bed;
10347 struct elf_link_hash_entry **sym_hashes;
10348 bfd_size_type address_size;
10349 bfd_vma r_type_mask;
10350 int r_sym_shift;
10351 bfd_boolean have_file_sym = FALSE;
10352
10353 output_bfd = flinfo->output_bfd;
10354 bed = get_elf_backend_data (output_bfd);
10355 relocate_section = bed->elf_backend_relocate_section;
10356
10357 /* If this is a dynamic object, we don't want to do anything here:
10358 we don't want the local symbols, and we don't want the section
10359 contents. */
10360 if ((input_bfd->flags & DYNAMIC) != 0)
10361 return TRUE;
10362
10363 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10364 if (elf_bad_symtab (input_bfd))
10365 {
10366 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10367 extsymoff = 0;
10368 }
10369 else
10370 {
10371 locsymcount = symtab_hdr->sh_info;
10372 extsymoff = symtab_hdr->sh_info;
10373 }
10374
10375 /* Read the local symbols. */
10376 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10377 if (isymbuf == NULL && locsymcount != 0)
10378 {
10379 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10380 flinfo->internal_syms,
10381 flinfo->external_syms,
10382 flinfo->locsym_shndx);
10383 if (isymbuf == NULL)
10384 return FALSE;
10385 }
10386
10387 /* Find local symbol sections and adjust values of symbols in
10388 SEC_MERGE sections. Write out those local symbols we know are
10389 going into the output file. */
10390 isymend = isymbuf + locsymcount;
10391 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10392 isym < isymend;
10393 isym++, pindex++, ppsection++)
10394 {
10395 asection *isec;
10396 const char *name;
10397 Elf_Internal_Sym osym;
10398 long indx;
10399 int ret;
10400
10401 *pindex = -1;
10402
10403 if (elf_bad_symtab (input_bfd))
10404 {
10405 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10406 {
10407 *ppsection = NULL;
10408 continue;
10409 }
10410 }
10411
10412 if (isym->st_shndx == SHN_UNDEF)
10413 isec = bfd_und_section_ptr;
10414 else if (isym->st_shndx == SHN_ABS)
10415 isec = bfd_abs_section_ptr;
10416 else if (isym->st_shndx == SHN_COMMON)
10417 isec = bfd_com_section_ptr;
10418 else
10419 {
10420 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10421 if (isec == NULL)
10422 {
10423 /* Don't attempt to output symbols with st_shnx in the
10424 reserved range other than SHN_ABS and SHN_COMMON. */
10425 isec = bfd_und_section_ptr;
10426 }
10427 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10428 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10429 isym->st_value =
10430 _bfd_merged_section_offset (output_bfd, &isec,
10431 elf_section_data (isec)->sec_info,
10432 isym->st_value);
10433 }
10434
10435 *ppsection = isec;
10436
10437 /* Don't output the first, undefined, symbol. In fact, don't
10438 output any undefined local symbol. */
10439 if (isec == bfd_und_section_ptr)
10440 continue;
10441
10442 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10443 {
10444 /* We never output section symbols. Instead, we use the
10445 section symbol of the corresponding section in the output
10446 file. */
10447 continue;
10448 }
10449
10450 /* If we are stripping all symbols, we don't want to output this
10451 one. */
10452 if (flinfo->info->strip == strip_all)
10453 continue;
10454
10455 /* If we are discarding all local symbols, we don't want to
10456 output this one. If we are generating a relocatable output
10457 file, then some of the local symbols may be required by
10458 relocs; we output them below as we discover that they are
10459 needed. */
10460 if (flinfo->info->discard == discard_all)
10461 continue;
10462
10463 /* If this symbol is defined in a section which we are
10464 discarding, we don't need to keep it. */
10465 if (isym->st_shndx != SHN_UNDEF
10466 && isym->st_shndx < SHN_LORESERVE
10467 && bfd_section_removed_from_list (output_bfd,
10468 isec->output_section))
10469 continue;
10470
10471 /* Get the name of the symbol. */
10472 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10473 isym->st_name);
10474 if (name == NULL)
10475 return FALSE;
10476
10477 /* See if we are discarding symbols with this name. */
10478 if ((flinfo->info->strip == strip_some
10479 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10480 == NULL))
10481 || (((flinfo->info->discard == discard_sec_merge
10482 && (isec->flags & SEC_MERGE)
10483 && !bfd_link_relocatable (flinfo->info))
10484 || flinfo->info->discard == discard_l)
10485 && bfd_is_local_label_name (input_bfd, name)))
10486 continue;
10487
10488 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10489 {
10490 if (input_bfd->lto_output)
10491 /* -flto puts a temp file name here. This means builds
10492 are not reproducible. Discard the symbol. */
10493 continue;
10494 have_file_sym = TRUE;
10495 flinfo->filesym_count += 1;
10496 }
10497 if (!have_file_sym)
10498 {
10499 /* In the absence of debug info, bfd_find_nearest_line uses
10500 FILE symbols to determine the source file for local
10501 function symbols. Provide a FILE symbol here if input
10502 files lack such, so that their symbols won't be
10503 associated with a previous input file. It's not the
10504 source file, but the best we can do. */
10505 have_file_sym = TRUE;
10506 flinfo->filesym_count += 1;
10507 memset (&osym, 0, sizeof (osym));
10508 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10509 osym.st_shndx = SHN_ABS;
10510 if (!elf_link_output_symstrtab (flinfo,
10511 (input_bfd->lto_output ? NULL
10512 : input_bfd->filename),
10513 &osym, bfd_abs_section_ptr,
10514 NULL))
10515 return FALSE;
10516 }
10517
10518 osym = *isym;
10519
10520 /* Adjust the section index for the output file. */
10521 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10522 isec->output_section);
10523 if (osym.st_shndx == SHN_BAD)
10524 return FALSE;
10525
10526 /* ELF symbols in relocatable files are section relative, but
10527 in executable files they are virtual addresses. Note that
10528 this code assumes that all ELF sections have an associated
10529 BFD section with a reasonable value for output_offset; below
10530 we assume that they also have a reasonable value for
10531 output_section. Any special sections must be set up to meet
10532 these requirements. */
10533 osym.st_value += isec->output_offset;
10534 if (!bfd_link_relocatable (flinfo->info))
10535 {
10536 osym.st_value += isec->output_section->vma;
10537 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10538 {
10539 /* STT_TLS symbols are relative to PT_TLS segment base. */
10540 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10541 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10542 else
10543 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10544 STT_NOTYPE);
10545 }
10546 }
10547
10548 indx = bfd_get_symcount (output_bfd);
10549 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10550 if (ret == 0)
10551 return FALSE;
10552 else if (ret == 1)
10553 *pindex = indx;
10554 }
10555
10556 if (bed->s->arch_size == 32)
10557 {
10558 r_type_mask = 0xff;
10559 r_sym_shift = 8;
10560 address_size = 4;
10561 }
10562 else
10563 {
10564 r_type_mask = 0xffffffff;
10565 r_sym_shift = 32;
10566 address_size = 8;
10567 }
10568
10569 /* Relocate the contents of each section. */
10570 sym_hashes = elf_sym_hashes (input_bfd);
10571 for (o = input_bfd->sections; o != NULL; o = o->next)
10572 {
10573 bfd_byte *contents;
10574
10575 if (! o->linker_mark)
10576 {
10577 /* This section was omitted from the link. */
10578 continue;
10579 }
10580
10581 if (!flinfo->info->resolve_section_groups
10582 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10583 {
10584 /* Deal with the group signature symbol. */
10585 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10586 unsigned long symndx = sec_data->this_hdr.sh_info;
10587 asection *osec = o->output_section;
10588
10589 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10590 if (symndx >= locsymcount
10591 || (elf_bad_symtab (input_bfd)
10592 && flinfo->sections[symndx] == NULL))
10593 {
10594 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10595 while (h->root.type == bfd_link_hash_indirect
10596 || h->root.type == bfd_link_hash_warning)
10597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10598 /* Arrange for symbol to be output. */
10599 h->indx = -2;
10600 elf_section_data (osec)->this_hdr.sh_info = -2;
10601 }
10602 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10603 {
10604 /* We'll use the output section target_index. */
10605 asection *sec = flinfo->sections[symndx]->output_section;
10606 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10607 }
10608 else
10609 {
10610 if (flinfo->indices[symndx] == -1)
10611 {
10612 /* Otherwise output the local symbol now. */
10613 Elf_Internal_Sym sym = isymbuf[symndx];
10614 asection *sec = flinfo->sections[symndx]->output_section;
10615 const char *name;
10616 long indx;
10617 int ret;
10618
10619 name = bfd_elf_string_from_elf_section (input_bfd,
10620 symtab_hdr->sh_link,
10621 sym.st_name);
10622 if (name == NULL)
10623 return FALSE;
10624
10625 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10626 sec);
10627 if (sym.st_shndx == SHN_BAD)
10628 return FALSE;
10629
10630 sym.st_value += o->output_offset;
10631
10632 indx = bfd_get_symcount (output_bfd);
10633 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10634 NULL);
10635 if (ret == 0)
10636 return FALSE;
10637 else if (ret == 1)
10638 flinfo->indices[symndx] = indx;
10639 else
10640 abort ();
10641 }
10642 elf_section_data (osec)->this_hdr.sh_info
10643 = flinfo->indices[symndx];
10644 }
10645 }
10646
10647 if ((o->flags & SEC_HAS_CONTENTS) == 0
10648 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10649 continue;
10650
10651 if ((o->flags & SEC_LINKER_CREATED) != 0)
10652 {
10653 /* Section was created by _bfd_elf_link_create_dynamic_sections
10654 or somesuch. */
10655 continue;
10656 }
10657
10658 /* Get the contents of the section. They have been cached by a
10659 relaxation routine. Note that o is a section in an input
10660 file, so the contents field will not have been set by any of
10661 the routines which work on output files. */
10662 if (elf_section_data (o)->this_hdr.contents != NULL)
10663 {
10664 contents = elf_section_data (o)->this_hdr.contents;
10665 if (bed->caches_rawsize
10666 && o->rawsize != 0
10667 && o->rawsize < o->size)
10668 {
10669 memcpy (flinfo->contents, contents, o->rawsize);
10670 contents = flinfo->contents;
10671 }
10672 }
10673 else
10674 {
10675 contents = flinfo->contents;
10676 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10677 return FALSE;
10678 }
10679
10680 if ((o->flags & SEC_RELOC) != 0)
10681 {
10682 Elf_Internal_Rela *internal_relocs;
10683 Elf_Internal_Rela *rel, *relend;
10684 int action_discarded;
10685 int ret;
10686
10687 /* Get the swapped relocs. */
10688 internal_relocs
10689 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10690 flinfo->internal_relocs, FALSE);
10691 if (internal_relocs == NULL
10692 && o->reloc_count > 0)
10693 return FALSE;
10694
10695 /* We need to reverse-copy input .ctors/.dtors sections if
10696 they are placed in .init_array/.finit_array for output. */
10697 if (o->size > address_size
10698 && ((strncmp (o->name, ".ctors", 6) == 0
10699 && strcmp (o->output_section->name,
10700 ".init_array") == 0)
10701 || (strncmp (o->name, ".dtors", 6) == 0
10702 && strcmp (o->output_section->name,
10703 ".fini_array") == 0))
10704 && (o->name[6] == 0 || o->name[6] == '.'))
10705 {
10706 if (o->size * bed->s->int_rels_per_ext_rel
10707 != o->reloc_count * address_size)
10708 {
10709 _bfd_error_handler
10710 /* xgettext:c-format */
10711 (_("error: %pB: size of section %pA is not "
10712 "multiple of address size"),
10713 input_bfd, o);
10714 bfd_set_error (bfd_error_bad_value);
10715 return FALSE;
10716 }
10717 o->flags |= SEC_ELF_REVERSE_COPY;
10718 }
10719
10720 action_discarded = -1;
10721 if (!elf_section_ignore_discarded_relocs (o))
10722 action_discarded = (*bed->action_discarded) (o);
10723
10724 /* Run through the relocs evaluating complex reloc symbols and
10725 looking for relocs against symbols from discarded sections
10726 or section symbols from removed link-once sections.
10727 Complain about relocs against discarded sections. Zero
10728 relocs against removed link-once sections. */
10729
10730 rel = internal_relocs;
10731 relend = rel + o->reloc_count;
10732 for ( ; rel < relend; rel++)
10733 {
10734 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10735 unsigned int s_type;
10736 asection **ps, *sec;
10737 struct elf_link_hash_entry *h = NULL;
10738 const char *sym_name;
10739
10740 if (r_symndx == STN_UNDEF)
10741 continue;
10742
10743 if (r_symndx >= locsymcount
10744 || (elf_bad_symtab (input_bfd)
10745 && flinfo->sections[r_symndx] == NULL))
10746 {
10747 h = sym_hashes[r_symndx - extsymoff];
10748
10749 /* Badly formatted input files can contain relocs that
10750 reference non-existant symbols. Check here so that
10751 we do not seg fault. */
10752 if (h == NULL)
10753 {
10754 _bfd_error_handler
10755 /* xgettext:c-format */
10756 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10757 "that references a non-existent global symbol"),
10758 input_bfd, (uint64_t) rel->r_info, o);
10759 bfd_set_error (bfd_error_bad_value);
10760 return FALSE;
10761 }
10762
10763 while (h->root.type == bfd_link_hash_indirect
10764 || h->root.type == bfd_link_hash_warning)
10765 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10766
10767 s_type = h->type;
10768
10769 /* If a plugin symbol is referenced from a non-IR file,
10770 mark the symbol as undefined. Note that the
10771 linker may attach linker created dynamic sections
10772 to the plugin bfd. Symbols defined in linker
10773 created sections are not plugin symbols. */
10774 if ((h->root.non_ir_ref_regular
10775 || h->root.non_ir_ref_dynamic)
10776 && (h->root.type == bfd_link_hash_defined
10777 || h->root.type == bfd_link_hash_defweak)
10778 && (h->root.u.def.section->flags
10779 & SEC_LINKER_CREATED) == 0
10780 && h->root.u.def.section->owner != NULL
10781 && (h->root.u.def.section->owner->flags
10782 & BFD_PLUGIN) != 0)
10783 {
10784 h->root.type = bfd_link_hash_undefined;
10785 h->root.u.undef.abfd = h->root.u.def.section->owner;
10786 }
10787
10788 ps = NULL;
10789 if (h->root.type == bfd_link_hash_defined
10790 || h->root.type == bfd_link_hash_defweak)
10791 ps = &h->root.u.def.section;
10792
10793 sym_name = h->root.root.string;
10794 }
10795 else
10796 {
10797 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10798
10799 s_type = ELF_ST_TYPE (sym->st_info);
10800 ps = &flinfo->sections[r_symndx];
10801 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10802 sym, *ps);
10803 }
10804
10805 if ((s_type == STT_RELC || s_type == STT_SRELC)
10806 && !bfd_link_relocatable (flinfo->info))
10807 {
10808 bfd_vma val;
10809 bfd_vma dot = (rel->r_offset
10810 + o->output_offset + o->output_section->vma);
10811 #ifdef DEBUG
10812 printf ("Encountered a complex symbol!");
10813 printf (" (input_bfd %s, section %s, reloc %ld\n",
10814 input_bfd->filename, o->name,
10815 (long) (rel - internal_relocs));
10816 printf (" symbol: idx %8.8lx, name %s\n",
10817 r_symndx, sym_name);
10818 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10819 (unsigned long) rel->r_info,
10820 (unsigned long) rel->r_offset);
10821 #endif
10822 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10823 isymbuf, locsymcount, s_type == STT_SRELC))
10824 return FALSE;
10825
10826 /* Symbol evaluated OK. Update to absolute value. */
10827 set_symbol_value (input_bfd, isymbuf, locsymcount,
10828 r_symndx, val);
10829 continue;
10830 }
10831
10832 if (action_discarded != -1 && ps != NULL)
10833 {
10834 /* Complain if the definition comes from a
10835 discarded section. */
10836 if ((sec = *ps) != NULL && discarded_section (sec))
10837 {
10838 BFD_ASSERT (r_symndx != STN_UNDEF);
10839 if (action_discarded & COMPLAIN)
10840 (*flinfo->info->callbacks->einfo)
10841 /* xgettext:c-format */
10842 (_("%X`%s' referenced in section `%pA' of %pB: "
10843 "defined in discarded section `%pA' of %pB\n"),
10844 sym_name, o, input_bfd, sec, sec->owner);
10845
10846 /* Try to do the best we can to support buggy old
10847 versions of gcc. Pretend that the symbol is
10848 really defined in the kept linkonce section.
