* elflink.c (elf_link_add_object_symbols): Don't force debug
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1558 {
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1571
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1582 {
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1595
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1603
1604 if (override)
1605 {
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1615 {
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1619 }
1620 }
1621
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1625
1626 shortlen = p - name;
1627 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1632
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1644
1645 if (skip)
1646 goto nondefault;
1647
1648 if (! override)
1649 {
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1656 }
1657 else
1658 {
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1664
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1668
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1676
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1684 {
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1692 }
1693 }
1694
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1698 }
1699
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 {
1710 struct elf_link_hash_entry *ht;
1711
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1718 {
1719 if (! dynamic)
1720 {
1721 if (info->shared
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1724 }
1725 else
1726 {
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1729 }
1730 }
1731 }
1732
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1735
1736 nondefault:
1737 len = strlen (name);
1738 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1752
1753 if (skip)
1754 return TRUE;
1755
1756 if (override)
1757 {
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1766 }
1767 else
1768 {
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1775
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1779
1780 if (hi->root.type == bfd_link_hash_indirect)
1781 {
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (info->shared
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1816 return TRUE;
1817
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1820 return TRUE;
1821
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824
1825 if (h->dynindx == -1
1826 && (h->def_regular
1827 || h->ref_regular))
1828 {
1829 bfd_boolean hide;
1830
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 && !hide))
1834 {
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 {
1837 eif->failed = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 }
1842
1843 return TRUE;
1844 }
1845 \f
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1850
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 void *data)
1854 {
1855 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1858 bfd_size_type amt;
1859
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862
1863 /* We only care about symbols defined in shared objects with version
1864 information. */
1865 if (!h->def_dynamic
1866 || h->def_regular
1867 || h->dynindx == -1
1868 || h->verinfo.verdef == NULL)
1869 return TRUE;
1870
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 t != NULL;
1874 t = t->vn_nextref)
1875 {
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 continue;
1878
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 return TRUE;
1882
1883 break;
1884 }
1885
1886 /* This is a new version. Add it to tree we are building. */
1887
1888 if (t == NULL)
1889 {
1890 amt = sizeof *t;
1891 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (t == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 }
1902
1903 amt = sizeof *a;
1904 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905 if (a == NULL)
1906 {
1907 rinfo->failed = TRUE;
1908 return FALSE;
1909 }
1910
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1914 fixed. */
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1919
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 ++rinfo->vers;
1922
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924
1925 t->vn_auxptr = a;
1926
1927 return TRUE;
1928 }
1929
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1934
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 {
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1942 char *p;
1943 bfd_size_type amt;
1944
1945 sinfo = (struct elf_info_failed *) data;
1946 info = sinfo->info;
1947
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950
1951 /* Fix the symbol flags. */
1952 eif.failed = FALSE;
1953 eif.info = info;
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 {
1956 if (eif.failed)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 /* We only need version numbers for symbols defined in regular
1962 objects. */
1963 if (!h->def_regular)
1964 return TRUE;
1965
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1969 {
1970 struct bfd_elf_version_tree *t;
1971 bfd_boolean hidden;
1972
1973 hidden = TRUE;
1974
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1977 ++p;
1978 if (*p == ELF_VER_CHR)
1979 {
1980 hidden = FALSE;
1981 ++p;
1982 }
1983
1984 /* If there is no version string, we can just return out. */
1985 if (*p == '\0')
1986 {
1987 if (hidden)
1988 h->hidden = 1;
1989 return TRUE;
1990 }
1991
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 {
1995 if (strcmp (t->name, p) == 0)
1996 {
1997 size_t len;
1998 char *alc;
1999 struct bfd_elf_version_expr *d;
2000
2001 len = p - h->root.root.string;
2002 alc = (char *) bfd_malloc (len);
2003 if (alc == NULL)
2004 {
2005 sinfo->failed = TRUE;
2006 return FALSE;
2007 }
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2012
2013 h->verinfo.vertree = t;
2014 t->used = TRUE;
2015 d = NULL;
2016
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2019
2020 /* See if there is anything to force this symbol to
2021 local scope. */
2022 if (d == NULL && t->locals.list != NULL)
2023 {
2024 d = (*t->match) (&t->locals, NULL, alc);
2025 if (d != NULL
2026 && h->dynindx != -1
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 }
2030
2031 free (alc);
2032 break;
2033 }
2034 }
2035
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2039 {
2040 struct bfd_elf_version_tree **pp;
2041 int version_index;
2042
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2046 return TRUE;
2047
2048 amt = sizeof *t;
2049 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2050 if (t == NULL)
2051 {
2052 sinfo->failed = TRUE;
2053 return FALSE;
2054 }
2055
2056 t->name = p;
2057 t->name_indx = (unsigned int) -1;
2058 t->used = TRUE;
2059
2060 version_index = 1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 version_index = 0;
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 ++version_index;
2066 t->vernum = version_index;
2067
2068 *pp = t;
2069
2070 h->verinfo.vertree = t;
2071 }
2072 else if (t == NULL)
2073 {
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 if (hidden)
2085 h->hidden = 1;
2086 }
2087
2088 /* If we don't have a version for this symbol, see if we can find
2089 something. */
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 {
2092 bfd_boolean hide;
2093
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 return TRUE;
2101 }
2102 \f
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2109
2110 Returns FALSE if something goes wrong. */
2111
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 asection *sec,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2118 {
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2125 size_t nsyms;
2126
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129 return FALSE;
2130
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133 return FALSE;
2134
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137
2138 bed = get_elf_backend_data (abfd);
2139
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2145 else
2146 {
2147 bfd_set_error (bfd_error_wrong_format);
2148 return FALSE;
2149 }
2150
2151 erela = (const bfd_byte *) external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2155 {
2156 bfd_vma r_symndx;
2157
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2161 r_symndx >>= 24;
2162 if (nsyms > 0)
2163 {
2164 if ((size_t) r_symndx >= nsyms)
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 }
2175 else if (r_symndx != 0)
2176 {
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2180 abfd, sec,
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2183 return FALSE;
2184 }
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2201
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 asection *o,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2208 {
2209 Elf_Internal_Shdr *rel_hdr;
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213
2214 if (elf_section_data (o)->relocs != NULL)
2215 return elf_section_data (o)->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 rel_hdr = &elf_section_data (o)->rel_hdr;
2221
2222 if (internal_relocs == NULL)
2223 {
2224 bfd_size_type size;
2225
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2234 }
2235
2236 if (external_relocs == NULL)
2237 {
2238 bfd_size_type size = rel_hdr->sh_size;
2239
2240 if (elf_section_data (o)->rel_hdr2)
2241 size += elf_section_data (o)->rel_hdr2->sh_size;
2242 alloc1 = bfd_malloc (size);
2243 if (alloc1 == NULL)
2244 goto error_return;
2245 external_relocs = alloc1;
2246 }
2247
2248 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 external_relocs,
2250 internal_relocs))
2251 goto error_return;
2252 if (elf_section_data (o)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2254 (abfd, o,
2255 elf_section_data (o)->rel_hdr2,
2256 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 * bed->s->int_rels_per_ext_rel))))
2259 goto error_return;
2260
2261 /* Cache the results for next time, if we can. */
2262 if (keep_memory)
2263 elf_section_data (o)->relocs = internal_relocs;
2264
2265 if (alloc1 != NULL)
2266 free (alloc1);
2267
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2270
2271 return internal_relocs;
2272
2273 error_return:
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276 if (alloc2 != NULL)
2277 {
2278 if (keep_memory)
2279 bfd_release (abfd, alloc2);
2280 else
2281 free (alloc2);
2282 }
2283 return NULL;
2284 }
2285
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2288
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 Elf_Internal_Shdr *rel_hdr,
2292 asection *o)
2293 {
2294 bfd_size_type reloc_count;
2295 bfd_size_type num_rel_hashes;
2296
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299 reloc_count = elf_section_data (o)->rel_count;
2300 else
2301 reloc_count = elf_section_data (o)->rel_count2;
2302
2303 num_rel_hashes = o->reloc_count;
2304 if (num_rel_hashes < reloc_count)
2305 num_rel_hashes = reloc_count;
2306
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2315 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316 return FALSE;
2317
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o)->rel_hashes == NULL
2321 && num_rel_hashes)
2322 {
2323 struct elf_link_hash_entry **p;
2324
2325 p = (struct elf_link_hash_entry **)
2326 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2327 if (p == NULL)
2328 return FALSE;
2329
2330 elf_section_data (o)->rel_hashes = p;
2331 }
2332
2333 return TRUE;
2334 }
2335
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337 originated from the section given by INPUT_REL_HDR) to the
2338 OUTPUT_BFD. */
2339
2340 bfd_boolean
2341 _bfd_elf_link_output_relocs (bfd *output_bfd,
2342 asection *input_section,
2343 Elf_Internal_Shdr *input_rel_hdr,
2344 Elf_Internal_Rela *internal_relocs,
2345 struct elf_link_hash_entry **rel_hash
2346 ATTRIBUTE_UNUSED)
2347 {
2348 Elf_Internal_Rela *irela;
2349 Elf_Internal_Rela *irelaend;
2350 bfd_byte *erel;
2351 Elf_Internal_Shdr *output_rel_hdr;
2352 asection *output_section;
2353 unsigned int *rel_countp = NULL;
2354 const struct elf_backend_data *bed;
2355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356
2357 output_section = input_section->output_section;
2358 output_rel_hdr = NULL;
2359
2360 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2361 == input_rel_hdr->sh_entsize)
2362 {
2363 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2364 rel_countp = &elf_section_data (output_section)->rel_count;
2365 }
2366 else if (elf_section_data (output_section)->rel_hdr2
2367 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2368 == input_rel_hdr->sh_entsize))
2369 {
2370 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2371 rel_countp = &elf_section_data (output_section)->rel_count2;
2372 }
2373 else
2374 {
2375 (*_bfd_error_handler)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd, input_section->owner, input_section);
2378 bfd_set_error (bfd_error_wrong_format);
2379 return FALSE;
2380 }
2381
2382 bed = get_elf_backend_data (output_bfd);
2383 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2384 swap_out = bed->s->swap_reloc_out;
2385 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2386 swap_out = bed->s->swap_reloca_out;
2387 else
2388 abort ();
2389
2390 erel = output_rel_hdr->contents;
2391 erel += *rel_countp * input_rel_hdr->sh_entsize;
2392 irela = internal_relocs;
2393 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2394 * bed->s->int_rels_per_ext_rel);
2395 while (irela < irelaend)
2396 {
2397 (*swap_out) (output_bfd, irela, erel);
2398 irela += bed->s->int_rels_per_ext_rel;
2399 erel += input_rel_hdr->sh_entsize;
2400 }
2401
2402 /* Bump the counter, so that we know where to add the next set of
2403 relocations. */
2404 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2405
2406 return TRUE;
2407 }
2408 \f
2409 /* Make weak undefined symbols in PIE dynamic. */
2410
2411 bfd_boolean
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2413 struct elf_link_hash_entry *h)
2414 {
2415 if (info->pie
2416 && h->dynindx == -1
2417 && h->root.type == bfd_link_hash_undefweak)
2418 return bfd_elf_link_record_dynamic_symbol (info, h);
2419
2420 return TRUE;
2421 }
2422
2423 /* Fix up the flags for a symbol. This handles various cases which
2424 can only be fixed after all the input files are seen. This is
2425 currently called by both adjust_dynamic_symbol and
2426 assign_sym_version, which is unnecessary but perhaps more robust in
2427 the face of future changes. */
2428
2429 static bfd_boolean
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2431 struct elf_info_failed *eif)
2432 {
2433 const struct elf_backend_data *bed;
2434
2435 /* If this symbol was mentioned in a non-ELF file, try to set
2436 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2437 permit a non-ELF file to correctly refer to a symbol defined in
2438 an ELF dynamic object. */
2439 if (h->non_elf)
2440 {
2441 while (h->root.type == bfd_link_hash_indirect)
2442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2443
2444 if (h->root.type != bfd_link_hash_defined
2445 && h->root.type != bfd_link_hash_defweak)
2446 {
2447 h->ref_regular = 1;
2448 h->ref_regular_nonweak = 1;
2449 }
2450 else
2451 {
2452 if (h->root.u.def.section->owner != NULL
2453 && (bfd_get_flavour (h->root.u.def.section->owner)
2454 == bfd_target_elf_flavour))
2455 {
2456 h->ref_regular = 1;
2457 h->ref_regular_nonweak = 1;
2458 }
2459 else
2460 h->def_regular = 1;
2461 }
2462
2463 if (h->dynindx == -1
2464 && (h->def_dynamic
2465 || h->ref_dynamic))
2466 {
2467 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2468 {
2469 eif->failed = TRUE;
2470 return FALSE;
2471 }
2472 }
2473 }
2474 else
2475 {
2476 /* Unfortunately, NON_ELF is only correct if the symbol
2477 was first seen in a non-ELF file. Fortunately, if the symbol
2478 was first seen in an ELF file, we're probably OK unless the
2479 symbol was defined in a non-ELF file. Catch that case here.
2480 FIXME: We're still in trouble if the symbol was first seen in
2481 a dynamic object, and then later in a non-ELF regular object. */
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && !h->def_regular
2485 && (h->root.u.def.section->owner != NULL
2486 ? (bfd_get_flavour (h->root.u.def.section->owner)
2487 != bfd_target_elf_flavour)
2488 : (bfd_is_abs_section (h->root.u.def.section)
2489 && !h->def_dynamic)))
2490 h->def_regular = 1;
2491 }
2492
2493 /* Backend specific symbol fixup. */
2494 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2495 if (bed->elf_backend_fixup_symbol
2496 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2497 return FALSE;
2498
2499 /* If this is a final link, and the symbol was defined as a common
2500 symbol in a regular object file, and there was no definition in
2501 any dynamic object, then the linker will have allocated space for
2502 the symbol in a common section but the DEF_REGULAR
2503 flag will not have been set. */
2504 if (h->root.type == bfd_link_hash_defined
2505 && !h->def_regular
2506 && h->ref_regular
2507 && !h->def_dynamic
2508 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2509 h->def_regular = 1;
2510
2511 /* If -Bsymbolic was used (which means to bind references to global
2512 symbols to the definition within the shared object), and this
2513 symbol was defined in a regular object, then it actually doesn't
2514 need a PLT entry. Likewise, if the symbol has non-default
2515 visibility. If the symbol has hidden or internal visibility, we
2516 will force it local. */
2517 if (h->needs_plt
2518 && eif->info->shared
2519 && is_elf_hash_table (eif->info->hash)
2520 && (SYMBOLIC_BIND (eif->info, h)
2521 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2522 && h->def_regular)
2523 {
2524 bfd_boolean force_local;
2525
2526 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2527 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2528 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2529 }
2530
2531 /* If a weak undefined symbol has non-default visibility, we also
2532 hide it from the dynamic linker. */
2533 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2534 && h->root.type == bfd_link_hash_undefweak)
2535 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2536
2537 /* If this is a weak defined symbol in a dynamic object, and we know
2538 the real definition in the dynamic object, copy interesting flags
2539 over to the real definition. */
2540 if (h->u.weakdef != NULL)
2541 {
2542 struct elf_link_hash_entry *weakdef;
2543
2544 weakdef = h->u.weakdef;
2545 if (h->root.type == bfd_link_hash_indirect)
2546 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2547
2548 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2549 || h->root.type == bfd_link_hash_defweak);
2550 BFD_ASSERT (weakdef->def_dynamic);
2551
2552 /* If the real definition is defined by a regular object file,
2553 don't do anything special. See the longer description in
2554 _bfd_elf_adjust_dynamic_symbol, below. */
2555 if (weakdef->def_regular)
2556 h->u.weakdef = NULL;
2557 else
2558 {
2559 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2560 || weakdef->root.type == bfd_link_hash_defweak);
2561 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2562 }
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Make the backend pick a good value for a dynamic symbol. This is
2569 called via elf_link_hash_traverse, and also calls itself
2570 recursively. */
2571
2572 static bfd_boolean
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2574 {
2575 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2576 bfd *dynobj;
2577 const struct elf_backend_data *bed;
2578
2579 if (! is_elf_hash_table (eif->info->hash))
2580 return FALSE;
2581
2582 if (h->root.type == bfd_link_hash_warning)
2583 {
2584 h->got = elf_hash_table (eif->info)->init_got_offset;
2585 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2586
2587 /* When warning symbols are created, they **replace** the "real"
2588 entry in the hash table, thus we never get to see the real
2589 symbol in a hash traversal. So look at it now. */
2590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2591 }
2592
2593 /* Ignore indirect symbols. These are added by the versioning code. */
2594 if (h->root.type == bfd_link_hash_indirect)
2595 return TRUE;
2596
2597 /* Fix the symbol flags. */
2598 if (! _bfd_elf_fix_symbol_flags (h, eif))
2599 return FALSE;
2600
2601 /* If this symbol does not require a PLT entry, and it is not
2602 defined by a dynamic object, or is not referenced by a regular
2603 object, ignore it. We do have to handle a weak defined symbol,
2604 even if no regular object refers to it, if we decided to add it
2605 to the dynamic symbol table. FIXME: Do we normally need to worry
2606 about symbols which are defined by one dynamic object and
2607 referenced by another one? */
2608 if (!h->needs_plt
2609 && h->type != STT_GNU_IFUNC
2610 && (h->def_regular
2611 || !h->def_dynamic
2612 || (!h->ref_regular
2613 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2614 {
2615 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2616 return TRUE;
2617 }
2618
2619 /* If we've already adjusted this symbol, don't do it again. This
2620 can happen via a recursive call. */
2621 if (h->dynamic_adjusted)
2622 return TRUE;
2623
2624 /* Don't look at this symbol again. Note that we must set this
2625 after checking the above conditions, because we may look at a
2626 symbol once, decide not to do anything, and then get called
2627 recursively later after REF_REGULAR is set below. */
2628 h->dynamic_adjusted = 1;
2629
2630 /* If this is a weak definition, and we know a real definition, and
2631 the real symbol is not itself defined by a regular object file,
2632 then get a good value for the real definition. We handle the
2633 real symbol first, for the convenience of the backend routine.
2634
2635 Note that there is a confusing case here. If the real definition
2636 is defined by a regular object file, we don't get the real symbol
2637 from the dynamic object, but we do get the weak symbol. If the
2638 processor backend uses a COPY reloc, then if some routine in the
2639 dynamic object changes the real symbol, we will not see that
2640 change in the corresponding weak symbol. This is the way other
2641 ELF linkers work as well, and seems to be a result of the shared
2642 library model.
2643
2644 I will clarify this issue. Most SVR4 shared libraries define the
2645 variable _timezone and define timezone as a weak synonym. The
2646 tzset call changes _timezone. If you write
2647 extern int timezone;
2648 int _timezone = 5;
2649 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650 you might expect that, since timezone is a synonym for _timezone,
2651 the same number will print both times. However, if the processor
2652 backend uses a COPY reloc, then actually timezone will be copied
2653 into your process image, and, since you define _timezone
2654 yourself, _timezone will not. Thus timezone and _timezone will
2655 wind up at different memory locations. The tzset call will set
2656 _timezone, leaving timezone unchanged. */
2657
2658 if (h->u.weakdef != NULL)
2659 {
2660 /* If we get to this point, we know there is an implicit
2661 reference by a regular object file via the weak symbol H.
2662 FIXME: Is this really true? What if the traversal finds
2663 H->U.WEAKDEF before it finds H? */
2664 h->u.weakdef->ref_regular = 1;
2665
2666 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2667 return FALSE;
2668 }
2669
2670 /* If a symbol has no type and no size and does not require a PLT
2671 entry, then we are probably about to do the wrong thing here: we
2672 are probably going to create a COPY reloc for an empty object.
2673 This case can arise when a shared object is built with assembly
2674 code, and the assembly code fails to set the symbol type. */
2675 if (h->size == 0
2676 && h->type == STT_NOTYPE
2677 && !h->needs_plt)
2678 (*_bfd_error_handler)
2679 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680 h->root.root.string);
2681
2682 dynobj = elf_hash_table (eif->info)->dynobj;
2683 bed = get_elf_backend_data (dynobj);
2684
2685 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2686 {
2687 eif->failed = TRUE;
2688 return FALSE;
2689 }
2690
2691 return TRUE;
2692 }
2693
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695 DYNBSS. */
2696
2697 bfd_boolean
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2699 asection *dynbss)
2700 {
2701 unsigned int power_of_two;
2702 bfd_vma mask;
2703 asection *sec = h->root.u.def.section;
2704
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2711 mask = ((bfd_vma) 1 << power_of_two) - 1;
2712 while ((h->root.u.def.value & mask) != 0)
2713 {
2714 mask >>= 1;
2715 --power_of_two;
2716 }
2717
2718 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2719 dynbss))
2720 {
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2723 power_of_two))
2724 return FALSE;
2725 }
2726
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2729
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h->root.u.def.section = dynbss;
2732 h->root.u.def.value = dynbss->size;
2733
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss->size += h->size;
2736
2737 return TRUE;
2738 }
2739
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2742
2743 static bfd_boolean
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2745 {
2746 asection *sec;
2747
2748 if (h->root.type == bfd_link_hash_warning)
2749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750
2751 if ((h->root.type == bfd_link_hash_defined
2752 || h->root.type == bfd_link_hash_defweak)
2753 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2754 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2755 {
2756 bfd *output_bfd = (bfd *) data;
2757
2758 h->root.u.def.value =
2759 _bfd_merged_section_offset (output_bfd,
2760 &h->root.u.def.section,
2761 elf_section_data (sec)->sec_info,
2762 h->root.u.def.value);
2763 }
2764
2765 return TRUE;
2766 }
2767
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2771
2772 bfd_boolean
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean ignore_protected)
2776 {
2777 bfd_boolean binding_stays_local_p;
2778 const struct elf_backend_data *bed;
2779 struct elf_link_hash_table *hash_table;
2780
2781 if (h == NULL)
2782 return FALSE;
2783
2784 while (h->root.type == bfd_link_hash_indirect
2785 || h->root.type == bfd_link_hash_warning)
2786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2787
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h->dynindx == -1)
2790 return FALSE;
2791 if (h->forced_local)
2792 return FALSE;
2793
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2797
2798 switch (ELF_ST_VISIBILITY (h->other))
2799 {
2800 case STV_INTERNAL:
2801 case STV_HIDDEN:
2802 return FALSE;
2803
2804 case STV_PROTECTED:
2805 hash_table = elf_hash_table (info);
2806 if (!is_elf_hash_table (hash_table))
2807 return FALSE;
2808
2809 bed = get_elf_backend_data (hash_table->dynobj);
2810
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected || !bed->is_function_type (h->type))
2815 binding_stays_local_p = TRUE;
2816 break;
2817
2818 default:
2819 break;
2820 }
2821
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h->def_regular)
2824 return TRUE;
2825
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p;
2829 }
2830
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2835
2836 bfd_boolean
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2838 struct bfd_link_info *info,
2839 bfd_boolean local_protected)
2840 {
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
2843
2844 /* If it's a local sym, of course we resolve locally. */
2845 if (h == NULL)
2846 return TRUE;
2847
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2851 return TRUE;
2852
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h))
2856 /* Do nothing. */;
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h->def_regular)
2860 return FALSE;
2861
2862 /* Forced local symbols resolve locally. */
2863 if (h->forced_local)
2864 return TRUE;
2865
2866 /* As do non-dynamic symbols. */
2867 if (h->dynindx == -1)
2868 return TRUE;
2869
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info->executable || SYMBOLIC_BIND (info, h))
2874 return TRUE;
2875
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2879 return FALSE;
2880
2881 hash_table = elf_hash_table (info);
2882 if (!is_elf_hash_table (hash_table))
2883 return TRUE;
2884
2885 bed = get_elf_backend_data (hash_table->dynobj);
2886
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed->is_function_type (h->type))
2889 return TRUE;
2890
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected;
2895 }
2896
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2899
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902 {
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2905
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2910
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2914
2915 elf_hash_table (info)->tls_sec = tls;
2916
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2921
2922 return tls;
2923 }
2924
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2929 {
2930 const struct elf_backend_data *bed;
2931
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2936
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2941
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2945
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2950
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2955
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2957
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2962
2963 return TRUE;
2964 }
2965
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971 {
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2980
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2984
2985 if (! bfd_check_format (abfd, bfd_object))
2986 return FALSE;
2987
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd->archive_pass)
2993 return FALSE;
2994
2995 /* Select the appropriate symbol table. */
2996 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2997 hdr = &elf_tdata (abfd)->symtab_hdr;
2998 else
2999 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3000
3001 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3002
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd))
3006 {
3007 extsymcount = symcount;
3008 extsymoff = 0;
3009 }
3010 else
3011 {
3012 extsymcount = symcount - hdr->sh_info;
3013 extsymoff = hdr->sh_info;
3014 }
3015
3016 if (extsymcount == 0)
3017 return FALSE;
3018
3019 /* Read in the symbol table. */
3020 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3021 NULL, NULL, NULL);
3022 if (isymbuf == NULL)
3023 return FALSE;
3024
3025 /* Scan the symbol table looking for SYMDEF. */
3026 result = FALSE;
3027 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3028 {
3029 const char *name;
3030
3031 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3032 isym->st_name);
3033 if (name == NULL)
3034 break;
3035
3036 if (strcmp (name, symdef->name) == 0)
3037 {
3038 result = is_global_data_symbol_definition (abfd, isym);
3039 break;
3040 }
3041 }
3042
3043 free (isymbuf);
3044
3045 return result;
3046 }
3047 \f
3048 /* Add an entry to the .dynamic table. */
3049
3050 bfd_boolean
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3052 bfd_vma tag,
3053 bfd_vma val)
3054 {
3055 struct elf_link_hash_table *hash_table;
3056 const struct elf_backend_data *bed;
3057 asection *s;
3058 bfd_size_type newsize;
3059 bfd_byte *newcontents;
3060 Elf_Internal_Dyn dyn;
3061
3062 hash_table = elf_hash_table (info);
3063 if (! is_elf_hash_table (hash_table))
3064 return FALSE;
3065
3066 bed = get_elf_backend_data (hash_table->dynobj);
3067 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3068 BFD_ASSERT (s != NULL);
3069
3070 newsize = s->size + bed->s->sizeof_dyn;
3071 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3072 if (newcontents == NULL)
3073 return FALSE;
3074
3075 dyn.d_tag = tag;
3076 dyn.d_un.d_val = val;
3077 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078
3079 s->size = newsize;
3080 s->contents = newcontents;
3081
3082 return TRUE;
3083 }
3084
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3088
3089 static int
3090 elf_add_dt_needed_tag (bfd *abfd,
3091 struct bfd_link_info *info,
3092 const char *soname,
3093 bfd_boolean do_it)
3094 {
3095 struct elf_link_hash_table *hash_table;
3096 bfd_size_type oldsize;
3097 bfd_size_type strindex;
3098
3099 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 return -1;
3101
3102 hash_table = elf_hash_table (info);
3103 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3104 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3105 if (strindex == (bfd_size_type) -1)
3106 return -1;
3107
3108 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109 {
3110 asection *sdyn;
3111 const struct elf_backend_data *bed;
3112 bfd_byte *extdyn;
3113
3114 bed = get_elf_backend_data (hash_table->dynobj);
3115 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3116 if (sdyn != NULL)
3117 for (extdyn = sdyn->contents;
3118 extdyn < sdyn->contents + sdyn->size;
3119 extdyn += bed->s->sizeof_dyn)
3120 {
3121 Elf_Internal_Dyn dyn;
3122
3123 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3124 if (dyn.d_tag == DT_NEEDED
3125 && dyn.d_un.d_val == strindex)
3126 {
3127 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3128 return 1;
3129 }
3130 }
3131 }
3132
3133 if (do_it)
3134 {
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 return -1;
3137
3138 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3139 return -1;
3140 }
3141 else
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3144
3145 return 0;
3146 }
3147
3148 static bfd_boolean
3149 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3150 {
3151 for (; needed != NULL; needed = needed->next)
3152 if (strcmp (soname, needed->name) == 0)
3153 return TRUE;
3154
3155 return FALSE;
3156 }
3157
3158 /* Sort symbol by value and section. */
3159 static int
3160 elf_sort_symbol (const void *arg1, const void *arg2)
3161 {
3162 const struct elf_link_hash_entry *h1;
3163 const struct elf_link_hash_entry *h2;
3164 bfd_signed_vma vdiff;
3165
3166 h1 = *(const struct elf_link_hash_entry **) arg1;
3167 h2 = *(const struct elf_link_hash_entry **) arg2;
3168 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3169 if (vdiff != 0)
3170 return vdiff > 0 ? 1 : -1;
3171 else
3172 {
3173 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3174 if (sdiff != 0)
3175 return sdiff > 0 ? 1 : -1;
3176 }
3177 return 0;
3178 }
3179
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3182
3183 static bfd_boolean
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 {
3186 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3187
3188 if (h->root.type == bfd_link_hash_warning)
3189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3190
3191 if (h->dynindx != -1)
3192 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3193 return TRUE;
3194 }
3195
3196 /* Assign string offsets in .dynstr, update all structures referencing
3197 them. */
3198
3199 static bfd_boolean
3200 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3201 {
3202 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3203 struct elf_link_local_dynamic_entry *entry;
3204 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3205 bfd *dynobj = hash_table->dynobj;
3206 asection *sdyn;
3207 bfd_size_type size;
3208 const struct elf_backend_data *bed;
3209 bfd_byte *extdyn;
3210
3211 _bfd_elf_strtab_finalize (dynstr);
3212 size = _bfd_elf_strtab_size (dynstr);
3213
3214 bed = get_elf_backend_data (dynobj);
3215 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3216 BFD_ASSERT (sdyn != NULL);
3217
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn = sdyn->contents;
3220 extdyn < sdyn->contents + sdyn->size;
3221 extdyn += bed->s->sizeof_dyn)
3222 {
3223 Elf_Internal_Dyn dyn;
3224
3225 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3226 switch (dyn.d_tag)
3227 {
3228 case DT_STRSZ:
3229 dyn.d_un.d_val = size;
3230 break;
3231 case DT_NEEDED:
3232 case DT_SONAME:
3233 case DT_RPATH:
3234 case DT_RUNPATH:
3235 case DT_FILTER:
3236 case DT_AUXILIARY:
3237 case DT_AUDIT:
3238 case DT_DEPAUDIT:
3239 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3240 break;
3241 default:
3242 continue;
3243 }
3244 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3245 }
3246
3247 /* Now update local dynamic symbols. */
3248 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3249 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3250 entry->isym.st_name);
3251
3252 /* And the rest of dynamic symbols. */
3253 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3254
3255 /* Adjust version definitions. */
3256 if (elf_tdata (output_bfd)->cverdefs)
3257 {
3258 asection *s;
3259 bfd_byte *p;
3260 bfd_size_type i;
3261 Elf_Internal_Verdef def;
3262 Elf_Internal_Verdaux defaux;
3263
3264 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3265 p = s->contents;
3266 do
3267 {
3268 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3269 &def);
3270 p += sizeof (Elf_External_Verdef);
3271 if (def.vd_aux != sizeof (Elf_External_Verdef))
3272 continue;
3273 for (i = 0; i < def.vd_cnt; ++i)
3274 {
3275 _bfd_elf_swap_verdaux_in (output_bfd,
3276 (Elf_External_Verdaux *) p, &defaux);
3277 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3278 defaux.vda_name);
3279 _bfd_elf_swap_verdaux_out (output_bfd,
3280 &defaux, (Elf_External_Verdaux *) p);
3281 p += sizeof (Elf_External_Verdaux);
3282 }
3283 }
3284 while (def.vd_next);
3285 }
3286
3287 /* Adjust version references. */
3288 if (elf_tdata (output_bfd)->verref)
3289 {
3290 asection *s;
3291 bfd_byte *p;
3292 bfd_size_type i;
3293 Elf_Internal_Verneed need;
3294 Elf_Internal_Vernaux needaux;
3295
3296 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3297 p = s->contents;
3298 do
3299 {
3300 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3301 &need);
3302 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3303 _bfd_elf_swap_verneed_out (output_bfd, &need,
3304 (Elf_External_Verneed *) p);
3305 p += sizeof (Elf_External_Verneed);
3306 for (i = 0; i < need.vn_cnt; ++i)
3307 {
3308 _bfd_elf_swap_vernaux_in (output_bfd,
3309 (Elf_External_Vernaux *) p, &needaux);
3310 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3311 needaux.vna_name);
3312 _bfd_elf_swap_vernaux_out (output_bfd,
3313 &needaux,
3314 (Elf_External_Vernaux *) p);
3315 p += sizeof (Elf_External_Vernaux);
3316 }
3317 }
3318 while (need.vn_next);
3319 }
3320
3321 return TRUE;
3322 }
3323 \f
3324 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3325 The default is to only match when the INPUT and OUTPUT are exactly
3326 the same target. */
3327
3328 bfd_boolean
3329 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3330 const bfd_target *output)
3331 {
3332 return input == output;
3333 }
3334
3335 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3336 This version is used when different targets for the same architecture
3337 are virtually identical. */
3338
3339 bfd_boolean
3340 _bfd_elf_relocs_compatible (const bfd_target *input,
3341 const bfd_target *output)
3342 {
3343 const struct elf_backend_data *obed, *ibed;
3344
3345 if (input == output)
3346 return TRUE;
3347
3348 ibed = xvec_get_elf_backend_data (input);
3349 obed = xvec_get_elf_backend_data (output);
3350
3351 if (ibed->arch != obed->arch)
3352 return FALSE;
3353
3354 /* If both backends are using this function, deem them compatible. */
3355 return ibed->relocs_compatible == obed->relocs_compatible;
3356 }
3357
3358 /* Add symbols from an ELF object file to the linker hash table. */
3359
3360 static bfd_boolean
3361 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3362 {
3363 Elf_Internal_Ehdr *ehdr;
3364 Elf_Internal_Shdr *hdr;
3365 bfd_size_type symcount;
3366 bfd_size_type extsymcount;
3367 bfd_size_type extsymoff;
3368 struct elf_link_hash_entry **sym_hash;
3369 bfd_boolean dynamic;
3370 Elf_External_Versym *extversym = NULL;
3371 Elf_External_Versym *ever;
3372 struct elf_link_hash_entry *weaks;
3373 struct elf_link_hash_entry **nondeflt_vers = NULL;
3374 bfd_size_type nondeflt_vers_cnt = 0;
3375 Elf_Internal_Sym *isymbuf = NULL;
3376 Elf_Internal_Sym *isym;
3377 Elf_Internal_Sym *isymend;
3378 const struct elf_backend_data *bed;
3379 bfd_boolean add_needed;
3380 struct elf_link_hash_table *htab;
3381 bfd_size_type amt;
3382 void *alloc_mark = NULL;
3383 struct bfd_hash_entry **old_table = NULL;
3384 unsigned int old_size = 0;
3385 unsigned int old_count = 0;
3386 void *old_tab = NULL;
3387 void *old_hash;
3388 void *old_ent;
3389 struct bfd_link_hash_entry *old_undefs = NULL;
3390 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3391 long old_dynsymcount = 0;
3392 size_t tabsize = 0;
3393 size_t hashsize = 0;
3394
3395 htab = elf_hash_table (info);
3396 bed = get_elf_backend_data (abfd);
3397
3398 if ((abfd->flags & DYNAMIC) == 0)
3399 dynamic = FALSE;
3400 else
3401 {
3402 dynamic = TRUE;
3403
3404 /* You can't use -r against a dynamic object. Also, there's no
3405 hope of using a dynamic object which does not exactly match
3406 the format of the output file. */
3407 if (info->relocatable
3408 || !is_elf_hash_table (htab)
3409 || info->output_bfd->xvec != abfd->xvec)
3410 {
3411 if (info->relocatable)
3412 bfd_set_error (bfd_error_invalid_operation);
3413 else
3414 bfd_set_error (bfd_error_wrong_format);
3415 goto error_return;
3416 }
3417 }
3418
3419 ehdr = elf_elfheader (abfd);
3420 if (info->warn_alternate_em
3421 && bed->elf_machine_code != ehdr->e_machine
3422 && ((bed->elf_machine_alt1 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt1)
3424 || (bed->elf_machine_alt2 != 0
3425 && ehdr->e_machine == bed->elf_machine_alt2)))
3426 info->callbacks->einfo
3427 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3428 ehdr->e_machine, abfd, bed->elf_machine_code);
3429
3430 /* As a GNU extension, any input sections which are named
3431 .gnu.warning.SYMBOL are treated as warning symbols for the given
3432 symbol. This differs from .gnu.warning sections, which generate
3433 warnings when they are included in an output file. */
3434 if (info->executable)
3435 {
3436 asection *s;
3437
3438 for (s = abfd->sections; s != NULL; s = s->next)
3439 {
3440 const char *name;
3441
3442 name = bfd_get_section_name (abfd, s);
3443 if (CONST_STRNEQ (name, ".gnu.warning."))
3444 {
3445 char *msg;
3446 bfd_size_type sz;
3447
3448 name += sizeof ".gnu.warning." - 1;
3449
3450 /* If this is a shared object, then look up the symbol
3451 in the hash table. If it is there, and it is already
3452 been defined, then we will not be using the entry
3453 from this shared object, so we don't need to warn.
