PowerPC undefweak handling
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239 }
240
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364 }
365
366 /* Create dynamic sections when linking against a dynamic object. */
367
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485 }
486 \f
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498 {
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561 }
562 \f
563 /* Mark a symbol dynamic. */
564
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569 {
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586 }
587
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597 {
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 switch (h->root.type)
627 {
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
631 break;
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
640 break;
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 h->non_elf = 0;
644 break;
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
649 hv = h;
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
654 later. */
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
659 break;
660 default:
661 BFD_FAIL ();
662 return FALSE;
663 }
664
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
669 if (provide
670 && h->def_dynamic
671 && !h->def_regular)
672 h->root.type = bfd_link_hash_undefined;
673
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
678 if (!provide
679 && h->def_dynamic
680 && !h->def_regular)
681 h->verinfo.verdef = NULL;
682
683 /* Make sure this symbol is not garbage collected. */
684 h->mark = 1;
685
686 h->def_regular = 1;
687
688 if (hidden)
689 {
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
694 }
695
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
697 and executables. */
698 if (!bfd_link_relocatable (info)
699 && h->dynindx != -1
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
702 h->forced_local = 1;
703
704 if ((h->def_dynamic
705 || h->ref_dynamic
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
708 && h->dynindx == -1)
709 {
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
711 return FALSE;
712
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
718 {
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
720 return FALSE;
721 }
722 }
723
724 return TRUE;
725 }
726
727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
730
731 int
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
733 bfd *input_bfd,
734 long input_indx)
735 {
736 bfd_size_type amt;
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
740 size_t dynstr_index;
741 char *name;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
744
745 if (! is_elf_hash_table (info->hash))
746 return 0;
747
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
751 return 1;
752
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
755 if (entry == NULL)
756 return 0;
757
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
761 {
762 bfd_release (input_bfd, entry);
763 return 0;
764 }
765
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
768 {
769 asection *s;
770
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
773 {
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
777 return 2;
778 }
779 }
780
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
784
785 dynstr = elf_hash_table (info)->dynstr;
786 if (dynstr == NULL)
787 {
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
790 if (dynstr == NULL)
791 return 0;
792 }
793
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
796 return 0;
797 entry->isym.st_name = dynstr_index;
798
799 eht = elf_hash_table (info);
800
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
805 eht->dynsymcount++;
806
807 /* Whatever binding the symbol had before, it's now local. */
808 entry->isym.st_info
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
810
811 /* The dynindx will be set at the end of size_dynamic_sections. */
812
813 return 1;
814 }
815
816 /* Return the dynindex of a local dynamic symbol. */
817
818 long
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
820 bfd *input_bfd,
821 long input_indx)
822 {
823 struct elf_link_local_dynamic_entry *e;
824
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
827 return e->dynindx;
828 return -1;
829 }
830
831 /* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
834
835 static bfd_boolean
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
837 void *data)
838 {
839 size_t *count = (size_t *) data;
840
841 if (h->forced_local)
842 return TRUE;
843
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
846
847 return TRUE;
848 }
849
850
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
853
854 static bfd_boolean
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
856 void *data)
857 {
858 size_t *count = (size_t *) data;
859
860 if (!h->forced_local)
861 return TRUE;
862
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
865
866 return TRUE;
867 }
868
869 /* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
871 bfd_boolean
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
874 asection *p)
875 {
876 struct elf_link_hash_table *htab;
877 asection *ip;
878
879 switch (elf_section_data (p)->this_hdr.sh_type)
880 {
881 case SHT_PROGBITS:
882 case SHT_NOBITS:
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
885 case SHT_NULL:
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
888 return FALSE;
889
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
892
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
896
897 /* There shouldn't be section relative relocations
898 against any other section. */
899 default:
900 return TRUE;
901 }
902 }
903
904 /* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
908 symbols. */
909
910 static unsigned long
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
914 {
915 unsigned long dynsymcount = 0;
916
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
919 {
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
921 asection *p;
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
927 else
928 elf_section_data (p)->dynindx = 0;
929 }
930 *section_sym_count = dynsymcount;
931
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
934 &dynsymcount);
935
936 if (elf_hash_table (info)->dynlocal)
937 {
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
941 }
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
943
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
946 &dynsymcount);
947
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
951 .dynamic section. */
952 dynsymcount++;
953
954 elf_hash_table (info)->dynsymcount = dynsymcount;
955 return dynsymcount;
956 }
957
958 /* Merge st_other field. */
959
960 static void
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
964 {
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
966
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
971 dynamic);
972
973 if (!dynamic)
974 {
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
977
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
982 }
983 else if (definition
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
987 }
988
989 /* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1001
1002 static bfd_boolean
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1005 const char *name,
1006 Elf_Internal_Sym *sym,
1007 asection **psec,
1008 bfd_vma *pvalue,
1009 struct elf_link_hash_entry **sym_hash,
1010 bfd **poldbfd,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1013 bfd_boolean *skip,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1018 {
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1023 int bind;
1024 bfd *oldbfd;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1028 char *new_version;
1029
1030 *skip = FALSE;
1031 *override = FALSE;
1032
1033 sec = *psec;
1034 bind = ELF_ST_BIND (sym->st_info);
1035
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1038 else
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1041 if (h == NULL)
1042 return FALSE;
1043 *sym_hash = h;
1044
1045 bed = get_elf_backend_data (abfd);
1046
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1049 {
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1052 if (new_version)
1053 {
1054 if (h->versioned == unknown)
1055 {
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1058 else
1059 h->versioned = versioned;
1060 }
1061 new_version += 1;
1062 if (new_version[0] == '\0')
1063 new_version = NULL;
1064 }
1065 else
1066 h->versioned = unversioned;
1067 }
1068 else
1069 new_version = NULL;
1070
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1073 hi = h;
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1077
1078 if (!*matched)
1079 {
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1081 *matched = TRUE;
1082 else
1083 {
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1092 aren't hidden. */
1093 *matched = TRUE;
1094 else
1095 {
1096 /* OLD_VERSION is the symbol version of the existing
1097 symbol. */
1098 char *old_version;
1099
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1102 ELF_VER_CHR) + 1;
1103 else
1104 old_version = NULL;
1105
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1112 }
1113 }
1114 }
1115
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1117 existing symbol. */
1118
1119 oldbfd = NULL;
1120 oldsec = NULL;
1121 switch (h->root.type)
1122 {
1123 default:
1124 break;
1125
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1129 break;
1130
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1135 break;
1136
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1140 if (pold_alignment)
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1142 break;
1143 }
1144 if (poldbfd && *poldbfd == NULL)
1145 *poldbfd = oldbfd;
1146
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1151 if (pold_weak)
1152 *pold_weak = oldweak;
1153
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1157 return TRUE;
1158
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1161 symbols. */
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1163
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1166
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1168
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1176 if (newdyn)
1177 {
1178 if (bfd_is_und_section (sec))
1179 {
1180 if (bind != STB_WEAK)
1181 {
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1184 }
1185 }
1186 else
1187 {
1188 /* Update the existing symbol only if they match. */
1189 if (*matched)
1190 h->dynamic_def = 1;
1191 hi->dynamic_def = 1;
1192 }
1193 }
1194
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1198
1199 if (h->root.type == bfd_link_hash_new)
1200 {
1201 h->non_elf = 0;
1202 return TRUE;
1203 }
1204
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1211 if (abfd == oldbfd
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1215 return TRUE;
1216
1217 olddyn = FALSE;
1218 if (oldbfd != NULL)
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1221 {
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1225 }
1226
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1229
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1231
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1235
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1238
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1241
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1244
1245 if (!(newfunc && oldfunc)
1246 && ELF_ST_TYPE (sym->st_info) != h->type
1247 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1248 && h->type != STT_NOTYPE
1249 && (newdef || bfd_is_com_section (sec))
1250 && (olddef || h->root.type == bfd_link_hash_common))
1251 {
1252 /* If creating a default indirect symbol ("foo" or "foo@") from
1253 a dynamic versioned definition ("foo@@") skip doing so if
1254 there is an existing regular definition with a different
1255 type. We don't want, for example, a "time" variable in the
1256 executable overriding a "time" function in a shared library. */
1257 if (newdyn
1258 && !olddyn)
1259 {
1260 *skip = TRUE;
1261 return TRUE;
1262 }
1263
1264 /* When adding a symbol from a regular object file after we have
1265 created indirect symbols, undo the indirection and any
1266 dynamic state. */
1267 if (hi != h
1268 && !newdyn
1269 && olddyn)
1270 {
1271 h = hi;
1272 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1273 h->forced_local = 0;
1274 h->ref_dynamic = 0;
1275 h->def_dynamic = 0;
1276 h->dynamic_def = 0;
1277 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1278 {
1279 h->root.type = bfd_link_hash_undefined;
1280 h->root.u.undef.abfd = abfd;
1281 }
1282 else
1283 {
1284 h->root.type = bfd_link_hash_new;
1285 h->root.u.undef.abfd = NULL;
1286 }
1287 return TRUE;
1288 }
1289 }
1290
1291 /* Check TLS symbols. We don't check undefined symbols introduced
1292 by "ld -u" which have no type (and oldbfd NULL), and we don't
1293 check symbols from plugins because they also have no type. */
1294 if (oldbfd != NULL
1295 && (oldbfd->flags & BFD_PLUGIN) == 0
1296 && (abfd->flags & BFD_PLUGIN) == 0
1297 && ELF_ST_TYPE (sym->st_info) != h->type
1298 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1299 {
1300 bfd *ntbfd, *tbfd;
1301 bfd_boolean ntdef, tdef;
1302 asection *ntsec, *tsec;
1303
1304 if (h->type == STT_TLS)
1305 {
1306 ntbfd = abfd;
1307 ntsec = sec;
1308 ntdef = newdef;
1309 tbfd = oldbfd;
1310 tsec = oldsec;
1311 tdef = olddef;
1312 }
1313 else
1314 {
1315 ntbfd = oldbfd;
1316 ntsec = oldsec;
1317 ntdef = olddef;
1318 tbfd = abfd;
1319 tsec = sec;
1320 tdef = newdef;
1321 }
1322
1323 if (tdef && ntdef)
1324 _bfd_error_handler
1325 /* xgettext:c-format */
1326 (_("%s: TLS definition in %B section %A "
1327 "mismatches non-TLS definition in %B section %A"),
1328 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1329 else if (!tdef && !ntdef)
1330 _bfd_error_handler
1331 /* xgettext:c-format */
1332 (_("%s: TLS reference in %B "
1333 "mismatches non-TLS reference in %B"),
1334 h->root.root.string, tbfd, ntbfd);
1335 else if (tdef)
1336 _bfd_error_handler
1337 /* xgettext:c-format */
1338 (_("%s: TLS definition in %B section %A "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, tsec, ntbfd);
1341 else
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS reference in %B "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, ntbfd, ntsec);
1347
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351
1352 /* If the old symbol has non-default visibility, we ignore the new
1353 definition from a dynamic object. */
1354 if (newdyn
1355 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1356 && !bfd_is_und_section (sec))
1357 {
1358 *skip = TRUE;
1359 /* Make sure this symbol is dynamic. */
1360 h->ref_dynamic = 1;
1361 hi->ref_dynamic = 1;
1362 /* A protected symbol has external availability. Make sure it is
1363 recorded as dynamic.
1364
1365 FIXME: Should we check type and size for protected symbol? */
1366 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1367 return bfd_elf_link_record_dynamic_symbol (info, h);
1368 else
1369 return TRUE;
1370 }
1371 else if (!newdyn
1372 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1373 && h->def_dynamic)
1374 {
1375 /* If the new symbol with non-default visibility comes from a
1376 relocatable file and the old definition comes from a dynamic
1377 object, we remove the old definition. */
1378 if (hi->root.type == bfd_link_hash_indirect)
1379 {
1380 /* Handle the case where the old dynamic definition is
1381 default versioned. We need to copy the symbol info from
1382 the symbol with default version to the normal one if it
1383 was referenced before. */
1384 if (h->ref_regular)
1385 {
1386 hi->root.type = h->root.type;
1387 h->root.type = bfd_link_hash_indirect;
1388 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1389
1390 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1391 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1392 {
1393 /* If the new symbol is hidden or internal, completely undo
1394 any dynamic link state. */
1395 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1396 h->forced_local = 0;
1397 h->ref_dynamic = 0;
1398 }
1399 else
1400 h->ref_dynamic = 1;
1401
1402 h->def_dynamic = 0;
1403 /* FIXME: Should we check type and size for protected symbol? */
1404 h->size = 0;
1405 h->type = 0;
1406
1407 h = hi;
1408 }
1409 else
1410 h = hi;
1411 }
1412
1413 /* If the old symbol was undefined before, then it will still be
1414 on the undefs list. If the new symbol is undefined or
1415 common, we can't make it bfd_link_hash_new here, because new
1416 undefined or common symbols will be added to the undefs list
1417 by _bfd_generic_link_add_one_symbol. Symbols may not be
1418 added twice to the undefs list. Also, if the new symbol is
1419 undefweak then we don't want to lose the strong undef. */
1420 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1421 {
1422 h->root.type = bfd_link_hash_undefined;
1423 h->root.u.undef.abfd = abfd;
1424 }
1425 else
1426 {
1427 h->root.type = bfd_link_hash_new;
1428 h->root.u.undef.abfd = NULL;
1429 }
1430
1431 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1432 {
1433 /* If the new symbol is hidden or internal, completely undo
1434 any dynamic link state. */
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 h->forced_local = 0;
1437 h->ref_dynamic = 0;
1438 }
1439 else
1440 h->ref_dynamic = 1;
1441 h->def_dynamic = 0;
1442 /* FIXME: Should we check type and size for protected symbol? */
1443 h->size = 0;
1444 h->type = 0;
1445 return TRUE;
1446 }
1447
1448 /* If a new weak symbol definition comes from a regular file and the
1449 old symbol comes from a dynamic library, we treat the new one as
1450 strong. Similarly, an old weak symbol definition from a regular
1451 file is treated as strong when the new symbol comes from a dynamic
1452 library. Further, an old weak symbol from a dynamic library is
1453 treated as strong if the new symbol is from a dynamic library.
1454 This reflects the way glibc's ld.so works.
1455
1456 Do this before setting *type_change_ok or *size_change_ok so that
1457 we warn properly when dynamic library symbols are overridden. */
1458
1459 if (newdef && !newdyn && olddyn)
1460 newweak = FALSE;
1461 if (olddef && newdyn)
1462 oldweak = FALSE;
1463
1464 /* Allow changes between different types of function symbol. */
1465 if (newfunc && oldfunc)
1466 *type_change_ok = TRUE;
1467
1468 /* It's OK to change the type if either the existing symbol or the
1469 new symbol is weak. A type change is also OK if the old symbol
1470 is undefined and the new symbol is defined. */
1471
1472 if (oldweak
1473 || newweak
1474 || (newdef
1475 && h->root.type == bfd_link_hash_undefined))
1476 *type_change_ok = TRUE;
1477
1478 /* It's OK to change the size if either the existing symbol or the
1479 new symbol is weak, or if the old symbol is undefined. */
1480
1481 if (*type_change_ok
1482 || h->root.type == bfd_link_hash_undefined)
1483 *size_change_ok = TRUE;
1484
1485 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1486 symbol, respectively, appears to be a common symbol in a dynamic
1487 object. If a symbol appears in an uninitialized section, and is
1488 not weak, and is not a function, then it may be a common symbol
1489 which was resolved when the dynamic object was created. We want
1490 to treat such symbols specially, because they raise special
1491 considerations when setting the symbol size: if the symbol
1492 appears as a common symbol in a regular object, and the size in
1493 the regular object is larger, we must make sure that we use the
1494 larger size. This problematic case can always be avoided in C,
1495 but it must be handled correctly when using Fortran shared
1496 libraries.
1497
1498 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1499 likewise for OLDDYNCOMMON and OLDDEF.
1500
1501 Note that this test is just a heuristic, and that it is quite
1502 possible to have an uninitialized symbol in a shared object which
1503 is really a definition, rather than a common symbol. This could
1504 lead to some minor confusion when the symbol really is a common
1505 symbol in some regular object. However, I think it will be
1506 harmless. */
1507
1508 if (newdyn
1509 && newdef
1510 && !newweak
1511 && (sec->flags & SEC_ALLOC) != 0
1512 && (sec->flags & SEC_LOAD) == 0
1513 && sym->st_size > 0
1514 && !newfunc)
1515 newdyncommon = TRUE;
1516 else
1517 newdyncommon = FALSE;
1518
1519 if (olddyn
1520 && olddef
1521 && h->root.type == bfd_link_hash_defined
1522 && h->def_dynamic
1523 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1524 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1525 && h->size > 0
1526 && !oldfunc)
1527 olddyncommon = TRUE;
1528 else
1529 olddyncommon = FALSE;
1530
1531 /* We now know everything about the old and new symbols. We ask the
1532 backend to check if we can merge them. */
1533 if (bed->merge_symbol != NULL)
1534 {
1535 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1536 return FALSE;
1537 sec = *psec;
1538 }
1539
1540 /* If both the old and the new symbols look like common symbols in a
1541 dynamic object, set the size of the symbol to the larger of the
1542 two. */
1543
1544 if (olddyncommon
1545 && newdyncommon
1546 && sym->st_size != h->size)
1547 {
1548 /* Since we think we have two common symbols, issue a multiple
1549 common warning if desired. Note that we only warn if the
1550 size is different. If the size is the same, we simply let
1551 the old symbol override the new one as normally happens with
1552 symbols defined in dynamic objects. */
1553
1554 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1555 bfd_link_hash_common, sym->st_size);
1556 if (sym->st_size > h->size)
1557 h->size = sym->st_size;
1558
1559 *size_change_ok = TRUE;
1560 }
1561
1562 /* If we are looking at a dynamic object, and we have found a
1563 definition, we need to see if the symbol was already defined by
1564 some other object. If so, we want to use the existing
1565 definition, and we do not want to report a multiple symbol
1566 definition error; we do this by clobbering *PSEC to be
1567 bfd_und_section_ptr.
1568
1569 We treat a common symbol as a definition if the symbol in the
1570 shared library is a function, since common symbols always
1571 represent variables; this can cause confusion in principle, but
1572 any such confusion would seem to indicate an erroneous program or
1573 shared library. We also permit a common symbol in a regular
1574 object to override a weak symbol in a shared object. */
1575
1576 if (newdyn
1577 && newdef
1578 && (olddef
1579 || (h->root.type == bfd_link_hash_common
1580 && (newweak || newfunc))))
1581 {
1582 *override = TRUE;
1583 newdef = FALSE;
1584 newdyncommon = FALSE;
1585
1586 *psec = sec = bfd_und_section_ptr;
1587 *size_change_ok = TRUE;
1588
1589 /* If we get here when the old symbol is a common symbol, then
1590 we are explicitly letting it override a weak symbol or
1591 function in a dynamic object, and we don't want to warn about
1592 a type change. If the old symbol is a defined symbol, a type
1593 change warning may still be appropriate. */
1594
1595 if (h->root.type == bfd_link_hash_common)
1596 *type_change_ok = TRUE;
1597 }
1598
1599 /* Handle the special case of an old common symbol merging with a
1600 new symbol which looks like a common symbol in a shared object.
1601 We change *PSEC and *PVALUE to make the new symbol look like a
1602 common symbol, and let _bfd_generic_link_add_one_symbol do the
1603 right thing. */
1604
1605 if (newdyncommon
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 *override = TRUE;
1609 newdef = FALSE;
1610 newdyncommon = FALSE;
1611 *pvalue = sym->st_size;
1612 *psec = sec = bed->common_section (oldsec);
1613 *size_change_ok = TRUE;
1614 }
1615
1616 /* Skip weak definitions of symbols that are already defined. */
1617 if (newdef && olddef && newweak)
1618 {
1619 /* Don't skip new non-IR weak syms. */
1620 if (!(oldbfd != NULL
1621 && (oldbfd->flags & BFD_PLUGIN) != 0
1622 && (abfd->flags & BFD_PLUGIN) == 0))
1623 {
1624 newdef = FALSE;
1625 *skip = TRUE;
1626 }
1627
1628 /* Merge st_other. If the symbol already has a dynamic index,
1629 but visibility says it should not be visible, turn it into a
1630 local symbol. */
1631 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1632 if (h->dynindx != -1)
1633 switch (ELF_ST_VISIBILITY (h->other))
1634 {
1635 case STV_INTERNAL:
1636 case STV_HIDDEN:
1637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1638 break;
1639 }
1640 }
1641
1642 /* If the old symbol is from a dynamic object, and the new symbol is
1643 a definition which is not from a dynamic object, then the new
1644 symbol overrides the old symbol. Symbols from regular files
1645 always take precedence over symbols from dynamic objects, even if
1646 they are defined after the dynamic object in the link.
1647
1648 As above, we again permit a common symbol in a regular object to
1649 override a definition in a shared object if the shared object
1650 symbol is a function or is weak. */
1651
1652 flip = NULL;
1653 if (!newdyn
1654 && (newdef
1655 || (bfd_is_com_section (sec)
1656 && (oldweak || oldfunc)))
1657 && olddyn
1658 && olddef
1659 && h->def_dynamic)
1660 {
1661 /* Change the hash table entry to undefined, and let
1662 _bfd_generic_link_add_one_symbol do the right thing with the
1663 new definition. */
1664
1665 h->root.type = bfd_link_hash_undefined;
1666 h->root.u.undef.abfd = h->root.u.def.section->owner;
1667 *size_change_ok = TRUE;
1668
1669 olddef = FALSE;
1670 olddyncommon = FALSE;
1671
1672 /* We again permit a type change when a common symbol may be
1673 overriding a function. */
1674
1675 if (bfd_is_com_section (sec))
1676 {
1677 if (oldfunc)
1678 {
1679 /* If a common symbol overrides a function, make sure
1680 that it isn't defined dynamically nor has type
1681 function. */
1682 h->def_dynamic = 0;
1683 h->type = STT_NOTYPE;
1684 }
1685 *type_change_ok = TRUE;
1686 }
1687
1688 if (hi->root.type == bfd_link_hash_indirect)
1689 flip = hi;
1690 else
1691 /* This union may have been set to be non-NULL when this symbol
1692 was seen in a dynamic object. We must force the union to be
1693 NULL, so that it is correct for a regular symbol. */
1694 h->verinfo.vertree = NULL;
1695 }
1696
1697 /* Handle the special case of a new common symbol merging with an
1698 old symbol that looks like it might be a common symbol defined in
1699 a shared object. Note that we have already handled the case in
1700 which a new common symbol should simply override the definition
1701 in the shared library. */
1702
1703 if (! newdyn
1704 && bfd_is_com_section (sec)
1705 && olddyncommon)
1706 {
1707 /* It would be best if we could set the hash table entry to a
1708 common symbol, but we don't know what to use for the section
1709 or the alignment. */
1710 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1711 bfd_link_hash_common, sym->st_size);
1712
1713 /* If the presumed common symbol in the dynamic object is
1714 larger, pretend that the new symbol has its size. */
1715
1716 if (h->size > *pvalue)
1717 *pvalue = h->size;
1718
1719 /* We need to remember the alignment required by the symbol
1720 in the dynamic object. */
1721 BFD_ASSERT (pold_alignment);
1722 *pold_alignment = h->root.u.def.section->alignment_power;
1723
1724 olddef = FALSE;
1725 olddyncommon = FALSE;
1726
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1729
1730 *size_change_ok = TRUE;
1731 *type_change_ok = TRUE;
1732
1733 if (hi->root.type == bfd_link_hash_indirect)
1734 flip = hi;
1735 else
1736 h->verinfo.vertree = NULL;
1737 }
1738
1739 if (flip != NULL)
1740 {
1741 /* Handle the case where we had a versioned symbol in a dynamic
1742 library and now find a definition in a normal object. In this
1743 case, we make the versioned symbol point to the normal one. */
1744 flip->root.type = h->root.type;
1745 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1746 h->root.type = bfd_link_hash_indirect;
1747 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1748 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1749 if (h->def_dynamic)
1750 {
1751 h->def_dynamic = 0;
1752 flip->ref_dynamic = 1;
1753 }
1754 }
1755
1756 return TRUE;
1757 }
1758
1759 /* This function is called to create an indirect symbol from the
1760 default for the symbol with the default version if needed. The
1761 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1762 set DYNSYM if the new indirect symbol is dynamic. */
1763
1764 static bfd_boolean
1765 _bfd_elf_add_default_symbol (bfd *abfd,
1766 struct bfd_link_info *info,
1767 struct elf_link_hash_entry *h,
1768 const char *name,
1769 Elf_Internal_Sym *sym,
1770 asection *sec,
1771 bfd_vma value,
1772 bfd **poldbfd,
1773 bfd_boolean *dynsym)
1774 {
1775 bfd_boolean type_change_ok;
1776 bfd_boolean size_change_ok;
1777 bfd_boolean skip;
1778 char *shortname;
1779 struct elf_link_hash_entry *hi;
1780 struct bfd_link_hash_entry *bh;
1781 const struct elf_backend_data *bed;
1782 bfd_boolean collect;
1783 bfd_boolean dynamic;
1784 bfd_boolean override;
1785 char *p;
1786 size_t len, shortlen;
1787 asection *tmp_sec;
1788 bfd_boolean matched;
1789
1790 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1791 return TRUE;
1792
1793 /* If this symbol has a version, and it is the default version, we
1794 create an indirect symbol from the default name to the fully
1795 decorated name. This will cause external references which do not
1796 specify a version to be bound to this version of the symbol. */
1797 p = strchr (name, ELF_VER_CHR);
1798 if (h->versioned == unknown)
1799 {
1800 if (p == NULL)
1801 {
1802 h->versioned = unversioned;
1803 return TRUE;
1804 }
1805 else
1806 {
1807 if (p[1] != ELF_VER_CHR)
1808 {
1809 h->versioned = versioned_hidden;
1810 return TRUE;
1811 }
1812 else
1813 h->versioned = versioned;
1814 }
1815 }
1816 else
1817 {
1818 /* PR ld/19073: We may see an unversioned definition after the
1819 default version. */
1820 if (p == NULL)
1821 return TRUE;
1822 }
1823
1824 bed = get_elf_backend_data (abfd);
1825 collect = bed->collect;
1826 dynamic = (abfd->flags & DYNAMIC) != 0;
1827
1828 shortlen = p - name;
1829 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1830 if (shortname == NULL)
1831 return FALSE;
1832 memcpy (shortname, name, shortlen);
1833 shortname[shortlen] = '\0';
1834
1835 /* We are going to create a new symbol. Merge it with any existing
1836 symbol with this name. For the purposes of the merge, act as
1837 though we were defining the symbol we just defined, although we
1838 actually going to define an indirect symbol. */
1839 type_change_ok = FALSE;
1840 size_change_ok = FALSE;
1841 matched = TRUE;
1842 tmp_sec = sec;
1843 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1844 &hi, poldbfd, NULL, NULL, &skip, &override,
1845 &type_change_ok, &size_change_ok, &matched))
1846 return FALSE;
1847
1848 if (skip)
1849 goto nondefault;
1850
1851 if (hi->def_regular)
1852 {
1853 /* If the undecorated symbol will have a version added by a
1854 script different to H, then don't indirect to/from the
1855 undecorated symbol. This isn't ideal because we may not yet
1856 have seen symbol versions, if given by a script on the
1857 command line rather than via --version-script. */
1858 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1859 {
1860 bfd_boolean hide;
1861
1862 hi->verinfo.vertree
1863 = bfd_find_version_for_sym (info->version_info,
1864 hi->root.root.string, &hide);
1865 if (hi->verinfo.vertree != NULL && hide)
1866 {
1867 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1868 goto nondefault;
1869 }
1870 }
1871 if (hi->verinfo.vertree != NULL
1872 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1873 goto nondefault;
1874 }
1875
1876 if (! override)
1877 {
1878 /* Add the default symbol if not performing a relocatable link. */
1879 if (! bfd_link_relocatable (info))
1880 {
1881 bh = &hi->root;
1882 if (! (_bfd_generic_link_add_one_symbol
1883 (info, abfd, shortname, BSF_INDIRECT,
1884 bfd_ind_section_ptr,
1885 0, name, FALSE, collect, &bh)))
1886 return FALSE;
1887 hi = (struct elf_link_hash_entry *) bh;
1888 }
1889 }
1890 else
1891 {
1892 /* In this case the symbol named SHORTNAME is overriding the
1893 indirect symbol we want to add. We were planning on making
1894 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1895 is the name without a version. NAME is the fully versioned
1896 name, and it is the default version.
1897
1898 Overriding means that we already saw a definition for the
1899 symbol SHORTNAME in a regular object, and it is overriding
1900 the symbol defined in the dynamic object.
1901
1902 When this happens, we actually want to change NAME, the
1903 symbol we just added, to refer to SHORTNAME. This will cause
1904 references to NAME in the shared object to become references
1905 to SHORTNAME in the regular object. This is what we expect
1906 when we override a function in a shared object: that the
1907 references in the shared object will be mapped to the
1908 definition in the regular object. */
1909
1910 while (hi->root.type == bfd_link_hash_indirect
1911 || hi->root.type == bfd_link_hash_warning)
1912 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1913
1914 h->root.type = bfd_link_hash_indirect;
1915 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1916 if (h->def_dynamic)
1917 {
1918 h->def_dynamic = 0;
1919 hi->ref_dynamic = 1;
1920 if (hi->ref_regular
1921 || hi->def_regular)
1922 {
1923 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1924 return FALSE;
1925 }
1926 }
1927
1928 /* Now set HI to H, so that the following code will set the
1929 other fields correctly. */
1930 hi = h;
1931 }
1932
1933 /* Check if HI is a warning symbol. */
1934 if (hi->root.type == bfd_link_hash_warning)
1935 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1936
1937 /* If there is a duplicate definition somewhere, then HI may not
1938 point to an indirect symbol. We will have reported an error to
1939 the user in that case. */
1940
1941 if (hi->root.type == bfd_link_hash_indirect)
1942 {
1943 struct elf_link_hash_entry *ht;
1944
1945 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1947
1948 /* A reference to the SHORTNAME symbol from a dynamic library
1949 will be satisfied by the versioned symbol at runtime. In
1950 effect, we have a reference to the versioned symbol. */
1951 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1952 hi->dynamic_def |= ht->dynamic_def;
1953
1954 /* See if the new flags lead us to realize that the symbol must
1955 be dynamic. */
1956 if (! *dynsym)
1957 {
1958 if (! dynamic)
1959 {
1960 if (! bfd_link_executable (info)
1961 || hi->def_dynamic
1962 || hi->ref_dynamic)
1963 *dynsym = TRUE;
1964 }
1965 else
1966 {
1967 if (hi->ref_regular)
1968 *dynsym = TRUE;
1969 }
1970 }
1971 }
1972
1973 /* We also need to define an indirection from the nondefault version
1974 of the symbol. */
1975
1976 nondefault:
1977 len = strlen (name);
1978 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (shortname == NULL)
1980 return FALSE;
1981 memcpy (shortname, name, shortlen);
1982 memcpy (shortname + shortlen, p + 1, len - shortlen);
1983
1984 /* Once again, merge with any existing symbol. */
1985 type_change_ok = FALSE;
1986 size_change_ok = FALSE;
1987 tmp_sec = sec;
1988 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1989 &hi, poldbfd, NULL, NULL, &skip, &override,
1990 &type_change_ok, &size_change_ok, &matched))
1991 return FALSE;
1992
1993 if (skip)
1994 return TRUE;
1995
1996 if (override)
1997 {
1998 /* Here SHORTNAME is a versioned name, so we don't expect to see
1999 the type of override we do in the case above unless it is
2000 overridden by a versioned definition. */
2001 if (hi->root.type != bfd_link_hash_defined
2002 && hi->root.type != bfd_link_hash_defweak)
2003 _bfd_error_handler
2004 /* xgettext:c-format */
2005 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2006 abfd, shortname);
2007 }
2008 else
2009 {
2010 bh = &hi->root;
2011 if (! (_bfd_generic_link_add_one_symbol
2012 (info, abfd, shortname, BSF_INDIRECT,
2013 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2014 return FALSE;
2015 hi = (struct elf_link_hash_entry *) bh;
2016
2017 /* If there is a duplicate definition somewhere, then HI may not
2018 point to an indirect symbol. We will have reported an error
2019 to the user in that case. */
2020
2021 if (hi->root.type == bfd_link_hash_indirect)
2022 {
2023 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2024 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2025 hi->dynamic_def |= h->dynamic_def;
2026
2027 /* See if the new flags lead us to realize that the symbol
2028 must be dynamic. */
2029 if (! *dynsym)
2030 {
2031 if (! dynamic)
2032 {
2033 if (! bfd_link_executable (info)
2034 || hi->ref_dynamic)
2035 *dynsym = TRUE;
2036 }
2037 else
2038 {
2039 if (hi->ref_regular)
2040 *dynsym = TRUE;
2041 }
2042 }
2043 }
2044 }
2045
2046 return TRUE;
2047 }
2048 \f
2049 /* This routine is used to export all defined symbols into the dynamic
2050 symbol table. It is called via elf_link_hash_traverse. */
2051
2052 static bfd_boolean
2053 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2054 {
2055 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2056
2057 /* Ignore indirect symbols. These are added by the versioning code. */
2058 if (h->root.type == bfd_link_hash_indirect)
2059 return TRUE;
2060
2061 /* Ignore this if we won't export it. */
2062 if (!eif->info->export_dynamic && !h->dynamic)
2063 return TRUE;
2064
2065 if (h->dynindx == -1
2066 && (h->def_regular || h->ref_regular)
2067 && ! bfd_hide_sym_by_version (eif->info->version_info,
2068 h->root.root.string))
2069 {
2070 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2071 {
2072 eif->failed = TRUE;
2073 return FALSE;
2074 }
2075 }
2076
2077 return TRUE;
2078 }
2079 \f
2080 /* Look through the symbols which are defined in other shared
2081 libraries and referenced here. Update the list of version
2082 dependencies. This will be put into the .gnu.version_r section.
2083 This function is called via elf_link_hash_traverse. */
2084
2085 static bfd_boolean
2086 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2087 void *data)
2088 {
2089 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2090 Elf_Internal_Verneed *t;
2091 Elf_Internal_Vernaux *a;
2092 bfd_size_type amt;
2093
2094 /* We only care about symbols defined in shared objects with version
2095 information. */
2096 if (!h->def_dynamic
2097 || h->def_regular
2098 || h->dynindx == -1
2099 || h->verinfo.verdef == NULL
2100 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2101 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2102 return TRUE;
2103
2104 /* See if we already know about this version. */
2105 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2106 t != NULL;
2107 t = t->vn_nextref)
2108 {
2109 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2110 continue;
2111
2112 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2113 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2114 return TRUE;
2115
2116 break;
2117 }
2118
2119 /* This is a new version. Add it to tree we are building. */
2120
2121 if (t == NULL)
2122 {
2123 amt = sizeof *t;
2124 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2125 if (t == NULL)
2126 {
2127 rinfo->failed = TRUE;
2128 return FALSE;
2129 }
2130
2131 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2132 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2133 elf_tdata (rinfo->info->output_bfd)->verref = t;
2134 }
2135
2136 amt = sizeof *a;
2137 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2138 if (a == NULL)
2139 {
2140 rinfo->failed = TRUE;
2141 return FALSE;
2142 }
2143
2144 /* Note that we are copying a string pointer here, and testing it
2145 above. If bfd_elf_string_from_elf_section is ever changed to
2146 discard the string data when low in memory, this will have to be
2147 fixed. */
2148 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2149
2150 a->vna_flags = h->verinfo.verdef->vd_flags;
2151 a->vna_nextptr = t->vn_auxptr;
2152
2153 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2154 ++rinfo->vers;
2155
2156 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2157
2158 t->vn_auxptr = a;
2159
2160 return TRUE;
2161 }
2162
2163 /* Figure out appropriate versions for all the symbols. We may not
2164 have the version number script until we have read all of the input
2165 files, so until that point we don't know which symbols should be
2166 local. This function is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2170 {
2171 struct elf_info_failed *sinfo;
2172 struct bfd_link_info *info;
2173 const struct elf_backend_data *bed;
2174 struct elf_info_failed eif;
2175 char *p;
2176
2177 sinfo = (struct elf_info_failed *) data;
2178 info = sinfo->info;
2179
2180 /* Fix the symbol flags. */
2181 eif.failed = FALSE;
2182 eif.info = info;
2183 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2184 {
2185 if (eif.failed)
2186 sinfo->failed = TRUE;
2187 return FALSE;
2188 }
2189
2190 /* We only need version numbers for symbols defined in regular
2191 objects. */
2192 if (!h->def_regular)
2193 return TRUE;
2194
2195 bed = get_elf_backend_data (info->output_bfd);
2196 p = strchr (h->root.root.string, ELF_VER_CHR);
2197 if (p != NULL && h->verinfo.vertree == NULL)
2198 {
2199 struct bfd_elf_version_tree *t;
2200
2201 ++p;
2202 if (*p == ELF_VER_CHR)
2203 ++p;
2204
2205 /* If there is no version string, we can just return out. */
2206 if (*p == '\0')
2207 return TRUE;
2208
2209 /* Look for the version. If we find it, it is no longer weak. */
2210 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2211 {
2212 if (strcmp (t->name, p) == 0)
2213 {
2214 size_t len;
2215 char *alc;
2216 struct bfd_elf_version_expr *d;
2217
2218 len = p - h->root.root.string;
2219 alc = (char *) bfd_malloc (len);
2220 if (alc == NULL)
2221 {
2222 sinfo->failed = TRUE;
2223 return FALSE;
2224 }
2225 memcpy (alc, h->root.root.string, len - 1);
2226 alc[len - 1] = '\0';
2227 if (alc[len - 2] == ELF_VER_CHR)
2228 alc[len - 2] = '\0';
2229
2230 h->verinfo.vertree = t;
2231 t->used = TRUE;
2232 d = NULL;
2233
2234 if (t->globals.list != NULL)
2235 d = (*t->match) (&t->globals, NULL, alc);
2236
2237 /* See if there is anything to force this symbol to
2238 local scope. */
2239 if (d == NULL && t->locals.list != NULL)
2240 {
2241 d = (*t->match) (&t->locals, NULL, alc);
2242 if (d != NULL
2243 && h->dynindx != -1
2244 && ! info->export_dynamic)
2245 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2246 }
2247
2248 free (alc);
2249 break;
2250 }
2251 }
2252
2253 /* If we are building an application, we need to create a
2254 version node for this version. */
2255 if (t == NULL && bfd_link_executable (info))
2256 {
2257 struct bfd_elf_version_tree **pp;
2258 int version_index;
2259
2260 /* If we aren't going to export this symbol, we don't need
2261 to worry about it. */
2262 if (h->dynindx == -1)
2263 return TRUE;
2264
2265 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2266 sizeof *t);
2267 if (t == NULL)
2268 {
2269 sinfo->failed = TRUE;
2270 return FALSE;
2271 }
2272
2273 t->name = p;
2274 t->name_indx = (unsigned int) -1;
2275 t->used = TRUE;
2276
2277 version_index = 1;
2278 /* Don't count anonymous version tag. */
2279 if (sinfo->info->version_info != NULL
2280 && sinfo->info->version_info->vernum == 0)
2281 version_index = 0;
2282 for (pp = &sinfo->info->version_info;
2283 *pp != NULL;
2284 pp = &(*pp)->next)
2285 ++version_index;
2286 t->vernum = version_index;
2287
2288 *pp = t;
2289
2290 h->verinfo.vertree = t;
2291 }
2292 else if (t == NULL)
2293 {
2294 /* We could not find the version for a symbol when
2295 generating a shared archive. Return an error. */
2296 _bfd_error_handler
2297 /* xgettext:c-format */
2298 (_("%B: version node not found for symbol %s"),
2299 info->output_bfd, h->root.root.string);
2300 bfd_set_error (bfd_error_bad_value);
2301 sinfo->failed = TRUE;
2302 return FALSE;
2303 }
2304 }
2305
2306 /* If we don't have a version for this symbol, see if we can find
2307 something. */
2308 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2309 {
2310 bfd_boolean hide;
2311
2312 h->verinfo.vertree
2313 = bfd_find_version_for_sym (sinfo->info->version_info,
2314 h->root.root.string, &hide);
2315 if (h->verinfo.vertree != NULL && hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 }
2318
2319 return TRUE;
2320 }
2321 \f
2322 /* Read and swap the relocs from the section indicated by SHDR. This
2323 may be either a REL or a RELA section. The relocations are
2324 translated into RELA relocations and stored in INTERNAL_RELOCS,
2325 which should have already been allocated to contain enough space.
2326 The EXTERNAL_RELOCS are a buffer where the external form of the
2327 relocations should be stored.
2328
2329 Returns FALSE if something goes wrong. */
2330
2331 static bfd_boolean
2332 elf_link_read_relocs_from_section (bfd *abfd,
2333 asection *sec,
2334 Elf_Internal_Shdr *shdr,
2335 void *external_relocs,
2336 Elf_Internal_Rela *internal_relocs)
2337 {
2338 const struct elf_backend_data *bed;
2339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2340 const bfd_byte *erela;
2341 const bfd_byte *erelaend;
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Shdr *symtab_hdr;
2344 size_t nsyms;
2345
2346 /* Position ourselves at the start of the section. */
2347 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2348 return FALSE;
2349
2350 /* Read the relocations. */
2351 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2352 return FALSE;
2353
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2356
2357 bed = get_elf_backend_data (abfd);
2358
2359 /* Convert the external relocations to the internal format. */
2360 if (shdr->sh_entsize == bed->s->sizeof_rel)
2361 swap_in = bed->s->swap_reloc_in;
2362 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2363 swap_in = bed->s->swap_reloca_in;
2364 else
2365 {
2366 bfd_set_error (bfd_error_wrong_format);
2367 return FALSE;
2368 }
2369
2370 erela = (const bfd_byte *) external_relocs;
2371 erelaend = erela + shdr->sh_size;
2372 irela = internal_relocs;
2373 while (erela < erelaend)
2374 {
2375 bfd_vma r_symndx;
2376
2377 (*swap_in) (abfd, erela, irela);
2378 r_symndx = ELF32_R_SYM (irela->r_info);
2379 if (bed->s->arch_size == 64)
2380 r_symndx >>= 24;
2381 if (nsyms > 0)
2382 {
2383 if ((size_t) r_symndx >= nsyms)
2384 {
2385 _bfd_error_handler
2386 /* xgettext:c-format */
2387 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2388 " for offset 0x%lx in section `%A'"),
2389 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2390 irela->r_offset, sec);
2391 bfd_set_error (bfd_error_bad_value);
2392 return FALSE;
2393 }
2394 }
2395 else if (r_symndx != STN_UNDEF)
2396 {
2397 _bfd_error_handler
2398 /* xgettext:c-format */
2399 (_("%B: non-zero symbol index (0x%lx)"
2400 " for offset 0x%lx in section `%A'"
2401 " when the object file has no symbol table"),
2402 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2403 irela->r_offset, sec);
2404 bfd_set_error (bfd_error_bad_value);
2405 return FALSE;
2406 }
2407 irela += bed->s->int_rels_per_ext_rel;
2408 erela += shdr->sh_entsize;
2409 }
2410
2411 return TRUE;
2412 }
2413
2414 /* Read and swap the relocs for a section O. They may have been
2415 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2416 not NULL, they are used as buffers to read into. They are known to
2417 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2418 the return value is allocated using either malloc or bfd_alloc,
2419 according to the KEEP_MEMORY argument. If O has two relocation
2420 sections (both REL and RELA relocations), then the REL_HDR
2421 relocations will appear first in INTERNAL_RELOCS, followed by the
2422 RELA_HDR relocations. */
2423
2424 Elf_Internal_Rela *
2425 _bfd_elf_link_read_relocs (bfd *abfd,
2426 asection *o,
2427 void *external_relocs,
2428 Elf_Internal_Rela *internal_relocs,
2429 bfd_boolean keep_memory)
2430 {
2431 void *alloc1 = NULL;
2432 Elf_Internal_Rela *alloc2 = NULL;
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 struct bfd_elf_section_data *esdo = elf_section_data (o);
2435 Elf_Internal_Rela *internal_rela_relocs;
2436
2437 if (esdo->relocs != NULL)
2438 return esdo->relocs;
2439
2440 if (o->reloc_count == 0)
2441 return NULL;
2442
2443 if (internal_relocs == NULL)
2444 {
2445 bfd_size_type size;
2446
2447 size = o->reloc_count;
2448 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2449 if (keep_memory)
2450 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2451 else
2452 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2453 if (internal_relocs == NULL)
2454 goto error_return;
2455 }
2456
2457 if (external_relocs == NULL)
2458 {
2459 bfd_size_type size = 0;
2460
2461 if (esdo->rel.hdr)
2462 size += esdo->rel.hdr->sh_size;
2463 if (esdo->rela.hdr)
2464 size += esdo->rela.hdr->sh_size;
2465
2466 alloc1 = bfd_malloc (size);
2467 if (alloc1 == NULL)
2468 goto error_return;
2469 external_relocs = alloc1;
2470 }
2471
2472 internal_rela_relocs = internal_relocs;
2473 if (esdo->rel.hdr)
2474 {
2475 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2476 external_relocs,
2477 internal_relocs))
2478 goto error_return;
2479 external_relocs = (((bfd_byte *) external_relocs)
2480 + esdo->rel.hdr->sh_size);
2481 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2482 * bed->s->int_rels_per_ext_rel);
2483 }
2484
2485 if (esdo->rela.hdr
2486 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2487 external_relocs,
2488 internal_rela_relocs)))
2489 goto error_return;
2490
2491 /* Cache the results for next time, if we can. */
2492 if (keep_memory)
2493 esdo->relocs = internal_relocs;
2494
2495 if (alloc1 != NULL)
2496 free (alloc1);
2497
2498 /* Don't free alloc2, since if it was allocated we are passing it
2499 back (under the name of internal_relocs). */
2500
2501 return internal_relocs;
2502
2503 error_return:
2504 if (alloc1 != NULL)
2505 free (alloc1);
2506 if (alloc2 != NULL)
2507 {
2508 if (keep_memory)
2509 bfd_release (abfd, alloc2);
2510 else
2511 free (alloc2);
2512 }
2513 return NULL;
2514 }
2515
2516 /* Compute the size of, and allocate space for, REL_HDR which is the
2517 section header for a section containing relocations for O. */
2518
2519 static bfd_boolean
2520 _bfd_elf_link_size_reloc_section (bfd *abfd,
2521 struct bfd_elf_section_reloc_data *reldata)
2522 {
2523 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2524
2525 /* That allows us to calculate the size of the section. */
2526 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2527
2528 /* The contents field must last into write_object_contents, so we
2529 allocate it with bfd_alloc rather than malloc. Also since we
2530 cannot be sure that the contents will actually be filled in,
2531 we zero the allocated space. */
2532 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2533 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2534 return FALSE;
2535
2536 if (reldata->hashes == NULL && reldata->count)
2537 {
2538 struct elf_link_hash_entry **p;
2539
2540 p = ((struct elf_link_hash_entry **)
2541 bfd_zmalloc (reldata->count * sizeof (*p)));
2542 if (p == NULL)
2543 return FALSE;
2544
2545 reldata->hashes = p;
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2552 originated from the section given by INPUT_REL_HDR) to the
2553 OUTPUT_BFD. */
2554
2555 bfd_boolean
2556 _bfd_elf_link_output_relocs (bfd *output_bfd,
2557 asection *input_section,
2558 Elf_Internal_Shdr *input_rel_hdr,
2559 Elf_Internal_Rela *internal_relocs,
2560 struct elf_link_hash_entry **rel_hash
2561 ATTRIBUTE_UNUSED)
2562 {
2563 Elf_Internal_Rela *irela;
2564 Elf_Internal_Rela *irelaend;
2565 bfd_byte *erel;
2566 struct bfd_elf_section_reloc_data *output_reldata;
2567 asection *output_section;
2568 const struct elf_backend_data *bed;
2569 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2570 struct bfd_elf_section_data *esdo;
2571
2572 output_section = input_section->output_section;
2573
2574 bed = get_elf_backend_data (output_bfd);
2575 esdo = elf_section_data (output_section);
2576 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2577 {
2578 output_reldata = &esdo->rel;
2579 swap_out = bed->s->swap_reloc_out;
2580 }
2581 else if (esdo->rela.hdr
2582 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2583 {
2584 output_reldata = &esdo->rela;
2585 swap_out = bed->s->swap_reloca_out;
2586 }
2587 else
2588 {
2589 _bfd_error_handler
2590 /* xgettext:c-format */
2591 (_("%B: relocation size mismatch in %B section %A"),
2592 output_bfd, input_section->owner, input_section);
2593 bfd_set_error (bfd_error_wrong_format);
2594 return FALSE;
2595 }
2596
2597 erel = output_reldata->hdr->contents;
2598 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2599 irela = internal_relocs;
2600 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2601 * bed->s->int_rels_per_ext_rel);
2602 while (irela < irelaend)
2603 {
2604 (*swap_out) (output_bfd, irela, erel);
2605 irela += bed->s->int_rels_per_ext_rel;
2606 erel += input_rel_hdr->sh_entsize;
2607 }
2608
2609 /* Bump the counter, so that we know where to add the next set of
2610 relocations. */
2611 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2612
2613 return TRUE;
2614 }
2615 \f
2616 /* Make weak undefined symbols in PIE dynamic. */
2617
2618 bfd_boolean
2619 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2620 struct elf_link_hash_entry *h)
2621 {
2622 if (bfd_link_pie (info)
2623 && h->dynindx == -1
2624 && h->root.type == bfd_link_hash_undefweak)
2625 return bfd_elf_link_record_dynamic_symbol (info, h);
2626
2627 return TRUE;
2628 }
2629
2630 /* Fix up the flags for a symbol. This handles various cases which
2631 can only be fixed after all the input files are seen. This is
2632 currently called by both adjust_dynamic_symbol and
2633 assign_sym_version, which is unnecessary but perhaps more robust in
2634 the face of future changes. */
2635
2636 static bfd_boolean
2637 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2638 struct elf_info_failed *eif)
2639 {
2640 const struct elf_backend_data *bed;
2641
2642 /* If this symbol was mentioned in a non-ELF file, try to set
2643 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2644 permit a non-ELF file to correctly refer to a symbol defined in
2645 an ELF dynamic object. */
2646 if (h->non_elf)
2647 {
2648 while (h->root.type == bfd_link_hash_indirect)
2649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2650
2651 if (h->root.type != bfd_link_hash_defined
2652 && h->root.type != bfd_link_hash_defweak)
2653 {
2654 h->ref_regular = 1;
2655 h->ref_regular_nonweak = 1;
2656 }
2657 else
2658 {
2659 if (h->root.u.def.section->owner != NULL
2660 && (bfd_get_flavour (h->root.u.def.section->owner)
2661 == bfd_target_elf_flavour))
2662 {
2663 h->ref_regular = 1;
2664 h->ref_regular_nonweak = 1;
2665 }
2666 else
2667 h->def_regular = 1;
2668 }
2669
2670 if (h->dynindx == -1
2671 && (h->def_dynamic
2672 || h->ref_dynamic))
2673 {
2674 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2675 {
2676 eif->failed = TRUE;
2677 return FALSE;
2678 }
2679 }
2680 }
2681 else
2682 {
2683 /* Unfortunately, NON_ELF is only correct if the symbol
2684 was first seen in a non-ELF file. Fortunately, if the symbol
2685 was first seen in an ELF file, we're probably OK unless the
2686 symbol was defined in a non-ELF file. Catch that case here.
