ld: Hide symbols defined by HIDDEN/PROVIDE_HIDDEN
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is not being provided by the linker script, and it is
690 currently defined by a dynamic object, but not by a regular object,
691 then clear out any version information because the symbol will not be
692 associated with the dynamic object any more. */
693 if (!provide
694 && h->def_dynamic
695 && !h->def_regular)
696 h->verinfo.verdef = NULL;
697
698 /* Make sure this symbol is not garbage collected. */
699 h->mark = 1;
700
701 h->def_regular = 1;
702
703 if (hidden)
704 {
705 bed = get_elf_backend_data (output_bfd);
706 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
707 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
708 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
709 }
710
711 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
712 and executables. */
713 if (!bfd_link_relocatable (info)
714 && h->dynindx != -1
715 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
716 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
717 h->forced_local = 1;
718
719 if ((h->def_dynamic
720 || h->ref_dynamic
721 || bfd_link_dll (info)
722 || elf_hash_table (info)->is_relocatable_executable)
723 && !h->forced_local
724 && h->dynindx == -1)
725 {
726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
727 return FALSE;
728
729 /* If this is a weak defined symbol, and we know a corresponding
730 real symbol from the same dynamic object, make sure the real
731 symbol is also made into a dynamic symbol. */
732 if (h->is_weakalias)
733 {
734 struct elf_link_hash_entry *def = weakdef (h);
735
736 if (def->dynindx == -1
737 && !bfd_elf_link_record_dynamic_symbol (info, def))
738 return FALSE;
739 }
740 }
741
742 return TRUE;
743 }
744
745 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
746 success, and 2 on a failure caused by attempting to record a symbol
747 in a discarded section, eg. a discarded link-once section symbol. */
748
749 int
750 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
751 bfd *input_bfd,
752 long input_indx)
753 {
754 bfd_size_type amt;
755 struct elf_link_local_dynamic_entry *entry;
756 struct elf_link_hash_table *eht;
757 struct elf_strtab_hash *dynstr;
758 size_t dynstr_index;
759 char *name;
760 Elf_External_Sym_Shndx eshndx;
761 char esym[sizeof (Elf64_External_Sym)];
762
763 if (! is_elf_hash_table (info->hash))
764 return 0;
765
766 /* See if the entry exists already. */
767 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
768 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
769 return 1;
770
771 amt = sizeof (*entry);
772 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
773 if (entry == NULL)
774 return 0;
775
776 /* Go find the symbol, so that we can find it's name. */
777 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
778 1, input_indx, &entry->isym, esym, &eshndx))
779 {
780 bfd_release (input_bfd, entry);
781 return 0;
782 }
783
784 if (entry->isym.st_shndx != SHN_UNDEF
785 && entry->isym.st_shndx < SHN_LORESERVE)
786 {
787 asection *s;
788
789 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
790 if (s == NULL || bfd_is_abs_section (s->output_section))
791 {
792 /* We can still bfd_release here as nothing has done another
793 bfd_alloc. We can't do this later in this function. */
794 bfd_release (input_bfd, entry);
795 return 2;
796 }
797 }
798
799 name = (bfd_elf_string_from_elf_section
800 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
801 entry->isym.st_name));
802
803 dynstr = elf_hash_table (info)->dynstr;
804 if (dynstr == NULL)
805 {
806 /* Create a strtab to hold the dynamic symbol names. */
807 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
808 if (dynstr == NULL)
809 return 0;
810 }
811
812 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
813 if (dynstr_index == (size_t) -1)
814 return 0;
815 entry->isym.st_name = dynstr_index;
816
817 eht = elf_hash_table (info);
818
819 entry->next = eht->dynlocal;
820 eht->dynlocal = entry;
821 entry->input_bfd = input_bfd;
822 entry->input_indx = input_indx;
823 eht->dynsymcount++;
824
825 /* Whatever binding the symbol had before, it's now local. */
826 entry->isym.st_info
827 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
828
829 /* The dynindx will be set at the end of size_dynamic_sections. */
830
831 return 1;
832 }
833
834 /* Return the dynindex of a local dynamic symbol. */
835
836 long
837 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
838 bfd *input_bfd,
839 long input_indx)
840 {
841 struct elf_link_local_dynamic_entry *e;
842
843 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
844 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
845 return e->dynindx;
846 return -1;
847 }
848
849 /* This function is used to renumber the dynamic symbols, if some of
850 them are removed because they are marked as local. This is called
851 via elf_link_hash_traverse. */
852
853 static bfd_boolean
854 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
855 void *data)
856 {
857 size_t *count = (size_t *) data;
858
859 if (h->forced_local)
860 return TRUE;
861
862 if (h->dynindx != -1)
863 h->dynindx = ++(*count);
864
865 return TRUE;
866 }
867
868
869 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
870 STB_LOCAL binding. */
871
872 static bfd_boolean
873 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
874 void *data)
875 {
876 size_t *count = (size_t *) data;
877
878 if (!h->forced_local)
879 return TRUE;
880
881 if (h->dynindx != -1)
882 h->dynindx = ++(*count);
883
884 return TRUE;
885 }
886
887 /* Return true if the dynamic symbol for a given section should be
888 omitted when creating a shared library. */
889 bfd_boolean
890 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
891 struct bfd_link_info *info,
892 asection *p)
893 {
894 struct elf_link_hash_table *htab;
895 asection *ip;
896
897 switch (elf_section_data (p)->this_hdr.sh_type)
898 {
899 case SHT_PROGBITS:
900 case SHT_NOBITS:
901 /* If sh_type is yet undecided, assume it could be
902 SHT_PROGBITS/SHT_NOBITS. */
903 case SHT_NULL:
904 htab = elf_hash_table (info);
905 if (p == htab->tls_sec)
906 return FALSE;
907
908 if (htab->text_index_section != NULL)
909 return p != htab->text_index_section && p != htab->data_index_section;
910
911 return (htab->dynobj != NULL
912 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
913 && ip->output_section == p);
914
915 /* There shouldn't be section relative relocations
916 against any other section. */
917 default:
918 return TRUE;
919 }
920 }
921
922 bfd_boolean
923 _bfd_elf_omit_section_dynsym_all
924 (bfd *output_bfd ATTRIBUTE_UNUSED,
925 struct bfd_link_info *info ATTRIBUTE_UNUSED,
926 asection *p ATTRIBUTE_UNUSED)
927 {
928 return TRUE;
929 }
930
931 /* Assign dynsym indices. In a shared library we generate a section
932 symbol for each output section, which come first. Next come symbols
933 which have been forced to local binding. Then all of the back-end
934 allocated local dynamic syms, followed by the rest of the global
935 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
936 (This prevents the early call before elf_backend_init_index_section
937 and strip_excluded_output_sections setting dynindx for sections
938 that are stripped.) */
939
940 static unsigned long
941 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
942 struct bfd_link_info *info,
943 unsigned long *section_sym_count)
944 {
945 unsigned long dynsymcount = 0;
946 bfd_boolean do_sec = section_sym_count != NULL;
947
948 if (bfd_link_pic (info)
949 || elf_hash_table (info)->is_relocatable_executable)
950 {
951 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
952 asection *p;
953 for (p = output_bfd->sections; p ; p = p->next)
954 if ((p->flags & SEC_EXCLUDE) == 0
955 && (p->flags & SEC_ALLOC) != 0
956 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
957 {
958 ++dynsymcount;
959 if (do_sec)
960 elf_section_data (p)->dynindx = dynsymcount;
961 }
962 else if (do_sec)
963 elf_section_data (p)->dynindx = 0;
964 }
965 if (do_sec)
966 *section_sym_count = dynsymcount;
967
968 elf_link_hash_traverse (elf_hash_table (info),
969 elf_link_renumber_local_hash_table_dynsyms,
970 &dynsymcount);
971
972 if (elf_hash_table (info)->dynlocal)
973 {
974 struct elf_link_local_dynamic_entry *p;
975 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
976 p->dynindx = ++dynsymcount;
977 }
978 elf_hash_table (info)->local_dynsymcount = dynsymcount;
979
980 elf_link_hash_traverse (elf_hash_table (info),
981 elf_link_renumber_hash_table_dynsyms,
982 &dynsymcount);
983
984 /* There is an unused NULL entry at the head of the table which we
985 must account for in our count even if the table is empty since it
986 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
987 .dynamic section. */
988 dynsymcount++;
989
990 elf_hash_table (info)->dynsymcount = dynsymcount;
991 return dynsymcount;
992 }
993
994 /* Merge st_other field. */
995
996 static void
997 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
998 const Elf_Internal_Sym *isym, asection *sec,
999 bfd_boolean definition, bfd_boolean dynamic)
1000 {
1001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1002
1003 /* If st_other has a processor-specific meaning, specific
1004 code might be needed here. */
1005 if (bed->elf_backend_merge_symbol_attribute)
1006 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1007 dynamic);
1008
1009 if (!dynamic)
1010 {
1011 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1012 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1013
1014 /* Keep the most constraining visibility. Leave the remainder
1015 of the st_other field to elf_backend_merge_symbol_attribute. */
1016 if (symvis - 1 < hvis - 1)
1017 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1018 }
1019 else if (definition
1020 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1021 && (sec->flags & SEC_READONLY) == 0)
1022 h->protected_def = 1;
1023 }
1024
1025 /* This function is called when we want to merge a new symbol with an
1026 existing symbol. It handles the various cases which arise when we
1027 find a definition in a dynamic object, or when there is already a
1028 definition in a dynamic object. The new symbol is described by
1029 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1030 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1031 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1032 of an old common symbol. We set OVERRIDE if the old symbol is
1033 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1034 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1035 to change. By OK to change, we mean that we shouldn't warn if the
1036 type or size does change. */
1037
1038 static bfd_boolean
1039 _bfd_elf_merge_symbol (bfd *abfd,
1040 struct bfd_link_info *info,
1041 const char *name,
1042 Elf_Internal_Sym *sym,
1043 asection **psec,
1044 bfd_vma *pvalue,
1045 struct elf_link_hash_entry **sym_hash,
1046 bfd **poldbfd,
1047 bfd_boolean *pold_weak,
1048 unsigned int *pold_alignment,
1049 bfd_boolean *skip,
1050 bfd_boolean *override,
1051 bfd_boolean *type_change_ok,
1052 bfd_boolean *size_change_ok,
1053 bfd_boolean *matched)
1054 {
1055 asection *sec, *oldsec;
1056 struct elf_link_hash_entry *h;
1057 struct elf_link_hash_entry *hi;
1058 struct elf_link_hash_entry *flip;
1059 int bind;
1060 bfd *oldbfd;
1061 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1062 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1063 const struct elf_backend_data *bed;
1064 char *new_version;
1065 bfd_boolean default_sym = *matched;
1066
1067 *skip = FALSE;
1068 *override = FALSE;
1069
1070 sec = *psec;
1071 bind = ELF_ST_BIND (sym->st_info);
1072
1073 if (! bfd_is_und_section (sec))
1074 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1075 else
1076 h = ((struct elf_link_hash_entry *)
1077 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1078 if (h == NULL)
1079 return FALSE;
1080 *sym_hash = h;
1081
1082 bed = get_elf_backend_data (abfd);
1083
1084 /* NEW_VERSION is the symbol version of the new symbol. */
1085 if (h->versioned != unversioned)
1086 {
1087 /* Symbol version is unknown or versioned. */
1088 new_version = strrchr (name, ELF_VER_CHR);
1089 if (new_version)
1090 {
1091 if (h->versioned == unknown)
1092 {
1093 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1094 h->versioned = versioned_hidden;
1095 else
1096 h->versioned = versioned;
1097 }
1098 new_version += 1;
1099 if (new_version[0] == '\0')
1100 new_version = NULL;
1101 }
1102 else
1103 h->versioned = unversioned;
1104 }
1105 else
1106 new_version = NULL;
1107
1108 /* For merging, we only care about real symbols. But we need to make
1109 sure that indirect symbol dynamic flags are updated. */
1110 hi = h;
1111 while (h->root.type == bfd_link_hash_indirect
1112 || h->root.type == bfd_link_hash_warning)
1113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1114
1115 if (!*matched)
1116 {
1117 if (hi == h || h->root.type == bfd_link_hash_new)
1118 *matched = TRUE;
1119 else
1120 {
1121 /* OLD_HIDDEN is true if the existing symbol is only visible
1122 to the symbol with the same symbol version. NEW_HIDDEN is
1123 true if the new symbol is only visible to the symbol with
1124 the same symbol version. */
1125 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1126 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1127 if (!old_hidden && !new_hidden)
1128 /* The new symbol matches the existing symbol if both
1129 aren't hidden. */
1130 *matched = TRUE;
1131 else
1132 {
1133 /* OLD_VERSION is the symbol version of the existing
1134 symbol. */
1135 char *old_version;
1136
1137 if (h->versioned >= versioned)
1138 old_version = strrchr (h->root.root.string,
1139 ELF_VER_CHR) + 1;
1140 else
1141 old_version = NULL;
1142
1143 /* The new symbol matches the existing symbol if they
1144 have the same symbol version. */
1145 *matched = (old_version == new_version
1146 || (old_version != NULL
1147 && new_version != NULL
1148 && strcmp (old_version, new_version) == 0));
1149 }
1150 }
1151 }
1152
1153 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1154 existing symbol. */
1155
1156 oldbfd = NULL;
1157 oldsec = NULL;
1158 switch (h->root.type)
1159 {
1160 default:
1161 break;
1162
1163 case bfd_link_hash_undefined:
1164 case bfd_link_hash_undefweak:
1165 oldbfd = h->root.u.undef.abfd;
1166 break;
1167
1168 case bfd_link_hash_defined:
1169 case bfd_link_hash_defweak:
1170 oldbfd = h->root.u.def.section->owner;
1171 oldsec = h->root.u.def.section;
1172 break;
1173
1174 case bfd_link_hash_common:
1175 oldbfd = h->root.u.c.p->section->owner;
1176 oldsec = h->root.u.c.p->section;
1177 if (pold_alignment)
1178 *pold_alignment = h->root.u.c.p->alignment_power;
1179 break;
1180 }
1181 if (poldbfd && *poldbfd == NULL)
1182 *poldbfd = oldbfd;
1183
1184 /* Differentiate strong and weak symbols. */
1185 newweak = bind == STB_WEAK;
1186 oldweak = (h->root.type == bfd_link_hash_defweak
1187 || h->root.type == bfd_link_hash_undefweak);
1188 if (pold_weak)
1189 *pold_weak = oldweak;
1190
1191 /* We have to check it for every instance since the first few may be
1192 references and not all compilers emit symbol type for undefined
1193 symbols. */
1194 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1195
1196 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1197 respectively, is from a dynamic object. */
1198
1199 newdyn = (abfd->flags & DYNAMIC) != 0;
1200
1201 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1202 syms and defined syms in dynamic libraries respectively.
1203 ref_dynamic on the other hand can be set for a symbol defined in
1204 a dynamic library, and def_dynamic may not be set; When the
1205 definition in a dynamic lib is overridden by a definition in the
1206 executable use of the symbol in the dynamic lib becomes a
1207 reference to the executable symbol. */
1208 if (newdyn)
1209 {
1210 if (bfd_is_und_section (sec))
1211 {
1212 if (bind != STB_WEAK)
1213 {
1214 h->ref_dynamic_nonweak = 1;
1215 hi->ref_dynamic_nonweak = 1;
1216 }
1217 }
1218 else
1219 {
1220 /* Update the existing symbol only if they match. */
1221 if (*matched)
1222 h->dynamic_def = 1;
1223 hi->dynamic_def = 1;
1224 }
1225 }
1226
1227 /* If we just created the symbol, mark it as being an ELF symbol.
1228 Other than that, there is nothing to do--there is no merge issue
1229 with a newly defined symbol--so we just return. */
1230
1231 if (h->root.type == bfd_link_hash_new)
1232 {
1233 h->non_elf = 0;
1234 return TRUE;
1235 }
1236
1237 /* In cases involving weak versioned symbols, we may wind up trying
1238 to merge a symbol with itself. Catch that here, to avoid the
1239 confusion that results if we try to override a symbol with
1240 itself. The additional tests catch cases like
1241 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1242 dynamic object, which we do want to handle here. */
1243 if (abfd == oldbfd
1244 && (newweak || oldweak)
1245 && ((abfd->flags & DYNAMIC) == 0
1246 || !h->def_regular))
1247 return TRUE;
1248
1249 olddyn = FALSE;
1250 if (oldbfd != NULL)
1251 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1252 else if (oldsec != NULL)
1253 {
1254 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1255 indices used by MIPS ELF. */
1256 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1257 }
1258
1259 /* Handle a case where plugin_notice won't be called and thus won't
1260 set the non_ir_ref flags on the first pass over symbols. */
1261 if (oldbfd != NULL
1262 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1263 && newdyn != olddyn)
1264 {
1265 h->root.non_ir_ref_dynamic = TRUE;
1266 hi->root.non_ir_ref_dynamic = TRUE;
1267 }
1268
1269 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1270 respectively, appear to be a definition rather than reference. */
1271
1272 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1273
1274 olddef = (h->root.type != bfd_link_hash_undefined
1275 && h->root.type != bfd_link_hash_undefweak
1276 && h->root.type != bfd_link_hash_common);
1277
1278 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1279 respectively, appear to be a function. */
1280
1281 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1282 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1283
1284 oldfunc = (h->type != STT_NOTYPE
1285 && bed->is_function_type (h->type));
1286
1287 if (!(newfunc && oldfunc)
1288 && ELF_ST_TYPE (sym->st_info) != h->type
1289 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1290 && h->type != STT_NOTYPE
1291 && (newdef || bfd_is_com_section (sec))
1292 && (olddef || h->root.type == bfd_link_hash_common))
1293 {
1294 /* If creating a default indirect symbol ("foo" or "foo@") from
1295 a dynamic versioned definition ("foo@@") skip doing so if
1296 there is an existing regular definition with a different
1297 type. We don't want, for example, a "time" variable in the
1298 executable overriding a "time" function in a shared library. */
1299 if (newdyn
1300 && !olddyn)
1301 {
1302 *skip = TRUE;
1303 return TRUE;
1304 }
1305
1306 /* When adding a symbol from a regular object file after we have
1307 created indirect symbols, undo the indirection and any
1308 dynamic state. */
1309 if (hi != h
1310 && !newdyn
1311 && olddyn)
1312 {
1313 h = hi;
1314 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1315 h->forced_local = 0;
1316 h->ref_dynamic = 0;
1317 h->def_dynamic = 0;
1318 h->dynamic_def = 0;
1319 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 {
1321 h->root.type = bfd_link_hash_undefined;
1322 h->root.u.undef.abfd = abfd;
1323 }
1324 else
1325 {
1326 h->root.type = bfd_link_hash_new;
1327 h->root.u.undef.abfd = NULL;
1328 }
1329 return TRUE;
1330 }
1331 }
1332
1333 /* Check TLS symbols. We don't check undefined symbols introduced
1334 by "ld -u" which have no type (and oldbfd NULL), and we don't
1335 check symbols from plugins because they also have no type. */
1336 if (oldbfd != NULL
1337 && (oldbfd->flags & BFD_PLUGIN) == 0
1338 && (abfd->flags & BFD_PLUGIN) == 0
1339 && ELF_ST_TYPE (sym->st_info) != h->type
1340 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1341 {
1342 bfd *ntbfd, *tbfd;
1343 bfd_boolean ntdef, tdef;
1344 asection *ntsec, *tsec;
1345
1346 if (h->type == STT_TLS)
1347 {
1348 ntbfd = abfd;
1349 ntsec = sec;
1350 ntdef = newdef;
1351 tbfd = oldbfd;
1352 tsec = oldsec;
1353 tdef = olddef;
1354 }
1355 else
1356 {
1357 ntbfd = oldbfd;
1358 ntsec = oldsec;
1359 ntdef = olddef;
1360 tbfd = abfd;
1361 tsec = sec;
1362 tdef = newdef;
1363 }
1364
1365 if (tdef && ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS definition in %pB section %pA "
1369 "mismatches non-TLS definition in %pB section %pA"),
1370 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1371 else if (!tdef && !ntdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS reference in %pB "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, ntbfd);
1377 else if (tdef)
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS definition in %pB section %pA "
1381 "mismatches non-TLS reference in %pB"),
1382 h->root.root.string, tbfd, tsec, ntbfd);
1383 else
1384 _bfd_error_handler
1385 /* xgettext:c-format */
1386 (_("%s: TLS reference in %pB "
1387 "mismatches non-TLS definition in %pB section %pA"),
1388 h->root.root.string, tbfd, ntbfd, ntsec);
1389
1390 bfd_set_error (bfd_error_bad_value);
1391 return FALSE;
1392 }
1393
1394 /* If the old symbol has non-default visibility, we ignore the new
1395 definition from a dynamic object. */
1396 if (newdyn
1397 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1398 && !bfd_is_und_section (sec))
1399 {
1400 *skip = TRUE;
1401 /* Make sure this symbol is dynamic. */
1402 h->ref_dynamic = 1;
1403 hi->ref_dynamic = 1;
1404 /* A protected symbol has external availability. Make sure it is
1405 recorded as dynamic.
1406
1407 FIXME: Should we check type and size for protected symbol? */
1408 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1409 return bfd_elf_link_record_dynamic_symbol (info, h);
1410 else
1411 return TRUE;
1412 }
1413 else if (!newdyn
1414 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1415 && h->def_dynamic)
1416 {
1417 /* If the new symbol with non-default visibility comes from a
1418 relocatable file and the old definition comes from a dynamic
1419 object, we remove the old definition. */
1420 if (hi->root.type == bfd_link_hash_indirect)
1421 {
1422 /* Handle the case where the old dynamic definition is
1423 default versioned. We need to copy the symbol info from
1424 the symbol with default version to the normal one if it
1425 was referenced before. */
1426 if (h->ref_regular)
1427 {
1428 hi->root.type = h->root.type;
1429 h->root.type = bfd_link_hash_indirect;
1430 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1431
1432 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1433 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1434 {
1435 /* If the new symbol is hidden or internal, completely undo
1436 any dynamic link state. */
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 h->forced_local = 0;
1439 h->ref_dynamic = 0;
1440 }
1441 else
1442 h->ref_dynamic = 1;
1443
1444 h->def_dynamic = 0;
1445 /* FIXME: Should we check type and size for protected symbol? */
1446 h->size = 0;
1447 h->type = 0;
1448
1449 h = hi;
1450 }
1451 else
1452 h = hi;
1453 }
1454
1455 /* If the old symbol was undefined before, then it will still be
1456 on the undefs list. If the new symbol is undefined or
1457 common, we can't make it bfd_link_hash_new here, because new
1458 undefined or common symbols will be added to the undefs list
1459 by _bfd_generic_link_add_one_symbol. Symbols may not be
1460 added twice to the undefs list. Also, if the new symbol is
1461 undefweak then we don't want to lose the strong undef. */
1462 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1463 {
1464 h->root.type = bfd_link_hash_undefined;
1465 h->root.u.undef.abfd = abfd;
1466 }
1467 else
1468 {
1469 h->root.type = bfd_link_hash_new;
1470 h->root.u.undef.abfd = NULL;
1471 }
1472
1473 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1474 {
1475 /* If the new symbol is hidden or internal, completely undo
1476 any dynamic link state. */
1477 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1478 h->forced_local = 0;
1479 h->ref_dynamic = 0;
1480 }
1481 else
1482 h->ref_dynamic = 1;
1483 h->def_dynamic = 0;
1484 /* FIXME: Should we check type and size for protected symbol? */
1485 h->size = 0;
1486 h->type = 0;
1487 return TRUE;
1488 }
1489
1490 /* If a new weak symbol definition comes from a regular file and the
1491 old symbol comes from a dynamic library, we treat the new one as
1492 strong. Similarly, an old weak symbol definition from a regular
1493 file is treated as strong when the new symbol comes from a dynamic
1494 library. Further, an old weak symbol from a dynamic library is
1495 treated as strong if the new symbol is from a dynamic library.
1496 This reflects the way glibc's ld.so works.
1497
1498 Also allow a weak symbol to override a linker script symbol
1499 defined by an early pass over the script. This is done so the
1500 linker knows the symbol is defined in an object file, for the
1501 DEFINED script function.
1502
1503 Do this before setting *type_change_ok or *size_change_ok so that
1504 we warn properly when dynamic library symbols are overridden. */
1505
1506 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1507 newweak = FALSE;
1508 if (olddef && newdyn)
1509 oldweak = FALSE;
1510
1511 /* Allow changes between different types of function symbol. */
1512 if (newfunc && oldfunc)
1513 *type_change_ok = TRUE;
1514
1515 /* It's OK to change the type if either the existing symbol or the
1516 new symbol is weak. A type change is also OK if the old symbol
1517 is undefined and the new symbol is defined. */
1518
1519 if (oldweak
1520 || newweak
1521 || (newdef
1522 && h->root.type == bfd_link_hash_undefined))
1523 *type_change_ok = TRUE;
1524
1525 /* It's OK to change the size if either the existing symbol or the
1526 new symbol is weak, or if the old symbol is undefined. */
1527
1528 if (*type_change_ok
1529 || h->root.type == bfd_link_hash_undefined)
1530 *size_change_ok = TRUE;
1531
1532 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1533 symbol, respectively, appears to be a common symbol in a dynamic
1534 object. If a symbol appears in an uninitialized section, and is
1535 not weak, and is not a function, then it may be a common symbol
1536 which was resolved when the dynamic object was created. We want
1537 to treat such symbols specially, because they raise special
1538 considerations when setting the symbol size: if the symbol
1539 appears as a common symbol in a regular object, and the size in
1540 the regular object is larger, we must make sure that we use the
1541 larger size. This problematic case can always be avoided in C,
1542 but it must be handled correctly when using Fortran shared
1543 libraries.
1544
1545 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1546 likewise for OLDDYNCOMMON and OLDDEF.
1547
1548 Note that this test is just a heuristic, and that it is quite
1549 possible to have an uninitialized symbol in a shared object which
1550 is really a definition, rather than a common symbol. This could
1551 lead to some minor confusion when the symbol really is a common
1552 symbol in some regular object. However, I think it will be
1553 harmless. */
1554
1555 if (newdyn
1556 && newdef
1557 && !newweak
1558 && (sec->flags & SEC_ALLOC) != 0
1559 && (sec->flags & SEC_LOAD) == 0
1560 && sym->st_size > 0
1561 && !newfunc)
1562 newdyncommon = TRUE;
1563 else
1564 newdyncommon = FALSE;
1565
1566 if (olddyn
1567 && olddef
1568 && h->root.type == bfd_link_hash_defined
1569 && h->def_dynamic
1570 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1571 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1572 && h->size > 0
1573 && !oldfunc)
1574 olddyncommon = TRUE;
1575 else
1576 olddyncommon = FALSE;
1577
1578 /* We now know everything about the old and new symbols. We ask the
1579 backend to check if we can merge them. */
1580 if (bed->merge_symbol != NULL)
1581 {
1582 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1583 return FALSE;
1584 sec = *psec;
1585 }
1586
1587 /* There are multiple definitions of a normal symbol. Skip the
1588 default symbol as well as definition from an IR object. */
1589 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1590 && !default_sym && h->def_regular
1591 && !(oldbfd != NULL
1592 && (oldbfd->flags & BFD_PLUGIN) != 0
1593 && (abfd->flags & BFD_PLUGIN) == 0))
1594 {
1595 /* Handle a multiple definition. */
1596 (*info->callbacks->multiple_definition) (info, &h->root,
1597 abfd, sec, *pvalue);
1598 *skip = TRUE;
1599 return TRUE;
1600 }
1601
1602 /* If both the old and the new symbols look like common symbols in a
1603 dynamic object, set the size of the symbol to the larger of the
1604 two. */
1605
1606 if (olddyncommon
1607 && newdyncommon
1608 && sym->st_size != h->size)
1609 {
1610 /* Since we think we have two common symbols, issue a multiple
1611 common warning if desired. Note that we only warn if the
1612 size is different. If the size is the same, we simply let
1613 the old symbol override the new one as normally happens with
1614 symbols defined in dynamic objects. */
1615
1616 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1617 bfd_link_hash_common, sym->st_size);
1618 if (sym->st_size > h->size)
1619 h->size = sym->st_size;
1620
1621 *size_change_ok = TRUE;
1622 }
1623
1624 /* If we are looking at a dynamic object, and we have found a
1625 definition, we need to see if the symbol was already defined by
1626 some other object. If so, we want to use the existing
1627 definition, and we do not want to report a multiple symbol
1628 definition error; we do this by clobbering *PSEC to be
1629 bfd_und_section_ptr.
1630
1631 We treat a common symbol as a definition if the symbol in the
1632 shared library is a function, since common symbols always
1633 represent variables; this can cause confusion in principle, but
1634 any such confusion would seem to indicate an erroneous program or
1635 shared library. We also permit a common symbol in a regular
1636 object to override a weak symbol in a shared object. */
1637
1638 if (newdyn
1639 && newdef
1640 && (olddef
1641 || (h->root.type == bfd_link_hash_common
1642 && (newweak || newfunc))))
1643 {
1644 *override = TRUE;
1645 newdef = FALSE;
1646 newdyncommon = FALSE;
1647
1648 *psec = sec = bfd_und_section_ptr;
1649 *size_change_ok = TRUE;
1650
1651 /* If we get here when the old symbol is a common symbol, then
1652 we are explicitly letting it override a weak symbol or
1653 function in a dynamic object, and we don't want to warn about
1654 a type change. If the old symbol is a defined symbol, a type
1655 change warning may still be appropriate. */
1656
1657 if (h->root.type == bfd_link_hash_common)
1658 *type_change_ok = TRUE;
1659 }
1660
1661 /* Handle the special case of an old common symbol merging with a
1662 new symbol which looks like a common symbol in a shared object.
1663 We change *PSEC and *PVALUE to make the new symbol look like a
1664 common symbol, and let _bfd_generic_link_add_one_symbol do the
1665 right thing. */
1666
1667 if (newdyncommon
1668 && h->root.type == bfd_link_hash_common)
1669 {
1670 *override = TRUE;
1671 newdef = FALSE;
1672 newdyncommon = FALSE;
1673 *pvalue = sym->st_size;
1674 *psec = sec = bed->common_section (oldsec);
1675 *size_change_ok = TRUE;
1676 }
1677
1678 /* Skip weak definitions of symbols that are already defined. */
1679 if (newdef && olddef && newweak)
1680 {
1681 /* Don't skip new non-IR weak syms. */
1682 if (!(oldbfd != NULL
1683 && (oldbfd->flags & BFD_PLUGIN) != 0
1684 && (abfd->flags & BFD_PLUGIN) == 0))
1685 {
1686 newdef = FALSE;
1687 *skip = TRUE;
1688 }
1689
1690 /* Merge st_other. If the symbol already has a dynamic index,
1691 but visibility says it should not be visible, turn it into a
1692 local symbol. */
1693 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1694 if (h->dynindx != -1)
1695 switch (ELF_ST_VISIBILITY (h->other))
1696 {
1697 case STV_INTERNAL:
1698 case STV_HIDDEN:
1699 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1700 break;
1701 }
1702 }
1703
1704 /* If the old symbol is from a dynamic object, and the new symbol is
1705 a definition which is not from a dynamic object, then the new
1706 symbol overrides the old symbol. Symbols from regular files
1707 always take precedence over symbols from dynamic objects, even if
1708 they are defined after the dynamic object in the link.
1709
1710 As above, we again permit a common symbol in a regular object to
1711 override a definition in a shared object if the shared object
1712 symbol is a function or is weak. */
1713
1714 flip = NULL;
1715 if (!newdyn
1716 && (newdef
1717 || (bfd_is_com_section (sec)
1718 && (oldweak || oldfunc)))
1719 && olddyn
1720 && olddef
1721 && h->def_dynamic)
1722 {
1723 /* Change the hash table entry to undefined, and let
1724 _bfd_generic_link_add_one_symbol do the right thing with the
1725 new definition. */
1726
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1729 *size_change_ok = TRUE;
1730
1731 olddef = FALSE;
1732 olddyncommon = FALSE;
1733
1734 /* We again permit a type change when a common symbol may be
1735 overriding a function. */
1736
1737 if (bfd_is_com_section (sec))
1738 {
1739 if (oldfunc)
1740 {
1741 /* If a common symbol overrides a function, make sure
1742 that it isn't defined dynamically nor has type
1743 function. */
1744 h->def_dynamic = 0;
1745 h->type = STT_NOTYPE;
1746 }
1747 *type_change_ok = TRUE;
1748 }
1749
1750 if (hi->root.type == bfd_link_hash_indirect)
1751 flip = hi;
1752 else
1753 /* This union may have been set to be non-NULL when this symbol
1754 was seen in a dynamic object. We must force the union to be
1755 NULL, so that it is correct for a regular symbol. */
1756 h->verinfo.vertree = NULL;
1757 }
1758
1759 /* Handle the special case of a new common symbol merging with an
1760 old symbol that looks like it might be a common symbol defined in
1761 a shared object. Note that we have already handled the case in
1762 which a new common symbol should simply override the definition
1763 in the shared library. */
1764
1765 if (! newdyn
1766 && bfd_is_com_section (sec)
1767 && olddyncommon)
1768 {
1769 /* It would be best if we could set the hash table entry to a
1770 common symbol, but we don't know what to use for the section
1771 or the alignment. */
1772 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1773 bfd_link_hash_common, sym->st_size);
1774
1775 /* If the presumed common symbol in the dynamic object is
1776 larger, pretend that the new symbol has its size. */
1777
1778 if (h->size > *pvalue)
1779 *pvalue = h->size;
1780
1781 /* We need to remember the alignment required by the symbol
1782 in the dynamic object. */
1783 BFD_ASSERT (pold_alignment);
1784 *pold_alignment = h->root.u.def.section->alignment_power;
1785
1786 olddef = FALSE;
1787 olddyncommon = FALSE;
1788
1789 h->root.type = bfd_link_hash_undefined;
1790 h->root.u.undef.abfd = h->root.u.def.section->owner;
1791
1792 *size_change_ok = TRUE;
1793 *type_change_ok = TRUE;
1794
1795 if (hi->root.type == bfd_link_hash_indirect)
1796 flip = hi;
1797 else
1798 h->verinfo.vertree = NULL;
1799 }
1800
1801 if (flip != NULL)
1802 {
1803 /* Handle the case where we had a versioned symbol in a dynamic
1804 library and now find a definition in a normal object. In this
1805 case, we make the versioned symbol point to the normal one. */
1806 flip->root.type = h->root.type;
1807 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1808 h->root.type = bfd_link_hash_indirect;
1809 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1810 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1811 if (h->def_dynamic)
1812 {
1813 h->def_dynamic = 0;
1814 flip->ref_dynamic = 1;
1815 }
1816 }
1817
1818 return TRUE;
1819 }
1820
1821 /* This function is called to create an indirect symbol from the
1822 default for the symbol with the default version if needed. The
1823 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1824 set DYNSYM if the new indirect symbol is dynamic. */
1825
1826 static bfd_boolean
1827 _bfd_elf_add_default_symbol (bfd *abfd,
1828 struct bfd_link_info *info,
1829 struct elf_link_hash_entry *h,
1830 const char *name,
1831 Elf_Internal_Sym *sym,
1832 asection *sec,
1833 bfd_vma value,
1834 bfd **poldbfd,
1835 bfd_boolean *dynsym)
1836 {
1837 bfd_boolean type_change_ok;
1838 bfd_boolean size_change_ok;
1839 bfd_boolean skip;
1840 char *shortname;
1841 struct elf_link_hash_entry *hi;
1842 struct bfd_link_hash_entry *bh;
1843 const struct elf_backend_data *bed;
1844 bfd_boolean collect;
1845 bfd_boolean dynamic;
1846 bfd_boolean override;
1847 char *p;
1848 size_t len, shortlen;
1849 asection *tmp_sec;
1850 bfd_boolean matched;
1851
1852 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1853 return TRUE;
1854
1855 /* If this symbol has a version, and it is the default version, we
1856 create an indirect symbol from the default name to the fully
1857 decorated name. This will cause external references which do not
1858 specify a version to be bound to this version of the symbol. */
1859 p = strchr (name, ELF_VER_CHR);
1860 if (h->versioned == unknown)
1861 {
1862 if (p == NULL)
1863 {
1864 h->versioned = unversioned;
1865 return TRUE;
1866 }
1867 else
1868 {
1869 if (p[1] != ELF_VER_CHR)
1870 {
1871 h->versioned = versioned_hidden;
1872 return TRUE;
1873 }
1874 else
1875 h->versioned = versioned;
1876 }
1877 }
1878 else
1879 {
1880 /* PR ld/19073: We may see an unversioned definition after the
1881 default version. */
1882 if (p == NULL)
1883 return TRUE;
1884 }
1885
1886 bed = get_elf_backend_data (abfd);
1887 collect = bed->collect;
1888 dynamic = (abfd->flags & DYNAMIC) != 0;
1889
1890 shortlen = p - name;
1891 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1892 if (shortname == NULL)
1893 return FALSE;
1894 memcpy (shortname, name, shortlen);
1895 shortname[shortlen] = '\0';
1896
1897 /* We are going to create a new symbol. Merge it with any existing
1898 symbol with this name. For the purposes of the merge, act as
1899 though we were defining the symbol we just defined, although we
1900 actually going to define an indirect symbol. */
1901 type_change_ok = FALSE;
1902 size_change_ok = FALSE;
1903 matched = TRUE;
1904 tmp_sec = sec;
1905 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1906 &hi, poldbfd, NULL, NULL, &skip, &override,
1907 &type_change_ok, &size_change_ok, &matched))
1908 return FALSE;
1909
1910 if (skip)
1911 goto nondefault;
1912
1913 if (hi->def_regular)
1914 {
1915 /* If the undecorated symbol will have a version added by a
1916 script different to H, then don't indirect to/from the
1917 undecorated symbol. This isn't ideal because we may not yet
1918 have seen symbol versions, if given by a script on the
1919 command line rather than via --version-script. */
1920 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1921 {
1922 bfd_boolean hide;
1923
1924 hi->verinfo.vertree
1925 = bfd_find_version_for_sym (info->version_info,
1926 hi->root.root.string, &hide);
1927 if (hi->verinfo.vertree != NULL && hide)
1928 {
1929 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1930 goto nondefault;
1931 }
1932 }
1933 if (hi->verinfo.vertree != NULL
1934 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1935 goto nondefault;
1936 }
1937
1938 if (! override)
1939 {
1940 /* Add the default symbol if not performing a relocatable link. */
1941 if (! bfd_link_relocatable (info))
1942 {
1943 bh = &hi->root;
1944 if (! (_bfd_generic_link_add_one_symbol
1945 (info, abfd, shortname, BSF_INDIRECT,
1946 bfd_ind_section_ptr,
1947 0, name, FALSE, collect, &bh)))
1948 return FALSE;
1949 hi = (struct elf_link_hash_entry *) bh;
1950 }
1951 }
1952 else
1953 {
1954 /* In this case the symbol named SHORTNAME is overriding the
1955 indirect symbol we want to add. We were planning on making
1956 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1957 is the name without a version. NAME is the fully versioned
1958 name, and it is the default version.
1959
1960 Overriding means that we already saw a definition for the
1961 symbol SHORTNAME in a regular object, and it is overriding
1962 the symbol defined in the dynamic object.
1963
1964 When this happens, we actually want to change NAME, the
1965 symbol we just added, to refer to SHORTNAME. This will cause
1966 references to NAME in the shared object to become references
1967 to SHORTNAME in the regular object. This is what we expect
1968 when we override a function in a shared object: that the
1969 references in the shared object will be mapped to the
1970 definition in the regular object. */
1971
1972 while (hi->root.type == bfd_link_hash_indirect
1973 || hi->root.type == bfd_link_hash_warning)
1974 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1975
1976 h->root.type = bfd_link_hash_indirect;
1977 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1978 if (h->def_dynamic)
1979 {
1980 h->def_dynamic = 0;
1981 hi->ref_dynamic = 1;
1982 if (hi->ref_regular
1983 || hi->def_regular)
1984 {
1985 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1986 return FALSE;
1987 }
1988 }
1989
1990 /* Now set HI to H, so that the following code will set the
1991 other fields correctly. */
1992 hi = h;
1993 }
1994
1995 /* Check if HI is a warning symbol. */
1996 if (hi->root.type == bfd_link_hash_warning)
1997 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1998
1999 /* If there is a duplicate definition somewhere, then HI may not
2000 point to an indirect symbol. We will have reported an error to
2001 the user in that case. */
2002
2003 if (hi->root.type == bfd_link_hash_indirect)
2004 {
2005 struct elf_link_hash_entry *ht;
2006
2007 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2008 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2009
2010 /* A reference to the SHORTNAME symbol from a dynamic library
2011 will be satisfied by the versioned symbol at runtime. In
2012 effect, we have a reference to the versioned symbol. */
2013 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2014 hi->dynamic_def |= ht->dynamic_def;
2015
2016 /* See if the new flags lead us to realize that the symbol must
2017 be dynamic. */
2018 if (! *dynsym)
2019 {
2020 if (! dynamic)
2021 {
2022 if (! bfd_link_executable (info)
2023 || hi->def_dynamic
2024 || hi->ref_dynamic)
2025 *dynsym = TRUE;
2026 }
2027 else
2028 {
2029 if (hi->ref_regular)
2030 *dynsym = TRUE;
2031 }
2032 }
2033 }
2034
2035 /* We also need to define an indirection from the nondefault version
2036 of the symbol. */
2037
2038 nondefault:
2039 len = strlen (name);
2040 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2041 if (shortname == NULL)
2042 return FALSE;
2043 memcpy (shortname, name, shortlen);
2044 memcpy (shortname + shortlen, p + 1, len - shortlen);
2045
2046 /* Once again, merge with any existing symbol. */
2047 type_change_ok = FALSE;
2048 size_change_ok = FALSE;
2049 tmp_sec = sec;
2050 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2051 &hi, poldbfd, NULL, NULL, &skip, &override,
2052 &type_change_ok, &size_change_ok, &matched))
2053 return FALSE;
2054
2055 if (skip)
2056 return TRUE;
2057
2058 if (override)
2059 {
2060 /* Here SHORTNAME is a versioned name, so we don't expect to see
2061 the type of override we do in the case above unless it is
2062 overridden by a versioned definition. */
2063 if (hi->root.type != bfd_link_hash_defined
2064 && hi->root.type != bfd_link_hash_defweak)
2065 _bfd_error_handler
2066 /* xgettext:c-format */
2067 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2068 abfd, shortname);
2069 }
2070 else
2071 {
2072 bh = &hi->root;
2073 if (! (_bfd_generic_link_add_one_symbol
2074 (info, abfd, shortname, BSF_INDIRECT,
2075 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2076 return FALSE;
2077 hi = (struct elf_link_hash_entry *) bh;
2078
2079 /* If there is a duplicate definition somewhere, then HI may not
2080 point to an indirect symbol. We will have reported an error
2081 to the user in that case. */
2082
2083 if (hi->root.type == bfd_link_hash_indirect)
2084 {
2085 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2086 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2087 hi->dynamic_def |= h->dynamic_def;
2088
2089 /* See if the new flags lead us to realize that the symbol
2090 must be dynamic. */
2091 if (! *dynsym)
2092 {
2093 if (! dynamic)
2094 {
2095 if (! bfd_link_executable (info)
2096 || hi->ref_dynamic)
2097 *dynsym = TRUE;
2098 }
2099 else
2100 {
2101 if (hi->ref_regular)
2102 *dynsym = TRUE;
2103 }
2104 }
2105 }
2106 }
2107
2108 return TRUE;
2109 }
2110 \f
2111 /* This routine is used to export all defined symbols into the dynamic
2112 symbol table. It is called via elf_link_hash_traverse. */
2113
2114 static bfd_boolean
2115 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2116 {
2117 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2118
2119 /* Ignore indirect symbols. These are added by the versioning code. */
2120 if (h->root.type == bfd_link_hash_indirect)
2121 return TRUE;
2122
2123 /* Ignore this if we won't export it. */
2124 if (!eif->info->export_dynamic && !h->dynamic)
2125 return TRUE;
2126
2127 if (h->dynindx == -1
2128 && (h->def_regular || h->ref_regular)
2129 && ! bfd_hide_sym_by_version (eif->info->version_info,
2130 h->root.root.string))
2131 {
2132 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2133 {
2134 eif->failed = TRUE;
2135 return FALSE;
2136 }
2137 }
2138
2139 return TRUE;
2140 }
2141 \f
2142 /* Look through the symbols which are defined in other shared
2143 libraries and referenced here. Update the list of version
2144 dependencies. This will be put into the .gnu.version_r section.
2145 This function is called via elf_link_hash_traverse. */
2146
2147 static bfd_boolean
2148 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2149 void *data)
2150 {
2151 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2152 Elf_Internal_Verneed *t;
2153 Elf_Internal_Vernaux *a;
2154 bfd_size_type amt;
2155
2156 /* We only care about symbols defined in shared objects with version
2157 information. */
2158 if (!h->def_dynamic
2159 || h->def_regular
2160 || h->dynindx == -1
2161 || h->verinfo.verdef == NULL
2162 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2163 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2164 return TRUE;
2165
2166 /* See if we already know about this version. */
2167 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2168 t != NULL;
2169 t = t->vn_nextref)
2170 {
2171 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2172 continue;
2173
2174 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2175 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2176 return TRUE;
2177
2178 break;
2179 }
2180
2181 /* This is a new version. Add it to tree we are building. */
2182
2183 if (t == NULL)
2184 {
2185 amt = sizeof *t;
2186 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2187 if (t == NULL)
2188 {
2189 rinfo->failed = TRUE;
2190 return FALSE;
2191 }
2192
2193 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2194 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2195 elf_tdata (rinfo->info->output_bfd)->verref = t;
2196 }
2197
2198 amt = sizeof *a;
2199 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2200 if (a == NULL)
2201 {
2202 rinfo->failed = TRUE;
2203 return FALSE;
2204 }
2205
2206 /* Note that we are copying a string pointer here, and testing it
2207 above. If bfd_elf_string_from_elf_section is ever changed to
2208 discard the string data when low in memory, this will have to be
2209 fixed. */
2210 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2211
2212 a->vna_flags = h->verinfo.verdef->vd_flags;
2213 a->vna_nextptr = t->vn_auxptr;
2214
2215 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2216 ++rinfo->vers;
2217
2218 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2219
2220 t->vn_auxptr = a;
2221
2222 return TRUE;
2223 }
2224
2225 /* Figure out appropriate versions for all the symbols. We may not
2226 have the version number script until we have read all of the input
2227 files, so until that point we don't know which symbols should be
2228 local. This function is called via elf_link_hash_traverse. */
2229
2230 static bfd_boolean
2231 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2232 {
2233 struct elf_info_failed *sinfo;
2234 struct bfd_link_info *info;
2235 const struct elf_backend_data *bed;
2236 struct elf_info_failed eif;
2237 char *p;
2238
2239 sinfo = (struct elf_info_failed *) data;
2240 info = sinfo->info;
2241
2242 /* Fix the symbol flags. */
2243 eif.failed = FALSE;
2244 eif.info = info;
2245 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2246 {
2247 if (eif.failed)
2248 sinfo->failed = TRUE;
2249 return FALSE;
2250 }
2251
2252 /* We only need version numbers for symbols defined in regular
2253 objects. */
2254 if (!h->def_regular)
2255 return TRUE;
2256
2257 bed = get_elf_backend_data (info->output_bfd);
2258 p = strchr (h->root.root.string, ELF_VER_CHR);
2259 if (p != NULL && h->verinfo.vertree == NULL)
2260 {
2261 struct bfd_elf_version_tree *t;
2262
2263 ++p;
2264 if (*p == ELF_VER_CHR)
2265 ++p;
2266
2267 /* If there is no version string, we can just return out. */
2268 if (*p == '\0')
2269 return TRUE;
2270
2271 /* Look for the version. If we find it, it is no longer weak. */
2272 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2273 {
2274 if (strcmp (t->name, p) == 0)
2275 {
2276 size_t len;
2277 char *alc;
2278 struct bfd_elf_version_expr *d;
2279
2280 len = p - h->root.root.string;
2281 alc = (char *) bfd_malloc (len);
2282 if (alc == NULL)
2283 {
2284 sinfo->failed = TRUE;
2285 return FALSE;
2286 }
2287 memcpy (alc, h->root.root.string, len - 1);
2288 alc[len - 1] = '\0';
2289 if (alc[len - 2] == ELF_VER_CHR)
2290 alc[len - 2] = '\0';
2291
2292 h->verinfo.vertree = t;
2293 t->used = TRUE;
2294 d = NULL;
2295
2296 if (t->globals.list != NULL)
2297 d = (*t->match) (&t->globals, NULL, alc);
2298
2299 /* See if there is anything to force this symbol to
2300 local scope. */
2301 if (d == NULL && t->locals.list != NULL)
2302 {
2303 d = (*t->match) (&t->locals, NULL, alc);
2304 if (d != NULL
2305 && h->dynindx != -1
2306 && ! info->export_dynamic)
2307 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2308 }
2309
2310 free (alc);
2311 break;
2312 }
2313 }
2314
2315 /* If we are building an application, we need to create a
2316 version node for this version. */
2317 if (t == NULL && bfd_link_executable (info))
2318 {
2319 struct bfd_elf_version_tree **pp;
2320 int version_index;
2321
2322 /* If we aren't going to export this symbol, we don't need
2323 to worry about it. */
2324 if (h->dynindx == -1)
2325 return TRUE;
2326
2327 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2328 sizeof *t);
2329 if (t == NULL)
2330 {
2331 sinfo->failed = TRUE;
2332 return FALSE;
2333 }
2334
2335 t->name = p;
2336 t->name_indx = (unsigned int) -1;
2337 t->used = TRUE;
2338
2339 version_index = 1;
2340 /* Don't count anonymous version tag. */
2341 if (sinfo->info->version_info != NULL
2342 && sinfo->info->version_info->vernum == 0)
2343 version_index = 0;
2344 for (pp = &sinfo->info->version_info;
2345 *pp != NULL;
2346 pp = &(*pp)->next)
2347 ++version_index;
2348 t->vernum = version_index;
2349
2350 *pp = t;
2351
2352 h->verinfo.vertree = t;
2353 }
2354 else if (t == NULL)
2355 {
2356 /* We could not find the version for a symbol when
2357 generating a shared archive. Return an error. */
2358 _bfd_error_handler
2359 /* xgettext:c-format */
2360 (_("%pB: version node not found for symbol %s"),
2361 info->output_bfd, h->root.root.string);
2362 bfd_set_error (bfd_error_bad_value);
2363 sinfo->failed = TRUE;
2364 return FALSE;
2365 }
2366 }
2367
2368 /* If we don't have a version for this symbol, see if we can find
2369 something. */
2370 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2371 {
2372 bfd_boolean hide;
2373
2374 h->verinfo.vertree
2375 = bfd_find_version_for_sym (sinfo->info->version_info,
2376 h->root.root.string, &hide);
2377 if (h->verinfo.vertree != NULL && hide)
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 }
2380
2381 return TRUE;
2382 }
2383 \f
2384 /* Read and swap the relocs from the section indicated by SHDR. This
2385 may be either a REL or a RELA section. The relocations are
2386 translated into RELA relocations and stored in INTERNAL_RELOCS,
2387 which should have already been allocated to contain enough space.
2388 The EXTERNAL_RELOCS are a buffer where the external form of the
2389 relocations should be stored.