3454 FIXME: If we see the definition in a regular object
3455 later on, we will warn, but we shouldn't. The only
3456 fix is to keep track of what warnings we are supposed
3457 to emit, and then handle them all at the end of the
3458 link. */
3459 if (dynamic)
3460 {
3461 struct elf_link_hash_entry *h;
3462
3463 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3464
3465 /* FIXME: What about bfd_link_hash_common? */
3466 if (h != NULL
3467 && (h->root.type == bfd_link_hash_defined
3468 || h->root.type == bfd_link_hash_defweak))
3469 {
3470 /* We don't want to issue this warning. Clobber
3471 the section size so that the warning does not
3472 get copied into the output file. */
3473 s->size = 0;
3474 continue;
3475 }
3476 }
3477
3478 sz = s->size;
3479 msg = (char *) bfd_alloc (abfd, sz + 1);
3480 if (msg == NULL)
3481 goto error_return;
3482
3483 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3484 goto error_return;
3485
3486 msg[sz] = '\0';
3487
3488 if (! (_bfd_generic_link_add_one_symbol
3489 (info, abfd, name, BSF_WARNING, s, 0, msg,
3490 FALSE, bed->collect, NULL)))
3491 goto error_return;
3492
3493 if (! info->relocatable)
3494 {
3495 /* Clobber the section size so that the warning does
3496 not get copied into the output file. */
3497 s->size = 0;
3498
3499 /* Also set SEC_EXCLUDE, so that symbols defined in
3500 the warning section don't get copied to the output. */
3501 s->flags |= SEC_EXCLUDE;
3502 }
3503 }
3504 }
3505 }
3506
3507 add_needed = TRUE;
3508 if (! dynamic)
3509 {
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format. FIXME: If there are no input BFD's of the same
3514 format as the output, we can't make a shared library. */
3515 if (info->shared
3516 && is_elf_hash_table (htab)
3517 && info->output_bfd->xvec == abfd->xvec
3518 && !htab->dynamic_sections_created)
3519 {
3520 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3521 goto error_return;
3522 }
3523 }
3524 else if (!is_elf_hash_table (htab))
3525 goto error_return;
3526 else
3527 {
3528 asection *s;
3529 const char *soname = NULL;
3530 char *audit = NULL;
3531 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3532 int ret;
3533
3534 /* ld --just-symbols and dynamic objects don't mix very well.
3535 ld shouldn't allow it. */
3536 if ((s = abfd->sections) != NULL
3537 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3538 abort ();
3539
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3546 all. */
3547 add_needed = (elf_dyn_lib_class (abfd)
3548 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3549 | DYN_NO_NEEDED)) == 0;
3550
3551 s = bfd_get_section_by_name (abfd, ".dynamic");
3552 if (s != NULL)
3553 {
3554 bfd_byte *dynbuf;
3555 bfd_byte *extdyn;
3556 unsigned int elfsec;
3557 unsigned long shlink;
3558
3559 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3560 {
3561 error_free_dyn:
3562 free (dynbuf);
3563 goto error_return;
3564 }
3565
3566 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3567 if (elfsec == SHN_BAD)
3568 goto error_free_dyn;
3569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3570
3571 for (extdyn = dynbuf;
3572 extdyn < dynbuf + s->size;
3573 extdyn += bed->s->sizeof_dyn)
3574 {
3575 Elf_Internal_Dyn dyn;
3576
3577 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3578 if (dyn.d_tag == DT_SONAME)
3579 {
3580 unsigned int tagv = dyn.d_un.d_val;
3581 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (soname == NULL)
3583 goto error_free_dyn;
3584 }
3585 if (dyn.d_tag == DT_NEEDED)
3586 {
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3590
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3605 ;
3606 *pn = n;
3607 }
3608 if (dyn.d_tag == DT_RUNPATH)
3609 {
3610 struct bfd_link_needed_list *n, **pn;
3611 char *fnm, *anm;
3612 unsigned int tagv = dyn.d_un.d_val;
3613
3614 amt = sizeof (struct bfd_link_needed_list);
3615 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3616 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (n == NULL || fnm == NULL)
3618 goto error_free_dyn;
3619 amt = strlen (fnm) + 1;
3620 anm = (char *) bfd_alloc (abfd, amt);
3621 if (anm == NULL)
3622 goto error_free_dyn;
3623 memcpy (anm, fnm, amt);
3624 n->name = anm;
3625 n->by = abfd;
3626 n->next = NULL;
3627 for (pn = & runpath;
3628 *pn != NULL;
3629 pn = &(*pn)->next)
3630 ;
3631 *pn = n;
3632 }
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath && dyn.d_tag == DT_RPATH)
3635 {
3636 struct bfd_link_needed_list *n, **pn;
3637 char *fnm, *anm;
3638 unsigned int tagv = dyn.d_un.d_val;
3639
3640 amt = sizeof (struct bfd_link_needed_list);
3641 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3642 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3643 if (n == NULL || fnm == NULL)
3644 goto error_free_dyn;
3645 amt = strlen (fnm) + 1;
3646 anm = (char *) bfd_alloc (abfd, amt);
3647 if (anm == NULL)
3648 goto error_free_dyn;
3649 memcpy (anm, fnm, amt);
3650 n->name = anm;
3651 n->by = abfd;
3652 n->next = NULL;
3653 for (pn = & rpath;
3654 *pn != NULL;
3655 pn = &(*pn)->next)
3656 ;
3657 *pn = n;
3658 }
3659 if (dyn.d_tag == DT_AUDIT)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 }
3664 }
3665
3666 free (dynbuf);
3667 }
3668
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3671 if (runpath)
3672 rpath = runpath;
3673
3674 if (rpath)
3675 {
3676 struct bfd_link_needed_list **pn;
3677 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3678 ;
3679 *pn = rpath;
3680 }
3681
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3688 file. */
3689 bfd_section_list_clear (abfd);
3690
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3695 name. */
3696 if (soname == NULL || *soname == '\0')
3697 {
3698 soname = elf_dt_name (abfd);
3699 if (soname == NULL || *soname == '\0')
3700 soname = bfd_get_filename (abfd);
3701 }
3702
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd) = soname;
3706
3707 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 if (ret < 0)
3709 goto error_return;
3710
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3714 if (ret > 0)
3715 return TRUE;
3716
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd) = audit;
3719 }
3720
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3725
3726 if (! dynamic || elf_dynsymtab (abfd) == 0)
3727 hdr = &elf_tdata (abfd)->symtab_hdr;
3728 else
3729 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3730
3731 symcount = hdr->sh_size / bed->s->sizeof_sym;
3732
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3735 this point. */
3736 if (elf_bad_symtab (abfd))
3737 {
3738 extsymcount = symcount;
3739 extsymoff = 0;
3740 }
3741 else
3742 {
3743 extsymcount = symcount - hdr->sh_info;
3744 extsymoff = hdr->sh_info;
3745 }
3746
3747 sym_hash = NULL;
3748 if (extsymcount != 0)
3749 {
3750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3751 NULL, NULL, NULL);
3752 if (isymbuf == NULL)
3753 goto error_return;
3754
3755 /* We store a pointer to the hash table entry for each external
3756 symbol. */
3757 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3758 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3759 if (sym_hash == NULL)
3760 goto error_free_sym;
3761 elf_sym_hashes (abfd) = sym_hash;
3762 }
3763
3764 if (dynamic)
3765 {
3766 /* Read in any version definitions. */
3767 if (!_bfd_elf_slurp_version_tables (abfd,
3768 info->default_imported_symver))
3769 goto error_free_sym;
3770
3771 /* Read in the symbol versions, but don't bother to convert them
3772 to internal format. */
3773 if (elf_dynversym (abfd) != 0)
3774 {
3775 Elf_Internal_Shdr *versymhdr;
3776
3777 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3778 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3779 if (extversym == NULL)
3780 goto error_free_sym;
3781 amt = versymhdr->sh_size;
3782 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3783 || bfd_bread (extversym, amt, abfd) != amt)
3784 goto error_free_vers;
3785 }
3786 }
3787
3788 /* If we are loading an as-needed shared lib, save the symbol table
3789 state before we start adding symbols. If the lib turns out
3790 to be unneeded, restore the state. */
3791 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3792 {
3793 unsigned int i;
3794 size_t entsize;
3795
3796 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3797 {
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3800
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 {
3803 h = (struct elf_link_hash_entry *) p;
3804 entsize += htab->root.table.entsize;
3805 if (h->root.type == bfd_link_hash_warning)
3806 entsize += htab->root.table.entsize;
3807 }
3808 }
3809
3810 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3811 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3812 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3813 if (old_tab == NULL)
3814 goto error_free_vers;
3815
3816 /* Remember the current objalloc pointer, so that all mem for
3817 symbols added can later be reclaimed. */
3818 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3819 if (alloc_mark == NULL)
3820 goto error_free_vers;
3821
3822 /* Make a special call to the linker "notice" function to
3823 tell it that we are about to handle an as-needed lib. */
3824 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3825 notice_as_needed))
3826 goto error_free_vers;
3827
3828 /* Clone the symbol table and sym hashes. Remember some
3829 pointers into the symbol table, and dynamic symbol count. */
3830 old_hash = (char *) old_tab + tabsize;
3831 old_ent = (char *) old_hash + hashsize;
3832 memcpy (old_tab, htab->root.table.table, tabsize);
3833 memcpy (old_hash, sym_hash, hashsize);
3834 old_undefs = htab->root.undefs;
3835 old_undefs_tail = htab->root.undefs_tail;
3836 old_table = htab->root.table.table;
3837 old_size = htab->root.table.size;
3838 old_count = htab->root.table.count;
3839 old_dynsymcount = htab->dynsymcount;
3840
3841 for (i = 0; i < htab->root.table.size; i++)
3842 {
3843 struct bfd_hash_entry *p;
3844 struct elf_link_hash_entry *h;
3845
3846 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3847 {
3848 memcpy (old_ent, p, htab->root.table.entsize);
3849 old_ent = (char *) old_ent + htab->root.table.entsize;
3850 h = (struct elf_link_hash_entry *) p;
3851 if (h->root.type == bfd_link_hash_warning)
3852 {
3853 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3854 old_ent = (char *) old_ent + htab->root.table.entsize;
3855 }
3856 }
3857 }
3858 }
3859
3860 weaks = NULL;
3861 ever = extversym != NULL ? extversym + extsymoff : NULL;
3862 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym < isymend;
3864 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3865 {
3866 int bind;
3867 bfd_vma value;
3868 asection *sec, *new_sec;
3869 flagword flags;
3870 const char *name;
3871 struct elf_link_hash_entry *h;
3872 bfd_boolean definition;
3873 bfd_boolean size_change_ok;
3874 bfd_boolean type_change_ok;
3875 bfd_boolean new_weakdef;
3876 bfd_boolean override;
3877 bfd_boolean common;
3878 unsigned int old_alignment;
3879 bfd *old_bfd;
3880
3881 override = FALSE;
3882
3883 flags = BSF_NO_FLAGS;
3884 sec = NULL;
3885 value = isym->st_value;
3886 *sym_hash = NULL;
3887 common = bed->common_definition (isym);
3888
3889 bind = ELF_ST_BIND (isym->st_info);
3890 switch (bind)
3891 {
3892 case STB_LOCAL:
3893 /* This should be impossible, since ELF requires that all
3894 global symbols follow all local symbols, and that sh_info
3895 point to the first global symbol. Unfortunately, Irix 5
3896 screws this up. */
3897 continue;
3898
3899 case STB_GLOBAL:
3900 if (isym->st_shndx != SHN_UNDEF && !common)
3901 flags = BSF_GLOBAL;
3902 break;
3903
3904 case STB_WEAK:
3905 flags = BSF_WEAK;
3906 break;
3907
3908 case STB_GNU_UNIQUE:
3909 flags = BSF_GNU_UNIQUE;
3910 break;
3911
3912 default:
3913 /* Leave it up to the processor backend. */
3914 break;
3915 }
3916
3917 if (isym->st_shndx == SHN_UNDEF)
3918 sec = bfd_und_section_ptr;
3919 else if (isym->st_shndx == SHN_ABS)
3920 sec = bfd_abs_section_ptr;
3921 else if (isym->st_shndx == SHN_COMMON)
3922 {
3923 sec = bfd_com_section_ptr;
3924 /* What ELF calls the size we call the value. What ELF
3925 calls the value we call the alignment. */
3926 value = isym->st_size;
3927 }
3928 else
3929 {
3930 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3931 if (sec == NULL)
3932 sec = bfd_abs_section_ptr;
3933 else if (sec->kept_section)
3934 {
3935 /* Symbols from discarded section are undefined. We keep
3936 its visibility. */
3937 sec = bfd_und_section_ptr;
3938 isym->st_shndx = SHN_UNDEF;
3939 }
3940 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3941 value -= sec->vma;
3942 }
3943
3944 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3945 isym->st_name);
3946 if (name == NULL)
3947 goto error_free_vers;
3948
3949 if (isym->st_shndx == SHN_COMMON
3950 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3951 && !info->relocatable)
3952 {
3953 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3954
3955 if (tcomm == NULL)
3956 {
3957 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3958 (SEC_ALLOC
3959 | SEC_IS_COMMON
3960 | SEC_LINKER_CREATED
3961 | SEC_THREAD_LOCAL));
3962 if (tcomm == NULL)
3963 goto error_free_vers;
3964 }
3965 sec = tcomm;
3966 }
3967 else if (bed->elf_add_symbol_hook)
3968 {
3969 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3970 &sec, &value))
3971 goto error_free_vers;
3972
3973 /* The hook function sets the name to NULL if this symbol
3974 should be skipped for some reason. */
3975 if (name == NULL)
3976 continue;
3977 }
3978
3979 /* Sanity check that all possibilities were handled. */
3980 if (sec == NULL)
3981 {
3982 bfd_set_error (bfd_error_bad_value);
3983 goto error_free_vers;
3984 }
3985
3986 if (bfd_is_und_section (sec)
3987 || bfd_is_com_section (sec))
3988 definition = FALSE;
3989 else
3990 definition = TRUE;
3991
3992 size_change_ok = FALSE;
3993 type_change_ok = bed->type_change_ok;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3997
3998 if (is_elf_hash_table (htab))
3999 {
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4003
4004 if (ever == NULL)
4005 {
4006 if (info->default_imported_symver)
4007 /* Use the default symbol version created earlier. */
4008 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4009 else
4010 iver.vs_vers = 0;
4011 }
4012 else
4013 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4014
4015 vernum = iver.vs_vers & VERSYM_VERSION;
4016
4017 /* If this is a hidden symbol, or if it is not version
4018 1, we append the version name to the symbol name.
4019 However, we do not modify a non-hidden absolute symbol
4020 if it is not a function, because it might be the version
4021 symbol itself. FIXME: What if it isn't? */
4022 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4023 || (vernum > 1
4024 && (!bfd_is_abs_section (sec)
4025 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4026 {
4027 const char *verstr;
4028 size_t namelen, verlen, newlen;
4029 char *newname, *p;
4030
4031 if (isym->st_shndx != SHN_UNDEF)
4032 {
4033 if (vernum > elf_tdata (abfd)->cverdefs)
4034 verstr = NULL;
4035 else if (vernum > 1)
4036 verstr =
4037 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4038 else
4039 verstr = "";
4040
4041 if (verstr == NULL)
4042 {
4043 (*_bfd_error_handler)
4044 (_("%B: %s: invalid version %u (max %d)"),
4045 abfd, name, vernum,
4046 elf_tdata (abfd)->cverdefs);
4047 bfd_set_error (bfd_error_bad_value);
4048 goto error_free_vers;
4049 }
4050 }
4051 else
4052 {
4053 /* We cannot simply test for the number of
4054 entries in the VERNEED section since the
4055 numbers for the needed versions do not start
4056 at 0. */
4057 Elf_Internal_Verneed *t;
4058
4059 verstr = NULL;
4060 for (t = elf_tdata (abfd)->verref;
4061 t != NULL;
4062 t = t->vn_nextref)
4063 {
4064 Elf_Internal_Vernaux *a;
4065
4066 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4067 {
4068 if (a->vna_other == vernum)
4069 {
4070 verstr = a->vna_nodename;
4071 break;
4072 }
4073 }
4074 if (a != NULL)
4075 break;
4076 }
4077 if (verstr == NULL)
4078 {
4079 (*_bfd_error_handler)
4080 (_("%B: %s: invalid needed version %d"),
4081 abfd, name, vernum);
4082 bfd_set_error (bfd_error_bad_value);
4083 goto error_free_vers;
4084 }
4085 }
4086
4087 namelen = strlen (name);
4088 verlen = strlen (verstr);
4089 newlen = namelen + verlen + 2;
4090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4091 && isym->st_shndx != SHN_UNDEF)
4092 ++newlen;
4093
4094 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4095 if (newname == NULL)
4096 goto error_free_vers;
4097 memcpy (newname, name, namelen);
4098 p = newname + namelen;
4099 *p++ = ELF_VER_CHR;
4100 /* If this is a defined non-hidden version symbol,
4101 we add another @ to the name. This indicates the
4102 default version of the symbol. */
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 *p++ = ELF_VER_CHR;
4106 memcpy (p, verstr, verlen + 1);
4107
4108 name = newname;
4109 }
4110
4111 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4112 &value, &old_alignment,
4113 sym_hash, &skip, &override,
4114 &type_change_ok, &size_change_ok))
4115 goto error_free_vers;
4116
4117 if (skip)
4118 continue;
4119
4120 if (override)
4121 definition = FALSE;
4122
4123 h = *sym_hash;
4124 while (h->root.type == bfd_link_hash_indirect
4125 || h->root.type == bfd_link_hash_warning)
4126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4127
4128 /* Remember the old alignment if this is a common symbol, so
4129 that we don't reduce the alignment later on. We can't
4130 check later, because _bfd_generic_link_add_one_symbol
4131 will set a default for the alignment which we want to
4132 override. We also remember the old bfd where the existing
4133 definition comes from. */
4134 switch (h->root.type)
4135 {
4136 default:
4137 break;
4138
4139 case bfd_link_hash_defined:
4140 case bfd_link_hash_defweak:
4141 old_bfd = h->root.u.def.section->owner;
4142 break;
4143
4144 case bfd_link_hash_common:
4145 old_bfd = h->root.u.c.p->section->owner;
4146 old_alignment = h->root.u.c.p->alignment_power;
4147 break;
4148 }
4149
4150 if (elf_tdata (abfd)->verdef != NULL
4151 && ! override
4152 && vernum > 1
4153 && definition)
4154 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4155 }
4156
4157 if (! (_bfd_generic_link_add_one_symbol
4158 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4159 (struct bfd_link_hash_entry **) sym_hash)))
4160 goto error_free_vers;
4161
4162 h = *sym_hash;
4163 while (h->root.type == bfd_link_hash_indirect
4164 || h->root.type == bfd_link_hash_warning)
4165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4166
4167 *sym_hash = h;
4168 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4169
4170 new_weakdef = FALSE;
4171 if (dynamic
4172 && definition
4173 && (flags & BSF_WEAK) != 0
4174 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4175 && is_elf_hash_table (htab)
4176 && h->u.weakdef == NULL)
4177 {
4178 /* Keep a list of all weak defined non function symbols from
4179 a dynamic object, using the weakdef field. Later in this
4180 function we will set the weakdef field to the correct
4181 value. We only put non-function symbols from dynamic
4182 objects on this list, because that happens to be the only
4183 time we need to know the normal symbol corresponding to a
4184 weak symbol, and the information is time consuming to
4185 figure out. If the weakdef field is not already NULL,
4186 then this symbol was already defined by some previous
4187 dynamic object, and we will be using that previous
4188 definition anyhow. */
4189
4190 h->u.weakdef = weaks;
4191 weaks = h;
4192 new_weakdef = TRUE;
4193 }
4194
4195 /* Set the alignment of a common symbol. */
4196 if ((common || bfd_is_com_section (sec))
4197 && h->root.type == bfd_link_hash_common)
4198 {
4199 unsigned int align;
4200
4201 if (common)
4202 align = bfd_log2 (isym->st_value);
4203 else
4204 {
4205 /* The new symbol is a common symbol in a shared object.
4206 We need to get the alignment from the section. */
4207 align = new_sec->alignment_power;
4208 }
4209 if (align > old_alignment
4210 /* Permit an alignment power of zero if an alignment of one
4211 is specified and no other alignments have been specified. */
4212 || (isym->st_value == 1 && old_alignment == 0))
4213 h->root.u.c.p->alignment_power = align;
4214 else
4215 h->root.u.c.p->alignment_power = old_alignment;
4216 }
4217
4218 if (is_elf_hash_table (htab))
4219 {
4220 bfd_boolean dynsym;
4221
4222 /* Check the alignment when a common symbol is involved. This
4223 can change when a common symbol is overridden by a normal
4224 definition or a common symbol is ignored due to the old
4225 normal definition. We need to make sure the maximum
4226 alignment is maintained. */
4227 if ((old_alignment || common)
4228 && h->root.type != bfd_link_hash_common)
4229 {
4230 unsigned int common_align;
4231 unsigned int normal_align;
4232 unsigned int symbol_align;
4233 bfd *normal_bfd;
4234 bfd *common_bfd;
4235
4236 symbol_align = ffs (h->root.u.def.value) - 1;
4237 if (h->root.u.def.section->owner != NULL
4238 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4239 {
4240 normal_align = h->root.u.def.section->alignment_power;
4241 if (normal_align > symbol_align)
4242 normal_align = symbol_align;
4243 }
4244 else
4245 normal_align = symbol_align;
4246
4247 if (old_alignment)
4248 {
4249 common_align = old_alignment;
4250 common_bfd = old_bfd;
4251 normal_bfd = abfd;
4252 }
4253 else
4254 {
4255 common_align = bfd_log2 (isym->st_value);
4256 common_bfd = abfd;
4257 normal_bfd = old_bfd;
4258 }
4259
4260 if (normal_align < common_align)
4261 {
4262 /* PR binutils/2735 */
4263 if (normal_bfd == NULL)
4264 (*_bfd_error_handler)
4265 (_("Warning: alignment %u of common symbol `%s' in %B"
4266 " is greater than the alignment (%u) of its section %A"),
4267 common_bfd, h->root.u.def.section,
4268 1 << common_align, name, 1 << normal_align);
4269 else
4270 (*_bfd_error_handler)
4271 (_("Warning: alignment %u of symbol `%s' in %B"
4272 " is smaller than %u in %B"),
4273 normal_bfd, common_bfd,
4274 1 << normal_align, name, 1 << common_align);
4275 }
4276 }
4277
4278 /* Remember the symbol size if it isn't undefined. */
4279 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4280 && (definition || h->size == 0))
4281 {
4282 if (h->size != 0
4283 && h->size != isym->st_size
4284 && ! size_change_ok)
4285 (*_bfd_error_handler)
4286 (_("Warning: size of symbol `%s' changed"
4287 " from %lu in %B to %lu in %B"),
4288 old_bfd, abfd,
4289 name, (unsigned long) h->size,
4290 (unsigned long) isym->st_size);
4291
4292 h->size = isym->st_size;
4293 }
4294
4295 /* If this is a common symbol, then we always want H->SIZE
4296 to be the size of the common symbol. The code just above
4297 won't fix the size if a common symbol becomes larger. We
4298 don't warn about a size change here, because that is
4299 covered by --warn-common. Allow changed between different
4300 function types. */
4301 if (h->root.type == bfd_link_hash_common)
4302 h->size = h->root.u.c.size;
4303
4304 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4305 && (definition || h->type == STT_NOTYPE))
4306 {
4307 unsigned int type = ELF_ST_TYPE (isym->st_info);
4308
4309 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4310 symbol. */
4311 if (type == STT_GNU_IFUNC
4312 && (abfd->flags & DYNAMIC) != 0)
4313 type = STT_FUNC;
4314
4315 if (h->type != type)
4316 {
4317 if (h->type != STT_NOTYPE && ! type_change_ok)
4318 (*_bfd_error_handler)
4319 (_("Warning: type of symbol `%s' changed"
4320 " from %d to %d in %B"),
4321 abfd, name, h->type, type);
4322
4323 h->type = type;
4324 }
4325 }
4326
4327 /* Merge st_other field. */
4328 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4329
4330 /* Set a flag in the hash table entry indicating the type of
4331 reference or definition we just found. Keep a count of
4332 the number of dynamic symbols we find. A dynamic symbol
4333 is one which is referenced or defined by both a regular
4334 object and a shared object. */
4335 dynsym = FALSE;
4336 if (! dynamic)
4337 {
4338 if (! definition)
4339 {
4340 h->ref_regular = 1;
4341 if (bind != STB_WEAK)
4342 h->ref_regular_nonweak = 1;
4343 }
4344 else
4345 {
4346 h->def_regular = 1;
4347 if (h->def_dynamic)
4348 {
4349 h->def_dynamic = 0;
4350 h->ref_dynamic = 1;
4351 h->dynamic_def = 1;
4352 }
4353 }
4354 if (! info->executable
4355 || h->def_dynamic
4356 || h->ref_dynamic)
4357 dynsym = TRUE;
4358 }
4359 else
4360 {
4361 if (! definition)
4362 h->ref_dynamic = 1;
4363 else
4364 h->def_dynamic = 1;
4365 if (h->def_regular
4366 || h->ref_regular
4367 || (h->u.weakdef != NULL
4368 && ! new_weakdef
4369 && h->u.weakdef->dynindx != -1))
4370 dynsym = TRUE;
4371 }
4372
4373 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4374 {
4375 /* We don't want to make debug symbol dynamic. */
4376 dynsym = FALSE;
4377 }
4378
4379 /* Check to see if we need to add an indirect symbol for
4380 the default name. */
4381 if (definition || h->root.type == bfd_link_hash_common)
4382 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4383 &sec, &value, &dynsym,
4384 override))
4385 goto error_free_vers;
4386
4387 if (definition && !dynamic)
4388 {
4389 char *p = strchr (name, ELF_VER_CHR);
4390 if (p != NULL && p[1] != ELF_VER_CHR)
4391 {
4392 /* Queue non-default versions so that .symver x, x@FOO
4393 aliases can be checked. */
4394 if (!nondeflt_vers)
4395 {
4396 amt = ((isymend - isym + 1)
4397 * sizeof (struct elf_link_hash_entry *));
4398 nondeflt_vers =
4399 (struct elf_link_hash_entry **) bfd_malloc (amt);
4400 if (!nondeflt_vers)
4401 goto error_free_vers;
4402 }
4403 nondeflt_vers[nondeflt_vers_cnt++] = h;
4404 }
4405 }
4406
4407 if (dynsym && h->dynindx == -1)
4408 {
4409 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4410 goto error_free_vers;
4411 if (h->u.weakdef != NULL
4412 && ! new_weakdef
4413 && h->u.weakdef->dynindx == -1)
4414 {
4415 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4416 goto error_free_vers;
4417 }
4418 }
4419 else if (dynsym && h->dynindx != -1)
4420 /* If the symbol already has a dynamic index, but
4421 visibility says it should not be visible, turn it into
4422 a local symbol. */
4423 switch (ELF_ST_VISIBILITY (h->other))
4424 {
4425 case STV_INTERNAL:
4426 case STV_HIDDEN:
4427 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4428 dynsym = FALSE;
4429 break;
4430 }
4431
4432 if (!add_needed
4433 && definition
4434 && ((dynsym
4435 && h->ref_regular)
4436 || (h->ref_dynamic
4437 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4438 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4439 {
4440 int ret;
4441 const char *soname = elf_dt_name (abfd);
4442
4443 /* A symbol from a library loaded via DT_NEEDED of some
4444 other library is referenced by a regular object.
4445 Add a DT_NEEDED entry for it. Issue an error if
4446 --no-add-needed is used. */
4447 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4448 {
4449 (*_bfd_error_handler)
4450 (_("%B: invalid DSO for symbol `%s' definition"),
4451 abfd, name);
4452 bfd_set_error (bfd_error_bad_value);
4453 goto error_free_vers;
4454 }
4455
4456 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4457 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4458
4459 add_needed = TRUE;
4460 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4461 if (ret < 0)
4462 goto error_free_vers;
4463
4464 BFD_ASSERT (ret == 0);
4465 }
4466 }
4467 }
4468
4469 if (extversym != NULL)
4470 {
4471 free (extversym);
4472 extversym = NULL;
4473 }
4474
4475 if (isymbuf != NULL)
4476 {
4477 free (isymbuf);
4478 isymbuf = NULL;
4479 }
4480
4481 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4482 {
4483 unsigned int i;
4484
4485 /* Restore the symbol table. */
4486 if (bed->as_needed_cleanup)
4487 (*bed->as_needed_cleanup) (abfd, info);
4488 old_hash = (char *) old_tab + tabsize;
4489 old_ent = (char *) old_hash + hashsize;
4490 sym_hash = elf_sym_hashes (abfd);
4491 htab->root.table.table = old_table;
4492 htab->root.table.size = old_size;
4493 htab->root.table.count = old_count;
4494 memcpy (htab->root.table.table, old_tab, tabsize);
4495 memcpy (sym_hash, old_hash, hashsize);
4496 htab->root.undefs = old_undefs;
4497 htab->root.undefs_tail = old_undefs_tail;
4498 for (i = 0; i < htab->root.table.size; i++)
4499 {
4500 struct bfd_hash_entry *p;
4501 struct elf_link_hash_entry *h;
4502
4503 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4504 {
4505 h = (struct elf_link_hash_entry *) p;
4506 if (h->root.type == bfd_link_hash_warning)
4507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4508 if (h->dynindx >= old_dynsymcount)
4509 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4510
4511 memcpy (p, old_ent, htab->root.table.entsize);
4512 old_ent = (char *) old_ent + htab->root.table.entsize;
4513 h = (struct elf_link_hash_entry *) p;
4514 if (h->root.type == bfd_link_hash_warning)
4515 {
4516 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4517 old_ent = (char *) old_ent + htab->root.table.entsize;
4518 }
4519 }
4520 }
4521
4522 /* Make a special call to the linker "notice" function to
4523 tell it that symbols added for crefs may need to be removed. */
4524 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4525 notice_not_needed))
4526 goto error_free_vers;
4527
4528 free (old_tab);
4529 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4530 alloc_mark);
4531 if (nondeflt_vers != NULL)
4532 free (nondeflt_vers);
4533 return TRUE;
4534 }
4535
4536 if (old_tab != NULL)
4537 {
4538 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4539 notice_needed))
4540 goto error_free_vers;
4541 free (old_tab);
4542 old_tab = NULL;
4543 }
4544
4545 /* Now that all the symbols from this input file are created, handle
4546 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4547 if (nondeflt_vers != NULL)
4548 {
4549 bfd_size_type cnt, symidx;
4550
4551 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4552 {
4553 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4554 char *shortname, *p;
4555
4556 p = strchr (h->root.root.string, ELF_VER_CHR);
4557 if (p == NULL
4558 || (h->root.type != bfd_link_hash_defined
4559 && h->root.type != bfd_link_hash_defweak))
4560 continue;
4561
4562 amt = p - h->root.root.string;
4563 shortname = (char *) bfd_malloc (amt + 1);
4564 if (!shortname)
4565 goto error_free_vers;
4566 memcpy (shortname, h->root.root.string, amt);
4567 shortname[amt] = '\0';
4568
4569 hi = (struct elf_link_hash_entry *)
4570 bfd_link_hash_lookup (&htab->root, shortname,
4571 FALSE, FALSE, FALSE);
4572 if (hi != NULL
4573 && hi->root.type == h->root.type
4574 && hi->root.u.def.value == h->root.u.def.value
4575 && hi->root.u.def.section == h->root.u.def.section)
4576 {
4577 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4578 hi->root.type = bfd_link_hash_indirect;
4579 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4580 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4581 sym_hash = elf_sym_hashes (abfd);
4582 if (sym_hash)
4583 for (symidx = 0; symidx < extsymcount; ++symidx)
4584 if (sym_hash[symidx] == hi)
4585 {
4586 sym_hash[symidx] = h;
4587 break;
4588 }
4589 }
4590 free (shortname);
4591 }
4592 free (nondeflt_vers);
4593 nondeflt_vers = NULL;
4594 }
4595
4596 /* Now set the weakdefs field correctly for all the weak defined
4597 symbols we found. The only way to do this is to search all the
4598 symbols. Since we only need the information for non functions in
4599 dynamic objects, that's the only time we actually put anything on
4600 the list WEAKS. We need this information so that if a regular
4601 object refers to a symbol defined weakly in a dynamic object, the
4602 real symbol in the dynamic object is also put in the dynamic
4603 symbols; we also must arrange for both symbols to point to the
4604 same memory location. We could handle the general case of symbol
4605 aliasing, but a general symbol alias can only be generated in
4606 assembler code, handling it correctly would be very time
4607 consuming, and other ELF linkers don't handle general aliasing
4608 either. */
4609 if (weaks != NULL)
4610 {
4611 struct elf_link_hash_entry **hpp;
4612 struct elf_link_hash_entry **hppend;
4613 struct elf_link_hash_entry **sorted_sym_hash;
4614 struct elf_link_hash_entry *h;
4615 size_t sym_count;
4616
4617 /* Since we have to search the whole symbol list for each weak
4618 defined symbol, search time for N weak defined symbols will be
4619 O(N^2). Binary search will cut it down to O(NlogN). */
4620 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4621 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4622 if (sorted_sym_hash == NULL)
4623 goto error_return;
4624 sym_hash = sorted_sym_hash;
4625 hpp = elf_sym_hashes (abfd);
4626 hppend = hpp + extsymcount;
4627 sym_count = 0;
4628 for (; hpp < hppend; hpp++)
4629 {
4630 h = *hpp;
4631 if (h != NULL
4632 && h->root.type == bfd_link_hash_defined
4633 && !bed->is_function_type (h->type))
4634 {
4635 *sym_hash = h;
4636 sym_hash++;
4637 sym_count++;
4638 }
4639 }
4640
4641 qsort (sorted_sym_hash, sym_count,
4642 sizeof (struct elf_link_hash_entry *),
4643 elf_sort_symbol);
4644
4645 while (weaks != NULL)
4646 {
4647 struct elf_link_hash_entry *hlook;
4648 asection *slook;
4649 bfd_vma vlook;
4650 long ilook;
4651 size_t i, j, idx;
4652
4653 hlook = weaks;
4654 weaks = hlook->u.weakdef;
4655 hlook->u.weakdef = NULL;
4656
4657 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4658 || hlook->root.type == bfd_link_hash_defweak
4659 || hlook->root.type == bfd_link_hash_common
4660 || hlook->root.type == bfd_link_hash_indirect);
4661 slook = hlook->root.u.def.section;
4662 vlook = hlook->root.u.def.value;
4663
4664 ilook = -1;
4665 i = 0;
4666 j = sym_count;
4667 while (i < j)
4668 {
4669 bfd_signed_vma vdiff;
4670 idx = (i + j) / 2;
4671 h = sorted_sym_hash [idx];
4672 vdiff = vlook - h->root.u.def.value;
4673 if (vdiff < 0)
4674 j = idx;
4675 else if (vdiff > 0)
4676 i = idx + 1;
4677 else
4678 {
4679 long sdiff = slook->id - h->root.u.def.section->id;
4680 if (sdiff < 0)
4681 j = idx;
4682 else if (sdiff > 0)
4683 i = idx + 1;
4684 else
4685 {
4686 ilook = idx;
4687 break;
4688 }
4689 }
4690 }
4691
4692 /* We didn't find a value/section match. */
4693 if (ilook == -1)
4694 continue;
4695
4696 for (i = ilook; i < sym_count; i++)
4697 {
4698 h = sorted_sym_hash [i];
4699
4700 /* Stop if value or section doesn't match. */
4701 if (h->root.u.def.value != vlook
4702 || h->root.u.def.section != slook)
4703 break;
4704 else if (h != hlook)
4705 {
4706 hlook->u.weakdef = h;
4707
4708 /* If the weak definition is in the list of dynamic
4709 symbols, make sure the real definition is put
4710 there as well. */
4711 if (hlook->dynindx != -1 && h->dynindx == -1)
4712 {
4713 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4714 {
4715 err_free_sym_hash:
4716 free (sorted_sym_hash);
4717 goto error_return;
4718 }
4719 }
4720
4721 /* If the real definition is in the list of dynamic
4722 symbols, make sure the weak definition is put
4723 there as well. If we don't do this, then the
4724 dynamic loader might not merge the entries for the
4725 real definition and the weak definition. */
4726 if (h->dynindx != -1 && hlook->dynindx == -1)
4727 {
4728 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4729 goto err_free_sym_hash;
4730 }
4731 break;
4732 }
4733 }
4734 }
4735
4736 free (sorted_sym_hash);
4737 }
4738
4739 if (bed->check_directives
4740 && !(*bed->check_directives) (abfd, info))
4741 return FALSE;
4742
4743 /* If this object is the same format as the output object, and it is
4744 not a shared library, then let the backend look through the
4745 relocs.
4746
4747 This is required to build global offset table entries and to
4748 arrange for dynamic relocs. It is not required for the
4749 particular common case of linking non PIC code, even when linking
4750 against shared libraries, but unfortunately there is no way of
4751 knowing whether an object file has been compiled PIC or not.
4752 Looking through the relocs is not particularly time consuming.
4753 The problem is that we must either (1) keep the relocs in memory,
4754 which causes the linker to require additional runtime memory or
4755 (2) read the relocs twice from the input file, which wastes time.
4756 This would be a good case for using mmap.
4757
4758 I have no idea how to handle linking PIC code into a file of a
4759 different format. It probably can't be done. */
4760 if (! dynamic
4761 && is_elf_hash_table (htab)
4762 && bed->check_relocs != NULL
4763 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4764 {
4765 asection *o;
4766
4767 for (o = abfd->sections; o != NULL; o = o->next)
4768 {
4769 Elf_Internal_Rela *internal_relocs;
4770 bfd_boolean ok;
4771
4772 if ((o->flags & SEC_RELOC) == 0
4773 || o->reloc_count == 0
4774 || ((info->strip == strip_all || info->strip == strip_debugger)
4775 && (o->flags & SEC_DEBUGGING) != 0)
4776 || bfd_is_abs_section (o->output_section))
4777 continue;
4778
4779 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4780 info->keep_memory);
4781 if (internal_relocs == NULL)
4782 goto error_return;
4783
4784 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4785
4786 if (elf_section_data (o)->relocs != internal_relocs)
4787 free (internal_relocs);
4788
4789 if (! ok)
4790 goto error_return;
4791 }
4792 }
4793
4794 /* If this is a non-traditional link, try to optimize the handling
4795 of the .stab/.stabstr sections. */
4796 if (! dynamic
4797 && ! info->traditional_format
4798 && is_elf_hash_table (htab)
4799 && (info->strip != strip_all && info->strip != strip_debugger))
4800 {
4801 asection *stabstr;
4802
4803 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4804 if (stabstr != NULL)
4805 {
4806 bfd_size_type string_offset = 0;
4807 asection *stab;
4808
4809 for (stab = abfd->sections; stab; stab = stab->next)
4810 if (CONST_STRNEQ (stab->name, ".stab")
4811 && (!stab->name[5] ||
4812 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4813 && (stab->flags & SEC_MERGE) == 0
4814 && !bfd_is_abs_section (stab->output_section))
4815 {
4816 struct bfd_elf_section_data *secdata;
4817
4818 secdata = elf_section_data (stab);
4819 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4820 stabstr, &secdata->sec_info,
4821 &string_offset))
4822 goto error_return;
4823 if (secdata->sec_info)
4824 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4825 }
4826 }
4827 }
4828
4829 if (is_elf_hash_table (htab) && add_needed)
4830 {
4831 /* Add this bfd to the loaded list. */
4832 struct elf_link_loaded_list *n;
4833
4834 n = (struct elf_link_loaded_list *)
4835 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4836 if (n == NULL)
4837 goto error_return;
4838 n->abfd = abfd;
4839 n->next = htab->loaded;
4840 htab->loaded = n;
4841 }
4842
4843 return TRUE;
4844
4845 error_free_vers:
4846 if (old_tab != NULL)
4847 free (old_tab);
4848 if (nondeflt_vers != NULL)
4849 free (nondeflt_vers);
4850 if (extversym != NULL)
4851 free (extversym);
4852 error_free_sym:
4853 if (isymbuf != NULL)
4854 free (isymbuf);
4855 error_return:
4856 return FALSE;
4857 }
4858
4859 /* Return the linker hash table entry of a symbol that might be
4860 satisfied by an archive symbol. Return -1 on error. */
4861
4862 struct elf_link_hash_entry *
4863 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4864 struct bfd_link_info *info,
4865 const char *name)
4866 {
4867 struct elf_link_hash_entry *h;
4868 char *p, *copy;
4869 size_t len, first;
4870
4871 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4872 if (h != NULL)
4873 return h;
4874
4875 /* If this is a default version (the name contains @@), look up the
4876 symbol again with only one `@' as well as without the version.
