bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_object_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2800
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2804
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2808
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2814
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2819
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Add symbols from an ELF object file to the linker hash table. */
3256
3257 static bfd_boolean
3258 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3259 {
3260 Elf_Internal_Shdr *hdr;
3261 bfd_size_type symcount;
3262 bfd_size_type extsymcount;
3263 bfd_size_type extsymoff;
3264 struct elf_link_hash_entry **sym_hash;
3265 bfd_boolean dynamic;
3266 Elf_External_Versym *extversym = NULL;
3267 Elf_External_Versym *ever;
3268 struct elf_link_hash_entry *weaks;
3269 struct elf_link_hash_entry **nondeflt_vers = NULL;
3270 bfd_size_type nondeflt_vers_cnt = 0;
3271 Elf_Internal_Sym *isymbuf = NULL;
3272 Elf_Internal_Sym *isym;
3273 Elf_Internal_Sym *isymend;
3274 const struct elf_backend_data *bed;
3275 bfd_boolean add_needed;
3276 struct elf_link_hash_table *htab;
3277 bfd_size_type amt;
3278 void *alloc_mark = NULL;
3279 struct bfd_hash_entry **old_table = NULL;
3280 unsigned int old_size = 0;
3281 unsigned int old_count = 0;
3282 void *old_tab = NULL;
3283 void *old_hash;
3284 void *old_ent;
3285 struct bfd_link_hash_entry *old_undefs = NULL;
3286 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3287 long old_dynsymcount = 0;
3288 size_t tabsize = 0;
3289 size_t hashsize = 0;
3290
3291 htab = elf_hash_table (info);
3292 bed = get_elf_backend_data (abfd);
3293
3294 if ((abfd->flags & DYNAMIC) == 0)
3295 dynamic = FALSE;
3296 else
3297 {
3298 dynamic = TRUE;
3299
3300 /* You can't use -r against a dynamic object. Also, there's no
3301 hope of using a dynamic object which does not exactly match
3302 the format of the output file. */
3303 if (info->relocatable
3304 || !is_elf_hash_table (htab)
3305 || htab->root.creator != abfd->xvec)
3306 {
3307 if (info->relocatable)
3308 bfd_set_error (bfd_error_invalid_operation);
3309 else
3310 bfd_set_error (bfd_error_wrong_format);
3311 goto error_return;
3312 }
3313 }
3314
3315 /* As a GNU extension, any input sections which are named
3316 .gnu.warning.SYMBOL are treated as warning symbols for the given
3317 symbol. This differs from .gnu.warning sections, which generate
3318 warnings when they are included in an output file. */
3319 if (info->executable)
3320 {
3321 asection *s;
3322
3323 for (s = abfd->sections; s != NULL; s = s->next)
3324 {
3325 const char *name;
3326
3327 name = bfd_get_section_name (abfd, s);
3328 if (CONST_STRNEQ (name, ".gnu.warning."))
3329 {
3330 char *msg;
3331 bfd_size_type sz;
3332
3333 name += sizeof ".gnu.warning." - 1;
3334
3335 /* If this is a shared object, then look up the symbol
3336 in the hash table. If it is there, and it is already
3337 been defined, then we will not be using the entry
3338 from this shared object, so we don't need to warn.
3339 FIXME: If we see the definition in a regular object
3340 later on, we will warn, but we shouldn't. The only
3341 fix is to keep track of what warnings we are supposed
3342 to emit, and then handle them all at the end of the
3343 link. */
3344 if (dynamic)
3345 {
3346 struct elf_link_hash_entry *h;
3347
3348 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3349
3350 /* FIXME: What about bfd_link_hash_common? */
3351 if (h != NULL
3352 && (h->root.type == bfd_link_hash_defined
3353 || h->root.type == bfd_link_hash_defweak))
3354 {
3355 /* We don't want to issue this warning. Clobber
3356 the section size so that the warning does not
3357 get copied into the output file. */
3358 s->size = 0;
3359 continue;
3360 }
3361 }
3362
3363 sz = s->size;
3364 msg = bfd_alloc (abfd, sz + 1);
3365 if (msg == NULL)
3366 goto error_return;
3367
3368 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3369 goto error_return;
3370
3371 msg[sz] = '\0';
3372
3373 if (! (_bfd_generic_link_add_one_symbol
3374 (info, abfd, name, BSF_WARNING, s, 0, msg,
3375 FALSE, bed->collect, NULL)))
3376 goto error_return;
3377
3378 if (! info->relocatable)
3379 {
3380 /* Clobber the section size so that the warning does
3381 not get copied into the output file. */
3382 s->size = 0;
3383
3384 /* Also set SEC_EXCLUDE, so that symbols defined in
3385 the warning section don't get copied to the output. */
3386 s->flags |= SEC_EXCLUDE;
3387 }
3388 }
3389 }
3390 }
3391
3392 add_needed = TRUE;
3393 if (! dynamic)
3394 {
3395 /* If we are creating a shared library, create all the dynamic
3396 sections immediately. We need to attach them to something,
3397 so we attach them to this BFD, provided it is the right
3398 format. FIXME: If there are no input BFD's of the same
3399 format as the output, we can't make a shared library. */
3400 if (info->shared
3401 && is_elf_hash_table (htab)
3402 && htab->root.creator == abfd->xvec
3403 && !htab->dynamic_sections_created)
3404 {
3405 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3406 goto error_return;
3407 }
3408 }
3409 else if (!is_elf_hash_table (htab))
3410 goto error_return;
3411 else
3412 {
3413 asection *s;
3414 const char *soname = NULL;
3415 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3416 int ret;
3417
3418 /* ld --just-symbols and dynamic objects don't mix very well.
3419 ld shouldn't allow it. */
3420 if ((s = abfd->sections) != NULL
3421 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3422 abort ();
3423
3424 /* If this dynamic lib was specified on the command line with
3425 --as-needed in effect, then we don't want to add a DT_NEEDED
3426 tag unless the lib is actually used. Similary for libs brought
3427 in by another lib's DT_NEEDED. When --no-add-needed is used
3428 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3429 any dynamic library in DT_NEEDED tags in the dynamic lib at
3430 all. */
3431 add_needed = (elf_dyn_lib_class (abfd)
3432 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3433 | DYN_NO_NEEDED)) == 0;
3434
3435 s = bfd_get_section_by_name (abfd, ".dynamic");
3436 if (s != NULL)
3437 {
3438 bfd_byte *dynbuf;
3439 bfd_byte *extdyn;
3440 int elfsec;
3441 unsigned long shlink;
3442
3443 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3444 goto error_free_dyn;
3445
3446 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3447 if (elfsec == -1)
3448 goto error_free_dyn;
3449 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3450
3451 for (extdyn = dynbuf;
3452 extdyn < dynbuf + s->size;
3453 extdyn += bed->s->sizeof_dyn)
3454 {
3455 Elf_Internal_Dyn dyn;
3456
3457 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3458 if (dyn.d_tag == DT_SONAME)
3459 {
3460 unsigned int tagv = dyn.d_un.d_val;
3461 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3462 if (soname == NULL)
3463 goto error_free_dyn;
3464 }
3465 if (dyn.d_tag == DT_NEEDED)
3466 {
3467 struct bfd_link_needed_list *n, **pn;
3468 char *fnm, *anm;
3469 unsigned int tagv = dyn.d_un.d_val;
3470
3471 amt = sizeof (struct bfd_link_needed_list);
3472 n = bfd_alloc (abfd, amt);
3473 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3474 if (n == NULL || fnm == NULL)
3475 goto error_free_dyn;
3476 amt = strlen (fnm) + 1;
3477 anm = bfd_alloc (abfd, amt);
3478 if (anm == NULL)
3479 goto error_free_dyn;
3480 memcpy (anm, fnm, amt);
3481 n->name = anm;
3482 n->by = abfd;
3483 n->next = NULL;
3484 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3485 ;
3486 *pn = n;
3487 }
3488 if (dyn.d_tag == DT_RUNPATH)
3489 {
3490 struct bfd_link_needed_list *n, **pn;
3491 char *fnm, *anm;
3492 unsigned int tagv = dyn.d_un.d_val;
3493
3494 amt = sizeof (struct bfd_link_needed_list);
3495 n = bfd_alloc (abfd, amt);
3496 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3497 if (n == NULL || fnm == NULL)
3498 goto error_free_dyn;
3499 amt = strlen (fnm) + 1;
3500 anm = bfd_alloc (abfd, amt);
3501 if (anm == NULL)
3502 goto error_free_dyn;
3503 memcpy (anm, fnm, amt);
3504 n->name = anm;
3505 n->by = abfd;
3506 n->next = NULL;
3507 for (pn = & runpath;
3508 *pn != NULL;
3509 pn = &(*pn)->next)
3510 ;
3511 *pn = n;
3512 }
3513 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3514 if (!runpath && dyn.d_tag == DT_RPATH)
3515 {
3516 struct bfd_link_needed_list *n, **pn;
3517 char *fnm, *anm;
3518 unsigned int tagv = dyn.d_un.d_val;
3519
3520 amt = sizeof (struct bfd_link_needed_list);
3521 n = bfd_alloc (abfd, amt);
3522 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3523 if (n == NULL || fnm == NULL)
3524 goto error_free_dyn;
3525 amt = strlen (fnm) + 1;
3526 anm = bfd_alloc (abfd, amt);
3527 if (anm == NULL)
3528 {
3529 error_free_dyn:
3530 free (dynbuf);
3531 goto error_return;
3532 }
3533 memcpy (anm, fnm, amt);
3534 n->name = anm;
3535 n->by = abfd;
3536 n->next = NULL;
3537 for (pn = & rpath;
3538 *pn != NULL;
3539 pn = &(*pn)->next)
3540 ;
3541 *pn = n;
3542 }
3543 }
3544
3545 free (dynbuf);
3546 }
3547
3548 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3549 frees all more recently bfd_alloc'd blocks as well. */
3550 if (runpath)
3551 rpath = runpath;
3552
3553 if (rpath)
3554 {
3555 struct bfd_link_needed_list **pn;
3556 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3557 ;
3558 *pn = rpath;
3559 }
3560
3561 /* We do not want to include any of the sections in a dynamic
3562 object in the output file. We hack by simply clobbering the
3563 list of sections in the BFD. This could be handled more
3564 cleanly by, say, a new section flag; the existing
3565 SEC_NEVER_LOAD flag is not the one we want, because that one
3566 still implies that the section takes up space in the output
3567 file. */
3568 bfd_section_list_clear (abfd);
3569
3570 /* Find the name to use in a DT_NEEDED entry that refers to this
3571 object. If the object has a DT_SONAME entry, we use it.
3572 Otherwise, if the generic linker stuck something in
3573 elf_dt_name, we use that. Otherwise, we just use the file
3574 name. */
3575 if (soname == NULL || *soname == '\0')
3576 {
3577 soname = elf_dt_name (abfd);
3578 if (soname == NULL || *soname == '\0')
3579 soname = bfd_get_filename (abfd);
3580 }
3581
3582 /* Save the SONAME because sometimes the linker emulation code
3583 will need to know it. */
3584 elf_dt_name (abfd) = soname;
3585
3586 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3587 if (ret < 0)
3588 goto error_return;
3589
3590 /* If we have already included this dynamic object in the
3591 link, just ignore it. There is no reason to include a
3592 particular dynamic object more than once. */
3593 if (ret > 0)
3594 return TRUE;
3595 }
3596
3597 /* If this is a dynamic object, we always link against the .dynsym
3598 symbol table, not the .symtab symbol table. The dynamic linker
3599 will only see the .dynsym symbol table, so there is no reason to
3600 look at .symtab for a dynamic object. */
3601
3602 if (! dynamic || elf_dynsymtab (abfd) == 0)
3603 hdr = &elf_tdata (abfd)->symtab_hdr;
3604 else
3605 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3606
3607 symcount = hdr->sh_size / bed->s->sizeof_sym;
3608
3609 /* The sh_info field of the symtab header tells us where the
3610 external symbols start. We don't care about the local symbols at
3611 this point. */
3612 if (elf_bad_symtab (abfd))
3613 {
3614 extsymcount = symcount;
3615 extsymoff = 0;
3616 }
3617 else
3618 {
3619 extsymcount = symcount - hdr->sh_info;
3620 extsymoff = hdr->sh_info;
3621 }
3622
3623 sym_hash = NULL;
3624 if (extsymcount != 0)
3625 {
3626 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3627 NULL, NULL, NULL);
3628 if (isymbuf == NULL)
3629 goto error_return;
3630
3631 /* We store a pointer to the hash table entry for each external
3632 symbol. */
3633 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3634 sym_hash = bfd_alloc (abfd, amt);
3635 if (sym_hash == NULL)
3636 goto error_free_sym;
3637 elf_sym_hashes (abfd) = sym_hash;
3638 }
3639
3640 if (dynamic)
3641 {
3642 /* Read in any version definitions. */
3643 if (!_bfd_elf_slurp_version_tables (abfd,
3644 info->default_imported_symver))
3645 goto error_free_sym;
3646
3647 /* Read in the symbol versions, but don't bother to convert them
3648 to internal format. */
3649 if (elf_dynversym (abfd) != 0)
3650 {
3651 Elf_Internal_Shdr *versymhdr;
3652
3653 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3654 extversym = bfd_malloc (versymhdr->sh_size);
3655 if (extversym == NULL)
3656 goto error_free_sym;
3657 amt = versymhdr->sh_size;
3658 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3659 || bfd_bread (extversym, amt, abfd) != amt)
3660 goto error_free_vers;
3661 }
3662 }
3663
3664 /* If we are loading an as-needed shared lib, save the symbol table
3665 state before we start adding symbols. If the lib turns out
3666 to be unneeded, restore the state. */
3667 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3668 {
3669 unsigned int i;
3670 size_t entsize;
3671
3672 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3673 {
3674 struct bfd_hash_entry *p;
3675 struct elf_link_hash_entry *h;
3676
3677 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3678 {
3679 h = (struct elf_link_hash_entry *) p;
3680 entsize += htab->root.table.entsize;
3681 if (h->root.type == bfd_link_hash_warning)
3682 entsize += htab->root.table.entsize;
3683 }
3684 }
3685
3686 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3687 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3688 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3689 if (old_tab == NULL)
3690 goto error_free_vers;
3691
3692 /* Remember the current objalloc pointer, so that all mem for
3693 symbols added can later be reclaimed. */
3694 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3695 if (alloc_mark == NULL)
3696 goto error_free_vers;
3697
3698 /* Make a special call to the linker "notice" function to
3699 tell it that we are about to handle an as-needed lib. */
3700 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3701 notice_as_needed))
3702 goto error_free_vers;
3703
3704 /* Clone the symbol table and sym hashes. Remember some
3705 pointers into the symbol table, and dynamic symbol count. */
3706 old_hash = (char *) old_tab + tabsize;
3707 old_ent = (char *) old_hash + hashsize;
3708 memcpy (old_tab, htab->root.table.table, tabsize);
3709 memcpy (old_hash, sym_hash, hashsize);
3710 old_undefs = htab->root.undefs;
3711 old_undefs_tail = htab->root.undefs_tail;
3712 old_table = htab->root.table.table;
3713 old_size = htab->root.table.size;
3714 old_count = htab->root.table.count;
3715 old_dynsymcount = htab->dynsymcount;
3716
3717 for (i = 0; i < htab->root.table.size; i++)
3718 {
3719 struct bfd_hash_entry *p;
3720 struct elf_link_hash_entry *h;
3721
3722 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3723 {
3724 memcpy (old_ent, p, htab->root.table.entsize);
3725 old_ent = (char *) old_ent + htab->root.table.entsize;
3726 h = (struct elf_link_hash_entry *) p;
3727 if (h->root.type == bfd_link_hash_warning)
3728 {
3729 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3730 old_ent = (char *) old_ent + htab->root.table.entsize;
3731 }
3732 }
3733 }
3734 }
3735
3736 weaks = NULL;
3737 ever = extversym != NULL ? extversym + extsymoff : NULL;
3738 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3739 isym < isymend;
3740 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3741 {
3742 int bind;
3743 bfd_vma value;
3744 asection *sec, *new_sec;
3745 flagword flags;
3746 const char *name;
3747 struct elf_link_hash_entry *h;
3748 bfd_boolean definition;
3749 bfd_boolean size_change_ok;
3750 bfd_boolean type_change_ok;
3751 bfd_boolean new_weakdef;
3752 bfd_boolean override;
3753 bfd_boolean common;
3754 unsigned int old_alignment;
3755 bfd *old_bfd;
3756
3757 override = FALSE;
3758
3759 flags = BSF_NO_FLAGS;
3760 sec = NULL;
3761 value = isym->st_value;
3762 *sym_hash = NULL;
3763 common = bed->common_definition (isym);
3764
3765 bind = ELF_ST_BIND (isym->st_info);
3766 if (bind == STB_LOCAL)
3767 {
3768 /* This should be impossible, since ELF requires that all
3769 global symbols follow all local symbols, and that sh_info
3770 point to the first global symbol. Unfortunately, Irix 5
3771 screws this up. */
3772 continue;
3773 }
3774 else if (bind == STB_GLOBAL)
3775 {
3776 if (isym->st_shndx != SHN_UNDEF && !common)
3777 flags = BSF_GLOBAL;
3778 }
3779 else if (bind == STB_WEAK)
3780 flags = BSF_WEAK;
3781 else
3782 {
3783 /* Leave it up to the processor backend. */
3784 }
3785
3786 if (isym->st_shndx == SHN_UNDEF)
3787 sec = bfd_und_section_ptr;
3788 else if (isym->st_shndx < SHN_LORESERVE
3789 || isym->st_shndx > SHN_HIRESERVE)
3790 {
3791 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3792 if (sec == NULL)
3793 sec = bfd_abs_section_ptr;
3794 else if (sec->kept_section)
3795 {
3796 /* Symbols from discarded section are undefined. We keep
3797 its visibility. */
3798 sec = bfd_und_section_ptr;
3799 isym->st_shndx = SHN_UNDEF;
3800 }
3801 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3802 value -= sec->vma;
3803 }
3804 else if (isym->st_shndx == SHN_ABS)
3805 sec = bfd_abs_section_ptr;
3806 else if (isym->st_shndx == SHN_COMMON)
3807 {
3808 sec = bfd_com_section_ptr;
3809 /* What ELF calls the size we call the value. What ELF
3810 calls the value we call the alignment. */
3811 value = isym->st_size;
3812 }
3813 else
3814 {
3815 /* Leave it up to the processor backend. */
3816 }
3817
3818 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3819 isym->st_name);
3820 if (name == NULL)
3821 goto error_free_vers;
3822
3823 if (isym->st_shndx == SHN_COMMON
3824 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3825 && !info->relocatable)
3826 {
3827 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3828
3829 if (tcomm == NULL)
3830 {
3831 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3832 (SEC_ALLOC
3833 | SEC_IS_COMMON
3834 | SEC_LINKER_CREATED
3835 | SEC_THREAD_LOCAL));
3836 if (tcomm == NULL)
3837 goto error_free_vers;
3838 }
3839 sec = tcomm;
3840 }
3841 else if (bed->elf_add_symbol_hook)
3842 {
3843 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3844 &sec, &value))
3845 goto error_free_vers;
3846
3847 /* The hook function sets the name to NULL if this symbol
3848 should be skipped for some reason. */
3849 if (name == NULL)
3850 continue;
3851 }
3852
3853 /* Sanity check that all possibilities were handled. */
3854 if (sec == NULL)
3855 {
3856 bfd_set_error (bfd_error_bad_value);
3857 goto error_free_vers;
3858 }
3859
3860 if (bfd_is_und_section (sec)
3861 || bfd_is_com_section (sec))
3862 definition = FALSE;
3863 else
3864 definition = TRUE;
3865
3866 size_change_ok = FALSE;
3867 type_change_ok = bed->type_change_ok;
3868 old_alignment = 0;
3869 old_bfd = NULL;
3870 new_sec = sec;
3871
3872 if (is_elf_hash_table (htab))
3873 {
3874 Elf_Internal_Versym iver;
3875 unsigned int vernum = 0;
3876 bfd_boolean skip;
3877
3878 if (ever == NULL)
3879 {
3880 if (info->default_imported_symver)
3881 /* Use the default symbol version created earlier. */
3882 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3883 else
3884 iver.vs_vers = 0;
3885 }
3886 else
3887 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3888
3889 vernum = iver.vs_vers & VERSYM_VERSION;
3890
3891 /* If this is a hidden symbol, or if it is not version
3892 1, we append the version name to the symbol name.
3893 However, we do not modify a non-hidden absolute symbol
3894 if it is not a function, because it might be the version
3895 symbol itself. FIXME: What if it isn't? */
3896 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3897 || (vernum > 1
3898 && (!bfd_is_abs_section (sec)
3899 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3900 {
3901 const char *verstr;
3902 size_t namelen, verlen, newlen;
3903 char *newname, *p;
3904
3905 if (isym->st_shndx != SHN_UNDEF)
3906 {
3907 if (vernum > elf_tdata (abfd)->cverdefs)
3908 verstr = NULL;
3909 else if (vernum > 1)
3910 verstr =
3911 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3912 else
3913 verstr = "";
3914
3915 if (verstr == NULL)
3916 {
3917 (*_bfd_error_handler)
3918 (_("%B: %s: invalid version %u (max %d)"),
3919 abfd, name, vernum,
3920 elf_tdata (abfd)->cverdefs);
3921 bfd_set_error (bfd_error_bad_value);
3922 goto error_free_vers;
3923 }
3924 }
3925 else
3926 {
3927 /* We cannot simply test for the number of
3928 entries in the VERNEED section since the
3929 numbers for the needed versions do not start
3930 at 0. */
3931 Elf_Internal_Verneed *t;
3932
3933 verstr = NULL;
3934 for (t = elf_tdata (abfd)->verref;
3935 t != NULL;
3936 t = t->vn_nextref)
3937 {
3938 Elf_Internal_Vernaux *a;
3939
3940 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3941 {
3942 if (a->vna_other == vernum)
3943 {
3944 verstr = a->vna_nodename;
3945 break;
3946 }
3947 }
3948 if (a != NULL)
3949 break;
3950 }
3951 if (verstr == NULL)
3952 {
3953 (*_bfd_error_handler)
3954 (_("%B: %s: invalid needed version %d"),
3955 abfd, name, vernum);
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3958 }
3959 }
3960
3961 namelen = strlen (name);
3962 verlen = strlen (verstr);
3963 newlen = namelen + verlen + 2;
3964 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3965 && isym->st_shndx != SHN_UNDEF)
3966 ++newlen;
3967
3968 newname = bfd_hash_allocate (&htab->root.table, newlen);
3969 if (newname == NULL)
3970 goto error_free_vers;
3971 memcpy (newname, name, namelen);
3972 p = newname + namelen;
3973 *p++ = ELF_VER_CHR;
3974 /* If this is a defined non-hidden version symbol,
3975 we add another @ to the name. This indicates the
3976 default version of the symbol. */
3977 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3978 && isym->st_shndx != SHN_UNDEF)
3979 *p++ = ELF_VER_CHR;
3980 memcpy (p, verstr, verlen + 1);
3981
3982 name = newname;
3983 }
3984
3985 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3986 &value, &old_alignment,
3987 sym_hash, &skip, &override,
3988 &type_change_ok, &size_change_ok))
3989 goto error_free_vers;
3990
3991 if (skip)
3992 continue;
3993
3994 if (override)
3995 definition = FALSE;
3996
3997 h = *sym_hash;
3998 while (h->root.type == bfd_link_hash_indirect
3999 || h->root.type == bfd_link_hash_warning)
4000 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4001
4002 /* Remember the old alignment if this is a common symbol, so
4003 that we don't reduce the alignment later on. We can't
4004 check later, because _bfd_generic_link_add_one_symbol
4005 will set a default for the alignment which we want to
4006 override. We also remember the old bfd where the existing
4007 definition comes from. */
4008 switch (h->root.type)
4009 {
4010 default:
4011 break;
4012
4013 case bfd_link_hash_defined:
4014 case bfd_link_hash_defweak:
4015 old_bfd = h->root.u.def.section->owner;
4016 break;
4017
4018 case bfd_link_hash_common:
4019 old_bfd = h->root.u.c.p->section->owner;
4020 old_alignment = h->root.u.c.p->alignment_power;
4021 break;
4022 }
4023
4024 if (elf_tdata (abfd)->verdef != NULL
4025 && ! override
4026 && vernum > 1
4027 && definition)
4028 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4029 }
4030
4031 if (! (_bfd_generic_link_add_one_symbol
4032 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4033 (struct bfd_link_hash_entry **) sym_hash)))
4034 goto error_free_vers;
4035
4036 h = *sym_hash;
4037 while (h->root.type == bfd_link_hash_indirect
4038 || h->root.type == bfd_link_hash_warning)
4039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4040 *sym_hash = h;
4041
4042 new_weakdef = FALSE;
4043 if (dynamic
4044 && definition
4045 && (flags & BSF_WEAK) != 0
4046 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4047 && is_elf_hash_table (htab)
4048 && h->u.weakdef == NULL)
4049 {
4050 /* Keep a list of all weak defined non function symbols from
4051 a dynamic object, using the weakdef field. Later in this
4052 function we will set the weakdef field to the correct
4053 value. We only put non-function symbols from dynamic
4054 objects on this list, because that happens to be the only
4055 time we need to know the normal symbol corresponding to a
4056 weak symbol, and the information is time consuming to
4057 figure out. If the weakdef field is not already NULL,
4058 then this symbol was already defined by some previous
4059 dynamic object, and we will be using that previous
4060 definition anyhow. */
4061
4062 h->u.weakdef = weaks;
4063 weaks = h;
4064 new_weakdef = TRUE;
4065 }
4066
4067 /* Set the alignment of a common symbol. */
4068 if ((common || bfd_is_com_section (sec))
4069 && h->root.type == bfd_link_hash_common)
4070 {
4071 unsigned int align;
4072
4073 if (common)
4074 align = bfd_log2 (isym->st_value);
4075 else
4076 {
4077 /* The new symbol is a common symbol in a shared object.
4078 We need to get the alignment from the section. */
4079 align = new_sec->alignment_power;
4080 }
4081 if (align > old_alignment
4082 /* Permit an alignment power of zero if an alignment of one
4083 is specified and no other alignments have been specified. */
4084 || (isym->st_value == 1 && old_alignment == 0))
4085 h->root.u.c.p->alignment_power = align;
4086 else
4087 h->root.u.c.p->alignment_power = old_alignment;
4088 }
4089
4090 if (is_elf_hash_table (htab))
4091 {
4092 bfd_boolean dynsym;
4093
4094 /* Check the alignment when a common symbol is involved. This
4095 can change when a common symbol is overridden by a normal
4096 definition or a common symbol is ignored due to the old
4097 normal definition. We need to make sure the maximum
4098 alignment is maintained. */
4099 if ((old_alignment || common)
4100 && h->root.type != bfd_link_hash_common)
4101 {
4102 unsigned int common_align;
4103 unsigned int normal_align;
4104 unsigned int symbol_align;
4105 bfd *normal_bfd;
4106 bfd *common_bfd;
4107
4108 symbol_align = ffs (h->root.u.def.value) - 1;
4109 if (h->root.u.def.section->owner != NULL
4110 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4111 {
4112 normal_align = h->root.u.def.section->alignment_power;
4113 if (normal_align > symbol_align)
4114 normal_align = symbol_align;
4115 }
4116 else
4117 normal_align = symbol_align;
4118
4119 if (old_alignment)
4120 {
4121 common_align = old_alignment;
4122 common_bfd = old_bfd;
4123 normal_bfd = abfd;
4124 }
4125 else
4126 {
4127 common_align = bfd_log2 (isym->st_value);
4128 common_bfd = abfd;
4129 normal_bfd = old_bfd;
4130 }
4131
4132 if (normal_align < common_align)
4133 {
4134 /* PR binutils/2735 */
4135 if (normal_bfd == NULL)
4136 (*_bfd_error_handler)
4137 (_("Warning: alignment %u of common symbol `%s' in %B"
4138 " is greater than the alignment (%u) of its section %A"),
4139 common_bfd, h->root.u.def.section,
4140 1 << common_align, name, 1 << normal_align);
4141 else
4142 (*_bfd_error_handler)
4143 (_("Warning: alignment %u of symbol `%s' in %B"
4144 " is smaller than %u in %B"),
4145 normal_bfd, common_bfd,
4146 1 << normal_align, name, 1 << common_align);
4147 }
4148 }
4149
4150 /* Remember the symbol size if it isn't undefined. */
4151 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4152 && (definition || h->size == 0))
4153 {
4154 if (h->size != 0
4155 && h->size != isym->st_size
4156 && ! size_change_ok)
4157 (*_bfd_error_handler)
4158 (_("Warning: size of symbol `%s' changed"
4159 " from %lu in %B to %lu in %B"),
4160 old_bfd, abfd,
4161 name, (unsigned long) h->size,
4162 (unsigned long) isym->st_size);
4163
4164 h->size = isym->st_size;
4165 }
4166
4167 /* If this is a common symbol, then we always want H->SIZE
4168 to be the size of the common symbol. The code just above
4169 won't fix the size if a common symbol becomes larger. We
4170 don't warn about a size change here, because that is
4171 covered by --warn-common. Allow changed between different
4172 function types. */
4173 if (h->root.type == bfd_link_hash_common)
4174 h->size = h->root.u.c.size;
4175
4176 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4177 && (definition || h->type == STT_NOTYPE))
4178 {
4179 if (h->type != STT_NOTYPE
4180 && h->type != ELF_ST_TYPE (isym->st_info)
4181 && ! type_change_ok)
4182 (*_bfd_error_handler)
4183 (_("Warning: type of symbol `%s' changed"
4184 " from %d to %d in %B"),
4185 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4186
4187 h->type = ELF_ST_TYPE (isym->st_info);
4188 }
4189
4190 /* If st_other has a processor-specific meaning, specific
4191 code might be needed here. We never merge the visibility
4192 attribute with the one from a dynamic object. */
4193 if (bed->elf_backend_merge_symbol_attribute)
4194 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4195 dynamic);
4196
4197 /* If this symbol has default visibility and the user has requested
4198 we not re-export it, then mark it as hidden. */
4199 if (definition && !dynamic
4200 && (abfd->no_export
4201 || (abfd->my_archive && abfd->my_archive->no_export))
4202 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4203 isym->st_other = (STV_HIDDEN
4204 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4205
4206 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4207 {
4208 unsigned char hvis, symvis, other, nvis;
4209
4210 /* Only merge the visibility. Leave the remainder of the
4211 st_other field to elf_backend_merge_symbol_attribute. */
4212 other = h->other & ~ELF_ST_VISIBILITY (-1);
4213
4214 /* Combine visibilities, using the most constraining one. */
4215 hvis = ELF_ST_VISIBILITY (h->other);
4216 symvis = ELF_ST_VISIBILITY (isym->st_other);
4217 if (! hvis)
4218 nvis = symvis;
4219 else if (! symvis)
4220 nvis = hvis;
4221 else
4222 nvis = hvis < symvis ? hvis : symvis;
4223
4224 h->other = other | nvis;
4225 }
4226
4227 /* Set a flag in the hash table entry indicating the type of
4228 reference or definition we just found. Keep a count of
4229 the number of dynamic symbols we find. A dynamic symbol
4230 is one which is referenced or defined by both a regular
4231 object and a shared object. */
4232 dynsym = FALSE;
4233 if (! dynamic)
4234 {
4235 if (! definition)
4236 {
4237 h->ref_regular = 1;
4238 if (bind != STB_WEAK)
4239 h->ref_regular_nonweak = 1;
4240 }
4241 else
4242 h->def_regular = 1;
4243 if (! info->executable
4244 || h->def_dynamic
4245 || h->ref_dynamic)
4246 dynsym = TRUE;
4247 }
4248 else
4249 {
4250 if (! definition)
4251 h->ref_dynamic = 1;
4252 else
4253 h->def_dynamic = 1;
4254 if (h->def_regular
4255 || h->ref_regular
4256 || (h->u.weakdef != NULL
4257 && ! new_weakdef
4258 && h->u.weakdef->dynindx != -1))
4259 dynsym = TRUE;
4260 }
4261
4262 if (definition && (sec->flags & SEC_DEBUGGING))
4263 {
4264 /* We don't want to make debug symbol dynamic. */
4265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4266 dynsym = FALSE;
4267 }
4268
4269 /* Check to see if we need to add an indirect symbol for
4270 the default name. */
4271 if (definition || h->root.type == bfd_link_hash_common)
4272 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4273 &sec, &value, &dynsym,
4274 override))
4275 goto error_free_vers;
4276
4277 if (definition && !dynamic)
4278 {
4279 char *p = strchr (name, ELF_VER_CHR);
4280 if (p != NULL && p[1] != ELF_VER_CHR)
4281 {
4282 /* Queue non-default versions so that .symver x, x@FOO
4283 aliases can be checked. */
4284 if (!nondeflt_vers)
4285 {
4286 amt = ((isymend - isym + 1)
4287 * sizeof (struct elf_link_hash_entry *));
4288 nondeflt_vers = bfd_malloc (amt);
4289 if (!nondeflt_vers)
4290 goto error_free_vers;
4291 }
4292 nondeflt_vers[nondeflt_vers_cnt++] = h;
4293 }
4294 }
4295
4296 if (dynsym && h->dynindx == -1)
4297 {
4298 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4299 goto error_free_vers;
4300 if (h->u.weakdef != NULL
4301 && ! new_weakdef
4302 && h->u.weakdef->dynindx == -1)
4303 {
4304 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4305 goto error_free_vers;
4306 }
4307 }
4308 else if (dynsym && h->dynindx != -1)
4309 /* If the symbol already has a dynamic index, but
4310 visibility says it should not be visible, turn it into
4311 a local symbol. */
4312 switch (ELF_ST_VISIBILITY (h->other))
4313 {
4314 case STV_INTERNAL:
4315 case STV_HIDDEN:
4316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4317 dynsym = FALSE;
4318 break;
4319 }
4320
4321 if (!add_needed
4322 && definition
4323 && dynsym
4324 && h->ref_regular)
4325 {
4326 int ret;
4327 const char *soname = elf_dt_name (abfd);
4328
4329 /* A symbol from a library loaded via DT_NEEDED of some
4330 other library is referenced by a regular object.