10849 FIXME: This is quite broken. Modifying the
10850 symbol here means we will be changing all later
10851 uses of the symbol, not just in this section. */
10852 if (action_discarded & PRETEND)
10853 {
10854 asection *kept;
10855
10856 kept = _bfd_elf_check_kept_section (sec,
10857 flinfo->info);
10858 if (kept != NULL)
10859 {
10860 *ps = kept;
10861 continue;
10862 }
10863 }
10864 }
10865 }
10866 }
10867
10868 /* Relocate the section by invoking a back end routine.
10869
10870 The back end routine is responsible for adjusting the
10871 section contents as necessary, and (if using Rela relocs
10872 and generating a relocatable output file) adjusting the
10873 reloc addend as necessary.
10874
10875 The back end routine does not have to worry about setting
10876 the reloc address or the reloc symbol index.
10877
10878 The back end routine is given a pointer to the swapped in
10879 internal symbols, and can access the hash table entries
10880 for the external symbols via elf_sym_hashes (input_bfd).
10881
10882 When generating relocatable output, the back end routine
10883 must handle STB_LOCAL/STT_SECTION symbols specially. The
10884 output symbol is going to be a section symbol
10885 corresponding to the output section, which will require
10886 the addend to be adjusted. */
10887
10888 ret = (*relocate_section) (output_bfd, flinfo->info,
10889 input_bfd, o, contents,
10890 internal_relocs,
10891 isymbuf,
10892 flinfo->sections);
10893 if (!ret)
10894 return FALSE;
10895
10896 if (ret == 2
10897 || bfd_link_relocatable (flinfo->info)
10898 || flinfo->info->emitrelocations)
10899 {
10900 Elf_Internal_Rela *irela;
10901 Elf_Internal_Rela *irelaend, *irelamid;
10902 bfd_vma last_offset;
10903 struct elf_link_hash_entry **rel_hash;
10904 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10905 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10906 unsigned int next_erel;
10907 bfd_boolean rela_normal;
10908 struct bfd_elf_section_data *esdi, *esdo;
10909
10910 esdi = elf_section_data (o);
10911 esdo = elf_section_data (o->output_section);
10912 rela_normal = FALSE;
10913
10914 /* Adjust the reloc addresses and symbol indices. */
10915
10916 irela = internal_relocs;
10917 irelaend = irela + o->reloc_count;
10918 rel_hash = esdo->rel.hashes + esdo->rel.count;
10919 /* We start processing the REL relocs, if any. When we reach
10920 IRELAMID in the loop, we switch to the RELA relocs. */
10921 irelamid = irela;
10922 if (esdi->rel.hdr != NULL)
10923 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10924 * bed->s->int_rels_per_ext_rel);
10925 rel_hash_list = rel_hash;
10926 rela_hash_list = NULL;
10927 last_offset = o->output_offset;
10928 if (!bfd_link_relocatable (flinfo->info))
10929 last_offset += o->output_section->vma;
10930 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10931 {
10932 unsigned long r_symndx;
10933 asection *sec;
10934 Elf_Internal_Sym sym;
10935
10936 if (next_erel == bed->s->int_rels_per_ext_rel)
10937 {
10938 rel_hash++;
10939 next_erel = 0;
10940 }
10941
10942 if (irela == irelamid)
10943 {
10944 rel_hash = esdo->rela.hashes + esdo->rela.count;
10945 rela_hash_list = rel_hash;
10946 rela_normal = bed->rela_normal;
10947 }
10948
10949 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10950 flinfo->info, o,
10951 irela->r_offset);
10952 if (irela->r_offset >= (bfd_vma) -2)
10953 {
10954 /* This is a reloc for a deleted entry or somesuch.
10955 Turn it into an R_*_NONE reloc, at the same
10956 offset as the last reloc. elf_eh_frame.c and
10957 bfd_elf_discard_info rely on reloc offsets
10958 being ordered. */
10959 irela->r_offset = last_offset;
10960 irela->r_info = 0;
10961 irela->r_addend = 0;
10962 continue;
10963 }
10964
10965 irela->r_offset += o->output_offset;
10966
10967 /* Relocs in an executable have to be virtual addresses. */
10968 if (!bfd_link_relocatable (flinfo->info))
10969 irela->r_offset += o->output_section->vma;
10970
10971 last_offset = irela->r_offset;
10972
10973 r_symndx = irela->r_info >> r_sym_shift;
10974 if (r_symndx == STN_UNDEF)
10975 continue;
10976
10977 if (r_symndx >= locsymcount
10978 || (elf_bad_symtab (input_bfd)
10979 && flinfo->sections[r_symndx] == NULL))
10980 {
10981 struct elf_link_hash_entry *rh;
10982 unsigned long indx;
10983
10984 /* This is a reloc against a global symbol. We
10985 have not yet output all the local symbols, so
10986 we do not know the symbol index of any global
10987 symbol. We set the rel_hash entry for this
10988 reloc to point to the global hash table entry
10989 for this symbol. The symbol index is then
10990 set at the end of bfd_elf_final_link. */
10991 indx = r_symndx - extsymoff;
10992 rh = elf_sym_hashes (input_bfd)[indx];
10993 while (rh->root.type == bfd_link_hash_indirect
10994 || rh->root.type == bfd_link_hash_warning)
10995 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10996
10997 /* Setting the index to -2 tells
10998 elf_link_output_extsym that this symbol is
10999 used by a reloc. */
11000 BFD_ASSERT (rh->indx < 0);
11001 rh->indx = -2;
11002 *rel_hash = rh;
11003
11004 continue;
11005 }
11006
11007 /* This is a reloc against a local symbol. */
11008
11009 *rel_hash = NULL;
11010 sym = isymbuf[r_symndx];
11011 sec = flinfo->sections[r_symndx];
11012 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11013 {
11014 /* I suppose the backend ought to fill in the
11015 section of any STT_SECTION symbol against a
11016 processor specific section. */
11017 r_symndx = STN_UNDEF;
11018 if (bfd_is_abs_section (sec))
11019 ;
11020 else if (sec == NULL || sec->owner == NULL)
11021 {
11022 bfd_set_error (bfd_error_bad_value);
11023 return FALSE;
11024 }
11025 else
11026 {
11027 asection *osec = sec->output_section;
11028
11029 /* If we have discarded a section, the output
11030 section will be the absolute section. In
11031 case of discarded SEC_MERGE sections, use
11032 the kept section. relocate_section should
11033 have already handled discarded linkonce
11034 sections. */
11035 if (bfd_is_abs_section (osec)
11036 && sec->kept_section != NULL
11037 && sec->kept_section->output_section != NULL)
11038 {
11039 osec = sec->kept_section->output_section;
11040 irela->r_addend -= osec->vma;
11041 }
11042
11043 if (!bfd_is_abs_section (osec))
11044 {
11045 r_symndx = osec->target_index;
11046 if (r_symndx == STN_UNDEF)
11047 {
11048 irela->r_addend += osec->vma;
11049 osec = _bfd_nearby_section (output_bfd, osec,
11050 osec->vma);
11051 irela->r_addend -= osec->vma;
11052 r_symndx = osec->target_index;
11053 }
11054 }
11055 }
11056
11057 /* Adjust the addend according to where the
11058 section winds up in the output section. */
11059 if (rela_normal)
11060 irela->r_addend += sec->output_offset;
11061 }
11062 else
11063 {
11064 if (flinfo->indices[r_symndx] == -1)
11065 {
11066 unsigned long shlink;
11067 const char *name;
11068 asection *osec;
11069 long indx;
11070
11071 if (flinfo->info->strip == strip_all)
11072 {
11073 /* You can't do ld -r -s. */
11074 bfd_set_error (bfd_error_invalid_operation);
11075 return FALSE;
11076 }
11077
11078 /* This symbol was skipped earlier, but
11079 since it is needed by a reloc, we
11080 must output it now. */
11081 shlink = symtab_hdr->sh_link;
11082 name = (bfd_elf_string_from_elf_section
11083 (input_bfd, shlink, sym.st_name));
11084 if (name == NULL)
11085 return FALSE;
11086
11087 osec = sec->output_section;
11088 sym.st_shndx =
11089 _bfd_elf_section_from_bfd_section (output_bfd,
11090 osec);
11091 if (sym.st_shndx == SHN_BAD)
11092 return FALSE;
11093
11094 sym.st_value += sec->output_offset;
11095 if (!bfd_link_relocatable (flinfo->info))
11096 {
11097 sym.st_value += osec->vma;
11098 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11099 {
11100 struct elf_link_hash_table *htab
11101 = elf_hash_table (flinfo->info);
11102
11103 /* STT_TLS symbols are relative to PT_TLS
11104 segment base. */
11105 if (htab->tls_sec != NULL)
11106 sym.st_value -= htab->tls_sec->vma;
11107 else
11108 sym.st_info
11109 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11110 STT_NOTYPE);
11111 }
11112 }
11113
11114 indx = bfd_get_symcount (output_bfd);
11115 ret = elf_link_output_symstrtab (flinfo, name,
11116 &sym, sec,
11117 NULL);
11118 if (ret == 0)
11119 return FALSE;
11120 else if (ret == 1)
11121 flinfo->indices[r_symndx] = indx;
11122 else
11123 abort ();
11124 }
11125
11126 r_symndx = flinfo->indices[r_symndx];
11127 }
11128
11129 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11130 | (irela->r_info & r_type_mask));
11131 }
11132
11133 /* Swap out the relocs. */
11134 input_rel_hdr = esdi->rel.hdr;
11135 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11136 {
11137 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11138 input_rel_hdr,
11139 internal_relocs,
11140 rel_hash_list))
11141 return FALSE;
11142 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11143 * bed->s->int_rels_per_ext_rel);
11144 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11145 }
11146
11147 input_rela_hdr = esdi->rela.hdr;
11148 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11149 {
11150 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11151 input_rela_hdr,
11152 internal_relocs,
11153 rela_hash_list))
11154 return FALSE;
11155 }
11156 }
11157 }
11158
11159 /* Write out the modified section contents. */
11160 if (bed->elf_backend_write_section
11161 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11162 contents))
11163 {
11164 /* Section written out. */
11165 }
11166 else switch (o->sec_info_type)
11167 {
11168 case SEC_INFO_TYPE_STABS:
11169 if (! (_bfd_write_section_stabs
11170 (output_bfd,
11171 &elf_hash_table (flinfo->info)->stab_info,
11172 o, &elf_section_data (o)->sec_info, contents)))
11173 return FALSE;
11174 break;
11175 case SEC_INFO_TYPE_MERGE:
11176 if (! _bfd_write_merged_section (output_bfd, o,
11177 elf_section_data (o)->sec_info))
11178 return FALSE;
11179 break;
11180 case SEC_INFO_TYPE_EH_FRAME:
11181 {
11182 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11183 o, contents))
11184 return FALSE;
11185 }
11186 break;
11187 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11188 {
11189 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11190 flinfo->info,
11191 o, contents))
11192 return FALSE;
11193 }
11194 break;
11195 default:
11196 {
11197 if (! (o->flags & SEC_EXCLUDE))
11198 {
11199 file_ptr offset = (file_ptr) o->output_offset;
11200 bfd_size_type todo = o->size;
11201
11202 offset *= bfd_octets_per_byte (output_bfd);
11203
11204 if ((o->flags & SEC_ELF_REVERSE_COPY))
11205 {
11206 /* Reverse-copy input section to output. */
11207 do
11208 {
11209 todo -= address_size;
11210 if (! bfd_set_section_contents (output_bfd,
11211 o->output_section,
11212 contents + todo,
11213 offset,
11214 address_size))
11215 return FALSE;
11216 if (todo == 0)
11217 break;
11218 offset += address_size;
11219 }
11220 while (1);
11221 }
11222 else if (! bfd_set_section_contents (output_bfd,
11223 o->output_section,
11224 contents,
11225 offset, todo))
11226 return FALSE;
11227 }
11228 }
11229 break;
11230 }
11231 }
11232
11233 return TRUE;
11234 }
11235
11236 /* Generate a reloc when linking an ELF file. This is a reloc
11237 requested by the linker, and does not come from any input file. This
11238 is used to build constructor and destructor tables when linking
11239 with -Ur. */
11240
11241 static bfd_boolean
11242 elf_reloc_link_order (bfd *output_bfd,
11243 struct bfd_link_info *info,
11244 asection *output_section,
11245 struct bfd_link_order *link_order)
11246 {
11247 reloc_howto_type *howto;
11248 long indx;
11249 bfd_vma offset;
11250 bfd_vma addend;
11251 struct bfd_elf_section_reloc_data *reldata;
11252 struct elf_link_hash_entry **rel_hash_ptr;
11253 Elf_Internal_Shdr *rel_hdr;
11254 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11255 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11256 bfd_byte *erel;
11257 unsigned int i;
11258 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11259
11260 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11261 if (howto == NULL)
11262 {
11263 bfd_set_error (bfd_error_bad_value);
11264 return FALSE;
11265 }
11266
11267 addend = link_order->u.reloc.p->addend;
11268
11269 if (esdo->rel.hdr)
11270 reldata = &esdo->rel;
11271 else if (esdo->rela.hdr)
11272 reldata = &esdo->rela;
11273 else
11274 {
11275 reldata = NULL;
11276 BFD_ASSERT (0);
11277 }
11278
11279 /* Figure out the symbol index. */
11280 rel_hash_ptr = reldata->hashes + reldata->count;
11281 if (link_order->type == bfd_section_reloc_link_order)
11282 {
11283 indx = link_order->u.reloc.p->u.section->target_index;
11284 BFD_ASSERT (indx != 0);
11285 *rel_hash_ptr = NULL;
11286 }
11287 else
11288 {
11289 struct elf_link_hash_entry *h;
11290
11291 /* Treat a reloc against a defined symbol as though it were
11292 actually against the section. */
11293 h = ((struct elf_link_hash_entry *)
11294 bfd_wrapped_link_hash_lookup (output_bfd, info,
11295 link_order->u.reloc.p->u.name,
11296 FALSE, FALSE, TRUE));
11297 if (h != NULL
11298 && (h->root.type == bfd_link_hash_defined
11299 || h->root.type == bfd_link_hash_defweak))
11300 {
11301 asection *section;
11302
11303 section = h->root.u.def.section;
11304 indx = section->output_section->target_index;
11305 *rel_hash_ptr = NULL;
11306 /* It seems that we ought to add the symbol value to the
11307 addend here, but in practice it has already been added
11308 because it was passed to constructor_callback. */
11309 addend += section->output_section->vma + section->output_offset;
11310 }
11311 else if (h != NULL)
11312 {
11313 /* Setting the index to -2 tells elf_link_output_extsym that
11314 this symbol is used by a reloc. */
11315 h->indx = -2;
11316 *rel_hash_ptr = h;
11317 indx = 0;
11318 }
11319 else
11320 {
11321 (*info->callbacks->unattached_reloc)
11322 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11323 indx = 0;
11324 }
11325 }
11326
11327 /* If this is an inplace reloc, we must write the addend into the
11328 object file. */
11329 if (howto->partial_inplace && addend != 0)
11330 {
11331 bfd_size_type size;
11332 bfd_reloc_status_type rstat;
11333 bfd_byte *buf;
11334 bfd_boolean ok;
11335 const char *sym_name;
11336
11337 size = (bfd_size_type) bfd_get_reloc_size (howto);
11338 buf = (bfd_byte *) bfd_zmalloc (size);
11339 if (buf == NULL && size != 0)
11340 return FALSE;
11341 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11342 switch (rstat)
11343 {
11344 case bfd_reloc_ok:
11345 break;
11346
11347 default:
11348 case bfd_reloc_outofrange:
11349 abort ();
11350
11351 case bfd_reloc_overflow:
11352 if (link_order->type == bfd_section_reloc_link_order)
11353 sym_name = bfd_section_name (output_bfd,
11354 link_order->u.reloc.p->u.section);
11355 else
11356 sym_name = link_order->u.reloc.p->u.name;
11357 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11358 howto->name, addend, NULL, NULL,
11359 (bfd_vma) 0);
11360 break;
11361 }
11362
11363 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11364 link_order->offset
11365 * bfd_octets_per_byte (output_bfd),
11366 size);
11367 free (buf);
11368 if (! ok)
11369 return FALSE;
11370 }
11371
11372 /* The address of a reloc is relative to the section in a
11373 relocatable file, and is a virtual address in an executable
11374 file. */
11375 offset = link_order->offset;
11376 if (! bfd_link_relocatable (info))
11377 offset += output_section->vma;
11378
11379 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11380 {
11381 irel[i].r_offset = offset;
11382 irel[i].r_info = 0;
11383 irel[i].r_addend = 0;
11384 }
11385 if (bed->s->arch_size == 32)
11386 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11387 else
11388 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11389
11390 rel_hdr = reldata->hdr;
11391 erel = rel_hdr->contents;
