Don't check relocation if input ELF object ID doesn't match output.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
591 {
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
600 {
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607 }
608
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613 int
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
617 {
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
627 if (! is_elf_hash_table (info->hash))
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696 }
697
698 /* Return the dynindex of a local dynamic symbol. */
699
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
704 {
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711 }
712
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
720 {
721 size_t *count = (size_t *) data;
722
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799 }
800
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
806
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
811 {
812 unsigned long dynsymcount = 0;
813
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 {
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
825 }
826 *section_sym_count = dynsymcount;
827
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
851 }
852
853 /* Merge st_other field. */
854
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859 {
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899 }
900
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
912
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
959
960 bed = get_elf_backend_data (abfd);
961
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
966
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
983 {
984 h->non_elf = 0;
985 return TRUE;
986 }
987
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
990
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
997
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1014 }
1015
1016 /* Differentiate strong and weak symbols. */
1017 newweak = bind == STB_WEAK;
1018 oldweak = (h->root.type == bfd_link_hash_defweak
1019 || h->root.type == bfd_link_hash_undefweak);
1020
1021 /* In cases involving weak versioned symbols, we may wind up trying
1022 to merge a symbol with itself. Catch that here, to avoid the
1023 confusion that results if we try to override a symbol with
1024 itself. The additional tests catch cases like
1025 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1026 dynamic object, which we do want to handle here. */
1027 if (abfd == oldbfd
1028 && (newweak || oldweak)
1029 && ((abfd->flags & DYNAMIC) == 0
1030 || !h->def_regular))
1031 return TRUE;
1032
1033 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1034 respectively, is from a dynamic object. */
1035
1036 newdyn = (abfd->flags & DYNAMIC) != 0;
1037
1038 olddyn = FALSE;
1039 if (oldbfd != NULL)
1040 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1041 else if (oldsec != NULL)
1042 {
1043 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1044 indices used by MIPS ELF. */
1045 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1046 }
1047
1048 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1049 respectively, appear to be a definition rather than reference. */
1050
1051 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1052
1053 olddef = (h->root.type != bfd_link_hash_undefined
1054 && h->root.type != bfd_link_hash_undefweak
1055 && h->root.type != bfd_link_hash_common);
1056
1057 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1058 respectively, appear to be a function. */
1059
1060 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1061 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1062
1063 oldfunc = (h->type != STT_NOTYPE
1064 && bed->is_function_type (h->type));
1065
1066 /* When we try to create a default indirect symbol from the dynamic
1067 definition with the default version, we skip it if its type and
1068 the type of existing regular definition mismatch. We only do it
1069 if the existing regular definition won't be dynamic. */
1070 if (pold_alignment == NULL
1071 && !info->shared
1072 && !info->export_dynamic
1073 && !h->ref_dynamic
1074 && newdyn
1075 && newdef
1076 && !olddyn
1077 && (olddef || h->root.type == bfd_link_hash_common)
1078 && ELF_ST_TYPE (sym->st_info) != h->type
1079 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1080 && h->type != STT_NOTYPE
1081 && !(newfunc && oldfunc))
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 "ld -u". */
1089 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && oldbfd != NULL)
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127 tbfd, tsec, ntbfd, h->root.root.string);
1128 else
1129 (*_bfd_error_handler)
1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131 tbfd, ntbfd, ntsec, h->root.root.string);
1132
1133 bfd_set_error (bfd_error_bad_value);
1134 return FALSE;
1135 }
1136
1137 /* We need to remember if a symbol has a definition in a dynamic
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
1140 if (newdyn && !h->dynamic_def)
1141 {
1142 if (!bfd_is_und_section (sec))
1143 h->dynamic_def = 1;
1144 else
1145 {
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
1149 if (!h->ref_dynamic)
1150 {
1151 if (bind == STB_WEAK)
1152 h->dynamic_weak = 1;
1153 }
1154 else if (bind != STB_WEAK)
1155 h->dynamic_weak = 0;
1156 }
1157 }
1158
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1161 if (newdyn
1162 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1163 && !bfd_is_und_section (sec))
1164 {
1165 *skip = TRUE;
1166 /* Make sure this symbol is dynamic. */
1167 h->ref_dynamic = 1;
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1170
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1173 return bfd_elf_link_record_dynamic_symbol (info, h);
1174 else
1175 return TRUE;
1176 }
1177 else if (!newdyn
1178 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1179 && h->def_dynamic)
1180 {
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 {
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1190 if (h->ref_regular)
1191 {
1192 struct elf_link_hash_entry *vh = *sym_hash;
1193
1194 vh->root.type = h->root.type;
1195 h->root.type = bfd_link_hash_indirect;
1196 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 {
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202 vh->dynamic_def = 1;
1203 vh->ref_dynamic = 1;
1204 }
1205 else
1206 {
1207 h->root.type = vh->root.type;
1208 vh->ref_dynamic = 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213 }
1214 h = vh;
1215 }
1216 else
1217 h = *sym_hash;
1218 }
1219
1220 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1221 && bfd_is_und_section (sec))
1222 {
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
1226 up the linker hash table undefs list. Since the old
1227 definition came from a dynamic object, it is still on the
1228 undefs list. */
1229 h->root.type = bfd_link_hash_undefined;
1230 h->root.u.undef.abfd = abfd;
1231 }
1232 else
1233 {
1234 h->root.type = bfd_link_hash_new;
1235 h->root.u.undef.abfd = NULL;
1236 }
1237
1238 if (h->def_dynamic)
1239 {
1240 h->def_dynamic = 0;
1241 h->ref_dynamic = 1;
1242 h->dynamic_def = 1;
1243 }
1244 /* FIXME: Should we check type and size for protected symbol? */
1245 h->size = 0;
1246 h->type = 0;
1247 return TRUE;
1248 }
1249
1250 if (bind == STB_GNU_UNIQUE)
1251 h->unique_global = 1;
1252
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1260
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1263
1264 if (newdef && !newdyn && olddyn)
1265 newweak = FALSE;
1266 if (olddef && newdyn)
1267 oldweak = FALSE;
1268
1269 /* Allow changes between different types of function symbol. */
1270 if (newfunc && oldfunc)
1271 *type_change_ok = TRUE;
1272
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
1276
1277 if (oldweak
1278 || newweak
1279 || (newdef
1280 && h->root.type == bfd_link_hash_undefined))
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1285
1286 if (*type_change_ok
1287 || h->root.type == bfd_link_hash_undefined)
1288 *size_change_ok = TRUE;
1289
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1301 libraries.
1302
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1305
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1311 harmless. */
1312
1313 if (newdyn
1314 && newdef
1315 && !newweak
1316 && (sec->flags & SEC_ALLOC) != 0
1317 && (sec->flags & SEC_LOAD) == 0
1318 && sym->st_size > 0
1319 && !newfunc)
1320 newdyncommon = TRUE;
1321 else
1322 newdyncommon = FALSE;
1323
1324 if (olddyn
1325 && olddef
1326 && h->root.type == bfd_link_hash_defined
1327 && h->def_dynamic
1328 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 && h->size > 0
1331 && !oldfunc)
1332 olddyncommon = TRUE;
1333 else
1334 olddyncommon = FALSE;
1335
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
1338 if (bed->merge_symbol
1339 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340 pold_alignment, skip, override,
1341 type_change_ok, size_change_ok,
1342 &newdyn, &newdef, &newdyncommon, &newweak,
1343 abfd, &sec,
1344 &olddyn, &olddef, &olddyncommon, &oldweak,
1345 oldbfd, &oldsec))
1346 return FALSE;
1347
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1350 two. */
1351
1352 if (olddyncommon
1353 && newdyncommon
1354 && sym->st_size != h->size)
1355 {
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1361
1362 if (! ((*info->callbacks->multiple_common)
1363 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1364 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1365 return FALSE;
1366
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
1369
1370 *size_change_ok = TRUE;
1371 }
1372
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1379
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1386
1387 if (newdyn
1388 && newdef
1389 && (olddef
1390 || (h->root.type == bfd_link_hash_common
1391 && (newweak || newfunc))))
1392 {
1393 *override = TRUE;
1394 newdef = FALSE;
1395 newdyncommon = FALSE;
1396
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
1399
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1405
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1408 }
1409
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 right thing. */
1415
1416 if (newdyncommon
1417 && h->root.type == bfd_link_hash_common)
1418 {
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
1423 *psec = sec = bed->common_section (oldsec);
1424 *size_change_ok = TRUE;
1425 }
1426
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef && olddef && newweak)
1429 {
1430 *skip = TRUE;
1431
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1434 local symbol. */
1435 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1436 if (h->dynindx != -1)
1437 switch (ELF_ST_VISIBILITY (h->other))
1438 {
1439 case STV_INTERNAL:
1440 case STV_HIDDEN:
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 break;
1443 }
1444 }
1445
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1451
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
1454 symbol is a function or is weak. */
1455
1456 flip = NULL;
1457 if (!newdyn
1458 && (newdef
1459 || (bfd_is_com_section (sec)
1460 && (oldweak || oldfunc)))
1461 && olddyn
1462 && olddef
1463 && h->def_dynamic)
1464 {
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1467 new definition. */
1468
1469 h->root.type = bfd_link_hash_undefined;
1470 h->root.u.undef.abfd = h->root.u.def.section->owner;
1471 *size_change_ok = TRUE;
1472
1473 olddef = FALSE;
1474 olddyncommon = FALSE;
1475
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1478
1479 if (bfd_is_com_section (sec))
1480 {
1481 if (oldfunc)
1482 {
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1485 function. */
1486 h->def_dynamic = 0;
1487 h->type = STT_NOTYPE;
1488 }
1489 *type_change_ok = TRUE;
1490 }
1491
1492 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 flip = *sym_hash;
1494 else
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h->verinfo.vertree = NULL;
1499 }
1500
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1506
1507 if (! newdyn
1508 && bfd_is_com_section (sec)
1509 && olddyncommon)
1510 {
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info->callbacks->multiple_common)
1515 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1516 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore this if we won't export it. */
1813 if (!eif->info->export_dynamic && !h->dynamic)
1814 return TRUE;
1815
1816 /* Ignore indirect symbols. These are added by the versioning code. */
1817 if (h->root.type == bfd_link_hash_indirect)
1818 return TRUE;
1819
1820 if (h->root.type == bfd_link_hash_warning)
1821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1822
1823 if (h->dynindx == -1
1824 && (h->def_regular
1825 || h->ref_regular))
1826 {
1827 bfd_boolean hide;
1828
1829 if (eif->verdefs == NULL
1830 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1831 && !hide))
1832 {
1833 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1834 {
1835 eif->failed = TRUE;
1836 return FALSE;
1837 }
1838 }
1839 }
1840
1841 return TRUE;
1842 }
1843 \f
1844 /* Look through the symbols which are defined in other shared
1845 libraries and referenced here. Update the list of version
1846 dependencies. This will be put into the .gnu.version_r section.
1847 This function is called via elf_link_hash_traverse. */
1848
1849 static bfd_boolean
1850 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1851 void *data)
1852 {
1853 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1854 Elf_Internal_Verneed *t;
1855 Elf_Internal_Vernaux *a;
1856 bfd_size_type amt;
1857
1858 if (h->root.type == bfd_link_hash_warning)
1859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860
1861 /* We only care about symbols defined in shared objects with version
1862 information. */
1863 if (!h->def_dynamic
1864 || h->def_regular
1865 || h->dynindx == -1
1866 || h->verinfo.verdef == NULL)
1867 return TRUE;
1868
1869 /* See if we already know about this version. */
1870 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1871 t != NULL;
1872 t = t->vn_nextref)
1873 {
1874 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1875 continue;
1876
1877 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1878 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1879 return TRUE;
1880
1881 break;
1882 }
1883
1884 /* This is a new version. Add it to tree we are building. */
1885
1886 if (t == NULL)
1887 {
1888 amt = sizeof *t;
1889 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1890 if (t == NULL)
1891 {
1892 rinfo->failed = TRUE;
1893 return FALSE;
1894 }
1895
1896 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1897 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1898 elf_tdata (rinfo->info->output_bfd)->verref = t;
1899 }
1900
1901 amt = sizeof *a;
1902 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1903 if (a == NULL)
1904 {
1905 rinfo->failed = TRUE;
1906 return FALSE;
1907 }
1908
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1912 fixed. */
1913 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1914
1915 a->vna_flags = h->verinfo.verdef->vd_flags;
1916 a->vna_nextptr = t->vn_auxptr;
1917
1918 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1919 ++rinfo->vers;
1920
1921 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1922
1923 t->vn_auxptr = a;
1924
1925 return TRUE;
1926 }
1927
1928 /* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1932
1933 static bfd_boolean
1934 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1935 {
1936 struct elf_info_failed *sinfo;
1937 struct bfd_link_info *info;
1938 const struct elf_backend_data *bed;
1939 struct elf_info_failed eif;
1940 char *p;
1941 bfd_size_type amt;
1942
1943 sinfo = (struct elf_info_failed *) data;
1944 info = sinfo->info;
1945
1946 if (h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953 {
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1957 }
1958
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
1961 if (!h->def_regular)
1962 return TRUE;
1963
1964 bed = get_elf_backend_data (info->output_bfd);
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1967 {
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1970
1971 hidden = TRUE;
1972
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1977 {
1978 hidden = FALSE;
1979 ++p;
1980 }
1981
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1984 {
1985 if (hidden)
1986 h->hidden = 1;
1987 return TRUE;
1988 }
1989
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->verdefs; t != NULL; t = t->next)
1992 {
1993 if (strcmp (t->name, p) == 0)
1994 {
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1998
1999 len = p - h->root.root.string;
2000 alc = (char *) bfd_malloc (len);
2001 if (alc == NULL)
2002 {
2003 sinfo->failed = TRUE;
2004 return FALSE;
2005 }
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2010
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2014
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
2017
2018 /* See if there is anything to force this symbol to
2019 local scope. */
2020 if (d == NULL && t->locals.list != NULL)
2021 {
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2027 }
2028
2029 free (alc);
2030 break;
2031 }
2032 }
2033
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t == NULL && info->executable)
2037 {
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2040
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2045
2046 amt = sizeof *t;
2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 if (t == NULL)
2049 {
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 t->name = p;
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2057
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2061 version_index = 0;
2062 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2063 ++version_index;
2064 t->vernum = version_index;
2065
2066 *pp = t;
2067
2068 h->verinfo.vertree = t;
2069 }
2070 else if (t == NULL)
2071 {
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler)
2075 (_("%B: version node not found for symbol %s"),
2076 info->output_bfd, h->root.root.string);
2077 bfd_set_error (bfd_error_bad_value);
2078 sinfo->failed = TRUE;
2079 return FALSE;
2080 }
2081
2082 if (hidden)
2083 h->hidden = 1;
2084 }
2085
2086 /* If we don't have a version for this symbol, see if we can find
2087 something. */
2088 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2089 {
2090 bfd_boolean hide;
2091
2092 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2093 h->root.root.string, &hide);
2094 if (h->verinfo.vertree != NULL && hide)
2095 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2096 }
2097
2098 return TRUE;
2099 }
2100 \f
2101 /* Read and swap the relocs from the section indicated by SHDR. This
2102 may be either a REL or a RELA section. The relocations are
2103 translated into RELA relocations and stored in INTERNAL_RELOCS,
2104 which should have already been allocated to contain enough space.
2105 The EXTERNAL_RELOCS are a buffer where the external form of the
2106 relocations should be stored.
2107
2108 Returns FALSE if something goes wrong. */
2109
2110 static bfd_boolean
2111 elf_link_read_relocs_from_section (bfd *abfd,
2112 asection *sec,
2113 Elf_Internal_Shdr *shdr,
2114 void *external_relocs,
2115 Elf_Internal_Rela *internal_relocs)
2116 {
2117 const struct elf_backend_data *bed;
2118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2119 const bfd_byte *erela;
2120 const bfd_byte *erelaend;
2121 Elf_Internal_Rela *irela;
2122 Elf_Internal_Shdr *symtab_hdr;
2123 size_t nsyms;
2124
2125 /* Position ourselves at the start of the section. */
2126 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2127 return FALSE;
2128
2129 /* Read the relocations. */
2130 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2131 return FALSE;
2132
2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2134 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2135
2136 bed = get_elf_backend_data (abfd);
2137
2138 /* Convert the external relocations to the internal format. */
2139 if (shdr->sh_entsize == bed->s->sizeof_rel)
2140 swap_in = bed->s->swap_reloc_in;
2141 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2142 swap_in = bed->s->swap_reloca_in;
2143 else
2144 {
2145 bfd_set_error (bfd_error_wrong_format);
2146 return FALSE;
2147 }
2148
2149 erela = (const bfd_byte *) external_relocs;
2150 erelaend = erela + shdr->sh_size;
2151 irela = internal_relocs;
2152 while (erela < erelaend)
2153 {
2154 bfd_vma r_symndx;
2155
2156 (*swap_in) (abfd, erela, irela);
2157 r_symndx = ELF32_R_SYM (irela->r_info);
2158 if (bed->s->arch_size == 64)
2159 r_symndx >>= 24;
2160 if (nsyms > 0)
2161 {
2162 if ((size_t) r_symndx >= nsyms)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2166 " for offset 0x%lx in section `%A'"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 }
2173 else if (r_symndx != 0)
2174 {
2175 (*_bfd_error_handler)
2176 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2177 " when the object file has no symbol table"),
2178 abfd, sec,
2179 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2180 bfd_set_error (bfd_error_bad_value);
2181 return FALSE;
2182 }
2183 irela += bed->s->int_rels_per_ext_rel;
2184 erela += shdr->sh_entsize;
2185 }
2186
2187 return TRUE;
2188 }
2189
2190 /* Read and swap the relocs for a section O. They may have been
2191 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2192 not NULL, they are used as buffers to read into. They are known to
2193 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2194 the return value is allocated using either malloc or bfd_alloc,
2195 according to the KEEP_MEMORY argument. If O has two relocation
2196 sections (both REL and RELA relocations), then the REL_HDR
2197 relocations will appear first in INTERNAL_RELOCS, followed by the
2198 REL_HDR2 relocations. */
2199
2200 Elf_Internal_Rela *
2201 _bfd_elf_link_read_relocs (bfd *abfd,
2202 asection *o,
2203 void *external_relocs,
2204 Elf_Internal_Rela *internal_relocs,
2205 bfd_boolean keep_memory)
2206 {
2207 Elf_Internal_Shdr *rel_hdr;
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211
2212 if (elf_section_data (o)->relocs != NULL)
2213 return elf_section_data (o)->relocs;
2214
2215 if (o->reloc_count == 0)
2216 return NULL;
2217
2218 rel_hdr = &elf_section_data (o)->rel_hdr;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = rel_hdr->sh_size;
2237
2238 if (elf_section_data (o)->rel_hdr2)
2239 size += elf_section_data (o)->rel_hdr2->sh_size;
2240 alloc1 = bfd_malloc (size);
2241 if (alloc1 == NULL)
2242 goto error_return;
2243 external_relocs = alloc1;
2244 }
2245
2246 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2247 external_relocs,
2248 internal_relocs))
2249 goto error_return;
2250 if (elf_section_data (o)->rel_hdr2
2251 && (!elf_link_read_relocs_from_section
2252 (abfd, o,
2253 elf_section_data (o)->rel_hdr2,
2254 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2255 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2256 * bed->s->int_rels_per_ext_rel))))
2257 goto error_return;
2258
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 elf_section_data (o)->relocs = internal_relocs;
2262
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2268
2269 return internal_relocs;
2270
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
2275 {
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2280 }
2281 return NULL;
2282 }
2283
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2286
2287 static bfd_boolean
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 Elf_Internal_Shdr *rel_hdr,
2290 asection *o)
2291 {
2292 bfd_size_type reloc_count;
2293 bfd_size_type num_rel_hashes;
2294
2295 /* Figure out how many relocations there will be. */
2296 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2297 reloc_count = elf_section_data (o)->rel_count;
2298 else
2299 reloc_count = elf_section_data (o)->rel_count2;
2300
2301 num_rel_hashes = o->reloc_count;
2302 if (num_rel_hashes < reloc_count)
2303 num_rel_hashes = reloc_count;
2304
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2307
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2315
2316 /* We only allocate one set of hash entries, so we only do it the
2317 first time we are called. */
2318 if (elf_section_data (o)->rel_hashes == NULL
2319 && num_rel_hashes)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 elf_section_data (o)->rel_hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 Elf_Internal_Shdr *output_rel_hdr;
2350 asection *output_section;
2351 unsigned int *rel_countp = NULL;
2352 const struct elf_backend_data *bed;
2353 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2354
2355 output_section = input_section->output_section;
2356 output_rel_hdr = NULL;
2357
2358 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2359 == input_rel_hdr->sh_entsize)
2360 {
2361 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2362 rel_countp = &elf_section_data (output_section)->rel_count;
2363 }
2364 else if (elf_section_data (output_section)->rel_hdr2
2365 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2366 == input_rel_hdr->sh_entsize))
2367 {
2368 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2369 rel_countp = &elf_section_data (output_section)->rel_count2;
2370 }
2371 else
2372 {
2373 (*_bfd_error_handler)
2374 (_("%B: relocation size mismatch in %B section %A"),
2375 output_bfd, input_section->owner, input_section);
2376 bfd_set_error (bfd_error_wrong_format);
2377 return FALSE;
2378 }
2379
2380 bed = get_elf_backend_data (output_bfd);
2381 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2382 swap_out = bed->s->swap_reloc_out;
2383 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2384 swap_out = bed->s->swap_reloca_out;
2385 else
2386 abort ();
2387
2388 erel = output_rel_hdr->contents;
2389 erel += *rel_countp * input_rel_hdr->sh_entsize;
2390 irela = internal_relocs;
2391 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2392 * bed->s->int_rels_per_ext_rel);
2393 while (irela < irelaend)
2394 {
2395 (*swap_out) (output_bfd, irela, erel);
2396 irela += bed->s->int_rels_per_ext_rel;
2397 erel += input_rel_hdr->sh_entsize;
2398 }
2399
2400 /* Bump the counter, so that we know where to add the next set of
2401 relocations. */
2402 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2403
2404 return TRUE;
2405 }
2406 \f
2407 /* Make weak undefined symbols in PIE dynamic. */
2408
2409 bfd_boolean
2410 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2411 struct elf_link_hash_entry *h)
2412 {
2413 if (info->pie
2414 && h->dynindx == -1
2415 && h->root.type == bfd_link_hash_undefweak)
2416 return bfd_elf_link_record_dynamic_symbol (info, h);
2417
2418 return TRUE;
2419 }
2420
2421 /* Fix up the flags for a symbol. This handles various cases which
2422 can only be fixed after all the input files are seen. This is
2423 currently called by both adjust_dynamic_symbol and
2424 assign_sym_version, which is unnecessary but perhaps more robust in
2425 the face of future changes. */
2426
2427 static bfd_boolean
2428 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2429 struct elf_info_failed *eif)
2430 {
2431 const struct elf_backend_data *bed;
2432
2433 /* If this symbol was mentioned in a non-ELF file, try to set
2434 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2435 permit a non-ELF file to correctly refer to a symbol defined in
2436 an ELF dynamic object. */
2437 if (h->non_elf)
2438 {
2439 while (h->root.type == bfd_link_hash_indirect)
2440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2441
2442 if (h->root.type != bfd_link_hash_defined
2443 && h->root.type != bfd_link_hash_defweak)
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 {
2450 if (h->root.u.def.section->owner != NULL
2451 && (bfd_get_flavour (h->root.u.def.section->owner)
2452 == bfd_target_elf_flavour))
2453 {
2454 h->ref_regular = 1;
2455 h->ref_regular_nonweak = 1;
2456 }
2457 else
2458 h->def_regular = 1;
2459 }
2460
2461 if (h->dynindx == -1
2462 && (h->def_dynamic
2463 || h->ref_dynamic))
2464 {
2465 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2466 {
2467 eif->failed = TRUE;
2468 return FALSE;
2469 }
2470 }
2471 }
2472 else
2473 {
2474 /* Unfortunately, NON_ELF is only correct if the symbol
2475 was first seen in a non-ELF file. Fortunately, if the symbol
2476 was first seen in an ELF file, we're probably OK unless the
2477 symbol was defined in a non-ELF file. Catch that case here.
2478 FIXME: We're still in trouble if the symbol was first seen in
2479 a dynamic object, and then later in a non-ELF regular object. */
2480 if ((h->root.type == bfd_link_hash_defined
2481 || h->root.type == bfd_link_hash_defweak)
2482 && !h->def_regular
2483 && (h->root.u.def.section->owner != NULL
2484 ? (bfd_get_flavour (h->root.u.def.section->owner)
2485 != bfd_target_elf_flavour)
2486 : (bfd_is_abs_section (h->root.u.def.section)
2487 && !h->def_dynamic)))
2488 h->def_regular = 1;
2489 }
2490
2491 /* Backend specific symbol fixup. */
2492 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2493 if (bed->elf_backend_fixup_symbol
2494 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2495 return FALSE;
2496
2497 /* If this is a final link, and the symbol was defined as a common
2498 symbol in a regular object file, and there was no definition in
2499 any dynamic object, then the linker will have allocated space for
2500 the symbol in a common section but the DEF_REGULAR
2501 flag will not have been set. */
2502 if (h->root.type == bfd_link_hash_defined
2503 && !h->def_regular
2504 && h->ref_regular
2505 && !h->def_dynamic
2506 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2507 h->def_regular = 1;
2508
2509 /* If -Bsymbolic was used (which means to bind references to global
2510 symbols to the definition within the shared object), and this
2511 symbol was defined in a regular object, then it actually doesn't
2512 need a PLT entry. Likewise, if the symbol has non-default
2513 visibility. If the symbol has hidden or internal visibility, we
2514 will force it local. */
2515 if (h->needs_plt
2516 && eif->info->shared
2517 && is_elf_hash_table (eif->info->hash)
2518 && (SYMBOLIC_BIND (eif->info, h)
2519 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2520 && h->def_regular)
2521 {
2522 bfd_boolean force_local;
2523
2524 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2525 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2526 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2527 }
2528
2529 /* If a weak undefined symbol has non-default visibility, we also
2530 hide it from the dynamic linker. */
2531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2532 && h->root.type == bfd_link_hash_undefweak)
2533 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2534
2535 /* If this is a weak defined symbol in a dynamic object, and we know
2536 the real definition in the dynamic object, copy interesting flags
2537 over to the real definition. */
2538 if (h->u.weakdef != NULL)
2539 {
2540 struct elf_link_hash_entry *weakdef;
2541
2542 weakdef = h->u.weakdef;
2543 if (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2545
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
2548 BFD_ASSERT (weakdef->def_dynamic);
2549
2550 /* If the real definition is defined by a regular object file,
2551 don't do anything special. See the longer description in
2552 _bfd_elf_adjust_dynamic_symbol, below. */
2553 if (weakdef->def_regular)
2554 h->u.weakdef = NULL;
2555 else
2556 {
2557 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2558 || weakdef->root.type == bfd_link_hash_defweak);
2559 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2560 }
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Make the backend pick a good value for a dynamic symbol. This is
2567 called via elf_link_hash_traverse, and also calls itself
2568 recursively. */
2569
2570 static bfd_boolean
2571 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2572 {
2573 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2574 bfd *dynobj;
2575 const struct elf_backend_data *bed;
2576
2577 if (! is_elf_hash_table (eif->info->hash))
2578 return FALSE;
2579
2580 if (h->root.type == bfd_link_hash_warning)
2581 {
2582 h->got = elf_hash_table (eif->info)->init_got_offset;
2583 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2584
2585 /* When warning symbols are created, they **replace** the "real"
2586 entry in the hash table, thus we never get to see the real
2587 symbol in a hash traversal. So look at it now. */
2588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2589 }
2590
2591 /* Ignore indirect symbols. These are added by the versioning code. */
2592 if (h->root.type == bfd_link_hash_indirect)
2593 return TRUE;
2594
2595 /* Fix the symbol flags. */
2596 if (! _bfd_elf_fix_symbol_flags (h, eif))
2597 return FALSE;
2598
2599 /* If this symbol does not require a PLT entry, and it is not
2600 defined by a dynamic object, or is not referenced by a regular
2601 object, ignore it. We do have to handle a weak defined symbol,
2602 even if no regular object refers to it, if we decided to add it
2603 to the dynamic symbol table. FIXME: Do we normally need to worry
2604 about symbols which are defined by one dynamic object and
2605 referenced by another one? */
2606 if (!h->needs_plt
2607 && h->type != STT_GNU_IFUNC
2608 && (h->def_regular
2609 || !h->def_dynamic
2610 || (!h->ref_regular
2611 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2612 {
2613 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2614 return TRUE;
2615 }
2616
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
2619 if (h->dynamic_adjusted)
2620 return TRUE;
2621
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
2626 h->dynamic_adjusted = 1;
2627
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2632
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2640 library model.
2641
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2646 int _timezone = 5;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2655
2656 if (h->u.weakdef != NULL)
2657 {
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
2661 H->U.WEAKDEF before it finds H? */
2662 h->u.weakdef->ref_regular = 1;
2663
2664 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2665 return FALSE;
2666 }
2667
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2673 if (h->size == 0
2674 && h->type == STT_NOTYPE
2675 && !h->needs_plt)
2676 (*_bfd_error_handler)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h->root.root.string);
2679
2680 dynobj = elf_hash_table (eif->info)->dynobj;
2681 bed = get_elf_backend_data (dynobj);
2682
2683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 DYNBSS. */
2694
2695 bfd_boolean
2696 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2697 asection *dynbss)
2698 {
2699 unsigned int power_of_two;
2700 bfd_vma mask;
2701 asection *sec = h->root.u.def.section;
2702
2703 /* The section aligment of definition is the maximum alignment
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2709 mask = ((bfd_vma) 1 << power_of_two) - 1;
2710 while ((h->root.u.def.value & mask) != 0)
2711 {
2712 mask >>= 1;
2713 --power_of_two;
2714 }
2715
2716 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2717 dynbss))
2718 {
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2721 power_of_two))
2722 return FALSE;
2723 }
2724
2725 /* We make sure that the symbol will be aligned properly. */
2726 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2727
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h->root.u.def.section = dynbss;
2730 h->root.u.def.value = dynbss->size;
2731
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss->size += h->size;
2734
2735 return TRUE;
2736 }
2737
2738 /* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2740
2741 static bfd_boolean
2742 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2743 {
2744 asection *sec;
2745
2746 if (h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2752 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2753 {
2754 bfd *output_bfd = (bfd *) data;
2755
2756 h->root.u.def.value =
2757 _bfd_merged_section_offset (output_bfd,
2758 &h->root.u.def.section,
2759 elf_section_data (sec)->sec_info,
2760 h->root.u.def.value);
2761 }
2762
2763 return TRUE;
2764 }
2765
2766 /* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2769
2770 bfd_boolean
2771 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2772 struct bfd_link_info *info,
2773 bfd_boolean ignore_protected)
2774 {
2775 bfd_boolean binding_stays_local_p;
2776 const struct elf_backend_data *bed;
2777 struct elf_link_hash_table *hash_table;
2778
2779 if (h == NULL)
2780 return FALSE;
2781
2782 while (h->root.type == bfd_link_hash_indirect
2783 || h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2785
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h->dynindx == -1)
2788 return FALSE;
2789 if (h->forced_local)
2790 return FALSE;
2791
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
2794 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2795
2796 switch (ELF_ST_VISIBILITY (h->other))
2797 {
2798 case STV_INTERNAL:
2799 case STV_HIDDEN:
2800 return FALSE;
2801
2802 case STV_PROTECTED:
2803 hash_table = elf_hash_table (info);
2804 if (!is_elf_hash_table (hash_table))
2805 return FALSE;
2806
2807 bed = get_elf_backend_data (hash_table->dynobj);
2808
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
2812 if (!ignore_protected || !bed->is_function_type (h->type))
2813 binding_stays_local_p = TRUE;
2814 break;
2815
2816 default:
2817 break;
2818 }
2819
2820 /* If it isn't defined locally, then clearly it's dynamic. */
2821 if (!h->def_regular)
2822 return TRUE;
2823
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p;
2827 }
2828
2829 /* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols and weak symbols. */
2833
2834 bfd_boolean
2835 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2836 struct bfd_link_info *info,
2837 bfd_boolean local_protected)
2838 {
2839 const struct elf_backend_data *bed;
2840 struct elf_link_hash_table *hash_table;
2841
2842 /* If it's a local sym, of course we resolve locally. */
2843 if (h == NULL)
2844 return TRUE;
2845
2846 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2848 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 return TRUE;
2850
2851 /* Common symbols that become definitions don't get the DEF_REGULAR
2852 flag set, so test it first, and don't bail out. */
2853 if (ELF_COMMON_DEF_P (h))
2854 /* Do nothing. */;
2855 /* If we don't have a definition in a regular file, then we can't
2856 resolve locally. The sym is either undefined or dynamic. */
2857 else if (!h->def_regular)
2858 return FALSE;
2859
2860 /* Forced local symbols resolve locally. */
2861 if (h->forced_local)
2862 return TRUE;
2863
2864 /* As do non-dynamic symbols. */
2865 if (h->dynindx == -1)
2866 return TRUE;
2867
2868 /* At this point, we know the symbol is defined and dynamic. In an
2869 executable it must resolve locally, likewise when building symbolic
2870 shared libraries. */
2871 if (info->executable || SYMBOLIC_BIND (info, h))
2872 return TRUE;
2873
2874 /* Now deal with defined dynamic symbols in shared libraries. Ones
2875 with default visibility might not resolve locally. */
2876 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 return FALSE;
2878
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return TRUE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
2885 /* STV_PROTECTED non-function symbols are local. */
2886 if (!bed->is_function_type (h->type))
2887 return TRUE;
2888
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols, even when we know that the
2891 dynamic linker will resolve them locally. */
2892 return local_protected;
2893 }
2894
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900 {
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921 }
2922
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927 {
2928 const struct elf_backend_data *bed;
2929
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962 }
2963
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969 {
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044 }
3045 \f
3046 /* Add an entry to the .dynamic table. */
3047
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3076
3077 s->size = newsize;
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081 }
3082
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3092 {
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
3120
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
3129 }
3130
3131 if (do_it)
3132 {
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144 }
3145
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148 {
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154 }
3155
3156 /* Sort symbol by value and section. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3159 {
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
3175 return 0;
3176 }
3177
3178 /* This function is used to adjust offsets into .dynstr for
3179 dynamic symbols. This is called via elf_link_hash_traverse. */
3180
3181 static bfd_boolean
3182 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3183 {
3184 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3185
3186 if (h->root.type == bfd_link_hash_warning)
3187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3188
3189 if (h->dynindx != -1)
3190 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 return TRUE;
3192 }
3193
3194 /* Assign string offsets in .dynstr, update all structures referencing
3195 them. */
3196
3197 static bfd_boolean
3198 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3199 {
3200 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3201 struct elf_link_local_dynamic_entry *entry;
3202 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3203 bfd *dynobj = hash_table->dynobj;
3204 asection *sdyn;
3205 bfd_size_type size;
3206 const struct elf_backend_data *bed;
3207 bfd_byte *extdyn;
3208
3209 _bfd_elf_strtab_finalize (dynstr);
3210 size = _bfd_elf_strtab_size (dynstr);
3211
3212 bed = get_elf_backend_data (dynobj);
3213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3214 BFD_ASSERT (sdyn != NULL);
3215
3216 /* Update all .dynamic entries referencing .dynstr strings. */
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 switch (dyn.d_tag)
3225 {
3226 case DT_STRSZ:
3227 dyn.d_un.d_val = size;
3228 break;
3229 case DT_NEEDED:
3230 case DT_SONAME:
3231 case DT_RPATH:
3232 case DT_RUNPATH:
3233 case DT_FILTER:
3234 case DT_AUXILIARY:
3235 case DT_AUDIT:
3236 case DT_DEPAUDIT:
3237 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 break;
3239 default:
3240 continue;
3241 }
3242 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 }
3244
3245 /* Now update local dynamic symbols. */
3246 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 entry->isym.st_name);
3249
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3252
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd)->cverdefs)
3255 {
3256 asection *s;
3257 bfd_byte *p;
3258 bfd_size_type i;
3259 Elf_Internal_Verdef def;
3260 Elf_Internal_Verdaux defaux;
3261
3262 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263 p = s->contents;
3264 do
3265 {
3266 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 &def);
3268 p += sizeof (Elf_External_Verdef);
3269 if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 continue;
3271 for (i = 0; i < def.vd_cnt; ++i)
3272 {
3273 _bfd_elf_swap_verdaux_in (output_bfd,
3274 (Elf_External_Verdaux *) p, &defaux);
3275 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 defaux.vda_name);
3277 _bfd_elf_swap_verdaux_out (output_bfd,
3278 &defaux, (Elf_External_Verdaux *) p);
3279 p += sizeof (Elf_External_Verdaux);
3280 }
3281 }
3282 while (def.vd_next);
3283 }
3284
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd)->verref)
3287 {
3288 asection *s;
3289 bfd_byte *p;
3290 bfd_size_type i;
3291 Elf_Internal_Verneed need;
3292 Elf_Internal_Vernaux needaux;
3293
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295 p = s->contents;
3296 do
3297 {
3298 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 &need);
3300 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 (Elf_External_Verneed *) p);
3303 p += sizeof (Elf_External_Verneed);
3304 for (i = 0; i < need.vn_cnt; ++i)
3305 {
3306 _bfd_elf_swap_vernaux_in (output_bfd,
3307 (Elf_External_Vernaux *) p, &needaux);
3308 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 needaux.vna_name);
3310 _bfd_elf_swap_vernaux_out (output_bfd,
3311 &needaux,
3312 (Elf_External_Vernaux *) p);
3313 p += sizeof (Elf_External_Vernaux);
3314 }
3315 }
3316 while (need.vn_next);
3317 }
3318
3319 return TRUE;
3320 }
3321 \f
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3324 the same target. */
3325
3326 bfd_boolean
3327 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 const bfd_target *output)
3329 {
3330 return input == output;
3331 }
3332
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3336
3337 bfd_boolean
3338 _bfd_elf_relocs_compatible (const bfd_target *input,
3339 const bfd_target *output)
3340 {
3341 const struct elf_backend_data *obed, *ibed;
3342
3343 if (input == output)
3344 return TRUE;
3345
3346 ibed = xvec_get_elf_backend_data (input);
3347 obed = xvec_get_elf_backend_data (output);
3348
3349 if (ibed->arch != obed->arch)
3350 return FALSE;
3351
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed->relocs_compatible == obed->relocs_compatible;
3354 }
3355
3356 /* Add symbols from an ELF object file to the linker hash table. */
3357
3358 static bfd_boolean
3359 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3360 {
3361 Elf_Internal_Ehdr *ehdr;
3362 Elf_Internal_Shdr *hdr;
3363 bfd_size_type symcount;
3364 bfd_size_type extsymcount;
3365 bfd_size_type extsymoff;
3366 struct elf_link_hash_entry **sym_hash;
3367 bfd_boolean dynamic;
3368 Elf_External_Versym *extversym = NULL;
3369 Elf_External_Versym *ever;
3370 struct elf_link_hash_entry *weaks;
3371 struct elf_link_hash_entry **nondeflt_vers = NULL;
3372 bfd_size_type nondeflt_vers_cnt = 0;
3373 Elf_Internal_Sym *isymbuf = NULL;
3374 Elf_Internal_Sym *isym;
3375 Elf_Internal_Sym *isymend;
3376 const struct elf_backend_data *bed;
3377 bfd_boolean add_needed;
3378 struct elf_link_hash_table *htab;
3379 bfd_size_type amt;
3380 void *alloc_mark = NULL;
3381 struct bfd_hash_entry **old_table = NULL;
3382 unsigned int old_size = 0;
3383 unsigned int old_count = 0;
3384 void *old_tab = NULL;
3385 void *old_hash;
3386 void *old_ent;
3387 struct bfd_link_hash_entry *old_undefs = NULL;
3388 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389 long old_dynsymcount = 0;
3390 size_t tabsize = 0;
3391 size_t hashsize = 0;
3392
3393 htab = elf_hash_table (info);
3394 bed = get_elf_backend_data (abfd);
3395
3396 if ((abfd->flags & DYNAMIC) == 0)
3397 dynamic = FALSE;
3398 else
3399 {
3400 dynamic = TRUE;
3401
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info->relocatable
3406 || !is_elf_hash_table (htab)
3407 || info->output_bfd->xvec != abfd->xvec)
3408 {
3409 if (info->relocatable)
3410 bfd_set_error (bfd_error_invalid_operation);
3411 else
3412 bfd_set_error (bfd_error_wrong_format);
3413 goto error_return;
3414 }
3415 }
3416
3417 ehdr = elf_elfheader (abfd);
3418 if (info->warn_alternate_em
3419 && bed->elf_machine_code != ehdr->e_machine
3420 && ((bed->elf_machine_alt1 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt1)
3422 || (bed->elf_machine_alt2 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt2)))
3424 info->callbacks->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr->e_machine, abfd, bed->elf_machine_code);
3427
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info->executable)
3433 {
3434 asection *s;
3435
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 const char *name;
3439
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3442 {
3443 char *msg;
3444 bfd_size_type sz;
3445
3446 name += sizeof ".gnu.warning." - 1;
3447
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3458 {
3459 struct elf_link_hash_entry *h;
3460
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3467 {
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3471 s->size = 0;
3472 continue;
3473 }
3474 }
3475
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (! info->relocatable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503 }
3504
3505 add_needed = TRUE;
3506 if (! dynamic)
3507 {
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3517 {
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3520 }
3521 }
3522 else if (!is_elf_hash_table (htab))
3523 goto error_return;
3524 else
3525 {
3526 asection *s;
3527 const char *soname = NULL;
3528 char *audit = NULL;
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3530 int ret;
3531
3532 /* ld --just-symbols and dynamic objects don't mix very well.