4331 Add a DT_NEEDED entry for it. Issue an error if
4332 --no-add-needed is used. */
4333 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4334 {
4335 (*_bfd_error_handler)
4336 (_("%s: invalid DSO for symbol `%s' definition"),
4337 abfd, name);
4338 bfd_set_error (bfd_error_bad_value);
4339 goto error_free_vers;
4340 }
4341
4342 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4343
4344 add_needed = TRUE;
4345 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4346 if (ret < 0)
4347 goto error_free_vers;
4348
4349 BFD_ASSERT (ret == 0);
4350 }
4351 }
4352 }
4353
4354 if (extversym != NULL)
4355 {
4356 free (extversym);
4357 extversym = NULL;
4358 }
4359
4360 if (isymbuf != NULL)
4361 {
4362 free (isymbuf);
4363 isymbuf = NULL;
4364 }
4365
4366 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4367 {
4368 unsigned int i;
4369
4370 /* Restore the symbol table. */
4371 if (bed->as_needed_cleanup)
4372 (*bed->as_needed_cleanup) (abfd, info);
4373 old_hash = (char *) old_tab + tabsize;
4374 old_ent = (char *) old_hash + hashsize;
4375 sym_hash = elf_sym_hashes (abfd);
4376 htab->root.table.table = old_table;
4377 htab->root.table.size = old_size;
4378 htab->root.table.count = old_count;
4379 memcpy (htab->root.table.table, old_tab, tabsize);
4380 memcpy (sym_hash, old_hash, hashsize);
4381 htab->root.undefs = old_undefs;
4382 htab->root.undefs_tail = old_undefs_tail;
4383 for (i = 0; i < htab->root.table.size; i++)
4384 {
4385 struct bfd_hash_entry *p;
4386 struct elf_link_hash_entry *h;
4387
4388 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4389 {
4390 h = (struct elf_link_hash_entry *) p;
4391 if (h->root.type == bfd_link_hash_warning)
4392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4393 if (h->dynindx >= old_dynsymcount)
4394 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4395
4396 memcpy (p, old_ent, htab->root.table.entsize);
4397 old_ent = (char *) old_ent + htab->root.table.entsize;
4398 h = (struct elf_link_hash_entry *) p;
4399 if (h->root.type == bfd_link_hash_warning)
4400 {
4401 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4402 old_ent = (char *) old_ent + htab->root.table.entsize;
4403 }
4404 }
4405 }
4406
4407 /* Make a special call to the linker "notice" function to
4408 tell it that symbols added for crefs may need to be removed. */
4409 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4410 notice_not_needed))
4411 goto error_free_vers;
4412
4413 free (old_tab);
4414 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4415 alloc_mark);
4416 if (nondeflt_vers != NULL)
4417 free (nondeflt_vers);
4418 return TRUE;
4419 }
4420
4421 if (old_tab != NULL)
4422 {
4423 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4424 notice_needed))
4425 goto error_free_vers;
4426 free (old_tab);
4427 old_tab = NULL;
4428 }
4429
4430 /* Now that all the symbols from this input file are created, handle
4431 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4432 if (nondeflt_vers != NULL)
4433 {
4434 bfd_size_type cnt, symidx;
4435
4436 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4437 {
4438 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4439 char *shortname, *p;
4440
4441 p = strchr (h->root.root.string, ELF_VER_CHR);
4442 if (p == NULL
4443 || (h->root.type != bfd_link_hash_defined
4444 && h->root.type != bfd_link_hash_defweak))
4445 continue;
4446
4447 amt = p - h->root.root.string;
4448 shortname = bfd_malloc (amt + 1);
4449 if (!shortname)
4450 goto error_free_vers;
4451 memcpy (shortname, h->root.root.string, amt);
4452 shortname[amt] = '\0';
4453
4454 hi = (struct elf_link_hash_entry *)
4455 bfd_link_hash_lookup (&htab->root, shortname,
4456 FALSE, FALSE, FALSE);
4457 if (hi != NULL
4458 && hi->root.type == h->root.type
4459 && hi->root.u.def.value == h->root.u.def.value
4460 && hi->root.u.def.section == h->root.u.def.section)
4461 {
4462 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4463 hi->root.type = bfd_link_hash_indirect;
4464 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4465 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4466 sym_hash = elf_sym_hashes (abfd);
4467 if (sym_hash)
4468 for (symidx = 0; symidx < extsymcount; ++symidx)
4469 if (sym_hash[symidx] == hi)
4470 {
4471 sym_hash[symidx] = h;
4472 break;
4473 }
4474 }
4475 free (shortname);
4476 }
4477 free (nondeflt_vers);
4478 nondeflt_vers = NULL;
4479 }
4480
4481 /* Now set the weakdefs field correctly for all the weak defined
4482 symbols we found. The only way to do this is to search all the
4483 symbols. Since we only need the information for non functions in
4484 dynamic objects, that's the only time we actually put anything on
4485 the list WEAKS. We need this information so that if a regular
4486 object refers to a symbol defined weakly in a dynamic object, the
4487 real symbol in the dynamic object is also put in the dynamic
4488 symbols; we also must arrange for both symbols to point to the
4489 same memory location. We could handle the general case of symbol
4490 aliasing, but a general symbol alias can only be generated in
4491 assembler code, handling it correctly would be very time
4492 consuming, and other ELF linkers don't handle general aliasing
4493 either. */
4494 if (weaks != NULL)
4495 {
4496 struct elf_link_hash_entry **hpp;
4497 struct elf_link_hash_entry **hppend;
4498 struct elf_link_hash_entry **sorted_sym_hash;
4499 struct elf_link_hash_entry *h;
4500 size_t sym_count;
4501
4502 /* Since we have to search the whole symbol list for each weak
4503 defined symbol, search time for N weak defined symbols will be
4504 O(N^2). Binary search will cut it down to O(NlogN). */
4505 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4506 sorted_sym_hash = bfd_malloc (amt);
4507 if (sorted_sym_hash == NULL)
4508 goto error_return;
4509 sym_hash = sorted_sym_hash;
4510 hpp = elf_sym_hashes (abfd);
4511 hppend = hpp + extsymcount;
4512 sym_count = 0;
4513 for (; hpp < hppend; hpp++)
4514 {
4515 h = *hpp;
4516 if (h != NULL
4517 && h->root.type == bfd_link_hash_defined
4518 && !bed->is_function_type (h->type))
4519 {
4520 *sym_hash = h;
4521 sym_hash++;
4522 sym_count++;
4523 }
4524 }
4525
4526 qsort (sorted_sym_hash, sym_count,
4527 sizeof (struct elf_link_hash_entry *),
4528 elf_sort_symbol);
4529
4530 while (weaks != NULL)
4531 {
4532 struct elf_link_hash_entry *hlook;
4533 asection *slook;
4534 bfd_vma vlook;
4535 long ilook;
4536 size_t i, j, idx;
4537
4538 hlook = weaks;
4539 weaks = hlook->u.weakdef;
4540 hlook->u.weakdef = NULL;
4541
4542 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4543 || hlook->root.type == bfd_link_hash_defweak
4544 || hlook->root.type == bfd_link_hash_common
4545 || hlook->root.type == bfd_link_hash_indirect);
4546 slook = hlook->root.u.def.section;
4547 vlook = hlook->root.u.def.value;
4548
4549 ilook = -1;
4550 i = 0;
4551 j = sym_count;
4552 while (i < j)
4553 {
4554 bfd_signed_vma vdiff;
4555 idx = (i + j) / 2;
4556 h = sorted_sym_hash [idx];
4557 vdiff = vlook - h->root.u.def.value;
4558 if (vdiff < 0)
4559 j = idx;
4560 else if (vdiff > 0)
4561 i = idx + 1;
4562 else
4563 {
4564 long sdiff = slook->id - h->root.u.def.section->id;
4565 if (sdiff < 0)
4566 j = idx;
4567 else if (sdiff > 0)
4568 i = idx + 1;
4569 else
4570 {
4571 ilook = idx;
4572 break;
4573 }
4574 }
4575 }
4576
4577 /* We didn't find a value/section match. */
4578 if (ilook == -1)
4579 continue;
4580
4581 for (i = ilook; i < sym_count; i++)
4582 {
4583 h = sorted_sym_hash [i];
4584
4585 /* Stop if value or section doesn't match. */
4586 if (h->root.u.def.value != vlook
4587 || h->root.u.def.section != slook)
4588 break;
4589 else if (h != hlook)
4590 {
4591 hlook->u.weakdef = h;
4592
4593 /* If the weak definition is in the list of dynamic
4594 symbols, make sure the real definition is put
4595 there as well. */
4596 if (hlook->dynindx != -1 && h->dynindx == -1)
4597 {
4598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4599 goto error_return;
4600 }
4601
4602 /* If the real definition is in the list of dynamic
4603 symbols, make sure the weak definition is put
4604 there as well. If we don't do this, then the
4605 dynamic loader might not merge the entries for the
4606 real definition and the weak definition. */
4607 if (h->dynindx != -1 && hlook->dynindx == -1)
4608 {
4609 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4610 goto error_return;
4611 }
4612 break;
4613 }
4614 }
4615 }
4616
4617 free (sorted_sym_hash);
4618 }
4619
4620 if (bed->check_directives)
4621 (*bed->check_directives) (abfd, info);
4622
4623 /* If this object is the same format as the output object, and it is
4624 not a shared library, then let the backend look through the
4625 relocs.
4626
4627 This is required to build global offset table entries and to
4628 arrange for dynamic relocs. It is not required for the
4629 particular common case of linking non PIC code, even when linking
4630 against shared libraries, but unfortunately there is no way of
4631 knowing whether an object file has been compiled PIC or not.
4632 Looking through the relocs is not particularly time consuming.
4633 The problem is that we must either (1) keep the relocs in memory,
4634 which causes the linker to require additional runtime memory or
4635 (2) read the relocs twice from the input file, which wastes time.
4636 This would be a good case for using mmap.
4637
4638 I have no idea how to handle linking PIC code into a file of a
4639 different format. It probably can't be done. */
4640 if (! dynamic
4641 && is_elf_hash_table (htab)
4642 && htab->root.creator == abfd->xvec
4643 && bed->check_relocs != NULL)
4644 {
4645 asection *o;
4646
4647 for (o = abfd->sections; o != NULL; o = o->next)
4648 {
4649 Elf_Internal_Rela *internal_relocs;
4650 bfd_boolean ok;
4651
4652 if ((o->flags & SEC_RELOC) == 0
4653 || o->reloc_count == 0
4654 || ((info->strip == strip_all || info->strip == strip_debugger)
4655 && (o->flags & SEC_DEBUGGING) != 0)
4656 || bfd_is_abs_section (o->output_section))
4657 continue;
4658
4659 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4660 info->keep_memory);
4661 if (internal_relocs == NULL)
4662 goto error_return;
4663
4664 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4665
4666 if (elf_section_data (o)->relocs != internal_relocs)
4667 free (internal_relocs);
4668
4669 if (! ok)
4670 goto error_return;
4671 }
4672 }
4673
4674 /* If this is a non-traditional link, try to optimize the handling
4675 of the .stab/.stabstr sections. */
4676 if (! dynamic
4677 && ! info->traditional_format
4678 && is_elf_hash_table (htab)
4679 && (info->strip != strip_all && info->strip != strip_debugger))
4680 {
4681 asection *stabstr;
4682
4683 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4684 if (stabstr != NULL)
4685 {
4686 bfd_size_type string_offset = 0;
4687 asection *stab;
4688
4689 for (stab = abfd->sections; stab; stab = stab->next)
4690 if (CONST_STRNEQ (stab->name, ".stab")
4691 && (!stab->name[5] ||
4692 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4693 && (stab->flags & SEC_MERGE) == 0
4694 && !bfd_is_abs_section (stab->output_section))
4695 {
4696 struct bfd_elf_section_data *secdata;
4697
4698 secdata = elf_section_data (stab);
4699 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4700 stabstr, &secdata->sec_info,
4701 &string_offset))
4702 goto error_return;
4703 if (secdata->sec_info)
4704 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4705 }
4706 }
4707 }
4708
4709 if (is_elf_hash_table (htab) && add_needed)
4710 {
4711 /* Add this bfd to the loaded list. */
4712 struct elf_link_loaded_list *n;
4713
4714 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4715 if (n == NULL)
4716 goto error_return;
4717 n->abfd = abfd;
4718 n->next = htab->loaded;
4719 htab->loaded = n;
4720 }
4721
4722 return TRUE;
4723
4724 error_free_vers:
4725 if (old_tab != NULL)
4726 free (old_tab);
4727 if (nondeflt_vers != NULL)
4728 free (nondeflt_vers);
4729 if (extversym != NULL)
4730 free (extversym);
4731 error_free_sym:
4732 if (isymbuf != NULL)
4733 free (isymbuf);
4734 error_return:
4735 return FALSE;
4736 }
4737
4738 /* Return the linker hash table entry of a symbol that might be
4739 satisfied by an archive symbol. Return -1 on error. */
4740
4741 struct elf_link_hash_entry *
4742 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4743 struct bfd_link_info *info,
4744 const char *name)
4745 {
4746 struct elf_link_hash_entry *h;
4747 char *p, *copy;
4748 size_t len, first;
4749
4750 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4751 if (h != NULL)
4752 return h;
4753
4754 /* If this is a default version (the name contains @@), look up the
4755 symbol again with only one `@' as well as without the version.
4756 The effect is that references to the symbol with and without the
4757 version will be matched by the default symbol in the archive. */
4758
4759 p = strchr (name, ELF_VER_CHR);
4760 if (p == NULL || p[1] != ELF_VER_CHR)
4761 return h;
4762
4763 /* First check with only one `@'. */
4764 len = strlen (name);
4765 copy = bfd_alloc (abfd, len);
4766 if (copy == NULL)
4767 return (struct elf_link_hash_entry *) 0 - 1;
4768
4769 first = p - name + 1;
4770 memcpy (copy, name, first);
4771 memcpy (copy + first, name + first + 1, len - first);
4772
4773 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4774 if (h == NULL)
4775 {
4776 /* We also need to check references to the symbol without the
4777 version. */
4778 copy[first - 1] = '\0';
4779 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4780 FALSE, FALSE, FALSE);
4781 }
4782
4783 bfd_release (abfd, copy);
4784 return h;
4785 }
4786
4787 /* Add symbols from an ELF archive file to the linker hash table. We
4788 don't use _bfd_generic_link_add_archive_symbols because of a
4789 problem which arises on UnixWare. The UnixWare libc.so is an
4790 archive which includes an entry libc.so.1 which defines a bunch of
4791 symbols. The libc.so archive also includes a number of other
4792 object files, which also define symbols, some of which are the same
4793 as those defined in libc.so.1. Correct linking requires that we
4794 consider each object file in turn, and include it if it defines any
4795 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4796 this; it looks through the list of undefined symbols, and includes
4797 any object file which defines them. When this algorithm is used on
4798 UnixWare, it winds up pulling in libc.so.1 early and defining a
4799 bunch of symbols. This means that some of the other objects in the
4800 archive are not included in the link, which is incorrect since they
4801 precede libc.so.1 in the archive.
4802
4803 Fortunately, ELF archive handling is simpler than that done by
4804 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4805 oddities. In ELF, if we find a symbol in the archive map, and the
4806 symbol is currently undefined, we know that we must pull in that
4807 object file.
4808
4809 Unfortunately, we do have to make multiple passes over the symbol
4810 table until nothing further is resolved. */
4811
4812 static bfd_boolean
4813 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4814 {
4815 symindex c;
4816 bfd_boolean *defined = NULL;
4817 bfd_boolean *included = NULL;
4818 carsym *symdefs;
4819 bfd_boolean loop;
4820 bfd_size_type amt;
4821 const struct elf_backend_data *bed;
4822 struct elf_link_hash_entry * (*archive_symbol_lookup)
4823 (bfd *, struct bfd_link_info *, const char *);
4824
4825 if (! bfd_has_map (abfd))
4826 {
4827 /* An empty archive is a special case. */
4828 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4829 return TRUE;
4830 bfd_set_error (bfd_error_no_armap);
4831 return FALSE;
4832 }
4833
4834 /* Keep track of all symbols we know to be already defined, and all
4835 files we know to be already included. This is to speed up the
4836 second and subsequent passes. */
4837 c = bfd_ardata (abfd)->symdef_count;
4838 if (c == 0)
4839 return TRUE;
4840 amt = c;
4841 amt *= sizeof (bfd_boolean);
4842 defined = bfd_zmalloc (amt);
4843 included = bfd_zmalloc (amt);
4844 if (defined == NULL || included == NULL)
4845 goto error_return;
4846
4847 symdefs = bfd_ardata (abfd)->symdefs;
4848 bed = get_elf_backend_data (abfd);
4849 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4850
4851 do
4852 {
4853 file_ptr last;
4854 symindex i;
4855 carsym *symdef;
4856 carsym *symdefend;
4857
4858 loop = FALSE;
4859 last = -1;
4860
4861 symdef = symdefs;
4862 symdefend = symdef + c;
4863 for (i = 0; symdef < symdefend; symdef++, i++)
4864 {
4865 struct elf_link_hash_entry *h;
4866 bfd *element;
4867 struct bfd_link_hash_entry *undefs_tail;
4868 symindex mark;
4869
4870 if (defined[i] || included[i])
4871 continue;
4872 if (symdef->file_offset == last)
4873 {
4874 included[i] = TRUE;
4875 continue;
4876 }
4877
4878 h = archive_symbol_lookup (abfd, info, symdef->name);
4879 if (h == (struct elf_link_hash_entry *) 0 - 1)
4880 goto error_return;
4881
4882 if (h == NULL)
4883 continue;
4884
4885 if (h->root.type == bfd_link_hash_common)
4886 {
4887 /* We currently have a common symbol. The archive map contains
4888 a reference to this symbol, so we may want to include it. We
4889 only want to include it however, if this archive element
4890 contains a definition of the symbol, not just another common
4891 declaration of it.
4892
4893 Unfortunately some archivers (including GNU ar) will put
4894 declarations of common symbols into their archive maps, as
4895 well as real definitions, so we cannot just go by the archive
4896 map alone. Instead we must read in the element's symbol
4897 table and check that to see what kind of symbol definition
4898 this is. */
4899 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4900 continue;
4901 }
4902 else if (h->root.type != bfd_link_hash_undefined)
4903 {
4904 if (h->root.type != bfd_link_hash_undefweak)
4905 defined[i] = TRUE;
4906 continue;
4907 }
4908
4909 /* We need to include this archive member. */
4910 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4911 if (element == NULL)
4912 goto error_return;
4913
4914 if (! bfd_check_format (element, bfd_object))
4915 goto error_return;
4916
4917 /* Doublecheck that we have not included this object
4918 already--it should be impossible, but there may be
4919 something wrong with the archive. */
4920 if (element->archive_pass != 0)
4921 {
4922 bfd_set_error (bfd_error_bad_value);
4923 goto error_return;
4924 }
4925 element->archive_pass = 1;
4926
4927 undefs_tail = info->hash->undefs_tail;
4928
4929 if (! (*info->callbacks->add_archive_element) (info, element,
4930 symdef->name))
4931 goto error_return;
4932 if (! bfd_link_add_symbols (element, info))
4933 goto error_return;
4934
4935 /* If there are any new undefined symbols, we need to make
4936 another pass through the archive in order to see whether
4937 they can be defined. FIXME: This isn't perfect, because
4938 common symbols wind up on undefs_tail and because an
4939 undefined symbol which is defined later on in this pass
4940 does not require another pass. This isn't a bug, but it
4941 does make the code less efficient than it could be. */
4942 if (undefs_tail != info->hash->undefs_tail)
4943 loop = TRUE;
4944
4945 /* Look backward to mark all symbols from this object file
4946 which we have already seen in this pass. */
4947 mark = i;
4948 do
4949 {
4950 included[mark] = TRUE;
4951 if (mark == 0)
4952 break;
4953 --mark;
4954 }
4955 while (symdefs[mark].file_offset == symdef->file_offset);
4956
4957 /* We mark subsequent symbols from this object file as we go
4958 on through the loop. */
4959 last = symdef->file_offset;
4960 }
4961 }
4962 while (loop);
4963
4964 free (defined);
4965 free (included);
4966
4967 return TRUE;
4968
4969 error_return:
4970 if (defined != NULL)
4971 free (defined);
4972 if (included != NULL)
4973 free (included);
4974 return FALSE;
4975 }
4976
4977 /* Given an ELF BFD, add symbols to the global hash table as
4978 appropriate. */
4979
4980 bfd_boolean
4981 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4982 {
4983 switch (bfd_get_format (abfd))
4984 {
4985 case bfd_object:
4986 return elf_link_add_object_symbols (abfd, info);
4987 case bfd_archive:
4988 return elf_link_add_archive_symbols (abfd, info);
4989 default:
4990 bfd_set_error (bfd_error_wrong_format);
4991 return FALSE;
4992 }
4993 }
4994 \f
4995 struct hash_codes_info
4996 {
4997 unsigned long *hashcodes;
4998 bfd_boolean error;
4999 };
5000
5001 /* This function will be called though elf_link_hash_traverse to store
5002 all hash value of the exported symbols in an array. */
5003
5004 static bfd_boolean
5005 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5006 {
5007 struct hash_codes_info *inf = data;
5008 const char *name;
5009 char *p;
5010 unsigned long ha;
5011 char *alc = NULL;
5012
5013 if (h->root.type == bfd_link_hash_warning)
5014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5015
5016 /* Ignore indirect symbols. These are added by the versioning code. */
5017 if (h->dynindx == -1)
5018 return TRUE;
5019
5020 name = h->root.root.string;
5021 p = strchr (name, ELF_VER_CHR);
5022 if (p != NULL)
5023 {
5024 alc = bfd_malloc (p - name + 1);
5025 if (alc == NULL)
5026 {
5027 inf->error = TRUE;
5028 return FALSE;
5029 }
5030 memcpy (alc, name, p - name);
5031 alc[p - name] = '\0';
5032 name = alc;
5033 }
5034
5035 /* Compute the hash value. */
5036 ha = bfd_elf_hash (name);
5037
5038 /* Store the found hash value in the array given as the argument. */
5039 *(inf->hashcodes)++ = ha;
5040
5041 /* And store it in the struct so that we can put it in the hash table
5042 later. */
5043 h->u.elf_hash_value = ha;
5044
5045 if (alc != NULL)
5046 free (alc);
5047
5048 return TRUE;
5049 }
5050
5051 struct collect_gnu_hash_codes
5052 {
5053 bfd *output_bfd;
5054 const struct elf_backend_data *bed;
5055 unsigned long int nsyms;
5056 unsigned long int maskbits;
5057 unsigned long int *hashcodes;
5058 unsigned long int *hashval;
5059 unsigned long int *indx;
5060 unsigned long int *counts;
5061 bfd_vma *bitmask;
5062 bfd_byte *contents;
5063 long int min_dynindx;
5064 unsigned long int bucketcount;
5065 unsigned long int symindx;
5066 long int local_indx;
5067 long int shift1, shift2;
5068 unsigned long int mask;
5069 bfd_boolean error;
5070 };
5071
5072 /* This function will be called though elf_link_hash_traverse to store
5073 all hash value of the exported symbols in an array. */
5074
5075 static bfd_boolean
5076 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5077 {
5078 struct collect_gnu_hash_codes *s = data;
5079 const char *name;
5080 char *p;
5081 unsigned long ha;
5082 char *alc = NULL;
5083
5084 if (h->root.type == bfd_link_hash_warning)
5085 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5086
5087 /* Ignore indirect symbols. These are added by the versioning code. */
5088 if (h->dynindx == -1)
5089 return TRUE;
5090
5091 /* Ignore also local symbols and undefined symbols. */
5092 if (! (*s->bed->elf_hash_symbol) (h))
5093 return TRUE;
5094
5095 name = h->root.root.string;
5096 p = strchr (name, ELF_VER_CHR);
5097 if (p != NULL)
5098 {
5099 alc = bfd_malloc (p - name + 1);
5100 if (alc == NULL)
5101 {
5102 s->error = TRUE;
5103 return FALSE;
5104 }
5105 memcpy (alc, name, p - name);
5106 alc[p - name] = '\0';
5107 name = alc;
5108 }
5109
5110 /* Compute the hash value. */
5111 ha = bfd_elf_gnu_hash (name);
5112
5113 /* Store the found hash value in the array for compute_bucket_count,
5114 and also for .dynsym reordering purposes. */
5115 s->hashcodes[s->nsyms] = ha;
5116 s->hashval[h->dynindx] = ha;
5117 ++s->nsyms;
5118 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5119 s->min_dynindx = h->dynindx;
5120
5121 if (alc != NULL)
5122 free (alc);
5123
5124 return TRUE;
5125 }
5126
5127 /* This function will be called though elf_link_hash_traverse to do
5128 final dynaminc symbol renumbering. */
5129
5130 static bfd_boolean
5131 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5132 {
5133 struct collect_gnu_hash_codes *s = data;
5134 unsigned long int bucket;
5135 unsigned long int val;
5136
5137 if (h->root.type == bfd_link_hash_warning)
5138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5139
5140 /* Ignore indirect symbols. */
5141 if (h->dynindx == -1)
5142 return TRUE;
5143
5144 /* Ignore also local symbols and undefined symbols. */
5145 if (! (*s->bed->elf_hash_symbol) (h))
5146 {
5147 if (h->dynindx >= s->min_dynindx)
5148 h->dynindx = s->local_indx++;
5149 return TRUE;
5150 }
5151
5152 bucket = s->hashval[h->dynindx] % s->bucketcount;
5153 val = (s->hashval[h->dynindx] >> s->shift1)
5154 & ((s->maskbits >> s->shift1) - 1);
5155 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5156 s->bitmask[val]
5157 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5158 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5159 if (s->counts[bucket] == 1)
5160 /* Last element terminates the chain. */
5161 val |= 1;
5162 bfd_put_32 (s->output_bfd, val,
5163 s->contents + (s->indx[bucket] - s->symindx) * 4);
5164 --s->counts[bucket];
5165 h->dynindx = s->indx[bucket]++;
5166 return TRUE;
5167 }
5168
5169 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5170
5171 bfd_boolean
5172 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5173 {
5174 return !(h->forced_local
5175 || h->root.type == bfd_link_hash_undefined
5176 || h->root.type == bfd_link_hash_undefweak
5177 || ((h->root.type == bfd_link_hash_defined
5178 || h->root.type == bfd_link_hash_defweak)
5179 && h->root.u.def.section->output_section == NULL));
5180 }
5181
5182 /* Array used to determine the number of hash table buckets to use
5183 based on the number of symbols there are. If there are fewer than
5184 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5185 fewer than 37 we use 17 buckets, and so forth. We never use more
5186 than 32771 buckets. */
5187
5188 static const size_t elf_buckets[] =
5189 {
5190 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5191 16411, 32771, 0
5192 };
5193
5194 /* Compute bucket count for hashing table. We do not use a static set
5195 of possible tables sizes anymore. Instead we determine for all
5196 possible reasonable sizes of the table the outcome (i.e., the
5197 number of collisions etc) and choose the best solution. The
5198 weighting functions are not too simple to allow the table to grow
5199 without bounds. Instead one of the weighting factors is the size.
