* elflink.c (_bfd_elf_merge_symbol): Allow type changes for
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC
363 | SEC_LINKER_CREATED));
364 if (s == NULL)
365 return FALSE;
366
367 /* The .rel[a].bss section holds copy relocs. This section is not
368 normally needed. We need to create it here, though, so that the
369 linker will map it to an output section. We can't just create it
370 only if we need it, because we will not know whether we need it
371 until we have seen all the input files, and the first time the
372 main linker code calls BFD after examining all the input files
373 (size_dynamic_sections) the input sections have already been
374 mapped to the output sections. If the section turns out not to
375 be needed, we can discard it later. We will never need this
376 section when generating a shared object, since they do not use
377 copy relocs. */
378 if (! info->shared)
379 {
380 s = bfd_make_section_with_flags (abfd,
381 (bed->rela_plts_and_copies_p
382 ? ".rela.bss" : ".rel.bss"),
383 flags | SEC_READONLY);
384 if (s == NULL
385 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386 return FALSE;
387 }
388 }
389
390 return TRUE;
391 }
392 \f
393 /* Record a new dynamic symbol. We record the dynamic symbols as we
394 read the input files, since we need to have a list of all of them
395 before we can determine the final sizes of the output sections.
396 Note that we may actually call this function even though we are not
397 going to output any dynamic symbols; in some cases we know that a
398 symbol should be in the dynamic symbol table, but only if there is
399 one. */
400
401 bfd_boolean
402 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403 struct elf_link_hash_entry *h)
404 {
405 if (h->dynindx == -1)
406 {
407 struct elf_strtab_hash *dynstr;
408 char *p;
409 const char *name;
410 bfd_size_type indx;
411
412 /* XXX: The ABI draft says the linker must turn hidden and
413 internal symbols into STB_LOCAL symbols when producing the
414 DSO. However, if ld.so honors st_other in the dynamic table,
415 this would not be necessary. */
416 switch (ELF_ST_VISIBILITY (h->other))
417 {
418 case STV_INTERNAL:
419 case STV_HIDDEN:
420 if (h->root.type != bfd_link_hash_undefined
421 && h->root.type != bfd_link_hash_undefweak)
422 {
423 h->forced_local = 1;
424 if (!elf_hash_table (info)->is_relocatable_executable)
425 return TRUE;
426 }
427
428 default:
429 break;
430 }
431
432 h->dynindx = elf_hash_table (info)->dynsymcount;
433 ++elf_hash_table (info)->dynsymcount;
434
435 dynstr = elf_hash_table (info)->dynstr;
436 if (dynstr == NULL)
437 {
438 /* Create a strtab to hold the dynamic symbol names. */
439 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440 if (dynstr == NULL)
441 return FALSE;
442 }
443
444 /* We don't put any version information in the dynamic string
445 table. */
446 name = h->root.root.string;
447 p = strchr (name, ELF_VER_CHR);
448 if (p != NULL)
449 /* We know that the p points into writable memory. In fact,
450 there are only a few symbols that have read-only names, being
451 those like _GLOBAL_OFFSET_TABLE_ that are created specially
452 by the backends. Most symbols will have names pointing into
453 an ELF string table read from a file, or to objalloc memory. */
454 *p = 0;
455
456 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
458 if (p != NULL)
459 *p = ELF_VER_CHR;
460
461 if (indx == (bfd_size_type) -1)
462 return FALSE;
463 h->dynstr_index = indx;
464 }
465
466 return TRUE;
467 }
468 \f
469 /* Mark a symbol dynamic. */
470
471 static void
472 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473 struct elf_link_hash_entry *h,
474 Elf_Internal_Sym *sym)
475 {
476 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
478 /* It may be called more than once on the same H. */
479 if(h->dynamic || info->relocatable)
480 return;
481
482 if ((info->dynamic_data
483 && (h->type == STT_OBJECT
484 || (sym != NULL
485 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 || (d != NULL
487 && h->root.type == bfd_link_hash_new
488 && (*d->match) (&d->head, NULL, h->root.root.string)))
489 h->dynamic = 1;
490 }
491
492 /* Record an assignment to a symbol made by a linker script. We need
493 this in case some dynamic object refers to this symbol. */
494
495 bfd_boolean
496 bfd_elf_record_link_assignment (bfd *output_bfd,
497 struct bfd_link_info *info,
498 const char *name,
499 bfd_boolean provide,
500 bfd_boolean hidden)
501 {
502 struct elf_link_hash_entry *h, *hv;
503 struct elf_link_hash_table *htab;
504 const struct elf_backend_data *bed;
505
506 if (!is_elf_hash_table (info->hash))
507 return TRUE;
508
509 htab = elf_hash_table (info);
510 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511 if (h == NULL)
512 return provide;
513
514 switch (h->root.type)
515 {
516 case bfd_link_hash_defined:
517 case bfd_link_hash_defweak:
518 case bfd_link_hash_common:
519 break;
520 case bfd_link_hash_undefweak:
521 case bfd_link_hash_undefined:
522 /* Since we're defining the symbol, don't let it seem to have not
523 been defined. record_dynamic_symbol and size_dynamic_sections
524 may depend on this. */
525 h->root.type = bfd_link_hash_new;
526 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527 bfd_link_repair_undef_list (&htab->root);
528 break;
529 case bfd_link_hash_new:
530 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 h->non_elf = 0;
532 break;
533 case bfd_link_hash_indirect:
534 /* We had a versioned symbol in a dynamic library. We make the
535 the versioned symbol point to this one. */
536 bed = get_elf_backend_data (output_bfd);
537 hv = h;
538 while (hv->root.type == bfd_link_hash_indirect
539 || hv->root.type == bfd_link_hash_warning)
540 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541 /* We don't need to update h->root.u since linker will set them
542 later. */
543 h->root.type = bfd_link_hash_undefined;
544 hv->root.type = bfd_link_hash_indirect;
545 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 break;
548 case bfd_link_hash_warning:
549 abort ();
550 break;
551 }
552
553 /* If this symbol is being provided by the linker script, and it is
554 currently defined by a dynamic object, but not by a regular
555 object, then mark it as undefined so that the generic linker will
556 force the correct value. */
557 if (provide
558 && h->def_dynamic
559 && !h->def_regular)
560 h->root.type = bfd_link_hash_undefined;
561
562 /* If this symbol is not being provided by the linker script, and it is
563 currently defined by a dynamic object, but not by a regular object,
564 then clear out any version information because the symbol will not be
565 associated with the dynamic object any more. */
566 if (!provide
567 && h->def_dynamic
568 && !h->def_regular)
569 h->verinfo.verdef = NULL;
570
571 h->def_regular = 1;
572
573 if (provide && hidden)
574 {
575 bed = get_elf_backend_data (output_bfd);
576 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
577 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
578 }
579
580 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 and executables. */
582 if (!info->relocatable
583 && h->dynindx != -1
584 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
585 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
586 h->forced_local = 1;
587
588 if ((h->def_dynamic
589 || h->ref_dynamic
590 || info->shared
591 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
592 && h->dynindx == -1)
593 {
594 if (! bfd_elf_link_record_dynamic_symbol (info, h))
595 return FALSE;
596
597 /* If this is a weak defined symbol, and we know a corresponding
598 real symbol from the same dynamic object, make sure the real
599 symbol is also made into a dynamic symbol. */
600 if (h->u.weakdef != NULL
601 && h->u.weakdef->dynindx == -1)
602 {
603 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
604 return FALSE;
605 }
606 }
607
608 return TRUE;
609 }
610
611 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
612 success, and 2 on a failure caused by attempting to record a symbol
613 in a discarded section, eg. a discarded link-once section symbol. */
614
615 int
616 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
617 bfd *input_bfd,
618 long input_indx)
619 {
620 bfd_size_type amt;
621 struct elf_link_local_dynamic_entry *entry;
622 struct elf_link_hash_table *eht;
623 struct elf_strtab_hash *dynstr;
624 unsigned long dynstr_index;
625 char *name;
626 Elf_External_Sym_Shndx eshndx;
627 char esym[sizeof (Elf64_External_Sym)];
628
629 if (! is_elf_hash_table (info->hash))
630 return 0;
631
632 /* See if the entry exists already. */
633 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
634 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
635 return 1;
636
637 amt = sizeof (*entry);
638 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
639 if (entry == NULL)
640 return 0;
641
642 /* Go find the symbol, so that we can find it's name. */
643 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
644 1, input_indx, &entry->isym, esym, &eshndx))
645 {
646 bfd_release (input_bfd, entry);
647 return 0;
648 }
649
650 if (entry->isym.st_shndx != SHN_UNDEF
651 && entry->isym.st_shndx < SHN_LORESERVE)
652 {
653 asection *s;
654
655 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
656 if (s == NULL || bfd_is_abs_section (s->output_section))
657 {
658 /* We can still bfd_release here as nothing has done another
659 bfd_alloc. We can't do this later in this function. */
660 bfd_release (input_bfd, entry);
661 return 2;
662 }
663 }
664
665 name = (bfd_elf_string_from_elf_section
666 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
667 entry->isym.st_name));
668
669 dynstr = elf_hash_table (info)->dynstr;
670 if (dynstr == NULL)
671 {
672 /* Create a strtab to hold the dynamic symbol names. */
673 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
674 if (dynstr == NULL)
675 return 0;
676 }
677
678 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
679 if (dynstr_index == (unsigned long) -1)
680 return 0;
681 entry->isym.st_name = dynstr_index;
682
683 eht = elf_hash_table (info);
684
685 entry->next = eht->dynlocal;
686 eht->dynlocal = entry;
687 entry->input_bfd = input_bfd;
688 entry->input_indx = input_indx;
689 eht->dynsymcount++;
690
691 /* Whatever binding the symbol had before, it's now local. */
692 entry->isym.st_info
693 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694
695 /* The dynindx will be set at the end of size_dynamic_sections. */
696
697 return 1;
698 }
699
700 /* Return the dynindex of a local dynamic symbol. */
701
702 long
703 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
704 bfd *input_bfd,
705 long input_indx)
706 {
707 struct elf_link_local_dynamic_entry *e;
708
709 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
710 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
711 return e->dynindx;
712 return -1;
713 }
714
715 /* This function is used to renumber the dynamic symbols, if some of
716 them are removed because they are marked as local. This is called
717 via elf_link_hash_traverse. */
718
719 static bfd_boolean
720 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
721 void *data)
722 {
723 size_t *count = (size_t *) data;
724
725 if (h->forced_local)
726 return TRUE;
727
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
730
731 return TRUE;
732 }
733
734
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
737
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
741 {
742 size_t *count = (size_t *) data;
743
744 if (!h->forced_local)
745 return TRUE;
746
747 if (h->dynindx != -1)
748 h->dynindx = ++(*count);
749
750 return TRUE;
751 }
752
753 /* Return true if the dynamic symbol for a given section should be
754 omitted when creating a shared library. */
755 bfd_boolean
756 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
757 struct bfd_link_info *info,
758 asection *p)
759 {
760 struct elf_link_hash_table *htab;
761
762 switch (elf_section_data (p)->this_hdr.sh_type)
763 {
764 case SHT_PROGBITS:
765 case SHT_NOBITS:
766 /* If sh_type is yet undecided, assume it could be
767 SHT_PROGBITS/SHT_NOBITS. */
768 case SHT_NULL:
769 htab = elf_hash_table (info);
770 if (p == htab->tls_sec)
771 return FALSE;
772
773 if (htab->text_index_section != NULL)
774 return p != htab->text_index_section && p != htab->data_index_section;
775
776 if (strcmp (p->name, ".got") == 0
777 || strcmp (p->name, ".got.plt") == 0
778 || strcmp (p->name, ".plt") == 0)
779 {
780 asection *ip;
781
782 if (htab->dynobj != NULL
783 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
784 && (ip->flags & SEC_LINKER_CREATED)
785 && ip->output_section == p)
786 return TRUE;
787 }
788 return FALSE;
789
790 /* There shouldn't be section relative relocations
791 against any other section. */
792 default:
793 return TRUE;
794 }
795 }
796
797 /* Assign dynsym indices. In a shared library we generate a section
798 symbol for each output section, which come first. Next come symbols
799 which have been forced to local binding. Then all of the back-end
800 allocated local dynamic syms, followed by the rest of the global
801 symbols. */
802
803 static unsigned long
804 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
805 struct bfd_link_info *info,
806 unsigned long *section_sym_count)
807 {
808 unsigned long dynsymcount = 0;
809
810 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 {
812 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 asection *p;
814 for (p = output_bfd->sections; p ; p = p->next)
815 if ((p->flags & SEC_EXCLUDE) == 0
816 && (p->flags & SEC_ALLOC) != 0
817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
818 elf_section_data (p)->dynindx = ++dynsymcount;
819 else
820 elf_section_data (p)->dynindx = 0;
821 }
822 *section_sym_count = dynsymcount;
823
824 elf_link_hash_traverse (elf_hash_table (info),
825 elf_link_renumber_local_hash_table_dynsyms,
826 &dynsymcount);
827
828 if (elf_hash_table (info)->dynlocal)
829 {
830 struct elf_link_local_dynamic_entry *p;
831 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
832 p->dynindx = ++dynsymcount;
833 }
834
835 elf_link_hash_traverse (elf_hash_table (info),
836 elf_link_renumber_hash_table_dynsyms,
837 &dynsymcount);
838
839 /* There is an unused NULL entry at the head of the table which
840 we must account for in our count. Unless there weren't any
841 symbols, which means we'll have no table at all. */
842 if (dynsymcount != 0)
843 ++dynsymcount;
844
845 elf_hash_table (info)->dynsymcount = dynsymcount;
846 return dynsymcount;
847 }
848
849 /* Merge st_other field. */
850
851 static void
852 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
853 Elf_Internal_Sym *isym, bfd_boolean definition,
854 bfd_boolean dynamic)
855 {
856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857
858 /* If st_other has a processor-specific meaning, specific
859 code might be needed here. We never merge the visibility
860 attribute with the one from a dynamic object. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 /* If this symbol has default visibility and the user has requested
866 we not re-export it, then mark it as hidden. */
867 if (definition
868 && !dynamic
869 && (abfd->no_export
870 || (abfd->my_archive && abfd->my_archive->no_export))
871 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
872 isym->st_other = (STV_HIDDEN
873 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874
875 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 {
877 unsigned char hvis, symvis, other, nvis;
878
879 /* Only merge the visibility. Leave the remainder of the
880 st_other field to elf_backend_merge_symbol_attribute. */
881 other = h->other & ~ELF_ST_VISIBILITY (-1);
882
883 /* Combine visibilities, using the most constraining one. */
884 hvis = ELF_ST_VISIBILITY (h->other);
885 symvis = ELF_ST_VISIBILITY (isym->st_other);
886 if (! hvis)
887 nvis = symvis;
888 else if (! symvis)
889 nvis = hvis;
890 else
891 nvis = hvis < symvis ? hvis : symvis;
892
893 h->other = other | nvis;
894 }
895 }
896
897 /* This function is called when we want to define a new symbol. It
898 handles the various cases which arise when we find a definition in
899 a dynamic object, or when there is already a definition in a
900 dynamic object. The new symbol is described by NAME, SYM, PSEC,
901 and PVALUE. We set SYM_HASH to the hash table entry. We set
902 OVERRIDE if the old symbol is overriding a new definition. We set
903 TYPE_CHANGE_OK if it is OK for the type to change. We set
904 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
905 change, we mean that we shouldn't warn if the type or size does
906 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
907 object is overridden by a regular object. */
908
909 bfd_boolean
910 _bfd_elf_merge_symbol (bfd *abfd,
911 struct bfd_link_info *info,
912 const char *name,
913 Elf_Internal_Sym *sym,
914 asection **psec,
915 bfd_vma *pvalue,
916 unsigned int *pold_alignment,
917 struct elf_link_hash_entry **sym_hash,
918 bfd_boolean *skip,
919 bfd_boolean *override,
920 bfd_boolean *type_change_ok,
921 bfd_boolean *size_change_ok)
922 {
923 asection *sec, *oldsec;
924 struct elf_link_hash_entry *h;
925 struct elf_link_hash_entry *flip;
926 int bind;
927 bfd *oldbfd;
928 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
929 bfd_boolean newweak, oldweak, newfunc, oldfunc;
930 const struct elf_backend_data *bed;
931
932 *skip = FALSE;
933 *override = FALSE;
934
935 sec = *psec;
936 bind = ELF_ST_BIND (sym->st_info);
937
938 /* Silently discard TLS symbols from --just-syms. There's no way to
939 combine a static TLS block with a new TLS block for this executable. */
940 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
941 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
942 {
943 *skip = TRUE;
944 return TRUE;
945 }
946
947 if (! bfd_is_und_section (sec))
948 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
949 else
950 h = ((struct elf_link_hash_entry *)
951 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
952 if (h == NULL)
953 return FALSE;
954 *sym_hash = h;
955
956 bed = get_elf_backend_data (abfd);
957
958 /* This code is for coping with dynamic objects, and is only useful
959 if we are doing an ELF link. */
960 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
961 return TRUE;
962
963 /* For merging, we only care about real symbols. */
964
965 while (h->root.type == bfd_link_hash_indirect
966 || h->root.type == bfd_link_hash_warning)
967 h = (struct elf_link_hash_entry *) h->root.u.i.link;
968
969 /* We have to check it for every instance since the first few may be
970 refereences and not all compilers emit symbol type for undefined
971 symbols. */
972 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
973
974 /* If we just created the symbol, mark it as being an ELF symbol.