11392 if (rel_hdr->sh_type == SHT_REL)
11393 {
11394 erel += reldata->count * bed->s->sizeof_rel;
11395 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11396 }
11397 else
11398 {
11399 irel[0].r_addend = addend;
11400 erel += reldata->count * bed->s->sizeof_rela;
11401 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11402 }
11403
11404 ++reldata->count;
11405
11406 return TRUE;
11407 }
11408
11409
11410 /* Get the output vma of the section pointed to by the sh_link field. */
11411
11412 static bfd_vma
11413 elf_get_linked_section_vma (struct bfd_link_order *p)
11414 {
11415 Elf_Internal_Shdr **elf_shdrp;
11416 asection *s;
11417 int elfsec;
11418
11419 s = p->u.indirect.section;
11420 elf_shdrp = elf_elfsections (s->owner);
11421 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11422 elfsec = elf_shdrp[elfsec]->sh_link;
11423 /* PR 290:
11424 The Intel C compiler generates SHT_IA_64_UNWIND with
11425 SHF_LINK_ORDER. But it doesn't set the sh_link or
11426 sh_info fields. Hence we could get the situation
11427 where elfsec is 0. */
11428 if (elfsec == 0)
11429 {
11430 const struct elf_backend_data *bed
11431 = get_elf_backend_data (s->owner);
11432 if (bed->link_order_error_handler)
11433 bed->link_order_error_handler
11434 /* xgettext:c-format */
11435 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11436 return 0;
11437 }
11438 else
11439 {
11440 s = elf_shdrp[elfsec]->bfd_section;
11441 return s->output_section->vma + s->output_offset;
11442 }
11443 }
11444
11445
11446 /* Compare two sections based on the locations of the sections they are
11447 linked to. Used by elf_fixup_link_order. */
11448
11449 static int
11450 compare_link_order (const void * a, const void * b)
11451 {
11452 bfd_vma apos;
11453 bfd_vma bpos;
11454
11455 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11456 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11457 if (apos < bpos)
11458 return -1;
11459 return apos > bpos;
11460 }
11461
11462
11463 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11464 order as their linked sections. Returns false if this could not be done
11465 because an output section includes both ordered and unordered
11466 sections. Ideally we'd do this in the linker proper. */
11467
11468 static bfd_boolean
11469 elf_fixup_link_order (bfd *abfd, asection *o)
11470 {
11471 int seen_linkorder;
11472 int seen_other;
11473 int n;
11474 struct bfd_link_order *p;
11475 bfd *sub;
11476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11477 unsigned elfsec;
11478 struct bfd_link_order **sections;
11479 asection *s, *other_sec, *linkorder_sec;
11480 bfd_vma offset;
11481
11482 other_sec = NULL;
11483 linkorder_sec = NULL;
11484 seen_other = 0;
11485 seen_linkorder = 0;
11486 for (p = o->map_head.link_order; p != NULL; p = p->next)
11487 {
11488 if (p->type == bfd_indirect_link_order)
11489 {
11490 s = p->u.indirect.section;
11491 sub = s->owner;
11492 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11493 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11494 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11495 && elfsec < elf_numsections (sub)
11496 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11497 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11498 {
11499 seen_linkorder++;
11500 linkorder_sec = s;
11501 }
11502 else
11503 {
11504 seen_other++;
11505 other_sec = s;
11506 }
11507 }
11508 else
11509 seen_other++;
11510
11511 if (seen_other && seen_linkorder)
11512 {
11513 if (other_sec && linkorder_sec)
11514 _bfd_error_handler
11515 /* xgettext:c-format */
11516 (_("%pA has both ordered [`%pA' in %pB] "
11517 "and unordered [`%pA' in %pB] sections"),
11518 o, linkorder_sec, linkorder_sec->owner,
11519 other_sec, other_sec->owner);
11520 else
11521 _bfd_error_handler
11522 (_("%pA has both ordered and unordered sections"), o);
11523 bfd_set_error (bfd_error_bad_value);
11524 return FALSE;
11525 }
11526 }
11527
11528 if (!seen_linkorder)
11529 return TRUE;
11530
11531 sections = (struct bfd_link_order **)
11532 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11533 if (sections == NULL)
11534 return FALSE;
11535 seen_linkorder = 0;
11536
11537 for (p = o->map_head.link_order; p != NULL; p = p->next)
11538 {
11539 sections[seen_linkorder++] = p;
11540 }
11541 /* Sort the input sections in the order of their linked section. */
11542 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11543 compare_link_order);
11544
11545 /* Change the offsets of the sections. */
11546 offset = 0;
11547 for (n = 0; n < seen_linkorder; n++)
11548 {
11549 s = sections[n]->u.indirect.section;
11550 offset &= ~(bfd_vma) 0 << s->alignment_power;
11551 s->output_offset = offset / bfd_octets_per_byte (abfd);
11552 sections[n]->offset = offset;
11553 offset += sections[n]->size;
11554 }
11555
11556 free (sections);
11557 return TRUE;
11558 }
11559
11560 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11561 Returns TRUE upon success, FALSE otherwise. */
11562
11563 static bfd_boolean
11564 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11565 {
11566 bfd_boolean ret = FALSE;
11567 bfd *implib_bfd;
11568 const struct elf_backend_data *bed;
11569 flagword flags;
11570 enum bfd_architecture arch;
11571 unsigned int mach;
11572 asymbol **sympp = NULL;
11573 long symsize;
11574 long symcount;
11575 long src_count;
11576 elf_symbol_type *osymbuf;
11577
11578 implib_bfd = info->out_implib_bfd;
11579 bed = get_elf_backend_data (abfd);
11580
11581 if (!bfd_set_format (implib_bfd, bfd_object))
11582 return FALSE;
11583
11584 /* Use flag from executable but make it a relocatable object. */
11585 flags = bfd_get_file_flags (abfd);
11586 flags &= ~HAS_RELOC;
11587 if (!bfd_set_start_address (implib_bfd, 0)
11588 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11589 return FALSE;
11590
11591 /* Copy architecture of output file to import library file. */
11592 arch = bfd_get_arch (abfd);
11593 mach = bfd_get_mach (abfd);
11594 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11595 && (abfd->target_defaulted
11596 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11597 return FALSE;
11598
11599 /* Get symbol table size. */
11600 symsize = bfd_get_symtab_upper_bound (abfd);
11601 if (symsize < 0)
11602 return FALSE;
11603
11604 /* Read in the symbol table. */
11605 sympp = (asymbol **) xmalloc (symsize);
11606 symcount = bfd_canonicalize_symtab (abfd, sympp);
11607 if (symcount < 0)
11608 goto free_sym_buf;
11609
11610 /* Allow the BFD backend to copy any private header data it
11611 understands from the output BFD to the import library BFD. */
11612 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11613 goto free_sym_buf;
11614
11615 /* Filter symbols to appear in the import library. */
11616 if (bed->elf_backend_filter_implib_symbols)
11617 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11618 symcount);
11619 else
11620 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11621 if (symcount == 0)
11622 {
11623 bfd_set_error (bfd_error_no_symbols);
11624 _bfd_error_handler (_("%pB: no symbol found for import library"),
11625 implib_bfd);
11626 goto free_sym_buf;
11627 }
11628
11629
11630 /* Make symbols absolute. */
11631 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11632 sizeof (*osymbuf));
11633 for (src_count = 0; src_count < symcount; src_count++)
11634 {
11635 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11636 sizeof (*osymbuf));
11637 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11638 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11639 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11640 osymbuf[src_count].internal_elf_sym.st_value =
11641 osymbuf[src_count].symbol.value;
11642 sympp[src_count] = &osymbuf[src_count].symbol;
11643 }
11644
11645 bfd_set_symtab (implib_bfd, sympp, symcount);
11646
11647 /* Allow the BFD backend to copy any private data it understands
11648 from the output BFD to the import library BFD. This is done last
11649 to permit the routine to look at the filtered symbol table. */
11650 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11651 goto free_sym_buf;
11652
11653 if (!bfd_close (implib_bfd))
11654 goto free_sym_buf;
11655
11656 ret = TRUE;
11657
11658 free_sym_buf:
11659 free (sympp);
11660 return ret;
11661 }
11662
11663 static void
11664 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11665 {
11666 asection *o;
11667
11668 if (flinfo->symstrtab != NULL)
11669 _bfd_elf_strtab_free (flinfo->symstrtab);
11670 if (flinfo->contents != NULL)
11671 free (flinfo->contents);
11672 if (flinfo->external_relocs != NULL)
11673 free (flinfo->external_relocs);
11674 if (flinfo->internal_relocs != NULL)
11675 free (flinfo->internal_relocs);
11676 if (flinfo->external_syms != NULL)
11677 free (flinfo->external_syms);
11678 if (flinfo->locsym_shndx != NULL)
11679 free (flinfo->locsym_shndx);
11680 if (flinfo->internal_syms != NULL)
11681 free (flinfo->internal_syms);
11682 if (flinfo->indices != NULL)
11683 free (flinfo->indices);
11684 if (flinfo->sections != NULL)
11685 free (flinfo->sections);
11686 if (flinfo->symshndxbuf != NULL
11687 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11688 free (flinfo->symshndxbuf);
11689 for (o = obfd->sections; o != NULL; o = o->next)
11690 {
11691 struct bfd_elf_section_data *esdo = elf_section_data (o);
11692 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11693 free (esdo->rel.hashes);
11694 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11695 free (esdo->rela.hashes);
11696 }
11697 }
11698
11699 /* Do the final step of an ELF link. */
11700
11701 bfd_boolean
11702 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11703 {
11704 bfd_boolean dynamic;
11705 bfd_boolean emit_relocs;
11706 bfd *dynobj;
11707 struct elf_final_link_info flinfo;
11708 asection *o;
11709 struct bfd_link_order *p;
11710 bfd *sub;
11711 bfd_size_type max_contents_size;
11712 bfd_size_type max_external_reloc_size;
11713 bfd_size_type max_internal_reloc_count;
11714 bfd_size_type max_sym_count;
11715 bfd_size_type max_sym_shndx_count;
11716 Elf_Internal_Sym elfsym;
11717 unsigned int i;
11718 Elf_Internal_Shdr *symtab_hdr;
11719 Elf_Internal_Shdr *symtab_shndx_hdr;
11720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11721 struct elf_outext_info eoinfo;
11722 bfd_boolean merged;
11723 size_t relativecount = 0;
11724 asection *reldyn = 0;
11725 bfd_size_type amt;
11726 asection *attr_section = NULL;
11727 bfd_vma attr_size = 0;
11728 const char *std_attrs_section;
11729 struct elf_link_hash_table *htab = elf_hash_table (info);
11730
11731 if (!is_elf_hash_table (htab))
11732 return FALSE;
11733
11734 if (bfd_link_pic (info))
11735 abfd->flags |= DYNAMIC;
11736
11737 dynamic = htab->dynamic_sections_created;
11738 dynobj = htab->dynobj;
11739
11740 emit_relocs = (bfd_link_relocatable (info)
11741 || info->emitrelocations);
11742
11743 flinfo.info = info;
11744 flinfo.output_bfd = abfd;
11745 flinfo.symstrtab = _bfd_elf_strtab_init ();
11746 if (flinfo.symstrtab == NULL)
11747 return FALSE;
11748
11749 if (! dynamic)
11750 {
11751 flinfo.hash_sec = NULL;
11752 flinfo.symver_sec = NULL;
11753 }
11754 else
11755 {
11756 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11757 /* Note that dynsym_sec can be NULL (on VMS). */
11758 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11759 /* Note that it is OK if symver_sec is NULL. */
11760 }
11761
11762 flinfo.contents = NULL;
11763 flinfo.external_relocs = NULL;
11764 flinfo.internal_relocs = NULL;
11765 flinfo.external_syms = NULL;
11766 flinfo.locsym_shndx = NULL;
11767 flinfo.internal_syms = NULL;
11768 flinfo.indices = NULL;
11769 flinfo.sections = NULL;
11770 flinfo.symshndxbuf = NULL;
11771 flinfo.filesym_count = 0;
11772
11773 /* The object attributes have been merged. Remove the input
11774 sections from the link, and set the contents of the output
11775 secton. */
11776 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11777 for (o = abfd->sections; o != NULL; o = o->next)
11778 {
11779 bfd_boolean remove_section = FALSE;
11780
11781 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11782 || strcmp (o->name, ".gnu.attributes") == 0)
11783 {
11784 for (p = o->map_head.link_order; p != NULL; p = p->next)
11785 {
11786 asection *input_section;
11787
11788 if (p->type != bfd_indirect_link_order)
11789 continue;
11790 input_section = p->u.indirect.section;
11791 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11792 elf_link_input_bfd ignores this section. */
11793 input_section->flags &= ~SEC_HAS_CONTENTS;
11794 }
11795
11796 attr_size = bfd_elf_obj_attr_size (abfd);
11797 bfd_set_section_size (abfd, o, attr_size);
11798 /* Skip this section later on. */
11799 o->map_head.link_order = NULL;
11800 if (attr_size)
11801 attr_section = o;
11802 else
11803 remove_section = TRUE;
11804 }
11805 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11806 {
11807 /* Remove empty group section from linker output. */
11808 remove_section = TRUE;
11809 }
11810 if (remove_section)
11811 {
11812 o->flags |= SEC_EXCLUDE;
11813 bfd_section_list_remove (abfd, o);
11814 abfd->section_count--;
11815 }
11816 }
11817
11818 /* Count up the number of relocations we will output for each output
11819 section, so that we know the sizes of the reloc sections. We
11820 also figure out some maximum sizes. */
11821 max_contents_size = 0;
11822 max_external_reloc_size = 0;
11823 max_internal_reloc_count = 0;
11824 max_sym_count = 0;
11825 max_sym_shndx_count = 0;
11826 merged = FALSE;
11827 for (o = abfd->sections; o != NULL; o = o->next)
11828 {
11829 struct bfd_elf_section_data *esdo = elf_section_data (o);
11830 o->reloc_count = 0;
11831
11832 for (p = o->map_head.link_order; p != NULL; p = p->next)
11833 {
11834 unsigned int reloc_count = 0;
11835 unsigned int additional_reloc_count = 0;
11836 struct bfd_elf_section_data *esdi = NULL;
11837
11838 if (p->type == bfd_section_reloc_link_order
11839 || p->type == bfd_symbol_reloc_link_order)
11840 reloc_count = 1;
11841 else if (p->type == bfd_indirect_link_order)
11842 {
11843 asection *sec;
11844
11845 sec = p->u.indirect.section;
11846
11847 /* Mark all sections which are to be included in the
11848 link. This will normally be every section. We need
11849 to do this so that we can identify any sections which
11850 the linker has decided to not include. */
11851 sec->linker_mark = TRUE;
11852
11853 if (sec->flags & SEC_MERGE)
11854 merged = TRUE;
11855
11856 if (sec->rawsize > max_contents_size)
11857 max_contents_size = sec->rawsize;
11858 if (sec->size > max_contents_size)
11859 max_contents_size = sec->size;
11860
11861 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11862 && (sec->owner->flags & DYNAMIC) == 0)
11863 {
11864 size_t sym_count;
11865
11866 /* We are interested in just local symbols, not all
11867 symbols. */
11868 if (elf_bad_symtab (sec->owner))
11869 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11870 / bed->s->sizeof_sym);
11871 else
11872 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11873
11874 if (sym_count > max_sym_count)
11875 max_sym_count = sym_count;
11876
11877 if (sym_count > max_sym_shndx_count
11878 && elf_symtab_shndx_list (sec->owner) != NULL)
11879 max_sym_shndx_count = sym_count;
11880
11881 if (esdo->this_hdr.sh_type == SHT_REL
11882 || esdo->this_hdr.sh_type == SHT_RELA)
11883 /* Some backends use reloc_count in relocation sections
11884 to count particular types of relocs. Of course,
11885 reloc sections themselves can't have relocations. */
11886 ;
11887 else if (emit_relocs)
11888 {
11889 reloc_count = sec->reloc_count;
11890 if (bed->elf_backend_count_additional_relocs)
11891 {
11892 int c;
11893 c = (*bed->elf_backend_count_additional_relocs) (sec);
11894 additional_reloc_count += c;
11895 }
11896 }
11897 else if (bed->elf_backend_count_relocs)