5200 Therefore the result is always a good payoff between few collisions
5201 (= short chain lengths) and table size. */
5202 static size_t
5203 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5204 unsigned long int nsyms, int gnu_hash)
5205 {
5206 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5207 size_t best_size = 0;
5208 unsigned long int i;
5209 bfd_size_type amt;
5210
5211 /* We have a problem here. The following code to optimize the table
5212 size requires an integer type with more the 32 bits. If
5213 BFD_HOST_U_64_BIT is set we know about such a type. */
5214 #ifdef BFD_HOST_U_64_BIT
5215 if (info->optimize)
5216 {
5217 size_t minsize;
5218 size_t maxsize;
5219 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5220 bfd *dynobj = elf_hash_table (info)->dynobj;
5221 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5222 unsigned long int *counts;
5223
5224 /* Possible optimization parameters: if we have NSYMS symbols we say
5225 that the hashing table must at least have NSYMS/4 and at most
5226 2*NSYMS buckets. */
5227 minsize = nsyms / 4;
5228 if (minsize == 0)
5229 minsize = 1;
5230 best_size = maxsize = nsyms * 2;
5231 if (gnu_hash)
5232 {
5233 if (minsize < 2)
5234 minsize = 2;
5235 if ((best_size & 31) == 0)
5236 ++best_size;
5237 }
5238
5239 /* Create array where we count the collisions in. We must use bfd_malloc
5240 since the size could be large. */
5241 amt = maxsize;
5242 amt *= sizeof (unsigned long int);
5243 counts = bfd_malloc (amt);
5244 if (counts == NULL)
5245 return 0;
5246
5247 /* Compute the "optimal" size for the hash table. The criteria is a
5248 minimal chain length. The minor criteria is (of course) the size
5249 of the table. */
5250 for (i = minsize; i < maxsize; ++i)
5251 {
5252 /* Walk through the array of hashcodes and count the collisions. */
5253 BFD_HOST_U_64_BIT max;
5254 unsigned long int j;
5255 unsigned long int fact;
5256
5257 if (gnu_hash && (i & 31) == 0)
5258 continue;
5259
5260 memset (counts, '\0', i * sizeof (unsigned long int));
5261
5262 /* Determine how often each hash bucket is used. */
5263 for (j = 0; j < nsyms; ++j)
5264 ++counts[hashcodes[j] % i];
5265
5266 /* For the weight function we need some information about the
5267 pagesize on the target. This is information need not be 100%
5268 accurate. Since this information is not available (so far) we
5269 define it here to a reasonable default value. If it is crucial
5270 to have a better value some day simply define this value. */
5271 # ifndef BFD_TARGET_PAGESIZE
5272 # define BFD_TARGET_PAGESIZE (4096)
5273 # endif
5274
5275 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5276 and the chains. */
5277 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5278
5279 # if 1
5280 /* Variant 1: optimize for short chains. We add the squares
5281 of all the chain lengths (which favors many small chain
5282 over a few long chains). */
5283 for (j = 0; j < i; ++j)
5284 max += counts[j] * counts[j];
5285
5286 /* This adds penalties for the overall size of the table. */
5287 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5288 max *= fact * fact;
5289 # else
5290 /* Variant 2: Optimize a lot more for small table. Here we
5291 also add squares of the size but we also add penalties for
5292 empty slots (the +1 term). */
5293 for (j = 0; j < i; ++j)
5294 max += (1 + counts[j]) * (1 + counts[j]);
5295
5296 /* The overall size of the table is considered, but not as
5297 strong as in variant 1, where it is squared. */
5298 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5299 max *= fact;
5300 # endif
5301
5302 /* Compare with current best results. */
5303 if (max < best_chlen)
5304 {
5305 best_chlen = max;
5306 best_size = i;
5307 }
5308 }
5309
5310 free (counts);
5311 }
5312 else
5313 #endif /* defined (BFD_HOST_U_64_BIT) */
5314 {
5315 /* This is the fallback solution if no 64bit type is available or if we
5316 are not supposed to spend much time on optimizations. We select the
5317 bucket count using a fixed set of numbers. */
5318 for (i = 0; elf_buckets[i] != 0; i++)
5319 {
5320 best_size = elf_buckets[i];
5321 if (nsyms < elf_buckets[i + 1])
5322 break;
5323 }
5324 if (gnu_hash && best_size < 2)
5325 best_size = 2;
5326 }
5327
5328 return best_size;
5329 }
5330
5331 /* Set up the sizes and contents of the ELF dynamic sections. This is
5332 called by the ELF linker emulation before_allocation routine. We
5333 must set the sizes of the sections before the linker sets the
5334 addresses of the various sections. */
5335
5336 bfd_boolean
5337 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5338 const char *soname,
5339 const char *rpath,
5340 const char *filter_shlib,
5341 const char * const *auxiliary_filters,
5342 struct bfd_link_info *info,
5343 asection **sinterpptr,
5344 struct bfd_elf_version_tree *verdefs)
5345 {
5346 bfd_size_type soname_indx;
5347 bfd *dynobj;
5348 const struct elf_backend_data *bed;
5349 struct elf_assign_sym_version_info asvinfo;
5350
5351 *sinterpptr = NULL;
5352
5353 soname_indx = (bfd_size_type) -1;
5354
5355 if (!is_elf_hash_table (info->hash))
5356 return TRUE;
5357
5358 bed = get_elf_backend_data (output_bfd);
5359 if (info->execstack)
5360 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5361 else if (info->noexecstack)
5362 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5363 else
5364 {
5365 bfd *inputobj;
5366 asection *notesec = NULL;
5367 int exec = 0;
5368
5369 for (inputobj = info->input_bfds;
5370 inputobj;
5371 inputobj = inputobj->link_next)
5372 {
5373 asection *s;
5374
5375 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5376 continue;
5377 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5378 if (s)
5379 {
5380 if (s->flags & SEC_CODE)
5381 exec = PF_X;
5382 notesec = s;
5383 }
5384 else if (bed->default_execstack)
5385 exec = PF_X;
5386 }
5387 if (notesec)
5388 {
5389 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5390 if (exec && info->relocatable
5391 && notesec->output_section != bfd_abs_section_ptr)
5392 notesec->output_section->flags |= SEC_CODE;
5393 }
5394 }
5395
5396 /* Any syms created from now on start with -1 in
5397 got.refcount/offset and plt.refcount/offset. */
5398 elf_hash_table (info)->init_got_refcount
5399 = elf_hash_table (info)->init_got_offset;
5400 elf_hash_table (info)->init_plt_refcount
5401 = elf_hash_table (info)->init_plt_offset;
5402
5403 /* The backend may have to create some sections regardless of whether
5404 we're dynamic or not. */
5405 if (bed->elf_backend_always_size_sections
5406 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5407 return FALSE;
5408
5409 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5410 return FALSE;
5411
5412 dynobj = elf_hash_table (info)->dynobj;
5413
5414 /* If there were no dynamic objects in the link, there is nothing to
5415 do here. */
5416 if (dynobj == NULL)
5417 return TRUE;
5418
5419 if (elf_hash_table (info)->dynamic_sections_created)
5420 {
5421 struct elf_info_failed eif;
5422 struct elf_link_hash_entry *h;
5423 asection *dynstr;
5424 struct bfd_elf_version_tree *t;
5425 struct bfd_elf_version_expr *d;
5426 asection *s;
5427 bfd_boolean all_defined;
5428
5429 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5430 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5431
5432 if (soname != NULL)
5433 {
5434 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5435 soname, TRUE);
5436 if (soname_indx == (bfd_size_type) -1
5437 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5438 return FALSE;
5439 }
5440
5441 if (info->symbolic)
5442 {
5443 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5444 return FALSE;
5445 info->flags |= DF_SYMBOLIC;
5446 }
5447
5448 if (rpath != NULL)
5449 {
5450 bfd_size_type indx;
5451
5452 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5453 TRUE);
5454 if (indx == (bfd_size_type) -1
5455 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5456 return FALSE;
5457
5458 if (info->new_dtags)
5459 {
5460 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5461 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5462 return FALSE;
5463 }
5464 }
5465
5466 if (filter_shlib != NULL)
5467 {
5468 bfd_size_type indx;
5469
5470 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5471 filter_shlib, TRUE);
5472 if (indx == (bfd_size_type) -1
5473 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5474 return FALSE;
5475 }
5476
5477 if (auxiliary_filters != NULL)
5478 {
5479 const char * const *p;
5480
5481 for (p = auxiliary_filters; *p != NULL; p++)
5482 {
5483 bfd_size_type indx;
5484
5485 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5486 *p, TRUE);
5487 if (indx == (bfd_size_type) -1
5488 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5489 return FALSE;
5490 }
5491 }
5492
5493 eif.info = info;
5494 eif.verdefs = verdefs;
5495 eif.failed = FALSE;
5496
5497 /* If we are supposed to export all symbols into the dynamic symbol
5498 table (this is not the normal case), then do so. */
5499 if (info->export_dynamic
5500 || (info->executable && info->dynamic))
5501 {
5502 elf_link_hash_traverse (elf_hash_table (info),
5503 _bfd_elf_export_symbol,
5504 &eif);
5505 if (eif.failed)
5506 return FALSE;
5507 }
5508
5509 /* Make all global versions with definition. */
5510 for (t = verdefs; t != NULL; t = t->next)
5511 for (d = t->globals.list; d != NULL; d = d->next)
5512 if (!d->symver && d->symbol)
5513 {
5514 const char *verstr, *name;
5515 size_t namelen, verlen, newlen;
5516 char *newname, *p;
5517 struct elf_link_hash_entry *newh;
5518
5519 name = d->symbol;
5520 namelen = strlen (name);
5521 verstr = t->name;
5522 verlen = strlen (verstr);
5523 newlen = namelen + verlen + 3;
5524
5525 newname = bfd_malloc (newlen);
5526 if (newname == NULL)
5527 return FALSE;
5528 memcpy (newname, name, namelen);
5529
5530 /* Check the hidden versioned definition. */
5531 p = newname + namelen;
5532 *p++ = ELF_VER_CHR;
5533 memcpy (p, verstr, verlen + 1);
5534 newh = elf_link_hash_lookup (elf_hash_table (info),
5535 newname, FALSE, FALSE,
5536 FALSE);
5537 if (newh == NULL
5538 || (newh->root.type != bfd_link_hash_defined
5539 && newh->root.type != bfd_link_hash_defweak))
5540 {
5541 /* Check the default versioned definition. */
5542 *p++ = ELF_VER_CHR;
5543 memcpy (p, verstr, verlen + 1);
5544 newh = elf_link_hash_lookup (elf_hash_table (info),
5545 newname, FALSE, FALSE,
5546 FALSE);
5547 }
5548 free (newname);
5549
5550 /* Mark this version if there is a definition and it is
5551 not defined in a shared object. */
5552 if (newh != NULL
5553 && !newh->def_dynamic
5554 && (newh->root.type == bfd_link_hash_defined
5555 || newh->root.type == bfd_link_hash_defweak))
5556 d->symver = 1;
5557 }
5558
5559 /* Attach all the symbols to their version information. */
5560 asvinfo.output_bfd = output_bfd;
5561 asvinfo.info = info;
5562 asvinfo.verdefs = verdefs;
5563 asvinfo.failed = FALSE;
5564
5565 elf_link_hash_traverse (elf_hash_table (info),
5566 _bfd_elf_link_assign_sym_version,
5567 &asvinfo);
5568 if (asvinfo.failed)
5569 return FALSE;
5570
5571 if (!info->allow_undefined_version)
5572 {
5573 /* Check if all global versions have a definition. */
5574 all_defined = TRUE;
5575 for (t = verdefs; t != NULL; t = t->next)
5576 for (d = t->globals.list; d != NULL; d = d->next)
5577 if (!d->symver && !d->script)
5578 {
5579 (*_bfd_error_handler)
5580 (_("%s: undefined version: %s"),
5581 d->pattern, t->name);
5582 all_defined = FALSE;
5583 }
5584
5585 if (!all_defined)
5586 {
5587 bfd_set_error (bfd_error_bad_value);
5588 return FALSE;
5589 }
5590 }
5591
5592 /* Find all symbols which were defined in a dynamic object and make
5593 the backend pick a reasonable value for them. */
5594 elf_link_hash_traverse (elf_hash_table (info),
5595 _bfd_elf_adjust_dynamic_symbol,
5596 &eif);
5597 if (eif.failed)
5598 return FALSE;
5599
5600 /* Add some entries to the .dynamic section. We fill in some of the
5601 values later, in bfd_elf_final_link, but we must add the entries
5602 now so that we know the final size of the .dynamic section. */
5603
5604 /* If there are initialization and/or finalization functions to
5605 call then add the corresponding DT_INIT/DT_FINI entries. */
5606 h = (info->init_function
5607 ? elf_link_hash_lookup (elf_hash_table (info),
5608 info->init_function, FALSE,
5609 FALSE, FALSE)
5610 : NULL);
5611 if (h != NULL
5612 && (h->ref_regular
5613 || h->def_regular))
5614 {
5615 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5616 return FALSE;
5617 }
5618 h = (info->fini_function
5619 ? elf_link_hash_lookup (elf_hash_table (info),
5620 info->fini_function, FALSE,
5621 FALSE, FALSE)
5622 : NULL);
5623 if (h != NULL
5624 && (h->ref_regular
5625 || h->def_regular))
5626 {
5627 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5628 return FALSE;
5629 }
5630
5631 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5632 if (s != NULL && s->linker_has_input)
5633 {
5634 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5635 if (! info->executable)
5636 {
5637 bfd *sub;
5638 asection *o;
5639
5640 for (sub = info->input_bfds; sub != NULL;
5641 sub = sub->link_next)
5642 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5643 for (o = sub->sections; o != NULL; o = o->next)
5644 if (elf_section_data (o)->this_hdr.sh_type
5645 == SHT_PREINIT_ARRAY)
5646 {
5647 (*_bfd_error_handler)
5648 (_("%B: .preinit_array section is not allowed in DSO"),
5649 sub);
5650 break;
5651 }
5652
5653 bfd_set_error (bfd_error_nonrepresentable_section);
5654 return FALSE;
5655 }
5656
5657 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5658 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5659 return FALSE;
5660 }
5661 s = bfd_get_section_by_name (output_bfd, ".init_array");
5662 if (s != NULL && s->linker_has_input)
5663 {
5664 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5665 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5666 return FALSE;
5667 }
5668 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5669 if (s != NULL && s->linker_has_input)
5670 {
5671 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5672 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5673 return FALSE;
5674 }
5675
5676 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5677 /* If .dynstr is excluded from the link, we don't want any of
5678 these tags. Strictly, we should be checking each section
5679 individually; This quick check covers for the case where
5680 someone does a /DISCARD/ : { *(*) }. */
5681 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5682 {
5683 bfd_size_type strsize;
5684
5685 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5686 if ((info->emit_hash
5687 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5688 || (info->emit_gnu_hash
5689 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5690 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5691 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5692 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5693 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5694 bed->s->sizeof_sym))
5695 return FALSE;
5696 }
5697 }
5698
5699 /* The backend must work out the sizes of all the other dynamic
5700 sections. */
5701 if (bed->elf_backend_size_dynamic_sections
5702 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5703 return FALSE;
5704
5705 if (elf_hash_table (info)->dynamic_sections_created)
5706 {
5707 unsigned long section_sym_count;
5708 asection *s;
5709
5710 /* Set up the version definition section. */
5711 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5712 BFD_ASSERT (s != NULL);
5713
5714 /* We may have created additional version definitions if we are
5715 just linking a regular application. */
5716 verdefs = asvinfo.verdefs;
5717
5718 /* Skip anonymous version tag. */
5719 if (verdefs != NULL && verdefs->vernum == 0)
5720 verdefs = verdefs->next;
5721
5722 if (verdefs == NULL && !info->create_default_symver)
5723 s->flags |= SEC_EXCLUDE;
5724 else
5725 {
5726 unsigned int cdefs;
5727 bfd_size_type size;
5728 struct bfd_elf_version_tree *t;
5729 bfd_byte *p;
5730 Elf_Internal_Verdef def;
5731 Elf_Internal_Verdaux defaux;
5732 struct bfd_link_hash_entry *bh;
5733 struct elf_link_hash_entry *h;
5734 const char *name;
5735
5736 cdefs = 0;
5737 size = 0;
5738
5739 /* Make space for the base version. */
5740 size += sizeof (Elf_External_Verdef);
5741 size += sizeof (Elf_External_Verdaux);
5742 ++cdefs;
5743
5744 /* Make space for the default version. */
5745 if (info->create_default_symver)
5746 {
5747 size += sizeof (Elf_External_Verdef);
5748 ++cdefs;
5749 }
5750
5751 for (t = verdefs; t != NULL; t = t->next)
5752 {
5753 struct bfd_elf_version_deps *n;
5754
5755 size += sizeof (Elf_External_Verdef);
5756 size += sizeof (Elf_External_Verdaux);
5757 ++cdefs;
5758
5759 for (n = t->deps; n != NULL; n = n->next)
5760 size += sizeof (Elf_External_Verdaux);
5761 }
5762
5763 s->size = size;
5764 s->contents = bfd_alloc (output_bfd, s->size);
5765 if (s->contents == NULL && s->size != 0)
5766 return FALSE;
5767
5768 /* Fill in the version definition section. */
5769
5770 p = s->contents;
5771
5772 def.vd_version = VER_DEF_CURRENT;
5773 def.vd_flags = VER_FLG_BASE;
5774 def.vd_ndx = 1;
5775 def.vd_cnt = 1;
5776 if (info->create_default_symver)
5777 {
5778 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5779 def.vd_next = sizeof (Elf_External_Verdef);
5780 }
5781 else
5782 {
5783 def.vd_aux = sizeof (Elf_External_Verdef);
5784 def.vd_next = (sizeof (Elf_External_Verdef)
5785 + sizeof (Elf_External_Verdaux));
5786 }
5787
5788 if (soname_indx != (bfd_size_type) -1)
5789 {
5790 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5791 soname_indx);
5792 def.vd_hash = bfd_elf_hash (soname);
5793 defaux.vda_name = soname_indx;
5794 name = soname;
5795 }
5796 else
5797 {
5798 bfd_size_type indx;
5799
5800 name = lbasename (output_bfd->filename);
5801 def.vd_hash = bfd_elf_hash (name);
5802 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5803 name, FALSE);
5804 if (indx == (bfd_size_type) -1)
5805 return FALSE;
5806 defaux.vda_name = indx;
5807 }
5808 defaux.vda_next = 0;
5809
5810 _bfd_elf_swap_verdef_out (output_bfd, &def,
5811 (Elf_External_Verdef *) p);
5812 p += sizeof (Elf_External_Verdef);
5813 if (info->create_default_symver)
5814 {
5815 /* Add a symbol representing this version. */
5816 bh = NULL;
5817 if (! (_bfd_generic_link_add_one_symbol
5818 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5819 0, NULL, FALSE,
5820 get_elf_backend_data (dynobj)->collect, &bh)))
5821 return FALSE;
5822 h = (struct elf_link_hash_entry *) bh;
5823 h->non_elf = 0;
5824 h->def_regular = 1;
5825 h->type = STT_OBJECT;
5826 h->verinfo.vertree = NULL;
5827
5828 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5829 return FALSE;
5830
5831 /* Create a duplicate of the base version with the same
5832 aux block, but different flags. */
5833 def.vd_flags = 0;
5834 def.vd_ndx = 2;
5835 def.vd_aux = sizeof (Elf_External_Verdef);
5836 if (verdefs)
5837 def.vd_next = (sizeof (Elf_External_Verdef)
5838 + sizeof (Elf_External_Verdaux));
5839 else
5840 def.vd_next = 0;
5841 _bfd_elf_swap_verdef_out (output_bfd, &def,
5842 (Elf_External_Verdef *) p);
5843 p += sizeof (Elf_External_Verdef);
5844 }
5845 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5846 (Elf_External_Verdaux *) p);
5847 p += sizeof (Elf_External_Verdaux);
5848
5849 for (t = verdefs; t != NULL; t = t->next)
5850 {
5851 unsigned int cdeps;
5852 struct bfd_elf_version_deps *n;
5853
5854 cdeps = 0;
5855 for (n = t->deps; n != NULL; n = n->next)
5856 ++cdeps;
5857
5858 /* Add a symbol representing this version. */
5859 bh = NULL;
5860 if (! (_bfd_generic_link_add_one_symbol
5861 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5862 0, NULL, FALSE,
5863 get_elf_backend_data (dynobj)->collect, &bh)))
5864 return FALSE;
5865 h = (struct elf_link_hash_entry *) bh;
5866 h->non_elf = 0;
5867 h->def_regular = 1;
5868 h->type = STT_OBJECT;
5869 h->verinfo.vertree = t;
5870
5871 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5872 return FALSE;
5873
5874 def.vd_version = VER_DEF_CURRENT;
5875 def.vd_flags = 0;
5876 if (t->globals.list == NULL
5877 && t->locals.list == NULL
5878 && ! t->used)
5879 def.vd_flags |= VER_FLG_WEAK;
5880 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5881 def.vd_cnt = cdeps + 1;
5882 def.vd_hash = bfd_elf_hash (t->name);
5883 def.vd_aux = sizeof (Elf_External_Verdef);
5884 def.vd_next = 0;
5885 if (t->next != NULL)
5886 def.vd_next = (sizeof (Elf_External_Verdef)
5887 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5888
5889 _bfd_elf_swap_verdef_out (output_bfd, &def,
5890 (Elf_External_Verdef *) p);
5891 p += sizeof (Elf_External_Verdef);
5892
5893 defaux.vda_name = h->dynstr_index;
5894 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5895 h->dynstr_index);
5896 defaux.vda_next = 0;
5897 if (t->deps != NULL)
5898 defaux.vda_next = sizeof (Elf_External_Verdaux);
5899 t->name_indx = defaux.vda_name;
5900
5901 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5902 (Elf_External_Verdaux *) p);
5903 p += sizeof (Elf_External_Verdaux);
5904
5905 for (n = t->deps; n != NULL; n = n->next)
5906 {
5907 if (n->version_needed == NULL)
5908 {
5909 /* This can happen if there was an error in the
5910 version script. */
5911 defaux.vda_name = 0;
5912 }
5913 else
5914 {
5915 defaux.vda_name = n->version_needed->name_indx;
5916 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5917 defaux.vda_name);
5918 }
5919 if (n->next == NULL)
5920 defaux.vda_next = 0;
5921 else
5922 defaux.vda_next = sizeof (Elf_External_Verdaux);
5923
5924 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5925 (Elf_External_Verdaux *) p);
5926 p += sizeof (Elf_External_Verdaux);
5927 }
5928 }
5929
5930 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5932 return FALSE;
5933
5934 elf_tdata (output_bfd)->cverdefs = cdefs;
5935 }
5936
5937 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5938 {
5939 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5940 return FALSE;
5941 }
5942 else if (info->flags & DF_BIND_NOW)
5943 {
5944 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5945 return FALSE;
5946 }
5947
5948 if (info->flags_1)
5949 {
5950 if (info->executable)
5951 info->flags_1 &= ~ (DF_1_INITFIRST
5952 | DF_1_NODELETE
5953 | DF_1_NOOPEN);
5954 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5955 return FALSE;
5956 }
5957
5958 /* Work out the size of the version reference section. */
5959
5960 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5961 BFD_ASSERT (s != NULL);
5962 {
5963 struct elf_find_verdep_info sinfo;
5964
5965 sinfo.output_bfd = output_bfd;
5966 sinfo.info = info;
5967 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5968 if (sinfo.vers == 0)
5969 sinfo.vers = 1;
5970 sinfo.failed = FALSE;
5971
5972 elf_link_hash_traverse (elf_hash_table (info),
5973 _bfd_elf_link_find_version_dependencies,
5974 &sinfo);
5975 if (sinfo.failed)
5976 return FALSE;
5977
5978 if (elf_tdata (output_bfd)->verref == NULL)
5979 s->flags |= SEC_EXCLUDE;
5980 else
5981 {
5982 Elf_Internal_Verneed *t;
5983 unsigned int size;
5984 unsigned int crefs;
5985 bfd_byte *p;
5986
5987 /* Build the version definition section. */
5988 size = 0;
5989 crefs = 0;
5990 for (t = elf_tdata (output_bfd)->verref;
5991 t != NULL;
5992 t = t->vn_nextref)
5993 {
5994 Elf_Internal_Vernaux *a;
5995
5996 size += sizeof (Elf_External_Verneed);
5997 ++crefs;
5998 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5999 size += sizeof (Elf_External_Vernaux);
6000 }
6001
6002 s->size = size;
6003 s->contents = bfd_alloc (output_bfd, s->size);
6004 if (s->contents == NULL)
6005 return FALSE;
6006
6007 p = s->contents;
6008 for (t = elf_tdata (output_bfd)->verref;
6009 t != NULL;
6010 t = t->vn_nextref)
6011 {
6012 unsigned int caux;
6013 Elf_Internal_Vernaux *a;
6014 bfd_size_type indx;
6015
6016 caux = 0;
6017 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6018 ++caux;
6019
6020 t->vn_version = VER_NEED_CURRENT;
6021 t->vn_cnt = caux;
6022 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023 elf_dt_name (t->vn_bfd) != NULL
6024 ? elf_dt_name (t->vn_bfd)
6025 : lbasename (t->vn_bfd->filename),
6026 FALSE);
6027 if (indx == (bfd_size_type) -1)
6028 return FALSE;
6029 t->vn_file = indx;
6030 t->vn_aux = sizeof (Elf_External_Verneed);
6031 if (t->vn_nextref == NULL)
6032 t->vn_next = 0;
6033 else
6034 t->vn_next = (sizeof (Elf_External_Verneed)
6035 + caux * sizeof (Elf_External_Vernaux));
6036
6037 _bfd_elf_swap_verneed_out (output_bfd, t,
6038 (Elf_External_Verneed *) p);
6039 p += sizeof (Elf_External_Verneed);
6040
6041 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6042 {
6043 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6044 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6045 a->vna_nodename, FALSE);
6046 if (indx == (bfd_size_type) -1)
6047 return FALSE;
6048 a->vna_name = indx;
6049 if (a->vna_nextptr == NULL)
6050 a->vna_next = 0;
6051 else
6052 a->vna_next = sizeof (Elf_External_Vernaux);
6053
6054 _bfd_elf_swap_vernaux_out (output_bfd, a,
6055 (Elf_External_Vernaux *) p);
6056 p += sizeof (Elf_External_Vernaux);
6057 }
6058 }
6059
6060 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6061 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6062 return FALSE;
6063
6064 elf_tdata (output_bfd)->cverrefs = crefs;
6065 }
6066 }
6067
6068 if ((elf_tdata (output_bfd)->cverrefs == 0
6069 && elf_tdata (output_bfd)->cverdefs == 0)
6070 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6071 &section_sym_count) == 0)
6072 {
6073 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6074 s->flags |= SEC_EXCLUDE;
6075 }
6076 }
6077 return TRUE;
6078 }
6079
6080 /* Find the first non-excluded output section. We'll use its
6081 section symbol for some emitted relocs. */
6082 void
6083 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6084 {
6085 asection *s;
6086
6087 for (s = output_bfd->sections; s != NULL; s = s->next)
6088 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6089 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6090 {
6091 elf_hash_table (info)->text_index_section = s;
6092 break;
6093 }
6094 }
6095
6096 /* Find two non-excluded output sections, one for code, one for data.
6097 We'll use their section symbols for some emitted relocs. */
6098 void
6099 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6100 {
6101 asection *s;
6102
6103 for (s = output_bfd->sections; s != NULL; s = s->next)
6104 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6105 == (SEC_ALLOC | SEC_READONLY))
6106 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6107 {
6108 elf_hash_table (info)->text_index_section = s;
6109 break;
6110 }
6111
6112 for (s = output_bfd->sections; s != NULL; s = s->next)
6113 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6114 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6115 {
6116 elf_hash_table (info)->data_index_section = s;
6117 break;
6118 }
6119
6120 if (elf_hash_table (info)->text_index_section == NULL)
6121 elf_hash_table (info)->text_index_section
6122 = elf_hash_table (info)->data_index_section;
6123 }
6124
6125 bfd_boolean
6126 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6127 {
6128 const struct elf_backend_data *bed;
6129
6130 if (!is_elf_hash_table (info->hash))
6131 return TRUE;
6132
6133 bed = get_elf_backend_data (output_bfd);
6134 (*bed->elf_backend_init_index_section) (output_bfd, info);
6135
6136 if (elf_hash_table (info)->dynamic_sections_created)
6137 {
6138 bfd *dynobj;
6139 asection *s;
6140 bfd_size_type dynsymcount;
6141 unsigned long section_sym_count;
6142 unsigned int dtagcount;
6143
6144 dynobj = elf_hash_table (info)->dynobj;
6145
6146 /* Assign dynsym indicies. In a shared library we generate a
6147 section symbol for each output section, which come first.
6148 Next come all of the back-end allocated local dynamic syms,
6149 followed by the rest of the global symbols. */
6150
6151 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6152 &section_sym_count);
6153
6154 /* Work out the size of the symbol version section. */
6155 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6156 BFD_ASSERT (s != NULL);
6157 if (dynsymcount != 0
6158 && (s->flags & SEC_EXCLUDE) == 0)
6159 {
6160 s->size = dynsymcount * sizeof (Elf_External_Versym);
6161 s->contents = bfd_zalloc (output_bfd, s->size);
6162 if (s->contents == NULL)
6163 return FALSE;
6164
6165 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6166 return FALSE;
6167 }
6168
6169 /* Set the size of the .dynsym and .hash sections. We counted
6170 the number of dynamic symbols in elf_link_add_object_symbols.
6171 We will build the contents of .dynsym and .hash when we build
6172 the final symbol table, because until then we do not know the
6173 correct value to give the symbols. We built the .dynstr
6174 section as we went along in elf_link_add_object_symbols. */
6175 s = bfd_get_section_by_name (dynobj, ".dynsym");
6176 BFD_ASSERT (s != NULL);
6177 s->size = dynsymcount * bed->s->sizeof_sym;
6178
6179 if (dynsymcount != 0)
6180 {
6181 s->contents = bfd_alloc (output_bfd, s->size);
6182 if (s->contents == NULL)
6183 return FALSE;
6184
6185 /* The first entry in .dynsym is a dummy symbol.
6186 Clear all the section syms, in case we don't output them all. */
6187 ++section_sym_count;
6188 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6189 }
6190
6191 elf_hash_table (info)->bucketcount = 0;
6192
6193 /* Compute the size of the hashing table. As a side effect this
6194 computes the hash values for all the names we export. */
6195 if (info->emit_hash)
6196 {
6197 unsigned long int *hashcodes;
6198 struct hash_codes_info hashinf;
6199 bfd_size_type amt;
6200 unsigned long int nsyms;
6201 size_t bucketcount;
6202 size_t hash_entry_size;
6203
6204 /* Compute the hash values for all exported symbols. At the same
6205 time store the values in an array so that we could use them for
6206 optimizations. */
6207 amt = dynsymcount * sizeof (unsigned long int);
6208 hashcodes = bfd_malloc (amt);
6209 if (hashcodes == NULL)
6210 return FALSE;
6211 hashinf.hashcodes = hashcodes;
6212 hashinf.error = FALSE;
6213
6214 /* Put all hash values in HASHCODES. */
6215 elf_link_hash_traverse (elf_hash_table (info),
6216 elf_collect_hash_codes, &hashinf);
6217 if (hashinf.error)
6218 return FALSE;
6219
6220 nsyms = hashinf.hashcodes - hashcodes;
6221 bucketcount
6222 = compute_bucket_count (info, hashcodes, nsyms, 0);
6223 free (hashcodes);
6224
6225 if (bucketcount == 0)
6226 return FALSE;
6227
6228 elf_hash_table (info)->bucketcount = bucketcount;
6229
6230 s = bfd_get_section_by_name (dynobj, ".hash");
6231 BFD_ASSERT (s != NULL);
6232 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6233 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6234 s->contents = bfd_zalloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6237
6238 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6239 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6240 s->contents + hash_entry_size);
6241 }
6242
6243 if (info->emit_gnu_hash)
6244 {
6245 size_t i, cnt;
6246 unsigned char *contents;
6247 struct collect_gnu_hash_codes cinfo;
6248 bfd_size_type amt;
6249 size_t bucketcount;
6250
6251 memset (&cinfo, 0, sizeof (cinfo));
6252
6253 /* Compute the hash values for all exported symbols. At the same
6254 time store the values in an array so that we could use them for
6255 optimizations. */
6256 amt = dynsymcount * 2 * sizeof (unsigned long int);
6257 cinfo.hashcodes = bfd_malloc (amt);
6258 if (cinfo.hashcodes == NULL)
6259 return FALSE;
6260
6261 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6262 cinfo.min_dynindx = -1;
6263 cinfo.output_bfd = output_bfd;
6264 cinfo.bed = bed;
6265
6266 /* Put all hash values in HASHCODES. */
6267 elf_link_hash_traverse (elf_hash_table (info),
6268 elf_collect_gnu_hash_codes, &cinfo);
6269 if (cinfo.error)
6270 return FALSE;
6271
6272 bucketcount
6273 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6274
6275 if (bucketcount == 0)
6276 {
6277 free (cinfo.hashcodes);
6278 return FALSE;
6279 }
6280
6281 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6282 BFD_ASSERT (s != NULL);
6283
6284 if (cinfo.nsyms == 0)
6285 {
6286 /* Empty .gnu.hash section is special. */
6287 BFD_ASSERT (cinfo.min_dynindx == -1);
6288 free (cinfo.hashcodes);
6289 s->size = 5 * 4 + bed->s->arch_size / 8;
6290 contents = bfd_zalloc (output_bfd, s->size);
6291 if (contents == NULL)
6292 return FALSE;
6293 s->contents = contents;
6294 /* 1 empty bucket. */
6295 bfd_put_32 (output_bfd, 1, contents);
6296 /* SYMIDX above the special symbol 0. */
6297 bfd_put_32 (output_bfd, 1, contents + 4);
6298 /* Just one word for bitmask. */
6299 bfd_put_32 (output_bfd, 1, contents + 8);
6300 /* Only hash fn bloom filter. */
6301 bfd_put_32 (output_bfd, 0, contents + 12);
6302 /* No hashes are valid - empty bitmask. */
6303 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6304 /* No hashes in the only bucket. */
6305 bfd_put_32 (output_bfd, 0,
6306 contents + 16 + bed->s->arch_size / 8);
6307 }
6308 else
6309 {
6310 unsigned long int maskwords, maskbitslog2;
6311 BFD_ASSERT (cinfo.min_dynindx != -1);
6312
6313 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6314 if (maskbitslog2 < 3)
6315 maskbitslog2 = 5;
6316 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6317 maskbitslog2 = maskbitslog2 + 3;
6318 else
6319 maskbitslog2 = maskbitslog2 + 2;
6320 if (bed->s->arch_size == 64)
6321 {
6322 if (maskbitslog2 == 5)
6323 maskbitslog2 = 6;
6324 cinfo.shift1 = 6;
6325 }
6326 else
6327 cinfo.shift1 = 5;
6328 cinfo.mask = (1 << cinfo.shift1) - 1;
6329 cinfo.shift2 = maskbitslog2;
6330 cinfo.maskbits = 1 << maskbitslog2;
6331 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6332 amt = bucketcount * sizeof (unsigned long int) * 2;
6333 amt += maskwords * sizeof (bfd_vma);
6334 cinfo.bitmask = bfd_malloc (amt);
6335 if (cinfo.bitmask == NULL)
6336 {
6337 free (cinfo.hashcodes);
6338 return FALSE;
6339 }
6340
6341 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6342 cinfo.indx = cinfo.counts + bucketcount;
6343 cinfo.symindx = dynsymcount - cinfo.nsyms;
6344 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6345
6346 /* Determine how often each hash bucket is used. */
6347 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6348 for (i = 0; i < cinfo.nsyms; ++i)
6349 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6350
6351 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6352 if (cinfo.counts[i] != 0)
6353 {
6354 cinfo.indx[i] = cnt;
6355 cnt += cinfo.counts[i];
6356 }
6357 BFD_ASSERT (cnt == dynsymcount);
6358 cinfo.bucketcount = bucketcount;
6359 cinfo.local_indx = cinfo.min_dynindx;
6360
6361 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6362 s->size += cinfo.maskbits / 8;
6363 contents = bfd_zalloc (output_bfd, s->size);
6364 if (contents == NULL)
6365 {
6366 free (cinfo.bitmask);
6367 free (cinfo.hashcodes);
6368 return FALSE;
6369 }
6370
6371 s->contents = contents;
6372 bfd_put_32 (output_bfd, bucketcount, contents);
6373 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6374 bfd_put_32 (output_bfd, maskwords, contents + 8);
6375 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6376 contents += 16 + cinfo.maskbits / 8;
6377
6378 for (i = 0; i < bucketcount; ++i)
6379 {
6380 if (cinfo.counts[i] == 0)
6381 bfd_put_32 (output_bfd, 0, contents);
6382 else
6383 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6384 contents += 4;
6385 }
6386
6387 cinfo.contents = contents;
6388
6389 /* Renumber dynamic symbols, populate .gnu.hash section. */
6390 elf_link_hash_traverse (elf_hash_table (info),
6391 elf_renumber_gnu_hash_syms, &cinfo);
6392
6393 contents = s->contents + 16;
6394 for (i = 0; i < maskwords; ++i)
6395 {
6396 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6397 contents);
6398 contents += bed->s->arch_size / 8;
6399 }
6400
6401 free (cinfo.bitmask);
6402 free (cinfo.hashcodes);
6403 }
6404 }
6405
6406 s = bfd_get_section_by_name (dynobj, ".dynstr");
6407 BFD_ASSERT (s != NULL);
6408
6409 elf_finalize_dynstr (output_bfd, info);
6410
6411 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6412
6413 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6414 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6415 return FALSE;
6416 }
6417
6418 return TRUE;
6419 }
6420 \f
6421 /* Indicate that we are only retrieving symbol values from this
6422 section. */
6423
6424 void
6425 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6426 {
6427 if (is_elf_hash_table (info->hash))
6428 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6429 _bfd_generic_link_just_syms (sec, info);
6430 }
6431
6432 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6433
6434 static void
6435 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6436 asection *sec)
6437 {
6438 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6439 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6440 }
6441
6442 /* Finish SHF_MERGE section merging. */
6443
6444 bfd_boolean
6445 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6446 {
6447 bfd *ibfd;
6448 asection *sec;
6449
6450 if (!is_elf_hash_table (info->hash))
6451 return FALSE;
6452
6453 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6454 if ((ibfd->flags & DYNAMIC) == 0)
6455 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6456 if ((sec->flags & SEC_MERGE) != 0
6457 && !bfd_is_abs_section (sec->output_section))
6458 {
6459 struct bfd_elf_section_data *secdata;
6460
6461 secdata = elf_section_data (sec);
6462 if (! _bfd_add_merge_section (abfd,
6463 &elf_hash_table (info)->merge_info,
6464 sec, &secdata->sec_info))
6465 return FALSE;
6466 else if (secdata->sec_info)
6467 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6468 }
6469
6470 if (elf_hash_table (info)->merge_info != NULL)
6471 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6472 merge_sections_remove_hook);
6473 return TRUE;
6474 }
6475
6476 /* Create an entry in an ELF linker hash table. */
6477
6478 struct bfd_hash_entry *
6479 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6480 struct bfd_hash_table *table,
6481 const char *string)
6482 {
6483 /* Allocate the structure if it has not already been allocated by a
6484 subclass. */
6485 if (entry == NULL)
6486 {
6487 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6488 if (entry == NULL)
6489 return entry;
6490 }
6491
6492 /* Call the allocation method of the superclass. */
6493 entry = _bfd_link_hash_newfunc (entry, table, string);
6494 if (entry != NULL)
6495 {
6496 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6497 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6498
6499 /* Set local fields. */
6500 ret->indx = -1;
6501 ret->dynindx = -1;
6502 ret->got = htab->init_got_refcount;
6503 ret->plt = htab->init_plt_refcount;
6504 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6505 - offsetof (struct elf_link_hash_entry, size)));
6506 /* Assume that we have been called by a non-ELF symbol reader.