3533 ld shouldn't allow it. */
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3536 abort ();
3537
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 all. */
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
3548
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3550 if (s != NULL)
3551 {
3552 bfd_byte *dynbuf;
3553 bfd_byte *extdyn;
3554 unsigned int elfsec;
3555 unsigned long shlink;
3556
3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3558 {
3559 error_free_dyn:
3560 free (dynbuf);
3561 goto error_return;
3562 }
3563
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3565 if (elfsec == SHN_BAD)
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3568
3569 for (extdyn = dynbuf;
3570 extdyn < dynbuf + s->size;
3571 extdyn += bed->s->sizeof_dyn)
3572 {
3573 Elf_Internal_Dyn dyn;
3574
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3577 {
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (soname == NULL)
3581 goto error_free_dyn;
3582 }
3583 if (dyn.d_tag == DT_NEEDED)
3584 {
3585 struct bfd_link_needed_list *n, **pn;
3586 char *fnm, *anm;
3587 unsigned int tagv = dyn.d_un.d_val;
3588
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3596 if (anm == NULL)
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3599 n->name = anm;
3600 n->by = abfd;
3601 n->next = NULL;
3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3603 ;
3604 *pn = n;
3605 }
3606 if (dyn.d_tag == DT_RUNPATH)
3607 {
3608 struct bfd_link_needed_list *n, **pn;
3609 char *fnm, *anm;
3610 unsigned int tagv = dyn.d_un.d_val;
3611
3612 amt = sizeof (struct bfd_link_needed_list);
3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
3618 anm = (char *) bfd_alloc (abfd, amt);
3619 if (anm == NULL)
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3622 n->name = anm;
3623 n->by = abfd;
3624 n->next = NULL;
3625 for (pn = & runpath;
3626 *pn != NULL;
3627 pn = &(*pn)->next)
3628 ;
3629 *pn = n;
3630 }
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3633 {
3634 struct bfd_link_needed_list *n, **pn;
3635 char *fnm, *anm;
3636 unsigned int tagv = dyn.d_un.d_val;
3637
3638 amt = sizeof (struct bfd_link_needed_list);
3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
3644 anm = (char *) bfd_alloc (abfd, amt);
3645 if (anm == NULL)
3646 goto error_free_dyn;
3647 memcpy (anm, fnm, amt);
3648 n->name = anm;
3649 n->by = abfd;
3650 n->next = NULL;
3651 for (pn = & rpath;
3652 *pn != NULL;
3653 pn = &(*pn)->next)
3654 ;
3655 *pn = n;
3656 }
3657 if (dyn.d_tag == DT_AUDIT)
3658 {
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3661 }
3662 }
3663
3664 free (dynbuf);
3665 }
3666
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3669 if (runpath)
3670 rpath = runpath;
3671
3672 if (rpath)
3673 {
3674 struct bfd_link_needed_list **pn;
3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3676 ;
3677 *pn = rpath;
3678 }
3679
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3686 file. */
3687 bfd_section_list_clear (abfd);
3688
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3693 name. */
3694 if (soname == NULL || *soname == '\0')
3695 {
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3699 }
3700
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3704
3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3706 if (ret < 0)
3707 goto error_return;
3708
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3712 if (ret > 0)
3713 return TRUE;
3714
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
3717 }
3718
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3723
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 else
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3728
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3730
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3733 this point. */
3734 if (elf_bad_symtab (abfd))
3735 {
3736 extsymcount = symcount;
3737 extsymoff = 0;
3738 }
3739 else
3740 {
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3743 }
3744
3745 sym_hash = NULL;
3746 if (extsymcount != 0)
3747 {
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 NULL, NULL, NULL);
3750 if (isymbuf == NULL)
3751 goto error_return;
3752
3753 /* We store a pointer to the hash table entry for each external
3754 symbol. */
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3760 }
3761
3762 if (dynamic)
3763 {
3764 /* Read in any version definitions. */
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
3767 goto error_free_sym;
3768
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3772 {
3773 Elf_Internal_Shdr *versymhdr;
3774
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3783 }
3784 }
3785
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3790 {
3791 unsigned int i;
3792 size_t entsize;
3793
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3795 {
3796 struct bfd_hash_entry *p;
3797 struct elf_link_hash_entry *h;
3798
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3800 {
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3805 }
3806 }
3807
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3813
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3819
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed))
3824 goto error_free_vers;
3825
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
3837 old_dynsymcount = htab->dynsymcount;
3838
3839 for (i = 0; i < htab->root.table.size; i++)
3840 {
3841 struct bfd_hash_entry *p;
3842 struct elf_link_hash_entry *h;
3843
3844 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3845 {
3846 memcpy (old_ent, p, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
3848 h = (struct elf_link_hash_entry *) p;
3849 if (h->root.type == bfd_link_hash_warning)
3850 {
3851 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3852 old_ent = (char *) old_ent + htab->root.table.entsize;
3853 }
3854 }
3855 }
3856 }
3857
3858 weaks = NULL;
3859 ever = extversym != NULL ? extversym + extsymoff : NULL;
3860 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3861 isym < isymend;
3862 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3863 {
3864 int bind;
3865 bfd_vma value;
3866 asection *sec, *new_sec;
3867 flagword flags;
3868 const char *name;
3869 struct elf_link_hash_entry *h;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean override;
3875 bfd_boolean common;
3876 unsigned int old_alignment;
3877 bfd *old_bfd;
3878 bfd * undef_bfd = NULL;
3879
3880 override = FALSE;
3881
3882 flags = BSF_NO_FLAGS;
3883 sec = NULL;
3884 value = isym->st_value;
3885 *sym_hash = NULL;
3886 common = bed->common_definition (isym);
3887
3888 bind = ELF_ST_BIND (isym->st_info);
3889 switch (bind)
3890 {
3891 case STB_LOCAL:
3892 /* This should be impossible, since ELF requires that all
3893 global symbols follow all local symbols, and that sh_info
3894 point to the first global symbol. Unfortunately, Irix 5
3895 screws this up. */
3896 continue;
3897
3898 case STB_GLOBAL:
3899 if (isym->st_shndx != SHN_UNDEF && !common)
3900 flags = BSF_GLOBAL;
3901 break;
3902
3903 case STB_WEAK:
3904 flags = BSF_WEAK;
3905 break;
3906
3907 case STB_GNU_UNIQUE:
3908 flags = BSF_GNU_UNIQUE;
3909 break;
3910
3911 default:
3912 /* Leave it up to the processor backend. */
3913 break;
3914 }
3915
3916 if (isym->st_shndx == SHN_UNDEF)
3917 sec = bfd_und_section_ptr;
3918 else if (isym->st_shndx == SHN_ABS)
3919 sec = bfd_abs_section_ptr;
3920 else if (isym->st_shndx == SHN_COMMON)
3921 {
3922 sec = bfd_com_section_ptr;
3923 /* What ELF calls the size we call the value. What ELF
3924 calls the value we call the alignment. */
3925 value = isym->st_size;
3926 }
3927 else
3928 {
3929 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3930 if (sec == NULL)
3931 sec = bfd_abs_section_ptr;
3932 else if (sec->kept_section)
3933 {
3934 /* Symbols from discarded section are undefined. We keep
3935 its visibility. */
3936 sec = bfd_und_section_ptr;
3937 isym->st_shndx = SHN_UNDEF;
3938 }
3939 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3940 value -= sec->vma;
3941 }
3942
3943 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3944 isym->st_name);
3945 if (name == NULL)
3946 goto error_free_vers;
3947
3948 if (isym->st_shndx == SHN_COMMON
3949 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && !info->relocatable)
3951 {
3952 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3953
3954 if (tcomm == NULL)
3955 {
3956 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3957 (SEC_ALLOC
3958 | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED
3960 | SEC_THREAD_LOCAL));
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_alignment = 0;
3994 old_bfd = NULL;
3995 new_sec = sec;
3996
3997 if (is_elf_hash_table (htab))
3998 {
3999 Elf_Internal_Versym iver;
4000 unsigned int vernum = 0;
4001 bfd_boolean skip;
4002
4003 /* If this is a definition of a symbol which was previously
4004 referenced in a non-weak manner then make a note of the bfd
4005 that contained the reference. This is used if we need to
4006 refer to the source of the reference later on. */
4007 if (! bfd_is_und_section (sec))
4008 {
4009 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4010
4011 if (h != NULL
4012 && h->root.type == bfd_link_hash_undefined
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4015 }
4016
4017 if (ever == NULL)
4018 {
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4024 }
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4029
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4039 {
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4043
4044 if (isym->st_shndx != SHN_UNDEF)
4045 {
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4053
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064 else
4065 {
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4071
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4076 {
4077 Elf_Internal_Vernaux *a;
4078
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 {
4081 if (a->vna_other == vernum)
4082 {
4083 verstr = a->vna_nodename;
4084 break;
4085 }
4086 }
4087 if (a != NULL)
4088 break;
4089 }
4090 if (verstr == NULL)
4091 {
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4097 }
4098 }
4099
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4106
4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4120
4121 name = newname;
4122 }
4123
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved, non-weak reference to the
4126 current symbol. */
4127 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4128 {
4129 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4130
4131 if (h != NULL
4132 && h->root.type == bfd_link_hash_undefined
4133 && h->root.u.undef.abfd)
4134 undef_bfd = h->root.u.undef.abfd;
4135 }
4136
4137 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4138 &value, &old_alignment,
4139 sym_hash, &skip, &override,
4140 &type_change_ok, &size_change_ok))
4141 goto error_free_vers;
4142
4143 if (skip)
4144 continue;
4145
4146 if (override)
4147 definition = FALSE;
4148
4149 h = *sym_hash;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4153
4154 /* Remember the old alignment if this is a common symbol, so
4155 that we don't reduce the alignment later on. We can't
4156 check later, because _bfd_generic_link_add_one_symbol
4157 will set a default for the alignment which we want to
4158 override. We also remember the old bfd where the existing
4159 definition comes from. */
4160 switch (h->root.type)
4161 {
4162 default:
4163 break;
4164
4165 case bfd_link_hash_defined:
4166 case bfd_link_hash_defweak:
4167 old_bfd = h->root.u.def.section->owner;
4168 break;
4169
4170 case bfd_link_hash_common:
4171 old_bfd = h->root.u.c.p->section->owner;
4172 old_alignment = h->root.u.c.p->alignment_power;
4173 break;
4174 }
4175
4176 if (elf_tdata (abfd)->verdef != NULL
4177 && ! override
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 while (h->root.type == bfd_link_hash_indirect
4190 || h->root.type == bfd_link_hash_warning)
4191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4192
4193 *sym_hash = h;
4194 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4195
4196 new_weakdef = FALSE;
4197 if (dynamic
4198 && definition
4199 && (flags & BSF_WEAK) != 0
4200 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4201 && is_elf_hash_table (htab)
4202 && h->u.weakdef == NULL)
4203 {
4204 /* Keep a list of all weak defined non function symbols from
4205 a dynamic object, using the weakdef field. Later in this
4206 function we will set the weakdef field to the correct
4207 value. We only put non-function symbols from dynamic
4208 objects on this list, because that happens to be the only
4209 time we need to know the normal symbol corresponding to a
4210 weak symbol, and the information is time consuming to
4211 figure out. If the weakdef field is not already NULL,
4212 then this symbol was already defined by some previous
4213 dynamic object, and we will be using that previous
4214 definition anyhow. */
4215
4216 h->u.weakdef = weaks;
4217 weaks = h;
4218 new_weakdef = TRUE;
4219 }
4220
4221 /* Set the alignment of a common symbol. */
4222 if ((common || bfd_is_com_section (sec))
4223 && h->root.type == bfd_link_hash_common)
4224 {
4225 unsigned int align;
4226
4227 if (common)
4228 align = bfd_log2 (isym->st_value);
4229 else
4230 {
4231 /* The new symbol is a common symbol in a shared object.
4232 We need to get the alignment from the section. */
4233 align = new_sec->alignment_power;
4234 }
4235 if (align > old_alignment
4236 /* Permit an alignment power of zero if an alignment of one
4237 is specified and no other alignments have been specified. */
4238 || (isym->st_value == 1 && old_alignment == 0))
4239 h->root.u.c.p->alignment_power = align;
4240 else
4241 h->root.u.c.p->alignment_power = old_alignment;
4242 }
4243
4244 if (is_elf_hash_table (htab))
4245 {
4246 bfd_boolean dynsym;
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 symbol_align = ffs (h->root.u.def.value) - 1;
4263 if (h->root.u.def.section->owner != NULL
4264 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 {
4266 normal_align = h->root.u.def.section->alignment_power;
4267 if (normal_align > symbol_align)
4268 normal_align = symbol_align;
4269 }
4270 else
4271 normal_align = symbol_align;
4272
4273 if (old_alignment)
4274 {
4275 common_align = old_alignment;
4276 common_bfd = old_bfd;
4277 normal_bfd = abfd;
4278 }
4279 else
4280 {
4281 common_align = bfd_log2 (isym->st_value);
4282 common_bfd = abfd;
4283 normal_bfd = old_bfd;
4284 }
4285
4286 if (normal_align < common_align)
4287 {
4288 /* PR binutils/2735 */
4289 if (normal_bfd == NULL)
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of common symbol `%s' in %B"
4292 " is greater than the alignment (%u) of its section %A"),
4293 common_bfd, h->root.u.def.section,
4294 1 << common_align, name, 1 << normal_align);
4295 else
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of symbol `%s' in %B"
4298 " is smaller than %u in %B"),
4299 normal_bfd, common_bfd,
4300 1 << normal_align, name, 1 << common_align);
4301 }
4302 }
4303
4304 /* Remember the symbol size if it isn't undefined. */
4305 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4306 && (definition || h->size == 0))
4307 {
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changed between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && (definition || h->type == STT_NOTYPE))
4332 {
4333 unsigned int type = ELF_ST_TYPE (isym->st_info);
4334
4335 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4336 symbol. */
4337 if (type == STT_GNU_IFUNC
4338 && (abfd->flags & DYNAMIC) != 0)
4339 type = STT_FUNC;
4340
4341 if (h->type != type)
4342 {
4343 if (h->type != STT_NOTYPE && ! type_change_ok)
4344 (*_bfd_error_handler)
4345 (_("Warning: type of symbol `%s' changed"
4346 " from %d to %d in %B"),
4347 abfd, name, h->type, type);
4348
4349 h->type = type;
4350 }
4351 }
4352
4353 /* Merge st_other field. */
4354 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4355
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. Keep a count of
4358 the number of dynamic symbols we find. A dynamic symbol
4359 is one which is referenced or defined by both a regular
4360 object and a shared object. */
4361 dynsym = FALSE;
4362 if (! dynamic)
4363 {
4364 if (! definition)
4365 {
4366 h->ref_regular = 1;
4367 if (bind != STB_WEAK)
4368 h->ref_regular_nonweak = 1;
4369 }
4370 else
4371 {
4372 h->def_regular = 1;
4373 if (h->def_dynamic)
4374 {
4375 h->def_dynamic = 0;
4376 h->ref_dynamic = 1;
4377 h->dynamic_def = 1;
4378 }
4379 }
4380 if (! info->executable
4381 || h->def_dynamic
4382 || h->ref_dynamic)
4383 dynsym = TRUE;
4384 }
4385 else
4386 {
4387 if (! definition)
4388 h->ref_dynamic = 1;
4389 else
4390 h->def_dynamic = 1;
4391 if (h->def_regular
4392 || h->ref_regular
4393 || (h->u.weakdef != NULL
4394 && ! new_weakdef
4395 && h->u.weakdef->dynindx != -1))
4396 dynsym = TRUE;
4397 }
4398
4399 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4400 {
4401 /* We don't want to make debug symbol dynamic. */
4402 dynsym = FALSE;
4403 }
4404
4405 /* Check to see if we need to add an indirect symbol for
4406 the default name. */
4407 if (definition || h->root.type == bfd_link_hash_common)
4408 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4409 &sec, &value, &dynsym,
4410 override))
4411 goto error_free_vers;
4412
4413 if (definition && !dynamic)
4414 {
4415 char *p = strchr (name, ELF_VER_CHR);
4416 if (p != NULL && p[1] != ELF_VER_CHR)
4417 {
4418 /* Queue non-default versions so that .symver x, x@FOO
4419 aliases can be checked. */
4420 if (!nondeflt_vers)
4421 {
4422 amt = ((isymend - isym + 1)
4423 * sizeof (struct elf_link_hash_entry *));
4424 nondeflt_vers =
4425 (struct elf_link_hash_entry **) bfd_malloc (amt);
4426 if (!nondeflt_vers)
4427 goto error_free_vers;
4428 }
4429 nondeflt_vers[nondeflt_vers_cnt++] = h;
4430 }
4431 }
4432
4433 if (dynsym && h->dynindx == -1)
4434 {
4435 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4436 goto error_free_vers;
4437 if (h->u.weakdef != NULL
4438 && ! new_weakdef
4439 && h->u.weakdef->dynindx == -1)
4440 {
4441 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4442 goto error_free_vers;
4443 }
4444 }
4445 else if (dynsym && h->dynindx != -1)
4446 /* If the symbol already has a dynamic index, but
4447 visibility says it should not be visible, turn it into
4448 a local symbol. */
4449 switch (ELF_ST_VISIBILITY (h->other))
4450 {
4451 case STV_INTERNAL:
4452 case STV_HIDDEN:
4453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4454 dynsym = FALSE;
4455 break;
4456 }
4457
4458 if (!add_needed
4459 && definition
4460 && ((dynsym
4461 && h->ref_regular)
4462 || (h->ref_dynamic
4463 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4464 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4465 {
4466 int ret;
4467 const char *soname = elf_dt_name (abfd);
4468
4469 /* A symbol from a library loaded via DT_NEEDED of some
4470 other library is referenced by a regular object.
4471 Add a DT_NEEDED entry for it. Issue an error if
4472 --no-add-needed is used and the reference was not
4473 a weak one. */
4474 if (undef_bfd != NULL
4475 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4476 {
4477 (*_bfd_error_handler)
4478 (_("%B: undefined reference to symbol '%s'"),
4479 undef_bfd, name);
4480 (*_bfd_error_handler)
4481 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4482 abfd, name);
4483 bfd_set_error (bfd_error_invalid_operation);
4484 goto error_free_vers;
4485 }
4486
4487 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4488 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4489
4490 add_needed = TRUE;
4491 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4492 if (ret < 0)
4493 goto error_free_vers;
4494
4495 BFD_ASSERT (ret == 0);
4496 }
4497 }
4498 }
4499
4500 if (extversym != NULL)
4501 {
4502 free (extversym);
4503 extversym = NULL;
4504 }
4505
4506 if (isymbuf != NULL)
4507 {
4508 free (isymbuf);
4509 isymbuf = NULL;
4510 }
4511
4512 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4513 {
4514 unsigned int i;
4515
4516 /* Restore the symbol table. */
4517 if (bed->as_needed_cleanup)
4518 (*bed->as_needed_cleanup) (abfd, info);
4519 old_hash = (char *) old_tab + tabsize;
4520 old_ent = (char *) old_hash + hashsize;
4521 sym_hash = elf_sym_hashes (abfd);
4522 htab->root.table.table = old_table;
4523 htab->root.table.size = old_size;
4524 htab->root.table.count = old_count;
4525 memcpy (htab->root.table.table, old_tab, tabsize);
4526 memcpy (sym_hash, old_hash, hashsize);
4527 htab->root.undefs = old_undefs;
4528 htab->root.undefs_tail = old_undefs_tail;
4529 for (i = 0; i < htab->root.table.size; i++)
4530 {
4531 struct bfd_hash_entry *p;
4532 struct elf_link_hash_entry *h;
4533
4534 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4535 {
4536 h = (struct elf_link_hash_entry *) p;
4537 if (h->root.type == bfd_link_hash_warning)
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4539 if (h->dynindx >= old_dynsymcount)
4540 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4541
4542 memcpy (p, old_ent, htab->root.table.entsize);
4543 old_ent = (char *) old_ent + htab->root.table.entsize;
4544 h = (struct elf_link_hash_entry *) p;
4545 if (h->root.type == bfd_link_hash_warning)
4546 {
4547 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4548 old_ent = (char *) old_ent + htab->root.table.entsize;
4549 }
4550 }
4551 }
4552
4553 /* Make a special call to the linker "notice" function to
4554 tell it that symbols added for crefs may need to be removed. */
4555 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4556 notice_not_needed))
4557 goto error_free_vers;
4558
4559 free (old_tab);
4560 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4561 alloc_mark);
4562 if (nondeflt_vers != NULL)
4563 free (nondeflt_vers);
4564 return TRUE;
4565 }
4566
4567 if (old_tab != NULL)
4568 {
4569 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4570 notice_needed))
4571 goto error_free_vers;
4572 free (old_tab);
4573 old_tab = NULL;
4574 }
4575
4576 /* Now that all the symbols from this input file are created, handle
4577 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4578 if (nondeflt_vers != NULL)
4579 {
4580 bfd_size_type cnt, symidx;
4581
4582 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4583 {
4584 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4585 char *shortname, *p;
4586
4587 p = strchr (h->root.root.string, ELF_VER_CHR);
4588 if (p == NULL
4589 || (h->root.type != bfd_link_hash_defined
4590 && h->root.type != bfd_link_hash_defweak))
4591 continue;
4592
4593 amt = p - h->root.root.string;
4594 shortname = (char *) bfd_malloc (amt + 1);
4595 if (!shortname)
4596 goto error_free_vers;
4597 memcpy (shortname, h->root.root.string, amt);
4598 shortname[amt] = '\0';
4599
4600 hi = (struct elf_link_hash_entry *)
4601 bfd_link_hash_lookup (&htab->root, shortname,
4602 FALSE, FALSE, FALSE);
4603 if (hi != NULL
4604 && hi->root.type == h->root.type
4605 && hi->root.u.def.value == h->root.u.def.value
4606 && hi->root.u.def.section == h->root.u.def.section)
4607 {
4608 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4609 hi->root.type = bfd_link_hash_indirect;
4610 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4611 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4612 sym_hash = elf_sym_hashes (abfd);
4613 if (sym_hash)
4614 for (symidx = 0; symidx < extsymcount; ++symidx)
4615 if (sym_hash[symidx] == hi)
4616 {
4617 sym_hash[symidx] = h;
4618 break;
4619 }
4620 }
4621 free (shortname);
4622 }
4623 free (nondeflt_vers);
4624 nondeflt_vers = NULL;
4625 }
4626
4627 /* Now set the weakdefs field correctly for all the weak defined
4628 symbols we found. The only way to do this is to search all the
4629 symbols. Since we only need the information for non functions in
4630 dynamic objects, that's the only time we actually put anything on
4631 the list WEAKS. We need this information so that if a regular
4632 object refers to a symbol defined weakly in a dynamic object, the
4633 real symbol in the dynamic object is also put in the dynamic
4634 symbols; we also must arrange for both symbols to point to the
4635 same memory location. We could handle the general case of symbol
4636 aliasing, but a general symbol alias can only be generated in
4637 assembler code, handling it correctly would be very time
4638 consuming, and other ELF linkers don't handle general aliasing
4639 either. */
4640 if (weaks != NULL)
4641 {
4642 struct elf_link_hash_entry **hpp;
4643 struct elf_link_hash_entry **hppend;
4644 struct elf_link_hash_entry **sorted_sym_hash;
4645 struct elf_link_hash_entry *h;
4646 size_t sym_count;
4647
4648 /* Since we have to search the whole symbol list for each weak
4649 defined symbol, search time for N weak defined symbols will be
4650 O(N^2). Binary search will cut it down to O(NlogN). */
4651 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4652 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4653 if (sorted_sym_hash == NULL)
4654 goto error_return;
4655 sym_hash = sorted_sym_hash;
4656 hpp = elf_sym_hashes (abfd);
4657 hppend = hpp + extsymcount;
4658 sym_count = 0;
4659 for (; hpp < hppend; hpp++)
4660 {
4661 h = *hpp;
4662 if (h != NULL
4663 && h->root.type == bfd_link_hash_defined
4664 && !bed->is_function_type (h->type))
4665 {
4666 *sym_hash = h;
4667 sym_hash++;
4668 sym_count++;
4669 }
4670 }
4671
4672 qsort (sorted_sym_hash, sym_count,
4673 sizeof (struct elf_link_hash_entry *),
4674 elf_sort_symbol);
4675
4676 while (weaks != NULL)
4677 {
4678 struct elf_link_hash_entry *hlook;
4679 asection *slook;
4680 bfd_vma vlook;
4681 long ilook;
4682 size_t i, j, idx;
4683
4684 hlook = weaks;
4685 weaks = hlook->u.weakdef;
4686 hlook->u.weakdef = NULL;
4687
4688 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4689 || hlook->root.type == bfd_link_hash_defweak
4690 || hlook->root.type == bfd_link_hash_common
4691 || hlook->root.type == bfd_link_hash_indirect);
4692 slook = hlook->root.u.def.section;
4693 vlook = hlook->root.u.def.value;
4694
4695 ilook = -1;
4696 i = 0;
4697 j = sym_count;
4698 while (i < j)
4699 {
4700 bfd_signed_vma vdiff;
4701 idx = (i + j) / 2;
4702 h = sorted_sym_hash [idx];
4703 vdiff = vlook - h->root.u.def.value;
4704 if (vdiff < 0)
4705 j = idx;
4706 else if (vdiff > 0)
4707 i = idx + 1;
4708 else
4709 {
4710 long sdiff = slook->id - h->root.u.def.section->id;
4711 if (sdiff < 0)
4712 j = idx;
4713 else if (sdiff > 0)
4714 i = idx + 1;
4715 else
4716 {
4717 ilook = idx;
4718 break;
4719 }
4720 }
4721 }
4722
4723 /* We didn't find a value/section match. */
4724 if (ilook == -1)
4725 continue;
4726
4727 for (i = ilook; i < sym_count; i++)
4728 {
4729 h = sorted_sym_hash [i];
4730
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.value != vlook
4733 || h->root.u.def.section != slook)
4734 break;
4735 else if (h != hlook)
4736 {
4737 hlook->u.weakdef = h;
4738
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4741 there as well. */
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4743 {
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4745 {
4746 err_free_sym_hash:
4747 free (sorted_sym_hash);
4748 goto error_return;
4749 }
4750 }
4751
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4758 {
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4761 }
4762 break;
4763 }
4764 }
4765 }
4766
4767 free (sorted_sym_hash);
4768 }
4769
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4772 return FALSE;
4773
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4776 relocs.
4777
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4788
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4791 if (! dynamic
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && elf_object_id (abfd) == elf_hash_table_id (htab)
4795 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796 {
4797 asection *o;
4798
4799 for (o = abfd->sections; o != NULL; o = o->next)
4800 {
4801 Elf_Internal_Rela *internal_relocs;
4802 bfd_boolean ok;
4803
4804 if ((o->flags & SEC_RELOC) == 0
4805 || o->reloc_count == 0
4806 || ((info->strip == strip_all || info->strip == strip_debugger)
4807 && (o->flags & SEC_DEBUGGING) != 0)
4808 || bfd_is_abs_section (o->output_section))
4809 continue;
4810
4811 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4812 info->keep_memory);
4813 if (internal_relocs == NULL)
4814 goto error_return;
4815
4816 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4817
4818 if (elf_section_data (o)->relocs != internal_relocs)
4819 free (internal_relocs);
4820
4821 if (! ok)
4822 goto error_return;
4823 }
4824 }
4825
4826 /* If this is a non-traditional link, try to optimize the handling
4827 of the .stab/.stabstr sections. */
4828 if (! dynamic
4829 && ! info->traditional_format
4830 && is_elf_hash_table (htab)
4831 && (info->strip != strip_all && info->strip != strip_debugger))
4832 {
4833 asection *stabstr;
4834
4835 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836 if (stabstr != NULL)
4837 {
4838 bfd_size_type string_offset = 0;
4839 asection *stab;
4840
4841 for (stab = abfd->sections; stab; stab = stab->next)
4842 if (CONST_STRNEQ (stab->name, ".stab")
4843 && (!stab->name[5] ||
4844 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 && (stab->flags & SEC_MERGE) == 0
4846 && !bfd_is_abs_section (stab->output_section))
4847 {
4848 struct bfd_elf_section_data *secdata;
4849
4850 secdata = elf_section_data (stab);
4851 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 stabstr, &secdata->sec_info,
4853 &string_offset))
4854 goto error_return;
4855 if (secdata->sec_info)
4856 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4857 }
4858 }
4859 }
4860
4861 if (is_elf_hash_table (htab) && add_needed)
4862 {
4863 /* Add this bfd to the loaded list. */
4864 struct elf_link_loaded_list *n;
4865
4866 n = (struct elf_link_loaded_list *)
4867 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4868 if (n == NULL)
4869 goto error_return;
4870 n->abfd = abfd;
4871 n->next = htab->loaded;
4872 htab->loaded = n;
4873 }
4874
4875 return TRUE;
4876
4877 error_free_vers:
4878 if (old_tab != NULL)
4879 free (old_tab);
4880 if (nondeflt_vers != NULL)
4881 free (nondeflt_vers);
4882 if (extversym != NULL)
4883 free (extversym);
4884 error_free_sym:
4885 if (isymbuf != NULL)
4886 free (isymbuf);
4887 error_return:
4888 return FALSE;
4889 }
4890
4891 /* Return the linker hash table entry of a symbol that might be
4892 satisfied by an archive symbol. Return -1 on error. */
4893
4894 struct elf_link_hash_entry *
4895 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4896 struct bfd_link_info *info,
4897 const char *name)
4898 {
4899 struct elf_link_hash_entry *h;
4900 char *p, *copy;
4901 size_t len, first;
4902
4903 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4904 if (h != NULL)
4905 return h;
4906
4907 /* If this is a default version (the name contains @@), look up the
4908 symbol again with only one `@' as well as without the version.
4909 The effect is that references to the symbol with and without the
4910 version will be matched by the default symbol in the archive. */
4911
4912 p = strchr (name, ELF_VER_CHR);
4913 if (p == NULL || p[1] != ELF_VER_CHR)
4914 return h;
4915
4916 /* First check with only one `@'. */
4917 len = strlen (name);
4918 copy = (char *) bfd_alloc (abfd, len);
4919 if (copy == NULL)
4920 return (struct elf_link_hash_entry *) 0 - 1;
4921
4922 first = p - name + 1;
4923 memcpy (copy, name, first);
4924 memcpy (copy + first, name + first + 1, len - first);
4925
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4927 if (h == NULL)
4928 {
4929 /* We also need to check references to the symbol without the
4930 version. */
4931 copy[first - 1] = '\0';
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4933 FALSE, FALSE, FALSE);
4934 }
4935
4936 bfd_release (abfd, copy);
4937 return h;
4938 }
4939
4940 /* Add symbols from an ELF archive file to the linker hash table. We
4941 don't use _bfd_generic_link_add_archive_symbols because of a
4942 problem which arises on UnixWare. The UnixWare libc.so is an
4943 archive which includes an entry libc.so.1 which defines a bunch of
4944 symbols. The libc.so archive also includes a number of other
4945 object files, which also define symbols, some of which are the same
4946 as those defined in libc.so.1. Correct linking requires that we
4947 consider each object file in turn, and include it if it defines any
4948 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4949 this; it looks through the list of undefined symbols, and includes
4950 any object file which defines them. When this algorithm is used on
4951 UnixWare, it winds up pulling in libc.so.1 early and defining a
4952 bunch of symbols. This means that some of the other objects in the
4953 archive are not included in the link, which is incorrect since they
4954 precede libc.so.1 in the archive.
4955
4956 Fortunately, ELF archive handling is simpler than that done by
4957 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4958 oddities. In ELF, if we find a symbol in the archive map, and the
4959 symbol is currently undefined, we know that we must pull in that
4960 object file.
4961
4962 Unfortunately, we do have to make multiple passes over the symbol
4963 table until nothing further is resolved. */
4964
4965 static bfd_boolean
4966 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4967 {
4968 symindex c;
4969 bfd_boolean *defined = NULL;
4970 bfd_boolean *included = NULL;
4971 carsym *symdefs;
4972 bfd_boolean loop;
4973 bfd_size_type amt;
4974 const struct elf_backend_data *bed;
4975 struct elf_link_hash_entry * (*archive_symbol_lookup)
4976 (bfd *, struct bfd_link_info *, const char *);
4977
4978 if (! bfd_has_map (abfd))
4979 {
4980 /* An empty archive is a special case. */
4981 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4982 return TRUE;
4983 bfd_set_error (bfd_error_no_armap);
4984 return FALSE;
4985 }
4986
4987 /* Keep track of all symbols we know to be already defined, and all
4988 files we know to be already included. This is to speed up the
4989 second and subsequent passes. */
4990 c = bfd_ardata (abfd)->symdef_count;
4991 if (c == 0)
4992 return TRUE;
4993 amt = c;
4994 amt *= sizeof (bfd_boolean);
4995 defined = (bfd_boolean *) bfd_zmalloc (amt);
4996 included = (bfd_boolean *) bfd_zmalloc (amt);
4997 if (defined == NULL || included == NULL)
4998 goto error_return;
4999
5000 symdefs = bfd_ardata (abfd)->symdefs;
5001 bed = get_elf_backend_data (abfd);
5002 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5003
5004 do
5005 {
5006 file_ptr last;
5007 symindex i;
5008 carsym *symdef;
5009 carsym *symdefend;
5010
5011 loop = FALSE;
5012 last = -1;
5013
5014 symdef = symdefs;
5015 symdefend = symdef + c;
5016 for (i = 0; symdef < symdefend; symdef++, i++)
5017 {
5018 struct elf_link_hash_entry *h;
5019 bfd *element;
5020 struct bfd_link_hash_entry *undefs_tail;
5021 symindex mark;
5022
5023 if (defined[i] || included[i])
5024 continue;
5025 if (symdef->file_offset == last)
5026 {
5027 included[i] = TRUE;
5028 continue;
5029 }
5030
5031 h = archive_symbol_lookup (abfd, info, symdef->name);
5032 if (h == (struct elf_link_hash_entry *) 0 - 1)
5033 goto error_return;
5034
5035 if (h == NULL)
5036 continue;
5037
5038 if (h->root.type == bfd_link_hash_common)
5039 {
5040 /* We currently have a common symbol. The archive map contains
5041 a reference to this symbol, so we may want to include it. We
5042 only want to include it however, if this archive element
5043 contains a definition of the symbol, not just another common
5044 declaration of it.