11898 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11899
11900 esdi = elf_section_data (sec);
11901
11902 if ((sec->flags & SEC_RELOC) != 0)
11903 {
11904 size_t ext_size = 0;
11905
11906 if (esdi->rel.hdr != NULL)
11907 ext_size = esdi->rel.hdr->sh_size;
11908 if (esdi->rela.hdr != NULL)
11909 ext_size += esdi->rela.hdr->sh_size;
11910
11911 if (ext_size > max_external_reloc_size)
11912 max_external_reloc_size = ext_size;
11913 if (sec->reloc_count > max_internal_reloc_count)
11914 max_internal_reloc_count = sec->reloc_count;
11915 }
11916 }
11917 }
11918
11919 if (reloc_count == 0)
11920 continue;
11921
11922 reloc_count += additional_reloc_count;
11923 o->reloc_count += reloc_count;
11924
11925 if (p->type == bfd_indirect_link_order && emit_relocs)
11926 {
11927 if (esdi->rel.hdr)
11928 {
11929 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11930 esdo->rel.count += additional_reloc_count;
11931 }
11932 if (esdi->rela.hdr)
11933 {
11934 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11935 esdo->rela.count += additional_reloc_count;
11936 }
11937 }
11938 else
11939 {
11940 if (o->use_rela_p)
11941 esdo->rela.count += reloc_count;
11942 else
11943 esdo->rel.count += reloc_count;
11944 }
11945 }
11946
11947 if (o->reloc_count > 0)
11948 o->flags |= SEC_RELOC;
11949 else
11950 {
11951 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11952 set it (this is probably a bug) and if it is set
11953 assign_section_numbers will create a reloc section. */
11954 o->flags &=~ SEC_RELOC;
11955 }
11956
11957 /* If the SEC_ALLOC flag is not set, force the section VMA to
11958 zero. This is done in elf_fake_sections as well, but forcing
11959 the VMA to 0 here will ensure that relocs against these
11960 sections are handled correctly. */
11961 if ((o->flags & SEC_ALLOC) == 0
11962 && ! o->user_set_vma)
11963 o->vma = 0;
11964 }
11965
11966 if (! bfd_link_relocatable (info) && merged)
11967 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11968
11969 /* Figure out the file positions for everything but the symbol table
11970 and the relocs. We set symcount to force assign_section_numbers
11971 to create a symbol table. */
11972 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11973 BFD_ASSERT (! abfd->output_has_begun);
11974 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11975 goto error_return;
11976
11977 /* Set sizes, and assign file positions for reloc sections. */
11978 for (o = abfd->sections; o != NULL; o = o->next)
11979 {
11980 struct bfd_elf_section_data *esdo = elf_section_data (o);
11981 if ((o->flags & SEC_RELOC) != 0)
11982 {
11983 if (esdo->rel.hdr
11984 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11985 goto error_return;
11986
11987 if (esdo->rela.hdr
11988 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11989 goto error_return;
11990 }
11991
11992 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11993 to count upwards while actually outputting the relocations. */
11994 esdo->rel.count = 0;
11995 esdo->rela.count = 0;
11996
11997 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11998 {
11999 /* Cache the section contents so that they can be compressed
12000 later. Use bfd_malloc since it will be freed by
12001 bfd_compress_section_contents. */
12002 unsigned char *contents = esdo->this_hdr.contents;
12003 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12004 abort ();
12005 contents
12006 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12007 if (contents == NULL)
12008 goto error_return;
12009 esdo->this_hdr.contents = contents;
12010 }
12011 }
12012
12013 /* We have now assigned file positions for all the sections except
12014 .symtab, .strtab, and non-loaded reloc sections. We start the
12015 .symtab section at the current file position, and write directly
12016 to it. We build the .strtab section in memory. */
12017 bfd_get_symcount (abfd) = 0;
12018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12019 /* sh_name is set in prep_headers. */
12020 symtab_hdr->sh_type = SHT_SYMTAB;
12021 /* sh_flags, sh_addr and sh_size all start off zero. */
12022 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12023 /* sh_link is set in assign_section_numbers. */
12024 /* sh_info is set below. */
12025 /* sh_offset is set just below. */
12026 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12027
12028 if (max_sym_count < 20)
12029 max_sym_count = 20;
12030 htab->strtabsize = max_sym_count;
12031 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12032 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12033 if (htab->strtab == NULL)
12034 goto error_return;
12035 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12036 flinfo.symshndxbuf
12037 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12038 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12039
12040 if (info->strip != strip_all || emit_relocs)
12041 {
12042 file_ptr off = elf_next_file_pos (abfd);
12043
12044 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12045
12046 /* Note that at this point elf_next_file_pos (abfd) is
12047 incorrect. We do not yet know the size of the .symtab section.
12048 We correct next_file_pos below, after we do know the size. */
12049
12050 /* Start writing out the symbol table. The first symbol is always a
12051 dummy symbol. */
12052 elfsym.st_value = 0;
12053 elfsym.st_size = 0;
12054 elfsym.st_info = 0;
12055 elfsym.st_other = 0;
12056 elfsym.st_shndx = SHN_UNDEF;
12057 elfsym.st_target_internal = 0;
12058 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12059 bfd_und_section_ptr, NULL) != 1)
12060 goto error_return;
12061
12062 /* Output a symbol for each section. We output these even if we are
12063 discarding local symbols, since they are used for relocs. These
12064 symbols have no names. We store the index of each one in the
12065 index field of the section, so that we can find it again when
12066 outputting relocs. */
12067
12068 elfsym.st_size = 0;
12069 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12070 elfsym.st_other = 0;
12071 elfsym.st_value = 0;
12072 elfsym.st_target_internal = 0;
12073 for (i = 1; i < elf_numsections (abfd); i++)
12074 {
12075 o = bfd_section_from_elf_index (abfd, i);
12076 if (o != NULL)
12077 {
12078 o->target_index = bfd_get_symcount (abfd);
12079 elfsym.st_shndx = i;
12080 if (!bfd_link_relocatable (info))
12081 elfsym.st_value = o->vma;
12082 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12083 NULL) != 1)
12084 goto error_return;
12085 }
12086 }
12087 }
12088
12089 /* Allocate some memory to hold information read in from the input
12090 files. */
12091 if (max_contents_size != 0)
12092 {
12093 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12094 if (flinfo.contents == NULL)
12095 goto error_return;
12096 }
12097
12098 if (max_external_reloc_size != 0)
12099 {
12100 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12101 if (flinfo.external_relocs == NULL)
12102 goto error_return;
12103 }
12104
12105 if (max_internal_reloc_count != 0)
12106 {
12107 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12108 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12109 if (flinfo.internal_relocs == NULL)
12110 goto error_return;
12111 }
12112
12113 if (max_sym_count != 0)
12114 {
12115 amt = max_sym_count * bed->s->sizeof_sym;
12116 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12117 if (flinfo.external_syms == NULL)
12118 goto error_return;
12119
12120 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12121 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12122 if (flinfo.internal_syms == NULL)
12123 goto error_return;
12124
12125 amt = max_sym_count * sizeof (long);
12126 flinfo.indices = (long int *) bfd_malloc (amt);
12127 if (flinfo.indices == NULL)
12128 goto error_return;
12129
12130 amt = max_sym_count * sizeof (asection *);
12131 flinfo.sections = (asection **) bfd_malloc (amt);
12132 if (flinfo.sections == NULL)
12133 goto error_return;
12134 }
12135
12136 if (max_sym_shndx_count != 0)
12137 {
12138 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12139 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12140 if (flinfo.locsym_shndx == NULL)
12141 goto error_return;
12142 }
12143
12144 if (htab->tls_sec)
12145 {
12146 bfd_vma base, end = 0;
12147 asection *sec;
12148
12149 for (sec = htab->tls_sec;
12150 sec && (sec->flags & SEC_THREAD_LOCAL);
12151 sec = sec->next)
12152 {
12153 bfd_size_type size = sec->size;
12154
12155 if (size == 0
12156 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12157 {
12158 struct bfd_link_order *ord = sec->map_tail.link_order;
12159
12160 if (ord != NULL)
12161 size = ord->offset + ord->size;
12162 }
12163 end = sec->vma + size;
12164 }
12165 base = htab->tls_sec->vma;
12166 /* Only align end of TLS section if static TLS doesn't have special
12167 alignment requirements. */
12168 if (bed->static_tls_alignment == 1)
12169 end = align_power (end, htab->tls_sec->alignment_power);
12170 htab->tls_size = end - base;
12171 }
12172
12173 /* Reorder SHF_LINK_ORDER sections. */
12174 for (o = abfd->sections; o != NULL; o = o->next)
12175 {
12176 if (!elf_fixup_link_order (abfd, o))
12177 return FALSE;
12178 }
12179
12180 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12181 return FALSE;
12182
12183 /* Since ELF permits relocations to be against local symbols, we
12184 must have the local symbols available when we do the relocations.
12185 Since we would rather only read the local symbols once, and we
12186 would rather not keep them in memory, we handle all the
12187 relocations for a single input file at the same time.
12188
12189 Unfortunately, there is no way to know the total number of local
12190 symbols until we have seen all of them, and the local symbol
12191 indices precede the global symbol indices. This means that when
12192 we are generating relocatable output, and we see a reloc against
12193 a global symbol, we can not know the symbol index until we have
12194 finished examining all the local symbols to see which ones we are
12195 going to output. To deal with this, we keep the relocations in
12196 memory, and don't output them until the end of the link. This is
12197 an unfortunate waste of memory, but I don't see a good way around
12198 it. Fortunately, it only happens when performing a relocatable
12199 link, which is not the common case. FIXME: If keep_memory is set
12200 we could write the relocs out and then read them again; I don't
12201 know how bad the memory loss will be. */
12202
12203 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12204 sub->output_has_begun = FALSE;
12205 for (o = abfd->sections; o != NULL; o = o->next)
12206 {
12207 for (p = o->map_head.link_order; p != NULL; p = p->next)
12208 {
12209 if (p->type == bfd_indirect_link_order
12210 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12211 == bfd_target_elf_flavour)
12212 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12213 {
12214 if (! sub->output_has_begun)
12215 {
12216 if (! elf_link_input_bfd (&flinfo, sub))
12217 goto error_return;
12218 sub->output_has_begun = TRUE;
12219 }
12220 }
12221 else if (p->type == bfd_section_reloc_link_order
12222 || p->type == bfd_symbol_reloc_link_order)
12223 {
12224 if (! elf_reloc_link_order (abfd, info, o, p))
12225 goto error_return;
12226 }
12227 else
12228 {
12229 if (! _bfd_default_link_order (abfd, info, o, p))
12230 {
12231 if (p->type == bfd_indirect_link_order
12232 && (bfd_get_flavour (sub)
12233 == bfd_target_elf_flavour)
12234 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12235 != bed->s->elfclass))
12236 {
12237 const char *iclass, *oclass;
12238
12239 switch (bed->s->elfclass)
12240 {
12241 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12242 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12243 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12244 default: abort ();
12245 }
12246
12247 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12248 {
12249 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12250 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12251 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12252 default: abort ();
12253 }
12254
12255 bfd_set_error (bfd_error_wrong_format);
12256 _bfd_error_handler
12257 /* xgettext:c-format */
12258 (_("%pB: file class %s incompatible with %s"),
12259 sub, iclass, oclass);
12260 }
12261
12262 goto error_return;
12263 }
12264 }
12265 }
12266 }
12267
12268 /* Free symbol buffer if needed. */
12269 if (!info->reduce_memory_overheads)
12270 {
12271 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12272 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12273 && elf_tdata (sub)->symbuf)
12274 {
12275 free (elf_tdata (sub)->symbuf);
12276 elf_tdata (sub)->symbuf = NULL;
12277 }
12278 }
12279
12280 /* Output any global symbols that got converted to local in a
12281 version script or due to symbol visibility. We do this in a
12282 separate step since ELF requires all local symbols to appear
12283 prior to any global symbols. FIXME: We should only do this if
12284 some global symbols were, in fact, converted to become local.
12285 FIXME: Will this work correctly with the Irix 5 linker? */
12286 eoinfo.failed = FALSE;
12287 eoinfo.flinfo = &flinfo;
12288 eoinfo.localsyms = TRUE;
12289 eoinfo.file_sym_done = FALSE;
12290 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12291 if (eoinfo.failed)
12292 return FALSE;
12293
12294 /* If backend needs to output some local symbols not present in the hash
12295 table, do it now. */
12296 if (bed->elf_backend_output_arch_local_syms
12297 && (info->strip != strip_all || emit_relocs))
12298 {
12299 typedef int (*out_sym_func)
12300 (void *, const char *, Elf_Internal_Sym *, asection *,
12301 struct elf_link_hash_entry *);
12302
12303 if (! ((*bed->elf_backend_output_arch_local_syms)
12304 (abfd, info, &flinfo,
12305 (out_sym_func) elf_link_output_symstrtab)))
12306 return FALSE;
12307 }
12308
12309 /* That wrote out all the local symbols. Finish up the symbol table
12310 with the global symbols. Even if we want to strip everything we
12311 can, we still need to deal with those global symbols that got
12312 converted to local in a version script. */
12313
12314 /* The sh_info field records the index of the first non local symbol. */
12315 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12316
12317 if (dynamic
12318 && htab->dynsym != NULL
12319 && htab->dynsym->output_section != bfd_abs_section_ptr)
12320 {
12321 Elf_Internal_Sym sym;
12322 bfd_byte *dynsym = htab->dynsym->contents;
12323
12324 o = htab->dynsym->output_section;
12325 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12326
12327 /* Write out the section symbols for the output sections. */
12328 if (bfd_link_pic (info)
12329 || htab->is_relocatable_executable)
12330 {
12331 asection *s;
12332
12333 sym.st_size = 0;
12334 sym.st_name = 0;
12335 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12336 sym.st_other = 0;
12337 sym.st_target_internal = 0;
12338
12339 for (s = abfd->sections; s != NULL; s = s->next)
12340 {
12341 int indx;
12342 bfd_byte *dest;
12343 long dynindx;
12344
12345 dynindx = elf_section_data (s)->dynindx;
12346 if (dynindx <= 0)
12347 continue;
12348 indx = elf_section_data (s)->this_idx;
12349 BFD_ASSERT (indx > 0);
12350 sym.st_shndx = indx;
12351 if (! check_dynsym (abfd, &sym))
12352 return FALSE;
12353 sym.st_value = s->vma;
12354 dest = dynsym + dynindx * bed->s->sizeof_sym;
12355 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12356 }
12357 }
12358
12359 /* Write out the local dynsyms. */
12360 if (htab->dynlocal)
12361 {
12362 struct elf_link_local_dynamic_entry *e;
12363 for (e = htab->dynlocal; e ; e = e->next)
12364 {
12365 asection *s;
12366 bfd_byte *dest;
12367
12368 /* Copy the internal symbol and turn off visibility.