2687 FIXME: We're still in trouble if the symbol was first seen in
2688 a dynamic object, and then later in a non-ELF regular object. */
2689 if ((h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2691 && !h->def_regular
2692 && (h->root.u.def.section->owner != NULL
2693 ? (bfd_get_flavour (h->root.u.def.section->owner)
2694 != bfd_target_elf_flavour)
2695 : (bfd_is_abs_section (h->root.u.def.section)
2696 && !h->def_dynamic)))
2697 h->def_regular = 1;
2698 }
2699
2700 /* Backend specific symbol fixup. */
2701 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2702 if (bed->elf_backend_fixup_symbol
2703 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2704 return FALSE;
2705
2706 /* If this is a final link, and the symbol was defined as a common
2707 symbol in a regular object file, and there was no definition in
2708 any dynamic object, then the linker will have allocated space for
2709 the symbol in a common section but the DEF_REGULAR
2710 flag will not have been set. */
2711 if (h->root.type == bfd_link_hash_defined
2712 && !h->def_regular
2713 && h->ref_regular
2714 && !h->def_dynamic
2715 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2716 h->def_regular = 1;
2717
2718 /* If a weak undefined symbol has non-default visibility, we also
2719 hide it from the dynamic linker. */
2720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2721 && h->root.type == bfd_link_hash_undefweak)
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2723
2724 /* A hidden versioned symbol in executable should be forced local if
2725 it is is locally defined, not referenced by shared library and not
2726 exported. */
2727 else if (bfd_link_executable (eif->info)
2728 && h->versioned == versioned_hidden
2729 && !eif->info->export_dynamic
2730 && !h->dynamic
2731 && !h->ref_dynamic
2732 && h->def_regular)
2733 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2734
2735 /* If -Bsymbolic was used (which means to bind references to global
2736 symbols to the definition within the shared object), and this
2737 symbol was defined in a regular object, then it actually doesn't
2738 need a PLT entry. Likewise, if the symbol has non-default
2739 visibility. If the symbol has hidden or internal visibility, we
2740 will force it local. */
2741 else if (h->needs_plt
2742 && bfd_link_pic (eif->info)
2743 && is_elf_hash_table (eif->info->hash)
2744 && (SYMBOLIC_BIND (eif->info, h)
2745 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2746 && h->def_regular)
2747 {
2748 bfd_boolean force_local;
2749
2750 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2751 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2753 }
2754
2755 /* If this is a weak defined symbol in a dynamic object, and we know
2756 the real definition in the dynamic object, copy interesting flags
2757 over to the real definition. */
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If the real definition is defined by a regular object file,
2761 don't do anything special. See the longer description in
2762 _bfd_elf_adjust_dynamic_symbol, below. */
2763 if (h->u.weakdef->def_regular)
2764 h->u.weakdef = NULL;
2765 else
2766 {
2767 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2768
2769 while (h->root.type == bfd_link_hash_indirect)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2771
2772 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2773 || h->root.type == bfd_link_hash_defweak);
2774 BFD_ASSERT (weakdef->def_dynamic);
2775 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2776 || weakdef->root.type == bfd_link_hash_defweak);
2777 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2778 }
2779 }
2780
2781 return TRUE;
2782 }
2783
2784 /* Make the backend pick a good value for a dynamic symbol. This is
2785 called via elf_link_hash_traverse, and also calls itself
2786 recursively. */
2787
2788 static bfd_boolean
2789 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2790 {
2791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2792 bfd *dynobj;
2793 const struct elf_backend_data *bed;
2794
2795 if (! is_elf_hash_table (eif->info->hash))
2796 return FALSE;
2797
2798 /* Ignore indirect symbols. These are added by the versioning code. */
2799 if (h->root.type == bfd_link_hash_indirect)
2800 return TRUE;
2801
2802 /* Fix the symbol flags. */
2803 if (! _bfd_elf_fix_symbol_flags (h, eif))
2804 return FALSE;
2805
2806 if (h->root.type == bfd_link_hash_undefweak)
2807 {
2808 if (eif->info->dynamic_undefined_weak == 0)
2809 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2810 else if (eif->info->dynamic_undefined_weak > 0
2811 && h->ref_regular
2812 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2813 && !bfd_hide_sym_by_version (eif->info->version_info,
2814 h->root.root.string))
2815 {
2816 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2817 {
2818 eif->failed = TRUE;
2819 return FALSE;
2820 }
2821 }
2822 }
2823
2824 /* If this symbol does not require a PLT entry, and it is not
2825 defined by a dynamic object, or is not referenced by a regular
2826 object, ignore it. We do have to handle a weak defined symbol,
2827 even if no regular object refers to it, if we decided to add it
2828 to the dynamic symbol table. FIXME: Do we normally need to worry
2829 about symbols which are defined by one dynamic object and
2830 referenced by another one? */
2831 if (!h->needs_plt
2832 && h->type != STT_GNU_IFUNC
2833 && (h->def_regular
2834 || !h->def_dynamic
2835 || (!h->ref_regular
2836 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2837 {
2838 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2839 return TRUE;
2840 }
2841
2842 /* If we've already adjusted this symbol, don't do it again. This
2843 can happen via a recursive call. */
2844 if (h->dynamic_adjusted)
2845 return TRUE;
2846
2847 /* Don't look at this symbol again. Note that we must set this
2848 after checking the above conditions, because we may look at a
2849 symbol once, decide not to do anything, and then get called
2850 recursively later after REF_REGULAR is set below. */
2851 h->dynamic_adjusted = 1;
2852
2853 /* If this is a weak definition, and we know a real definition, and
2854 the real symbol is not itself defined by a regular object file,
2855 then get a good value for the real definition. We handle the
2856 real symbol first, for the convenience of the backend routine.
2857
2858 Note that there is a confusing case here. If the real definition
2859 is defined by a regular object file, we don't get the real symbol
2860 from the dynamic object, but we do get the weak symbol. If the
2861 processor backend uses a COPY reloc, then if some routine in the
2862 dynamic object changes the real symbol, we will not see that
2863 change in the corresponding weak symbol. This is the way other
2864 ELF linkers work as well, and seems to be a result of the shared
2865 library model.
2866
2867 I will clarify this issue. Most SVR4 shared libraries define the
2868 variable _timezone and define timezone as a weak synonym. The
2869 tzset call changes _timezone. If you write
2870 extern int timezone;
2871 int _timezone = 5;
2872 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2873 you might expect that, since timezone is a synonym for _timezone,
2874 the same number will print both times. However, if the processor
2875 backend uses a COPY reloc, then actually timezone will be copied
2876 into your process image, and, since you define _timezone
2877 yourself, _timezone will not. Thus timezone and _timezone will
2878 wind up at different memory locations. The tzset call will set
2879 _timezone, leaving timezone unchanged. */
2880
2881 if (h->u.weakdef != NULL)
2882 {
2883 /* If we get to this point, there is an implicit reference to
2884 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2885 h->u.weakdef->ref_regular = 1;
2886
2887 /* Ensure that the backend adjust_dynamic_symbol function sees
2888 H->U.WEAKDEF before H by recursively calling ourselves. */
2889 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2890 return FALSE;
2891 }
2892
2893 /* If a symbol has no type and no size and does not require a PLT
2894 entry, then we are probably about to do the wrong thing here: we
2895 are probably going to create a COPY reloc for an empty object.
2896 This case can arise when a shared object is built with assembly
2897 code, and the assembly code fails to set the symbol type. */
2898 if (h->size == 0
2899 && h->type == STT_NOTYPE
2900 && !h->needs_plt)
2901 _bfd_error_handler
2902 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2903 h->root.root.string);
2904
2905 dynobj = elf_hash_table (eif->info)->dynobj;
2906 bed = get_elf_backend_data (dynobj);
2907
2908 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2909 {
2910 eif->failed = TRUE;
2911 return FALSE;
2912 }
2913
2914 return TRUE;
2915 }
2916
2917 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2918 DYNBSS. */
2919
2920 bfd_boolean
2921 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2922 struct elf_link_hash_entry *h,
2923 asection *dynbss)
2924 {
2925 unsigned int power_of_two;
2926 bfd_vma mask;
2927 asection *sec = h->root.u.def.section;
2928
2929 /* The section aligment of definition is the maximum alignment
2930 requirement of symbols defined in the section. Since we don't
2931 know the symbol alignment requirement, we start with the
2932 maximum alignment and check low bits of the symbol address
2933 for the minimum alignment. */
2934 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2935 mask = ((bfd_vma) 1 << power_of_two) - 1;
2936 while ((h->root.u.def.value & mask) != 0)
2937 {
2938 mask >>= 1;
2939 --power_of_two;
2940 }
2941
2942 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2943 dynbss))
2944 {
2945 /* Adjust the section alignment if needed. */
2946 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2947 power_of_two))
2948 return FALSE;
2949 }
2950
2951 /* We make sure that the symbol will be aligned properly. */
2952 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2953
2954 /* Define the symbol as being at this point in DYNBSS. */
2955 h->root.u.def.section = dynbss;
2956 h->root.u.def.value = dynbss->size;
2957
2958 /* Increment the size of DYNBSS to make room for the symbol. */
2959 dynbss->size += h->size;
2960
2961 /* No error if extern_protected_data is true. */
2962 if (h->protected_def
2963 && (!info->extern_protected_data
2964 || (info->extern_protected_data < 0
2965 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2966 info->callbacks->einfo
2967 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2968 h->root.root.string);
2969
2970 return TRUE;
2971 }
2972
2973 /* Adjust all external symbols pointing into SEC_MERGE sections
2974 to reflect the object merging within the sections. */
2975
2976 static bfd_boolean
2977 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2978 {
2979 asection *sec;
2980
2981 if ((h->root.type == bfd_link_hash_defined
2982 || h->root.type == bfd_link_hash_defweak)
2983 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2984 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2985 {
2986 bfd *output_bfd = (bfd *) data;
2987
2988 h->root.u.def.value =
2989 _bfd_merged_section_offset (output_bfd,
2990 &h->root.u.def.section,
2991 elf_section_data (sec)->sec_info,
2992 h->root.u.def.value);
2993 }
2994
2995 return TRUE;
2996 }
2997
2998 /* Returns false if the symbol referred to by H should be considered
2999 to resolve local to the current module, and true if it should be
3000 considered to bind dynamically. */
3001
3002 bfd_boolean
3003 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3004 struct bfd_link_info *info,
3005 bfd_boolean not_local_protected)
3006 {
3007 bfd_boolean binding_stays_local_p;
3008 const struct elf_backend_data *bed;
3009 struct elf_link_hash_table *hash_table;
3010
3011 if (h == NULL)
3012 return FALSE;
3013
3014 while (h->root.type == bfd_link_hash_indirect
3015 || h->root.type == bfd_link_hash_warning)
3016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3017
3018 /* If it was forced local, then clearly it's not dynamic. */
3019 if (h->dynindx == -1)
3020 return FALSE;
3021 if (h->forced_local)
3022 return FALSE;
3023
3024 /* Identify the cases where name binding rules say that a
3025 visible symbol resolves locally. */
3026 binding_stays_local_p = (bfd_link_executable (info)
3027 || SYMBOLIC_BIND (info, h));
3028
3029 switch (ELF_ST_VISIBILITY (h->other))
3030 {
3031 case STV_INTERNAL:
3032 case STV_HIDDEN:
3033 return FALSE;
3034
3035 case STV_PROTECTED:
3036 hash_table = elf_hash_table (info);
3037 if (!is_elf_hash_table (hash_table))
3038 return FALSE;
3039
3040 bed = get_elf_backend_data (hash_table->dynobj);
3041
3042 /* Proper resolution for function pointer equality may require
3043 that these symbols perhaps be resolved dynamically, even though
3044 we should be resolving them to the current module. */
3045 if (!not_local_protected || !bed->is_function_type (h->type))
3046 binding_stays_local_p = TRUE;
3047 break;
3048
3049 default:
3050 break;
3051 }
3052
3053 /* If it isn't defined locally, then clearly it's dynamic. */
3054 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3055 return TRUE;
3056
3057 /* Otherwise, the symbol is dynamic if binding rules don't tell
3058 us that it remains local. */
3059 return !binding_stays_local_p;
3060 }
3061
3062 /* Return true if the symbol referred to by H should be considered
3063 to resolve local to the current module, and false otherwise. Differs
3064 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3065 undefined symbols. The two functions are virtually identical except
3066 for the place where dynindx == -1 is tested. If that test is true,
3067 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3068 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3069 defined symbols.
3070 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3071 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3072 treatment of undefined weak symbols. For those that do not make
3073 undefined weak symbols dynamic, both functions may return false. */
3074
3075 bfd_boolean
3076 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3077 struct bfd_link_info *info,
3078 bfd_boolean local_protected)
3079 {
3080 const struct elf_backend_data *bed;
3081 struct elf_link_hash_table *hash_table;
3082
3083 /* If it's a local sym, of course we resolve locally. */
3084 if (h == NULL)
3085 return TRUE;
3086
3087 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3088 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3089 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3090 return TRUE;
3091
3092 /* Forced local symbols resolve locally. */
3093 if (h->forced_local)
3094 return TRUE;
3095
3096 /* Common symbols that become definitions don't get the DEF_REGULAR
3097 flag set, so test it first, and don't bail out. */
3098 if (ELF_COMMON_DEF_P (h))
3099 /* Do nothing. */;
3100 /* If we don't have a definition in a regular file, then we can't
3101 resolve locally. The sym is either undefined or dynamic. */
3102 else if (!h->def_regular)
3103 return FALSE;
3104
3105 /* Non-dynamic symbols resolve locally. */
3106 if (h->dynindx == -1)
3107 return TRUE;
3108
3109 /* At this point, we know the symbol is defined and dynamic. In an
3110 executable it must resolve locally, likewise when building symbolic
3111 shared libraries. */
3112 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3113 return TRUE;
3114
3115 /* Now deal with defined dynamic symbols in shared libraries. Ones
3116 with default visibility might not resolve locally. */
3117 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3118 return FALSE;
3119
3120 hash_table = elf_hash_table (info);
3121 if (!is_elf_hash_table (hash_table))
3122 return TRUE;
3123
3124 bed = get_elf_backend_data (hash_table->dynobj);
3125
3126 /* If extern_protected_data is false, STV_PROTECTED non-function
3127 symbols are local. */
3128 if ((!info->extern_protected_data
3129 || (info->extern_protected_data < 0
3130 && !bed->extern_protected_data))
3131 && !bed->is_function_type (h->type))
3132 return TRUE;
3133
3134 /* Function pointer equality tests may require that STV_PROTECTED
3135 symbols be treated as dynamic symbols. If the address of a
3136 function not defined in an executable is set to that function's
3137 plt entry in the executable, then the address of the function in
3138 a shared library must also be the plt entry in the executable. */
3139 return local_protected;
3140 }
3141
3142 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3143 aligned. Returns the first TLS output section. */
3144
3145 struct bfd_section *
3146 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3147 {
3148 struct bfd_section *sec, *tls;
3149 unsigned int align = 0;
3150
3151 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3152 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3153 break;
3154 tls = sec;
3155
3156 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3157 if (sec->alignment_power > align)
3158 align = sec->alignment_power;
3159
3160 elf_hash_table (info)->tls_sec = tls;
3161
3162 /* Ensure the alignment of the first section is the largest alignment,
3163 so that the tls segment starts aligned. */
3164 if (tls != NULL)
3165 tls->alignment_power = align;
3166
3167 return tls;
3168 }
3169
3170 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3171 static bfd_boolean
3172 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3173 Elf_Internal_Sym *sym)
3174 {
3175 const struct elf_backend_data *bed;
3176
3177 /* Local symbols do not count, but target specific ones might. */
3178 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3179 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3180 return FALSE;
3181
3182 bed = get_elf_backend_data (abfd);
3183 /* Function symbols do not count. */
3184 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3185 return FALSE;
3186
3187 /* If the section is undefined, then so is the symbol. */
3188 if (sym->st_shndx == SHN_UNDEF)
3189 return FALSE;
3190
3191 /* If the symbol is defined in the common section, then
3192 it is a common definition and so does not count. */
3193 if (bed->common_definition (sym))
3194 return FALSE;
3195
3196 /* If the symbol is in a target specific section then we
3197 must rely upon the backend to tell us what it is. */
3198 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3199 /* FIXME - this function is not coded yet:
3200
3201 return _bfd_is_global_symbol_definition (abfd, sym);
3202
3203 Instead for now assume that the definition is not global,
3204 Even if this is wrong, at least the linker will behave
3205 in the same way that it used to do. */
3206 return FALSE;
3207
3208 return TRUE;
3209 }
3210
3211 /* Search the symbol table of the archive element of the archive ABFD
3212 whose archive map contains a mention of SYMDEF, and determine if
3213 the symbol is defined in this element. */
3214 static bfd_boolean
3215 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3216 {
3217 Elf_Internal_Shdr * hdr;
3218 size_t symcount;
3219 size_t extsymcount;
3220 size_t extsymoff;
3221 Elf_Internal_Sym *isymbuf;
3222 Elf_Internal_Sym *isym;
3223 Elf_Internal_Sym *isymend;
3224 bfd_boolean result;
3225
3226 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3227 if (abfd == NULL)
3228 return FALSE;
3229
3230 if (! bfd_check_format (abfd, bfd_object))
3231 return FALSE;
3232
3233 /* Select the appropriate symbol table. If we don't know if the
3234 object file is an IR object, give linker LTO plugin a chance to
3235 get the correct symbol table. */
3236 if (abfd->plugin_format == bfd_plugin_yes
3237 #if BFD_SUPPORTS_PLUGINS
3238 || (abfd->plugin_format == bfd_plugin_unknown
3239 && bfd_link_plugin_object_p (abfd))
3240 #endif
3241 )
3242 {
3243 /* Use the IR symbol table if the object has been claimed by
3244 plugin. */
3245 abfd = abfd->plugin_dummy_bfd;
3246 hdr = &elf_tdata (abfd)->symtab_hdr;
3247 }
3248 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3249 hdr = &elf_tdata (abfd)->symtab_hdr;
3250 else
3251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3252
3253 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3254
3255 /* The sh_info field of the symtab header tells us where the
3256 external symbols start. We don't care about the local symbols. */
3257 if (elf_bad_symtab (abfd))
3258 {
3259 extsymcount = symcount;
3260 extsymoff = 0;
3261 }
3262 else
3263 {
3264 extsymcount = symcount - hdr->sh_info;
3265 extsymoff = hdr->sh_info;
3266 }
3267
3268 if (extsymcount == 0)
3269 return FALSE;
3270
3271 /* Read in the symbol table. */
3272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3273 NULL, NULL, NULL);
3274 if (isymbuf == NULL)
3275 return FALSE;
3276
3277 /* Scan the symbol table looking for SYMDEF. */
3278 result = FALSE;
3279 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3280 {
3281 const char *name;
3282
3283 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3284 isym->st_name);
3285 if (name == NULL)
3286 break;
3287
3288 if (strcmp (name, symdef->name) == 0)
3289 {
3290 result = is_global_data_symbol_definition (abfd, isym);
3291 break;
3292 }
3293 }
3294
3295 free (isymbuf);
3296
3297 return result;
3298 }
3299 \f
3300 /* Add an entry to the .dynamic table. */
3301
3302 bfd_boolean
3303 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3304 bfd_vma tag,
3305 bfd_vma val)
3306 {
3307 struct elf_link_hash_table *hash_table;
3308 const struct elf_backend_data *bed;
3309 asection *s;
3310 bfd_size_type newsize;
3311 bfd_byte *newcontents;
3312 Elf_Internal_Dyn dyn;
3313
3314 hash_table = elf_hash_table (info);
3315 if (! is_elf_hash_table (hash_table))
3316 return FALSE;
3317
3318 bed = get_elf_backend_data (hash_table->dynobj);
3319 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3320 BFD_ASSERT (s != NULL);
3321
3322 newsize = s->size + bed->s->sizeof_dyn;
3323 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3324 if (newcontents == NULL)
3325 return FALSE;
3326
3327 dyn.d_tag = tag;
3328 dyn.d_un.d_val = val;
3329 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3330
3331 s->size = newsize;
3332 s->contents = newcontents;
3333
3334 return TRUE;
3335 }
3336
3337 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3338 otherwise just check whether one already exists. Returns -1 on error,
3339 1 if a DT_NEEDED tag already exists, and 0 on success. */
3340
3341 static int
3342 elf_add_dt_needed_tag (bfd *abfd,
3343 struct bfd_link_info *info,
3344 const char *soname,
3345 bfd_boolean do_it)
3346 {
3347 struct elf_link_hash_table *hash_table;
3348 size_t strindex;
3349
3350 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3351 return -1;
3352
3353 hash_table = elf_hash_table (info);
3354 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3355 if (strindex == (size_t) -1)
3356 return -1;
3357
3358 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3359 {
3360 asection *sdyn;
3361 const struct elf_backend_data *bed;
3362 bfd_byte *extdyn;
3363
3364 bed = get_elf_backend_data (hash_table->dynobj);
3365 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3366 if (sdyn != NULL)
3367 for (extdyn = sdyn->contents;
3368 extdyn < sdyn->contents + sdyn->size;
3369 extdyn += bed->s->sizeof_dyn)
3370 {
3371 Elf_Internal_Dyn dyn;
3372
3373 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3374 if (dyn.d_tag == DT_NEEDED
3375 && dyn.d_un.d_val == strindex)
3376 {
3377 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3378 return 1;
3379 }
3380 }
3381 }
3382
3383 if (do_it)
3384 {
3385 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3386 return -1;
3387
3388 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3389 return -1;
3390 }
3391 else
3392 /* We were just checking for existence of the tag. */
3393 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3394
3395 return 0;
3396 }
3397
3398 /* Return true if SONAME is on the needed list between NEEDED and STOP
3399 (or the end of list if STOP is NULL), and needed by a library that
3400 will be loaded. */
3401
3402 static bfd_boolean
3403 on_needed_list (const char *soname,
3404 struct bfd_link_needed_list *needed,
3405 struct bfd_link_needed_list *stop)
3406 {
3407 struct bfd_link_needed_list *look;
3408 for (look = needed; look != stop; look = look->next)
3409 if (strcmp (soname, look->name) == 0
3410 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3411 /* If needed by a library that itself is not directly
3412 needed, recursively check whether that library is
3413 indirectly needed. Since we add DT_NEEDED entries to
3414 the end of the list, library dependencies appear after
3415 the library. Therefore search prior to the current
3416 LOOK, preventing possible infinite recursion. */
3417 || on_needed_list (elf_dt_name (look->by), needed, look)))
3418 return TRUE;
3419
3420 return FALSE;
3421 }
3422
3423 /* Sort symbol by value, section, and size. */
3424 static int
3425 elf_sort_symbol (const void *arg1, const void *arg2)
3426 {
3427 const struct elf_link_hash_entry *h1;
3428 const struct elf_link_hash_entry *h2;
3429 bfd_signed_vma vdiff;
3430
3431 h1 = *(const struct elf_link_hash_entry **) arg1;
3432 h2 = *(const struct elf_link_hash_entry **) arg2;
3433 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3434 if (vdiff != 0)
3435 return vdiff > 0 ? 1 : -1;
3436 else
3437 {
3438 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3439 if (sdiff != 0)
3440 return sdiff > 0 ? 1 : -1;
3441 }
3442 vdiff = h1->size - h2->size;
3443 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3444 }
3445
3446 /* This function is used to adjust offsets into .dynstr for
3447 dynamic symbols. This is called via elf_link_hash_traverse. */
3448
3449 static bfd_boolean
3450 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3451 {
3452 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3453
3454 if (h->dynindx != -1)
3455 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3456 return TRUE;
3457 }
3458
3459 /* Assign string offsets in .dynstr, update all structures referencing
3460 them. */
3461
3462 static bfd_boolean
3463 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3464 {
3465 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3466 struct elf_link_local_dynamic_entry *entry;
3467 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3468 bfd *dynobj = hash_table->dynobj;
3469 asection *sdyn;
3470 bfd_size_type size;
3471 const struct elf_backend_data *bed;
3472 bfd_byte *extdyn;
3473
3474 _bfd_elf_strtab_finalize (dynstr);
3475 size = _bfd_elf_strtab_size (dynstr);
3476
3477 bed = get_elf_backend_data (dynobj);
3478 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3479 BFD_ASSERT (sdyn != NULL);
3480
3481 /* Update all .dynamic entries referencing .dynstr strings. */
3482 for (extdyn = sdyn->contents;
3483 extdyn < sdyn->contents + sdyn->size;
3484 extdyn += bed->s->sizeof_dyn)
3485 {
3486 Elf_Internal_Dyn dyn;
3487
3488 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3489 switch (dyn.d_tag)
3490 {
3491 case DT_STRSZ:
3492 dyn.d_un.d_val = size;
3493 break;
3494 case DT_NEEDED:
3495 case DT_SONAME:
3496 case DT_RPATH:
3497 case DT_RUNPATH:
3498 case DT_FILTER:
3499 case DT_AUXILIARY:
3500 case DT_AUDIT:
3501 case DT_DEPAUDIT:
3502 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3503 break;
3504 default:
3505 continue;
3506 }
3507 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3508 }
3509
3510 /* Now update local dynamic symbols. */
3511 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3512 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3513 entry->isym.st_name);
3514
3515 /* And the rest of dynamic symbols. */
3516 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3517
3518 /* Adjust version definitions. */
3519 if (elf_tdata (output_bfd)->cverdefs)
3520 {
3521 asection *s;
3522 bfd_byte *p;
3523 size_t i;
3524 Elf_Internal_Verdef def;
3525 Elf_Internal_Verdaux defaux;
3526
3527 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3528 p = s->contents;
3529 do
3530 {
3531 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3532 &def);
3533 p += sizeof (Elf_External_Verdef);
3534 if (def.vd_aux != sizeof (Elf_External_Verdef))
3535 continue;
3536 for (i = 0; i < def.vd_cnt; ++i)
3537 {
3538 _bfd_elf_swap_verdaux_in (output_bfd,
3539 (Elf_External_Verdaux *) p, &defaux);
3540 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3541 defaux.vda_name);
3542 _bfd_elf_swap_verdaux_out (output_bfd,
3543 &defaux, (Elf_External_Verdaux *) p);
3544 p += sizeof (Elf_External_Verdaux);
3545 }
3546 }
3547 while (def.vd_next);
3548 }
3549
3550 /* Adjust version references. */
3551 if (elf_tdata (output_bfd)->verref)
3552 {
3553 asection *s;
3554 bfd_byte *p;
3555 size_t i;
3556 Elf_Internal_Verneed need;
3557 Elf_Internal_Vernaux needaux;
3558
3559 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3560 p = s->contents;
3561 do
3562 {
3563 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3564 &need);
3565 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3566 _bfd_elf_swap_verneed_out (output_bfd, &need,
3567 (Elf_External_Verneed *) p);
3568 p += sizeof (Elf_External_Verneed);
3569 for (i = 0; i < need.vn_cnt; ++i)
3570 {
3571 _bfd_elf_swap_vernaux_in (output_bfd,
3572 (Elf_External_Vernaux *) p, &needaux);
3573 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3574 needaux.vna_name);
3575 _bfd_elf_swap_vernaux_out (output_bfd,
3576 &needaux,
3577 (Elf_External_Vernaux *) p);
3578 p += sizeof (Elf_External_Vernaux);
3579 }
3580 }
3581 while (need.vn_next);
3582 }
3583
3584 return TRUE;
3585 }
3586 \f
3587 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3588 The default is to only match when the INPUT and OUTPUT are exactly
3589 the same target. */
3590
3591 bfd_boolean
3592 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3593 const bfd_target *output)
3594 {
3595 return input == output;
3596 }
3597
3598 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3599 This version is used when different targets for the same architecture
3600 are virtually identical. */
3601
3602 bfd_boolean
3603 _bfd_elf_relocs_compatible (const bfd_target *input,
3604 const bfd_target *output)
3605 {
3606 const struct elf_backend_data *obed, *ibed;
3607
3608 if (input == output)
3609 return TRUE;
3610
3611 ibed = xvec_get_elf_backend_data (input);
3612 obed = xvec_get_elf_backend_data (output);
3613
3614 if (ibed->arch != obed->arch)
3615 return FALSE;
3616
3617 /* If both backends are using this function, deem them compatible. */
3618 return ibed->relocs_compatible == obed->relocs_compatible;
3619 }
3620
3621 /* Make a special call to the linker "notice" function to tell it that
3622 we are about to handle an as-needed lib, or have finished
3623 processing the lib. */
3624
3625 bfd_boolean
3626 _bfd_elf_notice_as_needed (bfd *ibfd,
3627 struct bfd_link_info *info,
3628 enum notice_asneeded_action act)
3629 {
3630 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3631 }
3632
3633 /* Check relocations an ELF object file. */
3634
3635 bfd_boolean
3636 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3637 {
3638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3639 struct elf_link_hash_table *htab = elf_hash_table (info);
3640
3641 /* If this object is the same format as the output object, and it is
3642 not a shared library, then let the backend look through the
3643 relocs.
3644
3645 This is required to build global offset table entries and to
3646 arrange for dynamic relocs. It is not required for the
3647 particular common case of linking non PIC code, even when linking
3648 against shared libraries, but unfortunately there is no way of
3649 knowing whether an object file has been compiled PIC or not.
3650 Looking through the relocs is not particularly time consuming.
3651 The problem is that we must either (1) keep the relocs in memory,
3652 which causes the linker to require additional runtime memory or
3653 (2) read the relocs twice from the input file, which wastes time.
3654 This would be a good case for using mmap.
3655
3656 I have no idea how to handle linking PIC code into a file of a
3657 different format. It probably can't be done. */
3658 if ((abfd->flags & DYNAMIC) == 0
3659 && is_elf_hash_table (htab)
3660 && bed->check_relocs != NULL
3661 && elf_object_id (abfd) == elf_hash_table_id (htab)
3662 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3663 {
3664 asection *o;
3665
3666 for (o = abfd->sections; o != NULL; o = o->next)
3667 {
3668 Elf_Internal_Rela *internal_relocs;
3669 bfd_boolean ok;
3670
3671 /* Don't check relocations in excluded sections. */
3672 if ((o->flags & SEC_RELOC) == 0
3673 || (o->flags & SEC_EXCLUDE) != 0
3674 || o->reloc_count == 0
3675 || ((info->strip == strip_all || info->strip == strip_debugger)
3676 && (o->flags & SEC_DEBUGGING) != 0)
3677 || bfd_is_abs_section (o->output_section))
3678 continue;
3679
3680 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3681 info->keep_memory);
3682 if (internal_relocs == NULL)
3683 return FALSE;
3684
3685 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3686
3687 if (elf_section_data (o)->relocs != internal_relocs)
3688 free (internal_relocs);
3689
3690 if (! ok)
3691 return FALSE;
3692 }
3693 }
3694
3695 return TRUE;
3696 }
3697
3698 /* Add symbols from an ELF object file to the linker hash table. */
3699
3700 static bfd_boolean
3701 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3702 {
3703 Elf_Internal_Ehdr *ehdr;
3704 Elf_Internal_Shdr *hdr;
3705 size_t symcount;
3706 size_t extsymcount;
3707 size_t extsymoff;
3708 struct elf_link_hash_entry **sym_hash;
3709 bfd_boolean dynamic;
3710 Elf_External_Versym *extversym = NULL;
3711 Elf_External_Versym *ever;
3712 struct elf_link_hash_entry *weaks;
3713 struct elf_link_hash_entry **nondeflt_vers = NULL;
3714 size_t nondeflt_vers_cnt = 0;
3715 Elf_Internal_Sym *isymbuf = NULL;
3716 Elf_Internal_Sym *isym;
3717 Elf_Internal_Sym *isymend;
3718 const struct elf_backend_data *bed;
3719 bfd_boolean add_needed;
3720 struct elf_link_hash_table *htab;
3721 bfd_size_type amt;
3722 void *alloc_mark = NULL;
3723 struct bfd_hash_entry **old_table = NULL;
3724 unsigned int old_size = 0;
3725 unsigned int old_count = 0;
3726 void *old_tab = NULL;
3727 void *old_ent;
3728 struct bfd_link_hash_entry *old_undefs = NULL;
3729 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3730 void *old_strtab = NULL;
3731 size_t tabsize = 0;
3732 asection *s;
3733 bfd_boolean just_syms;
3734
3735 htab = elf_hash_table (info);
3736 bed = get_elf_backend_data (abfd);
3737
3738 if ((abfd->flags & DYNAMIC) == 0)
3739 dynamic = FALSE;
3740 else
3741 {
3742 dynamic = TRUE;
3743
3744 /* You can't use -r against a dynamic object. Also, there's no
3745 hope of using a dynamic object which does not exactly match
3746 the format of the output file. */
3747 if (bfd_link_relocatable (info)
3748 || !is_elf_hash_table (htab)
3749 || info->output_bfd->xvec != abfd->xvec)
3750 {
3751 if (bfd_link_relocatable (info))
3752 bfd_set_error (bfd_error_invalid_operation);
3753 else
3754 bfd_set_error (bfd_error_wrong_format);
3755 goto error_return;
3756 }
3757 }
3758
3759 ehdr = elf_elfheader (abfd);
3760 if (info->warn_alternate_em
3761 && bed->elf_machine_code != ehdr->e_machine
3762 && ((bed->elf_machine_alt1 != 0
3763 && ehdr->e_machine == bed->elf_machine_alt1)
3764 || (bed->elf_machine_alt2 != 0
3765 && ehdr->e_machine == bed->elf_machine_alt2)))
3766 info->callbacks->einfo
3767 /* xgettext:c-format */
3768 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3769 ehdr->e_machine, abfd, bed->elf_machine_code);
3770
3771 /* As a GNU extension, any input sections which are named
3772 .gnu.warning.SYMBOL are treated as warning symbols for the given
3773 symbol. This differs from .gnu.warning sections, which generate
3774 warnings when they are included in an output file. */
3775 /* PR 12761: Also generate this warning when building shared libraries. */
3776 for (s = abfd->sections; s != NULL; s = s->next)
3777 {
3778 const char *name;
3779
3780 name = bfd_get_section_name (abfd, s);
3781 if (CONST_STRNEQ (name, ".gnu.warning."))
3782 {
3783 char *msg;
3784 bfd_size_type sz;
3785
3786 name += sizeof ".gnu.warning." - 1;
3787
3788 /* If this is a shared object, then look up the symbol
3789 in the hash table. If it is there, and it is already
3790 been defined, then we will not be using the entry
3791 from this shared object, so we don't need to warn.
3792 FIXME: If we see the definition in a regular object
3793 later on, we will warn, but we shouldn't. The only
3794 fix is to keep track of what warnings we are supposed
3795 to emit, and then handle them all at the end of the
3796 link. */
3797 if (dynamic)
3798 {
3799 struct elf_link_hash_entry *h;
3800
3801 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3802
3803 /* FIXME: What about bfd_link_hash_common? */
3804 if (h != NULL
3805 && (h->root.type == bfd_link_hash_defined
3806 || h->root.type == bfd_link_hash_defweak))
3807 continue;
3808 }
3809
3810 sz = s->size;
3811 msg = (char *) bfd_alloc (abfd, sz + 1);
3812 if (msg == NULL)
3813 goto error_return;
3814
3815 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3816 goto error_return;
3817
3818 msg[sz] = '\0';
3819
3820 if (! (_bfd_generic_link_add_one_symbol
3821 (info, abfd, name, BSF_WARNING, s, 0, msg,
3822 FALSE, bed->collect, NULL)))
3823 goto error_return;
3824
3825 if (bfd_link_executable (info))
3826 {
3827 /* Clobber the section size so that the warning does
3828 not get copied into the output file. */
3829 s->size = 0;
3830
3831 /* Also set SEC_EXCLUDE, so that symbols defined in
3832 the warning section don't get copied to the output. */
3833 s->flags |= SEC_EXCLUDE;
3834 }
3835 }
3836 }
3837
3838 just_syms = ((s = abfd->sections) != NULL
3839 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3840
3841 add_needed = TRUE;
3842 if (! dynamic)
3843 {
3844 /* If we are creating a shared library, create all the dynamic
3845 sections immediately. We need to attach them to something,
3846 so we attach them to this BFD, provided it is the right
3847 format and is not from ld --just-symbols. Always create the
3848 dynamic sections for -E/--dynamic-list. FIXME: If there
3849 are no input BFD's of the same format as the output, we can't
3850 make a shared library. */
3851 if (!just_syms
3852 && (bfd_link_pic (info)
3853 || (!bfd_link_relocatable (info)
3854 && info->nointerp
3855 && (info->export_dynamic || info->dynamic)))
3856 && is_elf_hash_table (htab)
3857 && info->output_bfd->xvec == abfd->xvec
3858 && !htab->dynamic_sections_created)
3859 {
3860 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3861 goto error_return;
3862 }
3863 }
3864 else if (!is_elf_hash_table (htab))
3865 goto error_return;
3866 else
3867 {
3868 const char *soname = NULL;
3869 char *audit = NULL;
3870 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3871 const Elf_Internal_Phdr *phdr;
3872 int ret;
3873
3874 /* ld --just-symbols and dynamic objects don't mix very well.
3875 ld shouldn't allow it. */
3876 if (just_syms)
3877 abort ();
3878
3879 /* If this dynamic lib was specified on the command line with
3880 --as-needed in effect, then we don't want to add a DT_NEEDED
3881 tag unless the lib is actually used. Similary for libs brought
3882 in by another lib's DT_NEEDED. When --no-add-needed is used
3883 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3884 any dynamic library in DT_NEEDED tags in the dynamic lib at
3885 all. */
3886 add_needed = (elf_dyn_lib_class (abfd)
3887 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3888 | DYN_NO_NEEDED)) == 0;
3889
3890 s = bfd_get_section_by_name (abfd, ".dynamic");
3891 if (s != NULL)
3892 {
3893 bfd_byte *dynbuf;
3894 bfd_byte *extdyn;
3895 unsigned int elfsec;
3896 unsigned long shlink;
3897
3898 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3899 {
3900 error_free_dyn:
3901 free (dynbuf);
3902 goto error_return;
3903 }
3904
3905 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3906 if (elfsec == SHN_BAD)
3907 goto error_free_dyn;
3908 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3909
3910 for (extdyn = dynbuf;
3911 extdyn < dynbuf + s->size;
3912 extdyn += bed->s->sizeof_dyn)
3913 {
3914 Elf_Internal_Dyn dyn;
3915
3916 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3917 if (dyn.d_tag == DT_SONAME)
3918 {
3919 unsigned int tagv = dyn.d_un.d_val;
3920 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3921 if (soname == NULL)
3922 goto error_free_dyn;
3923 }
3924 if (dyn.d_tag == DT_NEEDED)
3925 {
3926 struct bfd_link_needed_list *n, **pn;
3927 char *fnm, *anm;
3928 unsigned int tagv = dyn.d_un.d_val;
3929
3930 amt = sizeof (struct bfd_link_needed_list);
3931 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3932 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3933 if (n == NULL || fnm == NULL)
3934 goto error_free_dyn;
3935 amt = strlen (fnm) + 1;
3936 anm = (char *) bfd_alloc (abfd, amt);
3937 if (anm == NULL)
3938 goto error_free_dyn;
3939 memcpy (anm, fnm, amt);
3940 n->name = anm;
3941 n->by = abfd;
3942 n->next = NULL;
3943 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3944 ;
3945 *pn = n;
3946 }
3947 if (dyn.d_tag == DT_RUNPATH)
3948 {
3949 struct bfd_link_needed_list *n, **pn;
3950 char *fnm, *anm;
3951 unsigned int tagv = dyn.d_un.d_val;
3952
3953 amt = sizeof (struct bfd_link_needed_list);
3954 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3955 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3956 if (n == NULL || fnm == NULL)
3957 goto error_free_dyn;
3958 amt = strlen (fnm) + 1;
3959 anm = (char *) bfd_alloc (abfd, amt);
3960 if (anm == NULL)
3961 goto error_free_dyn;
3962 memcpy (anm, fnm, amt);
3963 n->name = anm;
3964 n->by = abfd;
3965 n->next = NULL;
3966 for (pn = & runpath;
3967 *pn != NULL;
3968 pn = &(*pn)->next)
3969 ;
3970 *pn = n;
3971 }
3972 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3973 if (!runpath && dyn.d_tag == DT_RPATH)
3974 {
3975 struct bfd_link_needed_list *n, **pn;
3976 char *fnm, *anm;
3977 unsigned int tagv = dyn.d_un.d_val;
3978
3979 amt = sizeof (struct bfd_link_needed_list);
3980 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3981 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3982 if (n == NULL || fnm == NULL)
3983 goto error_free_dyn;
3984 amt = strlen (fnm) + 1;
3985 anm = (char *) bfd_alloc (abfd, amt);
3986 if (anm == NULL)
3987 goto error_free_dyn;
3988 memcpy (anm, fnm, amt);
3989 n->name = anm;
3990 n->by = abfd;
3991 n->next = NULL;
3992 for (pn = & rpath;
3993 *pn != NULL;
3994 pn = &(*pn)->next)
3995 ;
3996 *pn = n;
3997 }
3998 if (dyn.d_tag == DT_AUDIT)
3999 {
4000 unsigned int tagv = dyn.d_un.d_val;
4001 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4002 }
4003 }
4004
4005 free (dynbuf);
4006 }
4007
4008 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4009 frees all more recently bfd_alloc'd blocks as well. */
4010 if (runpath)
4011 rpath = runpath;
4012
4013 if (rpath)
4014 {
4015 struct bfd_link_needed_list **pn;
4016 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4017 ;
4018 *pn = rpath;
4019 }
4020
4021 /* If we have a PT_GNU_RELRO program header, mark as read-only
4022 all sections contained fully therein. This makes relro
4023 shared library sections appear as they will at run-time. */
4024 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4025 while (--phdr >= elf_tdata (abfd)->phdr)
4026 if (phdr->p_type == PT_GNU_RELRO)
4027 {
4028 for (s = abfd->sections; s != NULL; s = s->next)
4029 if ((s->flags & SEC_ALLOC) != 0
4030 && s->vma >= phdr->p_vaddr
4031 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4032 s->flags |= SEC_READONLY;
4033 break;
4034 }
4035
4036 /* We do not want to include any of the sections in a dynamic
4037 object in the output file. We hack by simply clobbering the
4038 list of sections in the BFD. This could be handled more
4039 cleanly by, say, a new section flag; the existing
4040 SEC_NEVER_LOAD flag is not the one we want, because that one
4041 still implies that the section takes up space in the output
4042 file. */
4043 bfd_section_list_clear (abfd);
4044
4045 /* Find the name to use in a DT_NEEDED entry that refers to this
4046 object. If the object has a DT_SONAME entry, we use it.
4047 Otherwise, if the generic linker stuck something in
4048 elf_dt_name, we use that. Otherwise, we just use the file
4049 name. */
4050 if (soname == NULL || *soname == '\0')
4051 {
4052 soname = elf_dt_name (abfd);
4053 if (soname == NULL || *soname == '\0')
4054 soname = bfd_get_filename (abfd);
4055 }
4056
4057 /* Save the SONAME because sometimes the linker emulation code
4058 will need to know it. */
4059 elf_dt_name (abfd) = soname;
4060
4061 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4062 if (ret < 0)
4063 goto error_return;
4064
4065 /* If we have already included this dynamic object in the
4066 link, just ignore it. There is no reason to include a
4067 particular dynamic object more than once. */
4068 if (ret > 0)
4069 return TRUE;
4070
4071 /* Save the DT_AUDIT entry for the linker emulation code. */
4072 elf_dt_audit (abfd) = audit;
4073 }
4074
4075 /* If this is a dynamic object, we always link against the .dynsym
4076 symbol table, not the .symtab symbol table. The dynamic linker
4077 will only see the .dynsym symbol table, so there is no reason to
4078 look at .symtab for a dynamic object. */
4079
4080 if (! dynamic || elf_dynsymtab (abfd) == 0)
4081 hdr = &elf_tdata (abfd)->symtab_hdr;
4082 else
4083 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4084
4085 symcount = hdr->sh_size / bed->s->sizeof_sym;
4086
4087 /* The sh_info field of the symtab header tells us where the
4088 external symbols start. We don't care about the local symbols at
4089 this point. */
4090 if (elf_bad_symtab (abfd))
4091 {
4092 extsymcount = symcount;
4093 extsymoff = 0;
4094 }
4095 else
4096 {
4097 extsymcount = symcount - hdr->sh_info;
4098 extsymoff = hdr->sh_info;
4099 }
4100
4101 sym_hash = elf_sym_hashes (abfd);
4102 if (extsymcount != 0)
4103 {
4104 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4105 NULL, NULL, NULL);
4106 if (isymbuf == NULL)
4107 goto error_return;
4108
4109 if (sym_hash == NULL)
4110 {
4111 /* We store a pointer to the hash table entry for each
4112 external symbol. */
4113 amt = extsymcount;
4114 amt *= sizeof (struct elf_link_hash_entry *);
4115 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4116 if (sym_hash == NULL)
4117 goto error_free_sym;
4118 elf_sym_hashes (abfd) = sym_hash;
4119 }
4120 }
4121
4122 if (dynamic)
4123 {
4124 /* Read in any version definitions. */
4125 if (!_bfd_elf_slurp_version_tables (abfd,
4126 info->default_imported_symver))
4127 goto error_free_sym;
4128
4129 /* Read in the symbol versions, but don't bother to convert them
4130 to internal format. */
4131 if (elf_dynversym (abfd) != 0)
4132 {
4133 Elf_Internal_Shdr *versymhdr;
4134
4135 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4136 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4137 if (extversym == NULL)
4138 goto error_free_sym;
4139 amt = versymhdr->sh_size;
4140 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4141 || bfd_bread (extversym, amt, abfd) != amt)
4142 goto error_free_vers;
4143 }
4144 }
4145
4146 /* If we are loading an as-needed shared lib, save the symbol table
4147 state before we start adding symbols. If the lib turns out
4148 to be unneeded, restore the state. */
4149 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4150 {
4151 unsigned int i;
4152 size_t entsize;
4153
4154 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4155 {
4156 struct bfd_hash_entry *p;
4157 struct elf_link_hash_entry *h;
4158
4159 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4160 {
4161 h = (struct elf_link_hash_entry *) p;
4162 entsize += htab->root.table.entsize;
4163 if (h->root.type == bfd_link_hash_warning)
4164 entsize += htab->root.table.entsize;
4165 }
4166 }
4167
4168 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4169 old_tab = bfd_malloc (tabsize + entsize);
4170 if (old_tab == NULL)
4171 goto error_free_vers;
4172
4173 /* Remember the current objalloc pointer, so that all mem for
4174 symbols added can later be reclaimed. */
4175 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4176 if (alloc_mark == NULL)
4177 goto error_free_vers;
4178
4179 /* Make a special call to the linker "notice" function to
4180 tell it that we are about to handle an as-needed lib. */
4181 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4182 goto error_free_vers;
4183
4184 /* Clone the symbol table. Remember some pointers into the
4185 symbol table, and dynamic symbol count. */
4186 old_ent = (char *) old_tab + tabsize;
4187 memcpy (old_tab, htab->root.table.table, tabsize);
4188 old_undefs = htab->root.undefs;
4189 old_undefs_tail = htab->root.undefs_tail;
4190 old_table = htab->root.table.table;
4191 old_size = htab->root.table.size;
4192 old_count = htab->root.table.count;
4193 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4194 if (old_strtab == NULL)
4195 goto error_free_vers;
4196
4197 for (i = 0; i < htab->root.table.size; i++)
4198 {
4199 struct bfd_hash_entry *p;
4200 struct elf_link_hash_entry *h;
4201
4202 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4203 {
4204 memcpy (old_ent, p, htab->root.table.entsize);
4205 old_ent = (char *) old_ent + htab->root.table.entsize;
4206 h = (struct elf_link_hash_entry *) p;
4207 if (h->root.type == bfd_link_hash_warning)
4208 {
4209 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4210 old_ent = (char *) old_ent + htab->root.table.entsize;
4211 }
4212 }
4213 }
4214 }
4215
4216 weaks = NULL;
4217 ever = extversym != NULL ? extversym + extsymoff : NULL;
4218 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4219 isym < isymend;
4220 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4221 {
4222 int bind;
4223 bfd_vma value;
4224 asection *sec, *new_sec;
4225 flagword flags;
4226 const char *name;
4227 struct elf_link_hash_entry *h;
4228 struct elf_link_hash_entry *hi;
4229 bfd_boolean definition;
4230 bfd_boolean size_change_ok;
4231 bfd_boolean type_change_ok;
4232 bfd_boolean new_weakdef;
4233 bfd_boolean new_weak;
4234 bfd_boolean old_weak;
4235 bfd_boolean override;
4236 bfd_boolean common;
4237 bfd_boolean discarded;
4238 unsigned int old_alignment;
4239 bfd *old_bfd;
4240 bfd_boolean matched;
4241
4242 override = FALSE;
4243
4244 flags = BSF_NO_FLAGS;
4245 sec = NULL;
4246 value = isym->st_value;
4247 common = bed->common_definition (isym);
4248 discarded = FALSE;
4249
4250 bind = ELF_ST_BIND (isym->st_info);
4251 switch (bind)
4252 {
4253 case STB_LOCAL:
4254 /* This should be impossible, since ELF requires that all
4255 global symbols follow all local symbols, and that sh_info
4256 point to the first global symbol. Unfortunately, Irix 5
4257 screws this up. */
4258 continue;
4259
4260 case STB_GLOBAL:
4261 if (isym->st_shndx != SHN_UNDEF && !common)
4262 flags = BSF_GLOBAL;
4263 break;
4264
4265 case STB_WEAK:
4266 flags = BSF_WEAK;
4267 break;
4268
4269 case STB_GNU_UNIQUE:
4270 flags = BSF_GNU_UNIQUE;
4271 break;
4272
4273 default:
4274 /* Leave it up to the processor backend. */
4275 break;
4276 }
4277
4278 if (isym->st_shndx == SHN_UNDEF)
4279 sec = bfd_und_section_ptr;
4280 else if (isym->st_shndx == SHN_ABS)
4281 sec = bfd_abs_section_ptr;
4282 else if (isym->st_shndx == SHN_COMMON)
4283 {
4284 sec = bfd_com_section_ptr;
4285 /* What ELF calls the size we call the value. What ELF
4286 calls the value we call the alignment. */
4287 value = isym->st_size;
4288 }
4289 else
4290 {
4291 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4292 if (sec == NULL)
4293 sec = bfd_abs_section_ptr;
4294 else if (discarded_section (sec))
4295 {
4296 /* Symbols from discarded section are undefined. We keep
4297 its visibility. */
4298 sec = bfd_und_section_ptr;
4299 discarded = TRUE;
4300 isym->st_shndx = SHN_UNDEF;
4301 }
4302 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4303 value -= sec->vma;
4304 }
4305
4306 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4307 isym->st_name);
4308 if (name == NULL)
4309 goto error_free_vers;
4310
4311 if (isym->st_shndx == SHN_COMMON
4312 && (abfd->flags & BFD_PLUGIN) != 0)
4313 {
4314 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4315
4316 if (xc == NULL)
4317 {
4318 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4319 | SEC_EXCLUDE);
4320 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4321 if (xc == NULL)
4322 goto error_free_vers;
4323 }
4324 sec = xc;
4325 }
4326 else if (isym->st_shndx == SHN_COMMON
4327 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4328 && !bfd_link_relocatable (info))
4329 {
4330 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4331
4332 if (tcomm == NULL)
4333 {
4334 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4335 | SEC_LINKER_CREATED);
4336 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4337 if (tcomm == NULL)
4338 goto error_free_vers;
4339 }
4340 sec = tcomm;
4341 }
4342 else if (bed->elf_add_symbol_hook)
4343 {
4344 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4345 &sec, &value))
4346 goto error_free_vers;
4347
4348 /* The hook function sets the name to NULL if this symbol
4349 should be skipped for some reason. */
4350 if (name == NULL)
4351 continue;
4352 }
4353
4354 /* Sanity check that all possibilities were handled. */
4355 if (sec == NULL)
4356 {
4357 bfd_set_error (bfd_error_bad_value);
4358 goto error_free_vers;
4359 }
4360
4361 /* Silently discard TLS symbols from --just-syms. There's
4362 no way to combine a static TLS block with a new TLS block
4363 for this executable. */
4364 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4365 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4366 continue;
4367
4368 if (bfd_is_und_section (sec)
4369 || bfd_is_com_section (sec))
4370 definition = FALSE;
4371 else
4372 definition = TRUE;
4373
4374 size_change_ok = FALSE;
4375 type_change_ok = bed->type_change_ok;
4376 old_weak = FALSE;
4377 matched = FALSE;
4378 old_alignment = 0;
4379 old_bfd = NULL;
4380 new_sec = sec;
4381
4382 if (is_elf_hash_table (htab))
4383 {
4384 Elf_Internal_Versym iver;
4385 unsigned int vernum = 0;
4386 bfd_boolean skip;
4387
4388 if (ever == NULL)
4389 {
4390 if (info->default_imported_symver)
4391 /* Use the default symbol version created earlier. */
4392 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4393 else
4394 iver.vs_vers = 0;
4395 }
4396 else
4397 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4398
4399 vernum = iver.vs_vers & VERSYM_VERSION;
4400
4401 /* If this is a hidden symbol, or if it is not version
4402 1, we append the version name to the symbol name.