5045
5046 Unfortunately some archivers (including GNU ar) will put
5047 declarations of common symbols into their archive maps, as
5048 well as real definitions, so we cannot just go by the archive
5049 map alone. Instead we must read in the element's symbol
5050 table and check that to see what kind of symbol definition
5051 this is. */
5052 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5053 continue;
5054 }
5055 else if (h->root.type != bfd_link_hash_undefined)
5056 {
5057 if (h->root.type != bfd_link_hash_undefweak)
5058 defined[i] = TRUE;
5059 continue;
5060 }
5061
5062 /* We need to include this archive member. */
5063 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5064 if (element == NULL)
5065 goto error_return;
5066
5067 if (! bfd_check_format (element, bfd_object))
5068 goto error_return;
5069
5070 /* Doublecheck that we have not included this object
5071 already--it should be impossible, but there may be
5072 something wrong with the archive. */
5073 if (element->archive_pass != 0)
5074 {
5075 bfd_set_error (bfd_error_bad_value);
5076 goto error_return;
5077 }
5078 element->archive_pass = 1;
5079
5080 undefs_tail = info->hash->undefs_tail;
5081
5082 if (! (*info->callbacks->add_archive_element) (info, element,
5083 symdef->name))
5084 goto error_return;
5085 if (! bfd_link_add_symbols (element, info))
5086 goto error_return;
5087
5088 /* If there are any new undefined symbols, we need to make
5089 another pass through the archive in order to see whether
5090 they can be defined. FIXME: This isn't perfect, because
5091 common symbols wind up on undefs_tail and because an
5092 undefined symbol which is defined later on in this pass
5093 does not require another pass. This isn't a bug, but it
5094 does make the code less efficient than it could be. */
5095 if (undefs_tail != info->hash->undefs_tail)
5096 loop = TRUE;
5097
5098 /* Look backward to mark all symbols from this object file
5099 which we have already seen in this pass. */
5100 mark = i;
5101 do
5102 {
5103 included[mark] = TRUE;
5104 if (mark == 0)
5105 break;
5106 --mark;
5107 }
5108 while (symdefs[mark].file_offset == symdef->file_offset);
5109
5110 /* We mark subsequent symbols from this object file as we go
5111 on through the loop. */
5112 last = symdef->file_offset;
5113 }
5114 }
5115 while (loop);
5116
5117 free (defined);
5118 free (included);
5119
5120 return TRUE;
5121
5122 error_return:
5123 if (defined != NULL)
5124 free (defined);
5125 if (included != NULL)
5126 free (included);
5127 return FALSE;
5128 }
5129
5130 /* Given an ELF BFD, add symbols to the global hash table as
5131 appropriate. */
5132
5133 bfd_boolean
5134 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5135 {
5136 switch (bfd_get_format (abfd))
5137 {
5138 case bfd_object:
5139 return elf_link_add_object_symbols (abfd, info);
5140 case bfd_archive:
5141 return elf_link_add_archive_symbols (abfd, info);
5142 default:
5143 bfd_set_error (bfd_error_wrong_format);
5144 return FALSE;
5145 }
5146 }
5147 \f
5148 struct hash_codes_info
5149 {
5150 unsigned long *hashcodes;
5151 bfd_boolean error;
5152 };
5153
5154 /* This function will be called though elf_link_hash_traverse to store
5155 all hash value of the exported symbols in an array. */
5156
5157 static bfd_boolean
5158 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5159 {
5160 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5161 const char *name;
5162 char *p;
5163 unsigned long ha;
5164 char *alc = NULL;
5165
5166 if (h->root.type == bfd_link_hash_warning)
5167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5168
5169 /* Ignore indirect symbols. These are added by the versioning code. */
5170 if (h->dynindx == -1)
5171 return TRUE;
5172
5173 name = h->root.root.string;
5174 p = strchr (name, ELF_VER_CHR);
5175 if (p != NULL)
5176 {
5177 alc = (char *) bfd_malloc (p - name + 1);
5178 if (alc == NULL)
5179 {
5180 inf->error = TRUE;
5181 return FALSE;
5182 }
5183 memcpy (alc, name, p - name);
5184 alc[p - name] = '\0';
5185 name = alc;
5186 }
5187
5188 /* Compute the hash value. */
5189 ha = bfd_elf_hash (name);
5190
5191 /* Store the found hash value in the array given as the argument. */
5192 *(inf->hashcodes)++ = ha;
5193
5194 /* And store it in the struct so that we can put it in the hash table
5195 later. */
5196 h->u.elf_hash_value = ha;
5197
5198 if (alc != NULL)
5199 free (alc);
5200
5201 return TRUE;
5202 }
5203
5204 struct collect_gnu_hash_codes
5205 {
5206 bfd *output_bfd;
5207 const struct elf_backend_data *bed;
5208 unsigned long int nsyms;
5209 unsigned long int maskbits;
5210 unsigned long int *hashcodes;
5211 unsigned long int *hashval;
5212 unsigned long int *indx;
5213 unsigned long int *counts;
5214 bfd_vma *bitmask;
5215 bfd_byte *contents;
5216 long int min_dynindx;
5217 unsigned long int bucketcount;
5218 unsigned long int symindx;
5219 long int local_indx;
5220 long int shift1, shift2;
5221 unsigned long int mask;
5222 bfd_boolean error;
5223 };
5224
5225 /* This function will be called though elf_link_hash_traverse to store
5226 all hash value of the exported symbols in an array. */
5227
5228 static bfd_boolean
5229 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 {
5231 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5232 const char *name;
5233 char *p;
5234 unsigned long ha;
5235 char *alc = NULL;
5236
5237 if (h->root.type == bfd_link_hash_warning)
5238 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5239
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5243
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 return TRUE;
5247
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5251 {
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5254 {
5255 s->error = TRUE;
5256 return FALSE;
5257 }
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5261 }
5262
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5265
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5270 ++s->nsyms;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5273
5274 if (alc != NULL)
5275 free (alc);
5276
5277 return TRUE;
5278 }
5279
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5282
5283 static bfd_boolean
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5289
5290 if (h->root.type == bfd_link_hash_warning)
5291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5292
5293 /* Ignore indirect symbols. */
5294 if (h->dynindx == -1)
5295 return TRUE;
5296
5297 /* Ignore also local symbols and undefined symbols. */
5298 if (! (*s->bed->elf_hash_symbol) (h))
5299 {
5300 if (h->dynindx >= s->min_dynindx)
5301 h->dynindx = s->local_indx++;
5302 return TRUE;
5303 }
5304
5305 bucket = s->hashval[h->dynindx] % s->bucketcount;
5306 val = (s->hashval[h->dynindx] >> s->shift1)
5307 & ((s->maskbits >> s->shift1) - 1);
5308 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5309 s->bitmask[val]
5310 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5311 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5312 if (s->counts[bucket] == 1)
5313 /* Last element terminates the chain. */
5314 val |= 1;
5315 bfd_put_32 (s->output_bfd, val,
5316 s->contents + (s->indx[bucket] - s->symindx) * 4);
5317 --s->counts[bucket];
5318 h->dynindx = s->indx[bucket]++;
5319 return TRUE;
5320 }
5321
5322 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5323
5324 bfd_boolean
5325 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5326 {
5327 return !(h->forced_local
5328 || h->root.type == bfd_link_hash_undefined
5329 || h->root.type == bfd_link_hash_undefweak
5330 || ((h->root.type == bfd_link_hash_defined
5331 || h->root.type == bfd_link_hash_defweak)
5332 && h->root.u.def.section->output_section == NULL));
5333 }
5334
5335 /* Array used to determine the number of hash table buckets to use
5336 based on the number of symbols there are. If there are fewer than
5337 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5338 fewer than 37 we use 17 buckets, and so forth. We never use more
5339 than 32771 buckets. */
5340
5341 static const size_t elf_buckets[] =
5342 {
5343 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5344 16411, 32771, 0
5345 };
5346
5347 /* Compute bucket count for hashing table. We do not use a static set
5348 of possible tables sizes anymore. Instead we determine for all
5349 possible reasonable sizes of the table the outcome (i.e., the
5350 number of collisions etc) and choose the best solution. The
5351 weighting functions are not too simple to allow the table to grow
5352 without bounds. Instead one of the weighting factors is the size.
5353 Therefore the result is always a good payoff between few collisions
5354 (= short chain lengths) and table size. */
5355 static size_t
5356 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5357 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5358 unsigned long int nsyms,
5359 int gnu_hash)
5360 {
5361 size_t best_size = 0;
5362 unsigned long int i;
5363
5364 /* We have a problem here. The following code to optimize the table
5365 size requires an integer type with more the 32 bits. If
5366 BFD_HOST_U_64_BIT is set we know about such a type. */
5367 #ifdef BFD_HOST_U_64_BIT
5368 if (info->optimize)
5369 {
5370 size_t minsize;
5371 size_t maxsize;
5372 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5373 bfd *dynobj = elf_hash_table (info)->dynobj;
5374 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5375 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5376 unsigned long int *counts;
5377 bfd_size_type amt;
5378 unsigned int no_improvement_count = 0;
5379
5380 /* Possible optimization parameters: if we have NSYMS symbols we say
5381 that the hashing table must at least have NSYMS/4 and at most
5382 2*NSYMS buckets. */
5383 minsize = nsyms / 4;
5384 if (minsize == 0)
5385 minsize = 1;
5386 best_size = maxsize = nsyms * 2;
5387 if (gnu_hash)
5388 {
5389 if (minsize < 2)
5390 minsize = 2;
5391 if ((best_size & 31) == 0)
5392 ++best_size;
5393 }
5394
5395 /* Create array where we count the collisions in. We must use bfd_malloc
5396 since the size could be large. */
5397 amt = maxsize;
5398 amt *= sizeof (unsigned long int);
5399 counts = (unsigned long int *) bfd_malloc (amt);
5400 if (counts == NULL)
5401 return 0;
5402
5403 /* Compute the "optimal" size for the hash table. The criteria is a
5404 minimal chain length. The minor criteria is (of course) the size
5405 of the table. */
5406 for (i = minsize; i < maxsize; ++i)
5407 {
5408 /* Walk through the array of hashcodes and count the collisions. */
5409 BFD_HOST_U_64_BIT max;
5410 unsigned long int j;
5411 unsigned long int fact;
5412
5413 if (gnu_hash && (i & 31) == 0)
5414 continue;
5415
5416 memset (counts, '\0', i * sizeof (unsigned long int));
5417
5418 /* Determine how often each hash bucket is used. */
5419 for (j = 0; j < nsyms; ++j)
5420 ++counts[hashcodes[j] % i];
5421
5422 /* For the weight function we need some information about the
5423 pagesize on the target. This is information need not be 100%
5424 accurate. Since this information is not available (so far) we
5425 define it here to a reasonable default value. If it is crucial
5426 to have a better value some day simply define this value. */
5427 # ifndef BFD_TARGET_PAGESIZE
5428 # define BFD_TARGET_PAGESIZE (4096)
5429 # endif
5430
5431 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5432 and the chains. */
5433 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5434
5435 # if 1
5436 /* Variant 1: optimize for short chains. We add the squares
5437 of all the chain lengths (which favors many small chain
5438 over a few long chains). */
5439 for (j = 0; j < i; ++j)
5440 max += counts[j] * counts[j];
5441
5442 /* This adds penalties for the overall size of the table. */
5443 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5444 max *= fact * fact;
5445 # else
5446 /* Variant 2: Optimize a lot more for small table. Here we
5447 also add squares of the size but we also add penalties for
5448 empty slots (the +1 term). */
5449 for (j = 0; j < i; ++j)
5450 max += (1 + counts[j]) * (1 + counts[j]);
5451
5452 /* The overall size of the table is considered, but not as
5453 strong as in variant 1, where it is squared. */
5454 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5455 max *= fact;
5456 # endif
5457
5458 /* Compare with current best results. */
5459 if (max < best_chlen)
5460 {
5461 best_chlen = max;
5462 best_size = i;
5463 no_improvement_count = 0;
5464 }
5465 /* PR 11843: Avoid futile long searches for the best bucket size
5466 when there are a large number of symbols. */
5467 else if (++no_improvement_count == 100)
5468 break;
5469 }
5470
5471 free (counts);
5472 }
5473 else
5474 #endif /* defined (BFD_HOST_U_64_BIT) */
5475 {
5476 /* This is the fallback solution if no 64bit type is available or if we
5477 are not supposed to spend much time on optimizations. We select the
5478 bucket count using a fixed set of numbers. */
5479 for (i = 0; elf_buckets[i] != 0; i++)
5480 {
5481 best_size = elf_buckets[i];
5482 if (nsyms < elf_buckets[i + 1])
5483 break;
5484 }
5485 if (gnu_hash && best_size < 2)
5486 best_size = 2;
5487 }
5488
5489 return best_size;
5490 }
5491
5492 /* Size any SHT_GROUP section for ld -r. */
5493
5494 bfd_boolean
5495 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5496 {
5497 bfd *ibfd;
5498
5499 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5500 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5501 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5502 return FALSE;
5503 return TRUE;
5504 }
5505
5506 /* Set up the sizes and contents of the ELF dynamic sections. This is
5507 called by the ELF linker emulation before_allocation routine. We
5508 must set the sizes of the sections before the linker sets the
5509 addresses of the various sections. */
5510
5511 bfd_boolean
5512 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5513 const char *soname,
5514 const char *rpath,
5515 const char *filter_shlib,
5516 const char *audit,
5517 const char *depaudit,
5518 const char * const *auxiliary_filters,
5519 struct bfd_link_info *info,
5520 asection **sinterpptr,
5521 struct bfd_elf_version_tree *verdefs)
5522 {
5523 bfd_size_type soname_indx;
5524 bfd *dynobj;
5525 const struct elf_backend_data *bed;
5526 struct elf_info_failed asvinfo;
5527
5528 *sinterpptr = NULL;
5529
5530 soname_indx = (bfd_size_type) -1;
5531
5532 if (!is_elf_hash_table (info->hash))
5533 return TRUE;
5534
5535 bed = get_elf_backend_data (output_bfd);
5536 if (info->execstack)
5537 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5538 else if (info->noexecstack)
5539 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5540 else
5541 {
5542 bfd *inputobj;
5543 asection *notesec = NULL;
5544 int exec = 0;
5545
5546 for (inputobj = info->input_bfds;
5547 inputobj;
5548 inputobj = inputobj->link_next)
5549 {
5550 asection *s;
5551
5552 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5553 continue;
5554 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5555 if (s)
5556 {
5557 if (s->flags & SEC_CODE)
5558 exec = PF_X;
5559 notesec = s;
5560 }
5561 else if (bed->default_execstack)
5562 exec = PF_X;
5563 }
5564 if (notesec)
5565 {
5566 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5567 if (exec && info->relocatable
5568 && notesec->output_section != bfd_abs_section_ptr)
5569 notesec->output_section->flags |= SEC_CODE;
5570 }
5571 }
5572
5573 /* Any syms created from now on start with -1 in
5574 got.refcount/offset and plt.refcount/offset. */
5575 elf_hash_table (info)->init_got_refcount
5576 = elf_hash_table (info)->init_got_offset;
5577 elf_hash_table (info)->init_plt_refcount
5578 = elf_hash_table (info)->init_plt_offset;
5579
5580 if (info->relocatable
5581 && !_bfd_elf_size_group_sections (info))
5582 return FALSE;
5583
5584 /* The backend may have to create some sections regardless of whether
5585 we're dynamic or not. */
5586 if (bed->elf_backend_always_size_sections
5587 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5588 return FALSE;
5589
5590 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5591 return FALSE;
5592
5593 dynobj = elf_hash_table (info)->dynobj;
5594
5595 /* If there were no dynamic objects in the link, there is nothing to
5596 do here. */
5597 if (dynobj == NULL)
5598 return TRUE;
5599
5600 if (elf_hash_table (info)->dynamic_sections_created)
5601 {
5602 struct elf_info_failed eif;
5603 struct elf_link_hash_entry *h;
5604 asection *dynstr;
5605 struct bfd_elf_version_tree *t;
5606 struct bfd_elf_version_expr *d;
5607 asection *s;
5608 bfd_boolean all_defined;
5609
5610 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5611 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5612
5613 if (soname != NULL)
5614 {
5615 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5616 soname, TRUE);
5617 if (soname_indx == (bfd_size_type) -1
5618 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5619 return FALSE;
5620 }
5621
5622 if (info->symbolic)
5623 {
5624 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5625 return FALSE;
5626 info->flags |= DF_SYMBOLIC;
5627 }
5628
5629 if (rpath != NULL)
5630 {
5631 bfd_size_type indx;
5632
5633 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5634 TRUE);
5635 if (indx == (bfd_size_type) -1
5636 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5637 return FALSE;
5638
5639 if (info->new_dtags)
5640 {
5641 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5642 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5643 return FALSE;
5644 }
5645 }
5646
5647 if (filter_shlib != NULL)
5648 {
5649 bfd_size_type indx;
5650
5651 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5652 filter_shlib, TRUE);
5653 if (indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5655 return FALSE;
5656 }
5657
5658 if (auxiliary_filters != NULL)
5659 {
5660 const char * const *p;
5661
5662 for (p = auxiliary_filters; *p != NULL; p++)
5663 {
5664 bfd_size_type indx;
5665
5666 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5667 *p, TRUE);
5668 if (indx == (bfd_size_type) -1
5669 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5670 return FALSE;
5671 }
5672 }
5673
5674 if (audit != NULL)
5675 {
5676 bfd_size_type indx;
5677
5678 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5679 TRUE);
5680 if (indx == (bfd_size_type) -1
5681 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5682 return FALSE;
5683 }
5684
5685 if (depaudit != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5690 TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5693 return FALSE;
5694 }
5695
5696 eif.info = info;
5697 eif.verdefs = verdefs;
5698 eif.failed = FALSE;
5699
5700 /* If we are supposed to export all symbols into the dynamic symbol
5701 table (this is not the normal case), then do so. */
5702 if (info->export_dynamic
5703 || (info->executable && info->dynamic))
5704 {
5705 elf_link_hash_traverse (elf_hash_table (info),
5706 _bfd_elf_export_symbol,
5707 &eif);
5708 if (eif.failed)
5709 return FALSE;
5710 }
5711
5712 /* Make all global versions with definition. */
5713 for (t = verdefs; t != NULL; t = t->next)
5714 for (d = t->globals.list; d != NULL; d = d->next)
5715 if (!d->symver && d->literal)
5716 {
5717 const char *verstr, *name;
5718 size_t namelen, verlen, newlen;
5719 char *newname, *p;
5720 struct elf_link_hash_entry *newh;
5721
5722 name = d->pattern;
5723 namelen = strlen (name);
5724 verstr = t->name;
5725 verlen = strlen (verstr);
5726 newlen = namelen + verlen + 3;
5727
5728 newname = (char *) bfd_malloc (newlen);
5729 if (newname == NULL)
5730 return FALSE;
5731 memcpy (newname, name, namelen);
5732
5733 /* Check the hidden versioned definition. */
5734 p = newname + namelen;
5735 *p++ = ELF_VER_CHR;
5736 memcpy (p, verstr, verlen + 1);
5737 newh = elf_link_hash_lookup (elf_hash_table (info),
5738 newname, FALSE, FALSE,
5739 FALSE);
5740 if (newh == NULL
5741 || (newh->root.type != bfd_link_hash_defined
5742 && newh->root.type != bfd_link_hash_defweak))
5743 {
5744 /* Check the default versioned definition. */
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 }
5751 free (newname);
5752
5753 /* Mark this version if there is a definition and it is
5754 not defined in a shared object. */
5755 if (newh != NULL
5756 && !newh->def_dynamic
5757 && (newh->root.type == bfd_link_hash_defined
5758 || newh->root.type == bfd_link_hash_defweak))
5759 d->symver = 1;
5760 }
5761
5762 /* Attach all the symbols to their version information. */
5763 asvinfo.info = info;
5764 asvinfo.verdefs = verdefs;
5765 asvinfo.failed = FALSE;
5766
5767 elf_link_hash_traverse (elf_hash_table (info),
5768 _bfd_elf_link_assign_sym_version,
5769 &asvinfo);
5770 if (asvinfo.failed)
5771 return FALSE;
5772
5773 if (!info->allow_undefined_version)
5774 {
5775 /* Check if all global versions have a definition. */
5776 all_defined = TRUE;
5777 for (t = verdefs; t != NULL; t = t->next)
5778 for (d = t->globals.list; d != NULL; d = d->next)
5779 if (d->literal && !d->symver && !d->script)
5780 {
5781 (*_bfd_error_handler)
5782 (_("%s: undefined version: %s"),
5783 d->pattern, t->name);
5784 all_defined = FALSE;
5785 }
5786
5787 if (!all_defined)
5788 {
5789 bfd_set_error (bfd_error_bad_value);
5790 return FALSE;
5791 }
5792 }
5793
5794 /* Find all symbols which were defined in a dynamic object and make
5795 the backend pick a reasonable value for them. */
5796 elf_link_hash_traverse (elf_hash_table (info),
5797 _bfd_elf_adjust_dynamic_symbol,
5798 &eif);
5799 if (eif.failed)
5800 return FALSE;
5801
5802 /* Add some entries to the .dynamic section. We fill in some of the
5803 values later, in bfd_elf_final_link, but we must add the entries
5804 now so that we know the final size of the .dynamic section. */
5805
5806 /* If there are initialization and/or finalization functions to
5807 call then add the corresponding DT_INIT/DT_FINI entries. */
5808 h = (info->init_function
5809 ? elf_link_hash_lookup (elf_hash_table (info),
5810 info->init_function, FALSE,
5811 FALSE, FALSE)
5812 : NULL);
5813 if (h != NULL
5814 && (h->ref_regular
5815 || h->def_regular))
5816 {
5817 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5818 return FALSE;
5819 }
5820 h = (info->fini_function
5821 ? elf_link_hash_lookup (elf_hash_table (info),
5822 info->fini_function, FALSE,
5823 FALSE, FALSE)
5824 : NULL);
5825 if (h != NULL
5826 && (h->ref_regular
5827 || h->def_regular))
5828 {
5829 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5830 return FALSE;
5831 }
5832
5833 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5834 if (s != NULL && s->linker_has_input)
5835 {
5836 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5837 if (! info->executable)
5838 {
5839 bfd *sub;
5840 asection *o;
5841
5842 for (sub = info->input_bfds; sub != NULL;
5843 sub = sub->link_next)
5844 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5845 for (o = sub->sections; o != NULL; o = o->next)
5846 if (elf_section_data (o)->this_hdr.sh_type
5847 == SHT_PREINIT_ARRAY)
5848 {
5849 (*_bfd_error_handler)
5850 (_("%B: .preinit_array section is not allowed in DSO"),
5851 sub);
5852 break;
5853 }
5854
5855 bfd_set_error (bfd_error_nonrepresentable_section);
5856 return FALSE;
5857 }
5858
5859 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5860 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5861 return FALSE;
5862 }
5863 s = bfd_get_section_by_name (output_bfd, ".init_array");
5864 if (s != NULL && s->linker_has_input)
5865 {
5866 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5868 return FALSE;
5869 }
5870 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5871 if (s != NULL && s->linker_has_input)
5872 {
5873 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5874 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5875 return FALSE;
5876 }
5877
5878 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5879 /* If .dynstr is excluded from the link, we don't want any of
5880 these tags. Strictly, we should be checking each section
5881 individually; This quick check covers for the case where
5882 someone does a /DISCARD/ : { *(*) }. */
5883 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5884 {
5885 bfd_size_type strsize;
5886
5887 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5888 if ((info->emit_hash
5889 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5890 || (info->emit_gnu_hash
5891 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5892 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5895 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5896 bed->s->sizeof_sym))
5897 return FALSE;
5898 }
5899 }
5900
5901 /* The backend must work out the sizes of all the other dynamic
5902 sections. */
5903 if (bed->elf_backend_size_dynamic_sections
5904 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5905 return FALSE;
5906
5907 if (elf_hash_table (info)->dynamic_sections_created)
5908 {
5909 unsigned long section_sym_count;
5910 asection *s;
5911
5912 /* Set up the version definition section. */
5913 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5914 BFD_ASSERT (s != NULL);
5915
5916 /* We may have created additional version definitions if we are
5917 just linking a regular application. */
5918 verdefs = asvinfo.verdefs;
5919
5920 /* Skip anonymous version tag. */
5921 if (verdefs != NULL && verdefs->vernum == 0)
5922 verdefs = verdefs->next;
5923
5924 if (verdefs == NULL && !info->create_default_symver)
5925 s->flags |= SEC_EXCLUDE;
5926 else
5927 {
5928 unsigned int cdefs;
5929 bfd_size_type size;
5930 struct bfd_elf_version_tree *t;
5931 bfd_byte *p;
5932 Elf_Internal_Verdef def;
5933 Elf_Internal_Verdaux defaux;
5934 struct bfd_link_hash_entry *bh;
5935 struct elf_link_hash_entry *h;
5936 const char *name;
5937
5938 cdefs = 0;
5939 size = 0;
5940
5941 /* Make space for the base version. */
5942 size += sizeof (Elf_External_Verdef);
5943 size += sizeof (Elf_External_Verdaux);
5944 ++cdefs;
5945
5946 /* Make space for the default version. */
5947 if (info->create_default_symver)
5948 {
5949 size += sizeof (Elf_External_Verdef);
5950 ++cdefs;
5951 }
5952
5953 for (t = verdefs; t != NULL; t = t->next)
5954 {
5955 struct bfd_elf_version_deps *n;
5956
5957 /* Don't emit base version twice. */
5958 if (t->vernum == 0)
5959 continue;
5960
5961 size += sizeof (Elf_External_Verdef);
5962 size += sizeof (Elf_External_Verdaux);
5963 ++cdefs;
5964
5965 for (n = t->deps; n != NULL; n = n->next)
5966 size += sizeof (Elf_External_Verdaux);
5967 }
5968
5969 s->size = size;
5970 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5971 if (s->contents == NULL && s->size != 0)
5972 return FALSE;
5973
5974 /* Fill in the version definition section. */
5975
5976 p = s->contents;
5977
5978 def.vd_version = VER_DEF_CURRENT;
5979 def.vd_flags = VER_FLG_BASE;
5980 def.vd_ndx = 1;
5981 def.vd_cnt = 1;
5982 if (info->create_default_symver)
5983 {
5984 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5985 def.vd_next = sizeof (Elf_External_Verdef);
5986 }
5987 else
5988 {
5989 def.vd_aux = sizeof (Elf_External_Verdef);
5990 def.vd_next = (sizeof (Elf_External_Verdef)
5991 + sizeof (Elf_External_Verdaux));
5992 }
5993
5994 if (soname_indx != (bfd_size_type) -1)
5995 {
5996 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5997 soname_indx);
5998 def.vd_hash = bfd_elf_hash (soname);
5999 defaux.vda_name = soname_indx;
6000 name = soname;
6001 }
6002 else
6003 {
6004 bfd_size_type indx;
6005
6006 name = lbasename (output_bfd->filename);
6007 def.vd_hash = bfd_elf_hash (name);
6008 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6009 name, FALSE);
6010 if (indx == (bfd_size_type) -1)
6011 return FALSE;
6012 defaux.vda_name = indx;
6013 }
6014 defaux.vda_next = 0;
6015
6016 _bfd_elf_swap_verdef_out (output_bfd, &def,
6017 (Elf_External_Verdef *) p);
6018 p += sizeof (Elf_External_Verdef);
6019 if (info->create_default_symver)
6020 {
6021 /* Add a symbol representing this version. */
6022 bh = NULL;
6023 if (! (_bfd_generic_link_add_one_symbol
6024 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6025 0, NULL, FALSE,
6026 get_elf_backend_data (dynobj)->collect, &bh)))
6027 return FALSE;
6028 h = (struct elf_link_hash_entry *) bh;
6029 h->non_elf = 0;
6030 h->def_regular = 1;
6031 h->type = STT_OBJECT;
6032 h->verinfo.vertree = NULL;
6033
6034 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6035 return FALSE;
6036
6037 /* Create a duplicate of the base version with the same
6038 aux block, but different flags. */
6039 def.vd_flags = 0;
6040 def.vd_ndx = 2;
6041 def.vd_aux = sizeof (Elf_External_Verdef);
6042 if (verdefs)
6043 def.vd_next = (sizeof (Elf_External_Verdef)
6044 + sizeof (Elf_External_Verdaux));
6045 else
6046 def.vd_next = 0;
6047 _bfd_elf_swap_verdef_out (output_bfd, &def,
6048 (Elf_External_Verdef *) p);
6049 p += sizeof (Elf_External_Verdef);
6050 }
6051 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6052 (Elf_External_Verdaux *) p);
6053 p += sizeof (Elf_External_Verdaux);
6054
6055 for (t = verdefs; t != NULL; t = t->next)
6056 {
6057 unsigned int cdeps;
6058 struct bfd_elf_version_deps *n;
6059
6060 /* Don't emit the base version twice. */
6061 if (t->vernum == 0)
6062 continue;
6063
6064 cdeps = 0;
6065 for (n = t->deps; n != NULL; n = n->next)
6066 ++cdeps;
6067
6068 /* Add a symbol representing this version. */
6069 bh = NULL;
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6072 0, NULL, FALSE,
6073 get_elf_backend_data (dynobj)->collect, &bh)))
6074 return FALSE;
6075 h = (struct elf_link_hash_entry *) bh;
6076 h->non_elf = 0;
6077 h->def_regular = 1;
6078 h->type = STT_OBJECT;
6079 h->verinfo.vertree = t;
6080
6081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 return FALSE;
6083
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = 0;
6086 if (t->globals.list == NULL
6087 && t->locals.list == NULL
6088 && ! t->used)
6089 def.vd_flags |= VER_FLG_WEAK;
6090 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6091 def.vd_cnt = cdeps + 1;
6092 def.vd_hash = bfd_elf_hash (t->name);
6093 def.vd_aux = sizeof (Elf_External_Verdef);
6094 def.vd_next = 0;
6095
6096 /* If a basever node is next, it *must* be the last node in
6097 the chain, otherwise Verdef construction breaks. */
6098 if (t->next != NULL && t->next->vernum == 0)
6099 BFD_ASSERT (t->next->next == NULL);
6100
6101 if (t->next != NULL && t->next->vernum != 0)
6102 def.vd_next = (sizeof (Elf_External_Verdef)
6103 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6104
6105 _bfd_elf_swap_verdef_out (output_bfd, &def,
6106 (Elf_External_Verdef *) p);
6107 p += sizeof (Elf_External_Verdef);
6108
6109 defaux.vda_name = h->dynstr_index;
6110 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6111 h->dynstr_index);
6112 defaux.vda_next = 0;
6113 if (t->deps != NULL)
6114 defaux.vda_next = sizeof (Elf_External_Verdaux);
6115 t->name_indx = defaux.vda_name;
6116
6117 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6118 (Elf_External_Verdaux *) p);
6119 p += sizeof (Elf_External_Verdaux);
6120
6121 for (n = t->deps; n != NULL; n = n->next)
6122 {
6123 if (n->version_needed == NULL)
6124 {
6125 /* This can happen if there was an error in the
6126 version script. */
6127 defaux.vda_name = 0;
6128 }
6129 else
6130 {
6131 defaux.vda_name = n->version_needed->name_indx;
6132 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6133 defaux.vda_name);
6134 }
6135 if (n->next == NULL)
6136 defaux.vda_next = 0;
6137 else
6138 defaux.vda_next = sizeof (Elf_External_Verdaux);
6139
6140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6141 (Elf_External_Verdaux *) p);
6142 p += sizeof (Elf_External_Verdaux);
6143 }
6144 }
6145
6146 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6147 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6148 return FALSE;
6149
6150 elf_tdata (output_bfd)->cverdefs = cdefs;
6151 }
6152
6153 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6154 {
6155 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6156 return FALSE;
6157 }
6158 else if (info->flags & DF_BIND_NOW)
6159 {
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6161 return FALSE;
6162 }
6163
6164 if (info->flags_1)
6165 {
6166 if (info->executable)
6167 info->flags_1 &= ~ (DF_1_INITFIRST
6168 | DF_1_NODELETE
6169 | DF_1_NOOPEN);
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6171 return FALSE;
6172 }
6173
6174 /* Work out the size of the version reference section. */
6175
6176 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6177 BFD_ASSERT (s != NULL);
6178 {
6179 struct elf_find_verdep_info sinfo;
6180
6181 sinfo.info = info;
6182 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6183 if (sinfo.vers == 0)
6184 sinfo.vers = 1;
6185 sinfo.failed = FALSE;
6186
6187 elf_link_hash_traverse (elf_hash_table (info),
6188 _bfd_elf_link_find_version_dependencies,
6189 &sinfo);
6190 if (sinfo.failed)
6191 return FALSE;
6192
6193 if (elf_tdata (output_bfd)->verref == NULL)
6194 s->flags |= SEC_EXCLUDE;
6195 else
6196 {
6197 Elf_Internal_Verneed *t;
6198 unsigned int size;
6199 unsigned int crefs;
6200 bfd_byte *p;
6201
6202 /* Build the version dependency section. */
6203 size = 0;
6204 crefs = 0;
6205 for (t = elf_tdata (output_bfd)->verref;
6206 t != NULL;
6207 t = t->vn_nextref)
6208 {
6209 Elf_Internal_Vernaux *a;
6210
6211 size += sizeof (Elf_External_Verneed);
6212 ++crefs;
6213 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6214 size += sizeof (Elf_External_Vernaux);
6215 }
6216
6217 s->size = size;
6218 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6219 if (s->contents == NULL)
6220 return FALSE;
6221
6222 p = s->contents;
6223 for (t = elf_tdata (output_bfd)->verref;
6224 t != NULL;
6225 t = t->vn_nextref)
6226 {
6227 unsigned int caux;
6228 Elf_Internal_Vernaux *a;
6229 bfd_size_type indx;
6230
6231 caux = 0;
6232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6233 ++caux;
6234
6235 t->vn_version = VER_NEED_CURRENT;
6236 t->vn_cnt = caux;
6237 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6238 elf_dt_name (t->vn_bfd) != NULL
6239 ? elf_dt_name (t->vn_bfd)
6240 : lbasename (t->vn_bfd->filename),
6241 FALSE);
6242 if (indx == (bfd_size_type) -1)
6243 return FALSE;
6244 t->vn_file = indx;
6245 t->vn_aux = sizeof (Elf_External_Verneed);
6246 if (t->vn_nextref == NULL)
6247 t->vn_next = 0;
6248 else
6249 t->vn_next = (sizeof (Elf_External_Verneed)
6250 + caux * sizeof (Elf_External_Vernaux));
6251
6252 _bfd_elf_swap_verneed_out (output_bfd, t,
6253 (Elf_External_Verneed *) p);
6254 p += sizeof (Elf_External_Verneed);
6255
6256 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 {
6258 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6259 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6260 a->vna_nodename, FALSE);
6261 if (indx == (bfd_size_type) -1)
6262 return FALSE;
6263 a->vna_name = indx;
6264 if (a->vna_nextptr == NULL)
6265 a->vna_next = 0;
6266 else
6267 a->vna_next = sizeof (Elf_External_Vernaux);
6268
6269 _bfd_elf_swap_vernaux_out (output_bfd, a,
6270 (Elf_External_Vernaux *) p);
6271 p += sizeof (Elf_External_Vernaux);
6272 }
6273 }
6274
6275 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6276 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6277 return FALSE;
6278
6279 elf_tdata (output_bfd)->cverrefs = crefs;
6280 }
6281 }
6282
6283 if ((elf_tdata (output_bfd)->cverrefs == 0
6284 && elf_tdata (output_bfd)->cverdefs == 0)
6285 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6286 &section_sym_count) == 0)
6287 {
6288 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6289 s->flags |= SEC_EXCLUDE;
6290 }
6291 }
6292 return TRUE;
6293 }
6294
6295 /* Find the first non-excluded output section. We'll use its
6296 section symbol for some emitted relocs. */
6297 void
6298 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6299 {
6300 asection *s;
6301
6302 for (s = output_bfd->sections; s != NULL; s = s->next)
6303 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6304 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6305 {
6306 elf_hash_table (info)->text_index_section = s;
6307 break;
6308 }
6309 }
6310
6311 /* Find two non-excluded output sections, one for code, one for data.