6507 This flag is then reset by the code which reads an ELF input
6508 file. This ensures that a symbol created by a non-ELF symbol
6509 reader will have the flag set correctly. */
6510 ret->non_elf = 1;
6511 }
6512
6513 return entry;
6514 }
6515
6516 /* Copy data from an indirect symbol to its direct symbol, hiding the
6517 old indirect symbol. Also used for copying flags to a weakdef. */
6518
6519 void
6520 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6521 struct elf_link_hash_entry *dir,
6522 struct elf_link_hash_entry *ind)
6523 {
6524 struct elf_link_hash_table *htab;
6525
6526 /* Copy down any references that we may have already seen to the
6527 symbol which just became indirect. */
6528
6529 dir->ref_dynamic |= ind->ref_dynamic;
6530 dir->ref_regular |= ind->ref_regular;
6531 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6532 dir->non_got_ref |= ind->non_got_ref;
6533 dir->needs_plt |= ind->needs_plt;
6534 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6535
6536 if (ind->root.type != bfd_link_hash_indirect)
6537 return;
6538
6539 /* Copy over the global and procedure linkage table refcount entries.
6540 These may have been already set up by a check_relocs routine. */
6541 htab = elf_hash_table (info);
6542 if (ind->got.refcount > htab->init_got_refcount.refcount)
6543 {
6544 if (dir->got.refcount < 0)
6545 dir->got.refcount = 0;
6546 dir->got.refcount += ind->got.refcount;
6547 ind->got.refcount = htab->init_got_refcount.refcount;
6548 }
6549
6550 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6551 {
6552 if (dir->plt.refcount < 0)
6553 dir->plt.refcount = 0;
6554 dir->plt.refcount += ind->plt.refcount;
6555 ind->plt.refcount = htab->init_plt_refcount.refcount;
6556 }
6557
6558 if (ind->dynindx != -1)
6559 {
6560 if (dir->dynindx != -1)
6561 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6562 dir->dynindx = ind->dynindx;
6563 dir->dynstr_index = ind->dynstr_index;
6564 ind->dynindx = -1;
6565 ind->dynstr_index = 0;
6566 }
6567 }
6568
6569 void
6570 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6571 struct elf_link_hash_entry *h,
6572 bfd_boolean force_local)
6573 {
6574 h->plt = elf_hash_table (info)->init_plt_offset;
6575 h->needs_plt = 0;
6576 if (force_local)
6577 {
6578 h->forced_local = 1;
6579 if (h->dynindx != -1)
6580 {
6581 h->dynindx = -1;
6582 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6583 h->dynstr_index);
6584 }
6585 }
6586 }
6587
6588 /* Initialize an ELF linker hash table. */
6589
6590 bfd_boolean
6591 _bfd_elf_link_hash_table_init
6592 (struct elf_link_hash_table *table,
6593 bfd *abfd,
6594 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6595 struct bfd_hash_table *,
6596 const char *),
6597 unsigned int entsize)
6598 {
6599 bfd_boolean ret;
6600 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6601
6602 memset (table, 0, sizeof * table);
6603 table->init_got_refcount.refcount = can_refcount - 1;
6604 table->init_plt_refcount.refcount = can_refcount - 1;
6605 table->init_got_offset.offset = -(bfd_vma) 1;
6606 table->init_plt_offset.offset = -(bfd_vma) 1;
6607 /* The first dynamic symbol is a dummy. */
6608 table->dynsymcount = 1;
6609
6610 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6611 table->root.type = bfd_link_elf_hash_table;
6612
6613 return ret;
6614 }
6615
6616 /* Create an ELF linker hash table. */
6617
6618 struct bfd_link_hash_table *
6619 _bfd_elf_link_hash_table_create (bfd *abfd)
6620 {
6621 struct elf_link_hash_table *ret;
6622 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6623
6624 ret = bfd_malloc (amt);
6625 if (ret == NULL)
6626 return NULL;
6627
6628 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6629 sizeof (struct elf_link_hash_entry)))
6630 {
6631 free (ret);
6632 return NULL;
6633 }
6634
6635 return &ret->root;
6636 }
6637
6638 /* This is a hook for the ELF emulation code in the generic linker to
6639 tell the backend linker what file name to use for the DT_NEEDED
6640 entry for a dynamic object. */
6641
6642 void
6643 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6644 {
6645 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6646 && bfd_get_format (abfd) == bfd_object)
6647 elf_dt_name (abfd) = name;
6648 }
6649
6650 int
6651 bfd_elf_get_dyn_lib_class (bfd *abfd)
6652 {
6653 int lib_class;
6654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6655 && bfd_get_format (abfd) == bfd_object)
6656 lib_class = elf_dyn_lib_class (abfd);
6657 else
6658 lib_class = 0;
6659 return lib_class;
6660 }
6661
6662 void
6663 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6664 {
6665 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6666 && bfd_get_format (abfd) == bfd_object)
6667 elf_dyn_lib_class (abfd) = lib_class;
6668 }
6669
6670 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6671 the linker ELF emulation code. */
6672
6673 struct bfd_link_needed_list *
6674 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6675 struct bfd_link_info *info)
6676 {
6677 if (! is_elf_hash_table (info->hash))
6678 return NULL;
6679 return elf_hash_table (info)->needed;
6680 }
6681
6682 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6683 hook for the linker ELF emulation code. */
6684
6685 struct bfd_link_needed_list *
6686 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6687 struct bfd_link_info *info)
6688 {
6689 if (! is_elf_hash_table (info->hash))
6690 return NULL;
6691 return elf_hash_table (info)->runpath;
6692 }
6693
6694 /* Get the name actually used for a dynamic object for a link. This
6695 is the SONAME entry if there is one. Otherwise, it is the string
6696 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6697
6698 const char *
6699 bfd_elf_get_dt_soname (bfd *abfd)
6700 {
6701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6702 && bfd_get_format (abfd) == bfd_object)
6703 return elf_dt_name (abfd);
6704 return NULL;
6705 }
6706
6707 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6708 the ELF linker emulation code. */
6709
6710 bfd_boolean
6711 bfd_elf_get_bfd_needed_list (bfd *abfd,
6712 struct bfd_link_needed_list **pneeded)
6713 {
6714 asection *s;
6715 bfd_byte *dynbuf = NULL;
6716 int elfsec;
6717 unsigned long shlink;
6718 bfd_byte *extdyn, *extdynend;
6719 size_t extdynsize;
6720 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6721
6722 *pneeded = NULL;
6723
6724 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6725 || bfd_get_format (abfd) != bfd_object)
6726 return TRUE;
6727
6728 s = bfd_get_section_by_name (abfd, ".dynamic");
6729 if (s == NULL || s->size == 0)
6730 return TRUE;
6731
6732 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6733 goto error_return;
6734
6735 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6736 if (elfsec == -1)
6737 goto error_return;
6738
6739 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6740
6741 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6742 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6743
6744 extdyn = dynbuf;
6745 extdynend = extdyn + s->size;
6746 for (; extdyn < extdynend; extdyn += extdynsize)
6747 {
6748 Elf_Internal_Dyn dyn;
6749
6750 (*swap_dyn_in) (abfd, extdyn, &dyn);
6751
6752 if (dyn.d_tag == DT_NULL)
6753 break;
6754
6755 if (dyn.d_tag == DT_NEEDED)
6756 {
6757 const char *string;
6758 struct bfd_link_needed_list *l;
6759 unsigned int tagv = dyn.d_un.d_val;
6760 bfd_size_type amt;
6761
6762 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6763 if (string == NULL)
6764 goto error_return;
6765
6766 amt = sizeof *l;
6767 l = bfd_alloc (abfd, amt);
6768 if (l == NULL)
6769 goto error_return;
6770
6771 l->by = abfd;
6772 l->name = string;
6773 l->next = *pneeded;
6774 *pneeded = l;
6775 }
6776 }
6777
6778 free (dynbuf);
6779
6780 return TRUE;
6781
6782 error_return:
6783 if (dynbuf != NULL)
6784 free (dynbuf);
6785 return FALSE;
6786 }
6787
6788 struct elf_symbuf_symbol
6789 {
6790 unsigned long st_name; /* Symbol name, index in string tbl */
6791 unsigned char st_info; /* Type and binding attributes */
6792 unsigned char st_other; /* Visibilty, and target specific */
6793 };
6794
6795 struct elf_symbuf_head
6796 {
6797 struct elf_symbuf_symbol *ssym;
6798 bfd_size_type count;
6799 unsigned int st_shndx;
6800 };
6801
6802 struct elf_symbol
6803 {
6804 union
6805 {
6806 Elf_Internal_Sym *isym;
6807 struct elf_symbuf_symbol *ssym;
6808 } u;
6809 const char *name;
6810 };
6811
6812 /* Sort references to symbols by ascending section number. */
6813
6814 static int
6815 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6816 {
6817 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6818 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6819
6820 return s1->st_shndx - s2->st_shndx;
6821 }
6822
6823 static int
6824 elf_sym_name_compare (const void *arg1, const void *arg2)
6825 {
6826 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6827 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6828 return strcmp (s1->name, s2->name);
6829 }
6830
6831 static struct elf_symbuf_head *
6832 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6833 {
6834 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6835 struct elf_symbuf_symbol *ssym;
6836 struct elf_symbuf_head *ssymbuf, *ssymhead;
6837 bfd_size_type i, shndx_count;
6838
6839 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6840 if (indbuf == NULL)
6841 return NULL;
6842
6843 for (ind = indbuf, i = 0; i < symcount; i++)
6844 if (isymbuf[i].st_shndx != SHN_UNDEF)
6845 *ind++ = &isymbuf[i];
6846 indbufend = ind;
6847
6848 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6849 elf_sort_elf_symbol);
6850
6851 shndx_count = 0;
6852 if (indbufend > indbuf)
6853 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6854 if (ind[0]->st_shndx != ind[1]->st_shndx)
6855 shndx_count++;
6856
6857 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6858 + (indbufend - indbuf) * sizeof (*ssymbuf));
6859 if (ssymbuf == NULL)
6860 {
6861 free (indbuf);
6862 return NULL;
6863 }
6864
6865 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6866 ssymbuf->ssym = NULL;
6867 ssymbuf->count = shndx_count;
6868 ssymbuf->st_shndx = 0;
6869 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6870 {
6871 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6872 {
6873 ssymhead++;
6874 ssymhead->ssym = ssym;
6875 ssymhead->count = 0;
6876 ssymhead->st_shndx = (*ind)->st_shndx;
6877 }
6878 ssym->st_name = (*ind)->st_name;
6879 ssym->st_info = (*ind)->st_info;
6880 ssym->st_other = (*ind)->st_other;
6881 ssymhead->count++;
6882 }
6883 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6884
6885 free (indbuf);
6886 return ssymbuf;
6887 }
6888
6889 /* Check if 2 sections define the same set of local and global
6890 symbols. */
6891
6892 bfd_boolean
6893 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6894 struct bfd_link_info *info)
6895 {
6896 bfd *bfd1, *bfd2;
6897 const struct elf_backend_data *bed1, *bed2;
6898 Elf_Internal_Shdr *hdr1, *hdr2;
6899 bfd_size_type symcount1, symcount2;
6900 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6901 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6902 Elf_Internal_Sym *isym, *isymend;
6903 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6904 bfd_size_type count1, count2, i;
6905 int shndx1, shndx2;
6906 bfd_boolean result;
6907
6908 bfd1 = sec1->owner;
6909 bfd2 = sec2->owner;
6910
6911 /* If both are .gnu.linkonce sections, they have to have the same
6912 section name. */
6913 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
6914 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
6915 return strcmp (sec1->name + sizeof ".gnu.linkonce",
6916 sec2->name + sizeof ".gnu.linkonce") == 0;
6917
6918 /* Both sections have to be in ELF. */
6919 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6920 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6921 return FALSE;
6922
6923 if (elf_section_type (sec1) != elf_section_type (sec2))
6924 return FALSE;
6925
6926 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
6927 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
6928 {
6929 /* If both are members of section groups, they have to have the
6930 same group name. */
6931 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
6932 return FALSE;
6933 }
6934
6935 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6936 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6937 if (shndx1 == -1 || shndx2 == -1)
6938 return FALSE;
6939
6940 bed1 = get_elf_backend_data (bfd1);
6941 bed2 = get_elf_backend_data (bfd2);
6942 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6943 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6944 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6945 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6946
6947 if (symcount1 == 0 || symcount2 == 0)
6948 return FALSE;
6949
6950 result = FALSE;
6951 isymbuf1 = NULL;
6952 isymbuf2 = NULL;
6953 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6954 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6955
6956 if (ssymbuf1 == NULL)
6957 {
6958 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6959 NULL, NULL, NULL);
6960 if (isymbuf1 == NULL)
6961 goto done;
6962
6963 if (!info->reduce_memory_overheads)
6964 elf_tdata (bfd1)->symbuf = ssymbuf1
6965 = elf_create_symbuf (symcount1, isymbuf1);
6966 }
6967
6968 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6969 {
6970 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6971 NULL, NULL, NULL);
6972 if (isymbuf2 == NULL)
6973 goto done;
6974
6975 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6976 elf_tdata (bfd2)->symbuf = ssymbuf2
6977 = elf_create_symbuf (symcount2, isymbuf2);
6978 }
6979
6980 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6981 {
6982 /* Optimized faster version. */
6983 bfd_size_type lo, hi, mid;
6984 struct elf_symbol *symp;
6985 struct elf_symbuf_symbol *ssym, *ssymend;
6986
6987 lo = 0;
6988 hi = ssymbuf1->count;
6989 ssymbuf1++;
6990 count1 = 0;
6991 while (lo < hi)
6992 {
6993 mid = (lo + hi) / 2;
6994 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
6995 hi = mid;
6996 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
6997 lo = mid + 1;
6998 else
6999 {
7000 count1 = ssymbuf1[mid].count;
7001 ssymbuf1 += mid;
7002 break;
7003 }
7004 }
7005
7006 lo = 0;
7007 hi = ssymbuf2->count;
7008 ssymbuf2++;
7009 count2 = 0;
7010 while (lo < hi)
7011 {
7012 mid = (lo + hi) / 2;
7013 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7014 hi = mid;
7015 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7016 lo = mid + 1;
7017 else
7018 {
7019 count2 = ssymbuf2[mid].count;
7020 ssymbuf2 += mid;
7021 break;
7022 }
7023 }
7024
7025 if (count1 == 0 || count2 == 0 || count1 != count2)
7026 goto done;
7027
7028 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7029 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7030 if (symtable1 == NULL || symtable2 == NULL)
7031 goto done;
7032
7033 symp = symtable1;
7034 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7035 ssym < ssymend; ssym++, symp++)
7036 {
7037 symp->u.ssym = ssym;
7038 symp->name = bfd_elf_string_from_elf_section (bfd1,
7039 hdr1->sh_link,
7040 ssym->st_name);
7041 }
7042
7043 symp = symtable2;
7044 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7045 ssym < ssymend; ssym++, symp++)
7046 {
7047 symp->u.ssym = ssym;
7048 symp->name = bfd_elf_string_from_elf_section (bfd2,
7049 hdr2->sh_link,
7050 ssym->st_name);
7051 }
7052
7053 /* Sort symbol by name. */
7054 qsort (symtable1, count1, sizeof (struct elf_symbol),
7055 elf_sym_name_compare);
7056 qsort (symtable2, count1, sizeof (struct elf_symbol),
7057 elf_sym_name_compare);
7058
7059 for (i = 0; i < count1; i++)
7060 /* Two symbols must have the same binding, type and name. */
7061 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7062 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7063 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7064 goto done;
7065
7066 result = TRUE;
7067 goto done;
7068 }
7069
7070 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7071 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7072 if (symtable1 == NULL || symtable2 == NULL)
7073 goto done;
7074
7075 /* Count definitions in the section. */
7076 count1 = 0;
7077 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7078 if (isym->st_shndx == (unsigned int) shndx1)
7079 symtable1[count1++].u.isym = isym;
7080
7081 count2 = 0;
7082 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7083 if (isym->st_shndx == (unsigned int) shndx2)
7084 symtable2[count2++].u.isym = isym;
7085
7086 if (count1 == 0 || count2 == 0 || count1 != count2)
7087 goto done;
7088
7089 for (i = 0; i < count1; i++)
7090 symtable1[i].name
7091 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7092 symtable1[i].u.isym->st_name);
7093
7094 for (i = 0; i < count2; i++)
7095 symtable2[i].name
7096 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7097 symtable2[i].u.isym->st_name);
7098
7099 /* Sort symbol by name. */
7100 qsort (symtable1, count1, sizeof (struct elf_symbol),
7101 elf_sym_name_compare);
7102 qsort (symtable2, count1, sizeof (struct elf_symbol),
7103 elf_sym_name_compare);
7104
7105 for (i = 0; i < count1; i++)
7106 /* Two symbols must have the same binding, type and name. */
7107 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7108 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7109 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7110 goto done;
7111
7112 result = TRUE;
7113
7114 done:
7115 if (symtable1)
7116 free (symtable1);
7117 if (symtable2)
7118 free (symtable2);
7119 if (isymbuf1)
7120 free (isymbuf1);
7121 if (isymbuf2)
7122 free (isymbuf2);
7123
7124 return result;
7125 }
7126
7127 /* Return TRUE if 2 section types are compatible. */
7128
7129 bfd_boolean
7130 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7131 bfd *bbfd, const asection *bsec)
7132 {
7133 if (asec == NULL
7134 || bsec == NULL
7135 || abfd->xvec->flavour != bfd_target_elf_flavour
7136 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7137 return TRUE;
7138
7139 return elf_section_type (asec) == elf_section_type (bsec);
7140 }
7141 \f
7142 /* Final phase of ELF linker. */
7143
7144 /* A structure we use to avoid passing large numbers of arguments. */
7145
7146 struct elf_final_link_info
7147 {
7148 /* General link information. */
7149 struct bfd_link_info *info;
7150 /* Output BFD. */
7151 bfd *output_bfd;
7152 /* Symbol string table. */
7153 struct bfd_strtab_hash *symstrtab;
7154 /* .dynsym section. */
7155 asection *dynsym_sec;
7156 /* .hash section. */
7157 asection *hash_sec;
7158 /* symbol version section (.gnu.version). */
7159 asection *symver_sec;
7160 /* Buffer large enough to hold contents of any section. */
7161 bfd_byte *contents;
7162 /* Buffer large enough to hold external relocs of any section. */
7163 void *external_relocs;
7164 /* Buffer large enough to hold internal relocs of any section. */
7165 Elf_Internal_Rela *internal_relocs;
7166 /* Buffer large enough to hold external local symbols of any input
7167 BFD. */
7168 bfd_byte *external_syms;
7169 /* And a buffer for symbol section indices. */
7170 Elf_External_Sym_Shndx *locsym_shndx;
7171 /* Buffer large enough to hold internal local symbols of any input
7172 BFD. */
7173 Elf_Internal_Sym *internal_syms;
7174 /* Array large enough to hold a symbol index for each local symbol
7175 of any input BFD. */
7176 long *indices;
7177 /* Array large enough to hold a section pointer for each local
7178 symbol of any input BFD. */
7179 asection **sections;
7180 /* Buffer to hold swapped out symbols. */
7181 bfd_byte *symbuf;
7182 /* And one for symbol section indices. */
7183 Elf_External_Sym_Shndx *symshndxbuf;
7184 /* Number of swapped out symbols in buffer. */
7185 size_t symbuf_count;
7186 /* Number of symbols which fit in symbuf. */
7187 size_t symbuf_size;
7188 /* And same for symshndxbuf. */
7189 size_t shndxbuf_size;
7190 };
7191
7192 /* This struct is used to pass information to elf_link_output_extsym. */
7193
7194 struct elf_outext_info
7195 {
7196 bfd_boolean failed;
7197 bfd_boolean localsyms;
7198 struct elf_final_link_info *finfo;
7199 };
7200
7201
7202 /* Support for evaluating a complex relocation.
7203
7204 Complex relocations are generalized, self-describing relocations. The
7205 implementation of them consists of two parts: complex symbols, and the
7206 relocations themselves.
7207
7208 The relocations are use a reserved elf-wide relocation type code (R_RELC
7209 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7210 information (start bit, end bit, word width, etc) into the addend. This
7211 information is extracted from CGEN-generated operand tables within gas.
7212
7213 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7214 internal) representing prefix-notation expressions, including but not
7215 limited to those sorts of expressions normally encoded as addends in the
7216 addend field. The symbol mangling format is:
7217
7218 <node> := <literal>
7219 | <unary-operator> ':' <node>
7220 | <binary-operator> ':' <node> ':' <node>
7221 ;
7222
7223 <literal> := 's' <digits=N> ':' <N character symbol name>
7224 | 'S' <digits=N> ':' <N character section name>
7225 | '#' <hexdigits>
7226 ;
7227
7228 <binary-operator> := as in C
7229 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7230
7231 static void
7232 set_symbol_value (bfd * bfd_with_globals,
7233 Elf_Internal_Sym * isymbuf,
7234 size_t locsymcount,
7235 size_t symidx,
7236 bfd_vma val)
7237 {
7238 struct elf_link_hash_entry **sym_hashes;
7239 struct elf_link_hash_entry *h;
7240 size_t extsymoff = locsymcount;
7241
7242 if (symidx < locsymcount)
7243 {
7244 Elf_Internal_Sym *sym;
7245
7246 sym = isymbuf + symidx;
7247 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7248 {
7249 /* It is a local symbol: move it to the
7250 "absolute" section and give it a value. */
7251 sym->st_shndx = SHN_ABS;
7252 sym->st_value = val;
7253 return;
7254 }
7255 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7256 extsymoff = 0;
7257 }
7258
7259 /* It is a global symbol: set its link type
7260 to "defined" and give it a value. */
7261
7262 sym_hashes = elf_sym_hashes (bfd_with_globals);
7263 h = sym_hashes [symidx - extsymoff];
7264 while (h->root.type == bfd_link_hash_indirect
7265 || h->root.type == bfd_link_hash_warning)
7266 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7267 h->root.type = bfd_link_hash_defined;
7268 h->root.u.def.value = val;
7269 h->root.u.def.section = bfd_abs_section_ptr;
7270 }
7271
7272 static bfd_boolean
7273 resolve_symbol (const char * name,
7274 bfd * input_bfd,
7275 struct elf_final_link_info * finfo,
7276 bfd_vma * result,
7277 Elf_Internal_Sym * isymbuf,
7278 size_t locsymcount)
7279 {
7280 Elf_Internal_Sym * sym;
7281 struct bfd_link_hash_entry * global_entry;
7282 const char * candidate = NULL;
7283 Elf_Internal_Shdr * symtab_hdr;
7284 size_t i;
7285
7286 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7287
7288 for (i = 0; i < locsymcount; ++ i)
7289 {
7290 sym = isymbuf + i;
7291
7292 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7293 continue;
7294
7295 candidate = bfd_elf_string_from_elf_section (input_bfd,
7296 symtab_hdr->sh_link,
7297 sym->st_name);
7298 #ifdef DEBUG
7299 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7300 name, candidate, (unsigned long) sym->st_value);
7301 #endif
7302 if (candidate && strcmp (candidate, name) == 0)
7303 {
7304 asection *sec = finfo->sections [i];
7305
7306 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7307 *result += sec->output_offset + sec->output_section->vma;
7308 #ifdef DEBUG
7309 printf ("Found symbol with value %8.8lx\n",
7310 (unsigned long) *result);
7311 #endif
7312 return TRUE;
7313 }
7314 }
7315
7316 /* Hmm, haven't found it yet. perhaps it is a global. */
7317 global_entry = bfd_link_hash_lookup (finfo->info->hash, name, FALSE, FALSE, TRUE);
7318 if (!global_entry)
7319 return FALSE;
7320
7321 if (global_entry->type == bfd_link_hash_defined
7322 || global_entry->type == bfd_link_hash_defweak)
7323 {
7324 * result = global_entry->u.def.value
7325 + global_entry->u.def.section->output_section->vma
7326 + global_entry->u.def.section->output_offset;
7327 #ifdef DEBUG
7328 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7329 global_entry->root.string, (unsigned long) *result);
7330 #endif
7331 return TRUE;
7332 }
7333
7334 return FALSE;
7335 }
7336
7337 static bfd_boolean
7338 resolve_section (const char * name,
7339 asection * sections,
7340 bfd_vma * result)
7341 {
7342 asection * curr;
7343 unsigned int len;
7344
7345 for (curr = sections; curr; curr = curr->next)
7346 if (strcmp (curr->name, name) == 0)
7347 {
7348 *result = curr->vma;
7349 return TRUE;
7350 }
7351
7352 /* Hmm. still haven't found it. try pseudo-section names. */
7353 for (curr = sections; curr; curr = curr->next)
7354 {
7355 len = strlen (curr->name);
7356 if (len > strlen (name))
7357 continue;
7358
7359 if (strncmp (curr->name, name, len) == 0)
7360 {
7361 if (strncmp (".end", name + len, 4) == 0)
7362 {
7363 *result = curr->vma + curr->size;
7364 return TRUE;
7365 }
7366
7367 /* Insert more pseudo-section names here, if you like. */
7368 }
7369 }
7370
7371 return FALSE;
7372 }
7373
7374 static void
7375 undefined_reference (const char * reftype,
7376 const char * name)
7377 {
7378 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), reftype, name);
7379 }
7380
7381 static bfd_boolean
7382 eval_symbol (bfd_vma * result,
7383 const char ** symp,
7384 bfd * input_bfd,
7385 struct elf_final_link_info * finfo,
7386 bfd_vma dot,
7387 Elf_Internal_Sym * isymbuf,
7388 size_t locsymcount,
7389 int signed_p)
7390 {
7391 int len;
7392 int symlen;
7393 bfd_vma a;
7394 bfd_vma b;
7395 const int bufsz = 4096;
7396 char symbuf [bufsz];
7397 const char *sym = *symp;
7398 const char * symend;
7399 bfd_boolean symbol_is_section = FALSE;
7400
7401 len = strlen (sym);
7402 symend = sym + len;
7403
7404 if (len < 1 || len > bufsz)
7405 {
7406 bfd_set_error (bfd_error_invalid_operation);
7407 return FALSE;
7408 }
7409
7410 switch (* sym)
7411 {
7412 case '.':
7413 *result = dot;
7414 *symp = sym + 1;
7415 return TRUE;
7416
7417 case '#':
7418 ++sym;
7419 *result = strtoul (sym, (char **) symp, 16);
7420 return TRUE;
7421
7422 case 'S':
7423 symbol_is_section = TRUE;
7424 case 's':
7425 ++sym;
7426 symlen = strtol (sym, (char **) symp, 10);
7427 sym = *symp + 1; /* Skip the trailing ':'. */
7428
7429 if ((symend < sym) || ((symlen + 1) > bufsz))
7430 {
7431 bfd_set_error (bfd_error_invalid_operation);
7432 return FALSE;
7433 }
7434
7435 memcpy (symbuf, sym, symlen);
7436 symbuf [symlen] = '\0';
7437 *symp = sym + symlen;
7438
7439 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7440 the symbol as a section, or vice-versa. so we're pretty liberal in our
7441 interpretation here; section means "try section first", not "must be a
7442 section", and likewise with symbol. */
7443
7444 if (symbol_is_section)
7445 {
7446 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7447 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7448 isymbuf, locsymcount))
7449 {
7450 undefined_reference ("section", symbuf);
7451 return FALSE;
7452 }
7453 }
7454 else
7455 {
7456 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7457 isymbuf, locsymcount)
7458 && !resolve_section (symbuf, finfo->output_bfd->sections,
7459 result))
7460 {
7461 undefined_reference ("symbol", symbuf);
7462 return FALSE;
7463 }
7464 }
7465
7466 return TRUE;
7467
7468 /* All that remains are operators. */
7469
7470 #define UNARY_OP(op) \
7471 if (strncmp (sym, #op, strlen (#op)) == 0) \
7472 { \
7473 sym += strlen (#op); \
7474 if (* sym == ':') \
7475 ++ sym; \
7476 *symp = sym; \
7477 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7478 isymbuf, locsymcount, signed_p)) \
7479 return FALSE; \
7480 if (signed_p) \
7481 *result = op ((bfd_signed_vma) a); \
7482 else \
7483 * result = op a; \
7484 return TRUE; \
7485 }
7486
7487 #define BINARY_OP(op) \
7488 if (strncmp (sym, #op, strlen (#op)) == 0) \
7489 { \
7490 sym += strlen (#op); \
7491 if (* sym == ':') \
7492 ++ sym; \
7493 *symp = sym; \
7494 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7495 isymbuf, locsymcount, signed_p)) \
7496 return FALSE; \
7497 ++*symp; \
7498 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7499 isymbuf, locsymcount, signed_p)) \
7500 return FALSE; \
7501 if (signed_p) \
7502 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7503 else \
7504 * result = a op b; \
7505 return TRUE; \
7506 }
7507
7508 default:
7509 UNARY_OP (0-);
7510 BINARY_OP (<<);
7511 BINARY_OP (>>);
7512 BINARY_OP (==);
7513 BINARY_OP (!=);
7514 BINARY_OP (<=);
7515 BINARY_OP (>=);
7516 BINARY_OP (&&);
7517 BINARY_OP (||);
7518 UNARY_OP (~);
7519 UNARY_OP (!);
7520 BINARY_OP (*);
7521 BINARY_OP (/);
7522 BINARY_OP (%);
7523 BINARY_OP (^);
7524 BINARY_OP (|);
7525 BINARY_OP (&);
7526 BINARY_OP (+);
7527 BINARY_OP (-);
7528 BINARY_OP (<);
7529 BINARY_OP (>);
7530 #undef UNARY_OP
7531 #undef BINARY_OP
7532 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7533 bfd_set_error (bfd_error_invalid_operation);
7534 return FALSE;
7535 }
7536 }
7537
7538 static void
7539 put_value (bfd_vma size,
7540 unsigned long chunksz,
7541 bfd * input_bfd,
7542 bfd_vma x,
7543 bfd_byte * location)
7544 {
7545 location += (size - chunksz);
7546
7547 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7548 {
7549 switch (chunksz)
7550 {
7551 default:
7552 case 0:
7553 abort ();
7554 case 1:
7555 bfd_put_8 (input_bfd, x, location);
7556 break;
7557 case 2:
7558 bfd_put_16 (input_bfd, x, location);
7559 break;
7560 case 4:
7561 bfd_put_32 (input_bfd, x, location);
7562 break;
7563 case 8:
7564 #ifdef BFD64
7565 bfd_put_64 (input_bfd, x, location);
7566 #else
7567 abort ();
7568 #endif
7569 break;
7570 }
7571 }
7572 }
7573
7574 static bfd_vma
7575 get_value (bfd_vma size,
7576 unsigned long chunksz,
7577 bfd * input_bfd,
7578 bfd_byte * location)
7579 {
7580 bfd_vma x = 0;
7581
7582 for (; size; size -= chunksz, location += chunksz)
7583 {
7584 switch (chunksz)
7585 {
7586 default:
7587 case 0:
7588 abort ();
7589 case 1:
7590 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7591 break;
7592 case 2:
7593 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7594 break;
7595 case 4:
7596 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7597 break;
7598 case 8:
7599 #ifdef BFD64
7600 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7601 #else
7602 abort ();
7603 #endif
7604 break;
7605 }
7606 }
7607 return x;
7608 }
7609
7610 static void
7611 decode_complex_addend
7612 (unsigned long * start, /* in bits */
7613 unsigned long * oplen, /* in bits */
7614 unsigned long * len, /* in bits */
7615 unsigned long * wordsz, /* in bytes */
7616 unsigned long * chunksz, /* in bytes */
7617 unsigned long * lsb0_p,
7618 unsigned long * signed_p,
7619 unsigned long * trunc_p,
7620 unsigned long encoded)
7621 {
7622 * start = encoded & 0x3F;
7623 * len = (encoded >> 6) & 0x3F;
7624 * oplen = (encoded >> 12) & 0x3F;
7625 * wordsz = (encoded >> 18) & 0xF;
7626 * chunksz = (encoded >> 22) & 0xF;
7627 * lsb0_p = (encoded >> 27) & 1;
7628 * signed_p = (encoded >> 28) & 1;
7629 * trunc_p = (encoded >> 29) & 1;
7630 }
7631
7632 void
7633 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7634 asection *input_section,
7635 bfd_byte *contents,
7636 Elf_Internal_Rela *rel,
7637 bfd_vma relocation)
7638 {
7639 bfd_vma shift, x, mask;
7640 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7641
7642 /* Perform this reloc, since it is complex.