4403 However, we do not modify a non-hidden absolute symbol
4404 if it is not a function, because it might be the version
4405 symbol itself. FIXME: What if it isn't? */
4406 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4407 || (vernum > 1
4408 && (!bfd_is_abs_section (sec)
4409 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4410 {
4411 const char *verstr;
4412 size_t namelen, verlen, newlen;
4413 char *newname, *p;
4414
4415 if (isym->st_shndx != SHN_UNDEF)
4416 {
4417 if (vernum > elf_tdata (abfd)->cverdefs)
4418 verstr = NULL;
4419 else if (vernum > 1)
4420 verstr =
4421 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4422 else
4423 verstr = "";
4424
4425 if (verstr == NULL)
4426 {
4427 _bfd_error_handler
4428 /* xgettext:c-format */
4429 (_("%B: %s: invalid version %u (max %d)"),
4430 abfd, name, vernum,
4431 elf_tdata (abfd)->cverdefs);
4432 bfd_set_error (bfd_error_bad_value);
4433 goto error_free_vers;
4434 }
4435 }
4436 else
4437 {
4438 /* We cannot simply test for the number of
4439 entries in the VERNEED section since the
4440 numbers for the needed versions do not start
4441 at 0. */
4442 Elf_Internal_Verneed *t;
4443
4444 verstr = NULL;
4445 for (t = elf_tdata (abfd)->verref;
4446 t != NULL;
4447 t = t->vn_nextref)
4448 {
4449 Elf_Internal_Vernaux *a;
4450
4451 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4452 {
4453 if (a->vna_other == vernum)
4454 {
4455 verstr = a->vna_nodename;
4456 break;
4457 }
4458 }
4459 if (a != NULL)
4460 break;
4461 }
4462 if (verstr == NULL)
4463 {
4464 _bfd_error_handler
4465 /* xgettext:c-format */
4466 (_("%B: %s: invalid needed version %d"),
4467 abfd, name, vernum);
4468 bfd_set_error (bfd_error_bad_value);
4469 goto error_free_vers;
4470 }
4471 }
4472
4473 namelen = strlen (name);
4474 verlen = strlen (verstr);
4475 newlen = namelen + verlen + 2;
4476 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4477 && isym->st_shndx != SHN_UNDEF)
4478 ++newlen;
4479
4480 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4481 if (newname == NULL)
4482 goto error_free_vers;
4483 memcpy (newname, name, namelen);
4484 p = newname + namelen;
4485 *p++ = ELF_VER_CHR;
4486 /* If this is a defined non-hidden version symbol,
4487 we add another @ to the name. This indicates the
4488 default version of the symbol. */
4489 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4490 && isym->st_shndx != SHN_UNDEF)
4491 *p++ = ELF_VER_CHR;
4492 memcpy (p, verstr, verlen + 1);
4493
4494 name = newname;
4495 }
4496
4497 /* If this symbol has default visibility and the user has
4498 requested we not re-export it, then mark it as hidden. */
4499 if (!bfd_is_und_section (sec)
4500 && !dynamic
4501 && abfd->no_export
4502 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4503 isym->st_other = (STV_HIDDEN
4504 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4505
4506 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4507 sym_hash, &old_bfd, &old_weak,
4508 &old_alignment, &skip, &override,
4509 &type_change_ok, &size_change_ok,
4510 &matched))
4511 goto error_free_vers;
4512
4513 if (skip)
4514 continue;
4515
4516 /* Override a definition only if the new symbol matches the
4517 existing one. */
4518 if (override && matched)
4519 definition = FALSE;
4520
4521 h = *sym_hash;
4522 while (h->root.type == bfd_link_hash_indirect
4523 || h->root.type == bfd_link_hash_warning)
4524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4525
4526 if (elf_tdata (abfd)->verdef != NULL
4527 && vernum > 1
4528 && definition)
4529 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4530 }
4531
4532 if (! (_bfd_generic_link_add_one_symbol
4533 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4534 (struct bfd_link_hash_entry **) sym_hash)))
4535 goto error_free_vers;
4536
4537 if ((flags & BSF_GNU_UNIQUE)
4538 && (abfd->flags & DYNAMIC) == 0
4539 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4540 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4541
4542 h = *sym_hash;
4543 /* We need to make sure that indirect symbol dynamic flags are
4544 updated. */
4545 hi = h;
4546 while (h->root.type == bfd_link_hash_indirect
4547 || h->root.type == bfd_link_hash_warning)
4548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4549
4550 /* Setting the index to -3 tells elf_link_output_extsym that
4551 this symbol is defined in a discarded section. */
4552 if (discarded)
4553 h->indx = -3;
4554
4555 *sym_hash = h;
4556
4557 new_weak = (flags & BSF_WEAK) != 0;
4558 new_weakdef = FALSE;
4559 if (dynamic
4560 && definition
4561 && new_weak
4562 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4563 && is_elf_hash_table (htab)
4564 && h->u.weakdef == NULL)
4565 {
4566 /* Keep a list of all weak defined non function symbols from
4567 a dynamic object, using the weakdef field. Later in this
4568 function we will set the weakdef field to the correct
4569 value. We only put non-function symbols from dynamic
4570 objects on this list, because that happens to be the only
4571 time we need to know the normal symbol corresponding to a
4572 weak symbol, and the information is time consuming to
4573 figure out. If the weakdef field is not already NULL,
4574 then this symbol was already defined by some previous
4575 dynamic object, and we will be using that previous
4576 definition anyhow. */
4577
4578 h->u.weakdef = weaks;
4579 weaks = h;
4580 new_weakdef = TRUE;
4581 }
4582
4583 /* Set the alignment of a common symbol. */
4584 if ((common || bfd_is_com_section (sec))
4585 && h->root.type == bfd_link_hash_common)
4586 {
4587 unsigned int align;
4588
4589 if (common)
4590 align = bfd_log2 (isym->st_value);
4591 else
4592 {
4593 /* The new symbol is a common symbol in a shared object.
4594 We need to get the alignment from the section. */
4595 align = new_sec->alignment_power;
4596 }
4597 if (align > old_alignment)
4598 h->root.u.c.p->alignment_power = align;
4599 else
4600 h->root.u.c.p->alignment_power = old_alignment;
4601 }
4602
4603 if (is_elf_hash_table (htab))
4604 {
4605 /* Set a flag in the hash table entry indicating the type of
4606 reference or definition we just found. A dynamic symbol
4607 is one which is referenced or defined by both a regular
4608 object and a shared object. */
4609 bfd_boolean dynsym = FALSE;
4610
4611 /* Plugin symbols aren't normal. Don't set def_regular or
4612 ref_regular for them, or make them dynamic. */
4613 if ((abfd->flags & BFD_PLUGIN) != 0)
4614 ;
4615 else if (! dynamic)
4616 {
4617 if (! definition)
4618 {
4619 h->ref_regular = 1;
4620 if (bind != STB_WEAK)
4621 h->ref_regular_nonweak = 1;
4622 }
4623 else
4624 {
4625 h->def_regular = 1;
4626 if (h->def_dynamic)
4627 {
4628 h->def_dynamic = 0;
4629 h->ref_dynamic = 1;
4630 }
4631 }
4632
4633 /* If the indirect symbol has been forced local, don't
4634 make the real symbol dynamic. */
4635 if ((h == hi || !hi->forced_local)
4636 && (bfd_link_dll (info)
4637 || h->def_dynamic
4638 || h->ref_dynamic))
4639 dynsym = TRUE;
4640 }
4641 else
4642 {
4643 if (! definition)
4644 {
4645 h->ref_dynamic = 1;
4646 hi->ref_dynamic = 1;
4647 }
4648 else
4649 {
4650 h->def_dynamic = 1;
4651 hi->def_dynamic = 1;
4652 }
4653
4654 /* If the indirect symbol has been forced local, don't
4655 make the real symbol dynamic. */
4656 if ((h == hi || !hi->forced_local)
4657 && (h->def_regular
4658 || h->ref_regular
4659 || (h->u.weakdef != NULL
4660 && ! new_weakdef
4661 && h->u.weakdef->dynindx != -1)))
4662 dynsym = TRUE;
4663 }
4664
4665 /* Check to see if we need to add an indirect symbol for
4666 the default name. */
4667 if (definition
4668 || (!override && h->root.type == bfd_link_hash_common))
4669 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4670 sec, value, &old_bfd, &dynsym))
4671 goto error_free_vers;
4672
4673 /* Check the alignment when a common symbol is involved. This
4674 can change when a common symbol is overridden by a normal
4675 definition or a common symbol is ignored due to the old
4676 normal definition. We need to make sure the maximum
4677 alignment is maintained. */
4678 if ((old_alignment || common)
4679 && h->root.type != bfd_link_hash_common)
4680 {
4681 unsigned int common_align;
4682 unsigned int normal_align;
4683 unsigned int symbol_align;
4684 bfd *normal_bfd;
4685 bfd *common_bfd;
4686
4687 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4688 || h->root.type == bfd_link_hash_defweak);
4689
4690 symbol_align = ffs (h->root.u.def.value) - 1;
4691 if (h->root.u.def.section->owner != NULL
4692 && (h->root.u.def.section->owner->flags
4693 & (DYNAMIC | BFD_PLUGIN)) == 0)
4694 {
4695 normal_align = h->root.u.def.section->alignment_power;
4696 if (normal_align > symbol_align)
4697 normal_align = symbol_align;
4698 }
4699 else
4700 normal_align = symbol_align;
4701
4702 if (old_alignment)
4703 {
4704 common_align = old_alignment;
4705 common_bfd = old_bfd;
4706 normal_bfd = abfd;
4707 }
4708 else
4709 {
4710 common_align = bfd_log2 (isym->st_value);
4711 common_bfd = abfd;
4712 normal_bfd = old_bfd;
4713 }
4714
4715 if (normal_align < common_align)
4716 {
4717 /* PR binutils/2735 */
4718 if (normal_bfd == NULL)
4719 _bfd_error_handler
4720 /* xgettext:c-format */
4721 (_("Warning: alignment %u of common symbol `%s' in %B is"
4722 " greater than the alignment (%u) of its section %A"),
4723 1 << common_align, name, common_bfd,
4724 1 << normal_align, h->root.u.def.section);
4725 else
4726 _bfd_error_handler
4727 /* xgettext:c-format */
4728 (_("Warning: alignment %u of symbol `%s' in %B"
4729 " is smaller than %u in %B"),
4730 1 << normal_align, name, normal_bfd,
4731 1 << common_align, common_bfd);
4732 }
4733 }
4734
4735 /* Remember the symbol size if it isn't undefined. */
4736 if (isym->st_size != 0
4737 && isym->st_shndx != SHN_UNDEF
4738 && (definition || h->size == 0))
4739 {
4740 if (h->size != 0
4741 && h->size != isym->st_size
4742 && ! size_change_ok)
4743 _bfd_error_handler
4744 /* xgettext:c-format */
4745 (_("Warning: size of symbol `%s' changed"
4746 " from %lu in %B to %lu in %B"),
4747 name, (unsigned long) h->size, old_bfd,
4748 (unsigned long) isym->st_size, abfd);
4749
4750 h->size = isym->st_size;
4751 }
4752
4753 /* If this is a common symbol, then we always want H->SIZE
4754 to be the size of the common symbol. The code just above
4755 won't fix the size if a common symbol becomes larger. We
4756 don't warn about a size change here, because that is
4757 covered by --warn-common. Allow changes between different
4758 function types. */
4759 if (h->root.type == bfd_link_hash_common)
4760 h->size = h->root.u.c.size;
4761
4762 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4763 && ((definition && !new_weak)
4764 || (old_weak && h->root.type == bfd_link_hash_common)
4765 || h->type == STT_NOTYPE))
4766 {
4767 unsigned int type = ELF_ST_TYPE (isym->st_info);
4768
4769 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4770 symbol. */
4771 if (type == STT_GNU_IFUNC
4772 && (abfd->flags & DYNAMIC) != 0)
4773 type = STT_FUNC;
4774
4775 if (h->type != type)
4776 {
4777 if (h->type != STT_NOTYPE && ! type_change_ok)
4778 /* xgettext:c-format */
4779 _bfd_error_handler
4780 (_("Warning: type of symbol `%s' changed"
4781 " from %d to %d in %B"),
4782 name, h->type, type, abfd);
4783
4784 h->type = type;
4785 }
4786 }
4787
4788 /* Merge st_other field. */
4789 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4790
4791 /* We don't want to make debug symbol dynamic. */
4792 if (definition
4793 && (sec->flags & SEC_DEBUGGING)
4794 && !bfd_link_relocatable (info))
4795 dynsym = FALSE;
4796
4797 /* Nor should we make plugin symbols dynamic. */
4798 if ((abfd->flags & BFD_PLUGIN) != 0)
4799 dynsym = FALSE;
4800
4801 if (definition)
4802 {
4803 h->target_internal = isym->st_target_internal;
4804 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4805 }
4806
4807 if (definition && !dynamic)
4808 {
4809 char *p = strchr (name, ELF_VER_CHR);
4810 if (p != NULL && p[1] != ELF_VER_CHR)
4811 {
4812 /* Queue non-default versions so that .symver x, x@FOO
4813 aliases can be checked. */
4814 if (!nondeflt_vers)
4815 {
4816 amt = ((isymend - isym + 1)
4817 * sizeof (struct elf_link_hash_entry *));
4818 nondeflt_vers
4819 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4820 if (!nondeflt_vers)
4821 goto error_free_vers;
4822 }
4823 nondeflt_vers[nondeflt_vers_cnt++] = h;
4824 }
4825 }
4826
4827 if (dynsym && h->dynindx == -1)
4828 {
4829 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4830 goto error_free_vers;
4831 if (h->u.weakdef != NULL
4832 && ! new_weakdef
4833 && h->u.weakdef->dynindx == -1)
4834 {
4835 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4836 goto error_free_vers;
4837 }
4838 }
4839 else if (h->dynindx != -1)
4840 /* If the symbol already has a dynamic index, but
4841 visibility says it should not be visible, turn it into
4842 a local symbol. */
4843 switch (ELF_ST_VISIBILITY (h->other))
4844 {
4845 case STV_INTERNAL:
4846 case STV_HIDDEN:
4847 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4848 dynsym = FALSE;
4849 break;
4850 }
4851
4852 /* Don't add DT_NEEDED for references from the dummy bfd nor
4853 for unmatched symbol. */
4854 if (!add_needed
4855 && matched
4856 && definition
4857 && ((dynsym
4858 && h->ref_regular_nonweak
4859 && (old_bfd == NULL
4860 || (old_bfd->flags & BFD_PLUGIN) == 0))
4861 || (h->ref_dynamic_nonweak
4862 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4863 && !on_needed_list (elf_dt_name (abfd),
4864 htab->needed, NULL))))
4865 {
4866 int ret;
4867 const char *soname = elf_dt_name (abfd);
4868
4869 info->callbacks->minfo ("%!", soname, old_bfd,
4870 h->root.root.string);
4871
4872 /* A symbol from a library loaded via DT_NEEDED of some
4873 other library is referenced by a regular object.
4874 Add a DT_NEEDED entry for it. Issue an error if
4875 --no-add-needed is used and the reference was not
4876 a weak one. */
4877 if (old_bfd != NULL
4878 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4879 {
4880 _bfd_error_handler
4881 /* xgettext:c-format */
4882 (_("%B: undefined reference to symbol '%s'"),
4883 old_bfd, name);
4884 bfd_set_error (bfd_error_missing_dso);
4885 goto error_free_vers;
4886 }
4887
4888 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4889 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4890
4891 add_needed = TRUE;
4892 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4893 if (ret < 0)
4894 goto error_free_vers;
4895
4896 BFD_ASSERT (ret == 0);
4897 }
4898 }
4899 }
4900
4901 if (extversym != NULL)
4902 {
4903 free (extversym);
4904 extversym = NULL;
4905 }
4906
4907 if (isymbuf != NULL)
4908 {
4909 free (isymbuf);
4910 isymbuf = NULL;
4911 }
4912
4913 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4914 {
4915 unsigned int i;
4916
4917 /* Restore the symbol table. */
4918 old_ent = (char *) old_tab + tabsize;
4919 memset (elf_sym_hashes (abfd), 0,
4920 extsymcount * sizeof (struct elf_link_hash_entry *));
4921 htab->root.table.table = old_table;
4922 htab->root.table.size = old_size;
4923 htab->root.table.count = old_count;
4924 memcpy (htab->root.table.table, old_tab, tabsize);
4925 htab->root.undefs = old_undefs;
4926 htab->root.undefs_tail = old_undefs_tail;
4927 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4928 free (old_strtab);
4929 old_strtab = NULL;
4930 for (i = 0; i < htab->root.table.size; i++)
4931 {
4932 struct bfd_hash_entry *p;
4933 struct elf_link_hash_entry *h;
4934 bfd_size_type size;
4935 unsigned int alignment_power;
4936 unsigned int dynamic_ref_after_ir_def;
4937
4938 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4939 {
4940 h = (struct elf_link_hash_entry *) p;
4941 if (h->root.type == bfd_link_hash_warning)
4942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4943
4944 /* Preserve the maximum alignment and size for common
4945 symbols even if this dynamic lib isn't on DT_NEEDED
4946 since it can still be loaded at run time by another
4947 dynamic lib. */
4948 if (h->root.type == bfd_link_hash_common)
4949 {
4950 size = h->root.u.c.size;
4951 alignment_power = h->root.u.c.p->alignment_power;
4952 }
4953 else
4954 {
4955 size = 0;
4956 alignment_power = 0;
4957 }
4958 /* Preserve dynamic_ref_after_ir_def so that this symbol
4959 will be exported when the dynamic lib becomes needed
4960 in the second pass. */
4961 dynamic_ref_after_ir_def = h->root.dynamic_ref_after_ir_def;
4962 memcpy (p, old_ent, htab->root.table.entsize);
4963 old_ent = (char *) old_ent + htab->root.table.entsize;
4964 h = (struct elf_link_hash_entry *) p;
4965 if (h->root.type == bfd_link_hash_warning)
4966 {
4967 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4968 old_ent = (char *) old_ent + htab->root.table.entsize;
4969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4970 }
4971 if (h->root.type == bfd_link_hash_common)
4972 {
4973 if (size > h->root.u.c.size)
4974 h->root.u.c.size = size;
4975 if (alignment_power > h->root.u.c.p->alignment_power)
4976 h->root.u.c.p->alignment_power = alignment_power;
4977 }
4978 h->root.dynamic_ref_after_ir_def = dynamic_ref_after_ir_def;
4979 }
4980 }
4981
4982 /* Make a special call to the linker "notice" function to
4983 tell it that symbols added for crefs may need to be removed. */
4984 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4985 goto error_free_vers;
4986
4987 free (old_tab);
4988 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4989 alloc_mark);
4990 if (nondeflt_vers != NULL)
4991 free (nondeflt_vers);
4992 return TRUE;
4993 }
4994
4995 if (old_tab != NULL)
4996 {
4997 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4998 goto error_free_vers;
4999 free (old_tab);
5000 old_tab = NULL;
5001 }
5002
5003 /* Now that all the symbols from this input file are created, if
5004 not performing a relocatable link, handle .symver foo, foo@BAR
5005 such that any relocs against foo become foo@BAR. */
5006 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5007 {
5008 size_t cnt, symidx;
5009
5010 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5011 {
5012 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5013 char *shortname, *p;
5014
5015 p = strchr (h->root.root.string, ELF_VER_CHR);
5016 if (p == NULL
5017 || (h->root.type != bfd_link_hash_defined
5018 && h->root.type != bfd_link_hash_defweak))
5019 continue;
5020
5021 amt = p - h->root.root.string;
5022 shortname = (char *) bfd_malloc (amt + 1);
5023 if (!shortname)
5024 goto error_free_vers;
5025 memcpy (shortname, h->root.root.string, amt);
5026 shortname[amt] = '\0';
5027
5028 hi = (struct elf_link_hash_entry *)
5029 bfd_link_hash_lookup (&htab->root, shortname,
5030 FALSE, FALSE, FALSE);
5031 if (hi != NULL
5032 && hi->root.type == h->root.type
5033 && hi->root.u.def.value == h->root.u.def.value
5034 && hi->root.u.def.section == h->root.u.def.section)
5035 {
5036 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5037 hi->root.type = bfd_link_hash_indirect;
5038 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5039 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5040 sym_hash = elf_sym_hashes (abfd);
5041 if (sym_hash)
5042 for (symidx = 0; symidx < extsymcount; ++symidx)
5043 if (sym_hash[symidx] == hi)
5044 {
5045 sym_hash[symidx] = h;
5046 break;
5047 }
5048 }
5049 free (shortname);
5050 }
5051 free (nondeflt_vers);
5052 nondeflt_vers = NULL;
5053 }
5054
5055 /* Now set the weakdefs field correctly for all the weak defined
5056 symbols we found. The only way to do this is to search all the
5057 symbols. Since we only need the information for non functions in
5058 dynamic objects, that's the only time we actually put anything on
5059 the list WEAKS. We need this information so that if a regular
5060 object refers to a symbol defined weakly in a dynamic object, the
5061 real symbol in the dynamic object is also put in the dynamic
5062 symbols; we also must arrange for both symbols to point to the
5063 same memory location. We could handle the general case of symbol
5064 aliasing, but a general symbol alias can only be generated in
5065 assembler code, handling it correctly would be very time
5066 consuming, and other ELF linkers don't handle general aliasing
5067 either. */
5068 if (weaks != NULL)
5069 {
5070 struct elf_link_hash_entry **hpp;
5071 struct elf_link_hash_entry **hppend;
5072 struct elf_link_hash_entry **sorted_sym_hash;
5073 struct elf_link_hash_entry *h;
5074 size_t sym_count;
5075
5076 /* Since we have to search the whole symbol list for each weak
5077 defined symbol, search time for N weak defined symbols will be
5078 O(N^2). Binary search will cut it down to O(NlogN). */
5079 amt = extsymcount;
5080 amt *= sizeof (struct elf_link_hash_entry *);
5081 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5082 if (sorted_sym_hash == NULL)
5083 goto error_return;
5084 sym_hash = sorted_sym_hash;
5085 hpp = elf_sym_hashes (abfd);
5086 hppend = hpp + extsymcount;
5087 sym_count = 0;
5088 for (; hpp < hppend; hpp++)
5089 {
5090 h = *hpp;
5091 if (h != NULL
5092 && h->root.type == bfd_link_hash_defined
5093 && !bed->is_function_type (h->type))
5094 {
5095 *sym_hash = h;
5096 sym_hash++;
5097 sym_count++;
5098 }
5099 }
5100
5101 qsort (sorted_sym_hash, sym_count,
5102 sizeof (struct elf_link_hash_entry *),
5103 elf_sort_symbol);
5104
5105 while (weaks != NULL)
5106 {
5107 struct elf_link_hash_entry *hlook;
5108 asection *slook;
5109 bfd_vma vlook;
5110 size_t i, j, idx = 0;
5111
5112 hlook = weaks;
5113 weaks = hlook->u.weakdef;
5114 hlook->u.weakdef = NULL;
5115
5116 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5117 || hlook->root.type == bfd_link_hash_defweak
5118 || hlook->root.type == bfd_link_hash_common
5119 || hlook->root.type == bfd_link_hash_indirect);
5120 slook = hlook->root.u.def.section;
5121 vlook = hlook->root.u.def.value;
5122
5123 i = 0;
5124 j = sym_count;
5125 while (i != j)
5126 {
5127 bfd_signed_vma vdiff;
5128 idx = (i + j) / 2;
5129 h = sorted_sym_hash[idx];
5130 vdiff = vlook - h->root.u.def.value;
5131 if (vdiff < 0)
5132 j = idx;
5133 else if (vdiff > 0)
5134 i = idx + 1;
5135 else
5136 {
5137 int sdiff = slook->id - h->root.u.def.section->id;
5138 if (sdiff < 0)
5139 j = idx;
5140 else if (sdiff > 0)
5141 i = idx + 1;
5142 else
5143 break;
5144 }
5145 }
5146
5147 /* We didn't find a value/section match. */
5148 if (i == j)
5149 continue;
5150
5151 /* With multiple aliases, or when the weak symbol is already
5152 strongly defined, we have multiple matching symbols and
5153 the binary search above may land on any of them. Step
5154 one past the matching symbol(s). */
5155 while (++idx != j)
5156 {
5157 h = sorted_sym_hash[idx];
5158 if (h->root.u.def.section != slook
5159 || h->root.u.def.value != vlook)
5160 break;
5161 }
5162
5163 /* Now look back over the aliases. Since we sorted by size
5164 as well as value and section, we'll choose the one with
5165 the largest size. */
5166 while (idx-- != i)
5167 {
5168 h = sorted_sym_hash[idx];
5169
5170 /* Stop if value or section doesn't match. */
5171 if (h->root.u.def.section != slook
5172 || h->root.u.def.value != vlook)
5173 break;
5174 else if (h != hlook)
5175 {
5176 hlook->u.weakdef = h;
5177
5178 /* If the weak definition is in the list of dynamic
5179 symbols, make sure the real definition is put
5180 there as well. */
5181 if (hlook->dynindx != -1 && h->dynindx == -1)
5182 {
5183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5184 {
5185 err_free_sym_hash:
5186 free (sorted_sym_hash);
5187 goto error_return;
5188 }
5189 }
5190
5191 /* If the real definition is in the list of dynamic
5192 symbols, make sure the weak definition is put
5193 there as well. If we don't do this, then the
5194 dynamic loader might not merge the entries for the
5195 real definition and the weak definition. */
5196 if (h->dynindx != -1 && hlook->dynindx == -1)
5197 {
5198 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5199 goto err_free_sym_hash;
5200 }
5201 break;
5202 }
5203 }
5204 }
5205
5206 free (sorted_sym_hash);
5207 }
5208
5209 if (bed->check_directives
5210 && !(*bed->check_directives) (abfd, info))
5211 return FALSE;
5212
5213 if (!info->check_relocs_after_open_input
5214 && !_bfd_elf_link_check_relocs (abfd, info))
5215 return FALSE;
5216
5217 /* If this is a non-traditional link, try to optimize the handling
5218 of the .stab/.stabstr sections. */
5219 if (! dynamic
5220 && ! info->traditional_format
5221 && is_elf_hash_table (htab)
5222 && (info->strip != strip_all && info->strip != strip_debugger))
5223 {
5224 asection *stabstr;
5225
5226 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5227 if (stabstr != NULL)
5228 {
5229 bfd_size_type string_offset = 0;
5230 asection *stab;
5231
5232 for (stab = abfd->sections; stab; stab = stab->next)
5233 if (CONST_STRNEQ (stab->name, ".stab")
5234 && (!stab->name[5] ||
5235 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5236 && (stab->flags & SEC_MERGE) == 0
5237 && !bfd_is_abs_section (stab->output_section))
5238 {
5239 struct bfd_elf_section_data *secdata;
5240
5241 secdata = elf_section_data (stab);
5242 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5243 stabstr, &secdata->sec_info,
5244 &string_offset))
5245 goto error_return;
5246 if (secdata->sec_info)
5247 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5248 }
5249 }
5250 }
5251
5252 if (is_elf_hash_table (htab) && add_needed)
5253 {
5254 /* Add this bfd to the loaded list. */
5255 struct elf_link_loaded_list *n;
5256
5257 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5258 if (n == NULL)
5259 goto error_return;
5260 n->abfd = abfd;
5261 n->next = htab->loaded;
5262 htab->loaded = n;
5263 }
5264
5265 return TRUE;
5266
5267 error_free_vers:
5268 if (old_tab != NULL)
5269 free (old_tab);
5270 if (old_strtab != NULL)
5271 free (old_strtab);
5272 if (nondeflt_vers != NULL)
5273 free (nondeflt_vers);
5274 if (extversym != NULL)
5275 free (extversym);
5276 error_free_sym:
5277 if (isymbuf != NULL)
5278 free (isymbuf);
5279 error_return:
5280 return FALSE;
5281 }
5282
5283 /* Return the linker hash table entry of a symbol that might be
5284 satisfied by an archive symbol. Return -1 on error. */
5285
5286 struct elf_link_hash_entry *
5287 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5288 struct bfd_link_info *info,
5289 const char *name)
5290 {
5291 struct elf_link_hash_entry *h;
5292 char *p, *copy;
5293 size_t len, first;
5294
5295 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5296 if (h != NULL)
5297 return h;
5298
5299 /* If this is a default version (the name contains @@), look up the
5300 symbol again with only one `@' as well as without the version.
5301 The effect is that references to the symbol with and without the
5302 version will be matched by the default symbol in the archive. */
5303
5304 p = strchr (name, ELF_VER_CHR);
5305 if (p == NULL || p[1] != ELF_VER_CHR)
5306 return h;
5307
5308 /* First check with only one `@'. */
5309 len = strlen (name);
5310 copy = (char *) bfd_alloc (abfd, len);
5311 if (copy == NULL)
5312 return (struct elf_link_hash_entry *) 0 - 1;
5313
5314 first = p - name + 1;
5315 memcpy (copy, name, first);
5316 memcpy (copy + first, name + first + 1, len - first);
5317
5318 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5319 if (h == NULL)
5320 {
5321 /* We also need to check references to the symbol without the
5322 version. */
5323 copy[first - 1] = '\0';
5324 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5325 FALSE, FALSE, TRUE);
5326 }
5327
5328 bfd_release (abfd, copy);
5329 return h;
5330 }
5331
5332 /* Add symbols from an ELF archive file to the linker hash table. We
5333 don't use _bfd_generic_link_add_archive_symbols because we need to
5334 handle versioned symbols.
5335
5336 Fortunately, ELF archive handling is simpler than that done by
5337 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5338 oddities. In ELF, if we find a symbol in the archive map, and the
5339 symbol is currently undefined, we know that we must pull in that
5340 object file.
5341
5342 Unfortunately, we do have to make multiple passes over the symbol
5343 table until nothing further is resolved. */
5344
5345 static bfd_boolean
5346 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5347 {
5348 symindex c;
5349 unsigned char *included = NULL;
5350 carsym *symdefs;
5351 bfd_boolean loop;
5352 bfd_size_type amt;
5353 const struct elf_backend_data *bed;
5354 struct elf_link_hash_entry * (*archive_symbol_lookup)
5355 (bfd *, struct bfd_link_info *, const char *);
5356
5357 if (! bfd_has_map (abfd))
5358 {
5359 /* An empty archive is a special case. */
5360 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5361 return TRUE;
5362 bfd_set_error (bfd_error_no_armap);
5363 return FALSE;
5364 }
5365
5366 /* Keep track of all symbols we know to be already defined, and all
5367 files we know to be already included. This is to speed up the
5368 second and subsequent passes. */
5369 c = bfd_ardata (abfd)->symdef_count;
5370 if (c == 0)
5371 return TRUE;
5372 amt = c;
5373 amt *= sizeof (*included);
5374 included = (unsigned char *) bfd_zmalloc (amt);
5375 if (included == NULL)
5376 return FALSE;
5377
5378 symdefs = bfd_ardata (abfd)->symdefs;
5379 bed = get_elf_backend_data (abfd);
5380 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5381
5382 do
5383 {
5384 file_ptr last;
5385 symindex i;
5386 carsym *symdef;
5387 carsym *symdefend;
5388
5389 loop = FALSE;
5390 last = -1;
5391
5392 symdef = symdefs;
5393 symdefend = symdef + c;
5394 for (i = 0; symdef < symdefend; symdef++, i++)
5395 {
5396 struct elf_link_hash_entry *h;
5397 bfd *element;
5398 struct bfd_link_hash_entry *undefs_tail;
5399 symindex mark;
5400
5401 if (included[i])
5402 continue;
5403 if (symdef->file_offset == last)
5404 {
5405 included[i] = TRUE;
5406 continue;
5407 }
5408
5409 h = archive_symbol_lookup (abfd, info, symdef->name);
5410 if (h == (struct elf_link_hash_entry *) 0 - 1)
5411 goto error_return;
5412
5413 if (h == NULL)
5414 continue;
5415
5416 if (h->root.type == bfd_link_hash_common)
5417 {
5418 /* We currently have a common symbol. The archive map contains
5419 a reference to this symbol, so we may want to include it. We
5420 only want to include it however, if this archive element
5421 contains a definition of the symbol, not just another common
5422 declaration of it.
5423
5424 Unfortunately some archivers (including GNU ar) will put
5425 declarations of common symbols into their archive maps, as
5426 well as real definitions, so we cannot just go by the archive
5427 map alone. Instead we must read in the element's symbol
5428 table and check that to see what kind of symbol definition
5429 this is. */
5430 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5431 continue;
5432 }
5433 else if (h->root.type != bfd_link_hash_undefined)
5434 {
5435 if (h->root.type != bfd_link_hash_undefweak)
5436 /* Symbol must be defined. Don't check it again. */
5437 included[i] = TRUE;
5438 continue;
5439 }
5440
5441 /* We need to include this archive member. */
5442 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5443 if (element == NULL)
5444 goto error_return;
5445
5446 if (! bfd_check_format (element, bfd_object))
5447 goto error_return;
5448
5449 undefs_tail = info->hash->undefs_tail;
5450
5451 if (!(*info->callbacks
5452 ->add_archive_element) (info, element, symdef->name, &element))
5453 continue;
5454 if (!bfd_link_add_symbols (element, info))
5455 goto error_return;
5456
5457 /* If there are any new undefined symbols, we need to make
5458 another pass through the archive in order to see whether
5459 they can be defined. FIXME: This isn't perfect, because
5460 common symbols wind up on undefs_tail and because an
5461 undefined symbol which is defined later on in this pass
5462 does not require another pass. This isn't a bug, but it
5463 does make the code less efficient than it could be. */
5464 if (undefs_tail != info->hash->undefs_tail)
5465 loop = TRUE;
5466
5467 /* Look backward to mark all symbols from this object file
5468 which we have already seen in this pass. */
5469 mark = i;
5470 do
5471 {
5472 included[mark] = TRUE;
5473 if (mark == 0)
5474 break;
5475 --mark;
5476 }
5477 while (symdefs[mark].file_offset == symdef->file_offset);
5478
5479 /* We mark subsequent symbols from this object file as we go
5480 on through the loop. */
5481 last = symdef->file_offset;
5482 }
5483 }
5484 while (loop);
5485
5486 free (included);
5487
5488 return TRUE;
5489
5490 error_return:
5491 if (included != NULL)
5492 free (included);
5493 return FALSE;
5494 }
5495
5496 /* Given an ELF BFD, add symbols to the global hash table as
5497 appropriate. */
5498
5499 bfd_boolean
5500 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5501 {
5502 switch (bfd_get_format (abfd))
5503 {
5504 case bfd_object:
5505 return elf_link_add_object_symbols (abfd, info);
5506 case bfd_archive:
5507 return elf_link_add_archive_symbols (abfd, info);
5508 default:
5509 bfd_set_error (bfd_error_wrong_format);
5510 return FALSE;
5511 }
5512 }
5513 \f
5514 struct hash_codes_info
5515 {
5516 unsigned long *hashcodes;
5517 bfd_boolean error;
5518 };
5519
5520 /* This function will be called though elf_link_hash_traverse to store
5521 all hash value of the exported symbols in an array. */
5522
5523 static bfd_boolean
5524 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5525 {
5526 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5527 const char *name;
5528 unsigned long ha;
5529 char *alc = NULL;
5530
5531 /* Ignore indirect symbols. These are added by the versioning code. */
5532 if (h->dynindx == -1)
5533 return TRUE;
5534
5535 name = h->root.root.string;
5536 if (h->versioned >= versioned)
5537 {
5538 char *p = strchr (name, ELF_VER_CHR);
5539 if (p != NULL)
5540 {
5541 alc = (char *) bfd_malloc (p - name + 1);
5542 if (alc == NULL)
5543 {
5544 inf->error = TRUE;
5545 return FALSE;
5546 }
5547 memcpy (alc, name, p - name);
5548 alc[p - name] = '\0';
5549 name = alc;
5550 }
5551 }
5552
5553 /* Compute the hash value. */
5554 ha = bfd_elf_hash (name);
5555
5556 /* Store the found hash value in the array given as the argument. */
5557 *(inf->hashcodes)++ = ha;
5558
5559 /* And store it in the struct so that we can put it in the hash table
5560 later. */
5561 h->u.elf_hash_value = ha;
5562
5563 if (alc != NULL)
5564 free (alc);
5565
5566 return TRUE;
5567 }
5568
5569 struct collect_gnu_hash_codes
5570 {
5571 bfd *output_bfd;
5572 const struct elf_backend_data *bed;
5573 unsigned long int nsyms;
5574 unsigned long int maskbits;
5575 unsigned long int *hashcodes;
5576 unsigned long int *hashval;
5577 unsigned long int *indx;
5578 unsigned long int *counts;
5579 bfd_vma *bitmask;
5580 bfd_byte *contents;
5581 long int min_dynindx;
5582 unsigned long int bucketcount;
5583 unsigned long int symindx;
5584 long int local_indx;
5585 long int shift1, shift2;
5586 unsigned long int mask;
5587 bfd_boolean error;
5588 };
5589
5590 /* This function will be called though elf_link_hash_traverse to store
5591 all hash value of the exported symbols in an array. */
5592
5593 static bfd_boolean
5594 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5595 {
5596 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5597 const char *name;
5598 unsigned long ha;
5599 char *alc = NULL;
5600
5601 /* Ignore indirect symbols. These are added by the versioning code. */
5602 if (h->dynindx == -1)
5603 return TRUE;
5604
5605 /* Ignore also local symbols and undefined symbols. */
5606 if (! (*s->bed->elf_hash_symbol) (h))
5607 return TRUE;
5608
5609 name = h->root.root.string;
5610 if (h->versioned >= versioned)
5611 {
5612 char *p = strchr (name, ELF_VER_CHR);
5613 if (p != NULL)
5614 {
5615 alc = (char *) bfd_malloc (p - name + 1);
5616 if (alc == NULL)
5617 {
5618 s->error = TRUE;
5619 return FALSE;
5620 }
5621 memcpy (alc, name, p - name);
5622 alc[p - name] = '\0';
5623 name = alc;
5624 }
5625 }
5626
5627 /* Compute the hash value. */
5628 ha = bfd_elf_gnu_hash (name);
5629
5630 /* Store the found hash value in the array for compute_bucket_count,
5631 and also for .dynsym reordering purposes. */
5632 s->hashcodes[s->nsyms] = ha;
5633 s->hashval[h->dynindx] = ha;
5634 ++s->nsyms;
5635 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5636 s->min_dynindx = h->dynindx;
5637
5638 if (alc != NULL)
5639 free (alc);
5640
5641 return TRUE;
5642 }
5643
5644 /* This function will be called though elf_link_hash_traverse to do
5645 final dynaminc symbol renumbering. */
5646
5647 static bfd_boolean
5648 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5649 {
5650 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5651 unsigned long int bucket;
5652 unsigned long int val;
5653
5654 /* Ignore indirect symbols. */
5655 if (h->dynindx == -1)
5656 return TRUE;
5657
5658 /* Ignore also local symbols and undefined symbols. */
5659 if (! (*s->bed->elf_hash_symbol) (h))
5660 {
5661 if (h->dynindx >= s->min_dynindx)
5662 h->dynindx = s->local_indx++;
5663 return TRUE;
5664 }
5665
5666 bucket = s->hashval[h->dynindx] % s->bucketcount;
5667 val = (s->hashval[h->dynindx] >> s->shift1)
5668 & ((s->maskbits >> s->shift1) - 1);
5669 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5670 s->bitmask[val]
5671 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5672 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5673 if (s->counts[bucket] == 1)
5674 /* Last element terminates the chain. */
5675 val |= 1;
5676 bfd_put_32 (s->output_bfd, val,
5677 s->contents + (s->indx[bucket] - s->symindx) * 4);
5678 --s->counts[bucket];
5679 h->dynindx = s->indx[bucket]++;
5680 return TRUE;
5681 }
5682
5683 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5684
5685 bfd_boolean
5686 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5687 {
5688 return !(h->forced_local
5689 || h->root.type == bfd_link_hash_undefined
5690 || h->root.type == bfd_link_hash_undefweak
5691 || ((h->root.type == bfd_link_hash_defined
5692 || h->root.type == bfd_link_hash_defweak)
5693 && h->root.u.def.section->output_section == NULL));
5694 }
5695
5696 /* Array used to determine the number of hash table buckets to use
5697 based on the number of symbols there are. If there are fewer than
5698 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5699 fewer than 37 we use 17 buckets, and so forth. We never use more
5700 than 32771 buckets. */
5701
5702 static const size_t elf_buckets[] =
5703 {
5704 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5705 16411, 32771, 0
5706 };
5707
5708 /* Compute bucket count for hashing table. We do not use a static set
5709 of possible tables sizes anymore. Instead we determine for all
5710 possible reasonable sizes of the table the outcome (i.e., the
5711 number of collisions etc) and choose the best solution. The
5712 weighting functions are not too simple to allow the table to grow
5713 without bounds. Instead one of the weighting factors is the size.