975 Other than that, there is nothing to do--there is no merge issue
976 with a newly defined symbol--so we just return. */
977
978 if (h->root.type == bfd_link_hash_new)
979 {
980 h->non_elf = 0;
981 return TRUE;
982 }
983
984 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
985 existing symbol. */
986
987 switch (h->root.type)
988 {
989 default:
990 oldbfd = NULL;
991 oldsec = NULL;
992 break;
993
994 case bfd_link_hash_undefined:
995 case bfd_link_hash_undefweak:
996 oldbfd = h->root.u.undef.abfd;
997 oldsec = NULL;
998 break;
999
1000 case bfd_link_hash_defined:
1001 case bfd_link_hash_defweak:
1002 oldbfd = h->root.u.def.section->owner;
1003 oldsec = h->root.u.def.section;
1004 break;
1005
1006 case bfd_link_hash_common:
1007 oldbfd = h->root.u.c.p->section->owner;
1008 oldsec = h->root.u.c.p->section;
1009 break;
1010 }
1011
1012 /* Differentiate strong and weak symbols. */
1013 newweak = bind == STB_WEAK;
1014 oldweak = (h->root.type == bfd_link_hash_defweak
1015 || h->root.type == bfd_link_hash_undefweak);
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && (newweak || oldweak)
1025 && ((abfd->flags & DYNAMIC) == 0
1026 || !h->def_regular))
1027 return TRUE;
1028
1029 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1030 respectively, is from a dynamic object. */
1031
1032 newdyn = (abfd->flags & DYNAMIC) != 0;
1033
1034 olddyn = FALSE;
1035 if (oldbfd != NULL)
1036 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1037 else if (oldsec != NULL)
1038 {
1039 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1040 indices used by MIPS ELF. */
1041 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1042 }
1043
1044 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1045 respectively, appear to be a definition rather than reference. */
1046
1047 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048
1049 olddef = (h->root.type != bfd_link_hash_undefined
1050 && h->root.type != bfd_link_hash_undefweak
1051 && h->root.type != bfd_link_hash_common);
1052
1053 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1054 respectively, appear to be a function. */
1055
1056 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1057 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058
1059 oldfunc = (h->type != STT_NOTYPE
1060 && bed->is_function_type (h->type));
1061
1062 /* When we try to create a default indirect symbol from the dynamic
1063 definition with the default version, we skip it if its type and
1064 the type of existing regular definition mismatch. We only do it
1065 if the existing regular definition won't be dynamic. */
1066 if (pold_alignment == NULL
1067 && !info->shared
1068 && !info->export_dynamic
1069 && !h->ref_dynamic
1070 && newdyn
1071 && newdef
1072 && !olddyn
1073 && (olddef || h->root.type == bfd_link_hash_common)
1074 && ELF_ST_TYPE (sym->st_info) != h->type
1075 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1076 && h->type != STT_NOTYPE
1077 && !(newfunc && oldfunc))
1078 {
1079 *skip = TRUE;
1080 return TRUE;
1081 }
1082
1083 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1084 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1085 *type_change_ok = TRUE;
1086
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 "ld -u". */
1089 else if (oldbfd != NULL
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127 tbfd, tsec, ntbfd, h->root.root.string);
1128 else
1129 (*_bfd_error_handler)
1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131 tbfd, ntbfd, ntsec, h->root.root.string);
1132
1133 bfd_set_error (bfd_error_bad_value);
1134 return FALSE;
1135 }
1136
1137 /* We need to remember if a symbol has a definition in a dynamic
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
1140 if (newdyn && !h->dynamic_def)
1141 {
1142 if (!bfd_is_und_section (sec))
1143 h->dynamic_def = 1;
1144 else
1145 {
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
1149 if (!h->ref_dynamic)
1150 {
1151 if (bind == STB_WEAK)
1152 h->dynamic_weak = 1;
1153 }
1154 else if (bind != STB_WEAK)
1155 h->dynamic_weak = 0;
1156 }
1157 }
1158
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1161 if (newdyn
1162 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1163 && !bfd_is_und_section (sec))
1164 {
1165 *skip = TRUE;
1166 /* Make sure this symbol is dynamic. */
1167 h->ref_dynamic = 1;
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1170
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1173 return bfd_elf_link_record_dynamic_symbol (info, h);
1174 else
1175 return TRUE;
1176 }
1177 else if (!newdyn
1178 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1179 && h->def_dynamic)
1180 {
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 {
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1190 if (h->ref_regular)
1191 {
1192 struct elf_link_hash_entry *vh = *sym_hash;
1193
1194 vh->root.type = h->root.type;
1195 h->root.type = bfd_link_hash_indirect;
1196 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 {
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202 vh->dynamic_def = 1;
1203 vh->ref_dynamic = 1;
1204 }
1205 else
1206 {
1207 h->root.type = vh->root.type;
1208 vh->ref_dynamic = 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213 }
1214 h = vh;
1215 }
1216 else
1217 h = *sym_hash;
1218 }
1219
1220 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1221 && bfd_is_und_section (sec))
1222 {
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
1226 up the linker hash table undefs list. Since the old
1227 definition came from a dynamic object, it is still on the
1228 undefs list. */
1229 h->root.type = bfd_link_hash_undefined;
1230 h->root.u.undef.abfd = abfd;
1231 }
1232 else
1233 {
1234 h->root.type = bfd_link_hash_new;
1235 h->root.u.undef.abfd = NULL;
1236 }
1237
1238 if (h->def_dynamic)
1239 {
1240 h->def_dynamic = 0;
1241 h->ref_dynamic = 1;
1242 h->dynamic_def = 1;
1243 }
1244 /* FIXME: Should we check type and size for protected symbol? */
1245 h->size = 0;
1246 h->type = 0;
1247 return TRUE;
1248 }
1249
1250 if (bind == STB_GNU_UNIQUE)
1251 h->unique_global = 1;
1252
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1260
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1263
1264 if (newdef && !newdyn && olddyn)
1265 newweak = FALSE;
1266 if (olddef && newdyn)
1267 oldweak = FALSE;
1268
1269 /* Allow changes between different types of function symbol. */
1270 if (newfunc && oldfunc)
1271 *type_change_ok = TRUE;
1272
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
1276
1277 if (oldweak
1278 || newweak
1279 || (newdef
1280 && h->root.type == bfd_link_hash_undefined))
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1285
1286 if (*type_change_ok
1287 || h->root.type == bfd_link_hash_undefined)
1288 *size_change_ok = TRUE;
1289
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1301 libraries.
1302
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1305
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1311 harmless. */
1312
1313 if (newdyn
1314 && newdef
1315 && !newweak
1316 && (sec->flags & SEC_ALLOC) != 0
1317 && (sec->flags & SEC_LOAD) == 0
1318 && sym->st_size > 0
1319 && !newfunc)
1320 newdyncommon = TRUE;
1321 else
1322 newdyncommon = FALSE;
1323
1324 if (olddyn
1325 && olddef
1326 && h->root.type == bfd_link_hash_defined
1327 && h->def_dynamic
1328 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 && h->size > 0
1331 && !oldfunc)
1332 olddyncommon = TRUE;
1333 else
1334 olddyncommon = FALSE;
1335
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
1338 if (bed->merge_symbol
1339 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340 pold_alignment, skip, override,
1341 type_change_ok, size_change_ok,
1342 &newdyn, &newdef, &newdyncommon, &newweak,
1343 abfd, &sec,
1344 &olddyn, &olddef, &olddyncommon, &oldweak,
1345 oldbfd, &oldsec))
1346 return FALSE;
1347
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1350 two. */
1351
1352 if (olddyncommon
1353 && newdyncommon
1354 && sym->st_size != h->size)
1355 {
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1361
1362 if (! ((*info->callbacks->multiple_common)
1363 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1364 return FALSE;
1365
1366 if (sym->st_size > h->size)
1367 h->size = sym->st_size;
1368
1369 *size_change_ok = TRUE;
1370 }
1371
1372 /* If we are looking at a dynamic object, and we have found a
1373 definition, we need to see if the symbol was already defined by
1374 some other object. If so, we want to use the existing
1375 definition, and we do not want to report a multiple symbol
1376 definition error; we do this by clobbering *PSEC to be
1377 bfd_und_section_ptr.
1378
1379 We treat a common symbol as a definition if the symbol in the
1380 shared library is a function, since common symbols always
1381 represent variables; this can cause confusion in principle, but
1382 any such confusion would seem to indicate an erroneous program or
1383 shared library. We also permit a common symbol in a regular
1384 object to override a weak symbol in a shared object. */
1385
1386 if (newdyn
1387 && newdef
1388 && (olddef
1389 || (h->root.type == bfd_link_hash_common
1390 && (newweak || newfunc))))
1391 {
1392 *override = TRUE;
1393 newdef = FALSE;
1394 newdyncommon = FALSE;
1395
1396 *psec = sec = bfd_und_section_ptr;
1397 *size_change_ok = TRUE;
1398
1399 /* If we get here when the old symbol is a common symbol, then
1400 we are explicitly letting it override a weak symbol or
1401 function in a dynamic object, and we don't want to warn about
1402 a type change. If the old symbol is a defined symbol, a type
1403 change warning may still be appropriate. */
1404
1405 if (h->root.type == bfd_link_hash_common)
1406 *type_change_ok = TRUE;
1407 }
1408
1409 /* Handle the special case of an old common symbol merging with a
1410 new symbol which looks like a common symbol in a shared object.
1411 We change *PSEC and *PVALUE to make the new symbol look like a
1412 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 right thing. */
1414
1415 if (newdyncommon
1416 && h->root.type == bfd_link_hash_common)
1417 {
1418 *override = TRUE;
1419 newdef = FALSE;
1420 newdyncommon = FALSE;
1421 *pvalue = sym->st_size;
1422 *psec = sec = bed->common_section (oldsec);
1423 *size_change_ok = TRUE;
1424 }
1425
1426 /* Skip weak definitions of symbols that are already defined. */
1427 if (newdef && olddef && newweak)
1428 {
1429 /* Don't skip new non-IR weak syms. */
1430 if (!(oldbfd != NULL
1431 && (oldbfd->flags & BFD_PLUGIN) != 0
1432 && (abfd->flags & BFD_PLUGIN) == 0))
1433 *skip = TRUE;
1434
1435 /* Merge st_other. If the symbol already has a dynamic index,
1436 but visibility says it should not be visible, turn it into a
1437 local symbol. */
1438 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1439 if (h->dynindx != -1)
1440 switch (ELF_ST_VISIBILITY (h->other))
1441 {
1442 case STV_INTERNAL:
1443 case STV_HIDDEN:
1444 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1445 break;
1446 }
1447 }
1448
1449 /* If the old symbol is from a dynamic object, and the new symbol is
1450 a definition which is not from a dynamic object, then the new
1451 symbol overrides the old symbol. Symbols from regular files
1452 always take precedence over symbols from dynamic objects, even if
1453 they are defined after the dynamic object in the link.