6312 We'll use their section symbols for some emitted relocs. */
6313 void
6314 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 /* Data first, since setting text_index_section changes
6319 _bfd_elf_link_omit_section_dynsym. */
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6323 {
6324 elf_hash_table (info)->data_index_section = s;
6325 break;
6326 }
6327
6328 for (s = output_bfd->sections; s != NULL; s = s->next)
6329 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6330 == (SEC_ALLOC | SEC_READONLY))
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6332 {
6333 elf_hash_table (info)->text_index_section = s;
6334 break;
6335 }
6336
6337 if (elf_hash_table (info)->text_index_section == NULL)
6338 elf_hash_table (info)->text_index_section
6339 = elf_hash_table (info)->data_index_section;
6340 }
6341
6342 bfd_boolean
6343 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6344 {
6345 const struct elf_backend_data *bed;
6346
6347 if (!is_elf_hash_table (info->hash))
6348 return TRUE;
6349
6350 bed = get_elf_backend_data (output_bfd);
6351 (*bed->elf_backend_init_index_section) (output_bfd, info);
6352
6353 if (elf_hash_table (info)->dynamic_sections_created)
6354 {
6355 bfd *dynobj;
6356 asection *s;
6357 bfd_size_type dynsymcount;
6358 unsigned long section_sym_count;
6359 unsigned int dtagcount;
6360
6361 dynobj = elf_hash_table (info)->dynobj;
6362
6363 /* Assign dynsym indicies. In a shared library we generate a
6364 section symbol for each output section, which come first.
6365 Next come all of the back-end allocated local dynamic syms,
6366 followed by the rest of the global symbols. */
6367
6368 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6369 &section_sym_count);
6370
6371 /* Work out the size of the symbol version section. */
6372 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6373 BFD_ASSERT (s != NULL);
6374 if (dynsymcount != 0
6375 && (s->flags & SEC_EXCLUDE) == 0)
6376 {
6377 s->size = dynsymcount * sizeof (Elf_External_Versym);
6378 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6379 if (s->contents == NULL)
6380 return FALSE;
6381
6382 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6383 return FALSE;
6384 }
6385
6386 /* Set the size of the .dynsym and .hash sections. We counted
6387 the number of dynamic symbols in elf_link_add_object_symbols.
6388 We will build the contents of .dynsym and .hash when we build
6389 the final symbol table, because until then we do not know the
6390 correct value to give the symbols. We built the .dynstr
6391 section as we went along in elf_link_add_object_symbols. */
6392 s = bfd_get_section_by_name (dynobj, ".dynsym");
6393 BFD_ASSERT (s != NULL);
6394 s->size = dynsymcount * bed->s->sizeof_sym;
6395
6396 if (dynsymcount != 0)
6397 {
6398 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6399 if (s->contents == NULL)
6400 return FALSE;
6401
6402 /* The first entry in .dynsym is a dummy symbol.
6403 Clear all the section syms, in case we don't output them all. */
6404 ++section_sym_count;
6405 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6406 }
6407
6408 elf_hash_table (info)->bucketcount = 0;
6409
6410 /* Compute the size of the hashing table. As a side effect this
6411 computes the hash values for all the names we export. */
6412 if (info->emit_hash)
6413 {
6414 unsigned long int *hashcodes;
6415 struct hash_codes_info hashinf;
6416 bfd_size_type amt;
6417 unsigned long int nsyms;
6418 size_t bucketcount;
6419 size_t hash_entry_size;
6420
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6423 optimizations. */
6424 amt = dynsymcount * sizeof (unsigned long int);
6425 hashcodes = (unsigned long int *) bfd_malloc (amt);
6426 if (hashcodes == NULL)
6427 return FALSE;
6428 hashinf.hashcodes = hashcodes;
6429 hashinf.error = FALSE;
6430
6431 /* Put all hash values in HASHCODES. */
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 elf_collect_hash_codes, &hashinf);
6434 if (hashinf.error)
6435 {
6436 free (hashcodes);
6437 return FALSE;
6438 }
6439
6440 nsyms = hashinf.hashcodes - hashcodes;
6441 bucketcount
6442 = compute_bucket_count (info, hashcodes, nsyms, 0);
6443 free (hashcodes);
6444
6445 if (bucketcount == 0)
6446 return FALSE;
6447
6448 elf_hash_table (info)->bucketcount = bucketcount;
6449
6450 s = bfd_get_section_by_name (dynobj, ".hash");
6451 BFD_ASSERT (s != NULL);
6452 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6453 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6454 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6455 if (s->contents == NULL)
6456 return FALSE;
6457
6458 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6459 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6460 s->contents + hash_entry_size);
6461 }
6462
6463 if (info->emit_gnu_hash)
6464 {
6465 size_t i, cnt;
6466 unsigned char *contents;
6467 struct collect_gnu_hash_codes cinfo;
6468 bfd_size_type amt;
6469 size_t bucketcount;
6470
6471 memset (&cinfo, 0, sizeof (cinfo));
6472
6473 /* Compute the hash values for all exported symbols. At the same
6474 time store the values in an array so that we could use them for
6475 optimizations. */
6476 amt = dynsymcount * 2 * sizeof (unsigned long int);
6477 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6478 if (cinfo.hashcodes == NULL)
6479 return FALSE;
6480
6481 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6482 cinfo.min_dynindx = -1;
6483 cinfo.output_bfd = output_bfd;
6484 cinfo.bed = bed;
6485
6486 /* Put all hash values in HASHCODES. */
6487 elf_link_hash_traverse (elf_hash_table (info),
6488 elf_collect_gnu_hash_codes, &cinfo);
6489 if (cinfo.error)
6490 {
6491 free (cinfo.hashcodes);
6492 return FALSE;
6493 }
6494
6495 bucketcount
6496 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6497
6498 if (bucketcount == 0)
6499 {
6500 free (cinfo.hashcodes);
6501 return FALSE;
6502 }
6503
6504 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6505 BFD_ASSERT (s != NULL);
6506
6507 if (cinfo.nsyms == 0)
6508 {
6509 /* Empty .gnu.hash section is special. */
6510 BFD_ASSERT (cinfo.min_dynindx == -1);
6511 free (cinfo.hashcodes);
6512 s->size = 5 * 4 + bed->s->arch_size / 8;
6513 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6514 if (contents == NULL)
6515 return FALSE;
6516 s->contents = contents;
6517 /* 1 empty bucket. */
6518 bfd_put_32 (output_bfd, 1, contents);
6519 /* SYMIDX above the special symbol 0. */
6520 bfd_put_32 (output_bfd, 1, contents + 4);
6521 /* Just one word for bitmask. */
6522 bfd_put_32 (output_bfd, 1, contents + 8);
6523 /* Only hash fn bloom filter. */
6524 bfd_put_32 (output_bfd, 0, contents + 12);
6525 /* No hashes are valid - empty bitmask. */
6526 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6527 /* No hashes in the only bucket. */
6528 bfd_put_32 (output_bfd, 0,
6529 contents + 16 + bed->s->arch_size / 8);
6530 }
6531 else
6532 {
6533 unsigned long int maskwords, maskbitslog2;
6534 BFD_ASSERT (cinfo.min_dynindx != -1);
6535
6536 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6537 if (maskbitslog2 < 3)
6538 maskbitslog2 = 5;
6539 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6540 maskbitslog2 = maskbitslog2 + 3;
6541 else
6542 maskbitslog2 = maskbitslog2 + 2;
6543 if (bed->s->arch_size == 64)
6544 {
6545 if (maskbitslog2 == 5)
6546 maskbitslog2 = 6;
6547 cinfo.shift1 = 6;
6548 }
6549 else
6550 cinfo.shift1 = 5;
6551 cinfo.mask = (1 << cinfo.shift1) - 1;
6552 cinfo.shift2 = maskbitslog2;
6553 cinfo.maskbits = 1 << maskbitslog2;
6554 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6555 amt = bucketcount * sizeof (unsigned long int) * 2;
6556 amt += maskwords * sizeof (bfd_vma);
6557 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6558 if (cinfo.bitmask == NULL)
6559 {
6560 free (cinfo.hashcodes);
6561 return FALSE;
6562 }
6563
6564 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6565 cinfo.indx = cinfo.counts + bucketcount;
6566 cinfo.symindx = dynsymcount - cinfo.nsyms;
6567 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6568
6569 /* Determine how often each hash bucket is used. */
6570 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6571 for (i = 0; i < cinfo.nsyms; ++i)
6572 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6573
6574 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6575 if (cinfo.counts[i] != 0)
6576 {
6577 cinfo.indx[i] = cnt;
6578 cnt += cinfo.counts[i];
6579 }
6580 BFD_ASSERT (cnt == dynsymcount);
6581 cinfo.bucketcount = bucketcount;
6582 cinfo.local_indx = cinfo.min_dynindx;
6583
6584 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6585 s->size += cinfo.maskbits / 8;
6586 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6587 if (contents == NULL)
6588 {
6589 free (cinfo.bitmask);
6590 free (cinfo.hashcodes);
6591 return FALSE;
6592 }
6593
6594 s->contents = contents;
6595 bfd_put_32 (output_bfd, bucketcount, contents);
6596 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6597 bfd_put_32 (output_bfd, maskwords, contents + 8);
6598 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6599 contents += 16 + cinfo.maskbits / 8;
6600
6601 for (i = 0; i < bucketcount; ++i)
6602 {
6603 if (cinfo.counts[i] == 0)
6604 bfd_put_32 (output_bfd, 0, contents);
6605 else
6606 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6607 contents += 4;
6608 }
6609
6610 cinfo.contents = contents;
6611
6612 /* Renumber dynamic symbols, populate .gnu.hash section. */
6613 elf_link_hash_traverse (elf_hash_table (info),
6614 elf_renumber_gnu_hash_syms, &cinfo);
6615
6616 contents = s->contents + 16;
6617 for (i = 0; i < maskwords; ++i)
6618 {
6619 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6620 contents);
6621 contents += bed->s->arch_size / 8;
6622 }
6623
6624 free (cinfo.bitmask);
6625 free (cinfo.hashcodes);
6626 }
6627 }
6628
6629 s = bfd_get_section_by_name (dynobj, ".dynstr");
6630 BFD_ASSERT (s != NULL);
6631
6632 elf_finalize_dynstr (output_bfd, info);
6633
6634 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6635
6636 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6637 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6638 return FALSE;
6639 }
6640
6641 return TRUE;
6642 }
6643 \f
6644 /* Indicate that we are only retrieving symbol values from this
6645 section. */
6646
6647 void
6648 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6649 {
6650 if (is_elf_hash_table (info->hash))
6651 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6652 _bfd_generic_link_just_syms (sec, info);
6653 }
6654
6655 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6656
6657 static void
6658 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6659 asection *sec)
6660 {
6661 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6662 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6663 }
6664
6665 /* Finish SHF_MERGE section merging. */
6666
6667 bfd_boolean
6668 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6669 {
6670 bfd *ibfd;
6671 asection *sec;
6672
6673 if (!is_elf_hash_table (info->hash))
6674 return FALSE;
6675
6676 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6677 if ((ibfd->flags & DYNAMIC) == 0)
6678 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6679 if ((sec->flags & SEC_MERGE) != 0
6680 && !bfd_is_abs_section (sec->output_section))
6681 {
6682 struct bfd_elf_section_data *secdata;
6683
6684 secdata = elf_section_data (sec);
6685 if (! _bfd_add_merge_section (abfd,
6686 &elf_hash_table (info)->merge_info,
6687 sec, &secdata->sec_info))
6688 return FALSE;
6689 else if (secdata->sec_info)
6690 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6691 }
6692
6693 if (elf_hash_table (info)->merge_info != NULL)
6694 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6695 merge_sections_remove_hook);
6696 return TRUE;
6697 }
6698
6699 /* Create an entry in an ELF linker hash table. */
6700
6701 struct bfd_hash_entry *
6702 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6703 struct bfd_hash_table *table,
6704 const char *string)
6705 {
6706 /* Allocate the structure if it has not already been allocated by a
6707 subclass. */
6708 if (entry == NULL)
6709 {
6710 entry = (struct bfd_hash_entry *)
6711 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6712 if (entry == NULL)
6713 return entry;
6714 }
6715
6716 /* Call the allocation method of the superclass. */
6717 entry = _bfd_link_hash_newfunc (entry, table, string);
6718 if (entry != NULL)
6719 {
6720 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6721 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6722
6723 /* Set local fields. */
6724 ret->indx = -1;
6725 ret->dynindx = -1;
6726 ret->got = htab->init_got_refcount;
6727 ret->plt = htab->init_plt_refcount;
6728 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6729 - offsetof (struct elf_link_hash_entry, size)));
6730 /* Assume that we have been called by a non-ELF symbol reader.
6731 This flag is then reset by the code which reads an ELF input
6732 file. This ensures that a symbol created by a non-ELF symbol
6733 reader will have the flag set correctly. */
6734 ret->non_elf = 1;
6735 }
6736
6737 return entry;
6738 }
6739
6740 /* Copy data from an indirect symbol to its direct symbol, hiding the
6741 old indirect symbol. Also used for copying flags to a weakdef. */
6742
6743 void
6744 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6745 struct elf_link_hash_entry *dir,
6746 struct elf_link_hash_entry *ind)
6747 {
6748 struct elf_link_hash_table *htab;
6749
6750 /* Copy down any references that we may have already seen to the
6751 symbol which just became indirect. */
6752
6753 dir->ref_dynamic |= ind->ref_dynamic;
6754 dir->ref_regular |= ind->ref_regular;
6755 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6756 dir->non_got_ref |= ind->non_got_ref;
6757 dir->needs_plt |= ind->needs_plt;
6758 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6759
6760 if (ind->root.type != bfd_link_hash_indirect)
6761 return;
6762
6763 /* Copy over the global and procedure linkage table refcount entries.
6764 These may have been already set up by a check_relocs routine. */
6765 htab = elf_hash_table (info);
6766 if (ind->got.refcount > htab->init_got_refcount.refcount)
6767 {
6768 if (dir->got.refcount < 0)
6769 dir->got.refcount = 0;
6770 dir->got.refcount += ind->got.refcount;
6771 ind->got.refcount = htab->init_got_refcount.refcount;
6772 }
6773
6774 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6775 {
6776 if (dir->plt.refcount < 0)
6777 dir->plt.refcount = 0;
6778 dir->plt.refcount += ind->plt.refcount;
6779 ind->plt.refcount = htab->init_plt_refcount.refcount;
6780 }
6781
6782 if (ind->dynindx != -1)
6783 {
6784 if (dir->dynindx != -1)
6785 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6786 dir->dynindx = ind->dynindx;
6787 dir->dynstr_index = ind->dynstr_index;
6788 ind->dynindx = -1;
6789 ind->dynstr_index = 0;
6790 }
6791 }
6792
6793 void
6794 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6795 struct elf_link_hash_entry *h,
6796 bfd_boolean force_local)
6797 {
6798 /* STT_GNU_IFUNC symbol must go through PLT. */
6799 if (h->type != STT_GNU_IFUNC)
6800 {
6801 h->plt = elf_hash_table (info)->init_plt_offset;
6802 h->needs_plt = 0;
6803 }
6804 if (force_local)
6805 {
6806 h->forced_local = 1;
6807 if (h->dynindx != -1)
6808 {
6809 h->dynindx = -1;
6810 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6811 h->dynstr_index);
6812 }
6813 }
6814 }
6815
6816 /* Initialize an ELF linker hash table. */
6817
6818 bfd_boolean
6819 _bfd_elf_link_hash_table_init
6820 (struct elf_link_hash_table *table,
6821 bfd *abfd,
6822 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6823 struct bfd_hash_table *,
6824 const char *),
6825 unsigned int entsize,
6826 enum elf_target_id target_id)
6827 {
6828 bfd_boolean ret;
6829 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6830
6831 memset (table, 0, sizeof * table);
6832 table->init_got_refcount.refcount = can_refcount - 1;
6833 table->init_plt_refcount.refcount = can_refcount - 1;
6834 table->init_got_offset.offset = -(bfd_vma) 1;
6835 table->init_plt_offset.offset = -(bfd_vma) 1;
6836 /* The first dynamic symbol is a dummy. */
6837 table->dynsymcount = 1;
6838
6839 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6840
6841 table->root.type = bfd_link_elf_hash_table;
6842 table->hash_table_id = target_id;
6843
6844 return ret;
6845 }
6846
6847 /* Create an ELF linker hash table. */
6848
6849 struct bfd_link_hash_table *
6850 _bfd_elf_link_hash_table_create (bfd *abfd)
6851 {
6852 struct elf_link_hash_table *ret;
6853 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6854
6855 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6856 if (ret == NULL)
6857 return NULL;
6858
6859 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6860 sizeof (struct elf_link_hash_entry),
6861 GENERIC_ELF_DATA))
6862 {
6863 free (ret);
6864 return NULL;
6865 }
6866
6867 return &ret->root;
6868 }
6869
6870 /* This is a hook for the ELF emulation code in the generic linker to
6871 tell the backend linker what file name to use for the DT_NEEDED
6872 entry for a dynamic object. */
6873
6874 void
6875 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6876 {
6877 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6878 && bfd_get_format (abfd) == bfd_object)
6879 elf_dt_name (abfd) = name;
6880 }
6881
6882 int
6883 bfd_elf_get_dyn_lib_class (bfd *abfd)
6884 {
6885 int lib_class;
6886 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6887 && bfd_get_format (abfd) == bfd_object)
6888 lib_class = elf_dyn_lib_class (abfd);
6889 else
6890 lib_class = 0;
6891 return lib_class;
6892 }
6893
6894 void
6895 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6896 {
6897 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6898 && bfd_get_format (abfd) == bfd_object)
6899 elf_dyn_lib_class (abfd) = lib_class;
6900 }
6901
6902 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6903 the linker ELF emulation code. */
6904
6905 struct bfd_link_needed_list *
6906 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6907 struct bfd_link_info *info)
6908 {
6909 if (! is_elf_hash_table (info->hash))
6910 return NULL;
6911 return elf_hash_table (info)->needed;
6912 }
6913
6914 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6915 hook for the linker ELF emulation code. */
6916
6917 struct bfd_link_needed_list *
6918 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6919 struct bfd_link_info *info)
6920 {
6921 if (! is_elf_hash_table (info->hash))
6922 return NULL;
6923 return elf_hash_table (info)->runpath;
6924 }
6925
6926 /* Get the name actually used for a dynamic object for a link. This
6927 is the SONAME entry if there is one. Otherwise, it is the string
6928 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6929
6930 const char *
6931 bfd_elf_get_dt_soname (bfd *abfd)
6932 {
6933 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6934 && bfd_get_format (abfd) == bfd_object)
6935 return elf_dt_name (abfd);
6936 return NULL;
6937 }
6938
6939 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6940 the ELF linker emulation code. */
6941
6942 bfd_boolean
6943 bfd_elf_get_bfd_needed_list (bfd *abfd,
6944 struct bfd_link_needed_list **pneeded)
6945 {
6946 asection *s;
6947 bfd_byte *dynbuf = NULL;
6948 unsigned int elfsec;
6949 unsigned long shlink;
6950 bfd_byte *extdyn, *extdynend;
6951 size_t extdynsize;
6952 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6953
6954 *pneeded = NULL;
6955
6956 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6957 || bfd_get_format (abfd) != bfd_object)
6958 return TRUE;
6959
6960 s = bfd_get_section_by_name (abfd, ".dynamic");
6961 if (s == NULL || s->size == 0)
6962 return TRUE;
6963
6964 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6965 goto error_return;
6966
6967 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6968 if (elfsec == SHN_BAD)
6969 goto error_return;
6970
6971 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6972
6973 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6974 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6975
6976 extdyn = dynbuf;
6977 extdynend = extdyn + s->size;
6978 for (; extdyn < extdynend; extdyn += extdynsize)
6979 {
6980 Elf_Internal_Dyn dyn;
6981
6982 (*swap_dyn_in) (abfd, extdyn, &dyn);
6983
6984 if (dyn.d_tag == DT_NULL)
6985 break;
6986
6987 if (dyn.d_tag == DT_NEEDED)
6988 {
6989 const char *string;
6990 struct bfd_link_needed_list *l;
6991 unsigned int tagv = dyn.d_un.d_val;
6992 bfd_size_type amt;
6993
6994 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6995 if (string == NULL)
6996 goto error_return;
6997
6998 amt = sizeof *l;
6999 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7000 if (l == NULL)
7001 goto error_return;
7002
7003 l->by = abfd;
7004 l->name = string;
7005 l->next = *pneeded;
7006 *pneeded = l;
7007 }
7008 }
7009
7010 free (dynbuf);
7011
7012 return TRUE;
7013
7014 error_return:
7015 if (dynbuf != NULL)
7016 free (dynbuf);
7017 return FALSE;
7018 }
7019
7020 struct elf_symbuf_symbol
7021 {
7022 unsigned long st_name; /* Symbol name, index in string tbl */
7023 unsigned char st_info; /* Type and binding attributes */
7024 unsigned char st_other; /* Visibilty, and target specific */
7025 };
7026
7027 struct elf_symbuf_head
7028 {
7029 struct elf_symbuf_symbol *ssym;
7030 bfd_size_type count;
7031 unsigned int st_shndx;
7032 };
7033
7034 struct elf_symbol
7035 {
7036 union
7037 {
7038 Elf_Internal_Sym *isym;
7039 struct elf_symbuf_symbol *ssym;
7040 } u;
7041 const char *name;
7042 };
7043
7044 /* Sort references to symbols by ascending section number. */
7045
7046 static int
7047 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7048 {
7049 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7050 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7051
7052 return s1->st_shndx - s2->st_shndx;
7053 }
7054
7055 static int
7056 elf_sym_name_compare (const void *arg1, const void *arg2)
7057 {
7058 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7059 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7060 return strcmp (s1->name, s2->name);
7061 }
7062
7063 static struct elf_symbuf_head *
7064 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7065 {
7066 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7067 struct elf_symbuf_symbol *ssym;
7068 struct elf_symbuf_head *ssymbuf, *ssymhead;
7069 bfd_size_type i, shndx_count, total_size;
7070
7071 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7072 if (indbuf == NULL)
7073 return NULL;
7074
7075 for (ind = indbuf, i = 0; i < symcount; i++)
7076 if (isymbuf[i].st_shndx != SHN_UNDEF)
7077 *ind++ = &isymbuf[i];
7078 indbufend = ind;
7079
7080 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7081 elf_sort_elf_symbol);
7082
7083 shndx_count = 0;
7084 if (indbufend > indbuf)
7085 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7086 if (ind[0]->st_shndx != ind[1]->st_shndx)
7087 shndx_count++;
7088
7089 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7090 + (indbufend - indbuf) * sizeof (*ssym));
7091 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7092 if (ssymbuf == NULL)
7093 {
7094 free (indbuf);
7095 return NULL;
7096 }
7097
7098 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7099 ssymbuf->ssym = NULL;
7100 ssymbuf->count = shndx_count;
7101 ssymbuf->st_shndx = 0;
7102 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7103 {
7104 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7105 {
7106 ssymhead++;
7107 ssymhead->ssym = ssym;
7108 ssymhead->count = 0;
7109 ssymhead->st_shndx = (*ind)->st_shndx;
7110 }
7111 ssym->st_name = (*ind)->st_name;
7112 ssym->st_info = (*ind)->st_info;
7113 ssym->st_other = (*ind)->st_other;
7114 ssymhead->count++;
7115 }
7116 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7117 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7118 == total_size));
7119
7120 free (indbuf);
7121 return ssymbuf;
7122 }
7123
7124 /* Check if 2 sections define the same set of local and global
7125 symbols. */
7126
7127 static bfd_boolean
7128 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7129 struct bfd_link_info *info)
7130 {
7131 bfd *bfd1, *bfd2;
7132 const struct elf_backend_data *bed1, *bed2;
7133 Elf_Internal_Shdr *hdr1, *hdr2;
7134 bfd_size_type symcount1, symcount2;
7135 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7136 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7137 Elf_Internal_Sym *isym, *isymend;
7138 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7139 bfd_size_type count1, count2, i;
7140 unsigned int shndx1, shndx2;
7141 bfd_boolean result;
7142
7143 bfd1 = sec1->owner;
7144 bfd2 = sec2->owner;
7145
7146 /* Both sections have to be in ELF. */
7147 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7148 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7149 return FALSE;
7150
7151 if (elf_section_type (sec1) != elf_section_type (sec2))
7152 return FALSE;
7153
7154 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7155 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7156 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7157 return FALSE;
7158
7159 bed1 = get_elf_backend_data (bfd1);
7160 bed2 = get_elf_backend_data (bfd2);
7161 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7162 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7163 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7164 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7165
7166 if (symcount1 == 0 || symcount2 == 0)
7167 return FALSE;
7168
7169 result = FALSE;
7170 isymbuf1 = NULL;
7171 isymbuf2 = NULL;
7172 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7173 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7174
7175 if (ssymbuf1 == NULL)
7176 {
7177 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7178 NULL, NULL, NULL);
7179 if (isymbuf1 == NULL)
7180 goto done;
7181
7182 if (!info->reduce_memory_overheads)
7183 elf_tdata (bfd1)->symbuf = ssymbuf1
7184 = elf_create_symbuf (symcount1, isymbuf1);
7185 }
7186
7187 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7188 {
7189 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7190 NULL, NULL, NULL);
7191 if (isymbuf2 == NULL)
7192 goto done;
7193
7194 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7195 elf_tdata (bfd2)->symbuf = ssymbuf2
7196 = elf_create_symbuf (symcount2, isymbuf2);
7197 }
7198
7199 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7200 {
7201 /* Optimized faster version. */
7202 bfd_size_type lo, hi, mid;
7203 struct elf_symbol *symp;
7204 struct elf_symbuf_symbol *ssym, *ssymend;
7205
7206 lo = 0;
7207 hi = ssymbuf1->count;
7208 ssymbuf1++;
7209 count1 = 0;
7210 while (lo < hi)
7211 {
7212 mid = (lo + hi) / 2;
7213 if (shndx1 < ssymbuf1[mid].st_shndx)
7214 hi = mid;
7215 else if (shndx1 > ssymbuf1[mid].st_shndx)
7216 lo = mid + 1;
7217 else
7218 {
7219 count1 = ssymbuf1[mid].count;
7220 ssymbuf1 += mid;
7221 break;
7222 }
7223 }
7224
7225 lo = 0;
7226 hi = ssymbuf2->count;
7227 ssymbuf2++;
7228 count2 = 0;
7229 while (lo < hi)
7230 {
7231 mid = (lo + hi) / 2;
7232 if (shndx2 < ssymbuf2[mid].st_shndx)
7233 hi = mid;
7234 else if (shndx2 > ssymbuf2[mid].st_shndx)
7235 lo = mid + 1;
7236 else
7237 {
7238 count2 = ssymbuf2[mid].count;
7239 ssymbuf2 += mid;
7240 break;
7241 }
7242 }
7243
7244 if (count1 == 0 || count2 == 0 || count1 != count2)
7245 goto done;
7246
7247 symtable1 = (struct elf_symbol *)
7248 bfd_malloc (count1 * sizeof (struct elf_symbol));
7249 symtable2 = (struct elf_symbol *)
7250 bfd_malloc (count2 * sizeof (struct elf_symbol));
7251 if (symtable1 == NULL || symtable2 == NULL)
7252 goto done;
7253
7254 symp = symtable1;
7255 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7256 ssym < ssymend; ssym++, symp++)
7257 {
7258 symp->u.ssym = ssym;
7259 symp->name = bfd_elf_string_from_elf_section (bfd1,
7260 hdr1->sh_link,
7261 ssym->st_name);
7262 }
7263
7264 symp = symtable2;
7265 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7266 ssym < ssymend; ssym++, symp++)
7267 {
7268 symp->u.ssym = ssym;
7269 symp->name = bfd_elf_string_from_elf_section (bfd2,
7270 hdr2->sh_link,
7271 ssym->st_name);
7272 }
7273
7274 /* Sort symbol by name. */
7275 qsort (symtable1, count1, sizeof (struct elf_symbol),
7276 elf_sym_name_compare);
7277 qsort (symtable2, count1, sizeof (struct elf_symbol),
7278 elf_sym_name_compare);
7279
7280 for (i = 0; i < count1; i++)
7281 /* Two symbols must have the same binding, type and name. */
7282 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7283 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7284 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7285 goto done;
7286
7287 result = TRUE;
7288 goto done;
7289 }
7290
7291 symtable1 = (struct elf_symbol *)
7292 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7293 symtable2 = (struct elf_symbol *)
7294 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7295 if (symtable1 == NULL || symtable2 == NULL)
7296 goto done;
7297
7298 /* Count definitions in the section. */
7299 count1 = 0;
7300 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7301 if (isym->st_shndx == shndx1)
7302 symtable1[count1++].u.isym = isym;
7303
7304 count2 = 0;
7305 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7306 if (isym->st_shndx == shndx2)
7307 symtable2[count2++].u.isym = isym;
7308
7309 if (count1 == 0 || count2 == 0 || count1 != count2)
7310 goto done;
7311
7312 for (i = 0; i < count1; i++)
7313 symtable1[i].name
7314 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7315 symtable1[i].u.isym->st_name);
7316
7317 for (i = 0; i < count2; i++)
7318 symtable2[i].name
7319 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7320 symtable2[i].u.isym->st_name);
7321
7322 /* Sort symbol by name. */
7323 qsort (symtable1, count1, sizeof (struct elf_symbol),
7324 elf_sym_name_compare);
7325 qsort (symtable2, count1, sizeof (struct elf_symbol),
7326 elf_sym_name_compare);
7327
7328 for (i = 0; i < count1; i++)
7329 /* Two symbols must have the same binding, type and name. */
7330 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7331 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7332 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7333 goto done;
7334
7335 result = TRUE;
7336
7337 done:
7338 if (symtable1)
7339 free (symtable1);
7340 if (symtable2)
7341 free (symtable2);
7342 if (isymbuf1)
7343 free (isymbuf1);
7344 if (isymbuf2)
7345 free (isymbuf2);
7346
7347 return result;
7348 }
7349
7350 /* Return TRUE if 2 section types are compatible. */
7351
7352 bfd_boolean
7353 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7354 bfd *bbfd, const asection *bsec)
7355 {
7356 if (asec == NULL
7357 || bsec == NULL
7358 || abfd->xvec->flavour != bfd_target_elf_flavour
7359 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7360 return TRUE;
7361
7362 return elf_section_type (asec) == elf_section_type (bsec);
7363 }
7364 \f
7365 /* Final phase of ELF linker. */
7366
7367 /* A structure we use to avoid passing large numbers of arguments. */
7368
7369 struct elf_final_link_info
7370 {
7371 /* General link information. */
7372 struct bfd_link_info *info;
7373 /* Output BFD. */
7374 bfd *output_bfd;
7375 /* Symbol string table. */
7376 struct bfd_strtab_hash *symstrtab;
7377 /* .dynsym section. */
7378 asection *dynsym_sec;
7379 /* .hash section. */
7380 asection *hash_sec;
7381 /* symbol version section (.gnu.version). */
7382 asection *symver_sec;
7383 /* Buffer large enough to hold contents of any section. */
7384 bfd_byte *contents;
7385 /* Buffer large enough to hold external relocs of any section. */
7386 void *external_relocs;
7387 /* Buffer large enough to hold internal relocs of any section. */
7388 Elf_Internal_Rela *internal_relocs;
7389 /* Buffer large enough to hold external local symbols of any input
7390 BFD. */
7391 bfd_byte *external_syms;
7392 /* And a buffer for symbol section indices. */
7393 Elf_External_Sym_Shndx *locsym_shndx;
7394 /* Buffer large enough to hold internal local symbols of any input
7395 BFD. */
7396 Elf_Internal_Sym *internal_syms;
7397 /* Array large enough to hold a symbol index for each local symbol
7398 of any input BFD. */
7399 long *indices;
7400 /* Array large enough to hold a section pointer for each local
7401 symbol of any input BFD. */
7402 asection **sections;
7403 /* Buffer to hold swapped out symbols. */
7404 bfd_byte *symbuf;
7405 /* And one for symbol section indices. */
7406 Elf_External_Sym_Shndx *symshndxbuf;
7407 /* Number of swapped out symbols in buffer. */
7408 size_t symbuf_count;
7409 /* Number of symbols which fit in symbuf. */
7410 size_t symbuf_size;
7411 /* And same for symshndxbuf. */
7412 size_t shndxbuf_size;
7413 };
7414
7415 /* This struct is used to pass information to elf_link_output_extsym. */
7416
7417 struct elf_outext_info
7418 {
7419 bfd_boolean failed;
7420 bfd_boolean localsyms;
7421 struct elf_final_link_info *finfo;
7422 };
7423
7424
7425 /* Support for evaluating a complex relocation.
7426
7427 Complex relocations are generalized, self-describing relocations. The
7428 implementation of them consists of two parts: complex symbols, and the
7429 relocations themselves.
7430
7431 The relocations are use a reserved elf-wide relocation type code (R_RELC
7432 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7433 information (start bit, end bit, word width, etc) into the addend. This
7434 information is extracted from CGEN-generated operand tables within gas.