5714 Therefore the result is always a good payoff between few collisions
5715 (= short chain lengths) and table size. */
5716 static size_t
5717 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5718 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5719 unsigned long int nsyms,
5720 int gnu_hash)
5721 {
5722 size_t best_size = 0;
5723 unsigned long int i;
5724
5725 /* We have a problem here. The following code to optimize the table
5726 size requires an integer type with more the 32 bits. If
5727 BFD_HOST_U_64_BIT is set we know about such a type. */
5728 #ifdef BFD_HOST_U_64_BIT
5729 if (info->optimize)
5730 {
5731 size_t minsize;
5732 size_t maxsize;
5733 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5734 bfd *dynobj = elf_hash_table (info)->dynobj;
5735 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5736 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5737 unsigned long int *counts;
5738 bfd_size_type amt;
5739 unsigned int no_improvement_count = 0;
5740
5741 /* Possible optimization parameters: if we have NSYMS symbols we say
5742 that the hashing table must at least have NSYMS/4 and at most
5743 2*NSYMS buckets. */
5744 minsize = nsyms / 4;
5745 if (minsize == 0)
5746 minsize = 1;
5747 best_size = maxsize = nsyms * 2;
5748 if (gnu_hash)
5749 {
5750 if (minsize < 2)
5751 minsize = 2;
5752 if ((best_size & 31) == 0)
5753 ++best_size;
5754 }
5755
5756 /* Create array where we count the collisions in. We must use bfd_malloc
5757 since the size could be large. */
5758 amt = maxsize;
5759 amt *= sizeof (unsigned long int);
5760 counts = (unsigned long int *) bfd_malloc (amt);
5761 if (counts == NULL)
5762 return 0;
5763
5764 /* Compute the "optimal" size for the hash table. The criteria is a
5765 minimal chain length. The minor criteria is (of course) the size
5766 of the table. */
5767 for (i = minsize; i < maxsize; ++i)
5768 {
5769 /* Walk through the array of hashcodes and count the collisions. */
5770 BFD_HOST_U_64_BIT max;
5771 unsigned long int j;
5772 unsigned long int fact;
5773
5774 if (gnu_hash && (i & 31) == 0)
5775 continue;
5776
5777 memset (counts, '\0', i * sizeof (unsigned long int));
5778
5779 /* Determine how often each hash bucket is used. */
5780 for (j = 0; j < nsyms; ++j)
5781 ++counts[hashcodes[j] % i];
5782
5783 /* For the weight function we need some information about the
5784 pagesize on the target. This is information need not be 100%
5785 accurate. Since this information is not available (so far) we
5786 define it here to a reasonable default value. If it is crucial
5787 to have a better value some day simply define this value. */
5788 # ifndef BFD_TARGET_PAGESIZE
5789 # define BFD_TARGET_PAGESIZE (4096)
5790 # endif
5791
5792 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5793 and the chains. */
5794 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5795
5796 # if 1
5797 /* Variant 1: optimize for short chains. We add the squares
5798 of all the chain lengths (which favors many small chain
5799 over a few long chains). */
5800 for (j = 0; j < i; ++j)
5801 max += counts[j] * counts[j];
5802
5803 /* This adds penalties for the overall size of the table. */
5804 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5805 max *= fact * fact;
5806 # else
5807 /* Variant 2: Optimize a lot more for small table. Here we
5808 also add squares of the size but we also add penalties for
5809 empty slots (the +1 term). */
5810 for (j = 0; j < i; ++j)
5811 max += (1 + counts[j]) * (1 + counts[j]);
5812
5813 /* The overall size of the table is considered, but not as
5814 strong as in variant 1, where it is squared. */
5815 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5816 max *= fact;
5817 # endif
5818
5819 /* Compare with current best results. */
5820 if (max < best_chlen)
5821 {
5822 best_chlen = max;
5823 best_size = i;
5824 no_improvement_count = 0;
5825 }
5826 /* PR 11843: Avoid futile long searches for the best bucket size
5827 when there are a large number of symbols. */
5828 else if (++no_improvement_count == 100)
5829 break;
5830 }
5831
5832 free (counts);
5833 }
5834 else
5835 #endif /* defined (BFD_HOST_U_64_BIT) */
5836 {
5837 /* This is the fallback solution if no 64bit type is available or if we
5838 are not supposed to spend much time on optimizations. We select the
5839 bucket count using a fixed set of numbers. */
5840 for (i = 0; elf_buckets[i] != 0; i++)
5841 {
5842 best_size = elf_buckets[i];
5843 if (nsyms < elf_buckets[i + 1])
5844 break;
5845 }
5846 if (gnu_hash && best_size < 2)
5847 best_size = 2;
5848 }
5849
5850 return best_size;
5851 }
5852
5853 /* Size any SHT_GROUP section for ld -r. */
5854
5855 bfd_boolean
5856 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5857 {
5858 bfd *ibfd;
5859
5860 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5861 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5862 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5863 return FALSE;
5864 return TRUE;
5865 }
5866
5867 /* Set a default stack segment size. The value in INFO wins. If it
5868 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5869 undefined it is initialized. */
5870
5871 bfd_boolean
5872 bfd_elf_stack_segment_size (bfd *output_bfd,
5873 struct bfd_link_info *info,
5874 const char *legacy_symbol,
5875 bfd_vma default_size)
5876 {
5877 struct elf_link_hash_entry *h = NULL;
5878
5879 /* Look for legacy symbol. */
5880 if (legacy_symbol)
5881 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5882 FALSE, FALSE, FALSE);
5883 if (h && (h->root.type == bfd_link_hash_defined
5884 || h->root.type == bfd_link_hash_defweak)
5885 && h->def_regular
5886 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5887 {
5888 /* The symbol has no type if specified on the command line. */
5889 h->type = STT_OBJECT;
5890 if (info->stacksize)
5891 /* xgettext:c-format */
5892 _bfd_error_handler (_("%B: stack size specified and %s set"),
5893 output_bfd, legacy_symbol);
5894 else if (h->root.u.def.section != bfd_abs_section_ptr)
5895 /* xgettext:c-format */
5896 _bfd_error_handler (_("%B: %s not absolute"),
5897 output_bfd, legacy_symbol);
5898 else
5899 info->stacksize = h->root.u.def.value;
5900 }
5901
5902 if (!info->stacksize)
5903 /* If the user didn't set a size, or explicitly inhibit the
5904 size, set it now. */
5905 info->stacksize = default_size;
5906
5907 /* Provide the legacy symbol, if it is referenced. */
5908 if (h && (h->root.type == bfd_link_hash_undefined
5909 || h->root.type == bfd_link_hash_undefweak))
5910 {
5911 struct bfd_link_hash_entry *bh = NULL;
5912
5913 if (!(_bfd_generic_link_add_one_symbol
5914 (info, output_bfd, legacy_symbol,
5915 BSF_GLOBAL, bfd_abs_section_ptr,
5916 info->stacksize >= 0 ? info->stacksize : 0,
5917 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5918 return FALSE;
5919
5920 h = (struct elf_link_hash_entry *) bh;
5921 h->def_regular = 1;
5922 h->type = STT_OBJECT;
5923 }
5924
5925 return TRUE;
5926 }
5927
5928 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5929
5930 struct elf_gc_sweep_symbol_info
5931 {
5932 struct bfd_link_info *info;
5933 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5934 bfd_boolean);
5935 };
5936
5937 static bfd_boolean
5938 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5939 {
5940 if (!h->mark
5941 && (((h->root.type == bfd_link_hash_defined
5942 || h->root.type == bfd_link_hash_defweak)
5943 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5944 && h->root.u.def.section->gc_mark))
5945 || h->root.type == bfd_link_hash_undefined
5946 || h->root.type == bfd_link_hash_undefweak))
5947 {
5948 struct elf_gc_sweep_symbol_info *inf;
5949
5950 inf = (struct elf_gc_sweep_symbol_info *) data;
5951 (*inf->hide_symbol) (inf->info, h, TRUE);
5952 h->def_regular = 0;
5953 h->ref_regular = 0;
5954 h->ref_regular_nonweak = 0;
5955 }
5956
5957 return TRUE;
5958 }
5959
5960 /* Set up the sizes and contents of the ELF dynamic sections. This is
5961 called by the ELF linker emulation before_allocation routine. We
5962 must set the sizes of the sections before the linker sets the
5963 addresses of the various sections. */
5964
5965 bfd_boolean
5966 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5967 const char *soname,
5968 const char *rpath,
5969 const char *filter_shlib,
5970 const char *audit,
5971 const char *depaudit,
5972 const char * const *auxiliary_filters,
5973 struct bfd_link_info *info,
5974 asection **sinterpptr)
5975 {
5976 bfd *dynobj;
5977 const struct elf_backend_data *bed;
5978
5979 *sinterpptr = NULL;
5980
5981 if (!is_elf_hash_table (info->hash))
5982 return TRUE;
5983
5984 dynobj = elf_hash_table (info)->dynobj;
5985
5986 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5987 {
5988 struct bfd_elf_version_tree *verdefs;
5989 struct elf_info_failed asvinfo;
5990 struct bfd_elf_version_tree *t;
5991 struct bfd_elf_version_expr *d;
5992 struct elf_info_failed eif;
5993 bfd_boolean all_defined;
5994 asection *s;
5995 size_t soname_indx;
5996
5997 eif.info = info;
5998 eif.failed = FALSE;
5999
6000 /* If we are supposed to export all symbols into the dynamic symbol
6001 table (this is not the normal case), then do so. */
6002 if (info->export_dynamic
6003 || (bfd_link_executable (info) && info->dynamic))
6004 {
6005 elf_link_hash_traverse (elf_hash_table (info),
6006 _bfd_elf_export_symbol,
6007 &eif);
6008 if (eif.failed)
6009 return FALSE;
6010 }
6011
6012 if (soname != NULL)
6013 {
6014 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6015 soname, TRUE);
6016 if (soname_indx == (size_t) -1
6017 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6018 return FALSE;
6019 }
6020 else
6021 soname_indx = (size_t) -1;
6022
6023 /* Make all global versions with definition. */
6024 for (t = info->version_info; t != NULL; t = t->next)
6025 for (d = t->globals.list; d != NULL; d = d->next)
6026 if (!d->symver && d->literal)
6027 {
6028 const char *verstr, *name;
6029 size_t namelen, verlen, newlen;
6030 char *newname, *p, leading_char;
6031 struct elf_link_hash_entry *newh;
6032
6033 leading_char = bfd_get_symbol_leading_char (output_bfd);
6034 name = d->pattern;
6035 namelen = strlen (name) + (leading_char != '\0');
6036 verstr = t->name;
6037 verlen = strlen (verstr);
6038 newlen = namelen + verlen + 3;
6039
6040 newname = (char *) bfd_malloc (newlen);
6041 if (newname == NULL)
6042 return FALSE;
6043 newname[0] = leading_char;
6044 memcpy (newname + (leading_char != '\0'), name, namelen);
6045
6046 /* Check the hidden versioned definition. */
6047 p = newname + namelen;
6048 *p++ = ELF_VER_CHR;
6049 memcpy (p, verstr, verlen + 1);
6050 newh = elf_link_hash_lookup (elf_hash_table (info),
6051 newname, FALSE, FALSE,
6052 FALSE);
6053 if (newh == NULL
6054 || (newh->root.type != bfd_link_hash_defined
6055 && newh->root.type != bfd_link_hash_defweak))
6056 {
6057 /* Check the default versioned definition. */
6058 *p++ = ELF_VER_CHR;
6059 memcpy (p, verstr, verlen + 1);
6060 newh = elf_link_hash_lookup (elf_hash_table (info),
6061 newname, FALSE, FALSE,
6062 FALSE);
6063 }
6064 free (newname);
6065
6066 /* Mark this version if there is a definition and it is
6067 not defined in a shared object. */
6068 if (newh != NULL
6069 && !newh->def_dynamic
6070 && (newh->root.type == bfd_link_hash_defined
6071 || newh->root.type == bfd_link_hash_defweak))
6072 d->symver = 1;
6073 }
6074
6075 /* Attach all the symbols to their version information. */
6076 asvinfo.info = info;
6077 asvinfo.failed = FALSE;
6078
6079 elf_link_hash_traverse (elf_hash_table (info),
6080 _bfd_elf_link_assign_sym_version,
6081 &asvinfo);
6082 if (asvinfo.failed)
6083 return FALSE;
6084
6085 if (!info->allow_undefined_version)
6086 {
6087 /* Check if all global versions have a definition. */
6088 all_defined = TRUE;
6089 for (t = info->version_info; t != NULL; t = t->next)
6090 for (d = t->globals.list; d != NULL; d = d->next)
6091 if (d->literal && !d->symver && !d->script)
6092 {
6093 _bfd_error_handler
6094 (_("%s: undefined version: %s"),
6095 d->pattern, t->name);
6096 all_defined = FALSE;
6097 }
6098
6099 if (!all_defined)
6100 {
6101 bfd_set_error (bfd_error_bad_value);
6102 return FALSE;
6103 }
6104 }
6105
6106 /* Set up the version definition section. */
6107 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6108 BFD_ASSERT (s != NULL);
6109
6110 /* We may have created additional version definitions if we are
6111 just linking a regular application. */
6112 verdefs = info->version_info;
6113
6114 /* Skip anonymous version tag. */
6115 if (verdefs != NULL && verdefs->vernum == 0)
6116 verdefs = verdefs->next;
6117
6118 if (verdefs == NULL && !info->create_default_symver)
6119 s->flags |= SEC_EXCLUDE;
6120 else
6121 {
6122 unsigned int cdefs;
6123 bfd_size_type size;
6124 bfd_byte *p;
6125 Elf_Internal_Verdef def;
6126 Elf_Internal_Verdaux defaux;
6127 struct bfd_link_hash_entry *bh;
6128 struct elf_link_hash_entry *h;
6129 const char *name;
6130
6131 cdefs = 0;
6132 size = 0;
6133
6134 /* Make space for the base version. */
6135 size += sizeof (Elf_External_Verdef);
6136 size += sizeof (Elf_External_Verdaux);
6137 ++cdefs;
6138
6139 /* Make space for the default version. */
6140 if (info->create_default_symver)
6141 {
6142 size += sizeof (Elf_External_Verdef);
6143 ++cdefs;
6144 }
6145
6146 for (t = verdefs; t != NULL; t = t->next)
6147 {
6148 struct bfd_elf_version_deps *n;
6149
6150 /* Don't emit base version twice. */
6151 if (t->vernum == 0)
6152 continue;
6153
6154 size += sizeof (Elf_External_Verdef);
6155 size += sizeof (Elf_External_Verdaux);
6156 ++cdefs;
6157
6158 for (n = t->deps; n != NULL; n = n->next)
6159 size += sizeof (Elf_External_Verdaux);
6160 }
6161
6162 s->size = size;
6163 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6164 if (s->contents == NULL && s->size != 0)
6165 return FALSE;
6166
6167 /* Fill in the version definition section. */
6168
6169 p = s->contents;
6170
6171 def.vd_version = VER_DEF_CURRENT;
6172 def.vd_flags = VER_FLG_BASE;
6173 def.vd_ndx = 1;
6174 def.vd_cnt = 1;
6175 if (info->create_default_symver)
6176 {
6177 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6178 def.vd_next = sizeof (Elf_External_Verdef);
6179 }
6180 else
6181 {
6182 def.vd_aux = sizeof (Elf_External_Verdef);
6183 def.vd_next = (sizeof (Elf_External_Verdef)
6184 + sizeof (Elf_External_Verdaux));
6185 }
6186
6187 if (soname_indx != (size_t) -1)
6188 {
6189 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6190 soname_indx);
6191 def.vd_hash = bfd_elf_hash (soname);
6192 defaux.vda_name = soname_indx;
6193 name = soname;
6194 }
6195 else
6196 {
6197 size_t indx;
6198
6199 name = lbasename (output_bfd->filename);
6200 def.vd_hash = bfd_elf_hash (name);
6201 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6202 name, FALSE);
6203 if (indx == (size_t) -1)
6204 return FALSE;
6205 defaux.vda_name = indx;
6206 }
6207 defaux.vda_next = 0;
6208
6209 _bfd_elf_swap_verdef_out (output_bfd, &def,
6210 (Elf_External_Verdef *) p);
6211 p += sizeof (Elf_External_Verdef);
6212 if (info->create_default_symver)
6213 {
6214 /* Add a symbol representing this version. */
6215 bh = NULL;
6216 if (! (_bfd_generic_link_add_one_symbol
6217 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6218 0, NULL, FALSE,
6219 get_elf_backend_data (dynobj)->collect, &bh)))
6220 return FALSE;
6221 h = (struct elf_link_hash_entry *) bh;
6222 h->non_elf = 0;
6223 h->def_regular = 1;
6224 h->type = STT_OBJECT;
6225 h->verinfo.vertree = NULL;
6226
6227 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6228 return FALSE;
6229
6230 /* Create a duplicate of the base version with the same
6231 aux block, but different flags. */
6232 def.vd_flags = 0;
6233 def.vd_ndx = 2;
6234 def.vd_aux = sizeof (Elf_External_Verdef);
6235 if (verdefs)
6236 def.vd_next = (sizeof (Elf_External_Verdef)
6237 + sizeof (Elf_External_Verdaux));
6238 else
6239 def.vd_next = 0;
6240 _bfd_elf_swap_verdef_out (output_bfd, &def,
6241 (Elf_External_Verdef *) p);
6242 p += sizeof (Elf_External_Verdef);
6243 }
6244 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6245 (Elf_External_Verdaux *) p);
6246 p += sizeof (Elf_External_Verdaux);
6247
6248 for (t = verdefs; t != NULL; t = t->next)
6249 {
6250 unsigned int cdeps;
6251 struct bfd_elf_version_deps *n;
6252
6253 /* Don't emit the base version twice. */
6254 if (t->vernum == 0)
6255 continue;
6256
6257 cdeps = 0;
6258 for (n = t->deps; n != NULL; n = n->next)
6259 ++cdeps;
6260
6261 /* Add a symbol representing this version. */
6262 bh = NULL;
6263 if (! (_bfd_generic_link_add_one_symbol
6264 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6265 0, NULL, FALSE,
6266 get_elf_backend_data (dynobj)->collect, &bh)))
6267 return FALSE;
6268 h = (struct elf_link_hash_entry *) bh;
6269 h->non_elf = 0;
6270 h->def_regular = 1;
6271 h->type = STT_OBJECT;
6272 h->verinfo.vertree = t;
6273
6274 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6275 return FALSE;
6276
6277 def.vd_version = VER_DEF_CURRENT;
6278 def.vd_flags = 0;
6279 if (t->globals.list == NULL
6280 && t->locals.list == NULL
6281 && ! t->used)
6282 def.vd_flags |= VER_FLG_WEAK;
6283 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6284 def.vd_cnt = cdeps + 1;
6285 def.vd_hash = bfd_elf_hash (t->name);
6286 def.vd_aux = sizeof (Elf_External_Verdef);
6287 def.vd_next = 0;
6288
6289 /* If a basever node is next, it *must* be the last node in
6290 the chain, otherwise Verdef construction breaks. */
6291 if (t->next != NULL && t->next->vernum == 0)
6292 BFD_ASSERT (t->next->next == NULL);
6293
6294 if (t->next != NULL && t->next->vernum != 0)
6295 def.vd_next = (sizeof (Elf_External_Verdef)
6296 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6297
6298 _bfd_elf_swap_verdef_out (output_bfd, &def,
6299 (Elf_External_Verdef *) p);
6300 p += sizeof (Elf_External_Verdef);
6301
6302 defaux.vda_name = h->dynstr_index;
6303 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6304 h->dynstr_index);
6305 defaux.vda_next = 0;
6306 if (t->deps != NULL)
6307 defaux.vda_next = sizeof (Elf_External_Verdaux);
6308 t->name_indx = defaux.vda_name;
6309
6310 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6311 (Elf_External_Verdaux *) p);
6312 p += sizeof (Elf_External_Verdaux);
6313
6314 for (n = t->deps; n != NULL; n = n->next)
6315 {
6316 if (n->version_needed == NULL)
6317 {
6318 /* This can happen if there was an error in the
6319 version script. */
6320 defaux.vda_name = 0;
6321 }
6322 else
6323 {
6324 defaux.vda_name = n->version_needed->name_indx;
6325 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6326 defaux.vda_name);
6327 }
6328 if (n->next == NULL)
6329 defaux.vda_next = 0;
6330 else
6331 defaux.vda_next = sizeof (Elf_External_Verdaux);
6332
6333 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6334 (Elf_External_Verdaux *) p);
6335 p += sizeof (Elf_External_Verdaux);
6336 }
6337 }
6338
6339 elf_tdata (output_bfd)->cverdefs = cdefs;
6340 }
6341
6342 /* Work out the size of the version reference section. */
6343
6344 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6345 BFD_ASSERT (s != NULL);
6346 {
6347 struct elf_find_verdep_info sinfo;
6348
6349 sinfo.info = info;
6350 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6351 if (sinfo.vers == 0)
6352 sinfo.vers = 1;
6353 sinfo.failed = FALSE;
6354
6355 elf_link_hash_traverse (elf_hash_table (info),
6356 _bfd_elf_link_find_version_dependencies,
6357 &sinfo);
6358 if (sinfo.failed)
6359 return FALSE;
6360
6361 if (elf_tdata (output_bfd)->verref == NULL)
6362 s->flags |= SEC_EXCLUDE;
6363 else
6364 {
6365 Elf_Internal_Verneed *vn;
6366 unsigned int size;
6367 unsigned int crefs;
6368 bfd_byte *p;
6369
6370 /* Build the version dependency section. */
6371 size = 0;
6372 crefs = 0;
6373 for (vn = elf_tdata (output_bfd)->verref;
6374 vn != NULL;
6375 vn = vn->vn_nextref)
6376 {
6377 Elf_Internal_Vernaux *a;
6378
6379 size += sizeof (Elf_External_Verneed);
6380 ++crefs;
6381 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6382 size += sizeof (Elf_External_Vernaux);
6383 }
6384
6385 s->size = size;
6386 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6387 if (s->contents == NULL)
6388 return FALSE;
6389
6390 p = s->contents;
6391 for (vn = elf_tdata (output_bfd)->verref;
6392 vn != NULL;
6393 vn = vn->vn_nextref)
6394 {
6395 unsigned int caux;
6396 Elf_Internal_Vernaux *a;
6397 size_t indx;
6398
6399 caux = 0;
6400 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6401 ++caux;
6402
6403 vn->vn_version = VER_NEED_CURRENT;
6404 vn->vn_cnt = caux;
6405 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6406 elf_dt_name (vn->vn_bfd) != NULL
6407 ? elf_dt_name (vn->vn_bfd)
6408 : lbasename (vn->vn_bfd->filename),
6409 FALSE);
6410 if (indx == (size_t) -1)
6411 return FALSE;
6412 vn->vn_file = indx;
6413 vn->vn_aux = sizeof (Elf_External_Verneed);
6414 if (vn->vn_nextref == NULL)
6415 vn->vn_next = 0;
6416 else
6417 vn->vn_next = (sizeof (Elf_External_Verneed)
6418 + caux * sizeof (Elf_External_Vernaux));
6419
6420 _bfd_elf_swap_verneed_out (output_bfd, vn,
6421 (Elf_External_Verneed *) p);
6422 p += sizeof (Elf_External_Verneed);
6423
6424 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6425 {
6426 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6427 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6428 a->vna_nodename, FALSE);
6429 if (indx == (size_t) -1)
6430 return FALSE;
6431 a->vna_name = indx;
6432 if (a->vna_nextptr == NULL)
6433 a->vna_next = 0;
6434 else
6435 a->vna_next = sizeof (Elf_External_Vernaux);
6436
6437 _bfd_elf_swap_vernaux_out (output_bfd, a,
6438 (Elf_External_Vernaux *) p);
6439 p += sizeof (Elf_External_Vernaux);
6440 }
6441 }
6442
6443 elf_tdata (output_bfd)->cverrefs = crefs;
6444 }
6445 }
6446 }
6447
6448 bed = get_elf_backend_data (output_bfd);
6449
6450 if (info->gc_sections && bed->can_gc_sections)
6451 {
6452 struct elf_gc_sweep_symbol_info sweep_info;
6453 unsigned long section_sym_count;
6454
6455 /* Remove the symbols that were in the swept sections from the
6456 dynamic symbol table. GCFIXME: Anyone know how to get them
6457 out of the static symbol table as well? */
6458 sweep_info.info = info;
6459 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6460 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6461 &sweep_info);
6462
6463 /* We need to reassign dynsym indices now that symbols may have
6464 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6465 for the details of the conditions used here. */
6466 if (elf_hash_table (info)->dynamic_sections_created
6467 || bed->always_renumber_dynsyms)
6468 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6469 }
6470
6471 /* Any syms created from now on start with -1 in
6472 got.refcount/offset and plt.refcount/offset. */
6473 elf_hash_table (info)->init_got_refcount
6474 = elf_hash_table (info)->init_got_offset;
6475 elf_hash_table (info)->init_plt_refcount
6476 = elf_hash_table (info)->init_plt_offset;
6477
6478 if (bfd_link_relocatable (info)
6479 && !_bfd_elf_size_group_sections (info))
6480 return FALSE;
6481
6482 /* The backend may have to create some sections regardless of whether
6483 we're dynamic or not. */
6484 if (bed->elf_backend_always_size_sections
6485 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6486 return FALSE;
6487
6488 /* Determine any GNU_STACK segment requirements, after the backend
6489 has had a chance to set a default segment size. */
6490 if (info->execstack)
6491 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6492 else if (info->noexecstack)
6493 elf_stack_flags (output_bfd) = PF_R | PF_W;
6494 else
6495 {
6496 bfd *inputobj;
6497 asection *notesec = NULL;
6498 int exec = 0;
6499
6500 for (inputobj = info->input_bfds;
6501 inputobj;
6502 inputobj = inputobj->link.next)
6503 {
6504 asection *s;
6505
6506 if (inputobj->flags
6507 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6508 continue;
6509 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6510 if (s)
6511 {
6512 if (s->flags & SEC_CODE)
6513 exec = PF_X;
6514 notesec = s;
6515 }
6516 else if (bed->default_execstack)
6517 exec = PF_X;
6518 }
6519 if (notesec || info->stacksize > 0)
6520 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6521 if (notesec && exec && bfd_link_relocatable (info)
6522 && notesec->output_section != bfd_abs_section_ptr)
6523 notesec->output_section->flags |= SEC_CODE;
6524 }
6525
6526 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6527 {
6528 struct elf_info_failed eif;
6529 struct elf_link_hash_entry *h;
6530 asection *dynstr;
6531 asection *s;
6532
6533 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6534 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6535
6536 if (info->symbolic)
6537 {
6538 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6539 return FALSE;
6540 info->flags |= DF_SYMBOLIC;
6541 }
6542
6543 if (rpath != NULL)
6544 {
6545 size_t indx;
6546 bfd_vma tag;
6547
6548 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6549 TRUE);
6550 if (indx == (size_t) -1)
6551 return FALSE;
6552
6553 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6554 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6555 return FALSE;
6556 }
6557
6558 if (filter_shlib != NULL)
6559 {
6560 size_t indx;
6561
6562 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6563 filter_shlib, TRUE);
6564 if (indx == (size_t) -1
6565 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6566 return FALSE;
6567 }
6568
6569 if (auxiliary_filters != NULL)
6570 {
6571 const char * const *p;
6572
6573 for (p = auxiliary_filters; *p != NULL; p++)
6574 {
6575 size_t indx;
6576
6577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6578 *p, TRUE);
6579 if (indx == (size_t) -1
6580 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6581 return FALSE;
6582 }
6583 }
6584
6585 if (audit != NULL)
6586 {
6587 size_t indx;
6588
6589 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6590 TRUE);
6591 if (indx == (size_t) -1
6592 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6593 return FALSE;
6594 }
6595
6596 if (depaudit != NULL)
6597 {
6598 size_t indx;
6599
6600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6601 TRUE);
6602 if (indx == (size_t) -1
6603 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6604 return FALSE;
6605 }
6606
6607 eif.info = info;
6608 eif.failed = FALSE;
6609
6610 /* Find all symbols which were defined in a dynamic object and make
6611 the backend pick a reasonable value for them. */
6612 elf_link_hash_traverse (elf_hash_table (info),
6613 _bfd_elf_adjust_dynamic_symbol,
6614 &eif);
6615 if (eif.failed)
6616 return FALSE;
6617
6618 /* Add some entries to the .dynamic section. We fill in some of the
6619 values later, in bfd_elf_final_link, but we must add the entries
6620 now so that we know the final size of the .dynamic section. */
6621
6622 /* If there are initialization and/or finalization functions to
6623 call then add the corresponding DT_INIT/DT_FINI entries. */
6624 h = (info->init_function
6625 ? elf_link_hash_lookup (elf_hash_table (info),
6626 info->init_function, FALSE,
6627 FALSE, FALSE)
6628 : NULL);
6629 if (h != NULL
6630 && (h->ref_regular
6631 || h->def_regular))
6632 {
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6634 return FALSE;
6635 }
6636 h = (info->fini_function
6637 ? elf_link_hash_lookup (elf_hash_table (info),
6638 info->fini_function, FALSE,
6639 FALSE, FALSE)
6640 : NULL);
6641 if (h != NULL
6642 && (h->ref_regular
6643 || h->def_regular))
6644 {
6645 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6646 return FALSE;
6647 }
6648
6649 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6650 if (s != NULL && s->linker_has_input)
6651 {
6652 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6653 if (! bfd_link_executable (info))
6654 {
6655 bfd *sub;
6656 asection *o;
6657
6658 for (sub = info->input_bfds; sub != NULL;
6659 sub = sub->link.next)
6660 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6661 for (o = sub->sections; o != NULL; o = o->next)
6662 if (elf_section_data (o)->this_hdr.sh_type
6663 == SHT_PREINIT_ARRAY)
6664 {
6665 _bfd_error_handler
6666 (_("%B: .preinit_array section is not allowed in DSO"),
6667 sub);
6668 break;
6669 }
6670
6671 bfd_set_error (bfd_error_nonrepresentable_section);
6672 return FALSE;
6673 }
6674
6675 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6676 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6677 return FALSE;
6678 }
6679 s = bfd_get_section_by_name (output_bfd, ".init_array");
6680 if (s != NULL && s->linker_has_input)
6681 {
6682 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6683 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6684 return FALSE;
6685 }
6686 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6687 if (s != NULL && s->linker_has_input)
6688 {
6689 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6690 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6691 return FALSE;
6692 }
6693
6694 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6695 /* If .dynstr is excluded from the link, we don't want any of
6696 these tags. Strictly, we should be checking each section
6697 individually; This quick check covers for the case where
6698 someone does a /DISCARD/ : { *(*) }. */
6699 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6700 {
6701 bfd_size_type strsize;
6702
6703 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6704 if ((info->emit_hash
6705 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6706 || (info->emit_gnu_hash
6707 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6708 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6709 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6710 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6711 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6712 bed->s->sizeof_sym))
6713 return FALSE;
6714 }
6715 }
6716
6717 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6718 return FALSE;
6719
6720 /* The backend must work out the sizes of all the other dynamic
6721 sections. */
6722 if (dynobj != NULL
6723 && bed->elf_backend_size_dynamic_sections != NULL
6724 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6725 return FALSE;
6726
6727 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6728 {
6729 unsigned long section_sym_count;
6730
6731 if (elf_tdata (output_bfd)->cverdefs)
6732 {
6733 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6734
6735 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6736 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6737 return FALSE;
6738 }
6739
6740 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6741 {
6742 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6743 return FALSE;
6744 }
6745 else if (info->flags & DF_BIND_NOW)
6746 {
6747 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6748 return FALSE;
6749 }
6750
6751 if (info->flags_1)
6752 {
6753 if (bfd_link_executable (info))
6754 info->flags_1 &= ~ (DF_1_INITFIRST
6755 | DF_1_NODELETE
6756 | DF_1_NOOPEN);
6757 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6758 return FALSE;
6759 }
6760
6761 if (elf_tdata (output_bfd)->cverrefs)
6762 {
6763 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6764
6765 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6766 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6767 return FALSE;
6768 }
6769
6770 if ((elf_tdata (output_bfd)->cverrefs == 0
6771 && elf_tdata (output_bfd)->cverdefs == 0)
6772 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6773 &section_sym_count) == 0)
6774 {
6775 asection *s;
6776
6777 s = bfd_get_linker_section (dynobj, ".gnu.version");
6778 s->flags |= SEC_EXCLUDE;
6779 }
6780 }
6781 return TRUE;
6782 }
6783
6784 /* Find the first non-excluded output section. We'll use its
6785 section symbol for some emitted relocs. */
6786 void
6787 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6788 {
6789 asection *s;
6790
6791 for (s = output_bfd->sections; s != NULL; s = s->next)
6792 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6793 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6794 {
6795 elf_hash_table (info)->text_index_section = s;
6796 break;
6797 }
6798 }
6799
6800 /* Find two non-excluded output sections, one for code, one for data.
6801 We'll use their section symbols for some emitted relocs. */
6802 void
6803 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6804 {
6805 asection *s;
6806
6807 /* Data first, since setting text_index_section changes
6808 _bfd_elf_link_omit_section_dynsym. */
6809 for (s = output_bfd->sections; s != NULL; s = s->next)
6810 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6811 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6812 {
6813 elf_hash_table (info)->data_index_section = s;
6814 break;
6815 }
6816
6817 for (s = output_bfd->sections; s != NULL; s = s->next)
6818 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6819 == (SEC_ALLOC | SEC_READONLY))
6820 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6821 {
6822 elf_hash_table (info)->text_index_section = s;
6823 break;
6824 }
6825
6826 if (elf_hash_table (info)->text_index_section == NULL)
6827 elf_hash_table (info)->text_index_section
6828 = elf_hash_table (info)->data_index_section;
6829 }
6830
6831 bfd_boolean
6832 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6833 {
6834 const struct elf_backend_data *bed;
6835 unsigned long section_sym_count;
6836 bfd_size_type dynsymcount;
6837
6838 if (!is_elf_hash_table (info->hash))
6839 return TRUE;
6840
6841 bed = get_elf_backend_data (output_bfd);
6842 (*bed->elf_backend_init_index_section) (output_bfd, info);
6843
6844 /* Assign dynsym indices. In a shared library we generate a section
6845 symbol for each output section, which come first. Next come all
6846 of the back-end allocated local dynamic syms, followed by the rest
6847 of the global symbols.
6848
6849 This is usually not needed for static binaries, however backends
6850 can request to always do it, e.g. the MIPS backend uses dynamic
6851 symbol counts to lay out GOT, which will be produced in the
6852 presence of GOT relocations even in static binaries (holding fixed
6853 data in that case, to satisfy those relocations). */
6854
6855 if (elf_hash_table (info)->dynamic_sections_created
6856 || bed->always_renumber_dynsyms)
6857 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6858 &section_sym_count);
6859
6860 if (elf_hash_table (info)->dynamic_sections_created)
6861 {
6862 bfd *dynobj;
6863 asection *s;
6864 unsigned int dtagcount;
6865
6866 dynobj = elf_hash_table (info)->dynobj;
6867
6868 /* Work out the size of the symbol version section. */
6869 s = bfd_get_linker_section (dynobj, ".gnu.version");
6870 BFD_ASSERT (s != NULL);
6871 if ((s->flags & SEC_EXCLUDE) == 0)
6872 {
6873 s->size = dynsymcount * sizeof (Elf_External_Versym);
6874 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6875 if (s->contents == NULL)
6876 return FALSE;
6877
6878 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6879 return FALSE;
6880 }
6881
6882 /* Set the size of the .dynsym and .hash sections. We counted
6883 the number of dynamic symbols in elf_link_add_object_symbols.
6884 We will build the contents of .dynsym and .hash when we build
6885 the final symbol table, because until then we do not know the
6886 correct value to give the symbols. We built the .dynstr
6887 section as we went along in elf_link_add_object_symbols. */
6888 s = elf_hash_table (info)->dynsym;
6889 BFD_ASSERT (s != NULL);
6890 s->size = dynsymcount * bed->s->sizeof_sym;
6891
6892 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6893 if (s->contents == NULL)
6894 return FALSE;
6895
6896 /* The first entry in .dynsym is a dummy symbol. Clear all the
6897 section syms, in case we don't output them all. */
6898 ++section_sym_count;
6899 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6900
6901 elf_hash_table (info)->bucketcount = 0;
6902
6903 /* Compute the size of the hashing table. As a side effect this
6904 computes the hash values for all the names we export. */
6905 if (info->emit_hash)
6906 {
6907 unsigned long int *hashcodes;
6908 struct hash_codes_info hashinf;
6909 bfd_size_type amt;
6910 unsigned long int nsyms;
6911 size_t bucketcount;
6912 size_t hash_entry_size;
6913
6914 /* Compute the hash values for all exported symbols. At the same
6915 time store the values in an array so that we could use them for
6916 optimizations. */
6917 amt = dynsymcount * sizeof (unsigned long int);
6918 hashcodes = (unsigned long int *) bfd_malloc (amt);
6919 if (hashcodes == NULL)
6920 return FALSE;
6921 hashinf.hashcodes = hashcodes;
6922 hashinf.error = FALSE;
6923
6924 /* Put all hash values in HASHCODES. */
6925 elf_link_hash_traverse (elf_hash_table (info),
6926 elf_collect_hash_codes, &hashinf);
6927 if (hashinf.error)
6928 {
6929 free (hashcodes);
6930 return FALSE;
6931 }
6932
6933 nsyms = hashinf.hashcodes - hashcodes;
6934 bucketcount
6935 = compute_bucket_count (info, hashcodes, nsyms, 0);
6936 free (hashcodes);
6937
6938 if (bucketcount == 0)
6939 return FALSE;
6940
6941 elf_hash_table (info)->bucketcount = bucketcount;
6942
6943 s = bfd_get_linker_section (dynobj, ".hash");
6944 BFD_ASSERT (s != NULL);
6945 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6946 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6947 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6948 if (s->contents == NULL)
6949 return FALSE;
6950
6951 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6952 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6953 s->contents + hash_entry_size);
6954 }
6955
6956 if (info->emit_gnu_hash)
6957 {
6958 size_t i, cnt;
6959 unsigned char *contents;
6960 struct collect_gnu_hash_codes cinfo;
6961 bfd_size_type amt;
6962 size_t bucketcount;
6963
6964 memset (&cinfo, 0, sizeof (cinfo));
6965
6966 /* Compute the hash values for all exported symbols. At the same
6967 time store the values in an array so that we could use them for
6968 optimizations. */
6969 amt = dynsymcount * 2 * sizeof (unsigned long int);
6970 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6971 if (cinfo.hashcodes == NULL)
6972 return FALSE;
6973
6974 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6975 cinfo.min_dynindx = -1;
6976 cinfo.output_bfd = output_bfd;
6977 cinfo.bed = bed;
6978
6979 /* Put all hash values in HASHCODES. */
6980 elf_link_hash_traverse (elf_hash_table (info),
6981 elf_collect_gnu_hash_codes, &cinfo);
6982 if (cinfo.error)
6983 {
6984 free (cinfo.hashcodes);
6985 return FALSE;
6986 }
6987
6988 bucketcount
6989 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6990
6991 if (bucketcount == 0)
6992 {
6993 free (cinfo.hashcodes);
6994 return FALSE;
6995 }
6996
6997 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6998 BFD_ASSERT (s != NULL);
6999
7000 if (cinfo.nsyms == 0)
7001 {
7002 /* Empty .gnu.hash section is special. */
7003 BFD_ASSERT (cinfo.min_dynindx == -1);
7004 free (cinfo.hashcodes);
7005 s->size = 5 * 4 + bed->s->arch_size / 8;
7006 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7007 if (contents == NULL)
7008 return FALSE;
7009 s->contents = contents;
7010 /* 1 empty bucket. */
7011 bfd_put_32 (output_bfd, 1, contents);
7012 /* SYMIDX above the special symbol 0. */
7013 bfd_put_32 (output_bfd, 1, contents + 4);
7014 /* Just one word for bitmask. */
7015 bfd_put_32 (output_bfd, 1, contents + 8);
7016 /* Only hash fn bloom filter. */
7017 bfd_put_32 (output_bfd, 0, contents + 12);
7018 /* No hashes are valid - empty bitmask. */
7019 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7020 /* No hashes in the only bucket. */
7021 bfd_put_32 (output_bfd, 0,
7022 contents + 16 + bed->s->arch_size / 8);
7023 }
7024 else
7025 {
7026 unsigned long int maskwords, maskbitslog2, x;
7027 BFD_ASSERT (cinfo.min_dynindx != -1);
7028
7029 x = cinfo.nsyms;
7030 maskbitslog2 = 1;
7031 while ((x >>= 1) != 0)
7032 ++maskbitslog2;
7033 if (maskbitslog2 < 3)
7034 maskbitslog2 = 5;
7035 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7036 maskbitslog2 = maskbitslog2 + 3;
7037 else
7038 maskbitslog2 = maskbitslog2 + 2;
7039 if (bed->s->arch_size == 64)
7040 {
7041 if (maskbitslog2 == 5)
7042 maskbitslog2 = 6;
7043 cinfo.shift1 = 6;
7044 }
7045 else
7046 cinfo.shift1 = 5;
7047 cinfo.mask = (1 << cinfo.shift1) - 1;
7048 cinfo.shift2 = maskbitslog2;
7049 cinfo.maskbits = 1 << maskbitslog2;
7050 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7051 amt = bucketcount * sizeof (unsigned long int) * 2;
7052 amt += maskwords * sizeof (bfd_vma);
7053 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7054 if (cinfo.bitmask == NULL)
7055 {
7056 free (cinfo.hashcodes);
7057 return FALSE;
7058 }
7059
7060 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7061 cinfo.indx = cinfo.counts + bucketcount;
7062 cinfo.symindx = dynsymcount - cinfo.nsyms;
7063 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7064
7065 /* Determine how often each hash bucket is used. */
7066 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7067 for (i = 0; i < cinfo.nsyms; ++i)
7068 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7069
7070 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7071 if (cinfo.counts[i] != 0)
7072 {
7073 cinfo.indx[i] = cnt;
7074 cnt += cinfo.counts[i];
7075 }
7076 BFD_ASSERT (cnt == dynsymcount);
7077 cinfo.bucketcount = bucketcount;
7078 cinfo.local_indx = cinfo.min_dynindx;
7079
7080 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7081 s->size += cinfo.maskbits / 8;
7082 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7083 if (contents == NULL)
7084 {
7085 free (cinfo.bitmask);
7086 free (cinfo.hashcodes);
7087 return FALSE;
7088 }
7089
7090 s->contents = contents;
7091 bfd_put_32 (output_bfd, bucketcount, contents);
7092 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7093 bfd_put_32 (output_bfd, maskwords, contents + 8);
7094 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7095 contents += 16 + cinfo.maskbits / 8;
7096
7097 for (i = 0; i < bucketcount; ++i)
7098 {
7099 if (cinfo.counts[i] == 0)
7100 bfd_put_32 (output_bfd, 0, contents);
7101 else
7102 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7103 contents += 4;
7104 }
7105
7106 cinfo.contents = contents;
7107
7108 /* Renumber dynamic symbols, populate .gnu.hash section. */
7109 elf_link_hash_traverse (elf_hash_table (info),
7110 elf_renumber_gnu_hash_syms, &cinfo);
7111
7112 contents = s->contents + 16;
7113 for (i = 0; i < maskwords; ++i)
7114 {
7115 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7116 contents);
7117 contents += bed->s->arch_size / 8;
7118 }
7119
7120 free (cinfo.bitmask);
7121 free (cinfo.hashcodes);
7122 }
7123 }
7124
7125 s = bfd_get_linker_section (dynobj, ".dynstr");
7126 BFD_ASSERT (s != NULL);
7127
7128 elf_finalize_dynstr (output_bfd, info);
7129
7130 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7131
7132 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7133 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7134 return FALSE;
7135 }
7136
7137 return TRUE;
7138 }
7139 \f
7140 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7141
7142 static void
7143 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7144 asection *sec)
7145 {
7146 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7147 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7148 }
7149
7150 /* Finish SHF_MERGE section merging. */
7151
7152 bfd_boolean
7153 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7154 {
7155 bfd *ibfd;
7156 asection *sec;
7157
7158 if (!is_elf_hash_table (info->hash))
7159 return FALSE;
7160
7161 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7162 if ((ibfd->flags & DYNAMIC) == 0
7163 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7164 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7165 == get_elf_backend_data (obfd)->s->elfclass))
7166 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7167 if ((sec->flags & SEC_MERGE) != 0
7168 && !bfd_is_abs_section (sec->output_section))
7169 {
7170 struct bfd_elf_section_data *secdata;
7171
7172 secdata = elf_section_data (sec);
7173 if (! _bfd_add_merge_section (obfd,
7174 &elf_hash_table (info)->merge_info,
7175 sec, &secdata->sec_info))
7176 return FALSE;
7177 else if (secdata->sec_info)
7178 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7179 }
7180
7181 if (elf_hash_table (info)->merge_info != NULL)
7182 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7183 merge_sections_remove_hook);
7184 return TRUE;
7185 }
7186
7187 /* Create an entry in an ELF linker hash table. */
7188
7189 struct bfd_hash_entry *
7190 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7191 struct bfd_hash_table *table,
7192 const char *string)
7193 {
7194 /* Allocate the structure if it has not already been allocated by a
7195 subclass. */
7196 if (entry == NULL)
7197 {
7198 entry = (struct bfd_hash_entry *)
7199 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7200 if (entry == NULL)
7201 return entry;
7202 }
7203
7204 /* Call the allocation method of the superclass. */
7205 entry = _bfd_link_hash_newfunc (entry, table, string);
7206 if (entry != NULL)
7207 {
7208 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7209 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7210
7211 /* Set local fields. */
7212 ret->indx = -1;
7213 ret->dynindx = -1;
7214 ret->got = htab->init_got_refcount;
7215 ret->plt = htab->init_plt_refcount;
7216 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7217 - offsetof (struct elf_link_hash_entry, size)));
7218 /* Assume that we have been called by a non-ELF symbol reader.
7219 This flag is then reset by the code which reads an ELF input
7220 file. This ensures that a symbol created by a non-ELF symbol
7221 reader will have the flag set correctly. */
7222 ret->non_elf = 1;
7223 }
7224
7225 return entry;
7226 }
7227
7228 /* Copy data from an indirect symbol to its direct symbol, hiding the
7229 old indirect symbol. Also used for copying flags to a weakdef. */
7230
7231 void
7232 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7233 struct elf_link_hash_entry *dir,
7234 struct elf_link_hash_entry *ind)
7235 {
7236 struct elf_link_hash_table *htab;
7237
7238 /* Copy down any references that we may have already seen to the
7239 symbol which just became indirect. */
7240
7241 if (dir->versioned != versioned_hidden)
7242 dir->ref_dynamic |= ind->ref_dynamic;
7243 dir->ref_regular |= ind->ref_regular;
7244 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7245 dir->non_got_ref |= ind->non_got_ref;
7246 dir->needs_plt |= ind->needs_plt;
7247 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7248
7249 if (ind->root.type != bfd_link_hash_indirect)
7250 return;
7251
7252 /* Copy over the global and procedure linkage table refcount entries.