12369 Note that we saved a word of storage and overwrote
12370 the original st_name with the dynstr_index. */
12371 sym = e->isym;
12372 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12373
12374 s = bfd_section_from_elf_index (e->input_bfd,
12375 e->isym.st_shndx);
12376 if (s != NULL)
12377 {
12378 sym.st_shndx =
12379 elf_section_data (s->output_section)->this_idx;
12380 if (! check_dynsym (abfd, &sym))
12381 return FALSE;
12382 sym.st_value = (s->output_section->vma
12383 + s->output_offset
12384 + e->isym.st_value);
12385 }
12386
12387 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12388 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12389 }
12390 }
12391 }
12392
12393 /* We get the global symbols from the hash table. */
12394 eoinfo.failed = FALSE;
12395 eoinfo.localsyms = FALSE;
12396 eoinfo.flinfo = &flinfo;
12397 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12398 if (eoinfo.failed)
12399 return FALSE;
12400
12401 /* If backend needs to output some symbols not present in the hash
12402 table, do it now. */
12403 if (bed->elf_backend_output_arch_syms
12404 && (info->strip != strip_all || emit_relocs))
12405 {
12406 typedef int (*out_sym_func)
12407 (void *, const char *, Elf_Internal_Sym *, asection *,
12408 struct elf_link_hash_entry *);
12409
12410 if (! ((*bed->elf_backend_output_arch_syms)
12411 (abfd, info, &flinfo,
12412 (out_sym_func) elf_link_output_symstrtab)))
12413 return FALSE;
12414 }
12415
12416 /* Finalize the .strtab section. */
12417 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12418
12419 /* Swap out the .strtab section. */
12420 if (!elf_link_swap_symbols_out (&flinfo))
12421 return FALSE;
12422
12423 /* Now we know the size of the symtab section. */
12424 if (bfd_get_symcount (abfd) > 0)
12425 {
12426 /* Finish up and write out the symbol string table (.strtab)
12427 section. */
12428 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12429 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12430
12431 if (elf_symtab_shndx_list (abfd))
12432 {
12433 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12434
12435 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12436 {
12437 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12438 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12439 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12440 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12441 symtab_shndx_hdr->sh_size = amt;
12442
12443 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12444 off, TRUE);
12445
12446 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12447 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12448 return FALSE;
12449 }
12450 }
12451
12452 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12453 /* sh_name was set in prep_headers. */
12454 symstrtab_hdr->sh_type = SHT_STRTAB;
12455 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12456 symstrtab_hdr->sh_addr = 0;
12457 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12458 symstrtab_hdr->sh_entsize = 0;
12459 symstrtab_hdr->sh_link = 0;
12460 symstrtab_hdr->sh_info = 0;
12461 /* sh_offset is set just below. */
12462 symstrtab_hdr->sh_addralign = 1;
12463
12464 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12465 off, TRUE);
12466 elf_next_file_pos (abfd) = off;
12467
12468 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12469 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12470 return FALSE;
12471 }
12472
12473 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12474 {
12475 _bfd_error_handler (_("%pB: failed to generate import library"),
12476 info->out_implib_bfd);
12477 return FALSE;
12478 }
12479
12480 /* Adjust the relocs to have the correct symbol indices. */
12481 for (o = abfd->sections; o != NULL; o = o->next)
12482 {
12483 struct bfd_elf_section_data *esdo = elf_section_data (o);
12484 bfd_boolean sort;
12485
12486 if ((o->flags & SEC_RELOC) == 0)
12487 continue;
12488
12489 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12490 if (esdo->rel.hdr != NULL
12491 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12492 return FALSE;
12493 if (esdo->rela.hdr != NULL
12494 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12495 return FALSE;
12496
12497 /* Set the reloc_count field to 0 to prevent write_relocs from
12498 trying to swap the relocs out itself. */
12499 o->reloc_count = 0;
12500 }
12501
12502 if (dynamic && info->combreloc && dynobj != NULL)
12503 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12504
12505 /* If we are linking against a dynamic object, or generating a
12506 shared library, finish up the dynamic linking information. */
12507 if (dynamic)
12508 {
12509 bfd_byte *dyncon, *dynconend;
12510
12511 /* Fix up .dynamic entries. */
12512 o = bfd_get_linker_section (dynobj, ".dynamic");
12513 BFD_ASSERT (o != NULL);
12514
12515 dyncon = o->contents;
12516 dynconend = o->contents + o->size;
12517 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12518 {
12519 Elf_Internal_Dyn dyn;
12520 const char *name;
12521 unsigned int type;
12522 bfd_size_type sh_size;
12523 bfd_vma sh_addr;
12524
12525 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12526
12527 switch (dyn.d_tag)
12528 {
12529 default:
12530 continue;
12531 case DT_NULL:
12532 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12533 {
12534 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12535 {
12536 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12537 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12538 default: continue;
12539 }
12540 dyn.d_un.d_val = relativecount;
12541 relativecount = 0;
12542 break;
12543 }
12544 continue;
12545
12546 case DT_INIT:
12547 name = info->init_function;
12548 goto get_sym;
12549 case DT_FINI:
12550 name = info->fini_function;
12551 get_sym:
12552 {
12553 struct elf_link_hash_entry *h;
12554
12555 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12556 if (h != NULL
12557 && (h->root.type == bfd_link_hash_defined
12558 || h->root.type == bfd_link_hash_defweak))
12559 {
12560 dyn.d_un.d_ptr = h->root.u.def.value;
12561 o = h->root.u.def.section;
12562 if (o->output_section != NULL)
12563 dyn.d_un.d_ptr += (o->output_section->vma
12564 + o->output_offset);
12565 else
12566 {
12567 /* The symbol is imported from another shared
12568 library and does not apply to this one. */
12569 dyn.d_un.d_ptr = 0;
12570 }
12571 break;
12572 }
12573 }
12574 continue;
12575
12576 case DT_PREINIT_ARRAYSZ:
12577 name = ".preinit_array";
12578 goto get_out_size;
12579 case DT_INIT_ARRAYSZ:
12580 name = ".init_array";
12581 goto get_out_size;
12582 case DT_FINI_ARRAYSZ:
12583 name = ".fini_array";
12584 get_out_size:
12585 o = bfd_get_section_by_name (abfd, name);
12586 if (o == NULL)
12587 {
12588 _bfd_error_handler
12589 (_("could not find section %s"), name);
12590 goto error_return;
12591 }
12592 if (o->size == 0)
12593 _bfd_error_handler
12594 (_("warning: %s section has zero size"), name);
12595 dyn.d_un.d_val = o->size;
12596 break;
12597
12598 case DT_PREINIT_ARRAY:
12599 name = ".preinit_array";
12600 goto get_out_vma;
12601 case DT_INIT_ARRAY:
12602 name = ".init_array";
12603 goto get_out_vma;
12604 case DT_FINI_ARRAY:
12605 name = ".fini_array";
12606 get_out_vma:
12607 o = bfd_get_section_by_name (abfd, name);
12608 goto do_vma;
12609
12610 case DT_HASH:
12611 name = ".hash";
12612 goto get_vma;
12613 case DT_GNU_HASH:
12614 name = ".gnu.hash";
12615 goto get_vma;
12616 case DT_STRTAB:
12617 name = ".dynstr";
12618 goto get_vma;
12619 case DT_SYMTAB:
12620 name = ".dynsym";
12621 goto get_vma;
12622 case DT_VERDEF:
12623 name = ".gnu.version_d";
12624 goto get_vma;
12625 case DT_VERNEED:
12626 name = ".gnu.version_r";
12627 goto get_vma;
12628 case DT_VERSYM:
12629 name = ".gnu.version";
12630 get_vma:
12631 o = bfd_get_linker_section (dynobj, name);
12632 do_vma:
12633 if (o == NULL || bfd_is_abs_section (o->output_section))
12634 {
12635 _bfd_error_handler
12636 (_("could not find section %s"), name);
12637 goto error_return;
12638 }
12639 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12640 {
12641 _bfd_error_handler
12642 (_("warning: section '%s' is being made into a note"), name);
12643 bfd_set_error (bfd_error_nonrepresentable_section);
12644 goto error_return;
12645 }
12646 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12647 break;
12648
12649 case DT_REL:
12650 case DT_RELA:
12651 case DT_RELSZ:
12652 case DT_RELASZ:
12653 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12654 type = SHT_REL;
12655 else
12656 type = SHT_RELA;
12657 sh_size = 0;
12658 sh_addr = 0;
12659 for (i = 1; i < elf_numsections (abfd); i++)
12660 {
12661 Elf_Internal_Shdr *hdr;
12662
12663 hdr = elf_elfsections (abfd)[i];
12664 if (hdr->sh_type == type
12665 && (hdr->sh_flags & SHF_ALLOC) != 0)
12666 {
12667 sh_size += hdr->sh_size;
12668 if (sh_addr == 0
12669 || sh_addr > hdr->sh_addr)
12670 sh_addr = hdr->sh_addr;
12671 }
12672 }
12673
12674 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12675 {
12676 /* Don't count procedure linkage table relocs in the
12677 overall reloc count. */
12678 sh_size -= htab->srelplt->size;
12679 if (sh_size == 0)
12680 /* If the size is zero, make the address zero too.
12681 This is to avoid a glibc bug. If the backend
12682 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12683 zero, then we'll put DT_RELA at the end of
12684 DT_JMPREL. glibc will interpret the end of
12685 DT_RELA matching the end of DT_JMPREL as the
12686 case where DT_RELA includes DT_JMPREL, and for
12687 LD_BIND_NOW will decide that processing DT_RELA
12688 will process the PLT relocs too. Net result:
12689 No PLT relocs applied. */
12690 sh_addr = 0;
12691
12692 /* If .rela.plt is the first .rela section, exclude
12693 it from DT_RELA. */
12694 else if (sh_addr == (htab->srelplt->output_section->vma
12695 + htab->srelplt->output_offset))
12696 sh_addr += htab->srelplt->size;
12697 }
12698
12699 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12700 dyn.d_un.d_val = sh_size;
12701 else
12702 dyn.d_un.d_ptr = sh_addr;
12703 break;
12704 }
12705 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12706 }
12707 }
12708
12709 /* If we have created any dynamic sections, then output them. */
12710 if (dynobj != NULL)
12711 {
12712 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12713 goto error_return;
12714
12715 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12716 if (((info->warn_shared_textrel && bfd_link_pic (info))
12717 || info->error_textrel)
12718 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12719 {
12720 bfd_byte *dyncon, *dynconend;
12721
12722 dyncon = o->contents;
12723 dynconend = o->contents + o->size;
12724 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12725 {
12726 Elf_Internal_Dyn dyn;
12727
12728 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12729
12730 if (dyn.d_tag == DT_TEXTREL)
12731 {
12732 if (info->error_textrel)
12733 info->callbacks->einfo
12734 (_("%P%X: read-only segment has dynamic relocations\n"));
12735 else
12736 info->callbacks->einfo
12737 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12738 break;
12739 }
12740 }
12741 }
12742
12743 for (o = dynobj->sections; o != NULL; o = o->next)
12744 {
12745 if ((o->flags & SEC_HAS_CONTENTS) == 0
12746 || o->size == 0
12747 || o->output_section == bfd_abs_section_ptr)
12748 continue;
12749 if ((o->flags & SEC_LINKER_CREATED) == 0)
12750 {
12751 /* At this point, we are only interested in sections
12752 created by _bfd_elf_link_create_dynamic_sections. */
12753 continue;
12754 }
12755 if (htab->stab_info.stabstr == o)
12756 continue;
12757 if (htab->eh_info.hdr_sec == o)
12758 continue;
12759 if (strcmp (o->name, ".dynstr") != 0)
12760 {
12761 if (! bfd_set_section_contents (abfd, o->output_section,
12762 o->contents,
12763 (file_ptr) o->output_offset
12764 * bfd_octets_per_byte (abfd),
12765 o->size))
12766 goto error_return;
12767 }
12768 else
12769 {
12770 /* The contents of the .dynstr section are actually in a
12771 stringtab. */
12772 file_ptr off;
12773
12774 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12775 if (bfd_seek (abfd, off, SEEK_SET) != 0
12776 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12777 goto error_return;
12778 }
12779 }
12780 }
12781
12782 if (!info->resolve_section_groups)
12783 {
12784 bfd_boolean failed = FALSE;
12785
12786 BFD_ASSERT (bfd_link_relocatable (info));
12787 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12788 if (failed)
12789 goto error_return;
12790 }
12791
12792 /* If we have optimized stabs strings, output them. */
12793 if (htab->stab_info.stabstr != NULL)
12794 {
12795 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12796 goto error_return;
12797 }
12798
12799 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12800 goto error_return;
12801
12802 elf_final_link_free (abfd, &flinfo);
12803
12804 elf_linker (abfd) = TRUE;
12805
12806 if (attr_section)
12807 {
12808 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12809 if (contents == NULL)
12810 return FALSE; /* Bail out and fail. */
12811 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12812 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12813 free (contents);
12814 }
12815
12816 return TRUE;
12817
12818 error_return:
12819 elf_final_link_free (abfd, &flinfo);
12820 return FALSE;
12821 }
12822 \f
12823 /* Initialize COOKIE for input bfd ABFD. */
12824
12825 static bfd_boolean
12826 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12827 struct bfd_link_info *info, bfd *abfd)
12828 {
12829 Elf_Internal_Shdr *symtab_hdr;
12830 const struct elf_backend_data *bed;
12831
12832 bed = get_elf_backend_data (abfd);
12833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12834
12835 cookie->abfd = abfd;
12836 cookie->sym_hashes = elf_sym_hashes (abfd);
12837 cookie->bad_symtab = elf_bad_symtab (abfd);
12838 if (cookie->bad_symtab)
12839 {
12840 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12841 cookie->extsymoff = 0;
12842 }
12843 else
12844 {
12845 cookie->locsymcount = symtab_hdr->sh_info;
12846 cookie->extsymoff = symtab_hdr->sh_info;
12847 }
12848
12849 if (bed->s->arch_size == 32)
12850 cookie->r_sym_shift = 8;
12851 else
12852 cookie->r_sym_shift = 32;
12853
12854 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12855 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12856 {
12857 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12858 cookie->locsymcount, 0,
12859 NULL, NULL, NULL);
12860 if (cookie->locsyms == NULL)
12861 {
12862 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12863 return FALSE;
12864 }
12865 if (info->keep_memory)
12866 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12867 }
12868 return TRUE;
12869 }
12870
12871 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12872
12873 static void
12874 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12875 {
12876 Elf_Internal_Shdr *symtab_hdr;
12877
12878 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12879 if (cookie->locsyms != NULL
12880 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12881 free (cookie->locsyms);
12882 }
12883
12884 /* Initialize the relocation information in COOKIE for input section SEC
12885 of input bfd ABFD. */
12886
12887 static bfd_boolean
12888 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12889 struct bfd_link_info *info, bfd *abfd,
12890 asection *sec)
12891 {
12892 if (sec->reloc_count == 0)
12893 {
12894 cookie->rels = NULL;
12895 cookie->relend = NULL;
12896 }
12897 else
12898 {
12899 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12900 info->keep_memory);
12901 if (cookie->rels == NULL)
12902 return FALSE;
12903 cookie->rel = cookie->rels;
12904 cookie->relend = cookie->rels + sec->reloc_count;
12905 }
12906 cookie->rel = cookie->rels;
12907 return TRUE;
12908 }
12909
12910 /* Free the memory allocated by init_reloc_cookie_rels,
12911 if appropriate. */
12912
12913 static void
12914 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12915 asection *sec)
12916 {
12917 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12918 free (cookie->rels);
12919 }
12920
12921 /* Initialize the whole of COOKIE for input section SEC. */
12922
12923 static bfd_boolean
12924 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12925 struct bfd_link_info *info,
12926 asection *sec)
12927 {
12928 if (!init_reloc_cookie (cookie, info, sec->owner))
12929 goto error1;
12930 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12931 goto error2;
12932 return TRUE;
12933
12934 error2:
12935 fini_reloc_cookie (cookie, sec->owner);
12936 error1:
12937 return FALSE;
12938 }
12939
12940 /* Free the memory allocated by init_reloc_cookie_for_section,
12941 if appropriate. */
12942
12943 static void
12944 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12945 asection *sec)
12946 {
12947 fini_reloc_cookie_rels (cookie, sec);
12948 fini_reloc_cookie (cookie, sec->owner);
12949 }
12950 \f