7435
7436 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7437 internal) representing prefix-notation expressions, including but not
7438 limited to those sorts of expressions normally encoded as addends in the
7439 addend field. The symbol mangling format is:
7440
7441 <node> := <literal>
7442 | <unary-operator> ':' <node>
7443 | <binary-operator> ':' <node> ':' <node>
7444 ;
7445
7446 <literal> := 's' <digits=N> ':' <N character symbol name>
7447 | 'S' <digits=N> ':' <N character section name>
7448 | '#' <hexdigits>
7449 ;
7450
7451 <binary-operator> := as in C
7452 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7453
7454 static void
7455 set_symbol_value (bfd *bfd_with_globals,
7456 Elf_Internal_Sym *isymbuf,
7457 size_t locsymcount,
7458 size_t symidx,
7459 bfd_vma val)
7460 {
7461 struct elf_link_hash_entry **sym_hashes;
7462 struct elf_link_hash_entry *h;
7463 size_t extsymoff = locsymcount;
7464
7465 if (symidx < locsymcount)
7466 {
7467 Elf_Internal_Sym *sym;
7468
7469 sym = isymbuf + symidx;
7470 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7471 {
7472 /* It is a local symbol: move it to the
7473 "absolute" section and give it a value. */
7474 sym->st_shndx = SHN_ABS;
7475 sym->st_value = val;
7476 return;
7477 }
7478 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7479 extsymoff = 0;
7480 }
7481
7482 /* It is a global symbol: set its link type
7483 to "defined" and give it a value. */
7484
7485 sym_hashes = elf_sym_hashes (bfd_with_globals);
7486 h = sym_hashes [symidx - extsymoff];
7487 while (h->root.type == bfd_link_hash_indirect
7488 || h->root.type == bfd_link_hash_warning)
7489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7490 h->root.type = bfd_link_hash_defined;
7491 h->root.u.def.value = val;
7492 h->root.u.def.section = bfd_abs_section_ptr;
7493 }
7494
7495 static bfd_boolean
7496 resolve_symbol (const char *name,
7497 bfd *input_bfd,
7498 struct elf_final_link_info *finfo,
7499 bfd_vma *result,
7500 Elf_Internal_Sym *isymbuf,
7501 size_t locsymcount)
7502 {
7503 Elf_Internal_Sym *sym;
7504 struct bfd_link_hash_entry *global_entry;
7505 const char *candidate = NULL;
7506 Elf_Internal_Shdr *symtab_hdr;
7507 size_t i;
7508
7509 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7510
7511 for (i = 0; i < locsymcount; ++ i)
7512 {
7513 sym = isymbuf + i;
7514
7515 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7516 continue;
7517
7518 candidate = bfd_elf_string_from_elf_section (input_bfd,
7519 symtab_hdr->sh_link,
7520 sym->st_name);
7521 #ifdef DEBUG
7522 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7523 name, candidate, (unsigned long) sym->st_value);
7524 #endif
7525 if (candidate && strcmp (candidate, name) == 0)
7526 {
7527 asection *sec = finfo->sections [i];
7528
7529 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7530 *result += sec->output_offset + sec->output_section->vma;
7531 #ifdef DEBUG
7532 printf ("Found symbol with value %8.8lx\n",
7533 (unsigned long) *result);
7534 #endif
7535 return TRUE;
7536 }
7537 }
7538
7539 /* Hmm, haven't found it yet. perhaps it is a global. */
7540 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7541 FALSE, FALSE, TRUE);
7542 if (!global_entry)
7543 return FALSE;
7544
7545 if (global_entry->type == bfd_link_hash_defined
7546 || global_entry->type == bfd_link_hash_defweak)
7547 {
7548 *result = (global_entry->u.def.value
7549 + global_entry->u.def.section->output_section->vma
7550 + global_entry->u.def.section->output_offset);
7551 #ifdef DEBUG
7552 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7553 global_entry->root.string, (unsigned long) *result);
7554 #endif
7555 return TRUE;
7556 }
7557
7558 return FALSE;
7559 }
7560
7561 static bfd_boolean
7562 resolve_section (const char *name,
7563 asection *sections,
7564 bfd_vma *result)
7565 {
7566 asection *curr;
7567 unsigned int len;
7568
7569 for (curr = sections; curr; curr = curr->next)
7570 if (strcmp (curr->name, name) == 0)
7571 {
7572 *result = curr->vma;
7573 return TRUE;
7574 }
7575
7576 /* Hmm. still haven't found it. try pseudo-section names. */
7577 for (curr = sections; curr; curr = curr->next)
7578 {
7579 len = strlen (curr->name);
7580 if (len > strlen (name))
7581 continue;
7582
7583 if (strncmp (curr->name, name, len) == 0)
7584 {
7585 if (strncmp (".end", name + len, 4) == 0)
7586 {
7587 *result = curr->vma + curr->size;
7588 return TRUE;
7589 }
7590
7591 /* Insert more pseudo-section names here, if you like. */
7592 }
7593 }
7594
7595 return FALSE;
7596 }
7597
7598 static void
7599 undefined_reference (const char *reftype, const char *name)
7600 {
7601 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7602 reftype, name);
7603 }
7604
7605 static bfd_boolean
7606 eval_symbol (bfd_vma *result,
7607 const char **symp,
7608 bfd *input_bfd,
7609 struct elf_final_link_info *finfo,
7610 bfd_vma dot,
7611 Elf_Internal_Sym *isymbuf,
7612 size_t locsymcount,
7613 int signed_p)
7614 {
7615 size_t len;
7616 size_t symlen;
7617 bfd_vma a;
7618 bfd_vma b;
7619 char symbuf[4096];
7620 const char *sym = *symp;
7621 const char *symend;
7622 bfd_boolean symbol_is_section = FALSE;
7623
7624 len = strlen (sym);
7625 symend = sym + len;
7626
7627 if (len < 1 || len > sizeof (symbuf))
7628 {
7629 bfd_set_error (bfd_error_invalid_operation);
7630 return FALSE;
7631 }
7632
7633 switch (* sym)
7634 {
7635 case '.':
7636 *result = dot;
7637 *symp = sym + 1;
7638 return TRUE;
7639
7640 case '#':
7641 ++sym;
7642 *result = strtoul (sym, (char **) symp, 16);
7643 return TRUE;
7644
7645 case 'S':
7646 symbol_is_section = TRUE;
7647 case 's':
7648 ++sym;
7649 symlen = strtol (sym, (char **) symp, 10);
7650 sym = *symp + 1; /* Skip the trailing ':'. */
7651
7652 if (symend < sym || symlen + 1 > sizeof (symbuf))
7653 {
7654 bfd_set_error (bfd_error_invalid_operation);
7655 return FALSE;
7656 }
7657
7658 memcpy (symbuf, sym, symlen);
7659 symbuf[symlen] = '\0';
7660 *symp = sym + symlen;
7661
7662 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7663 the symbol as a section, or vice-versa. so we're pretty liberal in our
7664 interpretation here; section means "try section first", not "must be a
7665 section", and likewise with symbol. */
7666
7667 if (symbol_is_section)
7668 {
7669 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7670 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7671 isymbuf, locsymcount))
7672 {
7673 undefined_reference ("section", symbuf);
7674 return FALSE;
7675 }
7676 }
7677 else
7678 {
7679 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7680 isymbuf, locsymcount)
7681 && !resolve_section (symbuf, finfo->output_bfd->sections,
7682 result))
7683 {
7684 undefined_reference ("symbol", symbuf);
7685 return FALSE;
7686 }
7687 }
7688
7689 return TRUE;
7690
7691 /* All that remains are operators. */
7692
7693 #define UNARY_OP(op) \
7694 if (strncmp (sym, #op, strlen (#op)) == 0) \
7695 { \
7696 sym += strlen (#op); \
7697 if (*sym == ':') \
7698 ++sym; \
7699 *symp = sym; \
7700 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7701 isymbuf, locsymcount, signed_p)) \
7702 return FALSE; \
7703 if (signed_p) \
7704 *result = op ((bfd_signed_vma) a); \
7705 else \
7706 *result = op a; \
7707 return TRUE; \
7708 }
7709
7710 #define BINARY_OP(op) \
7711 if (strncmp (sym, #op, strlen (#op)) == 0) \
7712 { \
7713 sym += strlen (#op); \
7714 if (*sym == ':') \
7715 ++sym; \
7716 *symp = sym; \
7717 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7718 isymbuf, locsymcount, signed_p)) \
7719 return FALSE; \
7720 ++*symp; \
7721 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7722 isymbuf, locsymcount, signed_p)) \
7723 return FALSE; \
7724 if (signed_p) \
7725 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7726 else \
7727 *result = a op b; \
7728 return TRUE; \
7729 }
7730
7731 default:
7732 UNARY_OP (0-);
7733 BINARY_OP (<<);
7734 BINARY_OP (>>);
7735 BINARY_OP (==);
7736 BINARY_OP (!=);
7737 BINARY_OP (<=);
7738 BINARY_OP (>=);
7739 BINARY_OP (&&);
7740 BINARY_OP (||);
7741 UNARY_OP (~);
7742 UNARY_OP (!);
7743 BINARY_OP (*);
7744 BINARY_OP (/);
7745 BINARY_OP (%);
7746 BINARY_OP (^);
7747 BINARY_OP (|);
7748 BINARY_OP (&);
7749 BINARY_OP (+);
7750 BINARY_OP (-);
7751 BINARY_OP (<);
7752 BINARY_OP (>);
7753 #undef UNARY_OP
7754 #undef BINARY_OP
7755 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7756 bfd_set_error (bfd_error_invalid_operation);
7757 return FALSE;
7758 }
7759 }
7760
7761 static void
7762 put_value (bfd_vma size,
7763 unsigned long chunksz,
7764 bfd *input_bfd,
7765 bfd_vma x,
7766 bfd_byte *location)
7767 {
7768 location += (size - chunksz);
7769
7770 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7771 {
7772 switch (chunksz)
7773 {
7774 default:
7775 case 0:
7776 abort ();
7777 case 1:
7778 bfd_put_8 (input_bfd, x, location);
7779 break;
7780 case 2:
7781 bfd_put_16 (input_bfd, x, location);
7782 break;
7783 case 4:
7784 bfd_put_32 (input_bfd, x, location);
7785 break;
7786 case 8:
7787 #ifdef BFD64
7788 bfd_put_64 (input_bfd, x, location);
7789 #else
7790 abort ();
7791 #endif
7792 break;
7793 }
7794 }
7795 }
7796
7797 static bfd_vma
7798 get_value (bfd_vma size,
7799 unsigned long chunksz,
7800 bfd *input_bfd,
7801 bfd_byte *location)
7802 {
7803 bfd_vma x = 0;
7804
7805 for (; size; size -= chunksz, location += chunksz)
7806 {
7807 switch (chunksz)
7808 {
7809 default:
7810 case 0:
7811 abort ();
7812 case 1:
7813 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7814 break;
7815 case 2:
7816 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7817 break;
7818 case 4:
7819 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7820 break;
7821 case 8:
7822 #ifdef BFD64
7823 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7824 #else
7825 abort ();
7826 #endif
7827 break;
7828 }
7829 }
7830 return x;
7831 }
7832
7833 static void
7834 decode_complex_addend (unsigned long *start, /* in bits */
7835 unsigned long *oplen, /* in bits */
7836 unsigned long *len, /* in bits */
7837 unsigned long *wordsz, /* in bytes */
7838 unsigned long *chunksz, /* in bytes */
7839 unsigned long *lsb0_p,
7840 unsigned long *signed_p,
7841 unsigned long *trunc_p,
7842 unsigned long encoded)
7843 {
7844 * start = encoded & 0x3F;
7845 * len = (encoded >> 6) & 0x3F;
7846 * oplen = (encoded >> 12) & 0x3F;
7847 * wordsz = (encoded >> 18) & 0xF;
7848 * chunksz = (encoded >> 22) & 0xF;
7849 * lsb0_p = (encoded >> 27) & 1;
7850 * signed_p = (encoded >> 28) & 1;
7851 * trunc_p = (encoded >> 29) & 1;
7852 }
7853
7854 bfd_reloc_status_type
7855 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7856 asection *input_section ATTRIBUTE_UNUSED,
7857 bfd_byte *contents,
7858 Elf_Internal_Rela *rel,
7859 bfd_vma relocation)
7860 {
7861 bfd_vma shift, x, mask;
7862 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7863 bfd_reloc_status_type r;
7864
7865 /* Perform this reloc, since it is complex.
7866 (this is not to say that it necessarily refers to a complex
7867 symbol; merely that it is a self-describing CGEN based reloc.
7868 i.e. the addend has the complete reloc information (bit start, end,
7869 word size, etc) encoded within it.). */
7870
7871 decode_complex_addend (&start, &oplen, &len, &wordsz,
7872 &chunksz, &lsb0_p, &signed_p,
7873 &trunc_p, rel->r_addend);
7874
7875 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7876
7877 if (lsb0_p)
7878 shift = (start + 1) - len;
7879 else
7880 shift = (8 * wordsz) - (start + len);
7881
7882 /* FIXME: octets_per_byte. */
7883 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7884
7885 #ifdef DEBUG
7886 printf ("Doing complex reloc: "
7887 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7888 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7889 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7890 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7891 oplen, x, mask, relocation);
7892 #endif
7893
7894 r = bfd_reloc_ok;
7895 if (! trunc_p)
7896 /* Now do an overflow check. */
7897 r = bfd_check_overflow ((signed_p
7898 ? complain_overflow_signed
7899 : complain_overflow_unsigned),
7900 len, 0, (8 * wordsz),
7901 relocation);
7902
7903 /* Do the deed. */
7904 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7905
7906 #ifdef DEBUG
7907 printf (" relocation: %8.8lx\n"
7908 " shifted mask: %8.8lx\n"
7909 " shifted/masked reloc: %8.8lx\n"
7910 " result: %8.8lx\n",
7911 relocation, (mask << shift),
7912 ((relocation & mask) << shift), x);
7913 #endif
7914 /* FIXME: octets_per_byte. */
7915 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7916 return r;
7917 }
7918
7919 /* When performing a relocatable link, the input relocations are
7920 preserved. But, if they reference global symbols, the indices
7921 referenced must be updated. Update all the relocations in
7922 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7923
7924 static void
7925 elf_link_adjust_relocs (bfd *abfd,
7926 Elf_Internal_Shdr *rel_hdr,
7927 unsigned int count,
7928 struct elf_link_hash_entry **rel_hash)
7929 {
7930 unsigned int i;
7931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7932 bfd_byte *erela;
7933 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7934 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7935 bfd_vma r_type_mask;
7936 int r_sym_shift;
7937
7938 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7939 {
7940 swap_in = bed->s->swap_reloc_in;
7941 swap_out = bed->s->swap_reloc_out;
7942 }
7943 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7944 {
7945 swap_in = bed->s->swap_reloca_in;
7946 swap_out = bed->s->swap_reloca_out;
7947 }
7948 else
7949 abort ();
7950
7951 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7952 abort ();
7953
7954 if (bed->s->arch_size == 32)
7955 {
7956 r_type_mask = 0xff;
7957 r_sym_shift = 8;
7958 }
7959 else
7960 {
7961 r_type_mask = 0xffffffff;
7962 r_sym_shift = 32;
7963 }
7964
7965 erela = rel_hdr->contents;
7966 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7967 {
7968 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7969 unsigned int j;
7970
7971 if (*rel_hash == NULL)
7972 continue;
7973
7974 BFD_ASSERT ((*rel_hash)->indx >= 0);
7975
7976 (*swap_in) (abfd, erela, irela);
7977 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7978 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7979 | (irela[j].r_info & r_type_mask));
7980 (*swap_out) (abfd, irela, erela);
7981 }
7982 }
7983
7984 struct elf_link_sort_rela
7985 {
7986 union {
7987 bfd_vma offset;
7988 bfd_vma sym_mask;
7989 } u;
7990 enum elf_reloc_type_class type;
7991 /* We use this as an array of size int_rels_per_ext_rel. */
7992 Elf_Internal_Rela rela[1];
7993 };
7994
7995 static int
7996 elf_link_sort_cmp1 (const void *A, const void *B)
7997 {
7998 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7999 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8000 int relativea, relativeb;
8001
8002 relativea = a->type == reloc_class_relative;
8003 relativeb = b->type == reloc_class_relative;
8004
8005 if (relativea < relativeb)
8006 return 1;
8007 if (relativea > relativeb)
8008 return -1;
8009 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8010 return -1;
8011 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8012 return 1;
8013 if (a->rela->r_offset < b->rela->r_offset)
8014 return -1;
8015 if (a->rela->r_offset > b->rela->r_offset)
8016 return 1;
8017 return 0;
8018 }
8019
8020 static int
8021 elf_link_sort_cmp2 (const void *A, const void *B)
8022 {
8023 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8024 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8025 int copya, copyb;
8026
8027 if (a->u.offset < b->u.offset)
8028 return -1;
8029 if (a->u.offset > b->u.offset)
8030 return 1;
8031 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8032 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8033 if (copya < copyb)
8034 return -1;
8035 if (copya > copyb)
8036 return 1;
8037 if (a->rela->r_offset < b->rela->r_offset)
8038 return -1;
8039 if (a->rela->r_offset > b->rela->r_offset)
8040 return 1;
8041 return 0;
8042 }
8043
8044 static size_t
8045 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8046 {
8047 asection *dynamic_relocs;
8048 asection *rela_dyn;
8049 asection *rel_dyn;
8050 bfd_size_type count, size;
8051 size_t i, ret, sort_elt, ext_size;
8052 bfd_byte *sort, *s_non_relative, *p;
8053 struct elf_link_sort_rela *sq;
8054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8055 int i2e = bed->s->int_rels_per_ext_rel;
8056 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8057 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8058 struct bfd_link_order *lo;
8059 bfd_vma r_sym_mask;
8060 bfd_boolean use_rela;
8061
8062 /* Find a dynamic reloc section. */
8063 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8064 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8065 if (rela_dyn != NULL && rela_dyn->size > 0
8066 && rel_dyn != NULL && rel_dyn->size > 0)
8067 {
8068 bfd_boolean use_rela_initialised = FALSE;
8069
8070 /* This is just here to stop gcc from complaining.
8071 It's initialization checking code is not perfect. */
8072 use_rela = TRUE;
8073
8074 /* Both sections are present. Examine the sizes
8075 of the indirect sections to help us choose. */
8076 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8077 if (lo->type == bfd_indirect_link_order)
8078 {
8079 asection *o = lo->u.indirect.section;
8080
8081 if ((o->size % bed->s->sizeof_rela) == 0)
8082 {
8083 if ((o->size % bed->s->sizeof_rel) == 0)
8084 /* Section size is divisible by both rel and rela sizes.
8085 It is of no help to us. */
8086 ;
8087 else
8088 {
8089 /* Section size is only divisible by rela. */
8090 if (use_rela_initialised && (use_rela == FALSE))
8091 {
8092 _bfd_error_handler
8093 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8094 bfd_set_error (bfd_error_invalid_operation);
8095 return 0;
8096 }
8097 else
8098 {
8099 use_rela = TRUE;
8100 use_rela_initialised = TRUE;
8101 }
8102 }
8103 }
8104 else if ((o->size % bed->s->sizeof_rel) == 0)
8105 {
8106 /* Section size is only divisible by rel. */
8107 if (use_rela_initialised && (use_rela == TRUE))
8108 {
8109 _bfd_error_handler
8110 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8111 bfd_set_error (bfd_error_invalid_operation);
8112 return 0;
8113 }
8114 else
8115 {
8116 use_rela = FALSE;
8117 use_rela_initialised = TRUE;
8118 }
8119 }
8120 else
8121 {
8122 /* The section size is not divisible by either - something is wrong. */
8123 _bfd_error_handler
8124 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8125 bfd_set_error (bfd_error_invalid_operation);
8126 return 0;
8127 }
8128 }
8129
8130 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8131 if (lo->type == bfd_indirect_link_order)
8132 {
8133 asection *o = lo->u.indirect.section;
8134
8135 if ((o->size % bed->s->sizeof_rela) == 0)
8136 {
8137 if ((o->size % bed->s->sizeof_rel) == 0)
8138 /* Section size is divisible by both rel and rela sizes.
8139 It is of no help to us. */
8140 ;
8141 else
8142 {
8143 /* Section size is only divisible by rela. */
8144 if (use_rela_initialised && (use_rela == FALSE))
8145 {
8146 _bfd_error_handler
8147 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8148 bfd_set_error (bfd_error_invalid_operation);
8149 return 0;
8150 }
8151 else
8152 {
8153 use_rela = TRUE;
8154 use_rela_initialised = TRUE;
8155 }
8156 }
8157 }
8158 else if ((o->size % bed->s->sizeof_rel) == 0)
8159 {
8160 /* Section size is only divisible by rel. */
8161 if (use_rela_initialised && (use_rela == TRUE))
8162 {
8163 _bfd_error_handler
8164 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8165 bfd_set_error (bfd_error_invalid_operation);
8166 return 0;
8167 }
8168 else
8169 {
8170 use_rela = FALSE;
8171 use_rela_initialised = TRUE;
8172 }
8173 }
8174 else
8175 {
8176 /* The section size is not divisible by either - something is wrong. */
8177 _bfd_error_handler
8178 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8179 bfd_set_error (bfd_error_invalid_operation);
8180 return 0;
8181 }
8182 }
8183
8184 if (! use_rela_initialised)
8185 /* Make a guess. */
8186 use_rela = TRUE;
8187 }
8188 else if (rela_dyn != NULL && rela_dyn->size > 0)
8189 use_rela = TRUE;
8190 else if (rel_dyn != NULL && rel_dyn->size > 0)
8191 use_rela = FALSE;
8192 else
8193 return 0;
8194
8195 if (use_rela)
8196 {
8197 dynamic_relocs = rela_dyn;
8198 ext_size = bed->s->sizeof_rela;
8199 swap_in = bed->s->swap_reloca_in;
8200 swap_out = bed->s->swap_reloca_out;
8201 }
8202 else
8203 {
8204 dynamic_relocs = rel_dyn;
8205 ext_size = bed->s->sizeof_rel;
8206 swap_in = bed->s->swap_reloc_in;
8207 swap_out = bed->s->swap_reloc_out;
8208 }
8209
8210 size = 0;
8211 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8212 if (lo->type == bfd_indirect_link_order)
8213 size += lo->u.indirect.section->size;
8214
8215 if (size != dynamic_relocs->size)
8216 return 0;
8217
8218 sort_elt = (sizeof (struct elf_link_sort_rela)
8219 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8220
8221 count = dynamic_relocs->size / ext_size;
8222 if (count == 0)
8223 return 0;
8224 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8225
8226 if (sort == NULL)
8227 {
8228 (*info->callbacks->warning)
8229 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8230 return 0;
8231 }
8232
8233 if (bed->s->arch_size == 32)
8234 r_sym_mask = ~(bfd_vma) 0xff;
8235 else
8236 r_sym_mask = ~(bfd_vma) 0xffffffff;
8237
8238 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8239 if (lo->type == bfd_indirect_link_order)
8240 {
8241 bfd_byte *erel, *erelend;
8242 asection *o = lo->u.indirect.section;
8243
8244 if (o->contents == NULL && o->size != 0)
8245 {
8246 /* This is a reloc section that is being handled as a normal
8247 section. See bfd_section_from_shdr. We can't combine
8248 relocs in this case. */
8249 free (sort);
8250 return 0;
8251 }
8252 erel = o->contents;
8253 erelend = o->contents + o->size;
8254 /* FIXME: octets_per_byte. */
8255 p = sort + o->output_offset / ext_size * sort_elt;
8256
8257 while (erel < erelend)
8258 {
8259 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8260
8261 (*swap_in) (abfd, erel, s->rela);
8262 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8263 s->u.sym_mask = r_sym_mask;
8264 p += sort_elt;
8265 erel += ext_size;
8266 }
8267 }
8268
8269 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8270
8271 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8272 {
8273 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8274 if (s->type != reloc_class_relative)
8275 break;
8276 }
8277 ret = i;
8278 s_non_relative = p;
8279
8280 sq = (struct elf_link_sort_rela *) s_non_relative;
8281 for (; i < count; i++, p += sort_elt)
8282 {
8283 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8284 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8285 sq = sp;
8286 sp->u.offset = sq->rela->r_offset;
8287 }
8288
8289 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8290
8291 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8292 if (lo->type == bfd_indirect_link_order)
8293 {
8294 bfd_byte *erel, *erelend;
8295 asection *o = lo->u.indirect.section;
8296
8297 erel = o->contents;
8298 erelend = o->contents + o->size;
8299 /* FIXME: octets_per_byte. */
8300 p = sort + o->output_offset / ext_size * sort_elt;
8301 while (erel < erelend)
8302 {
8303 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8304 (*swap_out) (abfd, s->rela, erel);
8305 p += sort_elt;
8306 erel += ext_size;
8307 }
8308 }
8309
8310 free (sort);
8311 *psec = dynamic_relocs;
8312 return ret;
8313 }
8314
8315 /* Flush the output symbols to the file. */
8316
8317 static bfd_boolean
8318 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8319 const struct elf_backend_data *bed)
8320 {
8321 if (finfo->symbuf_count > 0)
8322 {
8323 Elf_Internal_Shdr *hdr;
8324 file_ptr pos;
8325 bfd_size_type amt;
8326
8327 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8328 pos = hdr->sh_offset + hdr->sh_size;
8329 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8330 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8331 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8332 return FALSE;
8333
8334 hdr->sh_size += amt;
8335 finfo->symbuf_count = 0;
8336 }
8337
8338 return TRUE;
8339 }
8340
8341 /* Add a symbol to the output symbol table. */
8342
8343 static int
8344 elf_link_output_sym (struct elf_final_link_info *finfo,
8345 const char *name,
8346 Elf_Internal_Sym *elfsym,
8347 asection *input_sec,
8348 struct elf_link_hash_entry *h)
8349 {
8350 bfd_byte *dest;
8351 Elf_External_Sym_Shndx *destshndx;
8352 int (*output_symbol_hook)
8353 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8354 struct elf_link_hash_entry *);
8355 const struct elf_backend_data *bed;
8356
8357 bed = get_elf_backend_data (finfo->output_bfd);
8358 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8359 if (output_symbol_hook != NULL)
8360 {
8361 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8362 if (ret != 1)
8363 return ret;
8364 }
8365
8366 if (name == NULL || *name == '\0')
8367 elfsym->st_name = 0;
8368 else if (input_sec->flags & SEC_EXCLUDE)
8369 elfsym->st_name = 0;
8370 else
8371 {
8372 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8373 name, TRUE, FALSE);
8374 if (elfsym->st_name == (unsigned long) -1)
8375 return 0;
8376 }
8377
8378 if (finfo->symbuf_count >= finfo->symbuf_size)
8379 {
8380 if (! elf_link_flush_output_syms (finfo, bed))
8381 return 0;
8382 }
8383
8384 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8385 destshndx = finfo->symshndxbuf;
8386 if (destshndx != NULL)
8387 {
8388 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8389 {
8390 bfd_size_type amt;
8391
8392 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8393 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8394 amt * 2);
8395 if (destshndx == NULL)
8396 return 0;
8397 finfo->symshndxbuf = destshndx;
8398 memset ((char *) destshndx + amt, 0, amt);
8399 finfo->shndxbuf_size *= 2;
8400 }
8401 destshndx += bfd_get_symcount (finfo->output_bfd);
8402 }
8403
8404 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8405 finfo->symbuf_count += 1;
8406 bfd_get_symcount (finfo->output_bfd) += 1;
8407
8408 return 1;
8409 }
8410
8411 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8412
8413 static bfd_boolean
8414 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8415 {
8416 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8417 && sym->st_shndx < SHN_LORESERVE)
8418 {
8419 /* The gABI doesn't support dynamic symbols in output sections
8420 beyond 64k. */
8421 (*_bfd_error_handler)
8422 (_("%B: Too many sections: %d (>= %d)"),
8423 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8424 bfd_set_error (bfd_error_nonrepresentable_section);
8425 return FALSE;
8426 }
8427 return TRUE;
8428 }
8429
8430 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8431 allowing an unsatisfied unversioned symbol in the DSO to match a
8432 versioned symbol that would normally require an explicit version.
8433 We also handle the case that a DSO references a hidden symbol
8434 which may be satisfied by a versioned symbol in another DSO. */
8435
8436 static bfd_boolean
8437 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8438 const struct elf_backend_data *bed,
8439 struct elf_link_hash_entry *h)
8440 {
8441 bfd *abfd;
8442 struct elf_link_loaded_list *loaded;
8443
8444 if (!is_elf_hash_table (info->hash))
8445 return FALSE;
8446
8447 switch (h->root.type)
8448 {
8449 default:
8450 abfd = NULL;
8451 break;
8452
8453 case bfd_link_hash_undefined:
8454 case bfd_link_hash_undefweak:
8455 abfd = h->root.u.undef.abfd;
8456 if ((abfd->flags & DYNAMIC) == 0
8457 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8458 return FALSE;
8459 break;
8460
8461 case bfd_link_hash_defined:
8462 case bfd_link_hash_defweak:
8463 abfd = h->root.u.def.section->owner;
8464 break;
8465
8466 case bfd_link_hash_common:
8467 abfd = h->root.u.c.p->section->owner;
8468 break;
8469 }
8470 BFD_ASSERT (abfd != NULL);
8471
8472 for (loaded = elf_hash_table (info)->loaded;
8473 loaded != NULL;
8474 loaded = loaded->next)
8475 {
8476 bfd *input;
8477 Elf_Internal_Shdr *hdr;
8478 bfd_size_type symcount;
8479 bfd_size_type extsymcount;
8480 bfd_size_type extsymoff;
8481 Elf_Internal_Shdr *versymhdr;
8482 Elf_Internal_Sym *isym;
8483 Elf_Internal_Sym *isymend;
8484 Elf_Internal_Sym *isymbuf;
8485 Elf_External_Versym *ever;
8486 Elf_External_Versym *extversym;
8487
8488 input = loaded->abfd;
8489
8490 /* We check each DSO for a possible hidden versioned definition. */
8491 if (input == abfd
8492 || (input->flags & DYNAMIC) == 0
8493 || elf_dynversym (input) == 0)
8494 continue;
8495
8496 hdr = &elf_tdata (input)->dynsymtab_hdr;
8497
8498 symcount = hdr->sh_size / bed->s->sizeof_sym;
8499 if (elf_bad_symtab (input))
8500 {
8501 extsymcount = symcount;
8502 extsymoff = 0;
8503 }
8504 else
8505 {
8506 extsymcount = symcount - hdr->sh_info;
8507 extsymoff = hdr->sh_info;
8508 }
8509
8510 if (extsymcount == 0)
8511 continue;
8512
8513 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8514 NULL, NULL, NULL);
8515 if (isymbuf == NULL)
8516 return FALSE;
8517
8518 /* Read in any version definitions. */
8519 versymhdr = &elf_tdata (input)->dynversym_hdr;
8520 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8521 if (extversym == NULL)
8522 goto error_ret;
8523
8524 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8525 || (bfd_bread (extversym, versymhdr->sh_size, input)
8526 != versymhdr->sh_size))
8527 {
8528 free (extversym);
8529 error_ret:
8530 free (isymbuf);
8531 return FALSE;
8532 }
8533
8534 ever = extversym + extsymoff;
8535 isymend = isymbuf + extsymcount;
8536 for (isym = isymbuf; isym < isymend; isym++, ever++)
8537 {
8538 const char *name;
8539 Elf_Internal_Versym iver;
8540 unsigned short version_index;
8541
8542 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8543 || isym->st_shndx == SHN_UNDEF)
8544 continue;
8545
8546 name = bfd_elf_string_from_elf_section (input,
8547 hdr->sh_link,
8548 isym->st_name);
8549 if (strcmp (name, h->root.root.string) != 0)
8550 continue;
8551
8552 _bfd_elf_swap_versym_in (input, ever, &iver);
8553
8554 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8555 && !(h->def_regular
8556 && h->forced_local))
8557 {
8558 /* If we have a non-hidden versioned sym, then it should
8559 have provided a definition for the undefined sym unless
8560 it is defined in a non-shared object and forced local.
8561 */
8562 abort ();
8563 }
8564
8565 version_index = iver.vs_vers & VERSYM_VERSION;
8566 if (version_index == 1 || version_index == 2)
8567 {
8568 /* This is the base or first version. We can use it. */
8569 free (extversym);
8570 free (isymbuf);
8571 return TRUE;
8572 }
8573 }
8574
8575 free (extversym);
8576 free (isymbuf);
8577 }
8578
8579 return FALSE;
8580 }
8581
8582 /* Add an external symbol to the symbol table. This is called from
8583 the hash table traversal routine. When generating a shared object,
8584 we go through the symbol table twice. The first time we output
8585 anything that might have been forced to local scope in a version
8586 script. The second time we output the symbols that are still
8587 global symbols. */
8588
8589 static bfd_boolean
8590 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8591 {
8592 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8593 struct elf_final_link_info *finfo = eoinfo->finfo;
8594 bfd_boolean strip;
8595 Elf_Internal_Sym sym;
8596 asection *input_sec;
8597 const struct elf_backend_data *bed;
8598 long indx;
8599 int ret;
8600
8601 if (h->root.type == bfd_link_hash_warning)
8602 {
8603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8604 if (h->root.type == bfd_link_hash_new)
8605 return TRUE;
8606 }
8607
8608 /* Decide whether to output this symbol in this pass. */
8609 if (eoinfo->localsyms)
8610 {
8611 if (!h->forced_local)
8612 return TRUE;
8613 }
8614 else
8615 {
8616 if (h->forced_local)
8617 return TRUE;
8618 }
8619
8620 bed = get_elf_backend_data (finfo->output_bfd);
8621
8622 if (h->root.type == bfd_link_hash_undefined)
8623 {
8624 /* If we have an undefined symbol reference here then it must have
8625 come from a shared library that is being linked in. (Undefined
8626 references in regular files have already been handled unless
8627 they are in unreferenced sections which are removed by garbage
8628 collection). */
8629 bfd_boolean ignore_undef = FALSE;
8630
8631 /* Some symbols may be special in that the fact that they're
8632 undefined can be safely ignored - let backend determine that. */
8633 if (bed->elf_backend_ignore_undef_symbol)
8634 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8635
8636 /* If we are reporting errors for this situation then do so now. */
8637 if (ignore_undef == FALSE
8638 && h->ref_dynamic
8639 && (!h->ref_regular || finfo->info->gc_sections)
8640 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8641 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8642 {
8643 if (! (finfo->info->callbacks->undefined_symbol
8644 (finfo->info, h->root.root.string,
8645 h->ref_regular ? NULL : h->root.u.undef.abfd,
8646 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8647 {
8648 eoinfo->failed = TRUE;
8649 return FALSE;
8650 }
8651 }
8652 }
8653
8654 /* We should also warn if a forced local symbol is referenced from
8655 shared libraries. */
8656 if (! finfo->info->relocatable
8657 && (! finfo->info->shared)
8658 && h->forced_local
8659 && h->ref_dynamic
8660 && !h->dynamic_def
8661 && !h->dynamic_weak
8662 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8663 {
8664 (*_bfd_error_handler)
8665 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8666 finfo->output_bfd,
8667 h->root.u.def.section == bfd_abs_section_ptr
8668 ? finfo->output_bfd : h->root.u.def.section->owner,
8669 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8670 ? "internal"
8671 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8672 ? "hidden" : "local",
8673 h->root.root.string);
8674 eoinfo->failed = TRUE;
8675 return FALSE;
8676 }
8677
8678 /* We don't want to output symbols that have never been mentioned by
8679 a regular file, or that we have been told to strip. However, if
8680 h->indx is set to -2, the symbol is used by a reloc and we must
8681 output it. */
8682 if (h->indx == -2)
8683 strip = FALSE;
8684 else if ((h->def_dynamic
8685 || h->ref_dynamic
8686 || h->root.type == bfd_link_hash_new)
8687 && !h->def_regular
8688 && !h->ref_regular)
8689 strip = TRUE;
8690 else if (finfo->info->strip == strip_all)
8691 strip = TRUE;
8692 else if (finfo->info->strip == strip_some
8693 && bfd_hash_lookup (finfo->info->keep_hash,
8694 h->root.root.string, FALSE, FALSE) == NULL)
8695 strip = TRUE;
8696 else if (finfo->info->strip_discarded
8697 && (h->root.type == bfd_link_hash_defined
8698 || h->root.type == bfd_link_hash_defweak)
8699 && elf_discarded_section (h->root.u.def.section))
8700 strip = TRUE;
8701 else
8702 strip = FALSE;
8703
8704 /* If we're stripping it, and it's not a dynamic symbol, there's
8705 nothing else to do unless it is a forced local symbol or a
8706 STT_GNU_IFUNC symbol. */
8707 if (strip
8708 && h->dynindx == -1
8709 && h->type != STT_GNU_IFUNC
8710 && !h->forced_local)
8711 return TRUE;
8712
8713 sym.st_value = 0;
8714 sym.st_size = h->size;
8715 sym.st_other = h->other;
8716 if (h->forced_local)
8717 {
8718 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8719 /* Turn off visibility on local symbol. */
8720 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8721 }
8722 else if (h->unique_global)
8723 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8724 else if (h->root.type == bfd_link_hash_undefweak
8725 || h->root.type == bfd_link_hash_defweak)
8726 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8727 else
8728 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8729
8730 switch (h->root.type)
8731 {
8732 default:
8733 case bfd_link_hash_new:
8734 case bfd_link_hash_warning:
8735 abort ();
8736 return FALSE;
8737
8738 case bfd_link_hash_undefined:
8739 case bfd_link_hash_undefweak:
8740 input_sec = bfd_und_section_ptr;
8741 sym.st_shndx = SHN_UNDEF;
8742 break;
8743
8744 case bfd_link_hash_defined:
8745 case bfd_link_hash_defweak:
8746 {
8747 input_sec = h->root.u.def.section;
8748 if (input_sec->output_section != NULL)
8749 {
8750 sym.st_shndx =
8751 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8752 input_sec->output_section);
8753 if (sym.st_shndx == SHN_BAD)
8754 {
8755 (*_bfd_error_handler)
8756 (_("%B: could not find output section %A for input section %A"),
8757 finfo->output_bfd, input_sec->output_section, input_sec);
8758 eoinfo->failed = TRUE;
8759 return FALSE;
8760 }
8761
8762 /* ELF symbols in relocatable files are section relative,
8763 but in nonrelocatable files they are virtual
8764 addresses. */
8765 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8766 if (! finfo->info->relocatable)
8767 {
8768 sym.st_value += input_sec->output_section->vma;
8769 if (h->type == STT_TLS)
8770 {
8771 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8772 if (tls_sec != NULL)
8773 sym.st_value -= tls_sec->vma;
8774 else
8775 {
8776 /* The TLS section may have been garbage collected. */
8777 BFD_ASSERT (finfo->info->gc_sections
8778 && !input_sec->gc_mark);
8779 }
8780 }
8781 }
8782 }
8783 else
8784 {
8785 BFD_ASSERT (input_sec->owner == NULL
8786 || (input_sec->owner->flags & DYNAMIC) != 0);
8787 sym.st_shndx = SHN_UNDEF;
8788 input_sec = bfd_und_section_ptr;
8789 }
8790 }
8791 break;
8792
8793 case bfd_link_hash_common:
8794 input_sec = h->root.u.c.p->section;
8795 sym.st_shndx = bed->common_section_index (input_sec);
8796 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8797 break;
8798
8799 case bfd_link_hash_indirect:
8800 /* These symbols are created by symbol versioning. They point
8801 to the decorated version of the name. For example, if the
8802 symbol foo@@GNU_1.2 is the default, which should be used when
8803 foo is used with no version, then we add an indirect symbol
8804 foo which points to foo@@GNU_1.2. We ignore these symbols,
8805 since the indirected symbol is already in the hash table. */
8806 return TRUE;
8807 }
8808
8809 /* Give the processor backend a chance to tweak the symbol value,
8810 and also to finish up anything that needs to be done for this
8811 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8812 forced local syms when non-shared is due to a historical quirk.