4877 The effect is that references to the symbol with and without the
4878 version will be matched by the default symbol in the archive. */
4879
4880 p = strchr (name, ELF_VER_CHR);
4881 if (p == NULL || p[1] != ELF_VER_CHR)
4882 return h;
4883
4884 /* First check with only one `@'. */
4885 len = strlen (name);
4886 copy = (char *) bfd_alloc (abfd, len);
4887 if (copy == NULL)
4888 return (struct elf_link_hash_entry *) 0 - 1;
4889
4890 first = p - name + 1;
4891 memcpy (copy, name, first);
4892 memcpy (copy + first, name + first + 1, len - first);
4893
4894 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4895 if (h == NULL)
4896 {
4897 /* We also need to check references to the symbol without the
4898 version. */
4899 copy[first - 1] = '\0';
4900 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4901 FALSE, FALSE, FALSE);
4902 }
4903
4904 bfd_release (abfd, copy);
4905 return h;
4906 }
4907
4908 /* Add symbols from an ELF archive file to the linker hash table. We
4909 don't use _bfd_generic_link_add_archive_symbols because of a
4910 problem which arises on UnixWare. The UnixWare libc.so is an
4911 archive which includes an entry libc.so.1 which defines a bunch of
4912 symbols. The libc.so archive also includes a number of other
4913 object files, which also define symbols, some of which are the same
4914 as those defined in libc.so.1. Correct linking requires that we
4915 consider each object file in turn, and include it if it defines any
4916 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4917 this; it looks through the list of undefined symbols, and includes
4918 any object file which defines them. When this algorithm is used on
4919 UnixWare, it winds up pulling in libc.so.1 early and defining a
4920 bunch of symbols. This means that some of the other objects in the
4921 archive are not included in the link, which is incorrect since they
4922 precede libc.so.1 in the archive.
4923
4924 Fortunately, ELF archive handling is simpler than that done by
4925 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4926 oddities. In ELF, if we find a symbol in the archive map, and the
4927 symbol is currently undefined, we know that we must pull in that
4928 object file.
4929
4930 Unfortunately, we do have to make multiple passes over the symbol
4931 table until nothing further is resolved. */
4932
4933 static bfd_boolean
4934 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4935 {
4936 symindex c;
4937 bfd_boolean *defined = NULL;
4938 bfd_boolean *included = NULL;
4939 carsym *symdefs;
4940 bfd_boolean loop;
4941 bfd_size_type amt;
4942 const struct elf_backend_data *bed;
4943 struct elf_link_hash_entry * (*archive_symbol_lookup)
4944 (bfd *, struct bfd_link_info *, const char *);
4945
4946 if (! bfd_has_map (abfd))
4947 {
4948 /* An empty archive is a special case. */
4949 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4950 return TRUE;
4951 bfd_set_error (bfd_error_no_armap);
4952 return FALSE;
4953 }
4954
4955 /* Keep track of all symbols we know to be already defined, and all
4956 files we know to be already included. This is to speed up the
4957 second and subsequent passes. */
4958 c = bfd_ardata (abfd)->symdef_count;
4959 if (c == 0)
4960 return TRUE;
4961 amt = c;
4962 amt *= sizeof (bfd_boolean);
4963 defined = (bfd_boolean *) bfd_zmalloc (amt);
4964 included = (bfd_boolean *) bfd_zmalloc (amt);
4965 if (defined == NULL || included == NULL)
4966 goto error_return;
4967
4968 symdefs = bfd_ardata (abfd)->symdefs;
4969 bed = get_elf_backend_data (abfd);
4970 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4971
4972 do
4973 {
4974 file_ptr last;
4975 symindex i;
4976 carsym *symdef;
4977 carsym *symdefend;
4978
4979 loop = FALSE;
4980 last = -1;
4981
4982 symdef = symdefs;
4983 symdefend = symdef + c;
4984 for (i = 0; symdef < symdefend; symdef++, i++)
4985 {
4986 struct elf_link_hash_entry *h;
4987 bfd *element;
4988 struct bfd_link_hash_entry *undefs_tail;
4989 symindex mark;
4990
4991 if (defined[i] || included[i])
4992 continue;
4993 if (symdef->file_offset == last)
4994 {
4995 included[i] = TRUE;
4996 continue;
4997 }
4998
4999 h = archive_symbol_lookup (abfd, info, symdef->name);
5000 if (h == (struct elf_link_hash_entry *) 0 - 1)
5001 goto error_return;
5002
5003 if (h == NULL)
5004 continue;
5005
5006 if (h->root.type == bfd_link_hash_common)
5007 {
5008 /* We currently have a common symbol. The archive map contains
5009 a reference to this symbol, so we may want to include it. We
5010 only want to include it however, if this archive element
5011 contains a definition of the symbol, not just another common
5012 declaration of it.
5013
5014 Unfortunately some archivers (including GNU ar) will put
5015 declarations of common symbols into their archive maps, as
5016 well as real definitions, so we cannot just go by the archive
5017 map alone. Instead we must read in the element's symbol
5018 table and check that to see what kind of symbol definition
5019 this is. */
5020 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5021 continue;
5022 }
5023 else if (h->root.type != bfd_link_hash_undefined)
5024 {
5025 if (h->root.type != bfd_link_hash_undefweak)
5026 defined[i] = TRUE;
5027 continue;
5028 }
5029
5030 /* We need to include this archive member. */
5031 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5032 if (element == NULL)
5033 goto error_return;
5034
5035 if (! bfd_check_format (element, bfd_object))
5036 goto error_return;
5037
5038 /* Doublecheck that we have not included this object
5039 already--it should be impossible, but there may be
5040 something wrong with the archive. */
5041 if (element->archive_pass != 0)
5042 {
5043 bfd_set_error (bfd_error_bad_value);
5044 goto error_return;
5045 }
5046 element->archive_pass = 1;
5047
5048 undefs_tail = info->hash->undefs_tail;
5049
5050 if (! (*info->callbacks->add_archive_element) (info, element,
5051 symdef->name))
5052 goto error_return;
5053 if (! bfd_link_add_symbols (element, info))
5054 goto error_return;
5055
5056 /* If there are any new undefined symbols, we need to make
5057 another pass through the archive in order to see whether
5058 they can be defined. FIXME: This isn't perfect, because
5059 common symbols wind up on undefs_tail and because an
5060 undefined symbol which is defined later on in this pass
5061 does not require another pass. This isn't a bug, but it
5062 does make the code less efficient than it could be. */
5063 if (undefs_tail != info->hash->undefs_tail)
5064 loop = TRUE;
5065
5066 /* Look backward to mark all symbols from this object file
5067 which we have already seen in this pass. */
5068 mark = i;
5069 do
5070 {
5071 included[mark] = TRUE;
5072 if (mark == 0)
5073 break;
5074 --mark;
5075 }
5076 while (symdefs[mark].file_offset == symdef->file_offset);
5077
5078 /* We mark subsequent symbols from this object file as we go
5079 on through the loop. */
5080 last = symdef->file_offset;
5081 }
5082 }
5083 while (loop);
5084
5085 free (defined);
5086 free (included);
5087
5088 return TRUE;
5089
5090 error_return:
5091 if (defined != NULL)
5092 free (defined);
5093 if (included != NULL)
5094 free (included);
5095 return FALSE;
5096 }
5097
5098 /* Given an ELF BFD, add symbols to the global hash table as
5099 appropriate. */
5100
5101 bfd_boolean
5102 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5103 {
5104 switch (bfd_get_format (abfd))
5105 {
5106 case bfd_object:
5107 return elf_link_add_object_symbols (abfd, info);
5108 case bfd_archive:
5109 return elf_link_add_archive_symbols (abfd, info);
5110 default:
5111 bfd_set_error (bfd_error_wrong_format);
5112 return FALSE;
5113 }
5114 }
5115 \f
5116 struct hash_codes_info
5117 {
5118 unsigned long *hashcodes;
5119 bfd_boolean error;
5120 };
5121
5122 /* This function will be called though elf_link_hash_traverse to store
5123 all hash value of the exported symbols in an array. */
5124
5125 static bfd_boolean
5126 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5127 {
5128 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5129 const char *name;
5130 char *p;
5131 unsigned long ha;
5132 char *alc = NULL;
5133
5134 if (h->root.type == bfd_link_hash_warning)
5135 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5136
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5139 return TRUE;
5140
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5143 if (p != NULL)
5144 {
5145 alc = (char *) bfd_malloc (p - name + 1);
5146 if (alc == NULL)
5147 {
5148 inf->error = TRUE;
5149 return FALSE;
5150 }
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5153 name = alc;
5154 }
5155
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5158
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5161
5162 /* And store it in the struct so that we can put it in the hash table
5163 later. */
5164 h->u.elf_hash_value = ha;
5165
5166 if (alc != NULL)
5167 free (alc);
5168
5169 return TRUE;
5170 }
5171
5172 struct collect_gnu_hash_codes
5173 {
5174 bfd *output_bfd;
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5182 bfd_vma *bitmask;
5183 bfd_byte *contents;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5190 bfd_boolean error;
5191 };
5192
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5195
5196 static bfd_boolean
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5198 {
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5200 const char *name;
5201 char *p;
5202 unsigned long ha;
5203 char *alc = NULL;
5204
5205 if (h->root.type == bfd_link_hash_warning)
5206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5207
5208 /* Ignore indirect symbols. These are added by the versioning code. */
5209 if (h->dynindx == -1)
5210 return TRUE;
5211
5212 /* Ignore also local symbols and undefined symbols. */
5213 if (! (*s->bed->elf_hash_symbol) (h))
5214 return TRUE;
5215
5216 name = h->root.root.string;
5217 p = strchr (name, ELF_VER_CHR);
5218 if (p != NULL)
5219 {
5220 alc = (char *) bfd_malloc (p - name + 1);
5221 if (alc == NULL)
5222 {
5223 s->error = TRUE;
5224 return FALSE;
5225 }
5226 memcpy (alc, name, p - name);
5227 alc[p - name] = '\0';
5228 name = alc;
5229 }
5230
5231 /* Compute the hash value. */
5232 ha = bfd_elf_gnu_hash (name);
5233
5234 /* Store the found hash value in the array for compute_bucket_count,
5235 and also for .dynsym reordering purposes. */
5236 s->hashcodes[s->nsyms] = ha;
5237 s->hashval[h->dynindx] = ha;
5238 ++s->nsyms;
5239 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5240 s->min_dynindx = h->dynindx;
5241
5242 if (alc != NULL)
5243 free (alc);
5244
5245 return TRUE;
5246 }
5247
5248 /* This function will be called though elf_link_hash_traverse to do
5249 final dynaminc symbol renumbering. */
5250
5251 static bfd_boolean
5252 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5253 {
5254 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5255 unsigned long int bucket;
5256 unsigned long int val;
5257
5258 if (h->root.type == bfd_link_hash_warning)
5259 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5260
5261 /* Ignore indirect symbols. */
5262 if (h->dynindx == -1)
5263 return TRUE;
5264
5265 /* Ignore also local symbols and undefined symbols. */
5266 if (! (*s->bed->elf_hash_symbol) (h))
5267 {
5268 if (h->dynindx >= s->min_dynindx)
5269 h->dynindx = s->local_indx++;
5270 return TRUE;
5271 }
5272
5273 bucket = s->hashval[h->dynindx] % s->bucketcount;
5274 val = (s->hashval[h->dynindx] >> s->shift1)
5275 & ((s->maskbits >> s->shift1) - 1);
5276 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5277 s->bitmask[val]
5278 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5279 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5280 if (s->counts[bucket] == 1)
5281 /* Last element terminates the chain. */
5282 val |= 1;
5283 bfd_put_32 (s->output_bfd, val,
5284 s->contents + (s->indx[bucket] - s->symindx) * 4);
5285 --s->counts[bucket];
5286 h->dynindx = s->indx[bucket]++;
5287 return TRUE;
5288 }
5289
5290 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5291
5292 bfd_boolean
5293 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5294 {
5295 return !(h->forced_local
5296 || h->root.type == bfd_link_hash_undefined
5297 || h->root.type == bfd_link_hash_undefweak
5298 || ((h->root.type == bfd_link_hash_defined
5299 || h->root.type == bfd_link_hash_defweak)
5300 && h->root.u.def.section->output_section == NULL));
5301 }
5302
5303 /* Array used to determine the number of hash table buckets to use
5304 based on the number of symbols there are. If there are fewer than
5305 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5306 fewer than 37 we use 17 buckets, and so forth. We never use more
5307 than 32771 buckets. */
5308
5309 static const size_t elf_buckets[] =
5310 {
5311 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5312 16411, 32771, 0
5313 };
5314
5315 /* Compute bucket count for hashing table. We do not use a static set
5316 of possible tables sizes anymore. Instead we determine for all
5317 possible reasonable sizes of the table the outcome (i.e., the
5318 number of collisions etc) and choose the best solution. The
5319 weighting functions are not too simple to allow the table to grow
5320 without bounds. Instead one of the weighting factors is the size.
5321 Therefore the result is always a good payoff between few collisions
5322 (= short chain lengths) and table size. */
5323 static size_t
5324 compute_bucket_count (struct bfd_link_info *info,
5325 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5326 unsigned long int nsyms,
5327 int gnu_hash)
5328 {
5329 size_t best_size = 0;
5330 unsigned long int i;
5331
5332 /* We have a problem here. The following code to optimize the table
5333 size requires an integer type with more the 32 bits. If
5334 BFD_HOST_U_64_BIT is set we know about such a type. */
5335 #ifdef BFD_HOST_U_64_BIT
5336 if (info->optimize)
5337 {
5338 size_t minsize;
5339 size_t maxsize;
5340 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5341 bfd *dynobj = elf_hash_table (info)->dynobj;
5342 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5343 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5344 unsigned long int *counts;
5345 bfd_size_type amt;
5346
5347 /* Possible optimization parameters: if we have NSYMS symbols we say
5348 that the hashing table must at least have NSYMS/4 and at most
5349 2*NSYMS buckets. */
5350 minsize = nsyms / 4;
5351 if (minsize == 0)
5352 minsize = 1;
5353 best_size = maxsize = nsyms * 2;
5354 if (gnu_hash)
5355 {
5356 if (minsize < 2)
5357 minsize = 2;
5358 if ((best_size & 31) == 0)
5359 ++best_size;
5360 }
5361
5362 /* Create array where we count the collisions in. We must use bfd_malloc
5363 since the size could be large. */
5364 amt = maxsize;
5365 amt *= sizeof (unsigned long int);
5366 counts = (unsigned long int *) bfd_malloc (amt);
5367 if (counts == NULL)
5368 return 0;
5369
5370 /* Compute the "optimal" size for the hash table. The criteria is a
5371 minimal chain length. The minor criteria is (of course) the size
5372 of the table. */
5373 for (i = minsize; i < maxsize; ++i)
5374 {
5375 /* Walk through the array of hashcodes and count the collisions. */
5376 BFD_HOST_U_64_BIT max;
5377 unsigned long int j;
5378 unsigned long int fact;
5379
5380 if (gnu_hash && (i & 31) == 0)
5381 continue;
5382
5383 memset (counts, '\0', i * sizeof (unsigned long int));
5384
5385 /* Determine how often each hash bucket is used. */
5386 for (j = 0; j < nsyms; ++j)
5387 ++counts[hashcodes[j] % i];
5388
5389 /* For the weight function we need some information about the
5390 pagesize on the target. This is information need not be 100%
5391 accurate. Since this information is not available (so far) we
5392 define it here to a reasonable default value. If it is crucial
5393 to have a better value some day simply define this value. */
5394 # ifndef BFD_TARGET_PAGESIZE
5395 # define BFD_TARGET_PAGESIZE (4096)
5396 # endif
5397
5398 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5399 and the chains. */
5400 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5401
5402 # if 1
5403 /* Variant 1: optimize for short chains. We add the squares
5404 of all the chain lengths (which favors many small chain
5405 over a few long chains). */
5406 for (j = 0; j < i; ++j)
5407 max += counts[j] * counts[j];
5408
5409 /* This adds penalties for the overall size of the table. */
5410 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5411 max *= fact * fact;
5412 # else
5413 /* Variant 2: Optimize a lot more for small table. Here we
5414 also add squares of the size but we also add penalties for
5415 empty slots (the +1 term). */
5416 for (j = 0; j < i; ++j)
5417 max += (1 + counts[j]) * (1 + counts[j]);
5418
5419 /* The overall size of the table is considered, but not as
5420 strong as in variant 1, where it is squared. */
5421 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5422 max *= fact;
5423 # endif
5424
5425 /* Compare with current best results. */
5426 if (max < best_chlen)
5427 {
5428 best_chlen = max;
5429 best_size = i;
5430 }
5431 }
5432
5433 free (counts);
5434 }
5435 else
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5437 {
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5442 {
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5445 break;
5446 }
5447 if (gnu_hash && best_size < 2)
5448 best_size = 2;
5449 }
5450
5451 return best_size;
5452 }
5453
5454 /* Set up the sizes and contents of the ELF dynamic sections. This is
5455 called by the ELF linker emulation before_allocation routine. We
5456 must set the sizes of the sections before the linker sets the
5457 addresses of the various sections. */
5458
5459 bfd_boolean
5460 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5461 const char *soname,
5462 const char *rpath,
5463 const char *filter_shlib,
5464 const char *audit,
5465 const char *depaudit,
5466 const char * const *auxiliary_filters,
5467 struct bfd_link_info *info,
5468 asection **sinterpptr,
5469 struct bfd_elf_version_tree *verdefs)
5470 {
5471 bfd_size_type soname_indx;
5472 bfd *dynobj;
5473 const struct elf_backend_data *bed;
5474 struct elf_info_failed asvinfo;
5475
5476 *sinterpptr = NULL;
5477
5478 soname_indx = (bfd_size_type) -1;
5479
5480 if (!is_elf_hash_table (info->hash))
5481 return TRUE;
5482
5483 bed = get_elf_backend_data (output_bfd);
5484 if (info->execstack)
5485 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5486 else if (info->noexecstack)
5487 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5488 else
5489 {
5490 bfd *inputobj;
5491 asection *notesec = NULL;
5492 int exec = 0;
5493
5494 for (inputobj = info->input_bfds;
5495 inputobj;
5496 inputobj = inputobj->link_next)
5497 {
5498 asection *s;
5499
5500 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5501 continue;
5502 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5503 if (s)
5504 {
5505 if (s->flags & SEC_CODE)
5506 exec = PF_X;
5507 notesec = s;
5508 }
5509 else if (bed->default_execstack)
5510 exec = PF_X;
5511 }
5512 if (notesec)
5513 {
5514 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5515 if (exec && info->relocatable
5516 && notesec->output_section != bfd_abs_section_ptr)
5517 notesec->output_section->flags |= SEC_CODE;
5518 }
5519 }
5520
5521 /* Any syms created from now on start with -1 in
5522 got.refcount/offset and plt.refcount/offset. */
5523 elf_hash_table (info)->init_got_refcount
5524 = elf_hash_table (info)->init_got_offset;
5525 elf_hash_table (info)->init_plt_refcount
5526 = elf_hash_table (info)->init_plt_offset;
5527
5528 /* The backend may have to create some sections regardless of whether
5529 we're dynamic or not. */
5530 if (bed->elf_backend_always_size_sections
5531 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5532 return FALSE;
5533
5534 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5535 return FALSE;
5536
5537 dynobj = elf_hash_table (info)->dynobj;
5538
5539 /* If there were no dynamic objects in the link, there is nothing to
5540 do here. */
5541 if (dynobj == NULL)
5542 return TRUE;
5543
5544 if (elf_hash_table (info)->dynamic_sections_created)
5545 {
5546 struct elf_info_failed eif;
5547 struct elf_link_hash_entry *h;
5548 asection *dynstr;
5549 struct bfd_elf_version_tree *t;
5550 struct bfd_elf_version_expr *d;
5551 asection *s;
5552 bfd_boolean all_defined;
5553
5554 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5555 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5556
5557 if (soname != NULL)
5558 {
5559 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5560 soname, TRUE);
5561 if (soname_indx == (bfd_size_type) -1
5562 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5563 return FALSE;
5564 }
5565
5566 if (info->symbolic)
5567 {
5568 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5569 return FALSE;
5570 info->flags |= DF_SYMBOLIC;
5571 }
5572
5573 if (rpath != NULL)
5574 {
5575 bfd_size_type indx;
5576
5577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5578 TRUE);
5579 if (indx == (bfd_size_type) -1
5580 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5581 return FALSE;
5582
5583 if (info->new_dtags)
5584 {
5585 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5586 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5587 return FALSE;
5588 }
5589 }
5590
5591 if (filter_shlib != NULL)
5592 {
5593 bfd_size_type indx;
5594
5595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5596 filter_shlib, TRUE);
5597 if (indx == (bfd_size_type) -1
5598 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5599 return FALSE;
5600 }
5601
5602 if (auxiliary_filters != NULL)
5603 {
5604 const char * const *p;
5605
5606 for (p = auxiliary_filters; *p != NULL; p++)
5607 {
5608 bfd_size_type indx;
5609
5610 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5611 *p, TRUE);
5612 if (indx == (bfd_size_type) -1
5613 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5614 return FALSE;
5615 }
5616 }
5617
5618 if (audit != NULL)
5619 {
5620 bfd_size_type indx;
5621
5622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5623 TRUE);
5624 if (indx == (bfd_size_type) -1
5625 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5626 return FALSE;
5627 }
5628
5629 if (depaudit != NULL)
5630 {
5631 bfd_size_type indx;
5632
5633 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5634 TRUE);
5635 if (indx == (bfd_size_type) -1
5636 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5637 return FALSE;
5638 }
5639
5640 eif.info = info;
5641 eif.verdefs = verdefs;
5642 eif.failed = FALSE;
5643
5644 /* If we are supposed to export all symbols into the dynamic symbol
5645 table (this is not the normal case), then do so. */
5646 if (info->export_dynamic
5647 || (info->executable && info->dynamic))
5648 {
5649 elf_link_hash_traverse (elf_hash_table (info),
5650 _bfd_elf_export_symbol,
5651 &eif);
5652 if (eif.failed)
5653 return FALSE;
5654 }
5655
5656 /* Make all global versions with definition. */
5657 for (t = verdefs; t != NULL; t = t->next)
5658 for (d = t->globals.list; d != NULL; d = d->next)
5659 if (!d->symver && d->literal)
5660 {
5661 const char *verstr, *name;
5662 size_t namelen, verlen, newlen;
5663 char *newname, *p;
5664 struct elf_link_hash_entry *newh;
5665
5666 name = d->pattern;
5667 namelen = strlen (name);
5668 verstr = t->name;
5669 verlen = strlen (verstr);
5670 newlen = namelen + verlen + 3;
5671
5672 newname = (char *) bfd_malloc (newlen);
5673 if (newname == NULL)
5674 return FALSE;
5675 memcpy (newname, name, namelen);
5676
5677 /* Check the hidden versioned definition. */
5678 p = newname + namelen;
5679 *p++ = ELF_VER_CHR;
5680 memcpy (p, verstr, verlen + 1);
5681 newh = elf_link_hash_lookup (elf_hash_table (info),
5682 newname, FALSE, FALSE,
5683 FALSE);
5684 if (newh == NULL
5685 || (newh->root.type != bfd_link_hash_defined
5686 && newh->root.type != bfd_link_hash_defweak))
5687 {
5688 /* Check the default versioned definition. */
5689 *p++ = ELF_VER_CHR;
5690 memcpy (p, verstr, verlen + 1);
5691 newh = elf_link_hash_lookup (elf_hash_table (info),
5692 newname, FALSE, FALSE,
5693 FALSE);
5694 }
5695 free (newname);
5696
5697 /* Mark this version if there is a definition and it is
5698 not defined in a shared object. */
5699 if (newh != NULL
5700 && !newh->def_dynamic
5701 && (newh->root.type == bfd_link_hash_defined
5702 || newh->root.type == bfd_link_hash_defweak))
5703 d->symver = 1;
5704 }
5705
5706 /* Attach all the symbols to their version information. */
5707 asvinfo.info = info;
5708 asvinfo.verdefs = verdefs;
5709 asvinfo.failed = FALSE;
5710
5711 elf_link_hash_traverse (elf_hash_table (info),
5712 _bfd_elf_link_assign_sym_version,
5713 &asvinfo);
5714 if (asvinfo.failed)
5715 return FALSE;
5716
5717 if (!info->allow_undefined_version)
5718 {
5719 /* Check if all global versions have a definition. */
5720 all_defined = TRUE;
5721 for (t = verdefs; t != NULL; t = t->next)
5722 for (d = t->globals.list; d != NULL; d = d->next)
5723 if (d->literal && !d->symver && !d->script)
5724 {
5725 (*_bfd_error_handler)
5726 (_("%s: undefined version: %s"),
5727 d->pattern, t->name);
5728 all_defined = FALSE;
5729 }
5730
5731 if (!all_defined)
5732 {
5733 bfd_set_error (bfd_error_bad_value);
5734 return FALSE;
5735 }
5736 }
5737
5738 /* Find all symbols which were defined in a dynamic object and make
5739 the backend pick a reasonable value for them. */
5740 elf_link_hash_traverse (elf_hash_table (info),
5741 _bfd_elf_adjust_dynamic_symbol,
5742 &eif);
5743 if (eif.failed)
5744 return FALSE;
5745
5746 /* Add some entries to the .dynamic section. We fill in some of the
5747 values later, in bfd_elf_final_link, but we must add the entries
5748 now so that we know the final size of the .dynamic section. */
5749
5750 /* If there are initialization and/or finalization functions to
5751 call then add the corresponding DT_INIT/DT_FINI entries. */
5752 h = (info->init_function
5753 ? elf_link_hash_lookup (elf_hash_table (info),
5754 info->init_function, FALSE,
5755 FALSE, FALSE)
5756 : NULL);
5757 if (h != NULL
5758 && (h->ref_regular
5759 || h->def_regular))
5760 {
5761 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5762 return FALSE;
5763 }
5764 h = (info->fini_function
5765 ? elf_link_hash_lookup (elf_hash_table (info),
5766 info->fini_function, FALSE,
5767 FALSE, FALSE)
5768 : NULL);
5769 if (h != NULL
5770 && (h->ref_regular
5771 || h->def_regular))
5772 {
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5774 return FALSE;
5775 }
5776
5777 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5778 if (s != NULL && s->linker_has_input)
5779 {
5780 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5781 if (! info->executable)
5782 {
5783 bfd *sub;
5784 asection *o;
5785
5786 for (sub = info->input_bfds; sub != NULL;
5787 sub = sub->link_next)
5788 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5789 for (o = sub->sections; o != NULL; o = o->next)
5790 if (elf_section_data (o)->this_hdr.sh_type
5791 == SHT_PREINIT_ARRAY)
5792 {
5793 (*_bfd_error_handler)
5794 (_("%B: .preinit_array section is not allowed in DSO"),
5795 sub);
5796 break;
5797 }
5798
5799 bfd_set_error (bfd_error_nonrepresentable_section);
5800 return FALSE;
5801 }
5802
5803 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5804 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5805 return FALSE;
5806 }
5807 s = bfd_get_section_by_name (output_bfd, ".init_array");
5808 if (s != NULL && s->linker_has_input)
5809 {
5810 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5811 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5812 return FALSE;
5813 }
5814 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5815 if (s != NULL && s->linker_has_input)
5816 {
5817 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5818 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5819 return FALSE;
5820 }
5821
5822 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5823 /* If .dynstr is excluded from the link, we don't want any of
5824 these tags. Strictly, we should be checking each section
5825 individually; This quick check covers for the case where
5826 someone does a /DISCARD/ : { *(*) }. */
5827 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5828 {
5829 bfd_size_type strsize;
5830
5831 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5832 if ((info->emit_hash
5833 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5834 || (info->emit_gnu_hash
5835 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5836 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5837 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5838 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5839 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5840 bed->s->sizeof_sym))
5841 return FALSE;
5842 }
5843 }
5844
5845 /* The backend must work out the sizes of all the other dynamic
5846 sections. */
5847 if (bed->elf_backend_size_dynamic_sections
5848 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5849 return FALSE;
5850
5851 if (elf_hash_table (info)->dynamic_sections_created)
5852 {
5853 unsigned long section_sym_count;
5854 asection *s;
5855
5856 /* Set up the version definition section. */
5857 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5858 BFD_ASSERT (s != NULL);
5859
5860 /* We may have created additional version definitions if we are
5861 just linking a regular application. */
5862 verdefs = asvinfo.verdefs;
5863
5864 /* Skip anonymous version tag. */
5865 if (verdefs != NULL && verdefs->vernum == 0)
5866 verdefs = verdefs->next;
5867
5868 if (verdefs == NULL && !info->create_default_symver)
5869 s->flags |= SEC_EXCLUDE;
5870 else
5871 {
5872 unsigned int cdefs;
5873 bfd_size_type size;
5874 struct bfd_elf_version_tree *t;
5875 bfd_byte *p;
5876 Elf_Internal_Verdef def;
5877 Elf_Internal_Verdaux defaux;
5878 struct bfd_link_hash_entry *bh;
5879 struct elf_link_hash_entry *h;
5880 const char *name;
5881
5882 cdefs = 0;
5883 size = 0;
5884
5885 /* Make space for the base version. */
5886 size += sizeof (Elf_External_Verdef);
5887 size += sizeof (Elf_External_Verdaux);
5888 ++cdefs;
5889
5890 /* Make space for the default version. */
5891 if (info->create_default_symver)
5892 {
5893 size += sizeof (Elf_External_Verdef);
5894 ++cdefs;
5895 }
5896
5897 for (t = verdefs; t != NULL; t = t->next)
5898 {
5899 struct bfd_elf_version_deps *n;
5900
5901 size += sizeof (Elf_External_Verdef);
5902 size += sizeof (Elf_External_Verdaux);
5903 ++cdefs;
5904
5905 for (n = t->deps; n != NULL; n = n->next)
5906 size += sizeof (Elf_External_Verdaux);
5907 }
5908
5909 s->size = size;
5910 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5911 if (s->contents == NULL && s->size != 0)
5912 return FALSE;
5913
5914 /* Fill in the version definition section. */
5915
5916 p = s->contents;
5917
5918 def.vd_version = VER_DEF_CURRENT;
5919 def.vd_flags = VER_FLG_BASE;
5920 def.vd_ndx = 1;
5921 def.vd_cnt = 1;
5922 if (info->create_default_symver)
5923 {
5924 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5925 def.vd_next = sizeof (Elf_External_Verdef);
5926 }
5927 else
5928 {
5929 def.vd_aux = sizeof (Elf_External_Verdef);
5930 def.vd_next = (sizeof (Elf_External_Verdef)
5931 + sizeof (Elf_External_Verdaux));
5932 }
5933
5934 if (soname_indx != (bfd_size_type) -1)
5935 {
5936 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5937 soname_indx);
5938 def.vd_hash = bfd_elf_hash (soname);
5939 defaux.vda_name = soname_indx;
5940 name = soname;
5941 }
5942 else
5943 {
5944 bfd_size_type indx;
5945
5946 name = lbasename (output_bfd->filename);
5947 def.vd_hash = bfd_elf_hash (name);
5948 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5949 name, FALSE);
5950 if (indx == (bfd_size_type) -1)
5951 return FALSE;
5952 defaux.vda_name = indx;
5953 }
5954 defaux.vda_next = 0;
5955
5956 _bfd_elf_swap_verdef_out (output_bfd, &def,
5957 (Elf_External_Verdef *) p);
5958 p += sizeof (Elf_External_Verdef);
5959 if (info->create_default_symver)
5960 {
5961 /* Add a symbol representing this version. */
5962 bh = NULL;
5963 if (! (_bfd_generic_link_add_one_symbol
5964 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5965 0, NULL, FALSE,
5966 get_elf_backend_data (dynobj)->collect, &bh)))
5967 return FALSE;
5968 h = (struct elf_link_hash_entry *) bh;
5969 h->non_elf = 0;
5970 h->def_regular = 1;
5971 h->type = STT_OBJECT;
5972 h->verinfo.vertree = NULL;
5973
5974 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5975 return FALSE;
5976
5977 /* Create a duplicate of the base version with the same
5978 aux block, but different flags. */
5979 def.vd_flags = 0;
5980 def.vd_ndx = 2;
5981 def.vd_aux = sizeof (Elf_External_Verdef);
5982 if (verdefs)
5983 def.vd_next = (sizeof (Elf_External_Verdef)
5984 + sizeof (Elf_External_Verdaux));
5985 else
5986 def.vd_next = 0;
5987 _bfd_elf_swap_verdef_out (output_bfd, &def,
5988 (Elf_External_Verdef *) p);
5989 p += sizeof (Elf_External_Verdef);
5990 }
5991 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5992 (Elf_External_Verdaux *) p);
5993 p += sizeof (Elf_External_Verdaux);
5994
5995 for (t = verdefs; t != NULL; t = t->next)
5996 {
5997 unsigned int cdeps;
5998 struct bfd_elf_version_deps *n;
5999
6000 cdeps = 0;
6001 for (n = t->deps; n != NULL; n = n->next)
6002 ++cdeps;
6003
6004 /* Add a symbol representing this version. */
6005 bh = NULL;
6006 if (! (_bfd_generic_link_add_one_symbol
6007 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6008 0, NULL, FALSE,
6009 get_elf_backend_data (dynobj)->collect, &bh)))
6010 return FALSE;
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_OBJECT;
6015 h->verinfo.vertree = t;
6016
6017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6018 return FALSE;
6019
6020 def.vd_version = VER_DEF_CURRENT;
6021 def.vd_flags = 0;
6022 if (t->globals.list == NULL
6023 && t->locals.list == NULL
6024 && ! t->used)
6025 def.vd_flags |= VER_FLG_WEAK;
6026 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6027 def.vd_cnt = cdeps + 1;
6028 def.vd_hash = bfd_elf_hash (t->name);
6029 def.vd_aux = sizeof (Elf_External_Verdef);
6030 def.vd_next = 0;
6031 if (t->next != NULL)
6032 def.vd_next = (sizeof (Elf_External_Verdef)
6033 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6034
6035 _bfd_elf_swap_verdef_out (output_bfd, &def,
6036 (Elf_External_Verdef *) p);
6037 p += sizeof (Elf_External_Verdef);
6038
6039 defaux.vda_name = h->dynstr_index;
6040 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6041 h->dynstr_index);
6042 defaux.vda_next = 0;
6043 if (t->deps != NULL)
6044 defaux.vda_next = sizeof (Elf_External_Verdaux);
6045 t->name_indx = defaux.vda_name;
6046
6047 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6048 (Elf_External_Verdaux *) p);
6049 p += sizeof (Elf_External_Verdaux);
6050
6051 for (n = t->deps; n != NULL; n = n->next)
6052 {
6053 if (n->version_needed == NULL)
6054 {
6055 /* This can happen if there was an error in the
6056 version script. */
6057 defaux.vda_name = 0;
6058 }
6059 else
6060 {
6061 defaux.vda_name = n->version_needed->name_indx;
6062 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6063 defaux.vda_name);
6064 }
6065 if (n->next == NULL)
6066 defaux.vda_next = 0;
6067 else
6068 defaux.vda_next = sizeof (Elf_External_Verdaux);
6069
6070 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6071 (Elf_External_Verdaux *) p);
6072 p += sizeof (Elf_External_Verdaux);
6073 }
6074 }
6075
6076 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6077 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6078 return FALSE;
6079
6080 elf_tdata (output_bfd)->cverdefs = cdefs;
6081 }
6082
6083 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6084 {
6085 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6086 return FALSE;
6087 }
6088 else if (info->flags & DF_BIND_NOW)
6089 {
6090 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6091 return FALSE;
6092 }
6093
6094 if (info->flags_1)
6095 {
6096 if (info->executable)
6097 info->flags_1 &= ~ (DF_1_INITFIRST
6098 | DF_1_NODELETE
6099 | DF_1_NOOPEN);
6100 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6101 return FALSE;
6102 }
6103
6104 /* Work out the size of the version reference section. */
6105
6106 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6107 BFD_ASSERT (s != NULL);
6108 {
6109 struct elf_find_verdep_info sinfo;
6110
6111 sinfo.info = info;
6112 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6113 if (sinfo.vers == 0)
6114 sinfo.vers = 1;
6115 sinfo.failed = FALSE;
6116
6117 elf_link_hash_traverse (elf_hash_table (info),
6118 _bfd_elf_link_find_version_dependencies,
6119 &sinfo);
6120 if (sinfo.failed)
6121 return FALSE;
6122
6123 if (elf_tdata (output_bfd)->verref == NULL)
6124 s->flags |= SEC_EXCLUDE;
6125 else
6126 {
6127 Elf_Internal_Verneed *t;
6128 unsigned int size;
6129 unsigned int crefs;
6130 bfd_byte *p;
6131
6132 /* Build the version definition section. */
6133 size = 0;
6134 crefs = 0;
6135 for (t = elf_tdata (output_bfd)->verref;
6136 t != NULL;
6137 t = t->vn_nextref)
6138 {
6139 Elf_Internal_Vernaux *a;
6140
6141 size += sizeof (Elf_External_Verneed);
6142 ++crefs;
6143 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6144 size += sizeof (Elf_External_Vernaux);
6145 }
6146
6147 s->size = size;
6148 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6149 if (s->contents == NULL)
6150 return FALSE;
6151
6152 p = s->contents;
6153 for (t = elf_tdata (output_bfd)->verref;
6154 t != NULL;
6155 t = t->vn_nextref)
6156 {
6157 unsigned int caux;
6158 Elf_Internal_Vernaux *a;
6159 bfd_size_type indx;
6160
6161 caux = 0;
6162 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6163 ++caux;
6164
6165 t->vn_version = VER_NEED_CURRENT;
6166 t->vn_cnt = caux;
6167 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6168 elf_dt_name (t->vn_bfd) != NULL
6169 ? elf_dt_name (t->vn_bfd)
6170 : lbasename (t->vn_bfd->filename),
6171 FALSE);
6172 if (indx == (bfd_size_type) -1)
6173 return FALSE;
6174 t->vn_file = indx;
6175 t->vn_aux = sizeof (Elf_External_Verneed);
6176 if (t->vn_nextref == NULL)
6177 t->vn_next = 0;
6178 else
6179 t->vn_next = (sizeof (Elf_External_Verneed)
6180 + caux * sizeof (Elf_External_Vernaux));
6181
6182 _bfd_elf_swap_verneed_out (output_bfd, t,
6183 (Elf_External_Verneed *) p);
6184 p += sizeof (Elf_External_Verneed);
6185
6186 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6187 {
6188 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6189 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6190 a->vna_nodename, FALSE);
6191 if (indx == (bfd_size_type) -1)
6192 return FALSE;
6193 a->vna_name = indx;
6194 if (a->vna_nextptr == NULL)
6195 a->vna_next = 0;
6196 else
6197 a->vna_next = sizeof (Elf_External_Vernaux);
6198
6199 _bfd_elf_swap_vernaux_out (output_bfd, a,
6200 (Elf_External_Vernaux *) p);
6201 p += sizeof (Elf_External_Vernaux);
6202 }
6203 }
6204
6205 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6206 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6207 return FALSE;
6208
6209 elf_tdata (output_bfd)->cverrefs = crefs;
6210 }
6211 }
6212
6213 if ((elf_tdata (output_bfd)->cverrefs == 0
6214 && elf_tdata (output_bfd)->cverdefs == 0)
6215 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6216 &section_sym_count) == 0)
6217 {
6218 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6219 s->flags |= SEC_EXCLUDE;
6220 }
6221 }
6222 return TRUE;
6223 }
6224
6225 /* Find the first non-excluded output section. We'll use its
6226 section symbol for some emitted relocs. */
6227 void
6228 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6229 {
6230 asection *s;
6231
6232 for (s = output_bfd->sections; s != NULL; s = s->next)
6233 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6234 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6235 {
6236 elf_hash_table (info)->text_index_section = s;
6237 break;
6238 }
6239 }
6240
6241 /* Find two non-excluded output sections, one for code, one for data.