2390
2391 Returns FALSE if something goes wrong. */
2392
2393 static bfd_boolean
2394 elf_link_read_relocs_from_section (bfd *abfd,
2395 asection *sec,
2396 Elf_Internal_Shdr *shdr,
2397 void *external_relocs,
2398 Elf_Internal_Rela *internal_relocs)
2399 {
2400 const struct elf_backend_data *bed;
2401 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2402 const bfd_byte *erela;
2403 const bfd_byte *erelaend;
2404 Elf_Internal_Rela *irela;
2405 Elf_Internal_Shdr *symtab_hdr;
2406 size_t nsyms;
2407
2408 /* Position ourselves at the start of the section. */
2409 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2410 return FALSE;
2411
2412 /* Read the relocations. */
2413 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2414 return FALSE;
2415
2416 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2417 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2418
2419 bed = get_elf_backend_data (abfd);
2420
2421 /* Convert the external relocations to the internal format. */
2422 if (shdr->sh_entsize == bed->s->sizeof_rel)
2423 swap_in = bed->s->swap_reloc_in;
2424 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2425 swap_in = bed->s->swap_reloca_in;
2426 else
2427 {
2428 bfd_set_error (bfd_error_wrong_format);
2429 return FALSE;
2430 }
2431
2432 erela = (const bfd_byte *) external_relocs;
2433 erelaend = erela + shdr->sh_size;
2434 irela = internal_relocs;
2435 while (erela < erelaend)
2436 {
2437 bfd_vma r_symndx;
2438
2439 (*swap_in) (abfd, erela, irela);
2440 r_symndx = ELF32_R_SYM (irela->r_info);
2441 if (bed->s->arch_size == 64)
2442 r_symndx >>= 24;
2443 if (nsyms > 0)
2444 {
2445 if ((size_t) r_symndx >= nsyms)
2446 {
2447 _bfd_error_handler
2448 /* xgettext:c-format */
2449 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2450 " for offset %#" PRIx64 " in section `%pA'"),
2451 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2452 (uint64_t) irela->r_offset, sec);
2453 bfd_set_error (bfd_error_bad_value);
2454 return FALSE;
2455 }
2456 }
2457 else if (r_symndx != STN_UNDEF)
2458 {
2459 _bfd_error_handler
2460 /* xgettext:c-format */
2461 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2462 " for offset %#" PRIx64 " in section `%pA'"
2463 " when the object file has no symbol table"),
2464 abfd, (uint64_t) r_symndx,
2465 (uint64_t) irela->r_offset, sec);
2466 bfd_set_error (bfd_error_bad_value);
2467 return FALSE;
2468 }
2469 irela += bed->s->int_rels_per_ext_rel;
2470 erela += shdr->sh_entsize;
2471 }
2472
2473 return TRUE;
2474 }
2475
2476 /* Read and swap the relocs for a section O. They may have been
2477 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2478 not NULL, they are used as buffers to read into. They are known to
2479 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2480 the return value is allocated using either malloc or bfd_alloc,
2481 according to the KEEP_MEMORY argument. If O has two relocation
2482 sections (both REL and RELA relocations), then the REL_HDR
2483 relocations will appear first in INTERNAL_RELOCS, followed by the
2484 RELA_HDR relocations. */
2485
2486 Elf_Internal_Rela *
2487 _bfd_elf_link_read_relocs (bfd *abfd,
2488 asection *o,
2489 void *external_relocs,
2490 Elf_Internal_Rela *internal_relocs,
2491 bfd_boolean keep_memory)
2492 {
2493 void *alloc1 = NULL;
2494 Elf_Internal_Rela *alloc2 = NULL;
2495 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2496 struct bfd_elf_section_data *esdo = elf_section_data (o);
2497 Elf_Internal_Rela *internal_rela_relocs;
2498
2499 if (esdo->relocs != NULL)
2500 return esdo->relocs;
2501
2502 if (o->reloc_count == 0)
2503 return NULL;
2504
2505 if (internal_relocs == NULL)
2506 {
2507 bfd_size_type size;
2508
2509 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2510 if (keep_memory)
2511 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2512 else
2513 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2514 if (internal_relocs == NULL)
2515 goto error_return;
2516 }
2517
2518 if (external_relocs == NULL)
2519 {
2520 bfd_size_type size = 0;
2521
2522 if (esdo->rel.hdr)
2523 size += esdo->rel.hdr->sh_size;
2524 if (esdo->rela.hdr)
2525 size += esdo->rela.hdr->sh_size;
2526
2527 alloc1 = bfd_malloc (size);
2528 if (alloc1 == NULL)
2529 goto error_return;
2530 external_relocs = alloc1;
2531 }
2532
2533 internal_rela_relocs = internal_relocs;
2534 if (esdo->rel.hdr)
2535 {
2536 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2537 external_relocs,
2538 internal_relocs))
2539 goto error_return;
2540 external_relocs = (((bfd_byte *) external_relocs)
2541 + esdo->rel.hdr->sh_size);
2542 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2543 * bed->s->int_rels_per_ext_rel);
2544 }
2545
2546 if (esdo->rela.hdr
2547 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2548 external_relocs,
2549 internal_rela_relocs)))
2550 goto error_return;
2551
2552 /* Cache the results for next time, if we can. */
2553 if (keep_memory)
2554 esdo->relocs = internal_relocs;
2555
2556 if (alloc1 != NULL)
2557 free (alloc1);
2558
2559 /* Don't free alloc2, since if it was allocated we are passing it
2560 back (under the name of internal_relocs). */
2561
2562 return internal_relocs;
2563
2564 error_return:
2565 if (alloc1 != NULL)
2566 free (alloc1);
2567 if (alloc2 != NULL)
2568 {
2569 if (keep_memory)
2570 bfd_release (abfd, alloc2);
2571 else
2572 free (alloc2);
2573 }
2574 return NULL;
2575 }
2576
2577 /* Compute the size of, and allocate space for, REL_HDR which is the
2578 section header for a section containing relocations for O. */
2579
2580 static bfd_boolean
2581 _bfd_elf_link_size_reloc_section (bfd *abfd,
2582 struct bfd_elf_section_reloc_data *reldata)
2583 {
2584 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2585
2586 /* That allows us to calculate the size of the section. */
2587 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2588
2589 /* The contents field must last into write_object_contents, so we
2590 allocate it with bfd_alloc rather than malloc. Also since we
2591 cannot be sure that the contents will actually be filled in,
2592 we zero the allocated space. */
2593 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2594 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2595 return FALSE;
2596
2597 if (reldata->hashes == NULL && reldata->count)
2598 {
2599 struct elf_link_hash_entry **p;
2600
2601 p = ((struct elf_link_hash_entry **)
2602 bfd_zmalloc (reldata->count * sizeof (*p)));
2603 if (p == NULL)
2604 return FALSE;
2605
2606 reldata->hashes = p;
2607 }
2608
2609 return TRUE;
2610 }
2611
2612 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2613 originated from the section given by INPUT_REL_HDR) to the
2614 OUTPUT_BFD. */
2615
2616 bfd_boolean
2617 _bfd_elf_link_output_relocs (bfd *output_bfd,
2618 asection *input_section,
2619 Elf_Internal_Shdr *input_rel_hdr,
2620 Elf_Internal_Rela *internal_relocs,
2621 struct elf_link_hash_entry **rel_hash
2622 ATTRIBUTE_UNUSED)
2623 {
2624 Elf_Internal_Rela *irela;
2625 Elf_Internal_Rela *irelaend;
2626 bfd_byte *erel;
2627 struct bfd_elf_section_reloc_data *output_reldata;
2628 asection *output_section;
2629 const struct elf_backend_data *bed;
2630 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2631 struct bfd_elf_section_data *esdo;
2632
2633 output_section = input_section->output_section;
2634
2635 bed = get_elf_backend_data (output_bfd);
2636 esdo = elf_section_data (output_section);
2637 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2638 {
2639 output_reldata = &esdo->rel;
2640 swap_out = bed->s->swap_reloc_out;
2641 }
2642 else if (esdo->rela.hdr
2643 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2644 {
2645 output_reldata = &esdo->rela;
2646 swap_out = bed->s->swap_reloca_out;
2647 }
2648 else
2649 {
2650 _bfd_error_handler
2651 /* xgettext:c-format */
2652 (_("%pB: relocation size mismatch in %pB section %pA"),
2653 output_bfd, input_section->owner, input_section);
2654 bfd_set_error (bfd_error_wrong_format);
2655 return FALSE;
2656 }
2657
2658 erel = output_reldata->hdr->contents;
2659 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2660 irela = internal_relocs;
2661 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2662 * bed->s->int_rels_per_ext_rel);
2663 while (irela < irelaend)
2664 {
2665 (*swap_out) (output_bfd, irela, erel);
2666 irela += bed->s->int_rels_per_ext_rel;
2667 erel += input_rel_hdr->sh_entsize;
2668 }
2669
2670 /* Bump the counter, so that we know where to add the next set of
2671 relocations. */
2672 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2673
2674 return TRUE;
2675 }
2676 \f
2677 /* Make weak undefined symbols in PIE dynamic. */
2678
2679 bfd_boolean
2680 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2681 struct elf_link_hash_entry *h)
2682 {
2683 if (bfd_link_pie (info)
2684 && h->dynindx == -1
2685 && h->root.type == bfd_link_hash_undefweak)
2686 return bfd_elf_link_record_dynamic_symbol (info, h);
2687
2688 return TRUE;
2689 }
2690
2691 /* Fix up the flags for a symbol. This handles various cases which
2692 can only be fixed after all the input files are seen. This is
2693 currently called by both adjust_dynamic_symbol and
2694 assign_sym_version, which is unnecessary but perhaps more robust in
2695 the face of future changes. */
2696
2697 static bfd_boolean
2698 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2699 struct elf_info_failed *eif)
2700 {
2701 const struct elf_backend_data *bed;
2702
2703 /* If this symbol was mentioned in a non-ELF file, try to set
2704 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2705 permit a non-ELF file to correctly refer to a symbol defined in
2706 an ELF dynamic object. */
2707 if (h->non_elf)
2708 {
2709 while (h->root.type == bfd_link_hash_indirect)
2710 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2711
2712 if (h->root.type != bfd_link_hash_defined
2713 && h->root.type != bfd_link_hash_defweak)
2714 {
2715 h->ref_regular = 1;
2716 h->ref_regular_nonweak = 1;
2717 }
2718 else
2719 {
2720 if (h->root.u.def.section->owner != NULL
2721 && (bfd_get_flavour (h->root.u.def.section->owner)
2722 == bfd_target_elf_flavour))
2723 {
2724 h->ref_regular = 1;
2725 h->ref_regular_nonweak = 1;
2726 }
2727 else
2728 h->def_regular = 1;
2729 }
2730
2731 if (h->dynindx == -1
2732 && (h->def_dynamic
2733 || h->ref_dynamic))
2734 {
2735 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2736 {
2737 eif->failed = TRUE;
2738 return FALSE;
2739 }
2740 }
2741 }
2742 else
2743 {
2744 /* Unfortunately, NON_ELF is only correct if the symbol
2745 was first seen in a non-ELF file. Fortunately, if the symbol
2746 was first seen in an ELF file, we're probably OK unless the
2747 symbol was defined in a non-ELF file. Catch that case here.
2748 FIXME: We're still in trouble if the symbol was first seen in
2749 a dynamic object, and then later in a non-ELF regular object. */
2750 if ((h->root.type == bfd_link_hash_defined
2751 || h->root.type == bfd_link_hash_defweak)
2752 && !h->def_regular
2753 && (h->root.u.def.section->owner != NULL
2754 ? (bfd_get_flavour (h->root.u.def.section->owner)
2755 != bfd_target_elf_flavour)
2756 : (bfd_is_abs_section (h->root.u.def.section)
2757 && !h->def_dynamic)))
2758 h->def_regular = 1;
2759 }
2760
2761 /* Backend specific symbol fixup. */
2762 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2763 if (bed->elf_backend_fixup_symbol
2764 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2765 return FALSE;
2766
2767 /* If this is a final link, and the symbol was defined as a common
2768 symbol in a regular object file, and there was no definition in
2769 any dynamic object, then the linker will have allocated space for
2770 the symbol in a common section but the DEF_REGULAR
2771 flag will not have been set. */
2772 if (h->root.type == bfd_link_hash_defined
2773 && !h->def_regular
2774 && h->ref_regular
2775 && !h->def_dynamic
2776 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2777 h->def_regular = 1;
2778
2779 /* If a weak undefined symbol has non-default visibility, we also
2780 hide it from the dynamic linker. */
2781 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2782 && h->root.type == bfd_link_hash_undefweak)
2783 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2784
2785 /* A hidden versioned symbol in executable should be forced local if
2786 it is is locally defined, not referenced by shared library and not
2787 exported. */
2788 else if (bfd_link_executable (eif->info)
2789 && h->versioned == versioned_hidden
2790 && !eif->info->export_dynamic
2791 && !h->dynamic
2792 && !h->ref_dynamic
2793 && h->def_regular)
2794 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2795
2796 /* If -Bsymbolic was used (which means to bind references to global
2797 symbols to the definition within the shared object), and this
2798 symbol was defined in a regular object, then it actually doesn't
2799 need a PLT entry. Likewise, if the symbol has non-default
2800 visibility. If the symbol has hidden or internal visibility, we
2801 will force it local. */
2802 else if (h->needs_plt
2803 && bfd_link_pic (eif->info)
2804 && is_elf_hash_table (eif->info->hash)
2805 && (SYMBOLIC_BIND (eif->info, h)
2806 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2807 && h->def_regular)
2808 {
2809 bfd_boolean force_local;
2810
2811 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2812 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2813 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2814 }
2815
2816 /* If this is a weak defined symbol in a dynamic object, and we know
2817 the real definition in the dynamic object, copy interesting flags
2818 over to the real definition. */
2819 if (h->is_weakalias)
2820 {
2821 struct elf_link_hash_entry *def = weakdef (h);
2822
2823 /* If the real definition is defined by a regular object file,
2824 don't do anything special. See the longer description in
2825 _bfd_elf_adjust_dynamic_symbol, below. */
2826 if (def->def_regular)
2827 {
2828 h = def;
2829 while ((h = h->u.alias) != def)
2830 h->is_weakalias = 0;
2831 }
2832 else
2833 {
2834 while (h->root.type == bfd_link_hash_indirect)
2835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2836 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2837 || h->root.type == bfd_link_hash_defweak);
2838 BFD_ASSERT (def->def_dynamic);
2839 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2840 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2841 }
2842 }
2843
2844 return TRUE;
2845 }
2846
2847 /* Make the backend pick a good value for a dynamic symbol. This is
2848 called via elf_link_hash_traverse, and also calls itself
2849 recursively. */
2850
2851 static bfd_boolean
2852 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2853 {
2854 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2855 struct elf_link_hash_table *htab;
2856 const struct elf_backend_data *bed;
2857
2858 if (! is_elf_hash_table (eif->info->hash))
2859 return FALSE;
2860
2861 /* Ignore indirect symbols. These are added by the versioning code. */
2862 if (h->root.type == bfd_link_hash_indirect)
2863 return TRUE;
2864
2865 /* Fix the symbol flags. */
2866 if (! _bfd_elf_fix_symbol_flags (h, eif))
2867 return FALSE;
2868
2869 htab = elf_hash_table (eif->info);
2870 bed = get_elf_backend_data (htab->dynobj);
2871
2872 if (h->root.type == bfd_link_hash_undefweak)
2873 {
2874 if (eif->info->dynamic_undefined_weak == 0)
2875 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2876 else if (eif->info->dynamic_undefined_weak > 0
2877 && h->ref_regular
2878 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2879 && !bfd_hide_sym_by_version (eif->info->version_info,
2880 h->root.root.string))
2881 {
2882 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2883 {
2884 eif->failed = TRUE;
2885 return FALSE;
2886 }
2887 }
2888 }
2889
2890 /* If this symbol does not require a PLT entry, and it is not
2891 defined by a dynamic object, or is not referenced by a regular
2892 object, ignore it. We do have to handle a weak defined symbol,
2893 even if no regular object refers to it, if we decided to add it
2894 to the dynamic symbol table. FIXME: Do we normally need to worry
2895 about symbols which are defined by one dynamic object and
2896 referenced by another one? */
2897 if (!h->needs_plt
2898 && h->type != STT_GNU_IFUNC
2899 && (h->def_regular
2900 || !h->def_dynamic
2901 || (!h->ref_regular
2902 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2903 {
2904 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2905 return TRUE;
2906 }
2907
2908 /* If we've already adjusted this symbol, don't do it again. This
2909 can happen via a recursive call. */
2910 if (h->dynamic_adjusted)
2911 return TRUE;
2912
2913 /* Don't look at this symbol again. Note that we must set this
2914 after checking the above conditions, because we may look at a
2915 symbol once, decide not to do anything, and then get called
2916 recursively later after REF_REGULAR is set below. */
2917 h->dynamic_adjusted = 1;
2918
2919 /* If this is a weak definition, and we know a real definition, and
2920 the real symbol is not itself defined by a regular object file,
2921 then get a good value for the real definition. We handle the
2922 real symbol first, for the convenience of the backend routine.
2923
2924 Note that there is a confusing case here. If the real definition
2925 is defined by a regular object file, we don't get the real symbol
2926 from the dynamic object, but we do get the weak symbol. If the
2927 processor backend uses a COPY reloc, then if some routine in the
2928 dynamic object changes the real symbol, we will not see that
2929 change in the corresponding weak symbol. This is the way other
2930 ELF linkers work as well, and seems to be a result of the shared
2931 library model.
2932
2933 I will clarify this issue. Most SVR4 shared libraries define the
2934 variable _timezone and define timezone as a weak synonym. The
2935 tzset call changes _timezone. If you write
2936 extern int timezone;
2937 int _timezone = 5;
2938 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2939 you might expect that, since timezone is a synonym for _timezone,
2940 the same number will print both times. However, if the processor
2941 backend uses a COPY reloc, then actually timezone will be copied
2942 into your process image, and, since you define _timezone
2943 yourself, _timezone will not. Thus timezone and _timezone will
2944 wind up at different memory locations. The tzset call will set
2945 _timezone, leaving timezone unchanged. */
2946
2947 if (h->is_weakalias)
2948 {
2949 struct elf_link_hash_entry *def = weakdef (h);
2950
2951 /* If we get to this point, there is an implicit reference to
2952 the alias by a regular object file via the weak symbol H. */
2953 def->ref_regular = 1;
2954
2955 /* Ensure that the backend adjust_dynamic_symbol function sees
2956 the strong alias before H by recursively calling ourselves. */
2957 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
2958 return FALSE;
2959 }
2960
2961 /* If a symbol has no type and no size and does not require a PLT
2962 entry, then we are probably about to do the wrong thing here: we
2963 are probably going to create a COPY reloc for an empty object.
2964 This case can arise when a shared object is built with assembly
2965 code, and the assembly code fails to set the symbol type. */
2966 if (h->size == 0
2967 && h->type == STT_NOTYPE
2968 && !h->needs_plt)
2969 _bfd_error_handler
2970 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2971 h->root.root.string);
2972
2973 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2974 {
2975 eif->failed = TRUE;
2976 return FALSE;
2977 }
2978
2979 return TRUE;
2980 }
2981
2982 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2983 DYNBSS. */
2984
2985 bfd_boolean
2986 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2987 struct elf_link_hash_entry *h,
2988 asection *dynbss)
2989 {
2990 unsigned int power_of_two;
2991 bfd_vma mask;
2992 asection *sec = h->root.u.def.section;
2993
2994 /* The section alignment of the definition is the maximum alignment
2995 requirement of symbols defined in the section. Since we don't
2996 know the symbol alignment requirement, we start with the
2997 maximum alignment and check low bits of the symbol address
2998 for the minimum alignment. */
2999 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3000 mask = ((bfd_vma) 1 << power_of_two) - 1;
3001 while ((h->root.u.def.value & mask) != 0)
3002 {
3003 mask >>= 1;
3004 --power_of_two;
3005 }
3006
3007 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3008 dynbss))
3009 {
3010 /* Adjust the section alignment if needed. */
3011 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3012 power_of_two))
3013 return FALSE;
3014 }
3015
3016 /* We make sure that the symbol will be aligned properly. */
3017 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3018
3019 /* Define the symbol as being at this point in DYNBSS. */
3020 h->root.u.def.section = dynbss;
3021 h->root.u.def.value = dynbss->size;
3022
3023 /* Increment the size of DYNBSS to make room for the symbol. */
3024 dynbss->size += h->size;
3025
3026 /* No error if extern_protected_data is true. */
3027 if (h->protected_def
3028 && (!info->extern_protected_data
3029 || (info->extern_protected_data < 0
3030 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3031 info->callbacks->einfo
3032 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3033 h->root.root.string);
3034
3035 return TRUE;
3036 }
3037
3038 /* Adjust all external symbols pointing into SEC_MERGE sections
3039 to reflect the object merging within the sections. */
3040
3041 static bfd_boolean
3042 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3043 {
3044 asection *sec;
3045
3046 if ((h->root.type == bfd_link_hash_defined
3047 || h->root.type == bfd_link_hash_defweak)
3048 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3049 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3050 {
3051 bfd *output_bfd = (bfd *) data;
3052
3053 h->root.u.def.value =
3054 _bfd_merged_section_offset (output_bfd,
3055 &h->root.u.def.section,
3056 elf_section_data (sec)->sec_info,
3057 h->root.u.def.value);
3058 }
3059
3060 return TRUE;
3061 }
3062
3063 /* Returns false if the symbol referred to by H should be considered
3064 to resolve local to the current module, and true if it should be
3065 considered to bind dynamically. */
3066
3067 bfd_boolean
3068 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3069 struct bfd_link_info *info,
3070 bfd_boolean not_local_protected)
3071 {
3072 bfd_boolean binding_stays_local_p;
3073 const struct elf_backend_data *bed;
3074 struct elf_link_hash_table *hash_table;
3075
3076 if (h == NULL)
3077 return FALSE;
3078
3079 while (h->root.type == bfd_link_hash_indirect
3080 || h->root.type == bfd_link_hash_warning)
3081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3082
3083 /* If it was forced local, then clearly it's not dynamic. */
3084 if (h->dynindx == -1)
3085 return FALSE;
3086 if (h->forced_local)
3087 return FALSE;
3088
3089 /* Identify the cases where name binding rules say that a
3090 visible symbol resolves locally. */
3091 binding_stays_local_p = (bfd_link_executable (info)
3092 || SYMBOLIC_BIND (info, h));
3093
3094 switch (ELF_ST_VISIBILITY (h->other))
3095 {
3096 case STV_INTERNAL:
3097 case STV_HIDDEN:
3098 return FALSE;
3099
3100 case STV_PROTECTED:
3101 hash_table = elf_hash_table (info);
3102 if (!is_elf_hash_table (hash_table))
3103 return FALSE;
3104
3105 bed = get_elf_backend_data (hash_table->dynobj);
3106
3107 /* Proper resolution for function pointer equality may require
3108 that these symbols perhaps be resolved dynamically, even though
3109 we should be resolving them to the current module. */
3110 if (!not_local_protected || !bed->is_function_type (h->type))
3111 binding_stays_local_p = TRUE;
3112 break;
3113
3114 default:
3115 break;
3116 }
3117
3118 /* If it isn't defined locally, then clearly it's dynamic. */
3119 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3120 return TRUE;
3121
3122 /* Otherwise, the symbol is dynamic if binding rules don't tell
3123 us that it remains local. */
3124 return !binding_stays_local_p;
3125 }
3126
3127 /* Return true if the symbol referred to by H should be considered
3128 to resolve local to the current module, and false otherwise. Differs
3129 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3130 undefined symbols. The two functions are virtually identical except
3131 for the place where dynindx == -1 is tested. If that test is true,
3132 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3133 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3134 defined symbols.
3135 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3136 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3137 treatment of undefined weak symbols. For those that do not make
3138 undefined weak symbols dynamic, both functions may return false. */
3139
3140 bfd_boolean
3141 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3142 struct bfd_link_info *info,
3143 bfd_boolean local_protected)
3144 {
3145 const struct elf_backend_data *bed;
3146 struct elf_link_hash_table *hash_table;
3147
3148 /* If it's a local sym, of course we resolve locally. */
3149 if (h == NULL)
3150 return TRUE;
3151
3152 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3153 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3154 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3155 return TRUE;
3156
3157 /* Forced local symbols resolve locally. */
3158 if (h->forced_local)
3159 return TRUE;
3160
3161 /* Common symbols that become definitions don't get the DEF_REGULAR
3162 flag set, so test it first, and don't bail out. */
3163 if (ELF_COMMON_DEF_P (h))
3164 /* Do nothing. */;
3165 /* If we don't have a definition in a regular file, then we can't
3166 resolve locally. The sym is either undefined or dynamic. */
3167 else if (!h->def_regular)
3168 return FALSE;
3169
3170 /* Non-dynamic symbols resolve locally. */
3171 if (h->dynindx == -1)
3172 return TRUE;
3173
3174 /* At this point, we know the symbol is defined and dynamic. In an
3175 executable it must resolve locally, likewise when building symbolic
3176 shared libraries. */
3177 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3178 return TRUE;
3179
3180 /* Now deal with defined dynamic symbols in shared libraries. Ones
3181 with default visibility might not resolve locally. */
3182 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3183 return FALSE;
3184
3185 hash_table = elf_hash_table (info);
3186 if (!is_elf_hash_table (hash_table))
3187 return TRUE;
3188
3189 bed = get_elf_backend_data (hash_table->dynobj);
3190
3191 /* If extern_protected_data is false, STV_PROTECTED non-function
3192 symbols are local. */
3193 if ((!info->extern_protected_data
3194 || (info->extern_protected_data < 0
3195 && !bed->extern_protected_data))
3196 && !bed->is_function_type (h->type))
3197 return TRUE;
3198
3199 /* Function pointer equality tests may require that STV_PROTECTED
3200 symbols be treated as dynamic symbols. If the address of a
3201 function not defined in an executable is set to that function's
3202 plt entry in the executable, then the address of the function in
3203 a shared library must also be the plt entry in the executable. */
3204 return local_protected;
3205 }
3206
3207 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3208 aligned. Returns the first TLS output section. */
3209
3210 struct bfd_section *
3211 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3212 {
3213 struct bfd_section *sec, *tls;
3214 unsigned int align = 0;
3215
3216 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3217 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3218 break;
3219 tls = sec;
3220
3221 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3222 if (sec->alignment_power > align)
3223 align = sec->alignment_power;
3224
3225 elf_hash_table (info)->tls_sec = tls;
3226
3227 /* Ensure the alignment of the first section is the largest alignment,
3228 so that the tls segment starts aligned. */
3229 if (tls != NULL)
3230 tls->alignment_power = align;
3231
3232 return tls;
3233 }
3234
3235 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3236 static bfd_boolean
3237 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3238 Elf_Internal_Sym *sym)
3239 {
3240 const struct elf_backend_data *bed;
3241
3242 /* Local symbols do not count, but target specific ones might. */
3243 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3244 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3245 return FALSE;
3246
3247 bed = get_elf_backend_data (abfd);
3248 /* Function symbols do not count. */
3249 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3250 return FALSE;
3251
3252 /* If the section is undefined, then so is the symbol. */
3253 if (sym->st_shndx == SHN_UNDEF)
3254 return FALSE;
3255
3256 /* If the symbol is defined in the common section, then
3257 it is a common definition and so does not count. */
3258 if (bed->common_definition (sym))
3259 return FALSE;
3260
3261 /* If the symbol is in a target specific section then we
3262 must rely upon the backend to tell us what it is. */
3263 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3264 /* FIXME - this function is not coded yet:
3265
3266 return _bfd_is_global_symbol_definition (abfd, sym);
3267
3268 Instead for now assume that the definition is not global,
3269 Even if this is wrong, at least the linker will behave
3270 in the same way that it used to do. */
3271 return FALSE;
3272
3273 return TRUE;
3274 }
3275
3276 /* Search the symbol table of the archive element of the archive ABFD
3277 whose archive map contains a mention of SYMDEF, and determine if
3278 the symbol is defined in this element. */
3279 static bfd_boolean
3280 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3281 {
3282 Elf_Internal_Shdr * hdr;
3283 size_t symcount;
3284 size_t extsymcount;
3285 size_t extsymoff;
3286 Elf_Internal_Sym *isymbuf;
3287 Elf_Internal_Sym *isym;
3288 Elf_Internal_Sym *isymend;
3289 bfd_boolean result;
3290
3291 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3292 if (abfd == NULL)
3293 return FALSE;
3294
3295 if (! bfd_check_format (abfd, bfd_object))
3296 return FALSE;
3297
3298 /* Select the appropriate symbol table. If we don't know if the
3299 object file is an IR object, give linker LTO plugin a chance to
3300 get the correct symbol table. */
3301 if (abfd->plugin_format == bfd_plugin_yes
3302 #if BFD_SUPPORTS_PLUGINS
3303 || (abfd->plugin_format == bfd_plugin_unknown
3304 && bfd_link_plugin_object_p (abfd))
3305 #endif
3306 )
3307 {
3308 /* Use the IR symbol table if the object has been claimed by
3309 plugin. */
3310 abfd = abfd->plugin_dummy_bfd;
3311 hdr = &elf_tdata (abfd)->symtab_hdr;
3312 }
3313 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3314 hdr = &elf_tdata (abfd)->symtab_hdr;
3315 else
3316 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3317
3318 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3319
3320 /* The sh_info field of the symtab header tells us where the
3321 external symbols start. We don't care about the local symbols. */
3322 if (elf_bad_symtab (abfd))
3323 {
3324 extsymcount = symcount;
3325 extsymoff = 0;
3326 }
3327 else
3328 {
3329 extsymcount = symcount - hdr->sh_info;
3330 extsymoff = hdr->sh_info;
3331 }
3332
3333 if (extsymcount == 0)
3334 return FALSE;
3335
3336 /* Read in the symbol table. */
3337 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3338 NULL, NULL, NULL);
3339 if (isymbuf == NULL)
3340 return FALSE;
3341
3342 /* Scan the symbol table looking for SYMDEF. */
3343 result = FALSE;
3344 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3345 {
3346 const char *name;
3347
3348 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3349 isym->st_name);
3350 if (name == NULL)
3351 break;
3352
3353 if (strcmp (name, symdef->name) == 0)
3354 {
3355 result = is_global_data_symbol_definition (abfd, isym);
3356 break;
3357 }
3358 }
3359
3360 free (isymbuf);
3361
3362 return result;
3363 }
3364 \f
3365 /* Add an entry to the .dynamic table. */
3366
3367 bfd_boolean
3368 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3369 bfd_vma tag,
3370 bfd_vma val)
3371 {
3372 struct elf_link_hash_table *hash_table;
3373 const struct elf_backend_data *bed;
3374 asection *s;
3375 bfd_size_type newsize;
3376 bfd_byte *newcontents;
3377 Elf_Internal_Dyn dyn;
3378
3379 hash_table = elf_hash_table (info);
3380 if (! is_elf_hash_table (hash_table))
3381 return FALSE;
3382
3383 bed = get_elf_backend_data (hash_table->dynobj);
3384 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3385 BFD_ASSERT (s != NULL);
3386
3387 newsize = s->size + bed->s->sizeof_dyn;
3388 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3389 if (newcontents == NULL)
3390 return FALSE;
3391
3392 dyn.d_tag = tag;
3393 dyn.d_un.d_val = val;
3394 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3395
3396 s->size = newsize;
3397 s->contents = newcontents;
3398
3399 return TRUE;
3400 }
3401
3402 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3403 otherwise just check whether one already exists. Returns -1 on error,
3404 1 if a DT_NEEDED tag already exists, and 0 on success. */
3405
3406 static int
3407 elf_add_dt_needed_tag (bfd *abfd,
3408 struct bfd_link_info *info,
3409 const char *soname,
3410 bfd_boolean do_it)
3411 {
3412 struct elf_link_hash_table *hash_table;
3413 size_t strindex;
3414
3415 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3416 return -1;
3417
3418 hash_table = elf_hash_table (info);
3419 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3420 if (strindex == (size_t) -1)
3421 return -1;
3422
3423 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3424 {
3425 asection *sdyn;
3426 const struct elf_backend_data *bed;
3427 bfd_byte *extdyn;
3428
3429 bed = get_elf_backend_data (hash_table->dynobj);
3430 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3431 if (sdyn != NULL)
3432 for (extdyn = sdyn->contents;
3433 extdyn < sdyn->contents + sdyn->size;
3434 extdyn += bed->s->sizeof_dyn)
3435 {
3436 Elf_Internal_Dyn dyn;
3437
3438 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3439 if (dyn.d_tag == DT_NEEDED
3440 && dyn.d_un.d_val == strindex)
3441 {
3442 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3443 return 1;
3444 }
3445 }
3446 }
3447
3448 if (do_it)
3449 {
3450 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3451 return -1;
3452
3453 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3454 return -1;
3455 }
3456 else
3457 /* We were just checking for existence of the tag. */
3458 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3459
3460 return 0;
3461 }
3462
3463 /* Return true if SONAME is on the needed list between NEEDED and STOP
3464 (or the end of list if STOP is NULL), and needed by a library that
3465 will be loaded. */
3466
3467 static bfd_boolean
3468 on_needed_list (const char *soname,
3469 struct bfd_link_needed_list *needed,
3470 struct bfd_link_needed_list *stop)
3471 {
3472 struct bfd_link_needed_list *look;
3473 for (look = needed; look != stop; look = look->next)
3474 if (strcmp (soname, look->name) == 0
3475 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3476 /* If needed by a library that itself is not directly
3477 needed, recursively check whether that library is
3478 indirectly needed. Since we add DT_NEEDED entries to
3479 the end of the list, library dependencies appear after
3480 the library. Therefore search prior to the current
3481 LOOK, preventing possible infinite recursion. */
3482 || on_needed_list (elf_dt_name (look->by), needed, look)))
3483 return TRUE;
3484
3485 return FALSE;
3486 }
3487
3488 /* Sort symbol by value, section, and size. */
3489 static int
3490 elf_sort_symbol (const void *arg1, const void *arg2)
3491 {
3492 const struct elf_link_hash_entry *h1;
3493 const struct elf_link_hash_entry *h2;
3494 bfd_signed_vma vdiff;
3495
3496 h1 = *(const struct elf_link_hash_entry **) arg1;
3497 h2 = *(const struct elf_link_hash_entry **) arg2;
3498 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3499 if (vdiff != 0)
3500 return vdiff > 0 ? 1 : -1;
3501 else
3502 {
3503 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3504 if (sdiff != 0)
3505 return sdiff > 0 ? 1 : -1;
3506 }
3507 vdiff = h1->size - h2->size;
3508 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3509 }
3510
3511 /* This function is used to adjust offsets into .dynstr for
3512 dynamic symbols. This is called via elf_link_hash_traverse. */
3513
3514 static bfd_boolean
3515 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3516 {
3517 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3518
3519 if (h->dynindx != -1)
3520 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3521 return TRUE;
3522 }
3523
3524 /* Assign string offsets in .dynstr, update all structures referencing
3525 them. */
3526
3527 static bfd_boolean
3528 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3529 {
3530 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3531 struct elf_link_local_dynamic_entry *entry;
3532 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3533 bfd *dynobj = hash_table->dynobj;
3534 asection *sdyn;
3535 bfd_size_type size;
3536 const struct elf_backend_data *bed;
3537 bfd_byte *extdyn;
3538
3539 _bfd_elf_strtab_finalize (dynstr);
3540 size = _bfd_elf_strtab_size (dynstr);
3541
3542 bed = get_elf_backend_data (dynobj);
3543 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3544 BFD_ASSERT (sdyn != NULL);
3545
3546 /* Update all .dynamic entries referencing .dynstr strings. */
3547 for (extdyn = sdyn->contents;
3548 extdyn < sdyn->contents + sdyn->size;
3549 extdyn += bed->s->sizeof_dyn)
3550 {
3551 Elf_Internal_Dyn dyn;
3552
3553 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3554 switch (dyn.d_tag)
3555 {
3556 case DT_STRSZ:
3557 dyn.d_un.d_val = size;
3558 break;
3559 case DT_NEEDED:
3560 case DT_SONAME:
3561 case DT_RPATH:
3562 case DT_RUNPATH:
3563 case DT_FILTER:
3564 case DT_AUXILIARY:
3565 case DT_AUDIT:
3566 case DT_DEPAUDIT:
3567 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3568 break;
3569 default:
3570 continue;
3571 }
3572 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3573 }
3574
3575 /* Now update local dynamic symbols. */
3576 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3577 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3578 entry->isym.st_name);
3579
3580 /* And the rest of dynamic symbols. */
3581 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3582
3583 /* Adjust version definitions. */
3584 if (elf_tdata (output_bfd)->cverdefs)
3585 {
3586 asection *s;
3587 bfd_byte *p;
3588 size_t i;
3589 Elf_Internal_Verdef def;
3590 Elf_Internal_Verdaux defaux;
3591
3592 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3593 p = s->contents;
3594 do
3595 {
3596 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3597 &def);
3598 p += sizeof (Elf_External_Verdef);
3599 if (def.vd_aux != sizeof (Elf_External_Verdef))
3600 continue;
3601 for (i = 0; i < def.vd_cnt; ++i)
3602 {
3603 _bfd_elf_swap_verdaux_in (output_bfd,
3604 (Elf_External_Verdaux *) p, &defaux);
3605 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3606 defaux.vda_name);
3607 _bfd_elf_swap_verdaux_out (output_bfd,
3608 &defaux, (Elf_External_Verdaux *) p);
3609 p += sizeof (Elf_External_Verdaux);
3610 }
3611 }
3612 while (def.vd_next);
3613 }
3614
3615 /* Adjust version references. */
3616 if (elf_tdata (output_bfd)->verref)
3617 {
3618 asection *s;
3619 bfd_byte *p;
3620 size_t i;
3621 Elf_Internal_Verneed need;
3622 Elf_Internal_Vernaux needaux;
3623
3624 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3625 p = s->contents;
3626 do
3627 {
3628 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3629 &need);
3630 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3631 _bfd_elf_swap_verneed_out (output_bfd, &need,
3632 (Elf_External_Verneed *) p);
3633 p += sizeof (Elf_External_Verneed);
3634 for (i = 0; i < need.vn_cnt; ++i)
3635 {
3636 _bfd_elf_swap_vernaux_in (output_bfd,
3637 (Elf_External_Vernaux *) p, &needaux);
3638 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3639 needaux.vna_name);
3640 _bfd_elf_swap_vernaux_out (output_bfd,
3641 &needaux,
3642 (Elf_External_Vernaux *) p);
3643 p += sizeof (Elf_External_Vernaux);
3644 }
3645 }
3646 while (need.vn_next);
3647 }
3648
3649 return TRUE;
3650 }
3651 \f
3652 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3653 The default is to only match when the INPUT and OUTPUT are exactly
3654 the same target. */
3655
3656 bfd_boolean
3657 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3658 const bfd_target *output)
3659 {
3660 return input == output;
3661 }
3662
3663 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3664 This version is used when different targets for the same architecture
3665 are virtually identical. */
3666
3667 bfd_boolean
3668 _bfd_elf_relocs_compatible (const bfd_target *input,
3669 const bfd_target *output)
3670 {
3671 const struct elf_backend_data *obed, *ibed;
3672
3673 if (input == output)
3674 return TRUE;
3675
3676 ibed = xvec_get_elf_backend_data (input);
3677 obed = xvec_get_elf_backend_data (output);
3678
3679 if (ibed->arch != obed->arch)
3680 return FALSE;
3681
3682 /* If both backends are using this function, deem them compatible. */
3683 return ibed->relocs_compatible == obed->relocs_compatible;
3684 }
3685
3686 /* Make a special call to the linker "notice" function to tell it that
3687 we are about to handle an as-needed lib, or have finished
3688 processing the lib. */
3689
3690 bfd_boolean
3691 _bfd_elf_notice_as_needed (bfd *ibfd,
3692 struct bfd_link_info *info,
3693 enum notice_asneeded_action act)
3694 {
3695 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3696 }
3697
3698 /* Check relocations an ELF object file. */
3699
3700 bfd_boolean
3701 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3702 {
3703 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3704 struct elf_link_hash_table *htab = elf_hash_table (info);
3705
3706 /* If this object is the same format as the output object, and it is
3707 not a shared library, then let the backend look through the
3708 relocs.
3709
3710 This is required to build global offset table entries and to
3711 arrange for dynamic relocs. It is not required for the
3712 particular common case of linking non PIC code, even when linking
3713 against shared libraries, but unfortunately there is no way of
3714 knowing whether an object file has been compiled PIC or not.
3715 Looking through the relocs is not particularly time consuming.
3716 The problem is that we must either (1) keep the relocs in memory,
3717 which causes the linker to require additional runtime memory or
3718 (2) read the relocs twice from the input file, which wastes time.
3719 This would be a good case for using mmap.
3720
3721 I have no idea how to handle linking PIC code into a file of a
3722 different format. It probably can't be done. */
3723 if ((abfd->flags & DYNAMIC) == 0
3724 && is_elf_hash_table (htab)
3725 && bed->check_relocs != NULL
3726 && elf_object_id (abfd) == elf_hash_table_id (htab)
3727 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3728 {
3729 asection *o;
3730
3731 for (o = abfd->sections; o != NULL; o = o->next)
3732 {
3733 Elf_Internal_Rela *internal_relocs;
3734 bfd_boolean ok;
3735
3736 /* Don't check relocations in excluded sections. */
3737 if ((o->flags & SEC_RELOC) == 0
3738 || (o->flags & SEC_EXCLUDE) != 0
3739 || o->reloc_count == 0
3740 || ((info->strip == strip_all || info->strip == strip_debugger)
3741 && (o->flags & SEC_DEBUGGING) != 0)
3742 || bfd_is_abs_section (o->output_section))
3743 continue;
3744
3745 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3746 info->keep_memory);
3747 if (internal_relocs == NULL)
3748 return FALSE;
3749
3750 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3751
3752 if (elf_section_data (o)->relocs != internal_relocs)
3753 free (internal_relocs);
3754
3755 if (! ok)
3756 return FALSE;
3757 }
3758 }
3759
3760 return TRUE;
3761 }
3762
3763 /* Add symbols from an ELF object file to the linker hash table. */
3764
3765 static bfd_boolean
3766 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3767 {
3768 Elf_Internal_Ehdr *ehdr;
3769 Elf_Internal_Shdr *hdr;
3770 size_t symcount;
3771 size_t extsymcount;
3772 size_t extsymoff;
3773 struct elf_link_hash_entry **sym_hash;
3774 bfd_boolean dynamic;
3775 Elf_External_Versym *extversym = NULL;
3776 Elf_External_Versym *ever;
3777 struct elf_link_hash_entry *weaks;
3778 struct elf_link_hash_entry **nondeflt_vers = NULL;
3779 size_t nondeflt_vers_cnt = 0;
3780 Elf_Internal_Sym *isymbuf = NULL;
3781 Elf_Internal_Sym *isym;
3782 Elf_Internal_Sym *isymend;
3783 const struct elf_backend_data *bed;
3784 bfd_boolean add_needed;
3785 struct elf_link_hash_table *htab;
3786 bfd_size_type amt;
3787 void *alloc_mark = NULL;
3788 struct bfd_hash_entry **old_table = NULL;
3789 unsigned int old_size = 0;
3790 unsigned int old_count = 0;
3791 void *old_tab = NULL;
3792 void *old_ent;
3793 struct bfd_link_hash_entry *old_undefs = NULL;
3794 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3795 void *old_strtab = NULL;
3796 size_t tabsize = 0;
3797 asection *s;
3798 bfd_boolean just_syms;
3799
3800 htab = elf_hash_table (info);
3801 bed = get_elf_backend_data (abfd);
3802
3803 if ((abfd->flags & DYNAMIC) == 0)
3804 dynamic = FALSE;
3805 else
3806 {
3807 dynamic = TRUE;
3808
3809 /* You can't use -r against a dynamic object. Also, there's no
3810 hope of using a dynamic object which does not exactly match
3811 the format of the output file. */
3812 if (bfd_link_relocatable (info)
3813 || !is_elf_hash_table (htab)
3814 || info->output_bfd->xvec != abfd->xvec)
3815 {
3816 if (bfd_link_relocatable (info))
3817 bfd_set_error (bfd_error_invalid_operation);
3818 else
3819 bfd_set_error (bfd_error_wrong_format);
3820 goto error_return;
3821 }
3822 }
3823
3824 ehdr = elf_elfheader (abfd);
3825 if (info->warn_alternate_em
3826 && bed->elf_machine_code != ehdr->e_machine
3827 && ((bed->elf_machine_alt1 != 0
3828 && ehdr->e_machine == bed->elf_machine_alt1)
3829 || (bed->elf_machine_alt2 != 0
3830 && ehdr->e_machine == bed->elf_machine_alt2)))
3831 _bfd_error_handler
3832 /* xgettext:c-format */
3833 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3834 ehdr->e_machine, abfd, bed->elf_machine_code);
3835
3836 /* As a GNU extension, any input sections which are named
3837 .gnu.warning.SYMBOL are treated as warning symbols for the given
3838 symbol. This differs from .gnu.warning sections, which generate
3839 warnings when they are included in an output file. */
3840 /* PR 12761: Also generate this warning when building shared libraries. */
3841 for (s = abfd->sections; s != NULL; s = s->next)
3842 {
3843 const char *name;
3844
3845 name = bfd_get_section_name (abfd, s);
3846 if (CONST_STRNEQ (name, ".gnu.warning."))
3847 {
3848 char *msg;
3849 bfd_size_type sz;
3850
3851 name += sizeof ".gnu.warning." - 1;
3852
3853 /* If this is a shared object, then look up the symbol
3854 in the hash table. If it is there, and it is already
3855 been defined, then we will not be using the entry
3856 from this shared object, so we don't need to warn.
3857 FIXME: If we see the definition in a regular object
3858 later on, we will warn, but we shouldn't. The only
3859 fix is to keep track of what warnings we are supposed
3860 to emit, and then handle them all at the end of the
3861 link. */
3862 if (dynamic)
3863 {
3864 struct elf_link_hash_entry *h;
3865
3866 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3867
3868 /* FIXME: What about bfd_link_hash_common? */
3869 if (h != NULL
3870 && (h->root.type == bfd_link_hash_defined
3871 || h->root.type == bfd_link_hash_defweak))
3872 continue;
3873 }
3874
3875 sz = s->size;
3876 msg = (char *) bfd_alloc (abfd, sz + 1);
3877 if (msg == NULL)
3878 goto error_return;
3879
3880 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3881 goto error_return;
3882
3883 msg[sz] = '\0';
3884
3885 if (! (_bfd_generic_link_add_one_symbol
3886 (info, abfd, name, BSF_WARNING, s, 0, msg,
3887 FALSE, bed->collect, NULL)))
3888 goto error_return;
3889
3890 if (bfd_link_executable (info))
3891 {
3892 /* Clobber the section size so that the warning does
3893 not get copied into the output file. */
3894 s->size = 0;
3895
3896 /* Also set SEC_EXCLUDE, so that symbols defined in
3897 the warning section don't get copied to the output. */
3898 s->flags |= SEC_EXCLUDE;
3899 }
3900 }
3901 }
3902
3903 just_syms = ((s = abfd->sections) != NULL
3904 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3905
3906 add_needed = TRUE;
3907 if (! dynamic)
3908 {
3909 /* If we are creating a shared library, create all the dynamic
3910 sections immediately. We need to attach them to something,
3911 so we attach them to this BFD, provided it is the right
3912 format and is not from ld --just-symbols. Always create the
3913 dynamic sections for -E/--dynamic-list. FIXME: If there
3914 are no input BFD's of the same format as the output, we can't
3915 make a shared library. */
3916 if (!just_syms
3917 && (bfd_link_pic (info)
3918 || (!bfd_link_relocatable (info)
3919 && info->nointerp
3920 && (info->export_dynamic || info->dynamic)))
3921 && is_elf_hash_table (htab)
3922 && info->output_bfd->xvec == abfd->xvec
3923 && !htab->dynamic_sections_created)
3924 {
3925 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3926 goto error_return;
3927 }
3928 }
3929 else if (!is_elf_hash_table (htab))
3930 goto error_return;
3931 else
3932 {
3933 const char *soname = NULL;
3934 char *audit = NULL;
3935 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3936 const Elf_Internal_Phdr *phdr;
3937 int ret;
3938
3939 /* ld --just-symbols and dynamic objects don't mix very well.
3940 ld shouldn't allow it. */
3941 if (just_syms)
3942 abort ();
3943
3944 /* If this dynamic lib was specified on the command line with
3945 --as-needed in effect, then we don't want to add a DT_NEEDED
3946 tag unless the lib is actually used. Similary for libs brought
3947 in by another lib's DT_NEEDED. When --no-add-needed is used
3948 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3949 any dynamic library in DT_NEEDED tags in the dynamic lib at
3950 all. */
3951 add_needed = (elf_dyn_lib_class (abfd)
3952 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3953 | DYN_NO_NEEDED)) == 0;
3954
3955 s = bfd_get_section_by_name (abfd, ".dynamic");
3956 if (s != NULL)
3957 {
3958 bfd_byte *dynbuf;
3959 bfd_byte *extdyn;
3960 unsigned int elfsec;
3961 unsigned long shlink;
3962
3963 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3964 {
3965 error_free_dyn:
3966 free (dynbuf);
3967 goto error_return;
3968 }
3969
3970 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3971 if (elfsec == SHN_BAD)
3972 goto error_free_dyn;
3973 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3974
3975 for (extdyn = dynbuf;
3976 extdyn < dynbuf + s->size;
3977 extdyn += bed->s->sizeof_dyn)
3978 {
3979 Elf_Internal_Dyn dyn;
3980
3981 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3982 if (dyn.d_tag == DT_SONAME)
3983 {
3984 unsigned int tagv = dyn.d_un.d_val;
3985 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3986 if (soname == NULL)
3987 goto error_free_dyn;
3988 }
3989 if (dyn.d_tag == DT_NEEDED)
3990 {
3991 struct bfd_link_needed_list *n, **pn;
3992 char *fnm, *anm;
3993 unsigned int tagv = dyn.d_un.d_val;
3994
3995 amt = sizeof (struct bfd_link_needed_list);
3996 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3997 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3998 if (n == NULL || fnm == NULL)
3999 goto error_free_dyn;
4000 amt = strlen (fnm) + 1;
4001 anm = (char *) bfd_alloc (abfd, amt);
4002 if (anm == NULL)
4003 goto error_free_dyn;
4004 memcpy (anm, fnm, amt);
4005 n->name = anm;
4006 n->by = abfd;
4007 n->next = NULL;
4008 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4009 ;
4010 *pn = n;
4011 }
4012 if (dyn.d_tag == DT_RUNPATH)
4013 {
4014 struct bfd_link_needed_list *n, **pn;
4015 char *fnm, *anm;
4016 unsigned int tagv = dyn.d_un.d_val;
4017
4018 amt = sizeof (struct bfd_link_needed_list);
4019 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4020 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4021 if (n == NULL || fnm == NULL)
4022 goto error_free_dyn;
4023 amt = strlen (fnm) + 1;
4024 anm = (char *) bfd_alloc (abfd, amt);
4025 if (anm == NULL)
4026 goto error_free_dyn;
4027 memcpy (anm, fnm, amt);
4028 n->name = anm;
4029 n->by = abfd;
4030 n->next = NULL;
4031 for (pn = & runpath;
4032 *pn != NULL;
4033 pn = &(*pn)->next)
4034 ;
4035 *pn = n;
4036 }
4037 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4038 if (!runpath && dyn.d_tag == DT_RPATH)
4039 {
4040 struct bfd_link_needed_list *n, **pn;
4041 char *fnm, *anm;
4042 unsigned int tagv = dyn.d_un.d_val;
4043
4044 amt = sizeof (struct bfd_link_needed_list);
4045 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4046 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4047 if (n == NULL || fnm == NULL)
4048 goto error_free_dyn;
4049 amt = strlen (fnm) + 1;
4050 anm = (char *) bfd_alloc (abfd, amt);
4051 if (anm == NULL)
4052 goto error_free_dyn;
4053 memcpy (anm, fnm, amt);
4054 n->name = anm;
4055 n->by = abfd;
4056 n->next = NULL;
4057 for (pn = & rpath;
4058 *pn != NULL;
4059 pn = &(*pn)->next)
4060 ;
4061 *pn = n;
4062 }
4063 if (dyn.d_tag == DT_AUDIT)
4064 {
4065 unsigned int tagv = dyn.d_un.d_val;
4066 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4067 }
4068 }
4069
4070 free (dynbuf);
4071 }
4072
4073 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4074 frees all more recently bfd_alloc'd blocks as well. */
4075 if (runpath)
4076 rpath = runpath;
4077
4078 if (rpath)
4079 {
4080 struct bfd_link_needed_list **pn;
4081 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4082 ;
4083 *pn = rpath;
4084 }
4085
4086 /* If we have a PT_GNU_RELRO program header, mark as read-only
4087 all sections contained fully therein. This makes relro
4088 shared library sections appear as they will at run-time. */
4089 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4090 while (--phdr >= elf_tdata (abfd)->phdr)
4091 if (phdr->p_type == PT_GNU_RELRO)
4092 {
4093 for (s = abfd->sections; s != NULL; s = s->next)
4094 if ((s->flags & SEC_ALLOC) != 0
4095 && s->vma >= phdr->p_vaddr
4096 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4097 s->flags |= SEC_READONLY;
4098 break;
4099 }
4100
4101 /* We do not want to include any of the sections in a dynamic
4102 object in the output file. We hack by simply clobbering the
4103 list of sections in the BFD. This could be handled more
4104 cleanly by, say, a new section flag; the existing
4105 SEC_NEVER_LOAD flag is not the one we want, because that one
4106 still implies that the section takes up space in the output
4107 file. */
4108 bfd_section_list_clear (abfd);
4109
4110 /* Find the name to use in a DT_NEEDED entry that refers to this
4111 object. If the object has a DT_SONAME entry, we use it.