8813 STT_GNU_IFUNC symbol must go through PLT. */
8814 if ((h->type == STT_GNU_IFUNC
8815 && h->def_regular
8816 && !finfo->info->relocatable)
8817 || ((h->dynindx != -1
8818 || h->forced_local)
8819 && ((finfo->info->shared
8820 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8821 || h->root.type != bfd_link_hash_undefweak))
8822 || !h->forced_local)
8823 && elf_hash_table (finfo->info)->dynamic_sections_created))
8824 {
8825 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8826 (finfo->output_bfd, finfo->info, h, &sym)))
8827 {
8828 eoinfo->failed = TRUE;
8829 return FALSE;
8830 }
8831 }
8832
8833 /* If we are marking the symbol as undefined, and there are no
8834 non-weak references to this symbol from a regular object, then
8835 mark the symbol as weak undefined; if there are non-weak
8836 references, mark the symbol as strong. We can't do this earlier,
8837 because it might not be marked as undefined until the
8838 finish_dynamic_symbol routine gets through with it. */
8839 if (sym.st_shndx == SHN_UNDEF
8840 && h->ref_regular
8841 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8842 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8843 {
8844 int bindtype;
8845 unsigned int type = ELF_ST_TYPE (sym.st_info);
8846
8847 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8848 if (type == STT_GNU_IFUNC)
8849 type = STT_FUNC;
8850
8851 if (h->ref_regular_nonweak)
8852 bindtype = STB_GLOBAL;
8853 else
8854 bindtype = STB_WEAK;
8855 sym.st_info = ELF_ST_INFO (bindtype, type);
8856 }
8857
8858 /* If this is a symbol defined in a dynamic library, don't use the
8859 symbol size from the dynamic library. Relinking an executable
8860 against a new library may introduce gratuitous changes in the
8861 executable's symbols if we keep the size. */
8862 if (sym.st_shndx == SHN_UNDEF
8863 && !h->def_regular
8864 && h->def_dynamic)
8865 sym.st_size = 0;
8866
8867 /* If a non-weak symbol with non-default visibility is not defined
8868 locally, it is a fatal error. */
8869 if (! finfo->info->relocatable
8870 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8871 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8872 && h->root.type == bfd_link_hash_undefined
8873 && !h->def_regular)
8874 {
8875 (*_bfd_error_handler)
8876 (_("%B: %s symbol `%s' isn't defined"),
8877 finfo->output_bfd,
8878 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8879 ? "protected"
8880 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8881 ? "internal" : "hidden",
8882 h->root.root.string);
8883 eoinfo->failed = TRUE;
8884 return FALSE;
8885 }
8886
8887 /* If this symbol should be put in the .dynsym section, then put it
8888 there now. We already know the symbol index. We also fill in
8889 the entry in the .hash section. */
8890 if (h->dynindx != -1
8891 && elf_hash_table (finfo->info)->dynamic_sections_created)
8892 {
8893 bfd_byte *esym;
8894
8895 sym.st_name = h->dynstr_index;
8896 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8897 if (! check_dynsym (finfo->output_bfd, &sym))
8898 {
8899 eoinfo->failed = TRUE;
8900 return FALSE;
8901 }
8902 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8903
8904 if (finfo->hash_sec != NULL)
8905 {
8906 size_t hash_entry_size;
8907 bfd_byte *bucketpos;
8908 bfd_vma chain;
8909 size_t bucketcount;
8910 size_t bucket;
8911
8912 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8913 bucket = h->u.elf_hash_value % bucketcount;
8914
8915 hash_entry_size
8916 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8917 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8918 + (bucket + 2) * hash_entry_size);
8919 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8920 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8921 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8922 ((bfd_byte *) finfo->hash_sec->contents
8923 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8924 }
8925
8926 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8927 {
8928 Elf_Internal_Versym iversym;
8929 Elf_External_Versym *eversym;
8930
8931 if (!h->def_regular)
8932 {
8933 if (h->verinfo.verdef == NULL)
8934 iversym.vs_vers = 0;
8935 else
8936 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8937 }
8938 else
8939 {
8940 if (h->verinfo.vertree == NULL)
8941 iversym.vs_vers = 1;
8942 else
8943 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8944 if (finfo->info->create_default_symver)
8945 iversym.vs_vers++;
8946 }
8947
8948 if (h->hidden)
8949 iversym.vs_vers |= VERSYM_HIDDEN;
8950
8951 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8952 eversym += h->dynindx;
8953 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8954 }
8955 }
8956
8957 /* If we're stripping it, then it was just a dynamic symbol, and
8958 there's nothing else to do. */
8959 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8960 return TRUE;
8961
8962 indx = bfd_get_symcount (finfo->output_bfd);
8963 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8964 if (ret == 0)
8965 {
8966 eoinfo->failed = TRUE;
8967 return FALSE;
8968 }
8969 else if (ret == 1)
8970 h->indx = indx;
8971 else if (h->indx == -2)
8972 abort();
8973
8974 return TRUE;
8975 }
8976
8977 /* Return TRUE if special handling is done for relocs in SEC against
8978 symbols defined in discarded sections. */
8979
8980 static bfd_boolean
8981 elf_section_ignore_discarded_relocs (asection *sec)
8982 {
8983 const struct elf_backend_data *bed;
8984
8985 switch (sec->sec_info_type)
8986 {
8987 case ELF_INFO_TYPE_STABS:
8988 case ELF_INFO_TYPE_EH_FRAME:
8989 return TRUE;
8990 default:
8991 break;
8992 }
8993
8994 bed = get_elf_backend_data (sec->owner);
8995 if (bed->elf_backend_ignore_discarded_relocs != NULL
8996 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8997 return TRUE;
8998
8999 return FALSE;
9000 }
9001
9002 /* Return a mask saying how ld should treat relocations in SEC against
9003 symbols defined in discarded sections. If this function returns
9004 COMPLAIN set, ld will issue a warning message. If this function
9005 returns PRETEND set, and the discarded section was link-once and the
9006 same size as the kept link-once section, ld will pretend that the
9007 symbol was actually defined in the kept section. Otherwise ld will
9008 zero the reloc (at least that is the intent, but some cooperation by
9009 the target dependent code is needed, particularly for REL targets). */
9010
9011 unsigned int
9012 _bfd_elf_default_action_discarded (asection *sec)
9013 {
9014 if (sec->flags & SEC_DEBUGGING)
9015 return PRETEND;
9016
9017 if (strcmp (".eh_frame", sec->name) == 0)
9018 return 0;
9019
9020 if (strcmp (".gcc_except_table", sec->name) == 0)
9021 return 0;
9022
9023 return COMPLAIN | PRETEND;
9024 }
9025
9026 /* Find a match between a section and a member of a section group. */
9027
9028 static asection *
9029 match_group_member (asection *sec, asection *group,
9030 struct bfd_link_info *info)
9031 {
9032 asection *first = elf_next_in_group (group);
9033 asection *s = first;
9034
9035 while (s != NULL)
9036 {
9037 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9038 return s;
9039
9040 s = elf_next_in_group (s);
9041 if (s == first)
9042 break;
9043 }
9044
9045 return NULL;
9046 }
9047
9048 /* Check if the kept section of a discarded section SEC can be used
9049 to replace it. Return the replacement if it is OK. Otherwise return
9050 NULL. */
9051
9052 asection *
9053 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9054 {
9055 asection *kept;
9056
9057 kept = sec->kept_section;
9058 if (kept != NULL)
9059 {
9060 if ((kept->flags & SEC_GROUP) != 0)
9061 kept = match_group_member (sec, kept, info);
9062 if (kept != NULL
9063 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9064 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9065 kept = NULL;
9066 sec->kept_section = kept;
9067 }
9068 return kept;
9069 }
9070
9071 /* Link an input file into the linker output file. This function
9072 handles all the sections and relocations of the input file at once.
9073 This is so that we only have to read the local symbols once, and
9074 don't have to keep them in memory. */
9075
9076 static bfd_boolean
9077 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9078 {
9079 int (*relocate_section)
9080 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9081 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9082 bfd *output_bfd;
9083 Elf_Internal_Shdr *symtab_hdr;
9084 size_t locsymcount;
9085 size_t extsymoff;
9086 Elf_Internal_Sym *isymbuf;
9087 Elf_Internal_Sym *isym;
9088 Elf_Internal_Sym *isymend;
9089 long *pindex;
9090 asection **ppsection;
9091 asection *o;
9092 const struct elf_backend_data *bed;
9093 struct elf_link_hash_entry **sym_hashes;
9094
9095 output_bfd = finfo->output_bfd;
9096 bed = get_elf_backend_data (output_bfd);
9097 relocate_section = bed->elf_backend_relocate_section;
9098
9099 /* If this is a dynamic object, we don't want to do anything here:
9100 we don't want the local symbols, and we don't want the section
9101 contents. */
9102 if ((input_bfd->flags & DYNAMIC) != 0)
9103 return TRUE;
9104
9105 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9106 if (elf_bad_symtab (input_bfd))
9107 {
9108 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9109 extsymoff = 0;
9110 }
9111 else
9112 {
9113 locsymcount = symtab_hdr->sh_info;
9114 extsymoff = symtab_hdr->sh_info;
9115 }
9116
9117 /* Read the local symbols. */
9118 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9119 if (isymbuf == NULL && locsymcount != 0)
9120 {
9121 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9122 finfo->internal_syms,
9123 finfo->external_syms,
9124 finfo->locsym_shndx);
9125 if (isymbuf == NULL)
9126 return FALSE;
9127 }
9128
9129 /* Find local symbol sections and adjust values of symbols in
9130 SEC_MERGE sections. Write out those local symbols we know are
9131 going into the output file. */
9132 isymend = isymbuf + locsymcount;
9133 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9134 isym < isymend;
9135 isym++, pindex++, ppsection++)
9136 {
9137 asection *isec;
9138 const char *name;
9139 Elf_Internal_Sym osym;
9140 long indx;
9141 int ret;
9142
9143 *pindex = -1;
9144
9145 if (elf_bad_symtab (input_bfd))
9146 {
9147 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9148 {
9149 *ppsection = NULL;
9150 continue;
9151 }
9152 }
9153
9154 if (isym->st_shndx == SHN_UNDEF)
9155 isec = bfd_und_section_ptr;
9156 else if (isym->st_shndx == SHN_ABS)
9157 isec = bfd_abs_section_ptr;
9158 else if (isym->st_shndx == SHN_COMMON)
9159 isec = bfd_com_section_ptr;
9160 else
9161 {
9162 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9163 if (isec == NULL)
9164 {
9165 /* Don't attempt to output symbols with st_shnx in the
9166 reserved range other than SHN_ABS and SHN_COMMON. */
9167 *ppsection = NULL;
9168 continue;
9169 }
9170 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9171 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9172 isym->st_value =
9173 _bfd_merged_section_offset (output_bfd, &isec,
9174 elf_section_data (isec)->sec_info,
9175 isym->st_value);
9176 }
9177
9178 *ppsection = isec;
9179
9180 /* Don't output the first, undefined, symbol. */
9181 if (ppsection == finfo->sections)
9182 continue;
9183
9184 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9185 {
9186 /* We never output section symbols. Instead, we use the
9187 section symbol of the corresponding section in the output
9188 file. */
9189 continue;
9190 }
9191
9192 /* If we are stripping all symbols, we don't want to output this
9193 one. */
9194 if (finfo->info->strip == strip_all)
9195 continue;
9196
9197 /* If we are discarding all local symbols, we don't want to
9198 output this one. If we are generating a relocatable output
9199 file, then some of the local symbols may be required by
9200 relocs; we output them below as we discover that they are
9201 needed. */
9202 if (finfo->info->discard == discard_all)
9203 continue;
9204
9205 /* If this symbol is defined in a section which we are
9206 discarding, we don't need to keep it. */
9207 if (isym->st_shndx != SHN_UNDEF
9208 && isym->st_shndx < SHN_LORESERVE
9209 && bfd_section_removed_from_list (output_bfd,
9210 isec->output_section))
9211 continue;
9212
9213 /* Get the name of the symbol. */
9214 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9215 isym->st_name);
9216 if (name == NULL)
9217 return FALSE;
9218
9219 /* See if we are discarding symbols with this name. */
9220 if ((finfo->info->strip == strip_some
9221 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9222 == NULL))
9223 || (((finfo->info->discard == discard_sec_merge
9224 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9225 || finfo->info->discard == discard_l)
9226 && bfd_is_local_label_name (input_bfd, name)))
9227 continue;
9228
9229 osym = *isym;
9230
9231 /* Adjust the section index for the output file. */
9232 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9233 isec->output_section);
9234 if (osym.st_shndx == SHN_BAD)
9235 return FALSE;
9236
9237 /* ELF symbols in relocatable files are section relative, but
9238 in executable files they are virtual addresses. Note that
9239 this code assumes that all ELF sections have an associated
9240 BFD section with a reasonable value for output_offset; below
9241 we assume that they also have a reasonable value for
9242 output_section. Any special sections must be set up to meet
9243 these requirements. */
9244 osym.st_value += isec->output_offset;
9245 if (! finfo->info->relocatable)
9246 {
9247 osym.st_value += isec->output_section->vma;
9248 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9249 {
9250 /* STT_TLS symbols are relative to PT_TLS segment base. */
9251 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9252 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9253 }
9254 }
9255
9256 indx = bfd_get_symcount (output_bfd);
9257 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9258 if (ret == 0)
9259 return FALSE;
9260 else if (ret == 1)
9261 *pindex = indx;
9262 }
9263
9264 /* Relocate the contents of each section. */
9265 sym_hashes = elf_sym_hashes (input_bfd);
9266 for (o = input_bfd->sections; o != NULL; o = o->next)
9267 {
9268 bfd_byte *contents;
9269
9270 if (! o->linker_mark)
9271 {
9272 /* This section was omitted from the link. */
9273 continue;
9274 }
9275
9276 if (finfo->info->relocatable
9277 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9278 {
9279 /* Deal with the group signature symbol. */
9280 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9281 unsigned long symndx = sec_data->this_hdr.sh_info;
9282 asection *osec = o->output_section;
9283
9284 if (symndx >= locsymcount
9285 || (elf_bad_symtab (input_bfd)
9286 && finfo->sections[symndx] == NULL))
9287 {
9288 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9289 while (h->root.type == bfd_link_hash_indirect
9290 || h->root.type == bfd_link_hash_warning)
9291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9292 /* Arrange for symbol to be output. */
9293 h->indx = -2;
9294 elf_section_data (osec)->this_hdr.sh_info = -2;
9295 }
9296 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9297 {
9298 /* We'll use the output section target_index. */
9299 asection *sec = finfo->sections[symndx]->output_section;
9300 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9301 }
9302 else
9303 {
9304 if (finfo->indices[symndx] == -1)
9305 {
9306 /* Otherwise output the local symbol now. */
9307 Elf_Internal_Sym sym = isymbuf[symndx];
9308 asection *sec = finfo->sections[symndx]->output_section;
9309 const char *name;
9310 long indx;
9311 int ret;
9312
9313 name = bfd_elf_string_from_elf_section (input_bfd,
9314 symtab_hdr->sh_link,
9315 sym.st_name);
9316 if (name == NULL)
9317 return FALSE;
9318
9319 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9320 sec);
9321 if (sym.st_shndx == SHN_BAD)
9322 return FALSE;
9323
9324 sym.st_value += o->output_offset;
9325
9326 indx = bfd_get_symcount (output_bfd);
9327 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9328 if (ret == 0)
9329 return FALSE;
9330 else if (ret == 1)
9331 finfo->indices[symndx] = indx;
9332 else
9333 abort ();
9334 }
9335 elf_section_data (osec)->this_hdr.sh_info
9336 = finfo->indices[symndx];
9337 }
9338 }
9339
9340 if ((o->flags & SEC_HAS_CONTENTS) == 0
9341 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9342 continue;
9343
9344 if ((o->flags & SEC_LINKER_CREATED) != 0)
9345 {
9346 /* Section was created by _bfd_elf_link_create_dynamic_sections
9347 or somesuch. */
9348 continue;
9349 }
9350
9351 /* Get the contents of the section. They have been cached by a
9352 relaxation routine. Note that o is a section in an input
9353 file, so the contents field will not have been set by any of
9354 the routines which work on output files. */
9355 if (elf_section_data (o)->this_hdr.contents != NULL)
9356 contents = elf_section_data (o)->this_hdr.contents;
9357 else
9358 {
9359 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9360
9361 contents = finfo->contents;
9362 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9363 return FALSE;
9364 }
9365
9366 if ((o->flags & SEC_RELOC) != 0)
9367 {
9368 Elf_Internal_Rela *internal_relocs;
9369 Elf_Internal_Rela *rel, *relend;
9370 bfd_vma r_type_mask;
9371 int r_sym_shift;
9372 int action_discarded;
9373 int ret;
9374
9375 /* Get the swapped relocs. */
9376 internal_relocs
9377 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9378 finfo->internal_relocs, FALSE);
9379 if (internal_relocs == NULL
9380 && o->reloc_count > 0)
9381 return FALSE;
9382
9383 if (bed->s->arch_size == 32)
9384 {
9385 r_type_mask = 0xff;
9386 r_sym_shift = 8;
9387 }
9388 else
9389 {
9390 r_type_mask = 0xffffffff;
9391 r_sym_shift = 32;
9392 }
9393
9394 action_discarded = -1;
9395 if (!elf_section_ignore_discarded_relocs (o))
9396 action_discarded = (*bed->action_discarded) (o);
9397
9398 /* Run through the relocs evaluating complex reloc symbols and
9399 looking for relocs against symbols from discarded sections
9400 or section symbols from removed link-once sections.
9401 Complain about relocs against discarded sections. Zero
9402 relocs against removed link-once sections. */
9403
9404 rel = internal_relocs;
9405 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9406 for ( ; rel < relend; rel++)
9407 {
9408 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9409 unsigned int s_type;
9410 asection **ps, *sec;
9411 struct elf_link_hash_entry *h = NULL;
9412 const char *sym_name;
9413
9414 if (r_symndx == STN_UNDEF)
9415 continue;
9416
9417 if (r_symndx >= locsymcount
9418 || (elf_bad_symtab (input_bfd)
9419 && finfo->sections[r_symndx] == NULL))
9420 {
9421 h = sym_hashes[r_symndx - extsymoff];
9422
9423 /* Badly formatted input files can contain relocs that
9424 reference non-existant symbols. Check here so that
9425 we do not seg fault. */
9426 if (h == NULL)
9427 {
9428 char buffer [32];
9429
9430 sprintf_vma (buffer, rel->r_info);
9431 (*_bfd_error_handler)
9432 (_("error: %B contains a reloc (0x%s) for section %A "
9433 "that references a non-existent global symbol"),
9434 input_bfd, o, buffer);
9435 bfd_set_error (bfd_error_bad_value);
9436 return FALSE;
9437 }
9438
9439 while (h->root.type == bfd_link_hash_indirect
9440 || h->root.type == bfd_link_hash_warning)
9441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9442
9443 s_type = h->type;
9444
9445 ps = NULL;
9446 if (h->root.type == bfd_link_hash_defined
9447 || h->root.type == bfd_link_hash_defweak)
9448 ps = &h->root.u.def.section;
9449
9450 sym_name = h->root.root.string;
9451 }
9452 else
9453 {
9454 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9455
9456 s_type = ELF_ST_TYPE (sym->st_info);
9457 ps = &finfo->sections[r_symndx];
9458 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9459 sym, *ps);
9460 }
9461
9462 if ((s_type == STT_RELC || s_type == STT_SRELC)
9463 && !finfo->info->relocatable)
9464 {
9465 bfd_vma val;
9466 bfd_vma dot = (rel->r_offset
9467 + o->output_offset + o->output_section->vma);
9468 #ifdef DEBUG
9469 printf ("Encountered a complex symbol!");
9470 printf (" (input_bfd %s, section %s, reloc %ld\n",
9471 input_bfd->filename, o->name, rel - internal_relocs);
9472 printf (" symbol: idx %8.8lx, name %s\n",
9473 r_symndx, sym_name);
9474 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9475 (unsigned long) rel->r_info,
9476 (unsigned long) rel->r_offset);
9477 #endif
9478 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9479 isymbuf, locsymcount, s_type == STT_SRELC))
9480 return FALSE;
9481
9482 /* Symbol evaluated OK. Update to absolute value. */
9483 set_symbol_value (input_bfd, isymbuf, locsymcount,
9484 r_symndx, val);
9485 continue;
9486 }
9487
9488 if (action_discarded != -1 && ps != NULL)
9489 {
9490 /* Complain if the definition comes from a
9491 discarded section. */
9492 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9493 {
9494 BFD_ASSERT (r_symndx != 0);
9495 if (action_discarded & COMPLAIN)
9496 (*finfo->info->callbacks->einfo)
9497 (_("%X`%s' referenced in section `%A' of %B: "
9498 "defined in discarded section `%A' of %B\n"),
9499 sym_name, o, input_bfd, sec, sec->owner);
9500
9501 /* Try to do the best we can to support buggy old
9502 versions of gcc. Pretend that the symbol is
9503 really defined in the kept linkonce section.
9504 FIXME: This is quite broken. Modifying the
9505 symbol here means we will be changing all later
9506 uses of the symbol, not just in this section. */
9507 if (action_discarded & PRETEND)
9508 {
9509 asection *kept;
9510
9511 kept = _bfd_elf_check_kept_section (sec,
9512 finfo->info);
9513 if (kept != NULL)
9514 {
9515 *ps = kept;
9516 continue;
9517 }
9518 }
9519 }
9520 }
9521 }
9522
9523 /* Relocate the section by invoking a back end routine.
9524
9525 The back end routine is responsible for adjusting the
9526 section contents as necessary, and (if using Rela relocs
9527 and generating a relocatable output file) adjusting the
9528 reloc addend as necessary.
9529
9530 The back end routine does not have to worry about setting
9531 the reloc address or the reloc symbol index.
9532
9533 The back end routine is given a pointer to the swapped in
9534 internal symbols, and can access the hash table entries
9535 for the external symbols via elf_sym_hashes (input_bfd).
9536
9537 When generating relocatable output, the back end routine
9538 must handle STB_LOCAL/STT_SECTION symbols specially. The
9539 output symbol is going to be a section symbol
9540 corresponding to the output section, which will require
9541 the addend to be adjusted. */
9542
9543 ret = (*relocate_section) (output_bfd, finfo->info,
9544 input_bfd, o, contents,
9545 internal_relocs,
9546 isymbuf,
9547 finfo->sections);
9548 if (!ret)
9549 return FALSE;
9550
9551 if (ret == 2
9552 || finfo->info->relocatable
9553 || finfo->info->emitrelocations)
9554 {
9555 Elf_Internal_Rela *irela;
9556 Elf_Internal_Rela *irelaend;
9557 bfd_vma last_offset;
9558 struct elf_link_hash_entry **rel_hash;
9559 struct elf_link_hash_entry **rel_hash_list;
9560 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9561 unsigned int next_erel;
9562 bfd_boolean rela_normal;
9563
9564 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9565 rela_normal = (bed->rela_normal
9566 && (input_rel_hdr->sh_entsize
9567 == bed->s->sizeof_rela));
9568
9569 /* Adjust the reloc addresses and symbol indices. */
9570
9571 irela = internal_relocs;
9572 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9573 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9574 + elf_section_data (o->output_section)->rel_count
9575 + elf_section_data (o->output_section)->rel_count2);
9576 rel_hash_list = rel_hash;
9577 last_offset = o->output_offset;
9578 if (!finfo->info->relocatable)
9579 last_offset += o->output_section->vma;
9580 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9581 {
9582 unsigned long r_symndx;
9583 asection *sec;
9584 Elf_Internal_Sym sym;
9585
9586 if (next_erel == bed->s->int_rels_per_ext_rel)
9587 {
9588 rel_hash++;
9589 next_erel = 0;
9590 }
9591
9592 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9593 finfo->info, o,
9594 irela->r_offset);
9595 if (irela->r_offset >= (bfd_vma) -2)
9596 {
9597 /* This is a reloc for a deleted entry or somesuch.
9598 Turn it into an R_*_NONE reloc, at the same
9599 offset as the last reloc. elf_eh_frame.c and
9600 bfd_elf_discard_info rely on reloc offsets
9601 being ordered. */
9602 irela->r_offset = last_offset;
9603 irela->r_info = 0;
9604 irela->r_addend = 0;
9605 continue;
9606 }
9607
9608 irela->r_offset += o->output_offset;
9609
9610 /* Relocs in an executable have to be virtual addresses. */
9611 if (!finfo->info->relocatable)
9612 irela->r_offset += o->output_section->vma;
9613
9614 last_offset = irela->r_offset;
9615
9616 r_symndx = irela->r_info >> r_sym_shift;
9617 if (r_symndx == STN_UNDEF)
9618 continue;
9619
9620 if (r_symndx >= locsymcount
9621 || (elf_bad_symtab (input_bfd)
9622 && finfo->sections[r_symndx] == NULL))
9623 {
9624 struct elf_link_hash_entry *rh;
9625 unsigned long indx;
9626
9627 /* This is a reloc against a global symbol. We
9628 have not yet output all the local symbols, so
9629 we do not know the symbol index of any global
9630 symbol. We set the rel_hash entry for this
9631 reloc to point to the global hash table entry
9632 for this symbol. The symbol index is then
9633 set at the end of bfd_elf_final_link. */
9634 indx = r_symndx - extsymoff;
9635 rh = elf_sym_hashes (input_bfd)[indx];
9636 while (rh->root.type == bfd_link_hash_indirect
9637 || rh->root.type == bfd_link_hash_warning)
9638 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9639
9640 /* Setting the index to -2 tells
9641 elf_link_output_extsym that this symbol is
9642 used by a reloc. */
9643 BFD_ASSERT (rh->indx < 0);
9644 rh->indx = -2;
9645
9646 *rel_hash = rh;
9647
9648 continue;
9649 }
9650
9651 /* This is a reloc against a local symbol. */
9652
9653 *rel_hash = NULL;
9654 sym = isymbuf[r_symndx];
9655 sec = finfo->sections[r_symndx];
9656 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9657 {
9658 /* I suppose the backend ought to fill in the
9659 section of any STT_SECTION symbol against a
9660 processor specific section. */
9661 r_symndx = 0;
9662 if (bfd_is_abs_section (sec))
9663 ;
9664 else if (sec == NULL || sec->owner == NULL)
9665 {
9666 bfd_set_error (bfd_error_bad_value);
9667 return FALSE;
9668 }
9669 else
9670 {
9671 asection *osec = sec->output_section;
9672
9673 /* If we have discarded a section, the output
9674 section will be the absolute section. In
9675 case of discarded SEC_MERGE sections, use
9676 the kept section. relocate_section should
9677 have already handled discarded linkonce
9678 sections. */
9679 if (bfd_is_abs_section (osec)
9680 && sec->kept_section != NULL
9681 && sec->kept_section->output_section != NULL)
9682 {
9683 osec = sec->kept_section->output_section;
9684 irela->r_addend -= osec->vma;
9685 }
9686
9687 if (!bfd_is_abs_section (osec))
9688 {
9689 r_symndx = osec->target_index;
9690 if (r_symndx == 0)
9691 {
9692 struct elf_link_hash_table *htab;
9693 asection *oi;
9694
9695 htab = elf_hash_table (finfo->info);
9696 oi = htab->text_index_section;
9697 if ((osec->flags & SEC_READONLY) == 0
9698 && htab->data_index_section != NULL)
9699 oi = htab->data_index_section;
9700
9701 if (oi != NULL)
9702 {
9703 irela->r_addend += osec->vma - oi->vma;
9704 r_symndx = oi->target_index;
9705 }
9706 }
9707
9708 BFD_ASSERT (r_symndx != 0);
9709 }
9710 }
9711
9712 /* Adjust the addend according to where the
9713 section winds up in the output section. */
9714 if (rela_normal)
9715 irela->r_addend += sec->output_offset;
9716 }
9717 else
9718 {
9719 if (finfo->indices[r_symndx] == -1)
9720 {
9721 unsigned long shlink;
9722 const char *name;
9723 asection *osec;
9724 long indx;
9725
9726 if (finfo->info->strip == strip_all)
9727 {
9728 /* You can't do ld -r -s. */
9729 bfd_set_error (bfd_error_invalid_operation);
9730 return FALSE;
9731 }
9732
9733 /* This symbol was skipped earlier, but
9734 since it is needed by a reloc, we
9735 must output it now. */
9736 shlink = symtab_hdr->sh_link;
9737 name = (bfd_elf_string_from_elf_section
9738 (input_bfd, shlink, sym.st_name));
9739 if (name == NULL)
9740 return FALSE;
9741
9742 osec = sec->output_section;
9743 sym.st_shndx =
9744 _bfd_elf_section_from_bfd_section (output_bfd,
9745 osec);
9746 if (sym.st_shndx == SHN_BAD)
9747 return FALSE;
9748
9749 sym.st_value += sec->output_offset;
9750 if (! finfo->info->relocatable)
9751 {
9752 sym.st_value += osec->vma;
9753 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9754 {
9755 /* STT_TLS symbols are relative to PT_TLS
9756 segment base. */
9757 BFD_ASSERT (elf_hash_table (finfo->info)
9758 ->tls_sec != NULL);
9759 sym.st_value -= (elf_hash_table (finfo->info)
9760 ->tls_sec->vma);
9761 }
9762 }
9763
9764 indx = bfd_get_symcount (output_bfd);
9765 ret = elf_link_output_sym (finfo, name, &sym, sec,
9766 NULL);
9767 if (ret == 0)
9768 return FALSE;
9769 else if (ret == 1)
9770 finfo->indices[r_symndx] = indx;
9771 else
9772 abort ();
9773 }
9774
9775 r_symndx = finfo->indices[r_symndx];
9776 }
9777
9778 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9779 | (irela->r_info & r_type_mask));
9780 }
9781
9782 /* Swap out the relocs. */
9783 if (input_rel_hdr->sh_size != 0
9784 && !bed->elf_backend_emit_relocs (output_bfd, o,
9785 input_rel_hdr,
9786 internal_relocs,
9787 rel_hash_list))
9788 return FALSE;
9789
9790 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9791 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9792 {
9793 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9794 * bed->s->int_rels_per_ext_rel);
9795 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9796 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9797 input_rel_hdr2,
9798 internal_relocs,
9799 rel_hash_list))
9800 return FALSE;
9801 }
9802 }
9803 }
9804
9805 /* Write out the modified section contents. */
9806 if (bed->elf_backend_write_section
9807 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9808 contents))
9809 {
9810 /* Section written out. */
9811 }
9812 else switch (o->sec_info_type)
9813 {
9814 case ELF_INFO_TYPE_STABS:
9815 if (! (_bfd_write_section_stabs
9816 (output_bfd,
9817 &elf_hash_table (finfo->info)->stab_info,
9818 o, &elf_section_data (o)->sec_info, contents)))
9819 return FALSE;
9820 break;
9821 case ELF_INFO_TYPE_MERGE:
9822 if (! _bfd_write_merged_section (output_bfd, o,
9823 elf_section_data (o)->sec_info))
9824 return FALSE;
9825 break;
9826 case ELF_INFO_TYPE_EH_FRAME:
9827 {
9828 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9829 o, contents))
9830 return FALSE;
9831 }
9832 break;
9833 default:
9834 {
9835 /* FIXME: octets_per_byte. */
9836 if (! (o->flags & SEC_EXCLUDE)
9837 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9838 && ! bfd_set_section_contents (output_bfd, o->output_section,
9839 contents,
9840 (file_ptr) o->output_offset,
9841 o->size))
9842 return FALSE;
9843 }
9844 break;
9845 }
9846 }
9847
9848 return TRUE;
9849 }
9850
9851 /* Generate a reloc when linking an ELF file. This is a reloc
9852 requested by the linker, and does not come from any input file. This
9853 is used to build constructor and destructor tables when linking
9854 with -Ur. */
9855
9856 static bfd_boolean
9857 elf_reloc_link_order (bfd *output_bfd,
9858 struct bfd_link_info *info,
9859 asection *output_section,
9860 struct bfd_link_order *link_order)
9861 {
9862 reloc_howto_type *howto;
9863 long indx;
9864 bfd_vma offset;
9865 bfd_vma addend;
9866 struct elf_link_hash_entry **rel_hash_ptr;
9867 Elf_Internal_Shdr *rel_hdr;
9868 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9869 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9870 bfd_byte *erel;
9871 unsigned int i;
9872
9873 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9874 if (howto == NULL)
9875 {
9876 bfd_set_error (bfd_error_bad_value);
9877 return FALSE;
9878 }
9879
9880 addend = link_order->u.reloc.p->addend;
9881
9882 /* Figure out the symbol index. */
9883 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9884 + elf_section_data (output_section)->rel_count
9885 + elf_section_data (output_section)->rel_count2);
9886 if (link_order->type == bfd_section_reloc_link_order)
9887 {
9888 indx = link_order->u.reloc.p->u.section->target_index;
9889 BFD_ASSERT (indx != 0);
9890 *rel_hash_ptr = NULL;
9891 }
9892 else
9893 {
9894 struct elf_link_hash_entry *h;
9895
9896 /* Treat a reloc against a defined symbol as though it were
9897 actually against the section. */
9898 h = ((struct elf_link_hash_entry *)
9899 bfd_wrapped_link_hash_lookup (output_bfd, info,
9900 link_order->u.reloc.p->u.name,
9901 FALSE, FALSE, TRUE));
9902 if (h != NULL
9903 && (h->root.type == bfd_link_hash_defined
9904 || h->root.type == bfd_link_hash_defweak))
9905 {
9906 asection *section;
9907
9908 section = h->root.u.def.section;
9909 indx = section->output_section->target_index;
9910 *rel_hash_ptr = NULL;
9911 /* It seems that we ought to add the symbol value to the
9912 addend here, but in practice it has already been added
9913 because it was passed to constructor_callback. */
9914 addend += section->output_section->vma + section->output_offset;
9915 }
9916 else if (h != NULL)
9917 {
9918 /* Setting the index to -2 tells elf_link_output_extsym that
9919 this symbol is used by a reloc. */
9920 h->indx = -2;
9921 *rel_hash_ptr = h;
9922 indx = 0;
9923 }
9924 else
9925 {
9926 if (! ((*info->callbacks->unattached_reloc)
9927 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9928 return FALSE;
9929 indx = 0;
9930 }
9931 }
9932
9933 /* If this is an inplace reloc, we must write the addend into the
9934 object file. */
9935 if (howto->partial_inplace && addend != 0)
9936 {
9937 bfd_size_type size;
9938 bfd_reloc_status_type rstat;
9939 bfd_byte *buf;
9940 bfd_boolean ok;
9941 const char *sym_name;
9942
9943 size = (bfd_size_type) bfd_get_reloc_size (howto);
9944 buf = (bfd_byte *) bfd_zmalloc (size);
9945 if (buf == NULL)
9946 return FALSE;
9947 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9948 switch (rstat)
9949 {
9950 case bfd_reloc_ok:
9951 break;
9952
9953 default:
9954 case bfd_reloc_outofrange:
9955 abort ();
9956
9957 case bfd_reloc_overflow:
9958 if (link_order->type == bfd_section_reloc_link_order)
9959 sym_name = bfd_section_name (output_bfd,
9960 link_order->u.reloc.p->u.section);
9961 else
9962 sym_name = link_order->u.reloc.p->u.name;
9963 if (! ((*info->callbacks->reloc_overflow)
9964 (info, NULL, sym_name, howto->name, addend, NULL,
9965 NULL, (bfd_vma) 0)))
9966 {
9967 free (buf);
9968 return FALSE;
9969 }
9970 break;
9971 }
9972 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9973 link_order->offset, size);
9974 free (buf);
9975 if (! ok)
9976 return FALSE;
9977 }
9978
9979 /* The address of a reloc is relative to the section in a
9980 relocatable file, and is a virtual address in an executable
9981 file. */
9982 offset = link_order->offset;
9983 if (! info->relocatable)
9984 offset += output_section->vma;
9985
9986 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9987 {
9988 irel[i].r_offset = offset;
9989 irel[i].r_info = 0;
9990 irel[i].r_addend = 0;
9991 }
9992 if (bed->s->arch_size == 32)
9993 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9994 else
9995 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9996
9997 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9998 erel = rel_hdr->contents;
9999 if (rel_hdr->sh_type == SHT_REL)
10000 {
10001 erel += (elf_section_data (output_section)->rel_count
10002 * bed->s->sizeof_rel);
10003 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10004 }
10005 else
10006 {
10007 irel[0].r_addend = addend;
10008 erel += (elf_section_data (output_section)->rel_count
10009 * bed->s->sizeof_rela);
10010 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10011 }
10012
10013 ++elf_section_data (output_section)->rel_count;
10014
10015 return TRUE;
10016 }
10017
10018
10019 /* Get the output vma of the section pointed to by the sh_link field. */
10020
10021 static bfd_vma
10022 elf_get_linked_section_vma (struct bfd_link_order *p)
10023 {
10024 Elf_Internal_Shdr **elf_shdrp;
10025 asection *s;
10026 int elfsec;
10027
10028 s = p->u.indirect.section;
10029 elf_shdrp = elf_elfsections (s->owner);
10030 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10031 elfsec = elf_shdrp[elfsec]->sh_link;
10032 /* PR 290:
10033 The Intel C compiler generates SHT_IA_64_UNWIND with
10034 SHF_LINK_ORDER. But it doesn't set the sh_link or
10035 sh_info fields. Hence we could get the situation
10036 where elfsec is 0. */
10037 if (elfsec == 0)
10038 {
10039 const struct elf_backend_data *bed
10040 = get_elf_backend_data (s->owner);
10041 if (bed->link_order_error_handler)
10042 bed->link_order_error_handler
10043 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10044 return 0;
10045 }
10046 else
10047 {
10048 s = elf_shdrp[elfsec]->bfd_section;
10049 return s->output_section->vma + s->output_offset;
10050 }
10051 }
10052
10053
10054 /* Compare two sections based on the locations of the sections they are
10055 linked to. Used by elf_fixup_link_order. */
10056
10057 static int
10058 compare_link_order (const void * a, const void * b)
10059 {
10060 bfd_vma apos;
10061 bfd_vma bpos;
10062
10063 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10064 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10065 if (apos < bpos)
10066 return -1;
10067 return apos > bpos;
10068 }
10069
10070
10071 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10072 order as their linked sections. Returns false if this could not be done
10073 because an output section includes both ordered and unordered
10074 sections. Ideally we'd do this in the linker proper. */
10075
10076 static bfd_boolean
10077 elf_fixup_link_order (bfd *abfd, asection *o)
10078 {
10079 int seen_linkorder;
10080 int seen_other;
10081 int n;
10082 struct bfd_link_order *p;
10083 bfd *sub;
10084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10085 unsigned elfsec;
10086 struct bfd_link_order **sections;
10087 asection *s, *other_sec, *linkorder_sec;
10088 bfd_vma offset;
10089
10090 other_sec = NULL;
10091 linkorder_sec = NULL;
10092 seen_other = 0;
10093 seen_linkorder = 0;
10094 for (p = o->map_head.link_order; p != NULL; p = p->next)
10095 {
10096 if (p->type == bfd_indirect_link_order)
10097 {
10098 s = p->u.indirect.section;
10099 sub = s->owner;
10100 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10101 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10102 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10103 && elfsec < elf_numsections (sub)
10104 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10105 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10106 {
10107 seen_linkorder++;
10108 linkorder_sec = s;
10109 }
10110 else
10111 {
10112 seen_other++;
10113 other_sec = s;
10114 }
10115 }
10116 else
10117 seen_other++;
10118
10119 if (seen_other && seen_linkorder)
10120 {
10121 if (other_sec && linkorder_sec)
10122 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10123 o, linkorder_sec,
10124 linkorder_sec->owner, other_sec,
10125 other_sec->owner);
10126 else
10127 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10128 o);
10129 bfd_set_error (bfd_error_bad_value);
10130 return FALSE;
10131 }
10132 }
10133
10134 if (!seen_linkorder)
10135 return TRUE;
10136
10137 sections = (struct bfd_link_order **)
10138 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10139 if (sections == NULL)
10140 return FALSE;
10141 seen_linkorder = 0;
10142
10143 for (p = o->map_head.link_order; p != NULL; p = p->next)
10144 {
10145 sections[seen_linkorder++] = p;
10146 }
10147 /* Sort the input sections in the order of their linked section. */
10148 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10149 compare_link_order);
10150
10151 /* Change the offsets of the sections. */
10152 offset = 0;
10153 for (n = 0; n < seen_linkorder; n++)
10154 {
10155 s = sections[n]->u.indirect.section;
10156 offset &= ~(bfd_vma) 0 << s->alignment_power;
10157 s->output_offset = offset;
10158 sections[n]->offset = offset;
10159 /* FIXME: octets_per_byte. */
10160 offset += sections[n]->size;
10161 }
10162
10163 free (sections);
10164 return TRUE;
10165 }
10166
10167
10168 /* Do the final step of an ELF link. */
10169
10170 bfd_boolean
10171 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10172 {
10173 bfd_boolean dynamic;
10174 bfd_boolean emit_relocs;
10175 bfd *dynobj;
10176 struct elf_final_link_info finfo;
10177 asection *o;
10178 struct bfd_link_order *p;
10179 bfd *sub;
10180 bfd_size_type max_contents_size;
10181 bfd_size_type max_external_reloc_size;
10182 bfd_size_type max_internal_reloc_count;
10183 bfd_size_type max_sym_count;
10184 bfd_size_type max_sym_shndx_count;
10185 file_ptr off;
10186 Elf_Internal_Sym elfsym;
10187 unsigned int i;
10188 Elf_Internal_Shdr *symtab_hdr;
10189 Elf_Internal_Shdr *symtab_shndx_hdr;
10190 Elf_Internal_Shdr *symstrtab_hdr;
10191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10192 struct elf_outext_info eoinfo;
10193 bfd_boolean merged;
10194 size_t relativecount = 0;
10195 asection *reldyn = 0;
10196 bfd_size_type amt;
10197 asection *attr_section = NULL;
10198 bfd_vma attr_size = 0;
10199 const char *std_attrs_section;
10200
10201 if (! is_elf_hash_table (info->hash))
10202 return FALSE;
10203
10204 if (info->shared)
10205 abfd->flags |= DYNAMIC;
10206
10207 dynamic = elf_hash_table (info)->dynamic_sections_created;
10208 dynobj = elf_hash_table (info)->dynobj;
10209
10210 emit_relocs = (info->relocatable
10211 || info->emitrelocations);
10212
10213 finfo.info = info;
10214 finfo.output_bfd = abfd;
10215 finfo.symstrtab = _bfd_elf_stringtab_init ();
10216 if (finfo.symstrtab == NULL)
10217 return FALSE;
10218
10219 if (! dynamic)
10220 {
10221 finfo.dynsym_sec = NULL;
10222 finfo.hash_sec = NULL;
10223 finfo.symver_sec = NULL;
10224 }
10225 else
10226 {
10227 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10228 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10229 BFD_ASSERT (finfo.dynsym_sec != NULL);
10230 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10231 /* Note that it is OK if symver_sec is NULL. */
10232 }
10233
10234 finfo.contents = NULL;
10235 finfo.external_relocs = NULL;
10236 finfo.internal_relocs = NULL;
10237 finfo.external_syms = NULL;
10238 finfo.locsym_shndx = NULL;
10239 finfo.internal_syms = NULL;
10240 finfo.indices = NULL;
10241 finfo.sections = NULL;
10242 finfo.symbuf = NULL;
10243 finfo.symshndxbuf = NULL;
10244 finfo.symbuf_count = 0;
10245 finfo.shndxbuf_size = 0;
10246
10247 /* The object attributes have been merged. Remove the input
10248 sections from the link, and set the contents of the output
10249 secton. */
10250 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10251 for (o = abfd->sections; o != NULL; o = o->next)
10252 {
10253 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10254 || strcmp (o->name, ".gnu.attributes") == 0)
10255 {
10256 for (p = o->map_head.link_order; p != NULL; p = p->next)
10257 {
10258 asection *input_section;
10259
10260 if (p->type != bfd_indirect_link_order)
10261 continue;
10262 input_section = p->u.indirect.section;
10263 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10264 elf_link_input_bfd ignores this section. */
10265 input_section->flags &= ~SEC_HAS_CONTENTS;
10266 }
10267
10268 attr_size = bfd_elf_obj_attr_size (abfd);
10269 if (attr_size)
10270 {
10271 bfd_set_section_size (abfd, o, attr_size);
10272 attr_section = o;
10273 /* Skip this section later on. */
10274 o->map_head.link_order = NULL;
10275 }
10276 else
10277 o->flags |= SEC_EXCLUDE;
10278 }
10279 }
10280
10281 /* Count up the number of relocations we will output for each output
10282 section, so that we know the sizes of the reloc sections. We
10283 also figure out some maximum sizes. */
10284 max_contents_size = 0;
10285 max_external_reloc_size = 0;
10286 max_internal_reloc_count = 0;
10287 max_sym_count = 0;
10288 max_sym_shndx_count = 0;
10289 merged = FALSE;
10290 for (o = abfd->sections; o != NULL; o = o->next)
10291 {
10292 struct bfd_elf_section_data *esdo = elf_section_data (o);
10293 o->reloc_count = 0;
10294
10295 for (p = o->map_head.link_order; p != NULL; p = p->next)
10296 {
10297 unsigned int reloc_count = 0;
10298 struct bfd_elf_section_data *esdi = NULL;
10299 unsigned int *rel_count1;
10300
10301 if (p->type == bfd_section_reloc_link_order
10302 || p->type == bfd_symbol_reloc_link_order)
10303 reloc_count = 1;
10304 else if (p->type == bfd_indirect_link_order)
10305 {
10306 asection *sec;
10307
10308 sec = p->u.indirect.section;
10309 esdi = elf_section_data (sec);
10310
10311 /* Mark all sections which are to be included in the
10312 link. This will normally be every section. We need
10313 to do this so that we can identify any sections which
10314 the linker has decided to not include. */
10315 sec->linker_mark = TRUE;
10316
10317 if (sec->flags & SEC_MERGE)
10318 merged = TRUE;
10319
10320 if (info->relocatable || info->emitrelocations)
10321 reloc_count = sec->reloc_count;
10322 else if (bed->elf_backend_count_relocs)
10323 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10324
10325 if (sec->rawsize > max_contents_size)
10326 max_contents_size = sec->rawsize;
10327 if (sec->size > max_contents_size)
10328 max_contents_size = sec->size;
10329
10330 /* We are interested in just local symbols, not all
10331 symbols. */
10332 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10333 && (sec->owner->flags & DYNAMIC) == 0)
10334 {
10335 size_t sym_count;
10336
10337 if (elf_bad_symtab (sec->owner))
10338 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10339 / bed->s->sizeof_sym);
10340 else
10341 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10342
10343 if (sym_count > max_sym_count)
10344 max_sym_count = sym_count;
10345
10346 if (sym_count > max_sym_shndx_count
10347 && elf_symtab_shndx (sec->owner) != 0)
10348 max_sym_shndx_count = sym_count;
10349
10350 if ((sec->flags & SEC_RELOC) != 0)
10351 {
10352 size_t ext_size;
10353
10354 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10355 if (ext_size > max_external_reloc_size)
10356 max_external_reloc_size = ext_size;
10357 if (sec->reloc_count > max_internal_reloc_count)
10358 max_internal_reloc_count = sec->reloc_count;
10359 }
10360 }
10361 }
10362
10363 if (reloc_count == 0)
10364 continue;
10365
10366 o->reloc_count += reloc_count;
10367
10368 /* MIPS may have a mix of REL and RELA relocs on sections.