6242 We'll use their section symbols for some emitted relocs. */
6243 void
6244 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6245 {
6246 asection *s;
6247
6248 /* Data first, since setting text_index_section changes
6249 _bfd_elf_link_omit_section_dynsym. */
6250 for (s = output_bfd->sections; s != NULL; s = s->next)
6251 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6252 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6253 {
6254 elf_hash_table (info)->data_index_section = s;
6255 break;
6256 }
6257
6258 for (s = output_bfd->sections; s != NULL; s = s->next)
6259 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6260 == (SEC_ALLOC | SEC_READONLY))
6261 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6262 {
6263 elf_hash_table (info)->text_index_section = s;
6264 break;
6265 }
6266
6267 if (elf_hash_table (info)->text_index_section == NULL)
6268 elf_hash_table (info)->text_index_section
6269 = elf_hash_table (info)->data_index_section;
6270 }
6271
6272 bfd_boolean
6273 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6274 {
6275 const struct elf_backend_data *bed;
6276
6277 if (!is_elf_hash_table (info->hash))
6278 return TRUE;
6279
6280 bed = get_elf_backend_data (output_bfd);
6281 (*bed->elf_backend_init_index_section) (output_bfd, info);
6282
6283 if (elf_hash_table (info)->dynamic_sections_created)
6284 {
6285 bfd *dynobj;
6286 asection *s;
6287 bfd_size_type dynsymcount;
6288 unsigned long section_sym_count;
6289 unsigned int dtagcount;
6290
6291 dynobj = elf_hash_table (info)->dynobj;
6292
6293 /* Assign dynsym indicies. In a shared library we generate a
6294 section symbol for each output section, which come first.
6295 Next come all of the back-end allocated local dynamic syms,
6296 followed by the rest of the global symbols. */
6297
6298 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6299 &section_sym_count);
6300
6301 /* Work out the size of the symbol version section. */
6302 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6303 BFD_ASSERT (s != NULL);
6304 if (dynsymcount != 0
6305 && (s->flags & SEC_EXCLUDE) == 0)
6306 {
6307 s->size = dynsymcount * sizeof (Elf_External_Versym);
6308 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6309 if (s->contents == NULL)
6310 return FALSE;
6311
6312 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6313 return FALSE;
6314 }
6315
6316 /* Set the size of the .dynsym and .hash sections. We counted
6317 the number of dynamic symbols in elf_link_add_object_symbols.
6318 We will build the contents of .dynsym and .hash when we build
6319 the final symbol table, because until then we do not know the
6320 correct value to give the symbols. We built the .dynstr
6321 section as we went along in elf_link_add_object_symbols. */
6322 s = bfd_get_section_by_name (dynobj, ".dynsym");
6323 BFD_ASSERT (s != NULL);
6324 s->size = dynsymcount * bed->s->sizeof_sym;
6325
6326 if (dynsymcount != 0)
6327 {
6328 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6329 if (s->contents == NULL)
6330 return FALSE;
6331
6332 /* The first entry in .dynsym is a dummy symbol.
6333 Clear all the section syms, in case we don't output them all. */
6334 ++section_sym_count;
6335 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6336 }
6337
6338 elf_hash_table (info)->bucketcount = 0;
6339
6340 /* Compute the size of the hashing table. As a side effect this
6341 computes the hash values for all the names we export. */
6342 if (info->emit_hash)
6343 {
6344 unsigned long int *hashcodes;
6345 struct hash_codes_info hashinf;
6346 bfd_size_type amt;
6347 unsigned long int nsyms;
6348 size_t bucketcount;
6349 size_t hash_entry_size;
6350
6351 /* Compute the hash values for all exported symbols. At the same
6352 time store the values in an array so that we could use them for
6353 optimizations. */
6354 amt = dynsymcount * sizeof (unsigned long int);
6355 hashcodes = (unsigned long int *) bfd_malloc (amt);
6356 if (hashcodes == NULL)
6357 return FALSE;
6358 hashinf.hashcodes = hashcodes;
6359 hashinf.error = FALSE;
6360
6361 /* Put all hash values in HASHCODES. */
6362 elf_link_hash_traverse (elf_hash_table (info),
6363 elf_collect_hash_codes, &hashinf);
6364 if (hashinf.error)
6365 {
6366 free (hashcodes);
6367 return FALSE;
6368 }
6369
6370 nsyms = hashinf.hashcodes - hashcodes;
6371 bucketcount
6372 = compute_bucket_count (info, hashcodes, nsyms, 0);
6373 free (hashcodes);
6374
6375 if (bucketcount == 0)
6376 return FALSE;
6377
6378 elf_hash_table (info)->bucketcount = bucketcount;
6379
6380 s = bfd_get_section_by_name (dynobj, ".hash");
6381 BFD_ASSERT (s != NULL);
6382 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6383 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6384 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6385 if (s->contents == NULL)
6386 return FALSE;
6387
6388 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6389 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6390 s->contents + hash_entry_size);
6391 }
6392
6393 if (info->emit_gnu_hash)
6394 {
6395 size_t i, cnt;
6396 unsigned char *contents;
6397 struct collect_gnu_hash_codes cinfo;
6398 bfd_size_type amt;
6399 size_t bucketcount;
6400
6401 memset (&cinfo, 0, sizeof (cinfo));
6402
6403 /* Compute the hash values for all exported symbols. At the same
6404 time store the values in an array so that we could use them for
6405 optimizations. */
6406 amt = dynsymcount * 2 * sizeof (unsigned long int);
6407 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6408 if (cinfo.hashcodes == NULL)
6409 return FALSE;
6410
6411 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6412 cinfo.min_dynindx = -1;
6413 cinfo.output_bfd = output_bfd;
6414 cinfo.bed = bed;
6415
6416 /* Put all hash values in HASHCODES. */
6417 elf_link_hash_traverse (elf_hash_table (info),
6418 elf_collect_gnu_hash_codes, &cinfo);
6419 if (cinfo.error)
6420 {
6421 free (cinfo.hashcodes);
6422 return FALSE;
6423 }
6424
6425 bucketcount
6426 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6427
6428 if (bucketcount == 0)
6429 {
6430 free (cinfo.hashcodes);
6431 return FALSE;
6432 }
6433
6434 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6435 BFD_ASSERT (s != NULL);
6436
6437 if (cinfo.nsyms == 0)
6438 {
6439 /* Empty .gnu.hash section is special. */
6440 BFD_ASSERT (cinfo.min_dynindx == -1);
6441 free (cinfo.hashcodes);
6442 s->size = 5 * 4 + bed->s->arch_size / 8;
6443 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6444 if (contents == NULL)
6445 return FALSE;
6446 s->contents = contents;
6447 /* 1 empty bucket. */
6448 bfd_put_32 (output_bfd, 1, contents);
6449 /* SYMIDX above the special symbol 0. */
6450 bfd_put_32 (output_bfd, 1, contents + 4);
6451 /* Just one word for bitmask. */
6452 bfd_put_32 (output_bfd, 1, contents + 8);
6453 /* Only hash fn bloom filter. */
6454 bfd_put_32 (output_bfd, 0, contents + 12);
6455 /* No hashes are valid - empty bitmask. */
6456 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6457 /* No hashes in the only bucket. */
6458 bfd_put_32 (output_bfd, 0,
6459 contents + 16 + bed->s->arch_size / 8);
6460 }
6461 else
6462 {
6463 unsigned long int maskwords, maskbitslog2;
6464 BFD_ASSERT (cinfo.min_dynindx != -1);
6465
6466 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6467 if (maskbitslog2 < 3)
6468 maskbitslog2 = 5;
6469 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6470 maskbitslog2 = maskbitslog2 + 3;
6471 else
6472 maskbitslog2 = maskbitslog2 + 2;
6473 if (bed->s->arch_size == 64)
6474 {
6475 if (maskbitslog2 == 5)
6476 maskbitslog2 = 6;
6477 cinfo.shift1 = 6;
6478 }
6479 else
6480 cinfo.shift1 = 5;
6481 cinfo.mask = (1 << cinfo.shift1) - 1;
6482 cinfo.shift2 = maskbitslog2;
6483 cinfo.maskbits = 1 << maskbitslog2;
6484 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6485 amt = bucketcount * sizeof (unsigned long int) * 2;
6486 amt += maskwords * sizeof (bfd_vma);
6487 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6488 if (cinfo.bitmask == NULL)
6489 {
6490 free (cinfo.hashcodes);
6491 return FALSE;
6492 }
6493
6494 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6495 cinfo.indx = cinfo.counts + bucketcount;
6496 cinfo.symindx = dynsymcount - cinfo.nsyms;
6497 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6498
6499 /* Determine how often each hash bucket is used. */
6500 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6501 for (i = 0; i < cinfo.nsyms; ++i)
6502 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6503
6504 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6505 if (cinfo.counts[i] != 0)
6506 {
6507 cinfo.indx[i] = cnt;
6508 cnt += cinfo.counts[i];
6509 }
6510 BFD_ASSERT (cnt == dynsymcount);
6511 cinfo.bucketcount = bucketcount;
6512 cinfo.local_indx = cinfo.min_dynindx;
6513
6514 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6515 s->size += cinfo.maskbits / 8;
6516 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6517 if (contents == NULL)
6518 {
6519 free (cinfo.bitmask);
6520 free (cinfo.hashcodes);
6521 return FALSE;
6522 }
6523
6524 s->contents = contents;
6525 bfd_put_32 (output_bfd, bucketcount, contents);
6526 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6527 bfd_put_32 (output_bfd, maskwords, contents + 8);
6528 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6529 contents += 16 + cinfo.maskbits / 8;
6530
6531 for (i = 0; i < bucketcount; ++i)
6532 {
6533 if (cinfo.counts[i] == 0)
6534 bfd_put_32 (output_bfd, 0, contents);
6535 else
6536 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6537 contents += 4;
6538 }
6539
6540 cinfo.contents = contents;
6541
6542 /* Renumber dynamic symbols, populate .gnu.hash section. */
6543 elf_link_hash_traverse (elf_hash_table (info),
6544 elf_renumber_gnu_hash_syms, &cinfo);
6545
6546 contents = s->contents + 16;
6547 for (i = 0; i < maskwords; ++i)
6548 {
6549 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6550 contents);
6551 contents += bed->s->arch_size / 8;
6552 }
6553
6554 free (cinfo.bitmask);
6555 free (cinfo.hashcodes);
6556 }
6557 }
6558
6559 s = bfd_get_section_by_name (dynobj, ".dynstr");
6560 BFD_ASSERT (s != NULL);
6561
6562 elf_finalize_dynstr (output_bfd, info);
6563
6564 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6565
6566 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6567 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6568 return FALSE;
6569 }
6570
6571 return TRUE;
6572 }
6573 \f
6574 /* Indicate that we are only retrieving symbol values from this
6575 section. */
6576
6577 void
6578 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6579 {
6580 if (is_elf_hash_table (info->hash))
6581 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6582 _bfd_generic_link_just_syms (sec, info);
6583 }
6584
6585 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6586
6587 static void
6588 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6589 asection *sec)
6590 {
6591 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6592 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6593 }
6594
6595 /* Finish SHF_MERGE section merging. */
6596
6597 bfd_boolean
6598 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6599 {
6600 bfd *ibfd;
6601 asection *sec;
6602
6603 if (!is_elf_hash_table (info->hash))
6604 return FALSE;
6605
6606 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6607 if ((ibfd->flags & DYNAMIC) == 0)
6608 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6609 if ((sec->flags & SEC_MERGE) != 0
6610 && !bfd_is_abs_section (sec->output_section))
6611 {
6612 struct bfd_elf_section_data *secdata;
6613
6614 secdata = elf_section_data (sec);
6615 if (! _bfd_add_merge_section (abfd,
6616 &elf_hash_table (info)->merge_info,
6617 sec, &secdata->sec_info))
6618 return FALSE;
6619 else if (secdata->sec_info)
6620 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6621 }
6622
6623 if (elf_hash_table (info)->merge_info != NULL)
6624 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6625 merge_sections_remove_hook);
6626 return TRUE;
6627 }
6628
6629 /* Create an entry in an ELF linker hash table. */
6630
6631 struct bfd_hash_entry *
6632 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6633 struct bfd_hash_table *table,
6634 const char *string)
6635 {
6636 /* Allocate the structure if it has not already been allocated by a
6637 subclass. */
6638 if (entry == NULL)
6639 {
6640 entry = (struct bfd_hash_entry *)
6641 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6642 if (entry == NULL)
6643 return entry;
6644 }
6645
6646 /* Call the allocation method of the superclass. */
6647 entry = _bfd_link_hash_newfunc (entry, table, string);
6648 if (entry != NULL)
6649 {
6650 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6651 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6652
6653 /* Set local fields. */
6654 ret->indx = -1;
6655 ret->dynindx = -1;
6656 ret->got = htab->init_got_refcount;
6657 ret->plt = htab->init_plt_refcount;
6658 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6659 - offsetof (struct elf_link_hash_entry, size)));
6660 /* Assume that we have been called by a non-ELF symbol reader.
6661 This flag is then reset by the code which reads an ELF input
6662 file. This ensures that a symbol created by a non-ELF symbol
6663 reader will have the flag set correctly. */
6664 ret->non_elf = 1;
6665 }
6666
6667 return entry;
6668 }
6669
6670 /* Copy data from an indirect symbol to its direct symbol, hiding the
6671 old indirect symbol. Also used for copying flags to a weakdef. */
6672
6673 void
6674 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6675 struct elf_link_hash_entry *dir,
6676 struct elf_link_hash_entry *ind)
6677 {
6678 struct elf_link_hash_table *htab;
6679
6680 /* Copy down any references that we may have already seen to the
6681 symbol which just became indirect. */
6682
6683 dir->ref_dynamic |= ind->ref_dynamic;
6684 dir->ref_regular |= ind->ref_regular;
6685 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6686 dir->non_got_ref |= ind->non_got_ref;
6687 dir->needs_plt |= ind->needs_plt;
6688 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6689
6690 if (ind->root.type != bfd_link_hash_indirect)
6691 return;
6692
6693 /* Copy over the global and procedure linkage table refcount entries.
6694 These may have been already set up by a check_relocs routine. */
6695 htab = elf_hash_table (info);
6696 if (ind->got.refcount > htab->init_got_refcount.refcount)
6697 {
6698 if (dir->got.refcount < 0)
6699 dir->got.refcount = 0;
6700 dir->got.refcount += ind->got.refcount;
6701 ind->got.refcount = htab->init_got_refcount.refcount;
6702 }
6703
6704 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6705 {
6706 if (dir->plt.refcount < 0)
6707 dir->plt.refcount = 0;
6708 dir->plt.refcount += ind->plt.refcount;
6709 ind->plt.refcount = htab->init_plt_refcount.refcount;
6710 }
6711
6712 if (ind->dynindx != -1)
6713 {
6714 if (dir->dynindx != -1)
6715 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6716 dir->dynindx = ind->dynindx;
6717 dir->dynstr_index = ind->dynstr_index;
6718 ind->dynindx = -1;
6719 ind->dynstr_index = 0;
6720 }
6721 }
6722
6723 void
6724 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6725 struct elf_link_hash_entry *h,
6726 bfd_boolean force_local)
6727 {
6728 /* STT_GNU_IFUNC symbol must go through PLT. */
6729 if (h->type != STT_GNU_IFUNC)
6730 {
6731 h->plt = elf_hash_table (info)->init_plt_offset;
6732 h->needs_plt = 0;
6733 }
6734 if (force_local)
6735 {
6736 h->forced_local = 1;
6737 if (h->dynindx != -1)
6738 {
6739 h->dynindx = -1;
6740 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6741 h->dynstr_index);
6742 }
6743 }
6744 }
6745
6746 /* Initialize an ELF linker hash table. */
6747
6748 bfd_boolean
6749 _bfd_elf_link_hash_table_init
6750 (struct elf_link_hash_table *table,
6751 bfd *abfd,
6752 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6753 struct bfd_hash_table *,
6754 const char *),
6755 unsigned int entsize)
6756 {
6757 bfd_boolean ret;
6758 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6759
6760 memset (table, 0, sizeof * table);
6761 table->init_got_refcount.refcount = can_refcount - 1;
6762 table->init_plt_refcount.refcount = can_refcount - 1;
6763 table->init_got_offset.offset = -(bfd_vma) 1;
6764 table->init_plt_offset.offset = -(bfd_vma) 1;
6765 /* The first dynamic symbol is a dummy. */
6766 table->dynsymcount = 1;
6767
6768 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6769 table->root.type = bfd_link_elf_hash_table;
6770
6771 return ret;
6772 }
6773
6774 /* Create an ELF linker hash table. */
6775
6776 struct bfd_link_hash_table *
6777 _bfd_elf_link_hash_table_create (bfd *abfd)
6778 {
6779 struct elf_link_hash_table *ret;
6780 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6781
6782 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6783 if (ret == NULL)
6784 return NULL;
6785
6786 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6787 sizeof (struct elf_link_hash_entry)))
6788 {
6789 free (ret);
6790 return NULL;
6791 }
6792
6793 return &ret->root;
6794 }
6795
6796 /* This is a hook for the ELF emulation code in the generic linker to
6797 tell the backend linker what file name to use for the DT_NEEDED
6798 entry for a dynamic object. */
6799
6800 void
6801 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6802 {
6803 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6804 && bfd_get_format (abfd) == bfd_object)
6805 elf_dt_name (abfd) = name;
6806 }
6807
6808 int
6809 bfd_elf_get_dyn_lib_class (bfd *abfd)
6810 {
6811 int lib_class;
6812 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6813 && bfd_get_format (abfd) == bfd_object)
6814 lib_class = elf_dyn_lib_class (abfd);
6815 else
6816 lib_class = 0;
6817 return lib_class;
6818 }
6819
6820 void
6821 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6822 {
6823 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6824 && bfd_get_format (abfd) == bfd_object)
6825 elf_dyn_lib_class (abfd) = lib_class;
6826 }
6827
6828 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6829 the linker ELF emulation code. */
6830
6831 struct bfd_link_needed_list *
6832 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6833 struct bfd_link_info *info)
6834 {
6835 if (! is_elf_hash_table (info->hash))
6836 return NULL;
6837 return elf_hash_table (info)->needed;
6838 }
6839
6840 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6841 hook for the linker ELF emulation code. */
6842
6843 struct bfd_link_needed_list *
6844 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6845 struct bfd_link_info *info)
6846 {
6847 if (! is_elf_hash_table (info->hash))
6848 return NULL;
6849 return elf_hash_table (info)->runpath;
6850 }
6851
6852 /* Get the name actually used for a dynamic object for a link. This
6853 is the SONAME entry if there is one. Otherwise, it is the string
6854 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6855
6856 const char *
6857 bfd_elf_get_dt_soname (bfd *abfd)
6858 {
6859 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6860 && bfd_get_format (abfd) == bfd_object)
6861 return elf_dt_name (abfd);
6862 return NULL;
6863 }
6864
6865 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6866 the ELF linker emulation code. */
6867
6868 bfd_boolean
6869 bfd_elf_get_bfd_needed_list (bfd *abfd,
6870 struct bfd_link_needed_list **pneeded)
6871 {
6872 asection *s;
6873 bfd_byte *dynbuf = NULL;
6874 unsigned int elfsec;
6875 unsigned long shlink;
6876 bfd_byte *extdyn, *extdynend;
6877 size_t extdynsize;
6878 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6879
6880 *pneeded = NULL;
6881
6882 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6883 || bfd_get_format (abfd) != bfd_object)
6884 return TRUE;
6885
6886 s = bfd_get_section_by_name (abfd, ".dynamic");
6887 if (s == NULL || s->size == 0)
6888 return TRUE;
6889
6890 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6891 goto error_return;
6892
6893 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6894 if (elfsec == SHN_BAD)
6895 goto error_return;
6896
6897 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6898
6899 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6900 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6901
6902 extdyn = dynbuf;
6903 extdynend = extdyn + s->size;
6904 for (; extdyn < extdynend; extdyn += extdynsize)
6905 {
6906 Elf_Internal_Dyn dyn;
6907
6908 (*swap_dyn_in) (abfd, extdyn, &dyn);
6909
6910 if (dyn.d_tag == DT_NULL)
6911 break;
6912
6913 if (dyn.d_tag == DT_NEEDED)
6914 {
6915 const char *string;
6916 struct bfd_link_needed_list *l;
6917 unsigned int tagv = dyn.d_un.d_val;
6918 bfd_size_type amt;
6919
6920 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6921 if (string == NULL)
6922 goto error_return;
6923
6924 amt = sizeof *l;
6925 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6926 if (l == NULL)
6927 goto error_return;
6928
6929 l->by = abfd;
6930 l->name = string;
6931 l->next = *pneeded;
6932 *pneeded = l;
6933 }
6934 }
6935
6936 free (dynbuf);
6937
6938 return TRUE;
6939
6940 error_return:
6941 if (dynbuf != NULL)
6942 free (dynbuf);
6943 return FALSE;
6944 }
6945
6946 struct elf_symbuf_symbol
6947 {
6948 unsigned long st_name; /* Symbol name, index in string tbl */
6949 unsigned char st_info; /* Type and binding attributes */
6950 unsigned char st_other; /* Visibilty, and target specific */
6951 };
6952
6953 struct elf_symbuf_head
6954 {
6955 struct elf_symbuf_symbol *ssym;
6956 bfd_size_type count;
6957 unsigned int st_shndx;
6958 };
6959
6960 struct elf_symbol
6961 {
6962 union
6963 {
6964 Elf_Internal_Sym *isym;
6965 struct elf_symbuf_symbol *ssym;
6966 } u;
6967 const char *name;
6968 };
6969
6970 /* Sort references to symbols by ascending section number. */
6971
6972 static int
6973 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6974 {
6975 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6976 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6977
6978 return s1->st_shndx - s2->st_shndx;
6979 }
6980
6981 static int
6982 elf_sym_name_compare (const void *arg1, const void *arg2)
6983 {
6984 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6985 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6986 return strcmp (s1->name, s2->name);
6987 }
6988
6989 static struct elf_symbuf_head *
6990 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6991 {
6992 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6993 struct elf_symbuf_symbol *ssym;
6994 struct elf_symbuf_head *ssymbuf, *ssymhead;
6995 bfd_size_type i, shndx_count, total_size;
6996
6997 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
6998 if (indbuf == NULL)
6999 return NULL;
7000
7001 for (ind = indbuf, i = 0; i < symcount; i++)
7002 if (isymbuf[i].st_shndx != SHN_UNDEF)
7003 *ind++ = &isymbuf[i];
7004 indbufend = ind;
7005
7006 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7007 elf_sort_elf_symbol);
7008
7009 shndx_count = 0;
7010 if (indbufend > indbuf)
7011 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7012 if (ind[0]->st_shndx != ind[1]->st_shndx)
7013 shndx_count++;
7014
7015 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7016 + (indbufend - indbuf) * sizeof (*ssym));
7017 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7018 if (ssymbuf == NULL)
7019 {
7020 free (indbuf);
7021 return NULL;
7022 }
7023
7024 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7025 ssymbuf->ssym = NULL;
7026 ssymbuf->count = shndx_count;
7027 ssymbuf->st_shndx = 0;
7028 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7029 {
7030 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7031 {
7032 ssymhead++;
7033 ssymhead->ssym = ssym;
7034 ssymhead->count = 0;
7035 ssymhead->st_shndx = (*ind)->st_shndx;
7036 }
7037 ssym->st_name = (*ind)->st_name;
7038 ssym->st_info = (*ind)->st_info;
7039 ssym->st_other = (*ind)->st_other;
7040 ssymhead->count++;
7041 }
7042 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7043 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7044 == total_size));
7045
7046 free (indbuf);
7047 return ssymbuf;
7048 }
7049
7050 /* Check if 2 sections define the same set of local and global
7051 symbols. */
7052
7053 static bfd_boolean
7054 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7055 struct bfd_link_info *info)
7056 {
7057 bfd *bfd1, *bfd2;
7058 const struct elf_backend_data *bed1, *bed2;
7059 Elf_Internal_Shdr *hdr1, *hdr2;
7060 bfd_size_type symcount1, symcount2;
7061 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7062 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7063 Elf_Internal_Sym *isym, *isymend;
7064 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7065 bfd_size_type count1, count2, i;
7066 unsigned int shndx1, shndx2;
7067 bfd_boolean result;
7068
7069 bfd1 = sec1->owner;
7070 bfd2 = sec2->owner;
7071
7072 /* Both sections have to be in ELF. */
7073 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7074 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7075 return FALSE;
7076
7077 if (elf_section_type (sec1) != elf_section_type (sec2))
7078 return FALSE;
7079
7080 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7081 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7082 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7083 return FALSE;
7084
7085 bed1 = get_elf_backend_data (bfd1);
7086 bed2 = get_elf_backend_data (bfd2);
7087 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7088 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7089 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7090 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7091
7092 if (symcount1 == 0 || symcount2 == 0)
7093 return FALSE;
7094
7095 result = FALSE;
7096 isymbuf1 = NULL;
7097 isymbuf2 = NULL;
7098 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7099 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7100
7101 if (ssymbuf1 == NULL)
7102 {
7103 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7104 NULL, NULL, NULL);
7105 if (isymbuf1 == NULL)
7106 goto done;
7107
7108 if (!info->reduce_memory_overheads)
7109 elf_tdata (bfd1)->symbuf = ssymbuf1
7110 = elf_create_symbuf (symcount1, isymbuf1);
7111 }
7112
7113 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7114 {
7115 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7116 NULL, NULL, NULL);
7117 if (isymbuf2 == NULL)
7118 goto done;
7119
7120 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7121 elf_tdata (bfd2)->symbuf = ssymbuf2
7122 = elf_create_symbuf (symcount2, isymbuf2);
7123 }
7124
7125 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7126 {
7127 /* Optimized faster version. */
7128 bfd_size_type lo, hi, mid;
7129 struct elf_symbol *symp;
7130 struct elf_symbuf_symbol *ssym, *ssymend;
7131
7132 lo = 0;
7133 hi = ssymbuf1->count;
7134 ssymbuf1++;
7135 count1 = 0;
7136 while (lo < hi)
7137 {
7138 mid = (lo + hi) / 2;
7139 if (shndx1 < ssymbuf1[mid].st_shndx)
7140 hi = mid;
7141 else if (shndx1 > ssymbuf1[mid].st_shndx)
7142 lo = mid + 1;
7143 else
7144 {
7145 count1 = ssymbuf1[mid].count;
7146 ssymbuf1 += mid;
7147 break;
7148 }
7149 }
7150
7151 lo = 0;
7152 hi = ssymbuf2->count;
7153 ssymbuf2++;
7154 count2 = 0;
7155 while (lo < hi)
7156 {
7157 mid = (lo + hi) / 2;
7158 if (shndx2 < ssymbuf2[mid].st_shndx)
7159 hi = mid;
7160 else if (shndx2 > ssymbuf2[mid].st_shndx)
7161 lo = mid + 1;
7162 else
7163 {
7164 count2 = ssymbuf2[mid].count;
7165 ssymbuf2 += mid;
7166 break;
7167 }
7168 }
7169
7170 if (count1 == 0 || count2 == 0 || count1 != count2)
7171 goto done;
7172
7173 symtable1 = (struct elf_symbol *)
7174 bfd_malloc (count1 * sizeof (struct elf_symbol));
7175 symtable2 = (struct elf_symbol *)
7176 bfd_malloc (count2 * sizeof (struct elf_symbol));
7177 if (symtable1 == NULL || symtable2 == NULL)
7178 goto done;
7179
7180 symp = symtable1;
7181 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7182 ssym < ssymend; ssym++, symp++)
7183 {
7184 symp->u.ssym = ssym;
7185 symp->name = bfd_elf_string_from_elf_section (bfd1,
7186 hdr1->sh_link,
7187 ssym->st_name);
7188 }
7189
7190 symp = symtable2;
7191 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7192 ssym < ssymend; ssym++, symp++)
7193 {
7194 symp->u.ssym = ssym;
7195 symp->name = bfd_elf_string_from_elf_section (bfd2,
7196 hdr2->sh_link,
7197 ssym->st_name);
7198 }
7199
7200 /* Sort symbol by name. */
7201 qsort (symtable1, count1, sizeof (struct elf_symbol),
7202 elf_sym_name_compare);
7203 qsort (symtable2, count1, sizeof (struct elf_symbol),
7204 elf_sym_name_compare);
7205
7206 for (i = 0; i < count1; i++)
7207 /* Two symbols must have the same binding, type and name. */
7208 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7209 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7210 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7211 goto done;
7212
7213 result = TRUE;
7214 goto done;
7215 }
7216
7217 symtable1 = (struct elf_symbol *)
7218 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7219 symtable2 = (struct elf_symbol *)
7220 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7221 if (symtable1 == NULL || symtable2 == NULL)
7222 goto done;
7223
7224 /* Count definitions in the section. */
7225 count1 = 0;
7226 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7227 if (isym->st_shndx == shndx1)
7228 symtable1[count1++].u.isym = isym;
7229
7230 count2 = 0;
7231 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7232 if (isym->st_shndx == shndx2)
7233 symtable2[count2++].u.isym = isym;
7234
7235 if (count1 == 0 || count2 == 0 || count1 != count2)
7236 goto done;
7237
7238 for (i = 0; i < count1; i++)
7239 symtable1[i].name
7240 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7241 symtable1[i].u.isym->st_name);
7242
7243 for (i = 0; i < count2; i++)
7244 symtable2[i].name
7245 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7246 symtable2[i].u.isym->st_name);
7247
7248 /* Sort symbol by name. */
7249 qsort (symtable1, count1, sizeof (struct elf_symbol),
7250 elf_sym_name_compare);
7251 qsort (symtable2, count1, sizeof (struct elf_symbol),
7252 elf_sym_name_compare);
7253
7254 for (i = 0; i < count1; i++)
7255 /* Two symbols must have the same binding, type and name. */
7256 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7257 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7258 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7259 goto done;
7260
7261 result = TRUE;
7262
7263 done:
7264 if (symtable1)
7265 free (symtable1);
7266 if (symtable2)
7267 free (symtable2);
7268 if (isymbuf1)
7269 free (isymbuf1);
7270 if (isymbuf2)
7271 free (isymbuf2);
7272
7273 return result;
7274 }
7275
7276 /* Return TRUE if 2 section types are compatible. */
7277
7278 bfd_boolean
7279 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7280 bfd *bbfd, const asection *bsec)
7281 {
7282 if (asec == NULL
7283 || bsec == NULL
7284 || abfd->xvec->flavour != bfd_target_elf_flavour
7285 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7286 return TRUE;
7287
7288 return elf_section_type (asec) == elf_section_type (bsec);
7289 }
7290 \f
7291 /* Final phase of ELF linker. */
7292
7293 /* A structure we use to avoid passing large numbers of arguments. */
7294
7295 struct elf_final_link_info
7296 {
7297 /* General link information. */
7298 struct bfd_link_info *info;
7299 /* Output BFD. */
7300 bfd *output_bfd;
7301 /* Symbol string table. */
7302 struct bfd_strtab_hash *symstrtab;
7303 /* .dynsym section. */
7304 asection *dynsym_sec;
7305 /* .hash section. */
7306 asection *hash_sec;
7307 /* symbol version section (.gnu.version). */
7308 asection *symver_sec;
7309 /* Buffer large enough to hold contents of any section. */
7310 bfd_byte *contents;
7311 /* Buffer large enough to hold external relocs of any section. */
7312 void *external_relocs;
7313 /* Buffer large enough to hold internal relocs of any section. */
7314 Elf_Internal_Rela *internal_relocs;
7315 /* Buffer large enough to hold external local symbols of any input
7316 BFD. */
7317 bfd_byte *external_syms;
7318 /* And a buffer for symbol section indices. */
7319 Elf_External_Sym_Shndx *locsym_shndx;
7320 /* Buffer large enough to hold internal local symbols of any input
7321 BFD. */
7322 Elf_Internal_Sym *internal_syms;
7323 /* Array large enough to hold a symbol index for each local symbol
7324 of any input BFD. */
7325 long *indices;
7326 /* Array large enough to hold a section pointer for each local
7327 symbol of any input BFD. */
7328 asection **sections;
7329 /* Buffer to hold swapped out symbols. */
7330 bfd_byte *symbuf;
7331 /* And one for symbol section indices. */
7332 Elf_External_Sym_Shndx *symshndxbuf;
7333 /* Number of swapped out symbols in buffer. */
7334 size_t symbuf_count;
7335 /* Number of symbols which fit in symbuf. */
7336 size_t symbuf_size;
7337 /* And same for symshndxbuf. */
7338 size_t shndxbuf_size;
7339 };
7340
7341 /* This struct is used to pass information to elf_link_output_extsym. */
7342
7343 struct elf_outext_info
7344 {
7345 bfd_boolean failed;
7346 bfd_boolean localsyms;
7347 struct elf_final_link_info *finfo;
7348 };
7349
7350
7351 /* Support for evaluating a complex relocation.
7352
7353 Complex relocations are generalized, self-describing relocations. The
7354 implementation of them consists of two parts: complex symbols, and the
7355 relocations themselves.
7356
7357 The relocations are use a reserved elf-wide relocation type code (R_RELC
7358 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7359 information (start bit, end bit, word width, etc) into the addend. This
7360 information is extracted from CGEN-generated operand tables within gas.