4112 Otherwise, if the generic linker stuck something in
4113 elf_dt_name, we use that. Otherwise, we just use the file
4114 name. */
4115 if (soname == NULL || *soname == '\0')
4116 {
4117 soname = elf_dt_name (abfd);
4118 if (soname == NULL || *soname == '\0')
4119 soname = bfd_get_filename (abfd);
4120 }
4121
4122 /* Save the SONAME because sometimes the linker emulation code
4123 will need to know it. */
4124 elf_dt_name (abfd) = soname;
4125
4126 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4127 if (ret < 0)
4128 goto error_return;
4129
4130 /* If we have already included this dynamic object in the
4131 link, just ignore it. There is no reason to include a
4132 particular dynamic object more than once. */
4133 if (ret > 0)
4134 return TRUE;
4135
4136 /* Save the DT_AUDIT entry for the linker emulation code. */
4137 elf_dt_audit (abfd) = audit;
4138 }
4139
4140 /* If this is a dynamic object, we always link against the .dynsym
4141 symbol table, not the .symtab symbol table. The dynamic linker
4142 will only see the .dynsym symbol table, so there is no reason to
4143 look at .symtab for a dynamic object. */
4144
4145 if (! dynamic || elf_dynsymtab (abfd) == 0)
4146 hdr = &elf_tdata (abfd)->symtab_hdr;
4147 else
4148 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4149
4150 symcount = hdr->sh_size / bed->s->sizeof_sym;
4151
4152 /* The sh_info field of the symtab header tells us where the
4153 external symbols start. We don't care about the local symbols at
4154 this point. */
4155 if (elf_bad_symtab (abfd))
4156 {
4157 extsymcount = symcount;
4158 extsymoff = 0;
4159 }
4160 else
4161 {
4162 extsymcount = symcount - hdr->sh_info;
4163 extsymoff = hdr->sh_info;
4164 }
4165
4166 sym_hash = elf_sym_hashes (abfd);
4167 if (extsymcount != 0)
4168 {
4169 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4170 NULL, NULL, NULL);
4171 if (isymbuf == NULL)
4172 goto error_return;
4173
4174 if (sym_hash == NULL)
4175 {
4176 /* We store a pointer to the hash table entry for each
4177 external symbol. */
4178 amt = extsymcount;
4179 amt *= sizeof (struct elf_link_hash_entry *);
4180 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4181 if (sym_hash == NULL)
4182 goto error_free_sym;
4183 elf_sym_hashes (abfd) = sym_hash;
4184 }
4185 }
4186
4187 if (dynamic)
4188 {
4189 /* Read in any version definitions. */
4190 if (!_bfd_elf_slurp_version_tables (abfd,
4191 info->default_imported_symver))
4192 goto error_free_sym;
4193
4194 /* Read in the symbol versions, but don't bother to convert them
4195 to internal format. */
4196 if (elf_dynversym (abfd) != 0)
4197 {
4198 Elf_Internal_Shdr *versymhdr;
4199
4200 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4201 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4202 if (extversym == NULL)
4203 goto error_free_sym;
4204 amt = versymhdr->sh_size;
4205 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4206 || bfd_bread (extversym, amt, abfd) != amt)
4207 goto error_free_vers;
4208 }
4209 }
4210
4211 /* If we are loading an as-needed shared lib, save the symbol table
4212 state before we start adding symbols. If the lib turns out
4213 to be unneeded, restore the state. */
4214 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4215 {
4216 unsigned int i;
4217 size_t entsize;
4218
4219 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4220 {
4221 struct bfd_hash_entry *p;
4222 struct elf_link_hash_entry *h;
4223
4224 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4225 {
4226 h = (struct elf_link_hash_entry *) p;
4227 entsize += htab->root.table.entsize;
4228 if (h->root.type == bfd_link_hash_warning)
4229 entsize += htab->root.table.entsize;
4230 }
4231 }
4232
4233 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4234 old_tab = bfd_malloc (tabsize + entsize);
4235 if (old_tab == NULL)
4236 goto error_free_vers;
4237
4238 /* Remember the current objalloc pointer, so that all mem for
4239 symbols added can later be reclaimed. */
4240 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4241 if (alloc_mark == NULL)
4242 goto error_free_vers;
4243
4244 /* Make a special call to the linker "notice" function to
4245 tell it that we are about to handle an as-needed lib. */
4246 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4247 goto error_free_vers;
4248
4249 /* Clone the symbol table. Remember some pointers into the
4250 symbol table, and dynamic symbol count. */
4251 old_ent = (char *) old_tab + tabsize;
4252 memcpy (old_tab, htab->root.table.table, tabsize);
4253 old_undefs = htab->root.undefs;
4254 old_undefs_tail = htab->root.undefs_tail;
4255 old_table = htab->root.table.table;
4256 old_size = htab->root.table.size;
4257 old_count = htab->root.table.count;
4258 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4259 if (old_strtab == NULL)
4260 goto error_free_vers;
4261
4262 for (i = 0; i < htab->root.table.size; i++)
4263 {
4264 struct bfd_hash_entry *p;
4265 struct elf_link_hash_entry *h;
4266
4267 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4268 {
4269 memcpy (old_ent, p, htab->root.table.entsize);
4270 old_ent = (char *) old_ent + htab->root.table.entsize;
4271 h = (struct elf_link_hash_entry *) p;
4272 if (h->root.type == bfd_link_hash_warning)
4273 {
4274 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4275 old_ent = (char *) old_ent + htab->root.table.entsize;
4276 }
4277 }
4278 }
4279 }
4280
4281 weaks = NULL;
4282 ever = extversym != NULL ? extversym + extsymoff : NULL;
4283 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4284 isym < isymend;
4285 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4286 {
4287 int bind;
4288 bfd_vma value;
4289 asection *sec, *new_sec;
4290 flagword flags;
4291 const char *name;
4292 struct elf_link_hash_entry *h;
4293 struct elf_link_hash_entry *hi;
4294 bfd_boolean definition;
4295 bfd_boolean size_change_ok;
4296 bfd_boolean type_change_ok;
4297 bfd_boolean new_weak;
4298 bfd_boolean old_weak;
4299 bfd_boolean override;
4300 bfd_boolean common;
4301 bfd_boolean discarded;
4302 unsigned int old_alignment;
4303 bfd *old_bfd;
4304 bfd_boolean matched;
4305
4306 override = FALSE;
4307
4308 flags = BSF_NO_FLAGS;
4309 sec = NULL;
4310 value = isym->st_value;
4311 common = bed->common_definition (isym);
4312 if (common && info->inhibit_common_definition)
4313 {
4314 /* Treat common symbol as undefined for --no-define-common. */
4315 isym->st_shndx = SHN_UNDEF;
4316 common = FALSE;
4317 }
4318 discarded = FALSE;
4319
4320 bind = ELF_ST_BIND (isym->st_info);
4321 switch (bind)
4322 {
4323 case STB_LOCAL:
4324 /* This should be impossible, since ELF requires that all
4325 global symbols follow all local symbols, and that sh_info
4326 point to the first global symbol. Unfortunately, Irix 5
4327 screws this up. */
4328 continue;
4329
4330 case STB_GLOBAL:
4331 if (isym->st_shndx != SHN_UNDEF && !common)
4332 flags = BSF_GLOBAL;
4333 break;
4334
4335 case STB_WEAK:
4336 flags = BSF_WEAK;
4337 break;
4338
4339 case STB_GNU_UNIQUE:
4340 flags = BSF_GNU_UNIQUE;
4341 break;
4342
4343 default:
4344 /* Leave it up to the processor backend. */
4345 break;
4346 }
4347
4348 if (isym->st_shndx == SHN_UNDEF)
4349 sec = bfd_und_section_ptr;
4350 else if (isym->st_shndx == SHN_ABS)
4351 sec = bfd_abs_section_ptr;
4352 else if (isym->st_shndx == SHN_COMMON)
4353 {
4354 sec = bfd_com_section_ptr;
4355 /* What ELF calls the size we call the value. What ELF
4356 calls the value we call the alignment. */
4357 value = isym->st_size;
4358 }
4359 else
4360 {
4361 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4362 if (sec == NULL)
4363 sec = bfd_abs_section_ptr;
4364 else if (discarded_section (sec))
4365 {
4366 /* Symbols from discarded section are undefined. We keep
4367 its visibility. */
4368 sec = bfd_und_section_ptr;
4369 discarded = TRUE;
4370 isym->st_shndx = SHN_UNDEF;
4371 }
4372 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4373 value -= sec->vma;
4374 }
4375
4376 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4377 isym->st_name);
4378 if (name == NULL)
4379 goto error_free_vers;
4380
4381 if (isym->st_shndx == SHN_COMMON
4382 && (abfd->flags & BFD_PLUGIN) != 0)
4383 {
4384 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4385
4386 if (xc == NULL)
4387 {
4388 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4389 | SEC_EXCLUDE);
4390 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4391 if (xc == NULL)
4392 goto error_free_vers;
4393 }
4394 sec = xc;
4395 }
4396 else if (isym->st_shndx == SHN_COMMON
4397 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4398 && !bfd_link_relocatable (info))
4399 {
4400 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4401
4402 if (tcomm == NULL)
4403 {
4404 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4405 | SEC_LINKER_CREATED);
4406 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4407 if (tcomm == NULL)
4408 goto error_free_vers;
4409 }
4410 sec = tcomm;
4411 }
4412 else if (bed->elf_add_symbol_hook)
4413 {
4414 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4415 &sec, &value))
4416 goto error_free_vers;
4417
4418 /* The hook function sets the name to NULL if this symbol
4419 should be skipped for some reason. */
4420 if (name == NULL)
4421 continue;
4422 }
4423
4424 /* Sanity check that all possibilities were handled. */
4425 if (sec == NULL)
4426 {
4427 bfd_set_error (bfd_error_bad_value);
4428 goto error_free_vers;
4429 }
4430
4431 /* Silently discard TLS symbols from --just-syms. There's
4432 no way to combine a static TLS block with a new TLS block
4433 for this executable. */
4434 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4435 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4436 continue;
4437
4438 if (bfd_is_und_section (sec)
4439 || bfd_is_com_section (sec))
4440 definition = FALSE;
4441 else
4442 definition = TRUE;
4443
4444 size_change_ok = FALSE;
4445 type_change_ok = bed->type_change_ok;
4446 old_weak = FALSE;
4447 matched = FALSE;
4448 old_alignment = 0;
4449 old_bfd = NULL;
4450 new_sec = sec;
4451
4452 if (is_elf_hash_table (htab))
4453 {
4454 Elf_Internal_Versym iver;
4455 unsigned int vernum = 0;
4456 bfd_boolean skip;
4457
4458 if (ever == NULL)
4459 {
4460 if (info->default_imported_symver)
4461 /* Use the default symbol version created earlier. */
4462 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4463 else
4464 iver.vs_vers = 0;
4465 }
4466 else
4467 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4468
4469 vernum = iver.vs_vers & VERSYM_VERSION;
4470
4471 /* If this is a hidden symbol, or if it is not version
4472 1, we append the version name to the symbol name.
4473 However, we do not modify a non-hidden absolute symbol
4474 if it is not a function, because it might be the version
4475 symbol itself. FIXME: What if it isn't? */
4476 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4477 || (vernum > 1
4478 && (!bfd_is_abs_section (sec)
4479 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4480 {
4481 const char *verstr;
4482 size_t namelen, verlen, newlen;
4483 char *newname, *p;
4484
4485 if (isym->st_shndx != SHN_UNDEF)
4486 {
4487 if (vernum > elf_tdata (abfd)->cverdefs)
4488 verstr = NULL;
4489 else if (vernum > 1)
4490 verstr =
4491 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4492 else
4493 verstr = "";
4494
4495 if (verstr == NULL)
4496 {
4497 _bfd_error_handler
4498 /* xgettext:c-format */
4499 (_("%pB: %s: invalid version %u (max %d)"),
4500 abfd, name, vernum,
4501 elf_tdata (abfd)->cverdefs);
4502 bfd_set_error (bfd_error_bad_value);
4503 goto error_free_vers;
4504 }
4505 }
4506 else
4507 {
4508 /* We cannot simply test for the number of
4509 entries in the VERNEED section since the
4510 numbers for the needed versions do not start
4511 at 0. */
4512 Elf_Internal_Verneed *t;
4513
4514 verstr = NULL;
4515 for (t = elf_tdata (abfd)->verref;
4516 t != NULL;
4517 t = t->vn_nextref)
4518 {
4519 Elf_Internal_Vernaux *a;
4520
4521 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4522 {
4523 if (a->vna_other == vernum)
4524 {
4525 verstr = a->vna_nodename;
4526 break;
4527 }
4528 }
4529 if (a != NULL)
4530 break;
4531 }
4532 if (verstr == NULL)
4533 {
4534 _bfd_error_handler
4535 /* xgettext:c-format */
4536 (_("%pB: %s: invalid needed version %d"),
4537 abfd, name, vernum);
4538 bfd_set_error (bfd_error_bad_value);
4539 goto error_free_vers;
4540 }
4541 }
4542
4543 namelen = strlen (name);
4544 verlen = strlen (verstr);
4545 newlen = namelen + verlen + 2;
4546 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4547 && isym->st_shndx != SHN_UNDEF)
4548 ++newlen;
4549
4550 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4551 if (newname == NULL)
4552 goto error_free_vers;
4553 memcpy (newname, name, namelen);
4554 p = newname + namelen;
4555 *p++ = ELF_VER_CHR;
4556 /* If this is a defined non-hidden version symbol,
4557 we add another @ to the name. This indicates the
4558 default version of the symbol. */
4559 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4560 && isym->st_shndx != SHN_UNDEF)
4561 *p++ = ELF_VER_CHR;
4562 memcpy (p, verstr, verlen + 1);
4563
4564 name = newname;
4565 }
4566
4567 /* If this symbol has default visibility and the user has
4568 requested we not re-export it, then mark it as hidden. */
4569 if (!bfd_is_und_section (sec)
4570 && !dynamic
4571 && abfd->no_export
4572 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4573 isym->st_other = (STV_HIDDEN
4574 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4575
4576 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4577 sym_hash, &old_bfd, &old_weak,
4578 &old_alignment, &skip, &override,
4579 &type_change_ok, &size_change_ok,
4580 &matched))
4581 goto error_free_vers;
4582
4583 if (skip)
4584 continue;
4585
4586 /* Override a definition only if the new symbol matches the
4587 existing one. */
4588 if (override && matched)
4589 definition = FALSE;
4590
4591 h = *sym_hash;
4592 while (h->root.type == bfd_link_hash_indirect
4593 || h->root.type == bfd_link_hash_warning)
4594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4595
4596 if (elf_tdata (abfd)->verdef != NULL
4597 && vernum > 1
4598 && definition)
4599 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4600 }
4601
4602 if (! (_bfd_generic_link_add_one_symbol
4603 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4604 (struct bfd_link_hash_entry **) sym_hash)))
4605 goto error_free_vers;
4606
4607 if ((flags & BSF_GNU_UNIQUE)
4608 && (abfd->flags & DYNAMIC) == 0
4609 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4610 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4611
4612 h = *sym_hash;
4613 /* We need to make sure that indirect symbol dynamic flags are
4614 updated. */
4615 hi = h;
4616 while (h->root.type == bfd_link_hash_indirect
4617 || h->root.type == bfd_link_hash_warning)
4618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4619
4620 /* Setting the index to -3 tells elf_link_output_extsym that
4621 this symbol is defined in a discarded section. */
4622 if (discarded)
4623 h->indx = -3;
4624
4625 *sym_hash = h;
4626
4627 new_weak = (flags & BSF_WEAK) != 0;
4628 if (dynamic
4629 && definition
4630 && new_weak
4631 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4632 && is_elf_hash_table (htab)
4633 && h->u.alias == NULL)
4634 {
4635 /* Keep a list of all weak defined non function symbols from
4636 a dynamic object, using the alias field. Later in this
4637 function we will set the alias field to the correct
4638 value. We only put non-function symbols from dynamic
4639 objects on this list, because that happens to be the only
4640 time we need to know the normal symbol corresponding to a
4641 weak symbol, and the information is time consuming to
4642 figure out. If the alias field is not already NULL,
4643 then this symbol was already defined by some previous
4644 dynamic object, and we will be using that previous
4645 definition anyhow. */
4646
4647 h->u.alias = weaks;
4648 weaks = h;
4649 }
4650
4651 /* Set the alignment of a common symbol. */
4652 if ((common || bfd_is_com_section (sec))
4653 && h->root.type == bfd_link_hash_common)
4654 {
4655 unsigned int align;
4656
4657 if (common)
4658 align = bfd_log2 (isym->st_value);
4659 else
4660 {
4661 /* The new symbol is a common symbol in a shared object.
4662 We need to get the alignment from the section. */
4663 align = new_sec->alignment_power;
4664 }
4665 if (align > old_alignment)
4666 h->root.u.c.p->alignment_power = align;
4667 else
4668 h->root.u.c.p->alignment_power = old_alignment;
4669 }
4670
4671 if (is_elf_hash_table (htab))
4672 {
4673 /* Set a flag in the hash table entry indicating the type of
4674 reference or definition we just found. A dynamic symbol
4675 is one which is referenced or defined by both a regular
4676 object and a shared object. */
4677 bfd_boolean dynsym = FALSE;
4678
4679 /* Plugin symbols aren't normal. Don't set def_regular or
4680 ref_regular for them, or make them dynamic. */
4681 if ((abfd->flags & BFD_PLUGIN) != 0)
4682 ;
4683 else if (! dynamic)
4684 {
4685 if (! definition)
4686 {
4687 h->ref_regular = 1;
4688 if (bind != STB_WEAK)
4689 h->ref_regular_nonweak = 1;
4690 }
4691 else
4692 {
4693 h->def_regular = 1;
4694 if (h->def_dynamic)
4695 {
4696 h->def_dynamic = 0;
4697 h->ref_dynamic = 1;
4698 }
4699 }
4700
4701 /* If the indirect symbol has been forced local, don't
4702 make the real symbol dynamic. */
4703 if ((h == hi || !hi->forced_local)
4704 && (bfd_link_dll (info)
4705 || h->def_dynamic
4706 || h->ref_dynamic))
4707 dynsym = TRUE;
4708 }
4709 else
4710 {
4711 if (! definition)
4712 {
4713 h->ref_dynamic = 1;
4714 hi->ref_dynamic = 1;
4715 }
4716 else
4717 {
4718 h->def_dynamic = 1;
4719 hi->def_dynamic = 1;
4720 }
4721
4722 /* If the indirect symbol has been forced local, don't
4723 make the real symbol dynamic. */
4724 if ((h == hi || !hi->forced_local)
4725 && (h->def_regular
4726 || h->ref_regular
4727 || (h->is_weakalias
4728 && weakdef (h)->dynindx != -1)))
4729 dynsym = TRUE;
4730 }
4731
4732 /* Check to see if we need to add an indirect symbol for
4733 the default name. */
4734 if (definition
4735 || (!override && h->root.type == bfd_link_hash_common))
4736 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4737 sec, value, &old_bfd, &dynsym))
4738 goto error_free_vers;
4739
4740 /* Check the alignment when a common symbol is involved. This
4741 can change when a common symbol is overridden by a normal
4742 definition or a common symbol is ignored due to the old
4743 normal definition. We need to make sure the maximum
4744 alignment is maintained. */
4745 if ((old_alignment || common)
4746 && h->root.type != bfd_link_hash_common)
4747 {
4748 unsigned int common_align;
4749 unsigned int normal_align;
4750 unsigned int symbol_align;
4751 bfd *normal_bfd;
4752 bfd *common_bfd;
4753
4754 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4755 || h->root.type == bfd_link_hash_defweak);
4756
4757 symbol_align = ffs (h->root.u.def.value) - 1;
4758 if (h->root.u.def.section->owner != NULL
4759 && (h->root.u.def.section->owner->flags
4760 & (DYNAMIC | BFD_PLUGIN)) == 0)
4761 {
4762 normal_align = h->root.u.def.section->alignment_power;
4763 if (normal_align > symbol_align)
4764 normal_align = symbol_align;
4765 }
4766 else
4767 normal_align = symbol_align;
4768
4769 if (old_alignment)
4770 {
4771 common_align = old_alignment;
4772 common_bfd = old_bfd;
4773 normal_bfd = abfd;
4774 }
4775 else
4776 {
4777 common_align = bfd_log2 (isym->st_value);
4778 common_bfd = abfd;
4779 normal_bfd = old_bfd;
4780 }
4781
4782 if (normal_align < common_align)
4783 {
4784 /* PR binutils/2735 */
4785 if (normal_bfd == NULL)
4786 _bfd_error_handler
4787 /* xgettext:c-format */
4788 (_("warning: alignment %u of common symbol `%s' in %pB is"
4789 " greater than the alignment (%u) of its section %pA"),
4790 1 << common_align, name, common_bfd,
4791 1 << normal_align, h->root.u.def.section);
4792 else
4793 _bfd_error_handler
4794 /* xgettext:c-format */
4795 (_("warning: alignment %u of symbol `%s' in %pB"
4796 " is smaller than %u in %pB"),
4797 1 << normal_align, name, normal_bfd,
4798 1 << common_align, common_bfd);
4799 }
4800 }
4801
4802 /* Remember the symbol size if it isn't undefined. */
4803 if (isym->st_size != 0
4804 && isym->st_shndx != SHN_UNDEF
4805 && (definition || h->size == 0))
4806 {
4807 if (h->size != 0
4808 && h->size != isym->st_size
4809 && ! size_change_ok)
4810 _bfd_error_handler
4811 /* xgettext:c-format */
4812 (_("warning: size of symbol `%s' changed"
4813 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4814 name, (uint64_t) h->size, old_bfd,
4815 (uint64_t) isym->st_size, abfd);
4816
4817 h->size = isym->st_size;
4818 }
4819
4820 /* If this is a common symbol, then we always want H->SIZE
4821 to be the size of the common symbol. The code just above
4822 won't fix the size if a common symbol becomes larger. We
4823 don't warn about a size change here, because that is
4824 covered by --warn-common. Allow changes between different
4825 function types. */
4826 if (h->root.type == bfd_link_hash_common)
4827 h->size = h->root.u.c.size;
4828
4829 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4830 && ((definition && !new_weak)
4831 || (old_weak && h->root.type == bfd_link_hash_common)
4832 || h->type == STT_NOTYPE))
4833 {
4834 unsigned int type = ELF_ST_TYPE (isym->st_info);
4835
4836 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4837 symbol. */
4838 if (type == STT_GNU_IFUNC
4839 && (abfd->flags & DYNAMIC) != 0)
4840 type = STT_FUNC;
4841
4842 if (h->type != type)
4843 {
4844 if (h->type != STT_NOTYPE && ! type_change_ok)
4845 /* xgettext:c-format */
4846 _bfd_error_handler
4847 (_("warning: type of symbol `%s' changed"
4848 " from %d to %d in %pB"),
4849 name, h->type, type, abfd);
4850
4851 h->type = type;
4852 }
4853 }
4854
4855 /* Merge st_other field. */
4856 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4857
4858 /* We don't want to make debug symbol dynamic. */
4859 if (definition
4860 && (sec->flags & SEC_DEBUGGING)
4861 && !bfd_link_relocatable (info))
4862 dynsym = FALSE;
4863
4864 /* Nor should we make plugin symbols dynamic. */
4865 if ((abfd->flags & BFD_PLUGIN) != 0)
4866 dynsym = FALSE;
4867
4868 if (definition)
4869 {
4870 h->target_internal = isym->st_target_internal;
4871 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4872 }
4873
4874 if (definition && !dynamic)
4875 {
4876 char *p = strchr (name, ELF_VER_CHR);
4877 if (p != NULL && p[1] != ELF_VER_CHR)
4878 {
4879 /* Queue non-default versions so that .symver x, x@FOO
4880 aliases can be checked. */
4881 if (!nondeflt_vers)
4882 {
4883 amt = ((isymend - isym + 1)
4884 * sizeof (struct elf_link_hash_entry *));
4885 nondeflt_vers
4886 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4887 if (!nondeflt_vers)
4888 goto error_free_vers;
4889 }
4890 nondeflt_vers[nondeflt_vers_cnt++] = h;
4891 }
4892 }
4893
4894 if (dynsym && h->dynindx == -1)
4895 {
4896 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4897 goto error_free_vers;
4898 if (h->is_weakalias
4899 && weakdef (h)->dynindx == -1)
4900 {
4901 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
4902 goto error_free_vers;
4903 }
4904 }
4905 else if (h->dynindx != -1)
4906 /* If the symbol already has a dynamic index, but
4907 visibility says it should not be visible, turn it into
4908 a local symbol. */
4909 switch (ELF_ST_VISIBILITY (h->other))
4910 {
4911 case STV_INTERNAL:
4912 case STV_HIDDEN:
4913 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4914 dynsym = FALSE;
4915 break;
4916 }
4917
4918 /* Don't add DT_NEEDED for references from the dummy bfd nor
4919 for unmatched symbol. */
4920 if (!add_needed
4921 && matched
4922 && definition
4923 && ((dynsym
4924 && h->ref_regular_nonweak
4925 && (old_bfd == NULL
4926 || (old_bfd->flags & BFD_PLUGIN) == 0))
4927 || (h->ref_dynamic_nonweak
4928 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4929 && !on_needed_list (elf_dt_name (abfd),
4930 htab->needed, NULL))))
4931 {
4932 int ret;
4933 const char *soname = elf_dt_name (abfd);
4934
4935 info->callbacks->minfo ("%!", soname, old_bfd,
4936 h->root.root.string);
4937
4938 /* A symbol from a library loaded via DT_NEEDED of some
4939 other library is referenced by a regular object.
4940 Add a DT_NEEDED entry for it. Issue an error if
4941 --no-add-needed is used and the reference was not
4942 a weak one. */
4943 if (old_bfd != NULL
4944 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4945 {
4946 _bfd_error_handler
4947 /* xgettext:c-format */
4948 (_("%pB: undefined reference to symbol '%s'"),
4949 old_bfd, name);
4950 bfd_set_error (bfd_error_missing_dso);
4951 goto error_free_vers;
4952 }
4953
4954 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4955 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4956
4957 add_needed = TRUE;
4958 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4959 if (ret < 0)
4960 goto error_free_vers;
4961
4962 BFD_ASSERT (ret == 0);
4963 }
4964 }
4965 }
4966
4967 if (info->lto_plugin_active
4968 && !bfd_link_relocatable (info)
4969 && (abfd->flags & BFD_PLUGIN) == 0
4970 && !just_syms
4971 && extsymcount)
4972 {
4973 int r_sym_shift;
4974
4975 if (bed->s->arch_size == 32)
4976 r_sym_shift = 8;
4977 else
4978 r_sym_shift = 32;
4979
4980 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
4981 referenced in regular objects so that linker plugin will get
4982 the correct symbol resolution. */
4983
4984 sym_hash = elf_sym_hashes (abfd);
4985 for (s = abfd->sections; s != NULL; s = s->next)
4986 {
4987 Elf_Internal_Rela *internal_relocs;
4988 Elf_Internal_Rela *rel, *relend;
4989
4990 /* Don't check relocations in excluded sections. */
4991 if ((s->flags & SEC_RELOC) == 0
4992 || s->reloc_count == 0
4993 || (s->flags & SEC_EXCLUDE) != 0
4994 || ((info->strip == strip_all
4995 || info->strip == strip_debugger)
4996 && (s->flags & SEC_DEBUGGING) != 0))
4997 continue;
4998
4999 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5000 NULL,
5001 info->keep_memory);
5002 if (internal_relocs == NULL)
5003 goto error_free_vers;
5004
5005 rel = internal_relocs;
5006 relend = rel + s->reloc_count;
5007 for ( ; rel < relend; rel++)
5008 {
5009 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5010 struct elf_link_hash_entry *h;
5011
5012 /* Skip local symbols. */
5013 if (r_symndx < extsymoff)
5014 continue;
5015
5016 h = sym_hash[r_symndx - extsymoff];
5017 if (h != NULL)
5018 h->root.non_ir_ref_regular = 1;
5019 }
5020
5021 if (elf_section_data (s)->relocs != internal_relocs)
5022 free (internal_relocs);
5023 }
5024 }
5025
5026 if (extversym != NULL)
5027 {
5028 free (extversym);
5029 extversym = NULL;
5030 }
5031
5032 if (isymbuf != NULL)
5033 {
5034 free (isymbuf);
5035 isymbuf = NULL;
5036 }
5037
5038 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5039 {
5040 unsigned int i;
5041
5042 /* Restore the symbol table. */
5043 old_ent = (char *) old_tab + tabsize;
5044 memset (elf_sym_hashes (abfd), 0,
5045 extsymcount * sizeof (struct elf_link_hash_entry *));
5046 htab->root.table.table = old_table;
5047 htab->root.table.size = old_size;
5048 htab->root.table.count = old_count;
5049 memcpy (htab->root.table.table, old_tab, tabsize);
5050 htab->root.undefs = old_undefs;
5051 htab->root.undefs_tail = old_undefs_tail;
5052 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5053 free (old_strtab);
5054 old_strtab = NULL;
5055 for (i = 0; i < htab->root.table.size; i++)
5056 {
5057 struct bfd_hash_entry *p;
5058 struct elf_link_hash_entry *h;
5059 bfd_size_type size;
5060 unsigned int alignment_power;
5061 unsigned int non_ir_ref_dynamic;
5062
5063 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5064 {
5065 h = (struct elf_link_hash_entry *) p;
5066 if (h->root.type == bfd_link_hash_warning)
5067 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5068
5069 /* Preserve the maximum alignment and size for common
5070 symbols even if this dynamic lib isn't on DT_NEEDED
5071 since it can still be loaded at run time by another
5072 dynamic lib. */
5073 if (h->root.type == bfd_link_hash_common)
5074 {
5075 size = h->root.u.c.size;
5076 alignment_power = h->root.u.c.p->alignment_power;
5077 }
5078 else
5079 {
5080 size = 0;
5081 alignment_power = 0;
5082 }
5083 /* Preserve non_ir_ref_dynamic so that this symbol
5084 will be exported when the dynamic lib becomes needed
5085 in the second pass. */
5086 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5087 memcpy (p, old_ent, htab->root.table.entsize);
5088 old_ent = (char *) old_ent + htab->root.table.entsize;
5089 h = (struct elf_link_hash_entry *) p;
5090 if (h->root.type == bfd_link_hash_warning)
5091 {
5092 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5093 old_ent = (char *) old_ent + htab->root.table.entsize;
5094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5095 }
5096 if (h->root.type == bfd_link_hash_common)
5097 {
5098 if (size > h->root.u.c.size)
5099 h->root.u.c.size = size;
5100 if (alignment_power > h->root.u.c.p->alignment_power)
5101 h->root.u.c.p->alignment_power = alignment_power;
5102 }
5103 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5104 }
5105 }
5106
5107 /* Make a special call to the linker "notice" function to
5108 tell it that symbols added for crefs may need to be removed. */
5109 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5110 goto error_free_vers;
5111
5112 free (old_tab);
5113 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5114 alloc_mark);
5115 if (nondeflt_vers != NULL)
5116 free (nondeflt_vers);
5117 return TRUE;
5118 }
5119
5120 if (old_tab != NULL)
5121 {
5122 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5123 goto error_free_vers;
5124 free (old_tab);
5125 old_tab = NULL;
5126 }
5127
5128 /* Now that all the symbols from this input file are created, if
5129 not performing a relocatable link, handle .symver foo, foo@BAR
5130 such that any relocs against foo become foo@BAR. */
5131 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5132 {
5133 size_t cnt, symidx;
5134
5135 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5136 {
5137 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5138 char *shortname, *p;
5139
5140 p = strchr (h->root.root.string, ELF_VER_CHR);
5141 if (p == NULL
5142 || (h->root.type != bfd_link_hash_defined
5143 && h->root.type != bfd_link_hash_defweak))
5144 continue;
5145
5146 amt = p - h->root.root.string;
5147 shortname = (char *) bfd_malloc (amt + 1);
5148 if (!shortname)
5149 goto error_free_vers;
5150 memcpy (shortname, h->root.root.string, amt);
5151 shortname[amt] = '\0';
5152
5153 hi = (struct elf_link_hash_entry *)
5154 bfd_link_hash_lookup (&htab->root, shortname,
5155 FALSE, FALSE, FALSE);
5156 if (hi != NULL
5157 && hi->root.type == h->root.type
5158 && hi->root.u.def.value == h->root.u.def.value
5159 && hi->root.u.def.section == h->root.u.def.section)
5160 {
5161 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5162 hi->root.type = bfd_link_hash_indirect;
5163 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5164 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5165 sym_hash = elf_sym_hashes (abfd);
5166 if (sym_hash)
5167 for (symidx = 0; symidx < extsymcount; ++symidx)
5168 if (sym_hash[symidx] == hi)
5169 {
5170 sym_hash[symidx] = h;
5171 break;
5172 }
5173 }
5174 free (shortname);
5175 }
5176 free (nondeflt_vers);
5177 nondeflt_vers = NULL;
5178 }
5179
5180 /* Now set the alias field correctly for all the weak defined
5181 symbols we found. The only way to do this is to search all the
5182 symbols. Since we only need the information for non functions in
5183 dynamic objects, that's the only time we actually put anything on
5184 the list WEAKS. We need this information so that if a regular
5185 object refers to a symbol defined weakly in a dynamic object, the
5186 real symbol in the dynamic object is also put in the dynamic
5187 symbols; we also must arrange for both symbols to point to the
5188 same memory location. We could handle the general case of symbol
5189 aliasing, but a general symbol alias can only be generated in
5190 assembler code, handling it correctly would be very time
5191 consuming, and other ELF linkers don't handle general aliasing
5192 either. */
5193 if (weaks != NULL)
5194 {
5195 struct elf_link_hash_entry **hpp;
5196 struct elf_link_hash_entry **hppend;
5197 struct elf_link_hash_entry **sorted_sym_hash;
5198 struct elf_link_hash_entry *h;
5199 size_t sym_count;
5200
5201 /* Since we have to search the whole symbol list for each weak
5202 defined symbol, search time for N weak defined symbols will be
5203 O(N^2). Binary search will cut it down to O(NlogN). */
5204 amt = extsymcount;
5205 amt *= sizeof (struct elf_link_hash_entry *);
5206 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5207 if (sorted_sym_hash == NULL)
5208 goto error_return;
5209 sym_hash = sorted_sym_hash;
5210 hpp = elf_sym_hashes (abfd);
5211 hppend = hpp + extsymcount;
5212 sym_count = 0;
5213 for (; hpp < hppend; hpp++)
5214 {
5215 h = *hpp;
5216 if (h != NULL
5217 && h->root.type == bfd_link_hash_defined
5218 && !bed->is_function_type (h->type))
5219 {
5220 *sym_hash = h;
5221 sym_hash++;
5222 sym_count++;
5223 }
5224 }
5225
5226 qsort (sorted_sym_hash, sym_count,
5227 sizeof (struct elf_link_hash_entry *),
5228 elf_sort_symbol);
5229
5230 while (weaks != NULL)
5231 {
5232 struct elf_link_hash_entry *hlook;
5233 asection *slook;
5234 bfd_vma vlook;
5235 size_t i, j, idx = 0;
5236
5237 hlook = weaks;
5238 weaks = hlook->u.alias;
5239 hlook->u.alias = NULL;
5240
5241 if (hlook->root.type != bfd_link_hash_defined
5242 && hlook->root.type != bfd_link_hash_defweak)
5243 continue;
5244
5245 slook = hlook->root.u.def.section;
5246 vlook = hlook->root.u.def.value;
5247
5248 i = 0;
5249 j = sym_count;
5250 while (i != j)
5251 {
5252 bfd_signed_vma vdiff;
5253 idx = (i + j) / 2;
5254 h = sorted_sym_hash[idx];
5255 vdiff = vlook - h->root.u.def.value;
5256 if (vdiff < 0)
5257 j = idx;
5258 else if (vdiff > 0)
5259 i = idx + 1;
5260 else
5261 {
5262 int sdiff = slook->id - h->root.u.def.section->id;
5263 if (sdiff < 0)
5264 j = idx;
5265 else if (sdiff > 0)
5266 i = idx + 1;
5267 else
5268 break;
5269 }
5270 }
5271
5272 /* We didn't find a value/section match. */
5273 if (i == j)
5274 continue;
5275
5276 /* With multiple aliases, or when the weak symbol is already
5277 strongly defined, we have multiple matching symbols and
5278 the binary search above may land on any of them. Step
5279 one past the matching symbol(s). */
5280 while (++idx != j)
5281 {
5282 h = sorted_sym_hash[idx];
5283 if (h->root.u.def.section != slook
5284 || h->root.u.def.value != vlook)
5285 break;
5286 }
5287
5288 /* Now look back over the aliases. Since we sorted by size
5289 as well as value and section, we'll choose the one with
5290 the largest size. */
5291 while (idx-- != i)
5292 {
5293 h = sorted_sym_hash[idx];
5294
5295 /* Stop if value or section doesn't match. */
5296 if (h->root.u.def.section != slook
5297 || h->root.u.def.value != vlook)
5298 break;
5299 else if (h != hlook)
5300 {
5301 struct elf_link_hash_entry *t;
5302
5303 hlook->u.alias = h;
5304 hlook->is_weakalias = 1;
5305 t = h;
5306 if (t->u.alias != NULL)
5307 while (t->u.alias != h)
5308 t = t->u.alias;
5309 t->u.alias = hlook;
5310
5311 /* If the weak definition is in the list of dynamic
5312 symbols, make sure the real definition is put
5313 there as well. */
5314 if (hlook->dynindx != -1 && h->dynindx == -1)
5315 {
5316 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5317 {
5318 err_free_sym_hash:
5319 free (sorted_sym_hash);
5320 goto error_return;
5321 }
5322 }
5323
5324 /* If the real definition is in the list of dynamic
5325 symbols, make sure the weak definition is put
5326 there as well. If we don't do this, then the
5327 dynamic loader might not merge the entries for the
5328 real definition and the weak definition. */
5329 if (h->dynindx != -1 && hlook->dynindx == -1)
5330 {
5331 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5332 goto err_free_sym_hash;
5333 }
5334 break;
5335 }
5336 }
5337 }
5338
5339 free (sorted_sym_hash);
5340 }
5341
5342 if (bed->check_directives
5343 && !(*bed->check_directives) (abfd, info))
5344 return FALSE;
5345
5346 /* If this is a non-traditional link, try to optimize the handling
5347 of the .stab/.stabstr sections. */
5348 if (! dynamic
5349 && ! info->traditional_format
5350 && is_elf_hash_table (htab)
5351 && (info->strip != strip_all && info->strip != strip_debugger))
5352 {
5353 asection *stabstr;
5354
5355 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5356 if (stabstr != NULL)
5357 {
5358 bfd_size_type string_offset = 0;
5359 asection *stab;
5360
5361 for (stab = abfd->sections; stab; stab = stab->next)
5362 if (CONST_STRNEQ (stab->name, ".stab")
5363 && (!stab->name[5] ||
5364 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5365 && (stab->flags & SEC_MERGE) == 0
5366 && !bfd_is_abs_section (stab->output_section))
5367 {
5368 struct bfd_elf_section_data *secdata;
5369
5370 secdata = elf_section_data (stab);
5371 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5372 stabstr, &secdata->sec_info,
5373 &string_offset))
5374 goto error_return;
5375 if (secdata->sec_info)
5376 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5377 }
5378 }
5379 }
5380
5381 if (is_elf_hash_table (htab) && add_needed)
5382 {
5383 /* Add this bfd to the loaded list. */
5384 struct elf_link_loaded_list *n;
5385
5386 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5387 if (n == NULL)
5388 goto error_return;
5389 n->abfd = abfd;
5390 n->next = htab->loaded;
5391 htab->loaded = n;
5392 }
5393
5394 return TRUE;
5395
5396 error_free_vers:
5397 if (old_tab != NULL)
5398 free (old_tab);
5399 if (old_strtab != NULL)
5400 free (old_strtab);
5401 if (nondeflt_vers != NULL)
5402 free (nondeflt_vers);
5403 if (extversym != NULL)
5404 free (extversym);
5405 error_free_sym:
5406 if (isymbuf != NULL)
5407 free (isymbuf);
5408 error_return:
5409 return FALSE;
5410 }
5411
5412 /* Return the linker hash table entry of a symbol that might be
5413 satisfied by an archive symbol. Return -1 on error. */
5414
5415 struct elf_link_hash_entry *
5416 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5417 struct bfd_link_info *info,
5418 const char *name)
5419 {
5420 struct elf_link_hash_entry *h;
5421 char *p, *copy;
5422 size_t len, first;
5423
5424 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5425 if (h != NULL)
5426 return h;
5427
5428 /* If this is a default version (the name contains @@), look up the
5429 symbol again with only one `@' as well as without the version.
5430 The effect is that references to the symbol with and without the
5431 version will be matched by the default symbol in the archive. */
5432
5433 p = strchr (name, ELF_VER_CHR);
5434 if (p == NULL || p[1] != ELF_VER_CHR)
5435 return h;
5436
5437 /* First check with only one `@'. */
5438 len = strlen (name);
5439 copy = (char *) bfd_alloc (abfd, len);
5440 if (copy == NULL)
5441 return (struct elf_link_hash_entry *) -1;
5442
5443 first = p - name + 1;
5444 memcpy (copy, name, first);
5445 memcpy (copy + first, name + first + 1, len - first);
5446
5447 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5448 if (h == NULL)
5449 {
5450 /* We also need to check references to the symbol without the
5451 version. */
5452 copy[first - 1] = '\0';
5453 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5454 FALSE, FALSE, TRUE);
5455 }
5456
5457 bfd_release (abfd, copy);
5458 return h;
5459 }
5460
5461 /* Add symbols from an ELF archive file to the linker hash table. We
5462 don't use _bfd_generic_link_add_archive_symbols because we need to
5463 handle versioned symbols.
5464
5465 Fortunately, ELF archive handling is simpler than that done by
5466 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5467 oddities. In ELF, if we find a symbol in the archive map, and the
5468 symbol is currently undefined, we know that we must pull in that
5469 object file.
5470
5471 Unfortunately, we do have to make multiple passes over the symbol
5472 table until nothing further is resolved. */
5473
5474 static bfd_boolean
5475 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5476 {
5477 symindex c;
5478 unsigned char *included = NULL;
5479 carsym *symdefs;
5480 bfd_boolean loop;
5481 bfd_size_type amt;
5482 const struct elf_backend_data *bed;
5483 struct elf_link_hash_entry * (*archive_symbol_lookup)
5484 (bfd *, struct bfd_link_info *, const char *);
5485
5486 if (! bfd_has_map (abfd))
5487 {
5488 /* An empty archive is a special case. */
5489 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5490 return TRUE;
5491 bfd_set_error (bfd_error_no_armap);
5492 return FALSE;
5493 }
5494
5495 /* Keep track of all symbols we know to be already defined, and all
5496 files we know to be already included. This is to speed up the
5497 second and subsequent passes. */
5498 c = bfd_ardata (abfd)->symdef_count;
5499 if (c == 0)
5500 return TRUE;
5501 amt = c;
5502 amt *= sizeof (*included);
5503 included = (unsigned char *) bfd_zmalloc (amt);
5504 if (included == NULL)
5505 return FALSE;
5506
5507 symdefs = bfd_ardata (abfd)->symdefs;
5508 bed = get_elf_backend_data (abfd);
5509 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5510
5511 do
5512 {
5513 file_ptr last;
5514 symindex i;
5515 carsym *symdef;
5516 carsym *symdefend;
5517
5518 loop = FALSE;
5519 last = -1;
5520
5521 symdef = symdefs;
5522 symdefend = symdef + c;
5523 for (i = 0; symdef < symdefend; symdef++, i++)
5524 {
5525 struct elf_link_hash_entry *h;
5526 bfd *element;
5527 struct bfd_link_hash_entry *undefs_tail;
5528 symindex mark;
5529
5530 if (included[i])
5531 continue;
5532 if (symdef->file_offset == last)
5533 {
5534 included[i] = TRUE;
5535 continue;
5536 }
5537
5538 h = archive_symbol_lookup (abfd, info, symdef->name);
5539 if (h == (struct elf_link_hash_entry *) -1)
5540 goto error_return;
5541
5542 if (h == NULL)
5543 continue;
5544
5545 if (h->root.type == bfd_link_hash_common)
5546 {
5547 /* We currently have a common symbol. The archive map contains
5548 a reference to this symbol, so we may want to include it. We
5549 only want to include it however, if this archive element
5550 contains a definition of the symbol, not just another common
5551 declaration of it.
5552
5553 Unfortunately some archivers (including GNU ar) will put
5554 declarations of common symbols into their archive maps, as
5555 well as real definitions, so we cannot just go by the archive
5556 map alone. Instead we must read in the element's symbol
5557 table and check that to see what kind of symbol definition
5558 this is. */
5559 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5560 continue;
5561 }
5562 else if (h->root.type != bfd_link_hash_undefined)
5563 {
5564 if (h->root.type != bfd_link_hash_undefweak)
5565 /* Symbol must be defined. Don't check it again. */
5566 included[i] = TRUE;
5567 continue;
5568 }
5569
5570 /* We need to include this archive member. */
5571 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5572 if (element == NULL)
5573 goto error_return;
5574
5575 if (! bfd_check_format (element, bfd_object))
5576 goto error_return;
5577
5578 undefs_tail = info->hash->undefs_tail;
5579
5580 if (!(*info->callbacks
5581 ->add_archive_element) (info, element, symdef->name, &element))
5582 continue;
5583 if (!bfd_link_add_symbols (element, info))
5584 goto error_return;
5585
5586 /* If there are any new undefined symbols, we need to make
5587 another pass through the archive in order to see whether
5588 they can be defined. FIXME: This isn't perfect, because
5589 common symbols wind up on undefs_tail and because an
5590 undefined symbol which is defined later on in this pass
5591 does not require another pass. This isn't a bug, but it
5592 does make the code less efficient than it could be. */
5593 if (undefs_tail != info->hash->undefs_tail)
5594 loop = TRUE;
5595
5596 /* Look backward to mark all symbols from this object file
5597 which we have already seen in this pass. */
5598 mark = i;
5599 do
5600 {
5601 included[mark] = TRUE;
5602 if (mark == 0)
5603 break;
5604 --mark;
5605 }
5606 while (symdefs[mark].file_offset == symdef->file_offset);
5607
5608 /* We mark subsequent symbols from this object file as we go
5609 on through the loop. */
5610 last = symdef->file_offset;
5611 }
5612 }
5613 while (loop);
5614
5615 free (included);
5616
5617 return TRUE;
5618
5619 error_return:
5620 if (included != NULL)
5621 free (included);
5622 return FALSE;
5623 }
5624
5625 /* Given an ELF BFD, add symbols to the global hash table as
5626 appropriate. */
5627
5628 bfd_boolean
5629 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5630 {
5631 switch (bfd_get_format (abfd))
5632 {
5633 case bfd_object:
5634 return elf_link_add_object_symbols (abfd, info);
5635 case bfd_archive:
5636 return elf_link_add_archive_symbols (abfd, info);
5637 default:
5638 bfd_set_error (bfd_error_wrong_format);
5639 return FALSE;
5640 }
5641 }
5642 \f
5643 struct hash_codes_info
5644 {
5645 unsigned long *hashcodes;
5646 bfd_boolean error;
5647 };
5648
5649 /* This function will be called though elf_link_hash_traverse to store
5650 all hash value of the exported symbols in an array. */
5651
5652 static bfd_boolean
5653 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5654 {
5655 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5656 const char *name;
5657 unsigned long ha;
5658 char *alc = NULL;
5659
5660 /* Ignore indirect symbols. These are added by the versioning code. */
5661 if (h->dynindx == -1)
5662 return TRUE;
5663
5664 name = h->root.root.string;
5665 if (h->versioned >= versioned)
5666 {
5667 char *p = strchr (name, ELF_VER_CHR);
5668 if (p != NULL)
5669 {
5670 alc = (char *) bfd_malloc (p - name + 1);
5671 if (alc == NULL)
5672 {
5673 inf->error = TRUE;
5674 return FALSE;
5675 }
5676 memcpy (alc, name, p - name);
5677 alc[p - name] = '\0';
5678 name = alc;
5679 }
5680 }
5681
5682 /* Compute the hash value. */
5683 ha = bfd_elf_hash (name);
5684
5685 /* Store the found hash value in the array given as the argument. */
5686 *(inf->hashcodes)++ = ha;
5687
5688 /* And store it in the struct so that we can put it in the hash table
5689 later. */
5690 h->u.elf_hash_value = ha;
5691
5692 if (alc != NULL)
5693 free (alc);
5694
5695 return TRUE;
5696 }
5697
5698 struct collect_gnu_hash_codes
5699 {
5700 bfd *output_bfd;
5701 const struct elf_backend_data *bed;
5702 unsigned long int nsyms;
5703 unsigned long int maskbits;
5704 unsigned long int *hashcodes;
5705 unsigned long int *hashval;
5706 unsigned long int *indx;
5707 unsigned long int *counts;
5708 bfd_vma *bitmask;
5709 bfd_byte *contents;
5710 long int min_dynindx;
5711 unsigned long int bucketcount;
5712 unsigned long int symindx;
5713 long int local_indx;
5714 long int shift1, shift2;
5715 unsigned long int mask;
5716 bfd_boolean error;
5717 };
5718
5719 /* This function will be called though elf_link_hash_traverse to store
5720 all hash value of the exported symbols in an array. */
5721
5722 static bfd_boolean
5723 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5724 {
5725 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5726 const char *name;
5727 unsigned long ha;
5728 char *alc = NULL;
5729
5730 /* Ignore indirect symbols. These are added by the versioning code. */
5731 if (h->dynindx == -1)
5732 return TRUE;
5733
5734 /* Ignore also local symbols and undefined symbols. */
5735 if (! (*s->bed->elf_hash_symbol) (h))
5736 return TRUE;
5737
5738 name = h->root.root.string;
5739 if (h->versioned >= versioned)
5740 {
5741 char *p = strchr (name, ELF_VER_CHR);
5742 if (p != NULL)
5743 {
5744 alc = (char *) bfd_malloc (p - name + 1);
5745 if (alc == NULL)
5746 {
5747 s->error = TRUE;
5748 return FALSE;
5749 }
5750 memcpy (alc, name, p - name);
5751 alc[p - name] = '\0';
5752 name = alc;
5753 }
5754 }
5755
5756 /* Compute the hash value. */
5757 ha = bfd_elf_gnu_hash (name);
5758
5759 /* Store the found hash value in the array for compute_bucket_count,
5760 and also for .dynsym reordering purposes. */
5761 s->hashcodes[s->nsyms] = ha;
5762 s->hashval[h->dynindx] = ha;
5763 ++s->nsyms;
5764 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5765 s->min_dynindx = h->dynindx;
5766
5767 if (alc != NULL)
5768 free (alc);
5769
5770 return TRUE;
5771 }
5772
5773 /* This function will be called though elf_link_hash_traverse to do
5774 final dynaminc symbol renumbering. */
5775
5776 static bfd_boolean
5777 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5778 {
5779 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5780 unsigned long int bucket;
5781 unsigned long int val;
5782
5783 /* Ignore indirect symbols. */
5784 if (h->dynindx == -1)
5785 return TRUE;
5786
5787 /* Ignore also local symbols and undefined symbols. */
5788 if (! (*s->bed->elf_hash_symbol) (h))
5789 {
5790 if (h->dynindx >= s->min_dynindx)
5791 h->dynindx = s->local_indx++;
5792 return TRUE;
5793 }
5794
5795 bucket = s->hashval[h->dynindx] % s->bucketcount;
5796 val = (s->hashval[h->dynindx] >> s->shift1)
5797 & ((s->maskbits >> s->shift1) - 1);
5798 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5799 s->bitmask[val]
5800 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5801 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5802 if (s->counts[bucket] == 1)
5803 /* Last element terminates the chain. */
5804 val |= 1;
5805 bfd_put_32 (s->output_bfd, val,
5806 s->contents + (s->indx[bucket] - s->symindx) * 4);
5807 --s->counts[bucket];
5808 h->dynindx = s->indx[bucket]++;
5809 return TRUE;
5810 }
5811
5812 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5813
5814 bfd_boolean
5815 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5816 {
5817 return !(h->forced_local
5818 || h->root.type == bfd_link_hash_undefined
5819 || h->root.type == bfd_link_hash_undefweak
5820 || ((h->root.type == bfd_link_hash_defined
5821 || h->root.type == bfd_link_hash_defweak)
5822 && h->root.u.def.section->output_section == NULL));
5823 }
5824
5825 /* Array used to determine the number of hash table buckets to use
5826 based on the number of symbols there are. If there are fewer than
5827 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5828 fewer than 37 we use 17 buckets, and so forth. We never use more
5829 than 32771 buckets. */
5830
5831 static const size_t elf_buckets[] =
5832 {
5833 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5834 16411, 32771, 0
5835 };
5836
5837 /* Compute bucket count for hashing table. We do not use a static set
5838 of possible tables sizes anymore. Instead we determine for all
5839 possible reasonable sizes of the table the outcome (i.e., the
5840 number of collisions etc) and choose the best solution. The
5841 weighting functions are not too simple to allow the table to grow
5842 without bounds. Instead one of the weighting factors is the size.