12951 /* Garbage collect unused sections. */
12952
12953 /* Default gc_mark_hook. */
12954
12955 asection *
12956 _bfd_elf_gc_mark_hook (asection *sec,
12957 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12958 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12959 struct elf_link_hash_entry *h,
12960 Elf_Internal_Sym *sym)
12961 {
12962 if (h != NULL)
12963 {
12964 switch (h->root.type)
12965 {
12966 case bfd_link_hash_defined:
12967 case bfd_link_hash_defweak:
12968 return h->root.u.def.section;
12969
12970 case bfd_link_hash_common:
12971 return h->root.u.c.p->section;
12972
12973 default:
12974 break;
12975 }
12976 }
12977 else
12978 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12979
12980 return NULL;
12981 }
12982
12983 /* Return the debug definition section. */
12984
12985 static asection *
12986 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12987 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12988 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12989 struct elf_link_hash_entry *h,
12990 Elf_Internal_Sym *sym)
12991 {
12992 if (h != NULL)
12993 {
12994 /* Return the global debug definition section. */
12995 if ((h->root.type == bfd_link_hash_defined
12996 || h->root.type == bfd_link_hash_defweak)
12997 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12998 return h->root.u.def.section;
12999 }
13000 else
13001 {
13002 /* Return the local debug definition section. */
13003 asection *isec = bfd_section_from_elf_index (sec->owner,
13004 sym->st_shndx);
13005 if ((isec->flags & SEC_DEBUGGING) != 0)
13006 return isec;
13007 }
13008
13009 return NULL;
13010 }
13011
13012 /* COOKIE->rel describes a relocation against section SEC, which is
13013 a section we've decided to keep. Return the section that contains
13014 the relocation symbol, or NULL if no section contains it. */
13015
13016 asection *
13017 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13018 elf_gc_mark_hook_fn gc_mark_hook,
13019 struct elf_reloc_cookie *cookie,
13020 bfd_boolean *start_stop)
13021 {
13022 unsigned long r_symndx;
13023 struct elf_link_hash_entry *h;
13024
13025 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13026 if (r_symndx == STN_UNDEF)
13027 return NULL;
13028
13029 if (r_symndx >= cookie->locsymcount
13030 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13031 {
13032 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13033 if (h == NULL)
13034 {
13035 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13036 sec->owner);
13037 return NULL;
13038 }
13039 while (h->root.type == bfd_link_hash_indirect
13040 || h->root.type == bfd_link_hash_warning)
13041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13042 h->mark = 1;
13043 /* If this symbol is weak and there is a non-weak definition, we
13044 keep the non-weak definition because many backends put
13045 dynamic reloc info on the non-weak definition for code
13046 handling copy relocs. */
13047 if (h->is_weakalias)
13048 weakdef (h)->mark = 1;
13049
13050 if (start_stop != NULL)
13051 {
13052 /* To work around a glibc bug, mark XXX input sections
13053 when there is a reference to __start_XXX or __stop_XXX
13054 symbols. */
13055 if (h->start_stop)
13056 {
13057 asection *s = h->u2.start_stop_section;
13058 *start_stop = !s->gc_mark;
13059 return s;
13060 }
13061 }
13062
13063 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13064 }
13065
13066 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13067 &cookie->locsyms[r_symndx]);
13068 }
13069
13070 /* COOKIE->rel describes a relocation against section SEC, which is
13071 a section we've decided to keep. Mark the section that contains
13072 the relocation symbol. */
13073
13074 bfd_boolean
13075 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13076 asection *sec,
13077 elf_gc_mark_hook_fn gc_mark_hook,
13078 struct elf_reloc_cookie *cookie)
13079 {
13080 asection *rsec;
13081 bfd_boolean start_stop = FALSE;
13082
13083 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13084 while (rsec != NULL)
13085 {
13086 if (!rsec->gc_mark)
13087 {
13088 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13089 || (rsec->owner->flags & DYNAMIC) != 0)
13090 rsec->gc_mark = 1;
13091 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13092 return FALSE;
13093 }
13094 if (!start_stop)
13095 break;
13096 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13097 }
13098 return TRUE;
13099 }
13100
13101 /* The mark phase of garbage collection. For a given section, mark
13102 it and any sections in this section's group, and all the sections
13103 which define symbols to which it refers. */
13104
13105 bfd_boolean
13106 _bfd_elf_gc_mark (struct bfd_link_info *info,
13107 asection *sec,
13108 elf_gc_mark_hook_fn gc_mark_hook)
13109 {
13110 bfd_boolean ret;
13111 asection *group_sec, *eh_frame;
13112
13113 sec->gc_mark = 1;
13114
13115 /* Mark all the sections in the group. */
13116 group_sec = elf_section_data (sec)->next_in_group;
13117 if (group_sec && !group_sec->gc_mark)
13118 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13119 return FALSE;
13120
13121 /* Look through the section relocs. */
13122 ret = TRUE;
13123 eh_frame = elf_eh_frame_section (sec->owner);
13124 if ((sec->flags & SEC_RELOC) != 0
13125 && sec->reloc_count > 0
13126 && sec != eh_frame)
13127 {
13128 struct elf_reloc_cookie cookie;
13129
13130 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13131 ret = FALSE;
13132 else
13133 {
13134 for (; cookie.rel < cookie.relend; cookie.rel++)
13135 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13136 {
13137 ret = FALSE;
13138 break;
13139 }
13140 fini_reloc_cookie_for_section (&cookie, sec);
13141 }
13142 }
13143
13144 if (ret && eh_frame && elf_fde_list (sec))
13145 {
13146 struct elf_reloc_cookie cookie;
13147
13148 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13149 ret = FALSE;
13150 else
13151 {
13152 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13153 gc_mark_hook, &cookie))
13154 ret = FALSE;
13155 fini_reloc_cookie_for_section (&cookie, eh_frame);
13156 }
13157 }
13158
13159 eh_frame = elf_section_eh_frame_entry (sec);
13160 if (ret && eh_frame && !eh_frame->gc_mark)
13161 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13162 ret = FALSE;
13163
13164 return ret;
13165 }
13166
13167 /* Scan and mark sections in a special or debug section group. */
13168
13169 static void
13170 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13171 {
13172 /* Point to first section of section group. */
13173 asection *ssec;
13174 /* Used to iterate the section group. */
13175 asection *msec;
13176
13177 bfd_boolean is_special_grp = TRUE;
13178 bfd_boolean is_debug_grp = TRUE;
13179
13180 /* First scan to see if group contains any section other than debug
13181 and special section. */
13182 ssec = msec = elf_next_in_group (grp);
13183 do
13184 {
13185 if ((msec->flags & SEC_DEBUGGING) == 0)
13186 is_debug_grp = FALSE;
13187
13188 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13189 is_special_grp = FALSE;
13190
13191 msec = elf_next_in_group (msec);
13192 }
13193 while (msec != ssec);
13194
13195 /* If this is a pure debug section group or pure special section group,
13196 keep all sections in this group. */
13197 if (is_debug_grp || is_special_grp)
13198 {
13199 do
13200 {
13201 msec->gc_mark = 1;
13202 msec = elf_next_in_group (msec);
13203 }
13204 while (msec != ssec);
13205 }
13206 }
13207
13208 /* Keep debug and special sections. */
13209
13210 bfd_boolean
13211 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13212 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13213 {
13214 bfd *ibfd;
13215
13216 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13217 {
13218 asection *isec;
13219 bfd_boolean some_kept;
13220 bfd_boolean debug_frag_seen;
13221 bfd_boolean has_kept_debug_info;
13222
13223 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13224 continue;
13225 isec = ibfd->sections;
13226 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13227 continue;
13228
13229 /* Ensure all linker created sections are kept,
13230 see if any other section is already marked,
13231 and note if we have any fragmented debug sections. */
13232 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13233 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13234 {
13235 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13236 isec->gc_mark = 1;
13237 else if (isec->gc_mark
13238 && (isec->flags & SEC_ALLOC) != 0
13239 && elf_section_type (isec) != SHT_NOTE)
13240 some_kept = TRUE;
13241
13242 if (!debug_frag_seen
13243 && (isec->flags & SEC_DEBUGGING)
13244 && CONST_STRNEQ (isec->name, ".debug_line."))
13245 debug_frag_seen = TRUE;
13246 }
13247
13248 /* If no non-note alloc section in this file will be kept, then
13249 we can toss out the debug and special sections. */
13250 if (!some_kept)
13251 continue;
13252
13253 /* Keep debug and special sections like .comment when they are
13254 not part of a group. Also keep section groups that contain
13255 just debug sections or special sections. */
13256 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13257 {
13258 if ((isec->flags & SEC_GROUP) != 0)
13259 _bfd_elf_gc_mark_debug_special_section_group (isec);
13260 else if (((isec->flags & SEC_DEBUGGING) != 0
13261 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13262 && elf_next_in_group (isec) == NULL)
13263 isec->gc_mark = 1;
13264 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13265 has_kept_debug_info = TRUE;
13266 }
13267
13268 /* Look for CODE sections which are going to be discarded,
13269 and find and discard any fragmented debug sections which
13270 are associated with that code section. */
13271 if (debug_frag_seen)
13272 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13273 if ((isec->flags & SEC_CODE) != 0
13274 && isec->gc_mark == 0)
13275 {
13276 unsigned int ilen;
13277 asection *dsec;
13278
13279 ilen = strlen (isec->name);
13280
13281 /* Association is determined by the name of the debug
13282 section containing the name of the code section as
13283 a suffix. For example .debug_line.text.foo is a
13284 debug section associated with .text.foo. */
13285 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13286 {
13287 unsigned int dlen;
13288
13289 if (dsec->gc_mark == 0
13290 || (dsec->flags & SEC_DEBUGGING) == 0)
13291 continue;
13292
13293 dlen = strlen (dsec->name);
13294
13295 if (dlen > ilen
13296 && strncmp (dsec->name + (dlen - ilen),
13297 isec->name, ilen) == 0)
13298 dsec->gc_mark = 0;
13299 }
13300 }
13301
13302 /* Mark debug sections referenced by kept debug sections. */
13303 if (has_kept_debug_info)
13304 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13305 if (isec->gc_mark
13306 && (isec->flags & SEC_DEBUGGING) != 0)
13307 if (!_bfd_elf_gc_mark (info, isec,
13308 elf_gc_mark_debug_section))
13309 return FALSE;
13310 }
13311 return TRUE;
13312 }
13313
13314 static bfd_boolean
13315 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13316 {
13317 bfd *sub;
13318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13319
13320 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13321 {
13322 asection *o;
13323
13324 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13325 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13326 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13327 continue;
13328 o = sub->sections;
13329 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13330 continue;
13331
13332 for (o = sub->sections; o != NULL; o = o->next)
13333 {
13334 /* When any section in a section group is kept, we keep all
13335 sections in the section group. If the first member of
13336 the section group is excluded, we will also exclude the
13337 group section. */
13338 if (o->flags & SEC_GROUP)
13339 {
13340 asection *first = elf_next_in_group (o);
13341 o->gc_mark = first->gc_mark;
13342 }
13343
13344 if (o->gc_mark)
13345 continue;
13346
13347 /* Skip sweeping sections already excluded. */
13348 if (o->flags & SEC_EXCLUDE)
13349 continue;
13350
13351 /* Since this is early in the link process, it is simple
13352 to remove a section from the output. */
13353 o->flags |= SEC_EXCLUDE;
13354
13355 if (info->print_gc_sections && o->size != 0)
13356 /* xgettext:c-format */
13357 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13358 o, sub);
13359 }
13360 }
13361
13362 return TRUE;
13363 }
13364
13365 /* Propagate collected vtable information. This is called through
13366 elf_link_hash_traverse. */
13367
13368 static bfd_boolean
13369 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13370 {
13371 /* Those that are not vtables. */
13372 if (h->start_stop
13373 || h->u2.vtable == NULL
13374 || h->u2.vtable->parent == NULL)
13375 return TRUE;
13376
13377 /* Those vtables that do not have parents, we cannot merge. */
13378 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13379 return TRUE;
13380
13381 /* If we've already been done, exit. */
13382 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13383 return TRUE;
13384
13385 /* Make sure the parent's table is up to date. */
13386 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13387
13388 if (h->u2.vtable->used == NULL)
13389 {
13390 /* None of this table's entries were referenced. Re-use the
13391 parent's table. */
13392 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13393 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13394 }
13395 else
13396 {
13397 size_t n;
13398 bfd_boolean *cu, *pu;
13399
13400 /* Or the parent's entries into ours. */
13401 cu = h->u2.vtable->used;
13402 cu[-1] = TRUE;
13403 pu = h->u2.vtable->parent->u2.vtable->used;
13404 if (pu != NULL)
13405 {
13406 const struct elf_backend_data *bed;
13407 unsigned int log_file_align;
13408
13409 bed = get_elf_backend_data (h->root.u.def.section->owner);
13410 log_file_align = bed->s->log_file_align;
13411 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13412 while (n--)
13413 {
13414 if (*pu)
13415 *cu = TRUE;
13416 pu++;
13417 cu++;
13418 }
13419 }
13420 }
13421
13422 return TRUE;
13423 }
13424
13425 static bfd_boolean
13426 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13427 {
13428 asection *sec;
13429 bfd_vma hstart, hend;
13430 Elf_Internal_Rela *relstart, *relend, *rel;
13431 const struct elf_backend_data *bed;
13432 unsigned int log_file_align;
13433
13434 /* Take care of both those symbols that do not describe vtables as
13435 well as those that are not loaded. */
13436 if (h->start_stop
13437 || h->u2.vtable == NULL
13438 || h->u2.vtable->parent == NULL)
13439 return TRUE;
13440
13441 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13442 || h->root.type == bfd_link_hash_defweak);
13443
13444 sec = h->root.u.def.section;
13445 hstart = h->root.u.def.value;
13446 hend = hstart + h->size;
13447
13448 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13449 if (!relstart)
13450 return *(bfd_boolean *) okp = FALSE;
13451 bed = get_elf_backend_data (sec->owner);
13452 log_file_align = bed->s->log_file_align;
13453
13454 relend = relstart + sec->reloc_count;
13455
13456 for (rel = relstart; rel < relend; ++rel)
13457 if (rel->r_offset >= hstart && rel->r_offset < hend)
13458 {
13459 /* If the entry is in use, do nothing. */
13460 if (h->u2.vtable->used
13461 && (rel->r_offset - hstart) < h->u2.vtable->size)
13462 {
13463 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13464 if (h->u2.vtable->used[entry])
13465 continue;
13466 }
13467 /* Otherwise, kill it. */
13468 rel->r_offset = rel->r_info = rel->r_addend = 0;
13469 }
13470
13471 return TRUE;
13472 }
13473
13474 /* Mark sections containing dynamically referenced symbols. When
13475 building shared libraries, we must assume that any visible symbol is
13476 referenced. */
13477
13478 bfd_boolean
13479 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13480 {
13481 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13482 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13483
13484 if ((h->root.type == bfd_link_hash_defined
13485 || h->root.type == bfd_link_hash_defweak)
13486 && ((h->ref_dynamic && !h->forced_local)
13487 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13488 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13489 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13490 && (!bfd_link_executable (info)
13491 || info->gc_keep_exported
13492 || info->export_dynamic
13493 || (h->dynamic
13494 && d != NULL
13495 && (*d->match) (&d->head, NULL, h->root.root.string)))
13496 && (h->versioned >= versioned
13497 || !bfd_hide_sym_by_version (info->version_info,
13498 h->root.root.string)))))
13499 h->root.u.def.section->flags |= SEC_KEEP;
13500
13501 return TRUE;
13502 }
13503
13504 /* Keep all sections containing symbols undefined on the command-line,
13505 and the section containing the entry symbol. */
13506
13507 void
13508 _bfd_elf_gc_keep (struct bfd_link_info *info)
13509 {
13510 struct bfd_sym_chain *sym;
13511