7643 (this is not to say that it necessarily refers to a complex
7644 symbol; merely that it is a self-describing CGEN based reloc.
7645 i.e. the addend has the complete reloc information (bit start, end,
7646 word size, etc) encoded within it.). */
7647
7648 decode_complex_addend (& start, & oplen, & len, & wordsz,
7649 & chunksz, & lsb0_p, & signed_p,
7650 & trunc_p, rel->r_addend);
7651
7652 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7653
7654 if (lsb0_p)
7655 shift = (start + 1) - len;
7656 else
7657 shift = (8 * wordsz) - (start + len);
7658
7659 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7660
7661 #ifdef DEBUG
7662 printf ("Doing complex reloc: "
7663 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7664 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7665 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7666 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7667 oplen, x, mask, relocation);
7668 #endif
7669
7670 if (! trunc_p)
7671 {
7672 /* Now do an overflow check. */
7673 if (bfd_check_overflow ((signed_p ?
7674 complain_overflow_signed :
7675 complain_overflow_unsigned),
7676 len, 0, (8 * wordsz),
7677 relocation) == bfd_reloc_overflow)
7678 (*_bfd_error_handler)
7679 ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7680 "within 0x%lx",
7681 input_bfd->filename, input_section->name, rel->r_offset,
7682 relocation, (signed_p ? "(signed) " : ""), mask);
7683 }
7684
7685 /* Do the deed. */
7686 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7687
7688 #ifdef DEBUG
7689 printf (" relocation: %8.8lx\n"
7690 " shifted mask: %8.8lx\n"
7691 " shifted/masked reloc: %8.8lx\n"
7692 " result: %8.8lx\n",
7693 relocation, (mask << shift),
7694 ((relocation & mask) << shift), x);
7695 #endif
7696 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7697 }
7698
7699 /* When performing a relocatable link, the input relocations are
7700 preserved. But, if they reference global symbols, the indices
7701 referenced must be updated. Update all the relocations in
7702 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7703
7704 static void
7705 elf_link_adjust_relocs (bfd *abfd,
7706 Elf_Internal_Shdr *rel_hdr,
7707 unsigned int count,
7708 struct elf_link_hash_entry **rel_hash)
7709 {
7710 unsigned int i;
7711 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7712 bfd_byte *erela;
7713 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7714 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7715 bfd_vma r_type_mask;
7716 int r_sym_shift;
7717
7718 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7719 {
7720 swap_in = bed->s->swap_reloc_in;
7721 swap_out = bed->s->swap_reloc_out;
7722 }
7723 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7724 {
7725 swap_in = bed->s->swap_reloca_in;
7726 swap_out = bed->s->swap_reloca_out;
7727 }
7728 else
7729 abort ();
7730
7731 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7732 abort ();
7733
7734 if (bed->s->arch_size == 32)
7735 {
7736 r_type_mask = 0xff;
7737 r_sym_shift = 8;
7738 }
7739 else
7740 {
7741 r_type_mask = 0xffffffff;
7742 r_sym_shift = 32;
7743 }
7744
7745 erela = rel_hdr->contents;
7746 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7747 {
7748 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7749 unsigned int j;
7750
7751 if (*rel_hash == NULL)
7752 continue;
7753
7754 BFD_ASSERT ((*rel_hash)->indx >= 0);
7755
7756 (*swap_in) (abfd, erela, irela);
7757 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7758 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7759 | (irela[j].r_info & r_type_mask));
7760 (*swap_out) (abfd, irela, erela);
7761 }
7762 }
7763
7764 struct elf_link_sort_rela
7765 {
7766 union {
7767 bfd_vma offset;
7768 bfd_vma sym_mask;
7769 } u;
7770 enum elf_reloc_type_class type;
7771 /* We use this as an array of size int_rels_per_ext_rel. */
7772 Elf_Internal_Rela rela[1];
7773 };
7774
7775 static int
7776 elf_link_sort_cmp1 (const void *A, const void *B)
7777 {
7778 const struct elf_link_sort_rela *a = A;
7779 const struct elf_link_sort_rela *b = B;
7780 int relativea, relativeb;
7781
7782 relativea = a->type == reloc_class_relative;
7783 relativeb = b->type == reloc_class_relative;
7784
7785 if (relativea < relativeb)
7786 return 1;
7787 if (relativea > relativeb)
7788 return -1;
7789 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7790 return -1;
7791 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7792 return 1;
7793 if (a->rela->r_offset < b->rela->r_offset)
7794 return -1;
7795 if (a->rela->r_offset > b->rela->r_offset)
7796 return 1;
7797 return 0;
7798 }
7799
7800 static int
7801 elf_link_sort_cmp2 (const void *A, const void *B)
7802 {
7803 const struct elf_link_sort_rela *a = A;
7804 const struct elf_link_sort_rela *b = B;
7805 int copya, copyb;
7806
7807 if (a->u.offset < b->u.offset)
7808 return -1;
7809 if (a->u.offset > b->u.offset)
7810 return 1;
7811 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7812 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7813 if (copya < copyb)
7814 return -1;
7815 if (copya > copyb)
7816 return 1;
7817 if (a->rela->r_offset < b->rela->r_offset)
7818 return -1;
7819 if (a->rela->r_offset > b->rela->r_offset)
7820 return 1;
7821 return 0;
7822 }
7823
7824 static size_t
7825 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7826 {
7827 asection *dynamic_relocs;
7828 asection *rela_dyn;
7829 asection *rel_dyn;
7830 bfd_size_type count, size;
7831 size_t i, ret, sort_elt, ext_size;
7832 bfd_byte *sort, *s_non_relative, *p;
7833 struct elf_link_sort_rela *sq;
7834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7835 int i2e = bed->s->int_rels_per_ext_rel;
7836 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7837 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7838 struct bfd_link_order *lo;
7839 bfd_vma r_sym_mask;
7840 bfd_boolean use_rela;
7841
7842 /* Find a dynamic reloc section. */
7843 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7844 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7845 if (rela_dyn != NULL && rela_dyn->size > 0
7846 && rel_dyn != NULL && rel_dyn->size > 0)
7847 {
7848 bfd_boolean use_rela_initialised = FALSE;
7849
7850 /* This is just here to stop gcc from complaining.
7851 It's initialization checking code is not perfect. */
7852 use_rela = TRUE;
7853
7854 /* Both sections are present. Examine the sizes
7855 of the indirect sections to help us choose. */
7856 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7857 if (lo->type == bfd_indirect_link_order)
7858 {
7859 asection *o = lo->u.indirect.section;
7860
7861 if ((o->size % bed->s->sizeof_rela) == 0)
7862 {
7863 if ((o->size % bed->s->sizeof_rel) == 0)
7864 /* Section size is divisible by both rel and rela sizes.
7865 It is of no help to us. */
7866 ;
7867 else
7868 {
7869 /* Section size is only divisible by rela. */
7870 if (use_rela_initialised && (use_rela == FALSE))
7871 {
7872 _bfd_error_handler
7873 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7874 bfd_set_error (bfd_error_invalid_operation);
7875 return 0;
7876 }
7877 else
7878 {
7879 use_rela = TRUE;
7880 use_rela_initialised = TRUE;
7881 }
7882 }
7883 }
7884 else if ((o->size % bed->s->sizeof_rel) == 0)
7885 {
7886 /* Section size is only divisible by rel. */
7887 if (use_rela_initialised && (use_rela == TRUE))
7888 {
7889 _bfd_error_handler
7890 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7891 bfd_set_error (bfd_error_invalid_operation);
7892 return 0;
7893 }
7894 else
7895 {
7896 use_rela = FALSE;
7897 use_rela_initialised = TRUE;
7898 }
7899 }
7900 else
7901 {
7902 /* The section size is not divisible by either - something is wrong. */
7903 _bfd_error_handler
7904 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7905 bfd_set_error (bfd_error_invalid_operation);
7906 return 0;
7907 }
7908 }
7909
7910 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7911 if (lo->type == bfd_indirect_link_order)
7912 {
7913 asection *o = lo->u.indirect.section;
7914
7915 if ((o->size % bed->s->sizeof_rela) == 0)
7916 {
7917 if ((o->size % bed->s->sizeof_rel) == 0)
7918 /* Section size is divisible by both rel and rela sizes.
7919 It is of no help to us. */
7920 ;
7921 else
7922 {
7923 /* Section size is only divisible by rela. */
7924 if (use_rela_initialised && (use_rela == FALSE))
7925 {
7926 _bfd_error_handler
7927 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7928 bfd_set_error (bfd_error_invalid_operation);
7929 return 0;
7930 }
7931 else
7932 {
7933 use_rela = TRUE;
7934 use_rela_initialised = TRUE;
7935 }
7936 }
7937 }
7938 else if ((o->size % bed->s->sizeof_rel) == 0)
7939 {
7940 /* Section size is only divisible by rel. */
7941 if (use_rela_initialised && (use_rela == TRUE))
7942 {
7943 _bfd_error_handler
7944 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7945 bfd_set_error (bfd_error_invalid_operation);
7946 return 0;
7947 }
7948 else
7949 {
7950 use_rela = FALSE;
7951 use_rela_initialised = TRUE;
7952 }
7953 }
7954 else
7955 {
7956 /* The section size is not divisible by either - something is wrong. */
7957 _bfd_error_handler
7958 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7959 bfd_set_error (bfd_error_invalid_operation);
7960 return 0;
7961 }
7962 }
7963
7964 if (! use_rela_initialised)
7965 /* Make a guess. */
7966 use_rela = TRUE;
7967 }
7968 else if (rela_dyn != NULL && rela_dyn->size > 0)
7969 use_rela = TRUE;
7970 else if (rel_dyn != NULL && rel_dyn->size > 0)
7971 use_rela = FALSE;
7972 else
7973 return 0;
7974
7975 if (use_rela)
7976 {
7977 dynamic_relocs = rela_dyn;
7978 ext_size = bed->s->sizeof_rela;
7979 swap_in = bed->s->swap_reloca_in;
7980 swap_out = bed->s->swap_reloca_out;
7981 }
7982 else
7983 {
7984 dynamic_relocs = rel_dyn;
7985 ext_size = bed->s->sizeof_rel;
7986 swap_in = bed->s->swap_reloc_in;
7987 swap_out = bed->s->swap_reloc_out;
7988 }
7989
7990 size = 0;
7991 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
7992 if (lo->type == bfd_indirect_link_order)
7993 size += lo->u.indirect.section->size;
7994
7995 if (size != dynamic_relocs->size)
7996 return 0;
7997
7998 sort_elt = (sizeof (struct elf_link_sort_rela)
7999 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8000
8001 count = dynamic_relocs->size / ext_size;
8002 sort = bfd_zmalloc (sort_elt * count);
8003
8004 if (sort == NULL)
8005 {
8006 (*info->callbacks->warning)
8007 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8008 return 0;
8009 }
8010
8011 if (bed->s->arch_size == 32)
8012 r_sym_mask = ~(bfd_vma) 0xff;
8013 else
8014 r_sym_mask = ~(bfd_vma) 0xffffffff;
8015
8016 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8017 if (lo->type == bfd_indirect_link_order)
8018 {
8019 bfd_byte *erel, *erelend;
8020 asection *o = lo->u.indirect.section;
8021
8022 if (o->contents == NULL && o->size != 0)
8023 {
8024 /* This is a reloc section that is being handled as a normal
8025 section. See bfd_section_from_shdr. We can't combine
8026 relocs in this case. */
8027 free (sort);
8028 return 0;
8029 }
8030 erel = o->contents;
8031 erelend = o->contents + o->size;
8032 p = sort + o->output_offset / ext_size * sort_elt;
8033
8034 while (erel < erelend)
8035 {
8036 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8037
8038 (*swap_in) (abfd, erel, s->rela);
8039 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8040 s->u.sym_mask = r_sym_mask;
8041 p += sort_elt;
8042 erel += ext_size;
8043 }
8044 }
8045
8046 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8047
8048 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8049 {
8050 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8051 if (s->type != reloc_class_relative)
8052 break;
8053 }
8054 ret = i;
8055 s_non_relative = p;
8056
8057 sq = (struct elf_link_sort_rela *) s_non_relative;
8058 for (; i < count; i++, p += sort_elt)
8059 {
8060 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8061 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8062 sq = sp;
8063 sp->u.offset = sq->rela->r_offset;
8064 }
8065
8066 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8067
8068 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8069 if (lo->type == bfd_indirect_link_order)
8070 {
8071 bfd_byte *erel, *erelend;
8072 asection *o = lo->u.indirect.section;
8073
8074 erel = o->contents;
8075 erelend = o->contents + o->size;
8076 p = sort + o->output_offset / ext_size * sort_elt;
8077 while (erel < erelend)
8078 {
8079 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8080 (*swap_out) (abfd, s->rela, erel);
8081 p += sort_elt;
8082 erel += ext_size;
8083 }
8084 }
8085
8086 free (sort);
8087 *psec = dynamic_relocs;
8088 return ret;
8089 }
8090
8091 /* Flush the output symbols to the file. */
8092
8093 static bfd_boolean
8094 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8095 const struct elf_backend_data *bed)
8096 {
8097 if (finfo->symbuf_count > 0)
8098 {
8099 Elf_Internal_Shdr *hdr;
8100 file_ptr pos;
8101 bfd_size_type amt;
8102
8103 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8104 pos = hdr->sh_offset + hdr->sh_size;
8105 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8106 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8107 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8108 return FALSE;
8109
8110 hdr->sh_size += amt;
8111 finfo->symbuf_count = 0;
8112 }
8113
8114 return TRUE;
8115 }
8116
8117 /* Add a symbol to the output symbol table. */
8118
8119 static bfd_boolean
8120 elf_link_output_sym (struct elf_final_link_info *finfo,
8121 const char *name,
8122 Elf_Internal_Sym *elfsym,
8123 asection *input_sec,
8124 struct elf_link_hash_entry *h)
8125 {
8126 bfd_byte *dest;
8127 Elf_External_Sym_Shndx *destshndx;
8128 bfd_boolean (*output_symbol_hook)
8129 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8130 struct elf_link_hash_entry *);
8131 const struct elf_backend_data *bed;
8132
8133 bed = get_elf_backend_data (finfo->output_bfd);
8134 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8135 if (output_symbol_hook != NULL)
8136 {
8137 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8138 return FALSE;
8139 }
8140
8141 if (name == NULL || *name == '\0')
8142 elfsym->st_name = 0;
8143 else if (input_sec->flags & SEC_EXCLUDE)
8144 elfsym->st_name = 0;
8145 else
8146 {
8147 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8148 name, TRUE, FALSE);
8149 if (elfsym->st_name == (unsigned long) -1)
8150 return FALSE;
8151 }
8152
8153 if (finfo->symbuf_count >= finfo->symbuf_size)
8154 {
8155 if (! elf_link_flush_output_syms (finfo, bed))
8156 return FALSE;
8157 }
8158
8159 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8160 destshndx = finfo->symshndxbuf;
8161 if (destshndx != NULL)
8162 {
8163 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8164 {
8165 bfd_size_type amt;
8166
8167 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8168 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8169 if (destshndx == NULL)
8170 return FALSE;
8171 memset ((char *) destshndx + amt, 0, amt);
8172 finfo->shndxbuf_size *= 2;
8173 }
8174 destshndx += bfd_get_symcount (finfo->output_bfd);
8175 }
8176
8177 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8178 finfo->symbuf_count += 1;
8179 bfd_get_symcount (finfo->output_bfd) += 1;
8180
8181 return TRUE;
8182 }
8183
8184 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8185
8186 static bfd_boolean
8187 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8188 {
8189 if (sym->st_shndx > SHN_HIRESERVE)
8190 {
8191 /* The gABI doesn't support dynamic symbols in output sections
8192 beyond 64k. */
8193 (*_bfd_error_handler)
8194 (_("%B: Too many sections: %d (>= %d)"),
8195 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8196 bfd_set_error (bfd_error_nonrepresentable_section);
8197 return FALSE;
8198 }
8199 return TRUE;
8200 }
8201
8202 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8203 allowing an unsatisfied unversioned symbol in the DSO to match a
8204 versioned symbol that would normally require an explicit version.
8205 We also handle the case that a DSO references a hidden symbol
8206 which may be satisfied by a versioned symbol in another DSO. */
8207
8208 static bfd_boolean
8209 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8210 const struct elf_backend_data *bed,
8211 struct elf_link_hash_entry *h)
8212 {
8213 bfd *abfd;
8214 struct elf_link_loaded_list *loaded;
8215
8216 if (!is_elf_hash_table (info->hash))
8217 return FALSE;
8218
8219 switch (h->root.type)
8220 {
8221 default:
8222 abfd = NULL;
8223 break;
8224
8225 case bfd_link_hash_undefined:
8226 case bfd_link_hash_undefweak:
8227 abfd = h->root.u.undef.abfd;
8228 if ((abfd->flags & DYNAMIC) == 0
8229 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8230 return FALSE;
8231 break;
8232
8233 case bfd_link_hash_defined:
8234 case bfd_link_hash_defweak:
8235 abfd = h->root.u.def.section->owner;
8236 break;
8237
8238 case bfd_link_hash_common:
8239 abfd = h->root.u.c.p->section->owner;
8240 break;
8241 }
8242 BFD_ASSERT (abfd != NULL);
8243
8244 for (loaded = elf_hash_table (info)->loaded;
8245 loaded != NULL;
8246 loaded = loaded->next)
8247 {
8248 bfd *input;
8249 Elf_Internal_Shdr *hdr;
8250 bfd_size_type symcount;
8251 bfd_size_type extsymcount;
8252 bfd_size_type extsymoff;
8253 Elf_Internal_Shdr *versymhdr;
8254 Elf_Internal_Sym *isym;
8255 Elf_Internal_Sym *isymend;
8256 Elf_Internal_Sym *isymbuf;
8257 Elf_External_Versym *ever;
8258 Elf_External_Versym *extversym;
8259
8260 input = loaded->abfd;
8261
8262 /* We check each DSO for a possible hidden versioned definition. */
8263 if (input == abfd
8264 || (input->flags & DYNAMIC) == 0
8265 || elf_dynversym (input) == 0)
8266 continue;
8267
8268 hdr = &elf_tdata (input)->dynsymtab_hdr;
8269
8270 symcount = hdr->sh_size / bed->s->sizeof_sym;
8271 if (elf_bad_symtab (input))
8272 {
8273 extsymcount = symcount;
8274 extsymoff = 0;
8275 }
8276 else
8277 {
8278 extsymcount = symcount - hdr->sh_info;
8279 extsymoff = hdr->sh_info;
8280 }
8281
8282 if (extsymcount == 0)
8283 continue;
8284
8285 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8286 NULL, NULL, NULL);
8287 if (isymbuf == NULL)
8288 return FALSE;
8289
8290 /* Read in any version definitions. */
8291 versymhdr = &elf_tdata (input)->dynversym_hdr;
8292 extversym = bfd_malloc (versymhdr->sh_size);
8293 if (extversym == NULL)
8294 goto error_ret;
8295
8296 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8297 || (bfd_bread (extversym, versymhdr->sh_size, input)
8298 != versymhdr->sh_size))
8299 {
8300 free (extversym);
8301 error_ret:
8302 free (isymbuf);
8303 return FALSE;
8304 }
8305
8306 ever = extversym + extsymoff;
8307 isymend = isymbuf + extsymcount;
8308 for (isym = isymbuf; isym < isymend; isym++, ever++)
8309 {
8310 const char *name;
8311 Elf_Internal_Versym iver;
8312 unsigned short version_index;
8313
8314 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8315 || isym->st_shndx == SHN_UNDEF)
8316 continue;
8317
8318 name = bfd_elf_string_from_elf_section (input,
8319 hdr->sh_link,
8320 isym->st_name);
8321 if (strcmp (name, h->root.root.string) != 0)
8322 continue;
8323
8324 _bfd_elf_swap_versym_in (input, ever, &iver);
8325
8326 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8327 {
8328 /* If we have a non-hidden versioned sym, then it should
8329 have provided a definition for the undefined sym. */
8330 abort ();
8331 }
8332
8333 version_index = iver.vs_vers & VERSYM_VERSION;
8334 if (version_index == 1 || version_index == 2)
8335 {
8336 /* This is the base or first version. We can use it. */
8337 free (extversym);
8338 free (isymbuf);
8339 return TRUE;
8340 }
8341 }
8342
8343 free (extversym);
8344 free (isymbuf);
8345 }
8346
8347 return FALSE;
8348 }
8349
8350 /* Add an external symbol to the symbol table. This is called from
8351 the hash table traversal routine. When generating a shared object,
8352 we go through the symbol table twice. The first time we output
8353 anything that might have been forced to local scope in a version
8354 script. The second time we output the symbols that are still
8355 global symbols. */
8356
8357 static bfd_boolean
8358 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8359 {
8360 struct elf_outext_info *eoinfo = data;
8361 struct elf_final_link_info *finfo = eoinfo->finfo;
8362 bfd_boolean strip;
8363 Elf_Internal_Sym sym;
8364 asection *input_sec;
8365 const struct elf_backend_data *bed;
8366
8367 if (h->root.type == bfd_link_hash_warning)
8368 {
8369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8370 if (h->root.type == bfd_link_hash_new)
8371 return TRUE;
8372 }
8373
8374 /* Decide whether to output this symbol in this pass. */
8375 if (eoinfo->localsyms)
8376 {
8377 if (!h->forced_local)
8378 return TRUE;
8379 }
8380 else
8381 {
8382 if (h->forced_local)
8383 return TRUE;
8384 }
8385
8386 bed = get_elf_backend_data (finfo->output_bfd);
8387
8388 if (h->root.type == bfd_link_hash_undefined)
8389 {
8390 /* If we have an undefined symbol reference here then it must have
8391 come from a shared library that is being linked in. (Undefined
8392 references in regular files have already been handled). */
8393 bfd_boolean ignore_undef = FALSE;
8394
8395 /* Some symbols may be special in that the fact that they're
8396 undefined can be safely ignored - let backend determine that. */
8397 if (bed->elf_backend_ignore_undef_symbol)
8398 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8399
8400 /* If we are reporting errors for this situation then do so now. */
8401 if (ignore_undef == FALSE
8402 && h->ref_dynamic
8403 && ! h->ref_regular
8404 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8405 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8406 {
8407 if (! (finfo->info->callbacks->undefined_symbol
8408 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8409 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8410 {
8411 eoinfo->failed = TRUE;
8412 return FALSE;
8413 }
8414 }
8415 }
8416
8417 /* We should also warn if a forced local symbol is referenced from
8418 shared libraries. */
8419 if (! finfo->info->relocatable
8420 && (! finfo->info->shared)
8421 && h->forced_local
8422 && h->ref_dynamic
8423 && !h->dynamic_def
8424 && !h->dynamic_weak
8425 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8426 {
8427 (*_bfd_error_handler)
8428 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8429 finfo->output_bfd,
8430 h->root.u.def.section == bfd_abs_section_ptr
8431 ? finfo->output_bfd : h->root.u.def.section->owner,
8432 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8433 ? "internal"
8434 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8435 ? "hidden" : "local",
8436 h->root.root.string);
8437 eoinfo->failed = TRUE;
8438 return FALSE;
8439 }
8440
8441 /* We don't want to output symbols that have never been mentioned by
8442 a regular file, or that we have been told to strip. However, if
8443 h->indx is set to -2, the symbol is used by a reloc and we must
8444 output it. */
8445 if (h->indx == -2)
8446 strip = FALSE;
8447 else if ((h->def_dynamic
8448 || h->ref_dynamic
8449 || h->root.type == bfd_link_hash_new)
8450 && !h->def_regular
8451 && !h->ref_regular)
8452 strip = TRUE;
8453 else if (finfo->info->strip == strip_all)
8454 strip = TRUE;
8455 else if (finfo->info->strip == strip_some
8456 && bfd_hash_lookup (finfo->info->keep_hash,
8457 h->root.root.string, FALSE, FALSE) == NULL)
8458 strip = TRUE;
8459 else if (finfo->info->strip_discarded
8460 && (h->root.type == bfd_link_hash_defined
8461 || h->root.type == bfd_link_hash_defweak)
8462 && elf_discarded_section (h->root.u.def.section))
8463 strip = TRUE;
8464 else
8465 strip = FALSE;
8466
8467 /* If we're stripping it, and it's not a dynamic symbol, there's
8468 nothing else to do unless it is a forced local symbol. */
8469 if (strip
8470 && h->dynindx == -1
8471 && !h->forced_local)
8472 return TRUE;
8473
8474 sym.st_value = 0;
8475 sym.st_size = h->size;
8476 sym.st_other = h->other;
8477 if (h->forced_local)
8478 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8479 else if (h->root.type == bfd_link_hash_undefweak
8480 || h->root.type == bfd_link_hash_defweak)
8481 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8482 else
8483 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8484
8485 switch (h->root.type)
8486 {
8487 default:
8488 case bfd_link_hash_new:
8489 case bfd_link_hash_warning:
8490 abort ();
8491 return FALSE;
8492
8493 case bfd_link_hash_undefined:
8494 case bfd_link_hash_undefweak:
8495 input_sec = bfd_und_section_ptr;
8496 sym.st_shndx = SHN_UNDEF;
8497 break;
8498
8499 case bfd_link_hash_defined:
8500 case bfd_link_hash_defweak:
8501 {
8502 input_sec = h->root.u.def.section;
8503 if (input_sec->output_section != NULL)
8504 {
8505 sym.st_shndx =
8506 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8507 input_sec->output_section);
8508 if (sym.st_shndx == SHN_BAD)
8509 {
8510 (*_bfd_error_handler)
8511 (_("%B: could not find output section %A for input section %A"),
8512 finfo->output_bfd, input_sec->output_section, input_sec);
8513 eoinfo->failed = TRUE;
8514 return FALSE;
8515 }
8516
8517 /* ELF symbols in relocatable files are section relative,
8518 but in nonrelocatable files they are virtual
8519 addresses. */
8520 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8521 if (! finfo->info->relocatable)
8522 {
8523 sym.st_value += input_sec->output_section->vma;
8524 if (h->type == STT_TLS)
8525 {
8526 /* STT_TLS symbols are relative to PT_TLS segment
8527 base. */
8528 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8529 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8530 }
8531 }
8532 }
8533 else
8534 {
8535 BFD_ASSERT (input_sec->owner == NULL
8536 || (input_sec->owner->flags & DYNAMIC) != 0);
8537 sym.st_shndx = SHN_UNDEF;
8538 input_sec = bfd_und_section_ptr;
8539 }
8540 }
8541 break;
8542
8543 case bfd_link_hash_common:
8544 input_sec = h->root.u.c.p->section;
8545 sym.st_shndx = bed->common_section_index (input_sec);
8546 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8547 break;
8548
8549 case bfd_link_hash_indirect:
8550 /* These symbols are created by symbol versioning. They point
8551 to the decorated version of the name. For example, if the
8552 symbol foo@@GNU_1.2 is the default, which should be used when
8553 foo is used with no version, then we add an indirect symbol
8554 foo which points to foo@@GNU_1.2. We ignore these symbols,
8555 since the indirected symbol is already in the hash table. */
8556 return TRUE;
8557 }
8558
8559 /* Give the processor backend a chance to tweak the symbol value,
8560 and also to finish up anything that needs to be done for this
8561 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8562 forced local syms when non-shared is due to a historical quirk. */
8563 if ((h->dynindx != -1
8564 || h->forced_local)
8565 && ((finfo->info->shared
8566 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8567 || h->root.type != bfd_link_hash_undefweak))
8568 || !h->forced_local)
8569 && elf_hash_table (finfo->info)->dynamic_sections_created)
8570 {
8571 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8572 (finfo->output_bfd, finfo->info, h, &sym)))
8573 {
8574 eoinfo->failed = TRUE;
8575 return FALSE;
8576 }
8577 }
8578
8579 /* If we are marking the symbol as undefined, and there are no
8580 non-weak references to this symbol from a regular object, then
8581 mark the symbol as weak undefined; if there are non-weak
8582 references, mark the symbol as strong. We can't do this earlier,
8583 because it might not be marked as undefined until the
8584 finish_dynamic_symbol routine gets through with it. */
8585 if (sym.st_shndx == SHN_UNDEF
8586 && h->ref_regular
8587 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8588 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8589 {
8590 int bindtype;
8591
8592 if (h->ref_regular_nonweak)
8593 bindtype = STB_GLOBAL;
8594 else
8595 bindtype = STB_WEAK;
8596 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8597 }
8598
8599 /* If a non-weak symbol with non-default visibility is not defined
8600 locally, it is a fatal error. */
8601 if (! finfo->info->relocatable
8602 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8603 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8604 && h->root.type == bfd_link_hash_undefined
8605 && !h->def_regular)
8606 {
8607 (*_bfd_error_handler)
8608 (_("%B: %s symbol `%s' isn't defined"),
8609 finfo->output_bfd,
8610 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8611 ? "protected"
8612 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8613 ? "internal" : "hidden",
8614 h->root.root.string);
8615 eoinfo->failed = TRUE;
8616 return FALSE;
8617 }
8618
8619 /* If this symbol should be put in the .dynsym section, then put it
8620 there now. We already know the symbol index. We also fill in
8621 the entry in the .hash section. */
8622 if (h->dynindx != -1
8623 && elf_hash_table (finfo->info)->dynamic_sections_created)
8624 {
8625 bfd_byte *esym;
8626
8627 sym.st_name = h->dynstr_index;
8628 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8629 if (! check_dynsym (finfo->output_bfd, &sym))
8630 {
8631 eoinfo->failed = TRUE;
8632 return FALSE;
8633 }
8634 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8635
8636 if (finfo->hash_sec != NULL)
8637 {
8638 size_t hash_entry_size;
8639 bfd_byte *bucketpos;
8640 bfd_vma chain;
8641 size_t bucketcount;
8642 size_t bucket;
8643
8644 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8645 bucket = h->u.elf_hash_value % bucketcount;
8646
8647 hash_entry_size
8648 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8649 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8650 + (bucket + 2) * hash_entry_size);
8651 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8652 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8653 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8654 ((bfd_byte *) finfo->hash_sec->contents
8655 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8656 }
8657
8658 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8659 {
8660 Elf_Internal_Versym iversym;
8661 Elf_External_Versym *eversym;
8662
8663 if (!h->def_regular)
8664 {
8665 if (h->verinfo.verdef == NULL)
8666 iversym.vs_vers = 0;
8667 else
8668 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8669 }
8670 else
8671 {
8672 if (h->verinfo.vertree == NULL)
8673 iversym.vs_vers = 1;
8674 else
8675 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8676 if (finfo->info->create_default_symver)
8677 iversym.vs_vers++;
8678 }
8679
8680 if (h->hidden)
8681 iversym.vs_vers |= VERSYM_HIDDEN;
8682
8683 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8684 eversym += h->dynindx;
8685 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8686 }
8687 }
8688
8689 /* If we're stripping it, then it was just a dynamic symbol, and
8690 there's nothing else to do. */
8691 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8692 return TRUE;
8693
8694 h->indx = bfd_get_symcount (finfo->output_bfd);
8695
8696 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8697 {
8698 eoinfo->failed = TRUE;
8699 return FALSE;
8700 }
8701
8702 return TRUE;
8703 }
8704
8705 /* Return TRUE if special handling is done for relocs in SEC against
8706 symbols defined in discarded sections. */
8707
8708 static bfd_boolean
8709 elf_section_ignore_discarded_relocs (asection *sec)
8710 {
8711 const struct elf_backend_data *bed;
8712
8713 switch (sec->sec_info_type)
8714 {
8715 case ELF_INFO_TYPE_STABS:
8716 case ELF_INFO_TYPE_EH_FRAME:
8717 return TRUE;
8718 default:
8719 break;
8720 }
8721
8722 bed = get_elf_backend_data (sec->owner);
8723 if (bed->elf_backend_ignore_discarded_relocs != NULL
8724 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8725 return TRUE;
8726
8727 return FALSE;
8728 }
8729
8730 /* Return a mask saying how ld should treat relocations in SEC against
8731 symbols defined in discarded sections. If this function returns
8732 COMPLAIN set, ld will issue a warning message. If this function
8733 returns PRETEND set, and the discarded section was link-once and the
8734 same size as the kept link-once section, ld will pretend that the
8735 symbol was actually defined in the kept section. Otherwise ld will
8736 zero the reloc (at least that is the intent, but some cooperation by
8737 the target dependent code is needed, particularly for REL targets). */
8738
8739 unsigned int
8740 _bfd_elf_default_action_discarded (asection *sec)
8741 {
8742 if (sec->flags & SEC_DEBUGGING)
8743 return PRETEND;
8744
8745 if (strcmp (".eh_frame", sec->name) == 0)
8746 return 0;
8747
8748 if (strcmp (".gcc_except_table", sec->name) == 0)
8749 return 0;
8750
8751 return COMPLAIN | PRETEND;
8752 }
8753
8754 /* Find a match between a section and a member of a section group. */
8755
8756 static asection *
8757 match_group_member (asection *sec, asection *group,
8758 struct bfd_link_info *info)
8759 {
8760 asection *first = elf_next_in_group (group);
8761 asection *s = first;
8762
8763 while (s != NULL)
8764 {
8765 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8766 return s;
8767
8768 s = elf_next_in_group (s);
8769 if (s == first)
8770 break;
8771 }
8772
8773 return NULL;
8774 }
8775
8776 /* Check if the kept section of a discarded section SEC can be used
8777 to replace it. Return the replacement if it is OK. Otherwise return
8778 NULL. */
8779
8780 asection *
8781 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8782 {
8783 asection *kept;
8784
8785 kept = sec->kept_section;
8786 if (kept != NULL)
8787 {
8788 if ((kept->flags & SEC_GROUP) != 0)
8789 kept = match_group_member (sec, kept, info);
8790 if (kept != NULL && sec->size != kept->size)
8791 kept = NULL;
8792 sec->kept_section = kept;
8793 }
8794 return kept;
8795 }
8796
8797 /* Link an input file into the linker output file. This function
8798 handles all the sections and relocations of the input file at once.