5843 Therefore the result is always a good payoff between few collisions
5844 (= short chain lengths) and table size. */
5845 static size_t
5846 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5847 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5848 unsigned long int nsyms,
5849 int gnu_hash)
5850 {
5851 size_t best_size = 0;
5852 unsigned long int i;
5853
5854 /* We have a problem here. The following code to optimize the table
5855 size requires an integer type with more the 32 bits. If
5856 BFD_HOST_U_64_BIT is set we know about such a type. */
5857 #ifdef BFD_HOST_U_64_BIT
5858 if (info->optimize)
5859 {
5860 size_t minsize;
5861 size_t maxsize;
5862 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5863 bfd *dynobj = elf_hash_table (info)->dynobj;
5864 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5865 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5866 unsigned long int *counts;
5867 bfd_size_type amt;
5868 unsigned int no_improvement_count = 0;
5869
5870 /* Possible optimization parameters: if we have NSYMS symbols we say
5871 that the hashing table must at least have NSYMS/4 and at most
5872 2*NSYMS buckets. */
5873 minsize = nsyms / 4;
5874 if (minsize == 0)
5875 minsize = 1;
5876 best_size = maxsize = nsyms * 2;
5877 if (gnu_hash)
5878 {
5879 if (minsize < 2)
5880 minsize = 2;
5881 if ((best_size & 31) == 0)
5882 ++best_size;
5883 }
5884
5885 /* Create array where we count the collisions in. We must use bfd_malloc
5886 since the size could be large. */
5887 amt = maxsize;
5888 amt *= sizeof (unsigned long int);
5889 counts = (unsigned long int *) bfd_malloc (amt);
5890 if (counts == NULL)
5891 return 0;
5892
5893 /* Compute the "optimal" size for the hash table. The criteria is a
5894 minimal chain length. The minor criteria is (of course) the size
5895 of the table. */
5896 for (i = minsize; i < maxsize; ++i)
5897 {
5898 /* Walk through the array of hashcodes and count the collisions. */
5899 BFD_HOST_U_64_BIT max;
5900 unsigned long int j;
5901 unsigned long int fact;
5902
5903 if (gnu_hash && (i & 31) == 0)
5904 continue;
5905
5906 memset (counts, '\0', i * sizeof (unsigned long int));
5907
5908 /* Determine how often each hash bucket is used. */
5909 for (j = 0; j < nsyms; ++j)
5910 ++counts[hashcodes[j] % i];
5911
5912 /* For the weight function we need some information about the
5913 pagesize on the target. This is information need not be 100%
5914 accurate. Since this information is not available (so far) we
5915 define it here to a reasonable default value. If it is crucial
5916 to have a better value some day simply define this value. */
5917 # ifndef BFD_TARGET_PAGESIZE
5918 # define BFD_TARGET_PAGESIZE (4096)
5919 # endif
5920
5921 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5922 and the chains. */
5923 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5924
5925 # if 1
5926 /* Variant 1: optimize for short chains. We add the squares
5927 of all the chain lengths (which favors many small chain
5928 over a few long chains). */
5929 for (j = 0; j < i; ++j)
5930 max += counts[j] * counts[j];
5931
5932 /* This adds penalties for the overall size of the table. */
5933 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5934 max *= fact * fact;
5935 # else
5936 /* Variant 2: Optimize a lot more for small table. Here we
5937 also add squares of the size but we also add penalties for
5938 empty slots (the +1 term). */
5939 for (j = 0; j < i; ++j)
5940 max += (1 + counts[j]) * (1 + counts[j]);
5941
5942 /* The overall size of the table is considered, but not as
5943 strong as in variant 1, where it is squared. */
5944 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5945 max *= fact;
5946 # endif
5947
5948 /* Compare with current best results. */
5949 if (max < best_chlen)
5950 {
5951 best_chlen = max;
5952 best_size = i;
5953 no_improvement_count = 0;
5954 }
5955 /* PR 11843: Avoid futile long searches for the best bucket size
5956 when there are a large number of symbols. */
5957 else if (++no_improvement_count == 100)
5958 break;
5959 }
5960
5961 free (counts);
5962 }
5963 else
5964 #endif /* defined (BFD_HOST_U_64_BIT) */
5965 {
5966 /* This is the fallback solution if no 64bit type is available or if we
5967 are not supposed to spend much time on optimizations. We select the
5968 bucket count using a fixed set of numbers. */
5969 for (i = 0; elf_buckets[i] != 0; i++)
5970 {
5971 best_size = elf_buckets[i];
5972 if (nsyms < elf_buckets[i + 1])
5973 break;
5974 }
5975 if (gnu_hash && best_size < 2)
5976 best_size = 2;
5977 }
5978
5979 return best_size;
5980 }
5981
5982 /* Size any SHT_GROUP section for ld -r. */
5983
5984 bfd_boolean
5985 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5986 {
5987 bfd *ibfd;
5988 asection *s;
5989
5990 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5991 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5992 && (s = ibfd->sections) != NULL
5993 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5994 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5995 return FALSE;
5996 return TRUE;
5997 }
5998
5999 /* Set a default stack segment size. The value in INFO wins. If it
6000 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6001 undefined it is initialized. */
6002
6003 bfd_boolean
6004 bfd_elf_stack_segment_size (bfd *output_bfd,
6005 struct bfd_link_info *info,
6006 const char *legacy_symbol,
6007 bfd_vma default_size)
6008 {
6009 struct elf_link_hash_entry *h = NULL;
6010
6011 /* Look for legacy symbol. */
6012 if (legacy_symbol)
6013 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6014 FALSE, FALSE, FALSE);
6015 if (h && (h->root.type == bfd_link_hash_defined
6016 || h->root.type == bfd_link_hash_defweak)
6017 && h->def_regular
6018 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6019 {
6020 /* The symbol has no type if specified on the command line. */
6021 h->type = STT_OBJECT;
6022 if (info->stacksize)
6023 /* xgettext:c-format */
6024 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6025 output_bfd, legacy_symbol);
6026 else if (h->root.u.def.section != bfd_abs_section_ptr)
6027 /* xgettext:c-format */
6028 _bfd_error_handler (_("%pB: %s not absolute"),
6029 output_bfd, legacy_symbol);
6030 else
6031 info->stacksize = h->root.u.def.value;
6032 }
6033
6034 if (!info->stacksize)
6035 /* If the user didn't set a size, or explicitly inhibit the
6036 size, set it now. */
6037 info->stacksize = default_size;
6038
6039 /* Provide the legacy symbol, if it is referenced. */
6040 if (h && (h->root.type == bfd_link_hash_undefined
6041 || h->root.type == bfd_link_hash_undefweak))
6042 {
6043 struct bfd_link_hash_entry *bh = NULL;
6044
6045 if (!(_bfd_generic_link_add_one_symbol
6046 (info, output_bfd, legacy_symbol,
6047 BSF_GLOBAL, bfd_abs_section_ptr,
6048 info->stacksize >= 0 ? info->stacksize : 0,
6049 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6050 return FALSE;
6051
6052 h = (struct elf_link_hash_entry *) bh;
6053 h->def_regular = 1;
6054 h->type = STT_OBJECT;
6055 }
6056
6057 return TRUE;
6058 }
6059
6060 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6061
6062 struct elf_gc_sweep_symbol_info
6063 {
6064 struct bfd_link_info *info;
6065 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6066 bfd_boolean);
6067 };
6068
6069 static bfd_boolean
6070 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6071 {
6072 if (!h->mark
6073 && (((h->root.type == bfd_link_hash_defined
6074 || h->root.type == bfd_link_hash_defweak)
6075 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6076 && h->root.u.def.section->gc_mark))
6077 || h->root.type == bfd_link_hash_undefined
6078 || h->root.type == bfd_link_hash_undefweak))
6079 {
6080 struct elf_gc_sweep_symbol_info *inf;
6081
6082 inf = (struct elf_gc_sweep_symbol_info *) data;
6083 (*inf->hide_symbol) (inf->info, h, TRUE);
6084 h->def_regular = 0;
6085 h->ref_regular = 0;
6086 h->ref_regular_nonweak = 0;
6087 }
6088
6089 return TRUE;
6090 }
6091
6092 /* Set up the sizes and contents of the ELF dynamic sections. This is
6093 called by the ELF linker emulation before_allocation routine. We
6094 must set the sizes of the sections before the linker sets the
6095 addresses of the various sections. */
6096
6097 bfd_boolean
6098 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6099 const char *soname,
6100 const char *rpath,
6101 const char *filter_shlib,
6102 const char *audit,
6103 const char *depaudit,
6104 const char * const *auxiliary_filters,
6105 struct bfd_link_info *info,
6106 asection **sinterpptr)
6107 {
6108 bfd *dynobj;
6109 const struct elf_backend_data *bed;
6110
6111 *sinterpptr = NULL;
6112
6113 if (!is_elf_hash_table (info->hash))
6114 return TRUE;
6115
6116 dynobj = elf_hash_table (info)->dynobj;
6117
6118 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6119 {
6120 struct bfd_elf_version_tree *verdefs;
6121 struct elf_info_failed asvinfo;
6122 struct bfd_elf_version_tree *t;
6123 struct bfd_elf_version_expr *d;
6124 asection *s;
6125 size_t soname_indx;
6126
6127 /* If we are supposed to export all symbols into the dynamic symbol
6128 table (this is not the normal case), then do so. */
6129 if (info->export_dynamic
6130 || (bfd_link_executable (info) && info->dynamic))
6131 {
6132 struct elf_info_failed eif;
6133
6134 eif.info = info;
6135 eif.failed = FALSE;
6136 elf_link_hash_traverse (elf_hash_table (info),
6137 _bfd_elf_export_symbol,
6138 &eif);
6139 if (eif.failed)
6140 return FALSE;
6141 }
6142
6143 if (soname != NULL)
6144 {
6145 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6146 soname, TRUE);
6147 if (soname_indx == (size_t) -1
6148 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6149 return FALSE;
6150 }
6151 else
6152 soname_indx = (size_t) -1;
6153
6154 /* Make all global versions with definition. */
6155 for (t = info->version_info; t != NULL; t = t->next)
6156 for (d = t->globals.list; d != NULL; d = d->next)
6157 if (!d->symver && d->literal)
6158 {
6159 const char *verstr, *name;
6160 size_t namelen, verlen, newlen;
6161 char *newname, *p, leading_char;
6162 struct elf_link_hash_entry *newh;
6163
6164 leading_char = bfd_get_symbol_leading_char (output_bfd);
6165 name = d->pattern;
6166 namelen = strlen (name) + (leading_char != '\0');
6167 verstr = t->name;
6168 verlen = strlen (verstr);
6169 newlen = namelen + verlen + 3;
6170
6171 newname = (char *) bfd_malloc (newlen);
6172 if (newname == NULL)
6173 return FALSE;
6174 newname[0] = leading_char;
6175 memcpy (newname + (leading_char != '\0'), name, namelen);
6176
6177 /* Check the hidden versioned definition. */
6178 p = newname + namelen;
6179 *p++ = ELF_VER_CHR;
6180 memcpy (p, verstr, verlen + 1);
6181 newh = elf_link_hash_lookup (elf_hash_table (info),
6182 newname, FALSE, FALSE,
6183 FALSE);
6184 if (newh == NULL
6185 || (newh->root.type != bfd_link_hash_defined
6186 && newh->root.type != bfd_link_hash_defweak))
6187 {
6188 /* Check the default versioned definition. */
6189 *p++ = ELF_VER_CHR;
6190 memcpy (p, verstr, verlen + 1);
6191 newh = elf_link_hash_lookup (elf_hash_table (info),
6192 newname, FALSE, FALSE,
6193 FALSE);
6194 }
6195 free (newname);
6196
6197 /* Mark this version if there is a definition and it is
6198 not defined in a shared object. */
6199 if (newh != NULL
6200 && !newh->def_dynamic
6201 && (newh->root.type == bfd_link_hash_defined
6202 || newh->root.type == bfd_link_hash_defweak))
6203 d->symver = 1;
6204 }
6205
6206 /* Attach all the symbols to their version information. */
6207 asvinfo.info = info;
6208 asvinfo.failed = FALSE;
6209
6210 elf_link_hash_traverse (elf_hash_table (info),
6211 _bfd_elf_link_assign_sym_version,
6212 &asvinfo);
6213 if (asvinfo.failed)
6214 return FALSE;
6215
6216 if (!info->allow_undefined_version)
6217 {
6218 /* Check if all global versions have a definition. */
6219 bfd_boolean all_defined = TRUE;
6220 for (t = info->version_info; t != NULL; t = t->next)
6221 for (d = t->globals.list; d != NULL; d = d->next)
6222 if (d->literal && !d->symver && !d->script)
6223 {
6224 _bfd_error_handler
6225 (_("%s: undefined version: %s"),
6226 d->pattern, t->name);
6227 all_defined = FALSE;
6228 }
6229
6230 if (!all_defined)
6231 {
6232 bfd_set_error (bfd_error_bad_value);
6233 return FALSE;
6234 }
6235 }
6236
6237 /* Set up the version definition section. */
6238 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6239 BFD_ASSERT (s != NULL);
6240
6241 /* We may have created additional version definitions if we are
6242 just linking a regular application. */
6243 verdefs = info->version_info;
6244
6245 /* Skip anonymous version tag. */
6246 if (verdefs != NULL && verdefs->vernum == 0)
6247 verdefs = verdefs->next;
6248
6249 if (verdefs == NULL && !info->create_default_symver)
6250 s->flags |= SEC_EXCLUDE;
6251 else
6252 {
6253 unsigned int cdefs;
6254 bfd_size_type size;
6255 bfd_byte *p;
6256 Elf_Internal_Verdef def;
6257 Elf_Internal_Verdaux defaux;
6258 struct bfd_link_hash_entry *bh;
6259 struct elf_link_hash_entry *h;
6260 const char *name;
6261
6262 cdefs = 0;
6263 size = 0;
6264
6265 /* Make space for the base version. */
6266 size += sizeof (Elf_External_Verdef);
6267 size += sizeof (Elf_External_Verdaux);
6268 ++cdefs;
6269
6270 /* Make space for the default version. */
6271 if (info->create_default_symver)
6272 {
6273 size += sizeof (Elf_External_Verdef);
6274 ++cdefs;
6275 }
6276
6277 for (t = verdefs; t != NULL; t = t->next)
6278 {
6279 struct bfd_elf_version_deps *n;
6280
6281 /* Don't emit base version twice. */
6282 if (t->vernum == 0)
6283 continue;
6284
6285 size += sizeof (Elf_External_Verdef);
6286 size += sizeof (Elf_External_Verdaux);
6287 ++cdefs;
6288
6289 for (n = t->deps; n != NULL; n = n->next)
6290 size += sizeof (Elf_External_Verdaux);
6291 }
6292
6293 s->size = size;
6294 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6295 if (s->contents == NULL && s->size != 0)
6296 return FALSE;
6297
6298 /* Fill in the version definition section. */
6299
6300 p = s->contents;
6301
6302 def.vd_version = VER_DEF_CURRENT;
6303 def.vd_flags = VER_FLG_BASE;
6304 def.vd_ndx = 1;
6305 def.vd_cnt = 1;
6306 if (info->create_default_symver)
6307 {
6308 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6309 def.vd_next = sizeof (Elf_External_Verdef);
6310 }
6311 else
6312 {
6313 def.vd_aux = sizeof (Elf_External_Verdef);
6314 def.vd_next = (sizeof (Elf_External_Verdef)
6315 + sizeof (Elf_External_Verdaux));
6316 }
6317
6318 if (soname_indx != (size_t) -1)
6319 {
6320 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6321 soname_indx);
6322 def.vd_hash = bfd_elf_hash (soname);
6323 defaux.vda_name = soname_indx;
6324 name = soname;
6325 }
6326 else
6327 {
6328 size_t indx;
6329
6330 name = lbasename (output_bfd->filename);
6331 def.vd_hash = bfd_elf_hash (name);
6332 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6333 name, FALSE);
6334 if (indx == (size_t) -1)
6335 return FALSE;
6336 defaux.vda_name = indx;
6337 }
6338 defaux.vda_next = 0;
6339
6340 _bfd_elf_swap_verdef_out (output_bfd, &def,
6341 (Elf_External_Verdef *) p);
6342 p += sizeof (Elf_External_Verdef);
6343 if (info->create_default_symver)
6344 {
6345 /* Add a symbol representing this version. */
6346 bh = NULL;
6347 if (! (_bfd_generic_link_add_one_symbol
6348 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6349 0, NULL, FALSE,
6350 get_elf_backend_data (dynobj)->collect, &bh)))
6351 return FALSE;
6352 h = (struct elf_link_hash_entry *) bh;
6353 h->non_elf = 0;
6354 h->def_regular = 1;
6355 h->type = STT_OBJECT;
6356 h->verinfo.vertree = NULL;
6357
6358 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6359 return FALSE;
6360
6361 /* Create a duplicate of the base version with the same
6362 aux block, but different flags. */
6363 def.vd_flags = 0;
6364 def.vd_ndx = 2;
6365 def.vd_aux = sizeof (Elf_External_Verdef);
6366 if (verdefs)
6367 def.vd_next = (sizeof (Elf_External_Verdef)
6368 + sizeof (Elf_External_Verdaux));
6369 else
6370 def.vd_next = 0;
6371 _bfd_elf_swap_verdef_out (output_bfd, &def,
6372 (Elf_External_Verdef *) p);
6373 p += sizeof (Elf_External_Verdef);
6374 }
6375 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6376 (Elf_External_Verdaux *) p);
6377 p += sizeof (Elf_External_Verdaux);
6378
6379 for (t = verdefs; t != NULL; t = t->next)
6380 {
6381 unsigned int cdeps;
6382 struct bfd_elf_version_deps *n;
6383
6384 /* Don't emit the base version twice. */
6385 if (t->vernum == 0)
6386 continue;
6387
6388 cdeps = 0;
6389 for (n = t->deps; n != NULL; n = n->next)
6390 ++cdeps;
6391
6392 /* Add a symbol representing this version. */
6393 bh = NULL;
6394 if (! (_bfd_generic_link_add_one_symbol
6395 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6396 0, NULL, FALSE,
6397 get_elf_backend_data (dynobj)->collect, &bh)))
6398 return FALSE;
6399 h = (struct elf_link_hash_entry *) bh;
6400 h->non_elf = 0;
6401 h->def_regular = 1;
6402 h->type = STT_OBJECT;
6403 h->verinfo.vertree = t;
6404
6405 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6406 return FALSE;
6407
6408 def.vd_version = VER_DEF_CURRENT;
6409 def.vd_flags = 0;
6410 if (t->globals.list == NULL
6411 && t->locals.list == NULL
6412 && ! t->used)
6413 def.vd_flags |= VER_FLG_WEAK;
6414 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6415 def.vd_cnt = cdeps + 1;
6416 def.vd_hash = bfd_elf_hash (t->name);
6417 def.vd_aux = sizeof (Elf_External_Verdef);
6418 def.vd_next = 0;
6419
6420 /* If a basever node is next, it *must* be the last node in
6421 the chain, otherwise Verdef construction breaks. */
6422 if (t->next != NULL && t->next->vernum == 0)
6423 BFD_ASSERT (t->next->next == NULL);
6424
6425 if (t->next != NULL && t->next->vernum != 0)
6426 def.vd_next = (sizeof (Elf_External_Verdef)
6427 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6428
6429 _bfd_elf_swap_verdef_out (output_bfd, &def,
6430 (Elf_External_Verdef *) p);
6431 p += sizeof (Elf_External_Verdef);
6432
6433 defaux.vda_name = h->dynstr_index;
6434 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6435 h->dynstr_index);
6436 defaux.vda_next = 0;
6437 if (t->deps != NULL)
6438 defaux.vda_next = sizeof (Elf_External_Verdaux);
6439 t->name_indx = defaux.vda_name;
6440
6441 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6442 (Elf_External_Verdaux *) p);
6443 p += sizeof (Elf_External_Verdaux);
6444
6445 for (n = t->deps; n != NULL; n = n->next)
6446 {
6447 if (n->version_needed == NULL)
6448 {
6449 /* This can happen if there was an error in the
6450 version script. */
6451 defaux.vda_name = 0;
6452 }
6453 else
6454 {
6455 defaux.vda_name = n->version_needed->name_indx;
6456 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6457 defaux.vda_name);
6458 }
6459 if (n->next == NULL)
6460 defaux.vda_next = 0;
6461 else
6462 defaux.vda_next = sizeof (Elf_External_Verdaux);
6463
6464 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6465 (Elf_External_Verdaux *) p);
6466 p += sizeof (Elf_External_Verdaux);
6467 }
6468 }
6469
6470 elf_tdata (output_bfd)->cverdefs = cdefs;
6471 }
6472 }
6473
6474 bed = get_elf_backend_data (output_bfd);
6475
6476 if (info->gc_sections && bed->can_gc_sections)
6477 {
6478 struct elf_gc_sweep_symbol_info sweep_info;
6479
6480 /* Remove the symbols that were in the swept sections from the
6481 dynamic symbol table. */
6482 sweep_info.info = info;
6483 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6484 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6485 &sweep_info);
6486 }
6487
6488 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6489 {
6490 asection *s;
6491 struct elf_find_verdep_info sinfo;
6492
6493 /* Work out the size of the version reference section. */
6494
6495 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6496 BFD_ASSERT (s != NULL);
6497
6498 sinfo.info = info;
6499 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6500 if (sinfo.vers == 0)
6501 sinfo.vers = 1;
6502 sinfo.failed = FALSE;
6503
6504 elf_link_hash_traverse (elf_hash_table (info),
6505 _bfd_elf_link_find_version_dependencies,
6506 &sinfo);
6507 if (sinfo.failed)
6508 return FALSE;
6509
6510 if (elf_tdata (output_bfd)->verref == NULL)
6511 s->flags |= SEC_EXCLUDE;
6512 else
6513 {
6514 Elf_Internal_Verneed *vn;
6515 unsigned int size;
6516 unsigned int crefs;
6517 bfd_byte *p;
6518
6519 /* Build the version dependency section. */
6520 size = 0;
6521 crefs = 0;
6522 for (vn = elf_tdata (output_bfd)->verref;
6523 vn != NULL;
6524 vn = vn->vn_nextref)
6525 {
6526 Elf_Internal_Vernaux *a;
6527
6528 size += sizeof (Elf_External_Verneed);
6529 ++crefs;
6530 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6531 size += sizeof (Elf_External_Vernaux);
6532 }
6533
6534 s->size = size;
6535 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6536 if (s->contents == NULL)
6537 return FALSE;
6538
6539 p = s->contents;
6540 for (vn = elf_tdata (output_bfd)->verref;
6541 vn != NULL;
6542 vn = vn->vn_nextref)
6543 {
6544 unsigned int caux;
6545 Elf_Internal_Vernaux *a;
6546 size_t indx;
6547
6548 caux = 0;
6549 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6550 ++caux;
6551
6552 vn->vn_version = VER_NEED_CURRENT;
6553 vn->vn_cnt = caux;
6554 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6555 elf_dt_name (vn->vn_bfd) != NULL
6556 ? elf_dt_name (vn->vn_bfd)
6557 : lbasename (vn->vn_bfd->filename),
6558 FALSE);
6559 if (indx == (size_t) -1)
6560 return FALSE;
6561 vn->vn_file = indx;
6562 vn->vn_aux = sizeof (Elf_External_Verneed);
6563 if (vn->vn_nextref == NULL)
6564 vn->vn_next = 0;
6565 else
6566 vn->vn_next = (sizeof (Elf_External_Verneed)
6567 + caux * sizeof (Elf_External_Vernaux));
6568
6569 _bfd_elf_swap_verneed_out (output_bfd, vn,
6570 (Elf_External_Verneed *) p);
6571 p += sizeof (Elf_External_Verneed);
6572
6573 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6574 {
6575 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6576 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6577 a->vna_nodename, FALSE);
6578 if (indx == (size_t) -1)
6579 return FALSE;
6580 a->vna_name = indx;
6581 if (a->vna_nextptr == NULL)
6582 a->vna_next = 0;
6583 else
6584 a->vna_next = sizeof (Elf_External_Vernaux);
6585
6586 _bfd_elf_swap_vernaux_out (output_bfd, a,
6587 (Elf_External_Vernaux *) p);
6588 p += sizeof (Elf_External_Vernaux);
6589 }
6590 }
6591
6592 elf_tdata (output_bfd)->cverrefs = crefs;
6593 }
6594 }
6595
6596 /* Any syms created from now on start with -1 in
6597 got.refcount/offset and plt.refcount/offset. */
6598 elf_hash_table (info)->init_got_refcount
6599 = elf_hash_table (info)->init_got_offset;
6600 elf_hash_table (info)->init_plt_refcount
6601 = elf_hash_table (info)->init_plt_offset;
6602
6603 if (bfd_link_relocatable (info)
6604 && !_bfd_elf_size_group_sections (info))
6605 return FALSE;
6606
6607 /* The backend may have to create some sections regardless of whether
6608 we're dynamic or not. */
6609 if (bed->elf_backend_always_size_sections
6610 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6611 return FALSE;
6612
6613 /* Determine any GNU_STACK segment requirements, after the backend
6614 has had a chance to set a default segment size. */
6615 if (info->execstack)
6616 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6617 else if (info->noexecstack)
6618 elf_stack_flags (output_bfd) = PF_R | PF_W;
6619 else
6620 {
6621 bfd *inputobj;
6622 asection *notesec = NULL;
6623 int exec = 0;
6624
6625 for (inputobj = info->input_bfds;
6626 inputobj;
6627 inputobj = inputobj->link.next)
6628 {
6629 asection *s;
6630
6631 if (inputobj->flags
6632 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6633 continue;
6634 s = inputobj->sections;
6635 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6636 continue;
6637
6638 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6639 if (s)
6640 {
6641 if (s->flags & SEC_CODE)
6642 exec = PF_X;
6643 notesec = s;
6644 }
6645 else if (bed->default_execstack)
6646 exec = PF_X;
6647 }
6648 if (notesec || info->stacksize > 0)
6649 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6650 if (notesec && exec && bfd_link_relocatable (info)
6651 && notesec->output_section != bfd_abs_section_ptr)
6652 notesec->output_section->flags |= SEC_CODE;
6653 }
6654
6655 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6656 {
6657 struct elf_info_failed eif;
6658 struct elf_link_hash_entry *h;
6659 asection *dynstr;
6660 asection *s;
6661
6662 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6663 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6664
6665 if (info->symbolic)
6666 {
6667 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6668 return FALSE;
6669 info->flags |= DF_SYMBOLIC;
6670 }
6671
6672 if (rpath != NULL)
6673 {
6674 size_t indx;
6675 bfd_vma tag;
6676
6677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6678 TRUE);
6679 if (indx == (size_t) -1)
6680 return FALSE;
6681
6682 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6683 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6684 return FALSE;
6685 }
6686
6687 if (filter_shlib != NULL)
6688 {
6689 size_t indx;
6690
6691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6692 filter_shlib, TRUE);
6693 if (indx == (size_t) -1
6694 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6695 return FALSE;
6696 }
6697
6698 if (auxiliary_filters != NULL)
6699 {
6700 const char * const *p;
6701
6702 for (p = auxiliary_filters; *p != NULL; p++)
6703 {
6704 size_t indx;
6705
6706 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6707 *p, TRUE);
6708 if (indx == (size_t) -1
6709 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6710 return FALSE;
6711 }
6712 }
6713
6714 if (audit != NULL)
6715 {
6716 size_t indx;
6717
6718 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6719 TRUE);
6720 if (indx == (size_t) -1
6721 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6722 return FALSE;
6723 }
6724
6725 if (depaudit != NULL)
6726 {
6727 size_t indx;
6728
6729 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6730 TRUE);
6731 if (indx == (size_t) -1
6732 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6733 return FALSE;
6734 }
6735
6736 eif.info = info;
6737 eif.failed = FALSE;
6738
6739 /* Find all symbols which were defined in a dynamic object and make
6740 the backend pick a reasonable value for them. */
6741 elf_link_hash_traverse (elf_hash_table (info),
6742 _bfd_elf_adjust_dynamic_symbol,
6743 &eif);
6744 if (eif.failed)
6745 return FALSE;
6746
6747 /* Add some entries to the .dynamic section. We fill in some of the
6748 values later, in bfd_elf_final_link, but we must add the entries
6749 now so that we know the final size of the .dynamic section. */
6750
6751 /* If there are initialization and/or finalization functions to
6752 call then add the corresponding DT_INIT/DT_FINI entries. */
6753 h = (info->init_function
6754 ? elf_link_hash_lookup (elf_hash_table (info),
6755 info->init_function, FALSE,
6756 FALSE, FALSE)
6757 : NULL);
6758 if (h != NULL
6759 && (h->ref_regular
6760 || h->def_regular))
6761 {
6762 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6763 return FALSE;
6764 }
6765 h = (info->fini_function
6766 ? elf_link_hash_lookup (elf_hash_table (info),
6767 info->fini_function, FALSE,
6768 FALSE, FALSE)
6769 : NULL);
6770 if (h != NULL
6771 && (h->ref_regular
6772 || h->def_regular))
6773 {
6774 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6775 return FALSE;
6776 }
6777
6778 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6779 if (s != NULL && s->linker_has_input)
6780 {
6781 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6782 if (! bfd_link_executable (info))
6783 {
6784 bfd *sub;
6785 asection *o;
6786
6787 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6788 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6789 && (o = sub->sections) != NULL
6790 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6791 for (o = sub->sections; o != NULL; o = o->next)
6792 if (elf_section_data (o)->this_hdr.sh_type
6793 == SHT_PREINIT_ARRAY)
6794 {
6795 _bfd_error_handler
6796 (_("%pB: .preinit_array section is not allowed in DSO"),
6797 sub);
6798 break;
6799 }
6800
6801 bfd_set_error (bfd_error_nonrepresentable_section);
6802 return FALSE;
6803 }
6804
6805 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6806 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6807 return FALSE;
6808 }
6809 s = bfd_get_section_by_name (output_bfd, ".init_array");
6810 if (s != NULL && s->linker_has_input)
6811 {
6812 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6813 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6814 return FALSE;
6815 }
6816 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6817 if (s != NULL && s->linker_has_input)
6818 {
6819 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6820 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6821 return FALSE;
6822 }
6823
6824 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6825 /* If .dynstr is excluded from the link, we don't want any of
6826 these tags. Strictly, we should be checking each section
6827 individually; This quick check covers for the case where
6828 someone does a /DISCARD/ : { *(*) }. */
6829 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6830 {
6831 bfd_size_type strsize;
6832
6833 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6834 if ((info->emit_hash
6835 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6836 || (info->emit_gnu_hash
6837 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6838 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6839 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6840 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6841 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6842 bed->s->sizeof_sym))
6843 return FALSE;
6844 }
6845 }
6846
6847 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6848 return FALSE;
6849
6850 /* The backend must work out the sizes of all the other dynamic
6851 sections. */
6852 if (dynobj != NULL
6853 && bed->elf_backend_size_dynamic_sections != NULL
6854 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6855 return FALSE;
6856
6857 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6858 {
6859 if (elf_tdata (output_bfd)->cverdefs)
6860 {
6861 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6862
6863 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6864 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6865 return FALSE;
6866 }
6867
6868 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6869 {
6870 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6871 return FALSE;
6872 }
6873 else if (info->flags & DF_BIND_NOW)
6874 {
6875 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6876 return FALSE;
6877 }
6878
6879 if (info->flags_1)
6880 {
6881 if (bfd_link_executable (info))
6882 info->flags_1 &= ~ (DF_1_INITFIRST
6883 | DF_1_NODELETE
6884 | DF_1_NOOPEN);
6885 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6886 return FALSE;
6887 }
6888
6889 if (elf_tdata (output_bfd)->cverrefs)
6890 {
6891 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6892
6893 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6894 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6895 return FALSE;
6896 }
6897
6898 if ((elf_tdata (output_bfd)->cverrefs == 0
6899 && elf_tdata (output_bfd)->cverdefs == 0)
6900 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
6901 {
6902 asection *s;
6903
6904 s = bfd_get_linker_section (dynobj, ".gnu.version");
6905 s->flags |= SEC_EXCLUDE;
6906 }
6907 }
6908 return TRUE;
6909 }
6910
6911 /* Find the first non-excluded output section. We'll use its
6912 section symbol for some emitted relocs. */
6913 void
6914 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6915 {
6916 asection *s;
6917
6918 for (s = output_bfd->sections; s != NULL; s = s->next)
6919 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6920 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6921 {
6922 elf_hash_table (info)->text_index_section = s;
6923 break;
6924 }
6925 }
6926
6927 /* Find two non-excluded output sections, one for code, one for data.
6928 We'll use their section symbols for some emitted relocs. */
6929 void
6930 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6931 {
6932 asection *s;
6933
6934 /* Data first, since setting text_index_section changes
6935 _bfd_elf_link_omit_section_dynsym. */
6936 for (s = output_bfd->sections; s != NULL; s = s->next)
6937 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6938 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6939 {
6940 elf_hash_table (info)->data_index_section = s;
6941 break;
6942 }
6943
6944 for (s = output_bfd->sections; s != NULL; s = s->next)
6945 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6946 == (SEC_ALLOC | SEC_READONLY))
6947 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6948 {
6949 elf_hash_table (info)->text_index_section = s;
6950 break;
6951 }
6952
6953 if (elf_hash_table (info)->text_index_section == NULL)
6954 elf_hash_table (info)->text_index_section
6955 = elf_hash_table (info)->data_index_section;
6956 }
6957
6958 bfd_boolean
6959 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6960 {
6961 const struct elf_backend_data *bed;
6962 unsigned long section_sym_count;
6963 bfd_size_type dynsymcount = 0;
6964
6965 if (!is_elf_hash_table (info->hash))
6966 return TRUE;
6967
6968 bed = get_elf_backend_data (output_bfd);
6969 (*bed->elf_backend_init_index_section) (output_bfd, info);
6970
6971 /* Assign dynsym indices. In a shared library we generate a section
6972 symbol for each output section, which come first. Next come all
6973 of the back-end allocated local dynamic syms, followed by the rest
6974 of the global symbols.
6975
6976 This is usually not needed for static binaries, however backends
6977 can request to always do it, e.g. the MIPS backend uses dynamic
6978 symbol counts to lay out GOT, which will be produced in the
6979 presence of GOT relocations even in static binaries (holding fixed
6980 data in that case, to satisfy those relocations). */
6981
6982 if (elf_hash_table (info)->dynamic_sections_created
6983 || bed->always_renumber_dynsyms)
6984 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6985 &section_sym_count);
6986
6987 if (elf_hash_table (info)->dynamic_sections_created)
6988 {
6989 bfd *dynobj;
6990 asection *s;
6991 unsigned int dtagcount;
6992
6993 dynobj = elf_hash_table (info)->dynobj;
6994
6995 /* Work out the size of the symbol version section. */
6996 s = bfd_get_linker_section (dynobj, ".gnu.version");
6997 BFD_ASSERT (s != NULL);
6998 if ((s->flags & SEC_EXCLUDE) == 0)
6999 {
7000 s->size = dynsymcount * sizeof (Elf_External_Versym);
7001 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7002 if (s->contents == NULL)
7003 return FALSE;
7004
7005 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7006 return FALSE;
7007 }
7008
7009 /* Set the size of the .dynsym and .hash sections. We counted
7010 the number of dynamic symbols in elf_link_add_object_symbols.
7011 We will build the contents of .dynsym and .hash when we build
7012 the final symbol table, because until then we do not know the
7013 correct value to give the symbols. We built the .dynstr
7014 section as we went along in elf_link_add_object_symbols. */
7015 s = elf_hash_table (info)->dynsym;
7016 BFD_ASSERT (s != NULL);
7017 s->size = dynsymcount * bed->s->sizeof_sym;
7018
7019 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7020 if (s->contents == NULL)
7021 return FALSE;
7022
7023 /* The first entry in .dynsym is a dummy symbol. Clear all the
7024 section syms, in case we don't output them all. */
7025 ++section_sym_count;
7026 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7027
7028 elf_hash_table (info)->bucketcount = 0;
7029
7030 /* Compute the size of the hashing table. As a side effect this
7031 computes the hash values for all the names we export. */
7032 if (info->emit_hash)
7033 {
7034 unsigned long int *hashcodes;
7035 struct hash_codes_info hashinf;
7036 bfd_size_type amt;
7037 unsigned long int nsyms;
7038 size_t bucketcount;
7039 size_t hash_entry_size;
7040
7041 /* Compute the hash values for all exported symbols. At the same
7042 time store the values in an array so that we could use them for
7043 optimizations. */
7044 amt = dynsymcount * sizeof (unsigned long int);
7045 hashcodes = (unsigned long int *) bfd_malloc (amt);
7046 if (hashcodes == NULL)
7047 return FALSE;
7048 hashinf.hashcodes = hashcodes;
7049 hashinf.error = FALSE;
7050
7051 /* Put all hash values in HASHCODES. */
7052 elf_link_hash_traverse (elf_hash_table (info),
7053 elf_collect_hash_codes, &hashinf);
7054 if (hashinf.error)
7055 {
7056 free (hashcodes);
7057 return FALSE;
7058 }
7059
7060 nsyms = hashinf.hashcodes - hashcodes;
7061 bucketcount
7062 = compute_bucket_count (info, hashcodes, nsyms, 0);
7063 free (hashcodes);
7064
7065 if (bucketcount == 0 && nsyms > 0)
7066 return FALSE;
7067
7068 elf_hash_table (info)->bucketcount = bucketcount;
7069
7070 s = bfd_get_linker_section (dynobj, ".hash");
7071 BFD_ASSERT (s != NULL);
7072 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7073 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7074 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7075 if (s->contents == NULL)
7076 return FALSE;
7077
7078 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7079 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7080 s->contents + hash_entry_size);
7081 }
7082
7083 if (info->emit_gnu_hash)
7084 {
7085 size_t i, cnt;
7086 unsigned char *contents;
7087 struct collect_gnu_hash_codes cinfo;
7088 bfd_size_type amt;
7089 size_t bucketcount;
7090
7091 memset (&cinfo, 0, sizeof (cinfo));
7092
7093 /* Compute the hash values for all exported symbols. At the same
7094 time store the values in an array so that we could use them for
7095 optimizations. */
7096 amt = dynsymcount * 2 * sizeof (unsigned long int);
7097 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7098 if (cinfo.hashcodes == NULL)
7099 return FALSE;
7100
7101 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7102 cinfo.min_dynindx = -1;
7103 cinfo.output_bfd = output_bfd;
7104 cinfo.bed = bed;
7105
7106 /* Put all hash values in HASHCODES. */
7107 elf_link_hash_traverse (elf_hash_table (info),
7108 elf_collect_gnu_hash_codes, &cinfo);
7109 if (cinfo.error)
7110 {
7111 free (cinfo.hashcodes);
7112 return FALSE;
7113 }
7114
7115 bucketcount
7116 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7117
7118 if (bucketcount == 0)
7119 {
7120 free (cinfo.hashcodes);
7121 return FALSE;
7122 }
7123
7124 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7125 BFD_ASSERT (s != NULL);
7126
7127 if (cinfo.nsyms == 0)
7128 {
7129 /* Empty .gnu.hash section is special. */
7130 BFD_ASSERT (cinfo.min_dynindx == -1);
7131 free (cinfo.hashcodes);
7132 s->size = 5 * 4 + bed->s->arch_size / 8;
7133 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7134 if (contents == NULL)
7135 return FALSE;
7136 s->contents = contents;
7137 /* 1 empty bucket. */
7138 bfd_put_32 (output_bfd, 1, contents);
7139 /* SYMIDX above the special symbol 0. */
7140 bfd_put_32 (output_bfd, 1, contents + 4);
7141 /* Just one word for bitmask. */
7142 bfd_put_32 (output_bfd, 1, contents + 8);
7143 /* Only hash fn bloom filter. */
7144 bfd_put_32 (output_bfd, 0, contents + 12);
7145 /* No hashes are valid - empty bitmask. */
7146 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7147 /* No hashes in the only bucket. */
7148 bfd_put_32 (output_bfd, 0,
7149 contents + 16 + bed->s->arch_size / 8);
7150 }
7151 else
7152 {
7153 unsigned long int maskwords, maskbitslog2, x;
7154 BFD_ASSERT (cinfo.min_dynindx != -1);
7155
7156 x = cinfo.nsyms;
7157 maskbitslog2 = 1;
7158 while ((x >>= 1) != 0)
7159 ++maskbitslog2;
7160 if (maskbitslog2 < 3)
7161 maskbitslog2 = 5;
7162 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7163 maskbitslog2 = maskbitslog2 + 3;
7164 else
7165 maskbitslog2 = maskbitslog2 + 2;
7166 if (bed->s->arch_size == 64)
7167 {
7168 if (maskbitslog2 == 5)
7169 maskbitslog2 = 6;
7170 cinfo.shift1 = 6;
7171 }
7172 else
7173 cinfo.shift1 = 5;
7174 cinfo.mask = (1 << cinfo.shift1) - 1;
7175 cinfo.shift2 = maskbitslog2;
7176 cinfo.maskbits = 1 << maskbitslog2;
7177 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7178 amt = bucketcount * sizeof (unsigned long int) * 2;
7179 amt += maskwords * sizeof (bfd_vma);
7180 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7181 if (cinfo.bitmask == NULL)
7182 {
7183 free (cinfo.hashcodes);
7184 return FALSE;
7185 }
7186
7187 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7188 cinfo.indx = cinfo.counts + bucketcount;
7189 cinfo.symindx = dynsymcount - cinfo.nsyms;
7190 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7191
7192 /* Determine how often each hash bucket is used. */
7193 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7194 for (i = 0; i < cinfo.nsyms; ++i)
7195 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7196
7197 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7198 if (cinfo.counts[i] != 0)
7199 {
7200 cinfo.indx[i] = cnt;
7201 cnt += cinfo.counts[i];
7202 }
7203 BFD_ASSERT (cnt == dynsymcount);
7204 cinfo.bucketcount = bucketcount;
7205 cinfo.local_indx = cinfo.min_dynindx;
7206
7207 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7208 s->size += cinfo.maskbits / 8;
7209 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7210 if (contents == NULL)
7211 {
7212 free (cinfo.bitmask);
7213 free (cinfo.hashcodes);
7214 return FALSE;
7215 }
7216
7217 s->contents = contents;
7218 bfd_put_32 (output_bfd, bucketcount, contents);
7219 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7220 bfd_put_32 (output_bfd, maskwords, contents + 8);
7221 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7222 contents += 16 + cinfo.maskbits / 8;
7223
7224 for (i = 0; i < bucketcount; ++i)
7225 {
7226 if (cinfo.counts[i] == 0)
7227 bfd_put_32 (output_bfd, 0, contents);
7228 else
7229 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7230 contents += 4;
7231 }
7232
7233 cinfo.contents = contents;
7234
7235 /* Renumber dynamic symbols, populate .gnu.hash section. */
7236 elf_link_hash_traverse (elf_hash_table (info),
7237 elf_renumber_gnu_hash_syms, &cinfo);
7238
7239 contents = s->contents + 16;
7240 for (i = 0; i < maskwords; ++i)
7241 {
7242 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7243 contents);
7244 contents += bed->s->arch_size / 8;
7245 }
7246
7247 free (cinfo.bitmask);
7248 free (cinfo.hashcodes);
7249 }
7250 }
7251
7252 s = bfd_get_linker_section (dynobj, ".dynstr");
7253 BFD_ASSERT (s != NULL);
7254
7255 elf_finalize_dynstr (output_bfd, info);
7256
7257 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7258
7259 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7260 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7261 return FALSE;
7262 }
7263
7264 return TRUE;
7265 }
7266 \f
7267 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7268
7269 static void
7270 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7271 asection *sec)
7272 {
7273 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7274 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7275 }
7276
7277 /* Finish SHF_MERGE section merging. */
7278
7279 bfd_boolean
7280 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7281 {
7282 bfd *ibfd;
7283 asection *sec;
7284
7285 if (!is_elf_hash_table (info->hash))
7286 return FALSE;
7287
7288 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7289 if ((ibfd->flags & DYNAMIC) == 0
7290 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7291 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7292 == get_elf_backend_data (obfd)->s->elfclass))
7293 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7294 if ((sec->flags & SEC_MERGE) != 0
7295 && !bfd_is_abs_section (sec->output_section))
7296 {
7297 struct bfd_elf_section_data *secdata;
7298
7299 secdata = elf_section_data (sec);
7300 if (! _bfd_add_merge_section (obfd,
7301 &elf_hash_table (info)->merge_info,
7302 sec, &secdata->sec_info))
7303 return FALSE;
7304 else if (secdata->sec_info)
7305 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7306 }
7307
7308 if (elf_hash_table (info)->merge_info != NULL)
7309 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7310 merge_sections_remove_hook);
7311 return TRUE;
7312 }
7313
7314 /* Create an entry in an ELF linker hash table. */
7315
7316 struct bfd_hash_entry *
7317 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7318 struct bfd_hash_table *table,
7319 const char *string)
7320 {
7321 /* Allocate the structure if it has not already been allocated by a
7322 subclass. */
7323 if (entry == NULL)
7324 {
7325 entry = (struct bfd_hash_entry *)
7326 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7327 if (entry == NULL)
7328 return entry;
7329 }
7330
7331 /* Call the allocation method of the superclass. */
7332 entry = _bfd_link_hash_newfunc (entry, table, string);
7333 if (entry != NULL)
7334 {
7335 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7336 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7337
7338 /* Set local fields. */
7339 ret->indx = -1;
7340 ret->dynindx = -1;
7341 ret->got = htab->init_got_refcount;
7342 ret->plt = htab->init_plt_refcount;
7343 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7344 - offsetof (struct elf_link_hash_entry, size)));
7345 /* Assume that we have been called by a non-ELF symbol reader.
7346 This flag is then reset by the code which reads an ELF input
7347 file. This ensures that a symbol created by a non-ELF symbol
7348 reader will have the flag set correctly. */
7349 ret->non_elf = 1;
7350 }
7351
7352 return entry;
7353 }
7354
7355 /* Copy data from an indirect symbol to its direct symbol, hiding the
7356 old indirect symbol. Also used for copying flags to a weakdef. */
7357
7358 void
7359 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7360 struct elf_link_hash_entry *dir,
7361 struct elf_link_hash_entry *ind)
7362 {
7363 struct elf_link_hash_table *htab;
7364
7365 /* Copy down any references that we may have already seen to the
7366 symbol which just became indirect. */
7367
7368 if (dir->versioned != versioned_hidden)
7369 dir->ref_dynamic |= ind->ref_dynamic;
7370 dir->ref_regular |= ind->ref_regular;
7371 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7372 dir->non_got_ref |= ind->non_got_ref;
7373 dir->needs_plt |= ind->needs_plt;
7374 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7375
7376 if (ind->root.type != bfd_link_hash_indirect)
7377 return;
7378
7379 /* Copy over the global and procedure linkage table refcount entries.