1454
1455 As above, we again permit a common symbol in a regular object to
1456 override a definition in a shared object if the shared object
1457 symbol is a function or is weak. */
1458
1459 flip = NULL;
1460 if (!newdyn
1461 && (newdef
1462 || (bfd_is_com_section (sec)
1463 && (oldweak || oldfunc)))
1464 && olddyn
1465 && olddef
1466 && h->def_dynamic)
1467 {
1468 /* Change the hash table entry to undefined, and let
1469 _bfd_generic_link_add_one_symbol do the right thing with the
1470 new definition. */
1471
1472 h->root.type = bfd_link_hash_undefined;
1473 h->root.u.undef.abfd = h->root.u.def.section->owner;
1474 *size_change_ok = TRUE;
1475
1476 olddef = FALSE;
1477 olddyncommon = FALSE;
1478
1479 /* We again permit a type change when a common symbol may be
1480 overriding a function. */
1481
1482 if (bfd_is_com_section (sec))
1483 {
1484 if (oldfunc)
1485 {
1486 /* If a common symbol overrides a function, make sure
1487 that it isn't defined dynamically nor has type
1488 function. */
1489 h->def_dynamic = 0;
1490 h->type = STT_NOTYPE;
1491 }
1492 *type_change_ok = TRUE;
1493 }
1494
1495 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1496 flip = *sym_hash;
1497 else
1498 /* This union may have been set to be non-NULL when this symbol
1499 was seen in a dynamic object. We must force the union to be
1500 NULL, so that it is correct for a regular symbol. */
1501 h->verinfo.vertree = NULL;
1502 }
1503
1504 /* Handle the special case of a new common symbol merging with an
1505 old symbol that looks like it might be a common symbol defined in
1506 a shared object. Note that we have already handled the case in
1507 which a new common symbol should simply override the definition
1508 in the shared library. */
1509
1510 if (! newdyn
1511 && bfd_is_com_section (sec)
1512 && olddyncommon)
1513 {
1514 /* It would be best if we could set the hash table entry to a
1515 common symbol, but we don't know what to use for the section
1516 or the alignment. */
1517 if (! ((*info->callbacks->multiple_common)
1518 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1519 return FALSE;
1520
1521 /* If the presumed common symbol in the dynamic object is
1522 larger, pretend that the new symbol has its size. */
1523
1524 if (h->size > *pvalue)
1525 *pvalue = h->size;
1526
1527 /* We need to remember the alignment required by the symbol
1528 in the dynamic object. */
1529 BFD_ASSERT (pold_alignment);
1530 *pold_alignment = h->root.u.def.section->alignment_power;
1531
1532 olddef = FALSE;
1533 olddyncommon = FALSE;
1534
1535 h->root.type = bfd_link_hash_undefined;
1536 h->root.u.undef.abfd = h->root.u.def.section->owner;
1537
1538 *size_change_ok = TRUE;
1539 *type_change_ok = TRUE;
1540
1541 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1542 flip = *sym_hash;
1543 else
1544 h->verinfo.vertree = NULL;
1545 }
1546
1547 if (flip != NULL)
1548 {
1549 /* Handle the case where we had a versioned symbol in a dynamic
1550 library and now find a definition in a normal object. In this
1551 case, we make the versioned symbol point to the normal one. */
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1558 {
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1571
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1582 {
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1595
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1603
1604 if (override)
1605 {
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1615 {
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1619 }
1620 }
1621
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1625
1626 shortlen = p - name;
1627 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1632
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1644
1645 if (skip)
1646 goto nondefault;
1647
1648 if (! override)
1649 {
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1656 }
1657 else
1658 {
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1664
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1668
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1676
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1684 {
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1692 }
1693 }
1694
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1698 }
1699
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 {
1710 struct elf_link_hash_entry *ht;
1711
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1718 {
1719 if (! dynamic)
1720 {
1721 if (! info->executable
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1724 }
1725 else
1726 {
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1729 }
1730 }
1731 }
1732
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1735
1736 nondefault:
1737 len = strlen (name);
1738 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1752
1753 if (skip)
1754 return TRUE;
1755
1756 if (override)
1757 {
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1766 }
1767 else
1768 {
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1775
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1779
1780 if (hi->root.type == bfd_link_hash_indirect)
1781 {
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (! info->executable
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
1814 /* Ignore indirect symbols. These are added by the versioning code. */
1815 if (h->root.type == bfd_link_hash_indirect)
1816 return TRUE;
1817
1818 /* Ignore this if we won't export it. */
1819 if (!eif->info->export_dynamic && !h->dynamic)
1820 return TRUE;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 /* We only care about symbols defined in shared objects with version
1858 information. */
1859 if (!h->def_dynamic
1860 || h->def_regular
1861 || h->dynindx == -1
1862 || h->verinfo.verdef == NULL)
1863 return TRUE;
1864
1865 /* See if we already know about this version. */
1866 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1867 t != NULL;
1868 t = t->vn_nextref)
1869 {
1870 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1871 continue;
1872
1873 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1874 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1875 return TRUE;
1876
1877 break;
1878 }
1879
1880 /* This is a new version. Add it to tree we are building. */
1881
1882 if (t == NULL)
1883 {
1884 amt = sizeof *t;
1885 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1886 if (t == NULL)
1887 {
1888 rinfo->failed = TRUE;
1889 return FALSE;
1890 }
1891
1892 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1893 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1894 elf_tdata (rinfo->info->output_bfd)->verref = t;
1895 }
1896
1897 amt = sizeof *a;
1898 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1899 if (a == NULL)
1900 {
1901 rinfo->failed = TRUE;
1902 return FALSE;
1903 }
1904
1905 /* Note that we are copying a string pointer here, and testing it
1906 above. If bfd_elf_string_from_elf_section is ever changed to
1907 discard the string data when low in memory, this will have to be
1908 fixed. */
1909 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1910
1911 a->vna_flags = h->verinfo.verdef->vd_flags;
1912 a->vna_nextptr = t->vn_auxptr;
1913
1914 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1915 ++rinfo->vers;
1916
1917 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1918
1919 t->vn_auxptr = a;
1920
1921 return TRUE;
1922 }
1923
1924 /* Figure out appropriate versions for all the symbols. We may not
1925 have the version number script until we have read all of the input
1926 files, so until that point we don't know which symbols should be
1927 local. This function is called via elf_link_hash_traverse. */
1928
1929 static bfd_boolean
1930 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1931 {
1932 struct elf_info_failed *sinfo;
1933 struct bfd_link_info *info;
1934 const struct elf_backend_data *bed;
1935 struct elf_info_failed eif;
1936 char *p;
1937 bfd_size_type amt;
1938
1939 sinfo = (struct elf_info_failed *) data;
1940 info = sinfo->info;
1941
1942 /* Fix the symbol flags. */
1943 eif.failed = FALSE;
1944 eif.info = info;
1945 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1946 {
1947 if (eif.failed)
1948 sinfo->failed = TRUE;
1949 return FALSE;
1950 }
1951
1952 /* We only need version numbers for symbols defined in regular
1953 objects. */
1954 if (!h->def_regular)
1955 return TRUE;
1956
1957 bed = get_elf_backend_data (info->output_bfd);
1958 p = strchr (h->root.root.string, ELF_VER_CHR);
1959 if (p != NULL && h->verinfo.vertree == NULL)
1960 {
1961 struct bfd_elf_version_tree *t;
1962 bfd_boolean hidden;
1963
1964 hidden = TRUE;
1965
1966 /* There are two consecutive ELF_VER_CHR characters if this is
1967 not a hidden symbol. */
1968 ++p;
1969 if (*p == ELF_VER_CHR)
1970 {
1971 hidden = FALSE;
1972 ++p;
1973 }
1974
1975 /* If there is no version string, we can just return out. */
1976 if (*p == '\0')
1977 {
1978 if (hidden)
1979 h->hidden = 1;
1980 return TRUE;
1981 }
1982
1983 /* Look for the version. If we find it, it is no longer weak. */
1984 for (t = sinfo->verdefs; t != NULL; t = t->next)
1985 {
1986 if (strcmp (t->name, p) == 0)
1987 {
1988 size_t len;
1989 char *alc;
1990 struct bfd_elf_version_expr *d;
1991
1992 len = p - h->root.root.string;
1993 alc = (char *) bfd_malloc (len);
1994 if (alc == NULL)
1995 {
1996 sinfo->failed = TRUE;
1997 return FALSE;
1998 }
1999 memcpy (alc, h->root.root.string, len - 1);
2000 alc[len - 1] = '\0';
2001 if (alc[len - 2] == ELF_VER_CHR)
2002 alc[len - 2] = '\0';
2003
2004 h->verinfo.vertree = t;
2005 t->used = TRUE;
2006 d = NULL;
2007
2008 if (t->globals.list != NULL)
2009 d = (*t->match) (&t->globals, NULL, alc);
2010
2011 /* See if there is anything to force this symbol to
2012 local scope. */
2013 if (d == NULL && t->locals.list != NULL)
2014 {
2015 d = (*t->match) (&t->locals, NULL, alc);
2016 if (d != NULL
2017 && h->dynindx != -1
2018 && ! info->export_dynamic)
2019 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2020 }
2021
2022 free (alc);
2023 break;
2024 }
2025 }
2026
2027 /* If we are building an application, we need to create a
2028 version node for this version. */
2029 if (t == NULL && info->executable)
2030 {
2031 struct bfd_elf_version_tree **pp;
2032 int version_index;
2033
2034 /* If we aren't going to export this symbol, we don't need
2035 to worry about it. */
2036 if (h->dynindx == -1)
2037 return TRUE;
2038
2039 amt = sizeof *t;
2040 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2041 if (t == NULL)
2042 {
2043 sinfo->failed = TRUE;
2044 return FALSE;
2045 }
2046
2047 t->name = p;
2048 t->name_indx = (unsigned int) -1;
2049 t->used = TRUE;
2050
2051 version_index = 1;
2052 /* Don't count anonymous version tag. */
2053 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2054 version_index = 0;
2055 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2056 ++version_index;
2057 t->vernum = version_index;
2058
2059 *pp = t;
2060
2061 h->verinfo.vertree = t;
2062 }
2063 else if (t == NULL)
2064 {
2065 /* We could not find the version for a symbol when
2066 generating a shared archive. Return an error. */
2067 (*_bfd_error_handler)
2068 (_("%B: version node not found for symbol %s"),
2069 info->output_bfd, h->root.root.string);
2070 bfd_set_error (bfd_error_bad_value);
2071 sinfo->failed = TRUE;
2072 return FALSE;
2073 }
2074
2075 if (hidden)
2076 h->hidden = 1;
2077 }
2078
2079 /* If we don't have a version for this symbol, see if we can find
2080 something. */
2081 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2082 {
2083 bfd_boolean hide;
2084
2085 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2086 h->root.root.string, &hide);
2087 if (h->verinfo.vertree != NULL && hide)
2088 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2089 }
2090
2091 return TRUE;
2092 }
2093 \f
2094 /* Read and swap the relocs from the section indicated by SHDR. This
2095 may be either a REL or a RELA section. The relocations are
2096 translated into RELA relocations and stored in INTERNAL_RELOCS,
2097 which should have already been allocated to contain enough space.
2098 The EXTERNAL_RELOCS are a buffer where the external form of the
2099 relocations should be stored.