8799 This is so that we only have to read the local symbols once, and
8800 don't have to keep them in memory. */
8801
8802 static bfd_boolean
8803 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8804 {
8805 int (*relocate_section)
8806 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8807 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8808 bfd *output_bfd;
8809 Elf_Internal_Shdr *symtab_hdr;
8810 size_t locsymcount;
8811 size_t extsymoff;
8812 Elf_Internal_Sym *isymbuf;
8813 Elf_Internal_Sym *isym;
8814 Elf_Internal_Sym *isymend;
8815 long *pindex;
8816 asection **ppsection;
8817 asection *o;
8818 const struct elf_backend_data *bed;
8819 struct elf_link_hash_entry **sym_hashes;
8820
8821 output_bfd = finfo->output_bfd;
8822 bed = get_elf_backend_data (output_bfd);
8823 relocate_section = bed->elf_backend_relocate_section;
8824
8825 /* If this is a dynamic object, we don't want to do anything here:
8826 we don't want the local symbols, and we don't want the section
8827 contents. */
8828 if ((input_bfd->flags & DYNAMIC) != 0)
8829 return TRUE;
8830
8831 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8832 if (elf_bad_symtab (input_bfd))
8833 {
8834 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8835 extsymoff = 0;
8836 }
8837 else
8838 {
8839 locsymcount = symtab_hdr->sh_info;
8840 extsymoff = symtab_hdr->sh_info;
8841 }
8842
8843 /* Read the local symbols. */
8844 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8845 if (isymbuf == NULL && locsymcount != 0)
8846 {
8847 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8848 finfo->internal_syms,
8849 finfo->external_syms,
8850 finfo->locsym_shndx);
8851 if (isymbuf == NULL)
8852 return FALSE;
8853 }
8854
8855 /* Find local symbol sections and adjust values of symbols in
8856 SEC_MERGE sections. Write out those local symbols we know are
8857 going into the output file. */
8858 isymend = isymbuf + locsymcount;
8859 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8860 isym < isymend;
8861 isym++, pindex++, ppsection++)
8862 {
8863 asection *isec;
8864 const char *name;
8865 Elf_Internal_Sym osym;
8866
8867 *pindex = -1;
8868
8869 if (elf_bad_symtab (input_bfd))
8870 {
8871 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8872 {
8873 *ppsection = NULL;
8874 continue;
8875 }
8876 }
8877
8878 if (isym->st_shndx == SHN_UNDEF)
8879 isec = bfd_und_section_ptr;
8880 else if (isym->st_shndx < SHN_LORESERVE
8881 || isym->st_shndx > SHN_HIRESERVE)
8882 {
8883 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8884 if (isec
8885 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8886 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8887 isym->st_value =
8888 _bfd_merged_section_offset (output_bfd, &isec,
8889 elf_section_data (isec)->sec_info,
8890 isym->st_value);
8891 }
8892 else if (isym->st_shndx == SHN_ABS)
8893 isec = bfd_abs_section_ptr;
8894 else if (isym->st_shndx == SHN_COMMON)
8895 isec = bfd_com_section_ptr;
8896 else
8897 {
8898 /* Don't attempt to output symbols with st_shnx in the
8899 reserved range other than SHN_ABS and SHN_COMMON. */
8900 *ppsection = NULL;
8901 continue;
8902 }
8903
8904 *ppsection = isec;
8905
8906 /* Don't output the first, undefined, symbol. */
8907 if (ppsection == finfo->sections)
8908 continue;
8909
8910 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8911 {
8912 /* We never output section symbols. Instead, we use the
8913 section symbol of the corresponding section in the output
8914 file. */
8915 continue;
8916 }
8917
8918 /* If we are stripping all symbols, we don't want to output this
8919 one. */
8920 if (finfo->info->strip == strip_all)
8921 continue;
8922
8923 /* If we are discarding all local symbols, we don't want to
8924 output this one. If we are generating a relocatable output
8925 file, then some of the local symbols may be required by
8926 relocs; we output them below as we discover that they are
8927 needed. */
8928 if (finfo->info->discard == discard_all)
8929 continue;
8930
8931 /* If this symbol is defined in a section which we are
8932 discarding, we don't need to keep it. */
8933 if (isym->st_shndx != SHN_UNDEF
8934 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8935 && (isec == NULL
8936 || bfd_section_removed_from_list (output_bfd,
8937 isec->output_section)))
8938 continue;
8939
8940 /* Get the name of the symbol. */
8941 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8942 isym->st_name);
8943 if (name == NULL)
8944 return FALSE;
8945
8946 /* See if we are discarding symbols with this name. */
8947 if ((finfo->info->strip == strip_some
8948 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8949 == NULL))
8950 || (((finfo->info->discard == discard_sec_merge
8951 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8952 || finfo->info->discard == discard_l)
8953 && bfd_is_local_label_name (input_bfd, name)))
8954 continue;
8955
8956 /* If we get here, we are going to output this symbol. */
8957
8958 osym = *isym;
8959
8960 /* Adjust the section index for the output file. */
8961 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8962 isec->output_section);
8963 if (osym.st_shndx == SHN_BAD)
8964 return FALSE;
8965
8966 *pindex = bfd_get_symcount (output_bfd);
8967
8968 /* ELF symbols in relocatable files are section relative, but
8969 in executable files they are virtual addresses. Note that
8970 this code assumes that all ELF sections have an associated
8971 BFD section with a reasonable value for output_offset; below
8972 we assume that they also have a reasonable value for
8973 output_section. Any special sections must be set up to meet
8974 these requirements. */
8975 osym.st_value += isec->output_offset;
8976 if (! finfo->info->relocatable)
8977 {
8978 osym.st_value += isec->output_section->vma;
8979 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
8980 {
8981 /* STT_TLS symbols are relative to PT_TLS segment base. */
8982 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8983 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8984 }
8985 }
8986
8987 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
8988 return FALSE;
8989 }
8990
8991 /* Relocate the contents of each section. */
8992 sym_hashes = elf_sym_hashes (input_bfd);
8993 for (o = input_bfd->sections; o != NULL; o = o->next)
8994 {
8995 bfd_byte *contents;
8996
8997 if (! o->linker_mark)
8998 {
8999 /* This section was omitted from the link. */
9000 continue;
9001 }
9002
9003 if ((o->flags & SEC_HAS_CONTENTS) == 0
9004 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9005 continue;
9006
9007 if ((o->flags & SEC_LINKER_CREATED) != 0)
9008 {
9009 /* Section was created by _bfd_elf_link_create_dynamic_sections
9010 or somesuch. */
9011 continue;
9012 }
9013
9014 /* Get the contents of the section. They have been cached by a
9015 relaxation routine. Note that o is a section in an input
9016 file, so the contents field will not have been set by any of
9017 the routines which work on output files. */
9018 if (elf_section_data (o)->this_hdr.contents != NULL)
9019 contents = elf_section_data (o)->this_hdr.contents;
9020 else
9021 {
9022 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9023
9024 contents = finfo->contents;
9025 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9026 return FALSE;
9027 }
9028
9029 if ((o->flags & SEC_RELOC) != 0)
9030 {
9031 Elf_Internal_Rela *internal_relocs;
9032 Elf_Internal_Rela *rel, *relend;
9033 bfd_vma r_type_mask;
9034 int r_sym_shift;
9035 int action_discarded;
9036 int ret;
9037
9038 /* Get the swapped relocs. */
9039 internal_relocs
9040 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9041 finfo->internal_relocs, FALSE);
9042 if (internal_relocs == NULL
9043 && o->reloc_count > 0)
9044 return FALSE;
9045
9046 if (bed->s->arch_size == 32)
9047 {
9048 r_type_mask = 0xff;
9049 r_sym_shift = 8;
9050 }
9051 else
9052 {
9053 r_type_mask = 0xffffffff;
9054 r_sym_shift = 32;
9055 }
9056
9057 action_discarded = -1;
9058 if (!elf_section_ignore_discarded_relocs (o))
9059 action_discarded = (*bed->action_discarded) (o);
9060
9061 /* Run through the relocs evaluating complex reloc symbols and
9062 looking for relocs against symbols from discarded sections
9063 or section symbols from removed link-once sections.
9064 Complain about relocs against discarded sections. Zero
9065 relocs against removed link-once sections. */
9066
9067 rel = internal_relocs;
9068 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9069 for ( ; rel < relend; rel++)
9070 {
9071 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9072 unsigned int s_type;
9073 asection **ps, *sec;
9074 struct elf_link_hash_entry *h = NULL;
9075 const char *sym_name;
9076
9077 if (r_symndx == STN_UNDEF)
9078 continue;
9079
9080 if (r_symndx >= locsymcount
9081 || (elf_bad_symtab (input_bfd)
9082 && finfo->sections[r_symndx] == NULL))
9083 {
9084 h = sym_hashes[r_symndx - extsymoff];
9085
9086 /* Badly formatted input files can contain relocs that
9087 reference non-existant symbols. Check here so that
9088 we do not seg fault. */
9089 if (h == NULL)
9090 {
9091 char buffer [32];
9092
9093 sprintf_vma (buffer, rel->r_info);
9094 (*_bfd_error_handler)
9095 (_("error: %B contains a reloc (0x%s) for section %A "
9096 "that references a non-existent global symbol"),
9097 input_bfd, o, buffer);
9098 bfd_set_error (bfd_error_bad_value);
9099 return FALSE;
9100 }
9101
9102 while (h->root.type == bfd_link_hash_indirect
9103 || h->root.type == bfd_link_hash_warning)
9104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9105
9106 s_type = h->type;
9107
9108 ps = NULL;
9109 if (h->root.type == bfd_link_hash_defined
9110 || h->root.type == bfd_link_hash_defweak)
9111 ps = &h->root.u.def.section;
9112
9113 sym_name = h->root.root.string;
9114 }
9115 else
9116 {
9117 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9118
9119 s_type = ELF_ST_TYPE (sym->st_info);
9120 ps = &finfo->sections[r_symndx];
9121 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9122 sym, *ps);
9123 }
9124
9125 if (s_type == STT_RELC || s_type == STT_SRELC)
9126 {
9127 bfd_vma val;
9128 bfd_vma dot = (rel->r_offset
9129 + o->output_offset + o->output_section->vma);
9130 #ifdef DEBUG
9131 printf ("Encountered a complex symbol!");
9132 printf (" (input_bfd %s, section %s, reloc %ld\n",
9133 input_bfd->filename, o->name, rel - internal_relocs);
9134 printf (" symbol: idx %8.8lx, name %s\n",
9135 r_symndx, sym_name);
9136 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9137 (unsigned long) rel->r_info,
9138 (unsigned long) rel->r_offset);
9139 #endif
9140 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9141 isymbuf, locsymcount, s_type == STT_SRELC))
9142 return FALSE;
9143
9144 /* Symbol evaluated OK. Update to absolute value. */
9145 set_symbol_value (input_bfd, isymbuf, locsymcount,
9146 r_symndx, val);
9147 continue;
9148 }
9149
9150 if (action_discarded != -1 && ps != NULL)
9151 {
9152 /* Complain if the definition comes from a
9153 discarded section. */
9154 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9155 {
9156 BFD_ASSERT (r_symndx != 0);
9157 if (action_discarded & COMPLAIN)
9158 (*finfo->info->callbacks->einfo)
9159 (_("%X`%s' referenced in section `%A' of %B: "
9160 "defined in discarded section `%A' of %B\n"),
9161 sym_name, o, input_bfd, sec, sec->owner);
9162
9163 /* Try to do the best we can to support buggy old
9164 versions of gcc. Pretend that the symbol is
9165 really defined in the kept linkonce section.
9166 FIXME: This is quite broken. Modifying the
9167 symbol here means we will be changing all later
9168 uses of the symbol, not just in this section. */
9169 if (action_discarded & PRETEND)
9170 {
9171 asection *kept;
9172
9173 kept = _bfd_elf_check_kept_section (sec,
9174 finfo->info);
9175 if (kept != NULL)
9176 {
9177 *ps = kept;
9178 continue;
9179 }
9180 }
9181 }
9182 }
9183 }
9184
9185 /* Relocate the section by invoking a back end routine.
9186
9187 The back end routine is responsible for adjusting the
9188 section contents as necessary, and (if using Rela relocs
9189 and generating a relocatable output file) adjusting the
9190 reloc addend as necessary.
9191
9192 The back end routine does not have to worry about setting
9193 the reloc address or the reloc symbol index.
9194
9195 The back end routine is given a pointer to the swapped in
9196 internal symbols, and can access the hash table entries
9197 for the external symbols via elf_sym_hashes (input_bfd).
9198
9199 When generating relocatable output, the back end routine
9200 must handle STB_LOCAL/STT_SECTION symbols specially. The
9201 output symbol is going to be a section symbol
9202 corresponding to the output section, which will require
9203 the addend to be adjusted. */
9204
9205 ret = (*relocate_section) (output_bfd, finfo->info,
9206 input_bfd, o, contents,
9207 internal_relocs,
9208 isymbuf,
9209 finfo->sections);
9210 if (!ret)
9211 return FALSE;
9212
9213 if (ret == 2
9214 || finfo->info->relocatable
9215 || finfo->info->emitrelocations)
9216 {
9217 Elf_Internal_Rela *irela;
9218 Elf_Internal_Rela *irelaend;
9219 bfd_vma last_offset;
9220 struct elf_link_hash_entry **rel_hash;
9221 struct elf_link_hash_entry **rel_hash_list;
9222 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9223 unsigned int next_erel;
9224 bfd_boolean rela_normal;
9225
9226 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9227 rela_normal = (bed->rela_normal
9228 && (input_rel_hdr->sh_entsize
9229 == bed->s->sizeof_rela));
9230
9231 /* Adjust the reloc addresses and symbol indices. */
9232
9233 irela = internal_relocs;
9234 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9235 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9236 + elf_section_data (o->output_section)->rel_count
9237 + elf_section_data (o->output_section)->rel_count2);
9238 rel_hash_list = rel_hash;
9239 last_offset = o->output_offset;
9240 if (!finfo->info->relocatable)
9241 last_offset += o->output_section->vma;
9242 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9243 {
9244 unsigned long r_symndx;
9245 asection *sec;
9246 Elf_Internal_Sym sym;
9247
9248 if (next_erel == bed->s->int_rels_per_ext_rel)
9249 {
9250 rel_hash++;
9251 next_erel = 0;
9252 }
9253
9254 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9255 finfo->info, o,
9256 irela->r_offset);
9257 if (irela->r_offset >= (bfd_vma) -2)
9258 {
9259 /* This is a reloc for a deleted entry or somesuch.
9260 Turn it into an R_*_NONE reloc, at the same
9261 offset as the last reloc. elf_eh_frame.c and
9262 bfd_elf_discard_info rely on reloc offsets
9263 being ordered. */
9264 irela->r_offset = last_offset;
9265 irela->r_info = 0;
9266 irela->r_addend = 0;
9267 continue;
9268 }
9269
9270 irela->r_offset += o->output_offset;
9271
9272 /* Relocs in an executable have to be virtual addresses. */
9273 if (!finfo->info->relocatable)
9274 irela->r_offset += o->output_section->vma;
9275
9276 last_offset = irela->r_offset;
9277
9278 r_symndx = irela->r_info >> r_sym_shift;
9279 if (r_symndx == STN_UNDEF)
9280 continue;
9281
9282 if (r_symndx >= locsymcount
9283 || (elf_bad_symtab (input_bfd)
9284 && finfo->sections[r_symndx] == NULL))
9285 {
9286 struct elf_link_hash_entry *rh;
9287 unsigned long indx;
9288
9289 /* This is a reloc against a global symbol. We
9290 have not yet output all the local symbols, so
9291 we do not know the symbol index of any global
9292 symbol. We set the rel_hash entry for this
9293 reloc to point to the global hash table entry
9294 for this symbol. The symbol index is then
9295 set at the end of bfd_elf_final_link. */
9296 indx = r_symndx - extsymoff;
9297 rh = elf_sym_hashes (input_bfd)[indx];
9298 while (rh->root.type == bfd_link_hash_indirect
9299 || rh->root.type == bfd_link_hash_warning)
9300 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9301
9302 /* Setting the index to -2 tells
9303 elf_link_output_extsym that this symbol is
9304 used by a reloc. */
9305 BFD_ASSERT (rh->indx < 0);
9306 rh->indx = -2;
9307
9308 *rel_hash = rh;
9309
9310 continue;
9311 }
9312
9313 /* This is a reloc against a local symbol. */
9314
9315 *rel_hash = NULL;
9316 sym = isymbuf[r_symndx];
9317 sec = finfo->sections[r_symndx];
9318 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9319 {
9320 /* I suppose the backend ought to fill in the
9321 section of any STT_SECTION symbol against a
9322 processor specific section. */
9323 r_symndx = 0;
9324 if (bfd_is_abs_section (sec))
9325 ;
9326 else if (sec == NULL || sec->owner == NULL)
9327 {
9328 bfd_set_error (bfd_error_bad_value);
9329 return FALSE;
9330 }
9331 else
9332 {
9333 asection *osec = sec->output_section;
9334
9335 /* If we have discarded a section, the output
9336 section will be the absolute section. In
9337 case of discarded SEC_MERGE sections, use
9338 the kept section. relocate_section should
9339 have already handled discarded linkonce
9340 sections. */
9341 if (bfd_is_abs_section (osec)
9342 && sec->kept_section != NULL
9343 && sec->kept_section->output_section != NULL)
9344 {
9345 osec = sec->kept_section->output_section;
9346 irela->r_addend -= osec->vma;
9347 }
9348
9349 if (!bfd_is_abs_section (osec))
9350 {
9351 r_symndx = osec->target_index;
9352 if (r_symndx == 0)
9353 {
9354 struct elf_link_hash_table *htab;
9355 asection *oi;
9356
9357 htab = elf_hash_table (finfo->info);
9358 oi = htab->text_index_section;
9359 if ((osec->flags & SEC_READONLY) == 0
9360 && htab->data_index_section != NULL)
9361 oi = htab->data_index_section;
9362
9363 if (oi != NULL)
9364 {
9365 irela->r_addend += osec->vma - oi->vma;
9366 r_symndx = oi->target_index;
9367 }
9368 }
9369
9370 BFD_ASSERT (r_symndx != 0);
9371 }
9372 }
9373
9374 /* Adjust the addend according to where the
9375 section winds up in the output section. */
9376 if (rela_normal)
9377 irela->r_addend += sec->output_offset;
9378 }
9379 else
9380 {
9381 if (finfo->indices[r_symndx] == -1)
9382 {
9383 unsigned long shlink;
9384 const char *name;
9385 asection *osec;
9386
9387 if (finfo->info->strip == strip_all)
9388 {
9389 /* You can't do ld -r -s. */
9390 bfd_set_error (bfd_error_invalid_operation);
9391 return FALSE;
9392 }
9393
9394 /* This symbol was skipped earlier, but
9395 since it is needed by a reloc, we
9396 must output it now. */
9397 shlink = symtab_hdr->sh_link;
9398 name = (bfd_elf_string_from_elf_section
9399 (input_bfd, shlink, sym.st_name));
9400 if (name == NULL)
9401 return FALSE;
9402
9403 osec = sec->output_section;
9404 sym.st_shndx =
9405 _bfd_elf_section_from_bfd_section (output_bfd,
9406 osec);
9407 if (sym.st_shndx == SHN_BAD)
9408 return FALSE;
9409
9410 sym.st_value += sec->output_offset;
9411 if (! finfo->info->relocatable)
9412 {
9413 sym.st_value += osec->vma;
9414 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9415 {
9416 /* STT_TLS symbols are relative to PT_TLS
9417 segment base. */
9418 BFD_ASSERT (elf_hash_table (finfo->info)
9419 ->tls_sec != NULL);
9420 sym.st_value -= (elf_hash_table (finfo->info)
9421 ->tls_sec->vma);
9422 }
9423 }
9424
9425 finfo->indices[r_symndx]
9426 = bfd_get_symcount (output_bfd);
9427
9428 if (! elf_link_output_sym (finfo, name, &sym, sec,
9429 NULL))
9430 return FALSE;
9431 }
9432
9433 r_symndx = finfo->indices[r_symndx];
9434 }
9435
9436 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9437 | (irela->r_info & r_type_mask));
9438 }
9439
9440 /* Swap out the relocs. */
9441 if (input_rel_hdr->sh_size != 0
9442 && !bed->elf_backend_emit_relocs (output_bfd, o,
9443 input_rel_hdr,
9444 internal_relocs,
9445 rel_hash_list))
9446 return FALSE;
9447
9448 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9449 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9450 {
9451 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9452 * bed->s->int_rels_per_ext_rel);
9453 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9454 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9455 input_rel_hdr2,
9456 internal_relocs,
9457 rel_hash_list))
9458 return FALSE;
9459 }
9460 }
9461 }
9462
9463 /* Write out the modified section contents. */
9464 if (bed->elf_backend_write_section
9465 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9466 contents))
9467 {
9468 /* Section written out. */
9469 }
9470 else switch (o->sec_info_type)
9471 {
9472 case ELF_INFO_TYPE_STABS:
9473 if (! (_bfd_write_section_stabs
9474 (output_bfd,
9475 &elf_hash_table (finfo->info)->stab_info,
9476 o, &elf_section_data (o)->sec_info, contents)))
9477 return FALSE;
9478 break;
9479 case ELF_INFO_TYPE_MERGE:
9480 if (! _bfd_write_merged_section (output_bfd, o,
9481 elf_section_data (o)->sec_info))
9482 return FALSE;
9483 break;
9484 case ELF_INFO_TYPE_EH_FRAME:
9485 {
9486 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9487 o, contents))
9488 return FALSE;
9489 }
9490 break;
9491 default:
9492 {
9493 if (! (o->flags & SEC_EXCLUDE)
9494 && ! bfd_set_section_contents (output_bfd, o->output_section,
9495 contents,
9496 (file_ptr) o->output_offset,
9497 o->size))
9498 return FALSE;
9499 }
9500 break;
9501 }
9502 }
9503
9504 return TRUE;
9505 }
9506
9507 /* Generate a reloc when linking an ELF file. This is a reloc
9508 requested by the linker, and does not come from any input file. This
9509 is used to build constructor and destructor tables when linking
9510 with -Ur. */
9511
9512 static bfd_boolean
9513 elf_reloc_link_order (bfd *output_bfd,
9514 struct bfd_link_info *info,
9515 asection *output_section,
9516 struct bfd_link_order *link_order)
9517 {
9518 reloc_howto_type *howto;
9519 long indx;
9520 bfd_vma offset;
9521 bfd_vma addend;
9522 struct elf_link_hash_entry **rel_hash_ptr;
9523 Elf_Internal_Shdr *rel_hdr;
9524 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9525 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9526 bfd_byte *erel;
9527 unsigned int i;
9528
9529 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9530 if (howto == NULL)
9531 {
9532 bfd_set_error (bfd_error_bad_value);
9533 return FALSE;
9534 }
9535
9536 addend = link_order->u.reloc.p->addend;
9537
9538 /* Figure out the symbol index. */
9539 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9540 + elf_section_data (output_section)->rel_count
9541 + elf_section_data (output_section)->rel_count2);
9542 if (link_order->type == bfd_section_reloc_link_order)
9543 {
9544 indx = link_order->u.reloc.p->u.section->target_index;
9545 BFD_ASSERT (indx != 0);
9546 *rel_hash_ptr = NULL;
9547 }
9548 else
9549 {
9550 struct elf_link_hash_entry *h;
9551
9552 /* Treat a reloc against a defined symbol as though it were
9553 actually against the section. */
9554 h = ((struct elf_link_hash_entry *)
9555 bfd_wrapped_link_hash_lookup (output_bfd, info,
9556 link_order->u.reloc.p->u.name,
9557 FALSE, FALSE, TRUE));
9558 if (h != NULL
9559 && (h->root.type == bfd_link_hash_defined
9560 || h->root.type == bfd_link_hash_defweak))
9561 {
9562 asection *section;
9563
9564 section = h->root.u.def.section;
9565 indx = section->output_section->target_index;
9566 *rel_hash_ptr = NULL;
9567 /* It seems that we ought to add the symbol value to the
9568 addend here, but in practice it has already been added
9569 because it was passed to constructor_callback. */
9570 addend += section->output_section->vma + section->output_offset;
9571 }
9572 else if (h != NULL)
9573 {
9574 /* Setting the index to -2 tells elf_link_output_extsym that
9575 this symbol is used by a reloc. */
9576 h->indx = -2;
9577 *rel_hash_ptr = h;
9578 indx = 0;
9579 }
9580 else
9581 {
9582 if (! ((*info->callbacks->unattached_reloc)
9583 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9584 return FALSE;
9585 indx = 0;
9586 }
9587 }
9588
9589 /* If this is an inplace reloc, we must write the addend into the
9590 object file. */
9591 if (howto->partial_inplace && addend != 0)
9592 {
9593 bfd_size_type size;
9594 bfd_reloc_status_type rstat;
9595 bfd_byte *buf;
9596 bfd_boolean ok;
9597 const char *sym_name;
9598
9599 size = bfd_get_reloc_size (howto);
9600 buf = bfd_zmalloc (size);
9601 if (buf == NULL)
9602 return FALSE;
9603 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9604 switch (rstat)
9605 {
9606 case bfd_reloc_ok:
9607 break;
9608
9609 default:
9610 case bfd_reloc_outofrange:
9611 abort ();
9612
9613 case bfd_reloc_overflow:
9614 if (link_order->type == bfd_section_reloc_link_order)
9615 sym_name = bfd_section_name (output_bfd,
9616 link_order->u.reloc.p->u.section);
9617 else
9618 sym_name = link_order->u.reloc.p->u.name;
9619 if (! ((*info->callbacks->reloc_overflow)
9620 (info, NULL, sym_name, howto->name, addend, NULL,
9621 NULL, (bfd_vma) 0)))
9622 {
9623 free (buf);
9624 return FALSE;
9625 }
9626 break;
9627 }
9628 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9629 link_order->offset, size);
9630 free (buf);
9631 if (! ok)
9632 return FALSE;
9633 }
9634
9635 /* The address of a reloc is relative to the section in a
9636 relocatable file, and is a virtual address in an executable
9637 file. */
9638 offset = link_order->offset;
9639 if (! info->relocatable)
9640 offset += output_section->vma;
9641
9642 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9643 {
9644 irel[i].r_offset = offset;
9645 irel[i].r_info = 0;
9646 irel[i].r_addend = 0;
9647 }
9648 if (bed->s->arch_size == 32)
9649 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9650 else
9651 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9652
9653 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9654 erel = rel_hdr->contents;
9655 if (rel_hdr->sh_type == SHT_REL)
9656 {
9657 erel += (elf_section_data (output_section)->rel_count
9658 * bed->s->sizeof_rel);
9659 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9660 }
9661 else
9662 {
9663 irel[0].r_addend = addend;
9664 erel += (elf_section_data (output_section)->rel_count
9665 * bed->s->sizeof_rela);
9666 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9667 }
9668
9669 ++elf_section_data (output_section)->rel_count;
9670
9671 return TRUE;
9672 }
9673
9674
9675 /* Get the output vma of the section pointed to by the sh_link field. */
9676
9677 static bfd_vma
9678 elf_get_linked_section_vma (struct bfd_link_order *p)
9679 {
9680 Elf_Internal_Shdr **elf_shdrp;
9681 asection *s;
9682 int elfsec;
9683
9684 s = p->u.indirect.section;
9685 elf_shdrp = elf_elfsections (s->owner);
9686 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9687 elfsec = elf_shdrp[elfsec]->sh_link;
9688 /* PR 290:
9689 The Intel C compiler generates SHT_IA_64_UNWIND with
9690 SHF_LINK_ORDER. But it doesn't set the sh_link or
9691 sh_info fields. Hence we could get the situation
9692 where elfsec is 0. */
9693 if (elfsec == 0)
9694 {
9695 const struct elf_backend_data *bed
9696 = get_elf_backend_data (s->owner);
9697 if (bed->link_order_error_handler)
9698 bed->link_order_error_handler
9699 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9700 return 0;
9701 }
9702 else
9703 {
9704 s = elf_shdrp[elfsec]->bfd_section;
9705 return s->output_section->vma + s->output_offset;
9706 }
9707 }
9708
9709
9710 /* Compare two sections based on the locations of the sections they are
9711 linked to. Used by elf_fixup_link_order. */
9712
9713 static int
9714 compare_link_order (const void * a, const void * b)
9715 {
9716 bfd_vma apos;
9717 bfd_vma bpos;
9718
9719 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9720 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9721 if (apos < bpos)
9722 return -1;
9723 return apos > bpos;
9724 }
9725
9726
9727 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9728 order as their linked sections. Returns false if this could not be done
9729 because an output section includes both ordered and unordered
9730 sections. Ideally we'd do this in the linker proper. */
9731
9732 static bfd_boolean
9733 elf_fixup_link_order (bfd *abfd, asection *o)
9734 {
9735 int seen_linkorder;
9736 int seen_other;
9737 int n;
9738 struct bfd_link_order *p;
9739 bfd *sub;
9740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9741 unsigned elfsec;
9742 struct bfd_link_order **sections;
9743 asection *s, *other_sec, *linkorder_sec;
9744 bfd_vma offset;
9745
9746 other_sec = NULL;
9747 linkorder_sec = NULL;
9748 seen_other = 0;
9749 seen_linkorder = 0;
9750 for (p = o->map_head.link_order; p != NULL; p = p->next)
9751 {
9752 if (p->type == bfd_indirect_link_order)
9753 {
9754 s = p->u.indirect.section;
9755 sub = s->owner;
9756 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9757 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9758 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9759 && elfsec < elf_numsections (sub)
9760 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9761 {
9762 seen_linkorder++;
9763 linkorder_sec = s;
9764 }
9765 else
9766 {
9767 seen_other++;
9768 other_sec = s;
9769 }
9770 }
9771 else
9772 seen_other++;
9773
9774 if (seen_other && seen_linkorder)
9775 {
9776 if (other_sec && linkorder_sec)
9777 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9778 o, linkorder_sec,
9779 linkorder_sec->owner, other_sec,
9780 other_sec->owner);
9781 else
9782 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9783 o);
9784 bfd_set_error (bfd_error_bad_value);
9785 return FALSE;
9786 }
9787 }
9788
9789 if (!seen_linkorder)
9790 return TRUE;
9791
9792 sections = (struct bfd_link_order **)
9793 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9794 if (sections == NULL)
9795 return FALSE;
9796 seen_linkorder = 0;
9797
9798 for (p = o->map_head.link_order; p != NULL; p = p->next)
9799 {
9800 sections[seen_linkorder++] = p;
9801 }
9802 /* Sort the input sections in the order of their linked section. */
9803 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9804 compare_link_order);
9805
9806 /* Change the offsets of the sections. */
9807 offset = 0;
9808 for (n = 0; n < seen_linkorder; n++)
9809 {
9810 s = sections[n]->u.indirect.section;
9811 offset &= ~(bfd_vma) 0 << s->alignment_power;
9812 s->output_offset = offset;
9813 sections[n]->offset = offset;
9814 offset += sections[n]->size;
9815 }
9816
9817 return TRUE;
9818 }
9819
9820
9821 /* Do the final step of an ELF link. */
9822
9823 bfd_boolean
9824 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9825 {
9826 bfd_boolean dynamic;
9827 bfd_boolean emit_relocs;
9828 bfd *dynobj;
9829 struct elf_final_link_info finfo;
9830 register asection *o;
9831 register struct bfd_link_order *p;
9832 register bfd *sub;
9833 bfd_size_type max_contents_size;
9834 bfd_size_type max_external_reloc_size;
9835 bfd_size_type max_internal_reloc_count;
9836 bfd_size_type max_sym_count;
9837 bfd_size_type max_sym_shndx_count;
9838 file_ptr off;
9839 Elf_Internal_Sym elfsym;
9840 unsigned int i;
9841 Elf_Internal_Shdr *symtab_hdr;
9842 Elf_Internal_Shdr *symtab_shndx_hdr;
9843 Elf_Internal_Shdr *symstrtab_hdr;
9844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9845 struct elf_outext_info eoinfo;
9846 bfd_boolean merged;
9847 size_t relativecount = 0;
9848 asection *reldyn = 0;
9849 bfd_size_type amt;
9850 asection *attr_section = NULL;
9851 bfd_vma attr_size = 0;
9852 const char *std_attrs_section;
9853
9854 if (! is_elf_hash_table (info->hash))
9855 return FALSE;
9856
9857 if (info->shared)
9858 abfd->flags |= DYNAMIC;
9859
9860 dynamic = elf_hash_table (info)->dynamic_sections_created;
9861 dynobj = elf_hash_table (info)->dynobj;
9862
9863 emit_relocs = (info->relocatable
9864 || info->emitrelocations);
9865
9866 finfo.info = info;
9867 finfo.output_bfd = abfd;
9868 finfo.symstrtab = _bfd_elf_stringtab_init ();
9869 if (finfo.symstrtab == NULL)
9870 return FALSE;
9871
9872 if (! dynamic)
9873 {
9874 finfo.dynsym_sec = NULL;
9875 finfo.hash_sec = NULL;
9876 finfo.symver_sec = NULL;
9877 }
9878 else
9879 {
9880 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9881 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9882 BFD_ASSERT (finfo.dynsym_sec != NULL);
9883 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9884 /* Note that it is OK if symver_sec is NULL. */
9885 }
9886
9887 finfo.contents = NULL;
9888 finfo.external_relocs = NULL;
9889 finfo.internal_relocs = NULL;
9890 finfo.external_syms = NULL;
9891 finfo.locsym_shndx = NULL;
9892 finfo.internal_syms = NULL;
9893 finfo.indices = NULL;
9894 finfo.sections = NULL;
9895 finfo.symbuf = NULL;
9896 finfo.symshndxbuf = NULL;
9897 finfo.symbuf_count = 0;
9898 finfo.shndxbuf_size = 0;
9899
9900 /* The object attributes have been merged. Remove the input
9901 sections from the link, and set the contents of the output
9902 secton. */
9903 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9904 for (o = abfd->sections; o != NULL; o = o->next)
9905 {
9906 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9907 || strcmp (o->name, ".gnu.attributes") == 0)
9908 {
9909 for (p = o->map_head.link_order; p != NULL; p = p->next)
9910 {
9911 asection *input_section;
9912
9913 if (p->type != bfd_indirect_link_order)
9914 continue;
9915 input_section = p->u.indirect.section;
9916 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9917 elf_link_input_bfd ignores this section. */
9918 input_section->flags &= ~SEC_HAS_CONTENTS;
9919 }
9920
9921 attr_size = bfd_elf_obj_attr_size (abfd);
9922 if (attr_size)
9923 {
9924 bfd_set_section_size (abfd, o, attr_size);
9925 attr_section = o;
9926 /* Skip this section later on. */
9927 o->map_head.link_order = NULL;
9928 }
9929 else
9930 o->flags |= SEC_EXCLUDE;
9931 }
9932 }
9933
9934 /* Count up the number of relocations we will output for each output
9935 section, so that we know the sizes of the reloc sections. We
9936 also figure out some maximum sizes. */
9937 max_contents_size = 0;
9938 max_external_reloc_size = 0;
9939 max_internal_reloc_count = 0;
9940 max_sym_count = 0;
9941 max_sym_shndx_count = 0;
9942 merged = FALSE;
9943 for (o = abfd->sections; o != NULL; o = o->next)
9944 {
9945 struct bfd_elf_section_data *esdo = elf_section_data (o);
9946 o->reloc_count = 0;
9947
9948 for (p = o->map_head.link_order; p != NULL; p = p->next)
9949 {
9950 unsigned int reloc_count = 0;
9951 struct bfd_elf_section_data *esdi = NULL;
9952 unsigned int *rel_count1;
9953
9954 if (p->type == bfd_section_reloc_link_order
9955 || p->type == bfd_symbol_reloc_link_order)
9956 reloc_count = 1;
9957 else if (p->type == bfd_indirect_link_order)
9958 {
9959 asection *sec;
9960
9961 sec = p->u.indirect.section;
9962 esdi = elf_section_data (sec);
9963
9964 /* Mark all sections which are to be included in the
9965 link. This will normally be every section. We need
9966 to do this so that we can identify any sections which
9967 the linker has decided to not include. */
9968 sec->linker_mark = TRUE;
9969
9970 if (sec->flags & SEC_MERGE)
9971 merged = TRUE;
9972
9973 if (info->relocatable || info->emitrelocations)
9974 reloc_count = sec->reloc_count;
9975 else if (bed->elf_backend_count_relocs)
9976 {
9977 Elf_Internal_Rela * relocs;
9978
9979 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
9980 NULL, NULL,
9981 info->keep_memory);
9982
9983 if (relocs != NULL)
9984 {
9985 reloc_count
9986 = (*bed->elf_backend_count_relocs) (sec, relocs);
9987
9988 if (elf_section_data (sec)->relocs != relocs)
9989 free (relocs);
9990 }
9991 }
9992
9993 if (sec->rawsize > max_contents_size)
9994 max_contents_size = sec->rawsize;
9995 if (sec->size > max_contents_size)
9996 max_contents_size = sec->size;
9997
9998 /* We are interested in just local symbols, not all
9999 symbols. */
10000 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10001 && (sec->owner->flags & DYNAMIC) == 0)
10002 {
10003 size_t sym_count;
10004
10005 if (elf_bad_symtab (sec->owner))
10006 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10007 / bed->s->sizeof_sym);
10008 else
10009 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10010
10011 if (sym_count > max_sym_count)
10012 max_sym_count = sym_count;
10013
10014 if (sym_count > max_sym_shndx_count
10015 && elf_symtab_shndx (sec->owner) != 0)
10016 max_sym_shndx_count = sym_count;
10017
10018 if ((sec->flags & SEC_RELOC) != 0)
10019 {
10020 size_t ext_size;
10021
10022 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10023 if (ext_size > max_external_reloc_size)
10024 max_external_reloc_size = ext_size;
10025 if (sec->reloc_count > max_internal_reloc_count)
10026 max_internal_reloc_count = sec->reloc_count;
10027 }
10028 }
10029 }
10030
10031 if (reloc_count == 0)
10032 continue;
10033
10034 o->reloc_count += reloc_count;
10035
10036 /* MIPS may have a mix of REL and RELA relocs on sections.