7380 These may have been already set up by a check_relocs routine. */
7381 htab = elf_hash_table (info);
7382 if (ind->got.refcount > htab->init_got_refcount.refcount)
7383 {
7384 if (dir->got.refcount < 0)
7385 dir->got.refcount = 0;
7386 dir->got.refcount += ind->got.refcount;
7387 ind->got.refcount = htab->init_got_refcount.refcount;
7388 }
7389
7390 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7391 {
7392 if (dir->plt.refcount < 0)
7393 dir->plt.refcount = 0;
7394 dir->plt.refcount += ind->plt.refcount;
7395 ind->plt.refcount = htab->init_plt_refcount.refcount;
7396 }
7397
7398 if (ind->dynindx != -1)
7399 {
7400 if (dir->dynindx != -1)
7401 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7402 dir->dynindx = ind->dynindx;
7403 dir->dynstr_index = ind->dynstr_index;
7404 ind->dynindx = -1;
7405 ind->dynstr_index = 0;
7406 }
7407 }
7408
7409 void
7410 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7411 struct elf_link_hash_entry *h,
7412 bfd_boolean force_local)
7413 {
7414 /* STT_GNU_IFUNC symbol must go through PLT. */
7415 if (h->type != STT_GNU_IFUNC)
7416 {
7417 h->plt = elf_hash_table (info)->init_plt_offset;
7418 h->needs_plt = 0;
7419 }
7420 if (force_local)
7421 {
7422 h->forced_local = 1;
7423 if (h->dynindx != -1)
7424 {
7425 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7426 h->dynstr_index);
7427 h->dynindx = -1;
7428 h->dynstr_index = 0;
7429 }
7430 }
7431 }
7432
7433 /* Hide a symbol. */
7434
7435 void
7436 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7437 struct bfd_link_info *info,
7438 struct bfd_link_hash_entry *h)
7439 {
7440 if (is_elf_hash_table (info->hash))
7441 {
7442 const struct elf_backend_data *bed
7443 = get_elf_backend_data (output_bfd);
7444 struct elf_link_hash_entry *eh
7445 = (struct elf_link_hash_entry *) h;
7446 bed->elf_backend_hide_symbol (info, eh, TRUE);
7447 eh->def_dynamic = 0;
7448 eh->ref_dynamic = 0;
7449 eh->dynamic_def = 0;
7450 }
7451 }
7452
7453 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7454 caller. */
7455
7456 bfd_boolean
7457 _bfd_elf_link_hash_table_init
7458 (struct elf_link_hash_table *table,
7459 bfd *abfd,
7460 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7461 struct bfd_hash_table *,
7462 const char *),
7463 unsigned int entsize,
7464 enum elf_target_id target_id)
7465 {
7466 bfd_boolean ret;
7467 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7468
7469 table->init_got_refcount.refcount = can_refcount - 1;
7470 table->init_plt_refcount.refcount = can_refcount - 1;
7471 table->init_got_offset.offset = -(bfd_vma) 1;
7472 table->init_plt_offset.offset = -(bfd_vma) 1;
7473 /* The first dynamic symbol is a dummy. */
7474 table->dynsymcount = 1;
7475
7476 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7477
7478 table->root.type = bfd_link_elf_hash_table;
7479 table->hash_table_id = target_id;
7480
7481 return ret;
7482 }
7483
7484 /* Create an ELF linker hash table. */
7485
7486 struct bfd_link_hash_table *
7487 _bfd_elf_link_hash_table_create (bfd *abfd)
7488 {
7489 struct elf_link_hash_table *ret;
7490 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7491
7492 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7493 if (ret == NULL)
7494 return NULL;
7495
7496 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7497 sizeof (struct elf_link_hash_entry),
7498 GENERIC_ELF_DATA))
7499 {
7500 free (ret);
7501 return NULL;
7502 }
7503 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7504
7505 return &ret->root;
7506 }
7507
7508 /* Destroy an ELF linker hash table. */
7509
7510 void
7511 _bfd_elf_link_hash_table_free (bfd *obfd)
7512 {
7513 struct elf_link_hash_table *htab;
7514
7515 htab = (struct elf_link_hash_table *) obfd->link.hash;
7516 if (htab->dynstr != NULL)
7517 _bfd_elf_strtab_free (htab->dynstr);
7518 _bfd_merge_sections_free (htab->merge_info);
7519 _bfd_generic_link_hash_table_free (obfd);
7520 }
7521
7522 /* This is a hook for the ELF emulation code in the generic linker to
7523 tell the backend linker what file name to use for the DT_NEEDED
7524 entry for a dynamic object. */
7525
7526 void
7527 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7528 {
7529 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7530 && bfd_get_format (abfd) == bfd_object)
7531 elf_dt_name (abfd) = name;
7532 }
7533
7534 int
7535 bfd_elf_get_dyn_lib_class (bfd *abfd)
7536 {
7537 int lib_class;
7538 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7539 && bfd_get_format (abfd) == bfd_object)
7540 lib_class = elf_dyn_lib_class (abfd);
7541 else
7542 lib_class = 0;
7543 return lib_class;
7544 }
7545
7546 void
7547 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7548 {
7549 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7550 && bfd_get_format (abfd) == bfd_object)
7551 elf_dyn_lib_class (abfd) = lib_class;
7552 }
7553
7554 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7555 the linker ELF emulation code. */
7556
7557 struct bfd_link_needed_list *
7558 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7559 struct bfd_link_info *info)
7560 {
7561 if (! is_elf_hash_table (info->hash))
7562 return NULL;
7563 return elf_hash_table (info)->needed;
7564 }
7565
7566 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7567 hook for the linker ELF emulation code. */
7568
7569 struct bfd_link_needed_list *
7570 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7571 struct bfd_link_info *info)
7572 {
7573 if (! is_elf_hash_table (info->hash))
7574 return NULL;
7575 return elf_hash_table (info)->runpath;
7576 }
7577
7578 /* Get the name actually used for a dynamic object for a link. This
7579 is the SONAME entry if there is one. Otherwise, it is the string
7580 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7581
7582 const char *
7583 bfd_elf_get_dt_soname (bfd *abfd)
7584 {
7585 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7586 && bfd_get_format (abfd) == bfd_object)
7587 return elf_dt_name (abfd);
7588 return NULL;
7589 }
7590
7591 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7592 the ELF linker emulation code. */
7593
7594 bfd_boolean
7595 bfd_elf_get_bfd_needed_list (bfd *abfd,
7596 struct bfd_link_needed_list **pneeded)
7597 {
7598 asection *s;
7599 bfd_byte *dynbuf = NULL;
7600 unsigned int elfsec;
7601 unsigned long shlink;
7602 bfd_byte *extdyn, *extdynend;
7603 size_t extdynsize;
7604 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7605
7606 *pneeded = NULL;
7607
7608 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7609 || bfd_get_format (abfd) != bfd_object)
7610 return TRUE;
7611
7612 s = bfd_get_section_by_name (abfd, ".dynamic");
7613 if (s == NULL || s->size == 0)
7614 return TRUE;
7615
7616 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7617 goto error_return;
7618
7619 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7620 if (elfsec == SHN_BAD)
7621 goto error_return;
7622
7623 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7624
7625 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7626 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7627
7628 extdyn = dynbuf;
7629 extdynend = extdyn + s->size;
7630 for (; extdyn < extdynend; extdyn += extdynsize)
7631 {
7632 Elf_Internal_Dyn dyn;
7633
7634 (*swap_dyn_in) (abfd, extdyn, &dyn);
7635
7636 if (dyn.d_tag == DT_NULL)
7637 break;
7638
7639 if (dyn.d_tag == DT_NEEDED)
7640 {
7641 const char *string;
7642 struct bfd_link_needed_list *l;
7643 unsigned int tagv = dyn.d_un.d_val;
7644 bfd_size_type amt;
7645
7646 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7647 if (string == NULL)
7648 goto error_return;
7649
7650 amt = sizeof *l;
7651 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7652 if (l == NULL)
7653 goto error_return;
7654
7655 l->by = abfd;
7656 l->name = string;
7657 l->next = *pneeded;
7658 *pneeded = l;
7659 }
7660 }
7661
7662 free (dynbuf);
7663
7664 return TRUE;
7665
7666 error_return:
7667 if (dynbuf != NULL)
7668 free (dynbuf);
7669 return FALSE;
7670 }
7671
7672 struct elf_symbuf_symbol
7673 {
7674 unsigned long st_name; /* Symbol name, index in string tbl */
7675 unsigned char st_info; /* Type and binding attributes */
7676 unsigned char st_other; /* Visibilty, and target specific */
7677 };
7678
7679 struct elf_symbuf_head
7680 {
7681 struct elf_symbuf_symbol *ssym;
7682 size_t count;
7683 unsigned int st_shndx;
7684 };
7685
7686 struct elf_symbol
7687 {
7688 union
7689 {
7690 Elf_Internal_Sym *isym;
7691 struct elf_symbuf_symbol *ssym;
7692 } u;
7693 const char *name;
7694 };
7695
7696 /* Sort references to symbols by ascending section number. */
7697
7698 static int
7699 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7700 {
7701 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7702 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7703
7704 return s1->st_shndx - s2->st_shndx;
7705 }
7706
7707 static int
7708 elf_sym_name_compare (const void *arg1, const void *arg2)
7709 {
7710 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7711 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7712 return strcmp (s1->name, s2->name);
7713 }
7714
7715 static struct elf_symbuf_head *
7716 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7717 {
7718 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7719 struct elf_symbuf_symbol *ssym;
7720 struct elf_symbuf_head *ssymbuf, *ssymhead;
7721 size_t i, shndx_count, total_size;
7722
7723 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7724 if (indbuf == NULL)
7725 return NULL;
7726
7727 for (ind = indbuf, i = 0; i < symcount; i++)
7728 if (isymbuf[i].st_shndx != SHN_UNDEF)
7729 *ind++ = &isymbuf[i];
7730 indbufend = ind;
7731
7732 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7733 elf_sort_elf_symbol);
7734
7735 shndx_count = 0;
7736 if (indbufend > indbuf)
7737 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7738 if (ind[0]->st_shndx != ind[1]->st_shndx)
7739 shndx_count++;
7740
7741 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7742 + (indbufend - indbuf) * sizeof (*ssym));
7743 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7744 if (ssymbuf == NULL)
7745 {
7746 free (indbuf);
7747 return NULL;
7748 }
7749
7750 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7751 ssymbuf->ssym = NULL;
7752 ssymbuf->count = shndx_count;
7753 ssymbuf->st_shndx = 0;
7754 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7755 {
7756 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7757 {
7758 ssymhead++;
7759 ssymhead->ssym = ssym;
7760 ssymhead->count = 0;
7761 ssymhead->st_shndx = (*ind)->st_shndx;
7762 }
7763 ssym->st_name = (*ind)->st_name;
7764 ssym->st_info = (*ind)->st_info;
7765 ssym->st_other = (*ind)->st_other;
7766 ssymhead->count++;
7767 }
7768 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7769 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7770 == total_size));
7771
7772 free (indbuf);
7773 return ssymbuf;
7774 }
7775
7776 /* Check if 2 sections define the same set of local and global
7777 symbols. */
7778
7779 static bfd_boolean
7780 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7781 struct bfd_link_info *info)
7782 {
7783 bfd *bfd1, *bfd2;
7784 const struct elf_backend_data *bed1, *bed2;
7785 Elf_Internal_Shdr *hdr1, *hdr2;
7786 size_t symcount1, symcount2;
7787 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7788 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7789 Elf_Internal_Sym *isym, *isymend;
7790 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7791 size_t count1, count2, i;
7792 unsigned int shndx1, shndx2;
7793 bfd_boolean result;
7794
7795 bfd1 = sec1->owner;
7796 bfd2 = sec2->owner;
7797
7798 /* Both sections have to be in ELF. */
7799 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7800 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7801 return FALSE;
7802
7803 if (elf_section_type (sec1) != elf_section_type (sec2))
7804 return FALSE;
7805
7806 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7807 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7808 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7809 return FALSE;
7810
7811 bed1 = get_elf_backend_data (bfd1);
7812 bed2 = get_elf_backend_data (bfd2);
7813 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7814 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7815 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7816 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7817
7818 if (symcount1 == 0 || symcount2 == 0)
7819 return FALSE;
7820
7821 result = FALSE;
7822 isymbuf1 = NULL;
7823 isymbuf2 = NULL;
7824 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7825 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7826
7827 if (ssymbuf1 == NULL)
7828 {
7829 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7830 NULL, NULL, NULL);
7831 if (isymbuf1 == NULL)
7832 goto done;
7833
7834 if (!info->reduce_memory_overheads)
7835 elf_tdata (bfd1)->symbuf = ssymbuf1
7836 = elf_create_symbuf (symcount1, isymbuf1);
7837 }
7838
7839 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7840 {
7841 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7842 NULL, NULL, NULL);
7843 if (isymbuf2 == NULL)
7844 goto done;
7845
7846 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7847 elf_tdata (bfd2)->symbuf = ssymbuf2
7848 = elf_create_symbuf (symcount2, isymbuf2);
7849 }
7850
7851 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7852 {
7853 /* Optimized faster version. */
7854 size_t lo, hi, mid;
7855 struct elf_symbol *symp;
7856 struct elf_symbuf_symbol *ssym, *ssymend;
7857
7858 lo = 0;
7859 hi = ssymbuf1->count;
7860 ssymbuf1++;
7861 count1 = 0;
7862 while (lo < hi)
7863 {
7864 mid = (lo + hi) / 2;
7865 if (shndx1 < ssymbuf1[mid].st_shndx)
7866 hi = mid;
7867 else if (shndx1 > ssymbuf1[mid].st_shndx)
7868 lo = mid + 1;
7869 else
7870 {
7871 count1 = ssymbuf1[mid].count;
7872 ssymbuf1 += mid;
7873 break;
7874 }
7875 }
7876
7877 lo = 0;
7878 hi = ssymbuf2->count;
7879 ssymbuf2++;
7880 count2 = 0;
7881 while (lo < hi)
7882 {
7883 mid = (lo + hi) / 2;
7884 if (shndx2 < ssymbuf2[mid].st_shndx)
7885 hi = mid;
7886 else if (shndx2 > ssymbuf2[mid].st_shndx)
7887 lo = mid + 1;
7888 else
7889 {
7890 count2 = ssymbuf2[mid].count;
7891 ssymbuf2 += mid;
7892 break;
7893 }
7894 }
7895
7896 if (count1 == 0 || count2 == 0 || count1 != count2)
7897 goto done;
7898
7899 symtable1
7900 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7901 symtable2
7902 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7903 if (symtable1 == NULL || symtable2 == NULL)
7904 goto done;
7905
7906 symp = symtable1;
7907 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7908 ssym < ssymend; ssym++, symp++)
7909 {
7910 symp->u.ssym = ssym;
7911 symp->name = bfd_elf_string_from_elf_section (bfd1,
7912 hdr1->sh_link,
7913 ssym->st_name);
7914 }
7915
7916 symp = symtable2;
7917 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7918 ssym < ssymend; ssym++, symp++)
7919 {
7920 symp->u.ssym = ssym;
7921 symp->name = bfd_elf_string_from_elf_section (bfd2,
7922 hdr2->sh_link,
7923 ssym->st_name);
7924 }
7925
7926 /* Sort symbol by name. */
7927 qsort (symtable1, count1, sizeof (struct elf_symbol),
7928 elf_sym_name_compare);
7929 qsort (symtable2, count1, sizeof (struct elf_symbol),
7930 elf_sym_name_compare);
7931
7932 for (i = 0; i < count1; i++)
7933 /* Two symbols must have the same binding, type and name. */
7934 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7935 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7936 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7937 goto done;
7938
7939 result = TRUE;
7940 goto done;
7941 }
7942
7943 symtable1 = (struct elf_symbol *)
7944 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7945 symtable2 = (struct elf_symbol *)
7946 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7947 if (symtable1 == NULL || symtable2 == NULL)
7948 goto done;
7949
7950 /* Count definitions in the section. */
7951 count1 = 0;
7952 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7953 if (isym->st_shndx == shndx1)
7954 symtable1[count1++].u.isym = isym;
7955
7956 count2 = 0;
7957 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7958 if (isym->st_shndx == shndx2)
7959 symtable2[count2++].u.isym = isym;
7960
7961 if (count1 == 0 || count2 == 0 || count1 != count2)
7962 goto done;
7963
7964 for (i = 0; i < count1; i++)
7965 symtable1[i].name
7966 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7967 symtable1[i].u.isym->st_name);
7968
7969 for (i = 0; i < count2; i++)
7970 symtable2[i].name
7971 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7972 symtable2[i].u.isym->st_name);
7973
7974 /* Sort symbol by name. */
7975 qsort (symtable1, count1, sizeof (struct elf_symbol),
7976 elf_sym_name_compare);
7977 qsort (symtable2, count1, sizeof (struct elf_symbol),
7978 elf_sym_name_compare);
7979
7980 for (i = 0; i < count1; i++)
7981 /* Two symbols must have the same binding, type and name. */
7982 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7983 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7984 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7985 goto done;
7986
7987 result = TRUE;
7988
7989 done:
7990 if (symtable1)
7991 free (symtable1);
7992 if (symtable2)
7993 free (symtable2);
7994 if (isymbuf1)
7995 free (isymbuf1);
7996 if (isymbuf2)
7997 free (isymbuf2);
7998
7999 return result;
8000 }
8001
8002 /* Return TRUE if 2 section types are compatible. */
8003
8004 bfd_boolean
8005 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8006 bfd *bbfd, const asection *bsec)
8007 {
8008 if (asec == NULL
8009 || bsec == NULL
8010 || abfd->xvec->flavour != bfd_target_elf_flavour
8011 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8012 return TRUE;
8013
8014 return elf_section_type (asec) == elf_section_type (bsec);
8015 }
8016 \f
8017 /* Final phase of ELF linker. */
8018
8019 /* A structure we use to avoid passing large numbers of arguments. */
8020
8021 struct elf_final_link_info
8022 {
8023 /* General link information. */
8024 struct bfd_link_info *info;
8025 /* Output BFD. */
8026 bfd *output_bfd;
8027 /* Symbol string table. */
8028 struct elf_strtab_hash *symstrtab;
8029 /* .hash section. */
8030 asection *hash_sec;
8031 /* symbol version section (.gnu.version). */
8032 asection *symver_sec;
8033 /* Buffer large enough to hold contents of any section. */
8034 bfd_byte *contents;
8035 /* Buffer large enough to hold external relocs of any section. */
8036 void *external_relocs;
8037 /* Buffer large enough to hold internal relocs of any section. */
8038 Elf_Internal_Rela *internal_relocs;
8039 /* Buffer large enough to hold external local symbols of any input
8040 BFD. */
8041 bfd_byte *external_syms;
8042 /* And a buffer for symbol section indices. */
8043 Elf_External_Sym_Shndx *locsym_shndx;
8044 /* Buffer large enough to hold internal local symbols of any input
8045 BFD. */
8046 Elf_Internal_Sym *internal_syms;
8047 /* Array large enough to hold a symbol index for each local symbol
8048 of any input BFD. */
8049 long *indices;
8050 /* Array large enough to hold a section pointer for each local
8051 symbol of any input BFD. */
8052 asection **sections;
8053 /* Buffer for SHT_SYMTAB_SHNDX section. */
8054 Elf_External_Sym_Shndx *symshndxbuf;
8055 /* Number of STT_FILE syms seen. */
8056 size_t filesym_count;
8057 };
8058
8059 /* This struct is used to pass information to elf_link_output_extsym. */
8060
8061 struct elf_outext_info
8062 {
8063 bfd_boolean failed;
8064 bfd_boolean localsyms;
8065 bfd_boolean file_sym_done;
8066 struct elf_final_link_info *flinfo;
8067 };
8068
8069
8070 /* Support for evaluating a complex relocation.
8071
8072 Complex relocations are generalized, self-describing relocations. The
8073 implementation of them consists of two parts: complex symbols, and the
8074 relocations themselves.
8075
8076 The relocations are use a reserved elf-wide relocation type code (R_RELC
8077 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8078 information (start bit, end bit, word width, etc) into the addend. This
8079 information is extracted from CGEN-generated operand tables within gas.
8080
8081 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8082 internal) representing prefix-notation expressions, including but not
8083 limited to those sorts of expressions normally encoded as addends in the
8084 addend field. The symbol mangling format is:
8085
8086 <node> := <literal>
8087 | <unary-operator> ':' <node>
8088 | <binary-operator> ':' <node> ':' <node>
8089 ;
8090
8091 <literal> := 's' <digits=N> ':' <N character symbol name>
8092 | 'S' <digits=N> ':' <N character section name>
8093 | '#' <hexdigits>
8094 ;
8095
8096 <binary-operator> := as in C
8097 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8098
8099 static void
8100 set_symbol_value (bfd *bfd_with_globals,
8101 Elf_Internal_Sym *isymbuf,
8102 size_t locsymcount,
8103 size_t symidx,
8104 bfd_vma val)
8105 {
8106 struct elf_link_hash_entry **sym_hashes;
8107 struct elf_link_hash_entry *h;
8108 size_t extsymoff = locsymcount;
8109
8110 if (symidx < locsymcount)
8111 {
8112 Elf_Internal_Sym *sym;
8113
8114 sym = isymbuf + symidx;
8115 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8116 {
8117 /* It is a local symbol: move it to the
8118 "absolute" section and give it a value. */
8119 sym->st_shndx = SHN_ABS;
8120 sym->st_value = val;
8121 return;
8122 }
8123 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8124 extsymoff = 0;
8125 }
8126
8127 /* It is a global symbol: set its link type
8128 to "defined" and give it a value. */
8129
8130 sym_hashes = elf_sym_hashes (bfd_with_globals);
8131 h = sym_hashes [symidx - extsymoff];
8132 while (h->root.type == bfd_link_hash_indirect
8133 || h->root.type == bfd_link_hash_warning)
8134 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8135 h->root.type = bfd_link_hash_defined;
8136 h->root.u.def.value = val;
8137 h->root.u.def.section = bfd_abs_section_ptr;
8138 }
8139
8140 static bfd_boolean
8141 resolve_symbol (const char *name,
8142 bfd *input_bfd,
8143 struct elf_final_link_info *flinfo,
8144 bfd_vma *result,
8145 Elf_Internal_Sym *isymbuf,
8146 size_t locsymcount)
8147 {
8148 Elf_Internal_Sym *sym;
8149 struct bfd_link_hash_entry *global_entry;
8150 const char *candidate = NULL;
8151 Elf_Internal_Shdr *symtab_hdr;
8152 size_t i;
8153
8154 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8155
8156 for (i = 0; i < locsymcount; ++ i)
8157 {
8158 sym = isymbuf + i;
8159
8160 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8161 continue;
8162
8163 candidate = bfd_elf_string_from_elf_section (input_bfd,
8164 symtab_hdr->sh_link,
8165 sym->st_name);
8166 #ifdef DEBUG
8167 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8168 name, candidate, (unsigned long) sym->st_value);
8169 #endif
8170 if (candidate && strcmp (candidate, name) == 0)
8171 {
8172 asection *sec = flinfo->sections [i];
8173
8174 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8175 *result += sec->output_offset + sec->output_section->vma;
8176 #ifdef DEBUG
8177 printf ("Found symbol with value %8.8lx\n",
8178 (unsigned long) *result);
8179 #endif
8180 return TRUE;
8181 }
8182 }
8183
8184 /* Hmm, haven't found it yet. perhaps it is a global. */
8185 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8186 FALSE, FALSE, TRUE);
8187 if (!global_entry)
8188 return FALSE;
8189
8190 if (global_entry->type == bfd_link_hash_defined
8191 || global_entry->type == bfd_link_hash_defweak)
8192 {
8193 *result = (global_entry->u.def.value
8194 + global_entry->u.def.section->output_section->vma
8195 + global_entry->u.def.section->output_offset);
8196 #ifdef DEBUG
8197 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8198 global_entry->root.string, (unsigned long) *result);
8199 #endif
8200 return TRUE;
8201 }
8202
8203 return FALSE;
8204 }
8205
8206 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8207 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8208 names like "foo.end" which is the end address of section "foo". */
8209
8210 static bfd_boolean
8211 resolve_section (const char *name,
8212 asection *sections,
8213 bfd_vma *result,
8214 bfd * abfd)
8215 {
8216 asection *curr;
8217 unsigned int len;
8218
8219 for (curr = sections; curr; curr = curr->next)
8220 if (strcmp (curr->name, name) == 0)
8221 {
8222 *result = curr->vma;
8223 return TRUE;
8224 }
8225
8226 /* Hmm. still haven't found it. try pseudo-section names. */
8227 /* FIXME: This could be coded more efficiently... */
8228 for (curr = sections; curr; curr = curr->next)
8229 {
8230 len = strlen (curr->name);
8231 if (len > strlen (name))
8232 continue;
8233
8234 if (strncmp (curr->name, name, len) == 0)
8235 {
8236 if (strncmp (".end", name + len, 4) == 0)
8237 {
8238 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8239 return TRUE;
8240 }
8241
8242 /* Insert more pseudo-section names here, if you like. */
8243 }
8244 }
8245
8246 return FALSE;
8247 }
8248
8249 static void
8250 undefined_reference (const char *reftype, const char *name)
8251 {
8252 /* xgettext:c-format */
8253 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8254 reftype, name);
8255 }
8256
8257 static bfd_boolean
8258 eval_symbol (bfd_vma *result,
8259 const char **symp,
8260 bfd *input_bfd,
8261 struct elf_final_link_info *flinfo,
8262 bfd_vma dot,
8263 Elf_Internal_Sym *isymbuf,
8264 size_t locsymcount,
8265 int signed_p)
8266 {
8267 size_t len;
8268 size_t symlen;
8269 bfd_vma a;
8270 bfd_vma b;
8271 char symbuf[4096];
8272 const char *sym = *symp;
8273 const char *symend;
8274 bfd_boolean symbol_is_section = FALSE;
8275
8276 len = strlen (sym);
8277 symend = sym + len;
8278
8279 if (len < 1 || len > sizeof (symbuf))
8280 {
8281 bfd_set_error (bfd_error_invalid_operation);
8282 return FALSE;
8283 }
8284
8285 switch (* sym)
8286 {
8287 case '.':
8288 *result = dot;
8289 *symp = sym + 1;
8290 return TRUE;
8291
8292 case '#':
8293 ++sym;
8294 *result = strtoul (sym, (char **) symp, 16);
8295 return TRUE;
8296
8297 case 'S':
8298 symbol_is_section = TRUE;
8299 /* Fall through. */
8300 case 's':
8301 ++sym;
8302 symlen = strtol (sym, (char **) symp, 10);
8303 sym = *symp + 1; /* Skip the trailing ':'. */
8304
8305 if (symend < sym || symlen + 1 > sizeof (symbuf))
8306 {
8307 bfd_set_error (bfd_error_invalid_operation);
8308 return FALSE;
8309 }
8310
8311 memcpy (symbuf, sym, symlen);
8312 symbuf[symlen] = '\0';
8313 *symp = sym + symlen;
8314
8315 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8316 the symbol as a section, or vice-versa. so we're pretty liberal in our
8317 interpretation here; section means "try section first", not "must be a
8318 section", and likewise with symbol. */
8319
8320 if (symbol_is_section)
8321 {
8322 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8323 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8324 isymbuf, locsymcount))
8325 {
8326 undefined_reference ("section", symbuf);
8327 return FALSE;
8328 }
8329 }
8330 else
8331 {
8332 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8333 isymbuf, locsymcount)
8334 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8335 result, input_bfd))
8336 {
8337 undefined_reference ("symbol", symbuf);
8338 return FALSE;
8339 }
8340 }
8341
8342 return TRUE;
8343
8344 /* All that remains are operators. */
8345
8346 #define UNARY_OP(op) \
8347 if (strncmp (sym, #op, strlen (#op)) == 0) \
8348 { \
8349 sym += strlen (#op); \
8350 if (*sym == ':') \
8351 ++sym; \
8352 *symp = sym; \
8353 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8354 isymbuf, locsymcount, signed_p)) \
8355 return FALSE; \
8356 if (signed_p) \
8357 *result = op ((bfd_signed_vma) a); \
8358 else \
8359 *result = op a; \
8360 return TRUE; \
8361 }
8362
8363 #define BINARY_OP(op) \
8364 if (strncmp (sym, #op, strlen (#op)) == 0) \
8365 { \
8366 sym += strlen (#op); \
8367 if (*sym == ':') \
8368 ++sym; \
8369 *symp = sym; \
8370 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8371 isymbuf, locsymcount, signed_p)) \
8372 return FALSE; \
8373 ++*symp; \
8374 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8375 isymbuf, locsymcount, signed_p)) \
8376 return FALSE; \
8377 if (signed_p) \
8378 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8379 else \
8380 *result = a op b; \
8381 return TRUE; \
8382 }
8383
8384 default:
8385 UNARY_OP (0-);
8386 BINARY_OP (<<);
8387 BINARY_OP (>>);
8388 BINARY_OP (==);
8389 BINARY_OP (!=);
8390 BINARY_OP (<=);
8391 BINARY_OP (>=);
8392 BINARY_OP (&&);
8393 BINARY_OP (||);
8394 UNARY_OP (~);
8395 UNARY_OP (!);
8396 BINARY_OP (*);
8397 BINARY_OP (/);
8398 BINARY_OP (%);
8399 BINARY_OP (^);
8400 BINARY_OP (|);
8401 BINARY_OP (&);
8402 BINARY_OP (+);
8403 BINARY_OP (-);
8404 BINARY_OP (<);
8405 BINARY_OP (>);
8406 #undef UNARY_OP
8407 #undef BINARY_OP
8408 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8409 bfd_set_error (bfd_error_invalid_operation);
8410 return FALSE;
8411 }
8412 }
8413
8414 static void
8415 put_value (bfd_vma size,
8416 unsigned long chunksz,
8417 bfd *input_bfd,
8418 bfd_vma x,
8419 bfd_byte *location)
8420 {
8421 location += (size - chunksz);
8422
8423 for (; size; size -= chunksz, location -= chunksz)
8424 {
8425 switch (chunksz)
8426 {
8427 case 1:
8428 bfd_put_8 (input_bfd, x, location);
8429 x >>= 8;
8430 break;
8431 case 2:
8432 bfd_put_16 (input_bfd, x, location);
8433 x >>= 16;
8434 break;
8435 case 4:
8436 bfd_put_32 (input_bfd, x, location);
8437 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8438 x >>= 16;
8439 x >>= 16;
8440 break;
8441 #ifdef BFD64
8442 case 8:
8443 bfd_put_64 (input_bfd, x, location);
8444 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8445 x >>= 32;
8446 x >>= 32;
8447 break;
8448 #endif
8449 default:
8450 abort ();
8451 break;
8452 }
8453 }
8454 }
8455
8456 static bfd_vma
8457 get_value (bfd_vma size,
8458 unsigned long chunksz,
8459 bfd *input_bfd,
8460 bfd_byte *location)
8461 {
8462 int shift;
8463 bfd_vma x = 0;
8464
8465 /* Sanity checks. */
8466 BFD_ASSERT (chunksz <= sizeof (x)
8467 && size >= chunksz
8468 && chunksz != 0
8469 && (size % chunksz) == 0
8470 && input_bfd != NULL
8471 && location != NULL);
8472
8473 if (chunksz == sizeof (x))
8474 {
8475 BFD_ASSERT (size == chunksz);
8476
8477 /* Make sure that we do not perform an undefined shift operation.
8478 We know that size == chunksz so there will only be one iteration
8479 of the loop below. */
8480 shift = 0;
8481 }
8482 else
8483 shift = 8 * chunksz;
8484
8485 for (; size; size -= chunksz, location += chunksz)
8486 {
8487 switch (chunksz)
8488 {
8489 case 1:
8490 x = (x << shift) | bfd_get_8 (input_bfd, location);
8491 break;
8492 case 2:
8493 x = (x << shift) | bfd_get_16 (input_bfd, location);
8494 break;
8495 case 4:
8496 x = (x << shift) | bfd_get_32 (input_bfd, location);
8497 break;
8498 #ifdef BFD64
8499 case 8:
8500 x = (x << shift) | bfd_get_64 (input_bfd, location);
8501 break;
8502 #endif
8503 default:
8504 abort ();
8505 }
8506 }
8507 return x;
8508 }
8509
8510 static void
8511 decode_complex_addend (unsigned long *start, /* in bits */
8512 unsigned long *oplen, /* in bits */
8513 unsigned long *len, /* in bits */
8514 unsigned long *wordsz, /* in bytes */
8515 unsigned long *chunksz, /* in bytes */
8516 unsigned long *lsb0_p,
8517 unsigned long *signed_p,
8518 unsigned long *trunc_p,
8519 unsigned long encoded)
8520 {
8521 * start = encoded & 0x3F;
8522 * len = (encoded >> 6) & 0x3F;
8523 * oplen = (encoded >> 12) & 0x3F;
8524 * wordsz = (encoded >> 18) & 0xF;
8525 * chunksz = (encoded >> 22) & 0xF;
8526 * lsb0_p = (encoded >> 27) & 1;
8527 * signed_p = (encoded >> 28) & 1;
8528 * trunc_p = (encoded >> 29) & 1;
8529 }
8530
8531 bfd_reloc_status_type
8532 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8533 asection *input_section ATTRIBUTE_UNUSED,
8534 bfd_byte *contents,
8535 Elf_Internal_Rela *rel,
8536 bfd_vma relocation)
8537 {
8538 bfd_vma shift, x, mask;
8539 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8540 bfd_reloc_status_type r;
8541
8542 /* Perform this reloc, since it is complex.
8543 (this is not to say that it necessarily refers to a complex
8544 symbol; merely that it is a self-describing CGEN based reloc.
8545 i.e. the addend has the complete reloc information (bit start, end,
8546 word size, etc) encoded within it.). */
8547
8548 decode_complex_addend (&start, &oplen, &len, &wordsz,
8549 &chunksz, &lsb0_p, &signed_p,
8550 &trunc_p, rel->r_addend);
8551
8552 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8553
8554 if (lsb0_p)
8555 shift = (start + 1) - len;
8556 else
8557 shift = (8 * wordsz) - (start + len);
8558
8559 x = get_value (wordsz, chunksz, input_bfd,
8560 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8561
8562 #ifdef DEBUG
8563 printf ("Doing complex reloc: "
8564 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8565 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8566 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8567 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8568 oplen, (unsigned long) x, (unsigned long) mask,
8569 (unsigned long) relocation);
8570 #endif
8571
8572 r = bfd_reloc_ok;
8573 if (! trunc_p)
8574 /* Now do an overflow check. */
8575 r = bfd_check_overflow ((signed_p
8576 ? complain_overflow_signed
8577 : complain_overflow_unsigned),
8578 len, 0, (8 * wordsz),
8579 relocation);
8580
8581 /* Do the deed. */
8582 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8583
8584 #ifdef DEBUG
8585 printf (" relocation: %8.8lx\n"
8586 " shifted mask: %8.8lx\n"
8587 " shifted/masked reloc: %8.8lx\n"
8588 " result: %8.8lx\n",
8589 (unsigned long) relocation, (unsigned long) (mask << shift),
8590 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8591 #endif
8592 put_value (wordsz, chunksz, input_bfd, x,
8593 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8594 return r;
8595 }
8596
8597 /* Functions to read r_offset from external (target order) reloc
8598 entry. Faster than bfd_getl32 et al, because we let the compiler
8599 know the value is aligned. */
8600
8601 static bfd_vma
8602 ext32l_r_offset (const void *p)
8603 {
8604 union aligned32
8605 {
8606 uint32_t v;
8607 unsigned char c[4];
8608 };
8609 const union aligned32 *a
8610 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8611
8612 uint32_t aval = ( (uint32_t) a->c[0]
8613 | (uint32_t) a->c[1] << 8
8614 | (uint32_t) a->c[2] << 16
8615 | (uint32_t) a->c[3] << 24);
8616 return aval;
8617 }
8618
8619 static bfd_vma
8620 ext32b_r_offset (const void *p)
8621 {
8622 union aligned32
8623 {
8624 uint32_t v;
8625 unsigned char c[4];
8626 };
8627 const union aligned32 *a
8628 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8629
8630 uint32_t aval = ( (uint32_t) a->c[0] << 24
8631 | (uint32_t) a->c[1] << 16
8632 | (uint32_t) a->c[2] << 8
8633 | (uint32_t) a->c[3]);
8634 return aval;
8635 }
8636
8637 #ifdef BFD_HOST_64_BIT
8638 static bfd_vma
8639 ext64l_r_offset (const void *p)
8640 {
8641 union aligned64
8642 {
8643 uint64_t v;
8644 unsigned char c[8];
8645 };
8646 const union aligned64 *a
8647 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8648
8649 uint64_t aval = ( (uint64_t) a->c[0]
8650 | (uint64_t) a->c[1] << 8
8651 | (uint64_t) a->c[2] << 16
8652 | (uint64_t) a->c[3] << 24
8653 | (uint64_t) a->c[4] << 32
8654 | (uint64_t) a->c[5] << 40
8655 | (uint64_t) a->c[6] << 48
8656 | (uint64_t) a->c[7] << 56);
8657 return aval;
8658 }
8659
8660 static bfd_vma
8661 ext64b_r_offset (const void *p)
8662 {
8663 union aligned64
8664 {
8665 uint64_t v;
8666 unsigned char c[8];
8667 };
8668 const union aligned64 *a
8669 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8670
8671 uint64_t aval = ( (uint64_t) a->c[0] << 56
8672 | (uint64_t) a->c[1] << 48
8673 | (uint64_t) a->c[2] << 40
8674 | (uint64_t) a->c[3] << 32
8675 | (uint64_t) a->c[4] << 24
8676 | (uint64_t) a->c[5] << 16
8677 | (uint64_t) a->c[6] << 8
8678 | (uint64_t) a->c[7]);
8679 return aval;
8680 }
8681 #endif
8682
8683 /* When performing a relocatable link, the input relocations are
8684 preserved. But, if they reference global symbols, the indices
8685 referenced must be updated. Update all the relocations found in
8686 RELDATA. */
8687
8688 static bfd_boolean
8689 elf_link_adjust_relocs (bfd *abfd,
8690 asection *sec,
8691 struct bfd_elf_section_reloc_data *reldata,
8692 bfd_boolean sort,
8693 struct bfd_link_info *info)
8694 {
8695 unsigned int i;
8696 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8697 bfd_byte *erela;
8698 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8699 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8700 bfd_vma r_type_mask;
8701 int r_sym_shift;
8702 unsigned int count = reldata->count;
8703 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8704
8705 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8706 {
8707 swap_in = bed->s->swap_reloc_in;
8708 swap_out = bed->s->swap_reloc_out;
8709 }
8710 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8711 {
8712 swap_in = bed->s->swap_reloca_in;
8713 swap_out = bed->s->swap_reloca_out;
8714 }
8715 else
8716 abort ();
8717
8718 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8719 abort ();
8720
8721 if (bed->s->arch_size == 32)
8722 {
8723 r_type_mask = 0xff;
8724 r_sym_shift = 8;
8725 }
8726 else
8727 {
8728 r_type_mask = 0xffffffff;
8729 r_sym_shift = 32;
8730 }
8731
8732 erela = reldata->hdr->contents;
8733 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8734 {
8735 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8736 unsigned int j;
8737
8738 if (*rel_hash == NULL)
8739 continue;
8740
8741 if ((*rel_hash)->indx == -2
8742 && info->gc_sections
8743 && ! info->gc_keep_exported)
8744 {
8745 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8746 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8747 abfd, sec,
8748 (*rel_hash)->root.root.string);
8749 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8750 abfd, sec);
8751 bfd_set_error (bfd_error_invalid_operation);
8752 return FALSE;
8753 }
8754 BFD_ASSERT ((*rel_hash)->indx >= 0);
8755
8756 (*swap_in) (abfd, erela, irela);
8757 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8758 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8759 | (irela[j].r_info & r_type_mask));
8760 (*swap_out) (abfd, irela, erela);
8761 }
8762
8763 if (bed->elf_backend_update_relocs)
8764 (*bed->elf_backend_update_relocs) (sec, reldata);
8765
8766 if (sort && count != 0)
8767 {
8768 bfd_vma (*ext_r_off) (const void *);
8769 bfd_vma r_off;
8770 size_t elt_size;
8771 bfd_byte *base, *end, *p, *loc;
8772 bfd_byte *buf = NULL;
8773
8774 if (bed->s->arch_size == 32)
8775 {
8776 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8777 ext_r_off = ext32l_r_offset;
8778 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8779 ext_r_off = ext32b_r_offset;
8780 else
8781 abort ();
8782 }
8783 else
8784 {
8785 #ifdef BFD_HOST_64_BIT
8786 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8787 ext_r_off = ext64l_r_offset;
8788 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8789 ext_r_off = ext64b_r_offset;
8790 else
8791 #endif
8792 abort ();
8793 }
8794
8795 /* Must use a stable sort here. A modified insertion sort,
8796 since the relocs are mostly sorted already. */
8797 elt_size = reldata->hdr->sh_entsize;
8798 base = reldata->hdr->contents;
8799 end = base + count * elt_size;
8800 if (elt_size > sizeof (Elf64_External_Rela))
8801 abort ();
8802
8803 /* Ensure the first element is lowest. This acts as a sentinel,
8804 speeding the main loop below. */
8805 r_off = (*ext_r_off) (base);
8806 for (p = loc = base; (p += elt_size) < end; )
8807 {
8808 bfd_vma r_off2 = (*ext_r_off) (p);
8809 if (r_off > r_off2)
8810 {
8811 r_off = r_off2;
8812 loc = p;
8813 }
8814 }
8815 if (loc != base)
8816 {
8817 /* Don't just swap *base and *loc as that changes the order
8818 of the original base[0] and base[1] if they happen to
8819 have the same r_offset. */
8820 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8821 memcpy (onebuf, loc, elt_size);
8822 memmove (base + elt_size, base, loc - base);
8823 memcpy (base, onebuf, elt_size);
8824 }
8825
8826 for (p = base + elt_size; (p += elt_size) < end; )
8827 {
8828 /* base to p is sorted, *p is next to insert. */
8829 r_off = (*ext_r_off) (p);
8830 /* Search the sorted region for location to insert. */
8831 loc = p - elt_size;
8832 while (r_off < (*ext_r_off) (loc))
8833 loc -= elt_size;
8834 loc += elt_size;
8835 if (loc != p)
8836 {
8837 /* Chances are there is a run of relocs to insert here,
8838 from one of more input files. Files are not always
8839 linked in order due to the way elf_link_input_bfd is
8840 called. See pr17666. */
8841 size_t sortlen = p - loc;
8842 bfd_vma r_off2 = (*ext_r_off) (loc);
8843 size_t runlen = elt_size;
8844 size_t buf_size = 96 * 1024;
8845 while (p + runlen < end
8846 && (sortlen <= buf_size
8847 || runlen + elt_size <= buf_size)
8848 && r_off2 > (*ext_r_off) (p + runlen))
8849 runlen += elt_size;
8850 if (buf == NULL)
8851 {
8852 buf = bfd_malloc (buf_size);
8853 if (buf == NULL)
8854 return FALSE;
8855 }
8856 if (runlen < sortlen)
8857 {
8858 memcpy (buf, p, runlen);
8859 memmove (loc + runlen, loc, sortlen);
8860 memcpy (loc, buf, runlen);
8861 }
8862 else
8863 {
8864 memcpy (buf, loc, sortlen);
8865 memmove (loc, p, runlen);
8866 memcpy (loc + runlen, buf, sortlen);
8867 }
8868 p += runlen - elt_size;
8869 }
8870 }
8871 /* Hashes are no longer valid. */
8872 free (reldata->hashes);
8873 reldata->hashes = NULL;
8874 free (buf);
8875 }
8876 return TRUE;
8877 }
8878
8879 struct elf_link_sort_rela
8880 {
8881 union {
8882 bfd_vma offset;
8883 bfd_vma sym_mask;
8884 } u;
8885 enum elf_reloc_type_class type;
8886 /* We use this as an array of size int_rels_per_ext_rel. */
8887 Elf_Internal_Rela rela[1];
8888 };
8889
8890 static int
8891 elf_link_sort_cmp1 (const void *A, const void *B)
8892 {
8893 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8894 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8895 int relativea, relativeb;
8896
8897 relativea = a->type == reloc_class_relative;
8898 relativeb = b->type == reloc_class_relative;
8899
8900 if (relativea < relativeb)
8901 return 1;
8902 if (relativea > relativeb)
8903 return -1;
8904 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8905 return -1;
8906 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8907 return 1;
8908 if (a->rela->r_offset < b->rela->r_offset)
8909 return -1;
8910 if (a->rela->r_offset > b->rela->r_offset)
8911 return 1;
8912 return 0;
8913 }
8914
8915 static int
8916 elf_link_sort_cmp2 (const void *A, const void *B)
8917 {
8918 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8919 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8920
8921 if (a->type < b->type)
8922 return -1;
8923 if (a->type > b->type)
8924 return 1;
8925 if (a->u.offset < b->u.offset)
8926 return -1;
8927 if (a->u.offset > b->u.offset)
8928 return 1;
8929 if (a->rela->r_offset < b->rela->r_offset)
8930 return -1;
8931 if (a->rela->r_offset > b->rela->r_offset)
8932 return 1;
8933 return 0;
8934 }
8935
8936 static size_t
8937 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8938 {
8939 asection *dynamic_relocs;
8940 asection *rela_dyn;
8941 asection *rel_dyn;
8942 bfd_size_type count, size;
8943 size_t i, ret, sort_elt, ext_size;
8944 bfd_byte *sort, *s_non_relative, *p;
8945 struct elf_link_sort_rela *sq;
8946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8947 int i2e = bed->s->int_rels_per_ext_rel;
8948 unsigned int opb = bfd_octets_per_byte (abfd);
8949 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8950 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8951 struct bfd_link_order *lo;
8952 bfd_vma r_sym_mask;
8953 bfd_boolean use_rela;
8954
8955 /* Find a dynamic reloc section. */
8956 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8957 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8958 if (rela_dyn != NULL && rela_dyn->size > 0
8959 && rel_dyn != NULL && rel_dyn->size > 0)
8960 {
8961 bfd_boolean use_rela_initialised = FALSE;
8962
8963 /* This is just here to stop gcc from complaining.
8964 Its initialization checking code is not perfect. */
8965 use_rela = TRUE;
8966
8967 /* Both sections are present. Examine the sizes
8968 of the indirect sections to help us choose. */
8969 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8970 if (lo->type == bfd_indirect_link_order)
8971 {
8972 asection *o = lo->u.indirect.section;
8973
8974 if ((o->size % bed->s->sizeof_rela) == 0)
8975 {
8976 if ((o->size % bed->s->sizeof_rel) == 0)
8977 /* Section size is divisible by both rel and rela sizes.
8978 It is of no help to us. */
8979 ;
8980 else
8981 {
8982 /* Section size is only divisible by rela. */
8983 if (use_rela_initialised && !use_rela)
8984 {
8985 _bfd_error_handler (_("%pB: unable to sort relocs - "
8986 "they are in more than one size"),
8987 abfd);
8988 bfd_set_error (bfd_error_invalid_operation);
8989 return 0;
8990 }
8991 else
8992 {
8993 use_rela = TRUE;
8994 use_rela_initialised = TRUE;
8995 }
8996 }
8997 }
8998 else if ((o->size % bed->s->sizeof_rel) == 0)
8999 {
9000 /* Section size is only divisible by rel. */
9001 if (use_rela_initialised && use_rela)
9002 {
9003 _bfd_error_handler (_("%pB: unable to sort relocs - "
9004 "they are in more than one size"),
9005 abfd);
9006 bfd_set_error (bfd_error_invalid_operation);
9007 return 0;
9008 }
9009 else
9010 {
9011 use_rela = FALSE;
9012 use_rela_initialised = TRUE;
9013 }
9014 }
9015 else
9016 {
9017 /* The section size is not divisible by either -
9018 something is wrong. */
9019 _bfd_error_handler (_("%pB: unable to sort relocs - "
9020 "they are of an unknown size"), abfd);
9021 bfd_set_error (bfd_error_invalid_operation);
9022 return 0;
9023 }
9024 }
9025
9026 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9027 if (lo->type == bfd_indirect_link_order)
9028 {
9029 asection *o = lo->u.indirect.section;
9030
9031 if ((o->size % bed->s->sizeof_rela) == 0)
9032 {
9033 if ((o->size % bed->s->sizeof_rel) == 0)
9034 /* Section size is divisible by both rel and rela sizes.