7253 These may have been already set up by a check_relocs routine. */
7254 htab = elf_hash_table (info);
7255 if (ind->got.refcount > htab->init_got_refcount.refcount)
7256 {
7257 if (dir->got.refcount < 0)
7258 dir->got.refcount = 0;
7259 dir->got.refcount += ind->got.refcount;
7260 ind->got.refcount = htab->init_got_refcount.refcount;
7261 }
7262
7263 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7264 {
7265 if (dir->plt.refcount < 0)
7266 dir->plt.refcount = 0;
7267 dir->plt.refcount += ind->plt.refcount;
7268 ind->plt.refcount = htab->init_plt_refcount.refcount;
7269 }
7270
7271 if (ind->dynindx != -1)
7272 {
7273 if (dir->dynindx != -1)
7274 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7275 dir->dynindx = ind->dynindx;
7276 dir->dynstr_index = ind->dynstr_index;
7277 ind->dynindx = -1;
7278 ind->dynstr_index = 0;
7279 }
7280 }
7281
7282 void
7283 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7284 struct elf_link_hash_entry *h,
7285 bfd_boolean force_local)
7286 {
7287 /* STT_GNU_IFUNC symbol must go through PLT. */
7288 if (h->type != STT_GNU_IFUNC)
7289 {
7290 h->plt = elf_hash_table (info)->init_plt_offset;
7291 h->needs_plt = 0;
7292 }
7293 if (force_local)
7294 {
7295 h->forced_local = 1;
7296 if (h->dynindx != -1)
7297 {
7298 h->dynindx = -1;
7299 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7300 h->dynstr_index);
7301 }
7302 }
7303 }
7304
7305 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7306 caller. */
7307
7308 bfd_boolean
7309 _bfd_elf_link_hash_table_init
7310 (struct elf_link_hash_table *table,
7311 bfd *abfd,
7312 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7313 struct bfd_hash_table *,
7314 const char *),
7315 unsigned int entsize,
7316 enum elf_target_id target_id)
7317 {
7318 bfd_boolean ret;
7319 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7320
7321 table->init_got_refcount.refcount = can_refcount - 1;
7322 table->init_plt_refcount.refcount = can_refcount - 1;
7323 table->init_got_offset.offset = -(bfd_vma) 1;
7324 table->init_plt_offset.offset = -(bfd_vma) 1;
7325 /* The first dynamic symbol is a dummy. */
7326 table->dynsymcount = 1;
7327
7328 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7329
7330 table->root.type = bfd_link_elf_hash_table;
7331 table->hash_table_id = target_id;
7332
7333 return ret;
7334 }
7335
7336 /* Create an ELF linker hash table. */
7337
7338 struct bfd_link_hash_table *
7339 _bfd_elf_link_hash_table_create (bfd *abfd)
7340 {
7341 struct elf_link_hash_table *ret;
7342 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7343
7344 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7345 if (ret == NULL)
7346 return NULL;
7347
7348 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7349 sizeof (struct elf_link_hash_entry),
7350 GENERIC_ELF_DATA))
7351 {
7352 free (ret);
7353 return NULL;
7354 }
7355 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7356
7357 return &ret->root;
7358 }
7359
7360 /* Destroy an ELF linker hash table. */
7361
7362 void
7363 _bfd_elf_link_hash_table_free (bfd *obfd)
7364 {
7365 struct elf_link_hash_table *htab;
7366
7367 htab = (struct elf_link_hash_table *) obfd->link.hash;
7368 if (htab->dynstr != NULL)
7369 _bfd_elf_strtab_free (htab->dynstr);
7370 _bfd_merge_sections_free (htab->merge_info);
7371 _bfd_generic_link_hash_table_free (obfd);
7372 }
7373
7374 /* This is a hook for the ELF emulation code in the generic linker to
7375 tell the backend linker what file name to use for the DT_NEEDED
7376 entry for a dynamic object. */
7377
7378 void
7379 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7380 {
7381 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7382 && bfd_get_format (abfd) == bfd_object)
7383 elf_dt_name (abfd) = name;
7384 }
7385
7386 int
7387 bfd_elf_get_dyn_lib_class (bfd *abfd)
7388 {
7389 int lib_class;
7390 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7391 && bfd_get_format (abfd) == bfd_object)
7392 lib_class = elf_dyn_lib_class (abfd);
7393 else
7394 lib_class = 0;
7395 return lib_class;
7396 }
7397
7398 void
7399 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7400 {
7401 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7402 && bfd_get_format (abfd) == bfd_object)
7403 elf_dyn_lib_class (abfd) = lib_class;
7404 }
7405
7406 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7407 the linker ELF emulation code. */
7408
7409 struct bfd_link_needed_list *
7410 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7411 struct bfd_link_info *info)
7412 {
7413 if (! is_elf_hash_table (info->hash))
7414 return NULL;
7415 return elf_hash_table (info)->needed;
7416 }
7417
7418 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7419 hook for the linker ELF emulation code. */
7420
7421 struct bfd_link_needed_list *
7422 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7423 struct bfd_link_info *info)
7424 {
7425 if (! is_elf_hash_table (info->hash))
7426 return NULL;
7427 return elf_hash_table (info)->runpath;
7428 }
7429
7430 /* Get the name actually used for a dynamic object for a link. This
7431 is the SONAME entry if there is one. Otherwise, it is the string
7432 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7433
7434 const char *
7435 bfd_elf_get_dt_soname (bfd *abfd)
7436 {
7437 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7438 && bfd_get_format (abfd) == bfd_object)
7439 return elf_dt_name (abfd);
7440 return NULL;
7441 }
7442
7443 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7444 the ELF linker emulation code. */
7445
7446 bfd_boolean
7447 bfd_elf_get_bfd_needed_list (bfd *abfd,
7448 struct bfd_link_needed_list **pneeded)
7449 {
7450 asection *s;
7451 bfd_byte *dynbuf = NULL;
7452 unsigned int elfsec;
7453 unsigned long shlink;
7454 bfd_byte *extdyn, *extdynend;
7455 size_t extdynsize;
7456 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7457
7458 *pneeded = NULL;
7459
7460 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7461 || bfd_get_format (abfd) != bfd_object)
7462 return TRUE;
7463
7464 s = bfd_get_section_by_name (abfd, ".dynamic");
7465 if (s == NULL || s->size == 0)
7466 return TRUE;
7467
7468 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7469 goto error_return;
7470
7471 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7472 if (elfsec == SHN_BAD)
7473 goto error_return;
7474
7475 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7476
7477 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7478 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7479
7480 extdyn = dynbuf;
7481 extdynend = extdyn + s->size;
7482 for (; extdyn < extdynend; extdyn += extdynsize)
7483 {
7484 Elf_Internal_Dyn dyn;
7485
7486 (*swap_dyn_in) (abfd, extdyn, &dyn);
7487
7488 if (dyn.d_tag == DT_NULL)
7489 break;
7490
7491 if (dyn.d_tag == DT_NEEDED)
7492 {
7493 const char *string;
7494 struct bfd_link_needed_list *l;
7495 unsigned int tagv = dyn.d_un.d_val;
7496 bfd_size_type amt;
7497
7498 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7499 if (string == NULL)
7500 goto error_return;
7501
7502 amt = sizeof *l;
7503 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7504 if (l == NULL)
7505 goto error_return;
7506
7507 l->by = abfd;
7508 l->name = string;
7509 l->next = *pneeded;
7510 *pneeded = l;
7511 }
7512 }
7513
7514 free (dynbuf);
7515
7516 return TRUE;
7517
7518 error_return:
7519 if (dynbuf != NULL)
7520 free (dynbuf);
7521 return FALSE;
7522 }
7523
7524 struct elf_symbuf_symbol
7525 {
7526 unsigned long st_name; /* Symbol name, index in string tbl */
7527 unsigned char st_info; /* Type and binding attributes */
7528 unsigned char st_other; /* Visibilty, and target specific */
7529 };
7530
7531 struct elf_symbuf_head
7532 {
7533 struct elf_symbuf_symbol *ssym;
7534 size_t count;
7535 unsigned int st_shndx;
7536 };
7537
7538 struct elf_symbol
7539 {
7540 union
7541 {
7542 Elf_Internal_Sym *isym;
7543 struct elf_symbuf_symbol *ssym;
7544 } u;
7545 const char *name;
7546 };
7547
7548 /* Sort references to symbols by ascending section number. */
7549
7550 static int
7551 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7552 {
7553 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7554 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7555
7556 return s1->st_shndx - s2->st_shndx;
7557 }
7558
7559 static int
7560 elf_sym_name_compare (const void *arg1, const void *arg2)
7561 {
7562 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7563 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7564 return strcmp (s1->name, s2->name);
7565 }
7566
7567 static struct elf_symbuf_head *
7568 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7569 {
7570 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7571 struct elf_symbuf_symbol *ssym;
7572 struct elf_symbuf_head *ssymbuf, *ssymhead;
7573 size_t i, shndx_count, total_size;
7574
7575 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7576 if (indbuf == NULL)
7577 return NULL;
7578
7579 for (ind = indbuf, i = 0; i < symcount; i++)
7580 if (isymbuf[i].st_shndx != SHN_UNDEF)
7581 *ind++ = &isymbuf[i];
7582 indbufend = ind;
7583
7584 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7585 elf_sort_elf_symbol);
7586
7587 shndx_count = 0;
7588 if (indbufend > indbuf)
7589 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7590 if (ind[0]->st_shndx != ind[1]->st_shndx)
7591 shndx_count++;
7592
7593 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7594 + (indbufend - indbuf) * sizeof (*ssym));
7595 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7596 if (ssymbuf == NULL)
7597 {
7598 free (indbuf);
7599 return NULL;
7600 }
7601
7602 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7603 ssymbuf->ssym = NULL;
7604 ssymbuf->count = shndx_count;
7605 ssymbuf->st_shndx = 0;
7606 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7607 {
7608 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7609 {
7610 ssymhead++;
7611 ssymhead->ssym = ssym;
7612 ssymhead->count = 0;
7613 ssymhead->st_shndx = (*ind)->st_shndx;
7614 }
7615 ssym->st_name = (*ind)->st_name;
7616 ssym->st_info = (*ind)->st_info;
7617 ssym->st_other = (*ind)->st_other;
7618 ssymhead->count++;
7619 }
7620 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7621 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7622 == total_size));
7623
7624 free (indbuf);
7625 return ssymbuf;
7626 }
7627
7628 /* Check if 2 sections define the same set of local and global
7629 symbols. */
7630
7631 static bfd_boolean
7632 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7633 struct bfd_link_info *info)
7634 {
7635 bfd *bfd1, *bfd2;
7636 const struct elf_backend_data *bed1, *bed2;
7637 Elf_Internal_Shdr *hdr1, *hdr2;
7638 size_t symcount1, symcount2;
7639 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7640 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7641 Elf_Internal_Sym *isym, *isymend;
7642 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7643 size_t count1, count2, i;
7644 unsigned int shndx1, shndx2;
7645 bfd_boolean result;
7646
7647 bfd1 = sec1->owner;
7648 bfd2 = sec2->owner;
7649
7650 /* Both sections have to be in ELF. */
7651 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7652 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7653 return FALSE;
7654
7655 if (elf_section_type (sec1) != elf_section_type (sec2))
7656 return FALSE;
7657
7658 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7659 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7660 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7661 return FALSE;
7662
7663 bed1 = get_elf_backend_data (bfd1);
7664 bed2 = get_elf_backend_data (bfd2);
7665 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7666 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7667 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7668 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7669
7670 if (symcount1 == 0 || symcount2 == 0)
7671 return FALSE;
7672
7673 result = FALSE;
7674 isymbuf1 = NULL;
7675 isymbuf2 = NULL;
7676 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7677 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7678
7679 if (ssymbuf1 == NULL)
7680 {
7681 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7682 NULL, NULL, NULL);
7683 if (isymbuf1 == NULL)
7684 goto done;
7685
7686 if (!info->reduce_memory_overheads)
7687 elf_tdata (bfd1)->symbuf = ssymbuf1
7688 = elf_create_symbuf (symcount1, isymbuf1);
7689 }
7690
7691 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7692 {
7693 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7694 NULL, NULL, NULL);
7695 if (isymbuf2 == NULL)
7696 goto done;
7697
7698 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7699 elf_tdata (bfd2)->symbuf = ssymbuf2
7700 = elf_create_symbuf (symcount2, isymbuf2);
7701 }
7702
7703 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7704 {
7705 /* Optimized faster version. */
7706 size_t lo, hi, mid;
7707 struct elf_symbol *symp;
7708 struct elf_symbuf_symbol *ssym, *ssymend;
7709
7710 lo = 0;
7711 hi = ssymbuf1->count;
7712 ssymbuf1++;
7713 count1 = 0;
7714 while (lo < hi)
7715 {
7716 mid = (lo + hi) / 2;
7717 if (shndx1 < ssymbuf1[mid].st_shndx)
7718 hi = mid;
7719 else if (shndx1 > ssymbuf1[mid].st_shndx)
7720 lo = mid + 1;
7721 else
7722 {
7723 count1 = ssymbuf1[mid].count;
7724 ssymbuf1 += mid;
7725 break;
7726 }
7727 }
7728
7729 lo = 0;
7730 hi = ssymbuf2->count;
7731 ssymbuf2++;
7732 count2 = 0;
7733 while (lo < hi)
7734 {
7735 mid = (lo + hi) / 2;
7736 if (shndx2 < ssymbuf2[mid].st_shndx)
7737 hi = mid;
7738 else if (shndx2 > ssymbuf2[mid].st_shndx)
7739 lo = mid + 1;
7740 else
7741 {
7742 count2 = ssymbuf2[mid].count;
7743 ssymbuf2 += mid;
7744 break;
7745 }
7746 }
7747
7748 if (count1 == 0 || count2 == 0 || count1 != count2)
7749 goto done;
7750
7751 symtable1
7752 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7753 symtable2
7754 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7755 if (symtable1 == NULL || symtable2 == NULL)
7756 goto done;
7757
7758 symp = symtable1;
7759 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7760 ssym < ssymend; ssym++, symp++)
7761 {
7762 symp->u.ssym = ssym;
7763 symp->name = bfd_elf_string_from_elf_section (bfd1,
7764 hdr1->sh_link,
7765 ssym->st_name);
7766 }
7767
7768 symp = symtable2;
7769 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7770 ssym < ssymend; ssym++, symp++)
7771 {
7772 symp->u.ssym = ssym;
7773 symp->name = bfd_elf_string_from_elf_section (bfd2,
7774 hdr2->sh_link,
7775 ssym->st_name);
7776 }
7777
7778 /* Sort symbol by name. */
7779 qsort (symtable1, count1, sizeof (struct elf_symbol),
7780 elf_sym_name_compare);
7781 qsort (symtable2, count1, sizeof (struct elf_symbol),
7782 elf_sym_name_compare);
7783
7784 for (i = 0; i < count1; i++)
7785 /* Two symbols must have the same binding, type and name. */
7786 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7787 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7788 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7789 goto done;
7790
7791 result = TRUE;
7792 goto done;
7793 }
7794
7795 symtable1 = (struct elf_symbol *)
7796 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7797 symtable2 = (struct elf_symbol *)
7798 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7799 if (symtable1 == NULL || symtable2 == NULL)
7800 goto done;
7801
7802 /* Count definitions in the section. */
7803 count1 = 0;
7804 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7805 if (isym->st_shndx == shndx1)
7806 symtable1[count1++].u.isym = isym;
7807
7808 count2 = 0;
7809 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7810 if (isym->st_shndx == shndx2)
7811 symtable2[count2++].u.isym = isym;
7812
7813 if (count1 == 0 || count2 == 0 || count1 != count2)
7814 goto done;
7815
7816 for (i = 0; i < count1; i++)
7817 symtable1[i].name
7818 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7819 symtable1[i].u.isym->st_name);
7820
7821 for (i = 0; i < count2; i++)
7822 symtable2[i].name
7823 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7824 symtable2[i].u.isym->st_name);
7825
7826 /* Sort symbol by name. */
7827 qsort (symtable1, count1, sizeof (struct elf_symbol),
7828 elf_sym_name_compare);
7829 qsort (symtable2, count1, sizeof (struct elf_symbol),
7830 elf_sym_name_compare);
7831
7832 for (i = 0; i < count1; i++)
7833 /* Two symbols must have the same binding, type and name. */
7834 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7835 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7836 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7837 goto done;
7838
7839 result = TRUE;
7840
7841 done:
7842 if (symtable1)
7843 free (symtable1);
7844 if (symtable2)
7845 free (symtable2);
7846 if (isymbuf1)
7847 free (isymbuf1);
7848 if (isymbuf2)
7849 free (isymbuf2);
7850
7851 return result;
7852 }
7853
7854 /* Return TRUE if 2 section types are compatible. */
7855
7856 bfd_boolean
7857 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7858 bfd *bbfd, const asection *bsec)
7859 {
7860 if (asec == NULL
7861 || bsec == NULL
7862 || abfd->xvec->flavour != bfd_target_elf_flavour
7863 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7864 return TRUE;
7865
7866 return elf_section_type (asec) == elf_section_type (bsec);
7867 }
7868 \f
7869 /* Final phase of ELF linker. */
7870
7871 /* A structure we use to avoid passing large numbers of arguments. */
7872
7873 struct elf_final_link_info
7874 {
7875 /* General link information. */
7876 struct bfd_link_info *info;
7877 /* Output BFD. */
7878 bfd *output_bfd;
7879 /* Symbol string table. */
7880 struct elf_strtab_hash *symstrtab;
7881 /* .hash section. */
7882 asection *hash_sec;
7883 /* symbol version section (.gnu.version). */
7884 asection *symver_sec;
7885 /* Buffer large enough to hold contents of any section. */
7886 bfd_byte *contents;
7887 /* Buffer large enough to hold external relocs of any section. */
7888 void *external_relocs;
7889 /* Buffer large enough to hold internal relocs of any section. */
7890 Elf_Internal_Rela *internal_relocs;
7891 /* Buffer large enough to hold external local symbols of any input
7892 BFD. */
7893 bfd_byte *external_syms;
7894 /* And a buffer for symbol section indices. */
7895 Elf_External_Sym_Shndx *locsym_shndx;
7896 /* Buffer large enough to hold internal local symbols of any input
7897 BFD. */
7898 Elf_Internal_Sym *internal_syms;
7899 /* Array large enough to hold a symbol index for each local symbol
7900 of any input BFD. */
7901 long *indices;
7902 /* Array large enough to hold a section pointer for each local
7903 symbol of any input BFD. */
7904 asection **sections;
7905 /* Buffer for SHT_SYMTAB_SHNDX section. */
7906 Elf_External_Sym_Shndx *symshndxbuf;
7907 /* Number of STT_FILE syms seen. */
7908 size_t filesym_count;
7909 };
7910
7911 /* This struct is used to pass information to elf_link_output_extsym. */
7912
7913 struct elf_outext_info
7914 {
7915 bfd_boolean failed;
7916 bfd_boolean localsyms;
7917 bfd_boolean file_sym_done;
7918 struct elf_final_link_info *flinfo;
7919 };
7920
7921
7922 /* Support for evaluating a complex relocation.
7923
7924 Complex relocations are generalized, self-describing relocations. The
7925 implementation of them consists of two parts: complex symbols, and the
7926 relocations themselves.
7927
7928 The relocations are use a reserved elf-wide relocation type code (R_RELC
7929 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7930 information (start bit, end bit, word width, etc) into the addend. This
7931 information is extracted from CGEN-generated operand tables within gas.
7932
7933 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7934 internal) representing prefix-notation expressions, including but not
7935 limited to those sorts of expressions normally encoded as addends in the
7936 addend field. The symbol mangling format is:
7937
7938 <node> := <literal>
7939 | <unary-operator> ':' <node>
7940 | <binary-operator> ':' <node> ':' <node>
7941 ;
7942
7943 <literal> := 's' <digits=N> ':' <N character symbol name>
7944 | 'S' <digits=N> ':' <N character section name>
7945 | '#' <hexdigits>
7946 ;
7947
7948 <binary-operator> := as in C
7949 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7950
7951 static void
7952 set_symbol_value (bfd *bfd_with_globals,
7953 Elf_Internal_Sym *isymbuf,
7954 size_t locsymcount,
7955 size_t symidx,
7956 bfd_vma val)
7957 {
7958 struct elf_link_hash_entry **sym_hashes;
7959 struct elf_link_hash_entry *h;
7960 size_t extsymoff = locsymcount;
7961
7962 if (symidx < locsymcount)
7963 {
7964 Elf_Internal_Sym *sym;
7965
7966 sym = isymbuf + symidx;
7967 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7968 {
7969 /* It is a local symbol: move it to the
7970 "absolute" section and give it a value. */
7971 sym->st_shndx = SHN_ABS;
7972 sym->st_value = val;
7973 return;
7974 }
7975 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7976 extsymoff = 0;
7977 }
7978
7979 /* It is a global symbol: set its link type
7980 to "defined" and give it a value. */
7981
7982 sym_hashes = elf_sym_hashes (bfd_with_globals);
7983 h = sym_hashes [symidx - extsymoff];
7984 while (h->root.type == bfd_link_hash_indirect
7985 || h->root.type == bfd_link_hash_warning)
7986 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7987 h->root.type = bfd_link_hash_defined;
7988 h->root.u.def.value = val;
7989 h->root.u.def.section = bfd_abs_section_ptr;
7990 }
7991
7992 static bfd_boolean
7993 resolve_symbol (const char *name,
7994 bfd *input_bfd,
7995 struct elf_final_link_info *flinfo,
7996 bfd_vma *result,
7997 Elf_Internal_Sym *isymbuf,
7998 size_t locsymcount)
7999 {
8000 Elf_Internal_Sym *sym;
8001 struct bfd_link_hash_entry *global_entry;
8002 const char *candidate = NULL;
8003 Elf_Internal_Shdr *symtab_hdr;
8004 size_t i;
8005
8006 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8007
8008 for (i = 0; i < locsymcount; ++ i)
8009 {
8010 sym = isymbuf + i;
8011
8012 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8013 continue;
8014
8015 candidate = bfd_elf_string_from_elf_section (input_bfd,
8016 symtab_hdr->sh_link,
8017 sym->st_name);
8018 #ifdef DEBUG
8019 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8020 name, candidate, (unsigned long) sym->st_value);
8021 #endif
8022 if (candidate && strcmp (candidate, name) == 0)
8023 {
8024 asection *sec = flinfo->sections [i];
8025
8026 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8027 *result += sec->output_offset + sec->output_section->vma;
8028 #ifdef DEBUG
8029 printf ("Found symbol with value %8.8lx\n",
8030 (unsigned long) *result);
8031 #endif
8032 return TRUE;
8033 }
8034 }
8035
8036 /* Hmm, haven't found it yet. perhaps it is a global. */
8037 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8038 FALSE, FALSE, TRUE);
8039 if (!global_entry)
8040 return FALSE;
8041
8042 if (global_entry->type == bfd_link_hash_defined
8043 || global_entry->type == bfd_link_hash_defweak)
8044 {
8045 *result = (global_entry->u.def.value
8046 + global_entry->u.def.section->output_section->vma
8047 + global_entry->u.def.section->output_offset);
8048 #ifdef DEBUG
8049 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8050 global_entry->root.string, (unsigned long) *result);
8051 #endif
8052 return TRUE;
8053 }
8054
8055 return FALSE;
8056 }
8057
8058 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8059 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8060 names like "foo.end" which is the end address of section "foo". */
8061
8062 static bfd_boolean
8063 resolve_section (const char *name,
8064 asection *sections,
8065 bfd_vma *result,
8066 bfd * abfd)
8067 {
8068 asection *curr;
8069 unsigned int len;
8070
8071 for (curr = sections; curr; curr = curr->next)
8072 if (strcmp (curr->name, name) == 0)
8073 {
8074 *result = curr->vma;
8075 return TRUE;
8076 }
8077
8078 /* Hmm. still haven't found it. try pseudo-section names. */
8079 /* FIXME: This could be coded more efficiently... */
8080 for (curr = sections; curr; curr = curr->next)
8081 {
8082 len = strlen (curr->name);
8083 if (len > strlen (name))
8084 continue;
8085
8086 if (strncmp (curr->name, name, len) == 0)
8087 {
8088 if (strncmp (".end", name + len, 4) == 0)
8089 {
8090 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8091 return TRUE;
8092 }
8093
8094 /* Insert more pseudo-section names here, if you like. */
8095 }
8096 }
8097
8098 return FALSE;
8099 }
8100
8101 static void
8102 undefined_reference (const char *reftype, const char *name)
8103 {
8104 /* xgettext:c-format */
8105 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8106 reftype, name);
8107 }
8108
8109 static bfd_boolean
8110 eval_symbol (bfd_vma *result,
8111 const char **symp,
8112 bfd *input_bfd,
8113 struct elf_final_link_info *flinfo,
8114 bfd_vma dot,
8115 Elf_Internal_Sym *isymbuf,
8116 size_t locsymcount,
8117 int signed_p)
8118 {
8119 size_t len;
8120 size_t symlen;
8121 bfd_vma a;
8122 bfd_vma b;
8123 char symbuf[4096];
8124 const char *sym = *symp;
8125 const char *symend;
8126 bfd_boolean symbol_is_section = FALSE;
8127
8128 len = strlen (sym);
8129 symend = sym + len;
8130
8131 if (len < 1 || len > sizeof (symbuf))
8132 {
8133 bfd_set_error (bfd_error_invalid_operation);
8134 return FALSE;
8135 }
8136
8137 switch (* sym)
8138 {
8139 case '.':
8140 *result = dot;
8141 *symp = sym + 1;
8142 return TRUE;
8143
8144 case '#':
8145 ++sym;
8146 *result = strtoul (sym, (char **) symp, 16);
8147 return TRUE;
8148
8149 case 'S':
8150 symbol_is_section = TRUE;
8151 /* Fall through. */
8152 case 's':
8153 ++sym;
8154 symlen = strtol (sym, (char **) symp, 10);
8155 sym = *symp + 1; /* Skip the trailing ':'. */
8156
8157 if (symend < sym || symlen + 1 > sizeof (symbuf))
8158 {
8159 bfd_set_error (bfd_error_invalid_operation);
8160 return FALSE;
8161 }
8162
8163 memcpy (symbuf, sym, symlen);
8164 symbuf[symlen] = '\0';
8165 *symp = sym + symlen;
8166
8167 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8168 the symbol as a section, or vice-versa. so we're pretty liberal in our
8169 interpretation here; section means "try section first", not "must be a
8170 section", and likewise with symbol. */
8171
8172 if (symbol_is_section)
8173 {
8174 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8175 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8176 isymbuf, locsymcount))
8177 {
8178 undefined_reference ("section", symbuf);
8179 return FALSE;
8180 }
8181 }
8182 else
8183 {
8184 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8185 isymbuf, locsymcount)
8186 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8187 result, input_bfd))
8188 {
8189 undefined_reference ("symbol", symbuf);
8190 return FALSE;
8191 }
8192 }
8193
8194 return TRUE;
8195
8196 /* All that remains are operators. */
8197
8198 #define UNARY_OP(op) \
8199 if (strncmp (sym, #op, strlen (#op)) == 0) \
8200 { \
8201 sym += strlen (#op); \
8202 if (*sym == ':') \
8203 ++sym; \
8204 *symp = sym; \
8205 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8206 isymbuf, locsymcount, signed_p)) \
8207 return FALSE; \
8208 if (signed_p) \
8209 *result = op ((bfd_signed_vma) a); \
8210 else \
8211 *result = op a; \
8212 return TRUE; \
8213 }
8214
8215 #define BINARY_OP(op) \
8216 if (strncmp (sym, #op, strlen (#op)) == 0) \
8217 { \
8218 sym += strlen (#op); \
8219 if (*sym == ':') \
8220 ++sym; \
8221 *symp = sym; \
8222 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8223 isymbuf, locsymcount, signed_p)) \
8224 return FALSE; \
8225 ++*symp; \
8226 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8227 isymbuf, locsymcount, signed_p)) \
8228 return FALSE; \
8229 if (signed_p) \
8230 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8231 else \
8232 *result = a op b; \
8233 return TRUE; \
8234 }
8235
8236 default:
8237 UNARY_OP (0-);
8238 BINARY_OP (<<);
8239 BINARY_OP (>>);
8240 BINARY_OP (==);
8241 BINARY_OP (!=);
8242 BINARY_OP (<=);
8243 BINARY_OP (>=);
8244 BINARY_OP (&&);
8245 BINARY_OP (||);
8246 UNARY_OP (~);
8247 UNARY_OP (!);
8248 BINARY_OP (*);
8249 BINARY_OP (/);
8250 BINARY_OP (%);
8251 BINARY_OP (^);
8252 BINARY_OP (|);
8253 BINARY_OP (&);
8254 BINARY_OP (+);
8255 BINARY_OP (-);
8256 BINARY_OP (<);
8257 BINARY_OP (>);
8258 #undef UNARY_OP
8259 #undef BINARY_OP
8260 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8261 bfd_set_error (bfd_error_invalid_operation);
8262 return FALSE;
8263 }
8264 }
8265
8266 static void
8267 put_value (bfd_vma size,
8268 unsigned long chunksz,
8269 bfd *input_bfd,
8270 bfd_vma x,
8271 bfd_byte *location)
8272 {
8273 location += (size - chunksz);
8274
8275 for (; size; size -= chunksz, location -= chunksz)
8276 {
8277 switch (chunksz)
8278 {
8279 case 1:
8280 bfd_put_8 (input_bfd, x, location);
8281 x >>= 8;
8282 break;
8283 case 2:
8284 bfd_put_16 (input_bfd, x, location);
8285 x >>= 16;
8286 break;
8287 case 4:
8288 bfd_put_32 (input_bfd, x, location);
8289 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8290 x >>= 16;
8291 x >>= 16;
8292 break;
8293 #ifdef BFD64
8294 case 8:
8295 bfd_put_64 (input_bfd, x, location);
8296 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8297 x >>= 32;
8298 x >>= 32;
8299 break;
8300 #endif
8301 default:
8302 abort ();
8303 break;
8304 }
8305 }
8306 }
8307
8308 static bfd_vma
8309 get_value (bfd_vma size,
8310 unsigned long chunksz,
8311 bfd *input_bfd,
8312 bfd_byte *location)
8313 {
8314 int shift;
8315 bfd_vma x = 0;
8316
8317 /* Sanity checks. */
8318 BFD_ASSERT (chunksz <= sizeof (x)
8319 && size >= chunksz
8320 && chunksz != 0
8321 && (size % chunksz) == 0
8322 && input_bfd != NULL
8323 && location != NULL);
8324
8325 if (chunksz == sizeof (x))
8326 {
8327 BFD_ASSERT (size == chunksz);
8328
8329 /* Make sure that we do not perform an undefined shift operation.
8330 We know that size == chunksz so there will only be one iteration
8331 of the loop below. */
8332 shift = 0;
8333 }
8334 else
8335 shift = 8 * chunksz;
8336
8337 for (; size; size -= chunksz, location += chunksz)
8338 {
8339 switch (chunksz)
8340 {
8341 case 1:
8342 x = (x << shift) | bfd_get_8 (input_bfd, location);
8343 break;
8344 case 2:
8345 x = (x << shift) | bfd_get_16 (input_bfd, location);
8346 break;
8347 case 4:
8348 x = (x << shift) | bfd_get_32 (input_bfd, location);
8349 break;
8350 #ifdef BFD64
8351 case 8:
8352 x = (x << shift) | bfd_get_64 (input_bfd, location);
8353 break;
8354 #endif
8355 default:
8356 abort ();
8357 }
8358 }
8359 return x;
8360 }
8361
8362 static void
8363 decode_complex_addend (unsigned long *start, /* in bits */
8364 unsigned long *oplen, /* in bits */
8365 unsigned long *len, /* in bits */
8366 unsigned long *wordsz, /* in bytes */
8367 unsigned long *chunksz, /* in bytes */
8368 unsigned long *lsb0_p,
8369 unsigned long *signed_p,
8370 unsigned long *trunc_p,
8371 unsigned long encoded)
8372 {
8373 * start = encoded & 0x3F;
8374 * len = (encoded >> 6) & 0x3F;
8375 * oplen = (encoded >> 12) & 0x3F;
8376 * wordsz = (encoded >> 18) & 0xF;
8377 * chunksz = (encoded >> 22) & 0xF;
8378 * lsb0_p = (encoded >> 27) & 1;
8379 * signed_p = (encoded >> 28) & 1;
8380 * trunc_p = (encoded >> 29) & 1;
8381 }
8382
8383 bfd_reloc_status_type
8384 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8385 asection *input_section ATTRIBUTE_UNUSED,
8386 bfd_byte *contents,
8387 Elf_Internal_Rela *rel,
8388 bfd_vma relocation)
8389 {
8390 bfd_vma shift, x, mask;
8391 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8392 bfd_reloc_status_type r;
8393
8394 /* Perform this reloc, since it is complex.
8395 (this is not to say that it necessarily refers to a complex
8396 symbol; merely that it is a self-describing CGEN based reloc.
8397 i.e. the addend has the complete reloc information (bit start, end,
8398 word size, etc) encoded within it.). */
8399
8400 decode_complex_addend (&start, &oplen, &len, &wordsz,
8401 &chunksz, &lsb0_p, &signed_p,
8402 &trunc_p, rel->r_addend);
8403
8404 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8405
8406 if (lsb0_p)
8407 shift = (start + 1) - len;
8408 else
8409 shift = (8 * wordsz) - (start + len);
8410
8411 x = get_value (wordsz, chunksz, input_bfd,
8412 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8413
8414 #ifdef DEBUG
8415 printf ("Doing complex reloc: "
8416 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8417 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8418 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8419 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8420 oplen, (unsigned long) x, (unsigned long) mask,
8421 (unsigned long) relocation);
8422 #endif
8423
8424 r = bfd_reloc_ok;
8425 if (! trunc_p)
8426 /* Now do an overflow check. */
8427 r = bfd_check_overflow ((signed_p
8428 ? complain_overflow_signed
8429 : complain_overflow_unsigned),
8430 len, 0, (8 * wordsz),
8431 relocation);
8432
8433 /* Do the deed. */
8434 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8435
8436 #ifdef DEBUG
8437 printf (" relocation: %8.8lx\n"
8438 " shifted mask: %8.8lx\n"
8439 " shifted/masked reloc: %8.8lx\n"
8440 " result: %8.8lx\n",
8441 (unsigned long) relocation, (unsigned long) (mask << shift),
8442 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8443 #endif
8444 put_value (wordsz, chunksz, input_bfd, x,
8445 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8446 return r;
8447 }
8448
8449 /* Functions to read r_offset from external (target order) reloc
8450 entry. Faster than bfd_getl32 et al, because we let the compiler
8451 know the value is aligned. */
8452
8453 static bfd_vma
8454 ext32l_r_offset (const void *p)
8455 {
8456 union aligned32
8457 {
8458 uint32_t v;
8459 unsigned char c[4];
8460 };
8461 const union aligned32 *a
8462 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8463
8464 uint32_t aval = ( (uint32_t) a->c[0]
8465 | (uint32_t) a->c[1] << 8
8466 | (uint32_t) a->c[2] << 16
8467 | (uint32_t) a->c[3] << 24);
8468 return aval;
8469 }
8470
8471 static bfd_vma
8472 ext32b_r_offset (const void *p)
8473 {
8474 union aligned32
8475 {
8476 uint32_t v;
8477 unsigned char c[4];
8478 };
8479 const union aligned32 *a
8480 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8481
8482 uint32_t aval = ( (uint32_t) a->c[0] << 24
8483 | (uint32_t) a->c[1] << 16
8484 | (uint32_t) a->c[2] << 8
8485 | (uint32_t) a->c[3]);
8486 return aval;
8487 }
8488
8489 #ifdef BFD_HOST_64_BIT
8490 static bfd_vma
8491 ext64l_r_offset (const void *p)
8492 {
8493 union aligned64
8494 {
8495 uint64_t v;
8496 unsigned char c[8];
8497 };
8498 const union aligned64 *a
8499 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8500
8501 uint64_t aval = ( (uint64_t) a->c[0]
8502 | (uint64_t) a->c[1] << 8
8503 | (uint64_t) a->c[2] << 16
8504 | (uint64_t) a->c[3] << 24
8505 | (uint64_t) a->c[4] << 32
8506 | (uint64_t) a->c[5] << 40
8507 | (uint64_t) a->c[6] << 48
8508 | (uint64_t) a->c[7] << 56);
8509 return aval;
8510 }
8511
8512 static bfd_vma
8513 ext64b_r_offset (const void *p)
8514 {
8515 union aligned64
8516 {
8517 uint64_t v;
8518 unsigned char c[8];
8519 };
8520 const union aligned64 *a
8521 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8522
8523 uint64_t aval = ( (uint64_t) a->c[0] << 56
8524 | (uint64_t) a->c[1] << 48
8525 | (uint64_t) a->c[2] << 40
8526 | (uint64_t) a->c[3] << 32
8527 | (uint64_t) a->c[4] << 24
8528 | (uint64_t) a->c[5] << 16
8529 | (uint64_t) a->c[6] << 8
8530 | (uint64_t) a->c[7]);
8531 return aval;
8532 }
8533 #endif
8534
8535 /* When performing a relocatable link, the input relocations are
8536 preserved. But, if they reference global symbols, the indices
8537 referenced must be updated. Update all the relocations found in
8538 RELDATA. */
8539
8540 static bfd_boolean
8541 elf_link_adjust_relocs (bfd *abfd,
8542 asection *sec,
8543 struct bfd_elf_section_reloc_data *reldata,
8544 bfd_boolean sort)
8545 {
8546 unsigned int i;
8547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8548 bfd_byte *erela;
8549 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8550 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8551 bfd_vma r_type_mask;
8552 int r_sym_shift;
8553 unsigned int count = reldata->count;
8554 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8555
8556 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8557 {
8558 swap_in = bed->s->swap_reloc_in;
8559 swap_out = bed->s->swap_reloc_out;
8560 }
8561 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8562 {
8563 swap_in = bed->s->swap_reloca_in;
8564 swap_out = bed->s->swap_reloca_out;
8565 }
8566 else
8567 abort ();
8568
8569 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8570 abort ();
8571
8572 if (bed->s->arch_size == 32)
8573 {
8574 r_type_mask = 0xff;
8575 r_sym_shift = 8;
8576 }
8577 else
8578 {
8579 r_type_mask = 0xffffffff;
8580 r_sym_shift = 32;
8581 }
8582
8583 erela = reldata->hdr->contents;
8584 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8585 {
8586 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8587 unsigned int j;
8588
8589 if (*rel_hash == NULL)
8590 continue;
8591
8592 BFD_ASSERT ((*rel_hash)->indx >= 0);
8593
8594 (*swap_in) (abfd, erela, irela);
8595 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8596 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8597 | (irela[j].r_info & r_type_mask));
8598 (*swap_out) (abfd, irela, erela);
8599 }
8600
8601 if (bed->elf_backend_update_relocs)
8602 (*bed->elf_backend_update_relocs) (sec, reldata);
8603
8604 if (sort && count != 0)
8605 {
8606 bfd_vma (*ext_r_off) (const void *);
8607 bfd_vma r_off;
8608 size_t elt_size;
8609 bfd_byte *base, *end, *p, *loc;
8610 bfd_byte *buf = NULL;
8611
8612 if (bed->s->arch_size == 32)
8613 {
8614 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8615 ext_r_off = ext32l_r_offset;
8616 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8617 ext_r_off = ext32b_r_offset;
8618 else
8619 abort ();
8620 }
8621 else
8622 {
8623 #ifdef BFD_HOST_64_BIT
8624 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8625 ext_r_off = ext64l_r_offset;
8626 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8627 ext_r_off = ext64b_r_offset;
8628 else
8629 #endif
8630 abort ();
8631 }
8632
8633 /* Must use a stable sort here. A modified insertion sort,
8634 since the relocs are mostly sorted already. */
8635 elt_size = reldata->hdr->sh_entsize;
8636 base = reldata->hdr->contents;
8637 end = base + count * elt_size;
8638 if (elt_size > sizeof (Elf64_External_Rela))
8639 abort ();
8640
8641 /* Ensure the first element is lowest. This acts as a sentinel,
8642 speeding the main loop below. */
8643 r_off = (*ext_r_off) (base);
8644 for (p = loc = base; (p += elt_size) < end; )
8645 {
8646 bfd_vma r_off2 = (*ext_r_off) (p);
8647 if (r_off > r_off2)
8648 {
8649 r_off = r_off2;
8650 loc = p;
8651 }
8652 }
8653 if (loc != base)
8654 {
8655 /* Don't just swap *base and *loc as that changes the order
8656 of the original base[0] and base[1] if they happen to
8657 have the same r_offset. */
8658 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8659 memcpy (onebuf, loc, elt_size);
8660 memmove (base + elt_size, base, loc - base);
8661 memcpy (base, onebuf, elt_size);
8662 }
8663
8664 for (p = base + elt_size; (p += elt_size) < end; )
8665 {
8666 /* base to p is sorted, *p is next to insert. */
8667 r_off = (*ext_r_off) (p);
8668 /* Search the sorted region for location to insert. */
8669 loc = p - elt_size;
8670 while (r_off < (*ext_r_off) (loc))
8671 loc -= elt_size;
8672 loc += elt_size;
8673 if (loc != p)
8674 {
8675 /* Chances are there is a run of relocs to insert here,
8676 from one of more input files. Files are not always
8677 linked in order due to the way elf_link_input_bfd is
8678 called. See pr17666. */
8679 size_t sortlen = p - loc;
8680 bfd_vma r_off2 = (*ext_r_off) (loc);
8681 size_t runlen = elt_size;
8682 size_t buf_size = 96 * 1024;
8683 while (p + runlen < end
8684 && (sortlen <= buf_size
8685 || runlen + elt_size <= buf_size)
8686 && r_off2 > (*ext_r_off) (p + runlen))
8687 runlen += elt_size;
8688 if (buf == NULL)
8689 {
8690 buf = bfd_malloc (buf_size);
8691 if (buf == NULL)
8692 return FALSE;
8693 }
8694 if (runlen < sortlen)
8695 {
8696 memcpy (buf, p, runlen);
8697 memmove (loc + runlen, loc, sortlen);
8698 memcpy (loc, buf, runlen);
8699 }
8700 else
8701 {
8702 memcpy (buf, loc, sortlen);
8703 memmove (loc, p, runlen);
8704 memcpy (loc + runlen, buf, sortlen);
8705 }
8706 p += runlen - elt_size;
8707 }
8708 }
8709 /* Hashes are no longer valid. */
8710 free (reldata->hashes);
8711 reldata->hashes = NULL;
8712 free (buf);
8713 }
8714 return TRUE;
8715 }
8716
8717 struct elf_link_sort_rela
8718 {
8719 union {
8720 bfd_vma offset;
8721 bfd_vma sym_mask;
8722 } u;
8723 enum elf_reloc_type_class type;
8724 /* We use this as an array of size int_rels_per_ext_rel. */
8725 Elf_Internal_Rela rela[1];
8726 };
8727
8728 static int
8729 elf_link_sort_cmp1 (const void *A, const void *B)
8730 {
8731 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8732 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8733 int relativea, relativeb;
8734
8735 relativea = a->type == reloc_class_relative;
8736 relativeb = b->type == reloc_class_relative;
8737
8738 if (relativea < relativeb)
8739 return 1;
8740 if (relativea > relativeb)
8741 return -1;
8742 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8743 return -1;
8744 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8745 return 1;
8746 if (a->rela->r_offset < b->rela->r_offset)
8747 return -1;
8748 if (a->rela->r_offset > b->rela->r_offset)
8749 return 1;
8750 return 0;
8751 }
8752
8753 static int
8754 elf_link_sort_cmp2 (const void *A, const void *B)
8755 {
8756 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8757 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8758
8759 if (a->type < b->type)
8760 return -1;
8761 if (a->type > b->type)
8762 return 1;
8763 if (a->u.offset < b->u.offset)
8764 return -1;
8765 if (a->u.offset > b->u.offset)
8766 return 1;
8767 if (a->rela->r_offset < b->rela->r_offset)
8768 return -1;
8769 if (a->rela->r_offset > b->rela->r_offset)
8770 return 1;
8771 return 0;
8772 }
8773
8774 static size_t
8775 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8776 {
8777 asection *dynamic_relocs;
8778 asection *rela_dyn;
8779 asection *rel_dyn;
8780 bfd_size_type count, size;
8781 size_t i, ret, sort_elt, ext_size;
8782 bfd_byte *sort, *s_non_relative, *p;
8783 struct elf_link_sort_rela *sq;
8784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8785 int i2e = bed->s->int_rels_per_ext_rel;
8786 unsigned int opb = bfd_octets_per_byte (abfd);
8787 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8788 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8789 struct bfd_link_order *lo;
8790 bfd_vma r_sym_mask;
8791 bfd_boolean use_rela;
8792
8793 /* Find a dynamic reloc section. */
8794 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8795 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8796 if (rela_dyn != NULL && rela_dyn->size > 0
8797 && rel_dyn != NULL && rel_dyn->size > 0)
8798 {
8799 bfd_boolean use_rela_initialised = FALSE;
8800
8801 /* This is just here to stop gcc from complaining.
8802 Its initialization checking code is not perfect. */
8803 use_rela = TRUE;
8804
8805 /* Both sections are present. Examine the sizes
8806 of the indirect sections to help us choose. */
8807 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8808 if (lo->type == bfd_indirect_link_order)
8809 {
8810 asection *o = lo->u.indirect.section;
8811
8812 if ((o->size % bed->s->sizeof_rela) == 0)
8813 {
8814 if ((o->size % bed->s->sizeof_rel) == 0)
8815 /* Section size is divisible by both rel and rela sizes.
8816 It is of no help to us. */
8817 ;
8818 else
8819 {
8820 /* Section size is only divisible by rela. */
8821 if (use_rela_initialised && (use_rela == FALSE))
8822 {
8823 _bfd_error_handler (_("%B: Unable to sort relocs - "
8824 "they are in more than one size"),
8825 abfd);
8826 bfd_set_error (bfd_error_invalid_operation);
8827 return 0;
8828 }
8829 else
8830 {
8831 use_rela = TRUE;
8832 use_rela_initialised = TRUE;
8833 }
8834 }
8835 }
8836 else if ((o->size % bed->s->sizeof_rel) == 0)
8837 {
8838 /* Section size is only divisible by rel. */
8839 if (use_rela_initialised && (use_rela == TRUE))
8840 {
8841 _bfd_error_handler (_("%B: Unable to sort relocs - "
8842 "they are in more than one size"),
8843 abfd);
8844 bfd_set_error (bfd_error_invalid_operation);
8845 return 0;
8846 }
8847 else
8848 {
8849 use_rela = FALSE;
8850 use_rela_initialised = TRUE;
8851 }
8852 }
8853 else
8854 {
8855 /* The section size is not divisible by either -
8856 something is wrong. */
8857 _bfd_error_handler (_("%B: Unable to sort relocs - "
8858 "they are of an unknown size"), abfd);
8859 bfd_set_error (bfd_error_invalid_operation);
8860 return 0;
8861 }
8862 }
8863
8864 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8865 if (lo->type == bfd_indirect_link_order)
8866 {
8867 asection *o = lo->u.indirect.section;
8868
8869 if ((o->size % bed->s->sizeof_rela) == 0)
8870 {
8871 if ((o->size % bed->s->sizeof_rel) == 0)
8872 /* Section size is divisible by both rel and rela sizes.
8873 It is of no help to us. */
8874 ;
8875 else
8876 {
8877 /* Section size is only divisible by rela. */
8878 if (use_rela_initialised && (use_rela == FALSE))
8879 {
8880 _bfd_error_handler (_("%B: Unable to sort relocs - "
8881 "they are in more than one size"),
8882 abfd);
8883 bfd_set_error (bfd_error_invalid_operation);
8884 return 0;
8885 }
8886 else
8887 {
8888 use_rela = TRUE;
8889 use_rela_initialised = TRUE;
8890 }
8891 }
8892 }
8893 else if ((o->size % bed->s->sizeof_rel) == 0)
8894 {
8895 /* Section size is only divisible by rel. */
8896 if (use_rela_initialised && (use_rela == TRUE))
8897 {
8898 _bfd_error_handler (_("%B: Unable to sort relocs - "
8899 "they are in more than one size"),
8900 abfd);
8901 bfd_set_error (bfd_error_invalid_operation);
8902 return 0;
8903 }
8904 else
8905 {
8906 use_rela = FALSE;
8907 use_rela_initialised = TRUE;
8908 }
8909 }
8910 else
8911 {
8912 /* The section size is not divisible by either -
8913 something is wrong. */
8914 _bfd_error_handler (_("%B: Unable to sort relocs - "
8915 "they are of an unknown size"), abfd);
8916 bfd_set_error (bfd_error_invalid_operation);
8917 return 0;
8918 }
8919 }
8920
8921 if (! use_rela_initialised)
8922 /* Make a guess. */
8923 use_rela = TRUE;
8924 }
8925 else if (rela_dyn != NULL && rela_dyn->size > 0)
8926 use_rela = TRUE;
8927 else if (rel_dyn != NULL && rel_dyn->size > 0)
8928 use_rela = FALSE;
8929 else
8930 return 0;
8931
8932 if (use_rela)
8933 {
8934 dynamic_relocs = rela_dyn;
8935 ext_size = bed->s->sizeof_rela;
8936 swap_in = bed->s->swap_reloca_in;
8937 swap_out = bed->s->swap_reloca_out;
8938 }
8939 else
8940 {
8941 dynamic_relocs = rel_dyn;
8942 ext_size = bed->s->sizeof_rel;
8943 swap_in = bed->s->swap_reloc_in;
8944 swap_out = bed->s->swap_reloc_out;
8945 }
8946
8947 size = 0;
8948 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8949 if (lo->type == bfd_indirect_link_order)
8950 size += lo->u.indirect.section->size;
8951
8952 if (size != dynamic_relocs->size)
8953 return 0;
8954
8955 sort_elt = (sizeof (struct elf_link_sort_rela)
8956 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8957
8958 count = dynamic_relocs->size / ext_size;
8959 if (count == 0)
8960 return 0;
8961 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8962
8963 if (sort == NULL)
8964 {
8965 (*info->callbacks->warning)
8966 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8967 return 0;
8968 }
8969
8970 if (bed->s->arch_size == 32)
8971 r_sym_mask = ~(bfd_vma) 0xff;
8972 else
8973 r_sym_mask = ~(bfd_vma) 0xffffffff;
8974
8975 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8976 if (lo->type == bfd_indirect_link_order)
8977 {
8978 bfd_byte *erel, *erelend;
8979 asection *o = lo->u.indirect.section;
8980
8981 if (o->contents == NULL && o->size != 0)
8982 {
8983 /* This is a reloc section that is being handled as a normal
8984 section. See bfd_section_from_shdr. We can't combine
8985 relocs in this case. */
8986 free (sort);
8987 return 0;
8988 }
8989 erel = o->contents;
8990 erelend = o->contents + o->size;
8991 p = sort + o->output_offset * opb / ext_size * sort_elt;
8992
8993 while (erel < erelend)
8994 {
8995 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8996
8997 (*swap_in) (abfd, erel, s->rela);
8998 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8999 s->u.sym_mask = r_sym_mask;
9000 p += sort_elt;
9001 erel += ext_size;
9002 }
9003 }
9004
9005 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9006
9007 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9008 {
9009 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9010 if (s->type != reloc_class_relative)
9011 break;
9012 }
9013 ret = i;
9014 s_non_relative = p;
9015
9016 sq = (struct elf_link_sort_rela *) s_non_relative;
9017 for (; i < count; i++, p += sort_elt)
9018 {
9019 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9020 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9021 sq = sp;
9022 sp->u.offset = sq->rela->r_offset;
9023 }
9024
9025 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9026
9027 struct elf_link_hash_table *htab = elf_hash_table (info);
9028 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9029 {
9030 /* We have plt relocs in .rela.dyn. */
9031 sq = (struct elf_link_sort_rela *) sort;
9032 for (i = 0; i < count; i++)
9033 if (sq[count - i - 1].type != reloc_class_plt)
9034 break;
9035 if (i != 0 && htab->srelplt->size == i * ext_size)
9036 {
9037 struct bfd_link_order **plo;
9038 /* Put srelplt link_order last. This is so the output_offset
9039 set in the next loop is correct for DT_JMPREL. */
9040 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9041 if ((*plo)->type == bfd_indirect_link_order
9042 && (*plo)->u.indirect.section == htab->srelplt)
9043 {
9044 lo = *plo;
9045 *plo = lo->next;
9046 }
9047 else
9048 plo = &(*plo)->next;
9049 *plo = lo;
9050 lo->next = NULL;
9051 dynamic_relocs->map_tail.link_order = lo;
9052 }
9053 }
9054
9055 p = sort;
9056 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9057 if (lo->type == bfd_indirect_link_order)
9058 {
9059 bfd_byte *erel, *erelend;
9060 asection *o = lo->u.indirect.section;
9061
9062 erel = o->contents;
9063 erelend = o->contents + o->size;
9064 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9065 while (erel < erelend)
9066 {
9067 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9068 (*swap_out) (abfd, s->rela, erel);
9069 p += sort_elt;
9070 erel += ext_size;
9071 }
9072 }
9073
9074 free (sort);
9075 *psec = dynamic_relocs;
9076 return ret;
9077 }
9078
9079 /* Add a symbol to the output symbol string table. */
9080
9081 static int
9082 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9083 const char *name,
9084 Elf_Internal_Sym *elfsym,
9085 asection *input_sec,
9086 struct elf_link_hash_entry *h)
9087 {
9088 int (*output_symbol_hook)
9089 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9090 struct elf_link_hash_entry *);
9091 struct elf_link_hash_table *hash_table;
9092 const struct elf_backend_data *bed;
9093 bfd_size_type strtabsize;
9094
9095 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9096
9097 bed = get_elf_backend_data (flinfo->output_bfd);
9098 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9099 if (output_symbol_hook != NULL)
9100 {
9101 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9102 if (ret != 1)
9103 return ret;
9104 }
9105
9106 if (name == NULL
9107 || *name == '\0'
9108 || (input_sec->flags & SEC_EXCLUDE))
9109 elfsym->st_name = (unsigned long) -1;
9110 else
9111 {
9112 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9113 to get the final offset for st_name. */
9114 elfsym->st_name
9115 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9116 name, FALSE);
9117 if (elfsym->st_name == (unsigned long) -1)
9118 return 0;
9119 }
9120
9121 hash_table = elf_hash_table (flinfo->info);
9122 strtabsize = hash_table->strtabsize;
9123 if (strtabsize <= hash_table->strtabcount)
9124 {
9125 strtabsize += strtabsize;
9126 hash_table->strtabsize = strtabsize;
9127 strtabsize *= sizeof (*hash_table->strtab);
9128 hash_table->strtab
9129 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9130 strtabsize);
9131 if (hash_table->strtab == NULL)
9132 return 0;
9133 }
9134 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9135 hash_table->strtab[hash_table->strtabcount].dest_index
9136 = hash_table->strtabcount;
9137 hash_table->strtab[hash_table->strtabcount].destshndx_index
9138 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9139
9140 bfd_get_symcount (flinfo->output_bfd) += 1;
9141 hash_table->strtabcount += 1;
9142
9143 return 1;
9144 }
9145
9146 /* Swap symbols out to the symbol table and flush the output symbols to
9147 the file. */
9148
9149 static bfd_boolean
9150 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9151 {
9152 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9153 bfd_size_type amt;
9154 size_t i;
9155 const struct elf_backend_data *bed;
9156 bfd_byte *symbuf;
9157 Elf_Internal_Shdr *hdr;
9158 file_ptr pos;
9159 bfd_boolean ret;
9160
9161 if (!hash_table->strtabcount)
9162 return TRUE;
9163
9164 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9165
9166 bed = get_elf_backend_data (flinfo->output_bfd);
9167
9168 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9169 symbuf = (bfd_byte *) bfd_malloc (amt);
9170 if (symbuf == NULL)
9171 return FALSE;
9172
9173 if (flinfo->symshndxbuf)
9174 {
9175 amt = sizeof (Elf_External_Sym_Shndx);
9176 amt *= bfd_get_symcount (flinfo->output_bfd);
9177 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9178 if (flinfo->symshndxbuf == NULL)
9179 {
9180 free (symbuf);
9181 return FALSE;
9182 }
9183 }
9184
9185 for (i = 0; i < hash_table->strtabcount; i++)
9186 {
9187 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9188 if (elfsym->sym.st_name == (unsigned long) -1)
9189 elfsym->sym.st_name = 0;
9190 else
9191 elfsym->sym.st_name
9192 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9193 elfsym->sym.st_name);
9194 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9195 ((bfd_byte *) symbuf
9196 + (elfsym->dest_index
9197 * bed->s->sizeof_sym)),
9198 (flinfo->symshndxbuf
9199 + elfsym->destshndx_index));
9200 }
9201
9202 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9203 pos = hdr->sh_offset + hdr->sh_size;
9204 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9205 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9206 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9207 {
9208 hdr->sh_size += amt;
9209 ret = TRUE;
9210 }
9211 else
9212 ret = FALSE;
9213
9214 free (symbuf);
9215
9216 free (hash_table->strtab);
9217 hash_table->strtab = NULL;
9218
9219 return ret;
9220 }
9221
9222 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9223
9224 static bfd_boolean
9225 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9226 {
9227 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9228 && sym->st_shndx < SHN_LORESERVE)
9229 {
9230 /* The gABI doesn't support dynamic symbols in output sections
9231 beyond 64k. */
9232 _bfd_error_handler
9233 /* xgettext:c-format */
9234 (_("%B: Too many sections: %d (>= %d)"),
9235 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9236 bfd_set_error (bfd_error_nonrepresentable_section);
9237 return FALSE;
9238 }
9239 return TRUE;
9240 }
9241
9242 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9243 allowing an unsatisfied unversioned symbol in the DSO to match a
9244 versioned symbol that would normally require an explicit version.