10037 To support this curious ABI we keep reloc counts in
10038 elf_section_data too. We must be careful to add the
10039 relocations from the input section to the right output
10040 count. FIXME: Get rid of one count. We have
10041 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10042 rel_count1 = &esdo->rel_count;
10043 if (esdi != NULL)
10044 {
10045 bfd_boolean same_size;
10046 bfd_size_type entsize1;
10047
10048 entsize1 = esdi->rel_hdr.sh_entsize;
10049 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10050 || entsize1 == bed->s->sizeof_rela);
10051 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10052
10053 if (!same_size)
10054 rel_count1 = &esdo->rel_count2;
10055
10056 if (esdi->rel_hdr2 != NULL)
10057 {
10058 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10059 unsigned int alt_count;
10060 unsigned int *rel_count2;
10061
10062 BFD_ASSERT (entsize2 != entsize1
10063 && (entsize2 == bed->s->sizeof_rel
10064 || entsize2 == bed->s->sizeof_rela));
10065
10066 rel_count2 = &esdo->rel_count2;
10067 if (!same_size)
10068 rel_count2 = &esdo->rel_count;
10069
10070 /* The following is probably too simplistic if the
10071 backend counts output relocs unusually. */
10072 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10073 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10074 *rel_count2 += alt_count;
10075 reloc_count -= alt_count;
10076 }
10077 }
10078 *rel_count1 += reloc_count;
10079 }
10080
10081 if (o->reloc_count > 0)
10082 o->flags |= SEC_RELOC;
10083 else
10084 {
10085 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10086 set it (this is probably a bug) and if it is set
10087 assign_section_numbers will create a reloc section. */
10088 o->flags &=~ SEC_RELOC;
10089 }
10090
10091 /* If the SEC_ALLOC flag is not set, force the section VMA to
10092 zero. This is done in elf_fake_sections as well, but forcing
10093 the VMA to 0 here will ensure that relocs against these
10094 sections are handled correctly. */
10095 if ((o->flags & SEC_ALLOC) == 0
10096 && ! o->user_set_vma)
10097 o->vma = 0;
10098 }
10099
10100 if (! info->relocatable && merged)
10101 elf_link_hash_traverse (elf_hash_table (info),
10102 _bfd_elf_link_sec_merge_syms, abfd);
10103
10104 /* Figure out the file positions for everything but the symbol table
10105 and the relocs. We set symcount to force assign_section_numbers
10106 to create a symbol table. */
10107 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10108 BFD_ASSERT (! abfd->output_has_begun);
10109 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10110 goto error_return;
10111
10112 /* Set sizes, and assign file positions for reloc sections. */
10113 for (o = abfd->sections; o != NULL; o = o->next)
10114 {
10115 if ((o->flags & SEC_RELOC) != 0)
10116 {
10117 if (!(_bfd_elf_link_size_reloc_section
10118 (abfd, &elf_section_data (o)->rel_hdr, o)))
10119 goto error_return;
10120
10121 if (elf_section_data (o)->rel_hdr2
10122 && !(_bfd_elf_link_size_reloc_section
10123 (abfd, elf_section_data (o)->rel_hdr2, o)))
10124 goto error_return;
10125 }
10126
10127 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10128 to count upwards while actually outputting the relocations. */
10129 elf_section_data (o)->rel_count = 0;
10130 elf_section_data (o)->rel_count2 = 0;
10131 }
10132
10133 _bfd_elf_assign_file_positions_for_relocs (abfd);
10134
10135 /* We have now assigned file positions for all the sections except
10136 .symtab and .strtab. We start the .symtab section at the current
10137 file position, and write directly to it. We build the .strtab
10138 section in memory. */
10139 bfd_get_symcount (abfd) = 0;
10140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10141 /* sh_name is set in prep_headers. */
10142 symtab_hdr->sh_type = SHT_SYMTAB;
10143 /* sh_flags, sh_addr and sh_size all start off zero. */
10144 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10145 /* sh_link is set in assign_section_numbers. */
10146 /* sh_info is set below. */
10147 /* sh_offset is set just below. */
10148 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10149
10150 off = elf_tdata (abfd)->next_file_pos;
10151 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10152
10153 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10154 incorrect. We do not yet know the size of the .symtab section.
10155 We correct next_file_pos below, after we do know the size. */
10156
10157 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10158 continuously seeking to the right position in the file. */
10159 if (! info->keep_memory || max_sym_count < 20)
10160 finfo.symbuf_size = 20;
10161 else
10162 finfo.symbuf_size = max_sym_count;
10163 amt = finfo.symbuf_size;
10164 amt *= bed->s->sizeof_sym;
10165 finfo.symbuf = bfd_malloc (amt);
10166 if (finfo.symbuf == NULL)
10167 goto error_return;
10168 if (elf_numsections (abfd) > SHN_LORESERVE)
10169 {
10170 /* Wild guess at number of output symbols. realloc'd as needed. */
10171 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10172 finfo.shndxbuf_size = amt;
10173 amt *= sizeof (Elf_External_Sym_Shndx);
10174 finfo.symshndxbuf = bfd_zmalloc (amt);
10175 if (finfo.symshndxbuf == NULL)
10176 goto error_return;
10177 }
10178
10179 /* Start writing out the symbol table. The first symbol is always a
10180 dummy symbol. */
10181 if (info->strip != strip_all
10182 || emit_relocs)
10183 {
10184 elfsym.st_value = 0;
10185 elfsym.st_size = 0;
10186 elfsym.st_info = 0;
10187 elfsym.st_other = 0;
10188 elfsym.st_shndx = SHN_UNDEF;
10189 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10190 NULL))
10191 goto error_return;
10192 }
10193
10194 /* Output a symbol for each section. We output these even if we are
10195 discarding local symbols, since they are used for relocs. These
10196 symbols have no names. We store the index of each one in the
10197 index field of the section, so that we can find it again when
10198 outputting relocs. */
10199 if (info->strip != strip_all
10200 || emit_relocs)
10201 {
10202 elfsym.st_size = 0;
10203 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10204 elfsym.st_other = 0;
10205 elfsym.st_value = 0;
10206 for (i = 1; i < elf_numsections (abfd); i++)
10207 {
10208 o = bfd_section_from_elf_index (abfd, i);
10209 if (o != NULL)
10210 {
10211 o->target_index = bfd_get_symcount (abfd);
10212 elfsym.st_shndx = i;
10213 if (!info->relocatable)
10214 elfsym.st_value = o->vma;
10215 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10216 goto error_return;
10217 }
10218 if (i == SHN_LORESERVE - 1)
10219 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10220 }
10221 }
10222
10223 /* Allocate some memory to hold information read in from the input
10224 files. */
10225 if (max_contents_size != 0)
10226 {
10227 finfo.contents = bfd_malloc (max_contents_size);
10228 if (finfo.contents == NULL)
10229 goto error_return;
10230 }
10231
10232 if (max_external_reloc_size != 0)
10233 {
10234 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10235 if (finfo.external_relocs == NULL)
10236 goto error_return;
10237 }
10238
10239 if (max_internal_reloc_count != 0)
10240 {
10241 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10242 amt *= sizeof (Elf_Internal_Rela);
10243 finfo.internal_relocs = bfd_malloc (amt);
10244 if (finfo.internal_relocs == NULL)
10245 goto error_return;
10246 }
10247
10248 if (max_sym_count != 0)
10249 {
10250 amt = max_sym_count * bed->s->sizeof_sym;
10251 finfo.external_syms = bfd_malloc (amt);
10252 if (finfo.external_syms == NULL)
10253 goto error_return;
10254
10255 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10256 finfo.internal_syms = bfd_malloc (amt);
10257 if (finfo.internal_syms == NULL)
10258 goto error_return;
10259
10260 amt = max_sym_count * sizeof (long);
10261 finfo.indices = bfd_malloc (amt);
10262 if (finfo.indices == NULL)
10263 goto error_return;
10264
10265 amt = max_sym_count * sizeof (asection *);
10266 finfo.sections = bfd_malloc (amt);
10267 if (finfo.sections == NULL)
10268 goto error_return;
10269 }
10270
10271 if (max_sym_shndx_count != 0)
10272 {
10273 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10274 finfo.locsym_shndx = bfd_malloc (amt);
10275 if (finfo.locsym_shndx == NULL)
10276 goto error_return;
10277 }
10278
10279 if (elf_hash_table (info)->tls_sec)
10280 {
10281 bfd_vma base, end = 0;
10282 asection *sec;
10283
10284 for (sec = elf_hash_table (info)->tls_sec;
10285 sec && (sec->flags & SEC_THREAD_LOCAL);
10286 sec = sec->next)
10287 {
10288 bfd_size_type size = sec->size;
10289
10290 if (size == 0
10291 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10292 {
10293 struct bfd_link_order *o = sec->map_tail.link_order;
10294 if (o != NULL)
10295 size = o->offset + o->size;
10296 }
10297 end = sec->vma + size;
10298 }
10299 base = elf_hash_table (info)->tls_sec->vma;
10300 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10301 elf_hash_table (info)->tls_size = end - base;
10302 }
10303
10304 /* Reorder SHF_LINK_ORDER sections. */
10305 for (o = abfd->sections; o != NULL; o = o->next)
10306 {
10307 if (!elf_fixup_link_order (abfd, o))
10308 return FALSE;
10309 }
10310
10311 /* Since ELF permits relocations to be against local symbols, we
10312 must have the local symbols available when we do the relocations.
10313 Since we would rather only read the local symbols once, and we
10314 would rather not keep them in memory, we handle all the
10315 relocations for a single input file at the same time.
10316
10317 Unfortunately, there is no way to know the total number of local
10318 symbols until we have seen all of them, and the local symbol
10319 indices precede the global symbol indices. This means that when
10320 we are generating relocatable output, and we see a reloc against
10321 a global symbol, we can not know the symbol index until we have
10322 finished examining all the local symbols to see which ones we are
10323 going to output. To deal with this, we keep the relocations in
10324 memory, and don't output them until the end of the link. This is
10325 an unfortunate waste of memory, but I don't see a good way around
10326 it. Fortunately, it only happens when performing a relocatable
10327 link, which is not the common case. FIXME: If keep_memory is set
10328 we could write the relocs out and then read them again; I don't
10329 know how bad the memory loss will be. */
10330
10331 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10332 sub->output_has_begun = FALSE;
10333 for (o = abfd->sections; o != NULL; o = o->next)
10334 {
10335 for (p = o->map_head.link_order; p != NULL; p = p->next)
10336 {
10337 if (p->type == bfd_indirect_link_order
10338 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10339 == bfd_target_elf_flavour)
10340 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10341 {
10342 if (! sub->output_has_begun)
10343 {
10344 if (! elf_link_input_bfd (&finfo, sub))
10345 goto error_return;
10346 sub->output_has_begun = TRUE;
10347 }
10348 }
10349 else if (p->type == bfd_section_reloc_link_order
10350 || p->type == bfd_symbol_reloc_link_order)
10351 {
10352 if (! elf_reloc_link_order (abfd, info, o, p))
10353 goto error_return;
10354 }
10355 else
10356 {
10357 if (! _bfd_default_link_order (abfd, info, o, p))
10358 goto error_return;
10359 }
10360 }
10361 }
10362
10363 /* Free symbol buffer if needed. */
10364 if (!info->reduce_memory_overheads)
10365 {
10366 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10367 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10368 && elf_tdata (sub)->symbuf)
10369 {
10370 free (elf_tdata (sub)->symbuf);
10371 elf_tdata (sub)->symbuf = NULL;
10372 }
10373 }
10374
10375 /* Output any global symbols that got converted to local in a
10376 version script or due to symbol visibility. We do this in a
10377 separate step since ELF requires all local symbols to appear
10378 prior to any global symbols. FIXME: We should only do this if
10379 some global symbols were, in fact, converted to become local.
10380 FIXME: Will this work correctly with the Irix 5 linker? */
10381 eoinfo.failed = FALSE;
10382 eoinfo.finfo = &finfo;
10383 eoinfo.localsyms = TRUE;
10384 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10385 &eoinfo);
10386 if (eoinfo.failed)
10387 return FALSE;
10388
10389 /* If backend needs to output some local symbols not present in the hash
10390 table, do it now. */
10391 if (bed->elf_backend_output_arch_local_syms)
10392 {
10393 typedef bfd_boolean (*out_sym_func)
10394 (void *, const char *, Elf_Internal_Sym *, asection *,
10395 struct elf_link_hash_entry *);
10396
10397 if (! ((*bed->elf_backend_output_arch_local_syms)
10398 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10399 return FALSE;
10400 }
10401
10402 /* That wrote out all the local symbols. Finish up the symbol table
10403 with the global symbols. Even if we want to strip everything we
10404 can, we still need to deal with those global symbols that got
10405 converted to local in a version script. */
10406
10407 /* The sh_info field records the index of the first non local symbol. */
10408 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10409
10410 if (dynamic
10411 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10412 {
10413 Elf_Internal_Sym sym;
10414 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10415 long last_local = 0;
10416
10417 /* Write out the section symbols for the output sections. */
10418 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10419 {
10420 asection *s;
10421
10422 sym.st_size = 0;
10423 sym.st_name = 0;
10424 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10425 sym.st_other = 0;
10426
10427 for (s = abfd->sections; s != NULL; s = s->next)
10428 {
10429 int indx;
10430 bfd_byte *dest;
10431 long dynindx;
10432
10433 dynindx = elf_section_data (s)->dynindx;
10434 if (dynindx <= 0)
10435 continue;
10436 indx = elf_section_data (s)->this_idx;
10437 BFD_ASSERT (indx > 0);
10438 sym.st_shndx = indx;
10439 if (! check_dynsym (abfd, &sym))
10440 return FALSE;
10441 sym.st_value = s->vma;
10442 dest = dynsym + dynindx * bed->s->sizeof_sym;
10443 if (last_local < dynindx)
10444 last_local = dynindx;
10445 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10446 }
10447 }
10448
10449 /* Write out the local dynsyms. */
10450 if (elf_hash_table (info)->dynlocal)
10451 {
10452 struct elf_link_local_dynamic_entry *e;
10453 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10454 {
10455 asection *s;
10456 bfd_byte *dest;
10457
10458 sym.st_size = e->isym.st_size;
10459 sym.st_other = e->isym.st_other;
10460
10461 /* Copy the internal symbol as is.
10462 Note that we saved a word of storage and overwrote
10463 the original st_name with the dynstr_index. */
10464 sym = e->isym;
10465
10466 if (e->isym.st_shndx != SHN_UNDEF
10467 && (e->isym.st_shndx < SHN_LORESERVE
10468 || e->isym.st_shndx > SHN_HIRESERVE))
10469 {
10470 s = bfd_section_from_elf_index (e->input_bfd,
10471 e->isym.st_shndx);
10472
10473 sym.st_shndx =
10474 elf_section_data (s->output_section)->this_idx;
10475 if (! check_dynsym (abfd, &sym))
10476 return FALSE;
10477 sym.st_value = (s->output_section->vma
10478 + s->output_offset
10479 + e->isym.st_value);
10480 }
10481
10482 if (last_local < e->dynindx)
10483 last_local = e->dynindx;
10484
10485 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10486 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10487 }
10488 }
10489
10490 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10491 last_local + 1;
10492 }
10493
10494 /* We get the global symbols from the hash table. */
10495 eoinfo.failed = FALSE;
10496 eoinfo.localsyms = FALSE;
10497 eoinfo.finfo = &finfo;
10498 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10499 &eoinfo);
10500 if (eoinfo.failed)
10501 return FALSE;
10502
10503 /* If backend needs to output some symbols not present in the hash
10504 table, do it now. */
10505 if (bed->elf_backend_output_arch_syms)
10506 {
10507 typedef bfd_boolean (*out_sym_func)
10508 (void *, const char *, Elf_Internal_Sym *, asection *,
10509 struct elf_link_hash_entry *);
10510
10511 if (! ((*bed->elf_backend_output_arch_syms)
10512 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10513 return FALSE;
10514 }
10515
10516 /* Flush all symbols to the file. */
10517 if (! elf_link_flush_output_syms (&finfo, bed))
10518 return FALSE;
10519
10520 /* Now we know the size of the symtab section. */
10521 off += symtab_hdr->sh_size;
10522
10523 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10524 if (symtab_shndx_hdr->sh_name != 0)
10525 {
10526 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10527 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10528 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10529 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10530 symtab_shndx_hdr->sh_size = amt;
10531
10532 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10533 off, TRUE);
10534
10535 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10536 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10537 return FALSE;
10538 }
10539
10540
10541 /* Finish up and write out the symbol string table (.strtab)
10542 section. */
10543 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10544 /* sh_name was set in prep_headers. */
10545 symstrtab_hdr->sh_type = SHT_STRTAB;
10546 symstrtab_hdr->sh_flags = 0;
10547 symstrtab_hdr->sh_addr = 0;
10548 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10549 symstrtab_hdr->sh_entsize = 0;
10550 symstrtab_hdr->sh_link = 0;
10551 symstrtab_hdr->sh_info = 0;
10552 /* sh_offset is set just below. */
10553 symstrtab_hdr->sh_addralign = 1;
10554
10555 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10556 elf_tdata (abfd)->next_file_pos = off;
10557
10558 if (bfd_get_symcount (abfd) > 0)
10559 {
10560 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10561 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10562 return FALSE;
10563 }
10564
10565 /* Adjust the relocs to have the correct symbol indices. */
10566 for (o = abfd->sections; o != NULL; o = o->next)
10567 {
10568 if ((o->flags & SEC_RELOC) == 0)
10569 continue;
10570
10571 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10572 elf_section_data (o)->rel_count,
10573 elf_section_data (o)->rel_hashes);
10574 if (elf_section_data (o)->rel_hdr2 != NULL)
10575 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10576 elf_section_data (o)->rel_count2,
10577 (elf_section_data (o)->rel_hashes
10578 + elf_section_data (o)->rel_count));
10579
10580 /* Set the reloc_count field to 0 to prevent write_relocs from
10581 trying to swap the relocs out itself. */
10582 o->reloc_count = 0;
10583 }
10584
10585 if (dynamic && info->combreloc && dynobj != NULL)
10586 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10587
10588 /* If we are linking against a dynamic object, or generating a
10589 shared library, finish up the dynamic linking information. */
10590 if (dynamic)
10591 {
10592 bfd_byte *dyncon, *dynconend;
10593
10594 /* Fix up .dynamic entries. */
10595 o = bfd_get_section_by_name (dynobj, ".dynamic");
10596 BFD_ASSERT (o != NULL);
10597
10598 dyncon = o->contents;
10599 dynconend = o->contents + o->size;
10600 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10601 {
10602 Elf_Internal_Dyn dyn;
10603 const char *name;
10604 unsigned int type;
10605
10606 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10607
10608 switch (dyn.d_tag)
10609 {
10610 default:
10611 continue;
10612 case DT_NULL:
10613 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10614 {
10615 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10616 {
10617 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10618 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10619 default: continue;
10620 }
10621 dyn.d_un.d_val = relativecount;
10622 relativecount = 0;
10623 break;
10624 }
10625 continue;
10626
10627 case DT_INIT:
10628 name = info->init_function;
10629 goto get_sym;
10630 case DT_FINI:
10631 name = info->fini_function;
10632 get_sym:
10633 {
10634 struct elf_link_hash_entry *h;
10635
10636 h = elf_link_hash_lookup (elf_hash_table (info), name,
10637 FALSE, FALSE, TRUE);
10638 if (h != NULL
10639 && (h->root.type == bfd_link_hash_defined
10640 || h->root.type == bfd_link_hash_defweak))
10641 {
10642 dyn.d_un.d_val = h->root.u.def.value;
10643 o = h->root.u.def.section;
10644 if (o->output_section != NULL)
10645 dyn.d_un.d_val += (o->output_section->vma
10646 + o->output_offset);
10647 else
10648 {
10649 /* The symbol is imported from another shared
10650 library and does not apply to this one. */
10651 dyn.d_un.d_val = 0;
10652 }
10653 break;
10654 }
10655 }
10656 continue;
10657
10658 case DT_PREINIT_ARRAYSZ:
10659 name = ".preinit_array";
10660 goto get_size;
10661 case DT_INIT_ARRAYSZ:
10662 name = ".init_array";
10663 goto get_size;
10664 case DT_FINI_ARRAYSZ:
10665 name = ".fini_array";
10666 get_size:
10667 o = bfd_get_section_by_name (abfd, name);
10668 if (o == NULL)
10669 {
10670 (*_bfd_error_handler)
10671 (_("%B: could not find output section %s"), abfd, name);
10672 goto error_return;
10673 }
10674 if (o->size == 0)
10675 (*_bfd_error_handler)
10676 (_("warning: %s section has zero size"), name);
10677 dyn.d_un.d_val = o->size;
10678 break;
10679
10680 case DT_PREINIT_ARRAY:
10681 name = ".preinit_array";
10682 goto get_vma;
10683 case DT_INIT_ARRAY:
10684 name = ".init_array";
10685 goto get_vma;
10686 case DT_FINI_ARRAY:
10687 name = ".fini_array";
10688 goto get_vma;
10689
10690 case DT_HASH:
10691 name = ".hash";
10692 goto get_vma;
10693 case DT_GNU_HASH:
10694 name = ".gnu.hash";
10695 goto get_vma;
10696 case DT_STRTAB:
10697 name = ".dynstr";
10698 goto get_vma;
10699 case DT_SYMTAB:
10700 name = ".dynsym";
10701 goto get_vma;
10702 case DT_VERDEF:
10703 name = ".gnu.version_d";
10704 goto get_vma;
10705 case DT_VERNEED:
10706 name = ".gnu.version_r";
10707 goto get_vma;
10708 case DT_VERSYM:
10709 name = ".gnu.version";
10710 get_vma:
10711 o = bfd_get_section_by_name (abfd, name);
10712 if (o == NULL)
10713 {
10714 (*_bfd_error_handler)
10715 (_("%B: could not find output section %s"), abfd, name);
10716 goto error_return;
10717 }
10718 dyn.d_un.d_ptr = o->vma;
10719 break;
10720
10721 case DT_REL:
10722 case DT_RELA:
10723 case DT_RELSZ:
10724 case DT_RELASZ:
10725 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10726 type = SHT_REL;
10727 else
10728 type = SHT_RELA;
10729 dyn.d_un.d_val = 0;
10730 for (i = 1; i < elf_numsections (abfd); i++)
10731 {
10732 Elf_Internal_Shdr *hdr;
10733
10734 hdr = elf_elfsections (abfd)[i];
10735 if (hdr->sh_type == type
10736 && (hdr->sh_flags & SHF_ALLOC) != 0)
10737 {
10738 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10739 dyn.d_un.d_val += hdr->sh_size;
10740 else
10741 {
10742 if (dyn.d_un.d_val == 0
10743 || hdr->sh_addr < dyn.d_un.d_val)
10744 dyn.d_un.d_val = hdr->sh_addr;
10745 }
10746 }
10747 }
10748 break;
10749 }
10750 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10751 }
10752 }
10753
10754 /* If we have created any dynamic sections, then output them. */
10755 if (dynobj != NULL)
10756 {
10757 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10758 goto error_return;
10759
10760 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10761 if (info->warn_shared_textrel && info->shared)
10762 {
10763 bfd_byte *dyncon, *dynconend;
10764
10765 /* Fix up .dynamic entries. */
10766 o = bfd_get_section_by_name (dynobj, ".dynamic");
10767 BFD_ASSERT (o != NULL);
10768
10769 dyncon = o->contents;
10770 dynconend = o->contents + o->size;
10771 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10772 {
10773 Elf_Internal_Dyn dyn;
10774
10775 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10776
10777 if (dyn.d_tag == DT_TEXTREL)
10778 {
10779 info->callbacks->einfo
10780 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10781 break;
10782 }
10783 }
10784 }
10785
10786 for (o = dynobj->sections; o != NULL; o = o->next)
10787 {
10788 if ((o->flags & SEC_HAS_CONTENTS) == 0
10789 || o->size == 0
10790 || o->output_section == bfd_abs_section_ptr)
10791 continue;
10792 if ((o->flags & SEC_LINKER_CREATED) == 0)
10793 {
10794 /* At this point, we are only interested in sections
10795 created by _bfd_elf_link_create_dynamic_sections. */
10796 continue;
10797 }
10798 if (elf_hash_table (info)->stab_info.stabstr == o)
10799 continue;
10800 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10801 continue;
10802 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10803 != SHT_STRTAB)
10804 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10805 {
10806 if (! bfd_set_section_contents (abfd, o->output_section,
10807 o->contents,
10808 (file_ptr) o->output_offset,
10809 o->size))
10810 goto error_return;
10811 }
10812 else
10813 {
10814 /* The contents of the .dynstr section are actually in a
10815 stringtab. */
10816 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10817 if (bfd_seek (abfd, off, SEEK_SET) != 0
10818 || ! _bfd_elf_strtab_emit (abfd,
10819 elf_hash_table (info)->dynstr))
10820 goto error_return;
10821 }
10822 }
10823 }
10824
10825 if (info->relocatable)
10826 {
10827 bfd_boolean failed = FALSE;
10828
10829 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10830 if (failed)
10831 goto error_return;
10832 }
10833
10834 /* If we have optimized stabs strings, output them. */
10835 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10836 {
10837 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10838 goto error_return;
10839 }
10840
10841 if (info->eh_frame_hdr)
10842 {
10843 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10844 goto error_return;
10845 }
10846
10847 if (finfo.symstrtab != NULL)
10848 _bfd_stringtab_free (finfo.symstrtab);
10849 if (finfo.contents != NULL)
10850 free (finfo.contents);
10851 if (finfo.external_relocs != NULL)
10852 free (finfo.external_relocs);
10853 if (finfo.internal_relocs != NULL)
10854 free (finfo.internal_relocs);
10855 if (finfo.external_syms != NULL)
10856 free (finfo.external_syms);
10857 if (finfo.locsym_shndx != NULL)
10858 free (finfo.locsym_shndx);
10859 if (finfo.internal_syms != NULL)
10860 free (finfo.internal_syms);
10861 if (finfo.indices != NULL)
10862 free (finfo.indices);
10863 if (finfo.sections != NULL)
10864 free (finfo.sections);
10865 if (finfo.symbuf != NULL)
10866 free (finfo.symbuf);
10867 if (finfo.symshndxbuf != NULL)
10868 free (finfo.symshndxbuf);
10869 for (o = abfd->sections; o != NULL; o = o->next)
10870 {
10871 if ((o->flags & SEC_RELOC) != 0
10872 && elf_section_data (o)->rel_hashes != NULL)
10873 free (elf_section_data (o)->rel_hashes);
10874 }
10875
10876 elf_tdata (abfd)->linker = TRUE;
10877
10878 if (attr_section)
10879 {
10880 bfd_byte *contents = bfd_malloc (attr_size);
10881 if (contents == NULL)
10882 return FALSE; /* Bail out and fail. */
10883 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10884 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10885 free (contents);
10886 }
10887
10888 return TRUE;
10889
10890 error_return:
10891 if (finfo.symstrtab != NULL)
10892 _bfd_stringtab_free (finfo.symstrtab);
10893 if (finfo.contents != NULL)
10894 free (finfo.contents);
10895 if (finfo.external_relocs != NULL)
10896 free (finfo.external_relocs);
10897 if (finfo.internal_relocs != NULL)
10898 free (finfo.internal_relocs);
10899 if (finfo.external_syms != NULL)
10900 free (finfo.external_syms);
10901 if (finfo.locsym_shndx != NULL)
10902 free (finfo.locsym_shndx);
10903 if (finfo.internal_syms != NULL)
10904 free (finfo.internal_syms);
10905 if (finfo.indices != NULL)
10906 free (finfo.indices);
10907 if (finfo.sections != NULL)
10908 free (finfo.sections);
10909 if (finfo.symbuf != NULL)
10910 free (finfo.symbuf);
10911 if (finfo.symshndxbuf != NULL)
10912 free (finfo.symshndxbuf);
10913 for (o = abfd->sections; o != NULL; o = o->next)
10914 {
10915 if ((o->flags & SEC_RELOC) != 0
10916 && elf_section_data (o)->rel_hashes != NULL)
10917 free (elf_section_data (o)->rel_hashes);
10918 }
10919
10920 return FALSE;
10921 }
10922 \f
10923 /* Garbage collect unused sections. */
10924
10925 /* Default gc_mark_hook. */
10926
10927 asection *
10928 _bfd_elf_gc_mark_hook (asection *sec,
10929 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10930 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
10931 struct elf_link_hash_entry *h,
10932 Elf_Internal_Sym *sym)
10933 {
10934 if (h != NULL)
10935 {
10936 switch (h->root.type)
10937 {
10938 case bfd_link_hash_defined:
10939 case bfd_link_hash_defweak:
10940 return h->root.u.def.section;
10941
10942 case bfd_link_hash_common:
10943 return h->root.u.c.p->section;
10944
10945 default:
10946 break;
10947 }
10948 }
10949 else
10950 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
10951
10952 return NULL;
10953 }
10954
10955 /* The mark phase of garbage collection. For a given section, mark
10956 it and any sections in this section's group, and all the sections
10957 which define symbols to which it refers. */
10958
10959 bfd_boolean
10960 _bfd_elf_gc_mark (struct bfd_link_info *info,
10961 asection *sec,
10962 elf_gc_mark_hook_fn gc_mark_hook)
10963 {
10964 bfd_boolean ret;
10965 bfd_boolean is_eh;
10966 asection *group_sec;
10967
10968 sec->gc_mark = 1;
10969
10970 /* Mark all the sections in the group. */
10971 group_sec = elf_section_data (sec)->next_in_group;
10972 if (group_sec && !group_sec->gc_mark)
10973 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
10974 return FALSE;
10975
10976 /* Look through the section relocs. */
10977 ret = TRUE;
10978 is_eh = strcmp (sec->name, ".eh_frame") == 0;
10979 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
10980 {
10981 Elf_Internal_Rela *relstart, *rel, *relend;
10982 Elf_Internal_Shdr *symtab_hdr;
10983 struct elf_link_hash_entry **sym_hashes;
10984 size_t nlocsyms;
10985 size_t extsymoff;
10986 bfd *input_bfd = sec->owner;
10987 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
10988 Elf_Internal_Sym *isym = NULL;
10989 int r_sym_shift;
10990
10991 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10992 sym_hashes = elf_sym_hashes (input_bfd);
10993
10994 /* Read the local symbols. */
10995 if (elf_bad_symtab (input_bfd))
10996 {
10997 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
10998 extsymoff = 0;
10999 }
11000 else
11001 extsymoff = nlocsyms = symtab_hdr->sh_info;
11002
11003 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11004 if (isym == NULL && nlocsyms != 0)
11005 {
11006 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
11007 NULL, NULL, NULL);
11008 if (isym == NULL)
11009 return FALSE;
11010 }
11011
11012 /* Read the relocations. */
11013 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
11014 info->keep_memory);
11015 if (relstart == NULL)
11016 {
11017 ret = FALSE;
11018 goto out1;
11019 }
11020 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11021
11022 if (bed->s->arch_size == 32)
11023 r_sym_shift = 8;
11024 else
11025 r_sym_shift = 32;
11026
11027 for (rel = relstart; rel < relend; rel++)
11028 {
11029 unsigned long r_symndx;
11030 asection *rsec;
11031 struct elf_link_hash_entry *h;
11032
11033 r_symndx = rel->r_info >> r_sym_shift;
11034 if (r_symndx == 0)
11035 continue;
11036
11037 if (r_symndx >= nlocsyms
11038 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
11039 {
11040 h = sym_hashes[r_symndx - extsymoff];
11041 while (h->root.type == bfd_link_hash_indirect
11042 || h->root.type == bfd_link_hash_warning)
11043 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11044 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
11045 }
11046 else
11047 {
11048 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
11049 }
11050
11051 if (rsec && !rsec->gc_mark)
11052 {
11053 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11054 rsec->gc_mark = 1;