2100
2101 Returns FALSE if something goes wrong. */
2102
2103 static bfd_boolean
2104 elf_link_read_relocs_from_section (bfd *abfd,
2105 asection *sec,
2106 Elf_Internal_Shdr *shdr,
2107 void *external_relocs,
2108 Elf_Internal_Rela *internal_relocs)
2109 {
2110 const struct elf_backend_data *bed;
2111 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2112 const bfd_byte *erela;
2113 const bfd_byte *erelaend;
2114 Elf_Internal_Rela *irela;
2115 Elf_Internal_Shdr *symtab_hdr;
2116 size_t nsyms;
2117
2118 /* Position ourselves at the start of the section. */
2119 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2120 return FALSE;
2121
2122 /* Read the relocations. */
2123 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2124 return FALSE;
2125
2126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2127 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2128
2129 bed = get_elf_backend_data (abfd);
2130
2131 /* Convert the external relocations to the internal format. */
2132 if (shdr->sh_entsize == bed->s->sizeof_rel)
2133 swap_in = bed->s->swap_reloc_in;
2134 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2135 swap_in = bed->s->swap_reloca_in;
2136 else
2137 {
2138 bfd_set_error (bfd_error_wrong_format);
2139 return FALSE;
2140 }
2141
2142 erela = (const bfd_byte *) external_relocs;
2143 erelaend = erela + shdr->sh_size;
2144 irela = internal_relocs;
2145 while (erela < erelaend)
2146 {
2147 bfd_vma r_symndx;
2148
2149 (*swap_in) (abfd, erela, irela);
2150 r_symndx = ELF32_R_SYM (irela->r_info);
2151 if (bed->s->arch_size == 64)
2152 r_symndx >>= 24;
2153 if (nsyms > 0)
2154 {
2155 if ((size_t) r_symndx >= nsyms)
2156 {
2157 (*_bfd_error_handler)
2158 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2159 " for offset 0x%lx in section `%A'"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165 }
2166 else if (r_symndx != STN_UNDEF)
2167 {
2168 (*_bfd_error_handler)
2169 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2170 " when the object file has no symbol table"),
2171 abfd, sec,
2172 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173 bfd_set_error (bfd_error_bad_value);
2174 return FALSE;
2175 }
2176 irela += bed->s->int_rels_per_ext_rel;
2177 erela += shdr->sh_entsize;
2178 }
2179
2180 return TRUE;
2181 }
2182
2183 /* Read and swap the relocs for a section O. They may have been
2184 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2185 not NULL, they are used as buffers to read into. They are known to
2186 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2187 the return value is allocated using either malloc or bfd_alloc,
2188 according to the KEEP_MEMORY argument. If O has two relocation
2189 sections (both REL and RELA relocations), then the REL_HDR
2190 relocations will appear first in INTERNAL_RELOCS, followed by the
2191 RELA_HDR relocations. */
2192
2193 Elf_Internal_Rela *
2194 _bfd_elf_link_read_relocs (bfd *abfd,
2195 asection *o,
2196 void *external_relocs,
2197 Elf_Internal_Rela *internal_relocs,
2198 bfd_boolean keep_memory)
2199 {
2200 void *alloc1 = NULL;
2201 Elf_Internal_Rela *alloc2 = NULL;
2202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203 struct bfd_elf_section_data *esdo = elf_section_data (o);
2204 Elf_Internal_Rela *internal_rela_relocs;
2205
2206 if (esdo->relocs != NULL)
2207 return esdo->relocs;
2208
2209 if (o->reloc_count == 0)
2210 return NULL;
2211
2212 if (internal_relocs == NULL)
2213 {
2214 bfd_size_type size;
2215
2216 size = o->reloc_count;
2217 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2218 if (keep_memory)
2219 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2220 else
2221 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2222 if (internal_relocs == NULL)
2223 goto error_return;
2224 }
2225
2226 if (external_relocs == NULL)
2227 {
2228 bfd_size_type size = 0;
2229
2230 if (esdo->rel.hdr)
2231 size += esdo->rel.hdr->sh_size;
2232 if (esdo->rela.hdr)
2233 size += esdo->rela.hdr->sh_size;
2234
2235 alloc1 = bfd_malloc (size);
2236 if (alloc1 == NULL)
2237 goto error_return;
2238 external_relocs = alloc1;
2239 }
2240
2241 internal_rela_relocs = internal_relocs;
2242 if (esdo->rel.hdr)
2243 {
2244 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2245 external_relocs,
2246 internal_relocs))
2247 goto error_return;
2248 external_relocs = (((bfd_byte *) external_relocs)
2249 + esdo->rel.hdr->sh_size);
2250 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2251 * bed->s->int_rels_per_ext_rel);
2252 }
2253
2254 if (esdo->rela.hdr
2255 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2256 external_relocs,
2257 internal_rela_relocs)))
2258 goto error_return;
2259
2260 /* Cache the results for next time, if we can. */
2261 if (keep_memory)
2262 esdo->relocs = internal_relocs;
2263
2264 if (alloc1 != NULL)
2265 free (alloc1);
2266
2267 /* Don't free alloc2, since if it was allocated we are passing it
2268 back (under the name of internal_relocs). */
2269
2270 return internal_relocs;
2271
2272 error_return:
2273 if (alloc1 != NULL)
2274 free (alloc1);
2275 if (alloc2 != NULL)
2276 {
2277 if (keep_memory)
2278 bfd_release (abfd, alloc2);
2279 else
2280 free (alloc2);
2281 }
2282 return NULL;
2283 }
2284
2285 /* Compute the size of, and allocate space for, REL_HDR which is the
2286 section header for a section containing relocations for O. */
2287
2288 static bfd_boolean
2289 _bfd_elf_link_size_reloc_section (bfd *abfd,
2290 struct bfd_elf_section_reloc_data *reldata)
2291 {
2292 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2293
2294 /* That allows us to calculate the size of the section. */
2295 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2296
2297 /* The contents field must last into write_object_contents, so we
2298 allocate it with bfd_alloc rather than malloc. Also since we
2299 cannot be sure that the contents will actually be filled in,
2300 we zero the allocated space. */
2301 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2302 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2303 return FALSE;
2304
2305 if (reldata->hashes == NULL && reldata->count)
2306 {
2307 struct elf_link_hash_entry **p;
2308
2309 p = (struct elf_link_hash_entry **)
2310 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2311 if (p == NULL)
2312 return FALSE;
2313
2314 reldata->hashes = p;
2315 }
2316
2317 return TRUE;
2318 }
2319
2320 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2321 originated from the section given by INPUT_REL_HDR) to the
2322 OUTPUT_BFD. */
2323
2324 bfd_boolean
2325 _bfd_elf_link_output_relocs (bfd *output_bfd,
2326 asection *input_section,
2327 Elf_Internal_Shdr *input_rel_hdr,
2328 Elf_Internal_Rela *internal_relocs,
2329 struct elf_link_hash_entry **rel_hash
2330 ATTRIBUTE_UNUSED)
2331 {
2332 Elf_Internal_Rela *irela;
2333 Elf_Internal_Rela *irelaend;
2334 bfd_byte *erel;
2335 struct bfd_elf_section_reloc_data *output_reldata;
2336 asection *output_section;
2337 const struct elf_backend_data *bed;
2338 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2339 struct bfd_elf_section_data *esdo;
2340
2341 output_section = input_section->output_section;
2342
2343 bed = get_elf_backend_data (output_bfd);
2344 esdo = elf_section_data (output_section);
2345 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2346 {
2347 output_reldata = &esdo->rel;
2348 swap_out = bed->s->swap_reloc_out;
2349 }
2350 else if (esdo->rela.hdr
2351 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2352 {
2353 output_reldata = &esdo->rela;
2354 swap_out = bed->s->swap_reloca_out;
2355 }
2356 else
2357 {
2358 (*_bfd_error_handler)
2359 (_("%B: relocation size mismatch in %B section %A"),
2360 output_bfd, input_section->owner, input_section);
2361 bfd_set_error (bfd_error_wrong_format);
2362 return FALSE;
2363 }
2364
2365 erel = output_reldata->hdr->contents;
2366 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2367 irela = internal_relocs;
2368 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2369 * bed->s->int_rels_per_ext_rel);
2370 while (irela < irelaend)
2371 {
2372 (*swap_out) (output_bfd, irela, erel);
2373 irela += bed->s->int_rels_per_ext_rel;
2374 erel += input_rel_hdr->sh_entsize;
2375 }
2376
2377 /* Bump the counter, so that we know where to add the next set of
2378 relocations. */
2379 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2380
2381 return TRUE;
2382 }
2383 \f
2384 /* Make weak undefined symbols in PIE dynamic. */
2385
2386 bfd_boolean
2387 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2388 struct elf_link_hash_entry *h)
2389 {
2390 if (info->pie
2391 && h->dynindx == -1
2392 && h->root.type == bfd_link_hash_undefweak)
2393 return bfd_elf_link_record_dynamic_symbol (info, h);
2394
2395 return TRUE;
2396 }
2397
2398 /* Fix up the flags for a symbol. This handles various cases which
2399 can only be fixed after all the input files are seen. This is
2400 currently called by both adjust_dynamic_symbol and
2401 assign_sym_version, which is unnecessary but perhaps more robust in
2402 the face of future changes. */
2403
2404 static bfd_boolean
2405 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2406 struct elf_info_failed *eif)
2407 {
2408 const struct elf_backend_data *bed;
2409
2410 /* If this symbol was mentioned in a non-ELF file, try to set
2411 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2412 permit a non-ELF file to correctly refer to a symbol defined in
2413 an ELF dynamic object. */
2414 if (h->non_elf)
2415 {
2416 while (h->root.type == bfd_link_hash_indirect)
2417 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2418
2419 if (h->root.type != bfd_link_hash_defined
2420 && h->root.type != bfd_link_hash_defweak)
2421 {
2422 h->ref_regular = 1;
2423 h->ref_regular_nonweak = 1;
2424 }
2425 else
2426 {
2427 if (h->root.u.def.section->owner != NULL
2428 && (bfd_get_flavour (h->root.u.def.section->owner)
2429 == bfd_target_elf_flavour))
2430 {
2431 h->ref_regular = 1;
2432 h->ref_regular_nonweak = 1;
2433 }
2434 else
2435 h->def_regular = 1;
2436 }
2437
2438 if (h->dynindx == -1
2439 && (h->def_dynamic
2440 || h->ref_dynamic))
2441 {
2442 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2443 {
2444 eif->failed = TRUE;
2445 return FALSE;
2446 }
2447 }
2448 }
2449 else
2450 {
2451 /* Unfortunately, NON_ELF is only correct if the symbol
2452 was first seen in a non-ELF file. Fortunately, if the symbol
2453 was first seen in an ELF file, we're probably OK unless the
2454 symbol was defined in a non-ELF file. Catch that case here.
2455 FIXME: We're still in trouble if the symbol was first seen in
2456 a dynamic object, and then later in a non-ELF regular object. */
2457 if ((h->root.type == bfd_link_hash_defined
2458 || h->root.type == bfd_link_hash_defweak)
2459 && !h->def_regular
2460 && (h->root.u.def.section->owner != NULL
2461 ? (bfd_get_flavour (h->root.u.def.section->owner)
2462 != bfd_target_elf_flavour)
2463 : (bfd_is_abs_section (h->root.u.def.section)
2464 && !h->def_dynamic)))
2465 h->def_regular = 1;
2466 }
2467
2468 /* Backend specific symbol fixup. */
2469 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2470 if (bed->elf_backend_fixup_symbol
2471 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2472 return FALSE;
2473
2474 /* If this is a final link, and the symbol was defined as a common
2475 symbol in a regular object file, and there was no definition in
2476 any dynamic object, then the linker will have allocated space for
2477 the symbol in a common section but the DEF_REGULAR
2478 flag will not have been set. */
2479 if (h->root.type == bfd_link_hash_defined
2480 && !h->def_regular
2481 && h->ref_regular
2482 && !h->def_dynamic
2483 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2484 h->def_regular = 1;
2485
2486 /* If -Bsymbolic was used (which means to bind references to global
2487 symbols to the definition within the shared object), and this
2488 symbol was defined in a regular object, then it actually doesn't
2489 need a PLT entry. Likewise, if the symbol has non-default
2490 visibility. If the symbol has hidden or internal visibility, we
2491 will force it local. */
2492 if (h->needs_plt
2493 && eif->info->shared
2494 && is_elf_hash_table (eif->info->hash)
2495 && (SYMBOLIC_BIND (eif->info, h)
2496 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2497 && h->def_regular)
2498 {
2499 bfd_boolean force_local;
2500
2501 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2502 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2503 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2504 }
2505
2506 /* If a weak undefined symbol has non-default visibility, we also
2507 hide it from the dynamic linker. */
2508 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2509 && h->root.type == bfd_link_hash_undefweak)
2510 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2511
2512 /* If this is a weak defined symbol in a dynamic object, and we know
2513 the real definition in the dynamic object, copy interesting flags
2514 over to the real definition. */
2515 if (h->u.weakdef != NULL)
2516 {
2517 struct elf_link_hash_entry *weakdef;
2518
2519 weakdef = h->u.weakdef;
2520 if (h->root.type == bfd_link_hash_indirect)
2521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2522
2523 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2524 || h->root.type == bfd_link_hash_defweak);
2525 BFD_ASSERT (weakdef->def_dynamic);
2526
2527 /* If the real definition is defined by a regular object file,
2528 don't do anything special. See the longer description in
2529 _bfd_elf_adjust_dynamic_symbol, below. */
2530 if (weakdef->def_regular)
2531 h->u.weakdef = NULL;
2532 else
2533 {
2534 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2535 || weakdef->root.type == bfd_link_hash_defweak);
2536 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2537 }
2538 }
2539
2540 return TRUE;
2541 }
2542
2543 /* Make the backend pick a good value for a dynamic symbol. This is
2544 called via elf_link_hash_traverse, and also calls itself
2545 recursively. */
2546
2547 static bfd_boolean
2548 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2549 {
2550 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2551 bfd *dynobj;
2552 const struct elf_backend_data *bed;
2553
2554 if (! is_elf_hash_table (eif->info->hash))
2555 return FALSE;
2556
2557 /* Ignore indirect symbols. These are added by the versioning code. */
2558 if (h->root.type == bfd_link_hash_indirect)
2559 return TRUE;
2560
2561 /* Fix the symbol flags. */
2562 if (! _bfd_elf_fix_symbol_flags (h, eif))
2563 return FALSE;
2564
2565 /* If this symbol does not require a PLT entry, and it is not
2566 defined by a dynamic object, or is not referenced by a regular
2567 object, ignore it. We do have to handle a weak defined symbol,
2568 even if no regular object refers to it, if we decided to add it
2569 to the dynamic symbol table. FIXME: Do we normally need to worry
2570 about symbols which are defined by one dynamic object and
2571 referenced by another one? */
2572 if (!h->needs_plt
2573 && h->type != STT_GNU_IFUNC
2574 && (h->def_regular
2575 || !h->def_dynamic
2576 || (!h->ref_regular
2577 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2578 {
2579 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2580 return TRUE;
2581 }
2582
2583 /* If we've already adjusted this symbol, don't do it again. This
2584 can happen via a recursive call. */
2585 if (h->dynamic_adjusted)
2586 return TRUE;
2587
2588 /* Don't look at this symbol again. Note that we must set this
2589 after checking the above conditions, because we may look at a
2590 symbol once, decide not to do anything, and then get called
2591 recursively later after REF_REGULAR is set below. */
2592 h->dynamic_adjusted = 1;
2593
2594 /* If this is a weak definition, and we know a real definition, and
2595 the real symbol is not itself defined by a regular object file,
2596 then get a good value for the real definition. We handle the
2597 real symbol first, for the convenience of the backend routine.
2598
2599 Note that there is a confusing case here. If the real definition
2600 is defined by a regular object file, we don't get the real symbol
2601 from the dynamic object, but we do get the weak symbol. If the
2602 processor backend uses a COPY reloc, then if some routine in the
2603 dynamic object changes the real symbol, we will not see that
2604 change in the corresponding weak symbol. This is the way other
2605 ELF linkers work as well, and seems to be a result of the shared
2606 library model.
2607
2608 I will clarify this issue. Most SVR4 shared libraries define the
2609 variable _timezone and define timezone as a weak synonym. The
2610 tzset call changes _timezone. If you write
2611 extern int timezone;
2612 int _timezone = 5;
2613 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2614 you might expect that, since timezone is a synonym for _timezone,
2615 the same number will print both times. However, if the processor
2616 backend uses a COPY reloc, then actually timezone will be copied
2617 into your process image, and, since you define _timezone
2618 yourself, _timezone will not. Thus timezone and _timezone will
2619 wind up at different memory locations. The tzset call will set
2620 _timezone, leaving timezone unchanged. */
2621
2622 if (h->u.weakdef != NULL)
2623 {
2624 /* If we get to this point, we know there is an implicit
2625 reference by a regular object file via the weak symbol H.
2626 FIXME: Is this really true? What if the traversal finds
2627 H->U.WEAKDEF before it finds H? */
2628 h->u.weakdef->ref_regular = 1;
2629
2630 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2631 return FALSE;
2632 }
2633
2634 /* If a symbol has no type and no size and does not require a PLT
2635 entry, then we are probably about to do the wrong thing here: we
2636 are probably going to create a COPY reloc for an empty object.