9245 We also handle the case that a DSO references a hidden symbol
9246 which may be satisfied by a versioned symbol in another DSO. */
9247
9248 static bfd_boolean
9249 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9250 const struct elf_backend_data *bed,
9251 struct elf_link_hash_entry *h)
9252 {
9253 bfd *abfd;
9254 struct elf_link_loaded_list *loaded;
9255
9256 if (!is_elf_hash_table (info->hash))
9257 return FALSE;
9258
9259 /* Check indirect symbol. */
9260 while (h->root.type == bfd_link_hash_indirect)
9261 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9262
9263 switch (h->root.type)
9264 {
9265 default:
9266 abfd = NULL;
9267 break;
9268
9269 case bfd_link_hash_undefined:
9270 case bfd_link_hash_undefweak:
9271 abfd = h->root.u.undef.abfd;
9272 if (abfd == NULL
9273 || (abfd->flags & DYNAMIC) == 0
9274 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9275 return FALSE;
9276 break;
9277
9278 case bfd_link_hash_defined:
9279 case bfd_link_hash_defweak:
9280 abfd = h->root.u.def.section->owner;
9281 break;
9282
9283 case bfd_link_hash_common:
9284 abfd = h->root.u.c.p->section->owner;
9285 break;
9286 }
9287 BFD_ASSERT (abfd != NULL);
9288
9289 for (loaded = elf_hash_table (info)->loaded;
9290 loaded != NULL;
9291 loaded = loaded->next)
9292 {
9293 bfd *input;
9294 Elf_Internal_Shdr *hdr;
9295 size_t symcount;
9296 size_t extsymcount;
9297 size_t extsymoff;
9298 Elf_Internal_Shdr *versymhdr;
9299 Elf_Internal_Sym *isym;
9300 Elf_Internal_Sym *isymend;
9301 Elf_Internal_Sym *isymbuf;
9302 Elf_External_Versym *ever;
9303 Elf_External_Versym *extversym;
9304
9305 input = loaded->abfd;
9306
9307 /* We check each DSO for a possible hidden versioned definition. */
9308 if (input == abfd
9309 || (input->flags & DYNAMIC) == 0
9310 || elf_dynversym (input) == 0)
9311 continue;
9312
9313 hdr = &elf_tdata (input)->dynsymtab_hdr;
9314
9315 symcount = hdr->sh_size / bed->s->sizeof_sym;
9316 if (elf_bad_symtab (input))
9317 {
9318 extsymcount = symcount;
9319 extsymoff = 0;
9320 }
9321 else
9322 {
9323 extsymcount = symcount - hdr->sh_info;
9324 extsymoff = hdr->sh_info;
9325 }
9326
9327 if (extsymcount == 0)
9328 continue;
9329
9330 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9331 NULL, NULL, NULL);
9332 if (isymbuf == NULL)
9333 return FALSE;
9334
9335 /* Read in any version definitions. */
9336 versymhdr = &elf_tdata (input)->dynversym_hdr;
9337 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9338 if (extversym == NULL)
9339 goto error_ret;
9340
9341 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9342 || (bfd_bread (extversym, versymhdr->sh_size, input)
9343 != versymhdr->sh_size))
9344 {
9345 free (extversym);
9346 error_ret:
9347 free (isymbuf);
9348 return FALSE;
9349 }
9350
9351 ever = extversym + extsymoff;
9352 isymend = isymbuf + extsymcount;
9353 for (isym = isymbuf; isym < isymend; isym++, ever++)
9354 {
9355 const char *name;
9356 Elf_Internal_Versym iver;
9357 unsigned short version_index;
9358
9359 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9360 || isym->st_shndx == SHN_UNDEF)
9361 continue;
9362
9363 name = bfd_elf_string_from_elf_section (input,
9364 hdr->sh_link,
9365 isym->st_name);
9366 if (strcmp (name, h->root.root.string) != 0)
9367 continue;
9368
9369 _bfd_elf_swap_versym_in (input, ever, &iver);
9370
9371 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9372 && !(h->def_regular
9373 && h->forced_local))
9374 {
9375 /* If we have a non-hidden versioned sym, then it should
9376 have provided a definition for the undefined sym unless
9377 it is defined in a non-shared object and forced local.
9378 */
9379 abort ();
9380 }
9381
9382 version_index = iver.vs_vers & VERSYM_VERSION;
9383 if (version_index == 1 || version_index == 2)
9384 {
9385 /* This is the base or first version. We can use it. */
9386 free (extversym);
9387 free (isymbuf);
9388 return TRUE;
9389 }
9390 }
9391
9392 free (extversym);
9393 free (isymbuf);
9394 }
9395
9396 return FALSE;
9397 }
9398
9399 /* Convert ELF common symbol TYPE. */
9400
9401 static int
9402 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9403 {
9404 /* Commom symbol can only appear in relocatable link. */
9405 if (!bfd_link_relocatable (info))
9406 abort ();
9407 switch (info->elf_stt_common)
9408 {
9409 case unchanged:
9410 break;
9411 case elf_stt_common:
9412 type = STT_COMMON;
9413 break;
9414 case no_elf_stt_common:
9415 type = STT_OBJECT;
9416 break;
9417 }
9418 return type;
9419 }
9420
9421 /* Add an external symbol to the symbol table. This is called from
9422 the hash table traversal routine. When generating a shared object,
9423 we go through the symbol table twice. The first time we output
9424 anything that might have been forced to local scope in a version
9425 script. The second time we output the symbols that are still
9426 global symbols. */
9427
9428 static bfd_boolean
9429 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9430 {
9431 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9432 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9433 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9434 bfd_boolean strip;
9435 Elf_Internal_Sym sym;
9436 asection *input_sec;
9437 const struct elf_backend_data *bed;
9438 long indx;
9439 int ret;
9440 unsigned int type;
9441
9442 if (h->root.type == bfd_link_hash_warning)
9443 {
9444 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9445 if (h->root.type == bfd_link_hash_new)
9446 return TRUE;
9447 }
9448
9449 /* Decide whether to output this symbol in this pass. */
9450 if (eoinfo->localsyms)
9451 {
9452 if (!h->forced_local)
9453 return TRUE;
9454 }
9455 else
9456 {
9457 if (h->forced_local)
9458 return TRUE;
9459 }
9460
9461 bed = get_elf_backend_data (flinfo->output_bfd);
9462
9463 if (h->root.type == bfd_link_hash_undefined)
9464 {
9465 /* If we have an undefined symbol reference here then it must have
9466 come from a shared library that is being linked in. (Undefined
9467 references in regular files have already been handled unless
9468 they are in unreferenced sections which are removed by garbage
9469 collection). */
9470 bfd_boolean ignore_undef = FALSE;
9471
9472 /* Some symbols may be special in that the fact that they're
9473 undefined can be safely ignored - let backend determine that. */
9474 if (bed->elf_backend_ignore_undef_symbol)
9475 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9476
9477 /* If we are reporting errors for this situation then do so now. */
9478 if (!ignore_undef
9479 && h->ref_dynamic
9480 && (!h->ref_regular || flinfo->info->gc_sections)
9481 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9482 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9483 (*flinfo->info->callbacks->undefined_symbol)
9484 (flinfo->info, h->root.root.string,
9485 h->ref_regular ? NULL : h->root.u.undef.abfd,
9486 NULL, 0,
9487 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9488
9489 /* Strip a global symbol defined in a discarded section. */
9490 if (h->indx == -3)
9491 return TRUE;
9492 }
9493
9494 /* We should also warn if a forced local symbol is referenced from
9495 shared libraries. */
9496 if (bfd_link_executable (flinfo->info)
9497 && h->forced_local
9498 && h->ref_dynamic
9499 && h->def_regular
9500 && !h->dynamic_def
9501 && h->ref_dynamic_nonweak
9502 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9503 {
9504 bfd *def_bfd;
9505 const char *msg;
9506 struct elf_link_hash_entry *hi = h;
9507
9508 /* Check indirect symbol. */
9509 while (hi->root.type == bfd_link_hash_indirect)
9510 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9511
9512 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9513 /* xgettext:c-format */
9514 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9515 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9516 /* xgettext:c-format */
9517 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9518 else
9519 /* xgettext:c-format */
9520 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9521 def_bfd = flinfo->output_bfd;
9522 if (hi->root.u.def.section != bfd_abs_section_ptr)
9523 def_bfd = hi->root.u.def.section->owner;
9524 _bfd_error_handler (msg, flinfo->output_bfd,
9525 h->root.root.string, def_bfd);
9526 bfd_set_error (bfd_error_bad_value);
9527 eoinfo->failed = TRUE;
9528 return FALSE;
9529 }
9530
9531 /* We don't want to output symbols that have never been mentioned by
9532 a regular file, or that we have been told to strip. However, if
9533 h->indx is set to -2, the symbol is used by a reloc and we must
9534 output it. */
9535 strip = FALSE;
9536 if (h->indx == -2)
9537 ;
9538 else if ((h->def_dynamic
9539 || h->ref_dynamic
9540 || h->root.type == bfd_link_hash_new)
9541 && !h->def_regular
9542 && !h->ref_regular)
9543 strip = TRUE;
9544 else if (flinfo->info->strip == strip_all)
9545 strip = TRUE;
9546 else if (flinfo->info->strip == strip_some
9547 && bfd_hash_lookup (flinfo->info->keep_hash,
9548 h->root.root.string, FALSE, FALSE) == NULL)
9549 strip = TRUE;
9550 else if ((h->root.type == bfd_link_hash_defined
9551 || h->root.type == bfd_link_hash_defweak)
9552 && ((flinfo->info->strip_discarded
9553 && discarded_section (h->root.u.def.section))
9554 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9555 && h->root.u.def.section->owner != NULL
9556 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9557 strip = TRUE;
9558 else if ((h->root.type == bfd_link_hash_undefined
9559 || h->root.type == bfd_link_hash_undefweak)
9560 && h->root.u.undef.abfd != NULL
9561 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9562 strip = TRUE;
9563
9564 type = h->type;
9565
9566 /* If we're stripping it, and it's not a dynamic symbol, there's
9567 nothing else to do. However, if it is a forced local symbol or
9568 an ifunc symbol we need to give the backend finish_dynamic_symbol
9569 function a chance to make it dynamic. */
9570 if (strip
9571 && h->dynindx == -1
9572 && type != STT_GNU_IFUNC
9573 && !h->forced_local)
9574 return TRUE;
9575
9576 sym.st_value = 0;
9577 sym.st_size = h->size;
9578 sym.st_other = h->other;
9579 switch (h->root.type)
9580 {
9581 default:
9582 case bfd_link_hash_new:
9583 case bfd_link_hash_warning:
9584 abort ();
9585 return FALSE;
9586
9587 case bfd_link_hash_undefined:
9588 case bfd_link_hash_undefweak:
9589 input_sec = bfd_und_section_ptr;
9590 sym.st_shndx = SHN_UNDEF;
9591 break;
9592
9593 case bfd_link_hash_defined:
9594 case bfd_link_hash_defweak:
9595 {
9596 input_sec = h->root.u.def.section;
9597 if (input_sec->output_section != NULL)
9598 {
9599 sym.st_shndx =
9600 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9601 input_sec->output_section);
9602 if (sym.st_shndx == SHN_BAD)
9603 {
9604 _bfd_error_handler
9605 /* xgettext:c-format */
9606 (_("%B: could not find output section %A for input section %A"),
9607 flinfo->output_bfd, input_sec->output_section, input_sec);
9608 bfd_set_error (bfd_error_nonrepresentable_section);
9609 eoinfo->failed = TRUE;
9610 return FALSE;
9611 }
9612
9613 /* ELF symbols in relocatable files are section relative,
9614 but in nonrelocatable files they are virtual
9615 addresses. */
9616 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9617 if (!bfd_link_relocatable (flinfo->info))
9618 {
9619 sym.st_value += input_sec->output_section->vma;
9620 if (h->type == STT_TLS)
9621 {
9622 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9623 if (tls_sec != NULL)
9624 sym.st_value -= tls_sec->vma;
9625 }
9626 }
9627 }
9628 else
9629 {
9630 BFD_ASSERT (input_sec->owner == NULL
9631 || (input_sec->owner->flags & DYNAMIC) != 0);
9632 sym.st_shndx = SHN_UNDEF;
9633 input_sec = bfd_und_section_ptr;
9634 }
9635 }
9636 break;
9637
9638 case bfd_link_hash_common:
9639 input_sec = h->root.u.c.p->section;
9640 sym.st_shndx = bed->common_section_index (input_sec);
9641 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9642 break;
9643
9644 case bfd_link_hash_indirect:
9645 /* These symbols are created by symbol versioning. They point
9646 to the decorated version of the name. For example, if the
9647 symbol foo@@GNU_1.2 is the default, which should be used when
9648 foo is used with no version, then we add an indirect symbol
9649 foo which points to foo@@GNU_1.2. We ignore these symbols,
9650 since the indirected symbol is already in the hash table. */
9651 return TRUE;
9652 }
9653
9654 if (type == STT_COMMON || type == STT_OBJECT)
9655 switch (h->root.type)
9656 {
9657 case bfd_link_hash_common:
9658 type = elf_link_convert_common_type (flinfo->info, type);
9659 break;
9660 case bfd_link_hash_defined:
9661 case bfd_link_hash_defweak:
9662 if (bed->common_definition (&sym))
9663 type = elf_link_convert_common_type (flinfo->info, type);
9664 else
9665 type = STT_OBJECT;
9666 break;
9667 case bfd_link_hash_undefined:
9668 case bfd_link_hash_undefweak:
9669 break;
9670 default:
9671 abort ();
9672 }
9673
9674 if (h->forced_local)
9675 {
9676 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9677 /* Turn off visibility on local symbol. */
9678 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9679 }
9680 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9681 else if (h->unique_global && h->def_regular)
9682 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9683 else if (h->root.type == bfd_link_hash_undefweak
9684 || h->root.type == bfd_link_hash_defweak)
9685 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9686 else
9687 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9688 sym.st_target_internal = h->target_internal;
9689
9690 /* Give the processor backend a chance to tweak the symbol value,
9691 and also to finish up anything that needs to be done for this
9692 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9693 forced local syms when non-shared is due to a historical quirk.
9694 STT_GNU_IFUNC symbol must go through PLT. */
9695 if ((h->type == STT_GNU_IFUNC
9696 && h->def_regular
9697 && !bfd_link_relocatable (flinfo->info))
9698 || ((h->dynindx != -1
9699 || h->forced_local)
9700 && ((bfd_link_pic (flinfo->info)
9701 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9702 || h->root.type != bfd_link_hash_undefweak))
9703 || !h->forced_local)
9704 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9705 {
9706 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9707 (flinfo->output_bfd, flinfo->info, h, &sym)))
9708 {
9709 eoinfo->failed = TRUE;
9710 return FALSE;
9711 }
9712 }
9713
9714 /* If we are marking the symbol as undefined, and there are no
9715 non-weak references to this symbol from a regular object, then
9716 mark the symbol as weak undefined; if there are non-weak
9717 references, mark the symbol as strong. We can't do this earlier,
9718 because it might not be marked as undefined until the
9719 finish_dynamic_symbol routine gets through with it. */
9720 if (sym.st_shndx == SHN_UNDEF
9721 && h->ref_regular
9722 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9723 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9724 {
9725 int bindtype;
9726 type = ELF_ST_TYPE (sym.st_info);
9727
9728 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9729 if (type == STT_GNU_IFUNC)
9730 type = STT_FUNC;
9731
9732 if (h->ref_regular_nonweak)
9733 bindtype = STB_GLOBAL;
9734 else
9735 bindtype = STB_WEAK;
9736 sym.st_info = ELF_ST_INFO (bindtype, type);
9737 }
9738
9739 /* If this is a symbol defined in a dynamic library, don't use the
9740 symbol size from the dynamic library. Relinking an executable
9741 against a new library may introduce gratuitous changes in the
9742 executable's symbols if we keep the size. */
9743 if (sym.st_shndx == SHN_UNDEF
9744 && !h->def_regular
9745 && h->def_dynamic)
9746 sym.st_size = 0;
9747
9748 /* If a non-weak symbol with non-default visibility is not defined
9749 locally, it is a fatal error. */
9750 if (!bfd_link_relocatable (flinfo->info)
9751 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9752 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9753 && h->root.type == bfd_link_hash_undefined
9754 && !h->def_regular)
9755 {
9756 const char *msg;
9757
9758 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9759 /* xgettext:c-format */
9760 msg = _("%B: protected symbol `%s' isn't defined");
9761 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9762 /* xgettext:c-format */
9763 msg = _("%B: internal symbol `%s' isn't defined");
9764 else
9765 /* xgettext:c-format */
9766 msg = _("%B: hidden symbol `%s' isn't defined");
9767 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9768 bfd_set_error (bfd_error_bad_value);
9769 eoinfo->failed = TRUE;
9770 return FALSE;
9771 }
9772
9773 /* If this symbol should be put in the .dynsym section, then put it
9774 there now. We already know the symbol index. We also fill in
9775 the entry in the .hash section. */
9776 if (elf_hash_table (flinfo->info)->dynsym != NULL
9777 && h->dynindx != -1
9778 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9779 {
9780 bfd_byte *esym;
9781
9782 /* Since there is no version information in the dynamic string,
9783 if there is no version info in symbol version section, we will
9784 have a run-time problem if not linking executable, referenced
9785 by shared library, or not bound locally. */
9786 if (h->verinfo.verdef == NULL
9787 && (!bfd_link_executable (flinfo->info)
9788 || h->ref_dynamic
9789 || !h->def_regular))
9790 {
9791 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9792
9793 if (p && p [1] != '\0')
9794 {
9795 _bfd_error_handler
9796 /* xgettext:c-format */
9797 (_("%B: No symbol version section for versioned symbol `%s'"),
9798 flinfo->output_bfd, h->root.root.string);
9799 eoinfo->failed = TRUE;
9800 return FALSE;
9801 }
9802 }
9803
9804 sym.st_name = h->dynstr_index;
9805 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9806 + h->dynindx * bed->s->sizeof_sym);
9807 if (!check_dynsym (flinfo->output_bfd, &sym))
9808 {
9809 eoinfo->failed = TRUE;
9810 return FALSE;
9811 }
9812 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9813
9814 if (flinfo->hash_sec != NULL)
9815 {
9816 size_t hash_entry_size;
9817 bfd_byte *bucketpos;
9818 bfd_vma chain;
9819 size_t bucketcount;
9820 size_t bucket;
9821
9822 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9823 bucket = h->u.elf_hash_value % bucketcount;
9824
9825 hash_entry_size
9826 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9827 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9828 + (bucket + 2) * hash_entry_size);
9829 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9830 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9831 bucketpos);
9832 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9833 ((bfd_byte *) flinfo->hash_sec->contents
9834 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9835 }
9836
9837 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9838 {
9839 Elf_Internal_Versym iversym;
9840 Elf_External_Versym *eversym;
9841
9842 if (!h->def_regular)
9843 {
9844 if (h->verinfo.verdef == NULL
9845 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9846 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9847 iversym.vs_vers = 0;
9848 else
9849 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9850 }
9851 else
9852 {
9853 if (h->verinfo.vertree == NULL)
9854 iversym.vs_vers = 1;
9855 else
9856 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9857 if (flinfo->info->create_default_symver)
9858 iversym.vs_vers++;
9859 }
9860
9861 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9862 defined locally. */
9863 if (h->versioned == versioned_hidden && h->def_regular)
9864 iversym.vs_vers |= VERSYM_HIDDEN;
9865
9866 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9867 eversym += h->dynindx;
9868 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9869 }
9870 }
9871
9872 /* If the symbol is undefined, and we didn't output it to .dynsym,
9873 strip it from .symtab too. Obviously we can't do this for
9874 relocatable output or when needed for --emit-relocs. */
9875 else if (input_sec == bfd_und_section_ptr
9876 && h->indx != -2
9877 && !bfd_link_relocatable (flinfo->info))
9878 return TRUE;
9879 /* Also strip others that we couldn't earlier due to dynamic symbol
9880 processing. */
9881 if (strip)
9882 return TRUE;
9883 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9884 return TRUE;
9885
9886 /* Output a FILE symbol so that following locals are not associated
9887 with the wrong input file. We need one for forced local symbols
9888 if we've seen more than one FILE symbol or when we have exactly
9889 one FILE symbol but global symbols are present in a file other
9890 than the one with the FILE symbol. We also need one if linker
9891 defined symbols are present. In practice these conditions are
9892 always met, so just emit the FILE symbol unconditionally. */
9893 if (eoinfo->localsyms
9894 && !eoinfo->file_sym_done
9895 && eoinfo->flinfo->filesym_count != 0)
9896 {
9897 Elf_Internal_Sym fsym;
9898
9899 memset (&fsym, 0, sizeof (fsym));
9900 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9901 fsym.st_shndx = SHN_ABS;
9902 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9903 bfd_und_section_ptr, NULL))
9904 return FALSE;
9905
9906 eoinfo->file_sym_done = TRUE;
9907 }
9908
9909 indx = bfd_get_symcount (flinfo->output_bfd);
9910 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9911 input_sec, h);
9912 if (ret == 0)
9913 {
9914 eoinfo->failed = TRUE;
9915 return FALSE;
9916 }
9917 else if (ret == 1)
9918 h->indx = indx;
9919 else if (h->indx == -2)
9920 abort();
9921
9922 return TRUE;
9923 }
9924
9925 /* Return TRUE if special handling is done for relocs in SEC against
9926 symbols defined in discarded sections. */
9927
9928 static bfd_boolean
9929 elf_section_ignore_discarded_relocs (asection *sec)
9930 {
9931 const struct elf_backend_data *bed;
9932
9933 switch (sec->sec_info_type)
9934 {
9935 case SEC_INFO_TYPE_STABS:
9936 case SEC_INFO_TYPE_EH_FRAME:
9937 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9938 return TRUE;
9939 default:
9940 break;
9941 }
9942
9943 bed = get_elf_backend_data (sec->owner);
9944 if (bed->elf_backend_ignore_discarded_relocs != NULL
9945 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9946 return TRUE;
9947
9948 return FALSE;
9949 }
9950
9951 /* Return a mask saying how ld should treat relocations in SEC against
9952 symbols defined in discarded sections. If this function returns
9953 COMPLAIN set, ld will issue a warning message. If this function
9954 returns PRETEND set, and the discarded section was link-once and the
9955 same size as the kept link-once section, ld will pretend that the
9956 symbol was actually defined in the kept section. Otherwise ld will
9957 zero the reloc (at least that is the intent, but some cooperation by
9958 the target dependent code is needed, particularly for REL targets). */
9959
9960 unsigned int
9961 _bfd_elf_default_action_discarded (asection *sec)
9962 {
9963 if (sec->flags & SEC_DEBUGGING)
9964 return PRETEND;
9965
9966 if (strcmp (".eh_frame", sec->name) == 0)
9967 return 0;
9968
9969 if (strcmp (".gcc_except_table", sec->name) == 0)
9970 return 0;
9971
9972 return COMPLAIN | PRETEND;
9973 }
9974
9975 /* Find a match between a section and a member of a section group. */
9976
9977 static asection *
9978 match_group_member (asection *sec, asection *group,
9979 struct bfd_link_info *info)
9980 {
9981 asection *first = elf_next_in_group (group);
9982 asection *s = first;
9983
9984 while (s != NULL)
9985 {
9986 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9987 return s;
9988
9989 s = elf_next_in_group (s);
9990 if (s == first)
9991 break;
9992 }
9993
9994 return NULL;
9995 }
9996
9997 /* Check if the kept section of a discarded section SEC can be used
9998 to replace it. Return the replacement if it is OK. Otherwise return
9999 NULL. */
10000
10001 asection *
10002 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10003 {
10004 asection *kept;
10005
10006 kept = sec->kept_section;
10007 if (kept != NULL)
10008 {
10009 if ((kept->flags & SEC_GROUP) != 0)
10010 kept = match_group_member (sec, kept, info);
10011 if (kept != NULL
10012 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10013 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10014 kept = NULL;
10015 sec->kept_section = kept;
10016 }
10017 return kept;
10018 }
10019
10020 /* Link an input file into the linker output file. This function
10021 handles all the sections and relocations of the input file at once.
10022 This is so that we only have to read the local symbols once, and
10023 don't have to keep them in memory. */
10024
10025 static bfd_boolean
10026 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10027 {
10028 int (*relocate_section)
10029 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10030 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10031 bfd *output_bfd;
10032 Elf_Internal_Shdr *symtab_hdr;
10033 size_t locsymcount;
10034 size_t extsymoff;
10035 Elf_Internal_Sym *isymbuf;
10036 Elf_Internal_Sym *isym;
10037 Elf_Internal_Sym *isymend;
10038 long *pindex;
10039 asection **ppsection;
10040 asection *o;
10041 const struct elf_backend_data *bed;
10042 struct elf_link_hash_entry **sym_hashes;
10043 bfd_size_type address_size;
10044 bfd_vma r_type_mask;
10045 int r_sym_shift;
10046 bfd_boolean have_file_sym = FALSE;
10047
10048 output_bfd = flinfo->output_bfd;
10049 bed = get_elf_backend_data (output_bfd);
10050 relocate_section = bed->elf_backend_relocate_section;
10051
10052 /* If this is a dynamic object, we don't want to do anything here:
10053 we don't want the local symbols, and we don't want the section
10054 contents. */
10055 if ((input_bfd->flags & DYNAMIC) != 0)
10056 return TRUE;
10057
10058 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10059 if (elf_bad_symtab (input_bfd))
10060 {
10061 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10062 extsymoff = 0;
10063 }
10064 else
10065 {
10066 locsymcount = symtab_hdr->sh_info;
10067 extsymoff = symtab_hdr->sh_info;
10068 }
10069
10070 /* Read the local symbols. */
10071 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10072 if (isymbuf == NULL && locsymcount != 0)
10073 {
10074 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10075 flinfo->internal_syms,
10076 flinfo->external_syms,
10077 flinfo->locsym_shndx);
10078 if (isymbuf == NULL)
10079 return FALSE;
10080 }
10081
10082 /* Find local symbol sections and adjust values of symbols in
10083 SEC_MERGE sections. Write out those local symbols we know are
10084 going into the output file. */
10085 isymend = isymbuf + locsymcount;
10086 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10087 isym < isymend;
10088 isym++, pindex++, ppsection++)
10089 {
10090 asection *isec;
10091 const char *name;
10092 Elf_Internal_Sym osym;
10093 long indx;
10094 int ret;
10095
10096 *pindex = -1;
10097
10098 if (elf_bad_symtab (input_bfd))
10099 {
10100 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10101 {
10102 *ppsection = NULL;
10103 continue;
10104 }
10105 }
10106
10107 if (isym->st_shndx == SHN_UNDEF)
10108 isec = bfd_und_section_ptr;
10109 else if (isym->st_shndx == SHN_ABS)
10110 isec = bfd_abs_section_ptr;
10111 else if (isym->st_shndx == SHN_COMMON)
10112 isec = bfd_com_section_ptr;
10113 else
10114 {
10115 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10116 if (isec == NULL)
10117 {
10118 /* Don't attempt to output symbols with st_shnx in the
10119 reserved range other than SHN_ABS and SHN_COMMON. */
10120 *ppsection = NULL;
10121 continue;
10122 }
10123 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10124 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10125 isym->st_value =
10126 _bfd_merged_section_offset (output_bfd, &isec,
10127 elf_section_data (isec)->sec_info,
10128 isym->st_value);
10129 }
10130
10131 *ppsection = isec;
10132
10133 /* Don't output the first, undefined, symbol. In fact, don't
10134 output any undefined local symbol. */
10135 if (isec == bfd_und_section_ptr)
10136 continue;
10137
10138 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10139 {
10140 /* We never output section symbols. Instead, we use the
10141 section symbol of the corresponding section in the output
10142 file. */
10143 continue;
10144 }
10145
10146 /* If we are stripping all symbols, we don't want to output this
10147 one. */
10148 if (flinfo->info->strip == strip_all)
10149 continue;
10150
10151 /* If we are discarding all local symbols, we don't want to
10152 output this one. If we are generating a relocatable output
10153 file, then some of the local symbols may be required by
10154 relocs; we output them below as we discover that they are
10155 needed. */
10156 if (flinfo->info->discard == discard_all)
10157 continue;
10158
10159 /* If this symbol is defined in a section which we are
10160 discarding, we don't need to keep it. */
10161 if (isym->st_shndx != SHN_UNDEF
10162 && isym->st_shndx < SHN_LORESERVE
10163 && bfd_section_removed_from_list (output_bfd,
10164 isec->output_section))
10165 continue;
10166
10167 /* Get the name of the symbol. */
10168 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10169 isym->st_name);
10170 if (name == NULL)
10171 return FALSE;
10172
10173 /* See if we are discarding symbols with this name. */
10174 if ((flinfo->info->strip == strip_some
10175 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10176 == NULL))
10177 || (((flinfo->info->discard == discard_sec_merge
10178 && (isec->flags & SEC_MERGE)
10179 && !bfd_link_relocatable (flinfo->info))
10180 || flinfo->info->discard == discard_l)
10181 && bfd_is_local_label_name (input_bfd, name)))
10182 continue;
10183
10184 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10185 {
10186 if (input_bfd->lto_output)
10187 /* -flto puts a temp file name here. This means builds
10188 are not reproducible. Discard the symbol. */
10189 continue;
10190 have_file_sym = TRUE;
10191 flinfo->filesym_count += 1;
10192 }
10193 if (!have_file_sym)
10194 {
10195 /* In the absence of debug info, bfd_find_nearest_line uses
10196 FILE symbols to determine the source file for local
10197 function symbols. Provide a FILE symbol here if input
10198 files lack such, so that their symbols won't be
10199 associated with a previous input file. It's not the
10200 source file, but the best we can do. */
10201 have_file_sym = TRUE;
10202 flinfo->filesym_count += 1;
10203 memset (&osym, 0, sizeof (osym));
10204 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10205 osym.st_shndx = SHN_ABS;
10206 if (!elf_link_output_symstrtab (flinfo,
10207 (input_bfd->lto_output ? NULL
10208 : input_bfd->filename),
10209 &osym, bfd_abs_section_ptr,
10210 NULL))
10211 return FALSE;
10212 }
10213
10214 osym = *isym;
10215
10216 /* Adjust the section index for the output file. */
10217 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10218 isec->output_section);
10219 if (osym.st_shndx == SHN_BAD)
10220 return FALSE;
10221
10222 /* ELF symbols in relocatable files are section relative, but
10223 in executable files they are virtual addresses. Note that
10224 this code assumes that all ELF sections have an associated
10225 BFD section with a reasonable value for output_offset; below
10226 we assume that they also have a reasonable value for
10227 output_section. Any special sections must be set up to meet
10228 these requirements. */
10229 osym.st_value += isec->output_offset;
10230 if (!bfd_link_relocatable (flinfo->info))
10231 {
10232 osym.st_value += isec->output_section->vma;
10233 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10234 {
10235 /* STT_TLS symbols are relative to PT_TLS segment base. */
10236 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10237 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10238 }
10239 }
10240
10241 indx = bfd_get_symcount (output_bfd);
10242 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10243 if (ret == 0)
10244 return FALSE;
10245 else if (ret == 1)
10246 *pindex = indx;
10247 }
10248
10249 if (bed->s->arch_size == 32)
10250 {
10251 r_type_mask = 0xff;
10252 r_sym_shift = 8;
10253 address_size = 4;
10254 }
10255 else
10256 {
10257 r_type_mask = 0xffffffff;
10258 r_sym_shift = 32;
10259 address_size = 8;
10260 }
10261
10262 /* Relocate the contents of each section. */
10263 sym_hashes = elf_sym_hashes (input_bfd);
10264 for (o = input_bfd->sections; o != NULL; o = o->next)
10265 {
10266 bfd_byte *contents;
10267
10268 if (! o->linker_mark)
10269 {
10270 /* This section was omitted from the link. */
10271 continue;
10272 }
10273
10274 if (bfd_link_relocatable (flinfo->info)
10275 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10276 {
10277 /* Deal with the group signature symbol. */
10278 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10279 unsigned long symndx = sec_data->this_hdr.sh_info;
10280 asection *osec = o->output_section;
10281
10282 if (symndx >= locsymcount
10283 || (elf_bad_symtab (input_bfd)
10284 && flinfo->sections[symndx] == NULL))
10285 {
10286 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10287 while (h->root.type == bfd_link_hash_indirect
10288 || h->root.type == bfd_link_hash_warning)
10289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10290 /* Arrange for symbol to be output. */
10291 h->indx = -2;
10292 elf_section_data (osec)->this_hdr.sh_info = -2;
10293 }
10294 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10295 {
10296 /* We'll use the output section target_index. */
10297 asection *sec = flinfo->sections[symndx]->output_section;
10298 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10299 }
10300 else
10301 {
10302 if (flinfo->indices[symndx] == -1)
10303 {
10304 /* Otherwise output the local symbol now. */
10305 Elf_Internal_Sym sym = isymbuf[symndx];
10306 asection *sec = flinfo->sections[symndx]->output_section;
10307 const char *name;
10308 long indx;
10309 int ret;
10310
10311 name = bfd_elf_string_from_elf_section (input_bfd,
10312 symtab_hdr->sh_link,
10313 sym.st_name);
10314 if (name == NULL)
10315 return FALSE;
10316
10317 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10318 sec);
10319 if (sym.st_shndx == SHN_BAD)
10320 return FALSE;
10321
10322 sym.st_value += o->output_offset;
10323
10324 indx = bfd_get_symcount (output_bfd);
10325 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10326 NULL);
10327 if (ret == 0)
10328 return FALSE;
10329 else if (ret == 1)
10330 flinfo->indices[symndx] = indx;
10331 else
10332 abort ();
10333 }
10334 elf_section_data (osec)->this_hdr.sh_info
10335 = flinfo->indices[symndx];
10336 }
10337 }
10338
10339 if ((o->flags & SEC_HAS_CONTENTS) == 0
10340 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10341 continue;
10342
10343 if ((o->flags & SEC_LINKER_CREATED) != 0)
10344 {
10345 /* Section was created by _bfd_elf_link_create_dynamic_sections
10346 or somesuch. */
10347 continue;
10348 }
10349
10350 /* Get the contents of the section. They have been cached by a
10351 relaxation routine. Note that o is a section in an input
10352 file, so the contents field will not have been set by any of
10353 the routines which work on output files. */
10354 if (elf_section_data (o)->this_hdr.contents != NULL)
10355 {
10356 contents = elf_section_data (o)->this_hdr.contents;
10357 if (bed->caches_rawsize
10358 && o->rawsize != 0
10359 && o->rawsize < o->size)
10360 {
10361 memcpy (flinfo->contents, contents, o->rawsize);
10362 contents = flinfo->contents;
10363 }
10364 }
10365 else
10366 {
10367 contents = flinfo->contents;
10368 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10369 return FALSE;
10370 }
10371
10372 if ((o->flags & SEC_RELOC) != 0)
10373 {
10374 Elf_Internal_Rela *internal_relocs;
10375 Elf_Internal_Rela *rel, *relend;
10376 int action_discarded;
10377 int ret;
10378
10379 /* Get the swapped relocs. */
10380 internal_relocs
10381 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10382 flinfo->internal_relocs, FALSE);
10383 if (internal_relocs == NULL
10384 && o->reloc_count > 0)
10385 return FALSE;
10386
10387 /* We need to reverse-copy input .ctors/.dtors sections if
10388 they are placed in .init_array/.finit_array for output. */
10389 if (o->size > address_size
10390 && ((strncmp (o->name, ".ctors", 6) == 0
10391 && strcmp (o->output_section->name,
10392 ".init_array") == 0)
10393 || (strncmp (o->name, ".dtors", 6) == 0
10394 && strcmp (o->output_section->name,
10395 ".fini_array") == 0))
10396 && (o->name[6] == 0 || o->name[6] == '.'))
10397 {
10398 if (o->size != o->reloc_count * address_size)
10399 {
10400 _bfd_error_handler
10401 /* xgettext:c-format */
10402 (_("error: %B: size of section %A is not "
10403 "multiple of address size"),
10404 input_bfd, o);
10405 bfd_set_error (bfd_error_on_input);
10406 return FALSE;
10407 }
10408 o->flags |= SEC_ELF_REVERSE_COPY;
10409 }
10410
10411 action_discarded = -1;
10412 if (!elf_section_ignore_discarded_relocs (o))
10413 action_discarded = (*bed->action_discarded) (o);
10414
10415 /* Run through the relocs evaluating complex reloc symbols and
10416 looking for relocs against symbols from discarded sections
10417 or section symbols from removed link-once sections.
10418 Complain about relocs against discarded sections. Zero
10419 relocs against removed link-once sections. */
10420
10421 rel = internal_relocs;
10422 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10423 for ( ; rel < relend; rel++)
10424 {
10425 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10426 unsigned int s_type;
10427 asection **ps, *sec;
10428 struct elf_link_hash_entry *h = NULL;
10429 const char *sym_name;
10430
10431 if (r_symndx == STN_UNDEF)
10432 continue;
10433
10434 if (r_symndx >= locsymcount
10435 || (elf_bad_symtab (input_bfd)
10436 && flinfo->sections[r_symndx] == NULL))
10437 {
10438 h = sym_hashes[r_symndx - extsymoff];
10439
10440 /* Badly formatted input files can contain relocs that
10441 reference non-existant symbols. Check here so that
10442 we do not seg fault. */
10443 if (h == NULL)
10444 {
10445 char buffer [32];
10446
10447 sprintf_vma (buffer, rel->r_info);
10448 _bfd_error_handler
10449 /* xgettext:c-format */
10450 (_("error: %B contains a reloc (0x%s) for section %A "
10451 "that references a non-existent global symbol"),
10452 input_bfd, buffer, o);
10453 bfd_set_error (bfd_error_bad_value);
10454 return FALSE;
10455 }
10456
10457 while (h->root.type == bfd_link_hash_indirect
10458 || h->root.type == bfd_link_hash_warning)
10459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10460
10461 s_type = h->type;
10462
10463 /* If a plugin symbol is referenced from a non-IR file,
10464 mark the symbol as undefined. Note that the
10465 linker may attach linker created dynamic sections
10466 to the plugin bfd. Symbols defined in linker
10467 created sections are not plugin symbols. */
10468 if (h->root.non_ir_ref
10469 && (h->root.type == bfd_link_hash_defined
10470 || h->root.type == bfd_link_hash_defweak)
10471 && (h->root.u.def.section->flags
10472 & SEC_LINKER_CREATED) == 0
10473 && h->root.u.def.section->owner != NULL
10474 && (h->root.u.def.section->owner->flags
10475 & BFD_PLUGIN) != 0)
10476 {
10477 h->root.type = bfd_link_hash_undefined;
10478 h->root.u.undef.abfd = h->root.u.def.section->owner;
10479 }
10480
10481 ps = NULL;
10482 if (h->root.type == bfd_link_hash_defined
10483 || h->root.type == bfd_link_hash_defweak)
10484 ps = &h->root.u.def.section;
10485
10486 sym_name = h->root.root.string;
10487 }
10488 else
10489 {
10490 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10491
10492 s_type = ELF_ST_TYPE (sym->st_info);
10493 ps = &flinfo->sections[r_symndx];
10494 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10495 sym, *ps);
10496 }
10497
10498 if ((s_type == STT_RELC || s_type == STT_SRELC)
10499 && !bfd_link_relocatable (flinfo->info))
10500 {
10501 bfd_vma val;
10502 bfd_vma dot = (rel->r_offset
10503 + o->output_offset + o->output_section->vma);
10504 #ifdef DEBUG
10505 printf ("Encountered a complex symbol!");
10506 printf (" (input_bfd %s, section %s, reloc %ld\n",
10507 input_bfd->filename, o->name,
10508 (long) (rel - internal_relocs));
10509 printf (" symbol: idx %8.8lx, name %s\n",
10510 r_symndx, sym_name);
10511 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10512 (unsigned long) rel->r_info,
10513 (unsigned long) rel->r_offset);
10514 #endif
10515 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10516 isymbuf, locsymcount, s_type == STT_SRELC))
10517 return FALSE;
10518
10519 /* Symbol evaluated OK. Update to absolute value. */
10520 set_symbol_value (input_bfd, isymbuf, locsymcount,
10521 r_symndx, val);
10522 continue;
10523 }
10524
10525 if (action_discarded != -1 && ps != NULL)
10526 {
10527 /* Complain if the definition comes from a
10528 discarded section. */
10529 if ((sec = *ps) != NULL && discarded_section (sec))
10530 {
10531 BFD_ASSERT (r_symndx != STN_UNDEF);
10532 if (action_discarded & COMPLAIN)
10533 (*flinfo->info->callbacks->einfo)
10534 /* xgettext:c-format */
10535 (_("%X`%s' referenced in section `%A' of %B: "
10536 "defined in discarded section `%A' of %B\n"),
10537 sym_name, o, input_bfd, sec, sec->owner);
10538
10539 /* Try to do the best we can to support buggy old
10540 versions of gcc. Pretend that the symbol is
10541 really defined in the kept linkonce section.
10542 FIXME: This is quite broken. Modifying the
10543 symbol here means we will be changing all later
10544 uses of the symbol, not just in this section. */
10545 if (action_discarded & PRETEND)
10546 {
10547 asection *kept;
10548
10549 kept = _bfd_elf_check_kept_section (sec,
10550 flinfo->info);
10551 if (kept != NULL)
10552 {
10553 *ps = kept;
10554 continue;
10555 }
10556 }
10557 }
10558 }
10559 }
10560
10561 /* Relocate the section by invoking a back end routine.
10562
10563 The back end routine is responsible for adjusting the
10564 section contents as necessary, and (if using Rela relocs
10565 and generating a relocatable output file) adjusting the
10566 reloc addend as necessary.
10567
10568 The back end routine does not have to worry about setting
10569 the reloc address or the reloc symbol index.
10570
10571 The back end routine is given a pointer to the swapped in
10572 internal symbols, and can access the hash table entries
10573 for the external symbols via elf_sym_hashes (input_bfd).
10574
10575 When generating relocatable output, the back end routine
10576 must handle STB_LOCAL/STT_SECTION symbols specially. The
10577 output symbol is going to be a section symbol
10578 corresponding to the output section, which will require
10579 the addend to be adjusted. */
10580
10581 ret = (*relocate_section) (output_bfd, flinfo->info,
10582 input_bfd, o, contents,
10583 internal_relocs,
10584 isymbuf,
10585 flinfo->sections);
10586 if (!ret)
10587 return FALSE;
10588
10589 if (ret == 2
10590 || bfd_link_relocatable (flinfo->info)
10591 || flinfo->info->emitrelocations)
10592 {
10593 Elf_Internal_Rela *irela;
10594 Elf_Internal_Rela *irelaend, *irelamid;
10595 bfd_vma last_offset;
10596 struct elf_link_hash_entry **rel_hash;
10597 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10598 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10599 unsigned int next_erel;
10600 bfd_boolean rela_normal;
10601 struct bfd_elf_section_data *esdi, *esdo;
10602
10603 esdi = elf_section_data (o);
10604 esdo = elf_section_data (o->output_section);
10605 rela_normal = FALSE;
10606
10607 /* Adjust the reloc addresses and symbol indices. */
10608
10609 irela = internal_relocs;
10610 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10611 rel_hash = esdo->rel.hashes + esdo->rel.count;
10612 /* We start processing the REL relocs, if any. When we reach
10613 IRELAMID in the loop, we switch to the RELA relocs. */
10614 irelamid = irela;
10615 if (esdi->rel.hdr != NULL)
10616 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10617 * bed->s->int_rels_per_ext_rel);
10618 rel_hash_list = rel_hash;
10619 rela_hash_list = NULL;
10620 last_offset = o->output_offset;
10621 if (!bfd_link_relocatable (flinfo->info))
10622 last_offset += o->output_section->vma;
10623 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10624 {
10625 unsigned long r_symndx;
10626 asection *sec;
10627 Elf_Internal_Sym sym;
10628
10629 if (next_erel == bed->s->int_rels_per_ext_rel)
10630 {
10631 rel_hash++;
10632 next_erel = 0;
10633 }
10634
10635 if (irela == irelamid)
10636 {
10637 rel_hash = esdo->rela.hashes + esdo->rela.count;
10638 rela_hash_list = rel_hash;
10639 rela_normal = bed->rela_normal;
10640 }
10641
10642 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10643 flinfo->info, o,
10644 irela->r_offset);
10645 if (irela->r_offset >= (bfd_vma) -2)
10646 {
10647 /* This is a reloc for a deleted entry or somesuch.