11055 else if (is_eh)
11056 rsec->gc_mark_from_eh = 1;
11057 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11058 {
11059 ret = FALSE;
11060 goto out2;
11061 }
11062 }
11063 }
11064
11065 out2:
11066 if (elf_section_data (sec)->relocs != relstart)
11067 free (relstart);
11068 out1:
11069 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
11070 {
11071 if (! info->keep_memory)
11072 free (isym);
11073 else
11074 symtab_hdr->contents = (unsigned char *) isym;
11075 }
11076 }
11077
11078 return ret;
11079 }
11080
11081 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11082
11083 struct elf_gc_sweep_symbol_info
11084 {
11085 struct bfd_link_info *info;
11086 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11087 bfd_boolean);
11088 };
11089
11090 static bfd_boolean
11091 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11092 {
11093 if (h->root.type == bfd_link_hash_warning)
11094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11095
11096 if ((h->root.type == bfd_link_hash_defined
11097 || h->root.type == bfd_link_hash_defweak)
11098 && !h->root.u.def.section->gc_mark
11099 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11100 {
11101 struct elf_gc_sweep_symbol_info *inf = data;
11102 (*inf->hide_symbol) (inf->info, h, TRUE);
11103 }
11104
11105 return TRUE;
11106 }
11107
11108 /* The sweep phase of garbage collection. Remove all garbage sections. */
11109
11110 typedef bfd_boolean (*gc_sweep_hook_fn)
11111 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11112
11113 static bfd_boolean
11114 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11115 {
11116 bfd *sub;
11117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11118 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11119 unsigned long section_sym_count;
11120 struct elf_gc_sweep_symbol_info sweep_info;
11121
11122 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11123 {
11124 asection *o;
11125
11126 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11127 continue;
11128
11129 for (o = sub->sections; o != NULL; o = o->next)
11130 {
11131 /* Keep debug and special sections. */
11132 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11133 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11134 o->gc_mark = 1;
11135
11136 if (o->gc_mark)
11137 continue;
11138
11139 /* Skip sweeping sections already excluded. */
11140 if (o->flags & SEC_EXCLUDE)
11141 continue;
11142
11143 /* Since this is early in the link process, it is simple
11144 to remove a section from the output. */
11145 o->flags |= SEC_EXCLUDE;
11146
11147 if (info->print_gc_sections && o->size != 0)
11148 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11149
11150 /* But we also have to update some of the relocation
11151 info we collected before. */
11152 if (gc_sweep_hook
11153 && (o->flags & SEC_RELOC) != 0
11154 && o->reloc_count > 0
11155 && !bfd_is_abs_section (o->output_section))
11156 {
11157 Elf_Internal_Rela *internal_relocs;
11158 bfd_boolean r;
11159
11160 internal_relocs
11161 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11162 info->keep_memory);
11163 if (internal_relocs == NULL)
11164 return FALSE;
11165
11166 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11167
11168 if (elf_section_data (o)->relocs != internal_relocs)
11169 free (internal_relocs);
11170
11171 if (!r)
11172 return FALSE;
11173 }
11174 }
11175 }
11176
11177 /* Remove the symbols that were in the swept sections from the dynamic
11178 symbol table. GCFIXME: Anyone know how to get them out of the
11179 static symbol table as well? */
11180 sweep_info.info = info;
11181 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11182 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11183 &sweep_info);
11184
11185 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11186 return TRUE;
11187 }
11188
11189 /* Propagate collected vtable information. This is called through
11190 elf_link_hash_traverse. */
11191
11192 static bfd_boolean
11193 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11194 {
11195 if (h->root.type == bfd_link_hash_warning)
11196 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11197
11198 /* Those that are not vtables. */
11199 if (h->vtable == NULL || h->vtable->parent == NULL)
11200 return TRUE;
11201
11202 /* Those vtables that do not have parents, we cannot merge. */
11203 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11204 return TRUE;
11205
11206 /* If we've already been done, exit. */
11207 if (h->vtable->used && h->vtable->used[-1])
11208 return TRUE;
11209
11210 /* Make sure the parent's table is up to date. */
11211 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11212
11213 if (h->vtable->used == NULL)
11214 {
11215 /* None of this table's entries were referenced. Re-use the
11216 parent's table. */
11217 h->vtable->used = h->vtable->parent->vtable->used;
11218 h->vtable->size = h->vtable->parent->vtable->size;
11219 }
11220 else
11221 {
11222 size_t n;
11223 bfd_boolean *cu, *pu;
11224
11225 /* Or the parent's entries into ours. */
11226 cu = h->vtable->used;
11227 cu[-1] = TRUE;
11228 pu = h->vtable->parent->vtable->used;
11229 if (pu != NULL)
11230 {
11231 const struct elf_backend_data *bed;
11232 unsigned int log_file_align;
11233
11234 bed = get_elf_backend_data (h->root.u.def.section->owner);
11235 log_file_align = bed->s->log_file_align;
11236 n = h->vtable->parent->vtable->size >> log_file_align;
11237 while (n--)
11238 {
11239 if (*pu)
11240 *cu = TRUE;
11241 pu++;
11242 cu++;
11243 }
11244 }
11245 }
11246
11247 return TRUE;
11248 }
11249
11250 static bfd_boolean
11251 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11252 {
11253 asection *sec;
11254 bfd_vma hstart, hend;
11255 Elf_Internal_Rela *relstart, *relend, *rel;
11256 const struct elf_backend_data *bed;
11257 unsigned int log_file_align;
11258
11259 if (h->root.type == bfd_link_hash_warning)
11260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11261
11262 /* Take care of both those symbols that do not describe vtables as
11263 well as those that are not loaded. */
11264 if (h->vtable == NULL || h->vtable->parent == NULL)
11265 return TRUE;
11266
11267 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11268 || h->root.type == bfd_link_hash_defweak);
11269
11270 sec = h->root.u.def.section;
11271 hstart = h->root.u.def.value;
11272 hend = hstart + h->size;
11273
11274 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11275 if (!relstart)
11276 return *(bfd_boolean *) okp = FALSE;
11277 bed = get_elf_backend_data (sec->owner);
11278 log_file_align = bed->s->log_file_align;
11279
11280 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11281
11282 for (rel = relstart; rel < relend; ++rel)
11283 if (rel->r_offset >= hstart && rel->r_offset < hend)
11284 {
11285 /* If the entry is in use, do nothing. */
11286 if (h->vtable->used
11287 && (rel->r_offset - hstart) < h->vtable->size)
11288 {
11289 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11290 if (h->vtable->used[entry])
11291 continue;
11292 }
11293 /* Otherwise, kill it. */
11294 rel->r_offset = rel->r_info = rel->r_addend = 0;
11295 }
11296
11297 return TRUE;
11298 }
11299
11300 /* Mark sections containing dynamically referenced symbols. When
11301 building shared libraries, we must assume that any visible symbol is
11302 referenced. */
11303
11304 bfd_boolean
11305 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11306 {
11307 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11308
11309 if (h->root.type == bfd_link_hash_warning)
11310 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11311
11312 if ((h->root.type == bfd_link_hash_defined
11313 || h->root.type == bfd_link_hash_defweak)
11314 && (h->ref_dynamic
11315 || (!info->executable
11316 && h->def_regular
11317 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11318 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11319 h->root.u.def.section->flags |= SEC_KEEP;
11320
11321 return TRUE;
11322 }
11323
11324 /* Do mark and sweep of unused sections. */
11325
11326 bfd_boolean
11327 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11328 {
11329 bfd_boolean ok = TRUE;
11330 bfd *sub;
11331 elf_gc_mark_hook_fn gc_mark_hook;
11332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11333
11334 if (!bed->can_gc_sections
11335 || info->relocatable
11336 || info->emitrelocations
11337 || !is_elf_hash_table (info->hash))
11338 {
11339 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11340 return TRUE;
11341 }
11342
11343 /* Apply transitive closure to the vtable entry usage info. */
11344 elf_link_hash_traverse (elf_hash_table (info),
11345 elf_gc_propagate_vtable_entries_used,
11346 &ok);
11347 if (!ok)
11348 return FALSE;
11349
11350 /* Kill the vtable relocations that were not used. */
11351 elf_link_hash_traverse (elf_hash_table (info),
11352 elf_gc_smash_unused_vtentry_relocs,
11353 &ok);
11354 if (!ok)
11355 return FALSE;
11356
11357 /* Mark dynamically referenced symbols. */
11358 if (elf_hash_table (info)->dynamic_sections_created)
11359 elf_link_hash_traverse (elf_hash_table (info),
11360 bed->gc_mark_dynamic_ref,
11361 info);
11362
11363 /* Grovel through relocs to find out who stays ... */
11364 gc_mark_hook = bed->gc_mark_hook;
11365 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11366 {
11367 asection *o;
11368
11369 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11370 continue;
11371
11372 for (o = sub->sections; o != NULL; o = o->next)
11373 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11374 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11375 return FALSE;
11376 }
11377
11378 /* Allow the backend to mark additional target specific sections. */
11379 if (bed->gc_mark_extra_sections)
11380 bed->gc_mark_extra_sections(info, gc_mark_hook);
11381
11382 /* ... again for sections marked from eh_frame. */
11383 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11384 {
11385 asection *o;
11386
11387 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11388 continue;
11389
11390 /* Keep .gcc_except_table.* if the associated .text.* (or the
11391 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
11392 marked. This isn't very nice, but the proper solution,
11393 splitting .eh_frame up and using comdat doesn't pan out
11394 easily due to needing special relocs to handle the
11395 difference of two symbols in separate sections.
11396 Don't keep code sections referenced by .eh_frame. */
11397 #define TEXT_PREFIX ".text."
11398 #define TEXT_PREFIX2 ".gnu.linkonce.t."
11399 #define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
11400 for (o = sub->sections; o != NULL; o = o->next)
11401 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
11402 {
11403 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
11404 {
11405 char *fn_name;
11406 const char *sec_name;
11407 asection *fn_text;
11408 unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
11409
11410 o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
11411 sec_name = o->name + o_name_prefix_len;
11412 fn_name_prefix_len = strlen (TEXT_PREFIX);
11413 tmp = strlen (TEXT_PREFIX2);
11414 if (tmp > fn_name_prefix_len)
11415 fn_name_prefix_len = tmp;
11416 fn_name
11417 = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
11418 if (fn_name == NULL)
11419 return FALSE;
11420
11421 /* Try the first prefix. */
11422 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
11423 fn_text = bfd_get_section_by_name (sub, fn_name);
11424
11425 /* Try the second prefix. */
11426 if (fn_text == NULL)
11427 {
11428 sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
11429 fn_text = bfd_get_section_by_name (sub, fn_name);
11430 }
11431
11432 free (fn_name);
11433 if (fn_text == NULL || !fn_text->gc_mark)
11434 continue;
11435 }
11436
11437 /* If not using specially named exception table section,
11438 then keep whatever we are using. */
11439 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11440 return FALSE;
11441 }
11442 }
11443
11444 /* ... and mark SEC_EXCLUDE for those that go. */
11445 return elf_gc_sweep (abfd, info);
11446 }
11447 \f
11448 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11449
11450 bfd_boolean
11451 bfd_elf_gc_record_vtinherit (bfd *abfd,
11452 asection *sec,
11453 struct elf_link_hash_entry *h,
11454 bfd_vma offset)
11455 {
11456 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11457 struct elf_link_hash_entry **search, *child;
11458 bfd_size_type extsymcount;
11459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11460
11461 /* The sh_info field of the symtab header tells us where the
11462 external symbols start. We don't care about the local symbols at
11463 this point. */
11464 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11465 if (!elf_bad_symtab (abfd))
11466 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11467
11468 sym_hashes = elf_sym_hashes (abfd);
11469 sym_hashes_end = sym_hashes + extsymcount;
11470
11471 /* Hunt down the child symbol, which is in this section at the same
11472 offset as the relocation. */
11473 for (search = sym_hashes; search != sym_hashes_end; ++search)
11474 {
11475 if ((child = *search) != NULL
11476 && (child->root.type == bfd_link_hash_defined
11477 || child->root.type == bfd_link_hash_defweak)
11478 && child->root.u.def.section == sec
11479 && child->root.u.def.value == offset)
11480 goto win;
11481 }
11482
11483 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11484 abfd, sec, (unsigned long) offset);
11485 bfd_set_error (bfd_error_invalid_operation);
11486 return FALSE;
11487
11488 win:
11489 if (!child->vtable)
11490 {
11491 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11492 if (!child->vtable)
11493 return FALSE;
11494 }
11495 if (!h)
11496 {
11497 /* This *should* only be the absolute section. It could potentially
11498 be that someone has defined a non-global vtable though, which
11499 would be bad. It isn't worth paging in the local symbols to be
11500 sure though; that case should simply be handled by the assembler. */
11501
11502 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11503 }
11504 else
11505 child->vtable->parent = h;
11506
11507 return TRUE;
11508 }
11509
11510 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11511
11512 bfd_boolean
11513 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11514 asection *sec ATTRIBUTE_UNUSED,
11515 struct elf_link_hash_entry *h,
11516 bfd_vma addend)
11517 {
11518 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11519 unsigned int log_file_align = bed->s->log_file_align;
11520
11521 if (!h->vtable)
11522 {
11523 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11524 if (!h->vtable)
11525 return FALSE;
11526 }
11527
11528 if (addend >= h->vtable->size)
11529 {
11530 size_t size, bytes, file_align;
11531 bfd_boolean *ptr = h->vtable->used;
11532
11533 /* While the symbol is undefined, we have to be prepared to handle
11534 a zero size. */
11535 file_align = 1 << log_file_align;
11536 if (h->root.type == bfd_link_hash_undefined)
11537 size = addend + file_align;
11538 else
11539 {
11540 size = h->size;
11541 if (addend >= size)
11542 {
11543 /* Oops! We've got a reference past the defined end of
11544 the table. This is probably a bug -- shall we warn? */
11545 size = addend + file_align;
11546 }
11547 }
11548 size = (size + file_align - 1) & -file_align;
11549
11550 /* Allocate one extra entry for use as a "done" flag for the
11551 consolidation pass. */
11552 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11553
11554 if (ptr)
11555 {
11556 ptr = bfd_realloc (ptr - 1, bytes);
11557
11558 if (ptr != NULL)
11559 {
11560 size_t oldbytes;
11561
11562 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11563 * sizeof (bfd_boolean));
11564 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11565 }
11566 }
11567 else
11568 ptr = bfd_zmalloc (bytes);
11569
11570 if (ptr == NULL)
11571 return FALSE;
11572
11573 /* And arrange for that done flag to be at index -1. */
11574 h->vtable->used = ptr + 1;
11575 h->vtable->size = size;
11576 }
11577
11578 h->vtable->used[addend >> log_file_align] = TRUE;
11579
11580 return TRUE;
11581 }
11582
11583 struct alloc_got_off_arg {
11584 bfd_vma gotoff;
11585 unsigned int got_elt_size;
11586 };
11587
11588 /* We need a special top-level link routine to convert got reference counts
11589 to real got offsets. */
11590
11591 static bfd_boolean
11592 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11593 {
11594 struct alloc_got_off_arg *gofarg = arg;
11595
11596 if (h->root.type == bfd_link_hash_warning)
11597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11598
11599 if (h->got.refcount > 0)
11600 {
11601 h->got.offset = gofarg->gotoff;
11602 gofarg->gotoff += gofarg->got_elt_size;
11603 }
11604 else
11605 h->got.offset = (bfd_vma) -1;
11606
11607 return TRUE;
11608 }
11609
11610 /* And an accompanying bit to work out final got entry offsets once
11611 we're done. Should be called from final_link. */
11612
11613 bfd_boolean
11614 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11615 struct bfd_link_info *info)
11616 {
11617 bfd *i;
11618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11619 bfd_vma gotoff;
11620 unsigned int got_elt_size = bed->s->arch_size / 8;
11621 struct alloc_got_off_arg gofarg;
11622
11623 if (! is_elf_hash_table (info->hash))
11624 return FALSE;
11625
11626 /* The GOT offset is relative to the .got section, but the GOT header is
11627 put into the .got.plt section, if the backend uses it. */
11628 if (bed->want_got_plt)
11629 gotoff = 0;
11630 else
11631 gotoff = bed->got_header_size;
11632
11633 /* Do the local .got entries first. */
11634 for (i = info->input_bfds; i; i = i->link_next)
11635 {
11636 bfd_signed_vma *local_got;
11637 bfd_size_type j, locsymcount;
11638 Elf_Internal_Shdr *symtab_hdr;
11639
11640 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11641 continue;
11642
11643 local_got = elf_local_got_refcounts (i);
11644 if (!local_got)
11645 continue;
11646
11647 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11648 if (elf_bad_symtab (i))
11649 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11650 else
11651 locsymcount = symtab_hdr->sh_info;
11652
11653 for (j = 0; j < locsymcount; ++j)
11654 {
11655 if (local_got[j] > 0)
11656 {
11657 local_got[j] = gotoff;
11658 gotoff += got_elt_size;
11659 }
11660 else
11661 local_got[j] = (bfd_vma) -1;
11662 }
11663 }
11664
11665 /* Then the global .got entries. .plt refcounts are handled by
11666 adjust_dynamic_symbol */
11667 gofarg.gotoff = gotoff;
11668 gofarg.got_elt_size = got_elt_size;
11669 elf_link_hash_traverse (elf_hash_table (info),
11670 elf_gc_allocate_got_offsets,
11671 &gofarg);
11672 return TRUE;
11673 }
11674
11675 /* Many folk need no more in the way of final link than this, once
11676 got entry reference counting is enabled. */
11677
11678 bfd_boolean
11679 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11680 {
11681 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11682 return FALSE;
11683
11684 /* Invoke the regular ELF backend linker to do all the work. */
11685 return bfd_elf_final_link (abfd, info);
11686 }
11687
11688 bfd_boolean
11689 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11690 {
11691 struct elf_reloc_cookie *rcookie = cookie;
11692
11693 if (rcookie->bad_symtab)
11694 rcookie->rel = rcookie->rels;
11695
11696 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11697 {
11698 unsigned long r_symndx;
11699
11700 if (! rcookie->bad_symtab)
11701 if (rcookie->rel->r_offset > offset)
11702 return FALSE;
11703 if (rcookie->rel->r_offset != offset)
11704 continue;
11705
11706 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11707 if (r_symndx == SHN_UNDEF)
11708 return TRUE;
11709
11710 if (r_symndx >= rcookie->locsymcount
11711 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11712 {
11713 struct elf_link_hash_entry *h;
11714
11715 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11716
11717 while (h->root.type == bfd_link_hash_indirect
11718 || h->root.type == bfd_link_hash_warning)
11719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11720
11721 if ((h->root.type == bfd_link_hash_defined
11722 || h->root.type == bfd_link_hash_defweak)
11723 && elf_discarded_section (h->root.u.def.section))
11724 return TRUE;
11725 else
11726 return FALSE;
11727 }
11728 else
11729 {
11730 /* It's not a relocation against a global symbol,
11731 but it could be a relocation against a local
11732 symbol for a discarded section. */
11733 asection *isec;
11734 Elf_Internal_Sym *isym;
11735
11736 /* Need to: get the symbol; get the section. */
11737 isym = &rcookie->locsyms[r_symndx];
11738 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11739 {
11740 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11741 if (isec != NULL && elf_discarded_section (isec))
11742 return TRUE;
11743 }
11744 }
11745 return FALSE;
11746 }
11747 return FALSE;
11748 }
11749
11750 /* Discard unneeded references to discarded sections.
11751 Returns TRUE if any section's size was changed. */
11752 /* This function assumes that the relocations are in sorted order,
11753 which is true for all known assemblers. */
11754
11755 bfd_boolean
11756 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11757 {
11758 struct elf_reloc_cookie cookie;
11759 asection *stab, *eh;
11760 Elf_Internal_Shdr *symtab_hdr;
11761 const struct elf_backend_data *bed;
11762 bfd *abfd;
11763 unsigned int count;
11764 bfd_boolean ret = FALSE;
11765
11766 if (info->traditional_format
11767 || !is_elf_hash_table (info->hash))
11768 return FALSE;
11769
11770 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11771 {
11772 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11773 continue;
11774
11775 bed = get_elf_backend_data (abfd);
11776
11777 if ((abfd->flags & DYNAMIC) != 0)
11778 continue;
11779
11780 eh = NULL;
11781 if (!info->relocatable)
11782 {
11783 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11784 if (eh != NULL
11785 && (eh->size == 0
11786 || bfd_is_abs_section (eh->output_section)))
11787 eh = NULL;
11788 }
11789
11790 stab = bfd_get_section_by_name (abfd, ".stab");
11791 if (stab != NULL
11792 && (stab->size == 0
11793 || bfd_is_abs_section (stab->output_section)
11794 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11795 stab = NULL;
11796
11797 if (stab == NULL
11798 && eh == NULL
11799 && bed->elf_backend_discard_info == NULL)
11800 continue;
11801
11802 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11803 cookie.abfd = abfd;
11804 cookie.sym_hashes = elf_sym_hashes (abfd);
11805 cookie.bad_symtab = elf_bad_symtab (abfd);
11806 if (cookie.bad_symtab)
11807 {
11808 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11809 cookie.extsymoff = 0;
11810 }
11811 else
11812 {
11813 cookie.locsymcount = symtab_hdr->sh_info;
11814 cookie.extsymoff = symtab_hdr->sh_info;
11815 }
11816
11817 if (bed->s->arch_size == 32)
11818 cookie.r_sym_shift = 8;
11819 else
11820 cookie.r_sym_shift = 32;
11821
11822 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11823 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
11824 {
11825 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11826 cookie.locsymcount, 0,
11827 NULL, NULL, NULL);
11828 if (cookie.locsyms == NULL)
11829 {
11830 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11831 return FALSE;
11832 }
11833 }
11834
11835 if (stab != NULL)
11836 {
11837 cookie.rels = NULL;
11838 count = stab->reloc_count;
11839 if (count != 0)
11840 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
11841 info->keep_memory);
11842 if (cookie.rels != NULL)
11843 {
11844 cookie.rel = cookie.rels;
11845 cookie.relend = cookie.rels;
11846 cookie.relend += count * bed->s->int_rels_per_ext_rel;
11847 if (_bfd_discard_section_stabs (abfd, stab,
11848 elf_section_data (stab)->sec_info,
11849 bfd_elf_reloc_symbol_deleted_p,
11850 &cookie))
11851 ret = TRUE;
11852 if (elf_section_data (stab)->relocs != cookie.rels)
11853 free (cookie.rels);
11854 }
11855 }
11856
11857 if (eh != NULL)
11858 {
11859 cookie.rels = NULL;
11860 count = eh->reloc_count;
11861 if (count != 0)
11862 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
11863 info->keep_memory);
11864 cookie.rel = cookie.rels;
11865 cookie.relend = cookie.rels;
11866 if (cookie.rels != NULL)
11867 cookie.relend += count * bed->s->int_rels_per_ext_rel;
11868
11869 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11870 bfd_elf_reloc_symbol_deleted_p,
11871 &cookie))
11872 ret = TRUE;
11873
11874 if (cookie.rels != NULL
11875 && elf_section_data (eh)->relocs != cookie.rels)
11876 free (cookie.rels);
11877 }
11878
11879 if (bed->elf_backend_discard_info != NULL
11880 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11881 ret = TRUE;
11882
11883 if (cookie.locsyms != NULL
11884 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
11885 {
11886 if (! info->keep_memory)
11887 free (cookie.locsyms);
11888 else
11889 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
11890 }
11891 }
11892
11893 if (info->eh_frame_hdr
11894 && !info->relocatable
11895 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11896 ret = TRUE;
11897
11898 return ret;
11899 }
11900
11901 void
11902 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11903 struct bfd_link_info *info)
11904 {
11905 flagword flags;
11906 const char *name, *p;
11907 struct bfd_section_already_linked *l;
11908 struct bfd_section_already_linked_hash_entry *already_linked_list;
11909
11910 if (sec->output_section == bfd_abs_section_ptr)
11911 return;
11912
11913 flags = sec->flags;
11914
11915 /* Return if it isn't a linkonce section. A comdat group section
11916 also has SEC_LINK_ONCE set. */
11917 if ((flags & SEC_LINK_ONCE) == 0)
11918 return;
11919
11920 /* Don't put group member sections on our list of already linked
11921 sections. They are handled as a group via their group section. */
11922 if (elf_sec_group (sec) != NULL)
11923 return;
11924
11925 /* FIXME: When doing a relocatable link, we may have trouble
11926 copying relocations in other sections that refer to local symbols
11927 in the section being discarded. Those relocations will have to
11928 be converted somehow; as of this writing I'm not sure that any of
11929 the backends handle that correctly.
11930
11931 It is tempting to instead not discard link once sections when
11932 doing a relocatable link (technically, they should be discarded
11933 whenever we are building constructors). However, that fails,
11934 because the linker winds up combining all the link once sections
11935 into a single large link once section, which defeats the purpose
11936 of having link once sections in the first place.
11937
11938 Also, not merging link once sections in a relocatable link
11939 causes trouble for MIPS ELF, which relies on link once semantics
11940 to handle the .reginfo section correctly. */
11941
11942 name = bfd_get_section_name (abfd, sec);
11943
11944 if (CONST_STRNEQ (name, ".gnu.linkonce.")
11945 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
11946 p++;
11947 else
11948 p = name;
11949
11950 already_linked_list = bfd_section_already_linked_table_lookup (p);
11951
11952 for (l = already_linked_list->entry; l != NULL; l = l->next)
11953 {
11954 /* We may have 2 different types of sections on the list: group
11955 sections and linkonce sections. Match like sections. */
11956 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
11957 && strcmp (name, l->sec->name) == 0
11958 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
11959 {
11960 /* The section has already been linked. See if we should
11961 issue a warning. */
11962 switch (flags & SEC_LINK_DUPLICATES)
11963 {
11964 default:
11965 abort ();
11966
11967 case SEC_LINK_DUPLICATES_DISCARD:
11968 break;
11969
11970 case SEC_LINK_DUPLICATES_ONE_ONLY:
11971 (*_bfd_error_handler)
11972 (_("%B: ignoring duplicate section `%A'"),
11973 abfd, sec);
11974 break;
11975
11976 case SEC_LINK_DUPLICATES_SAME_SIZE:
11977 if (sec->size != l->sec->size)
11978 (*_bfd_error_handler)
11979 (_("%B: duplicate section `%A' has different size"),
11980 abfd, sec);
11981 break;
11982
11983 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
11984 if (sec->size != l->sec->size)
11985 (*_bfd_error_handler)
11986 (_("%B: duplicate section `%A' has different size"),
11987 abfd, sec);
11988 else if (sec->size != 0)
11989 {
11990 bfd_byte *sec_contents, *l_sec_contents;
11991
11992 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
11993 (*_bfd_error_handler)
11994 (_("%B: warning: could not read contents of section `%A'"),
11995 abfd, sec);
11996 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
11997 &l_sec_contents))
11998 (*_bfd_error_handler)
11999 (_("%B: warning: could not read contents of section `%A'"),
12000 l->sec->owner, l->sec);
12001 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12002 (*_bfd_error_handler)
12003 (_("%B: warning: duplicate section `%A' has different contents"),
12004 abfd, sec);
12005
12006 if (sec_contents)
12007 free (sec_contents);
12008 if (l_sec_contents)
12009 free (l_sec_contents);
12010 }
12011 break;
12012 }
12013
12014 /* Set the output_section field so that lang_add_section
12015 does not create a lang_input_section structure for this
12016 section. Since there might be a symbol in the section
12017 being discarded, we must retain a pointer to the section
12018 which we are really going to use. */
12019 sec->output_section = bfd_abs_section_ptr;
12020 sec->kept_section = l->sec;
12021
12022 if (flags & SEC_GROUP)
12023 {
12024 asection *first = elf_next_in_group (sec);
12025 asection *s = first;
12026
12027 while (s != NULL)
12028 {
12029 s->output_section = bfd_abs_section_ptr;
12030 /* Record which group discards it. */
12031 s->kept_section = l->sec;
12032 s = elf_next_in_group (s);
12033 /* These lists are circular. */
12034 if (s == first)
12035 break;
12036 }
12037 }
12038
12039 return;
12040 }
12041 }
12042
12043 /* A single member comdat group section may be discarded by a
12044 linkonce section and vice versa. */
12045
12046 if ((flags & SEC_GROUP) != 0)
12047 {
12048 asection *first = elf_next_in_group (sec);
12049
12050 if (first != NULL && elf_next_in_group (first) == first)
12051 /* Check this single member group against linkonce sections. */
12052 for (l = already_linked_list->entry; l != NULL; l = l->next)
12053 if ((l->sec->flags & SEC_GROUP) == 0
12054 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12055 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12056 {
12057 first->output_section = bfd_abs_section_ptr;
12058 first->kept_section = l->sec;
12059 sec->output_section = bfd_abs_section_ptr;
12060 break;
12061 }
12062 }
12063 else
12064 /* Check this linkonce section against single member groups. */
12065 for (l = already_linked_list->entry; l != NULL; l = l->next)
12066 if (l->sec->flags & SEC_GROUP)
12067 {
12068 asection *first = elf_next_in_group (l->sec);
12069
12070 if (first != NULL
12071 && elf_next_in_group (first) == first
12072 && bfd_elf_match_symbols_in_sections (first, sec, info))
12073 {
12074 sec->output_section = bfd_abs_section_ptr;
12075 sec->kept_section = first;
12076 break;
12077 }
12078 }
12079
12080 /* This is the first section with this name. Record it. */
12081 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12082 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12083 }
12084
12085 bfd_boolean
12086 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12087 {
12088 return sym->st_shndx == SHN_COMMON;
12089 }
12090
12091 unsigned int
12092 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12093 {
12094 return SHN_COMMON;
12095 }
12096
12097 asection *
12098 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12099 {
12100 return bfd_com_section_ptr;
12101 }
This page took 0.391738 seconds and 5 git commands to generate.