10369 To support this curious ABI we keep reloc counts in
10370 elf_section_data too. We must be careful to add the
10371 relocations from the input section to the right output
10372 count. FIXME: Get rid of one count. We have
10373 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10374 rel_count1 = &esdo->rel_count;
10375 if (esdi != NULL)
10376 {
10377 bfd_boolean same_size;
10378 bfd_size_type entsize1;
10379
10380 entsize1 = esdi->rel_hdr.sh_entsize;
10381 /* PR 9827: If the header size has not been set yet then
10382 assume that it will match the output section's reloc type. */
10383 if (entsize1 == 0)
10384 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10385 else
10386 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10387 || entsize1 == bed->s->sizeof_rela);
10388 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10389
10390 if (!same_size)
10391 rel_count1 = &esdo->rel_count2;
10392
10393 if (esdi->rel_hdr2 != NULL)
10394 {
10395 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10396 unsigned int alt_count;
10397 unsigned int *rel_count2;
10398
10399 BFD_ASSERT (entsize2 != entsize1
10400 && (entsize2 == bed->s->sizeof_rel
10401 || entsize2 == bed->s->sizeof_rela));
10402
10403 rel_count2 = &esdo->rel_count2;
10404 if (!same_size)
10405 rel_count2 = &esdo->rel_count;
10406
10407 /* The following is probably too simplistic if the
10408 backend counts output relocs unusually. */
10409 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10410 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10411 *rel_count2 += alt_count;
10412 reloc_count -= alt_count;
10413 }
10414 }
10415 *rel_count1 += reloc_count;
10416 }
10417
10418 if (o->reloc_count > 0)
10419 o->flags |= SEC_RELOC;
10420 else
10421 {
10422 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10423 set it (this is probably a bug) and if it is set
10424 assign_section_numbers will create a reloc section. */
10425 o->flags &=~ SEC_RELOC;
10426 }
10427
10428 /* If the SEC_ALLOC flag is not set, force the section VMA to
10429 zero. This is done in elf_fake_sections as well, but forcing
10430 the VMA to 0 here will ensure that relocs against these
10431 sections are handled correctly. */
10432 if ((o->flags & SEC_ALLOC) == 0
10433 && ! o->user_set_vma)
10434 o->vma = 0;
10435 }
10436
10437 if (! info->relocatable && merged)
10438 elf_link_hash_traverse (elf_hash_table (info),
10439 _bfd_elf_link_sec_merge_syms, abfd);
10440
10441 /* Figure out the file positions for everything but the symbol table
10442 and the relocs. We set symcount to force assign_section_numbers
10443 to create a symbol table. */
10444 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10445 BFD_ASSERT (! abfd->output_has_begun);
10446 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10447 goto error_return;
10448
10449 /* Set sizes, and assign file positions for reloc sections. */
10450 for (o = abfd->sections; o != NULL; o = o->next)
10451 {
10452 if ((o->flags & SEC_RELOC) != 0)
10453 {
10454 if (!(_bfd_elf_link_size_reloc_section
10455 (abfd, &elf_section_data (o)->rel_hdr, o)))
10456 goto error_return;
10457
10458 if (elf_section_data (o)->rel_hdr2
10459 && !(_bfd_elf_link_size_reloc_section
10460 (abfd, elf_section_data (o)->rel_hdr2, o)))
10461 goto error_return;
10462 }
10463
10464 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10465 to count upwards while actually outputting the relocations. */
10466 elf_section_data (o)->rel_count = 0;
10467 elf_section_data (o)->rel_count2 = 0;
10468 }
10469
10470 _bfd_elf_assign_file_positions_for_relocs (abfd);
10471
10472 /* We have now assigned file positions for all the sections except
10473 .symtab and .strtab. We start the .symtab section at the current
10474 file position, and write directly to it. We build the .strtab
10475 section in memory. */
10476 bfd_get_symcount (abfd) = 0;
10477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10478 /* sh_name is set in prep_headers. */
10479 symtab_hdr->sh_type = SHT_SYMTAB;
10480 /* sh_flags, sh_addr and sh_size all start off zero. */
10481 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10482 /* sh_link is set in assign_section_numbers. */
10483 /* sh_info is set below. */
10484 /* sh_offset is set just below. */
10485 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10486
10487 off = elf_tdata (abfd)->next_file_pos;
10488 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10489
10490 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10491 incorrect. We do not yet know the size of the .symtab section.
10492 We correct next_file_pos below, after we do know the size. */
10493
10494 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10495 continuously seeking to the right position in the file. */
10496 if (! info->keep_memory || max_sym_count < 20)
10497 finfo.symbuf_size = 20;
10498 else
10499 finfo.symbuf_size = max_sym_count;
10500 amt = finfo.symbuf_size;
10501 amt *= bed->s->sizeof_sym;
10502 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10503 if (finfo.symbuf == NULL)
10504 goto error_return;
10505 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10506 {
10507 /* Wild guess at number of output symbols. realloc'd as needed. */
10508 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10509 finfo.shndxbuf_size = amt;
10510 amt *= sizeof (Elf_External_Sym_Shndx);
10511 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10512 if (finfo.symshndxbuf == NULL)
10513 goto error_return;
10514 }
10515
10516 /* Start writing out the symbol table. The first symbol is always a
10517 dummy symbol. */
10518 if (info->strip != strip_all
10519 || emit_relocs)
10520 {
10521 elfsym.st_value = 0;
10522 elfsym.st_size = 0;
10523 elfsym.st_info = 0;
10524 elfsym.st_other = 0;
10525 elfsym.st_shndx = SHN_UNDEF;
10526 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10527 NULL) != 1)
10528 goto error_return;
10529 }
10530
10531 /* Output a symbol for each section. We output these even if we are
10532 discarding local symbols, since they are used for relocs. These
10533 symbols have no names. We store the index of each one in the
10534 index field of the section, so that we can find it again when
10535 outputting relocs. */
10536 if (info->strip != strip_all
10537 || emit_relocs)
10538 {
10539 elfsym.st_size = 0;
10540 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10541 elfsym.st_other = 0;
10542 elfsym.st_value = 0;
10543 for (i = 1; i < elf_numsections (abfd); i++)
10544 {
10545 o = bfd_section_from_elf_index (abfd, i);
10546 if (o != NULL)
10547 {
10548 o->target_index = bfd_get_symcount (abfd);
10549 elfsym.st_shndx = i;
10550 if (!info->relocatable)
10551 elfsym.st_value = o->vma;
10552 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10553 goto error_return;
10554 }
10555 }
10556 }
10557
10558 /* Allocate some memory to hold information read in from the input
10559 files. */
10560 if (max_contents_size != 0)
10561 {
10562 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10563 if (finfo.contents == NULL)
10564 goto error_return;
10565 }
10566
10567 if (max_external_reloc_size != 0)
10568 {
10569 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10570 if (finfo.external_relocs == NULL)
10571 goto error_return;
10572 }
10573
10574 if (max_internal_reloc_count != 0)
10575 {
10576 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10577 amt *= sizeof (Elf_Internal_Rela);
10578 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10579 if (finfo.internal_relocs == NULL)
10580 goto error_return;
10581 }
10582
10583 if (max_sym_count != 0)
10584 {
10585 amt = max_sym_count * bed->s->sizeof_sym;
10586 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10587 if (finfo.external_syms == NULL)
10588 goto error_return;
10589
10590 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10591 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10592 if (finfo.internal_syms == NULL)
10593 goto error_return;
10594
10595 amt = max_sym_count * sizeof (long);
10596 finfo.indices = (long int *) bfd_malloc (amt);
10597 if (finfo.indices == NULL)
10598 goto error_return;
10599
10600 amt = max_sym_count * sizeof (asection *);
10601 finfo.sections = (asection **) bfd_malloc (amt);
10602 if (finfo.sections == NULL)
10603 goto error_return;
10604 }
10605
10606 if (max_sym_shndx_count != 0)
10607 {
10608 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10609 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10610 if (finfo.locsym_shndx == NULL)
10611 goto error_return;
10612 }
10613
10614 if (elf_hash_table (info)->tls_sec)
10615 {
10616 bfd_vma base, end = 0;
10617 asection *sec;
10618
10619 for (sec = elf_hash_table (info)->tls_sec;
10620 sec && (sec->flags & SEC_THREAD_LOCAL);
10621 sec = sec->next)
10622 {
10623 bfd_size_type size = sec->size;
10624
10625 if (size == 0
10626 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10627 {
10628 struct bfd_link_order *ord = sec->map_tail.link_order;
10629
10630 if (ord != NULL)
10631 size = ord->offset + ord->size;
10632 }
10633 end = sec->vma + size;
10634 }
10635 base = elf_hash_table (info)->tls_sec->vma;
10636 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10637 elf_hash_table (info)->tls_size = end - base;
10638 }
10639
10640 /* Reorder SHF_LINK_ORDER sections. */
10641 for (o = abfd->sections; o != NULL; o = o->next)
10642 {
10643 if (!elf_fixup_link_order (abfd, o))
10644 return FALSE;
10645 }
10646
10647 /* Since ELF permits relocations to be against local symbols, we
10648 must have the local symbols available when we do the relocations.
10649 Since we would rather only read the local symbols once, and we
10650 would rather not keep them in memory, we handle all the
10651 relocations for a single input file at the same time.
10652
10653 Unfortunately, there is no way to know the total number of local
10654 symbols until we have seen all of them, and the local symbol
10655 indices precede the global symbol indices. This means that when
10656 we are generating relocatable output, and we see a reloc against
10657 a global symbol, we can not know the symbol index until we have
10658 finished examining all the local symbols to see which ones we are
10659 going to output. To deal with this, we keep the relocations in
10660 memory, and don't output them until the end of the link. This is
10661 an unfortunate waste of memory, but I don't see a good way around
10662 it. Fortunately, it only happens when performing a relocatable
10663 link, which is not the common case. FIXME: If keep_memory is set
10664 we could write the relocs out and then read them again; I don't
10665 know how bad the memory loss will be. */
10666
10667 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10668 sub->output_has_begun = FALSE;
10669 for (o = abfd->sections; o != NULL; o = o->next)
10670 {
10671 for (p = o->map_head.link_order; p != NULL; p = p->next)
10672 {
10673 if (p->type == bfd_indirect_link_order
10674 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10675 == bfd_target_elf_flavour)
10676 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10677 {
10678 if (! sub->output_has_begun)
10679 {
10680 if (! elf_link_input_bfd (&finfo, sub))
10681 goto error_return;
10682 sub->output_has_begun = TRUE;
10683 }
10684 }
10685 else if (p->type == bfd_section_reloc_link_order
10686 || p->type == bfd_symbol_reloc_link_order)
10687 {
10688 if (! elf_reloc_link_order (abfd, info, o, p))
10689 goto error_return;
10690 }
10691 else
10692 {
10693 if (! _bfd_default_link_order (abfd, info, o, p))
10694 goto error_return;
10695 }
10696 }
10697 }
10698
10699 /* Free symbol buffer if needed. */
10700 if (!info->reduce_memory_overheads)
10701 {
10702 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10703 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10704 && elf_tdata (sub)->symbuf)
10705 {
10706 free (elf_tdata (sub)->symbuf);
10707 elf_tdata (sub)->symbuf = NULL;
10708 }
10709 }
10710
10711 /* Output any global symbols that got converted to local in a
10712 version script or due to symbol visibility. We do this in a
10713 separate step since ELF requires all local symbols to appear
10714 prior to any global symbols. FIXME: We should only do this if
10715 some global symbols were, in fact, converted to become local.
10716 FIXME: Will this work correctly with the Irix 5 linker? */
10717 eoinfo.failed = FALSE;
10718 eoinfo.finfo = &finfo;
10719 eoinfo.localsyms = TRUE;
10720 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10721 &eoinfo);
10722 if (eoinfo.failed)
10723 return FALSE;
10724
10725 /* If backend needs to output some local symbols not present in the hash
10726 table, do it now. */
10727 if (bed->elf_backend_output_arch_local_syms)
10728 {
10729 typedef int (*out_sym_func)
10730 (void *, const char *, Elf_Internal_Sym *, asection *,
10731 struct elf_link_hash_entry *);
10732
10733 if (! ((*bed->elf_backend_output_arch_local_syms)
10734 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10735 return FALSE;
10736 }
10737
10738 /* That wrote out all the local symbols. Finish up the symbol table
10739 with the global symbols. Even if we want to strip everything we
10740 can, we still need to deal with those global symbols that got
10741 converted to local in a version script. */
10742
10743 /* The sh_info field records the index of the first non local symbol. */
10744 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10745
10746 if (dynamic
10747 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10748 {
10749 Elf_Internal_Sym sym;
10750 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10751 long last_local = 0;
10752
10753 /* Write out the section symbols for the output sections. */
10754 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10755 {
10756 asection *s;
10757
10758 sym.st_size = 0;
10759 sym.st_name = 0;
10760 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10761 sym.st_other = 0;
10762
10763 for (s = abfd->sections; s != NULL; s = s->next)
10764 {
10765 int indx;
10766 bfd_byte *dest;
10767 long dynindx;
10768
10769 dynindx = elf_section_data (s)->dynindx;
10770 if (dynindx <= 0)
10771 continue;
10772 indx = elf_section_data (s)->this_idx;
10773 BFD_ASSERT (indx > 0);
10774 sym.st_shndx = indx;
10775 if (! check_dynsym (abfd, &sym))
10776 return FALSE;
10777 sym.st_value = s->vma;
10778 dest = dynsym + dynindx * bed->s->sizeof_sym;
10779 if (last_local < dynindx)
10780 last_local = dynindx;
10781 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10782 }
10783 }
10784
10785 /* Write out the local dynsyms. */
10786 if (elf_hash_table (info)->dynlocal)
10787 {
10788 struct elf_link_local_dynamic_entry *e;
10789 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10790 {
10791 asection *s;
10792 bfd_byte *dest;
10793
10794 /* Copy the internal symbol and turn off visibility.
10795 Note that we saved a word of storage and overwrote
10796 the original st_name with the dynstr_index. */
10797 sym = e->isym;
10798 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10799
10800 s = bfd_section_from_elf_index (e->input_bfd,
10801 e->isym.st_shndx);
10802 if (s != NULL)
10803 {
10804 sym.st_shndx =
10805 elf_section_data (s->output_section)->this_idx;
10806 if (! check_dynsym (abfd, &sym))
10807 return FALSE;
10808 sym.st_value = (s->output_section->vma
10809 + s->output_offset
10810 + e->isym.st_value);
10811 }
10812
10813 if (last_local < e->dynindx)
10814 last_local = e->dynindx;
10815
10816 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10817 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10818 }
10819 }
10820
10821 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10822 last_local + 1;
10823 }
10824
10825 /* We get the global symbols from the hash table. */
10826 eoinfo.failed = FALSE;
10827 eoinfo.localsyms = FALSE;
10828 eoinfo.finfo = &finfo;
10829 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10830 &eoinfo);
10831 if (eoinfo.failed)
10832 return FALSE;
10833
10834 /* If backend needs to output some symbols not present in the hash
10835 table, do it now. */
10836 if (bed->elf_backend_output_arch_syms)
10837 {
10838 typedef int (*out_sym_func)
10839 (void *, const char *, Elf_Internal_Sym *, asection *,
10840 struct elf_link_hash_entry *);
10841
10842 if (! ((*bed->elf_backend_output_arch_syms)
10843 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10844 return FALSE;
10845 }
10846
10847 /* Flush all symbols to the file. */
10848 if (! elf_link_flush_output_syms (&finfo, bed))
10849 return FALSE;
10850
10851 /* Now we know the size of the symtab section. */
10852 off += symtab_hdr->sh_size;
10853
10854 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10855 if (symtab_shndx_hdr->sh_name != 0)
10856 {
10857 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10858 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10859 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10860 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10861 symtab_shndx_hdr->sh_size = amt;
10862
10863 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10864 off, TRUE);
10865
10866 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10867 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10868 return FALSE;
10869 }
10870
10871
10872 /* Finish up and write out the symbol string table (.strtab)
10873 section. */
10874 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10875 /* sh_name was set in prep_headers. */
10876 symstrtab_hdr->sh_type = SHT_STRTAB;
10877 symstrtab_hdr->sh_flags = 0;
10878 symstrtab_hdr->sh_addr = 0;
10879 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10880 symstrtab_hdr->sh_entsize = 0;
10881 symstrtab_hdr->sh_link = 0;
10882 symstrtab_hdr->sh_info = 0;
10883 /* sh_offset is set just below. */
10884 symstrtab_hdr->sh_addralign = 1;
10885
10886 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10887 elf_tdata (abfd)->next_file_pos = off;
10888
10889 if (bfd_get_symcount (abfd) > 0)
10890 {
10891 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10892 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10893 return FALSE;
10894 }
10895
10896 /* Adjust the relocs to have the correct symbol indices. */
10897 for (o = abfd->sections; o != NULL; o = o->next)
10898 {
10899 if ((o->flags & SEC_RELOC) == 0)
10900 continue;
10901
10902 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10903 elf_section_data (o)->rel_count,
10904 elf_section_data (o)->rel_hashes);
10905 if (elf_section_data (o)->rel_hdr2 != NULL)
10906 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10907 elf_section_data (o)->rel_count2,
10908 (elf_section_data (o)->rel_hashes
10909 + elf_section_data (o)->rel_count));
10910
10911 /* Set the reloc_count field to 0 to prevent write_relocs from
10912 trying to swap the relocs out itself. */
10913 o->reloc_count = 0;
10914 }
10915
10916 if (dynamic && info->combreloc && dynobj != NULL)
10917 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10918
10919 /* If we are linking against a dynamic object, or generating a
10920 shared library, finish up the dynamic linking information. */
10921 if (dynamic)
10922 {
10923 bfd_byte *dyncon, *dynconend;
10924
10925 /* Fix up .dynamic entries. */
10926 o = bfd_get_section_by_name (dynobj, ".dynamic");
10927 BFD_ASSERT (o != NULL);
10928
10929 dyncon = o->contents;
10930 dynconend = o->contents + o->size;
10931 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10932 {
10933 Elf_Internal_Dyn dyn;
10934 const char *name;
10935 unsigned int type;
10936
10937 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10938
10939 switch (dyn.d_tag)
10940 {
10941 default:
10942 continue;
10943 case DT_NULL:
10944 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10945 {
10946 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10947 {
10948 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10949 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10950 default: continue;
10951 }
10952 dyn.d_un.d_val = relativecount;
10953 relativecount = 0;
10954 break;
10955 }
10956 continue;
10957
10958 case DT_INIT:
10959 name = info->init_function;
10960 goto get_sym;
10961 case DT_FINI:
10962 name = info->fini_function;
10963 get_sym:
10964 {
10965 struct elf_link_hash_entry *h;
10966
10967 h = elf_link_hash_lookup (elf_hash_table (info), name,
10968 FALSE, FALSE, TRUE);
10969 if (h != NULL
10970 && (h->root.type == bfd_link_hash_defined
10971 || h->root.type == bfd_link_hash_defweak))
10972 {
10973 dyn.d_un.d_ptr = h->root.u.def.value;
10974 o = h->root.u.def.section;
10975 if (o->output_section != NULL)
10976 dyn.d_un.d_ptr += (o->output_section->vma
10977 + o->output_offset);
10978 else
10979 {
10980 /* The symbol is imported from another shared
10981 library and does not apply to this one. */
10982 dyn.d_un.d_ptr = 0;
10983 }
10984 break;
10985 }
10986 }
10987 continue;
10988
10989 case DT_PREINIT_ARRAYSZ:
10990 name = ".preinit_array";
10991 goto get_size;
10992 case DT_INIT_ARRAYSZ:
10993 name = ".init_array";
10994 goto get_size;
10995 case DT_FINI_ARRAYSZ:
10996 name = ".fini_array";
10997 get_size:
10998 o = bfd_get_section_by_name (abfd, name);
10999 if (o == NULL)
11000 {
11001 (*_bfd_error_handler)
11002 (_("%B: could not find output section %s"), abfd, name);
11003 goto error_return;
11004 }
11005 if (o->size == 0)
11006 (*_bfd_error_handler)
11007 (_("warning: %s section has zero size"), name);
11008 dyn.d_un.d_val = o->size;
11009 break;
11010
11011 case DT_PREINIT_ARRAY:
11012 name = ".preinit_array";
11013 goto get_vma;
11014 case DT_INIT_ARRAY:
11015 name = ".init_array";
11016 goto get_vma;
11017 case DT_FINI_ARRAY:
11018 name = ".fini_array";
11019 goto get_vma;
11020
11021 case DT_HASH:
11022 name = ".hash";
11023 goto get_vma;
11024 case DT_GNU_HASH:
11025 name = ".gnu.hash";
11026 goto get_vma;
11027 case DT_STRTAB:
11028 name = ".dynstr";
11029 goto get_vma;
11030 case DT_SYMTAB:
11031 name = ".dynsym";
11032 goto get_vma;
11033 case DT_VERDEF:
11034 name = ".gnu.version_d";
11035 goto get_vma;
11036 case DT_VERNEED:
11037 name = ".gnu.version_r";
11038 goto get_vma;
11039 case DT_VERSYM:
11040 name = ".gnu.version";
11041 get_vma:
11042 o = bfd_get_section_by_name (abfd, name);
11043 if (o == NULL)
11044 {
11045 (*_bfd_error_handler)
11046 (_("%B: could not find output section %s"), abfd, name);
11047 goto error_return;
11048 }
11049 dyn.d_un.d_ptr = o->vma;
11050 break;
11051
11052 case DT_REL:
11053 case DT_RELA:
11054 case DT_RELSZ:
11055 case DT_RELASZ:
11056 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11057 type = SHT_REL;
11058 else
11059 type = SHT_RELA;
11060 dyn.d_un.d_val = 0;
11061 dyn.d_un.d_ptr = 0;
11062 for (i = 1; i < elf_numsections (abfd); i++)
11063 {
11064 Elf_Internal_Shdr *hdr;
11065
11066 hdr = elf_elfsections (abfd)[i];
11067 if (hdr->sh_type == type
11068 && (hdr->sh_flags & SHF_ALLOC) != 0)
11069 {
11070 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11071 dyn.d_un.d_val += hdr->sh_size;
11072 else
11073 {
11074 if (dyn.d_un.d_ptr == 0
11075 || hdr->sh_addr < dyn.d_un.d_ptr)
11076 dyn.d_un.d_ptr = hdr->sh_addr;
11077 }
11078 }
11079 }
11080 break;
11081 }
11082 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11083 }
11084 }
11085
11086 /* If we have created any dynamic sections, then output them. */
11087 if (dynobj != NULL)
11088 {
11089 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11090 goto error_return;
11091
11092 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11093 if (info->warn_shared_textrel && info->shared)
11094 {
11095 bfd_byte *dyncon, *dynconend;
11096
11097 /* Fix up .dynamic entries. */
11098 o = bfd_get_section_by_name (dynobj, ".dynamic");
11099 BFD_ASSERT (o != NULL);
11100
11101 dyncon = o->contents;
11102 dynconend = o->contents + o->size;
11103 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11104 {
11105 Elf_Internal_Dyn dyn;
11106
11107 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11108
11109 if (dyn.d_tag == DT_TEXTREL)
11110 {
11111 info->callbacks->einfo
11112 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11113 break;
11114 }
11115 }
11116 }
11117
11118 for (o = dynobj->sections; o != NULL; o = o->next)
11119 {
11120 if ((o->flags & SEC_HAS_CONTENTS) == 0
11121 || o->size == 0
11122 || o->output_section == bfd_abs_section_ptr)
11123 continue;
11124 if ((o->flags & SEC_LINKER_CREATED) == 0)
11125 {
11126 /* At this point, we are only interested in sections
11127 created by _bfd_elf_link_create_dynamic_sections. */
11128 continue;
11129 }
11130 if (elf_hash_table (info)->stab_info.stabstr == o)
11131 continue;
11132 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11133 continue;
11134 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11135 != SHT_STRTAB)
11136 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11137 {
11138 /* FIXME: octets_per_byte. */
11139 if (! bfd_set_section_contents (abfd, o->output_section,
11140 o->contents,
11141 (file_ptr) o->output_offset,
11142 o->size))
11143 goto error_return;
11144 }
11145 else
11146 {
11147 /* The contents of the .dynstr section are actually in a
11148 stringtab. */
11149 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11150 if (bfd_seek (abfd, off, SEEK_SET) != 0
11151 || ! _bfd_elf_strtab_emit (abfd,
11152 elf_hash_table (info)->dynstr))
11153 goto error_return;
11154 }
11155 }
11156 }
11157
11158 if (info->relocatable)
11159 {
11160 bfd_boolean failed = FALSE;
11161
11162 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11163 if (failed)
11164 goto error_return;
11165 }
11166
11167 /* If we have optimized stabs strings, output them. */
11168 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11169 {
11170 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11171 goto error_return;
11172 }
11173
11174 if (info->eh_frame_hdr)
11175 {
11176 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11177 goto error_return;
11178 }
11179
11180 if (finfo.symstrtab != NULL)
11181 _bfd_stringtab_free (finfo.symstrtab);
11182 if (finfo.contents != NULL)
11183 free (finfo.contents);
11184 if (finfo.external_relocs != NULL)
11185 free (finfo.external_relocs);
11186 if (finfo.internal_relocs != NULL)
11187 free (finfo.internal_relocs);
11188 if (finfo.external_syms != NULL)
11189 free (finfo.external_syms);
11190 if (finfo.locsym_shndx != NULL)
11191 free (finfo.locsym_shndx);
11192 if (finfo.internal_syms != NULL)
11193 free (finfo.internal_syms);
11194 if (finfo.indices != NULL)
11195 free (finfo.indices);
11196 if (finfo.sections != NULL)
11197 free (finfo.sections);
11198 if (finfo.symbuf != NULL)
11199 free (finfo.symbuf);
11200 if (finfo.symshndxbuf != NULL)
11201 free (finfo.symshndxbuf);
11202 for (o = abfd->sections; o != NULL; o = o->next)
11203 {
11204 if ((o->flags & SEC_RELOC) != 0
11205 && elf_section_data (o)->rel_hashes != NULL)
11206 free (elf_section_data (o)->rel_hashes);
11207 }
11208
11209 elf_tdata (abfd)->linker = TRUE;
11210
11211 if (attr_section)
11212 {
11213 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11214 if (contents == NULL)
11215 return FALSE; /* Bail out and fail. */
11216 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11217 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11218 free (contents);
11219 }
11220
11221 return TRUE;
11222
11223 error_return:
11224 if (finfo.symstrtab != NULL)
11225 _bfd_stringtab_free (finfo.symstrtab);
11226 if (finfo.contents != NULL)
11227 free (finfo.contents);
11228 if (finfo.external_relocs != NULL)
11229 free (finfo.external_relocs);
11230 if (finfo.internal_relocs != NULL)
11231 free (finfo.internal_relocs);
11232 if (finfo.external_syms != NULL)
11233 free (finfo.external_syms);
11234 if (finfo.locsym_shndx != NULL)
11235 free (finfo.locsym_shndx);
11236 if (finfo.internal_syms != NULL)
11237 free (finfo.internal_syms);
11238 if (finfo.indices != NULL)
11239 free (finfo.indices);
11240 if (finfo.sections != NULL)
11241 free (finfo.sections);
11242 if (finfo.symbuf != NULL)
11243 free (finfo.symbuf);
11244 if (finfo.symshndxbuf != NULL)
11245 free (finfo.symshndxbuf);
11246 for (o = abfd->sections; o != NULL; o = o->next)
11247 {
11248 if ((o->flags & SEC_RELOC) != 0
11249 && elf_section_data (o)->rel_hashes != NULL)
11250 free (elf_section_data (o)->rel_hashes);
11251 }
11252
11253 return FALSE;
11254 }
11255 \f
11256 /* Initialize COOKIE for input bfd ABFD. */
11257
11258 static bfd_boolean
11259 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11260 struct bfd_link_info *info, bfd *abfd)
11261 {
11262 Elf_Internal_Shdr *symtab_hdr;
11263 const struct elf_backend_data *bed;
11264
11265 bed = get_elf_backend_data (abfd);
11266 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11267
11268 cookie->abfd = abfd;
11269 cookie->sym_hashes = elf_sym_hashes (abfd);
11270 cookie->bad_symtab = elf_bad_symtab (abfd);
11271 if (cookie->bad_symtab)
11272 {
11273 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11274 cookie->extsymoff = 0;
11275 }
11276 else
11277 {
11278 cookie->locsymcount = symtab_hdr->sh_info;
11279 cookie->extsymoff = symtab_hdr->sh_info;
11280 }
11281
11282 if (bed->s->arch_size == 32)
11283 cookie->r_sym_shift = 8;
11284 else
11285 cookie->r_sym_shift = 32;
11286
11287 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11288 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11289 {
11290 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11291 cookie->locsymcount, 0,
11292 NULL, NULL, NULL);
11293 if (cookie->locsyms == NULL)
11294 {
11295 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11296 return FALSE;
11297 }
11298 if (info->keep_memory)
11299 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11300 }
11301 return TRUE;
11302 }
11303
11304 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11305
11306 static void
11307 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11308 {
11309 Elf_Internal_Shdr *symtab_hdr;
11310
11311 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11312 if (cookie->locsyms != NULL
11313 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11314 free (cookie->locsyms);
11315 }
11316
11317 /* Initialize the relocation information in COOKIE for input section SEC
11318 of input bfd ABFD. */
11319
11320 static bfd_boolean
11321 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11322 struct bfd_link_info *info, bfd *abfd,
11323 asection *sec)
11324 {
11325 const struct elf_backend_data *bed;
11326
11327 if (sec->reloc_count == 0)
11328 {
11329 cookie->rels = NULL;
11330 cookie->relend = NULL;
11331 }
11332 else
11333 {
11334 bed = get_elf_backend_data (abfd);
11335
11336 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11337 info->keep_memory);
11338 if (cookie->rels == NULL)
11339 return FALSE;
11340 cookie->rel = cookie->rels;
11341 cookie->relend = (cookie->rels
11342 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11343 }
11344 cookie->rel = cookie->rels;
11345 return TRUE;
11346 }
11347
11348 /* Free the memory allocated by init_reloc_cookie_rels,
11349 if appropriate. */
11350
11351 static void
11352 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11353 asection *sec)
11354 {
11355 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11356 free (cookie->rels);
11357 }
11358
11359 /* Initialize the whole of COOKIE for input section SEC. */
11360
11361 static bfd_boolean
11362 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11363 struct bfd_link_info *info,
11364 asection *sec)
11365 {
11366 if (!init_reloc_cookie (cookie, info, sec->owner))
11367 goto error1;
11368 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11369 goto error2;
11370 return TRUE;
11371
11372 error2:
11373 fini_reloc_cookie (cookie, sec->owner);
11374 error1:
11375 return FALSE;
11376 }
11377
11378 /* Free the memory allocated by init_reloc_cookie_for_section,
11379 if appropriate. */
11380
11381 static void
11382 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11383 asection *sec)
11384 {
11385 fini_reloc_cookie_rels (cookie, sec);
11386 fini_reloc_cookie (cookie, sec->owner);
11387 }
11388 \f
11389 /* Garbage collect unused sections. */
11390
11391 /* Default gc_mark_hook. */
11392
11393 asection *
11394 _bfd_elf_gc_mark_hook (asection *sec,
11395 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11396 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11397 struct elf_link_hash_entry *h,
11398 Elf_Internal_Sym *sym)
11399 {
11400 const char *sec_name;
11401
11402 if (h != NULL)
11403 {
11404 switch (h->root.type)
11405 {
11406 case bfd_link_hash_defined:
11407 case bfd_link_hash_defweak:
11408 return h->root.u.def.section;
11409
11410 case bfd_link_hash_common:
11411 return h->root.u.c.p->section;
11412
11413 case bfd_link_hash_undefined:
11414 case bfd_link_hash_undefweak:
11415 /* To work around a glibc bug, keep all XXX input sections
11416 when there is an as yet undefined reference to __start_XXX
11417 or __stop_XXX symbols. The linker will later define such
11418 symbols for orphan input sections that have a name
11419 representable as a C identifier. */
11420 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11421 sec_name = h->root.root.string + 8;
11422 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11423 sec_name = h->root.root.string + 7;
11424 else
11425 sec_name = NULL;
11426
11427 if (sec_name && *sec_name != '\0')
11428 {
11429 bfd *i;
11430
11431 for (i = info->input_bfds; i; i = i->link_next)
11432 {
11433 sec = bfd_get_section_by_name (i, sec_name);
11434 if (sec)
11435 sec->flags |= SEC_KEEP;
11436 }
11437 }
11438 break;
11439
11440 default:
11441 break;
11442 }
11443 }
11444 else
11445 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11446
11447 return NULL;
11448 }
11449
11450 /* COOKIE->rel describes a relocation against section SEC, which is
11451 a section we've decided to keep. Return the section that contains
11452 the relocation symbol, or NULL if no section contains it. */
11453
11454 asection *
11455 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11456 elf_gc_mark_hook_fn gc_mark_hook,
11457 struct elf_reloc_cookie *cookie)
11458 {
11459 unsigned long r_symndx;
11460 struct elf_link_hash_entry *h;
11461
11462 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11463 if (r_symndx == 0)
11464 return NULL;
11465
11466 if (r_symndx >= cookie->locsymcount
11467 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11468 {
11469 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11470 while (h->root.type == bfd_link_hash_indirect
11471 || h->root.type == bfd_link_hash_warning)
11472 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11473 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11474 }
11475
11476 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11477 &cookie->locsyms[r_symndx]);
11478 }
11479
11480 /* COOKIE->rel describes a relocation against section SEC, which is
11481 a section we've decided to keep. Mark the section that contains
11482 the relocation symbol. */
11483
11484 bfd_boolean
11485 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11486 asection *sec,
11487 elf_gc_mark_hook_fn gc_mark_hook,
11488 struct elf_reloc_cookie *cookie)
11489 {
11490 asection *rsec;
11491
11492 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11493 if (rsec && !rsec->gc_mark)
11494 {
11495 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11496 rsec->gc_mark = 1;
11497 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11498 return FALSE;
11499 }
11500 return TRUE;
11501 }
11502
11503 /* The mark phase of garbage collection. For a given section, mark
11504 it and any sections in this section's group, and all the sections
11505 which define symbols to which it refers. */
11506
11507 bfd_boolean
11508 _bfd_elf_gc_mark (struct bfd_link_info *info,
11509 asection *sec,
11510 elf_gc_mark_hook_fn gc_mark_hook)
11511 {
11512 bfd_boolean ret;
11513 asection *group_sec, *eh_frame;
11514
11515 sec->gc_mark = 1;
11516
11517 /* Mark all the sections in the group. */
11518 group_sec = elf_section_data (sec)->next_in_group;
11519 if (group_sec && !group_sec->gc_mark)
11520 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11521 return FALSE;
11522
11523 /* Look through the section relocs. */
11524 ret = TRUE;
11525 eh_frame = elf_eh_frame_section (sec->owner);
11526 if ((sec->flags & SEC_RELOC) != 0