10648 Turn it into an R_*_NONE reloc, at the same
10649 offset as the last reloc. elf_eh_frame.c and
10650 bfd_elf_discard_info rely on reloc offsets
10651 being ordered. */
10652 irela->r_offset = last_offset;
10653 irela->r_info = 0;
10654 irela->r_addend = 0;
10655 continue;
10656 }
10657
10658 irela->r_offset += o->output_offset;
10659
10660 /* Relocs in an executable have to be virtual addresses. */
10661 if (!bfd_link_relocatable (flinfo->info))
10662 irela->r_offset += o->output_section->vma;
10663
10664 last_offset = irela->r_offset;
10665
10666 r_symndx = irela->r_info >> r_sym_shift;
10667 if (r_symndx == STN_UNDEF)
10668 continue;
10669
10670 if (r_symndx >= locsymcount
10671 || (elf_bad_symtab (input_bfd)
10672 && flinfo->sections[r_symndx] == NULL))
10673 {
10674 struct elf_link_hash_entry *rh;
10675 unsigned long indx;
10676
10677 /* This is a reloc against a global symbol. We
10678 have not yet output all the local symbols, so
10679 we do not know the symbol index of any global
10680 symbol. We set the rel_hash entry for this
10681 reloc to point to the global hash table entry
10682 for this symbol. The symbol index is then
10683 set at the end of bfd_elf_final_link. */
10684 indx = r_symndx - extsymoff;
10685 rh = elf_sym_hashes (input_bfd)[indx];
10686 while (rh->root.type == bfd_link_hash_indirect
10687 || rh->root.type == bfd_link_hash_warning)
10688 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10689
10690 /* Setting the index to -2 tells
10691 elf_link_output_extsym that this symbol is
10692 used by a reloc. */
10693 BFD_ASSERT (rh->indx < 0);
10694 rh->indx = -2;
10695
10696 *rel_hash = rh;
10697
10698 continue;
10699 }
10700
10701 /* This is a reloc against a local symbol. */
10702
10703 *rel_hash = NULL;
10704 sym = isymbuf[r_symndx];
10705 sec = flinfo->sections[r_symndx];
10706 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10707 {
10708 /* I suppose the backend ought to fill in the
10709 section of any STT_SECTION symbol against a
10710 processor specific section. */
10711 r_symndx = STN_UNDEF;
10712 if (bfd_is_abs_section (sec))
10713 ;
10714 else if (sec == NULL || sec->owner == NULL)
10715 {
10716 bfd_set_error (bfd_error_bad_value);
10717 return FALSE;
10718 }
10719 else
10720 {
10721 asection *osec = sec->output_section;
10722
10723 /* If we have discarded a section, the output
10724 section will be the absolute section. In
10725 case of discarded SEC_MERGE sections, use
10726 the kept section. relocate_section should
10727 have already handled discarded linkonce
10728 sections. */
10729 if (bfd_is_abs_section (osec)
10730 && sec->kept_section != NULL
10731 && sec->kept_section->output_section != NULL)
10732 {
10733 osec = sec->kept_section->output_section;
10734 irela->r_addend -= osec->vma;
10735 }
10736
10737 if (!bfd_is_abs_section (osec))
10738 {
10739 r_symndx = osec->target_index;
10740 if (r_symndx == STN_UNDEF)
10741 {
10742 irela->r_addend += osec->vma;
10743 osec = _bfd_nearby_section (output_bfd, osec,
10744 osec->vma);
10745 irela->r_addend -= osec->vma;
10746 r_symndx = osec->target_index;
10747 }
10748 }
10749 }
10750
10751 /* Adjust the addend according to where the
10752 section winds up in the output section. */
10753 if (rela_normal)
10754 irela->r_addend += sec->output_offset;
10755 }
10756 else
10757 {
10758 if (flinfo->indices[r_symndx] == -1)
10759 {
10760 unsigned long shlink;
10761 const char *name;
10762 asection *osec;
10763 long indx;
10764
10765 if (flinfo->info->strip == strip_all)
10766 {
10767 /* You can't do ld -r -s. */
10768 bfd_set_error (bfd_error_invalid_operation);
10769 return FALSE;
10770 }
10771
10772 /* This symbol was skipped earlier, but
10773 since it is needed by a reloc, we
10774 must output it now. */
10775 shlink = symtab_hdr->sh_link;
10776 name = (bfd_elf_string_from_elf_section
10777 (input_bfd, shlink, sym.st_name));
10778 if (name == NULL)
10779 return FALSE;
10780
10781 osec = sec->output_section;
10782 sym.st_shndx =
10783 _bfd_elf_section_from_bfd_section (output_bfd,
10784 osec);
10785 if (sym.st_shndx == SHN_BAD)
10786 return FALSE;
10787
10788 sym.st_value += sec->output_offset;
10789 if (!bfd_link_relocatable (flinfo->info))
10790 {
10791 sym.st_value += osec->vma;
10792 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10793 {
10794 /* STT_TLS symbols are relative to PT_TLS
10795 segment base. */
10796 BFD_ASSERT (elf_hash_table (flinfo->info)
10797 ->tls_sec != NULL);
10798 sym.st_value -= (elf_hash_table (flinfo->info)
10799 ->tls_sec->vma);
10800 }
10801 }
10802
10803 indx = bfd_get_symcount (output_bfd);
10804 ret = elf_link_output_symstrtab (flinfo, name,
10805 &sym, sec,
10806 NULL);
10807 if (ret == 0)
10808 return FALSE;
10809 else if (ret == 1)
10810 flinfo->indices[r_symndx] = indx;
10811 else
10812 abort ();
10813 }
10814
10815 r_symndx = flinfo->indices[r_symndx];
10816 }
10817
10818 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10819 | (irela->r_info & r_type_mask));
10820 }
10821
10822 /* Swap out the relocs. */
10823 input_rel_hdr = esdi->rel.hdr;
10824 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10825 {
10826 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10827 input_rel_hdr,
10828 internal_relocs,
10829 rel_hash_list))
10830 return FALSE;
10831 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10832 * bed->s->int_rels_per_ext_rel);
10833 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10834 }
10835
10836 input_rela_hdr = esdi->rela.hdr;
10837 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10838 {
10839 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10840 input_rela_hdr,
10841 internal_relocs,
10842 rela_hash_list))
10843 return FALSE;
10844 }
10845 }
10846 }
10847
10848 /* Write out the modified section contents. */
10849 if (bed->elf_backend_write_section
10850 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10851 contents))
10852 {
10853 /* Section written out. */
10854 }
10855 else switch (o->sec_info_type)
10856 {
10857 case SEC_INFO_TYPE_STABS:
10858 if (! (_bfd_write_section_stabs
10859 (output_bfd,
10860 &elf_hash_table (flinfo->info)->stab_info,
10861 o, &elf_section_data (o)->sec_info, contents)))
10862 return FALSE;
10863 break;
10864 case SEC_INFO_TYPE_MERGE:
10865 if (! _bfd_write_merged_section (output_bfd, o,
10866 elf_section_data (o)->sec_info))
10867 return FALSE;
10868 break;
10869 case SEC_INFO_TYPE_EH_FRAME:
10870 {
10871 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10872 o, contents))
10873 return FALSE;
10874 }
10875 break;
10876 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10877 {
10878 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10879 flinfo->info,
10880 o, contents))
10881 return FALSE;
10882 }
10883 break;
10884 default:
10885 {
10886 if (! (o->flags & SEC_EXCLUDE))
10887 {
10888 file_ptr offset = (file_ptr) o->output_offset;
10889 bfd_size_type todo = o->size;
10890
10891 offset *= bfd_octets_per_byte (output_bfd);
10892
10893 if ((o->flags & SEC_ELF_REVERSE_COPY))
10894 {
10895 /* Reverse-copy input section to output. */
10896 do
10897 {
10898 todo -= address_size;
10899 if (! bfd_set_section_contents (output_bfd,
10900 o->output_section,
10901 contents + todo,
10902 offset,
10903 address_size))
10904 return FALSE;
10905 if (todo == 0)
10906 break;
10907 offset += address_size;
10908 }
10909 while (1);
10910 }
10911 else if (! bfd_set_section_contents (output_bfd,
10912 o->output_section,
10913 contents,
10914 offset, todo))
10915 return FALSE;
10916 }
10917 }
10918 break;
10919 }
10920 }
10921
10922 return TRUE;
10923 }
10924
10925 /* Generate a reloc when linking an ELF file. This is a reloc
10926 requested by the linker, and does not come from any input file. This
10927 is used to build constructor and destructor tables when linking
10928 with -Ur. */
10929
10930 static bfd_boolean
10931 elf_reloc_link_order (bfd *output_bfd,
10932 struct bfd_link_info *info,
10933 asection *output_section,
10934 struct bfd_link_order *link_order)
10935 {
10936 reloc_howto_type *howto;
10937 long indx;
10938 bfd_vma offset;
10939 bfd_vma addend;
10940 struct bfd_elf_section_reloc_data *reldata;
10941 struct elf_link_hash_entry **rel_hash_ptr;
10942 Elf_Internal_Shdr *rel_hdr;
10943 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10944 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10945 bfd_byte *erel;
10946 unsigned int i;
10947 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10948
10949 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10950 if (howto == NULL)
10951 {
10952 bfd_set_error (bfd_error_bad_value);
10953 return FALSE;
10954 }
10955
10956 addend = link_order->u.reloc.p->addend;
10957
10958 if (esdo->rel.hdr)
10959 reldata = &esdo->rel;
10960 else if (esdo->rela.hdr)
10961 reldata = &esdo->rela;
10962 else
10963 {
10964 reldata = NULL;
10965 BFD_ASSERT (0);
10966 }
10967
10968 /* Figure out the symbol index. */
10969 rel_hash_ptr = reldata->hashes + reldata->count;
10970 if (link_order->type == bfd_section_reloc_link_order)
10971 {
10972 indx = link_order->u.reloc.p->u.section->target_index;
10973 BFD_ASSERT (indx != 0);
10974 *rel_hash_ptr = NULL;
10975 }
10976 else
10977 {
10978 struct elf_link_hash_entry *h;
10979
10980 /* Treat a reloc against a defined symbol as though it were
10981 actually against the section. */
10982 h = ((struct elf_link_hash_entry *)
10983 bfd_wrapped_link_hash_lookup (output_bfd, info,
10984 link_order->u.reloc.p->u.name,
10985 FALSE, FALSE, TRUE));
10986 if (h != NULL
10987 && (h->root.type == bfd_link_hash_defined
10988 || h->root.type == bfd_link_hash_defweak))
10989 {
10990 asection *section;
10991
10992 section = h->root.u.def.section;
10993 indx = section->output_section->target_index;
10994 *rel_hash_ptr = NULL;
10995 /* It seems that we ought to add the symbol value to the
10996 addend here, but in practice it has already been added
10997 because it was passed to constructor_callback. */
10998 addend += section->output_section->vma + section->output_offset;
10999 }
11000 else if (h != NULL)
11001 {
11002 /* Setting the index to -2 tells elf_link_output_extsym that
11003 this symbol is used by a reloc. */
11004 h->indx = -2;
11005 *rel_hash_ptr = h;
11006 indx = 0;
11007 }
11008 else
11009 {
11010 (*info->callbacks->unattached_reloc)
11011 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11012 indx = 0;
11013 }
11014 }
11015
11016 /* If this is an inplace reloc, we must write the addend into the
11017 object file. */
11018 if (howto->partial_inplace && addend != 0)
11019 {
11020 bfd_size_type size;
11021 bfd_reloc_status_type rstat;
11022 bfd_byte *buf;
11023 bfd_boolean ok;
11024 const char *sym_name;
11025
11026 size = (bfd_size_type) bfd_get_reloc_size (howto);
11027 buf = (bfd_byte *) bfd_zmalloc (size);
11028 if (buf == NULL && size != 0)
11029 return FALSE;
11030 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11031 switch (rstat)
11032 {
11033 case bfd_reloc_ok:
11034 break;
11035
11036 default:
11037 case bfd_reloc_outofrange:
11038 abort ();
11039
11040 case bfd_reloc_overflow:
11041 if (link_order->type == bfd_section_reloc_link_order)
11042 sym_name = bfd_section_name (output_bfd,
11043 link_order->u.reloc.p->u.section);
11044 else
11045 sym_name = link_order->u.reloc.p->u.name;
11046 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11047 howto->name, addend, NULL, NULL,
11048 (bfd_vma) 0);
11049 break;
11050 }
11051
11052 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11053 link_order->offset
11054 * bfd_octets_per_byte (output_bfd),
11055 size);
11056 free (buf);
11057 if (! ok)
11058 return FALSE;
11059 }
11060
11061 /* The address of a reloc is relative to the section in a
11062 relocatable file, and is a virtual address in an executable
11063 file. */
11064 offset = link_order->offset;
11065 if (! bfd_link_relocatable (info))
11066 offset += output_section->vma;
11067
11068 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11069 {
11070 irel[i].r_offset = offset;
11071 irel[i].r_info = 0;
11072 irel[i].r_addend = 0;
11073 }
11074 if (bed->s->arch_size == 32)
11075 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11076 else
11077 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11078
11079 rel_hdr = reldata->hdr;
11080 erel = rel_hdr->contents;
11081 if (rel_hdr->sh_type == SHT_REL)
11082 {
11083 erel += reldata->count * bed->s->sizeof_rel;
11084 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11085 }
11086 else
11087 {
11088 irel[0].r_addend = addend;
11089 erel += reldata->count * bed->s->sizeof_rela;
11090 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11091 }
11092
11093 ++reldata->count;
11094
11095 return TRUE;
11096 }
11097
11098
11099 /* Get the output vma of the section pointed to by the sh_link field. */
11100
11101 static bfd_vma
11102 elf_get_linked_section_vma (struct bfd_link_order *p)
11103 {
11104 Elf_Internal_Shdr **elf_shdrp;
11105 asection *s;
11106 int elfsec;
11107
11108 s = p->u.indirect.section;
11109 elf_shdrp = elf_elfsections (s->owner);
11110 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11111 elfsec = elf_shdrp[elfsec]->sh_link;
11112 /* PR 290:
11113 The Intel C compiler generates SHT_IA_64_UNWIND with
11114 SHF_LINK_ORDER. But it doesn't set the sh_link or
11115 sh_info fields. Hence we could get the situation
11116 where elfsec is 0. */
11117 if (elfsec == 0)
11118 {
11119 const struct elf_backend_data *bed
11120 = get_elf_backend_data (s->owner);
11121 if (bed->link_order_error_handler)
11122 bed->link_order_error_handler
11123 /* xgettext:c-format */
11124 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11125 return 0;
11126 }
11127 else
11128 {
11129 s = elf_shdrp[elfsec]->bfd_section;
11130 return s->output_section->vma + s->output_offset;
11131 }
11132 }
11133
11134
11135 /* Compare two sections based on the locations of the sections they are
11136 linked to. Used by elf_fixup_link_order. */
11137
11138 static int
11139 compare_link_order (const void * a, const void * b)
11140 {
11141 bfd_vma apos;
11142 bfd_vma bpos;
11143
11144 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11145 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11146 if (apos < bpos)
11147 return -1;
11148 return apos > bpos;
11149 }
11150
11151
11152 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11153 order as their linked sections. Returns false if this could not be done
11154 because an output section includes both ordered and unordered
11155 sections. Ideally we'd do this in the linker proper. */
11156
11157 static bfd_boolean
11158 elf_fixup_link_order (bfd *abfd, asection *o)
11159 {
11160 int seen_linkorder;
11161 int seen_other;
11162 int n;
11163 struct bfd_link_order *p;
11164 bfd *sub;
11165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11166 unsigned elfsec;
11167 struct bfd_link_order **sections;
11168 asection *s, *other_sec, *linkorder_sec;
11169 bfd_vma offset;
11170
11171 other_sec = NULL;
11172 linkorder_sec = NULL;
11173 seen_other = 0;
11174 seen_linkorder = 0;
11175 for (p = o->map_head.link_order; p != NULL; p = p->next)
11176 {
11177 if (p->type == bfd_indirect_link_order)
11178 {
11179 s = p->u.indirect.section;
11180 sub = s->owner;
11181 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11182 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11183 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11184 && elfsec < elf_numsections (sub)
11185 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11186 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11187 {
11188 seen_linkorder++;
11189 linkorder_sec = s;
11190 }
11191 else
11192 {
11193 seen_other++;
11194 other_sec = s;
11195 }
11196 }
11197 else
11198 seen_other++;
11199
11200 if (seen_other && seen_linkorder)
11201 {
11202 if (other_sec && linkorder_sec)
11203 _bfd_error_handler
11204 /* xgettext:c-format */
11205 (_("%A has both ordered [`%A' in %B] "
11206 "and unordered [`%A' in %B] sections"),
11207 o, linkorder_sec, linkorder_sec->owner,
11208 other_sec, other_sec->owner);
11209 else
11210 _bfd_error_handler
11211 (_("%A has both ordered and unordered sections"), o);
11212 bfd_set_error (bfd_error_bad_value);
11213 return FALSE;
11214 }
11215 }
11216
11217 if (!seen_linkorder)
11218 return TRUE;
11219
11220 sections = (struct bfd_link_order **)
11221 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11222 if (sections == NULL)
11223 return FALSE;
11224 seen_linkorder = 0;
11225
11226 for (p = o->map_head.link_order; p != NULL; p = p->next)
11227 {
11228 sections[seen_linkorder++] = p;
11229 }
11230 /* Sort the input sections in the order of their linked section. */
11231 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11232 compare_link_order);
11233
11234 /* Change the offsets of the sections. */
11235 offset = 0;
11236 for (n = 0; n < seen_linkorder; n++)
11237 {
11238 s = sections[n]->u.indirect.section;
11239 offset &= ~(bfd_vma) 0 << s->alignment_power;
11240 s->output_offset = offset / bfd_octets_per_byte (abfd);
11241 sections[n]->offset = offset;
11242 offset += sections[n]->size;
11243 }
11244
11245 free (sections);
11246 return TRUE;
11247 }
11248
11249 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11250 Returns TRUE upon success, FALSE otherwise. */
11251
11252 static bfd_boolean
11253 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11254 {
11255 bfd_boolean ret = FALSE;
11256 bfd *implib_bfd;
11257 const struct elf_backend_data *bed;
11258 flagword flags;
11259 enum bfd_architecture arch;
11260 unsigned int mach;
11261 asymbol **sympp = NULL;
11262 long symsize;
11263 long symcount;
11264 long src_count;
11265 elf_symbol_type *osymbuf;
11266
11267 implib_bfd = info->out_implib_bfd;
11268 bed = get_elf_backend_data (abfd);
11269
11270 if (!bfd_set_format (implib_bfd, bfd_object))
11271 return FALSE;
11272
11273 flags = bfd_get_file_flags (abfd);
11274 flags &= ~HAS_RELOC;
11275 if (!bfd_set_start_address (implib_bfd, 0)
11276 || !bfd_set_file_flags (implib_bfd, flags))
11277 return FALSE;
11278
11279 /* Copy architecture of output file to import library file. */
11280 arch = bfd_get_arch (abfd);
11281 mach = bfd_get_mach (abfd);
11282 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11283 && (abfd->target_defaulted
11284 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11285 return FALSE;
11286
11287 /* Get symbol table size. */
11288 symsize = bfd_get_symtab_upper_bound (abfd);
11289 if (symsize < 0)
11290 return FALSE;
11291
11292 /* Read in the symbol table. */
11293 sympp = (asymbol **) xmalloc (symsize);
11294 symcount = bfd_canonicalize_symtab (abfd, sympp);
11295 if (symcount < 0)
11296 goto free_sym_buf;
11297
11298 /* Allow the BFD backend to copy any private header data it
11299 understands from the output BFD to the import library BFD. */
11300 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11301 goto free_sym_buf;
11302
11303 /* Filter symbols to appear in the import library. */
11304 if (bed->elf_backend_filter_implib_symbols)
11305 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11306 symcount);
11307 else
11308 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11309 if (symcount == 0)
11310 {
11311 bfd_set_error (bfd_error_no_symbols);
11312 _bfd_error_handler (_("%B: no symbol found for import library"),
11313 implib_bfd);
11314 goto free_sym_buf;
11315 }
11316
11317
11318 /* Make symbols absolute. */
11319 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11320 sizeof (*osymbuf));
11321 for (src_count = 0; src_count < symcount; src_count++)
11322 {
11323 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11324 sizeof (*osymbuf));
11325 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11326 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11327 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11328 osymbuf[src_count].internal_elf_sym.st_value =
11329 osymbuf[src_count].symbol.value;
11330 sympp[src_count] = &osymbuf[src_count].symbol;
11331 }
11332
11333 bfd_set_symtab (implib_bfd, sympp, symcount);
11334
11335 /* Allow the BFD backend to copy any private data it understands
11336 from the output BFD to the import library BFD. This is done last
11337 to permit the routine to look at the filtered symbol table. */
11338 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11339 goto free_sym_buf;
11340
11341 if (!bfd_close (implib_bfd))
11342 goto free_sym_buf;
11343
11344 ret = TRUE;
11345
11346 free_sym_buf:
11347 free (sympp);
11348 return ret;
11349 }
11350
11351 static void
11352 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11353 {
11354 asection *o;
11355
11356 if (flinfo->symstrtab != NULL)
11357 _bfd_elf_strtab_free (flinfo->symstrtab);
11358 if (flinfo->contents != NULL)
11359 free (flinfo->contents);
11360 if (flinfo->external_relocs != NULL)
11361 free (flinfo->external_relocs);
11362 if (flinfo->internal_relocs != NULL)
11363 free (flinfo->internal_relocs);
11364 if (flinfo->external_syms != NULL)
11365 free (flinfo->external_syms);
11366 if (flinfo->locsym_shndx != NULL)
11367 free (flinfo->locsym_shndx);
11368 if (flinfo->internal_syms != NULL)
11369 free (flinfo->internal_syms);
11370 if (flinfo->indices != NULL)
11371 free (flinfo->indices);
11372 if (flinfo->sections != NULL)
11373 free (flinfo->sections);
11374 if (flinfo->symshndxbuf != NULL)
11375 free (flinfo->symshndxbuf);
11376 for (o = obfd->sections; o != NULL; o = o->next)
11377 {
11378 struct bfd_elf_section_data *esdo = elf_section_data (o);
11379 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11380 free (esdo->rel.hashes);
11381 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11382 free (esdo->rela.hashes);
11383 }
11384 }
11385
11386 /* Do the final step of an ELF link. */
11387
11388 bfd_boolean
11389 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11390 {
11391 bfd_boolean dynamic;
11392 bfd_boolean emit_relocs;
11393 bfd *dynobj;
11394 struct elf_final_link_info flinfo;
11395 asection *o;
11396 struct bfd_link_order *p;
11397 bfd *sub;
11398 bfd_size_type max_contents_size;
11399 bfd_size_type max_external_reloc_size;
11400 bfd_size_type max_internal_reloc_count;
11401 bfd_size_type max_sym_count;
11402 bfd_size_type max_sym_shndx_count;
11403 Elf_Internal_Sym elfsym;
11404 unsigned int i;
11405 Elf_Internal_Shdr *symtab_hdr;
11406 Elf_Internal_Shdr *symtab_shndx_hdr;
11407 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11408 struct elf_outext_info eoinfo;
11409 bfd_boolean merged;
11410 size_t relativecount = 0;
11411 asection *reldyn = 0;
11412 bfd_size_type amt;
11413 asection *attr_section = NULL;
11414 bfd_vma attr_size = 0;
11415 const char *std_attrs_section;
11416 struct elf_link_hash_table *htab = elf_hash_table (info);
11417
11418 if (!is_elf_hash_table (htab))
11419 return FALSE;
11420
11421 if (bfd_link_pic (info))
11422 abfd->flags |= DYNAMIC;
11423
11424 dynamic = htab->dynamic_sections_created;
11425 dynobj = htab->dynobj;
11426
11427 emit_relocs = (bfd_link_relocatable (info)
11428 || info->emitrelocations);
11429
11430 flinfo.info = info;
11431 flinfo.output_bfd = abfd;
11432 flinfo.symstrtab = _bfd_elf_strtab_init ();
11433 if (flinfo.symstrtab == NULL)
11434 return FALSE;
11435
11436 if (! dynamic)
11437 {
11438 flinfo.hash_sec = NULL;
11439 flinfo.symver_sec = NULL;
11440 }
11441 else
11442 {
11443 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11444 /* Note that dynsym_sec can be NULL (on VMS). */
11445 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11446 /* Note that it is OK if symver_sec is NULL. */
11447 }
11448
11449 flinfo.contents = NULL;
11450 flinfo.external_relocs = NULL;
11451 flinfo.internal_relocs = NULL;
11452 flinfo.external_syms = NULL;
11453 flinfo.locsym_shndx = NULL;
11454 flinfo.internal_syms = NULL;
11455 flinfo.indices = NULL;
11456 flinfo.sections = NULL;
11457 flinfo.symshndxbuf = NULL;
11458 flinfo.filesym_count = 0;
11459
11460 /* The object attributes have been merged. Remove the input
11461 sections from the link, and set the contents of the output
11462 secton. */
11463 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11464 for (o = abfd->sections; o != NULL; o = o->next)
11465 {
11466 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11467 || strcmp (o->name, ".gnu.attributes") == 0)
11468 {
11469 for (p = o->map_head.link_order; p != NULL; p = p->next)
11470 {
11471 asection *input_section;
11472
11473 if (p->type != bfd_indirect_link_order)
11474 continue;
11475 input_section = p->u.indirect.section;
11476 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11477 elf_link_input_bfd ignores this section. */
11478 input_section->flags &= ~SEC_HAS_CONTENTS;
11479 }
11480
11481 attr_size = bfd_elf_obj_attr_size (abfd);
11482 if (attr_size)
11483 {
11484 bfd_set_section_size (abfd, o, attr_size);
11485 attr_section = o;
11486 /* Skip this section later on. */
11487 o->map_head.link_order = NULL;
11488 }
11489 else
11490 o->flags |= SEC_EXCLUDE;
11491 }
11492 }
11493
11494 /* Count up the number of relocations we will output for each output
11495 section, so that we know the sizes of the reloc sections. We
11496 also figure out some maximum sizes. */
11497 max_contents_size = 0;
11498 max_external_reloc_size = 0;
11499 max_internal_reloc_count = 0;
11500 max_sym_count = 0;
11501 max_sym_shndx_count = 0;
11502 merged = FALSE;
11503 for (o = abfd->sections; o != NULL; o = o->next)
11504 {
11505 struct bfd_elf_section_data *esdo = elf_section_data (o);
11506 o->reloc_count = 0;
11507
11508 for (p = o->map_head.link_order; p != NULL; p = p->next)
11509 {
11510 unsigned int reloc_count = 0;
11511 unsigned int additional_reloc_count = 0;
11512 struct bfd_elf_section_data *esdi = NULL;
11513
11514 if (p->type == bfd_section_reloc_link_order
11515 || p->type == bfd_symbol_reloc_link_order)
11516 reloc_count = 1;
11517 else if (p->type == bfd_indirect_link_order)
11518 {
11519 asection *sec;
11520
11521 sec = p->u.indirect.section;
11522
11523 /* Mark all sections which are to be included in the
11524 link. This will normally be every section. We need
11525 to do this so that we can identify any sections which
11526 the linker has decided to not include. */
11527 sec->linker_mark = TRUE;
11528
11529 if (sec->flags & SEC_MERGE)
11530 merged = TRUE;
11531
11532 if (sec->rawsize > max_contents_size)
11533 max_contents_size = sec->rawsize;
11534 if (sec->size > max_contents_size)
11535 max_contents_size = sec->size;
11536
11537 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11538 && (sec->owner->flags & DYNAMIC) == 0)
11539 {
11540 size_t sym_count;
11541
11542 /* We are interested in just local symbols, not all
11543 symbols. */
11544 if (elf_bad_symtab (sec->owner))
11545 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11546 / bed->s->sizeof_sym);
11547 else
11548 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11549
11550 if (sym_count > max_sym_count)
11551 max_sym_count = sym_count;
11552
11553 if (sym_count > max_sym_shndx_count
11554 && elf_symtab_shndx_list (sec->owner) != NULL)
11555 max_sym_shndx_count = sym_count;
11556
11557 if (esdo->this_hdr.sh_type == SHT_REL
11558 || esdo->this_hdr.sh_type == SHT_RELA)
11559 /* Some backends use reloc_count in relocation sections
11560 to count particular types of relocs. Of course,
11561 reloc sections themselves can't have relocations. */
11562 ;
11563 else if (emit_relocs)
11564 {
11565 reloc_count = sec->reloc_count;
11566 if (bed->elf_backend_count_additional_relocs)
11567 {
11568 int c;
11569 c = (*bed->elf_backend_count_additional_relocs) (sec);
11570 additional_reloc_count += c;
11571 }
11572 }
11573 else if (bed->elf_backend_count_relocs)
11574 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11575
11576 esdi = elf_section_data (sec);
11577
11578 if ((sec->flags & SEC_RELOC) != 0)
11579 {
11580 size_t ext_size = 0;
11581
11582 if (esdi->rel.hdr != NULL)
11583 ext_size = esdi->rel.hdr->sh_size;
11584 if (esdi->rela.hdr != NULL)
11585 ext_size += esdi->rela.hdr->sh_size;
11586
11587 if (ext_size > max_external_reloc_size)
11588 max_external_reloc_size = ext_size;
11589 if (sec->reloc_count > max_internal_reloc_count)
11590 max_internal_reloc_count = sec->reloc_count;
11591 }
11592 }
11593 }
11594
11595 if (reloc_count == 0)
11596 continue;
11597
11598 reloc_count += additional_reloc_count;
11599 o->reloc_count += reloc_count;
11600
11601 if (p->type == bfd_indirect_link_order && emit_relocs)
11602 {
11603 if (esdi->rel.hdr)
11604 {
11605 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11606 esdo->rel.count += additional_reloc_count;
11607 }
11608 if (esdi->rela.hdr)
11609 {
11610 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11611 esdo->rela.count += additional_reloc_count;
11612 }
11613 }
11614 else
11615 {
11616 if (o->use_rela_p)
11617 esdo->rela.count += reloc_count;
11618 else
11619 esdo->rel.count += reloc_count;
11620 }
11621 }
11622
11623 if (o->reloc_count > 0)
11624 o->flags |= SEC_RELOC;
11625 else
11626 {
11627 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11628 set it (this is probably a bug) and if it is set
11629 assign_section_numbers will create a reloc section. */
11630 o->flags &=~ SEC_RELOC;
11631 }
11632
11633 /* If the SEC_ALLOC flag is not set, force the section VMA to
11634 zero. This is done in elf_fake_sections as well, but forcing
11635 the VMA to 0 here will ensure that relocs against these
11636 sections are handled correctly. */
11637 if ((o->flags & SEC_ALLOC) == 0
11638 && ! o->user_set_vma)
11639 o->vma = 0;
11640 }
11641
11642 if (! bfd_link_relocatable (info) && merged)
11643 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11644
11645 /* Figure out the file positions for everything but the symbol table
11646 and the relocs. We set symcount to force assign_section_numbers
11647 to create a symbol table. */
11648 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11649 BFD_ASSERT (! abfd->output_has_begun);
11650 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11651 goto error_return;
11652
11653 /* Set sizes, and assign file positions for reloc sections. */
11654 for (o = abfd->sections; o != NULL; o = o->next)
11655 {
11656 struct bfd_elf_section_data *esdo = elf_section_data (o);
11657 if ((o->flags & SEC_RELOC) != 0)
11658 {
11659 if (esdo->rel.hdr
11660 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11661 goto error_return;
11662
11663 if (esdo->rela.hdr
11664 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11665 goto error_return;
11666 }
11667
11668 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11669 to count upwards while actually outputting the relocations. */
11670 esdo->rel.count = 0;
11671 esdo->rela.count = 0;
11672
11673 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11674 {
11675 /* Cache the section contents so that they can be compressed
11676 later. Use bfd_malloc since it will be freed by
11677 bfd_compress_section_contents. */
11678 unsigned char *contents = esdo->this_hdr.contents;
11679 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11680 abort ();
11681 contents
11682 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11683 if (contents == NULL)
11684 goto error_return;
11685 esdo->this_hdr.contents = contents;
11686 }
11687 }
11688
11689 /* We have now assigned file positions for all the sections except
11690 .symtab, .strtab, and non-loaded reloc sections. We start the
11691 .symtab section at the current file position, and write directly
11692 to it. We build the .strtab section in memory. */
11693 bfd_get_symcount (abfd) = 0;
11694 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11695 /* sh_name is set in prep_headers. */
11696 symtab_hdr->sh_type = SHT_SYMTAB;
11697 /* sh_flags, sh_addr and sh_size all start off zero. */
11698 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11699 /* sh_link is set in assign_section_numbers. */
11700 /* sh_info is set below. */
11701 /* sh_offset is set just below. */
11702 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11703
11704 if (max_sym_count < 20)
11705 max_sym_count = 20;
11706 htab->strtabsize = max_sym_count;
11707 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11708 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11709 if (htab->strtab == NULL)
11710 goto error_return;
11711 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11712 flinfo.symshndxbuf
11713 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11714 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11715
11716 if (info->strip != strip_all || emit_relocs)
11717 {
11718 file_ptr off = elf_next_file_pos (abfd);
11719
11720 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11721
11722 /* Note that at this point elf_next_file_pos (abfd) is
11723 incorrect. We do not yet know the size of the .symtab section.
11724 We correct next_file_pos below, after we do know the size. */
11725
11726 /* Start writing out the symbol table. The first symbol is always a
11727 dummy symbol. */
11728 elfsym.st_value = 0;
11729 elfsym.st_size = 0;
11730 elfsym.st_info = 0;
11731 elfsym.st_other = 0;
11732 elfsym.st_shndx = SHN_UNDEF;
11733 elfsym.st_target_internal = 0;
11734 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11735 bfd_und_section_ptr, NULL) != 1)
11736 goto error_return;
11737
11738 /* Output a symbol for each section. We output these even if we are
11739 discarding local symbols, since they are used for relocs. These
11740 symbols have no names. We store the index of each one in the
11741 index field of the section, so that we can find it again when
11742 outputting relocs. */
11743
11744 elfsym.st_size = 0;
11745 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11746 elfsym.st_other = 0;
11747 elfsym.st_value = 0;
11748 elfsym.st_target_internal = 0;
11749 for (i = 1; i < elf_numsections (abfd); i++)
11750 {
11751 o = bfd_section_from_elf_index (abfd, i);
11752 if (o != NULL)
11753 {
11754 o->target_index = bfd_get_symcount (abfd);
11755 elfsym.st_shndx = i;
11756 if (!bfd_link_relocatable (info))
11757 elfsym.st_value = o->vma;
11758 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11759 NULL) != 1)
11760 goto error_return;
11761 }
11762 }
11763 }
11764
11765 /* Allocate some memory to hold information read in from the input
11766 files. */
11767 if (max_contents_size != 0)
11768 {
11769 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11770 if (flinfo.contents == NULL)
11771 goto error_return;
11772 }
11773
11774 if (max_external_reloc_size != 0)
11775 {
11776 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11777 if (flinfo.external_relocs == NULL)
11778 goto error_return;
11779 }
11780
11781 if (max_internal_reloc_count != 0)
11782 {
11783 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11784 amt *= sizeof (Elf_Internal_Rela);
11785 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11786 if (flinfo.internal_relocs == NULL)
11787 goto error_return;
11788 }
11789
11790 if (max_sym_count != 0)
11791 {
11792 amt = max_sym_count * bed->s->sizeof_sym;
11793 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11794 if (flinfo.external_syms == NULL)
11795 goto error_return;
11796
11797 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11798 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11799 if (flinfo.internal_syms == NULL)
11800 goto error_return;
11801
11802 amt = max_sym_count * sizeof (long);
11803 flinfo.indices = (long int *) bfd_malloc (amt);
11804 if (flinfo.indices == NULL)
11805 goto error_return;
11806
11807 amt = max_sym_count * sizeof (asection *);
11808 flinfo.sections = (asection **) bfd_malloc (amt);
11809 if (flinfo.sections == NULL)
11810 goto error_return;
11811 }
11812
11813 if (max_sym_shndx_count != 0)
11814 {
11815 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11816 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11817 if (flinfo.locsym_shndx == NULL)
11818 goto error_return;
11819 }
11820
11821 if (htab->tls_sec)
11822 {
11823 bfd_vma base, end = 0;
11824 asection *sec;
11825
11826 for (sec = htab->tls_sec;
11827 sec && (sec->flags & SEC_THREAD_LOCAL);
11828 sec = sec->next)
11829 {
11830 bfd_size_type size = sec->size;
11831
11832 if (size == 0
11833 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11834 {
11835 struct bfd_link_order *ord = sec->map_tail.link_order;
11836
11837 if (ord != NULL)
11838 size = ord->offset + ord->size;
11839 }
11840 end = sec->vma + size;
11841 }
11842 base = htab->tls_sec->vma;
11843 /* Only align end of TLS section if static TLS doesn't have special
11844 alignment requirements. */
11845 if (bed->static_tls_alignment == 1)
11846 end = align_power (end, htab->tls_sec->alignment_power);
11847 htab->tls_size = end - base;
11848 }
11849
11850 /* Reorder SHF_LINK_ORDER sections. */
11851 for (o = abfd->sections; o != NULL; o = o->next)
11852 {
11853 if (!elf_fixup_link_order (abfd, o))
11854 return FALSE;
11855 }
11856
11857 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11858 return FALSE;
11859
11860 /* Since ELF permits relocations to be against local symbols, we
11861 must have the local symbols available when we do the relocations.
11862 Since we would rather only read the local symbols once, and we
11863 would rather not keep them in memory, we handle all the
11864 relocations for a single input file at the same time.
11865
11866 Unfortunately, there is no way to know the total number of local
11867 symbols until we have seen all of them, and the local symbol
11868 indices precede the global symbol indices. This means that when
11869 we are generating relocatable output, and we see a reloc against
11870 a global symbol, we can not know the symbol index until we have
11871 finished examining all the local symbols to see which ones we are
11872 going to output. To deal with this, we keep the relocations in
11873 memory, and don't output them until the end of the link. This is
11874 an unfortunate waste of memory, but I don't see a good way around
11875 it. Fortunately, it only happens when performing a relocatable
11876 link, which is not the common case. FIXME: If keep_memory is set
11877 we could write the relocs out and then read them again; I don't
11878 know how bad the memory loss will be. */
11879
11880 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11881 sub->output_has_begun = FALSE;
11882 for (o = abfd->sections; o != NULL; o = o->next)
11883 {
11884 for (p = o->map_head.link_order; p != NULL; p = p->next)
11885 {
11886 if (p->type == bfd_indirect_link_order
11887 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11888 == bfd_target_elf_flavour)
11889 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11890 {
11891 if (! sub->output_has_begun)
11892 {
11893 if (! elf_link_input_bfd (&flinfo, sub))
11894 goto error_return;
11895 sub->output_has_begun = TRUE;
11896 }
11897 }
11898 else if (p->type == bfd_section_reloc_link_order
11899 || p->type == bfd_symbol_reloc_link_order)
11900 {
11901 if (! elf_reloc_link_order (abfd, info, o, p))
11902 goto error_return;
11903 }
11904 else
11905 {
11906 if (! _bfd_default_link_order (abfd, info, o, p))
11907 {
11908 if (p->type == bfd_indirect_link_order
11909 && (bfd_get_flavour (sub)
11910 == bfd_target_elf_flavour)
11911 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11912 != bed->s->elfclass))
11913 {
11914 const char *iclass, *oclass;
11915
11916 switch (bed->s->elfclass)
11917 {
11918 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11919 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11920 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11921 default: abort ();
11922 }
11923
11924 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11925 {
11926 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11927 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11928 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11929 default: abort ();
11930 }
11931
11932 bfd_set_error (bfd_error_wrong_format);
11933 _bfd_error_handler
11934 /* xgettext:c-format */
11935 (_("%B: file class %s incompatible with %s"),
11936 sub, iclass, oclass);
11937 }
11938
11939 goto error_return;
11940 }
11941 }
11942 }
11943 }
11944
11945 /* Free symbol buffer if needed. */
11946 if (!info->reduce_memory_overheads)
11947 {
11948 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11949 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11950 && elf_tdata (sub)->symbuf)
11951 {
11952 free (elf_tdata (sub)->symbuf);
11953 elf_tdata (sub)->symbuf = NULL;
11954 }
11955 }
11956
11957 /* Output any global symbols that got converted to local in a
11958 version script or due to symbol visibility. We do this in a
11959 separate step since ELF requires all local symbols to appear
11960 prior to any global symbols. FIXME: We should only do this if
11961 some global symbols were, in fact, converted to become local.
11962 FIXME: Will this work correctly with the Irix 5 linker? */
11963 eoinfo.failed = FALSE;
11964 eoinfo.flinfo = &flinfo;
11965 eoinfo.localsyms = TRUE;
11966 eoinfo.file_sym_done = FALSE;
11967 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11968 if (eoinfo.failed)
11969 return FALSE;
11970
11971 /* If backend needs to output some local symbols not present in the hash
11972 table, do it now. */
11973 if (bed->elf_backend_output_arch_local_syms
11974 && (info->strip != strip_all || emit_relocs))
11975 {
11976 typedef int (*out_sym_func)
11977 (void *, const char *, Elf_Internal_Sym *, asection *,
11978 struct elf_link_hash_entry *);
11979
11980 if (! ((*bed->elf_backend_output_arch_local_syms)
11981 (abfd, info, &flinfo,
11982 (out_sym_func) elf_link_output_symstrtab)))
11983 return FALSE;
11984 }
11985
11986 /* That wrote out all the local symbols. Finish up the symbol table
11987 with the global symbols. Even if we want to strip everything we
11988 can, we still need to deal with those global symbols that got
11989 converted to local in a version script. */
11990
11991 /* The sh_info field records the index of the first non local symbol. */
11992 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11993
11994 if (dynamic
11995 && htab->dynsym != NULL
11996 && htab->dynsym->output_section != bfd_abs_section_ptr)
11997 {
11998 Elf_Internal_Sym sym;
11999 bfd_byte *dynsym = htab->dynsym->contents;
12000
12001 o = htab->dynsym->output_section;
12002 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12003
12004 /* Write out the section symbols for the output sections. */
12005 if (bfd_link_pic (info)
12006 || htab->is_relocatable_executable)
12007 {
12008 asection *s;
12009
12010 sym.st_size = 0;
12011 sym.st_name = 0;
12012 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12013 sym.st_other = 0;
12014 sym.st_target_internal = 0;
12015
12016 for (s = abfd->sections; s != NULL; s = s->next)
12017 {
12018 int indx;
12019 bfd_byte *dest;
12020 long dynindx;
12021
12022 dynindx = elf_section_data (s)->dynindx;
12023 if (dynindx <= 0)
12024 continue;
12025 indx = elf_section_data (s)->this_idx;
12026 BFD_ASSERT (indx > 0);
12027 sym.st_shndx = indx;
12028 if (! check_dynsym (abfd, &sym))
12029 return FALSE;
12030 sym.st_value = s->vma;
12031 dest = dynsym + dynindx * bed->s->sizeof_sym;
12032 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12033 }
12034 }
12035
12036 /* Write out the local dynsyms. */
12037 if (htab->dynlocal)
12038 {
12039 struct elf_link_local_dynamic_entry *e;
12040 for (e = htab->dynlocal; e ; e = e->next)
12041 {
12042 asection *s;
12043 bfd_byte *dest;
12044
12045 /* Copy the internal symbol and turn off visibility.
12046 Note that we saved a word of storage and overwrote
12047 the original st_name with the dynstr_index. */
12048 sym = e->isym;
12049 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12050
12051 s = bfd_section_from_elf_index (e->input_bfd,
12052 e->isym.st_shndx);
12053 if (s != NULL)
12054 {
12055 sym.st_shndx =
12056 elf_section_data (s->output_section)->this_idx;
12057 if (! check_dynsym (abfd, &sym))
12058 return FALSE;
12059 sym.st_value = (s->output_section->vma
12060 + s->output_offset
12061 + e->isym.st_value);
12062 }
12063
12064 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12065 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12066 }
12067 }
12068 }
12069
12070 /* We get the global symbols from the hash table. */
12071 eoinfo.failed = FALSE;
12072 eoinfo.localsyms = FALSE;
12073 eoinfo.flinfo = &flinfo;
12074 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12075 if (eoinfo.failed)
12076 return FALSE;
12077
12078 /* If backend needs to output some symbols not present in the hash
12079 table, do it now. */
12080 if (bed->elf_backend_output_arch_syms
12081 && (info->strip != strip_all || emit_relocs))
12082 {
12083 typedef int (*out_sym_func)
12084 (void *, const char *, Elf_Internal_Sym *, asection *,
12085 struct elf_link_hash_entry *);
12086
12087 if (! ((*bed->elf_backend_output_arch_syms)
12088 (abfd, info, &flinfo,
12089 (out_sym_func) elf_link_output_symstrtab)))
12090 return FALSE;
12091 }
12092
12093 /* Finalize the .strtab section. */
12094 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12095
12096 /* Swap out the .strtab section. */
12097 if (!elf_link_swap_symbols_out (&flinfo))
12098 return FALSE;
12099
12100 /* Now we know the size of the symtab section. */
12101 if (bfd_get_symcount (abfd) > 0)
12102 {
12103 /* Finish up and write out the symbol string table (.strtab)
12104 section. */
12105 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12106 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12107
12108 if (elf_symtab_shndx_list (abfd))
12109 {
12110 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12111
12112 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12113 {
12114 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12115 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12116 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12117 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12118 symtab_shndx_hdr->sh_size = amt;
12119
12120 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12121 off, TRUE);
12122
12123 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12124 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12125 return FALSE;
12126 }
12127 }
12128
12129 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12130 /* sh_name was set in prep_headers. */
12131 symstrtab_hdr->sh_type = SHT_STRTAB;
12132 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12133 symstrtab_hdr->sh_addr = 0;
12134 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12135 symstrtab_hdr->sh_entsize = 0;
12136 symstrtab_hdr->sh_link = 0;
12137 symstrtab_hdr->sh_info = 0;
12138 /* sh_offset is set just below. */
12139 symstrtab_hdr->sh_addralign = 1;
12140
12141 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12142 off, TRUE);
12143 elf_next_file_pos (abfd) = off;
12144
12145 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12146 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12147 return FALSE;
12148 }
12149
12150 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12151 {
12152 _bfd_error_handler (_("%B: failed to generate import library"),
12153 info->out_implib_bfd);
12154 return FALSE;
12155 }
12156
12157 /* Adjust the relocs to have the correct symbol indices. */
12158 for (o = abfd->sections; o != NULL; o = o->next)
12159 {
12160 struct bfd_elf_section_data *esdo = elf_section_data (o);
12161 bfd_boolean sort;
12162 if ((o->flags & SEC_RELOC) == 0)
12163 continue;
12164
12165 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12166 if (esdo->rel.hdr != NULL
12167 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12168 return FALSE;
12169 if (esdo->rela.hdr != NULL
12170 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12171 return FALSE;
12172
12173 /* Set the reloc_count field to 0 to prevent write_relocs from
12174 trying to swap the relocs out itself. */
12175 o->reloc_count = 0;
12176 }
12177
12178 if (dynamic && info->combreloc && dynobj != NULL)
12179 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12180
12181 /* If we are linking against a dynamic object, or generating a
12182 shared library, finish up the dynamic linking information. */
12183 if (dynamic)
12184 {
12185 bfd_byte *dyncon, *dynconend;
12186
12187 /* Fix up .dynamic entries. */
12188 o = bfd_get_linker_section (dynobj, ".dynamic");
12189 BFD_ASSERT (o != NULL);
12190
12191 dyncon = o->contents;
12192 dynconend = o->contents + o->size;
12193 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12194 {
12195 Elf_Internal_Dyn dyn;
12196 const char *name;
12197 unsigned int type;
12198 bfd_size_type sh_size;
12199 bfd_vma sh_addr;
12200
12201 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12202
12203 switch (dyn.d_tag)
12204 {
12205 default:
12206 continue;
12207 case DT_NULL:
12208 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12209 {
12210 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12211 {
12212 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12213 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12214 default: continue;
12215 }
12216 dyn.d_un.d_val = relativecount;
12217 relativecount = 0;
12218 break;
12219 }
12220 continue;
12221
12222 case DT_INIT:
12223 name = info->init_function;
12224 goto get_sym;
12225 case DT_FINI:
12226 name = info->fini_function;
12227 get_sym:
12228 {
12229 struct elf_link_hash_entry *h;
12230
12231 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12232 if (h != NULL
12233 && (h->root.type == bfd_link_hash_defined
12234 || h->root.type == bfd_link_hash_defweak))
12235 {
12236 dyn.d_un.d_ptr = h->root.u.def.value;
12237 o = h->root.u.def.section;
12238 if (o->output_section != NULL)
12239 dyn.d_un.d_ptr += (o->output_section->vma
12240 + o->output_offset);
12241 else
12242 {
12243 /* The symbol is imported from another shared
12244 library and does not apply to this one. */
12245 dyn.d_un.d_ptr = 0;
12246 }
12247 break;
12248 }
12249 }
12250 continue;
12251
12252 case DT_PREINIT_ARRAYSZ:
12253 name = ".preinit_array";
12254 goto get_out_size;
12255 case DT_INIT_ARRAYSZ:
12256 name = ".init_array";
12257 goto get_out_size;
12258 case DT_FINI_ARRAYSZ:
12259 name = ".fini_array";
12260 get_out_size:
12261 o = bfd_get_section_by_name (abfd, name);
12262 if (o == NULL)
12263 {
12264 _bfd_error_handler
12265 (_("could not find section %s"), name);
12266 goto error_return;
12267 }
12268 if (o->size == 0)
12269 _bfd_error_handler
12270 (_("warning: %s section has zero size"), name);
12271 dyn.d_un.d_val = o->size;
12272 break;
12273
12274 case DT_PREINIT_ARRAY:
12275 name = ".preinit_array";
12276 goto get_out_vma;
12277 case DT_INIT_ARRAY:
12278 name = ".init_array";
12279 goto get_out_vma;
12280 case DT_FINI_ARRAY:
12281 name = ".fini_array";
12282 get_out_vma:
12283 o = bfd_get_section_by_name (abfd, name);
12284 goto do_vma;
12285
12286 case DT_HASH:
12287 name = ".hash";
12288 goto get_vma;
12289 case DT_GNU_HASH:
12290 name = ".gnu.hash";
12291 goto get_vma;
12292 case DT_STRTAB:
12293 name = ".dynstr";
12294 goto get_vma;
12295 case DT_SYMTAB:
12296 name = ".dynsym";
12297 goto get_vma;
12298 case DT_VERDEF:
12299 name = ".gnu.version_d";
12300 goto get_vma;
12301 case DT_VERNEED:
12302 name = ".gnu.version_r";
12303 goto get_vma;
12304 case DT_VERSYM:
12305 name = ".gnu.version";
12306 get_vma:
12307 o = bfd_get_linker_section (dynobj, name);
12308 do_vma:
12309 if (o == NULL)
12310 {
12311 _bfd_error_handler
12312 (_("could not find section %s"), name);
12313 goto error_return;
12314 }
12315 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12316 {
12317 _bfd_error_handler
12318 (_("warning: section '%s' is being made into a note"), name);
12319 bfd_set_error (bfd_error_nonrepresentable_section);
12320 goto error_return;
12321 }
12322 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12323 break;
12324
12325 case DT_REL:
12326 case DT_RELA:
12327 case DT_RELSZ:
12328 case DT_RELASZ:
12329 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12330 type = SHT_REL;
12331 else
12332 type = SHT_RELA;
12333 sh_size = 0;
12334 sh_addr = 0;
12335 for (i = 1; i < elf_numsections (abfd); i++)
12336 {
12337 Elf_Internal_Shdr *hdr;
12338
12339 hdr = elf_elfsections (abfd)[i];
12340 if (hdr->sh_type == type
12341 && (hdr->sh_flags & SHF_ALLOC) != 0)
12342 {
12343 sh_size += hdr->sh_size;
12344 if (sh_addr == 0
12345 || sh_addr > hdr->sh_addr)
12346 sh_addr = hdr->sh_addr;
12347 }
12348 }
12349
12350 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12351 {
12352 /* Don't count procedure linkage table relocs in the
12353 overall reloc count. */
12354 sh_size -= htab->srelplt->size;
12355 if (sh_size == 0)
12356 /* If the size is zero, make the address zero too.