9035 It is of no help to us. */
9036 ;
9037 else
9038 {
9039 /* Section size is only divisible by rela. */
9040 if (use_rela_initialised && !use_rela)
9041 {
9042 _bfd_error_handler (_("%pB: unable to sort relocs - "
9043 "they are in more than one size"),
9044 abfd);
9045 bfd_set_error (bfd_error_invalid_operation);
9046 return 0;
9047 }
9048 else
9049 {
9050 use_rela = TRUE;
9051 use_rela_initialised = TRUE;
9052 }
9053 }
9054 }
9055 else if ((o->size % bed->s->sizeof_rel) == 0)
9056 {
9057 /* Section size is only divisible by rel. */
9058 if (use_rela_initialised && use_rela)
9059 {
9060 _bfd_error_handler (_("%pB: unable to sort relocs - "
9061 "they are in more than one size"),
9062 abfd);
9063 bfd_set_error (bfd_error_invalid_operation);
9064 return 0;
9065 }
9066 else
9067 {
9068 use_rela = FALSE;
9069 use_rela_initialised = TRUE;
9070 }
9071 }
9072 else
9073 {
9074 /* The section size is not divisible by either -
9075 something is wrong. */
9076 _bfd_error_handler (_("%pB: unable to sort relocs - "
9077 "they are of an unknown size"), abfd);
9078 bfd_set_error (bfd_error_invalid_operation);
9079 return 0;
9080 }
9081 }
9082
9083 if (! use_rela_initialised)
9084 /* Make a guess. */
9085 use_rela = TRUE;
9086 }
9087 else if (rela_dyn != NULL && rela_dyn->size > 0)
9088 use_rela = TRUE;
9089 else if (rel_dyn != NULL && rel_dyn->size > 0)
9090 use_rela = FALSE;
9091 else
9092 return 0;
9093
9094 if (use_rela)
9095 {
9096 dynamic_relocs = rela_dyn;
9097 ext_size = bed->s->sizeof_rela;
9098 swap_in = bed->s->swap_reloca_in;
9099 swap_out = bed->s->swap_reloca_out;
9100 }
9101 else
9102 {
9103 dynamic_relocs = rel_dyn;
9104 ext_size = bed->s->sizeof_rel;
9105 swap_in = bed->s->swap_reloc_in;
9106 swap_out = bed->s->swap_reloc_out;
9107 }
9108
9109 size = 0;
9110 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9111 if (lo->type == bfd_indirect_link_order)
9112 size += lo->u.indirect.section->size;
9113
9114 if (size != dynamic_relocs->size)
9115 return 0;
9116
9117 sort_elt = (sizeof (struct elf_link_sort_rela)
9118 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9119
9120 count = dynamic_relocs->size / ext_size;
9121 if (count == 0)
9122 return 0;
9123 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9124
9125 if (sort == NULL)
9126 {
9127 (*info->callbacks->warning)
9128 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9129 return 0;
9130 }
9131
9132 if (bed->s->arch_size == 32)
9133 r_sym_mask = ~(bfd_vma) 0xff;
9134 else
9135 r_sym_mask = ~(bfd_vma) 0xffffffff;
9136
9137 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9138 if (lo->type == bfd_indirect_link_order)
9139 {
9140 bfd_byte *erel, *erelend;
9141 asection *o = lo->u.indirect.section;
9142
9143 if (o->contents == NULL && o->size != 0)
9144 {
9145 /* This is a reloc section that is being handled as a normal
9146 section. See bfd_section_from_shdr. We can't combine
9147 relocs in this case. */
9148 free (sort);
9149 return 0;
9150 }
9151 erel = o->contents;
9152 erelend = o->contents + o->size;
9153 p = sort + o->output_offset * opb / ext_size * sort_elt;
9154
9155 while (erel < erelend)
9156 {
9157 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9158
9159 (*swap_in) (abfd, erel, s->rela);
9160 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9161 s->u.sym_mask = r_sym_mask;
9162 p += sort_elt;
9163 erel += ext_size;
9164 }
9165 }
9166
9167 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9168
9169 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9170 {
9171 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9172 if (s->type != reloc_class_relative)
9173 break;
9174 }
9175 ret = i;
9176 s_non_relative = p;
9177
9178 sq = (struct elf_link_sort_rela *) s_non_relative;
9179 for (; i < count; i++, p += sort_elt)
9180 {
9181 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9182 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9183 sq = sp;
9184 sp->u.offset = sq->rela->r_offset;
9185 }
9186
9187 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9188
9189 struct elf_link_hash_table *htab = elf_hash_table (info);
9190 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9191 {
9192 /* We have plt relocs in .rela.dyn. */
9193 sq = (struct elf_link_sort_rela *) sort;
9194 for (i = 0; i < count; i++)
9195 if (sq[count - i - 1].type != reloc_class_plt)
9196 break;
9197 if (i != 0 && htab->srelplt->size == i * ext_size)
9198 {
9199 struct bfd_link_order **plo;
9200 /* Put srelplt link_order last. This is so the output_offset
9201 set in the next loop is correct for DT_JMPREL. */
9202 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9203 if ((*plo)->type == bfd_indirect_link_order
9204 && (*plo)->u.indirect.section == htab->srelplt)
9205 {
9206 lo = *plo;
9207 *plo = lo->next;
9208 }
9209 else
9210 plo = &(*plo)->next;
9211 *plo = lo;
9212 lo->next = NULL;
9213 dynamic_relocs->map_tail.link_order = lo;
9214 }
9215 }
9216
9217 p = sort;
9218 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9219 if (lo->type == bfd_indirect_link_order)
9220 {
9221 bfd_byte *erel, *erelend;
9222 asection *o = lo->u.indirect.section;
9223
9224 erel = o->contents;
9225 erelend = o->contents + o->size;
9226 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9227 while (erel < erelend)
9228 {
9229 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9230 (*swap_out) (abfd, s->rela, erel);
9231 p += sort_elt;
9232 erel += ext_size;
9233 }
9234 }
9235
9236 free (sort);
9237 *psec = dynamic_relocs;
9238 return ret;
9239 }
9240
9241 /* Add a symbol to the output symbol string table. */
9242
9243 static int
9244 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9245 const char *name,
9246 Elf_Internal_Sym *elfsym,
9247 asection *input_sec,
9248 struct elf_link_hash_entry *h)
9249 {
9250 int (*output_symbol_hook)
9251 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9252 struct elf_link_hash_entry *);
9253 struct elf_link_hash_table *hash_table;
9254 const struct elf_backend_data *bed;
9255 bfd_size_type strtabsize;
9256
9257 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9258
9259 bed = get_elf_backend_data (flinfo->output_bfd);
9260 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9261 if (output_symbol_hook != NULL)
9262 {
9263 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9264 if (ret != 1)
9265 return ret;
9266 }
9267
9268 if (name == NULL
9269 || *name == '\0'
9270 || (input_sec->flags & SEC_EXCLUDE))
9271 elfsym->st_name = (unsigned long) -1;
9272 else
9273 {
9274 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9275 to get the final offset for st_name. */
9276 elfsym->st_name
9277 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9278 name, FALSE);
9279 if (elfsym->st_name == (unsigned long) -1)
9280 return 0;
9281 }
9282
9283 hash_table = elf_hash_table (flinfo->info);
9284 strtabsize = hash_table->strtabsize;
9285 if (strtabsize <= hash_table->strtabcount)
9286 {
9287 strtabsize += strtabsize;
9288 hash_table->strtabsize = strtabsize;
9289 strtabsize *= sizeof (*hash_table->strtab);
9290 hash_table->strtab
9291 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9292 strtabsize);
9293 if (hash_table->strtab == NULL)
9294 return 0;
9295 }
9296 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9297 hash_table->strtab[hash_table->strtabcount].dest_index
9298 = hash_table->strtabcount;
9299 hash_table->strtab[hash_table->strtabcount].destshndx_index
9300 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9301
9302 bfd_get_symcount (flinfo->output_bfd) += 1;
9303 hash_table->strtabcount += 1;
9304
9305 return 1;
9306 }
9307
9308 /* Swap symbols out to the symbol table and flush the output symbols to
9309 the file. */
9310
9311 static bfd_boolean
9312 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9313 {
9314 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9315 bfd_size_type amt;
9316 size_t i;
9317 const struct elf_backend_data *bed;
9318 bfd_byte *symbuf;
9319 Elf_Internal_Shdr *hdr;
9320 file_ptr pos;
9321 bfd_boolean ret;
9322
9323 if (!hash_table->strtabcount)
9324 return TRUE;
9325
9326 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9327
9328 bed = get_elf_backend_data (flinfo->output_bfd);
9329
9330 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9331 symbuf = (bfd_byte *) bfd_malloc (amt);
9332 if (symbuf == NULL)
9333 return FALSE;
9334
9335 if (flinfo->symshndxbuf)
9336 {
9337 amt = sizeof (Elf_External_Sym_Shndx);
9338 amt *= bfd_get_symcount (flinfo->output_bfd);
9339 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9340 if (flinfo->symshndxbuf == NULL)
9341 {
9342 free (symbuf);
9343 return FALSE;
9344 }
9345 }
9346
9347 for (i = 0; i < hash_table->strtabcount; i++)
9348 {
9349 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9350 if (elfsym->sym.st_name == (unsigned long) -1)
9351 elfsym->sym.st_name = 0;
9352 else
9353 elfsym->sym.st_name
9354 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9355 elfsym->sym.st_name);
9356 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9357 ((bfd_byte *) symbuf
9358 + (elfsym->dest_index
9359 * bed->s->sizeof_sym)),
9360 (flinfo->symshndxbuf
9361 + elfsym->destshndx_index));
9362 }
9363
9364 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9365 pos = hdr->sh_offset + hdr->sh_size;
9366 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9367 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9368 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9369 {
9370 hdr->sh_size += amt;
9371 ret = TRUE;
9372 }
9373 else
9374 ret = FALSE;
9375
9376 free (symbuf);
9377
9378 free (hash_table->strtab);
9379 hash_table->strtab = NULL;
9380
9381 return ret;
9382 }
9383
9384 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9385
9386 static bfd_boolean
9387 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9388 {
9389 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9390 && sym->st_shndx < SHN_LORESERVE)
9391 {
9392 /* The gABI doesn't support dynamic symbols in output sections
9393 beyond 64k. */
9394 _bfd_error_handler
9395 /* xgettext:c-format */
9396 (_("%pB: too many sections: %d (>= %d)"),
9397 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9398 bfd_set_error (bfd_error_nonrepresentable_section);
9399 return FALSE;
9400 }
9401 return TRUE;
9402 }
9403
9404 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9405 allowing an unsatisfied unversioned symbol in the DSO to match a
9406 versioned symbol that would normally require an explicit version.
9407 We also handle the case that a DSO references a hidden symbol
9408 which may be satisfied by a versioned symbol in another DSO. */
9409
9410 static bfd_boolean
9411 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9412 const struct elf_backend_data *bed,
9413 struct elf_link_hash_entry *h)
9414 {
9415 bfd *abfd;
9416 struct elf_link_loaded_list *loaded;
9417
9418 if (!is_elf_hash_table (info->hash))
9419 return FALSE;
9420
9421 /* Check indirect symbol. */
9422 while (h->root.type == bfd_link_hash_indirect)
9423 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9424
9425 switch (h->root.type)
9426 {
9427 default:
9428 abfd = NULL;
9429 break;
9430
9431 case bfd_link_hash_undefined:
9432 case bfd_link_hash_undefweak:
9433 abfd = h->root.u.undef.abfd;
9434 if (abfd == NULL
9435 || (abfd->flags & DYNAMIC) == 0
9436 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9437 return FALSE;
9438 break;
9439
9440 case bfd_link_hash_defined:
9441 case bfd_link_hash_defweak:
9442 abfd = h->root.u.def.section->owner;
9443 break;
9444
9445 case bfd_link_hash_common:
9446 abfd = h->root.u.c.p->section->owner;
9447 break;
9448 }
9449 BFD_ASSERT (abfd != NULL);
9450
9451 for (loaded = elf_hash_table (info)->loaded;
9452 loaded != NULL;
9453 loaded = loaded->next)
9454 {
9455 bfd *input;
9456 Elf_Internal_Shdr *hdr;
9457 size_t symcount;
9458 size_t extsymcount;
9459 size_t extsymoff;
9460 Elf_Internal_Shdr *versymhdr;
9461 Elf_Internal_Sym *isym;
9462 Elf_Internal_Sym *isymend;
9463 Elf_Internal_Sym *isymbuf;
9464 Elf_External_Versym *ever;
9465 Elf_External_Versym *extversym;
9466
9467 input = loaded->abfd;
9468
9469 /* We check each DSO for a possible hidden versioned definition. */
9470 if (input == abfd
9471 || (input->flags & DYNAMIC) == 0
9472 || elf_dynversym (input) == 0)
9473 continue;
9474
9475 hdr = &elf_tdata (input)->dynsymtab_hdr;
9476
9477 symcount = hdr->sh_size / bed->s->sizeof_sym;
9478 if (elf_bad_symtab (input))
9479 {
9480 extsymcount = symcount;
9481 extsymoff = 0;
9482 }
9483 else
9484 {
9485 extsymcount = symcount - hdr->sh_info;
9486 extsymoff = hdr->sh_info;
9487 }
9488
9489 if (extsymcount == 0)
9490 continue;
9491
9492 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9493 NULL, NULL, NULL);
9494 if (isymbuf == NULL)
9495 return FALSE;
9496
9497 /* Read in any version definitions. */
9498 versymhdr = &elf_tdata (input)->dynversym_hdr;
9499 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9500 if (extversym == NULL)
9501 goto error_ret;
9502
9503 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9504 || (bfd_bread (extversym, versymhdr->sh_size, input)
9505 != versymhdr->sh_size))
9506 {
9507 free (extversym);
9508 error_ret:
9509 free (isymbuf);
9510 return FALSE;
9511 }
9512
9513 ever = extversym + extsymoff;
9514 isymend = isymbuf + extsymcount;
9515 for (isym = isymbuf; isym < isymend; isym++, ever++)
9516 {
9517 const char *name;
9518 Elf_Internal_Versym iver;
9519 unsigned short version_index;
9520
9521 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9522 || isym->st_shndx == SHN_UNDEF)
9523 continue;
9524
9525 name = bfd_elf_string_from_elf_section (input,
9526 hdr->sh_link,
9527 isym->st_name);
9528 if (strcmp (name, h->root.root.string) != 0)
9529 continue;
9530
9531 _bfd_elf_swap_versym_in (input, ever, &iver);
9532
9533 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9534 && !(h->def_regular
9535 && h->forced_local))
9536 {
9537 /* If we have a non-hidden versioned sym, then it should
9538 have provided a definition for the undefined sym unless
9539 it is defined in a non-shared object and forced local.
9540 */
9541 abort ();
9542 }
9543
9544 version_index = iver.vs_vers & VERSYM_VERSION;
9545 if (version_index == 1 || version_index == 2)
9546 {
9547 /* This is the base or first version. We can use it. */
9548 free (extversym);
9549 free (isymbuf);
9550 return TRUE;
9551 }
9552 }
9553
9554 free (extversym);
9555 free (isymbuf);
9556 }
9557
9558 return FALSE;
9559 }
9560
9561 /* Convert ELF common symbol TYPE. */
9562
9563 static int
9564 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9565 {
9566 /* Commom symbol can only appear in relocatable link. */
9567 if (!bfd_link_relocatable (info))
9568 abort ();
9569 switch (info->elf_stt_common)
9570 {
9571 case unchanged:
9572 break;
9573 case elf_stt_common:
9574 type = STT_COMMON;
9575 break;
9576 case no_elf_stt_common:
9577 type = STT_OBJECT;
9578 break;
9579 }
9580 return type;
9581 }
9582
9583 /* Add an external symbol to the symbol table. This is called from
9584 the hash table traversal routine. When generating a shared object,
9585 we go through the symbol table twice. The first time we output
9586 anything that might have been forced to local scope in a version
9587 script. The second time we output the symbols that are still
9588 global symbols. */
9589
9590 static bfd_boolean
9591 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9592 {
9593 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9594 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9595 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9596 bfd_boolean strip;
9597 Elf_Internal_Sym sym;
9598 asection *input_sec;
9599 const struct elf_backend_data *bed;
9600 long indx;
9601 int ret;
9602 unsigned int type;
9603
9604 if (h->root.type == bfd_link_hash_warning)
9605 {
9606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9607 if (h->root.type == bfd_link_hash_new)
9608 return TRUE;
9609 }
9610
9611 /* Decide whether to output this symbol in this pass. */
9612 if (eoinfo->localsyms)
9613 {
9614 if (!h->forced_local)
9615 return TRUE;
9616 }
9617 else
9618 {
9619 if (h->forced_local)
9620 return TRUE;
9621 }
9622
9623 bed = get_elf_backend_data (flinfo->output_bfd);
9624
9625 if (h->root.type == bfd_link_hash_undefined)
9626 {
9627 /* If we have an undefined symbol reference here then it must have
9628 come from a shared library that is being linked in. (Undefined
9629 references in regular files have already been handled unless
9630 they are in unreferenced sections which are removed by garbage
9631 collection). */
9632 bfd_boolean ignore_undef = FALSE;
9633
9634 /* Some symbols may be special in that the fact that they're
9635 undefined can be safely ignored - let backend determine that. */
9636 if (bed->elf_backend_ignore_undef_symbol)
9637 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9638
9639 /* If we are reporting errors for this situation then do so now. */
9640 if (!ignore_undef
9641 && h->ref_dynamic
9642 && (!h->ref_regular || flinfo->info->gc_sections)
9643 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9644 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9645 (*flinfo->info->callbacks->undefined_symbol)
9646 (flinfo->info, h->root.root.string,
9647 h->ref_regular ? NULL : h->root.u.undef.abfd,
9648 NULL, 0,
9649 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9650
9651 /* Strip a global symbol defined in a discarded section. */
9652 if (h->indx == -3)
9653 return TRUE;
9654 }
9655
9656 /* We should also warn if a forced local symbol is referenced from
9657 shared libraries. */
9658 if (bfd_link_executable (flinfo->info)
9659 && h->forced_local
9660 && h->ref_dynamic
9661 && h->def_regular
9662 && !h->dynamic_def
9663 && h->ref_dynamic_nonweak
9664 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9665 {
9666 bfd *def_bfd;
9667 const char *msg;
9668 struct elf_link_hash_entry *hi = h;
9669
9670 /* Check indirect symbol. */
9671 while (hi->root.type == bfd_link_hash_indirect)
9672 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9673
9674 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9675 /* xgettext:c-format */
9676 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9677 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9678 /* xgettext:c-format */
9679 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9680 else
9681 /* xgettext:c-format */
9682 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9683 def_bfd = flinfo->output_bfd;
9684 if (hi->root.u.def.section != bfd_abs_section_ptr)
9685 def_bfd = hi->root.u.def.section->owner;
9686 _bfd_error_handler (msg, flinfo->output_bfd,
9687 h->root.root.string, def_bfd);
9688 bfd_set_error (bfd_error_bad_value);
9689 eoinfo->failed = TRUE;
9690 return FALSE;
9691 }
9692
9693 /* We don't want to output symbols that have never been mentioned by
9694 a regular file, or that we have been told to strip. However, if
9695 h->indx is set to -2, the symbol is used by a reloc and we must
9696 output it. */
9697 strip = FALSE;
9698 if (h->indx == -2)
9699 ;
9700 else if ((h->def_dynamic
9701 || h->ref_dynamic
9702 || h->root.type == bfd_link_hash_new)
9703 && !h->def_regular
9704 && !h->ref_regular)
9705 strip = TRUE;
9706 else if (flinfo->info->strip == strip_all)
9707 strip = TRUE;
9708 else if (flinfo->info->strip == strip_some
9709 && bfd_hash_lookup (flinfo->info->keep_hash,
9710 h->root.root.string, FALSE, FALSE) == NULL)
9711 strip = TRUE;
9712 else if ((h->root.type == bfd_link_hash_defined
9713 || h->root.type == bfd_link_hash_defweak)
9714 && ((flinfo->info->strip_discarded
9715 && discarded_section (h->root.u.def.section))
9716 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9717 && h->root.u.def.section->owner != NULL
9718 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9719 strip = TRUE;
9720 else if ((h->root.type == bfd_link_hash_undefined
9721 || h->root.type == bfd_link_hash_undefweak)
9722 && h->root.u.undef.abfd != NULL
9723 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9724 strip = TRUE;
9725
9726 type = h->type;
9727
9728 /* If we're stripping it, and it's not a dynamic symbol, there's
9729 nothing else to do. However, if it is a forced local symbol or
9730 an ifunc symbol we need to give the backend finish_dynamic_symbol
9731 function a chance to make it dynamic. */
9732 if (strip
9733 && h->dynindx == -1
9734 && type != STT_GNU_IFUNC
9735 && !h->forced_local)
9736 return TRUE;
9737
9738 sym.st_value = 0;
9739 sym.st_size = h->size;
9740 sym.st_other = h->other;
9741 switch (h->root.type)
9742 {
9743 default:
9744 case bfd_link_hash_new:
9745 case bfd_link_hash_warning:
9746 abort ();
9747 return FALSE;
9748
9749 case bfd_link_hash_undefined:
9750 case bfd_link_hash_undefweak:
9751 input_sec = bfd_und_section_ptr;
9752 sym.st_shndx = SHN_UNDEF;
9753 break;
9754
9755 case bfd_link_hash_defined:
9756 case bfd_link_hash_defweak:
9757 {
9758 input_sec = h->root.u.def.section;
9759 if (input_sec->output_section != NULL)
9760 {
9761 sym.st_shndx =
9762 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9763 input_sec->output_section);
9764 if (sym.st_shndx == SHN_BAD)
9765 {
9766 _bfd_error_handler
9767 /* xgettext:c-format */
9768 (_("%pB: could not find output section %pA for input section %pA"),
9769 flinfo->output_bfd, input_sec->output_section, input_sec);
9770 bfd_set_error (bfd_error_nonrepresentable_section);
9771 eoinfo->failed = TRUE;
9772 return FALSE;
9773 }
9774
9775 /* ELF symbols in relocatable files are section relative,
9776 but in nonrelocatable files they are virtual
9777 addresses. */
9778 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9779 if (!bfd_link_relocatable (flinfo->info))
9780 {
9781 sym.st_value += input_sec->output_section->vma;
9782 if (h->type == STT_TLS)
9783 {
9784 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9785 if (tls_sec != NULL)
9786 sym.st_value -= tls_sec->vma;
9787 }
9788 }
9789 }
9790 else
9791 {
9792 BFD_ASSERT (input_sec->owner == NULL
9793 || (input_sec->owner->flags & DYNAMIC) != 0);
9794 sym.st_shndx = SHN_UNDEF;
9795 input_sec = bfd_und_section_ptr;
9796 }
9797 }
9798 break;
9799
9800 case bfd_link_hash_common:
9801 input_sec = h->root.u.c.p->section;
9802 sym.st_shndx = bed->common_section_index (input_sec);
9803 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9804 break;
9805
9806 case bfd_link_hash_indirect:
9807 /* These symbols are created by symbol versioning. They point
9808 to the decorated version of the name. For example, if the
9809 symbol foo@@GNU_1.2 is the default, which should be used when
9810 foo is used with no version, then we add an indirect symbol
9811 foo which points to foo@@GNU_1.2. We ignore these symbols,
9812 since the indirected symbol is already in the hash table. */
9813 return TRUE;
9814 }
9815
9816 if (type == STT_COMMON || type == STT_OBJECT)
9817 switch (h->root.type)
9818 {
9819 case bfd_link_hash_common:
9820 type = elf_link_convert_common_type (flinfo->info, type);
9821 break;
9822 case bfd_link_hash_defined:
9823 case bfd_link_hash_defweak:
9824 if (bed->common_definition (&sym))
9825 type = elf_link_convert_common_type (flinfo->info, type);
9826 else
9827 type = STT_OBJECT;
9828 break;
9829 case bfd_link_hash_undefined:
9830 case bfd_link_hash_undefweak:
9831 break;
9832 default:
9833 abort ();
9834 }
9835
9836 if (h->forced_local)
9837 {
9838 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9839 /* Turn off visibility on local symbol. */
9840 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9841 }
9842 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9843 else if (h->unique_global && h->def_regular)
9844 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9845 else if (h->root.type == bfd_link_hash_undefweak
9846 || h->root.type == bfd_link_hash_defweak)
9847 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9848 else
9849 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9850 sym.st_target_internal = h->target_internal;
9851
9852 /* Give the processor backend a chance to tweak the symbol value,
9853 and also to finish up anything that needs to be done for this
9854 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9855 forced local syms when non-shared is due to a historical quirk.
9856 STT_GNU_IFUNC symbol must go through PLT. */
9857 if ((h->type == STT_GNU_IFUNC
9858 && h->def_regular
9859 && !bfd_link_relocatable (flinfo->info))
9860 || ((h->dynindx != -1
9861 || h->forced_local)
9862 && ((bfd_link_pic (flinfo->info)
9863 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9864 || h->root.type != bfd_link_hash_undefweak))
9865 || !h->forced_local)
9866 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9867 {
9868 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9869 (flinfo->output_bfd, flinfo->info, h, &sym)))
9870 {
9871 eoinfo->failed = TRUE;
9872 return FALSE;
9873 }
9874 }
9875
9876 /* If we are marking the symbol as undefined, and there are no
9877 non-weak references to this symbol from a regular object, then
9878 mark the symbol as weak undefined; if there are non-weak
9879 references, mark the symbol as strong. We can't do this earlier,
9880 because it might not be marked as undefined until the
9881 finish_dynamic_symbol routine gets through with it. */
9882 if (sym.st_shndx == SHN_UNDEF
9883 && h->ref_regular
9884 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9885 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9886 {
9887 int bindtype;
9888 type = ELF_ST_TYPE (sym.st_info);
9889
9890 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9891 if (type == STT_GNU_IFUNC)
9892 type = STT_FUNC;
9893
9894 if (h->ref_regular_nonweak)
9895 bindtype = STB_GLOBAL;
9896 else
9897 bindtype = STB_WEAK;
9898 sym.st_info = ELF_ST_INFO (bindtype, type);
9899 }
9900
9901 /* If this is a symbol defined in a dynamic library, don't use the
9902 symbol size from the dynamic library. Relinking an executable
9903 against a new library may introduce gratuitous changes in the
9904 executable's symbols if we keep the size. */
9905 if (sym.st_shndx == SHN_UNDEF
9906 && !h->def_regular
9907 && h->def_dynamic)
9908 sym.st_size = 0;
9909
9910 /* If a non-weak symbol with non-default visibility is not defined
9911 locally, it is a fatal error. */
9912 if (!bfd_link_relocatable (flinfo->info)
9913 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9914 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9915 && h->root.type == bfd_link_hash_undefined
9916 && !h->def_regular)
9917 {
9918 const char *msg;
9919
9920 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9921 /* xgettext:c-format */
9922 msg = _("%pB: protected symbol `%s' isn't defined");
9923 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9924 /* xgettext:c-format */
9925 msg = _("%pB: internal symbol `%s' isn't defined");
9926 else
9927 /* xgettext:c-format */
9928 msg = _("%pB: hidden symbol `%s' isn't defined");
9929 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9930 bfd_set_error (bfd_error_bad_value);
9931 eoinfo->failed = TRUE;
9932 return FALSE;
9933 }
9934
9935 /* If this symbol should be put in the .dynsym section, then put it
9936 there now. We already know the symbol index. We also fill in
9937 the entry in the .hash section. */
9938 if (elf_hash_table (flinfo->info)->dynsym != NULL
9939 && h->dynindx != -1
9940 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9941 {
9942 bfd_byte *esym;
9943
9944 /* Since there is no version information in the dynamic string,
9945 if there is no version info in symbol version section, we will
9946 have a run-time problem if not linking executable, referenced
9947 by shared library, or not bound locally. */
9948 if (h->verinfo.verdef == NULL
9949 && (!bfd_link_executable (flinfo->info)
9950 || h->ref_dynamic
9951 || !h->def_regular))
9952 {
9953 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9954
9955 if (p && p [1] != '\0')
9956 {
9957 _bfd_error_handler
9958 /* xgettext:c-format */
9959 (_("%pB: no symbol version section for versioned symbol `%s'"),
9960 flinfo->output_bfd, h->root.root.string);
9961 eoinfo->failed = TRUE;
9962 return FALSE;
9963 }
9964 }
9965
9966 sym.st_name = h->dynstr_index;
9967 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9968 + h->dynindx * bed->s->sizeof_sym);
9969 if (!check_dynsym (flinfo->output_bfd, &sym))
9970 {
9971 eoinfo->failed = TRUE;
9972 return FALSE;
9973 }
9974 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9975
9976 if (flinfo->hash_sec != NULL)
9977 {
9978 size_t hash_entry_size;
9979 bfd_byte *bucketpos;
9980 bfd_vma chain;
9981 size_t bucketcount;
9982 size_t bucket;
9983
9984 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9985 bucket = h->u.elf_hash_value % bucketcount;
9986
9987 hash_entry_size
9988 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9989 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9990 + (bucket + 2) * hash_entry_size);
9991 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9992 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9993 bucketpos);
9994 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9995 ((bfd_byte *) flinfo->hash_sec->contents
9996 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9997 }
9998
9999 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10000 {
10001 Elf_Internal_Versym iversym;
10002 Elf_External_Versym *eversym;
10003
10004 if (!h->def_regular)
10005 {
10006 if (h->verinfo.verdef == NULL
10007 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10008 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10009 iversym.vs_vers = 0;
10010 else
10011 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10012 }
10013 else
10014 {
10015 if (h->verinfo.vertree == NULL)
10016 iversym.vs_vers = 1;
10017 else
10018 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10019 if (flinfo->info->create_default_symver)
10020 iversym.vs_vers++;
10021 }
10022
10023 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10024 defined locally. */
10025 if (h->versioned == versioned_hidden && h->def_regular)
10026 iversym.vs_vers |= VERSYM_HIDDEN;
10027
10028 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10029 eversym += h->dynindx;
10030 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10031 }
10032 }
10033
10034 /* If the symbol is undefined, and we didn't output it to .dynsym,
10035 strip it from .symtab too. Obviously we can't do this for
10036 relocatable output or when needed for --emit-relocs. */
10037 else if (input_sec == bfd_und_section_ptr
10038 && h->indx != -2
10039 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10040 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10041 && !bfd_link_relocatable (flinfo->info))
10042 return TRUE;
10043
10044 /* Also strip others that we couldn't earlier due to dynamic symbol
10045 processing. */
10046 if (strip)
10047 return TRUE;
10048 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10049 return TRUE;
10050
10051 /* Output a FILE symbol so that following locals are not associated
10052 with the wrong input file. We need one for forced local symbols
10053 if we've seen more than one FILE symbol or when we have exactly
10054 one FILE symbol but global symbols are present in a file other
10055 than the one with the FILE symbol. We also need one if linker
10056 defined symbols are present. In practice these conditions are
10057 always met, so just emit the FILE symbol unconditionally. */
10058 if (eoinfo->localsyms
10059 && !eoinfo->file_sym_done
10060 && eoinfo->flinfo->filesym_count != 0)
10061 {
10062 Elf_Internal_Sym fsym;
10063
10064 memset (&fsym, 0, sizeof (fsym));
10065 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10066 fsym.st_shndx = SHN_ABS;
10067 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10068 bfd_und_section_ptr, NULL))
10069 return FALSE;
10070
10071 eoinfo->file_sym_done = TRUE;
10072 }
10073
10074 indx = bfd_get_symcount (flinfo->output_bfd);
10075 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10076 input_sec, h);
10077 if (ret == 0)
10078 {
10079 eoinfo->failed = TRUE;
10080 return FALSE;
10081 }
10082 else if (ret == 1)
10083 h->indx = indx;
10084 else if (h->indx == -2)
10085 abort();
10086
10087 return TRUE;
10088 }
10089
10090 /* Return TRUE if special handling is done for relocs in SEC against
10091 symbols defined in discarded sections. */
10092
10093 static bfd_boolean
10094 elf_section_ignore_discarded_relocs (asection *sec)
10095 {
10096 const struct elf_backend_data *bed;
10097
10098 switch (sec->sec_info_type)
10099 {
10100 case SEC_INFO_TYPE_STABS:
10101 case SEC_INFO_TYPE_EH_FRAME:
10102 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10103 return TRUE;
10104 default:
10105 break;
10106 }
10107
10108 bed = get_elf_backend_data (sec->owner);
10109 if (bed->elf_backend_ignore_discarded_relocs != NULL
10110 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10111 return TRUE;
10112
10113 return FALSE;
10114 }
10115
10116 /* Return a mask saying how ld should treat relocations in SEC against
10117 symbols defined in discarded sections. If this function returns
10118 COMPLAIN set, ld will issue a warning message. If this function
10119 returns PRETEND set, and the discarded section was link-once and the
10120 same size as the kept link-once section, ld will pretend that the
10121 symbol was actually defined in the kept section. Otherwise ld will
10122 zero the reloc (at least that is the intent, but some cooperation by
10123 the target dependent code is needed, particularly for REL targets). */
10124
10125 unsigned int
10126 _bfd_elf_default_action_discarded (asection *sec)
10127 {
10128 if (sec->flags & SEC_DEBUGGING)
10129 return PRETEND;
10130
10131 if (strcmp (".eh_frame", sec->name) == 0)
10132 return 0;
10133
10134 if (strcmp (".gcc_except_table", sec->name) == 0)
10135 return 0;
10136
10137 return COMPLAIN | PRETEND;
10138 }
10139
10140 /* Find a match between a section and a member of a section group. */
10141
10142 static asection *
10143 match_group_member (asection *sec, asection *group,
10144 struct bfd_link_info *info)
10145 {
10146 asection *first = elf_next_in_group (group);
10147 asection *s = first;
10148
10149 while (s != NULL)
10150 {
10151 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10152 return s;
10153
10154 s = elf_next_in_group (s);
10155 if (s == first)
10156 break;
10157 }
10158
10159 return NULL;
10160 }
10161
10162 /* Check if the kept section of a discarded section SEC can be used
10163 to replace it. Return the replacement if it is OK. Otherwise return
10164 NULL. */
10165
10166 asection *
10167 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10168 {
10169 asection *kept;
10170
10171 kept = sec->kept_section;
10172 if (kept != NULL)
10173 {
10174 if ((kept->flags & SEC_GROUP) != 0)
10175 kept = match_group_member (sec, kept, info);
10176 if (kept != NULL
10177 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10178 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10179 kept = NULL;
10180 sec->kept_section = kept;
10181 }
10182 return kept;
10183 }
10184
10185 /* Link an input file into the linker output file. This function
10186 handles all the sections and relocations of the input file at once.
10187 This is so that we only have to read the local symbols once, and
10188 don't have to keep them in memory. */
10189
10190 static bfd_boolean
10191 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10192 {
10193 int (*relocate_section)
10194 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10195 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10196 bfd *output_bfd;
10197 Elf_Internal_Shdr *symtab_hdr;
10198 size_t locsymcount;
10199 size_t extsymoff;
10200 Elf_Internal_Sym *isymbuf;
10201 Elf_Internal_Sym *isym;
10202 Elf_Internal_Sym *isymend;
10203 long *pindex;
10204 asection **ppsection;
10205 asection *o;
10206 const struct elf_backend_data *bed;
10207 struct elf_link_hash_entry **sym_hashes;
10208 bfd_size_type address_size;
10209 bfd_vma r_type_mask;
10210 int r_sym_shift;
10211 bfd_boolean have_file_sym = FALSE;
10212
10213 output_bfd = flinfo->output_bfd;
10214 bed = get_elf_backend_data (output_bfd);
10215 relocate_section = bed->elf_backend_relocate_section;
10216
10217 /* If this is a dynamic object, we don't want to do anything here:
10218 we don't want the local symbols, and we don't want the section
10219 contents. */
10220 if ((input_bfd->flags & DYNAMIC) != 0)
10221 return TRUE;
10222
10223 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10224 if (elf_bad_symtab (input_bfd))
10225 {
10226 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10227 extsymoff = 0;
10228 }
10229 else
10230 {
10231 locsymcount = symtab_hdr->sh_info;
10232 extsymoff = symtab_hdr->sh_info;
10233 }
10234
10235 /* Read the local symbols. */
10236 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10237 if (isymbuf == NULL && locsymcount != 0)
10238 {
10239 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10240 flinfo->internal_syms,
10241 flinfo->external_syms,
10242 flinfo->locsym_shndx);
10243 if (isymbuf == NULL)
10244 return FALSE;
10245 }
10246
10247 /* Find local symbol sections and adjust values of symbols in
10248 SEC_MERGE sections. Write out those local symbols we know are
10249 going into the output file. */
10250 isymend = isymbuf + locsymcount;
10251 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10252 isym < isymend;
10253 isym++, pindex++, ppsection++)
10254 {
10255 asection *isec;
10256 const char *name;
10257 Elf_Internal_Sym osym;
10258 long indx;
10259 int ret;
10260
10261 *pindex = -1;
10262
10263 if (elf_bad_symtab (input_bfd))
10264 {
10265 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10266 {
10267 *ppsection = NULL;
10268 continue;
10269 }
10270 }
10271
10272 if (isym->st_shndx == SHN_UNDEF)
10273 isec = bfd_und_section_ptr;
10274 else if (isym->st_shndx == SHN_ABS)
10275 isec = bfd_abs_section_ptr;
10276 else if (isym->st_shndx == SHN_COMMON)
10277 isec = bfd_com_section_ptr;
10278 else
10279 {
10280 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10281 if (isec == NULL)
10282 {
10283 /* Don't attempt to output symbols with st_shnx in the
10284 reserved range other than SHN_ABS and SHN_COMMON. */
10285 *ppsection = NULL;
10286 continue;
10287 }
10288 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10289 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10290 isym->st_value =
10291 _bfd_merged_section_offset (output_bfd, &isec,
10292 elf_section_data (isec)->sec_info,
10293 isym->st_value);
10294 }
10295
10296 *ppsection = isec;
10297
10298 /* Don't output the first, undefined, symbol. In fact, don't
10299 output any undefined local symbol. */
10300 if (isec == bfd_und_section_ptr)
10301 continue;
10302
10303 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10304 {
10305 /* We never output section symbols. Instead, we use the
10306 section symbol of the corresponding section in the output
10307 file. */
10308 continue;
10309 }
10310
10311 /* If we are stripping all symbols, we don't want to output this
10312 one. */
10313 if (flinfo->info->strip == strip_all)
10314 continue;
10315
10316 /* If we are discarding all local symbols, we don't want to
10317 output this one. If we are generating a relocatable output
10318 file, then some of the local symbols may be required by
10319 relocs; we output them below as we discover that they are
10320 needed. */
10321 if (flinfo->info->discard == discard_all)
10322 continue;
10323
10324 /* If this symbol is defined in a section which we are
10325 discarding, we don't need to keep it. */
10326 if (isym->st_shndx != SHN_UNDEF
10327 && isym->st_shndx < SHN_LORESERVE
10328 && bfd_section_removed_from_list (output_bfd,
10329 isec->output_section))
10330 continue;
10331
10332 /* Get the name of the symbol. */
10333 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10334 isym->st_name);
10335 if (name == NULL)
10336 return FALSE;
10337
10338 /* See if we are discarding symbols with this name. */
10339 if ((flinfo->info->strip == strip_some
10340 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10341 == NULL))
10342 || (((flinfo->info->discard == discard_sec_merge
10343 && (isec->flags & SEC_MERGE)
10344 && !bfd_link_relocatable (flinfo->info))
10345 || flinfo->info->discard == discard_l)
10346 && bfd_is_local_label_name (input_bfd, name)))
10347 continue;
10348
10349 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10350 {
10351 if (input_bfd->lto_output)
10352 /* -flto puts a temp file name here. This means builds
10353 are not reproducible. Discard the symbol. */
10354 continue;
10355 have_file_sym = TRUE;
10356 flinfo->filesym_count += 1;
10357 }
10358 if (!have_file_sym)
10359 {
10360 /* In the absence of debug info, bfd_find_nearest_line uses
10361 FILE symbols to determine the source file for local
10362 function symbols. Provide a FILE symbol here if input
10363 files lack such, so that their symbols won't be
10364 associated with a previous input file. It's not the
10365 source file, but the best we can do. */
10366 have_file_sym = TRUE;
10367 flinfo->filesym_count += 1;
10368 memset (&osym, 0, sizeof (osym));
10369 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10370 osym.st_shndx = SHN_ABS;
10371 if (!elf_link_output_symstrtab (flinfo,
10372 (input_bfd->lto_output ? NULL
10373 : input_bfd->filename),
10374 &osym, bfd_abs_section_ptr,
10375 NULL))
10376 return FALSE;
10377 }
10378
10379 osym = *isym;
10380
10381 /* Adjust the section index for the output file. */
10382 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10383 isec->output_section);
10384 if (osym.st_shndx == SHN_BAD)
10385 return FALSE;
10386
10387 /* ELF symbols in relocatable files are section relative, but
10388 in executable files they are virtual addresses. Note that
10389 this code assumes that all ELF sections have an associated
10390 BFD section with a reasonable value for output_offset; below
10391 we assume that they also have a reasonable value for
10392 output_section. Any special sections must be set up to meet
10393 these requirements. */
10394 osym.st_value += isec->output_offset;
10395 if (!bfd_link_relocatable (flinfo->info))
10396 {
10397 osym.st_value += isec->output_section->vma;
10398 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10399 {
10400 /* STT_TLS symbols are relative to PT_TLS segment base. */
10401 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10402 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10403 }
10404 }
10405
10406 indx = bfd_get_symcount (output_bfd);
10407 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10408 if (ret == 0)
10409 return FALSE;
10410 else if (ret == 1)
10411 *pindex = indx;
10412 }
10413
10414 if (bed->s->arch_size == 32)
10415 {
10416 r_type_mask = 0xff;
10417 r_sym_shift = 8;
10418 address_size = 4;
10419 }
10420 else
10421 {
10422 r_type_mask = 0xffffffff;
10423 r_sym_shift = 32;
10424 address_size = 8;
10425 }
10426
10427 /* Relocate the contents of each section. */
10428 sym_hashes = elf_sym_hashes (input_bfd);
10429 for (o = input_bfd->sections; o != NULL; o = o->next)
10430 {
10431 bfd_byte *contents;
10432
10433 if (! o->linker_mark)
10434 {
10435 /* This section was omitted from the link. */
10436 continue;
10437 }
10438
10439 if (!flinfo->info->resolve_section_groups
10440 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10441 {
10442 /* Deal with the group signature symbol. */
10443 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10444 unsigned long symndx = sec_data->this_hdr.sh_info;
10445 asection *osec = o->output_section;
10446
10447 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10448 if (symndx >= locsymcount
10449 || (elf_bad_symtab (input_bfd)
10450 && flinfo->sections[symndx] == NULL))
10451 {
10452 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10453 while (h->root.type == bfd_link_hash_indirect
10454 || h->root.type == bfd_link_hash_warning)
10455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10456 /* Arrange for symbol to be output. */
10457 h->indx = -2;
10458 elf_section_data (osec)->this_hdr.sh_info = -2;
10459 }
10460 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10461 {
10462 /* We'll use the output section target_index. */
10463 asection *sec = flinfo->sections[symndx]->output_section;
10464 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10465 }
10466 else
10467 {
10468 if (flinfo->indices[symndx] == -1)
10469 {
10470 /* Otherwise output the local symbol now. */
10471 Elf_Internal_Sym sym = isymbuf[symndx];
10472 asection *sec = flinfo->sections[symndx]->output_section;
10473 const char *name;
10474 long indx;
10475 int ret;
10476
10477 name = bfd_elf_string_from_elf_section (input_bfd,
10478 symtab_hdr->sh_link,
10479 sym.st_name);
10480 if (name == NULL)
10481 return FALSE;
10482
10483 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10484 sec);
10485 if (sym.st_shndx == SHN_BAD)
10486 return FALSE;
10487
10488 sym.st_value += o->output_offset;
10489
10490 indx = bfd_get_symcount (output_bfd);
10491 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10492 NULL);
10493 if (ret == 0)
10494 return FALSE;
10495 else if (ret == 1)
10496 flinfo->indices[symndx] = indx;
10497 else
10498 abort ();
10499 }
10500 elf_section_data (osec)->this_hdr.sh_info
10501 = flinfo->indices[symndx];
10502 }
10503 }
10504
10505 if ((o->flags & SEC_HAS_CONTENTS) == 0
10506 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10507 continue;
10508
10509 if ((o->flags & SEC_LINKER_CREATED) != 0)
10510 {
10511 /* Section was created by _bfd_elf_link_create_dynamic_sections
10512 or somesuch. */
10513 continue;
10514 }
10515
10516 /* Get the contents of the section. They have been cached by a
10517 relaxation routine. Note that o is a section in an input
10518 file, so the contents field will not have been set by any of
10519 the routines which work on output files. */
10520 if (elf_section_data (o)->this_hdr.contents != NULL)
10521 {
10522 contents = elf_section_data (o)->this_hdr.contents;
10523 if (bed->caches_rawsize
10524 && o->rawsize != 0
10525 && o->rawsize < o->size)
10526 {
10527 memcpy (flinfo->contents, contents, o->rawsize);
10528 contents = flinfo->contents;
10529 }
10530 }
10531 else
10532 {
10533 contents = flinfo->contents;
10534 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10535 return FALSE;
10536 }
10537
10538 if ((o->flags & SEC_RELOC) != 0)
10539 {
10540 Elf_Internal_Rela *internal_relocs;
10541 Elf_Internal_Rela *rel, *relend;
10542 int action_discarded;
10543 int ret;
10544
10545 /* Get the swapped relocs. */
10546 internal_relocs
10547 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10548 flinfo->internal_relocs, FALSE);
10549 if (internal_relocs == NULL
10550 && o->reloc_count > 0)
10551 return FALSE;
10552
10553 /* We need to reverse-copy input .ctors/.dtors sections if
10554 they are placed in .init_array/.finit_array for output. */
10555 if (o->size > address_size
10556 && ((strncmp (o->name, ".ctors", 6) == 0
10557 && strcmp (o->output_section->name,
10558 ".init_array") == 0)
10559 || (strncmp (o->name, ".dtors", 6) == 0
10560 && strcmp (o->output_section->name,
10561 ".fini_array") == 0))
10562 && (o->name[6] == 0 || o->name[6] == '.'))
10563 {
10564 if (o->size * bed->s->int_rels_per_ext_rel
10565 != o->reloc_count * address_size)
10566 {
10567 _bfd_error_handler
10568 /* xgettext:c-format */
10569 (_("error: %pB: size of section %pA is not "
10570 "multiple of address size"),
10571 input_bfd, o);
10572 bfd_set_error (bfd_error_bad_value);
10573 return FALSE;
10574 }
10575 o->flags |= SEC_ELF_REVERSE_COPY;
10576 }
10577
10578 action_discarded = -1;
10579 if (!elf_section_ignore_discarded_relocs (o))
10580 action_discarded = (*bed->action_discarded) (o);
10581
10582 /* Run through the relocs evaluating complex reloc symbols and
10583 looking for relocs against symbols from discarded sections
10584 or section symbols from removed link-once sections.
10585 Complain about relocs against discarded sections. Zero
10586 relocs against removed link-once sections. */
10587
10588 rel = internal_relocs;
10589 relend = rel + o->reloc_count;
10590 for ( ; rel < relend; rel++)
10591 {
10592 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10593 unsigned int s_type;
10594 asection **ps, *sec;
10595 struct elf_link_hash_entry *h = NULL;
10596 const char *sym_name;
10597
10598 if (r_symndx == STN_UNDEF)
10599 continue;
10600
10601 if (r_symndx >= locsymcount
10602 || (elf_bad_symtab (input_bfd)
10603 && flinfo->sections[r_symndx] == NULL))
10604 {
10605 h = sym_hashes[r_symndx - extsymoff];
10606
10607 /* Badly formatted input files can contain relocs that
10608 reference non-existant symbols. Check here so that
10609 we do not seg fault. */
10610 if (h == NULL)
10611 {
10612 _bfd_error_handler
10613 /* xgettext:c-format */
10614 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10615 "that references a non-existent global symbol"),
10616 input_bfd, (uint64_t) rel->r_info, o);
10617 bfd_set_error (bfd_error_bad_value);
10618 return FALSE;
10619 }
10620
10621 while (h->root.type == bfd_link_hash_indirect
10622 || h->root.type == bfd_link_hash_warning)
10623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10624
10625 s_type = h->type;
10626
10627 /* If a plugin symbol is referenced from a non-IR file,
10628 mark the symbol as undefined. Note that the
10629 linker may attach linker created dynamic sections
10630 to the plugin bfd. Symbols defined in linker
10631 created sections are not plugin symbols. */
10632 if ((h->root.non_ir_ref_regular
10633 || h->root.non_ir_ref_dynamic)
10634 && (h->root.type == bfd_link_hash_defined
10635 || h->root.type == bfd_link_hash_defweak)
10636 && (h->root.u.def.section->flags
10637 & SEC_LINKER_CREATED) == 0
10638 && h->root.u.def.section->owner != NULL
10639 && (h->root.u.def.section->owner->flags
10640 & BFD_PLUGIN) != 0)
10641 {
10642 h->root.type = bfd_link_hash_undefined;
10643 h->root.u.undef.abfd = h->root.u.def.section->owner;
10644 }
10645
10646 ps = NULL;
10647 if (h->root.type == bfd_link_hash_defined
10648 || h->root.type == bfd_link_hash_defweak)
10649 ps = &h->root.u.def.section;
10650
10651 sym_name = h->root.root.string;
10652 }
10653 else
10654 {
10655 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10656
10657 s_type = ELF_ST_TYPE (sym->st_info);
10658 ps = &flinfo->sections[r_symndx];
10659 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10660 sym, *ps);
10661 }
10662
10663 if ((s_type == STT_RELC || s_type == STT_SRELC)
10664 && !bfd_link_relocatable (flinfo->info))
10665 {
10666 bfd_vma val;
10667 bfd_vma dot = (rel->r_offset
10668 + o->output_offset + o->output_section->vma);
10669 #ifdef DEBUG
10670 printf ("Encountered a complex symbol!");
10671 printf (" (input_bfd %s, section %s, reloc %ld\n",
10672 input_bfd->filename, o->name,
10673 (long) (rel - internal_relocs));
10674 printf (" symbol: idx %8.8lx, name %s\n",
10675 r_symndx, sym_name);
10676 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10677 (unsigned long) rel->r_info,
10678 (unsigned long) rel->r_offset);
10679 #endif
10680 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10681 isymbuf, locsymcount, s_type == STT_SRELC))
10682 return FALSE;
10683
10684 /* Symbol evaluated OK. Update to absolute value. */
10685 set_symbol_value (input_bfd, isymbuf, locsymcount,
10686 r_symndx, val);
10687 continue;
10688 }
10689
10690 if (action_discarded != -1 && ps != NULL)
10691 {
10692 /* Complain if the definition comes from a
10693 discarded section. */
10694 if ((sec = *ps) != NULL && discarded_section (sec))
10695 {
10696 BFD_ASSERT (r_symndx != STN_UNDEF);
10697 if (action_discarded & COMPLAIN)
10698 (*flinfo->info->callbacks->einfo)
10699 /* xgettext:c-format */
10700 (_("%X`%s' referenced in section `%pA' of %pB: "
10701 "defined in discarded section `%pA' of %pB\n"),
10702 sym_name, o, input_bfd, sec, sec->owner);
10703
10704 /* Try to do the best we can to support buggy old
10705 versions of gcc. Pretend that the symbol is
10706 really defined in the kept linkonce section.
10707 FIXME: This is quite broken. Modifying the
10708 symbol here means we will be changing all later
10709 uses of the symbol, not just in this section. */
10710 if (action_discarded & PRETEND)
10711 {
10712 asection *kept;
10713
10714 kept = _bfd_elf_check_kept_section (sec,
10715 flinfo->info);
10716 if (kept != NULL)
10717 {
10718 *ps = kept;
10719 continue;
10720 }
10721 }
10722 }
10723 }
10724 }
10725
10726 /* Relocate the section by invoking a back end routine.
10727
10728 The back end routine is responsible for adjusting the
10729 section contents as necessary, and (if using Rela relocs
10730 and generating a relocatable output file) adjusting the
10731 reloc addend as necessary.
10732
10733 The back end routine does not have to worry about setting
10734 the reloc address or the reloc symbol index.
10735
10736 The back end routine is given a pointer to the swapped in
10737 internal symbols, and can access the hash table entries
10738 for the external symbols via elf_sym_hashes (input_bfd).
10739
10740 When generating relocatable output, the back end routine
10741 must handle STB_LOCAL/STT_SECTION symbols specially. The
10742 output symbol is going to be a section symbol
10743 corresponding to the output section, which will require
10744 the addend to be adjusted. */
10745
10746 ret = (*relocate_section) (output_bfd, flinfo->info,
10747 input_bfd, o, contents,
10748 internal_relocs,
10749 isymbuf,
10750 flinfo->sections);
10751 if (!ret)
10752 return FALSE;
10753
10754 if (ret == 2
10755 || bfd_link_relocatable (flinfo->info)
10756 || flinfo->info->emitrelocations)
10757 {
10758 Elf_Internal_Rela *irela;
10759 Elf_Internal_Rela *irelaend, *irelamid;
10760 bfd_vma last_offset;
10761 struct elf_link_hash_entry **rel_hash;
10762 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10763 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10764 unsigned int next_erel;
10765 bfd_boolean rela_normal;
10766 struct bfd_elf_section_data *esdi, *esdo;
10767
10768 esdi = elf_section_data (o);
10769 esdo = elf_section_data (o->output_section);
10770 rela_normal = FALSE;
10771
10772 /* Adjust the reloc addresses and symbol indices. */
10773
10774 irela = internal_relocs;
10775 irelaend = irela + o->reloc_count;
10776 rel_hash = esdo->rel.hashes + esdo->rel.count;
10777 /* We start processing the REL relocs, if any. When we reach
10778 IRELAMID in the loop, we switch to the RELA relocs. */
10779 irelamid = irela;
10780 if (esdi->rel.hdr != NULL)
10781 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10782 * bed->s->int_rels_per_ext_rel);
10783 rel_hash_list = rel_hash;
10784 rela_hash_list = NULL;
10785 last_offset = o->output_offset;
10786 if (!bfd_link_relocatable (flinfo->info))
10787 last_offset += o->output_section->vma;
10788 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10789 {
10790 unsigned long r_symndx;
10791 asection *sec;
10792 Elf_Internal_Sym sym;
10793
10794 if (next_erel == bed->s->int_rels_per_ext_rel)
10795 {
10796 rel_hash++;
10797 next_erel = 0;
10798 }
10799
10800 if (irela == irelamid)
10801 {
10802 rel_hash = esdo->rela.hashes + esdo->rela.count;
10803 rela_hash_list = rel_hash;
10804 rela_normal = bed->rela_normal;
10805 }
10806
10807 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10808 flinfo->info, o,
10809 irela->r_offset);
10810 if (irela->r_offset >= (bfd_vma) -2)
10811 {
10812 /* This is a reloc for a deleted entry or somesuch.