7361
7362 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7363 internal) representing prefix-notation expressions, including but not
7364 limited to those sorts of expressions normally encoded as addends in the
7365 addend field. The symbol mangling format is:
7366
7367 <node> := <literal>
7368 | <unary-operator> ':' <node>
7369 | <binary-operator> ':' <node> ':' <node>
7370 ;
7371
7372 <literal> := 's' <digits=N> ':' <N character symbol name>
7373 | 'S' <digits=N> ':' <N character section name>
7374 | '#' <hexdigits>
7375 ;
7376
7377 <binary-operator> := as in C
7378 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7379
7380 static void
7381 set_symbol_value (bfd *bfd_with_globals,
7382 Elf_Internal_Sym *isymbuf,
7383 size_t locsymcount,
7384 size_t symidx,
7385 bfd_vma val)
7386 {
7387 struct elf_link_hash_entry **sym_hashes;
7388 struct elf_link_hash_entry *h;
7389 size_t extsymoff = locsymcount;
7390
7391 if (symidx < locsymcount)
7392 {
7393 Elf_Internal_Sym *sym;
7394
7395 sym = isymbuf + symidx;
7396 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7397 {
7398 /* It is a local symbol: move it to the
7399 "absolute" section and give it a value. */
7400 sym->st_shndx = SHN_ABS;
7401 sym->st_value = val;
7402 return;
7403 }
7404 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7405 extsymoff = 0;
7406 }
7407
7408 /* It is a global symbol: set its link type
7409 to "defined" and give it a value. */
7410
7411 sym_hashes = elf_sym_hashes (bfd_with_globals);
7412 h = sym_hashes [symidx - extsymoff];
7413 while (h->root.type == bfd_link_hash_indirect
7414 || h->root.type == bfd_link_hash_warning)
7415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7416 h->root.type = bfd_link_hash_defined;
7417 h->root.u.def.value = val;
7418 h->root.u.def.section = bfd_abs_section_ptr;
7419 }
7420
7421 static bfd_boolean
7422 resolve_symbol (const char *name,
7423 bfd *input_bfd,
7424 struct elf_final_link_info *finfo,
7425 bfd_vma *result,
7426 Elf_Internal_Sym *isymbuf,
7427 size_t locsymcount)
7428 {
7429 Elf_Internal_Sym *sym;
7430 struct bfd_link_hash_entry *global_entry;
7431 const char *candidate = NULL;
7432 Elf_Internal_Shdr *symtab_hdr;
7433 size_t i;
7434
7435 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7436
7437 for (i = 0; i < locsymcount; ++ i)
7438 {
7439 sym = isymbuf + i;
7440
7441 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7442 continue;
7443
7444 candidate = bfd_elf_string_from_elf_section (input_bfd,
7445 symtab_hdr->sh_link,
7446 sym->st_name);
7447 #ifdef DEBUG
7448 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7449 name, candidate, (unsigned long) sym->st_value);
7450 #endif
7451 if (candidate && strcmp (candidate, name) == 0)
7452 {
7453 asection *sec = finfo->sections [i];
7454
7455 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7456 *result += sec->output_offset + sec->output_section->vma;
7457 #ifdef DEBUG
7458 printf ("Found symbol with value %8.8lx\n",
7459 (unsigned long) *result);
7460 #endif
7461 return TRUE;
7462 }
7463 }
7464
7465 /* Hmm, haven't found it yet. perhaps it is a global. */
7466 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7467 FALSE, FALSE, TRUE);
7468 if (!global_entry)
7469 return FALSE;
7470
7471 if (global_entry->type == bfd_link_hash_defined
7472 || global_entry->type == bfd_link_hash_defweak)
7473 {
7474 *result = (global_entry->u.def.value
7475 + global_entry->u.def.section->output_section->vma
7476 + global_entry->u.def.section->output_offset);
7477 #ifdef DEBUG
7478 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7479 global_entry->root.string, (unsigned long) *result);
7480 #endif
7481 return TRUE;
7482 }
7483
7484 return FALSE;
7485 }
7486
7487 static bfd_boolean
7488 resolve_section (const char *name,
7489 asection *sections,
7490 bfd_vma *result)
7491 {
7492 asection *curr;
7493 unsigned int len;
7494
7495 for (curr = sections; curr; curr = curr->next)
7496 if (strcmp (curr->name, name) == 0)
7497 {
7498 *result = curr->vma;
7499 return TRUE;
7500 }
7501
7502 /* Hmm. still haven't found it. try pseudo-section names. */
7503 for (curr = sections; curr; curr = curr->next)
7504 {
7505 len = strlen (curr->name);
7506 if (len > strlen (name))
7507 continue;
7508
7509 if (strncmp (curr->name, name, len) == 0)
7510 {
7511 if (strncmp (".end", name + len, 4) == 0)
7512 {
7513 *result = curr->vma + curr->size;
7514 return TRUE;
7515 }
7516
7517 /* Insert more pseudo-section names here, if you like. */
7518 }
7519 }
7520
7521 return FALSE;
7522 }
7523
7524 static void
7525 undefined_reference (const char *reftype, const char *name)
7526 {
7527 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7528 reftype, name);
7529 }
7530
7531 static bfd_boolean
7532 eval_symbol (bfd_vma *result,
7533 const char **symp,
7534 bfd *input_bfd,
7535 struct elf_final_link_info *finfo,
7536 bfd_vma dot,
7537 Elf_Internal_Sym *isymbuf,
7538 size_t locsymcount,
7539 int signed_p)
7540 {
7541 size_t len;
7542 size_t symlen;
7543 bfd_vma a;
7544 bfd_vma b;
7545 char symbuf[4096];
7546 const char *sym = *symp;
7547 const char *symend;
7548 bfd_boolean symbol_is_section = FALSE;
7549
7550 len = strlen (sym);
7551 symend = sym + len;
7552
7553 if (len < 1 || len > sizeof (symbuf))
7554 {
7555 bfd_set_error (bfd_error_invalid_operation);
7556 return FALSE;
7557 }
7558
7559 switch (* sym)
7560 {
7561 case '.':
7562 *result = dot;
7563 *symp = sym + 1;
7564 return TRUE;
7565
7566 case '#':
7567 ++sym;
7568 *result = strtoul (sym, (char **) symp, 16);
7569 return TRUE;
7570
7571 case 'S':
7572 symbol_is_section = TRUE;
7573 case 's':
7574 ++sym;
7575 symlen = strtol (sym, (char **) symp, 10);
7576 sym = *symp + 1; /* Skip the trailing ':'. */
7577
7578 if (symend < sym || symlen + 1 > sizeof (symbuf))
7579 {
7580 bfd_set_error (bfd_error_invalid_operation);
7581 return FALSE;
7582 }
7583
7584 memcpy (symbuf, sym, symlen);
7585 symbuf[symlen] = '\0';
7586 *symp = sym + symlen;
7587
7588 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7589 the symbol as a section, or vice-versa. so we're pretty liberal in our
7590 interpretation here; section means "try section first", not "must be a
7591 section", and likewise with symbol. */
7592
7593 if (symbol_is_section)
7594 {
7595 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7596 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7597 isymbuf, locsymcount))
7598 {
7599 undefined_reference ("section", symbuf);
7600 return FALSE;
7601 }
7602 }
7603 else
7604 {
7605 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7606 isymbuf, locsymcount)
7607 && !resolve_section (symbuf, finfo->output_bfd->sections,
7608 result))
7609 {
7610 undefined_reference ("symbol", symbuf);
7611 return FALSE;
7612 }
7613 }
7614
7615 return TRUE;
7616
7617 /* All that remains are operators. */
7618
7619 #define UNARY_OP(op) \
7620 if (strncmp (sym, #op, strlen (#op)) == 0) \
7621 { \
7622 sym += strlen (#op); \
7623 if (*sym == ':') \
7624 ++sym; \
7625 *symp = sym; \
7626 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7627 isymbuf, locsymcount, signed_p)) \
7628 return FALSE; \
7629 if (signed_p) \
7630 *result = op ((bfd_signed_vma) a); \
7631 else \
7632 *result = op a; \
7633 return TRUE; \
7634 }
7635
7636 #define BINARY_OP(op) \
7637 if (strncmp (sym, #op, strlen (#op)) == 0) \
7638 { \
7639 sym += strlen (#op); \
7640 if (*sym == ':') \
7641 ++sym; \
7642 *symp = sym; \
7643 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7644 isymbuf, locsymcount, signed_p)) \
7645 return FALSE; \
7646 ++*symp; \
7647 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7648 isymbuf, locsymcount, signed_p)) \
7649 return FALSE; \
7650 if (signed_p) \
7651 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7652 else \
7653 *result = a op b; \
7654 return TRUE; \
7655 }
7656
7657 default:
7658 UNARY_OP (0-);
7659 BINARY_OP (<<);
7660 BINARY_OP (>>);
7661 BINARY_OP (==);
7662 BINARY_OP (!=);
7663 BINARY_OP (<=);
7664 BINARY_OP (>=);
7665 BINARY_OP (&&);
7666 BINARY_OP (||);
7667 UNARY_OP (~);
7668 UNARY_OP (!);
7669 BINARY_OP (*);
7670 BINARY_OP (/);
7671 BINARY_OP (%);
7672 BINARY_OP (^);
7673 BINARY_OP (|);
7674 BINARY_OP (&);
7675 BINARY_OP (+);
7676 BINARY_OP (-);
7677 BINARY_OP (<);
7678 BINARY_OP (>);
7679 #undef UNARY_OP
7680 #undef BINARY_OP
7681 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7682 bfd_set_error (bfd_error_invalid_operation);
7683 return FALSE;
7684 }
7685 }
7686
7687 static void
7688 put_value (bfd_vma size,
7689 unsigned long chunksz,
7690 bfd *input_bfd,
7691 bfd_vma x,
7692 bfd_byte *location)
7693 {
7694 location += (size - chunksz);
7695
7696 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7697 {
7698 switch (chunksz)
7699 {
7700 default:
7701 case 0:
7702 abort ();
7703 case 1:
7704 bfd_put_8 (input_bfd, x, location);
7705 break;
7706 case 2:
7707 bfd_put_16 (input_bfd, x, location);
7708 break;
7709 case 4:
7710 bfd_put_32 (input_bfd, x, location);
7711 break;
7712 case 8:
7713 #ifdef BFD64
7714 bfd_put_64 (input_bfd, x, location);
7715 #else
7716 abort ();
7717 #endif
7718 break;
7719 }
7720 }
7721 }
7722
7723 static bfd_vma
7724 get_value (bfd_vma size,
7725 unsigned long chunksz,
7726 bfd *input_bfd,
7727 bfd_byte *location)
7728 {
7729 bfd_vma x = 0;
7730
7731 for (; size; size -= chunksz, location += chunksz)
7732 {
7733 switch (chunksz)
7734 {
7735 default:
7736 case 0:
7737 abort ();
7738 case 1:
7739 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7740 break;
7741 case 2:
7742 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7743 break;
7744 case 4:
7745 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7746 break;
7747 case 8:
7748 #ifdef BFD64
7749 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7750 #else
7751 abort ();
7752 #endif
7753 break;
7754 }
7755 }
7756 return x;
7757 }
7758
7759 static void
7760 decode_complex_addend (unsigned long *start, /* in bits */
7761 unsigned long *oplen, /* in bits */
7762 unsigned long *len, /* in bits */
7763 unsigned long *wordsz, /* in bytes */
7764 unsigned long *chunksz, /* in bytes */
7765 unsigned long *lsb0_p,
7766 unsigned long *signed_p,
7767 unsigned long *trunc_p,
7768 unsigned long encoded)
7769 {
7770 * start = encoded & 0x3F;
7771 * len = (encoded >> 6) & 0x3F;
7772 * oplen = (encoded >> 12) & 0x3F;
7773 * wordsz = (encoded >> 18) & 0xF;
7774 * chunksz = (encoded >> 22) & 0xF;
7775 * lsb0_p = (encoded >> 27) & 1;
7776 * signed_p = (encoded >> 28) & 1;
7777 * trunc_p = (encoded >> 29) & 1;
7778 }
7779
7780 bfd_reloc_status_type
7781 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7782 asection *input_section ATTRIBUTE_UNUSED,
7783 bfd_byte *contents,
7784 Elf_Internal_Rela *rel,
7785 bfd_vma relocation)
7786 {
7787 bfd_vma shift, x, mask;
7788 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7789 bfd_reloc_status_type r;
7790
7791 /* Perform this reloc, since it is complex.
7792 (this is not to say that it necessarily refers to a complex
7793 symbol; merely that it is a self-describing CGEN based reloc.
7794 i.e. the addend has the complete reloc information (bit start, end,
7795 word size, etc) encoded within it.). */
7796
7797 decode_complex_addend (&start, &oplen, &len, &wordsz,
7798 &chunksz, &lsb0_p, &signed_p,
7799 &trunc_p, rel->r_addend);
7800
7801 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7802
7803 if (lsb0_p)
7804 shift = (start + 1) - len;
7805 else
7806 shift = (8 * wordsz) - (start + len);
7807
7808 /* FIXME: octets_per_byte. */
7809 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7810
7811 #ifdef DEBUG
7812 printf ("Doing complex reloc: "
7813 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7814 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7815 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7816 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7817 oplen, x, mask, relocation);
7818 #endif
7819
7820 r = bfd_reloc_ok;
7821 if (! trunc_p)
7822 /* Now do an overflow check. */
7823 r = bfd_check_overflow ((signed_p
7824 ? complain_overflow_signed
7825 : complain_overflow_unsigned),
7826 len, 0, (8 * wordsz),
7827 relocation);
7828
7829 /* Do the deed. */
7830 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7831
7832 #ifdef DEBUG
7833 printf (" relocation: %8.8lx\n"
7834 " shifted mask: %8.8lx\n"
7835 " shifted/masked reloc: %8.8lx\n"
7836 " result: %8.8lx\n",
7837 relocation, (mask << shift),
7838 ((relocation & mask) << shift), x);
7839 #endif
7840 /* FIXME: octets_per_byte. */
7841 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7842 return r;
7843 }
7844
7845 /* When performing a relocatable link, the input relocations are
7846 preserved. But, if they reference global symbols, the indices
7847 referenced must be updated. Update all the relocations in
7848 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7849
7850 static void
7851 elf_link_adjust_relocs (bfd *abfd,
7852 Elf_Internal_Shdr *rel_hdr,
7853 unsigned int count,
7854 struct elf_link_hash_entry **rel_hash)
7855 {
7856 unsigned int i;
7857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7858 bfd_byte *erela;
7859 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7860 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7861 bfd_vma r_type_mask;
7862 int r_sym_shift;
7863
7864 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7865 {
7866 swap_in = bed->s->swap_reloc_in;
7867 swap_out = bed->s->swap_reloc_out;
7868 }
7869 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7870 {
7871 swap_in = bed->s->swap_reloca_in;
7872 swap_out = bed->s->swap_reloca_out;
7873 }
7874 else
7875 abort ();
7876
7877 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7878 abort ();
7879
7880 if (bed->s->arch_size == 32)
7881 {
7882 r_type_mask = 0xff;
7883 r_sym_shift = 8;
7884 }
7885 else
7886 {
7887 r_type_mask = 0xffffffff;
7888 r_sym_shift = 32;
7889 }
7890
7891 erela = rel_hdr->contents;
7892 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7893 {
7894 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7895 unsigned int j;
7896
7897 if (*rel_hash == NULL)
7898 continue;
7899
7900 BFD_ASSERT ((*rel_hash)->indx >= 0);
7901
7902 (*swap_in) (abfd, erela, irela);
7903 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7904 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7905 | (irela[j].r_info & r_type_mask));
7906 (*swap_out) (abfd, irela, erela);
7907 }
7908 }
7909
7910 struct elf_link_sort_rela
7911 {
7912 union {
7913 bfd_vma offset;
7914 bfd_vma sym_mask;
7915 } u;
7916 enum elf_reloc_type_class type;
7917 /* We use this as an array of size int_rels_per_ext_rel. */
7918 Elf_Internal_Rela rela[1];
7919 };
7920
7921 static int
7922 elf_link_sort_cmp1 (const void *A, const void *B)
7923 {
7924 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7925 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7926 int relativea, relativeb;
7927
7928 relativea = a->type == reloc_class_relative;
7929 relativeb = b->type == reloc_class_relative;
7930
7931 if (relativea < relativeb)
7932 return 1;
7933 if (relativea > relativeb)
7934 return -1;
7935 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7936 return -1;
7937 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7938 return 1;
7939 if (a->rela->r_offset < b->rela->r_offset)
7940 return -1;
7941 if (a->rela->r_offset > b->rela->r_offset)
7942 return 1;
7943 return 0;
7944 }
7945
7946 static int
7947 elf_link_sort_cmp2 (const void *A, const void *B)
7948 {
7949 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7950 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7951 int copya, copyb;
7952
7953 if (a->u.offset < b->u.offset)
7954 return -1;
7955 if (a->u.offset > b->u.offset)
7956 return 1;
7957 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7958 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7959 if (copya < copyb)
7960 return -1;
7961 if (copya > copyb)
7962 return 1;
7963 if (a->rela->r_offset < b->rela->r_offset)
7964 return -1;
7965 if (a->rela->r_offset > b->rela->r_offset)
7966 return 1;
7967 return 0;
7968 }
7969
7970 static size_t
7971 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7972 {
7973 asection *dynamic_relocs;
7974 asection *rela_dyn;
7975 asection *rel_dyn;
7976 bfd_size_type count, size;
7977 size_t i, ret, sort_elt, ext_size;
7978 bfd_byte *sort, *s_non_relative, *p;
7979 struct elf_link_sort_rela *sq;
7980 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7981 int i2e = bed->s->int_rels_per_ext_rel;
7982 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7983 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7984 struct bfd_link_order *lo;
7985 bfd_vma r_sym_mask;
7986 bfd_boolean use_rela;
7987
7988 /* Find a dynamic reloc section. */
7989 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7990 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7991 if (rela_dyn != NULL && rela_dyn->size > 0
7992 && rel_dyn != NULL && rel_dyn->size > 0)
7993 {
7994 bfd_boolean use_rela_initialised = FALSE;
7995
7996 /* This is just here to stop gcc from complaining.
7997 It's initialization checking code is not perfect. */
7998 use_rela = TRUE;
7999
8000 /* Both sections are present. Examine the sizes
8001 of the indirect sections to help us choose. */
8002 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8003 if (lo->type == bfd_indirect_link_order)
8004 {
8005 asection *o = lo->u.indirect.section;
8006
8007 if ((o->size % bed->s->sizeof_rela) == 0)
8008 {
8009 if ((o->size % bed->s->sizeof_rel) == 0)
8010 /* Section size is divisible by both rel and rela sizes.
8011 It is of no help to us. */
8012 ;
8013 else
8014 {
8015 /* Section size is only divisible by rela. */
8016 if (use_rela_initialised && (use_rela == FALSE))
8017 {
8018 _bfd_error_handler
8019 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8020 bfd_set_error (bfd_error_invalid_operation);
8021 return 0;
8022 }
8023 else
8024 {
8025 use_rela = TRUE;
8026 use_rela_initialised = TRUE;
8027 }
8028 }
8029 }
8030 else if ((o->size % bed->s->sizeof_rel) == 0)
8031 {
8032 /* Section size is only divisible by rel. */
8033 if (use_rela_initialised && (use_rela == TRUE))
8034 {
8035 _bfd_error_handler
8036 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8037 bfd_set_error (bfd_error_invalid_operation);
8038 return 0;
8039 }
8040 else
8041 {
8042 use_rela = FALSE;
8043 use_rela_initialised = TRUE;
8044 }
8045 }
8046 else
8047 {
8048 /* The section size is not divisible by either - something is wrong. */
8049 _bfd_error_handler
8050 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8051 bfd_set_error (bfd_error_invalid_operation);
8052 return 0;
8053 }
8054 }
8055
8056 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8057 if (lo->type == bfd_indirect_link_order)
8058 {
8059 asection *o = lo->u.indirect.section;
8060
8061 if ((o->size % bed->s->sizeof_rela) == 0)
8062 {
8063 if ((o->size % bed->s->sizeof_rel) == 0)
8064 /* Section size is divisible by both rel and rela sizes.
8065 It is of no help to us. */
8066 ;
8067 else
8068 {
8069 /* Section size is only divisible by rela. */
8070 if (use_rela_initialised && (use_rela == FALSE))
8071 {
8072 _bfd_error_handler
8073 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8074 bfd_set_error (bfd_error_invalid_operation);
8075 return 0;
8076 }
8077 else
8078 {
8079 use_rela = TRUE;
8080 use_rela_initialised = TRUE;
8081 }
8082 }
8083 }
8084 else if ((o->size % bed->s->sizeof_rel) == 0)
8085 {
8086 /* Section size is only divisible by rel. */
8087 if (use_rela_initialised && (use_rela == TRUE))
8088 {
8089 _bfd_error_handler
8090 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8091 bfd_set_error (bfd_error_invalid_operation);
8092 return 0;
8093 }
8094 else
8095 {
8096 use_rela = FALSE;
8097 use_rela_initialised = TRUE;
8098 }
8099 }
8100 else
8101 {
8102 /* The section size is not divisible by either - something is wrong. */
8103 _bfd_error_handler
8104 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8105 bfd_set_error (bfd_error_invalid_operation);
8106 return 0;
8107 }
8108 }
8109
8110 if (! use_rela_initialised)
8111 /* Make a guess. */
8112 use_rela = TRUE;
8113 }
8114 else if (rela_dyn != NULL && rela_dyn->size > 0)
8115 use_rela = TRUE;
8116 else if (rel_dyn != NULL && rel_dyn->size > 0)
8117 use_rela = FALSE;
8118 else
8119 return 0;
8120
8121 if (use_rela)
8122 {
8123 dynamic_relocs = rela_dyn;
8124 ext_size = bed->s->sizeof_rela;
8125 swap_in = bed->s->swap_reloca_in;
8126 swap_out = bed->s->swap_reloca_out;
8127 }
8128 else
8129 {
8130 dynamic_relocs = rel_dyn;
8131 ext_size = bed->s->sizeof_rel;
8132 swap_in = bed->s->swap_reloc_in;
8133 swap_out = bed->s->swap_reloc_out;
8134 }
8135
8136 size = 0;
8137 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8138 if (lo->type == bfd_indirect_link_order)
8139 size += lo->u.indirect.section->size;
8140
8141 if (size != dynamic_relocs->size)
8142 return 0;
8143
8144 sort_elt = (sizeof (struct elf_link_sort_rela)
8145 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8146
8147 count = dynamic_relocs->size / ext_size;
8148 if (count == 0)
8149 return 0;
8150 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8151
8152 if (sort == NULL)
8153 {
8154 (*info->callbacks->warning)
8155 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8156 return 0;
8157 }
8158
8159 if (bed->s->arch_size == 32)
8160 r_sym_mask = ~(bfd_vma) 0xff;
8161 else
8162 r_sym_mask = ~(bfd_vma) 0xffffffff;
8163
8164 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8165 if (lo->type == bfd_indirect_link_order)
8166 {
8167 bfd_byte *erel, *erelend;
8168 asection *o = lo->u.indirect.section;
8169
8170 if (o->contents == NULL && o->size != 0)
8171 {
8172 /* This is a reloc section that is being handled as a normal
8173 section. See bfd_section_from_shdr. We can't combine
8174 relocs in this case. */
8175 free (sort);
8176 return 0;
8177 }
8178 erel = o->contents;
8179 erelend = o->contents + o->size;
8180 /* FIXME: octets_per_byte. */
8181 p = sort + o->output_offset / ext_size * sort_elt;
8182
8183 while (erel < erelend)
8184 {
8185 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8186
8187 (*swap_in) (abfd, erel, s->rela);
8188 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8189 s->u.sym_mask = r_sym_mask;
8190 p += sort_elt;
8191 erel += ext_size;
8192 }
8193 }
8194
8195 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8196
8197 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8198 {
8199 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8200 if (s->type != reloc_class_relative)
8201 break;
8202 }
8203 ret = i;
8204 s_non_relative = p;
8205
8206 sq = (struct elf_link_sort_rela *) s_non_relative;
8207 for (; i < count; i++, p += sort_elt)
8208 {
8209 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8210 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8211 sq = sp;
8212 sp->u.offset = sq->rela->r_offset;
8213 }
8214
8215 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8216
8217 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8218 if (lo->type == bfd_indirect_link_order)
8219 {
8220 bfd_byte *erel, *erelend;
8221 asection *o = lo->u.indirect.section;
8222
8223 erel = o->contents;
8224 erelend = o->contents + o->size;
8225 /* FIXME: octets_per_byte. */
8226 p = sort + o->output_offset / ext_size * sort_elt;
8227 while (erel < erelend)
8228 {
8229 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8230 (*swap_out) (abfd, s->rela, erel);
8231 p += sort_elt;
8232 erel += ext_size;
8233 }
8234 }
8235
8236 free (sort);
8237 *psec = dynamic_relocs;
8238 return ret;
8239 }
8240
8241 /* Flush the output symbols to the file. */
8242
8243 static bfd_boolean
8244 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8245 const struct elf_backend_data *bed)
8246 {
8247 if (finfo->symbuf_count > 0)
8248 {
8249 Elf_Internal_Shdr *hdr;
8250 file_ptr pos;
8251 bfd_size_type amt;
8252
8253 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8254 pos = hdr->sh_offset + hdr->sh_size;
8255 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8256 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8257 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8258 return FALSE;
8259
8260 hdr->sh_size += amt;
8261 finfo->symbuf_count = 0;
8262 }
8263
8264 return TRUE;
8265 }
8266
8267 /* Add a symbol to the output symbol table. */
8268
8269 static int
8270 elf_link_output_sym (struct elf_final_link_info *finfo,
8271 const char *name,
8272 Elf_Internal_Sym *elfsym,
8273 asection *input_sec,
8274 struct elf_link_hash_entry *h)
8275 {
8276 bfd_byte *dest;
8277 Elf_External_Sym_Shndx *destshndx;
8278 int (*output_symbol_hook)
8279 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8280 struct elf_link_hash_entry *);
8281 const struct elf_backend_data *bed;
8282
8283 bed = get_elf_backend_data (finfo->output_bfd);
8284 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8285 if (output_symbol_hook != NULL)
8286 {
8287 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8288 if (ret != 1)
8289 return ret;
8290 }
8291
8292 if (name == NULL || *name == '\0')
8293 elfsym->st_name = 0;
8294 else if (input_sec->flags & SEC_EXCLUDE)
8295 elfsym->st_name = 0;
8296 else
8297 {
8298 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8299 name, TRUE, FALSE);
8300 if (elfsym->st_name == (unsigned long) -1)
8301 return 0;
8302 }
8303
8304 if (finfo->symbuf_count >= finfo->symbuf_size)
8305 {
8306 if (! elf_link_flush_output_syms (finfo, bed))
8307 return 0;
8308 }
8309
8310 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8311 destshndx = finfo->symshndxbuf;
8312 if (destshndx != NULL)
8313 {
8314 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8315 {
8316 bfd_size_type amt;
8317
8318 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8319 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8320 amt * 2);
8321 if (destshndx == NULL)
8322 return 0;
8323 finfo->symshndxbuf = destshndx;
8324 memset ((char *) destshndx + amt, 0, amt);
8325 finfo->shndxbuf_size *= 2;
8326 }
8327 destshndx += bfd_get_symcount (finfo->output_bfd);
8328 }
8329
8330 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8331 finfo->symbuf_count += 1;
8332 bfd_get_symcount (finfo->output_bfd) += 1;
8333
8334 return 1;
8335 }
8336
8337 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8338
8339 static bfd_boolean
8340 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8341 {
8342 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8343 && sym->st_shndx < SHN_LORESERVE)
8344 {
8345 /* The gABI doesn't support dynamic symbols in output sections
8346 beyond 64k. */
8347 (*_bfd_error_handler)
8348 (_("%B: Too many sections: %d (>= %d)"),
8349 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8350 bfd_set_error (bfd_error_nonrepresentable_section);
8351 return FALSE;
8352 }
8353 return TRUE;
8354 }
8355
8356 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8357 allowing an unsatisfied unversioned symbol in the DSO to match a
8358 versioned symbol that would normally require an explicit version.
8359 We also handle the case that a DSO references a hidden symbol
8360 which may be satisfied by a versioned symbol in another DSO. */
8361
8362 static bfd_boolean
8363 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8364 const struct elf_backend_data *bed,
8365 struct elf_link_hash_entry *h)
8366 {
8367 bfd *abfd;
8368 struct elf_link_loaded_list *loaded;
8369
8370 if (!is_elf_hash_table (info->hash))
8371 return FALSE;
8372
8373 switch (h->root.type)
8374 {
8375 default:
8376 abfd = NULL;
8377 break;
8378
8379 case bfd_link_hash_undefined:
8380 case bfd_link_hash_undefweak:
8381 abfd = h->root.u.undef.abfd;
8382 if ((abfd->flags & DYNAMIC) == 0
8383 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8384 return FALSE;
8385 break;
8386
8387 case bfd_link_hash_defined:
8388 case bfd_link_hash_defweak:
8389 abfd = h->root.u.def.section->owner;
8390 break;
8391
8392 case bfd_link_hash_common:
8393 abfd = h->root.u.c.p->section->owner;
8394 break;
8395 }
8396 BFD_ASSERT (abfd != NULL);
8397
8398 for (loaded = elf_hash_table (info)->loaded;
8399 loaded != NULL;
8400 loaded = loaded->next)
8401 {
8402 bfd *input;
8403 Elf_Internal_Shdr *hdr;
8404 bfd_size_type symcount;
8405 bfd_size_type extsymcount;
8406 bfd_size_type extsymoff;
8407 Elf_Internal_Shdr *versymhdr;
8408 Elf_Internal_Sym *isym;
8409 Elf_Internal_Sym *isymend;
8410 Elf_Internal_Sym *isymbuf;
8411 Elf_External_Versym *ever;
8412 Elf_External_Versym *extversym;
8413
8414 input = loaded->abfd;
8415
8416 /* We check each DSO for a possible hidden versioned definition. */
8417 if (input == abfd
8418 || (input->flags & DYNAMIC) == 0
8419 || elf_dynversym (input) == 0)
8420 continue;
8421
8422 hdr = &elf_tdata (input)->dynsymtab_hdr;
8423
8424 symcount = hdr->sh_size / bed->s->sizeof_sym;
8425 if (elf_bad_symtab (input))
8426 {
8427 extsymcount = symcount;
8428 extsymoff = 0;
8429 }
8430 else
8431 {
8432 extsymcount = symcount - hdr->sh_info;
8433 extsymoff = hdr->sh_info;
8434 }
8435
8436 if (extsymcount == 0)
8437 continue;
8438
8439 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8440 NULL, NULL, NULL);
8441 if (isymbuf == NULL)
8442 return FALSE;
8443
8444 /* Read in any version definitions. */
8445 versymhdr = &elf_tdata (input)->dynversym_hdr;
8446 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8447 if (extversym == NULL)
8448 goto error_ret;
8449
8450 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8451 || (bfd_bread (extversym, versymhdr->sh_size, input)
8452 != versymhdr->sh_size))
8453 {
8454 free (extversym);
8455 error_ret:
8456 free (isymbuf);
8457 return FALSE;
8458 }
8459
8460 ever = extversym + extsymoff;
8461 isymend = isymbuf + extsymcount;
8462 for (isym = isymbuf; isym < isymend; isym++, ever++)
8463 {
8464 const char *name;
8465 Elf_Internal_Versym iver;
8466 unsigned short version_index;
8467
8468 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8469 || isym->st_shndx == SHN_UNDEF)
8470 continue;
8471
8472 name = bfd_elf_string_from_elf_section (input,
8473 hdr->sh_link,
8474 isym->st_name);
8475 if (strcmp (name, h->root.root.string) != 0)
8476 continue;
8477
8478 _bfd_elf_swap_versym_in (input, ever, &iver);
8479
8480 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8481 {
8482 /* If we have a non-hidden versioned sym, then it should
8483 have provided a definition for the undefined sym. */
8484 abort ();
8485 }
8486
8487 version_index = iver.vs_vers & VERSYM_VERSION;
8488 if (version_index == 1 || version_index == 2)
8489 {
8490 /* This is the base or first version. We can use it. */
8491 free (extversym);
8492 free (isymbuf);
8493 return TRUE;
8494 }
8495 }
8496
8497 free (extversym);
8498 free (isymbuf);
8499 }
8500
8501 return FALSE;
8502 }
8503
8504 /* Add an external symbol to the symbol table. This is called from
8505 the hash table traversal routine. When generating a shared object,
8506 we go through the symbol table twice. The first time we output
8507 anything that might have been forced to local scope in a version
8508 script. The second time we output the symbols that are still
8509 global symbols. */
8510
8511 static bfd_boolean
8512 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8513 {
8514 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8515 struct elf_final_link_info *finfo = eoinfo->finfo;
8516 bfd_boolean strip;
8517 Elf_Internal_Sym sym;
8518 asection *input_sec;
8519 const struct elf_backend_data *bed;
8520 long indx;
8521 int ret;
8522
8523 if (h->root.type == bfd_link_hash_warning)
8524 {
8525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8526 if (h->root.type == bfd_link_hash_new)
8527 return TRUE;
8528 }
8529
8530 /* Decide whether to output this symbol in this pass. */
8531 if (eoinfo->localsyms)
8532 {
8533 if (!h->forced_local)
8534 return TRUE;
8535 }
8536 else
8537 {
8538 if (h->forced_local)
8539 return TRUE;
8540 }
8541
8542 bed = get_elf_backend_data (finfo->output_bfd);
8543
8544 if (h->root.type == bfd_link_hash_undefined)
8545 {
8546 /* If we have an undefined symbol reference here then it must have
8547 come from a shared library that is being linked in. (Undefined
8548 references in regular files have already been handled). */
8549 bfd_boolean ignore_undef = FALSE;
8550
8551 /* Some symbols may be special in that the fact that they're
8552 undefined can be safely ignored - let backend determine that. */
8553 if (bed->elf_backend_ignore_undef_symbol)
8554 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8555
8556 /* If we are reporting errors for this situation then do so now. */
8557 if (ignore_undef == FALSE
8558 && h->ref_dynamic
8559 && ! h->ref_regular
8560 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8561 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8562 {
8563 if (! (finfo->info->callbacks->undefined_symbol
8564 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8565 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8566 {
8567 eoinfo->failed = TRUE;
8568 return FALSE;
8569 }
8570 }
8571 }
8572
8573 /* We should also warn if a forced local symbol is referenced from
8574 shared libraries. */
8575 if (! finfo->info->relocatable
8576 && (! finfo->info->shared)
8577 && h->forced_local
8578 && h->ref_dynamic
8579 && !h->dynamic_def
8580 && !h->dynamic_weak
8581 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8582 {
8583 (*_bfd_error_handler)
8584 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8585 finfo->output_bfd,
8586 h->root.u.def.section == bfd_abs_section_ptr
8587 ? finfo->output_bfd : h->root.u.def.section->owner,
8588 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8589 ? "internal"
8590 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8591 ? "hidden" : "local",
8592 h->root.root.string);
8593 eoinfo->failed = TRUE;
8594 return FALSE;
8595 }
8596
8597 /* We don't want to output symbols that have never been mentioned by
8598 a regular file, or that we have been told to strip. However, if
8599 h->indx is set to -2, the symbol is used by a reloc and we must
8600 output it. */
8601 if (h->indx == -2)
8602 strip = FALSE;
8603 else if ((h->def_dynamic
8604 || h->ref_dynamic
8605 || h->root.type == bfd_link_hash_new)
8606 && !h->def_regular
8607 && !h->ref_regular)
8608 strip = TRUE;
8609 else if (finfo->info->strip == strip_all)
8610 strip = TRUE;
8611 else if (finfo->info->strip == strip_some
8612 && bfd_hash_lookup (finfo->info->keep_hash,
8613 h->root.root.string, FALSE, FALSE) == NULL)
8614 strip = TRUE;
8615 else if (finfo->info->strip_discarded
8616 && (h->root.type == bfd_link_hash_defined
8617 || h->root.type == bfd_link_hash_defweak)
8618 && elf_discarded_section (h->root.u.def.section))
8619 strip = TRUE;
8620 else
8621 strip = FALSE;
8622
8623 /* If we're stripping it, and it's not a dynamic symbol, there's
8624 nothing else to do unless it is a forced local symbol. */
8625 if (strip
8626 && h->dynindx == -1
8627 && !h->forced_local)
8628 return TRUE;
8629
8630 sym.st_value = 0;
8631 sym.st_size = h->size;
8632 sym.st_other = h->other;
8633 if (h->forced_local)
8634 {
8635 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8636 /* Turn off visibility on local symbol. */
8637 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8638 }
8639 else if (h->unique_global)
8640 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8641 else if (h->root.type == bfd_link_hash_undefweak
8642 || h->root.type == bfd_link_hash_defweak)
8643 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8644 else
8645 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8646
8647 switch (h->root.type)
8648 {
8649 default:
8650 case bfd_link_hash_new:
8651 case bfd_link_hash_warning:
8652 abort ();
8653 return FALSE;
8654
8655 case bfd_link_hash_undefined:
8656 case bfd_link_hash_undefweak:
8657 input_sec = bfd_und_section_ptr;
8658 sym.st_shndx = SHN_UNDEF;
8659 break;
8660
8661 case bfd_link_hash_defined:
8662 case bfd_link_hash_defweak:
8663 {
8664 input_sec = h->root.u.def.section;
8665 if (input_sec->output_section != NULL)
8666 {
8667 sym.st_shndx =
8668 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8669 input_sec->output_section);
8670 if (sym.st_shndx == SHN_BAD)
8671 {
8672 (*_bfd_error_handler)
8673 (_("%B: could not find output section %A for input section %A"),
8674 finfo->output_bfd, input_sec->output_section, input_sec);
8675 eoinfo->failed = TRUE;
8676 return FALSE;
8677 }
8678
8679 /* ELF symbols in relocatable files are section relative,
8680 but in nonrelocatable files they are virtual
8681 addresses. */
8682 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8683 if (! finfo->info->relocatable)
8684 {
8685 sym.st_value += input_sec->output_section->vma;
8686 if (h->type == STT_TLS)
8687 {
8688 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8689 if (tls_sec != NULL)
8690 sym.st_value -= tls_sec->vma;
8691 else
8692 {
8693 /* The TLS section may have been garbage collected. */
8694 BFD_ASSERT (finfo->info->gc_sections
8695 && !input_sec->gc_mark);
8696 }
8697 }
8698 }
8699 }
8700 else
8701 {
8702 BFD_ASSERT (input_sec->owner == NULL
8703 || (input_sec->owner->flags & DYNAMIC) != 0);
8704 sym.st_shndx = SHN_UNDEF;
8705 input_sec = bfd_und_section_ptr;
8706 }
8707 }
8708 break;
8709
8710 case bfd_link_hash_common:
8711 input_sec = h->root.u.c.p->section;
8712 sym.st_shndx = bed->common_section_index (input_sec);
8713 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8714 break;
8715
8716 case bfd_link_hash_indirect:
8717 /* These symbols are created by symbol versioning. They point
8718 to the decorated version of the name. For example, if the
8719 symbol foo@@GNU_1.2 is the default, which should be used when
8720 foo is used with no version, then we add an indirect symbol
8721 foo which points to foo@@GNU_1.2. We ignore these symbols,
8722 since the indirected symbol is already in the hash table. */
8723 return TRUE;
8724 }
8725
8726 /* Give the processor backend a chance to tweak the symbol value,
8727 and also to finish up anything that needs to be done for this
8728 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8729 forced local syms when non-shared is due to a historical quirk.