12357 This is to avoid a glibc bug. If the backend
12358 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12359 zero, then we'll put DT_RELA at the end of
12360 DT_JMPREL. glibc will interpret the end of
12361 DT_RELA matching the end of DT_JMPREL as the
12362 case where DT_RELA includes DT_JMPREL, and for
12363 LD_BIND_NOW will decide that processing DT_RELA
12364 will process the PLT relocs too. Net result:
12365 No PLT relocs applied. */
12366 sh_addr = 0;
12367
12368 /* If .rela.plt is the first .rela section, exclude
12369 it from DT_RELA. */
12370 else if (sh_addr == (htab->srelplt->output_section->vma
12371 + htab->srelplt->output_offset))
12372 sh_addr += htab->srelplt->size;
12373 }
12374
12375 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12376 dyn.d_un.d_val = sh_size;
12377 else
12378 dyn.d_un.d_ptr = sh_addr;
12379 break;
12380 }
12381 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12382 }
12383 }
12384
12385 /* If we have created any dynamic sections, then output them. */
12386 if (dynobj != NULL)
12387 {
12388 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12389 goto error_return;
12390
12391 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12392 if (((info->warn_shared_textrel && bfd_link_pic (info))
12393 || info->error_textrel)
12394 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12395 {
12396 bfd_byte *dyncon, *dynconend;
12397
12398 dyncon = o->contents;
12399 dynconend = o->contents + o->size;
12400 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12401 {
12402 Elf_Internal_Dyn dyn;
12403
12404 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12405
12406 if (dyn.d_tag == DT_TEXTREL)
12407 {
12408 if (info->error_textrel)
12409 info->callbacks->einfo
12410 (_("%P%X: read-only segment has dynamic relocations.\n"));
12411 else
12412 info->callbacks->einfo
12413 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12414 break;
12415 }
12416 }
12417 }
12418
12419 for (o = dynobj->sections; o != NULL; o = o->next)
12420 {
12421 if ((o->flags & SEC_HAS_CONTENTS) == 0
12422 || o->size == 0
12423 || o->output_section == bfd_abs_section_ptr)
12424 continue;
12425 if ((o->flags & SEC_LINKER_CREATED) == 0)
12426 {
12427 /* At this point, we are only interested in sections
12428 created by _bfd_elf_link_create_dynamic_sections. */
12429 continue;
12430 }
12431 if (htab->stab_info.stabstr == o)
12432 continue;
12433 if (htab->eh_info.hdr_sec == o)
12434 continue;
12435 if (strcmp (o->name, ".dynstr") != 0)
12436 {
12437 if (! bfd_set_section_contents (abfd, o->output_section,
12438 o->contents,
12439 (file_ptr) o->output_offset
12440 * bfd_octets_per_byte (abfd),
12441 o->size))
12442 goto error_return;
12443 }
12444 else
12445 {
12446 /* The contents of the .dynstr section are actually in a
12447 stringtab. */
12448 file_ptr off;
12449
12450 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12451 if (bfd_seek (abfd, off, SEEK_SET) != 0
12452 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12453 goto error_return;
12454 }
12455 }
12456 }
12457
12458 if (bfd_link_relocatable (info))
12459 {
12460 bfd_boolean failed = FALSE;
12461
12462 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12463 if (failed)
12464 goto error_return;
12465 }
12466
12467 /* If we have optimized stabs strings, output them. */
12468 if (htab->stab_info.stabstr != NULL)
12469 {
12470 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12471 goto error_return;
12472 }
12473
12474 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12475 goto error_return;
12476
12477 elf_final_link_free (abfd, &flinfo);
12478
12479 elf_linker (abfd) = TRUE;
12480
12481 if (attr_section)
12482 {
12483 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12484 if (contents == NULL)
12485 return FALSE; /* Bail out and fail. */
12486 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12487 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12488 free (contents);
12489 }
12490
12491 return TRUE;
12492
12493 error_return:
12494 elf_final_link_free (abfd, &flinfo);
12495 return FALSE;
12496 }
12497 \f
12498 /* Initialize COOKIE for input bfd ABFD. */
12499
12500 static bfd_boolean
12501 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12502 struct bfd_link_info *info, bfd *abfd)
12503 {
12504 Elf_Internal_Shdr *symtab_hdr;
12505 const struct elf_backend_data *bed;
12506
12507 bed = get_elf_backend_data (abfd);
12508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12509
12510 cookie->abfd = abfd;
12511 cookie->sym_hashes = elf_sym_hashes (abfd);
12512 cookie->bad_symtab = elf_bad_symtab (abfd);
12513 if (cookie->bad_symtab)
12514 {
12515 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12516 cookie->extsymoff = 0;
12517 }
12518 else
12519 {
12520 cookie->locsymcount = symtab_hdr->sh_info;
12521 cookie->extsymoff = symtab_hdr->sh_info;
12522 }
12523
12524 if (bed->s->arch_size == 32)
12525 cookie->r_sym_shift = 8;
12526 else
12527 cookie->r_sym_shift = 32;
12528
12529 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12530 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12531 {
12532 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12533 cookie->locsymcount, 0,
12534 NULL, NULL, NULL);
12535 if (cookie->locsyms == NULL)
12536 {
12537 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12538 return FALSE;
12539 }
12540 if (info->keep_memory)
12541 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12542 }
12543 return TRUE;
12544 }
12545
12546 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12547
12548 static void
12549 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12550 {
12551 Elf_Internal_Shdr *symtab_hdr;
12552
12553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12554 if (cookie->locsyms != NULL
12555 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12556 free (cookie->locsyms);
12557 }
12558
12559 /* Initialize the relocation information in COOKIE for input section SEC
12560 of input bfd ABFD. */
12561
12562 static bfd_boolean
12563 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12564 struct bfd_link_info *info, bfd *abfd,
12565 asection *sec)
12566 {
12567 const struct elf_backend_data *bed;
12568
12569 if (sec->reloc_count == 0)
12570 {
12571 cookie->rels = NULL;
12572 cookie->relend = NULL;
12573 }
12574 else
12575 {
12576 bed = get_elf_backend_data (abfd);
12577
12578 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12579 info->keep_memory);
12580 if (cookie->rels == NULL)
12581 return FALSE;
12582 cookie->rel = cookie->rels;
12583 cookie->relend = (cookie->rels
12584 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12585 }
12586 cookie->rel = cookie->rels;
12587 return TRUE;
12588 }
12589
12590 /* Free the memory allocated by init_reloc_cookie_rels,
12591 if appropriate. */
12592
12593 static void
12594 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12595 asection *sec)
12596 {
12597 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12598 free (cookie->rels);
12599 }
12600
12601 /* Initialize the whole of COOKIE for input section SEC. */
12602
12603 static bfd_boolean
12604 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12605 struct bfd_link_info *info,
12606 asection *sec)
12607 {
12608 if (!init_reloc_cookie (cookie, info, sec->owner))
12609 goto error1;
12610 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12611 goto error2;
12612 return TRUE;
12613
12614 error2:
12615 fini_reloc_cookie (cookie, sec->owner);
12616 error1:
12617 return FALSE;
12618 }
12619
12620 /* Free the memory allocated by init_reloc_cookie_for_section,
12621 if appropriate. */
12622
12623 static void
12624 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12625 asection *sec)
12626 {
12627 fini_reloc_cookie_rels (cookie, sec);
12628 fini_reloc_cookie (cookie, sec->owner);
12629 }
12630 \f
12631 /* Garbage collect unused sections. */
12632
12633 /* Default gc_mark_hook. */
12634
12635 asection *
12636 _bfd_elf_gc_mark_hook (asection *sec,
12637 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12638 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12639 struct elf_link_hash_entry *h,
12640 Elf_Internal_Sym *sym)
12641 {
12642 if (h != NULL)
12643 {
12644 switch (h->root.type)
12645 {
12646 case bfd_link_hash_defined:
12647 case bfd_link_hash_defweak:
12648 return h->root.u.def.section;
12649
12650 case bfd_link_hash_common:
12651 return h->root.u.c.p->section;
12652
12653 default:
12654 break;
12655 }
12656 }
12657 else
12658 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12659
12660 return NULL;
12661 }
12662
12663 /* For undefined __start_<name> and __stop_<name> symbols, return the
12664 first input section matching <name>. Return NULL otherwise. */
12665
12666 asection *
12667 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12668 struct elf_link_hash_entry *h)
12669 {
12670 asection *s;
12671 const char *sec_name;
12672
12673 if (h->root.type != bfd_link_hash_undefined
12674 && h->root.type != bfd_link_hash_undefweak)
12675 return NULL;
12676
12677 s = h->root.u.undef.section;
12678 if (s != NULL)
12679 {
12680 if (s == (asection *) 0 - 1)
12681 return NULL;
12682 return s;
12683 }
12684
12685 sec_name = NULL;
12686 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12687 sec_name = h->root.root.string + 8;
12688 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12689 sec_name = h->root.root.string + 7;
12690
12691 if (sec_name != NULL && *sec_name != '\0')
12692 {
12693 bfd *i;
12694
12695 for (i = info->input_bfds; i != NULL; i = i->link.next)
12696 {
12697 s = bfd_get_section_by_name (i, sec_name);
12698 if (s != NULL)
12699 {
12700 h->root.u.undef.section = s;
12701 break;
12702 }
12703 }
12704 }
12705
12706 if (s == NULL)
12707 h->root.u.undef.section = (asection *) 0 - 1;
12708
12709 return s;
12710 }
12711
12712 /* COOKIE->rel describes a relocation against section SEC, which is
12713 a section we've decided to keep. Return the section that contains
12714 the relocation symbol, or NULL if no section contains it. */
12715
12716 asection *
12717 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12718 elf_gc_mark_hook_fn gc_mark_hook,
12719 struct elf_reloc_cookie *cookie,
12720 bfd_boolean *start_stop)
12721 {
12722 unsigned long r_symndx;
12723 struct elf_link_hash_entry *h;
12724
12725 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12726 if (r_symndx == STN_UNDEF)
12727 return NULL;
12728
12729 if (r_symndx >= cookie->locsymcount
12730 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12731 {
12732 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12733 if (h == NULL)
12734 {
12735 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12736 sec->owner);
12737 return NULL;
12738 }
12739 while (h->root.type == bfd_link_hash_indirect
12740 || h->root.type == bfd_link_hash_warning)
12741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12742 h->mark = 1;
12743 /* If this symbol is weak and there is a non-weak definition, we
12744 keep the non-weak definition because many backends put
12745 dynamic reloc info on the non-weak definition for code
12746 handling copy relocs. */
12747 if (h->u.weakdef != NULL)
12748 h->u.weakdef->mark = 1;
12749
12750 if (start_stop != NULL)
12751 {
12752 /* To work around a glibc bug, mark all XXX input sections
12753 when there is an as yet undefined reference to __start_XXX
12754 or __stop_XXX symbols. The linker will later define such
12755 symbols for orphan input sections that have a name
12756 representable as a C identifier. */
12757 asection *s = _bfd_elf_is_start_stop (info, h);
12758
12759 if (s != NULL)
12760 {
12761 *start_stop = !s->gc_mark;
12762 return s;
12763 }
12764 }
12765
12766 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12767 }
12768
12769 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12770 &cookie->locsyms[r_symndx]);
12771 }
12772
12773 /* COOKIE->rel describes a relocation against section SEC, which is
12774 a section we've decided to keep. Mark the section that contains
12775 the relocation symbol. */
12776
12777 bfd_boolean
12778 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12779 asection *sec,
12780 elf_gc_mark_hook_fn gc_mark_hook,
12781 struct elf_reloc_cookie *cookie)
12782 {
12783 asection *rsec;
12784 bfd_boolean start_stop = FALSE;
12785
12786 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12787 while (rsec != NULL)
12788 {
12789 if (!rsec->gc_mark)
12790 {
12791 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12792 || (rsec->owner->flags & DYNAMIC) != 0)
12793 rsec->gc_mark = 1;
12794 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12795 return FALSE;
12796 }
12797 if (!start_stop)
12798 break;
12799 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12800 }
12801 return TRUE;
12802 }
12803
12804 /* The mark phase of garbage collection. For a given section, mark
12805 it and any sections in this section's group, and all the sections
12806 which define symbols to which it refers. */
12807
12808 bfd_boolean
12809 _bfd_elf_gc_mark (struct bfd_link_info *info,
12810 asection *sec,
12811 elf_gc_mark_hook_fn gc_mark_hook)
12812 {
12813 bfd_boolean ret;
12814 asection *group_sec, *eh_frame;
12815
12816 sec->gc_mark = 1;
12817
12818 /* Mark all the sections in the group. */
12819 group_sec = elf_section_data (sec)->next_in_group;
12820 if (group_sec && !group_sec->gc_mark)
12821 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12822 return FALSE;
12823
12824 /* Look through the section relocs. */
12825 ret = TRUE;
12826 eh_frame = elf_eh_frame_section (sec->owner);
12827 if ((sec->flags & SEC_RELOC) != 0
12828 && sec->reloc_count > 0
12829 && sec != eh_frame)
12830 {
12831 struct elf_reloc_cookie cookie;
12832
12833 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12834 ret = FALSE;
12835 else
12836 {
12837 for (; cookie.rel < cookie.relend; cookie.rel++)
12838 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12839 {
12840 ret = FALSE;
12841 break;
12842 }
12843 fini_reloc_cookie_for_section (&cookie, sec);
12844 }
12845 }
12846
12847 if (ret && eh_frame && elf_fde_list (sec))
12848 {
12849 struct elf_reloc_cookie cookie;
12850
12851 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12852 ret = FALSE;
12853 else
12854 {
12855 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12856 gc_mark_hook, &cookie))
12857 ret = FALSE;
12858 fini_reloc_cookie_for_section (&cookie, eh_frame);
12859 }
12860 }
12861
12862 eh_frame = elf_section_eh_frame_entry (sec);
12863 if (ret && eh_frame && !eh_frame->gc_mark)
12864 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12865 ret = FALSE;
12866
12867 return ret;
12868 }
12869
12870 /* Scan and mark sections in a special or debug section group. */
12871
12872 static void
12873 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12874 {
12875 /* Point to first section of section group. */
12876 asection *ssec;
12877 /* Used to iterate the section group. */
12878 asection *msec;
12879
12880 bfd_boolean is_special_grp = TRUE;
12881 bfd_boolean is_debug_grp = TRUE;
12882
12883 /* First scan to see if group contains any section other than debug
12884 and special section. */
12885 ssec = msec = elf_next_in_group (grp);
12886 do
12887 {
12888 if ((msec->flags & SEC_DEBUGGING) == 0)
12889 is_debug_grp = FALSE;
12890
12891 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12892 is_special_grp = FALSE;
12893
12894 msec = elf_next_in_group (msec);
12895 }
12896 while (msec != ssec);
12897
12898 /* If this is a pure debug section group or pure special section group,
12899 keep all sections in this group. */
12900 if (is_debug_grp || is_special_grp)
12901 {
12902 do
12903 {
12904 msec->gc_mark = 1;
12905 msec = elf_next_in_group (msec);
12906 }
12907 while (msec != ssec);
12908 }
12909 }
12910
12911 /* Keep debug and special sections. */
12912
12913 bfd_boolean
12914 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12915 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12916 {
12917 bfd *ibfd;
12918
12919 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12920 {
12921 asection *isec;
12922 bfd_boolean some_kept;
12923 bfd_boolean debug_frag_seen;
12924
12925 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12926 continue;
12927
12928 /* Ensure all linker created sections are kept,
12929 see if any other section is already marked,
12930 and note if we have any fragmented debug sections. */
12931 debug_frag_seen = some_kept = FALSE;
12932 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12933 {
12934 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12935 isec->gc_mark = 1;
12936 else if (isec->gc_mark)
12937 some_kept = TRUE;
12938
12939 if (debug_frag_seen == FALSE
12940 && (isec->flags & SEC_DEBUGGING)
12941 && CONST_STRNEQ (isec->name, ".debug_line."))
12942 debug_frag_seen = TRUE;
12943 }
12944
12945 /* If no section in this file will be kept, then we can
12946 toss out the debug and special sections. */
12947 if (!some_kept)
12948 continue;
12949
12950 /* Keep debug and special sections like .comment when they are
12951 not part of a group. Also keep section groups that contain
12952 just debug sections or special sections. */
12953 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12954 {
12955 if ((isec->flags & SEC_GROUP) != 0)
12956 _bfd_elf_gc_mark_debug_special_section_group (isec);
12957 else if (((isec->flags & SEC_DEBUGGING) != 0
12958 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12959 && elf_next_in_group (isec) == NULL)
12960 isec->gc_mark = 1;
12961 }
12962
12963 if (! debug_frag_seen)
12964 continue;
12965
12966 /* Look for CODE sections which are going to be discarded,
12967 and find and discard any fragmented debug sections which
12968 are associated with that code section. */
12969 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12970 if ((isec->flags & SEC_CODE) != 0
12971 && isec->gc_mark == 0)
12972 {
12973 unsigned int ilen;
12974 asection *dsec;
12975
12976 ilen = strlen (isec->name);
12977
12978 /* Association is determined by the name of the debug section
12979 containing the name of the code section as a suffix. For
12980 example .debug_line.text.foo is a debug section associated
12981 with .text.foo. */
12982 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12983 {
12984 unsigned int dlen;
12985
12986 if (dsec->gc_mark == 0
12987 || (dsec->flags & SEC_DEBUGGING) == 0)
12988 continue;
12989
12990 dlen = strlen (dsec->name);
12991
12992 if (dlen > ilen
12993 && strncmp (dsec->name + (dlen - ilen),
12994 isec->name, ilen) == 0)
12995 {
12996 dsec->gc_mark = 0;
12997 }
12998 }
12999 }
13000 }
13001 return TRUE;
13002 }
13003
13004 /* The sweep phase of garbage collection. Remove all garbage sections. */
13005
13006 typedef bfd_boolean (*gc_sweep_hook_fn)
13007 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13008
13009 static bfd_boolean
13010 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13011 {
13012 bfd *sub;
13013 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13014 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13015
13016 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13017 {
13018 asection *o;
13019
13020 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13021 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13022 continue;
13023
13024 for (o = sub->sections; o != NULL; o = o->next)
13025 {
13026 /* When any section in a section group is kept, we keep all
13027 sections in the section group. If the first member of
13028 the section group is excluded, we will also exclude the
13029 group section. */
13030 if (o->flags & SEC_GROUP)
13031 {
13032 asection *first = elf_next_in_group (o);
13033 o->gc_mark = first->gc_mark;
13034 }
13035
13036 if (o->gc_mark)
13037 continue;
13038
13039 /* Skip sweeping sections already excluded. */
13040 if (o->flags & SEC_EXCLUDE)
13041 continue;
13042
13043 /* Since this is early in the link process, it is simple
13044 to remove a section from the output. */
13045 o->flags |= SEC_EXCLUDE;
13046
13047 if (info->print_gc_sections && o->size != 0)
13048 /* xgettext:c-format */
13049 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13050 o, sub);
13051
13052 /* But we also have to update some of the relocation
13053 info we collected before. */
13054 if (gc_sweep_hook
13055 && (o->flags & SEC_RELOC) != 0
13056 && o->reloc_count != 0
13057 && !((info->strip == strip_all || info->strip == strip_debugger)
13058 && (o->flags & SEC_DEBUGGING) != 0)
13059 && !bfd_is_abs_section (o->output_section))
13060 {
13061 Elf_Internal_Rela *internal_relocs;
13062 bfd_boolean r;
13063
13064 internal_relocs
13065 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13066 info->keep_memory);
13067 if (internal_relocs == NULL)
13068 return FALSE;
13069
13070 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13071
13072 if (elf_section_data (o)->relocs != internal_relocs)
13073 free (internal_relocs);
13074
13075 if (!r)
13076 return FALSE;
13077 }
13078 }
13079 }
13080
13081 return TRUE;
13082 }
13083
13084 /* Propagate collected vtable information. This is called through
13085 elf_link_hash_traverse. */
13086
13087 static bfd_boolean
13088 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13089 {
13090 /* Those that are not vtables. */
13091 if (h->vtable == NULL || h->vtable->parent == NULL)
13092 return TRUE;
13093
13094 /* Those vtables that do not have parents, we cannot merge. */
13095 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13096 return TRUE;
13097
13098 /* If we've already been done, exit. */
13099 if (h->vtable->used && h->vtable->used[-1])
13100 return TRUE;
13101
13102 /* Make sure the parent's table is up to date. */
13103 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13104
13105 if (h->vtable->used == NULL)
13106 {
13107 /* None of this table's entries were referenced. Re-use the
13108 parent's table. */
13109 h->vtable->used = h->vtable->parent->vtable->used;
13110 h->vtable->size = h->vtable->parent->vtable->size;
13111 }
13112 else
13113 {
13114 size_t n;
13115 bfd_boolean *cu, *pu;
13116
13117 /* Or the parent's entries into ours. */
13118 cu = h->vtable->used;
13119 cu[-1] = TRUE;
13120 pu = h->vtable->parent->vtable->used;
13121 if (pu != NULL)
13122 {
13123 const struct elf_backend_data *bed;
13124 unsigned int log_file_align;
13125
13126 bed = get_elf_backend_data (h->root.u.def.section->owner);
13127 log_file_align = bed->s->log_file_align;
13128 n = h->vtable->parent->vtable->size >> log_file_align;
13129 while (n--)
13130 {
13131 if (*pu)
13132 *cu = TRUE;
13133 pu++;
13134 cu++;
13135 }
13136 }
13137 }
13138
13139 return TRUE;
13140 }
13141
13142 static bfd_boolean
13143 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13144 {
13145 asection *sec;
13146 bfd_vma hstart, hend;
13147 Elf_Internal_Rela *relstart, *relend, *rel;
13148 const struct elf_backend_data *bed;
13149 unsigned int log_file_align;
13150
13151 /* Take care of both those symbols that do not describe vtables as
13152 well as those that are not loaded. */
13153 if (h->vtable == NULL || h->vtable->parent == NULL)
13154 return TRUE;
13155
13156 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13157 || h->root.type == bfd_link_hash_defweak);
13158
13159 sec = h->root.u.def.section;
13160 hstart = h->root.u.def.value;
13161 hend = hstart + h->size;
13162
13163 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13164 if (!relstart)
13165 return *(bfd_boolean *) okp = FALSE;
13166 bed = get_elf_backend_data (sec->owner);
13167 log_file_align = bed->s->log_file_align;
13168
13169 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13170
13171 for (rel = relstart; rel < relend; ++rel)
13172 if (rel->r_offset >= hstart && rel->r_offset < hend)
13173 {
13174 /* If the entry is in use, do nothing. */
13175 if (h->vtable->used
13176 && (rel->r_offset - hstart) < h->vtable->size)
13177 {
13178 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13179 if (h->vtable->used[entry])
13180 continue;
13181 }
13182 /* Otherwise, kill it. */
13183 rel->r_offset = rel->r_info = rel->r_addend = 0;
13184 }
13185
13186 return TRUE;
13187 }
13188
13189 /* Mark sections containing dynamically referenced symbols. When
13190 building shared libraries, we must assume that any visible symbol is
13191 referenced. */
13192
13193 bfd_boolean
13194 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13195 {
13196 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13197 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13198
13199 if ((h->root.type == bfd_link_hash_defined
13200 || h->root.type == bfd_link_hash_defweak)
13201 && (h->ref_dynamic
13202 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13203 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13204 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13205 && (!bfd_link_executable (info)
13206 || info->gc_keep_exported
13207 || info->export_dynamic
13208 || (h->dynamic
13209 && d != NULL
13210 && (*d->match) (&d->head, NULL, h->root.root.string)))
13211 && (h->versioned >= versioned
13212 || !bfd_hide_sym_by_version (info->version_info,
13213 h->root.root.string)))))
13214 h->root.u.def.section->flags |= SEC_KEEP;
13215
13216 return TRUE;
13217 }
13218
13219 /* Keep all sections containing symbols undefined on the command-line,
13220 and the section containing the entry symbol. */
13221
13222 void
13223 _bfd_elf_gc_keep (struct bfd_link_info *info)
13224 {
13225 struct bfd_sym_chain *sym;
13226
13227 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13228 {
13229 struct elf_link_hash_entry *h;
13230
13231 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13232 FALSE, FALSE, FALSE);
13233
13234 if (h != NULL
13235 && (h->root.type == bfd_link_hash_defined
13236 || h->root.type == bfd_link_hash_defweak)
13237 && !bfd_is_abs_section (h->root.u.def.section)
13238 && !bfd_is_und_section (h->root.u.def.section))
13239 h->root.u.def.section->flags |= SEC_KEEP;
13240 }
13241 }
13242
13243 bfd_boolean
13244 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13245 struct bfd_link_info *info)
13246 {
13247 bfd *ibfd = info->input_bfds;
13248
13249 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13250 {
13251 asection *sec;
13252 struct elf_reloc_cookie cookie;
13253
13254 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13255 continue;
13256
13257 if (!init_reloc_cookie (&cookie, info, ibfd))
13258 return FALSE;
13259
13260 for (sec = ibfd->sections; sec; sec = sec->next)
13261 {
13262 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13263 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13264 {
13265 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13266 fini_reloc_cookie_rels (&cookie, sec);
13267 }
13268 }
13269 }
13270 return TRUE;
13271 }
13272
13273 /* Do mark and sweep of unused sections. */
13274
13275 bfd_boolean
13276 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13277 {
13278 bfd_boolean ok = TRUE;
13279 bfd *sub;
13280 elf_gc_mark_hook_fn gc_mark_hook;
13281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13282 struct elf_link_hash_table *htab;
13283
13284 if (!bed->can_gc_sections
13285 || !is_elf_hash_table (info->hash))
13286 {
13287 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13288 return TRUE;
13289 }
13290
13291 bed->gc_keep (info);
13292 htab = elf_hash_table (info);
13293
13294 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13295 at the .eh_frame section if we can mark the FDEs individually. */
13296 for (sub = info->input_bfds;
13297 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13298 sub = sub->link.next)
13299 {
13300 asection *sec;
13301 struct elf_reloc_cookie cookie;
13302
13303 sec = bfd_get_section_by_name (sub, ".eh_frame");
13304 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13305 {
13306 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13307 if (elf_section_data (sec)->sec_info
13308 && (sec->flags & SEC_LINKER_CREATED) == 0)
13309 elf_eh_frame_section (sub) = sec;
13310 fini_reloc_cookie_for_section (&cookie, sec);
13311 sec = bfd_get_next_section_by_name (NULL, sec);
13312 }
13313 }
13314
13315 /* Apply transitive closure to the vtable entry usage info. */
13316 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13317 if (!ok)
13318 return FALSE;
13319
13320 /* Kill the vtable relocations that were not used. */
13321 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13322 if (!ok)
13323 return FALSE;
13324
13325 /* Mark dynamically referenced symbols. */
13326 if (htab->dynamic_sections_created || info->gc_keep_exported)
13327 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13328
13329 /* Grovel through relocs to find out who stays ... */
13330 gc_mark_hook = bed->gc_mark_hook;
13331 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13332 {
13333 asection *o;
13334
13335 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13336 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13337 continue;
13338
13339 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13340 Also treat note sections as a root, if the section is not part
13341 of a group. */
13342 for (o = sub->sections; o != NULL; o = o->next)
13343 if (!o->gc_mark
13344 && (o->flags & SEC_EXCLUDE) == 0
13345 && ((o->flags & SEC_KEEP) != 0
13346 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13347 && elf_next_in_group (o) == NULL )))
13348 {
13349 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13350 return FALSE;
13351 }
13352 }
13353
13354 /* Allow the backend to mark additional target specific sections. */
13355 bed->gc_mark_extra_sections (info, gc_mark_hook);
13356
13357 /* ... and mark SEC_EXCLUDE for those that go. */
13358 return elf_gc_sweep (abfd, info);
13359 }
13360 \f
13361 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13362
13363 bfd_boolean
13364 bfd_elf_gc_record_vtinherit (bfd *abfd,
13365 asection *sec,
13366 struct elf_link_hash_entry *h,
13367 bfd_vma offset)
13368 {
13369 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13370 struct elf_link_hash_entry **search, *child;
13371 size_t extsymcount;
13372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13373
13374 /* The sh_info field of the symtab header tells us where the
13375 external symbols start. We don't care about the local symbols at
13376 this point. */
13377 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13378 if (!elf_bad_symtab (abfd))
13379 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13380
13381 sym_hashes = elf_sym_hashes (abfd);
13382 sym_hashes_end = sym_hashes + extsymcount;
13383
13384 /* Hunt down the child symbol, which is in this section at the same
13385 offset as the relocation. */
13386 for (search = sym_hashes; search != sym_hashes_end; ++search)
13387 {
13388 if ((child = *search) != NULL
13389 && (child->root.type == bfd_link_hash_defined
13390 || child->root.type == bfd_link_hash_defweak)
13391 && child->root.u.def.section == sec
13392 && child->root.u.def.value == offset)
13393 goto win;
13394 }
13395
13396 /* xgettext:c-format */
13397 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13398 abfd, sec, (unsigned long) offset);
13399 bfd_set_error (bfd_error_invalid_operation);
13400 return FALSE;
13401
13402 win:
13403 if (!child->vtable)
13404 {
13405 child->vtable = ((struct elf_link_virtual_table_entry *)
13406 bfd_zalloc (abfd, sizeof (*child->vtable)));
13407 if (!child->vtable)
13408 return FALSE;
13409 }
13410 if (!h)
13411 {
13412 /* This *should* only be the absolute section. It could potentially
13413 be that someone has defined a non-global vtable though, which
13414 would be bad. It isn't worth paging in the local symbols to be
13415 sure though; that case should simply be handled by the assembler. */
13416
13417 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13418 }
13419 else
13420 child->vtable->parent = h;
13421
13422 return TRUE;
13423 }
13424
13425 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13426
13427 bfd_boolean
13428 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13429 asection *sec ATTRIBUTE_UNUSED,
13430 struct elf_link_hash_entry *h,
13431 bfd_vma addend)
13432 {
13433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13434 unsigned int log_file_align = bed->s->log_file_align;
13435
13436 if (!h->vtable)
13437 {
13438 h->vtable = ((struct elf_link_virtual_table_entry *)
13439 bfd_zalloc (abfd, sizeof (*h->vtable)));
13440 if (!h->vtable)
13441 return FALSE;
13442 }
13443
13444 if (addend >= h->vtable->size)
13445 {
13446 size_t size, bytes, file_align;
13447 bfd_boolean *ptr = h->vtable->used;
13448
13449 /* While the symbol is undefined, we have to be prepared to handle
13450 a zero size. */
13451 file_align = 1 << log_file_align;
13452 if (h->root.type == bfd_link_hash_undefined)
13453 size = addend + file_align;
13454 else
13455 {
13456 size = h->size;
13457 if (addend >= size)
13458 {
13459 /* Oops! We've got a reference past the defined end of
13460 the table. This is probably a bug -- shall we warn? */
13461 size = addend + file_align;
13462 }
13463 }
13464 size = (size + file_align - 1) & -file_align;
13465
13466 /* Allocate one extra entry for use as a "done" flag for the
13467 consolidation pass. */
13468 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13469
13470 if (ptr)
13471 {
13472 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13473
13474 if (ptr != NULL)
13475 {
13476 size_t oldbytes;
13477
13478 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13479 * sizeof (bfd_boolean));
13480 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13481 }
13482 }
13483 else
13484 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13485
13486 if (ptr == NULL)
13487 return FALSE;
13488
13489 /* And arrange for that done flag to be at index -1. */
13490 h->vtable->used = ptr + 1;
13491 h->vtable->size = size;
13492 }
13493
13494 h->vtable->used[addend >> log_file_align] = TRUE;
13495
13496 return TRUE;
13497 }
13498
13499 /* Map an ELF section header flag to its corresponding string. */
13500 typedef struct
13501 {
13502 char *flag_name;
13503 flagword flag_value;
13504 } elf_flags_to_name_table;
13505
13506 static elf_flags_to_name_table elf_flags_to_names [] =
13507 {
13508 { "SHF_WRITE", SHF_WRITE },
13509 { "SHF_ALLOC", SHF_ALLOC },
13510 { "SHF_EXECINSTR", SHF_EXECINSTR },
13511 { "SHF_MERGE", SHF_MERGE },
13512 { "SHF_STRINGS", SHF_STRINGS },
13513 { "SHF_INFO_LINK", SHF_INFO_LINK},
13514 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13515 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13516 { "SHF_GROUP", SHF_GROUP },
13517 { "SHF_TLS", SHF_TLS },
13518 { "SHF_MASKOS", SHF_MASKOS },
13519 { "SHF_EXCLUDE", SHF_EXCLUDE },
13520 };
13521
13522 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13523 bfd_boolean
13524 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13525 struct flag_info *flaginfo,
13526 asection *section)
13527 {
13528 const bfd_vma sh_flags = elf_section_flags (section);
13529
13530 if (!flaginfo->flags_initialized)
13531 {
13532 bfd *obfd = info->output_bfd;
13533 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13534 struct flag_info_list *tf = flaginfo->flag_list;
13535 int with_hex = 0;
13536 int without_hex = 0;
13537
13538 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13539 {
13540 unsigned i;
13541 flagword (*lookup) (char *);
13542
13543 lookup = bed->elf_backend_lookup_section_flags_hook;
13544 if (lookup != NULL)
13545 {
13546 flagword hexval = (*lookup) ((char *) tf->name);
13547
13548 if (hexval != 0)
13549 {
13550 if (tf->with == with_flags)
13551 with_hex |= hexval;
13552 else if (tf->with == without_flags)
13553 without_hex |= hexval;
13554 tf->valid = TRUE;
13555 continue;
13556 }
13557 }
13558 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13559 {
13560 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13561 {
13562 if (tf->with == with_flags)
13563 with_hex |= elf_flags_to_names[i].flag_value;
13564 else if (tf->with == without_flags)
13565 without_hex |= elf_flags_to_names[i].flag_value;
13566 tf->valid = TRUE;
13567 break;
13568 }
13569 }
13570 if (!tf->valid)
13571 {
13572 info->callbacks->einfo
13573 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13574 return FALSE;
13575 }
13576 }
13577 flaginfo->flags_initialized = TRUE;
13578 flaginfo->only_with_flags |= with_hex;
13579 flaginfo->not_with_flags |= without_hex;
13580 }
13581
13582 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13583 return FALSE;
13584
13585 if ((flaginfo->not_with_flags & sh_flags) != 0)
13586 return FALSE;
13587
13588 return TRUE;
13589 }
13590
13591 struct alloc_got_off_arg {
13592 bfd_vma gotoff;
13593 struct bfd_link_info *info;
13594 };
13595
13596 /* We need a special top-level link routine to convert got reference counts
13597 to real got offsets. */
13598
13599 static bfd_boolean
13600 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13601 {
13602 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13603 bfd *obfd = gofarg->info->output_bfd;
13604 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13605
13606 if (h->got.refcount > 0)
13607 {
13608 h->got.offset = gofarg->gotoff;
13609 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13610 }
13611 else
13612 h->got.offset = (bfd_vma) -1;
13613
13614 return TRUE;
13615 }
13616
13617 /* And an accompanying bit to work out final got entry offsets once
13618 we're done. Should be called from final_link. */
13619
13620 bfd_boolean
13621 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13622 struct bfd_link_info *info)
13623 {
13624 bfd *i;
13625 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13626 bfd_vma gotoff;
13627 struct alloc_got_off_arg gofarg;
13628
13629 BFD_ASSERT (abfd == info->output_bfd);
13630
13631 if (! is_elf_hash_table (info->hash))
13632 return FALSE;
13633
13634 /* The GOT offset is relative to the .got section, but the GOT header is
13635 put into the .got.plt section, if the backend uses it. */
13636 if (bed->want_got_plt)
13637 gotoff = 0;
13638 else
13639 gotoff = bed->got_header_size;
13640
13641 /* Do the local .got entries first. */
13642 for (i = info->input_bfds; i; i = i->link.next)
13643 {
13644 bfd_signed_vma *local_got;
13645 size_t j, locsymcount;
13646 Elf_Internal_Shdr *symtab_hdr;
13647
13648 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13649 continue;
13650
13651 local_got = elf_local_got_refcounts (i);
13652 if (!local_got)
13653 continue;
13654
13655 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13656 if (elf_bad_symtab (i))
13657 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13658 else
13659 locsymcount = symtab_hdr->sh_info;
13660
13661 for (j = 0; j < locsymcount; ++j)
13662 {
13663 if (local_got[j] > 0)
13664 {
13665 local_got[j] = gotoff;
13666 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13667 }
13668 else
13669 local_got[j] = (bfd_vma) -1;
13670 }
13671 }
13672
13673 /* Then the global .got entries. .plt refcounts are handled by
13674 adjust_dynamic_symbol */
13675 gofarg.gotoff = gotoff;
13676 gofarg.info = info;
13677 elf_link_hash_traverse (elf_hash_table (info),
13678 elf_gc_allocate_got_offsets,
13679 &gofarg);
13680 return TRUE;
13681 }
13682
13683 /* Many folk need no more in the way of final link than this, once
13684 got entry reference counting is enabled. */
13685
13686 bfd_boolean
13687 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13688 {
13689 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13690 return FALSE;
13691
13692 /* Invoke the regular ELF backend linker to do all the work. */
13693 return bfd_elf_final_link (abfd, info);
13694 }
13695
13696 bfd_boolean
13697 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13698 {
13699 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13700
13701 if (rcookie->bad_symtab)
13702 rcookie->rel = rcookie->rels;
13703
13704 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13705 {
13706 unsigned long r_symndx;
13707
13708 if (! rcookie->bad_symtab)
13709 if (rcookie->rel->r_offset > offset)
13710 return FALSE;
13711 if (rcookie->rel->r_offset != offset)
13712 continue;
13713
13714 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13715 if (r_symndx == STN_UNDEF)
13716 return TRUE;
13717
13718 if (r_symndx >= rcookie->locsymcount
13719 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13720 {
13721 struct elf_link_hash_entry *h;
13722
13723 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13724
13725 while (h->root.type == bfd_link_hash_indirect
13726 || h->root.type == bfd_link_hash_warning)
13727 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13728
13729 if ((h->root.type == bfd_link_hash_defined
13730 || h->root.type == bfd_link_hash_defweak)
13731 && (h->root.u.def.section->owner != rcookie->abfd
13732 || h->root.u.def.section->kept_section != NULL
13733 || discarded_section (h->root.u.def.section)))
13734 return TRUE;
13735 }
13736 else
13737 {
13738 /* It's not a relocation against a global symbol,
13739 but it could be a relocation against a local
13740 symbol for a discarded section. */
13741 asection *isec;
13742 Elf_Internal_Sym *isym;
13743
13744 /* Need to: get the symbol; get the section. */
13745 isym = &rcookie->locsyms[r_symndx];
13746 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13747 if (isec != NULL
13748 && (isec->kept_section != NULL
13749 || discarded_section (isec)))
13750 return TRUE;
13751 }
13752 return FALSE;
13753 }
13754 return FALSE;
13755 }
13756
13757 /* Discard unneeded references to discarded sections.
13758 Returns -1 on error, 1 if any section's size was changed, 0 if
13759 nothing changed. This function assumes that the relocations are in
13760 sorted order, which is true for all known assemblers. */
13761
13762 int
13763 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13764 {
13765 struct elf_reloc_cookie cookie;
13766 asection *o;
13767 bfd *abfd;
13768 int changed = 0;
13769
13770 if (info->traditional_format
13771 || !is_elf_hash_table (info->hash))
13772 return 0;
13773
13774 o = bfd_get_section_by_name (output_bfd, ".stab");
13775 if (o != NULL)
13776 {
13777 asection *i;
13778
13779 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13780 {
13781 if (i->size == 0
13782 || i->reloc_count == 0
13783 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13784 continue;
13785
13786 abfd = i->owner;
13787 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13788 continue;
13789
13790 if (!init_reloc_cookie_for_section (&cookie, info, i))
13791 return -1;
13792
13793 if (_bfd_discard_section_stabs (abfd, i,
13794 elf_section_data (i)->sec_info,
13795 bfd_elf_reloc_symbol_deleted_p,
13796 &cookie))
13797 changed = 1;
13798
13799 fini_reloc_cookie_for_section (&cookie, i);
13800 }
13801 }
13802
13803 o = NULL;
13804 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13805 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13806 if (o != NULL)
13807 {
13808 asection *i;
13809
13810 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13811 {
13812 if (i->size == 0)
13813 continue;
13814
13815 abfd = i->owner;
13816 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13817 continue;
13818
13819 if (!init_reloc_cookie_for_section (&cookie, info, i))
13820 return -1;
13821
13822 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13823 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13824 bfd_elf_reloc_symbol_deleted_p,
13825 &cookie))
13826 changed = 1;
13827
13828 fini_reloc_cookie_for_section (&cookie, i);
13829 }
13830 }
13831
13832 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13833 {
13834 const struct elf_backend_data *bed;
13835
13836 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13837 continue;
13838
13839 bed = get_elf_backend_data (abfd);
13840
13841 if (bed->elf_backend_discard_info != NULL)
13842 {
13843 if (!init_reloc_cookie (&cookie, info, abfd))
13844 return -1;
13845
13846 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13847 changed = 1;
13848
13849 fini_reloc_cookie (&cookie, abfd);
13850 }
13851 }
13852
13853 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13854 _bfd_elf_end_eh_frame_parsing (info);
13855
13856 if (info->eh_frame_hdr_type
13857 && !bfd_link_relocatable (info)
13858 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13859 changed = 1;
13860
13861 return changed;
13862 }
13863
13864 bfd_boolean
13865 _bfd_elf_section_already_linked (bfd *abfd,
13866 asection *sec,
13867 struct bfd_link_info *info)
13868 {
13869 flagword flags;
13870 const char *name, *key;
13871 struct bfd_section_already_linked *l;
13872 struct bfd_section_already_linked_hash_entry *already_linked_list;
13873
13874 if (sec->output_section == bfd_abs_section_ptr)
13875 return FALSE;
13876
13877 flags = sec->flags;
13878
13879 /* Return if it isn't a linkonce section. A comdat group section
13880 also has SEC_LINK_ONCE set. */
13881 if ((flags & SEC_LINK_ONCE) == 0)
13882 return FALSE;
13883
13884 /* Don't put group member sections on our list of already linked
13885 sections. They are handled as a group via their group section. */
13886 if (elf_sec_group (sec) != NULL)
13887 return FALSE;
13888
13889 /* For a SHT_GROUP section, use the group signature as the key. */
13890 name = sec->name;
13891 if ((flags & SEC_GROUP) != 0
13892 && elf_next_in_group (sec) != NULL
13893 && elf_group_name (elf_next_in_group (sec)) != NULL)
13894 key = elf_group_name (elf_next_in_group (sec));
13895 else
13896 {
13897 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13898 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13899 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13900 key++;
13901 else
13902 /* Must be a user linkonce section that doesn't follow gcc's
13903 naming convention. In this case we won't be matching
13904 single member groups. */
13905 key = name;
13906 }
13907
13908 already_linked_list = bfd_section_already_linked_table_lookup (key);
13909
13910 for (l = already_linked_list->entry; l != NULL; l = l->next)
13911 {
13912 /* We may have 2 different types of sections on the list: group
13913 sections with a signature of <key> (<key> is some string),
13914 and linkonce sections named .gnu.linkonce.<type>.<key>.
13915 Match like sections. LTO plugin sections are an exception.
13916 They are always named .gnu.linkonce.t.<key> and match either
13917 type of section. */
13918 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13919 && ((flags & SEC_GROUP) != 0
13920 || strcmp (name, l->sec->name) == 0))
13921 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13922 {
13923 /* The section has already been linked. See if we should
13924 issue a warning. */
13925 if (!_bfd_handle_already_linked (sec, l, info))
13926 return FALSE;
13927
13928 if (flags & SEC_GROUP)
13929 {
13930 asection *first = elf_next_in_group (sec);
13931 asection *s = first;
13932
13933 while (s != NULL)
13934 {
13935 s->output_section = bfd_abs_section_ptr;
13936 /* Record which group discards it. */
13937 s->kept_section = l->sec;
13938 s = elf_next_in_group (s);
13939 /* These lists are circular. */
13940 if (s == first)
13941 break;
13942 }
13943 }
13944
13945 return TRUE;
13946 }
13947 }
13948
13949 /* A single member comdat group section may be discarded by a
13950 linkonce section and vice versa. */
13951 if ((flags & SEC_GROUP) != 0)
13952 {
13953 asection *first = elf_next_in_group (sec);
13954
13955 if (first != NULL && elf_next_in_group (first) == first)
13956 /* Check this single member group against linkonce sections. */
13957 for (l = already_linked_list->entry; l != NULL; l = l->next)
13958 if ((l->sec->flags & SEC_GROUP) == 0
13959 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13960 {
13961 first->output_section = bfd_abs_section_ptr;
13962 first->kept_section = l->sec;
13963 sec->output_section = bfd_abs_section_ptr;
13964 break;
13965 }
13966 }
13967 else
13968 /* Check this linkonce section against single member groups. */
13969 for (l = already_linked_list->entry; l != NULL; l = l->next)
13970 if (l->sec->flags & SEC_GROUP)
13971 {
13972 asection *first = elf_next_in_group (l->sec);
13973
13974 if (first != NULL
13975 && elf_next_in_group (first) == first
13976 && bfd_elf_match_symbols_in_sections (first, sec, info))
13977 {
13978 sec->output_section = bfd_abs_section_ptr;
13979 sec->kept_section = first;
13980 break;
13981 }
13982 }
13983
13984 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13985 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13986 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13987 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13988 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13989 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13990 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13991 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13992 The reverse order cannot happen as there is never a bfd with only the
13993 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13994 matter as here were are looking only for cross-bfd sections. */
13995
13996 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13997 for (l = already_linked_list->entry; l != NULL; l = l->next)
13998 if ((l->sec->flags & SEC_GROUP) == 0
13999 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14000 {
14001 if (abfd != l->sec->owner)
14002 sec->output_section = bfd_abs_section_ptr;
14003 break;
14004 }
14005
14006 /* This is the first section with this name. Record it. */
14007 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14008 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14009 return sec->output_section == bfd_abs_section_ptr;
14010 }
14011
14012 bfd_boolean
14013 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14014 {
14015 return sym->st_shndx == SHN_COMMON;
14016 }
14017
14018 unsigned int
14019 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14020 {
14021 return SHN_COMMON;
14022 }
14023
14024 asection *
14025 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14026 {
14027 return bfd_com_section_ptr;
14028 }
14029
14030 bfd_vma
14031 _bfd_elf_default_got_elt_size (bfd *abfd,
14032 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14033 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14034 bfd *ibfd ATTRIBUTE_UNUSED,
14035 unsigned long symndx ATTRIBUTE_UNUSED)
14036 {
14037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14038 return bed->s->arch_size / 8;
14039 }
14040
14041 /* Routines to support the creation of dynamic relocs. */
14042
14043 /* Returns the name of the dynamic reloc section associated with SEC. */
14044
14045 static const char *
14046 get_dynamic_reloc_section_name (bfd * abfd,
14047 asection * sec,
14048 bfd_boolean is_rela)
14049 {
14050 char *name;
14051 const char *old_name = bfd_get_section_name (NULL, sec);
14052 const char *prefix = is_rela ? ".rela" : ".rel";
14053
14054 if (old_name == NULL)
14055 return NULL;
14056
14057 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14058 sprintf (name, "%s%s", prefix, old_name);
14059
14060 return name;
14061 }
14062
14063 /* Returns the dynamic reloc section associated with SEC.
14064 If necessary compute the name of the dynamic reloc section based
14065 on SEC's name (looked up in ABFD's string table) and the setting
14066 of IS_RELA. */
14067
14068 asection *
14069 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14070 asection * sec,
14071 bfd_boolean is_rela)
14072 {
14073 asection * reloc_sec = elf_section_data (sec)->sreloc;
14074
14075 if (reloc_sec == NULL)
14076 {
14077 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14078
14079 if (name != NULL)
14080 {
14081 reloc_sec = bfd_get_linker_section (abfd, name);
14082
14083 if (reloc_sec != NULL)
14084 elf_section_data (sec)->sreloc = reloc_sec;
14085 }
14086 }
14087
14088 return reloc_sec;
14089 }
14090
14091 /* Returns the dynamic reloc section associated with SEC. If the
14092 section does not exist it is created and attached to the DYNOBJ
14093 bfd and stored in the SRELOC field of SEC's elf_section_data
14094 structure.
14095
14096 ALIGNMENT is the alignment for the newly created section and
14097 IS_RELA defines whether the name should be .rela.<SEC's name>
14098 or .rel.<SEC's name>. The section name is looked up in the
14099 string table associated with ABFD. */
14100
14101 asection *
14102 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14103 bfd *dynobj,
14104 unsigned int alignment,
14105 bfd *abfd,
14106 bfd_boolean is_rela)
14107 {
14108 asection * reloc_sec = elf_section_data (sec)->sreloc;
14109
14110 if (reloc_sec == NULL)
14111 {
14112 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14113
14114 if (name == NULL)
14115 return NULL;
14116
14117 reloc_sec = bfd_get_linker_section (dynobj, name);
14118
14119 if (reloc_sec == NULL)
14120 {
14121 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14122 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14123 if ((sec->flags & SEC_ALLOC) != 0)
14124 flags |= SEC_ALLOC | SEC_LOAD;
14125
14126 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14127 if (reloc_sec != NULL)
14128 {
14129 /* _bfd_elf_get_sec_type_attr chooses a section type by
14130 name. Override as it may be wrong, eg. for a user
14131 section named "auto" we'll get ".relauto" which is
14132 seen to be a .rela section. */
14133 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14134 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14135 reloc_sec = NULL;
14136 }
14137 }
14138
14139 elf_section_data (sec)->sreloc = reloc_sec;
14140 }
14141
14142 return reloc_sec;
14143 }
14144
14145 /* Copy the ELF symbol type and other attributes for a linker script
14146 assignment from HSRC to HDEST. Generally this should be treated as
14147 if we found a strong non-dynamic definition for HDEST (except that
14148 ld ignores multiple definition errors). */
14149 void
14150 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14151 struct bfd_link_hash_entry *hdest,
14152 struct bfd_link_hash_entry *hsrc)
14153 {
14154 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14155 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14156 Elf_Internal_Sym isym;
14157
14158 ehdest->type = ehsrc->type;
14159 ehdest->target_internal = ehsrc->target_internal;
14160
14161 isym.st_other = ehsrc->other;
14162 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14163 }
14164
14165 /* Append a RELA relocation REL to section S in BFD. */
14166
14167 void
14168 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14169 {
14170 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14171 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14172 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14173 bed->s->swap_reloca_out (abfd, rel, loc);
14174 }
14175
14176 /* Append a REL relocation REL to section S in BFD. */
14177
14178 void
14179 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14180 {
14181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14182 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14183 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14184 bed->s->swap_reloc_out (abfd, rel, loc);
14185 }
This page took 0.314999 seconds and 5 git commands to generate.