10813 Turn it into an R_*_NONE reloc, at the same
10814 offset as the last reloc. elf_eh_frame.c and
10815 bfd_elf_discard_info rely on reloc offsets
10816 being ordered. */
10817 irela->r_offset = last_offset;
10818 irela->r_info = 0;
10819 irela->r_addend = 0;
10820 continue;
10821 }
10822
10823 irela->r_offset += o->output_offset;
10824
10825 /* Relocs in an executable have to be virtual addresses. */
10826 if (!bfd_link_relocatable (flinfo->info))
10827 irela->r_offset += o->output_section->vma;
10828
10829 last_offset = irela->r_offset;
10830
10831 r_symndx = irela->r_info >> r_sym_shift;
10832 if (r_symndx == STN_UNDEF)
10833 continue;
10834
10835 if (r_symndx >= locsymcount
10836 || (elf_bad_symtab (input_bfd)
10837 && flinfo->sections[r_symndx] == NULL))
10838 {
10839 struct elf_link_hash_entry *rh;
10840 unsigned long indx;
10841
10842 /* This is a reloc against a global symbol. We
10843 have not yet output all the local symbols, so
10844 we do not know the symbol index of any global
10845 symbol. We set the rel_hash entry for this
10846 reloc to point to the global hash table entry
10847 for this symbol. The symbol index is then
10848 set at the end of bfd_elf_final_link. */
10849 indx = r_symndx - extsymoff;
10850 rh = elf_sym_hashes (input_bfd)[indx];
10851 while (rh->root.type == bfd_link_hash_indirect
10852 || rh->root.type == bfd_link_hash_warning)
10853 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10854
10855 /* Setting the index to -2 tells
10856 elf_link_output_extsym that this symbol is
10857 used by a reloc. */
10858 BFD_ASSERT (rh->indx < 0);
10859 rh->indx = -2;
10860 *rel_hash = rh;
10861
10862 continue;
10863 }
10864
10865 /* This is a reloc against a local symbol. */
10866
10867 *rel_hash = NULL;
10868 sym = isymbuf[r_symndx];
10869 sec = flinfo->sections[r_symndx];
10870 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10871 {
10872 /* I suppose the backend ought to fill in the
10873 section of any STT_SECTION symbol against a
10874 processor specific section. */
10875 r_symndx = STN_UNDEF;
10876 if (bfd_is_abs_section (sec))
10877 ;
10878 else if (sec == NULL || sec->owner == NULL)
10879 {
10880 bfd_set_error (bfd_error_bad_value);
10881 return FALSE;
10882 }
10883 else
10884 {
10885 asection *osec = sec->output_section;
10886
10887 /* If we have discarded a section, the output
10888 section will be the absolute section. In
10889 case of discarded SEC_MERGE sections, use
10890 the kept section. relocate_section should
10891 have already handled discarded linkonce
10892 sections. */
10893 if (bfd_is_abs_section (osec)
10894 && sec->kept_section != NULL
10895 && sec->kept_section->output_section != NULL)
10896 {
10897 osec = sec->kept_section->output_section;
10898 irela->r_addend -= osec->vma;
10899 }
10900
10901 if (!bfd_is_abs_section (osec))
10902 {
10903 r_symndx = osec->target_index;
10904 if (r_symndx == STN_UNDEF)
10905 {
10906 irela->r_addend += osec->vma;
10907 osec = _bfd_nearby_section (output_bfd, osec,
10908 osec->vma);
10909 irela->r_addend -= osec->vma;
10910 r_symndx = osec->target_index;
10911 }
10912 }
10913 }
10914
10915 /* Adjust the addend according to where the
10916 section winds up in the output section. */
10917 if (rela_normal)
10918 irela->r_addend += sec->output_offset;
10919 }
10920 else
10921 {
10922 if (flinfo->indices[r_symndx] == -1)
10923 {
10924 unsigned long shlink;
10925 const char *name;
10926 asection *osec;
10927 long indx;
10928
10929 if (flinfo->info->strip == strip_all)
10930 {
10931 /* You can't do ld -r -s. */
10932 bfd_set_error (bfd_error_invalid_operation);
10933 return FALSE;
10934 }
10935
10936 /* This symbol was skipped earlier, but
10937 since it is needed by a reloc, we
10938 must output it now. */
10939 shlink = symtab_hdr->sh_link;
10940 name = (bfd_elf_string_from_elf_section
10941 (input_bfd, shlink, sym.st_name));
10942 if (name == NULL)
10943 return FALSE;
10944
10945 osec = sec->output_section;
10946 sym.st_shndx =
10947 _bfd_elf_section_from_bfd_section (output_bfd,
10948 osec);
10949 if (sym.st_shndx == SHN_BAD)
10950 return FALSE;
10951
10952 sym.st_value += sec->output_offset;
10953 if (!bfd_link_relocatable (flinfo->info))
10954 {
10955 sym.st_value += osec->vma;
10956 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10957 {
10958 /* STT_TLS symbols are relative to PT_TLS
10959 segment base. */
10960 BFD_ASSERT (elf_hash_table (flinfo->info)
10961 ->tls_sec != NULL);
10962 sym.st_value -= (elf_hash_table (flinfo->info)
10963 ->tls_sec->vma);
10964 }
10965 }
10966
10967 indx = bfd_get_symcount (output_bfd);
10968 ret = elf_link_output_symstrtab (flinfo, name,
10969 &sym, sec,
10970 NULL);
10971 if (ret == 0)
10972 return FALSE;
10973 else if (ret == 1)
10974 flinfo->indices[r_symndx] = indx;
10975 else
10976 abort ();
10977 }
10978
10979 r_symndx = flinfo->indices[r_symndx];
10980 }
10981
10982 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10983 | (irela->r_info & r_type_mask));
10984 }
10985
10986 /* Swap out the relocs. */
10987 input_rel_hdr = esdi->rel.hdr;
10988 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10989 {
10990 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10991 input_rel_hdr,
10992 internal_relocs,
10993 rel_hash_list))
10994 return FALSE;
10995 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10996 * bed->s->int_rels_per_ext_rel);
10997 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10998 }
10999
11000 input_rela_hdr = esdi->rela.hdr;
11001 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11002 {
11003 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11004 input_rela_hdr,
11005 internal_relocs,
11006 rela_hash_list))
11007 return FALSE;
11008 }
11009 }
11010 }
11011
11012 /* Write out the modified section contents. */
11013 if (bed->elf_backend_write_section
11014 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11015 contents))
11016 {
11017 /* Section written out. */
11018 }
11019 else switch (o->sec_info_type)
11020 {
11021 case SEC_INFO_TYPE_STABS:
11022 if (! (_bfd_write_section_stabs
11023 (output_bfd,
11024 &elf_hash_table (flinfo->info)->stab_info,
11025 o, &elf_section_data (o)->sec_info, contents)))
11026 return FALSE;
11027 break;
11028 case SEC_INFO_TYPE_MERGE:
11029 if (! _bfd_write_merged_section (output_bfd, o,
11030 elf_section_data (o)->sec_info))
11031 return FALSE;
11032 break;
11033 case SEC_INFO_TYPE_EH_FRAME:
11034 {
11035 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11036 o, contents))
11037 return FALSE;
11038 }
11039 break;
11040 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11041 {
11042 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11043 flinfo->info,
11044 o, contents))
11045 return FALSE;
11046 }
11047 break;
11048 default:
11049 {
11050 if (! (o->flags & SEC_EXCLUDE))
11051 {
11052 file_ptr offset = (file_ptr) o->output_offset;
11053 bfd_size_type todo = o->size;
11054
11055 offset *= bfd_octets_per_byte (output_bfd);
11056
11057 if ((o->flags & SEC_ELF_REVERSE_COPY))
11058 {
11059 /* Reverse-copy input section to output. */
11060 do
11061 {
11062 todo -= address_size;
11063 if (! bfd_set_section_contents (output_bfd,
11064 o->output_section,
11065 contents + todo,
11066 offset,
11067 address_size))
11068 return FALSE;
11069 if (todo == 0)
11070 break;
11071 offset += address_size;
11072 }
11073 while (1);
11074 }
11075 else if (! bfd_set_section_contents (output_bfd,
11076 o->output_section,
11077 contents,
11078 offset, todo))
11079 return FALSE;
11080 }
11081 }
11082 break;
11083 }
11084 }
11085
11086 return TRUE;
11087 }
11088
11089 /* Generate a reloc when linking an ELF file. This is a reloc
11090 requested by the linker, and does not come from any input file. This
11091 is used to build constructor and destructor tables when linking
11092 with -Ur. */
11093
11094 static bfd_boolean
11095 elf_reloc_link_order (bfd *output_bfd,
11096 struct bfd_link_info *info,
11097 asection *output_section,
11098 struct bfd_link_order *link_order)
11099 {
11100 reloc_howto_type *howto;
11101 long indx;
11102 bfd_vma offset;
11103 bfd_vma addend;
11104 struct bfd_elf_section_reloc_data *reldata;
11105 struct elf_link_hash_entry **rel_hash_ptr;
11106 Elf_Internal_Shdr *rel_hdr;
11107 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11108 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11109 bfd_byte *erel;
11110 unsigned int i;
11111 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11112
11113 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11114 if (howto == NULL)
11115 {
11116 bfd_set_error (bfd_error_bad_value);
11117 return FALSE;
11118 }
11119
11120 addend = link_order->u.reloc.p->addend;
11121
11122 if (esdo->rel.hdr)
11123 reldata = &esdo->rel;
11124 else if (esdo->rela.hdr)
11125 reldata = &esdo->rela;
11126 else
11127 {
11128 reldata = NULL;
11129 BFD_ASSERT (0);
11130 }
11131
11132 /* Figure out the symbol index. */
11133 rel_hash_ptr = reldata->hashes + reldata->count;
11134 if (link_order->type == bfd_section_reloc_link_order)
11135 {
11136 indx = link_order->u.reloc.p->u.section->target_index;
11137 BFD_ASSERT (indx != 0);
11138 *rel_hash_ptr = NULL;
11139 }
11140 else
11141 {
11142 struct elf_link_hash_entry *h;
11143
11144 /* Treat a reloc against a defined symbol as though it were
11145 actually against the section. */
11146 h = ((struct elf_link_hash_entry *)
11147 bfd_wrapped_link_hash_lookup (output_bfd, info,
11148 link_order->u.reloc.p->u.name,
11149 FALSE, FALSE, TRUE));
11150 if (h != NULL
11151 && (h->root.type == bfd_link_hash_defined
11152 || h->root.type == bfd_link_hash_defweak))
11153 {
11154 asection *section;
11155
11156 section = h->root.u.def.section;
11157 indx = section->output_section->target_index;
11158 *rel_hash_ptr = NULL;
11159 /* It seems that we ought to add the symbol value to the
11160 addend here, but in practice it has already been added
11161 because it was passed to constructor_callback. */
11162 addend += section->output_section->vma + section->output_offset;
11163 }
11164 else if (h != NULL)
11165 {
11166 /* Setting the index to -2 tells elf_link_output_extsym that
11167 this symbol is used by a reloc. */
11168 h->indx = -2;
11169 *rel_hash_ptr = h;
11170 indx = 0;
11171 }
11172 else
11173 {
11174 (*info->callbacks->unattached_reloc)
11175 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11176 indx = 0;
11177 }
11178 }
11179
11180 /* If this is an inplace reloc, we must write the addend into the
11181 object file. */
11182 if (howto->partial_inplace && addend != 0)
11183 {
11184 bfd_size_type size;
11185 bfd_reloc_status_type rstat;
11186 bfd_byte *buf;
11187 bfd_boolean ok;
11188 const char *sym_name;
11189
11190 size = (bfd_size_type) bfd_get_reloc_size (howto);
11191 buf = (bfd_byte *) bfd_zmalloc (size);
11192 if (buf == NULL && size != 0)
11193 return FALSE;
11194 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11195 switch (rstat)
11196 {
11197 case bfd_reloc_ok:
11198 break;
11199
11200 default:
11201 case bfd_reloc_outofrange:
11202 abort ();
11203
11204 case bfd_reloc_overflow:
11205 if (link_order->type == bfd_section_reloc_link_order)
11206 sym_name = bfd_section_name (output_bfd,
11207 link_order->u.reloc.p->u.section);
11208 else
11209 sym_name = link_order->u.reloc.p->u.name;
11210 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11211 howto->name, addend, NULL, NULL,
11212 (bfd_vma) 0);
11213 break;
11214 }
11215
11216 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11217 link_order->offset
11218 * bfd_octets_per_byte (output_bfd),
11219 size);
11220 free (buf);
11221 if (! ok)
11222 return FALSE;
11223 }
11224
11225 /* The address of a reloc is relative to the section in a
11226 relocatable file, and is a virtual address in an executable
11227 file. */
11228 offset = link_order->offset;
11229 if (! bfd_link_relocatable (info))
11230 offset += output_section->vma;
11231
11232 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11233 {
11234 irel[i].r_offset = offset;
11235 irel[i].r_info = 0;
11236 irel[i].r_addend = 0;
11237 }
11238 if (bed->s->arch_size == 32)
11239 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11240 else
11241 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11242
11243 rel_hdr = reldata->hdr;
11244 erel = rel_hdr->contents;
11245 if (rel_hdr->sh_type == SHT_REL)
11246 {
11247 erel += reldata->count * bed->s->sizeof_rel;
11248 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11249 }
11250 else
11251 {
11252 irel[0].r_addend = addend;
11253 erel += reldata->count * bed->s->sizeof_rela;
11254 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11255 }
11256
11257 ++reldata->count;
11258
11259 return TRUE;
11260 }
11261
11262
11263 /* Get the output vma of the section pointed to by the sh_link field. */
11264
11265 static bfd_vma
11266 elf_get_linked_section_vma (struct bfd_link_order *p)
11267 {
11268 Elf_Internal_Shdr **elf_shdrp;
11269 asection *s;
11270 int elfsec;
11271
11272 s = p->u.indirect.section;
11273 elf_shdrp = elf_elfsections (s->owner);
11274 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11275 elfsec = elf_shdrp[elfsec]->sh_link;
11276 /* PR 290:
11277 The Intel C compiler generates SHT_IA_64_UNWIND with
11278 SHF_LINK_ORDER. But it doesn't set the sh_link or
11279 sh_info fields. Hence we could get the situation
11280 where elfsec is 0. */
11281 if (elfsec == 0)
11282 {
11283 const struct elf_backend_data *bed
11284 = get_elf_backend_data (s->owner);
11285 if (bed->link_order_error_handler)
11286 bed->link_order_error_handler
11287 /* xgettext:c-format */
11288 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11289 return 0;
11290 }
11291 else
11292 {
11293 s = elf_shdrp[elfsec]->bfd_section;
11294 return s->output_section->vma + s->output_offset;
11295 }
11296 }
11297
11298
11299 /* Compare two sections based on the locations of the sections they are
11300 linked to. Used by elf_fixup_link_order. */
11301
11302 static int
11303 compare_link_order (const void * a, const void * b)
11304 {
11305 bfd_vma apos;
11306 bfd_vma bpos;
11307
11308 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11309 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11310 if (apos < bpos)
11311 return -1;
11312 return apos > bpos;
11313 }
11314
11315
11316 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11317 order as their linked sections. Returns false if this could not be done
11318 because an output section includes both ordered and unordered
11319 sections. Ideally we'd do this in the linker proper. */
11320
11321 static bfd_boolean
11322 elf_fixup_link_order (bfd *abfd, asection *o)
11323 {
11324 int seen_linkorder;
11325 int seen_other;
11326 int n;
11327 struct bfd_link_order *p;
11328 bfd *sub;
11329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11330 unsigned elfsec;
11331 struct bfd_link_order **sections;
11332 asection *s, *other_sec, *linkorder_sec;
11333 bfd_vma offset;
11334
11335 other_sec = NULL;
11336 linkorder_sec = NULL;
11337 seen_other = 0;
11338 seen_linkorder = 0;
11339 for (p = o->map_head.link_order; p != NULL; p = p->next)
11340 {
11341 if (p->type == bfd_indirect_link_order)
11342 {
11343 s = p->u.indirect.section;
11344 sub = s->owner;
11345 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11346 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11347 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11348 && elfsec < elf_numsections (sub)
11349 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11350 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11351 {
11352 seen_linkorder++;
11353 linkorder_sec = s;
11354 }
11355 else
11356 {
11357 seen_other++;
11358 other_sec = s;
11359 }
11360 }
11361 else
11362 seen_other++;
11363
11364 if (seen_other && seen_linkorder)
11365 {
11366 if (other_sec && linkorder_sec)
11367 _bfd_error_handler
11368 /* xgettext:c-format */
11369 (_("%pA has both ordered [`%pA' in %pB] "
11370 "and unordered [`%pA' in %pB] sections"),
11371 o, linkorder_sec, linkorder_sec->owner,
11372 other_sec, other_sec->owner);
11373 else
11374 _bfd_error_handler
11375 (_("%pA has both ordered and unordered sections"), o);
11376 bfd_set_error (bfd_error_bad_value);
11377 return FALSE;
11378 }
11379 }
11380
11381 if (!seen_linkorder)
11382 return TRUE;
11383
11384 sections = (struct bfd_link_order **)
11385 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11386 if (sections == NULL)
11387 return FALSE;
11388 seen_linkorder = 0;
11389
11390 for (p = o->map_head.link_order; p != NULL; p = p->next)
11391 {
11392 sections[seen_linkorder++] = p;
11393 }
11394 /* Sort the input sections in the order of their linked section. */
11395 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11396 compare_link_order);
11397
11398 /* Change the offsets of the sections. */
11399 offset = 0;
11400 for (n = 0; n < seen_linkorder; n++)
11401 {
11402 s = sections[n]->u.indirect.section;
11403 offset &= ~(bfd_vma) 0 << s->alignment_power;
11404 s->output_offset = offset / bfd_octets_per_byte (abfd);
11405 sections[n]->offset = offset;
11406 offset += sections[n]->size;
11407 }
11408
11409 free (sections);
11410 return TRUE;
11411 }
11412
11413 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11414 Returns TRUE upon success, FALSE otherwise. */
11415
11416 static bfd_boolean
11417 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11418 {
11419 bfd_boolean ret = FALSE;
11420 bfd *implib_bfd;
11421 const struct elf_backend_data *bed;
11422 flagword flags;
11423 enum bfd_architecture arch;
11424 unsigned int mach;
11425 asymbol **sympp = NULL;
11426 long symsize;
11427 long symcount;
11428 long src_count;
11429 elf_symbol_type *osymbuf;
11430
11431 implib_bfd = info->out_implib_bfd;
11432 bed = get_elf_backend_data (abfd);
11433
11434 if (!bfd_set_format (implib_bfd, bfd_object))
11435 return FALSE;
11436
11437 /* Use flag from executable but make it a relocatable object. */
11438 flags = bfd_get_file_flags (abfd);
11439 flags &= ~HAS_RELOC;
11440 if (!bfd_set_start_address (implib_bfd, 0)
11441 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11442 return FALSE;
11443
11444 /* Copy architecture of output file to import library file. */
11445 arch = bfd_get_arch (abfd);
11446 mach = bfd_get_mach (abfd);
11447 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11448 && (abfd->target_defaulted
11449 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11450 return FALSE;
11451
11452 /* Get symbol table size. */
11453 symsize = bfd_get_symtab_upper_bound (abfd);
11454 if (symsize < 0)
11455 return FALSE;
11456
11457 /* Read in the symbol table. */
11458 sympp = (asymbol **) xmalloc (symsize);
11459 symcount = bfd_canonicalize_symtab (abfd, sympp);
11460 if (symcount < 0)
11461 goto free_sym_buf;
11462
11463 /* Allow the BFD backend to copy any private header data it
11464 understands from the output BFD to the import library BFD. */
11465 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11466 goto free_sym_buf;
11467
11468 /* Filter symbols to appear in the import library. */
11469 if (bed->elf_backend_filter_implib_symbols)
11470 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11471 symcount);
11472 else
11473 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11474 if (symcount == 0)
11475 {
11476 bfd_set_error (bfd_error_no_symbols);
11477 _bfd_error_handler (_("%pB: no symbol found for import library"),
11478 implib_bfd);
11479 goto free_sym_buf;
11480 }
11481
11482
11483 /* Make symbols absolute. */
11484 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11485 sizeof (*osymbuf));
11486 for (src_count = 0; src_count < symcount; src_count++)
11487 {
11488 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11489 sizeof (*osymbuf));
11490 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11491 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11492 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11493 osymbuf[src_count].internal_elf_sym.st_value =
11494 osymbuf[src_count].symbol.value;
11495 sympp[src_count] = &osymbuf[src_count].symbol;
11496 }
11497
11498 bfd_set_symtab (implib_bfd, sympp, symcount);
11499
11500 /* Allow the BFD backend to copy any private data it understands
11501 from the output BFD to the import library BFD. This is done last
11502 to permit the routine to look at the filtered symbol table. */
11503 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11504 goto free_sym_buf;
11505
11506 if (!bfd_close (implib_bfd))
11507 goto free_sym_buf;
11508
11509 ret = TRUE;
11510
11511 free_sym_buf:
11512 free (sympp);
11513 return ret;
11514 }
11515
11516 static void
11517 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11518 {
11519 asection *o;
11520
11521 if (flinfo->symstrtab != NULL)
11522 _bfd_elf_strtab_free (flinfo->symstrtab);
11523 if (flinfo->contents != NULL)
11524 free (flinfo->contents);
11525 if (flinfo->external_relocs != NULL)
11526 free (flinfo->external_relocs);
11527 if (flinfo->internal_relocs != NULL)
11528 free (flinfo->internal_relocs);
11529 if (flinfo->external_syms != NULL)
11530 free (flinfo->external_syms);
11531 if (flinfo->locsym_shndx != NULL)
11532 free (flinfo->locsym_shndx);
11533 if (flinfo->internal_syms != NULL)
11534 free (flinfo->internal_syms);
11535 if (flinfo->indices != NULL)
11536 free (flinfo->indices);
11537 if (flinfo->sections != NULL)
11538 free (flinfo->sections);
11539 if (flinfo->symshndxbuf != NULL)
11540 free (flinfo->symshndxbuf);
11541 for (o = obfd->sections; o != NULL; o = o->next)
11542 {
11543 struct bfd_elf_section_data *esdo = elf_section_data (o);
11544 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11545 free (esdo->rel.hashes);
11546 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11547 free (esdo->rela.hashes);
11548 }
11549 }
11550
11551 /* Do the final step of an ELF link. */
11552
11553 bfd_boolean
11554 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11555 {
11556 bfd_boolean dynamic;
11557 bfd_boolean emit_relocs;
11558 bfd *dynobj;
11559 struct elf_final_link_info flinfo;
11560 asection *o;
11561 struct bfd_link_order *p;
11562 bfd *sub;
11563 bfd_size_type max_contents_size;
11564 bfd_size_type max_external_reloc_size;
11565 bfd_size_type max_internal_reloc_count;
11566 bfd_size_type max_sym_count;
11567 bfd_size_type max_sym_shndx_count;
11568 Elf_Internal_Sym elfsym;
11569 unsigned int i;
11570 Elf_Internal_Shdr *symtab_hdr;
11571 Elf_Internal_Shdr *symtab_shndx_hdr;
11572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11573 struct elf_outext_info eoinfo;
11574 bfd_boolean merged;
11575 size_t relativecount = 0;
11576 asection *reldyn = 0;
11577 bfd_size_type amt;
11578 asection *attr_section = NULL;
11579 bfd_vma attr_size = 0;
11580 const char *std_attrs_section;
11581 struct elf_link_hash_table *htab = elf_hash_table (info);
11582
11583 if (!is_elf_hash_table (htab))
11584 return FALSE;
11585
11586 if (bfd_link_pic (info))
11587 abfd->flags |= DYNAMIC;
11588
11589 dynamic = htab->dynamic_sections_created;
11590 dynobj = htab->dynobj;
11591
11592 emit_relocs = (bfd_link_relocatable (info)
11593 || info->emitrelocations);
11594
11595 flinfo.info = info;
11596 flinfo.output_bfd = abfd;
11597 flinfo.symstrtab = _bfd_elf_strtab_init ();
11598 if (flinfo.symstrtab == NULL)
11599 return FALSE;
11600
11601 if (! dynamic)
11602 {
11603 flinfo.hash_sec = NULL;
11604 flinfo.symver_sec = NULL;
11605 }
11606 else
11607 {
11608 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11609 /* Note that dynsym_sec can be NULL (on VMS). */
11610 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11611 /* Note that it is OK if symver_sec is NULL. */
11612 }
11613
11614 flinfo.contents = NULL;
11615 flinfo.external_relocs = NULL;
11616 flinfo.internal_relocs = NULL;
11617 flinfo.external_syms = NULL;
11618 flinfo.locsym_shndx = NULL;
11619 flinfo.internal_syms = NULL;
11620 flinfo.indices = NULL;
11621 flinfo.sections = NULL;
11622 flinfo.symshndxbuf = NULL;
11623 flinfo.filesym_count = 0;
11624
11625 /* The object attributes have been merged. Remove the input
11626 sections from the link, and set the contents of the output
11627 secton. */
11628 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11629 for (o = abfd->sections; o != NULL; o = o->next)
11630 {
11631 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11632 || strcmp (o->name, ".gnu.attributes") == 0)
11633 {
11634 for (p = o->map_head.link_order; p != NULL; p = p->next)
11635 {
11636 asection *input_section;
11637
11638 if (p->type != bfd_indirect_link_order)
11639 continue;
11640 input_section = p->u.indirect.section;
11641 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11642 elf_link_input_bfd ignores this section. */
11643 input_section->flags &= ~SEC_HAS_CONTENTS;
11644 }
11645
11646 attr_size = bfd_elf_obj_attr_size (abfd);
11647 if (attr_size)
11648 {
11649 bfd_set_section_size (abfd, o, attr_size);
11650 attr_section = o;
11651 /* Skip this section later on. */
11652 o->map_head.link_order = NULL;
11653 }
11654 else
11655 o->flags |= SEC_EXCLUDE;
11656 }
11657 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11658 {
11659 /* Remove empty group section from linker output. */
11660 o->flags |= SEC_EXCLUDE;
11661 bfd_section_list_remove (abfd, o);
11662 abfd->section_count--;
11663 }
11664 }
11665
11666 /* Count up the number of relocations we will output for each output
11667 section, so that we know the sizes of the reloc sections. We
11668 also figure out some maximum sizes. */
11669 max_contents_size = 0;
11670 max_external_reloc_size = 0;
11671 max_internal_reloc_count = 0;
11672 max_sym_count = 0;
11673 max_sym_shndx_count = 0;
11674 merged = FALSE;
11675 for (o = abfd->sections; o != NULL; o = o->next)
11676 {
11677 struct bfd_elf_section_data *esdo = elf_section_data (o);
11678 o->reloc_count = 0;
11679
11680 for (p = o->map_head.link_order; p != NULL; p = p->next)
11681 {
11682 unsigned int reloc_count = 0;
11683 unsigned int additional_reloc_count = 0;
11684 struct bfd_elf_section_data *esdi = NULL;
11685
11686 if (p->type == bfd_section_reloc_link_order
11687 || p->type == bfd_symbol_reloc_link_order)
11688 reloc_count = 1;
11689 else if (p->type == bfd_indirect_link_order)
11690 {
11691 asection *sec;
11692
11693 sec = p->u.indirect.section;
11694
11695 /* Mark all sections which are to be included in the
11696 link. This will normally be every section. We need
11697 to do this so that we can identify any sections which
11698 the linker has decided to not include. */
11699 sec->linker_mark = TRUE;
11700
11701 if (sec->flags & SEC_MERGE)
11702 merged = TRUE;
11703
11704 if (sec->rawsize > max_contents_size)
11705 max_contents_size = sec->rawsize;
11706 if (sec->size > max_contents_size)
11707 max_contents_size = sec->size;
11708
11709 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11710 && (sec->owner->flags & DYNAMIC) == 0)
11711 {
11712 size_t sym_count;
11713
11714 /* We are interested in just local symbols, not all
11715 symbols. */
11716 if (elf_bad_symtab (sec->owner))
11717 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11718 / bed->s->sizeof_sym);
11719 else
11720 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11721
11722 if (sym_count > max_sym_count)
11723 max_sym_count = sym_count;
11724
11725 if (sym_count > max_sym_shndx_count
11726 && elf_symtab_shndx_list (sec->owner) != NULL)
11727 max_sym_shndx_count = sym_count;
11728
11729 if (esdo->this_hdr.sh_type == SHT_REL
11730 || esdo->this_hdr.sh_type == SHT_RELA)
11731 /* Some backends use reloc_count in relocation sections
11732 to count particular types of relocs. Of course,
11733 reloc sections themselves can't have relocations. */
11734 ;
11735 else if (emit_relocs)
11736 {
11737 reloc_count = sec->reloc_count;
11738 if (bed->elf_backend_count_additional_relocs)
11739 {
11740 int c;
11741 c = (*bed->elf_backend_count_additional_relocs) (sec);
11742 additional_reloc_count += c;
11743 }
11744 }
11745 else if (bed->elf_backend_count_relocs)
11746 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11747
11748 esdi = elf_section_data (sec);
11749
11750 if ((sec->flags & SEC_RELOC) != 0)
11751 {
11752 size_t ext_size = 0;
11753
11754 if (esdi->rel.hdr != NULL)
11755 ext_size = esdi->rel.hdr->sh_size;
11756 if (esdi->rela.hdr != NULL)
11757 ext_size += esdi->rela.hdr->sh_size;
11758
11759 if (ext_size > max_external_reloc_size)
11760 max_external_reloc_size = ext_size;
11761 if (sec->reloc_count > max_internal_reloc_count)
11762 max_internal_reloc_count = sec->reloc_count;
11763 }
11764 }
11765 }
11766
11767 if (reloc_count == 0)
11768 continue;
11769
11770 reloc_count += additional_reloc_count;
11771 o->reloc_count += reloc_count;
11772
11773 if (p->type == bfd_indirect_link_order && emit_relocs)
11774 {
11775 if (esdi->rel.hdr)
11776 {
11777 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11778 esdo->rel.count += additional_reloc_count;
11779 }
11780 if (esdi->rela.hdr)
11781 {
11782 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11783 esdo->rela.count += additional_reloc_count;
11784 }
11785 }
11786 else
11787 {
11788 if (o->use_rela_p)
11789 esdo->rela.count += reloc_count;
11790 else
11791 esdo->rel.count += reloc_count;
11792 }
11793 }
11794
11795 if (o->reloc_count > 0)
11796 o->flags |= SEC_RELOC;
11797 else
11798 {
11799 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11800 set it (this is probably a bug) and if it is set
11801 assign_section_numbers will create a reloc section. */
11802 o->flags &=~ SEC_RELOC;
11803 }
11804
11805 /* If the SEC_ALLOC flag is not set, force the section VMA to
11806 zero. This is done in elf_fake_sections as well, but forcing
11807 the VMA to 0 here will ensure that relocs against these
11808 sections are handled correctly. */
11809 if ((o->flags & SEC_ALLOC) == 0
11810 && ! o->user_set_vma)
11811 o->vma = 0;
11812 }
11813
11814 if (! bfd_link_relocatable (info) && merged)
11815 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11816
11817 /* Figure out the file positions for everything but the symbol table
11818 and the relocs. We set symcount to force assign_section_numbers
11819 to create a symbol table. */
11820 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11821 BFD_ASSERT (! abfd->output_has_begun);
11822 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11823 goto error_return;
11824
11825 /* Set sizes, and assign file positions for reloc sections. */
11826 for (o = abfd->sections; o != NULL; o = o->next)
11827 {
11828 struct bfd_elf_section_data *esdo = elf_section_data (o);
11829 if ((o->flags & SEC_RELOC) != 0)
11830 {
11831 if (esdo->rel.hdr
11832 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11833 goto error_return;
11834
11835 if (esdo->rela.hdr
11836 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11837 goto error_return;
11838 }
11839
11840 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11841 to count upwards while actually outputting the relocations. */
11842 esdo->rel.count = 0;
11843 esdo->rela.count = 0;
11844
11845 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11846 {
11847 /* Cache the section contents so that they can be compressed
11848 later. Use bfd_malloc since it will be freed by
11849 bfd_compress_section_contents. */
11850 unsigned char *contents = esdo->this_hdr.contents;
11851 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11852 abort ();
11853 contents
11854 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11855 if (contents == NULL)
11856 goto error_return;
11857 esdo->this_hdr.contents = contents;
11858 }
11859 }
11860
11861 /* We have now assigned file positions for all the sections except
11862 .symtab, .strtab, and non-loaded reloc sections. We start the
11863 .symtab section at the current file position, and write directly
11864 to it. We build the .strtab section in memory. */
11865 bfd_get_symcount (abfd) = 0;
11866 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11867 /* sh_name is set in prep_headers. */
11868 symtab_hdr->sh_type = SHT_SYMTAB;
11869 /* sh_flags, sh_addr and sh_size all start off zero. */
11870 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11871 /* sh_link is set in assign_section_numbers. */
11872 /* sh_info is set below. */
11873 /* sh_offset is set just below. */
11874 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11875
11876 if (max_sym_count < 20)
11877 max_sym_count = 20;
11878 htab->strtabsize = max_sym_count;
11879 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11880 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11881 if (htab->strtab == NULL)
11882 goto error_return;
11883 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11884 flinfo.symshndxbuf
11885 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11886 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11887
11888 if (info->strip != strip_all || emit_relocs)
11889 {
11890 file_ptr off = elf_next_file_pos (abfd);
11891
11892 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11893
11894 /* Note that at this point elf_next_file_pos (abfd) is
11895 incorrect. We do not yet know the size of the .symtab section.
11896 We correct next_file_pos below, after we do know the size. */
11897
11898 /* Start writing out the symbol table. The first symbol is always a
11899 dummy symbol. */
11900 elfsym.st_value = 0;
11901 elfsym.st_size = 0;
11902 elfsym.st_info = 0;
11903 elfsym.st_other = 0;
11904 elfsym.st_shndx = SHN_UNDEF;
11905 elfsym.st_target_internal = 0;
11906 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11907 bfd_und_section_ptr, NULL) != 1)
11908 goto error_return;
11909
11910 /* Output a symbol for each section. We output these even if we are
11911 discarding local symbols, since they are used for relocs. These
11912 symbols have no names. We store the index of each one in the
11913 index field of the section, so that we can find it again when
11914 outputting relocs. */
11915
11916 elfsym.st_size = 0;
11917 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11918 elfsym.st_other = 0;
11919 elfsym.st_value = 0;
11920 elfsym.st_target_internal = 0;
11921 for (i = 1; i < elf_numsections (abfd); i++)
11922 {
11923 o = bfd_section_from_elf_index (abfd, i);
11924 if (o != NULL)
11925 {
11926 o->target_index = bfd_get_symcount (abfd);
11927 elfsym.st_shndx = i;
11928 if (!bfd_link_relocatable (info))
11929 elfsym.st_value = o->vma;
11930 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11931 NULL) != 1)
11932 goto error_return;
11933 }
11934 }
11935 }
11936
11937 /* Allocate some memory to hold information read in from the input
11938 files. */
11939 if (max_contents_size != 0)
11940 {
11941 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11942 if (flinfo.contents == NULL)
11943 goto error_return;
11944 }
11945
11946 if (max_external_reloc_size != 0)
11947 {
11948 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11949 if (flinfo.external_relocs == NULL)
11950 goto error_return;
11951 }
11952
11953 if (max_internal_reloc_count != 0)
11954 {
11955 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11956 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11957 if (flinfo.internal_relocs == NULL)
11958 goto error_return;
11959 }
11960
11961 if (max_sym_count != 0)
11962 {
11963 amt = max_sym_count * bed->s->sizeof_sym;
11964 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11965 if (flinfo.external_syms == NULL)
11966 goto error_return;
11967
11968 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11969 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11970 if (flinfo.internal_syms == NULL)
11971 goto error_return;
11972
11973 amt = max_sym_count * sizeof (long);
11974 flinfo.indices = (long int *) bfd_malloc (amt);
11975 if (flinfo.indices == NULL)
11976 goto error_return;
11977
11978 amt = max_sym_count * sizeof (asection *);
11979 flinfo.sections = (asection **) bfd_malloc (amt);
11980 if (flinfo.sections == NULL)
11981 goto error_return;
11982 }
11983
11984 if (max_sym_shndx_count != 0)
11985 {
11986 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11987 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11988 if (flinfo.locsym_shndx == NULL)
11989 goto error_return;
11990 }
11991
11992 if (htab->tls_sec)
11993 {
11994 bfd_vma base, end = 0;
11995 asection *sec;
11996
11997 for (sec = htab->tls_sec;
11998 sec && (sec->flags & SEC_THREAD_LOCAL);
11999 sec = sec->next)
12000 {
12001 bfd_size_type size = sec->size;
12002
12003 if (size == 0
12004 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12005 {
12006 struct bfd_link_order *ord = sec->map_tail.link_order;
12007
12008 if (ord != NULL)
12009 size = ord->offset + ord->size;
12010 }
12011 end = sec->vma + size;
12012 }
12013 base = htab->tls_sec->vma;
12014 /* Only align end of TLS section if static TLS doesn't have special
12015 alignment requirements. */
12016 if (bed->static_tls_alignment == 1)
12017 end = align_power (end, htab->tls_sec->alignment_power);
12018 htab->tls_size = end - base;
12019 }
12020
12021 /* Reorder SHF_LINK_ORDER sections. */
12022 for (o = abfd->sections; o != NULL; o = o->next)
12023 {
12024 if (!elf_fixup_link_order (abfd, o))
12025 return FALSE;
12026 }
12027
12028 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12029 return FALSE;
12030
12031 /* Since ELF permits relocations to be against local symbols, we
12032 must have the local symbols available when we do the relocations.
12033 Since we would rather only read the local symbols once, and we
12034 would rather not keep them in memory, we handle all the
12035 relocations for a single input file at the same time.
12036
12037 Unfortunately, there is no way to know the total number of local
12038 symbols until we have seen all of them, and the local symbol
12039 indices precede the global symbol indices. This means that when
12040 we are generating relocatable output, and we see a reloc against
12041 a global symbol, we can not know the symbol index until we have
12042 finished examining all the local symbols to see which ones we are
12043 going to output. To deal with this, we keep the relocations in
12044 memory, and don't output them until the end of the link. This is
12045 an unfortunate waste of memory, but I don't see a good way around
12046 it. Fortunately, it only happens when performing a relocatable
12047 link, which is not the common case. FIXME: If keep_memory is set
12048 we could write the relocs out and then read them again; I don't
12049 know how bad the memory loss will be. */
12050
12051 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12052 sub->output_has_begun = FALSE;
12053 for (o = abfd->sections; o != NULL; o = o->next)
12054 {
12055 for (p = o->map_head.link_order; p != NULL; p = p->next)
12056 {
12057 if (p->type == bfd_indirect_link_order
12058 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12059 == bfd_target_elf_flavour)
12060 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12061 {
12062 if (! sub->output_has_begun)
12063 {
12064 if (! elf_link_input_bfd (&flinfo, sub))
12065 goto error_return;
12066 sub->output_has_begun = TRUE;
12067 }
12068 }
12069 else if (p->type == bfd_section_reloc_link_order
12070 || p->type == bfd_symbol_reloc_link_order)
12071 {
12072 if (! elf_reloc_link_order (abfd, info, o, p))
12073 goto error_return;
12074 }
12075 else
12076 {
12077 if (! _bfd_default_link_order (abfd, info, o, p))
12078 {
12079 if (p->type == bfd_indirect_link_order
12080 && (bfd_get_flavour (sub)
12081 == bfd_target_elf_flavour)
12082 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12083 != bed->s->elfclass))
12084 {
12085 const char *iclass, *oclass;
12086
12087 switch (bed->s->elfclass)
12088 {
12089 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12090 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12091 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12092 default: abort ();
12093 }
12094
12095 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12096 {
12097 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12098 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12099 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12100 default: abort ();
12101 }
12102
12103 bfd_set_error (bfd_error_wrong_format);
12104 _bfd_error_handler
12105 /* xgettext:c-format */
12106 (_("%pB: file class %s incompatible with %s"),
12107 sub, iclass, oclass);
12108 }
12109
12110 goto error_return;
12111 }
12112 }
12113 }
12114 }
12115
12116 /* Free symbol buffer if needed. */
12117 if (!info->reduce_memory_overheads)
12118 {
12119 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12120 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12121 && elf_tdata (sub)->symbuf)
12122 {
12123 free (elf_tdata (sub)->symbuf);
12124 elf_tdata (sub)->symbuf = NULL;
12125 }
12126 }
12127
12128 /* Output any global symbols that got converted to local in a
12129 version script or due to symbol visibility. We do this in a
12130 separate step since ELF requires all local symbols to appear
12131 prior to any global symbols. FIXME: We should only do this if
12132 some global symbols were, in fact, converted to become local.
12133 FIXME: Will this work correctly with the Irix 5 linker? */
12134 eoinfo.failed = FALSE;
12135 eoinfo.flinfo = &flinfo;
12136 eoinfo.localsyms = TRUE;
12137 eoinfo.file_sym_done = FALSE;
12138 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12139 if (eoinfo.failed)
12140 return FALSE;
12141
12142 /* If backend needs to output some local symbols not present in the hash
12143 table, do it now. */
12144 if (bed->elf_backend_output_arch_local_syms
12145 && (info->strip != strip_all || emit_relocs))
12146 {
12147 typedef int (*out_sym_func)
12148 (void *, const char *, Elf_Internal_Sym *, asection *,
12149 struct elf_link_hash_entry *);
12150
12151 if (! ((*bed->elf_backend_output_arch_local_syms)
12152 (abfd, info, &flinfo,
12153 (out_sym_func) elf_link_output_symstrtab)))
12154 return FALSE;
12155 }
12156
12157 /* That wrote out all the local symbols. Finish up the symbol table
12158 with the global symbols. Even if we want to strip everything we
12159 can, we still need to deal with those global symbols that got
12160 converted to local in a version script. */
12161
12162 /* The sh_info field records the index of the first non local symbol. */
12163 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12164
12165 if (dynamic
12166 && htab->dynsym != NULL
12167 && htab->dynsym->output_section != bfd_abs_section_ptr)
12168 {
12169 Elf_Internal_Sym sym;
12170 bfd_byte *dynsym = htab->dynsym->contents;
12171
12172 o = htab->dynsym->output_section;
12173 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12174
12175 /* Write out the section symbols for the output sections. */
12176 if (bfd_link_pic (info)
12177 || htab->is_relocatable_executable)
12178 {
12179 asection *s;
12180
12181 sym.st_size = 0;
12182 sym.st_name = 0;
12183 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12184 sym.st_other = 0;
12185 sym.st_target_internal = 0;
12186
12187 for (s = abfd->sections; s != NULL; s = s->next)
12188 {
12189 int indx;
12190 bfd_byte *dest;
12191 long dynindx;
12192
12193 dynindx = elf_section_data (s)->dynindx;
12194 if (dynindx <= 0)
12195 continue;
12196 indx = elf_section_data (s)->this_idx;
12197 BFD_ASSERT (indx > 0);
12198 sym.st_shndx = indx;
12199 if (! check_dynsym (abfd, &sym))
12200 return FALSE;
12201 sym.st_value = s->vma;
12202 dest = dynsym + dynindx * bed->s->sizeof_sym;
12203 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12204 }
12205 }
12206
12207 /* Write out the local dynsyms. */
12208 if (htab->dynlocal)
12209 {
12210 struct elf_link_local_dynamic_entry *e;
12211 for (e = htab->dynlocal; e ; e = e->next)
12212 {
12213 asection *s;
12214 bfd_byte *dest;
12215
12216 /* Copy the internal symbol and turn off visibility.
12217 Note that we saved a word of storage and overwrote
12218 the original st_name with the dynstr_index. */
12219 sym = e->isym;
12220 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12221
12222 s = bfd_section_from_elf_index (e->input_bfd,
12223 e->isym.st_shndx);
12224 if (s != NULL)
12225 {
12226 sym.st_shndx =
12227 elf_section_data (s->output_section)->this_idx;
12228 if (! check_dynsym (abfd, &sym))
12229 return FALSE;
12230 sym.st_value = (s->output_section->vma
12231 + s->output_offset
12232 + e->isym.st_value);
12233 }
12234
12235 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12236 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12237 }
12238 }
12239 }
12240
12241 /* We get the global symbols from the hash table. */
12242 eoinfo.failed = FALSE;
12243 eoinfo.localsyms = FALSE;
12244 eoinfo.flinfo = &flinfo;
12245 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12246 if (eoinfo.failed)
12247 return FALSE;
12248
12249 /* If backend needs to output some symbols not present in the hash
12250 table, do it now. */
12251 if (bed->elf_backend_output_arch_syms
12252 && (info->strip != strip_all || emit_relocs))
12253 {
12254 typedef int (*out_sym_func)
12255 (void *, const char *, Elf_Internal_Sym *, asection *,
12256 struct elf_link_hash_entry *);
12257
12258 if (! ((*bed->elf_backend_output_arch_syms)
12259 (abfd, info, &flinfo,
12260 (out_sym_func) elf_link_output_symstrtab)))
12261 return FALSE;
12262 }
12263
12264 /* Finalize the .strtab section. */
12265 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12266
12267 /* Swap out the .strtab section. */
12268 if (!elf_link_swap_symbols_out (&flinfo))
12269 return FALSE;
12270
12271 /* Now we know the size of the symtab section. */
12272 if (bfd_get_symcount (abfd) > 0)
12273 {
12274 /* Finish up and write out the symbol string table (.strtab)
12275 section. */
12276 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12277 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12278
12279 if (elf_symtab_shndx_list (abfd))
12280 {
12281 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12282
12283 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12284 {
12285 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12286 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12287 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12288 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12289 symtab_shndx_hdr->sh_size = amt;
12290
12291 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12292 off, TRUE);
12293
12294 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12295 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12296 return FALSE;
12297 }
12298 }
12299
12300 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12301 /* sh_name was set in prep_headers. */
12302 symstrtab_hdr->sh_type = SHT_STRTAB;
12303 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12304 symstrtab_hdr->sh_addr = 0;
12305 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12306 symstrtab_hdr->sh_entsize = 0;
12307 symstrtab_hdr->sh_link = 0;
12308 symstrtab_hdr->sh_info = 0;
12309 /* sh_offset is set just below. */
12310 symstrtab_hdr->sh_addralign = 1;
12311
12312 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12313 off, TRUE);
12314 elf_next_file_pos (abfd) = off;
12315
12316 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12317 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12318 return FALSE;
12319 }
12320
12321 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12322 {
12323 _bfd_error_handler (_("%pB: failed to generate import library"),
12324 info->out_implib_bfd);
12325 return FALSE;
12326 }
12327
12328 /* Adjust the relocs to have the correct symbol indices. */
12329 for (o = abfd->sections; o != NULL; o = o->next)
12330 {
12331 struct bfd_elf_section_data *esdo = elf_section_data (o);
12332 bfd_boolean sort;
12333
12334 if ((o->flags & SEC_RELOC) == 0)
12335 continue;
12336
12337 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12338 if (esdo->rel.hdr != NULL
12339 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12340 return FALSE;
12341 if (esdo->rela.hdr != NULL
12342 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12343 return FALSE;
12344
12345 /* Set the reloc_count field to 0 to prevent write_relocs from
12346 trying to swap the relocs out itself. */
12347 o->reloc_count = 0;
12348 }
12349
12350 if (dynamic && info->combreloc && dynobj != NULL)
12351 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12352
12353 /* If we are linking against a dynamic object, or generating a
12354 shared library, finish up the dynamic linking information. */
12355 if (dynamic)
12356 {
12357 bfd_byte *dyncon, *dynconend;
12358
12359 /* Fix up .dynamic entries. */
12360 o = bfd_get_linker_section (dynobj, ".dynamic");
12361 BFD_ASSERT (o != NULL);
12362
12363 dyncon = o->contents;
12364 dynconend = o->contents + o->size;
12365 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12366 {
12367 Elf_Internal_Dyn dyn;
12368 const char *name;
12369 unsigned int type;
12370 bfd_size_type sh_size;
12371 bfd_vma sh_addr;
12372
12373 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12374
12375 switch (dyn.d_tag)
12376 {
12377 default:
12378 continue;
12379 case DT_NULL:
12380 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12381 {
12382 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12383 {
12384 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12385 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12386 default: continue;
12387 }
12388 dyn.d_un.d_val = relativecount;
12389 relativecount = 0;
12390 break;
12391 }
12392 continue;
12393
12394 case DT_INIT:
12395 name = info->init_function;
12396 goto get_sym;
12397 case DT_FINI:
12398 name = info->fini_function;
12399 get_sym:
12400 {
12401 struct elf_link_hash_entry *h;
12402
12403 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12404 if (h != NULL
12405 && (h->root.type == bfd_link_hash_defined
12406 || h->root.type == bfd_link_hash_defweak))
12407 {
12408 dyn.d_un.d_ptr = h->root.u.def.value;
12409 o = h->root.u.def.section;
12410 if (o->output_section != NULL)
12411 dyn.d_un.d_ptr += (o->output_section->vma
12412 + o->output_offset);
12413 else
12414 {
12415 /* The symbol is imported from another shared
12416 library and does not apply to this one. */
12417 dyn.d_un.d_ptr = 0;
12418 }
12419 break;
12420 }
12421 }
12422 continue;
12423
12424 case DT_PREINIT_ARRAYSZ:
12425 name = ".preinit_array";
12426 goto get_out_size;
12427 case DT_INIT_ARRAYSZ:
12428 name = ".init_array";
12429 goto get_out_size;
12430 case DT_FINI_ARRAYSZ:
12431 name = ".fini_array";
12432 get_out_size:
12433 o = bfd_get_section_by_name (abfd, name);
12434 if (o == NULL)
12435 {
12436 _bfd_error_handler
12437 (_("could not find section %s"), name);
12438 goto error_return;
12439 }
12440 if (o->size == 0)
12441 _bfd_error_handler
12442 (_("warning: %s section has zero size"), name);
12443 dyn.d_un.d_val = o->size;
12444 break;
12445
12446 case DT_PREINIT_ARRAY:
12447 name = ".preinit_array";
12448 goto get_out_vma;
12449 case DT_INIT_ARRAY:
12450 name = ".init_array";
12451 goto get_out_vma;
12452 case DT_FINI_ARRAY:
12453 name = ".fini_array";
12454 get_out_vma:
12455 o = bfd_get_section_by_name (abfd, name);
12456 goto do_vma;
12457
12458 case DT_HASH:
12459 name = ".hash";
12460 goto get_vma;
12461 case DT_GNU_HASH:
12462 name = ".gnu.hash";
12463 goto get_vma;
12464 case DT_STRTAB:
12465 name = ".dynstr";
12466 goto get_vma;
12467 case DT_SYMTAB:
12468 name = ".dynsym";
12469 goto get_vma;
12470 case DT_VERDEF:
12471 name = ".gnu.version_d";
12472 goto get_vma;
12473 case DT_VERNEED:
12474 name = ".gnu.version_r";
12475 goto get_vma;
12476 case DT_VERSYM:
12477 name = ".gnu.version";
12478 get_vma:
12479 o = bfd_get_linker_section (dynobj, name);
12480 do_vma:
12481 if (o == NULL || bfd_is_abs_section (o->output_section))
12482 {
12483 _bfd_error_handler
12484 (_("could not find section %s"), name);
12485 goto error_return;
12486 }
12487 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12488 {
12489 _bfd_error_handler
12490 (_("warning: section '%s' is being made into a note"), name);
12491 bfd_set_error (bfd_error_nonrepresentable_section);
12492 goto error_return;
12493 }
12494 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12495 break;
12496
12497 case DT_REL:
12498 case DT_RELA:
12499 case DT_RELSZ:
12500 case DT_RELASZ:
12501 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12502 type = SHT_REL;
12503 else
12504 type = SHT_RELA;
12505 sh_size = 0;
12506 sh_addr = 0;
12507 for (i = 1; i < elf_numsections (abfd); i++)
12508 {
12509 Elf_Internal_Shdr *hdr;
12510
12511 hdr = elf_elfsections (abfd)[i];
12512 if (hdr->sh_type == type
12513 && (hdr->sh_flags & SHF_ALLOC) != 0)
12514 {
12515 sh_size += hdr->sh_size;
12516 if (sh_addr == 0
12517 || sh_addr > hdr->sh_addr)
12518 sh_addr = hdr->sh_addr;
12519 }
12520 }
12521
12522 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12523 {
12524 /* Don't count procedure linkage table relocs in the
12525 overall reloc count. */
12526 sh_size -= htab->srelplt->size;
12527 if (sh_size == 0)
12528 /* If the size is zero, make the address zero too.