8730 STT_GNU_IFUNC symbol must go through PLT. */
8731 if ((h->type == STT_GNU_IFUNC
8732 && h->def_regular
8733 && !finfo->info->relocatable)
8734 || ((h->dynindx != -1
8735 || h->forced_local)
8736 && ((finfo->info->shared
8737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8738 || h->root.type != bfd_link_hash_undefweak))
8739 || !h->forced_local)
8740 && elf_hash_table (finfo->info)->dynamic_sections_created))
8741 {
8742 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8743 (finfo->output_bfd, finfo->info, h, &sym)))
8744 {
8745 eoinfo->failed = TRUE;
8746 return FALSE;
8747 }
8748 }
8749
8750 /* If we are marking the symbol as undefined, and there are no
8751 non-weak references to this symbol from a regular object, then
8752 mark the symbol as weak undefined; if there are non-weak
8753 references, mark the symbol as strong. We can't do this earlier,
8754 because it might not be marked as undefined until the
8755 finish_dynamic_symbol routine gets through with it. */
8756 if (sym.st_shndx == SHN_UNDEF
8757 && h->ref_regular
8758 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8759 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8760 {
8761 int bindtype;
8762 unsigned int type = ELF_ST_TYPE (sym.st_info);
8763
8764 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8765 if (type == STT_GNU_IFUNC)
8766 type = STT_FUNC;
8767
8768 if (h->ref_regular_nonweak)
8769 bindtype = STB_GLOBAL;
8770 else
8771 bindtype = STB_WEAK;
8772 sym.st_info = ELF_ST_INFO (bindtype, type);
8773 }
8774
8775 /* If this is a symbol defined in a dynamic library, don't use the
8776 symbol size from the dynamic library. Relinking an executable
8777 against a new library may introduce gratuitous changes in the
8778 executable's symbols if we keep the size. */
8779 if (sym.st_shndx == SHN_UNDEF
8780 && !h->def_regular
8781 && h->def_dynamic)
8782 sym.st_size = 0;
8783
8784 /* If a non-weak symbol with non-default visibility is not defined
8785 locally, it is a fatal error. */
8786 if (! finfo->info->relocatable
8787 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8788 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8789 && h->root.type == bfd_link_hash_undefined
8790 && !h->def_regular)
8791 {
8792 (*_bfd_error_handler)
8793 (_("%B: %s symbol `%s' isn't defined"),
8794 finfo->output_bfd,
8795 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8796 ? "protected"
8797 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8798 ? "internal" : "hidden",
8799 h->root.root.string);
8800 eoinfo->failed = TRUE;
8801 return FALSE;
8802 }
8803
8804 /* If this symbol should be put in the .dynsym section, then put it
8805 there now. We already know the symbol index. We also fill in
8806 the entry in the .hash section. */
8807 if (h->dynindx != -1
8808 && elf_hash_table (finfo->info)->dynamic_sections_created)
8809 {
8810 bfd_byte *esym;
8811
8812 sym.st_name = h->dynstr_index;
8813 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8814 if (! check_dynsym (finfo->output_bfd, &sym))
8815 {
8816 eoinfo->failed = TRUE;
8817 return FALSE;
8818 }
8819 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8820
8821 if (finfo->hash_sec != NULL)
8822 {
8823 size_t hash_entry_size;
8824 bfd_byte *bucketpos;
8825 bfd_vma chain;
8826 size_t bucketcount;
8827 size_t bucket;
8828
8829 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8830 bucket = h->u.elf_hash_value % bucketcount;
8831
8832 hash_entry_size
8833 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8834 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8835 + (bucket + 2) * hash_entry_size);
8836 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8837 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8838 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8839 ((bfd_byte *) finfo->hash_sec->contents
8840 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8841 }
8842
8843 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8844 {
8845 Elf_Internal_Versym iversym;
8846 Elf_External_Versym *eversym;
8847
8848 if (!h->def_regular)
8849 {
8850 if (h->verinfo.verdef == NULL)
8851 iversym.vs_vers = 0;
8852 else
8853 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8854 }
8855 else
8856 {
8857 if (h->verinfo.vertree == NULL)
8858 iversym.vs_vers = 1;
8859 else
8860 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8861 if (finfo->info->create_default_symver)
8862 iversym.vs_vers++;
8863 }
8864
8865 if (h->hidden)
8866 iversym.vs_vers |= VERSYM_HIDDEN;
8867
8868 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8869 eversym += h->dynindx;
8870 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8871 }
8872 }
8873
8874 /* If we're stripping it, then it was just a dynamic symbol, and
8875 there's nothing else to do. */
8876 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8877 return TRUE;
8878
8879 indx = bfd_get_symcount (finfo->output_bfd);
8880 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8881 if (ret == 0)
8882 {
8883 eoinfo->failed = TRUE;
8884 return FALSE;
8885 }
8886 else if (ret == 1)
8887 h->indx = indx;
8888 else if (h->indx == -2)
8889 abort();
8890
8891 return TRUE;
8892 }
8893
8894 /* Return TRUE if special handling is done for relocs in SEC against
8895 symbols defined in discarded sections. */
8896
8897 static bfd_boolean
8898 elf_section_ignore_discarded_relocs (asection *sec)
8899 {
8900 const struct elf_backend_data *bed;
8901
8902 switch (sec->sec_info_type)
8903 {
8904 case ELF_INFO_TYPE_STABS:
8905 case ELF_INFO_TYPE_EH_FRAME:
8906 return TRUE;
8907 default:
8908 break;
8909 }
8910
8911 bed = get_elf_backend_data (sec->owner);
8912 if (bed->elf_backend_ignore_discarded_relocs != NULL
8913 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8914 return TRUE;
8915
8916 return FALSE;
8917 }
8918
8919 /* Return a mask saying how ld should treat relocations in SEC against
8920 symbols defined in discarded sections. If this function returns
8921 COMPLAIN set, ld will issue a warning message. If this function
8922 returns PRETEND set, and the discarded section was link-once and the
8923 same size as the kept link-once section, ld will pretend that the
8924 symbol was actually defined in the kept section. Otherwise ld will
8925 zero the reloc (at least that is the intent, but some cooperation by
8926 the target dependent code is needed, particularly for REL targets). */
8927
8928 unsigned int
8929 _bfd_elf_default_action_discarded (asection *sec)
8930 {
8931 if (sec->flags & SEC_DEBUGGING)
8932 return PRETEND;
8933
8934 if (strcmp (".eh_frame", sec->name) == 0)
8935 return 0;
8936
8937 if (strcmp (".gcc_except_table", sec->name) == 0)
8938 return 0;
8939
8940 return COMPLAIN | PRETEND;
8941 }
8942
8943 /* Find a match between a section and a member of a section group. */
8944
8945 static asection *
8946 match_group_member (asection *sec, asection *group,
8947 struct bfd_link_info *info)
8948 {
8949 asection *first = elf_next_in_group (group);
8950 asection *s = first;
8951
8952 while (s != NULL)
8953 {
8954 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8955 return s;
8956
8957 s = elf_next_in_group (s);
8958 if (s == first)
8959 break;
8960 }
8961
8962 return NULL;
8963 }
8964
8965 /* Check if the kept section of a discarded section SEC can be used
8966 to replace it. Return the replacement if it is OK. Otherwise return
8967 NULL. */
8968
8969 asection *
8970 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8971 {
8972 asection *kept;
8973
8974 kept = sec->kept_section;
8975 if (kept != NULL)
8976 {
8977 if ((kept->flags & SEC_GROUP) != 0)
8978 kept = match_group_member (sec, kept, info);
8979 if (kept != NULL
8980 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8981 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8982 kept = NULL;
8983 sec->kept_section = kept;
8984 }
8985 return kept;
8986 }
8987
8988 /* Link an input file into the linker output file. This function
8989 handles all the sections and relocations of the input file at once.
8990 This is so that we only have to read the local symbols once, and
8991 don't have to keep them in memory. */
8992
8993 static bfd_boolean
8994 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8995 {
8996 int (*relocate_section)
8997 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8998 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8999 bfd *output_bfd;
9000 Elf_Internal_Shdr *symtab_hdr;
9001 size_t locsymcount;
9002 size_t extsymoff;
9003 Elf_Internal_Sym *isymbuf;
9004 Elf_Internal_Sym *isym;
9005 Elf_Internal_Sym *isymend;
9006 long *pindex;
9007 asection **ppsection;
9008 asection *o;
9009 const struct elf_backend_data *bed;
9010 struct elf_link_hash_entry **sym_hashes;
9011
9012 output_bfd = finfo->output_bfd;
9013 bed = get_elf_backend_data (output_bfd);
9014 relocate_section = bed->elf_backend_relocate_section;
9015
9016 /* If this is a dynamic object, we don't want to do anything here:
9017 we don't want the local symbols, and we don't want the section
9018 contents. */
9019 if ((input_bfd->flags & DYNAMIC) != 0)
9020 return TRUE;
9021
9022 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9023 if (elf_bad_symtab (input_bfd))
9024 {
9025 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9026 extsymoff = 0;
9027 }
9028 else
9029 {
9030 locsymcount = symtab_hdr->sh_info;
9031 extsymoff = symtab_hdr->sh_info;
9032 }
9033
9034 /* Read the local symbols. */
9035 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9036 if (isymbuf == NULL && locsymcount != 0)
9037 {
9038 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9039 finfo->internal_syms,
9040 finfo->external_syms,
9041 finfo->locsym_shndx);
9042 if (isymbuf == NULL)
9043 return FALSE;
9044 }
9045
9046 /* Find local symbol sections and adjust values of symbols in
9047 SEC_MERGE sections. Write out those local symbols we know are
9048 going into the output file. */
9049 isymend = isymbuf + locsymcount;
9050 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9051 isym < isymend;
9052 isym++, pindex++, ppsection++)
9053 {
9054 asection *isec;
9055 const char *name;
9056 Elf_Internal_Sym osym;
9057 long indx;
9058 int ret;
9059
9060 *pindex = -1;
9061
9062 if (elf_bad_symtab (input_bfd))
9063 {
9064 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9065 {
9066 *ppsection = NULL;
9067 continue;
9068 }
9069 }
9070
9071 if (isym->st_shndx == SHN_UNDEF)
9072 isec = bfd_und_section_ptr;
9073 else if (isym->st_shndx == SHN_ABS)
9074 isec = bfd_abs_section_ptr;
9075 else if (isym->st_shndx == SHN_COMMON)
9076 isec = bfd_com_section_ptr;
9077 else
9078 {
9079 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9080 if (isec == NULL)
9081 {
9082 /* Don't attempt to output symbols with st_shnx in the
9083 reserved range other than SHN_ABS and SHN_COMMON. */
9084 *ppsection = NULL;
9085 continue;
9086 }
9087 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9088 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9089 isym->st_value =
9090 _bfd_merged_section_offset (output_bfd, &isec,
9091 elf_section_data (isec)->sec_info,
9092 isym->st_value);
9093 }
9094
9095 *ppsection = isec;
9096
9097 /* Don't output the first, undefined, symbol. */
9098 if (ppsection == finfo->sections)
9099 continue;
9100
9101 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9102 {
9103 /* We never output section symbols. Instead, we use the
9104 section symbol of the corresponding section in the output
9105 file. */
9106 continue;
9107 }
9108
9109 /* If we are stripping all symbols, we don't want to output this
9110 one. */
9111 if (finfo->info->strip == strip_all)
9112 continue;
9113
9114 /* If we are discarding all local symbols, we don't want to
9115 output this one. If we are generating a relocatable output
9116 file, then some of the local symbols may be required by
9117 relocs; we output them below as we discover that they are
9118 needed. */
9119 if (finfo->info->discard == discard_all)
9120 continue;
9121
9122 /* If this symbol is defined in a section which we are
9123 discarding, we don't need to keep it. */
9124 if (isym->st_shndx != SHN_UNDEF
9125 && isym->st_shndx < SHN_LORESERVE
9126 && bfd_section_removed_from_list (output_bfd,
9127 isec->output_section))
9128 continue;
9129
9130 /* Get the name of the symbol. */
9131 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9132 isym->st_name);
9133 if (name == NULL)
9134 return FALSE;
9135
9136 /* See if we are discarding symbols with this name. */
9137 if ((finfo->info->strip == strip_some
9138 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9139 == NULL))
9140 || (((finfo->info->discard == discard_sec_merge
9141 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9142 || finfo->info->discard == discard_l)
9143 && bfd_is_local_label_name (input_bfd, name)))
9144 continue;
9145
9146 osym = *isym;
9147
9148 /* Adjust the section index for the output file. */
9149 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9150 isec->output_section);
9151 if (osym.st_shndx == SHN_BAD)
9152 return FALSE;
9153
9154 /* ELF symbols in relocatable files are section relative, but
9155 in executable files they are virtual addresses. Note that
9156 this code assumes that all ELF sections have an associated
9157 BFD section with a reasonable value for output_offset; below
9158 we assume that they also have a reasonable value for
9159 output_section. Any special sections must be set up to meet
9160 these requirements. */
9161 osym.st_value += isec->output_offset;
9162 if (! finfo->info->relocatable)
9163 {
9164 osym.st_value += isec->output_section->vma;
9165 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9166 {
9167 /* STT_TLS symbols are relative to PT_TLS segment base. */
9168 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9169 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9170 }
9171 }
9172
9173 indx = bfd_get_symcount (output_bfd);
9174 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9175 if (ret == 0)
9176 return FALSE;
9177 else if (ret == 1)
9178 *pindex = indx;
9179 }
9180
9181 /* Relocate the contents of each section. */
9182 sym_hashes = elf_sym_hashes (input_bfd);
9183 for (o = input_bfd->sections; o != NULL; o = o->next)
9184 {
9185 bfd_byte *contents;
9186
9187 if (! o->linker_mark)
9188 {
9189 /* This section was omitted from the link. */
9190 continue;
9191 }
9192
9193 if (finfo->info->relocatable
9194 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9195 {
9196 /* Deal with the group signature symbol. */
9197 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9198 unsigned long symndx = sec_data->this_hdr.sh_info;
9199 asection *osec = o->output_section;
9200
9201 if (symndx >= locsymcount
9202 || (elf_bad_symtab (input_bfd)
9203 && finfo->sections[symndx] == NULL))
9204 {
9205 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9206 while (h->root.type == bfd_link_hash_indirect
9207 || h->root.type == bfd_link_hash_warning)
9208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9209 /* Arrange for symbol to be output. */
9210 h->indx = -2;
9211 elf_section_data (osec)->this_hdr.sh_info = -2;
9212 }
9213 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9214 {
9215 /* We'll use the output section target_index. */
9216 asection *sec = finfo->sections[symndx]->output_section;
9217 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9218 }
9219 else
9220 {
9221 if (finfo->indices[symndx] == -1)
9222 {
9223 /* Otherwise output the local symbol now. */
9224 Elf_Internal_Sym sym = isymbuf[symndx];
9225 asection *sec = finfo->sections[symndx]->output_section;
9226 const char *name;
9227 long indx;
9228 int ret;
9229
9230 name = bfd_elf_string_from_elf_section (input_bfd,
9231 symtab_hdr->sh_link,
9232 sym.st_name);
9233 if (name == NULL)
9234 return FALSE;
9235
9236 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9237 sec);
9238 if (sym.st_shndx == SHN_BAD)
9239 return FALSE;
9240
9241 sym.st_value += o->output_offset;
9242
9243 indx = bfd_get_symcount (output_bfd);
9244 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9245 if (ret == 0)
9246 return FALSE;
9247 else if (ret == 1)
9248 finfo->indices[symndx] = indx;
9249 else
9250 abort ();
9251 }
9252 elf_section_data (osec)->this_hdr.sh_info
9253 = finfo->indices[symndx];
9254 }
9255 }
9256
9257 if ((o->flags & SEC_HAS_CONTENTS) == 0
9258 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9259 continue;
9260
9261 if ((o->flags & SEC_LINKER_CREATED) != 0)
9262 {
9263 /* Section was created by _bfd_elf_link_create_dynamic_sections
9264 or somesuch. */
9265 continue;
9266 }
9267
9268 /* Get the contents of the section. They have been cached by a
9269 relaxation routine. Note that o is a section in an input
9270 file, so the contents field will not have been set by any of
9271 the routines which work on output files. */
9272 if (elf_section_data (o)->this_hdr.contents != NULL)
9273 contents = elf_section_data (o)->this_hdr.contents;
9274 else
9275 {
9276 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9277
9278 contents = finfo->contents;
9279 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9280 return FALSE;
9281 }
9282
9283 if ((o->flags & SEC_RELOC) != 0)
9284 {
9285 Elf_Internal_Rela *internal_relocs;
9286 Elf_Internal_Rela *rel, *relend;
9287 bfd_vma r_type_mask;
9288 int r_sym_shift;
9289 int action_discarded;
9290 int ret;
9291
9292 /* Get the swapped relocs. */
9293 internal_relocs
9294 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9295 finfo->internal_relocs, FALSE);
9296 if (internal_relocs == NULL
9297 && o->reloc_count > 0)
9298 return FALSE;
9299
9300 if (bed->s->arch_size == 32)
9301 {
9302 r_type_mask = 0xff;
9303 r_sym_shift = 8;
9304 }
9305 else
9306 {
9307 r_type_mask = 0xffffffff;
9308 r_sym_shift = 32;
9309 }
9310
9311 action_discarded = -1;
9312 if (!elf_section_ignore_discarded_relocs (o))
9313 action_discarded = (*bed->action_discarded) (o);
9314
9315 /* Run through the relocs evaluating complex reloc symbols and
9316 looking for relocs against symbols from discarded sections
9317 or section symbols from removed link-once sections.
9318 Complain about relocs against discarded sections. Zero
9319 relocs against removed link-once sections. */
9320
9321 rel = internal_relocs;
9322 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9323 for ( ; rel < relend; rel++)
9324 {
9325 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9326 unsigned int s_type;
9327 asection **ps, *sec;
9328 struct elf_link_hash_entry *h = NULL;
9329 const char *sym_name;
9330
9331 if (r_symndx == STN_UNDEF)
9332 continue;
9333
9334 if (r_symndx >= locsymcount
9335 || (elf_bad_symtab (input_bfd)
9336 && finfo->sections[r_symndx] == NULL))
9337 {
9338 h = sym_hashes[r_symndx - extsymoff];
9339
9340 /* Badly formatted input files can contain relocs that
9341 reference non-existant symbols. Check here so that
9342 we do not seg fault. */
9343 if (h == NULL)
9344 {
9345 char buffer [32];
9346
9347 sprintf_vma (buffer, rel->r_info);
9348 (*_bfd_error_handler)
9349 (_("error: %B contains a reloc (0x%s) for section %A "
9350 "that references a non-existent global symbol"),
9351 input_bfd, o, buffer);
9352 bfd_set_error (bfd_error_bad_value);
9353 return FALSE;
9354 }
9355
9356 while (h->root.type == bfd_link_hash_indirect
9357 || h->root.type == bfd_link_hash_warning)
9358 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9359
9360 s_type = h->type;
9361
9362 ps = NULL;
9363 if (h->root.type == bfd_link_hash_defined
9364 || h->root.type == bfd_link_hash_defweak)
9365 ps = &h->root.u.def.section;
9366
9367 sym_name = h->root.root.string;
9368 }
9369 else
9370 {
9371 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9372
9373 s_type = ELF_ST_TYPE (sym->st_info);
9374 ps = &finfo->sections[r_symndx];
9375 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9376 sym, *ps);
9377 }
9378
9379 if ((s_type == STT_RELC || s_type == STT_SRELC)
9380 && !finfo->info->relocatable)
9381 {
9382 bfd_vma val;
9383 bfd_vma dot = (rel->r_offset
9384 + o->output_offset + o->output_section->vma);
9385 #ifdef DEBUG
9386 printf ("Encountered a complex symbol!");
9387 printf (" (input_bfd %s, section %s, reloc %ld\n",
9388 input_bfd->filename, o->name, rel - internal_relocs);
9389 printf (" symbol: idx %8.8lx, name %s\n",
9390 r_symndx, sym_name);
9391 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9392 (unsigned long) rel->r_info,
9393 (unsigned long) rel->r_offset);
9394 #endif
9395 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9396 isymbuf, locsymcount, s_type == STT_SRELC))
9397 return FALSE;
9398
9399 /* Symbol evaluated OK. Update to absolute value. */
9400 set_symbol_value (input_bfd, isymbuf, locsymcount,
9401 r_symndx, val);
9402 continue;
9403 }
9404
9405 if (action_discarded != -1 && ps != NULL)
9406 {
9407 /* Complain if the definition comes from a
9408 discarded section. */
9409 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9410 {
9411 BFD_ASSERT (r_symndx != 0);
9412 if (action_discarded & COMPLAIN)
9413 (*finfo->info->callbacks->einfo)
9414 (_("%X`%s' referenced in section `%A' of %B: "
9415 "defined in discarded section `%A' of %B\n"),
9416 sym_name, o, input_bfd, sec, sec->owner);
9417
9418 /* Try to do the best we can to support buggy old
9419 versions of gcc. Pretend that the symbol is
9420 really defined in the kept linkonce section.
9421 FIXME: This is quite broken. Modifying the
9422 symbol here means we will be changing all later
9423 uses of the symbol, not just in this section. */
9424 if (action_discarded & PRETEND)
9425 {
9426 asection *kept;
9427
9428 kept = _bfd_elf_check_kept_section (sec,
9429 finfo->info);
9430 if (kept != NULL)
9431 {
9432 *ps = kept;
9433 continue;
9434 }
9435 }
9436 }
9437 }
9438 }
9439
9440 /* Relocate the section by invoking a back end routine.
9441
9442 The back end routine is responsible for adjusting the
9443 section contents as necessary, and (if using Rela relocs
9444 and generating a relocatable output file) adjusting the
9445 reloc addend as necessary.
9446
9447 The back end routine does not have to worry about setting
9448 the reloc address or the reloc symbol index.
9449
9450 The back end routine is given a pointer to the swapped in
9451 internal symbols, and can access the hash table entries
9452 for the external symbols via elf_sym_hashes (input_bfd).
9453
9454 When generating relocatable output, the back end routine
9455 must handle STB_LOCAL/STT_SECTION symbols specially. The
9456 output symbol is going to be a section symbol
9457 corresponding to the output section, which will require
9458 the addend to be adjusted. */
9459
9460 ret = (*relocate_section) (output_bfd, finfo->info,
9461 input_bfd, o, contents,
9462 internal_relocs,
9463 isymbuf,
9464 finfo->sections);
9465 if (!ret)
9466 return FALSE;
9467
9468 if (ret == 2
9469 || finfo->info->relocatable
9470 || finfo->info->emitrelocations)
9471 {
9472 Elf_Internal_Rela *irela;
9473 Elf_Internal_Rela *irelaend;
9474 bfd_vma last_offset;
9475 struct elf_link_hash_entry **rel_hash;
9476 struct elf_link_hash_entry **rel_hash_list;
9477 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9478 unsigned int next_erel;
9479 bfd_boolean rela_normal;
9480
9481 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9482 rela_normal = (bed->rela_normal
9483 && (input_rel_hdr->sh_entsize
9484 == bed->s->sizeof_rela));
9485
9486 /* Adjust the reloc addresses and symbol indices. */
9487
9488 irela = internal_relocs;
9489 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9490 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9491 + elf_section_data (o->output_section)->rel_count
9492 + elf_section_data (o->output_section)->rel_count2);
9493 rel_hash_list = rel_hash;
9494 last_offset = o->output_offset;
9495 if (!finfo->info->relocatable)
9496 last_offset += o->output_section->vma;
9497 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9498 {
9499 unsigned long r_symndx;
9500 asection *sec;
9501 Elf_Internal_Sym sym;
9502
9503 if (next_erel == bed->s->int_rels_per_ext_rel)
9504 {
9505 rel_hash++;
9506 next_erel = 0;
9507 }
9508
9509 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9510 finfo->info, o,
9511 irela->r_offset);
9512 if (irela->r_offset >= (bfd_vma) -2)
9513 {
9514 /* This is a reloc for a deleted entry or somesuch.
9515 Turn it into an R_*_NONE reloc, at the same
9516 offset as the last reloc. elf_eh_frame.c and
9517 bfd_elf_discard_info rely on reloc offsets
9518 being ordered. */
9519 irela->r_offset = last_offset;
9520 irela->r_info = 0;
9521 irela->r_addend = 0;
9522 continue;
9523 }
9524
9525 irela->r_offset += o->output_offset;
9526
9527 /* Relocs in an executable have to be virtual addresses. */
9528 if (!finfo->info->relocatable)
9529 irela->r_offset += o->output_section->vma;
9530
9531 last_offset = irela->r_offset;
9532
9533 r_symndx = irela->r_info >> r_sym_shift;
9534 if (r_symndx == STN_UNDEF)
9535 continue;
9536
9537 if (r_symndx >= locsymcount
9538 || (elf_bad_symtab (input_bfd)
9539 && finfo->sections[r_symndx] == NULL))
9540 {
9541 struct elf_link_hash_entry *rh;
9542 unsigned long indx;
9543
9544 /* This is a reloc against a global symbol. We
9545 have not yet output all the local symbols, so
9546 we do not know the symbol index of any global
9547 symbol. We set the rel_hash entry for this
9548 reloc to point to the global hash table entry
9549 for this symbol. The symbol index is then
9550 set at the end of bfd_elf_final_link. */
9551 indx = r_symndx - extsymoff;
9552 rh = elf_sym_hashes (input_bfd)[indx];
9553 while (rh->root.type == bfd_link_hash_indirect
9554 || rh->root.type == bfd_link_hash_warning)
9555 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9556
9557 /* Setting the index to -2 tells
9558 elf_link_output_extsym that this symbol is
9559 used by a reloc. */
9560 BFD_ASSERT (rh->indx < 0);
9561 rh->indx = -2;
9562
9563 *rel_hash = rh;
9564
9565 continue;
9566 }
9567
9568 /* This is a reloc against a local symbol. */
9569
9570 *rel_hash = NULL;
9571 sym = isymbuf[r_symndx];
9572 sec = finfo->sections[r_symndx];
9573 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9574 {
9575 /* I suppose the backend ought to fill in the
9576 section of any STT_SECTION symbol against a
9577 processor specific section. */
9578 r_symndx = 0;
9579 if (bfd_is_abs_section (sec))
9580 ;
9581 else if (sec == NULL || sec->owner == NULL)
9582 {
9583 bfd_set_error (bfd_error_bad_value);
9584 return FALSE;
9585 }
9586 else
9587 {
9588 asection *osec = sec->output_section;
9589
9590 /* If we have discarded a section, the output
9591 section will be the absolute section. In
9592 case of discarded SEC_MERGE sections, use
9593 the kept section. relocate_section should
9594 have already handled discarded linkonce
9595 sections. */
9596 if (bfd_is_abs_section (osec)
9597 && sec->kept_section != NULL
9598 && sec->kept_section->output_section != NULL)
9599 {
9600 osec = sec->kept_section->output_section;
9601 irela->r_addend -= osec->vma;
9602 }
9603
9604 if (!bfd_is_abs_section (osec))
9605 {
9606 r_symndx = osec->target_index;
9607 if (r_symndx == 0)
9608 {
9609 struct elf_link_hash_table *htab;
9610 asection *oi;
9611
9612 htab = elf_hash_table (finfo->info);
9613 oi = htab->text_index_section;
9614 if ((osec->flags & SEC_READONLY) == 0
9615 && htab->data_index_section != NULL)
9616 oi = htab->data_index_section;
9617
9618 if (oi != NULL)
9619 {
9620 irela->r_addend += osec->vma - oi->vma;
9621 r_symndx = oi->target_index;
9622 }
9623 }
9624
9625 BFD_ASSERT (r_symndx != 0);
9626 }
9627 }
9628
9629 /* Adjust the addend according to where the
9630 section winds up in the output section. */
9631 if (rela_normal)
9632 irela->r_addend += sec->output_offset;
9633 }
9634 else
9635 {
9636 if (finfo->indices[r_symndx] == -1)
9637 {
9638 unsigned long shlink;
9639 const char *name;
9640 asection *osec;
9641 long indx;
9642
9643 if (finfo->info->strip == strip_all)
9644 {
9645 /* You can't do ld -r -s. */
9646 bfd_set_error (bfd_error_invalid_operation);
9647 return FALSE;
9648 }
9649
9650 /* This symbol was skipped earlier, but
9651 since it is needed by a reloc, we
9652 must output it now. */
9653 shlink = symtab_hdr->sh_link;
9654 name = (bfd_elf_string_from_elf_section
9655 (input_bfd, shlink, sym.st_name));
9656 if (name == NULL)
9657 return FALSE;
9658
9659 osec = sec->output_section;
9660 sym.st_shndx =
9661 _bfd_elf_section_from_bfd_section (output_bfd,
9662 osec);
9663 if (sym.st_shndx == SHN_BAD)
9664 return FALSE;
9665
9666 sym.st_value += sec->output_offset;
9667 if (! finfo->info->relocatable)
9668 {
9669 sym.st_value += osec->vma;
9670 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9671 {
9672 /* STT_TLS symbols are relative to PT_TLS
9673 segment base. */
9674 BFD_ASSERT (elf_hash_table (finfo->info)
9675 ->tls_sec != NULL);
9676 sym.st_value -= (elf_hash_table (finfo->info)
9677 ->tls_sec->vma);
9678 }
9679 }
9680
9681 indx = bfd_get_symcount (output_bfd);
9682 ret = elf_link_output_sym (finfo, name, &sym, sec,
9683 NULL);
9684 if (ret == 0)
9685 return FALSE;
9686 else if (ret == 1)
9687 finfo->indices[r_symndx] = indx;
9688 else
9689 abort ();
9690 }
9691
9692 r_symndx = finfo->indices[r_symndx];
9693 }
9694
9695 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9696 | (irela->r_info & r_type_mask));
9697 }
9698
9699 /* Swap out the relocs. */
9700 if (input_rel_hdr->sh_size != 0
9701 && !bed->elf_backend_emit_relocs (output_bfd, o,
9702 input_rel_hdr,
9703 internal_relocs,
9704 rel_hash_list))
9705 return FALSE;
9706
9707 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9708 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9709 {
9710 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9711 * bed->s->int_rels_per_ext_rel);
9712 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9713 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9714 input_rel_hdr2,
9715 internal_relocs,
9716 rel_hash_list))
9717 return FALSE;
9718 }
9719 }
9720 }
9721
9722 /* Write out the modified section contents. */
9723 if (bed->elf_backend_write_section
9724 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9725 contents))
9726 {
9727 /* Section written out. */
9728 }
9729 else switch (o->sec_info_type)
9730 {
9731 case ELF_INFO_TYPE_STABS:
9732 if (! (_bfd_write_section_stabs
9733 (output_bfd,
9734 &elf_hash_table (finfo->info)->stab_info,
9735 o, &elf_section_data (o)->sec_info, contents)))
9736 return FALSE;
9737 break;
9738 case ELF_INFO_TYPE_MERGE:
9739 if (! _bfd_write_merged_section (output_bfd, o,
9740 elf_section_data (o)->sec_info))
9741 return FALSE;
9742 break;
9743 case ELF_INFO_TYPE_EH_FRAME:
9744 {
9745 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9746 o, contents))
9747 return FALSE;
9748 }
9749 break;
9750 default:
9751 {
9752 /* FIXME: octets_per_byte. */
9753 if (! (o->flags & SEC_EXCLUDE)
9754 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9755 && ! bfd_set_section_contents (output_bfd, o->output_section,
9756 contents,
9757 (file_ptr) o->output_offset,
9758 o->size))
9759 return FALSE;
9760 }
9761 break;
9762 }
9763 }
9764
9765 return TRUE;
9766 }
9767
9768 /* Generate a reloc when linking an ELF file. This is a reloc
9769 requested by the linker, and does not come from any input file. This
9770 is used to build constructor and destructor tables when linking
9771 with -Ur. */
9772
9773 static bfd_boolean
9774 elf_reloc_link_order (bfd *output_bfd,
9775 struct bfd_link_info *info,
9776 asection *output_section,
9777 struct bfd_link_order *link_order)
9778 {
9779 reloc_howto_type *howto;
9780 long indx;
9781 bfd_vma offset;
9782 bfd_vma addend;
9783 struct elf_link_hash_entry **rel_hash_ptr;
9784 Elf_Internal_Shdr *rel_hdr;
9785 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9786 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9787 bfd_byte *erel;
9788 unsigned int i;
9789
9790 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9791 if (howto == NULL)
9792 {
9793 bfd_set_error (bfd_error_bad_value);
9794 return FALSE;
9795 }
9796
9797 addend = link_order->u.reloc.p->addend;
9798
9799 /* Figure out the symbol index. */
9800 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9801 + elf_section_data (output_section)->rel_count
9802 + elf_section_data (output_section)->rel_count2);
9803 if (link_order->type == bfd_section_reloc_link_order)
9804 {
9805 indx = link_order->u.reloc.p->u.section->target_index;
9806 BFD_ASSERT (indx != 0);
9807 *rel_hash_ptr = NULL;
9808 }
9809 else
9810 {
9811 struct elf_link_hash_entry *h;
9812
9813 /* Treat a reloc against a defined symbol as though it were
9814 actually against the section. */
9815 h = ((struct elf_link_hash_entry *)
9816 bfd_wrapped_link_hash_lookup (output_bfd, info,
9817 link_order->u.reloc.p->u.name,
9818 FALSE, FALSE, TRUE));
9819 if (h != NULL
9820 && (h->root.type == bfd_link_hash_defined
9821 || h->root.type == bfd_link_hash_defweak))
9822 {
9823 asection *section;
9824
9825 section = h->root.u.def.section;
9826 indx = section->output_section->target_index;
9827 *rel_hash_ptr = NULL;
9828 /* It seems that we ought to add the symbol value to the
9829 addend here, but in practice it has already been added
9830 because it was passed to constructor_callback. */
9831 addend += section->output_section->vma + section->output_offset;
9832 }
9833 else if (h != NULL)
9834 {
9835 /* Setting the index to -2 tells elf_link_output_extsym that
9836 this symbol is used by a reloc. */
9837 h->indx = -2;
9838 *rel_hash_ptr = h;
9839 indx = 0;
9840 }
9841 else
9842 {
9843 if (! ((*info->callbacks->unattached_reloc)
9844 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9845 return FALSE;
9846 indx = 0;
9847 }
9848 }
9849
9850 /* If this is an inplace reloc, we must write the addend into the
9851 object file. */
9852 if (howto->partial_inplace && addend != 0)
9853 {
9854 bfd_size_type size;
9855 bfd_reloc_status_type rstat;
9856 bfd_byte *buf;
9857 bfd_boolean ok;
9858 const char *sym_name;
9859
9860 size = (bfd_size_type) bfd_get_reloc_size (howto);
9861 buf = (bfd_byte *) bfd_zmalloc (size);
9862 if (buf == NULL)
9863 return FALSE;
9864 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9865 switch (rstat)
9866 {
9867 case bfd_reloc_ok:
9868 break;
9869
9870 default:
9871 case bfd_reloc_outofrange:
9872 abort ();
9873
9874 case bfd_reloc_overflow:
9875 if (link_order->type == bfd_section_reloc_link_order)
9876 sym_name = bfd_section_name (output_bfd,
9877 link_order->u.reloc.p->u.section);
9878 else
9879 sym_name = link_order->u.reloc.p->u.name;
9880 if (! ((*info->callbacks->reloc_overflow)
9881 (info, NULL, sym_name, howto->name, addend, NULL,
9882 NULL, (bfd_vma) 0)))
9883 {
9884 free (buf);
9885 return FALSE;
9886 }
9887 break;
9888 }
9889 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9890 link_order->offset, size);
9891 free (buf);
9892 if (! ok)
9893 return FALSE;
9894 }
9895
9896 /* The address of a reloc is relative to the section in a
9897 relocatable file, and is a virtual address in an executable
9898 file. */
9899 offset = link_order->offset;
9900 if (! info->relocatable)
9901 offset += output_section->vma;
9902
9903 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9904 {
9905 irel[i].r_offset = offset;
9906 irel[i].r_info = 0;
9907 irel[i].r_addend = 0;
9908 }
9909 if (bed->s->arch_size == 32)
9910 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9911 else
9912 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9913
9914 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9915 erel = rel_hdr->contents;
9916 if (rel_hdr->sh_type == SHT_REL)
9917 {
9918 erel += (elf_section_data (output_section)->rel_count
9919 * bed->s->sizeof_rel);
9920 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9921 }
9922 else
9923 {
9924 irel[0].r_addend = addend;
9925 erel += (elf_section_data (output_section)->rel_count
9926 * bed->s->sizeof_rela);
9927 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9928 }
9929
9930 ++elf_section_data (output_section)->rel_count;
9931
9932 return TRUE;
9933 }
9934
9935
9936 /* Get the output vma of the section pointed to by the sh_link field. */
9937
9938 static bfd_vma
9939 elf_get_linked_section_vma (struct bfd_link_order *p)
9940 {
9941 Elf_Internal_Shdr **elf_shdrp;
9942 asection *s;
9943 int elfsec;
9944
9945 s = p->u.indirect.section;
9946 elf_shdrp = elf_elfsections (s->owner);
9947 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9948 elfsec = elf_shdrp[elfsec]->sh_link;
9949 /* PR 290:
9950 The Intel C compiler generates SHT_IA_64_UNWIND with
9951 SHF_LINK_ORDER. But it doesn't set the sh_link or
9952 sh_info fields. Hence we could get the situation
9953 where elfsec is 0. */
9954 if (elfsec == 0)
9955 {
9956 const struct elf_backend_data *bed
9957 = get_elf_backend_data (s->owner);
9958 if (bed->link_order_error_handler)
9959 bed->link_order_error_handler
9960 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9961 return 0;
9962 }
9963 else
9964 {
9965 s = elf_shdrp[elfsec]->bfd_section;
9966 return s->output_section->vma + s->output_offset;
9967 }
9968 }
9969
9970
9971 /* Compare two sections based on the locations of the sections they are
9972 linked to. Used by elf_fixup_link_order. */
9973
9974 static int
9975 compare_link_order (const void * a, const void * b)
9976 {
9977 bfd_vma apos;
9978 bfd_vma bpos;
9979
9980 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9981 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9982 if (apos < bpos)
9983 return -1;
9984 return apos > bpos;
9985 }
9986
9987
9988 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9989 order as their linked sections. Returns false if this could not be done
9990 because an output section includes both ordered and unordered
9991 sections. Ideally we'd do this in the linker proper. */
9992
9993 static bfd_boolean
9994 elf_fixup_link_order (bfd *abfd, asection *o)
9995 {
9996 int seen_linkorder;
9997 int seen_other;
9998 int n;
9999 struct bfd_link_order *p;
10000 bfd *sub;
10001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10002 unsigned elfsec;
10003 struct bfd_link_order **sections;
10004 asection *s, *other_sec, *linkorder_sec;
10005 bfd_vma offset;
10006
10007 other_sec = NULL;
10008 linkorder_sec = NULL;
10009 seen_other = 0;
10010 seen_linkorder = 0;
10011 for (p = o->map_head.link_order; p != NULL; p = p->next)
10012 {
10013 if (p->type == bfd_indirect_link_order)
10014 {
10015 s = p->u.indirect.section;
10016 sub = s->owner;
10017 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10018 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10019 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10020 && elfsec < elf_numsections (sub)
10021 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10022 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10023 {
10024 seen_linkorder++;
10025 linkorder_sec = s;
10026 }
10027 else
10028 {
10029 seen_other++;
10030 other_sec = s;
10031 }
10032 }
10033 else
10034 seen_other++;
10035
10036 if (seen_other && seen_linkorder)
10037 {
10038 if (other_sec && linkorder_sec)
10039 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10040 o, linkorder_sec,
10041 linkorder_sec->owner, other_sec,
10042 other_sec->owner);
10043 else
10044 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10045 o);
10046 bfd_set_error (bfd_error_bad_value);
10047 return FALSE;
10048 }
10049 }
10050
10051 if (!seen_linkorder)
10052 return TRUE;
10053
10054 sections = (struct bfd_link_order **)
10055 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10056 if (sections == NULL)
10057 return FALSE;
10058 seen_linkorder = 0;
10059
10060 for (p = o->map_head.link_order; p != NULL; p = p->next)
10061 {
10062 sections[seen_linkorder++] = p;
10063 }
10064 /* Sort the input sections in the order of their linked section. */
10065 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10066 compare_link_order);
10067
10068 /* Change the offsets of the sections. */
10069 offset = 0;
10070 for (n = 0; n < seen_linkorder; n++)
10071 {
10072 s = sections[n]->u.indirect.section;
10073 offset &= ~(bfd_vma) 0 << s->alignment_power;
10074 s->output_offset = offset;
10075 sections[n]->offset = offset;
10076 /* FIXME: octets_per_byte. */
10077 offset += sections[n]->size;
10078 }
10079
10080 free (sections);
10081 return TRUE;
10082 }
10083
10084
10085 /* Do the final step of an ELF link. */
10086
10087 bfd_boolean
10088 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10089 {
10090 bfd_boolean dynamic;
10091 bfd_boolean emit_relocs;
10092 bfd *dynobj;
10093 struct elf_final_link_info finfo;
10094 register asection *o;
10095 register struct bfd_link_order *p;
10096 register bfd *sub;
10097 bfd_size_type max_contents_size;
10098 bfd_size_type max_external_reloc_size;
10099 bfd_size_type max_internal_reloc_count;
10100 bfd_size_type max_sym_count;
10101 bfd_size_type max_sym_shndx_count;
10102 file_ptr off;
10103 Elf_Internal_Sym elfsym;
10104 unsigned int i;
10105 Elf_Internal_Shdr *symtab_hdr;
10106 Elf_Internal_Shdr *symtab_shndx_hdr;
10107 Elf_Internal_Shdr *symstrtab_hdr;
10108 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10109 struct elf_outext_info eoinfo;
10110 bfd_boolean merged;
10111 size_t relativecount = 0;
10112 asection *reldyn = 0;
10113 bfd_size_type amt;
10114 asection *attr_section = NULL;
10115 bfd_vma attr_size = 0;
10116 const char *std_attrs_section;
10117
10118 if (! is_elf_hash_table (info->hash))
10119 return FALSE;
10120
10121 if (info->shared)
10122 abfd->flags |= DYNAMIC;
10123
10124 dynamic = elf_hash_table (info)->dynamic_sections_created;
10125 dynobj = elf_hash_table (info)->dynobj;
10126
10127 emit_relocs = (info->relocatable
10128 || info->emitrelocations);
10129
10130 finfo.info = info;
10131 finfo.output_bfd = abfd;
10132 finfo.symstrtab = _bfd_elf_stringtab_init ();
10133 if (finfo.symstrtab == NULL)
10134 return FALSE;
10135
10136 if (! dynamic)
10137 {
10138 finfo.dynsym_sec = NULL;
10139 finfo.hash_sec = NULL;
10140 finfo.symver_sec = NULL;
10141 }
10142 else
10143 {
10144 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10145 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10146 BFD_ASSERT (finfo.dynsym_sec != NULL);
10147 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10148 /* Note that it is OK if symver_sec is NULL. */
10149 }
10150
10151 finfo.contents = NULL;
10152 finfo.external_relocs = NULL;
10153 finfo.internal_relocs = NULL;
10154 finfo.external_syms = NULL;
10155 finfo.locsym_shndx = NULL;
10156 finfo.internal_syms = NULL;
10157 finfo.indices = NULL;
10158 finfo.sections = NULL;
10159 finfo.symbuf = NULL;
10160 finfo.symshndxbuf = NULL;
10161 finfo.symbuf_count = 0;
10162 finfo.shndxbuf_size = 0;
10163
10164 /* The object attributes have been merged. Remove the input
10165 sections from the link, and set the contents of the output
10166 secton. */
10167 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10168 for (o = abfd->sections; o != NULL; o = o->next)
10169 {
10170 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10171 || strcmp (o->name, ".gnu.attributes") == 0)
10172 {
10173 for (p = o->map_head.link_order; p != NULL; p = p->next)
10174 {
10175 asection *input_section;
10176
10177 if (p->type != bfd_indirect_link_order)
10178 continue;
10179 input_section = p->u.indirect.section;
10180 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10181 elf_link_input_bfd ignores this section. */
10182 input_section->flags &= ~SEC_HAS_CONTENTS;
10183 }
10184
10185 attr_size = bfd_elf_obj_attr_size (abfd);
10186 if (attr_size)
10187 {
10188 bfd_set_section_size (abfd, o, attr_size);
10189 attr_section = o;
10190 /* Skip this section later on. */
10191 o->map_head.link_order = NULL;
10192 }
10193 else
10194 o->flags |= SEC_EXCLUDE;
10195 }
10196 }
10197
10198 /* Count up the number of relocations we will output for each output
10199 section, so that we know the sizes of the reloc sections. We
10200 also figure out some maximum sizes. */
10201 max_contents_size = 0;
10202 max_external_reloc_size = 0;
10203 max_internal_reloc_count = 0;
10204 max_sym_count = 0;
10205 max_sym_shndx_count = 0;
10206 merged = FALSE;
10207 for (o = abfd->sections; o != NULL; o = o->next)
10208 {
10209 struct bfd_elf_section_data *esdo = elf_section_data (o);
10210 o->reloc_count = 0;
10211
10212 for (p = o->map_head.link_order; p != NULL; p = p->next)
10213 {
10214 unsigned int reloc_count = 0;
10215 struct bfd_elf_section_data *esdi = NULL;
10216 unsigned int *rel_count1;
10217
10218 if (p->type == bfd_section_reloc_link_order
10219 || p->type == bfd_symbol_reloc_link_order)
10220 reloc_count = 1;
10221 else if (p->type == bfd_indirect_link_order)
10222 {
10223 asection *sec;
10224
10225 sec = p->u.indirect.section;
10226 esdi = elf_section_data (sec);
10227
10228 /* Mark all sections which are to be included in the
10229 link. This will normally be every section. We need
10230 to do this so that we can identify any sections which
10231 the linker has decided to not include. */
10232 sec->linker_mark = TRUE;
10233
10234 if (sec->flags & SEC_MERGE)
10235 merged = TRUE;
10236
10237 if (info->relocatable || info->emitrelocations)
10238 reloc_count = sec->reloc_count;
10239 else if (bed->elf_backend_count_relocs)
10240 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10241
10242 if (sec->rawsize > max_contents_size)
10243 max_contents_size = sec->rawsize;
10244 if (sec->size > max_contents_size)
10245 max_contents_size = sec->size;
10246
10247 /* We are interested in just local symbols, not all
10248 symbols. */
10249 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10250 && (sec->owner->flags & DYNAMIC) == 0)
10251 {
10252 size_t sym_count;
10253
10254 if (elf_bad_symtab (sec->owner))
10255 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10256 / bed->s->sizeof_sym);
10257 else
10258 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10259
10260 if (sym_count > max_sym_count)
10261 max_sym_count = sym_count;
10262
10263 if (sym_count > max_sym_shndx_count
10264 && elf_symtab_shndx (sec->owner) != 0)
10265 max_sym_shndx_count = sym_count;
10266
10267 if ((sec->flags & SEC_RELOC) != 0)
10268 {
10269 size_t ext_size;
10270
10271 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10272 if (ext_size > max_external_reloc_size)
10273 max_external_reloc_size = ext_size;
10274 if (sec->reloc_count > max_internal_reloc_count)
10275 max_internal_reloc_count = sec->reloc_count;
10276 }
10277 }
10278 }
10279
10280 if (reloc_count == 0)
10281 continue;
10282
10283 o->reloc_count += reloc_count;
10284
10285 /* MIPS may have a mix of REL and RELA relocs on sections.