2637 This case can arise when a shared object is built with assembly
2638 code, and the assembly code fails to set the symbol type. */
2639 if (h->size == 0
2640 && h->type == STT_NOTYPE
2641 && !h->needs_plt)
2642 (*_bfd_error_handler)
2643 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2644 h->root.root.string);
2645
2646 dynobj = elf_hash_table (eif->info)->dynobj;
2647 bed = get_elf_backend_data (dynobj);
2648
2649 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2650 {
2651 eif->failed = TRUE;
2652 return FALSE;
2653 }
2654
2655 return TRUE;
2656 }
2657
2658 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659 DYNBSS. */
2660
2661 bfd_boolean
2662 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2663 asection *dynbss)
2664 {
2665 unsigned int power_of_two;
2666 bfd_vma mask;
2667 asection *sec = h->root.u.def.section;
2668
2669 /* The section aligment of definition is the maximum alignment
2670 requirement of symbols defined in the section. Since we don't
2671 know the symbol alignment requirement, we start with the
2672 maximum alignment and check low bits of the symbol address
2673 for the minimum alignment. */
2674 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2675 mask = ((bfd_vma) 1 << power_of_two) - 1;
2676 while ((h->root.u.def.value & mask) != 0)
2677 {
2678 mask >>= 1;
2679 --power_of_two;
2680 }
2681
2682 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2683 dynbss))
2684 {
2685 /* Adjust the section alignment if needed. */
2686 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2687 power_of_two))
2688 return FALSE;
2689 }
2690
2691 /* We make sure that the symbol will be aligned properly. */
2692 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2693
2694 /* Define the symbol as being at this point in DYNBSS. */
2695 h->root.u.def.section = dynbss;
2696 h->root.u.def.value = dynbss->size;
2697
2698 /* Increment the size of DYNBSS to make room for the symbol. */
2699 dynbss->size += h->size;
2700
2701 return TRUE;
2702 }
2703
2704 /* Adjust all external symbols pointing into SEC_MERGE sections
2705 to reflect the object merging within the sections. */
2706
2707 static bfd_boolean
2708 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2709 {
2710 asection *sec;
2711
2712 if ((h->root.type == bfd_link_hash_defined
2713 || h->root.type == bfd_link_hash_defweak)
2714 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2715 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2716 {
2717 bfd *output_bfd = (bfd *) data;
2718
2719 h->root.u.def.value =
2720 _bfd_merged_section_offset (output_bfd,
2721 &h->root.u.def.section,
2722 elf_section_data (sec)->sec_info,
2723 h->root.u.def.value);
2724 }
2725
2726 return TRUE;
2727 }
2728
2729 /* Returns false if the symbol referred to by H should be considered
2730 to resolve local to the current module, and true if it should be
2731 considered to bind dynamically. */
2732
2733 bfd_boolean
2734 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2735 struct bfd_link_info *info,
2736 bfd_boolean not_local_protected)
2737 {
2738 bfd_boolean binding_stays_local_p;
2739 const struct elf_backend_data *bed;
2740 struct elf_link_hash_table *hash_table;
2741
2742 if (h == NULL)
2743 return FALSE;
2744
2745 while (h->root.type == bfd_link_hash_indirect
2746 || h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
2749 /* If it was forced local, then clearly it's not dynamic. */
2750 if (h->dynindx == -1)
2751 return FALSE;
2752 if (h->forced_local)
2753 return FALSE;
2754
2755 /* Identify the cases where name binding rules say that a
2756 visible symbol resolves locally. */
2757 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2758
2759 switch (ELF_ST_VISIBILITY (h->other))
2760 {
2761 case STV_INTERNAL:
2762 case STV_HIDDEN:
2763 return FALSE;
2764
2765 case STV_PROTECTED:
2766 hash_table = elf_hash_table (info);
2767 if (!is_elf_hash_table (hash_table))
2768 return FALSE;
2769
2770 bed = get_elf_backend_data (hash_table->dynobj);
2771
2772 /* Proper resolution for function pointer equality may require
2773 that these symbols perhaps be resolved dynamically, even though
2774 we should be resolving them to the current module. */
2775 if (!not_local_protected || !bed->is_function_type (h->type))
2776 binding_stays_local_p = TRUE;
2777 break;
2778
2779 default:
2780 break;
2781 }
2782
2783 /* If it isn't defined locally, then clearly it's dynamic. */
2784 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2785 return TRUE;
2786
2787 /* Otherwise, the symbol is dynamic if binding rules don't tell
2788 us that it remains local. */
2789 return !binding_stays_local_p;
2790 }
2791
2792 /* Return true if the symbol referred to by H should be considered
2793 to resolve local to the current module, and false otherwise. Differs
2794 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2795 undefined symbols. The two functions are virtually identical except
2796 for the place where forced_local and dynindx == -1 are tested. If
2797 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2798 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2799 the symbol is local only for defined symbols.
2800 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2801 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2802 treatment of undefined weak symbols. For those that do not make
2803 undefined weak symbols dynamic, both functions may return false. */
2804
2805 bfd_boolean
2806 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2807 struct bfd_link_info *info,
2808 bfd_boolean local_protected)
2809 {
2810 const struct elf_backend_data *bed;
2811 struct elf_link_hash_table *hash_table;
2812
2813 /* If it's a local sym, of course we resolve locally. */
2814 if (h == NULL)
2815 return TRUE;
2816
2817 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2818 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2819 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2820 return TRUE;
2821
2822 /* Common symbols that become definitions don't get the DEF_REGULAR
2823 flag set, so test it first, and don't bail out. */
2824 if (ELF_COMMON_DEF_P (h))
2825 /* Do nothing. */;
2826 /* If we don't have a definition in a regular file, then we can't
2827 resolve locally. The sym is either undefined or dynamic. */
2828 else if (!h->def_regular)
2829 return FALSE;
2830
2831 /* Forced local symbols resolve locally. */
2832 if (h->forced_local)
2833 return TRUE;
2834
2835 /* As do non-dynamic symbols. */
2836 if (h->dynindx == -1)
2837 return TRUE;
2838
2839 /* At this point, we know the symbol is defined and dynamic. In an
2840 executable it must resolve locally, likewise when building symbolic
2841 shared libraries. */
2842 if (info->executable || SYMBOLIC_BIND (info, h))
2843 return TRUE;
2844
2845 /* Now deal with defined dynamic symbols in shared libraries. Ones
2846 with default visibility might not resolve locally. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2848 return FALSE;
2849
2850 hash_table = elf_hash_table (info);
2851 if (!is_elf_hash_table (hash_table))
2852 return TRUE;
2853
2854 bed = get_elf_backend_data (hash_table->dynobj);
2855
2856 /* STV_PROTECTED non-function symbols are local. */
2857 if (!bed->is_function_type (h->type))
2858 return TRUE;
2859
2860 /* Function pointer equality tests may require that STV_PROTECTED
2861 symbols be treated as dynamic symbols. If the address of a
2862 function not defined in an executable is set to that function's
2863 plt entry in the executable, then the address of the function in
2864 a shared library must also be the plt entry in the executable. */
2865 return local_protected;
2866 }
2867
2868 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2869 aligned. Returns the first TLS output section. */
2870
2871 struct bfd_section *
2872 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2873 {
2874 struct bfd_section *sec, *tls;
2875 unsigned int align = 0;
2876
2877 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2878 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2879 break;
2880 tls = sec;
2881
2882 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2883 if (sec->alignment_power > align)
2884 align = sec->alignment_power;
2885
2886 elf_hash_table (info)->tls_sec = tls;
2887
2888 /* Ensure the alignment of the first section is the largest alignment,
2889 so that the tls segment starts aligned. */
2890 if (tls != NULL)
2891 tls->alignment_power = align;
2892
2893 return tls;
2894 }
2895
2896 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2897 static bfd_boolean
2898 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2899 Elf_Internal_Sym *sym)
2900 {
2901 const struct elf_backend_data *bed;
2902
2903 /* Local symbols do not count, but target specific ones might. */
2904 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2905 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2906 return FALSE;
2907
2908 bed = get_elf_backend_data (abfd);
2909 /* Function symbols do not count. */
2910 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2911 return FALSE;
2912
2913 /* If the section is undefined, then so is the symbol. */
2914 if (sym->st_shndx == SHN_UNDEF)
2915 return FALSE;
2916
2917 /* If the symbol is defined in the common section, then
2918 it is a common definition and so does not count. */
2919 if (bed->common_definition (sym))
2920 return FALSE;
2921
2922 /* If the symbol is in a target specific section then we
2923 must rely upon the backend to tell us what it is. */
2924 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2925 /* FIXME - this function is not coded yet:
2926
2927 return _bfd_is_global_symbol_definition (abfd, sym);
2928
2929 Instead for now assume that the definition is not global,
2930 Even if this is wrong, at least the linker will behave
2931 in the same way that it used to do. */
2932 return FALSE;
2933
2934 return TRUE;
2935 }
2936
2937 /* Search the symbol table of the archive element of the archive ABFD
2938 whose archive map contains a mention of SYMDEF, and determine if
2939 the symbol is defined in this element. */
2940 static bfd_boolean
2941 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2942 {
2943 Elf_Internal_Shdr * hdr;
2944 bfd_size_type symcount;
2945 bfd_size_type extsymcount;
2946 bfd_size_type extsymoff;
2947 Elf_Internal_Sym *isymbuf;
2948 Elf_Internal_Sym *isym;
2949 Elf_Internal_Sym *isymend;
2950 bfd_boolean result;
2951
2952 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2953 if (abfd == NULL)
2954 return FALSE;
2955
2956 if (! bfd_check_format (abfd, bfd_object))
2957 return FALSE;
2958
2959 /* If we have already included the element containing this symbol in the
2960 link then we do not need to include it again. Just claim that any symbol
2961 it contains is not a definition, so that our caller will not decide to
2962 (re)include this element. */
2963 if (abfd->archive_pass)
2964 return FALSE;
2965
2966 /* Select the appropriate symbol table. */
2967 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2968 hdr = &elf_tdata (abfd)->symtab_hdr;
2969 else
2970 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2971
2972 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2973
2974 /* The sh_info field of the symtab header tells us where the
2975 external symbols start. We don't care about the local symbols. */
2976 if (elf_bad_symtab (abfd))
2977 {
2978 extsymcount = symcount;
2979 extsymoff = 0;
2980 }
2981 else
2982 {
2983 extsymcount = symcount - hdr->sh_info;
2984 extsymoff = hdr->sh_info;
2985 }
2986
2987 if (extsymcount == 0)
2988 return FALSE;
2989
2990 /* Read in the symbol table. */
2991 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2992 NULL, NULL, NULL);
2993 if (isymbuf == NULL)
2994 return FALSE;
2995
2996 /* Scan the symbol table looking for SYMDEF. */
2997 result = FALSE;
2998 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2999 {
3000 const char *name;
3001
3002 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3003 isym->st_name);
3004 if (name == NULL)
3005 break;
3006
3007 if (strcmp (name, symdef->name) == 0)
3008 {
3009 result = is_global_data_symbol_definition (abfd, isym);
3010 break;
3011 }
3012 }
3013
3014 free (isymbuf);
3015
3016 return result;
3017 }
3018 \f
3019 /* Add an entry to the .dynamic table. */
3020
3021 bfd_boolean
3022 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3023 bfd_vma tag,
3024 bfd_vma val)
3025 {
3026 struct elf_link_hash_table *hash_table;
3027 const struct elf_backend_data *bed;
3028 asection *s;
3029 bfd_size_type newsize;
3030 bfd_byte *newcontents;
3031 Elf_Internal_Dyn dyn;
3032
3033 hash_table = elf_hash_table (info);
3034 if (! is_elf_hash_table (hash_table))
3035 return FALSE;
3036
3037 bed = get_elf_backend_data (hash_table->dynobj);
3038 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3039 BFD_ASSERT (s != NULL);
3040
3041 newsize = s->size + bed->s->sizeof_dyn;
3042 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3043 if (newcontents == NULL)
3044 return FALSE;
3045
3046 dyn.d_tag = tag;
3047 dyn.d_un.d_val = val;
3048 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3049
3050 s->size = newsize;
3051 s->contents = newcontents;
3052
3053 return TRUE;
3054 }
3055
3056 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3057 otherwise just check whether one already exists. Returns -1 on error,
3058 1 if a DT_NEEDED tag already exists, and 0 on success. */
3059
3060 static int
3061 elf_add_dt_needed_tag (bfd *abfd,
3062 struct bfd_link_info *info,
3063 const char *soname,
3064 bfd_boolean do_it)
3065 {
3066 struct elf_link_hash_table *hash_table;
3067 bfd_size_type oldsize;
3068 bfd_size_type strindex;
3069
3070 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3071 return -1;
3072
3073 hash_table = elf_hash_table (info);
3074 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3075 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3076 if (strindex == (bfd_size_type) -1)
3077 return -1;
3078
3079 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3080 {
3081 asection *sdyn;
3082 const struct elf_backend_data *bed;
3083 bfd_byte *extdyn;
3084
3085 bed = get_elf_backend_data (hash_table->dynobj);
3086 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3087 if (sdyn != NULL)
3088 for (extdyn = sdyn->contents;
3089 extdyn < sdyn->contents + sdyn->size;
3090 extdyn += bed->s->sizeof_dyn)
3091 {
3092 Elf_Internal_Dyn dyn;
3093
3094 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3095 if (dyn.d_tag == DT_NEEDED
3096 && dyn.d_un.d_val == strindex)
3097 {
3098 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3099 return 1;
3100 }
3101 }
3102 }
3103
3104 if (do_it)
3105 {
3106 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3107 return -1;
3108
3109 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3110 return -1;
3111 }
3112 else
3113 /* We were just checking for existence of the tag. */
3114 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3115
3116 return 0;
3117 }
3118
3119 static bfd_boolean
3120 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3121 {
3122 for (; needed != NULL; needed = needed->next)
3123 if (strcmp (soname, needed->name) == 0)
3124 return TRUE;
3125
3126 return FALSE;
3127 }
3128
3129 /* Sort symbol by value and section. */
3130 static int
3131 elf_sort_symbol (const void *arg1, const void *arg2)
3132 {
3133 const struct elf_link_hash_entry *h1;
3134 const struct elf_link_hash_entry *h2;
3135 bfd_signed_vma vdiff;
3136