12529 This is to avoid a glibc bug. If the backend
12530 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12531 zero, then we'll put DT_RELA at the end of
12532 DT_JMPREL. glibc will interpret the end of
12533 DT_RELA matching the end of DT_JMPREL as the
12534 case where DT_RELA includes DT_JMPREL, and for
12535 LD_BIND_NOW will decide that processing DT_RELA
12536 will process the PLT relocs too. Net result:
12537 No PLT relocs applied. */
12538 sh_addr = 0;
12539
12540 /* If .rela.plt is the first .rela section, exclude
12541 it from DT_RELA. */
12542 else if (sh_addr == (htab->srelplt->output_section->vma
12543 + htab->srelplt->output_offset))
12544 sh_addr += htab->srelplt->size;
12545 }
12546
12547 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12548 dyn.d_un.d_val = sh_size;
12549 else
12550 dyn.d_un.d_ptr = sh_addr;
12551 break;
12552 }
12553 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12554 }
12555 }
12556
12557 /* If we have created any dynamic sections, then output them. */
12558 if (dynobj != NULL)
12559 {
12560 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12561 goto error_return;
12562
12563 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12564 if (((info->warn_shared_textrel && bfd_link_pic (info))
12565 || info->error_textrel)
12566 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12567 {
12568 bfd_byte *dyncon, *dynconend;
12569
12570 dyncon = o->contents;
12571 dynconend = o->contents + o->size;
12572 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12573 {
12574 Elf_Internal_Dyn dyn;
12575
12576 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12577
12578 if (dyn.d_tag == DT_TEXTREL)
12579 {
12580 if (info->error_textrel)
12581 info->callbacks->einfo
12582 (_("%P%X: read-only segment has dynamic relocations\n"));
12583 else
12584 info->callbacks->einfo
12585 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12586 break;
12587 }
12588 }
12589 }
12590
12591 for (o = dynobj->sections; o != NULL; o = o->next)
12592 {
12593 if ((o->flags & SEC_HAS_CONTENTS) == 0
12594 || o->size == 0
12595 || o->output_section == bfd_abs_section_ptr)
12596 continue;
12597 if ((o->flags & SEC_LINKER_CREATED) == 0)
12598 {
12599 /* At this point, we are only interested in sections
12600 created by _bfd_elf_link_create_dynamic_sections. */
12601 continue;
12602 }
12603 if (htab->stab_info.stabstr == o)
12604 continue;
12605 if (htab->eh_info.hdr_sec == o)
12606 continue;
12607 if (strcmp (o->name, ".dynstr") != 0)
12608 {
12609 if (! bfd_set_section_contents (abfd, o->output_section,
12610 o->contents,
12611 (file_ptr) o->output_offset
12612 * bfd_octets_per_byte (abfd),
12613 o->size))
12614 goto error_return;
12615 }
12616 else
12617 {
12618 /* The contents of the .dynstr section are actually in a
12619 stringtab. */
12620 file_ptr off;
12621
12622 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12623 if (bfd_seek (abfd, off, SEEK_SET) != 0
12624 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12625 goto error_return;
12626 }
12627 }
12628 }
12629
12630 if (!info->resolve_section_groups)
12631 {
12632 bfd_boolean failed = FALSE;
12633
12634 BFD_ASSERT (bfd_link_relocatable (info));
12635 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12636 if (failed)
12637 goto error_return;
12638 }
12639
12640 /* If we have optimized stabs strings, output them. */
12641 if (htab->stab_info.stabstr != NULL)
12642 {
12643 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12644 goto error_return;
12645 }
12646
12647 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12648 goto error_return;
12649
12650 elf_final_link_free (abfd, &flinfo);
12651
12652 elf_linker (abfd) = TRUE;
12653
12654 if (attr_section)
12655 {
12656 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12657 if (contents == NULL)
12658 return FALSE; /* Bail out and fail. */
12659 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12660 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12661 free (contents);
12662 }
12663
12664 return TRUE;
12665
12666 error_return:
12667 elf_final_link_free (abfd, &flinfo);
12668 return FALSE;
12669 }
12670 \f
12671 /* Initialize COOKIE for input bfd ABFD. */
12672
12673 static bfd_boolean
12674 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12675 struct bfd_link_info *info, bfd *abfd)
12676 {
12677 Elf_Internal_Shdr *symtab_hdr;
12678 const struct elf_backend_data *bed;
12679
12680 bed = get_elf_backend_data (abfd);
12681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12682
12683 cookie->abfd = abfd;
12684 cookie->sym_hashes = elf_sym_hashes (abfd);
12685 cookie->bad_symtab = elf_bad_symtab (abfd);
12686 if (cookie->bad_symtab)
12687 {
12688 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12689 cookie->extsymoff = 0;
12690 }
12691 else
12692 {
12693 cookie->locsymcount = symtab_hdr->sh_info;
12694 cookie->extsymoff = symtab_hdr->sh_info;
12695 }
12696
12697 if (bed->s->arch_size == 32)
12698 cookie->r_sym_shift = 8;
12699 else
12700 cookie->r_sym_shift = 32;
12701
12702 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12703 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12704 {
12705 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12706 cookie->locsymcount, 0,
12707 NULL, NULL, NULL);
12708 if (cookie->locsyms == NULL)
12709 {
12710 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12711 return FALSE;
12712 }
12713 if (info->keep_memory)
12714 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12715 }
12716 return TRUE;
12717 }
12718
12719 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12720
12721 static void
12722 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12723 {
12724 Elf_Internal_Shdr *symtab_hdr;
12725
12726 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12727 if (cookie->locsyms != NULL
12728 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12729 free (cookie->locsyms);
12730 }
12731
12732 /* Initialize the relocation information in COOKIE for input section SEC
12733 of input bfd ABFD. */
12734
12735 static bfd_boolean
12736 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12737 struct bfd_link_info *info, bfd *abfd,
12738 asection *sec)
12739 {
12740 if (sec->reloc_count == 0)
12741 {
12742 cookie->rels = NULL;
12743 cookie->relend = NULL;
12744 }
12745 else
12746 {
12747 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12748 info->keep_memory);
12749 if (cookie->rels == NULL)
12750 return FALSE;
12751 cookie->rel = cookie->rels;
12752 cookie->relend = cookie->rels + sec->reloc_count;
12753 }
12754 cookie->rel = cookie->rels;
12755 return TRUE;
12756 }
12757
12758 /* Free the memory allocated by init_reloc_cookie_rels,
12759 if appropriate. */
12760
12761 static void
12762 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12763 asection *sec)
12764 {
12765 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12766 free (cookie->rels);
12767 }
12768
12769 /* Initialize the whole of COOKIE for input section SEC. */
12770
12771 static bfd_boolean
12772 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12773 struct bfd_link_info *info,
12774 asection *sec)
12775 {
12776 if (!init_reloc_cookie (cookie, info, sec->owner))
12777 goto error1;
12778 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12779 goto error2;
12780 return TRUE;
12781
12782 error2:
12783 fini_reloc_cookie (cookie, sec->owner);
12784 error1:
12785 return FALSE;
12786 }
12787
12788 /* Free the memory allocated by init_reloc_cookie_for_section,
12789 if appropriate. */
12790
12791 static void
12792 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12793 asection *sec)
12794 {
12795 fini_reloc_cookie_rels (cookie, sec);
12796 fini_reloc_cookie (cookie, sec->owner);
12797 }
12798 \f
12799 /* Garbage collect unused sections. */
12800
12801 /* Default gc_mark_hook. */
12802
12803 asection *
12804 _bfd_elf_gc_mark_hook (asection *sec,
12805 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12806 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12807 struct elf_link_hash_entry *h,
12808 Elf_Internal_Sym *sym)
12809 {
12810 if (h != NULL)
12811 {
12812 switch (h->root.type)
12813 {
12814 case bfd_link_hash_defined:
12815 case bfd_link_hash_defweak:
12816 return h->root.u.def.section;
12817
12818 case bfd_link_hash_common:
12819 return h->root.u.c.p->section;
12820
12821 default:
12822 break;
12823 }
12824 }
12825 else
12826 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12827
12828 return NULL;
12829 }
12830
12831 /* Return the debug definition section. */
12832
12833 static asection *
12834 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12835 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12836 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12837 struct elf_link_hash_entry *h,
12838 Elf_Internal_Sym *sym)
12839 {
12840 if (h != NULL)
12841 {
12842 /* Return the global debug definition section. */
12843 if ((h->root.type == bfd_link_hash_defined
12844 || h->root.type == bfd_link_hash_defweak)
12845 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12846 return h->root.u.def.section;
12847 }
12848 else
12849 {
12850 /* Return the local debug definition section. */
12851 asection *isec = bfd_section_from_elf_index (sec->owner,
12852 sym->st_shndx);
12853 if ((isec->flags & SEC_DEBUGGING) != 0)
12854 return isec;
12855 }
12856
12857 return NULL;
12858 }
12859
12860 /* COOKIE->rel describes a relocation against section SEC, which is
12861 a section we've decided to keep. Return the section that contains
12862 the relocation symbol, or NULL if no section contains it. */
12863
12864 asection *
12865 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12866 elf_gc_mark_hook_fn gc_mark_hook,
12867 struct elf_reloc_cookie *cookie,
12868 bfd_boolean *start_stop)
12869 {
12870 unsigned long r_symndx;
12871 struct elf_link_hash_entry *h;
12872
12873 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12874 if (r_symndx == STN_UNDEF)
12875 return NULL;
12876
12877 if (r_symndx >= cookie->locsymcount
12878 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12879 {
12880 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12881 if (h == NULL)
12882 {
12883 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
12884 sec->owner);
12885 return NULL;
12886 }
12887 while (h->root.type == bfd_link_hash_indirect
12888 || h->root.type == bfd_link_hash_warning)
12889 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12890 h->mark = 1;
12891 /* If this symbol is weak and there is a non-weak definition, we
12892 keep the non-weak definition because many backends put
12893 dynamic reloc info on the non-weak definition for code
12894 handling copy relocs. */
12895 if (h->is_weakalias)
12896 weakdef (h)->mark = 1;
12897
12898 if (start_stop != NULL)
12899 {
12900 /* To work around a glibc bug, mark XXX input sections
12901 when there is a reference to __start_XXX or __stop_XXX
12902 symbols. */
12903 if (h->start_stop)
12904 {
12905 asection *s = h->u2.start_stop_section;
12906 *start_stop = !s->gc_mark;
12907 return s;
12908 }
12909 }
12910
12911 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12912 }
12913
12914 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12915 &cookie->locsyms[r_symndx]);
12916 }
12917
12918 /* COOKIE->rel describes a relocation against section SEC, which is
12919 a section we've decided to keep. Mark the section that contains
12920 the relocation symbol. */
12921
12922 bfd_boolean
12923 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12924 asection *sec,
12925 elf_gc_mark_hook_fn gc_mark_hook,
12926 struct elf_reloc_cookie *cookie)
12927 {
12928 asection *rsec;
12929 bfd_boolean start_stop = FALSE;
12930
12931 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12932 while (rsec != NULL)
12933 {
12934 if (!rsec->gc_mark)
12935 {
12936 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12937 || (rsec->owner->flags & DYNAMIC) != 0)
12938 rsec->gc_mark = 1;
12939 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12940 return FALSE;
12941 }
12942 if (!start_stop)
12943 break;
12944 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12945 }
12946 return TRUE;
12947 }
12948
12949 /* The mark phase of garbage collection. For a given section, mark
12950 it and any sections in this section's group, and all the sections
12951 which define symbols to which it refers. */
12952
12953 bfd_boolean
12954 _bfd_elf_gc_mark (struct bfd_link_info *info,
12955 asection *sec,
12956 elf_gc_mark_hook_fn gc_mark_hook)
12957 {
12958 bfd_boolean ret;
12959 asection *group_sec, *eh_frame;
12960
12961 sec->gc_mark = 1;
12962
12963 /* Mark all the sections in the group. */
12964 group_sec = elf_section_data (sec)->next_in_group;
12965 if (group_sec && !group_sec->gc_mark)
12966 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12967 return FALSE;
12968
12969 /* Look through the section relocs. */
12970 ret = TRUE;
12971 eh_frame = elf_eh_frame_section (sec->owner);
12972 if ((sec->flags & SEC_RELOC) != 0
12973 && sec->reloc_count > 0
12974 && sec != eh_frame)
12975 {
12976 struct elf_reloc_cookie cookie;
12977
12978 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12979 ret = FALSE;
12980 else
12981 {
12982 for (; cookie.rel < cookie.relend; cookie.rel++)
12983 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12984 {
12985 ret = FALSE;
12986 break;
12987 }
12988 fini_reloc_cookie_for_section (&cookie, sec);
12989 }
12990 }
12991
12992 if (ret && eh_frame && elf_fde_list (sec))
12993 {
12994 struct elf_reloc_cookie cookie;
12995
12996 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12997 ret = FALSE;
12998 else
12999 {
13000 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13001 gc_mark_hook, &cookie))
13002 ret = FALSE;
13003 fini_reloc_cookie_for_section (&cookie, eh_frame);
13004 }
13005 }
13006
13007 eh_frame = elf_section_eh_frame_entry (sec);
13008 if (ret && eh_frame && !eh_frame->gc_mark)
13009 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13010 ret = FALSE;
13011
13012 return ret;
13013 }
13014
13015 /* Scan and mark sections in a special or debug section group. */
13016
13017 static void
13018 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13019 {
13020 /* Point to first section of section group. */
13021 asection *ssec;
13022 /* Used to iterate the section group. */
13023 asection *msec;
13024
13025 bfd_boolean is_special_grp = TRUE;
13026 bfd_boolean is_debug_grp = TRUE;
13027
13028 /* First scan to see if group contains any section other than debug
13029 and special section. */
13030 ssec = msec = elf_next_in_group (grp);
13031 do
13032 {
13033 if ((msec->flags & SEC_DEBUGGING) == 0)
13034 is_debug_grp = FALSE;
13035
13036 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13037 is_special_grp = FALSE;
13038
13039 msec = elf_next_in_group (msec);
13040 }
13041 while (msec != ssec);
13042
13043 /* If this is a pure debug section group or pure special section group,
13044 keep all sections in this group. */
13045 if (is_debug_grp || is_special_grp)
13046 {
13047 do
13048 {
13049 msec->gc_mark = 1;
13050 msec = elf_next_in_group (msec);
13051 }
13052 while (msec != ssec);
13053 }
13054 }
13055
13056 /* Keep debug and special sections. */
13057
13058 bfd_boolean
13059 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13060 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13061 {
13062 bfd *ibfd;
13063
13064 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13065 {
13066 asection *isec;
13067 bfd_boolean some_kept;
13068 bfd_boolean debug_frag_seen;
13069 bfd_boolean has_kept_debug_info;
13070
13071 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13072 continue;
13073 isec = ibfd->sections;
13074 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13075 continue;
13076
13077 /* Ensure all linker created sections are kept,
13078 see if any other section is already marked,
13079 and note if we have any fragmented debug sections. */
13080 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13081 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13082 {
13083 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13084 isec->gc_mark = 1;
13085 else if (isec->gc_mark
13086 && (isec->flags & SEC_ALLOC) != 0
13087 && elf_section_type (isec) != SHT_NOTE)
13088 some_kept = TRUE;
13089
13090 if (!debug_frag_seen
13091 && (isec->flags & SEC_DEBUGGING)
13092 && CONST_STRNEQ (isec->name, ".debug_line."))
13093 debug_frag_seen = TRUE;
13094 }
13095
13096 /* If no non-note alloc section in this file will be kept, then
13097 we can toss out the debug and special sections. */
13098 if (!some_kept)
13099 continue;
13100
13101 /* Keep debug and special sections like .comment when they are
13102 not part of a group. Also keep section groups that contain
13103 just debug sections or special sections. */
13104 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13105 {
13106 if ((isec->flags & SEC_GROUP) != 0)
13107 _bfd_elf_gc_mark_debug_special_section_group (isec);
13108 else if (((isec->flags & SEC_DEBUGGING) != 0
13109 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13110 && elf_next_in_group (isec) == NULL)
13111 isec->gc_mark = 1;
13112 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13113 has_kept_debug_info = TRUE;
13114 }
13115
13116 /* Look for CODE sections which are going to be discarded,
13117 and find and discard any fragmented debug sections which
13118 are associated with that code section. */
13119 if (debug_frag_seen)
13120 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13121 if ((isec->flags & SEC_CODE) != 0
13122 && isec->gc_mark == 0)
13123 {
13124 unsigned int ilen;
13125 asection *dsec;
13126
13127 ilen = strlen (isec->name);
13128
13129 /* Association is determined by the name of the debug
13130 section containing the name of the code section as
13131 a suffix. For example .debug_line.text.foo is a
13132 debug section associated with .text.foo. */
13133 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13134 {
13135 unsigned int dlen;
13136
13137 if (dsec->gc_mark == 0
13138 || (dsec->flags & SEC_DEBUGGING) == 0)
13139 continue;
13140
13141 dlen = strlen (dsec->name);
13142
13143 if (dlen > ilen
13144 && strncmp (dsec->name + (dlen - ilen),
13145 isec->name, ilen) == 0)
13146 dsec->gc_mark = 0;
13147 }
13148 }
13149
13150 /* Mark debug sections referenced by kept debug sections. */
13151 if (has_kept_debug_info)
13152 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13153 if (isec->gc_mark
13154 && (isec->flags & SEC_DEBUGGING) != 0)
13155 if (!_bfd_elf_gc_mark (info, isec,
13156 elf_gc_mark_debug_section))
13157 return FALSE;
13158 }
13159 return TRUE;
13160 }
13161
13162 static bfd_boolean
13163 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13164 {
13165 bfd *sub;
13166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13167
13168 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13169 {
13170 asection *o;
13171
13172 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13173 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13174 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13175 continue;
13176 o = sub->sections;
13177 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13178 continue;
13179
13180 for (o = sub->sections; o != NULL; o = o->next)
13181 {
13182 /* When any section in a section group is kept, we keep all
13183 sections in the section group. If the first member of
13184 the section group is excluded, we will also exclude the
13185 group section. */
13186 if (o->flags & SEC_GROUP)
13187 {
13188 asection *first = elf_next_in_group (o);
13189 o->gc_mark = first->gc_mark;
13190 }
13191
13192 if (o->gc_mark)
13193 continue;
13194
13195 /* Skip sweeping sections already excluded. */
13196 if (o->flags & SEC_EXCLUDE)
13197 continue;
13198
13199 /* Since this is early in the link process, it is simple
13200 to remove a section from the output. */
13201 o->flags |= SEC_EXCLUDE;
13202
13203 if (info->print_gc_sections && o->size != 0)
13204 /* xgettext:c-format */
13205 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13206 o, sub);
13207 }
13208 }
13209
13210 return TRUE;
13211 }
13212
13213 /* Propagate collected vtable information. This is called through
13214 elf_link_hash_traverse. */
13215
13216 static bfd_boolean
13217 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13218 {
13219 /* Those that are not vtables. */
13220 if (h->start_stop
13221 || h->u2.vtable == NULL
13222 || h->u2.vtable->parent == NULL)
13223 return TRUE;
13224
13225 /* Those vtables that do not have parents, we cannot merge. */
13226 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13227 return TRUE;
13228
13229 /* If we've already been done, exit. */
13230 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13231 return TRUE;
13232
13233 /* Make sure the parent's table is up to date. */
13234 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13235
13236 if (h->u2.vtable->used == NULL)
13237 {
13238 /* None of this table's entries were referenced. Re-use the
13239 parent's table. */
13240 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13241 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13242 }
13243 else
13244 {
13245 size_t n;
13246 bfd_boolean *cu, *pu;
13247
13248 /* Or the parent's entries into ours. */
13249 cu = h->u2.vtable->used;
13250 cu[-1] = TRUE;
13251 pu = h->u2.vtable->parent->u2.vtable->used;
13252 if (pu != NULL)
13253 {
13254 const struct elf_backend_data *bed;
13255 unsigned int log_file_align;
13256
13257 bed = get_elf_backend_data (h->root.u.def.section->owner);
13258 log_file_align = bed->s->log_file_align;
13259 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13260 while (n--)
13261 {
13262 if (*pu)
13263 *cu = TRUE;
13264 pu++;
13265 cu++;
13266 }
13267 }
13268 }
13269
13270 return TRUE;
13271 }
13272
13273 static bfd_boolean
13274 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13275 {
13276 asection *sec;
13277 bfd_vma hstart, hend;
13278 Elf_Internal_Rela *relstart, *relend, *rel;
13279 const struct elf_backend_data *bed;
13280 unsigned int log_file_align;
13281
13282 /* Take care of both those symbols that do not describe vtables as
13283 well as those that are not loaded. */
13284 if (h->start_stop
13285 || h->u2.vtable == NULL
13286 || h->u2.vtable->parent == NULL)
13287 return TRUE;
13288
13289 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13290 || h->root.type == bfd_link_hash_defweak);
13291
13292 sec = h->root.u.def.section;
13293 hstart = h->root.u.def.value;
13294 hend = hstart + h->size;
13295
13296 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13297 if (!relstart)
13298 return *(bfd_boolean *) okp = FALSE;
13299 bed = get_elf_backend_data (sec->owner);
13300 log_file_align = bed->s->log_file_align;
13301
13302 relend = relstart + sec->reloc_count;
13303
13304 for (rel = relstart; rel < relend; ++rel)
13305 if (rel->r_offset >= hstart && rel->r_offset < hend)
13306 {
13307 /* If the entry is in use, do nothing. */
13308 if (h->u2.vtable->used
13309 && (rel->r_offset - hstart) < h->u2.vtable->size)
13310 {
13311 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13312 if (h->u2.vtable->used[entry])
13313 continue;
13314 }
13315 /* Otherwise, kill it. */
13316 rel->r_offset = rel->r_info = rel->r_addend = 0;
13317 }
13318
13319 return TRUE;
13320 }
13321
13322 /* Mark sections containing dynamically referenced symbols. When
13323 building shared libraries, we must assume that any visible symbol is
13324 referenced. */
13325
13326 bfd_boolean
13327 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13328 {
13329 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13330 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13331
13332 if ((h->root.type == bfd_link_hash_defined
13333 || h->root.type == bfd_link_hash_defweak)
13334 && ((h->ref_dynamic && !h->forced_local)
13335 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13336 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13337 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13338 && (!bfd_link_executable (info)
13339 || info->gc_keep_exported
13340 || info->export_dynamic
13341 || (h->dynamic
13342 && d != NULL
13343 && (*d->match) (&d->head, NULL, h->root.root.string)))
13344 && (h->versioned >= versioned
13345 || !bfd_hide_sym_by_version (info->version_info,
13346 h->root.root.string)))))
13347 h->root.u.def.section->flags |= SEC_KEEP;
13348
13349 return TRUE;
13350 }
13351
13352 /* Keep all sections containing symbols undefined on the command-line,
13353 and the section containing the entry symbol. */
13354
13355 void
13356 _bfd_elf_gc_keep (struct bfd_link_info *info)
13357 {
13358 struct bfd_sym_chain *sym;
13359
13360 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13361 {
13362 struct elf_link_hash_entry *h;
13363
13364 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13365 FALSE, FALSE, FALSE);
13366
13367 if (h != NULL
13368 && (h->root.type == bfd_link_hash_defined
13369 || h->root.type == bfd_link_hash_defweak)
13370 && !bfd_is_abs_section (h->root.u.def.section)
13371 && !bfd_is_und_section (h->root.u.def.section))
13372 h->root.u.def.section->flags |= SEC_KEEP;
13373 }
13374 }
13375
13376 bfd_boolean
13377 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13378 struct bfd_link_info *info)
13379 {
13380 bfd *ibfd = info->input_bfds;
13381
13382 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13383 {
13384 asection *sec;
13385 struct elf_reloc_cookie cookie;
13386
13387 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13388 continue;
13389 sec = ibfd->sections;
13390 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13391 continue;
13392
13393 if (!init_reloc_cookie (&cookie, info, ibfd))
13394 return FALSE;
13395
13396 for (sec = ibfd->sections; sec; sec = sec->next)
13397 {
13398 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13399 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13400 {
13401 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13402 fini_reloc_cookie_rels (&cookie, sec);
13403 }
13404 }
13405 }
13406 return TRUE;
13407 }
13408
13409 /* Do mark and sweep of unused sections. */
13410
13411 bfd_boolean
13412 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13413 {
13414 bfd_boolean ok = TRUE;
13415 bfd *sub;
13416 elf_gc_mark_hook_fn gc_mark_hook;
13417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13418 struct elf_link_hash_table *htab;
13419
13420 if (!bed->can_gc_sections
13421 || !is_elf_hash_table (info->hash))
13422 {
13423 _bfd_error_handler(_("warning: gc-sections option ignored"));
13424 return TRUE;
13425 }
13426
13427 bed->gc_keep (info);
13428 htab = elf_hash_table (info);
13429
13430 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13431 at the .eh_frame section if we can mark the FDEs individually. */
13432 for (sub = info->input_bfds;
13433 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13434 sub = sub->link.next)
13435 {
13436 asection *sec;
13437 struct elf_reloc_cookie cookie;
13438
13439 sec = sub->sections;
13440 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13441 continue;
13442 sec = bfd_get_section_by_name (sub, ".eh_frame");
13443 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13444 {
13445 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13446 if (elf_section_data (sec)->sec_info
13447 && (sec->flags & SEC_LINKER_CREATED) == 0)
13448 elf_eh_frame_section (sub) = sec;
13449 fini_reloc_cookie_for_section (&cookie, sec);
13450 sec = bfd_get_next_section_by_name (NULL, sec);
13451 }
13452 }
13453
13454 /* Apply transitive closure to the vtable entry usage info. */
13455 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13456 if (!ok)
13457 return FALSE;
13458
13459 /* Kill the vtable relocations that were not used. */
13460 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13461 if (!ok)
13462 return FALSE;
13463
13464 /* Mark dynamically referenced symbols. */
13465 if (htab->dynamic_sections_created || info->gc_keep_exported)
13466 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13467
13468 /* Grovel through relocs to find out who stays ... */
13469 gc_mark_hook = bed->gc_mark_hook;
13470 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13471 {
13472 asection *o;
13473
13474 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13475 || elf_object_id (sub) != elf_hash_table_id (htab)
13476 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13477 continue;
13478
13479 o = sub->sections;
13480 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13481 continue;
13482
13483 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13484 Also treat note sections as a root, if the section is not part
13485 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13486 well as FINI_ARRAY sections for ld -r. */
13487 for (o = sub->sections; o != NULL; o = o->next)
13488 if (!o->gc_mark
13489 && (o->flags & SEC_EXCLUDE) == 0
13490 && ((o->flags & SEC_KEEP) != 0
13491 || (bfd_link_relocatable (info)
13492 && ((elf_section_data (o)->this_hdr.sh_type
13493 == SHT_PREINIT_ARRAY)
13494 || (elf_section_data (o)->this_hdr.sh_type
13495 == SHT_INIT_ARRAY)
13496 || (elf_section_data (o)->this_hdr.sh_type
13497 == SHT_FINI_ARRAY)))
13498 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13499 && elf_next_in_group (o) == NULL )))
13500 {
13501 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13502 return FALSE;
13503 }
13504 }
13505
13506 /* Allow the backend to mark additional target specific sections. */
13507 bed->gc_mark_extra_sections (info, gc_mark_hook);
13508
13509 /* ... and mark SEC_EXCLUDE for those that go. */
13510 return elf_gc_sweep (abfd, info);
13511 }
13512 \f
13513 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13514
13515 bfd_boolean
13516 bfd_elf_gc_record_vtinherit (bfd *abfd,
13517 asection *sec,
13518 struct elf_link_hash_entry *h,
13519 bfd_vma offset)
13520 {
13521 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13522 struct elf_link_hash_entry **search, *child;
13523 size_t extsymcount;
13524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13525
13526 /* The sh_info field of the symtab header tells us where the
13527 external symbols start. We don't care about the local symbols at
13528 this point. */
13529 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13530 if (!elf_bad_symtab (abfd))
13531 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13532
13533 sym_hashes = elf_sym_hashes (abfd);
13534 sym_hashes_end = sym_hashes + extsymcount;
13535
13536 /* Hunt down the child symbol, which is in this section at the same
13537 offset as the relocation. */
13538 for (search = sym_hashes; search != sym_hashes_end; ++search)
13539 {
13540 if ((child = *search) != NULL
13541 && (child->root.type == bfd_link_hash_defined
13542 || child->root.type == bfd_link_hash_defweak)
13543 && child->root.u.def.section == sec
13544 && child->root.u.def.value == offset)
13545 goto win;
13546 }
13547
13548 /* xgettext:c-format */
13549 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13550 abfd, sec, (uint64_t) offset);
13551 bfd_set_error (bfd_error_invalid_operation);
13552 return FALSE;
13553
13554 win:
13555 if (!child->u2.vtable)
13556 {
13557 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13558 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13559 if (!child->u2.vtable)
13560 return FALSE;
13561 }
13562 if (!h)
13563 {
13564 /* This *should* only be the absolute section. It could potentially
13565 be that someone has defined a non-global vtable though, which
13566 would be bad. It isn't worth paging in the local symbols to be
13567 sure though; that case should simply be handled by the assembler. */
13568
13569 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13570 }
13571 else
13572 child->u2.vtable->parent = h;
13573
13574 return TRUE;
13575 }
13576
13577 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13578
13579 bfd_boolean
13580 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13581 asection *sec ATTRIBUTE_UNUSED,
13582 struct elf_link_hash_entry *h,
13583 bfd_vma addend)
13584 {
13585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13586 unsigned int log_file_align = bed->s->log_file_align;
13587
13588 if (!h->u2.vtable)
13589 {
13590 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13591 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13592 if (!h->u2.vtable)
13593 return FALSE;
13594 }
13595
13596 if (addend >= h->u2.vtable->size)
13597 {
13598 size_t size, bytes, file_align;
13599 bfd_boolean *ptr = h->u2.vtable->used;
13600
13601 /* While the symbol is undefined, we have to be prepared to handle
13602 a zero size. */
13603 file_align = 1 << log_file_align;
13604 if (h->root.type == bfd_link_hash_undefined)
13605 size = addend + file_align;
13606 else
13607 {
13608 size = h->size;
13609 if (addend >= size)
13610 {
13611 /* Oops! We've got a reference past the defined end of
13612 the table. This is probably a bug -- shall we warn? */
13613 size = addend + file_align;
13614 }
13615 }
13616 size = (size + file_align - 1) & -file_align;
13617
13618 /* Allocate one extra entry for use as a "done" flag for the
13619 consolidation pass. */
13620 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13621
13622 if (ptr)
13623 {
13624 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13625
13626 if (ptr != NULL)
13627 {
13628 size_t oldbytes;
13629
13630 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13631 * sizeof (bfd_boolean));
13632 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13633 }
13634 }
13635 else
13636 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13637
13638 if (ptr == NULL)
13639 return FALSE;
13640
13641 /* And arrange for that done flag to be at index -1. */
13642 h->u2.vtable->used = ptr + 1;
13643 h->u2.vtable->size = size;
13644 }
13645
13646 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13647
13648 return TRUE;
13649 }
13650
13651 /* Map an ELF section header flag to its corresponding string. */
13652 typedef struct
13653 {
13654 char *flag_name;
13655 flagword flag_value;
13656 } elf_flags_to_name_table;
13657
13658 static elf_flags_to_name_table elf_flags_to_names [] =
13659 {
13660 { "SHF_WRITE", SHF_WRITE },
13661 { "SHF_ALLOC", SHF_ALLOC },
13662 { "SHF_EXECINSTR", SHF_EXECINSTR },
13663 { "SHF_MERGE", SHF_MERGE },
13664 { "SHF_STRINGS", SHF_STRINGS },
13665 { "SHF_INFO_LINK", SHF_INFO_LINK},
13666 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13667 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13668 { "SHF_GROUP", SHF_GROUP },
13669 { "SHF_TLS", SHF_TLS },
13670 { "SHF_MASKOS", SHF_MASKOS },
13671 { "SHF_EXCLUDE", SHF_EXCLUDE },
13672 };
13673
13674 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13675 bfd_boolean
13676 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13677 struct flag_info *flaginfo,
13678 asection *section)
13679 {
13680 const bfd_vma sh_flags = elf_section_flags (section);
13681
13682 if (!flaginfo->flags_initialized)
13683 {
13684 bfd *obfd = info->output_bfd;
13685 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13686 struct flag_info_list *tf = flaginfo->flag_list;
13687 int with_hex = 0;
13688 int without_hex = 0;
13689
13690 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13691 {
13692 unsigned i;
13693 flagword (*lookup) (char *);
13694
13695 lookup = bed->elf_backend_lookup_section_flags_hook;
13696 if (lookup != NULL)
13697 {
13698 flagword hexval = (*lookup) ((char *) tf->name);
13699
13700 if (hexval != 0)
13701 {
13702 if (tf->with == with_flags)
13703 with_hex |= hexval;
13704 else if (tf->with == without_flags)
13705 without_hex |= hexval;
13706 tf->valid = TRUE;
13707 continue;
13708 }
13709 }
13710 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13711 {
13712 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13713 {
13714 if (tf->with == with_flags)
13715 with_hex |= elf_flags_to_names[i].flag_value;
13716 else if (tf->with == without_flags)
13717 without_hex |= elf_flags_to_names[i].flag_value;
13718 tf->valid = TRUE;
13719 break;
13720 }
13721 }
13722 if (!tf->valid)
13723 {
13724 info->callbacks->einfo
13725 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13726 return FALSE;
13727 }
13728 }
13729 flaginfo->flags_initialized = TRUE;
13730 flaginfo->only_with_flags |= with_hex;
13731 flaginfo->not_with_flags |= without_hex;
13732 }
13733
13734 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13735 return FALSE;
13736
13737 if ((flaginfo->not_with_flags & sh_flags) != 0)
13738 return FALSE;
13739
13740 return TRUE;
13741 }
13742
13743 struct alloc_got_off_arg {
13744 bfd_vma gotoff;
13745 struct bfd_link_info *info;
13746 };
13747
13748 /* We need a special top-level link routine to convert got reference counts
13749 to real got offsets. */
13750
13751 static bfd_boolean
13752 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13753 {
13754 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13755 bfd *obfd = gofarg->info->output_bfd;
13756 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13757
13758 if (h->got.refcount > 0)
13759 {
13760 h->got.offset = gofarg->gotoff;
13761 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13762 }
13763 else
13764 h->got.offset = (bfd_vma) -1;
13765
13766 return TRUE;
13767 }
13768
13769 /* And an accompanying bit to work out final got entry offsets once
13770 we're done. Should be called from final_link. */
13771
13772 bfd_boolean
13773 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13774 struct bfd_link_info *info)
13775 {
13776 bfd *i;
13777 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13778 bfd_vma gotoff;
13779 struct alloc_got_off_arg gofarg;
13780
13781 BFD_ASSERT (abfd == info->output_bfd);
13782
13783 if (! is_elf_hash_table (info->hash))
13784 return FALSE;
13785
13786 /* The GOT offset is relative to the .got section, but the GOT header is
13787 put into the .got.plt section, if the backend uses it. */
13788 if (bed->want_got_plt)
13789 gotoff = 0;
13790 else
13791 gotoff = bed->got_header_size;
13792
13793 /* Do the local .got entries first. */
13794 for (i = info->input_bfds; i; i = i->link.next)
13795 {
13796 bfd_signed_vma *local_got;
13797 size_t j, locsymcount;
13798 Elf_Internal_Shdr *symtab_hdr;
13799
13800 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13801 continue;
13802
13803 local_got = elf_local_got_refcounts (i);
13804 if (!local_got)
13805 continue;
13806
13807 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13808 if (elf_bad_symtab (i))
13809 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13810 else
13811 locsymcount = symtab_hdr->sh_info;
13812
13813 for (j = 0; j < locsymcount; ++j)
13814 {
13815 if (local_got[j] > 0)
13816 {
13817 local_got[j] = gotoff;
13818 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13819 }
13820 else
13821 local_got[j] = (bfd_vma) -1;
13822 }
13823 }
13824
13825 /* Then the global .got entries. .plt refcounts are handled by
13826 adjust_dynamic_symbol */
13827 gofarg.gotoff = gotoff;
13828 gofarg.info = info;
13829 elf_link_hash_traverse (elf_hash_table (info),
13830 elf_gc_allocate_got_offsets,
13831 &gofarg);
13832 return TRUE;
13833 }
13834
13835 /* Many folk need no more in the way of final link than this, once
13836 got entry reference counting is enabled. */
13837
13838 bfd_boolean
13839 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13840 {
13841 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13842 return FALSE;
13843
13844 /* Invoke the regular ELF backend linker to do all the work. */
13845 return bfd_elf_final_link (abfd, info);
13846 }
13847
13848 bfd_boolean
13849 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13850 {
13851 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13852
13853 if (rcookie->bad_symtab)
13854 rcookie->rel = rcookie->rels;
13855
13856 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13857 {
13858 unsigned long r_symndx;
13859
13860 if (! rcookie->bad_symtab)
13861 if (rcookie->rel->r_offset > offset)
13862 return FALSE;
13863 if (rcookie->rel->r_offset != offset)
13864 continue;
13865
13866 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13867 if (r_symndx == STN_UNDEF)
13868 return TRUE;
13869
13870 if (r_symndx >= rcookie->locsymcount
13871 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13872 {
13873 struct elf_link_hash_entry *h;
13874
13875 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13876
13877 while (h->root.type == bfd_link_hash_indirect
13878 || h->root.type == bfd_link_hash_warning)
13879 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13880
13881 if ((h->root.type == bfd_link_hash_defined
13882 || h->root.type == bfd_link_hash_defweak)
13883 && (h->root.u.def.section->owner != rcookie->abfd
13884 || h->root.u.def.section->kept_section != NULL
13885 || discarded_section (h->root.u.def.section)))
13886 return TRUE;
13887 }
13888 else
13889 {
13890 /* It's not a relocation against a global symbol,
13891 but it could be a relocation against a local
13892 symbol for a discarded section. */
13893 asection *isec;
13894 Elf_Internal_Sym *isym;
13895
13896 /* Need to: get the symbol; get the section. */
13897 isym = &rcookie->locsyms[r_symndx];
13898 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13899 if (isec != NULL
13900 && (isec->kept_section != NULL
13901 || discarded_section (isec)))
13902 return TRUE;
13903 }
13904 return FALSE;
13905 }
13906 return FALSE;
13907 }
13908
13909 /* Discard unneeded references to discarded sections.
13910 Returns -1 on error, 1 if any section's size was changed, 0 if
13911 nothing changed. This function assumes that the relocations are in
13912 sorted order, which is true for all known assemblers. */
13913
13914 int
13915 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13916 {
13917 struct elf_reloc_cookie cookie;
13918 asection *o;
13919 bfd *abfd;
13920 int changed = 0;
13921
13922 if (info->traditional_format
13923 || !is_elf_hash_table (info->hash))
13924 return 0;
13925
13926 o = bfd_get_section_by_name (output_bfd, ".stab");
13927 if (o != NULL)
13928 {
13929 asection *i;
13930
13931 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13932 {
13933 if (i->size == 0
13934 || i->reloc_count == 0
13935 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13936 continue;
13937
13938 abfd = i->owner;
13939 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13940 continue;
13941
13942 if (!init_reloc_cookie_for_section (&cookie, info, i))
13943 return -1;
13944
13945 if (_bfd_discard_section_stabs (abfd, i,
13946 elf_section_data (i)->sec_info,
13947 bfd_elf_reloc_symbol_deleted_p,
13948 &cookie))
13949 changed = 1;
13950
13951 fini_reloc_cookie_for_section (&cookie, i);
13952 }
13953 }
13954
13955 o = NULL;
13956 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13957 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13958 if (o != NULL)
13959 {
13960 asection *i;
13961 int eh_changed = 0;
13962 unsigned int eh_alignment;
13963
13964 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13965 {
13966 if (i->size == 0)
13967 continue;
13968
13969 abfd = i->owner;
13970 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13971 continue;
13972
13973 if (!init_reloc_cookie_for_section (&cookie, info, i))
13974 return -1;
13975
13976 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13977 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13978 bfd_elf_reloc_symbol_deleted_p,
13979 &cookie))
13980 {
13981 eh_changed = 1;
13982 if (i->size != i->rawsize)
13983 changed = 1;
13984 }
13985
13986 fini_reloc_cookie_for_section (&cookie, i);
13987 }
13988
13989 eh_alignment = 1 << o->alignment_power;
13990 /* Skip over zero terminator, and prevent empty sections from
13991 adding alignment padding at the end. */
13992 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13993 if (i->size == 0)
13994 i->flags |= SEC_EXCLUDE;
13995 else if (i->size > 4)
13996 break;
13997 /* The last non-empty eh_frame section doesn't need padding. */
13998 if (i != NULL)
13999 i = i->map_tail.s;
14000 /* Any prior sections must pad the last FDE out to the output
14001 section alignment. Otherwise we might have zero padding
14002 between sections, which would be seen as a terminator. */
14003 for (; i != NULL; i = i->map_tail.s)
14004 if (i->size == 4)
14005 /* All but the last zero terminator should have been removed. */
14006 BFD_FAIL ();
14007 else
14008 {
14009 bfd_size_type size
14010 = (i->size + eh_alignment - 1) & -eh_alignment;
14011 if (i->size != size)
14012 {
14013 i->size = size;
14014 changed = 1;
14015 eh_changed = 1;
14016 }
14017 }
14018 if (eh_changed)
14019 elf_link_hash_traverse (elf_hash_table (info),
14020 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14021 }
14022
14023 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14024 {
14025 const struct elf_backend_data *bed;
14026 asection *s;
14027
14028 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14029 continue;
14030 s = abfd->sections;
14031 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14032 continue;
14033
14034 bed = get_elf_backend_data (abfd);
14035
14036 if (bed->elf_backend_discard_info != NULL)
14037 {
14038 if (!init_reloc_cookie (&cookie, info, abfd))
14039 return -1;
14040
14041 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14042 changed = 1;
14043
14044 fini_reloc_cookie (&cookie, abfd);
14045 }
14046 }
14047
14048 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14049 _bfd_elf_end_eh_frame_parsing (info);
14050
14051 if (info->eh_frame_hdr_type
14052 && !bfd_link_relocatable (info)
14053 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14054 changed = 1;
14055
14056 return changed;
14057 }
14058
14059 bfd_boolean
14060 _bfd_elf_section_already_linked (bfd *abfd,
14061 asection *sec,
14062 struct bfd_link_info *info)
14063 {
14064 flagword flags;
14065 const char *name, *key;
14066 struct bfd_section_already_linked *l;
14067 struct bfd_section_already_linked_hash_entry *already_linked_list;
14068
14069 if (sec->output_section == bfd_abs_section_ptr)
14070 return FALSE;
14071
14072 flags = sec->flags;
14073
14074 /* Return if it isn't a linkonce section. A comdat group section
14075 also has SEC_LINK_ONCE set. */
14076 if ((flags & SEC_LINK_ONCE) == 0)
14077 return FALSE;
14078
14079 /* Don't put group member sections on our list of already linked
14080 sections. They are handled as a group via their group section. */
14081 if (elf_sec_group (sec) != NULL)
14082 return FALSE;
14083
14084 /* For a SHT_GROUP section, use the group signature as the key. */
14085 name = sec->name;
14086 if ((flags & SEC_GROUP) != 0
14087 && elf_next_in_group (sec) != NULL
14088 && elf_group_name (elf_next_in_group (sec)) != NULL)
14089 key = elf_group_name (elf_next_in_group (sec));
14090 else
14091 {
14092 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14093 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14094 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14095 key++;
14096 else
14097 /* Must be a user linkonce section that doesn't follow gcc's
14098 naming convention. In this case we won't be matching
14099 single member groups. */
14100 key = name;
14101 }
14102
14103 already_linked_list = bfd_section_already_linked_table_lookup (key);
14104
14105 for (l = already_linked_list->entry; l != NULL; l = l->next)
14106 {
14107 /* We may have 2 different types of sections on the list: group
14108 sections with a signature of <key> (<key> is some string),
14109 and linkonce sections named .gnu.linkonce.<type>.<key>.
14110 Match like sections. LTO plugin sections are an exception.
14111 They are always named .gnu.linkonce.t.<key> and match either
14112 type of section. */
14113 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14114 && ((flags & SEC_GROUP) != 0
14115 || strcmp (name, l->sec->name) == 0))
14116 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14117 {
14118 /* The section has already been linked. See if we should
14119 issue a warning. */
14120 if (!_bfd_handle_already_linked (sec, l, info))
14121 return FALSE;
14122
14123 if (flags & SEC_GROUP)
14124 {
14125 asection *first = elf_next_in_group (sec);
14126 asection *s = first;
14127
14128 while (s != NULL)
14129 {
14130 s->output_section = bfd_abs_section_ptr;
14131 /* Record which group discards it. */
14132 s->kept_section = l->sec;
14133 s = elf_next_in_group (s);
14134 /* These lists are circular. */
14135 if (s == first)
14136 break;
14137 }
14138 }
14139
14140 return TRUE;
14141 }
14142 }
14143
14144 /* A single member comdat group section may be discarded by a
14145 linkonce section and vice versa. */
14146 if ((flags & SEC_GROUP) != 0)
14147 {
14148 asection *first = elf_next_in_group (sec);
14149
14150 if (first != NULL && elf_next_in_group (first) == first)
14151 /* Check this single member group against linkonce sections. */
14152 for (l = already_linked_list->entry; l != NULL; l = l->next)
14153 if ((l->sec->flags & SEC_GROUP) == 0
14154 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14155 {
14156 first->output_section = bfd_abs_section_ptr;
14157 first->kept_section = l->sec;
14158 sec->output_section = bfd_abs_section_ptr;
14159 break;
14160 }
14161 }
14162 else
14163 /* Check this linkonce section against single member groups. */
14164 for (l = already_linked_list->entry; l != NULL; l = l->next)
14165 if (l->sec->flags & SEC_GROUP)
14166 {
14167 asection *first = elf_next_in_group (l->sec);
14168
14169 if (first != NULL
14170 && elf_next_in_group (first) == first
14171 && bfd_elf_match_symbols_in_sections (first, sec, info))
14172 {
14173 sec->output_section = bfd_abs_section_ptr;
14174 sec->kept_section = first;
14175 break;
14176 }
14177 }
14178
14179 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14180 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14181 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14182 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14183 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14184 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14185 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14186 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14187 The reverse order cannot happen as there is never a bfd with only the
14188 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14189 matter as here were are looking only for cross-bfd sections. */
14190
14191 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14192 for (l = already_linked_list->entry; l != NULL; l = l->next)
14193 if ((l->sec->flags & SEC_GROUP) == 0
14194 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14195 {
14196 if (abfd != l->sec->owner)
14197 sec->output_section = bfd_abs_section_ptr;
14198 break;
14199 }
14200
14201 /* This is the first section with this name. Record it. */
14202 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14203 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14204 return sec->output_section == bfd_abs_section_ptr;
14205 }
14206
14207 bfd_boolean
14208 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14209 {
14210 return sym->st_shndx == SHN_COMMON;
14211 }
14212
14213 unsigned int
14214 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14215 {
14216 return SHN_COMMON;
14217 }
14218
14219 asection *
14220 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14221 {
14222 return bfd_com_section_ptr;
14223 }
14224
14225 bfd_vma
14226 _bfd_elf_default_got_elt_size (bfd *abfd,
14227 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14228 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14229 bfd *ibfd ATTRIBUTE_UNUSED,
14230 unsigned long symndx ATTRIBUTE_UNUSED)
14231 {
14232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14233 return bed->s->arch_size / 8;
14234 }
14235
14236 /* Routines to support the creation of dynamic relocs. */
14237
14238 /* Returns the name of the dynamic reloc section associated with SEC. */
14239
14240 static const char *
14241 get_dynamic_reloc_section_name (bfd * abfd,
14242 asection * sec,
14243 bfd_boolean is_rela)
14244 {
14245 char *name;
14246 const char *old_name = bfd_get_section_name (NULL, sec);
14247 const char *prefix = is_rela ? ".rela" : ".rel";
14248
14249 if (old_name == NULL)
14250 return NULL;
14251
14252 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14253 sprintf (name, "%s%s", prefix, old_name);
14254
14255 return name;
14256 }
14257
14258 /* Returns the dynamic reloc section associated with SEC.
14259 If necessary compute the name of the dynamic reloc section based
14260 on SEC's name (looked up in ABFD's string table) and the setting
14261 of IS_RELA. */
14262
14263 asection *
14264 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14265 asection * sec,
14266 bfd_boolean is_rela)
14267 {
14268 asection * reloc_sec = elf_section_data (sec)->sreloc;
14269
14270 if (reloc_sec == NULL)
14271 {
14272 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14273
14274 if (name != NULL)
14275 {
14276 reloc_sec = bfd_get_linker_section (abfd, name);
14277
14278 if (reloc_sec != NULL)
14279 elf_section_data (sec)->sreloc = reloc_sec;
14280 }
14281 }
14282
14283 return reloc_sec;
14284 }
14285
14286 /* Returns the dynamic reloc section associated with SEC. If the
14287 section does not exist it is created and attached to the DYNOBJ
14288 bfd and stored in the SRELOC field of SEC's elf_section_data
14289 structure.
14290
14291 ALIGNMENT is the alignment for the newly created section and
14292 IS_RELA defines whether the name should be .rela.<SEC's name>
14293 or .rel.<SEC's name>. The section name is looked up in the
14294 string table associated with ABFD. */
14295
14296 asection *
14297 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14298 bfd *dynobj,
14299 unsigned int alignment,
14300 bfd *abfd,
14301 bfd_boolean is_rela)
14302 {
14303 asection * reloc_sec = elf_section_data (sec)->sreloc;
14304
14305 if (reloc_sec == NULL)
14306 {
14307 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14308
14309 if (name == NULL)
14310 return NULL;
14311
14312 reloc_sec = bfd_get_linker_section (dynobj, name);
14313
14314 if (reloc_sec == NULL)
14315 {
14316 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14317 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14318 if ((sec->flags & SEC_ALLOC) != 0)
14319 flags |= SEC_ALLOC | SEC_LOAD;
14320
14321 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14322 if (reloc_sec != NULL)
14323 {
14324 /* _bfd_elf_get_sec_type_attr chooses a section type by
14325 name. Override as it may be wrong, eg. for a user
14326 section named "auto" we'll get ".relauto" which is
14327 seen to be a .rela section. */
14328 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14329 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14330 reloc_sec = NULL;
14331 }
14332 }
14333
14334 elf_section_data (sec)->sreloc = reloc_sec;
14335 }
14336
14337 return reloc_sec;
14338 }
14339
14340 /* Copy the ELF symbol type and other attributes for a linker script
14341 assignment from HSRC to HDEST. Generally this should be treated as
14342 if we found a strong non-dynamic definition for HDEST (except that
14343 ld ignores multiple definition errors). */
14344 void
14345 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14346 struct bfd_link_hash_entry *hdest,
14347 struct bfd_link_hash_entry *hsrc)
14348 {
14349 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14350 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14351 Elf_Internal_Sym isym;
14352
14353 ehdest->type = ehsrc->type;
14354 ehdest->target_internal = ehsrc->target_internal;
14355
14356 isym.st_other = ehsrc->other;
14357 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14358 }
14359
14360 /* Append a RELA relocation REL to section S in BFD. */
14361
14362 void
14363 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14364 {
14365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14366 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14367 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14368 bed->s->swap_reloca_out (abfd, rel, loc);
14369 }
14370
14371 /* Append a REL relocation REL to section S in BFD. */
14372
14373 void
14374 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14375 {
14376 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14377 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14378 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14379 bed->s->swap_reloc_out (abfd, rel, loc);
14380 }
14381
14382 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14383
14384 struct bfd_link_hash_entry *
14385 bfd_elf_define_start_stop (struct bfd_link_info *info,
14386 const char *symbol, asection *sec)
14387 {
14388 struct elf_link_hash_entry *h;
14389
14390 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14391 FALSE, FALSE, TRUE);
14392 if (h != NULL
14393 && (h->root.type == bfd_link_hash_undefined
14394 || h->root.type == bfd_link_hash_undefweak
14395 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14396 {
14397 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14398 h->root.type = bfd_link_hash_defined;
14399 h->root.u.def.section = sec;
14400 h->root.u.def.value = 0;
14401 h->def_regular = 1;
14402 h->def_dynamic = 0;
14403 h->start_stop = 1;
14404 h->u2.start_stop_section = sec;
14405 if (symbol[0] == '.')
14406 {
14407 /* .startof. and .sizeof. symbols are local. */
14408 const struct elf_backend_data *bed;
14409 bed = get_elf_backend_data (info->output_bfd);
14410 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14411 }
14412 else
14413 {
14414 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14415 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14416 if (was_dynamic)
14417 bfd_elf_link_record_dynamic_symbol (info, h);
14418 }
14419 return &h->root;
14420 }
14421 return NULL;
14422 }
This page took 0.324485 seconds and 5 git commands to generate.