10286 To support this curious ABI we keep reloc counts in
10287 elf_section_data too. We must be careful to add the
10288 relocations from the input section to the right output
10289 count. FIXME: Get rid of one count. We have
10290 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10291 rel_count1 = &esdo->rel_count;
10292 if (esdi != NULL)
10293 {
10294 bfd_boolean same_size;
10295 bfd_size_type entsize1;
10296
10297 entsize1 = esdi->rel_hdr.sh_entsize;
10298 /* PR 9827: If the header size has not been set yet then
10299 assume that it will match the output section's reloc type. */
10300 if (entsize1 == 0)
10301 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10302 else
10303 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10304 || entsize1 == bed->s->sizeof_rela);
10305 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10306
10307 if (!same_size)
10308 rel_count1 = &esdo->rel_count2;
10309
10310 if (esdi->rel_hdr2 != NULL)
10311 {
10312 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10313 unsigned int alt_count;
10314 unsigned int *rel_count2;
10315
10316 BFD_ASSERT (entsize2 != entsize1
10317 && (entsize2 == bed->s->sizeof_rel
10318 || entsize2 == bed->s->sizeof_rela));
10319
10320 rel_count2 = &esdo->rel_count2;
10321 if (!same_size)
10322 rel_count2 = &esdo->rel_count;
10323
10324 /* The following is probably too simplistic if the
10325 backend counts output relocs unusually. */
10326 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10327 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10328 *rel_count2 += alt_count;
10329 reloc_count -= alt_count;
10330 }
10331 }
10332 *rel_count1 += reloc_count;
10333 }
10334
10335 if (o->reloc_count > 0)
10336 o->flags |= SEC_RELOC;
10337 else
10338 {
10339 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10340 set it (this is probably a bug) and if it is set
10341 assign_section_numbers will create a reloc section. */
10342 o->flags &=~ SEC_RELOC;
10343 }
10344
10345 /* If the SEC_ALLOC flag is not set, force the section VMA to
10346 zero. This is done in elf_fake_sections as well, but forcing
10347 the VMA to 0 here will ensure that relocs against these
10348 sections are handled correctly. */
10349 if ((o->flags & SEC_ALLOC) == 0
10350 && ! o->user_set_vma)
10351 o->vma = 0;
10352 }
10353
10354 if (! info->relocatable && merged)
10355 elf_link_hash_traverse (elf_hash_table (info),
10356 _bfd_elf_link_sec_merge_syms, abfd);
10357
10358 /* Figure out the file positions for everything but the symbol table
10359 and the relocs. We set symcount to force assign_section_numbers
10360 to create a symbol table. */
10361 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10362 BFD_ASSERT (! abfd->output_has_begun);
10363 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10364 goto error_return;
10365
10366 /* Set sizes, and assign file positions for reloc sections. */
10367 for (o = abfd->sections; o != NULL; o = o->next)
10368 {
10369 if ((o->flags & SEC_RELOC) != 0)
10370 {
10371 if (!(_bfd_elf_link_size_reloc_section
10372 (abfd, &elf_section_data (o)->rel_hdr, o)))
10373 goto error_return;
10374
10375 if (elf_section_data (o)->rel_hdr2
10376 && !(_bfd_elf_link_size_reloc_section
10377 (abfd, elf_section_data (o)->rel_hdr2, o)))
10378 goto error_return;
10379 }
10380
10381 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10382 to count upwards while actually outputting the relocations. */
10383 elf_section_data (o)->rel_count = 0;
10384 elf_section_data (o)->rel_count2 = 0;
10385 }
10386
10387 _bfd_elf_assign_file_positions_for_relocs (abfd);
10388
10389 /* We have now assigned file positions for all the sections except
10390 .symtab and .strtab. We start the .symtab section at the current
10391 file position, and write directly to it. We build the .strtab
10392 section in memory. */
10393 bfd_get_symcount (abfd) = 0;
10394 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10395 /* sh_name is set in prep_headers. */
10396 symtab_hdr->sh_type = SHT_SYMTAB;
10397 /* sh_flags, sh_addr and sh_size all start off zero. */
10398 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10399 /* sh_link is set in assign_section_numbers. */
10400 /* sh_info is set below. */
10401 /* sh_offset is set just below. */
10402 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10403
10404 off = elf_tdata (abfd)->next_file_pos;
10405 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10406
10407 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10408 incorrect. We do not yet know the size of the .symtab section.
10409 We correct next_file_pos below, after we do know the size. */
10410
10411 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10412 continuously seeking to the right position in the file. */
10413 if (! info->keep_memory || max_sym_count < 20)
10414 finfo.symbuf_size = 20;
10415 else
10416 finfo.symbuf_size = max_sym_count;
10417 amt = finfo.symbuf_size;
10418 amt *= bed->s->sizeof_sym;
10419 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10420 if (finfo.symbuf == NULL)
10421 goto error_return;
10422 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10423 {
10424 /* Wild guess at number of output symbols. realloc'd as needed. */
10425 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10426 finfo.shndxbuf_size = amt;
10427 amt *= sizeof (Elf_External_Sym_Shndx);
10428 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10429 if (finfo.symshndxbuf == NULL)
10430 goto error_return;
10431 }
10432
10433 /* Start writing out the symbol table. The first symbol is always a
10434 dummy symbol. */
10435 if (info->strip != strip_all
10436 || emit_relocs)
10437 {
10438 elfsym.st_value = 0;
10439 elfsym.st_size = 0;
10440 elfsym.st_info = 0;
10441 elfsym.st_other = 0;
10442 elfsym.st_shndx = SHN_UNDEF;
10443 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10444 NULL) != 1)
10445 goto error_return;
10446 }
10447
10448 /* Output a symbol for each section. We output these even if we are
10449 discarding local symbols, since they are used for relocs. These
10450 symbols have no names. We store the index of each one in the
10451 index field of the section, so that we can find it again when
10452 outputting relocs. */
10453 if (info->strip != strip_all
10454 || emit_relocs)
10455 {
10456 elfsym.st_size = 0;
10457 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10458 elfsym.st_other = 0;
10459 elfsym.st_value = 0;
10460 for (i = 1; i < elf_numsections (abfd); i++)
10461 {
10462 o = bfd_section_from_elf_index (abfd, i);
10463 if (o != NULL)
10464 {
10465 o->target_index = bfd_get_symcount (abfd);
10466 elfsym.st_shndx = i;
10467 if (!info->relocatable)
10468 elfsym.st_value = o->vma;
10469 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10470 goto error_return;
10471 }
10472 }
10473 }
10474
10475 /* Allocate some memory to hold information read in from the input
10476 files. */
10477 if (max_contents_size != 0)
10478 {
10479 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10480 if (finfo.contents == NULL)
10481 goto error_return;
10482 }
10483
10484 if (max_external_reloc_size != 0)
10485 {
10486 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10487 if (finfo.external_relocs == NULL)
10488 goto error_return;
10489 }
10490
10491 if (max_internal_reloc_count != 0)
10492 {
10493 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10494 amt *= sizeof (Elf_Internal_Rela);
10495 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10496 if (finfo.internal_relocs == NULL)
10497 goto error_return;
10498 }
10499
10500 if (max_sym_count != 0)
10501 {
10502 amt = max_sym_count * bed->s->sizeof_sym;
10503 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10504 if (finfo.external_syms == NULL)
10505 goto error_return;
10506
10507 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10508 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10509 if (finfo.internal_syms == NULL)
10510 goto error_return;
10511
10512 amt = max_sym_count * sizeof (long);
10513 finfo.indices = (long int *) bfd_malloc (amt);
10514 if (finfo.indices == NULL)
10515 goto error_return;
10516
10517 amt = max_sym_count * sizeof (asection *);
10518 finfo.sections = (asection **) bfd_malloc (amt);
10519 if (finfo.sections == NULL)
10520 goto error_return;
10521 }
10522
10523 if (max_sym_shndx_count != 0)
10524 {
10525 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10526 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10527 if (finfo.locsym_shndx == NULL)
10528 goto error_return;
10529 }
10530
10531 if (elf_hash_table (info)->tls_sec)
10532 {
10533 bfd_vma base, end = 0;
10534 asection *sec;
10535
10536 for (sec = elf_hash_table (info)->tls_sec;
10537 sec && (sec->flags & SEC_THREAD_LOCAL);
10538 sec = sec->next)
10539 {
10540 bfd_size_type size = sec->size;
10541
10542 if (size == 0
10543 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10544 {
10545 struct bfd_link_order *o = sec->map_tail.link_order;
10546 if (o != NULL)
10547 size = o->offset + o->size;
10548 }
10549 end = sec->vma + size;
10550 }
10551 base = elf_hash_table (info)->tls_sec->vma;
10552 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10553 elf_hash_table (info)->tls_size = end - base;
10554 }
10555
10556 /* Reorder SHF_LINK_ORDER sections. */
10557 for (o = abfd->sections; o != NULL; o = o->next)
10558 {
10559 if (!elf_fixup_link_order (abfd, o))
10560 return FALSE;
10561 }
10562
10563 /* Since ELF permits relocations to be against local symbols, we
10564 must have the local symbols available when we do the relocations.
10565 Since we would rather only read the local symbols once, and we
10566 would rather not keep them in memory, we handle all the
10567 relocations for a single input file at the same time.
10568
10569 Unfortunately, there is no way to know the total number of local
10570 symbols until we have seen all of them, and the local symbol
10571 indices precede the global symbol indices. This means that when
10572 we are generating relocatable output, and we see a reloc against
10573 a global symbol, we can not know the symbol index until we have
10574 finished examining all the local symbols to see which ones we are
10575 going to output. To deal with this, we keep the relocations in
10576 memory, and don't output them until the end of the link. This is
10577 an unfortunate waste of memory, but I don't see a good way around
10578 it. Fortunately, it only happens when performing a relocatable
10579 link, which is not the common case. FIXME: If keep_memory is set
10580 we could write the relocs out and then read them again; I don't
10581 know how bad the memory loss will be. */
10582
10583 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10584 sub->output_has_begun = FALSE;
10585 for (o = abfd->sections; o != NULL; o = o->next)
10586 {
10587 for (p = o->map_head.link_order; p != NULL; p = p->next)
10588 {
10589 if (p->type == bfd_indirect_link_order
10590 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10591 == bfd_target_elf_flavour)
10592 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10593 {
10594 if (! sub->output_has_begun)
10595 {
10596 if (! elf_link_input_bfd (&finfo, sub))
10597 goto error_return;
10598 sub->output_has_begun = TRUE;
10599 }
10600 }
10601 else if (p->type == bfd_section_reloc_link_order
10602 || p->type == bfd_symbol_reloc_link_order)
10603 {
10604 if (! elf_reloc_link_order (abfd, info, o, p))
10605 goto error_return;
10606 }
10607 else
10608 {
10609 if (! _bfd_default_link_order (abfd, info, o, p))
10610 goto error_return;
10611 }
10612 }
10613 }
10614
10615 /* Free symbol buffer if needed. */
10616 if (!info->reduce_memory_overheads)
10617 {
10618 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10619 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10620 && elf_tdata (sub)->symbuf)
10621 {
10622 free (elf_tdata (sub)->symbuf);
10623 elf_tdata (sub)->symbuf = NULL;
10624 }
10625 }
10626
10627 /* Output any global symbols that got converted to local in a
10628 version script or due to symbol visibility. We do this in a
10629 separate step since ELF requires all local symbols to appear
10630 prior to any global symbols. FIXME: We should only do this if
10631 some global symbols were, in fact, converted to become local.
10632 FIXME: Will this work correctly with the Irix 5 linker? */
10633 eoinfo.failed = FALSE;
10634 eoinfo.finfo = &finfo;
10635 eoinfo.localsyms = TRUE;
10636 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10637 &eoinfo);
10638 if (eoinfo.failed)
10639 return FALSE;
10640
10641 /* If backend needs to output some local symbols not present in the hash
10642 table, do it now. */
10643 if (bed->elf_backend_output_arch_local_syms)
10644 {
10645 typedef int (*out_sym_func)
10646 (void *, const char *, Elf_Internal_Sym *, asection *,
10647 struct elf_link_hash_entry *);
10648
10649 if (! ((*bed->elf_backend_output_arch_local_syms)
10650 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10651 return FALSE;
10652 }
10653
10654 /* That wrote out all the local symbols. Finish up the symbol table
10655 with the global symbols. Even if we want to strip everything we
10656 can, we still need to deal with those global symbols that got
10657 converted to local in a version script. */
10658
10659 /* The sh_info field records the index of the first non local symbol. */
10660 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10661
10662 if (dynamic
10663 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10664 {
10665 Elf_Internal_Sym sym;
10666 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10667 long last_local = 0;
10668
10669 /* Write out the section symbols for the output sections. */
10670 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10671 {
10672 asection *s;
10673
10674 sym.st_size = 0;
10675 sym.st_name = 0;
10676 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10677 sym.st_other = 0;
10678
10679 for (s = abfd->sections; s != NULL; s = s->next)
10680 {
10681 int indx;
10682 bfd_byte *dest;
10683 long dynindx;
10684
10685 dynindx = elf_section_data (s)->dynindx;
10686 if (dynindx <= 0)
10687 continue;
10688 indx = elf_section_data (s)->this_idx;
10689 BFD_ASSERT (indx > 0);
10690 sym.st_shndx = indx;
10691 if (! check_dynsym (abfd, &sym))
10692 return FALSE;
10693 sym.st_value = s->vma;
10694 dest = dynsym + dynindx * bed->s->sizeof_sym;
10695 if (last_local < dynindx)
10696 last_local = dynindx;
10697 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10698 }
10699 }
10700
10701 /* Write out the local dynsyms. */
10702 if (elf_hash_table (info)->dynlocal)
10703 {
10704 struct elf_link_local_dynamic_entry *e;
10705 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10706 {
10707 asection *s;
10708 bfd_byte *dest;
10709
10710 /* Copy the internal symbol and turn off visibility.
10711 Note that we saved a word of storage and overwrote
10712 the original st_name with the dynstr_index. */
10713 sym = e->isym;
10714 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10715
10716 s = bfd_section_from_elf_index (e->input_bfd,
10717 e->isym.st_shndx);
10718 if (s != NULL)
10719 {
10720 sym.st_shndx =
10721 elf_section_data (s->output_section)->this_idx;
10722 if (! check_dynsym (abfd, &sym))
10723 return FALSE;
10724 sym.st_value = (s->output_section->vma
10725 + s->output_offset
10726 + e->isym.st_value);
10727 }
10728
10729 if (last_local < e->dynindx)
10730 last_local = e->dynindx;
10731
10732 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10733 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10734 }
10735 }
10736
10737 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10738 last_local + 1;
10739 }
10740
10741 /* We get the global symbols from the hash table. */
10742 eoinfo.failed = FALSE;
10743 eoinfo.localsyms = FALSE;
10744 eoinfo.finfo = &finfo;
10745 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10746 &eoinfo);
10747 if (eoinfo.failed)
10748 return FALSE;
10749
10750 /* If backend needs to output some symbols not present in the hash
10751 table, do it now. */
10752 if (bed->elf_backend_output_arch_syms)
10753 {
10754 typedef int (*out_sym_func)
10755 (void *, const char *, Elf_Internal_Sym *, asection *,
10756 struct elf_link_hash_entry *);
10757
10758 if (! ((*bed->elf_backend_output_arch_syms)
10759 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10760 return FALSE;
10761 }
10762
10763 /* Flush all symbols to the file. */
10764 if (! elf_link_flush_output_syms (&finfo, bed))
10765 return FALSE;
10766
10767 /* Now we know the size of the symtab section. */
10768 off += symtab_hdr->sh_size;
10769
10770 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10771 if (symtab_shndx_hdr->sh_name != 0)
10772 {
10773 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10774 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10775 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10776 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10777 symtab_shndx_hdr->sh_size = amt;
10778
10779 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10780 off, TRUE);
10781
10782 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10783 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10784 return FALSE;
10785 }
10786
10787
10788 /* Finish up and write out the symbol string table (.strtab)
10789 section. */
10790 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10791 /* sh_name was set in prep_headers. */
10792 symstrtab_hdr->sh_type = SHT_STRTAB;
10793 symstrtab_hdr->sh_flags = 0;
10794 symstrtab_hdr->sh_addr = 0;
10795 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10796 symstrtab_hdr->sh_entsize = 0;
10797 symstrtab_hdr->sh_link = 0;
10798 symstrtab_hdr->sh_info = 0;
10799 /* sh_offset is set just below. */
10800 symstrtab_hdr->sh_addralign = 1;
10801
10802 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10803 elf_tdata (abfd)->next_file_pos = off;
10804
10805 if (bfd_get_symcount (abfd) > 0)
10806 {
10807 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10808 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10809 return FALSE;
10810 }
10811
10812 /* Adjust the relocs to have the correct symbol indices. */
10813 for (o = abfd->sections; o != NULL; o = o->next)
10814 {
10815 if ((o->flags & SEC_RELOC) == 0)
10816 continue;
10817
10818 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10819 elf_section_data (o)->rel_count,
10820 elf_section_data (o)->rel_hashes);
10821 if (elf_section_data (o)->rel_hdr2 != NULL)
10822 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10823 elf_section_data (o)->rel_count2,
10824 (elf_section_data (o)->rel_hashes
10825 + elf_section_data (o)->rel_count));
10826
10827 /* Set the reloc_count field to 0 to prevent write_relocs from
10828 trying to swap the relocs out itself. */
10829 o->reloc_count = 0;
10830 }
10831
10832 if (dynamic && info->combreloc && dynobj != NULL)
10833 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10834
10835 /* If we are linking against a dynamic object, or generating a
10836 shared library, finish up the dynamic linking information. */
10837 if (dynamic)
10838 {
10839 bfd_byte *dyncon, *dynconend;
10840
10841 /* Fix up .dynamic entries. */
10842 o = bfd_get_section_by_name (dynobj, ".dynamic");
10843 BFD_ASSERT (o != NULL);
10844
10845 dyncon = o->contents;
10846 dynconend = o->contents + o->size;
10847 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10848 {
10849 Elf_Internal_Dyn dyn;
10850 const char *name;
10851 unsigned int type;
10852
10853 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10854
10855 switch (dyn.d_tag)
10856 {
10857 default:
10858 continue;
10859 case DT_NULL:
10860 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10861 {
10862 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10863 {
10864 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10865 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10866 default: continue;
10867 }
10868 dyn.d_un.d_val = relativecount;
10869 relativecount = 0;
10870 break;
10871 }
10872 continue;
10873
10874 case DT_INIT:
10875 name = info->init_function;
10876 goto get_sym;
10877 case DT_FINI:
10878 name = info->fini_function;
10879 get_sym:
10880 {
10881 struct elf_link_hash_entry *h;
10882
10883 h = elf_link_hash_lookup (elf_hash_table (info), name,
10884 FALSE, FALSE, TRUE);
10885 if (h != NULL
10886 && (h->root.type == bfd_link_hash_defined
10887 || h->root.type == bfd_link_hash_defweak))
10888 {
10889 dyn.d_un.d_ptr = h->root.u.def.value;
10890 o = h->root.u.def.section;
10891 if (o->output_section != NULL)
10892 dyn.d_un.d_ptr += (o->output_section->vma
10893 + o->output_offset);
10894 else
10895 {
10896 /* The symbol is imported from another shared
10897 library and does not apply to this one. */
10898 dyn.d_un.d_ptr = 0;
10899 }
10900 break;
10901 }
10902 }
10903 continue;
10904
10905 case DT_PREINIT_ARRAYSZ:
10906 name = ".preinit_array";
10907 goto get_size;
10908 case DT_INIT_ARRAYSZ:
10909 name = ".init_array";
10910 goto get_size;
10911 case DT_FINI_ARRAYSZ:
10912 name = ".fini_array";
10913 get_size:
10914 o = bfd_get_section_by_name (abfd, name);
10915 if (o == NULL)
10916 {
10917 (*_bfd_error_handler)
10918 (_("%B: could not find output section %s"), abfd, name);
10919 goto error_return;
10920 }
10921 if (o->size == 0)
10922 (*_bfd_error_handler)
10923 (_("warning: %s section has zero size"), name);
10924 dyn.d_un.d_val = o->size;
10925 break;
10926
10927 case DT_PREINIT_ARRAY:
10928 name = ".preinit_array";
10929 goto get_vma;
10930 case DT_INIT_ARRAY:
10931 name = ".init_array";
10932 goto get_vma;
10933 case DT_FINI_ARRAY:
10934 name = ".fini_array";
10935 goto get_vma;
10936
10937 case DT_HASH:
10938 name = ".hash";
10939 goto get_vma;
10940 case DT_GNU_HASH:
10941 name = ".gnu.hash";
10942 goto get_vma;
10943 case DT_STRTAB:
10944 name = ".dynstr";
10945 goto get_vma;
10946 case DT_SYMTAB:
10947 name = ".dynsym";
10948 goto get_vma;
10949 case DT_VERDEF:
10950 name = ".gnu.version_d";
10951 goto get_vma;
10952 case DT_VERNEED:
10953 name = ".gnu.version_r";
10954 goto get_vma;
10955 case DT_VERSYM:
10956 name = ".gnu.version";
10957 get_vma:
10958 o = bfd_get_section_by_name (abfd, name);
10959 if (o == NULL)
10960 {
10961 (*_bfd_error_handler)
10962 (_("%B: could not find output section %s"), abfd, name);
10963 goto error_return;
10964 }
10965 dyn.d_un.d_ptr = o->vma;
10966 break;
10967
10968 case DT_REL:
10969 case DT_RELA:
10970 case DT_RELSZ:
10971 case DT_RELASZ:
10972 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10973 type = SHT_REL;
10974 else
10975 type = SHT_RELA;
10976 dyn.d_un.d_val = 0;
10977 dyn.d_un.d_ptr = 0;
10978 for (i = 1; i < elf_numsections (abfd); i++)
10979 {
10980 Elf_Internal_Shdr *hdr;
10981
10982 hdr = elf_elfsections (abfd)[i];
10983 if (hdr->sh_type == type
10984 && (hdr->sh_flags & SHF_ALLOC) != 0)
10985 {
10986 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10987 dyn.d_un.d_val += hdr->sh_size;
10988 else
10989 {
10990 if (dyn.d_un.d_ptr == 0
10991 || hdr->sh_addr < dyn.d_un.d_ptr)
10992 dyn.d_un.d_ptr = hdr->sh_addr;
10993 }
10994 }
10995 }
10996 break;
10997 }
10998 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10999 }
11000 }
11001
11002 /* If we have created any dynamic sections, then output them. */
11003 if (dynobj != NULL)
11004 {
11005 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11006 goto error_return;
11007
11008 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11009 if (info->warn_shared_textrel && info->shared)
11010 {
11011 bfd_byte *dyncon, *dynconend;
11012
11013 /* Fix up .dynamic entries. */
11014 o = bfd_get_section_by_name (dynobj, ".dynamic");
11015 BFD_ASSERT (o != NULL);
11016
11017 dyncon = o->contents;
11018 dynconend = o->contents + o->size;
11019 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11020 {
11021 Elf_Internal_Dyn dyn;
11022
11023 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11024
11025 if (dyn.d_tag == DT_TEXTREL)
11026 {
11027 info->callbacks->einfo
11028 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11029 break;
11030 }
11031 }
11032 }
11033
11034 for (o = dynobj->sections; o != NULL; o = o->next)
11035 {
11036 if ((o->flags & SEC_HAS_CONTENTS) == 0
11037 || o->size == 0
11038 || o->output_section == bfd_abs_section_ptr)
11039 continue;
11040 if ((o->flags & SEC_LINKER_CREATED) == 0)
11041 {
11042 /* At this point, we are only interested in sections
11043 created by _bfd_elf_link_create_dynamic_sections. */
11044 continue;
11045 }
11046 if (elf_hash_table (info)->stab_info.stabstr == o)
11047 continue;
11048 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11049 continue;
11050 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11051 != SHT_STRTAB)
11052 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11053 {
11054 /* FIXME: octets_per_byte. */
11055 if (! bfd_set_section_contents (abfd, o->output_section,
11056 o->contents,
11057 (file_ptr) o->output_offset,
11058 o->size))
11059 goto error_return;
11060 }
11061 else
11062 {
11063 /* The contents of the .dynstr section are actually in a
11064 stringtab. */
11065 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11066 if (bfd_seek (abfd, off, SEEK_SET) != 0
11067 || ! _bfd_elf_strtab_emit (abfd,
11068 elf_hash_table (info)->dynstr))
11069 goto error_return;
11070 }
11071 }
11072 }
11073
11074 if (info->relocatable)
11075 {
11076 bfd_boolean failed = FALSE;
11077
11078 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11079 if (failed)
11080 goto error_return;
11081 }
11082
11083 /* If we have optimized stabs strings, output them. */
11084 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11085 {
11086 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11087 goto error_return;
11088 }
11089
11090 if (info->eh_frame_hdr)
11091 {
11092 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11093 goto error_return;
11094 }
11095
11096 if (finfo.symstrtab != NULL)
11097 _bfd_stringtab_free (finfo.symstrtab);
11098 if (finfo.contents != NULL)
11099 free (finfo.contents);
11100 if (finfo.external_relocs != NULL)
11101 free (finfo.external_relocs);
11102 if (finfo.internal_relocs != NULL)
11103 free (finfo.internal_relocs);
11104 if (finfo.external_syms != NULL)
11105 free (finfo.external_syms);
11106 if (finfo.locsym_shndx != NULL)
11107 free (finfo.locsym_shndx);
11108 if (finfo.internal_syms != NULL)
11109 free (finfo.internal_syms);
11110 if (finfo.indices != NULL)
11111 free (finfo.indices);
11112 if (finfo.sections != NULL)
11113 free (finfo.sections);
11114 if (finfo.symbuf != NULL)
11115 free (finfo.symbuf);
11116 if (finfo.symshndxbuf != NULL)
11117 free (finfo.symshndxbuf);
11118 for (o = abfd->sections; o != NULL; o = o->next)
11119 {
11120 if ((o->flags & SEC_RELOC) != 0
11121 && elf_section_data (o)->rel_hashes != NULL)
11122 free (elf_section_data (o)->rel_hashes);
11123 }
11124
11125 elf_tdata (abfd)->linker = TRUE;
11126
11127 if (attr_section)
11128 {
11129 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11130 if (contents == NULL)
11131 return FALSE; /* Bail out and fail. */
11132 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11133 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11134 free (contents);
11135 }
11136
11137 return TRUE;
11138
11139 error_return:
11140 if (finfo.symstrtab != NULL)
11141 _bfd_stringtab_free (finfo.symstrtab);
11142 if (finfo.contents != NULL)
11143 free (finfo.contents);
11144 if (finfo.external_relocs != NULL)
11145 free (finfo.external_relocs);
11146 if (finfo.internal_relocs != NULL)
11147 free (finfo.internal_relocs);
11148 if (finfo.external_syms != NULL)
11149 free (finfo.external_syms);
11150 if (finfo.locsym_shndx != NULL)
11151 free (finfo.locsym_shndx);
11152 if (finfo.internal_syms != NULL)
11153 free (finfo.internal_syms);
11154 if (finfo.indices != NULL)
11155 free (finfo.indices);
11156 if (finfo.sections != NULL)
11157 free (finfo.sections);
11158 if (finfo.symbuf != NULL)
11159 free (finfo.symbuf);
11160 if (finfo.symshndxbuf != NULL)
11161 free (finfo.symshndxbuf);
11162 for (o = abfd->sections; o != NULL; o = o->next)
11163 {
11164 if ((o->flags & SEC_RELOC) != 0
11165 && elf_section_data (o)->rel_hashes != NULL)
11166 free (elf_section_data (o)->rel_hashes);
11167 }
11168
11169 return FALSE;
11170 }
11171 \f
11172 /* Initialize COOKIE for input bfd ABFD. */
11173
11174 static bfd_boolean
11175 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11176 struct bfd_link_info *info, bfd *abfd)
11177 {
11178 Elf_Internal_Shdr *symtab_hdr;
11179 const struct elf_backend_data *bed;
11180
11181 bed = get_elf_backend_data (abfd);
11182 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11183
11184 cookie->abfd = abfd;
11185 cookie->sym_hashes = elf_sym_hashes (abfd);
11186 cookie->bad_symtab = elf_bad_symtab (abfd);
11187 if (cookie->bad_symtab)
11188 {
11189 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11190 cookie->extsymoff = 0;
11191 }
11192 else
11193 {
11194 cookie->locsymcount = symtab_hdr->sh_info;
11195 cookie->extsymoff = symtab_hdr->sh_info;
11196 }
11197
11198 if (bed->s->arch_size == 32)
11199 cookie->r_sym_shift = 8;
11200 else
11201 cookie->r_sym_shift = 32;
11202
11203 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11204 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11205 {
11206 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11207 cookie->locsymcount, 0,
11208 NULL, NULL, NULL);
11209 if (cookie->locsyms == NULL)
11210 {
11211 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11212 return FALSE;
11213 }
11214 if (info->keep_memory)
11215 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11216 }
11217 return TRUE;
11218 }
11219
11220 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11221
11222 static void
11223 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11224 {
11225 Elf_Internal_Shdr *symtab_hdr;
11226
11227 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11228 if (cookie->locsyms != NULL
11229 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11230 free (cookie->locsyms);
11231 }
11232
11233 /* Initialize the relocation information in COOKIE for input section SEC
11234 of input bfd ABFD. */
11235
11236 static bfd_boolean
11237 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11238 struct bfd_link_info *info, bfd *abfd,
11239 asection *sec)
11240 {
11241 const struct elf_backend_data *bed;
11242
11243 if (sec->reloc_count == 0)
11244 {
11245 cookie->rels = NULL;
11246 cookie->relend = NULL;
11247 }
11248 else
11249 {
11250 bed = get_elf_backend_data (abfd);
11251
11252 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11253 info->keep_memory);
11254 if (cookie->rels == NULL)
11255 return FALSE;
11256 cookie->rel = cookie->rels;
11257 cookie->relend = (cookie->rels
11258 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11259 }
11260 cookie->rel = cookie->rels;
11261 return TRUE;
11262 }
11263
11264 /* Free the memory allocated by init_reloc_cookie_rels,
11265 if appropriate. */
11266
11267 static void
11268 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11269 asection *sec)
11270 {
11271 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11272 free (cookie->rels);
11273 }
11274
11275 /* Initialize the whole of COOKIE for input section SEC. */
11276
11277 static bfd_boolean
11278 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11279 struct bfd_link_info *info,
11280 asection *sec)
11281 {
11282 if (!init_reloc_cookie (cookie, info, sec->owner))
11283 goto error1;
11284 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11285 goto error2;
11286 return TRUE;
11287
11288 error2:
11289 fini_reloc_cookie (cookie, sec->owner);
11290 error1:
11291 return FALSE;
11292 }
11293
11294 /* Free the memory allocated by init_reloc_cookie_for_section,
11295 if appropriate. */
11296
11297 static void
11298 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11299 asection *sec)
11300 {
11301 fini_reloc_cookie_rels (cookie, sec);
11302 fini_reloc_cookie (cookie, sec->owner);
11303 }
11304 \f
11305 /* Garbage collect unused sections. */
11306
11307 /* Default gc_mark_hook. */
11308
11309 asection *
11310 _bfd_elf_gc_mark_hook (asection *sec,
11311 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11312 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11313 struct elf_link_hash_entry *h,
11314 Elf_Internal_Sym *sym)
11315 {
11316 if (h != NULL)
11317 {
11318 switch (h->root.type)
11319 {
11320 case bfd_link_hash_defined:
11321 case bfd_link_hash_defweak:
11322 return h->root.u.def.section;
11323
11324 case bfd_link_hash_common:
11325 return h->root.u.c.p->section;
11326
11327 default:
11328 break;
11329 }
11330 }
11331 else
11332 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11333
11334 return NULL;
11335 }
11336
11337 /* COOKIE->rel describes a relocation against section SEC, which is
11338 a section we've decided to keep. Return the section that contains
11339 the relocation symbol, or NULL if no section contains it. */
11340
11341 asection *
11342 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11343 elf_gc_mark_hook_fn gc_mark_hook,
11344 struct elf_reloc_cookie *cookie)
11345 {
11346 unsigned long r_symndx;
11347 struct elf_link_hash_entry *h;
11348
11349 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11350 if (r_symndx == 0)
11351 return NULL;
11352
11353 if (r_symndx >= cookie->locsymcount
11354 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11355 {
11356 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11357 while (h->root.type == bfd_link_hash_indirect
11358 || h->root.type == bfd_link_hash_warning)
11359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11360 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11361 }
11362
11363 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11364 &cookie->locsyms[r_symndx]);
11365 }
11366
11367 /* COOKIE->rel describes a relocation against section SEC, which is
11368 a section we've decided to keep. Mark the section that contains
11369 the relocation symbol. */
11370
11371 bfd_boolean
11372 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11373 asection *sec,
11374 elf_gc_mark_hook_fn gc_mark_hook,
11375 struct elf_reloc_cookie *cookie)
11376 {
11377 asection *rsec;
11378
11379 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11380 if (rsec && !rsec->gc_mark)
11381 {
11382 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11383 rsec->gc_mark = 1;
11384 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11385 return FALSE;
11386 }
11387 return TRUE;
11388 }
11389
11390 /* The mark phase of garbage collection. For a given section, mark
11391 it and any sections in this section's group, and all the sections
11392 which define symbols to which it refers. */
11393
11394 bfd_boolean
11395 _bfd_elf_gc_mark (struct bfd_link_info *info,
11396 asection *sec,
11397 elf_gc_mark_hook_fn gc_mark_hook)
11398 {
11399 bfd_boolean ret;
11400 asection *group_sec, *eh_frame;
11401
11402 sec->gc_mark = 1;
11403
11404 /* Mark all the sections in the group. */
11405 group_sec = elf_section_data (sec)->next_in_group;
11406 if (group_sec && !group_sec->gc_mark)
11407 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11408 return FALSE;
11409
11410 /* Look through the section relocs. */
11411 ret = TRUE;
11412 eh_frame = elf_eh_frame_section (sec->owner);
11413 if ((sec->flags & SEC_RELOC) != 0
11414 && sec->reloc_count > 0
11415 && sec != eh_frame)
11416 {
11417 struct elf_reloc_cookie cookie;
11418
11419 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11420 ret = FALSE;
11421 else
11422 {