3137 h1 = *(const struct elf_link_hash_entry **) arg1;
3138 h2 = *(const struct elf_link_hash_entry **) arg2;
3139 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3140 if (vdiff != 0)
3141 return vdiff > 0 ? 1 : -1;
3142 else
3143 {
3144 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3145 if (sdiff != 0)
3146 return sdiff > 0 ? 1 : -1;
3147 }
3148 return 0;
3149 }
3150
3151 /* This function is used to adjust offsets into .dynstr for
3152 dynamic symbols. This is called via elf_link_hash_traverse. */
3153
3154 static bfd_boolean
3155 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3156 {
3157 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3158
3159 if (h->dynindx != -1)
3160 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3161 return TRUE;
3162 }
3163
3164 /* Assign string offsets in .dynstr, update all structures referencing
3165 them. */
3166
3167 static bfd_boolean
3168 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3169 {
3170 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3171 struct elf_link_local_dynamic_entry *entry;
3172 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3173 bfd *dynobj = hash_table->dynobj;
3174 asection *sdyn;
3175 bfd_size_type size;
3176 const struct elf_backend_data *bed;
3177 bfd_byte *extdyn;
3178
3179 _bfd_elf_strtab_finalize (dynstr);
3180 size = _bfd_elf_strtab_size (dynstr);
3181
3182 bed = get_elf_backend_data (dynobj);
3183 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3184 BFD_ASSERT (sdyn != NULL);
3185
3186 /* Update all .dynamic entries referencing .dynstr strings. */
3187 for (extdyn = sdyn->contents;
3188 extdyn < sdyn->contents + sdyn->size;
3189 extdyn += bed->s->sizeof_dyn)
3190 {
3191 Elf_Internal_Dyn dyn;
3192
3193 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3194 switch (dyn.d_tag)
3195 {
3196 case DT_STRSZ:
3197 dyn.d_un.d_val = size;
3198 break;
3199 case DT_NEEDED:
3200 case DT_SONAME:
3201 case DT_RPATH:
3202 case DT_RUNPATH:
3203 case DT_FILTER:
3204 case DT_AUXILIARY:
3205 case DT_AUDIT:
3206 case DT_DEPAUDIT:
3207 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3208 break;
3209 default:
3210 continue;
3211 }
3212 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3213 }
3214
3215 /* Now update local dynamic symbols. */
3216 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3217 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3218 entry->isym.st_name);
3219
3220 /* And the rest of dynamic symbols. */
3221 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3222
3223 /* Adjust version definitions. */
3224 if (elf_tdata (output_bfd)->cverdefs)
3225 {
3226 asection *s;
3227 bfd_byte *p;
3228 bfd_size_type i;
3229 Elf_Internal_Verdef def;
3230 Elf_Internal_Verdaux defaux;
3231
3232 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3233 p = s->contents;
3234 do
3235 {
3236 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3237 &def);
3238 p += sizeof (Elf_External_Verdef);
3239 if (def.vd_aux != sizeof (Elf_External_Verdef))
3240 continue;
3241 for (i = 0; i < def.vd_cnt; ++i)
3242 {
3243 _bfd_elf_swap_verdaux_in (output_bfd,
3244 (Elf_External_Verdaux *) p, &defaux);
3245 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3246 defaux.vda_name);
3247 _bfd_elf_swap_verdaux_out (output_bfd,
3248 &defaux, (Elf_External_Verdaux *) p);
3249 p += sizeof (Elf_External_Verdaux);
3250 }
3251 }
3252 while (def.vd_next);
3253 }
3254
3255 /* Adjust version references. */
3256 if (elf_tdata (output_bfd)->verref)
3257 {
3258 asection *s;
3259 bfd_byte *p;
3260 bfd_size_type i;
3261 Elf_Internal_Verneed need;
3262 Elf_Internal_Vernaux needaux;
3263
3264 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3265 p = s->contents;
3266 do
3267 {
3268 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3269 &need);
3270 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3271 _bfd_elf_swap_verneed_out (output_bfd, &need,
3272 (Elf_External_Verneed *) p);
3273 p += sizeof (Elf_External_Verneed);
3274 for (i = 0; i < need.vn_cnt; ++i)
3275 {
3276 _bfd_elf_swap_vernaux_in (output_bfd,
3277 (Elf_External_Vernaux *) p, &needaux);
3278 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3279 needaux.vna_name);
3280 _bfd_elf_swap_vernaux_out (output_bfd,
3281 &needaux,
3282 (Elf_External_Vernaux *) p);
3283 p += sizeof (Elf_External_Vernaux);
3284 }
3285 }
3286 while (need.vn_next);
3287 }
3288
3289 return TRUE;
3290 }
3291 \f
3292 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3293 The default is to only match when the INPUT and OUTPUT are exactly
3294 the same target. */
3295
3296 bfd_boolean
3297 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3298 const bfd_target *output)
3299 {
3300 return input == output;
3301 }
3302
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 This version is used when different targets for the same architecture
3305 are virtually identical. */
3306
3307 bfd_boolean
3308 _bfd_elf_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3310 {
3311 const struct elf_backend_data *obed, *ibed;
3312
3313 if (input == output)
3314 return TRUE;
3315
3316 ibed = xvec_get_elf_backend_data (input);
3317 obed = xvec_get_elf_backend_data (output);
3318
3319 if (ibed->arch != obed->arch)
3320 return FALSE;
3321
3322 /* If both backends are using this function, deem them compatible. */
3323 return ibed->relocs_compatible == obed->relocs_compatible;
3324 }
3325
3326 /* Add symbols from an ELF object file to the linker hash table. */
3327
3328 static bfd_boolean
3329 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3330 {
3331 Elf_Internal_Ehdr *ehdr;
3332 Elf_Internal_Shdr *hdr;
3333 bfd_size_type symcount;
3334 bfd_size_type extsymcount;
3335 bfd_size_type extsymoff;
3336 struct elf_link_hash_entry **sym_hash;
3337 bfd_boolean dynamic;
3338 Elf_External_Versym *extversym = NULL;
3339 Elf_External_Versym *ever;
3340 struct elf_link_hash_entry *weaks;
3341 struct elf_link_hash_entry **nondeflt_vers = NULL;
3342 bfd_size_type nondeflt_vers_cnt = 0;
3343 Elf_Internal_Sym *isymbuf = NULL;
3344 Elf_Internal_Sym *isym;
3345 Elf_Internal_Sym *isymend;
3346 const struct elf_backend_data *bed;
3347 bfd_boolean add_needed;
3348 struct elf_link_hash_table *htab;
3349 bfd_size_type amt;
3350 void *alloc_mark = NULL;
3351 struct bfd_hash_entry **old_table = NULL;
3352 unsigned int old_size = 0;
3353 unsigned int old_count = 0;
3354 void *old_tab = NULL;
3355 void *old_hash;
3356 void *old_ent;
3357 struct bfd_link_hash_entry *old_undefs = NULL;
3358 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3359 long old_dynsymcount = 0;
3360 size_t tabsize = 0;
3361 size_t hashsize = 0;
3362
3363 htab = elf_hash_table (info);
3364 bed = get_elf_backend_data (abfd);
3365
3366 if ((abfd->flags & DYNAMIC) == 0)
3367 dynamic = FALSE;
3368 else
3369 {
3370 dynamic = TRUE;
3371
3372 /* You can't use -r against a dynamic object. Also, there's no
3373 hope of using a dynamic object which does not exactly match
3374 the format of the output file. */
3375 if (info->relocatable
3376 || !is_elf_hash_table (htab)
3377 || info->output_bfd->xvec != abfd->xvec)
3378 {
3379 if (info->relocatable)
3380 bfd_set_error (bfd_error_invalid_operation);
3381 else
3382 bfd_set_error (bfd_error_wrong_format);
3383 goto error_return;
3384 }
3385 }
3386
3387 ehdr = elf_elfheader (abfd);
3388 if (info->warn_alternate_em
3389 && bed->elf_machine_code != ehdr->e_machine
3390 && ((bed->elf_machine_alt1 != 0
3391 && ehdr->e_machine == bed->elf_machine_alt1)
3392 || (bed->elf_machine_alt2 != 0
3393 && ehdr->e_machine == bed->elf_machine_alt2)))
3394 info->callbacks->einfo
3395 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3396 ehdr->e_machine, abfd, bed->elf_machine_code);
3397
3398 /* As a GNU extension, any input sections which are named
3399 .gnu.warning.SYMBOL are treated as warning symbols for the given
3400 symbol. This differs from .gnu.warning sections, which generate
3401 warnings when they are included in an output file. */
3402 /* PR 12761: Also generate this warning when building shared libraries. */
3403 if (info->executable || info->shared)
3404 {
3405 asection *s;
3406
3407 for (s = abfd->sections; s != NULL; s = s->next)
3408 {
3409 const char *name;
3410
3411 name = bfd_get_section_name (abfd, s);
3412 if (CONST_STRNEQ (name, ".gnu.warning."))
3413 {
3414 char *msg;
3415 bfd_size_type sz;
3416
3417 name += sizeof ".gnu.warning." - 1;
3418
3419 /* If this is a shared object, then look up the symbol
3420 in the hash table. If it is there, and it is already
3421 been defined, then we will not be using the entry
3422 from this shared object, so we don't need to warn.
3423 FIXME: If we see the definition in a regular object
3424 later on, we will warn, but we shouldn't. The only
3425 fix is to keep track of what warnings we are supposed
3426 to emit, and then handle them all at the end of the
3427 link. */
3428 if (dynamic)
3429 {
3430 struct elf_link_hash_entry *h;
3431
3432 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3433
3434 /* FIXME: What about bfd_link_hash_common? */
3435 if (h != NULL
3436 && (h->root.type == bfd_link_hash_defined
3437 || h->root.type == bfd_link_hash_defweak))
3438 {
3439 /* We don't want to issue this warning. Clobber
3440 the section size so that the warning does not
3441 get copied into the output file. */
3442 s->size = 0;
3443 continue;
3444 }
3445 }
3446
3447 sz = s->size;
3448 msg = (char *) bfd_alloc (abfd, sz + 1);
3449 if (msg == NULL)
3450 goto error_return;
3451
3452 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3453 goto error_return;
3454
3455 msg[sz] = '\0';
3456
3457 if (! (_bfd_generic_link_add_one_symbol
3458 (info, abfd, name, BSF_WARNING, s, 0, msg,
3459 FALSE, bed->collect, NULL)))
3460 goto error_return;
3461
3462 if (! info->relocatable)
3463 {
3464 /* Clobber the section size so that the warning does
3465 not get copied into the output file. */
3466 s->size = 0;
3467
3468 /* Also set SEC_EXCLUDE, so that symbols defined in
3469 the warning section don't get copied to the output. */
3470 s->flags |= SEC_EXCLUDE;
3471 }
3472 }
3473 }
3474 }
3475
3476 add_needed = TRUE;
3477 if (! dynamic)
3478 {
3479 /* If we are creating a shared library, create all the dynamic
3480 sections immediately. We need to attach them to something,
3481 so we attach them to this BFD, provided it is the right
3482 format. FIXME: If there are no input BFD's of the same
3483 format as the output, we can't make a shared library. */
3484 if (info->shared
3485 && is_elf_hash_table (htab)
3486 && info->output_bfd->xvec == abfd->xvec
3487 && !htab->dynamic_sections_created)
3488 {
3489 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3490 goto error_return;
3491 }
3492 }
3493 else if (!is_elf_hash_table (htab))
3494 goto error_return;
3495 else
3496 {
3497 asection *s;
3498 const char *soname = NULL;
3499 char *audit = NULL;
3500 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3501 int ret;
3502
3503 /* ld --just-symbols and dynamic objects don't mix very well.
3504 ld shouldn't allow it. */
3505 if ((s = abfd->sections) != NULL
3506 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3507 abort ();
3508
3509 /* If this dynamic lib was specified on the command line with
3510 --as-needed in effect, then we don't want to add a DT_NEEDED
3511 tag unless the lib is actually used. Similary for libs brought
3512 in by another lib's DT_NEEDED. When --no-add-needed is used
3513 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3514 any dynamic library in DT_NEEDED tags in the dynamic lib at
3515 all. */
3516 add_needed = (elf_dyn_lib_class (abfd)
3517 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3518 | DYN_NO_NEEDED)) == 0;
3519
3520 s = bfd_get_section_by_name (abfd, ".dynamic");
3521 if (s != NULL)
3522 {
3523 bfd_byte *dynbuf;
3524 bfd_byte *extdyn;
3525 unsigned int elfsec;
3526 unsigned long shlink;
3527
3528 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3529 {
3530 error_free_dyn:
3531 free (dynbuf);
3532 goto error_return;
3533 }
3534
3535 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3536 if (elfsec == SHN_BAD)
3537 goto error_free_dyn;
3538 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3539
3540 for (extdyn = dynbuf;
3541 extdyn < dynbuf + s->size;
3542 extdyn += bed->s->sizeof_dyn)
3543 {
3544 Elf_Internal_Dyn dyn;
3545
3546 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3547 if (dyn.d_tag == DT_SONAME)
3548 {
3549 unsigned int tagv = dyn.d_un.d_val;
3550 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551 if (soname == NULL)
3552 goto error_free_dyn;
3553 }
3554 if (dyn.d_tag == DT_NEEDED)
3555 {
3556 struct bfd_link_needed_list *n, **pn;
3557 char *fnm, *anm;
3558 unsigned int tagv = dyn.d_un.d_val;
3559
3560 amt = sizeof (struct bfd_link_needed_list);
3561 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3562 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563 if (n == NULL || fnm == NULL)
3564 goto error_free_dyn;
3565 amt = strlen (fnm) + 1;
3566 anm = (char *) bfd_alloc (abfd, amt);
3567 if (anm == NULL)
3568 goto error_free_dyn;
3569 memcpy (anm, fnm, amt);
3570 n->name = anm;
3571 n->by = abfd;
3572 n->next = NULL;
3573 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 if (dyn.d_tag == DT_RUNPATH)
3578 {
3579 struct bfd_link_needed_list *n, **pn;
3580 char *fnm, *anm;
3581 unsigned int tagv = dyn.d_un.d_val;
3582
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = (char *) bfd_alloc (abfd, amt);
3590 if (anm == NULL)
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3593 n->name = anm;
3594 n->by = abfd;
3595 n->next = NULL;
3596 for (pn = & runpath;
3597 *pn != NULL;
3598 pn = &(*pn)->next)
3599 ;
3600 *pn = n;
3601 }
3602 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3603 if (!runpath && dyn.d_tag == DT_RPATH)
3604 {
3605 struct bfd_link_needed_list *n, **pn;
3606 char *fnm, *anm;
3607 unsigned int tagv = dyn.d_un.d_val;
3608
3609 amt = sizeof (struct bfd_link_needed_list);
3610 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3611 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3612 if (n == NULL || fnm == NULL)
3613 goto error_free_dyn;
3614 amt = strlen (fnm) + 1;
3615 anm = (char *) bfd_alloc (abfd, amt);
3616 if (anm == NULL)
3617 goto error_free_dyn;
3618 memcpy (anm, fnm, amt);
3619 n->name = anm;
3620 n->by = abfd;
3621 n->next = NULL;
3622 for (pn = & rpath;
3623 *pn != NULL;
3624 pn = &(*pn)->next)
3625 ;
3626 *pn = n;
3627 }
3628 if (dyn.d_tag == DT_AUDIT)
3629 {
3630 unsigned int tagv = dyn.d_un.d_val;
3631 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3632 }
3633 }
3634
3635 free (dynbuf);
3636 }
3637
3638 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3639 frees all more recently bfd_alloc'd blocks as well. */
3640 if (runpath)
3641 rpath = runpath;
3642
3643 if (rpath)
3644 {
3645 struct bfd_link_needed_list **pn;
3646 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3647 ;
3648 *pn = rpath;
3649 }
3650
3651 /* We do not want to include any of the sections in a dynamic
3652 object in the output file. We hack by simply clobbering the
3653 list of sections in the BFD. This could be handled more
3654 cleanly by, say, a new section flag; the existing
3655 SEC_NEVER_LOAD flag is not the one we want, because that one
3656 still implies that the section takes up space in the output
3657 file. */
3658 bfd_section_list_clear (abfd);
3659
3660 /* Find the name to use in a DT_NEEDED entry that refers to this
3661 object. If the object has a DT_SONAME entry, we use it.