13512 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13513 {
13514 struct elf_link_hash_entry *h;
13515
13516 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13517 FALSE, FALSE, FALSE);
13518
13519 if (h != NULL
13520 && (h->root.type == bfd_link_hash_defined
13521 || h->root.type == bfd_link_hash_defweak)
13522 && !bfd_is_abs_section (h->root.u.def.section)
13523 && !bfd_is_und_section (h->root.u.def.section))
13524 h->root.u.def.section->flags |= SEC_KEEP;
13525 }
13526 }
13527
13528 bfd_boolean
13529 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13530 struct bfd_link_info *info)
13531 {
13532 bfd *ibfd = info->input_bfds;
13533
13534 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13535 {
13536 asection *sec;
13537 struct elf_reloc_cookie cookie;
13538
13539 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13540 continue;
13541 sec = ibfd->sections;
13542 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13543 continue;
13544
13545 if (!init_reloc_cookie (&cookie, info, ibfd))
13546 return FALSE;
13547
13548 for (sec = ibfd->sections; sec; sec = sec->next)
13549 {
13550 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13551 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13552 {
13553 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13554 fini_reloc_cookie_rels (&cookie, sec);
13555 }
13556 }
13557 }
13558 return TRUE;
13559 }
13560
13561 /* Do mark and sweep of unused sections. */
13562
13563 bfd_boolean
13564 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13565 {
13566 bfd_boolean ok = TRUE;
13567 bfd *sub;
13568 elf_gc_mark_hook_fn gc_mark_hook;
13569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13570 struct elf_link_hash_table *htab;
13571
13572 if (!bed->can_gc_sections
13573 || !is_elf_hash_table (info->hash))
13574 {
13575 _bfd_error_handler(_("warning: gc-sections option ignored"));
13576 return TRUE;
13577 }
13578
13579 bed->gc_keep (info);
13580 htab = elf_hash_table (info);
13581
13582 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13583 at the .eh_frame section if we can mark the FDEs individually. */
13584 for (sub = info->input_bfds;
13585 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13586 sub = sub->link.next)
13587 {
13588 asection *sec;
13589 struct elf_reloc_cookie cookie;
13590
13591 sec = sub->sections;
13592 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13593 continue;
13594 sec = bfd_get_section_by_name (sub, ".eh_frame");
13595 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13596 {
13597 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13598 if (elf_section_data (sec)->sec_info
13599 && (sec->flags & SEC_LINKER_CREATED) == 0)
13600 elf_eh_frame_section (sub) = sec;
13601 fini_reloc_cookie_for_section (&cookie, sec);
13602 sec = bfd_get_next_section_by_name (NULL, sec);
13603 }
13604 }
13605
13606 /* Apply transitive closure to the vtable entry usage info. */
13607 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13608 if (!ok)
13609 return FALSE;
13610
13611 /* Kill the vtable relocations that were not used. */
13612 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13613 if (!ok)
13614 return FALSE;
13615
13616 /* Mark dynamically referenced symbols. */
13617 if (htab->dynamic_sections_created || info->gc_keep_exported)
13618 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13619
13620 /* Grovel through relocs to find out who stays ... */
13621 gc_mark_hook = bed->gc_mark_hook;
13622 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13623 {
13624 asection *o;
13625
13626 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13627 || elf_object_id (sub) != elf_hash_table_id (htab)
13628 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13629 continue;
13630
13631 o = sub->sections;
13632 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13633 continue;
13634
13635 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13636 Also treat note sections as a root, if the section is not part
13637 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13638 well as FINI_ARRAY sections for ld -r. */
13639 for (o = sub->sections; o != NULL; o = o->next)
13640 if (!o->gc_mark
13641 && (o->flags & SEC_EXCLUDE) == 0
13642 && ((o->flags & SEC_KEEP) != 0
13643 || (bfd_link_relocatable (info)
13644 && ((elf_section_data (o)->this_hdr.sh_type
13645 == SHT_PREINIT_ARRAY)
13646 || (elf_section_data (o)->this_hdr.sh_type
13647 == SHT_INIT_ARRAY)
13648 || (elf_section_data (o)->this_hdr.sh_type
13649 == SHT_FINI_ARRAY)))
13650 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13651 && elf_next_in_group (o) == NULL )))
13652 {
13653 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13654 return FALSE;
13655 }
13656 }
13657
13658 /* Allow the backend to mark additional target specific sections. */
13659 bed->gc_mark_extra_sections (info, gc_mark_hook);
13660
13661 /* ... and mark SEC_EXCLUDE for those that go. */
13662 return elf_gc_sweep (abfd, info);
13663 }
13664 \f
13665 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13666
13667 bfd_boolean
13668 bfd_elf_gc_record_vtinherit (bfd *abfd,
13669 asection *sec,
13670 struct elf_link_hash_entry *h,
13671 bfd_vma offset)
13672 {
13673 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13674 struct elf_link_hash_entry **search, *child;
13675 size_t extsymcount;
13676 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13677
13678 /* The sh_info field of the symtab header tells us where the
13679 external symbols start. We don't care about the local symbols at
13680 this point. */
13681 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13682 if (!elf_bad_symtab (abfd))
13683 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13684
13685 sym_hashes = elf_sym_hashes (abfd);
13686 sym_hashes_end = sym_hashes + extsymcount;
13687
13688 /* Hunt down the child symbol, which is in this section at the same
13689 offset as the relocation. */
13690 for (search = sym_hashes; search != sym_hashes_end; ++search)
13691 {
13692 if ((child = *search) != NULL
13693 && (child->root.type == bfd_link_hash_defined
13694 || child->root.type == bfd_link_hash_defweak)
13695 && child->root.u.def.section == sec
13696 && child->root.u.def.value == offset)
13697 goto win;
13698 }
13699
13700 /* xgettext:c-format */
13701 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13702 abfd, sec, (uint64_t) offset);
13703 bfd_set_error (bfd_error_invalid_operation);
13704 return FALSE;
13705
13706 win:
13707 if (!child->u2.vtable)
13708 {
13709 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13710 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13711 if (!child->u2.vtable)
13712 return FALSE;
13713 }
13714 if (!h)
13715 {
13716 /* This *should* only be the absolute section. It could potentially
13717 be that someone has defined a non-global vtable though, which
13718 would be bad. It isn't worth paging in the local symbols to be
13719 sure though; that case should simply be handled by the assembler. */
13720
13721 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13722 }
13723 else
13724 child->u2.vtable->parent = h;
13725
13726 return TRUE;
13727 }
13728
13729 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13730
13731 bfd_boolean
13732 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13733 struct elf_link_hash_entry *h,
13734 bfd_vma addend)
13735 {
13736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13737 unsigned int log_file_align = bed->s->log_file_align;
13738
13739 if (!h)
13740 {
13741 /* xgettext:c-format */
13742 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13743 abfd, sec);
13744 bfd_set_error (bfd_error_bad_value);
13745 return FALSE;
13746 }
13747
13748 if (!h->u2.vtable)
13749 {
13750 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13751 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13752 if (!h->u2.vtable)
13753 return FALSE;
13754 }
13755
13756 if (addend >= h->u2.vtable->size)
13757 {
13758 size_t size, bytes, file_align;
13759 bfd_boolean *ptr = h->u2.vtable->used;
13760
13761 /* While the symbol is undefined, we have to be prepared to handle
13762 a zero size. */
13763 file_align = 1 << log_file_align;
13764 if (h->root.type == bfd_link_hash_undefined)
13765 size = addend + file_align;
13766 else
13767 {
13768 size = h->size;
13769 if (addend >= size)
13770 {
13771 /* Oops! We've got a reference past the defined end of
13772 the table. This is probably a bug -- shall we warn? */
13773 size = addend + file_align;
13774 }
13775 }
13776 size = (size + file_align - 1) & -file_align;
13777
13778 /* Allocate one extra entry for use as a "done" flag for the
13779 consolidation pass. */
13780 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13781
13782 if (ptr)
13783 {
13784 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13785
13786 if (ptr != NULL)
13787 {
13788 size_t oldbytes;
13789
13790 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13791 * sizeof (bfd_boolean));
13792 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13793 }
13794 }
13795 else
13796 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13797
13798 if (ptr == NULL)
13799 return FALSE;
13800
13801 /* And arrange for that done flag to be at index -1. */
13802 h->u2.vtable->used = ptr + 1;
13803 h->u2.vtable->size = size;
13804 }
13805
13806 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13807
13808 return TRUE;
13809 }
13810
13811 /* Map an ELF section header flag to its corresponding string. */
13812 typedef struct
13813 {
13814 char *flag_name;
13815 flagword flag_value;
13816 } elf_flags_to_name_table;
13817
13818 static elf_flags_to_name_table elf_flags_to_names [] =
13819 {
13820 { "SHF_WRITE", SHF_WRITE },
13821 { "SHF_ALLOC", SHF_ALLOC },
13822 { "SHF_EXECINSTR", SHF_EXECINSTR },
13823 { "SHF_MERGE", SHF_MERGE },
13824 { "SHF_STRINGS", SHF_STRINGS },
13825 { "SHF_INFO_LINK", SHF_INFO_LINK},
13826 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13827 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13828 { "SHF_GROUP", SHF_GROUP },
13829 { "SHF_TLS", SHF_TLS },
13830 { "SHF_MASKOS", SHF_MASKOS },
13831 { "SHF_EXCLUDE", SHF_EXCLUDE },
13832 };
13833
13834 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13835 bfd_boolean
13836 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13837 struct flag_info *flaginfo,
13838 asection *section)
13839 {
13840 const bfd_vma sh_flags = elf_section_flags (section);
13841
13842 if (!flaginfo->flags_initialized)
13843 {
13844 bfd *obfd = info->output_bfd;
13845 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13846 struct flag_info_list *tf = flaginfo->flag_list;
13847 int with_hex = 0;
13848 int without_hex = 0;
13849
13850 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13851 {
13852 unsigned i;
13853 flagword (*lookup) (char *);
13854
13855 lookup = bed->elf_backend_lookup_section_flags_hook;
13856 if (lookup != NULL)
13857 {
13858 flagword hexval = (*lookup) ((char *) tf->name);
13859
13860 if (hexval != 0)
13861 {
13862 if (tf->with == with_flags)
13863 with_hex |= hexval;
13864 else if (tf->with == without_flags)
13865 without_hex |= hexval;
13866 tf->valid = TRUE;
13867 continue;
13868 }
13869 }
13870 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13871 {
13872 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13873 {
13874 if (tf->with == with_flags)
13875 with_hex |= elf_flags_to_names[i].flag_value;
13876 else if (tf->with == without_flags)
13877 without_hex |= elf_flags_to_names[i].flag_value;
13878 tf->valid = TRUE;
13879 break;
13880 }
13881 }
13882 if (!tf->valid)
13883 {
13884 info->callbacks->einfo
13885 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13886 return FALSE;
13887 }
13888 }
13889 flaginfo->flags_initialized = TRUE;
13890 flaginfo->only_with_flags |= with_hex;
13891 flaginfo->not_with_flags |= without_hex;
13892 }
13893
13894 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13895 return FALSE;
13896
13897 if ((flaginfo->not_with_flags & sh_flags) != 0)
13898 return FALSE;
13899
13900 return TRUE;
13901 }
13902
13903 struct alloc_got_off_arg {
13904 bfd_vma gotoff;
13905 struct bfd_link_info *info;
13906 };
13907
13908 /* We need a special top-level link routine to convert got reference counts
13909 to real got offsets. */
13910
13911 static bfd_boolean
13912 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13913 {
13914 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13915 bfd *obfd = gofarg->info->output_bfd;
13916 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13917
13918 if (h->got.refcount > 0)
13919 {
13920 h->got.offset = gofarg->gotoff;
13921 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13922 }
13923 else
13924 h->got.offset = (bfd_vma) -1;
13925
13926 return TRUE;
13927 }
13928
13929 /* And an accompanying bit to work out final got entry offsets once
13930 we're done. Should be called from final_link. */
13931
13932 bfd_boolean
13933 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13934 struct bfd_link_info *info)
13935 {
13936 bfd *i;
13937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13938 bfd_vma gotoff;
13939 struct alloc_got_off_arg gofarg;
13940
13941 BFD_ASSERT (abfd == info->output_bfd);
13942
13943 if (! is_elf_hash_table (info->hash))
13944 return FALSE;
13945
13946 /* The GOT offset is relative to the .got section, but the GOT header is
13947 put into the .got.plt section, if the backend uses it. */
13948 if (bed->want_got_plt)
13949 gotoff = 0;
13950 else
13951 gotoff = bed->got_header_size;
13952
13953 /* Do the local .got entries first. */
13954 for (i = info->input_bfds; i; i = i->link.next)
13955 {
13956 bfd_signed_vma *local_got;
13957 size_t j, locsymcount;
13958 Elf_Internal_Shdr *symtab_hdr;
13959
13960 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13961 continue;
13962
13963 local_got = elf_local_got_refcounts (i);
13964 if (!local_got)
13965 continue;
13966
13967 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13968 if (elf_bad_symtab (i))
13969 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13970 else
13971 locsymcount = symtab_hdr->sh_info;
13972
13973 for (j = 0; j < locsymcount; ++j)
13974 {
13975 if (local_got[j] > 0)
13976 {
13977 local_got[j] = gotoff;
13978 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13979 }
13980 else
13981 local_got[j] = (bfd_vma) -1;
13982 }
13983 }
13984
13985 /* Then the global .got entries. .plt refcounts are handled by
13986 adjust_dynamic_symbol */
13987 gofarg.gotoff = gotoff;
13988 gofarg.info = info;
13989 elf_link_hash_traverse (elf_hash_table (info),
13990 elf_gc_allocate_got_offsets,
13991 &gofarg);
13992 return TRUE;
13993 }
13994
13995 /* Many folk need no more in the way of final link than this, once
13996 got entry reference counting is enabled. */
13997
13998 bfd_boolean
13999 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14000 {
14001 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14002 return FALSE;
14003
14004 /* Invoke the regular ELF backend linker to do all the work. */
14005 return bfd_elf_final_link (abfd, info);
14006 }
14007
14008 bfd_boolean
14009 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14010 {
14011 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14012
14013 if (rcookie->bad_symtab)
14014 rcookie->rel = rcookie->rels;
14015
14016 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14017 {
14018 unsigned long r_symndx;
14019
14020 if (! rcookie->bad_symtab)
14021 if (rcookie->rel->r_offset > offset)
14022 return FALSE;
14023 if (rcookie->rel->r_offset != offset)
14024 continue;
14025
14026 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14027 if (r_symndx == STN_UNDEF)
14028 return TRUE;
14029
14030 if (r_symndx >= rcookie->locsymcount
14031 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14032 {
14033 struct elf_link_hash_entry *h;
14034
14035 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14036
14037 while (h->root.type == bfd_link_hash_indirect
14038 || h->root.type == bfd_link_hash_warning)
14039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14040
14041 if ((h->root.type == bfd_link_hash_defined
14042 || h->root.type == bfd_link_hash_defweak)
14043 && (h->root.u.def.section->owner != rcookie->abfd
14044 || h->root.u.def.section->kept_section != NULL
14045 || discarded_section (h->root.u.def.section)))
14046 return TRUE;
14047 }
14048 else
14049 {
14050 /* It's not a relocation against a global symbol,
14051 but it could be a relocation against a local
14052 symbol for a discarded section. */
14053 asection *isec;
14054 Elf_Internal_Sym *isym;
14055
14056 /* Need to: get the symbol; get the section. */
14057 isym = &rcookie->locsyms[r_symndx];
14058 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14059 if (isec != NULL
14060 && (isec->kept_section != NULL
14061 || discarded_section (isec)))
14062 return TRUE;
14063 }
14064 return FALSE;
14065 }
14066 return FALSE;
14067 }
14068
14069 /* Discard unneeded references to discarded sections.