11527 && sec->reloc_count > 0
11528 && sec != eh_frame)
11529 {
11530 struct elf_reloc_cookie cookie;
11531
11532 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11533 ret = FALSE;
11534 else
11535 {
11536 for (; cookie.rel < cookie.relend; cookie.rel++)
11537 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11538 {
11539 ret = FALSE;
11540 break;
11541 }
11542 fini_reloc_cookie_for_section (&cookie, sec);
11543 }
11544 }
11545
11546 if (ret && eh_frame && elf_fde_list (sec))
11547 {
11548 struct elf_reloc_cookie cookie;
11549
11550 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11551 ret = FALSE;
11552 else
11553 {
11554 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11555 gc_mark_hook, &cookie))
11556 ret = FALSE;
11557 fini_reloc_cookie_for_section (&cookie, eh_frame);
11558 }
11559 }
11560
11561 return ret;
11562 }
11563
11564 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11565
11566 struct elf_gc_sweep_symbol_info
11567 {
11568 struct bfd_link_info *info;
11569 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11570 bfd_boolean);
11571 };
11572
11573 static bfd_boolean
11574 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11575 {
11576 if (h->root.type == bfd_link_hash_warning)
11577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11578
11579 if ((h->root.type == bfd_link_hash_defined
11580 || h->root.type == bfd_link_hash_defweak)
11581 && !h->root.u.def.section->gc_mark
11582 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11583 {
11584 struct elf_gc_sweep_symbol_info *inf =
11585 (struct elf_gc_sweep_symbol_info *) data;
11586 (*inf->hide_symbol) (inf->info, h, TRUE);
11587 }
11588
11589 return TRUE;
11590 }
11591
11592 /* The sweep phase of garbage collection. Remove all garbage sections. */
11593
11594 typedef bfd_boolean (*gc_sweep_hook_fn)
11595 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11596
11597 static bfd_boolean
11598 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11599 {
11600 bfd *sub;
11601 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11602 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11603 unsigned long section_sym_count;
11604 struct elf_gc_sweep_symbol_info sweep_info;
11605
11606 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11607 {
11608 asection *o;
11609
11610 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11611 continue;
11612
11613 for (o = sub->sections; o != NULL; o = o->next)
11614 {
11615 /* When any section in a section group is kept, we keep all
11616 sections in the section group. If the first member of
11617 the section group is excluded, we will also exclude the
11618 group section. */
11619 if (o->flags & SEC_GROUP)
11620 {
11621 asection *first = elf_next_in_group (o);
11622 o->gc_mark = first->gc_mark;
11623 }
11624 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11625 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11626 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11627 {
11628 /* Keep debug, special and SHT_NOTE sections. */
11629 o->gc_mark = 1;
11630 }
11631
11632 if (o->gc_mark)
11633 continue;
11634
11635 /* Skip sweeping sections already excluded. */
11636 if (o->flags & SEC_EXCLUDE)
11637 continue;
11638
11639 /* Since this is early in the link process, it is simple
11640 to remove a section from the output. */
11641 o->flags |= SEC_EXCLUDE;
11642
11643 if (info->print_gc_sections && o->size != 0)
11644 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11645
11646 /* But we also have to update some of the relocation
11647 info we collected before. */
11648 if (gc_sweep_hook
11649 && (o->flags & SEC_RELOC) != 0
11650 && o->reloc_count > 0
11651 && !bfd_is_abs_section (o->output_section))
11652 {
11653 Elf_Internal_Rela *internal_relocs;
11654 bfd_boolean r;
11655
11656 internal_relocs
11657 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11658 info->keep_memory);
11659 if (internal_relocs == NULL)
11660 return FALSE;
11661
11662 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11663
11664 if (elf_section_data (o)->relocs != internal_relocs)
11665 free (internal_relocs);
11666
11667 if (!r)
11668 return FALSE;
11669 }
11670 }
11671 }
11672
11673 /* Remove the symbols that were in the swept sections from the dynamic
11674 symbol table. GCFIXME: Anyone know how to get them out of the
11675 static symbol table as well? */
11676 sweep_info.info = info;
11677 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11678 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11679 &sweep_info);
11680
11681 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11682 return TRUE;
11683 }
11684
11685 /* Propagate collected vtable information. This is called through
11686 elf_link_hash_traverse. */
11687
11688 static bfd_boolean
11689 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11690 {
11691 if (h->root.type == bfd_link_hash_warning)
11692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11693
11694 /* Those that are not vtables. */
11695 if (h->vtable == NULL || h->vtable->parent == NULL)
11696 return TRUE;
11697
11698 /* Those vtables that do not have parents, we cannot merge. */
11699 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11700 return TRUE;
11701
11702 /* If we've already been done, exit. */
11703 if (h->vtable->used && h->vtable->used[-1])
11704 return TRUE;
11705
11706 /* Make sure the parent's table is up to date. */
11707 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11708
11709 if (h->vtable->used == NULL)
11710 {
11711 /* None of this table's entries were referenced. Re-use the
11712 parent's table. */
11713 h->vtable->used = h->vtable->parent->vtable->used;
11714 h->vtable->size = h->vtable->parent->vtable->size;
11715 }
11716 else
11717 {
11718 size_t n;
11719 bfd_boolean *cu, *pu;
11720
11721 /* Or the parent's entries into ours. */
11722 cu = h->vtable->used;
11723 cu[-1] = TRUE;
11724 pu = h->vtable->parent->vtable->used;
11725 if (pu != NULL)
11726 {
11727 const struct elf_backend_data *bed;
11728 unsigned int log_file_align;
11729
11730 bed = get_elf_backend_data (h->root.u.def.section->owner);
11731 log_file_align = bed->s->log_file_align;
11732 n = h->vtable->parent->vtable->size >> log_file_align;
11733 while (n--)
11734 {
11735 if (*pu)
11736 *cu = TRUE;
11737 pu++;
11738 cu++;
11739 }
11740 }
11741 }
11742
11743 return TRUE;
11744 }
11745
11746 static bfd_boolean
11747 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11748 {
11749 asection *sec;
11750 bfd_vma hstart, hend;
11751 Elf_Internal_Rela *relstart, *relend, *rel;
11752 const struct elf_backend_data *bed;
11753 unsigned int log_file_align;
11754
11755 if (h->root.type == bfd_link_hash_warning)
11756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11757
11758 /* Take care of both those symbols that do not describe vtables as
11759 well as those that are not loaded. */
11760 if (h->vtable == NULL || h->vtable->parent == NULL)
11761 return TRUE;
11762
11763 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11764 || h->root.type == bfd_link_hash_defweak);
11765
11766 sec = h->root.u.def.section;
11767 hstart = h->root.u.def.value;
11768 hend = hstart + h->size;
11769
11770 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11771 if (!relstart)
11772 return *(bfd_boolean *) okp = FALSE;
11773 bed = get_elf_backend_data (sec->owner);
11774 log_file_align = bed->s->log_file_align;
11775
11776 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11777
11778 for (rel = relstart; rel < relend; ++rel)
11779 if (rel->r_offset >= hstart && rel->r_offset < hend)
11780 {
11781 /* If the entry is in use, do nothing. */
11782 if (h->vtable->used
11783 && (rel->r_offset - hstart) < h->vtable->size)
11784 {
11785 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11786 if (h->vtable->used[entry])
11787 continue;
11788 }
11789 /* Otherwise, kill it. */
11790 rel->r_offset = rel->r_info = rel->r_addend = 0;
11791 }
11792
11793 return TRUE;
11794 }
11795
11796 /* Mark sections containing dynamically referenced symbols. When
11797 building shared libraries, we must assume that any visible symbol is
11798 referenced. */
11799
11800 bfd_boolean
11801 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11802 {
11803 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11804
11805 if (h->root.type == bfd_link_hash_warning)
11806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11807
11808 if ((h->root.type == bfd_link_hash_defined
11809 || h->root.type == bfd_link_hash_defweak)
11810 && (h->ref_dynamic
11811 || (!info->executable
11812 && h->def_regular
11813 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11814 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11815 h->root.u.def.section->flags |= SEC_KEEP;
11816
11817 return TRUE;
11818 }
11819
11820 /* Keep all sections containing symbols undefined on the command-line,
11821 and the section containing the entry symbol. */
11822
11823 void
11824 _bfd_elf_gc_keep (struct bfd_link_info *info)
11825 {
11826 struct bfd_sym_chain *sym;
11827
11828 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11829 {
11830 struct elf_link_hash_entry *h;
11831
11832 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11833 FALSE, FALSE, FALSE);
11834
11835 if (h != NULL
11836 && (h->root.type == bfd_link_hash_defined
11837 || h->root.type == bfd_link_hash_defweak)
11838 && !bfd_is_abs_section (h->root.u.def.section))
11839 h->root.u.def.section->flags |= SEC_KEEP;
11840 }
11841 }
11842
11843 /* Do mark and sweep of unused sections. */
11844
11845 bfd_boolean
11846 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11847 {
11848 bfd_boolean ok = TRUE;
11849 bfd *sub;
11850 elf_gc_mark_hook_fn gc_mark_hook;
11851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11852
11853 if (!bed->can_gc_sections
11854 || !is_elf_hash_table (info->hash))
11855 {
11856 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11857 return TRUE;
11858 }
11859
11860 bed->gc_keep (info);
11861
11862 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11863 at the .eh_frame section if we can mark the FDEs individually. */
11864 _bfd_elf_begin_eh_frame_parsing (info);
11865 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11866 {
11867 asection *sec;
11868 struct elf_reloc_cookie cookie;
11869
11870 sec = bfd_get_section_by_name (sub, ".eh_frame");
11871 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11872 {
11873 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11874 if (elf_section_data (sec)->sec_info)
11875 elf_eh_frame_section (sub) = sec;
11876 fini_reloc_cookie_for_section (&cookie, sec);
11877 }
11878 }
11879 _bfd_elf_end_eh_frame_parsing (info);
11880
11881 /* Apply transitive closure to the vtable entry usage info. */
11882 elf_link_hash_traverse (elf_hash_table (info),
11883 elf_gc_propagate_vtable_entries_used,
11884 &ok);
11885 if (!ok)
11886 return FALSE;
11887
11888 /* Kill the vtable relocations that were not used. */
11889 elf_link_hash_traverse (elf_hash_table (info),
11890 elf_gc_smash_unused_vtentry_relocs,
11891 &ok);
11892 if (!ok)
11893 return FALSE;
11894
11895 /* Mark dynamically referenced symbols. */
11896 if (elf_hash_table (info)->dynamic_sections_created)
11897 elf_link_hash_traverse (elf_hash_table (info),
11898 bed->gc_mark_dynamic_ref,
11899 info);
11900
11901 /* Grovel through relocs to find out who stays ... */
11902 gc_mark_hook = bed->gc_mark_hook;
11903 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11904 {
11905 asection *o;
11906
11907 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11908 continue;
11909
11910 for (o = sub->sections; o != NULL; o = o->next)
11911 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11912 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11913 return FALSE;
11914 }
11915
11916 /* Allow the backend to mark additional target specific sections. */
11917 if (bed->gc_mark_extra_sections)
11918 bed->gc_mark_extra_sections (info, gc_mark_hook);
11919
11920 /* ... and mark SEC_EXCLUDE for those that go. */
11921 return elf_gc_sweep (abfd, info);
11922 }
11923 \f
11924 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11925
11926 bfd_boolean
11927 bfd_elf_gc_record_vtinherit (bfd *abfd,
11928 asection *sec,
11929 struct elf_link_hash_entry *h,
11930 bfd_vma offset)
11931 {
11932 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11933 struct elf_link_hash_entry **search, *child;
11934 bfd_size_type extsymcount;
11935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11936
11937 /* The sh_info field of the symtab header tells us where the
11938 external symbols start. We don't care about the local symbols at
11939 this point. */
11940 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11941 if (!elf_bad_symtab (abfd))
11942 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11943
11944 sym_hashes = elf_sym_hashes (abfd);
11945 sym_hashes_end = sym_hashes + extsymcount;
11946
11947 /* Hunt down the child symbol, which is in this section at the same
11948 offset as the relocation. */
11949 for (search = sym_hashes; search != sym_hashes_end; ++search)
11950 {
11951 if ((child = *search) != NULL
11952 && (child->root.type == bfd_link_hash_defined
11953 || child->root.type == bfd_link_hash_defweak)
11954 && child->root.u.def.section == sec
11955 && child->root.u.def.value == offset)
11956 goto win;
11957 }
11958
11959 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11960 abfd, sec, (unsigned long) offset);
11961 bfd_set_error (bfd_error_invalid_operation);
11962 return FALSE;
11963
11964 win:
11965 if (!child->vtable)
11966 {
11967 child->vtable = (struct elf_link_virtual_table_entry *)
11968 bfd_zalloc (abfd, sizeof (*child->vtable));
11969 if (!child->vtable)
11970 return FALSE;
11971 }
11972 if (!h)
11973 {
11974 /* This *should* only be the absolute section. It could potentially
11975 be that someone has defined a non-global vtable though, which
11976 would be bad. It isn't worth paging in the local symbols to be
11977 sure though; that case should simply be handled by the assembler. */
11978
11979 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11980 }
11981 else
11982 child->vtable->parent = h;
11983
11984 return TRUE;
11985 }
11986
11987 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11988
11989 bfd_boolean
11990 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11991 asection *sec ATTRIBUTE_UNUSED,
11992 struct elf_link_hash_entry *h,
11993 bfd_vma addend)
11994 {
11995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11996 unsigned int log_file_align = bed->s->log_file_align;
11997
11998 if (!h->vtable)
11999 {
12000 h->vtable = (struct elf_link_virtual_table_entry *)
12001 bfd_zalloc (abfd, sizeof (*h->vtable));
12002 if (!h->vtable)
12003 return FALSE;
12004 }
12005
12006 if (addend >= h->vtable->size)
12007 {
12008 size_t size, bytes, file_align;
12009 bfd_boolean *ptr = h->vtable->used;
12010
12011 /* While the symbol is undefined, we have to be prepared to handle
12012 a zero size. */
12013 file_align = 1 << log_file_align;
12014 if (h->root.type == bfd_link_hash_undefined)
12015 size = addend + file_align;
12016 else
12017 {
12018 size = h->size;
12019 if (addend >= size)
12020 {
12021 /* Oops! We've got a reference past the defined end of
12022 the table. This is probably a bug -- shall we warn? */
12023 size = addend + file_align;
12024 }
12025 }
12026 size = (size + file_align - 1) & -file_align;
12027
12028 /* Allocate one extra entry for use as a "done" flag for the
12029 consolidation pass. */
12030 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12031
12032 if (ptr)
12033 {
12034 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12035
12036 if (ptr != NULL)
12037 {
12038 size_t oldbytes;
12039
12040 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12041 * sizeof (bfd_boolean));
12042 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12043 }
12044 }
12045 else
12046 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12047
12048 if (ptr == NULL)
12049 return FALSE;
12050
12051 /* And arrange for that done flag to be at index -1. */
12052 h->vtable->used = ptr + 1;
12053 h->vtable->size = size;
12054 }
12055
12056 h->vtable->used[addend >> log_file_align] = TRUE;
12057
12058 return TRUE;
12059 }
12060
12061 struct alloc_got_off_arg {
12062 bfd_vma gotoff;
12063 struct bfd_link_info *info;
12064 };
12065
12066 /* We need a special top-level link routine to convert got reference counts
12067 to real got offsets. */
12068
12069 static bfd_boolean
12070 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12071 {
12072 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12073 bfd *obfd = gofarg->info->output_bfd;
12074 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12075
12076 if (h->root.type == bfd_link_hash_warning)
12077 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12078
12079 if (h->got.refcount > 0)
12080 {
12081 h->got.offset = gofarg->gotoff;
12082 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12083 }
12084 else
12085 h->got.offset = (bfd_vma) -1;
12086
12087 return TRUE;
12088 }
12089
12090 /* And an accompanying bit to work out final got entry offsets once
12091 we're done. Should be called from final_link. */
12092
12093 bfd_boolean
12094 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12095 struct bfd_link_info *info)
12096 {
12097 bfd *i;
12098 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12099 bfd_vma gotoff;
12100 struct alloc_got_off_arg gofarg;
12101
12102 BFD_ASSERT (abfd == info->output_bfd);
12103
12104 if (! is_elf_hash_table (info->hash))
12105 return FALSE;
12106
12107 /* The GOT offset is relative to the .got section, but the GOT header is
12108 put into the .got.plt section, if the backend uses it. */
12109 if (bed->want_got_plt)
12110 gotoff = 0;
12111 else
12112 gotoff = bed->got_header_size;
12113
12114 /* Do the local .got entries first. */
12115 for (i = info->input_bfds; i; i = i->link_next)
12116 {
12117 bfd_signed_vma *local_got;
12118 bfd_size_type j, locsymcount;
12119 Elf_Internal_Shdr *symtab_hdr;
12120
12121 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12122 continue;
12123
12124 local_got = elf_local_got_refcounts (i);
12125 if (!local_got)
12126 continue;
12127
12128 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12129 if (elf_bad_symtab (i))
12130 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12131 else
12132 locsymcount = symtab_hdr->sh_info;
12133
12134 for (j = 0; j < locsymcount; ++j)
12135 {
12136 if (local_got[j] > 0)
12137 {
12138 local_got[j] = gotoff;
12139 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12140 }
12141 else
12142 local_got[j] = (bfd_vma) -1;
12143 }
12144 }
12145
12146 /* Then the global .got entries. .plt refcounts are handled by
12147 adjust_dynamic_symbol */
12148 gofarg.gotoff = gotoff;
12149 gofarg.info = info;
12150 elf_link_hash_traverse (elf_hash_table (info),
12151 elf_gc_allocate_got_offsets,
12152 &gofarg);
12153 return TRUE;
12154 }
12155
12156 /* Many folk need no more in the way of final link than this, once
12157 got entry reference counting is enabled. */
12158
12159 bfd_boolean
12160 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12161 {
12162 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12163 return FALSE;
12164
12165 /* Invoke the regular ELF backend linker to do all the work. */
12166 return bfd_elf_final_link (abfd, info);
12167 }
12168
12169 bfd_boolean
12170 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12171 {
12172 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12173
12174 if (rcookie->bad_symtab)
12175 rcookie->rel = rcookie->rels;
12176
12177 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12178 {
12179 unsigned long r_symndx;
12180
12181 if (! rcookie->bad_symtab)
12182 if (rcookie->rel->r_offset > offset)
12183 return FALSE;
12184 if (rcookie->rel->r_offset != offset)
12185 continue;
12186
12187 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12188 if (r_symndx == SHN_UNDEF)
12189 return TRUE;
12190
12191 if (r_symndx >= rcookie->locsymcount
12192 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12193 {
12194 struct elf_link_hash_entry *h;
12195
12196 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12197
12198 while (h->root.type == bfd_link_hash_indirect
12199 || h->root.type == bfd_link_hash_warning)
12200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12201
12202 if ((h->root.type == bfd_link_hash_defined
12203 || h->root.type == bfd_link_hash_defweak)
12204 && elf_discarded_section (h->root.u.def.section))
12205 return TRUE;
12206 else
12207 return FALSE;
12208 }
12209 else
12210 {
12211 /* It's not a relocation against a global symbol,
12212 but it could be a relocation against a local
12213 symbol for a discarded section. */
12214 asection *isec;
12215 Elf_Internal_Sym *isym;
12216
12217 /* Need to: get the symbol; get the section. */
12218 isym = &rcookie->locsyms[r_symndx];
12219 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12220 if (isec != NULL && elf_discarded_section (isec))
12221 return TRUE;
12222 }
12223 return FALSE;
12224 }
12225 return FALSE;
12226 }
12227
12228 /* Discard unneeded references to discarded sections.
12229 Returns TRUE if any section's size was changed. */
12230 /* This function assumes that the relocations are in sorted order,
12231 which is true for all known assemblers. */
12232
12233 bfd_boolean
12234 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12235 {
12236 struct elf_reloc_cookie cookie;
12237 asection *stab, *eh;
12238 const struct elf_backend_data *bed;
12239 bfd *abfd;
12240 bfd_boolean ret = FALSE;
12241
12242 if (info->traditional_format
12243 || !is_elf_hash_table (info->hash))
12244 return FALSE;
12245
12246 _bfd_elf_begin_eh_frame_parsing (info);
12247 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12248 {
12249 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12250 continue;
12251
12252 bed = get_elf_backend_data (abfd);
12253
12254 if ((abfd->flags & DYNAMIC) != 0)
12255 continue;
12256
12257 eh = NULL;
12258 if (!info->relocatable)
12259 {
12260 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12261 if (eh != NULL
12262 && (eh->size == 0
12263 || bfd_is_abs_section (eh->output_section)))
12264 eh = NULL;
12265 }
12266
12267 stab = bfd_get_section_by_name (abfd, ".stab");
12268 if (stab != NULL
12269 && (stab->size == 0
12270 || bfd_is_abs_section (stab->output_section)
12271 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12272 stab = NULL;
12273
12274 if (stab == NULL
12275 && eh == NULL
12276 && bed->elf_backend_discard_info == NULL)
12277 continue;
12278
12279 if (!init_reloc_cookie (&cookie, info, abfd))
12280 return FALSE;
12281
12282 if (stab != NULL
12283 && stab->reloc_count > 0
12284 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12285 {
12286 if (_bfd_discard_section_stabs (abfd, stab,
12287 elf_section_data (stab)->sec_info,
12288 bfd_elf_reloc_symbol_deleted_p,
12289 &cookie))
12290 ret = TRUE;
12291 fini_reloc_cookie_rels (&cookie, stab);
12292 }
12293
12294 if (eh != NULL
12295 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12296 {
12297 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12298 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12299 bfd_elf_reloc_symbol_deleted_p,
12300 &cookie))
12301 ret = TRUE;
12302 fini_reloc_cookie_rels (&cookie, eh);
12303 }
12304
12305 if (bed->elf_backend_discard_info != NULL
12306 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12307 ret = TRUE;
12308
12309 fini_reloc_cookie (&cookie, abfd);
12310 }
12311 _bfd_elf_end_eh_frame_parsing (info);
12312
12313 if (info->eh_frame_hdr
12314 && !info->relocatable
12315 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12316 ret = TRUE;
12317
12318 return ret;
12319 }
12320
12321 /* For a SHT_GROUP section, return the group signature. For other
12322 sections, return the normal section name. */
12323
12324 static const char *
12325 section_signature (asection *sec)
12326 {
12327 if ((sec->flags & SEC_GROUP) != 0
12328 && elf_next_in_group (sec) != NULL
12329 && elf_group_name (elf_next_in_group (sec)) != NULL)
12330 return elf_group_name (elf_next_in_group (sec));
12331 return sec->name;
12332 }
12333
12334 void
12335 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12336 struct bfd_link_info *info)
12337 {
12338 flagword flags;
12339 const char *name, *p;
12340 struct bfd_section_already_linked *l;
12341 struct bfd_section_already_linked_hash_entry *already_linked_list;
12342
12343 if (sec->output_section == bfd_abs_section_ptr)
12344 return;
12345
12346 flags = sec->flags;
12347
12348 /* Return if it isn't a linkonce section. A comdat group section
12349 also has SEC_LINK_ONCE set. */
12350 if ((flags & SEC_LINK_ONCE) == 0)
12351 return;
12352
12353 /* Don't put group member sections on our list of already linked
12354 sections. They are handled as a group via their group section. */
12355 if (elf_sec_group (sec) != NULL)
12356 return;
12357
12358 /* FIXME: When doing a relocatable link, we may have trouble
12359 copying relocations in other sections that refer to local symbols
12360 in the section being discarded. Those relocations will have to
12361 be converted somehow; as of this writing I'm not sure that any of
12362 the backends handle that correctly.
12363
12364 It is tempting to instead not discard link once sections when
12365 doing a relocatable link (technically, they should be discarded
12366 whenever we are building constructors). However, that fails,
12367 because the linker winds up combining all the link once sections
12368 into a single large link once section, which defeats the purpose
12369 of having link once sections in the first place.
12370
12371 Also, not merging link once sections in a relocatable link
12372 causes trouble for MIPS ELF, which relies on link once semantics
12373 to handle the .reginfo section correctly. */
12374
12375 name = section_signature (sec);
12376
12377 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12378 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12379 p++;
12380 else
12381 p = name;
12382
12383 already_linked_list = bfd_section_already_linked_table_lookup (p);
12384
12385 for (l = already_linked_list->entry; l != NULL; l = l->next)
12386 {
12387 /* We may have 2 different types of sections on the list: group
12388 sections and linkonce sections. Match like sections. */
12389 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12390 && strcmp (name, section_signature (l->sec)) == 0
12391 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12392 {
12393 /* The section has already been linked. See if we should
12394 issue a warning. */
12395 switch (flags & SEC_LINK_DUPLICATES)
12396 {
12397 default:
12398 abort ();
12399
12400 case SEC_LINK_DUPLICATES_DISCARD:
12401 break;
12402
12403 case SEC_LINK_DUPLICATES_ONE_ONLY:
12404 (*_bfd_error_handler)
12405 (_("%B: ignoring duplicate section `%A'"),
12406 abfd, sec);
12407 break;
12408
12409 case SEC_LINK_DUPLICATES_SAME_SIZE:
12410 if (sec->size != l->sec->size)
12411 (*_bfd_error_handler)
12412 (_("%B: duplicate section `%A' has different size"),
12413 abfd, sec);
12414 break;
12415
12416 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12417 if (sec->size != l->sec->size)
12418 (*_bfd_error_handler)
12419 (_("%B: duplicate section `%A' has different size"),
12420 abfd, sec);
12421 else if (sec->size != 0)
12422 {
12423 bfd_byte *sec_contents, *l_sec_contents;
12424
12425 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12426 (*_bfd_error_handler)
12427 (_("%B: warning: could not read contents of section `%A'"),
12428 abfd, sec);
12429 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12430 &l_sec_contents))
12431 (*_bfd_error_handler)
12432 (_("%B: warning: could not read contents of section `%A'"),
12433 l->sec->owner, l->sec);
12434 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12435 (*_bfd_error_handler)
12436 (_("%B: warning: duplicate section `%A' has different contents"),
12437 abfd, sec);
12438
12439 if (sec_contents)
12440 free (sec_contents);
12441 if (l_sec_contents)
12442 free (l_sec_contents);
12443 }
12444 break;
12445 }
12446
12447 /* Set the output_section field so that lang_add_section
12448 does not create a lang_input_section structure for this
12449 section. Since there might be a symbol in the section
12450 being discarded, we must retain a pointer to the section
12451 which we are really going to use. */
12452 sec->output_section = bfd_abs_section_ptr;
12453 sec->kept_section = l->sec;
12454
12455 if (flags & SEC_GROUP)
12456 {
12457 asection *first = elf_next_in_group (sec);
12458 asection *s = first;
12459
12460 while (s != NULL)
12461 {
12462 s->output_section = bfd_abs_section_ptr;
12463 /* Record which group discards it. */
12464 s->kept_section = l->sec;
12465 s = elf_next_in_group (s);
12466 /* These lists are circular. */
12467 if (s == first)
12468 break;
12469 }
12470 }
12471
12472 return;
12473 }
12474 }
12475
12476 /* A single member comdat group section may be discarded by a
12477 linkonce section and vice versa. */
12478
12479 if ((flags & SEC_GROUP) != 0)
12480 {
12481 asection *first = elf_next_in_group (sec);
12482
12483 if (first != NULL && elf_next_in_group (first) == first)
12484 /* Check this single member group against linkonce sections. */
12485 for (l = already_linked_list->entry; l != NULL; l = l->next)
12486 if ((l->sec->flags & SEC_GROUP) == 0
12487 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12488 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12489 {
12490 first->output_section = bfd_abs_section_ptr;
12491 first->kept_section = l->sec;
12492 sec->output_section = bfd_abs_section_ptr;
12493 break;
12494 }
12495 }
12496 else
12497 /* Check this linkonce section against single member groups. */
12498 for (l = already_linked_list->entry; l != NULL; l = l->next)
12499 if (l->sec->flags & SEC_GROUP)
12500 {
12501 asection *first = elf_next_in_group (l->sec);
12502
12503 if (first != NULL
12504 && elf_next_in_group (first) == first
12505 && bfd_elf_match_symbols_in_sections (first, sec, info))
12506 {
12507 sec->output_section = bfd_abs_section_ptr;
12508 sec->kept_section = first;
12509 break;
12510 }
12511 }
12512
12513 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12514 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12515 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12516 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12517 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12518 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12519 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12520 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12521 The reverse order cannot happen as there is never a bfd with only the
12522 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12523 matter as here were are looking only for cross-bfd sections. */
12524
12525 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12526 for (l = already_linked_list->entry; l != NULL; l = l->next)
12527 if ((l->sec->flags & SEC_GROUP) == 0
12528 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12529 {
12530 if (abfd != l->sec->owner)
12531 sec->output_section = bfd_abs_section_ptr;
12532 break;
12533 }
12534
12535 /* This is the first section with this name. Record it. */
12536 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12537 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12538 }
12539
12540 bfd_boolean
12541 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12542 {
12543 return sym->st_shndx == SHN_COMMON;
12544 }
12545
12546 unsigned int
12547 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12548 {
12549 return SHN_COMMON;
12550 }
12551
12552 asection *
12553 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12554 {
12555 return bfd_com_section_ptr;
12556 }
12557
12558 bfd_vma
12559 _bfd_elf_default_got_elt_size (bfd *abfd,
12560 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12561 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12562 bfd *ibfd ATTRIBUTE_UNUSED,
12563 unsigned long symndx ATTRIBUTE_UNUSED)
12564 {
12565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12566 return bed->s->arch_size / 8;
12567 }
12568
12569 /* Routines to support the creation of dynamic relocs. */
12570
12571 /* Return true if NAME is a name of a relocation
12572 section associated with section S. */
12573
12574 static bfd_boolean
12575 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12576 {
12577 if (rela)
12578 return CONST_STRNEQ (name, ".rela")
12579 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12580
12581 return CONST_STRNEQ (name, ".rel")
12582 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12583 }
12584
12585 /* Returns the name of the dynamic reloc section associated with SEC. */
12586
12587 static const char *
12588 get_dynamic_reloc_section_name (bfd * abfd,
12589 asection * sec,
12590 bfd_boolean is_rela)
12591 {
12592 const char * name;
12593 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12594 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12595
12596 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12597 if (name == NULL)
12598 return NULL;
12599
12600 if (! is_reloc_section (is_rela, name, sec))
12601 {
12602 static bfd_boolean complained = FALSE;
12603
12604 if (! complained)
12605 {
12606 (*_bfd_error_handler)
12607 (_("%B: bad relocation section name `%s\'"), abfd, name);
12608 complained = TRUE;
12609 }
12610 name = NULL;
12611 }
12612
12613 return name;
12614 }
12615
12616 /* Returns the dynamic reloc section associated with SEC.
12617 If necessary compute the name of the dynamic reloc section based
12618 on SEC's name (looked up in ABFD's string table) and the setting
12619 of IS_RELA. */
12620
12621 asection *
12622 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12623 asection * sec,
12624 bfd_boolean is_rela)
12625 {
12626 asection * reloc_sec = elf_section_data (sec)->sreloc;
12627
12628 if (reloc_sec == NULL)
12629 {
12630 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12631
12632 if (name != NULL)
12633 {
12634 reloc_sec = bfd_get_section_by_name (abfd, name);
12635
12636 if (reloc_sec != NULL)
12637 elf_section_data (sec)->sreloc = reloc_sec;
12638 }
12639 }
12640
12641 return reloc_sec;
12642 }
12643
12644 /* Returns the dynamic reloc section associated with SEC. If the
12645 section does not exist it is created and attached to the DYNOBJ
12646 bfd and stored in the SRELOC field of SEC's elf_section_data
12647 structure.
12648
12649 ALIGNMENT is the alignment for the newly created section and
12650 IS_RELA defines whether the name should be .rela.<SEC's name>
12651 or .rel.<SEC's name>. The section name is looked up in the
12652 string table associated with ABFD. */
12653
12654 asection *
12655 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12656 bfd * dynobj,
12657 unsigned int alignment,
12658 bfd * abfd,
12659 bfd_boolean is_rela)
12660 {
12661 asection * reloc_sec = elf_section_data (sec)->sreloc;
12662
12663 if (reloc_sec == NULL)
12664 {
12665 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12666
12667 if (name == NULL)
12668 return NULL;
12669
12670 reloc_sec = bfd_get_section_by_name (dynobj, name);
12671
12672 if (reloc_sec == NULL)
12673 {
12674 flagword flags;
12675
12676 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12677 if ((sec->flags & SEC_ALLOC) != 0)
12678 flags |= SEC_ALLOC | SEC_LOAD;
12679
12680 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12681 if (reloc_sec != NULL)
12682 {
12683 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12684 reloc_sec = NULL;
12685 }
12686 }
12687
12688 elf_section_data (sec)->sreloc = reloc_sec;
12689 }
12690
12691 return reloc_sec;
12692 }
12693
12694 /* Copy the ELF symbol type associated with a linker hash entry. */
12695 void
12696 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12697 struct bfd_link_hash_entry * hdest,
12698 struct bfd_link_hash_entry * hsrc)
12699 {
12700 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12701 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12702
12703 ehdest->type = ehsrc->type;
12704 }
This page took 0.31242 seconds and 5 git commands to generate.