3662 Otherwise, if the generic linker stuck something in
3663 elf_dt_name, we use that. Otherwise, we just use the file
3664 name. */
3665 if (soname == NULL || *soname == '\0')
3666 {
3667 soname = elf_dt_name (abfd);
3668 if (soname == NULL || *soname == '\0')
3669 soname = bfd_get_filename (abfd);
3670 }
3671
3672 /* Save the SONAME because sometimes the linker emulation code
3673 will need to know it. */
3674 elf_dt_name (abfd) = soname;
3675
3676 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3677 if (ret < 0)
3678 goto error_return;
3679
3680 /* If we have already included this dynamic object in the
3681 link, just ignore it. There is no reason to include a
3682 particular dynamic object more than once. */
3683 if (ret > 0)
3684 return TRUE;
3685
3686 /* Save the DT_AUDIT entry for the linker emulation code. */
3687 elf_dt_audit (abfd) = audit;
3688 }
3689
3690 /* If this is a dynamic object, we always link against the .dynsym
3691 symbol table, not the .symtab symbol table. The dynamic linker
3692 will only see the .dynsym symbol table, so there is no reason to
3693 look at .symtab for a dynamic object. */
3694
3695 if (! dynamic || elf_dynsymtab (abfd) == 0)
3696 hdr = &elf_tdata (abfd)->symtab_hdr;
3697 else
3698 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3699
3700 symcount = hdr->sh_size / bed->s->sizeof_sym;
3701
3702 /* The sh_info field of the symtab header tells us where the
3703 external symbols start. We don't care about the local symbols at
3704 this point. */
3705 if (elf_bad_symtab (abfd))
3706 {
3707 extsymcount = symcount;
3708 extsymoff = 0;
3709 }
3710 else
3711 {
3712 extsymcount = symcount - hdr->sh_info;
3713 extsymoff = hdr->sh_info;
3714 }
3715
3716 sym_hash = NULL;
3717 if (extsymcount != 0)
3718 {
3719 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3720 NULL, NULL, NULL);
3721 if (isymbuf == NULL)
3722 goto error_return;
3723
3724 /* We store a pointer to the hash table entry for each external
3725 symbol. */
3726 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3727 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3728 if (sym_hash == NULL)
3729 goto error_free_sym;
3730 elf_sym_hashes (abfd) = sym_hash;
3731 }
3732
3733 if (dynamic)
3734 {
3735 /* Read in any version definitions. */
3736 if (!_bfd_elf_slurp_version_tables (abfd,
3737 info->default_imported_symver))
3738 goto error_free_sym;
3739
3740 /* Read in the symbol versions, but don't bother to convert them
3741 to internal format. */
3742 if (elf_dynversym (abfd) != 0)
3743 {
3744 Elf_Internal_Shdr *versymhdr;
3745
3746 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3747 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3748 if (extversym == NULL)
3749 goto error_free_sym;
3750 amt = versymhdr->sh_size;
3751 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3752 || bfd_bread (extversym, amt, abfd) != amt)
3753 goto error_free_vers;
3754 }
3755 }
3756
3757 /* If we are loading an as-needed shared lib, save the symbol table
3758 state before we start adding symbols. If the lib turns out
3759 to be unneeded, restore the state. */
3760 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3761 {
3762 unsigned int i;
3763 size_t entsize;
3764
3765 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3766 {
3767 struct bfd_hash_entry *p;
3768 struct elf_link_hash_entry *h;
3769
3770 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3771 {
3772 h = (struct elf_link_hash_entry *) p;
3773 entsize += htab->root.table.entsize;
3774 if (h->root.type == bfd_link_hash_warning)
3775 entsize += htab->root.table.entsize;
3776 }
3777 }
3778
3779 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3780 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3781 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3782 if (old_tab == NULL)
3783 goto error_free_vers;
3784
3785 /* Remember the current objalloc pointer, so that all mem for
3786 symbols added can later be reclaimed. */
3787 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3788 if (alloc_mark == NULL)
3789 goto error_free_vers;
3790
3791 /* Make a special call to the linker "notice" function to
3792 tell it that we are about to handle an as-needed lib. */
3793 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3794 notice_as_needed, 0, NULL))
3795 goto error_free_vers;
3796
3797 /* Clone the symbol table and sym hashes. Remember some
3798 pointers into the symbol table, and dynamic symbol count. */
3799 old_hash = (char *) old_tab + tabsize;
3800 old_ent = (char *) old_hash + hashsize;
3801 memcpy (old_tab, htab->root.table.table, tabsize);
3802 memcpy (old_hash, sym_hash, hashsize);
3803 old_undefs = htab->root.undefs;
3804 old_undefs_tail = htab->root.undefs_tail;
3805 old_table = htab->root.table.table;
3806 old_size = htab->root.table.size;
3807 old_count = htab->root.table.count;
3808 old_dynsymcount = htab->dynsymcount;
3809
3810 for (i = 0; i < htab->root.table.size; i++)
3811 {
3812 struct bfd_hash_entry *p;
3813 struct elf_link_hash_entry *h;
3814
3815 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3816 {
3817 memcpy (old_ent, p, htab->root.table.entsize);
3818 old_ent = (char *) old_ent + htab->root.table.entsize;
3819 h = (struct elf_link_hash_entry *) p;
3820 if (h->root.type == bfd_link_hash_warning)
3821 {
3822 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3823 old_ent = (char *) old_ent + htab->root.table.entsize;
3824 }
3825 }
3826 }
3827 }
3828
3829 weaks = NULL;
3830 ever = extversym != NULL ? extversym + extsymoff : NULL;
3831 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3832 isym < isymend;
3833 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3834 {
3835 int bind;
3836 bfd_vma value;
3837 asection *sec, *new_sec;
3838 flagword flags;
3839 const char *name;
3840 struct elf_link_hash_entry *h;
3841 bfd_boolean definition;
3842 bfd_boolean size_change_ok;
3843 bfd_boolean type_change_ok;
3844 bfd_boolean new_weakdef;
3845 bfd_boolean override;
3846 bfd_boolean common;
3847 unsigned int old_alignment;
3848 bfd *old_bfd;
3849 bfd * undef_bfd = NULL;
3850
3851 override = FALSE;
3852
3853 flags = BSF_NO_FLAGS;
3854 sec = NULL;
3855 value = isym->st_value;
3856 *sym_hash = NULL;
3857 common = bed->common_definition (isym);
3858
3859 bind = ELF_ST_BIND (isym->st_info);
3860 switch (bind)
3861 {
3862 case STB_LOCAL:
3863 /* This should be impossible, since ELF requires that all
3864 global symbols follow all local symbols, and that sh_info
3865 point to the first global symbol. Unfortunately, Irix 5
3866 screws this up. */
3867 continue;
3868
3869 case STB_GLOBAL:
3870 if (isym->st_shndx != SHN_UNDEF && !common)
3871 flags = BSF_GLOBAL;
3872 break;
3873
3874 case STB_WEAK:
3875 flags = BSF_WEAK;
3876 break;
3877
3878 case STB_GNU_UNIQUE:
3879 flags = BSF_GNU_UNIQUE;
3880 break;
3881
3882 default:
3883 /* Leave it up to the processor backend. */
3884 break;
3885 }
3886
3887 if (isym->st_shndx == SHN_UNDEF)
3888 sec = bfd_und_section_ptr;
3889 else if (isym->st_shndx == SHN_ABS)
3890 sec = bfd_abs_section_ptr;
3891 else if (isym->st_shndx == SHN_COMMON)
3892 {
3893 sec = bfd_com_section_ptr;
3894 /* What ELF calls the size we call the value. What ELF
3895 calls the value we call the alignment. */
3896 value = isym->st_size;
3897 }
3898 else
3899 {
3900 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3901 if (sec == NULL)
3902 sec = bfd_abs_section_ptr;
3903 else if (sec->kept_section)
3904 {
3905 /* Symbols from discarded section are undefined. We keep
3906 its visibility. */
3907 sec = bfd_und_section_ptr;
3908 isym->st_shndx = SHN_UNDEF;
3909 }
3910 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3911 value -= sec->vma;
3912 }
3913
3914 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3915 isym->st_name);
3916 if (name == NULL)
3917 goto error_free_vers;
3918
3919 if (isym->st_shndx == SHN_COMMON
3920 && (abfd->flags & BFD_PLUGIN) != 0)
3921 {
3922 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3923
3924 if (xc == NULL)
3925 {
3926 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3927 | SEC_EXCLUDE);
3928 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3929 if (xc == NULL)
3930 goto error_free_vers;
3931 }
3932 sec = xc;
3933 }
3934 else if (isym->st_shndx == SHN_COMMON
3935 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3936 && !info->relocatable)
3937 {
3938 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3939
3940 if (tcomm == NULL)
3941 {
3942 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3943 | SEC_LINKER_CREATED);
3944 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3945 if (tcomm == NULL)
3946 goto error_free_vers;
3947 }
3948 sec = tcomm;
3949 }
3950 else if (bed->elf_add_symbol_hook)
3951 {
3952 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3953 &sec, &value))
3954 goto error_free_vers;
3955
3956 /* The hook function sets the name to NULL if this symbol
3957 should be skipped for some reason. */
3958 if (name == NULL)
3959 continue;
3960 }
3961
3962 /* Sanity check that all possibilities were handled. */
3963 if (sec == NULL)
3964 {
3965 bfd_set_error (bfd_error_bad_value);
3966 goto error_free_vers;
3967 }
3968
3969 if (bfd_is_und_section (sec)
3970 || bfd_is_com_section (sec))
3971 definition = FALSE;
3972 else
3973 definition = TRUE;
3974
3975 size_change_ok = FALSE;
3976 type_change_ok = bed->type_change_ok;
3977 old_alignment = 0;
3978 old_bfd = NULL;
3979 new_sec = sec;
3980
3981 if (is_elf_hash_table (htab))
3982 {
3983 Elf_Internal_Versym iver;
3984 unsigned int vernum = 0;
3985 bfd_boolean skip;
3986
3987 /* If this is a definition of a symbol which was previously
3988 referenced in a non-weak manner then make a note of the bfd
3989 that contained the reference. This is used if we need to
3990 refer to the source of the reference later on. */
3991 if (! bfd_is_und_section (sec))
3992 {
3993 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3994
3995 if (h != NULL
3996 && h->root.type == bfd_link_hash_undefined
3997 && h->root.u.undef.abfd)
3998 undef_bfd = h->root.u.undef.abfd;
3999 }
4000
4001 if (ever == NULL)
4002 {
4003 if (info->default_imported_symver)
4004 /* Use the default symbol version created earlier. */
4005 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4006 else
4007 iver.vs_vers = 0;
4008 }
4009 else
4010 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4011
4012 vernum = iver.vs_vers & VERSYM_VERSION;
4013
4014 /* If this is a hidden symbol, or if it is not version
4015 1, we append the version name to the symbol name.