14070 Returns -1 on error, 1 if any section's size was changed, 0 if
14071 nothing changed. This function assumes that the relocations are in
14072 sorted order, which is true for all known assemblers. */
14073
14074 int
14075 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14076 {
14077 struct elf_reloc_cookie cookie;
14078 asection *o;
14079 bfd *abfd;
14080 int changed = 0;
14081
14082 if (info->traditional_format
14083 || !is_elf_hash_table (info->hash))
14084 return 0;
14085
14086 o = bfd_get_section_by_name (output_bfd, ".stab");
14087 if (o != NULL)
14088 {
14089 asection *i;
14090
14091 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14092 {
14093 if (i->size == 0
14094 || i->reloc_count == 0
14095 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14096 continue;
14097
14098 abfd = i->owner;
14099 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14100 continue;
14101
14102 if (!init_reloc_cookie_for_section (&cookie, info, i))
14103 return -1;
14104
14105 if (_bfd_discard_section_stabs (abfd, i,
14106 elf_section_data (i)->sec_info,
14107 bfd_elf_reloc_symbol_deleted_p,
14108 &cookie))
14109 changed = 1;
14110
14111 fini_reloc_cookie_for_section (&cookie, i);
14112 }
14113 }
14114
14115 o = NULL;
14116 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14117 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14118 if (o != NULL)
14119 {
14120 asection *i;
14121 int eh_changed = 0;
14122 unsigned int eh_alignment;
14123
14124 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14125 {
14126 if (i->size == 0)
14127 continue;
14128
14129 abfd = i->owner;
14130 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14131 continue;
14132
14133 if (!init_reloc_cookie_for_section (&cookie, info, i))
14134 return -1;
14135
14136 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14137 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14138 bfd_elf_reloc_symbol_deleted_p,
14139 &cookie))
14140 {
14141 eh_changed = 1;
14142 if (i->size != i->rawsize)
14143 changed = 1;
14144 }
14145
14146 fini_reloc_cookie_for_section (&cookie, i);
14147 }
14148
14149 eh_alignment = 1 << o->alignment_power;
14150 /* Skip over zero terminator, and prevent empty sections from
14151 adding alignment padding at the end. */
14152 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14153 if (i->size == 0)
14154 i->flags |= SEC_EXCLUDE;
14155 else if (i->size > 4)
14156 break;
14157 /* The last non-empty eh_frame section doesn't need padding. */
14158 if (i != NULL)
14159 i = i->map_tail.s;
14160 /* Any prior sections must pad the last FDE out to the output
14161 section alignment. Otherwise we might have zero padding
14162 between sections, which would be seen as a terminator. */
14163 for (; i != NULL; i = i->map_tail.s)
14164 if (i->size == 4)
14165 /* All but the last zero terminator should have been removed. */
14166 BFD_FAIL ();
14167 else
14168 {
14169 bfd_size_type size
14170 = (i->size + eh_alignment - 1) & -eh_alignment;
14171 if (i->size != size)
14172 {
14173 i->size = size;
14174 changed = 1;
14175 eh_changed = 1;
14176 }
14177 }
14178 if (eh_changed)
14179 elf_link_hash_traverse (elf_hash_table (info),
14180 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14181 }
14182
14183 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14184 {
14185 const struct elf_backend_data *bed;
14186 asection *s;
14187
14188 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14189 continue;
14190 s = abfd->sections;
14191 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14192 continue;
14193
14194 bed = get_elf_backend_data (abfd);
14195
14196 if (bed->elf_backend_discard_info != NULL)
14197 {
14198 if (!init_reloc_cookie (&cookie, info, abfd))
14199 return -1;
14200
14201 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14202 changed = 1;
14203
14204 fini_reloc_cookie (&cookie, abfd);
14205 }
14206 }
14207
14208 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14209 _bfd_elf_end_eh_frame_parsing (info);
14210
14211 if (info->eh_frame_hdr_type
14212 && !bfd_link_relocatable (info)
14213 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14214 changed = 1;
14215
14216 return changed;
14217 }
14218
14219 bfd_boolean
14220 _bfd_elf_section_already_linked (bfd *abfd,
14221 asection *sec,
14222 struct bfd_link_info *info)
14223 {
14224 flagword flags;
14225 const char *name, *key;
14226 struct bfd_section_already_linked *l;
14227 struct bfd_section_already_linked_hash_entry *already_linked_list;
14228
14229 if (sec->output_section == bfd_abs_section_ptr)
14230 return FALSE;
14231
14232 flags = sec->flags;
14233
14234 /* Return if it isn't a linkonce section. A comdat group section
14235 also has SEC_LINK_ONCE set. */
14236 if ((flags & SEC_LINK_ONCE) == 0)
14237 return FALSE;
14238
14239 /* Don't put group member sections on our list of already linked
14240 sections. They are handled as a group via their group section. */
14241 if (elf_sec_group (sec) != NULL)
14242 return FALSE;
14243
14244 /* For a SHT_GROUP section, use the group signature as the key. */
14245 name = sec->name;
14246 if ((flags & SEC_GROUP) != 0
14247 && elf_next_in_group (sec) != NULL
14248 && elf_group_name (elf_next_in_group (sec)) != NULL)
14249 key = elf_group_name (elf_next_in_group (sec));
14250 else
14251 {
14252 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14253 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14254 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14255 key++;
14256 else
14257 /* Must be a user linkonce section that doesn't follow gcc's
14258 naming convention. In this case we won't be matching
14259 single member groups. */
14260 key = name;
14261 }
14262
14263 already_linked_list = bfd_section_already_linked_table_lookup (key);
14264
14265 for (l = already_linked_list->entry; l != NULL; l = l->next)
14266 {
14267 /* We may have 2 different types of sections on the list: group
14268 sections with a signature of <key> (<key> is some string),
14269 and linkonce sections named .gnu.linkonce.<type>.<key>.
14270 Match like sections. LTO plugin sections are an exception.
14271 They are always named .gnu.linkonce.t.<key> and match either
14272 type of section. */
14273 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14274 && ((flags & SEC_GROUP) != 0
14275 || strcmp (name, l->sec->name) == 0))
14276 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14277 {
14278 /* The section has already been linked. See if we should
14279 issue a warning. */
14280 if (!_bfd_handle_already_linked (sec, l, info))
14281 return FALSE;
14282
14283 if (flags & SEC_GROUP)
14284 {
14285 asection *first = elf_next_in_group (sec);
14286 asection *s = first;
14287
14288 while (s != NULL)
14289 {
14290 s->output_section = bfd_abs_section_ptr;
14291 /* Record which group discards it. */
14292 s->kept_section = l->sec;
14293 s = elf_next_in_group (s);
14294 /* These lists are circular. */
14295 if (s == first)
14296 break;
14297 }
14298 }
14299
14300 return TRUE;
14301 }
14302 }
14303
14304 /* A single member comdat group section may be discarded by a
14305 linkonce section and vice versa. */
14306 if ((flags & SEC_GROUP) != 0)
14307 {
14308 asection *first = elf_next_in_group (sec);
14309
14310 if (first != NULL && elf_next_in_group (first) == first)
14311 /* Check this single member group against linkonce sections. */
14312 for (l = already_linked_list->entry; l != NULL; l = l->next)
14313 if ((l->sec->flags & SEC_GROUP) == 0
14314 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14315 {
14316 first->output_section = bfd_abs_section_ptr;
14317 first->kept_section = l->sec;
14318 sec->output_section = bfd_abs_section_ptr;
14319 break;
14320 }
14321 }
14322 else
14323 /* Check this linkonce section against single member groups. */
14324 for (l = already_linked_list->entry; l != NULL; l = l->next)
14325 if (l->sec->flags & SEC_GROUP)
14326 {
14327 asection *first = elf_next_in_group (l->sec);
14328
14329 if (first != NULL
14330 && elf_next_in_group (first) == first
14331 && bfd_elf_match_symbols_in_sections (first, sec, info))
14332 {
14333 sec->output_section = bfd_abs_section_ptr;
14334 sec->kept_section = first;
14335 break;
14336 }
14337 }
14338
14339 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14340 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14341 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14342 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14343 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14344 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14345 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14346 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14347 The reverse order cannot happen as there is never a bfd with only the
14348 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14349 matter as here were are looking only for cross-bfd sections. */
14350
14351 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14352 for (l = already_linked_list->entry; l != NULL; l = l->next)
14353 if ((l->sec->flags & SEC_GROUP) == 0
14354 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14355 {
14356 if (abfd != l->sec->owner)
14357 sec->output_section = bfd_abs_section_ptr;
14358 break;
14359 }
14360
14361 /* This is the first section with this name. Record it. */
14362 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14363 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14364 return sec->output_section == bfd_abs_section_ptr;
14365 }
14366
14367 bfd_boolean
14368 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14369 {
14370 return sym->st_shndx == SHN_COMMON;
14371 }
14372
14373 unsigned int
14374 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14375 {
14376 return SHN_COMMON;
14377 }
14378
14379 asection *
14380 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14381 {
14382 return bfd_com_section_ptr;
14383 }
14384
14385 bfd_vma
14386 _bfd_elf_default_got_elt_size (bfd *abfd,
14387 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14388 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14389 bfd *ibfd ATTRIBUTE_UNUSED,
14390 unsigned long symndx ATTRIBUTE_UNUSED)
14391 {
14392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14393 return bed->s->arch_size / 8;
14394 }
14395
14396 /* Routines to support the creation of dynamic relocs. */
14397
14398 /* Returns the name of the dynamic reloc section associated with SEC. */
14399
14400 static const char *
14401 get_dynamic_reloc_section_name (bfd * abfd,
14402 asection * sec,
14403 bfd_boolean is_rela)
14404 {
14405 char *name;
14406 const char *old_name = bfd_get_section_name (NULL, sec);
14407 const char *prefix = is_rela ? ".rela" : ".rel";
14408
14409 if (old_name == NULL)
14410 return NULL;
14411
14412 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14413 sprintf (name, "%s%s", prefix, old_name);
14414
14415 return name;
14416 }
14417
14418 /* Returns the dynamic reloc section associated with SEC.
14419 If necessary compute the name of the dynamic reloc section based
14420 on SEC's name (looked up in ABFD's string table) and the setting
14421 of IS_RELA. */
14422
14423 asection *
14424 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14425 asection * sec,
14426 bfd_boolean is_rela)
14427 {
14428 asection * reloc_sec = elf_section_data (sec)->sreloc;
14429
14430 if (reloc_sec == NULL)
14431 {
14432 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14433
14434 if (name != NULL)
14435 {
14436 reloc_sec = bfd_get_linker_section (abfd, name);
14437
14438 if (reloc_sec != NULL)
14439 elf_section_data (sec)->sreloc = reloc_sec;
14440 }
14441 }
14442
14443 return reloc_sec;
14444 }
14445
14446 /* Returns the dynamic reloc section associated with SEC. If the
14447 section does not exist it is created and attached to the DYNOBJ
14448 bfd and stored in the SRELOC field of SEC's elf_section_data
14449 structure.
14450
14451 ALIGNMENT is the alignment for the newly created section and
14452 IS_RELA defines whether the name should be .rela.<SEC's name>
14453 or .rel.<SEC's name>. The section name is looked up in the
14454 string table associated with ABFD. */
14455
14456 asection *
14457 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14458 bfd *dynobj,
14459 unsigned int alignment,
14460 bfd *abfd,
14461 bfd_boolean is_rela)
14462 {
14463 asection * reloc_sec = elf_section_data (sec)->sreloc;
14464
14465 if (reloc_sec == NULL)
14466 {
14467 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14468
14469 if (name == NULL)
14470 return NULL;
14471
14472 reloc_sec = bfd_get_linker_section (dynobj, name);
14473
14474 if (reloc_sec == NULL)
14475 {
14476 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14477 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14478 if ((sec->flags & SEC_ALLOC) != 0)
14479 flags |= SEC_ALLOC | SEC_LOAD;
14480
14481 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14482 if (reloc_sec != NULL)
14483 {
14484 /* _bfd_elf_get_sec_type_attr chooses a section type by
14485 name. Override as it may be wrong, eg. for a user
14486 section named "auto" we'll get ".relauto" which is
14487 seen to be a .rela section. */
14488 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14489 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14490 reloc_sec = NULL;
14491 }
14492 }
14493
14494 elf_section_data (sec)->sreloc = reloc_sec;
14495 }
14496
14497 return reloc_sec;
14498 }
14499
14500 /* Copy the ELF symbol type and other attributes for a linker script
14501 assignment from HSRC to HDEST. Generally this should be treated as
14502 if we found a strong non-dynamic definition for HDEST (except that
14503 ld ignores multiple definition errors). */
14504 void
14505 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14506 struct bfd_link_hash_entry *hdest,
14507 struct bfd_link_hash_entry *hsrc)
14508 {
14509 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14510 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14511 Elf_Internal_Sym isym;
14512
14513 ehdest->type = ehsrc->type;
14514 ehdest->target_internal = ehsrc->target_internal;
14515
14516 isym.st_other = ehsrc->other;
14517 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14518 }
14519
14520 /* Append a RELA relocation REL to section S in BFD. */
14521
14522 void
14523 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14524 {
14525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14526 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14527 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14528 bed->s->swap_reloca_out (abfd, rel, loc);
14529 }
14530
14531 /* Append a REL relocation REL to section S in BFD. */
14532
14533 void
14534 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14535 {
14536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14537 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14538 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14539 bed->s->swap_reloc_out (abfd, rel, loc);
14540 }
14541
14542 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14543
14544 struct bfd_link_hash_entry *
14545 bfd_elf_define_start_stop (struct bfd_link_info *info,
14546 const char *symbol, asection *sec)
14547 {
14548 struct elf_link_hash_entry *h;
14549
14550 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14551 FALSE, FALSE, TRUE);
14552 if (h != NULL
14553 && (h->root.type == bfd_link_hash_undefined
14554 || h->root.type == bfd_link_hash_undefweak
14555 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14556 {
14557 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14558 h->root.type = bfd_link_hash_defined;
14559 h->root.u.def.section = sec;
14560 h->root.u.def.value = 0;
14561 h->def_regular = 1;
14562 h->def_dynamic = 0;
14563 h->start_stop = 1;
14564 h->u2.start_stop_section = sec;
14565 if (symbol[0] == '.')
14566 {
14567 /* .startof. and .sizeof. symbols are local. */
14568 const struct elf_backend_data *bed;
14569 bed = get_elf_backend_data (info->output_bfd);
14570 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14571 }
14572 else
14573 {
14574 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14576 if (was_dynamic)
14577 bfd_elf_link_record_dynamic_symbol (info, h);
14578 }
14579 return &h->root;
14580 }
14581 return NULL;
14582 }
This page took 0.32392 seconds and 5 git commands to generate.