11423 for (; cookie.rel < cookie.relend; cookie.rel++)
11424 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11425 {
11426 ret = FALSE;
11427 break;
11428 }
11429 fini_reloc_cookie_for_section (&cookie, sec);
11430 }
11431 }
11432
11433 if (ret && eh_frame && elf_fde_list (sec))
11434 {
11435 struct elf_reloc_cookie cookie;
11436
11437 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11438 ret = FALSE;
11439 else
11440 {
11441 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11442 gc_mark_hook, &cookie))
11443 ret = FALSE;
11444 fini_reloc_cookie_for_section (&cookie, eh_frame);
11445 }
11446 }
11447
11448 return ret;
11449 }
11450
11451 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11452
11453 struct elf_gc_sweep_symbol_info
11454 {
11455 struct bfd_link_info *info;
11456 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11457 bfd_boolean);
11458 };
11459
11460 static bfd_boolean
11461 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11462 {
11463 if (h->root.type == bfd_link_hash_warning)
11464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11465
11466 if ((h->root.type == bfd_link_hash_defined
11467 || h->root.type == bfd_link_hash_defweak)
11468 && !h->root.u.def.section->gc_mark
11469 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11470 {
11471 struct elf_gc_sweep_symbol_info *inf =
11472 (struct elf_gc_sweep_symbol_info *) data;
11473 (*inf->hide_symbol) (inf->info, h, TRUE);
11474 }
11475
11476 return TRUE;
11477 }
11478
11479 /* The sweep phase of garbage collection. Remove all garbage sections. */
11480
11481 typedef bfd_boolean (*gc_sweep_hook_fn)
11482 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11483
11484 static bfd_boolean
11485 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11486 {
11487 bfd *sub;
11488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11489 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11490 unsigned long section_sym_count;
11491 struct elf_gc_sweep_symbol_info sweep_info;
11492
11493 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11494 {
11495 asection *o;
11496
11497 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11498 continue;
11499
11500 for (o = sub->sections; o != NULL; o = o->next)
11501 {
11502 /* When any section in a section group is kept, we keep all
11503 sections in the section group. If the first member of
11504 the section group is excluded, we will also exclude the
11505 group section. */
11506 if (o->flags & SEC_GROUP)
11507 {
11508 asection *first = elf_next_in_group (o);
11509 o->gc_mark = first->gc_mark;
11510 }
11511 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11512 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11513 {
11514 /* Keep debug and special sections. */
11515 o->gc_mark = 1;
11516 }
11517
11518 if (o->gc_mark)
11519 continue;
11520
11521 /* Skip sweeping sections already excluded. */
11522 if (o->flags & SEC_EXCLUDE)
11523 continue;
11524
11525 /* Since this is early in the link process, it is simple
11526 to remove a section from the output. */
11527 o->flags |= SEC_EXCLUDE;
11528
11529 if (info->print_gc_sections && o->size != 0)
11530 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11531
11532 /* But we also have to update some of the relocation
11533 info we collected before. */
11534 if (gc_sweep_hook
11535 && (o->flags & SEC_RELOC) != 0
11536 && o->reloc_count > 0
11537 && !bfd_is_abs_section (o->output_section))
11538 {
11539 Elf_Internal_Rela *internal_relocs;
11540 bfd_boolean r;
11541
11542 internal_relocs
11543 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11544 info->keep_memory);
11545 if (internal_relocs == NULL)
11546 return FALSE;
11547
11548 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11549
11550 if (elf_section_data (o)->relocs != internal_relocs)
11551 free (internal_relocs);
11552
11553 if (!r)
11554 return FALSE;
11555 }
11556 }
11557 }
11558
11559 /* Remove the symbols that were in the swept sections from the dynamic
11560 symbol table. GCFIXME: Anyone know how to get them out of the
11561 static symbol table as well? */
11562 sweep_info.info = info;
11563 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11564 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11565 &sweep_info);
11566
11567 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11568 return TRUE;
11569 }
11570
11571 /* Propagate collected vtable information. This is called through
11572 elf_link_hash_traverse. */
11573
11574 static bfd_boolean
11575 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11576 {
11577 if (h->root.type == bfd_link_hash_warning)
11578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11579
11580 /* Those that are not vtables. */
11581 if (h->vtable == NULL || h->vtable->parent == NULL)
11582 return TRUE;
11583
11584 /* Those vtables that do not have parents, we cannot merge. */
11585 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11586 return TRUE;
11587
11588 /* If we've already been done, exit. */
11589 if (h->vtable->used && h->vtable->used[-1])
11590 return TRUE;
11591
11592 /* Make sure the parent's table is up to date. */
11593 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11594
11595 if (h->vtable->used == NULL)
11596 {
11597 /* None of this table's entries were referenced. Re-use the
11598 parent's table. */
11599 h->vtable->used = h->vtable->parent->vtable->used;
11600 h->vtable->size = h->vtable->parent->vtable->size;
11601 }
11602 else
11603 {
11604 size_t n;
11605 bfd_boolean *cu, *pu;
11606
11607 /* Or the parent's entries into ours. */
11608 cu = h->vtable->used;
11609 cu[-1] = TRUE;
11610 pu = h->vtable->parent->vtable->used;
11611 if (pu != NULL)
11612 {
11613 const struct elf_backend_data *bed;
11614 unsigned int log_file_align;
11615
11616 bed = get_elf_backend_data (h->root.u.def.section->owner);
11617 log_file_align = bed->s->log_file_align;
11618 n = h->vtable->parent->vtable->size >> log_file_align;
11619 while (n--)
11620 {
11621 if (*pu)
11622 *cu = TRUE;
11623 pu++;
11624 cu++;
11625 }
11626 }
11627 }
11628
11629 return TRUE;
11630 }
11631
11632 static bfd_boolean
11633 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11634 {
11635 asection *sec;
11636 bfd_vma hstart, hend;
11637 Elf_Internal_Rela *relstart, *relend, *rel;
11638 const struct elf_backend_data *bed;
11639 unsigned int log_file_align;
11640
11641 if (h->root.type == bfd_link_hash_warning)
11642 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11643
11644 /* Take care of both those symbols that do not describe vtables as
11645 well as those that are not loaded. */
11646 if (h->vtable == NULL || h->vtable->parent == NULL)
11647 return TRUE;
11648
11649 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11650 || h->root.type == bfd_link_hash_defweak);
11651
11652 sec = h->root.u.def.section;
11653 hstart = h->root.u.def.value;
11654 hend = hstart + h->size;
11655
11656 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11657 if (!relstart)
11658 return *(bfd_boolean *) okp = FALSE;
11659 bed = get_elf_backend_data (sec->owner);
11660 log_file_align = bed->s->log_file_align;
11661
11662 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11663
11664 for (rel = relstart; rel < relend; ++rel)
11665 if (rel->r_offset >= hstart && rel->r_offset < hend)
11666 {
11667 /* If the entry is in use, do nothing. */
11668 if (h->vtable->used
11669 && (rel->r_offset - hstart) < h->vtable->size)
11670 {
11671 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11672 if (h->vtable->used[entry])
11673 continue;
11674 }
11675 /* Otherwise, kill it. */
11676 rel->r_offset = rel->r_info = rel->r_addend = 0;
11677 }
11678
11679 return TRUE;
11680 }
11681
11682 /* Mark sections containing dynamically referenced symbols. When
11683 building shared libraries, we must assume that any visible symbol is
11684 referenced. */
11685
11686 bfd_boolean
11687 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11688 {
11689 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11690
11691 if (h->root.type == bfd_link_hash_warning)
11692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11693
11694 if ((h->root.type == bfd_link_hash_defined
11695 || h->root.type == bfd_link_hash_defweak)
11696 && (h->ref_dynamic
11697 || (!info->executable
11698 && h->def_regular
11699 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11700 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11701 h->root.u.def.section->flags |= SEC_KEEP;
11702
11703 return TRUE;
11704 }
11705
11706 /* Keep all sections containing symbols undefined on the command-line,
11707 and the section containing the entry symbol. */
11708
11709 void
11710 _bfd_elf_gc_keep (struct bfd_link_info *info)
11711 {
11712 struct bfd_sym_chain *sym;
11713
11714 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11715 {
11716 struct elf_link_hash_entry *h;
11717
11718 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11719 FALSE, FALSE, FALSE);
11720
11721 if (h != NULL
11722 && (h->root.type == bfd_link_hash_defined
11723 || h->root.type == bfd_link_hash_defweak)
11724 && !bfd_is_abs_section (h->root.u.def.section))
11725 h->root.u.def.section->flags |= SEC_KEEP;
11726 }
11727 }
11728
11729 /* Do mark and sweep of unused sections. */
11730
11731 bfd_boolean
11732 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11733 {
11734 bfd_boolean ok = TRUE;
11735 bfd *sub;
11736 elf_gc_mark_hook_fn gc_mark_hook;
11737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11738
11739 if (!bed->can_gc_sections
11740 || !is_elf_hash_table (info->hash))
11741 {
11742 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11743 return TRUE;
11744 }
11745
11746 bed->gc_keep (info);
11747
11748 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11749 at the .eh_frame section if we can mark the FDEs individually. */
11750 _bfd_elf_begin_eh_frame_parsing (info);
11751 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11752 {
11753 asection *sec;
11754 struct elf_reloc_cookie cookie;
11755
11756 sec = bfd_get_section_by_name (sub, ".eh_frame");
11757 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11758 {
11759 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11760 if (elf_section_data (sec)->sec_info)
11761 elf_eh_frame_section (sub) = sec;
11762 fini_reloc_cookie_for_section (&cookie, sec);
11763 }
11764 }
11765 _bfd_elf_end_eh_frame_parsing (info);
11766
11767 /* Apply transitive closure to the vtable entry usage info. */
11768 elf_link_hash_traverse (elf_hash_table (info),
11769 elf_gc_propagate_vtable_entries_used,
11770 &ok);
11771 if (!ok)
11772 return FALSE;
11773
11774 /* Kill the vtable relocations that were not used. */
11775 elf_link_hash_traverse (elf_hash_table (info),
11776 elf_gc_smash_unused_vtentry_relocs,
11777 &ok);
11778 if (!ok)
11779 return FALSE;
11780
11781 /* Mark dynamically referenced symbols. */
11782 if (elf_hash_table (info)->dynamic_sections_created)
11783 elf_link_hash_traverse (elf_hash_table (info),
11784 bed->gc_mark_dynamic_ref,
11785 info);
11786
11787 /* Grovel through relocs to find out who stays ... */
11788 gc_mark_hook = bed->gc_mark_hook;
11789 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11790 {
11791 asection *o;
11792
11793 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11794 continue;
11795
11796 for (o = sub->sections; o != NULL; o = o->next)
11797 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11798 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11799 return FALSE;
11800 }
11801
11802 /* Allow the backend to mark additional target specific sections. */
11803 if (bed->gc_mark_extra_sections)
11804 bed->gc_mark_extra_sections (info, gc_mark_hook);
11805
11806 /* ... and mark SEC_EXCLUDE for those that go. */
11807 return elf_gc_sweep (abfd, info);
11808 }
11809 \f
11810 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11811
11812 bfd_boolean
11813 bfd_elf_gc_record_vtinherit (bfd *abfd,
11814 asection *sec,
11815 struct elf_link_hash_entry *h,
11816 bfd_vma offset)
11817 {
11818 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11819 struct elf_link_hash_entry **search, *child;
11820 bfd_size_type extsymcount;
11821 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11822
11823 /* The sh_info field of the symtab header tells us where the
11824 external symbols start. We don't care about the local symbols at
11825 this point. */
11826 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11827 if (!elf_bad_symtab (abfd))
11828 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11829
11830 sym_hashes = elf_sym_hashes (abfd);
11831 sym_hashes_end = sym_hashes + extsymcount;
11832
11833 /* Hunt down the child symbol, which is in this section at the same
11834 offset as the relocation. */
11835 for (search = sym_hashes; search != sym_hashes_end; ++search)
11836 {
11837 if ((child = *search) != NULL
11838 && (child->root.type == bfd_link_hash_defined
11839 || child->root.type == bfd_link_hash_defweak)
11840 && child->root.u.def.section == sec
11841 && child->root.u.def.value == offset)
11842 goto win;
11843 }
11844
11845 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11846 abfd, sec, (unsigned long) offset);
11847 bfd_set_error (bfd_error_invalid_operation);
11848 return FALSE;
11849
11850 win:
11851 if (!child->vtable)
11852 {
11853 child->vtable = (struct elf_link_virtual_table_entry *)
11854 bfd_zalloc (abfd, sizeof (*child->vtable));
11855 if (!child->vtable)
11856 return FALSE;
11857 }
11858 if (!h)
11859 {
11860 /* This *should* only be the absolute section. It could potentially
11861 be that someone has defined a non-global vtable though, which
11862 would be bad. It isn't worth paging in the local symbols to be
11863 sure though; that case should simply be handled by the assembler. */
11864
11865 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11866 }
11867 else
11868 child->vtable->parent = h;
11869
11870 return TRUE;
11871 }
11872
11873 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11874
11875 bfd_boolean
11876 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11877 asection *sec ATTRIBUTE_UNUSED,
11878 struct elf_link_hash_entry *h,
11879 bfd_vma addend)
11880 {
11881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11882 unsigned int log_file_align = bed->s->log_file_align;
11883
11884 if (!h->vtable)
11885 {
11886 h->vtable = (struct elf_link_virtual_table_entry *)
11887 bfd_zalloc (abfd, sizeof (*h->vtable));
11888 if (!h->vtable)
11889 return FALSE;
11890 }
11891
11892 if (addend >= h->vtable->size)
11893 {
11894 size_t size, bytes, file_align;
11895 bfd_boolean *ptr = h->vtable->used;
11896
11897 /* While the symbol is undefined, we have to be prepared to handle
11898 a zero size. */
11899 file_align = 1 << log_file_align;
11900 if (h->root.type == bfd_link_hash_undefined)
11901 size = addend + file_align;
11902 else
11903 {
11904 size = h->size;
11905 if (addend >= size)
11906 {
11907 /* Oops! We've got a reference past the defined end of
11908 the table. This is probably a bug -- shall we warn? */
11909 size = addend + file_align;
11910 }
11911 }
11912 size = (size + file_align - 1) & -file_align;
11913
11914 /* Allocate one extra entry for use as a "done" flag for the
11915 consolidation pass. */
11916 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11917
11918 if (ptr)
11919 {
11920 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
11921
11922 if (ptr != NULL)
11923 {
11924 size_t oldbytes;
11925
11926 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11927 * sizeof (bfd_boolean));
11928 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11929 }
11930 }
11931 else
11932 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
11933
11934 if (ptr == NULL)
11935 return FALSE;
11936
11937 /* And arrange for that done flag to be at index -1. */
11938 h->vtable->used = ptr + 1;
11939 h->vtable->size = size;
11940 }
11941
11942 h->vtable->used[addend >> log_file_align] = TRUE;
11943
11944 return TRUE;
11945 }
11946
11947 struct alloc_got_off_arg {
11948 bfd_vma gotoff;
11949 struct bfd_link_info *info;
11950 };
11951
11952 /* We need a special top-level link routine to convert got reference counts
11953 to real got offsets. */
11954
11955 static bfd_boolean
11956 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11957 {
11958 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
11959 bfd *obfd = gofarg->info->output_bfd;
11960 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11961
11962 if (h->root.type == bfd_link_hash_warning)
11963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11964
11965 if (h->got.refcount > 0)
11966 {
11967 h->got.offset = gofarg->gotoff;
11968 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11969 }
11970 else
11971 h->got.offset = (bfd_vma) -1;
11972
11973 return TRUE;
11974 }
11975
11976 /* And an accompanying bit to work out final got entry offsets once
11977 we're done. Should be called from final_link. */
11978
11979 bfd_boolean
11980 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11981 struct bfd_link_info *info)
11982 {
11983 bfd *i;
11984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11985 bfd_vma gotoff;
11986 struct alloc_got_off_arg gofarg;
11987
11988 BFD_ASSERT (abfd == info->output_bfd);
11989
11990 if (! is_elf_hash_table (info->hash))
11991 return FALSE;
11992
11993 /* The GOT offset is relative to the .got section, but the GOT header is
11994 put into the .got.plt section, if the backend uses it. */
11995 if (bed->want_got_plt)
11996 gotoff = 0;
11997 else
11998 gotoff = bed->got_header_size;
11999
12000 /* Do the local .got entries first. */
12001 for (i = info->input_bfds; i; i = i->link_next)
12002 {
12003 bfd_signed_vma *local_got;
12004 bfd_size_type j, locsymcount;
12005 Elf_Internal_Shdr *symtab_hdr;
12006
12007 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12008 continue;
12009
12010 local_got = elf_local_got_refcounts (i);
12011 if (!local_got)
12012 continue;
12013
12014 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12015 if (elf_bad_symtab (i))
12016 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12017 else
12018 locsymcount = symtab_hdr->sh_info;
12019
12020 for (j = 0; j < locsymcount; ++j)
12021 {
12022 if (local_got[j] > 0)
12023 {
12024 local_got[j] = gotoff;
12025 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12026 }
12027 else
12028 local_got[j] = (bfd_vma) -1;
12029 }
12030 }
12031
12032 /* Then the global .got entries. .plt refcounts are handled by
12033 adjust_dynamic_symbol */
12034 gofarg.gotoff = gotoff;
12035 gofarg.info = info;
12036 elf_link_hash_traverse (elf_hash_table (info),
12037 elf_gc_allocate_got_offsets,
12038 &gofarg);
12039 return TRUE;
12040 }
12041
12042 /* Many folk need no more in the way of final link than this, once
12043 got entry reference counting is enabled. */
12044
12045 bfd_boolean
12046 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12047 {
12048 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12049 return FALSE;
12050
12051 /* Invoke the regular ELF backend linker to do all the work. */
12052 return bfd_elf_final_link (abfd, info);
12053 }
12054
12055 bfd_boolean
12056 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12057 {
12058 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12059
12060 if (rcookie->bad_symtab)
12061 rcookie->rel = rcookie->rels;
12062
12063 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12064 {
12065 unsigned long r_symndx;
12066
12067 if (! rcookie->bad_symtab)
12068 if (rcookie->rel->r_offset > offset)
12069 return FALSE;
12070 if (rcookie->rel->r_offset != offset)
12071 continue;
12072
12073 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12074 if (r_symndx == SHN_UNDEF)
12075 return TRUE;
12076
12077 if (r_symndx >= rcookie->locsymcount
12078 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12079 {
12080 struct elf_link_hash_entry *h;
12081
12082 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12083
12084 while (h->root.type == bfd_link_hash_indirect
12085 || h->root.type == bfd_link_hash_warning)
12086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12087
12088 if ((h->root.type == bfd_link_hash_defined
12089 || h->root.type == bfd_link_hash_defweak)
12090 && elf_discarded_section (h->root.u.def.section))
12091 return TRUE;
12092 else
12093 return FALSE;
12094 }
12095 else
12096 {
12097 /* It's not a relocation against a global symbol,
12098 but it could be a relocation against a local
12099 symbol for a discarded section. */
12100 asection *isec;
12101 Elf_Internal_Sym *isym;
12102
12103 /* Need to: get the symbol; get the section. */
12104 isym = &rcookie->locsyms[r_symndx];
12105 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12106 if (isec != NULL && elf_discarded_section (isec))
12107 return TRUE;
12108 }
12109 return FALSE;
12110 }
12111 return FALSE;
12112 }
12113
12114 /* Discard unneeded references to discarded sections.
12115 Returns TRUE if any section's size was changed. */
12116 /* This function assumes that the relocations are in sorted order,
12117 which is true for all known assemblers. */
12118
12119 bfd_boolean
12120 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12121 {
12122 struct elf_reloc_cookie cookie;
12123 asection *stab, *eh;
12124 const struct elf_backend_data *bed;
12125 bfd *abfd;
12126 bfd_boolean ret = FALSE;
12127
12128 if (info->traditional_format
12129 || !is_elf_hash_table (info->hash))
12130 return FALSE;
12131
12132 _bfd_elf_begin_eh_frame_parsing (info);
12133 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12134 {
12135 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12136 continue;
12137
12138 bed = get_elf_backend_data (abfd);
12139
12140 if ((abfd->flags & DYNAMIC) != 0)
12141 continue;
12142
12143 eh = NULL;
12144 if (!info->relocatable)
12145 {
12146 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12147 if (eh != NULL
12148 && (eh->size == 0
12149 || bfd_is_abs_section (eh->output_section)))
12150 eh = NULL;
12151 }
12152
12153 stab = bfd_get_section_by_name (abfd, ".stab");
12154 if (stab != NULL
12155 && (stab->size == 0
12156 || bfd_is_abs_section (stab->output_section)
12157 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12158 stab = NULL;
12159
12160 if (stab == NULL
12161 && eh == NULL
12162 && bed->elf_backend_discard_info == NULL)
12163 continue;
12164
12165 if (!init_reloc_cookie (&cookie, info, abfd))
12166 return FALSE;
12167
12168 if (stab != NULL
12169 && stab->reloc_count > 0
12170 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12171 {
12172 if (_bfd_discard_section_stabs (abfd, stab,
12173 elf_section_data (stab)->sec_info,
12174 bfd_elf_reloc_symbol_deleted_p,
12175 &cookie))
12176 ret = TRUE;
12177 fini_reloc_cookie_rels (&cookie, stab);
12178 }
12179
12180 if (eh != NULL
12181 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12182 {
12183 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12184 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12185 bfd_elf_reloc_symbol_deleted_p,
12186 &cookie))
12187 ret = TRUE;
12188 fini_reloc_cookie_rels (&cookie, eh);
12189 }
12190
12191 if (bed->elf_backend_discard_info != NULL
12192 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12193 ret = TRUE;
12194
12195 fini_reloc_cookie (&cookie, abfd);
12196 }
12197 _bfd_elf_end_eh_frame_parsing (info);
12198
12199 if (info->eh_frame_hdr
12200 && !info->relocatable
12201 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12202 ret = TRUE;
12203
12204 return ret;
12205 }
12206
12207 /* For a SHT_GROUP section, return the group signature. For other
12208 sections, return the normal section name. */
12209
12210 static const char *
12211 section_signature (asection *sec)
12212 {
12213 if ((sec->flags & SEC_GROUP) != 0
12214 && elf_next_in_group (sec) != NULL
12215 && elf_group_name (elf_next_in_group (sec)) != NULL)
12216 return elf_group_name (elf_next_in_group (sec));
12217 return sec->name;
12218 }
12219
12220 void
12221 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12222 struct bfd_link_info *info)
12223 {
12224 flagword flags;
12225 const char *name, *p;
12226 struct bfd_section_already_linked *l;
12227 struct bfd_section_already_linked_hash_entry *already_linked_list;
12228
12229 if (sec->output_section == bfd_abs_section_ptr)
12230 return;
12231
12232 flags = sec->flags;
12233
12234 /* Return if it isn't a linkonce section. A comdat group section
12235 also has SEC_LINK_ONCE set. */
12236 if ((flags & SEC_LINK_ONCE) == 0)
12237 return;
12238
12239 /* Don't put group member sections on our list of already linked
12240 sections. They are handled as a group via their group section. */
12241 if (elf_sec_group (sec) != NULL)
12242 return;
12243
12244 /* FIXME: When doing a relocatable link, we may have trouble
12245 copying relocations in other sections that refer to local symbols
12246 in the section being discarded. Those relocations will have to
12247 be converted somehow; as of this writing I'm not sure that any of
12248 the backends handle that correctly.
12249
12250 It is tempting to instead not discard link once sections when
12251 doing a relocatable link (technically, they should be discarded
12252 whenever we are building constructors). However, that fails,
12253 because the linker winds up combining all the link once sections
12254 into a single large link once section, which defeats the purpose
12255 of having link once sections in the first place.
12256
12257 Also, not merging link once sections in a relocatable link
12258 causes trouble for MIPS ELF, which relies on link once semantics
12259 to handle the .reginfo section correctly. */
12260
12261 name = section_signature (sec);
12262
12263 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12264 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12265 p++;
12266 else
12267 p = name;
12268
12269 already_linked_list = bfd_section_already_linked_table_lookup (p);
12270
12271 for (l = already_linked_list->entry; l != NULL; l = l->next)
12272 {
12273 /* We may have 2 different types of sections on the list: group
12274 sections and linkonce sections. Match like sections. */
12275 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12276 && strcmp (name, section_signature (l->sec)) == 0
12277 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12278 {
12279 /* The section has already been linked. See if we should
12280 issue a warning. */
12281 switch (flags & SEC_LINK_DUPLICATES)
12282 {
12283 default:
12284 abort ();
12285
12286 case SEC_LINK_DUPLICATES_DISCARD:
12287 break;
12288
12289 case SEC_LINK_DUPLICATES_ONE_ONLY:
12290 (*_bfd_error_handler)
12291 (_("%B: ignoring duplicate section `%A'"),
12292 abfd, sec);
12293 break;
12294
12295 case SEC_LINK_DUPLICATES_SAME_SIZE:
12296 if (sec->size != l->sec->size)
12297 (*_bfd_error_handler)
12298 (_("%B: duplicate section `%A' has different size"),
12299 abfd, sec);
12300 break;
12301
12302 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12303 if (sec->size != l->sec->size)
12304 (*_bfd_error_handler)
12305 (_("%B: duplicate section `%A' has different size"),
12306 abfd, sec);
12307 else if (sec->size != 0)
12308 {
12309 bfd_byte *sec_contents, *l_sec_contents;
12310
12311 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12312 (*_bfd_error_handler)
12313 (_("%B: warning: could not read contents of section `%A'"),
12314 abfd, sec);
12315 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12316 &l_sec_contents))
12317 (*_bfd_error_handler)
12318 (_("%B: warning: could not read contents of section `%A'"),
12319 l->sec->owner, l->sec);
12320 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12321 (*_bfd_error_handler)
12322 (_("%B: warning: duplicate section `%A' has different contents"),
12323 abfd, sec);
12324
12325 if (sec_contents)
12326 free (sec_contents);
12327 if (l_sec_contents)
12328 free (l_sec_contents);
12329 }
12330 break;
12331 }
12332
12333 /* Set the output_section field so that lang_add_section
12334 does not create a lang_input_section structure for this
12335 section. Since there might be a symbol in the section
12336 being discarded, we must retain a pointer to the section
12337 which we are really going to use. */
12338 sec->output_section = bfd_abs_section_ptr;
12339 sec->kept_section = l->sec;
12340
12341 if (flags & SEC_GROUP)
12342 {
12343 asection *first = elf_next_in_group (sec);
12344 asection *s = first;
12345
12346 while (s != NULL)
12347 {
12348 s->output_section = bfd_abs_section_ptr;
12349 /* Record which group discards it. */
12350 s->kept_section = l->sec;
12351 s = elf_next_in_group (s);
12352 /* These lists are circular. */
12353 if (s == first)
12354 break;
12355 }
12356 }
12357
12358 return;
12359 }
12360 }
12361
12362 /* A single member comdat group section may be discarded by a
12363 linkonce section and vice versa. */
12364
12365 if ((flags & SEC_GROUP) != 0)
12366 {
12367 asection *first = elf_next_in_group (sec);
12368
12369 if (first != NULL && elf_next_in_group (first) == first)
12370 /* Check this single member group against linkonce sections. */
12371 for (l = already_linked_list->entry; l != NULL; l = l->next)
12372 if ((l->sec->flags & SEC_GROUP) == 0
12373 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12374 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12375 {
12376 first->output_section = bfd_abs_section_ptr;
12377 first->kept_section = l->sec;
12378 sec->output_section = bfd_abs_section_ptr;
12379 break;
12380 }
12381 }
12382 else
12383 /* Check this linkonce section against single member groups. */
12384 for (l = already_linked_list->entry; l != NULL; l = l->next)
12385 if (l->sec->flags & SEC_GROUP)
12386 {
12387 asection *first = elf_next_in_group (l->sec);
12388
12389 if (first != NULL
12390 && elf_next_in_group (first) == first
12391 && bfd_elf_match_symbols_in_sections (first, sec, info))
12392 {
12393 sec->output_section = bfd_abs_section_ptr;
12394 sec->kept_section = first;
12395 break;
12396 }
12397 }
12398
12399 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12400 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12401 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12402 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12403 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12404 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12405 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12406 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12407 The reverse order cannot happen as there is never a bfd with only the
12408 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12409 matter as here were are looking only for cross-bfd sections. */
12410
12411 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12412 for (l = already_linked_list->entry; l != NULL; l = l->next)
12413 if ((l->sec->flags & SEC_GROUP) == 0
12414 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12415 {
12416 if (abfd != l->sec->owner)
12417 sec->output_section = bfd_abs_section_ptr;
12418 break;
12419 }
12420
12421 /* This is the first section with this name. Record it. */
12422 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12423 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12424 }
12425
12426 bfd_boolean
12427 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12428 {
12429 return sym->st_shndx == SHN_COMMON;
12430 }
12431
12432 unsigned int
12433 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12434 {
12435 return SHN_COMMON;
12436 }
12437
12438 asection *
12439 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12440 {
12441 return bfd_com_section_ptr;
12442 }
12443
12444 bfd_vma
12445 _bfd_elf_default_got_elt_size (bfd *abfd,
12446 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12447 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12448 bfd *ibfd ATTRIBUTE_UNUSED,
12449 unsigned long symndx ATTRIBUTE_UNUSED)
12450 {
12451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12452 return bed->s->arch_size / 8;
12453 }
12454
12455 /* Routines to support the creation of dynamic relocs. */
12456
12457 /* Return true if NAME is a name of a relocation
12458 section associated with section S. */
12459
12460 static bfd_boolean
12461 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12462 {
12463 if (rela)
12464 return CONST_STRNEQ (name, ".rela")
12465 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12466
12467 return CONST_STRNEQ (name, ".rel")
12468 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12469 }
12470
12471 /* Returns the name of the dynamic reloc section associated with SEC. */
12472
12473 static const char *
12474 get_dynamic_reloc_section_name (bfd * abfd,
12475 asection * sec,
12476 bfd_boolean is_rela)
12477 {
12478 const char * name;
12479 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12480 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12481
12482 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12483 if (name == NULL)
12484 return NULL;
12485
12486 if (! is_reloc_section (is_rela, name, sec))
12487 {
12488 static bfd_boolean complained = FALSE;
12489
12490 if (! complained)
12491 {
12492 (*_bfd_error_handler)
12493 (_("%B: bad relocation section name `%s\'"), abfd, name);
12494 complained = TRUE;
12495 }
12496 name = NULL;
12497 }
12498
12499 return name;
12500 }
12501
12502 /* Returns the dynamic reloc section associated with SEC.
12503 If necessary compute the name of the dynamic reloc section based
12504 on SEC's name (looked up in ABFD's string table) and the setting
12505 of IS_RELA. */
12506
12507 asection *
12508 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12509 asection * sec,
12510 bfd_boolean is_rela)
12511 {
12512 asection * reloc_sec = elf_section_data (sec)->sreloc;
12513
12514 if (reloc_sec == NULL)
12515 {
12516 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12517
12518 if (name != NULL)
12519 {
12520 reloc_sec = bfd_get_section_by_name (abfd, name);
12521
12522 if (reloc_sec != NULL)
12523 elf_section_data (sec)->sreloc = reloc_sec;
12524 }
12525 }
12526
12527 return reloc_sec;
12528 }
12529
12530 /* Returns the dynamic reloc section associated with SEC. If the
12531 section does not exist it is created and attached to the DYNOBJ
12532 bfd and stored in the SRELOC field of SEC's elf_section_data
12533 structure.
12534
12535 ALIGNMENT is the alignment for the newly created section and
12536 IS_RELA defines whether the name should be .rela.<SEC's name>
12537 or .rel.<SEC's name>. The section name is looked up in the
12538 string table associated with ABFD. */
12539
12540 asection *
12541 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12542 bfd * dynobj,
12543 unsigned int alignment,
12544 bfd * abfd,
12545 bfd_boolean is_rela)
12546 {
12547 asection * reloc_sec = elf_section_data (sec)->sreloc;
12548
12549 if (reloc_sec == NULL)
12550 {
12551 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12552
12553 if (name == NULL)
12554 return NULL;
12555
12556 reloc_sec = bfd_get_section_by_name (dynobj, name);
12557
12558 if (reloc_sec == NULL)
12559 {
12560 flagword flags;
12561
12562 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12563 if ((sec->flags & SEC_ALLOC) != 0)
12564 flags |= SEC_ALLOC | SEC_LOAD;
12565
12566 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12567 if (reloc_sec != NULL)
12568 {
12569 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12570 reloc_sec = NULL;
12571 }
12572 }
12573
12574 elf_section_data (sec)->sreloc = reloc_sec;
12575 }
12576
12577 return reloc_sec;
12578 }
This page took 0.328073 seconds and 5 git commands to generate.