4016 However, we do not modify a non-hidden absolute symbol
4017 if it is not a function, because it might be the version
4018 symbol itself. FIXME: What if it isn't? */
4019 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4020 || (vernum > 1
4021 && (!bfd_is_abs_section (sec)
4022 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4023 {
4024 const char *verstr;
4025 size_t namelen, verlen, newlen;
4026 char *newname, *p;
4027
4028 if (isym->st_shndx != SHN_UNDEF)
4029 {
4030 if (vernum > elf_tdata (abfd)->cverdefs)
4031 verstr = NULL;
4032 else if (vernum > 1)
4033 verstr =
4034 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4035 else
4036 verstr = "";
4037
4038 if (verstr == NULL)
4039 {
4040 (*_bfd_error_handler)
4041 (_("%B: %s: invalid version %u (max %d)"),
4042 abfd, name, vernum,
4043 elf_tdata (abfd)->cverdefs);
4044 bfd_set_error (bfd_error_bad_value);
4045 goto error_free_vers;
4046 }
4047 }
4048 else
4049 {
4050 /* We cannot simply test for the number of
4051 entries in the VERNEED section since the
4052 numbers for the needed versions do not start
4053 at 0. */
4054 Elf_Internal_Verneed *t;
4055
4056 verstr = NULL;
4057 for (t = elf_tdata (abfd)->verref;
4058 t != NULL;
4059 t = t->vn_nextref)
4060 {
4061 Elf_Internal_Vernaux *a;
4062
4063 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4064 {
4065 if (a->vna_other == vernum)
4066 {
4067 verstr = a->vna_nodename;
4068 break;
4069 }
4070 }
4071 if (a != NULL)
4072 break;
4073 }
4074 if (verstr == NULL)
4075 {
4076 (*_bfd_error_handler)
4077 (_("%B: %s: invalid needed version %d"),
4078 abfd, name, vernum);
4079 bfd_set_error (bfd_error_bad_value);
4080 goto error_free_vers;
4081 }
4082 }
4083
4084 namelen = strlen (name);
4085 verlen = strlen (verstr);
4086 newlen = namelen + verlen + 2;
4087 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4088 && isym->st_shndx != SHN_UNDEF)
4089 ++newlen;
4090
4091 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4092 if (newname == NULL)
4093 goto error_free_vers;
4094 memcpy (newname, name, namelen);
4095 p = newname + namelen;
4096 *p++ = ELF_VER_CHR;
4097 /* If this is a defined non-hidden version symbol,
4098 we add another @ to the name. This indicates the
4099 default version of the symbol. */
4100 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4101 && isym->st_shndx != SHN_UNDEF)
4102 *p++ = ELF_VER_CHR;
4103 memcpy (p, verstr, verlen + 1);
4104
4105 name = newname;
4106 }
4107
4108 /* If necessary, make a second attempt to locate the bfd
4109 containing an unresolved, non-weak reference to the
4110 current symbol. */
4111 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4112 {
4113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4114
4115 if (h != NULL
4116 && h->root.type == bfd_link_hash_undefined
4117 && h->root.u.undef.abfd)
4118 undef_bfd = h->root.u.undef.abfd;
4119 }
4120
4121 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4122 &value, &old_alignment,
4123 sym_hash, &skip, &override,
4124 &type_change_ok, &size_change_ok))
4125 goto error_free_vers;
4126
4127 if (skip)
4128 continue;
4129
4130 if (override)
4131 definition = FALSE;
4132
4133 h = *sym_hash;
4134 while (h->root.type == bfd_link_hash_indirect
4135 || h->root.type == bfd_link_hash_warning)
4136 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4137
4138 /* Remember the old alignment if this is a common symbol, so
4139 that we don't reduce the alignment later on. We can't
4140 check later, because _bfd_generic_link_add_one_symbol
4141 will set a default for the alignment which we want to
4142 override. We also remember the old bfd where the existing
4143 definition comes from. */
4144 switch (h->root.type)
4145 {
4146 default:
4147 break;
4148
4149 case bfd_link_hash_defined:
4150 case bfd_link_hash_defweak:
4151 old_bfd = h->root.u.def.section->owner;
4152 break;
4153
4154 case bfd_link_hash_common:
4155 old_bfd = h->root.u.c.p->section->owner;
4156 old_alignment = h->root.u.c.p->alignment_power;
4157 break;
4158 }
4159
4160 if (elf_tdata (abfd)->verdef != NULL
4161 && ! override
4162 && vernum > 1
4163 && definition)
4164 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4165 }
4166
4167 if (! (_bfd_generic_link_add_one_symbol
4168 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4169 (struct bfd_link_hash_entry **) sym_hash)))
4170 goto error_free_vers;
4171
4172 h = *sym_hash;
4173 while (h->root.type == bfd_link_hash_indirect
4174 || h->root.type == bfd_link_hash_warning)
4175 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4176
4177 *sym_hash = h;
4178 if (is_elf_hash_table (htab))
4179 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4180
4181 new_weakdef = FALSE;
4182 if (dynamic
4183 && definition
4184 && (flags & BSF_WEAK) != 0
4185 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4186 && is_elf_hash_table (htab)
4187 && h->u.weakdef == NULL)
4188 {
4189 /* Keep a list of all weak defined non function symbols from
4190 a dynamic object, using the weakdef field. Later in this
4191 function we will set the weakdef field to the correct
4192 value. We only put non-function symbols from dynamic
4193 objects on this list, because that happens to be the only
4194 time we need to know the normal symbol corresponding to a
4195 weak symbol, and the information is time consuming to
4196 figure out. If the weakdef field is not already NULL,
4197 then this symbol was already defined by some previous
4198 dynamic object, and we will be using that previous
4199 definition anyhow. */
4200
4201 h->u.weakdef = weaks;
4202 weaks = h;
4203 new_weakdef = TRUE;
4204 }
4205
4206 /* Set the alignment of a common symbol. */
4207 if ((common || bfd_is_com_section (sec))
4208 && h->root.type == bfd_link_hash_common)
4209 {
4210 unsigned int align;
4211
4212 if (common)
4213 align = bfd_log2 (isym->st_value);
4214 else
4215 {
4216 /* The new symbol is a common symbol in a shared object.
4217 We need to get the alignment from the section. */
4218 align = new_sec->alignment_power;
4219 }
4220 if (align > old_alignment)
4221 h->root.u.c.p->alignment_power = align;
4222 else
4223 h->root.u.c.p->alignment_power = old_alignment;
4224 }
4225
4226 if (is_elf_hash_table (htab))
4227 {
4228 bfd_boolean dynsym;
4229
4230 /* Check the alignment when a common symbol is involved. This
4231 can change when a common symbol is overridden by a normal
4232 definition or a common symbol is ignored due to the old
4233 normal definition. We need to make sure the maximum
4234 alignment is maintained. */
4235 if ((old_alignment || common)
4236 && h->root.type != bfd_link_hash_common)
4237 {
4238 unsigned int common_align;
4239 unsigned int normal_align;
4240 unsigned int symbol_align;
4241 bfd *normal_bfd;
4242 bfd *common_bfd;
4243
4244 symbol_align = ffs (h->root.u.def.value) - 1;
4245 if (h->root.u.def.section->owner != NULL
4246 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4247 {
4248 normal_align = h->root.u.def.section->alignment_power;
4249 if (normal_align > symbol_align)
4250 normal_align = symbol_align;
4251 }
4252 else
4253 normal_align = symbol_align;
4254
4255 if (old_alignment)
4256 {
4257 common_align = old_alignment;
4258 common_bfd = old_bfd;
4259 normal_bfd = abfd;
4260 }
4261 else
4262 {
4263 common_align = bfd_log2 (isym->st_value);
4264 common_bfd = abfd;
4265 normal_bfd = old_bfd;
4266 }
4267
4268 if (normal_align < common_align)
4269 {
4270 /* PR binutils/2735 */
4271 if (normal_bfd == NULL)
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of common symbol `%s' in %B"
4274 " is greater than the alignment (%u) of its section %A"),
4275 common_bfd, h->root.u.def.section,
4276 1 << common_align, name, 1 << normal_align);
4277 else
4278 (*_bfd_error_handler)
4279 (_("Warning: alignment %u of symbol `%s' in %B"
4280 " is smaller than %u in %B"),
4281 normal_bfd, common_bfd,
4282 1 << normal_align, name, 1 << common_align);
4283 }
4284 }
4285
4286 /* Remember the symbol size if it isn't undefined. */
4287 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4288 && (definition || h->size == 0))
4289 {
4290 if (h->size != 0
4291 && h->size != isym->st_size
4292 && ! size_change_ok)
4293 (*_bfd_error_handler)
4294 (_("Warning: size of symbol `%s' changed"
4295 " from %lu in %B to %lu in %B"),
4296 old_bfd, abfd,
4297 name, (unsigned long) h->size,
4298 (unsigned long) isym->st_size);
4299
4300 h->size = isym->st_size;
4301 }
4302
4303 /* If this is a common symbol, then we always want H->SIZE
4304 to be the size of the common symbol. The code just above
4305 won't fix the size if a common symbol becomes larger. We
4306 don't warn about a size change here, because that is
4307 covered by --warn-common. Allow changed between different
4308 function types. */
4309 if (h->root.type == bfd_link_hash_common)
4310 h->size = h->root.u.c.size;
4311
4312 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4313 && (definition || h->type == STT_NOTYPE))
4314 {
4315 unsigned int type = ELF_ST_TYPE (isym->st_info);
4316
4317 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4318 symbol. */
4319 if (type == STT_GNU_IFUNC
4320 && (abfd->flags & DYNAMIC) != 0)
4321 type = STT_FUNC;
4322
4323 if (h->type != type)
4324 {
4325 if (h->type != STT_NOTYPE && ! type_change_ok)
4326 (*_bfd_error_handler)
4327 (_("Warning: type of symbol `%s' changed"
4328 " from %d to %d in %B"),
4329 abfd, name, h->type, type);
4330
4331 h->type = type;
4332 }
4333 }
4334
4335 /* Merge st_other field. */
4336 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4337
4338 /* Set a flag in the hash table entry indicating the type of
4339 reference or definition we just found. Keep a count of
4340 the number of dynamic symbols we find. A dynamic symbol
4341 is one which is referenced or defined by both a regular
4342 object and a shared object. */
4343 dynsym = FALSE;
4344 if (! dynamic)
4345 {
4346 if (! definition)
4347 {
4348 h->ref_regular = 1;
4349 if (bind != STB_WEAK)
4350 h->ref_regular_nonweak = 1;
4351 }
4352 else
4353 {
4354 h->def_regular = 1;
4355 if (h->def_dynamic)
4356 {
4357 h->def_dynamic = 0;
4358 h->ref_dynamic = 1;
4359 h->dynamic_def = 1;
4360 }
4361 }
4362 if (! info->executable
4363 || h->def_dynamic
4364 || h->ref_dynamic)
4365 dynsym = TRUE;
4366 }
4367 else
4368 {
4369 if (! definition)
4370 h->ref_dynamic = 1;
4371 else
4372 h->def_dynamic = 1;
4373 if (h->def_regular
4374 || h->ref_regular
4375 || (h->u.weakdef != NULL
4376 && ! new_weakdef
4377 && h->u.weakdef->dynindx != -1))
4378 dynsym = TRUE;
4379 }
4380
4381 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4382 {
4383 /* We don't want to make debug symbol dynamic. */
4384 dynsym = FALSE;
4385 }
4386
4387 if (definition)
4388 h->target_internal = isym->st_target_internal;
4389
4390 /* Check to see if we need to add an indirect symbol for
4391 the default name. */
4392 if (definition || h->root.type == bfd_link_hash_common)
4393 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4394 &sec, &value, &dynsym,
4395 override))
4396 goto error_free_vers;
4397
4398 if (definition && !dynamic)
4399 {
4400 char *p = strchr (name, ELF_VER_CHR);
4401 if (p != NULL && p[1] != ELF_VER_CHR)
4402 {
4403 /* Queue non-default versions so that .symver x, x@FOO
4404 aliases can be checked. */
4405 if (!nondeflt_vers)
4406 {
4407 amt = ((isymend - isym + 1)
4408 * sizeof (struct elf_link_hash_entry *));
4409 nondeflt_vers =
4410 (struct elf_link_hash_entry **) bfd_malloc (amt);
4411 if (!nondeflt_vers)
4412 goto error_free_vers;
4413 }
4414 nondeflt_vers[nondeflt_vers_cnt++] = h;
4415 }
4416 }
4417
4418 if (dynsym && h->dynindx == -1)
4419 {
4420 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4421 goto error_free_vers;
4422 if (h->u.weakdef != NULL
4423 && ! new_weakdef
4424 && h->u.weakdef->dynindx == -1)
4425 {
4426 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4427 goto error_free_vers;
4428 }
4429 }
4430 else if (dynsym && h->dynindx != -1)
4431 /* If the symbol already has a dynamic index, but
4432 visibility says it should not be visible, turn it into
4433 a local symbol. */
4434 switch (ELF_ST_VISIBILITY (h->other))
4435 {
4436 case STV_INTERNAL:
4437 case STV_HIDDEN:
4438 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4439 dynsym = FALSE;
4440 break;
4441 }
4442
4443 if (!add_needed
4444 && definition
4445 && ((dynsym
4446 && h->ref_regular)
4447 || (h->ref_dynamic
4448 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4449 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4450 {
4451 int ret;
4452 const char *soname = elf_dt_name (abfd);
4453
4454 /* A symbol from a library loaded via DT_NEEDED of some
4455 other library is referenced by a regular object.
4456 Add a DT_NEEDED entry for it. Issue an error if
4457 --no-add-needed is used and the reference was not
4458 a weak one. */
4459 if (undef_bfd != NULL
4460 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4461 {
4462 (*_bfd_error_handler)
4463 (_("%B: undefined reference to symbol '%s'"),
4464 undef_bfd, name);
4465 (*_bfd_error_handler)
4466 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4467 abfd, name);
4468 bfd_set_error (bfd_error_invalid_operation);
4469 goto error_free_vers;
4470 }
4471
4472 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4473 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4474
4475 add_needed = TRUE;
4476 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4477 if (ret < 0)
4478 goto error_free_vers;
4479
4480 BFD_ASSERT (ret == 0);
4481 }
4482 }
4483 }
4484
4485 if (extversym != NULL)
4486 {
4487 free (extversym);
4488 extversym = NULL;
4489 }
4490
4491 if (isymbuf != NULL)
4492 {
4493 free (isymbuf);
4494 isymbuf = NULL;
4495 }
4496
4497 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4498 {
4499 unsigned int i;
4500
4501 /* Restore the symbol table. */
4502 if (bed->as_needed_cleanup)
4503 (*bed->as_needed_cleanup) (abfd, info);
4504 old_hash = (char *) old_tab + tabsize;
4505 old_ent = (char *) old_hash + hashsize;
4506 sym_hash = elf_sym_hashes (abfd);
4507 htab->root.table.table = old_table;
4508 htab->root.table.size = old_size;
4509 htab->root.table.count = old_count;
4510 memcpy (htab->root.table.table, old_tab, tabsize);
4511 memcpy (sym_hash, old_hash, hashsize);
4512 htab->root.undefs = old_undefs;
4513 htab->root.undefs_tail = old_undefs_tail;
4514 for (i = 0; i < htab->root.table.size; i++)
4515 {
4516 struct bfd_hash_entry *p;
4517 struct elf_link_hash_entry *h;
4518
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4520 {
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4526
4527 memcpy (p, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) p;
4530 if (h->root.type == bfd_link_hash_warning)
4531 {
4532 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4533 old_ent = (char *) old_ent + htab->root.table.entsize;
4534 }
4535 }
4536 }
4537
4538 /* Make a special call to the linker "notice" function to
4539 tell it that symbols added for crefs may need to be removed. */
4540 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4541 notice_not_needed, 0, NULL))
4542 goto error_free_vers;
4543
4544 free (old_tab);
4545 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4546 alloc_mark);
4547 if (nondeflt_vers != NULL)
4548 free (nondeflt_vers);
4549 return TRUE;
4550 }
4551
4552 if (old_tab != NULL)
4553 {
4554 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4555 notice_needed, 0, NULL))
4556 goto error_free_vers;
4557 free (old_tab);
4558 old_tab = NULL;
4559 }
4560
4561 /* Now that all the symbols from this input file are created, handle
4562 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4563 if (nondeflt_vers != NULL)
4564 {
4565 bfd_size_type cnt, symidx;
4566
4567 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4568 {
4569 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4570 char *shortname, *p;
4571
4572 p = strchr (h->root.root.string, ELF_VER_CHR);
4573 if (p == NULL
4574 || (h->root.type != bfd_link_hash_defined
4575 && h->root.type != bfd_link_hash_defweak))
4576 continue;
4577
4578 amt = p - h->root.root.string;
4579 shortname = (char *) bfd_malloc (amt + 1);
4580 if (!shortname)
4581 goto error_free_vers;
4582 memcpy (shortname, h->root.root.string, amt);
4583 shortname[amt] = '\0';
4584
4585 hi = (struct elf_link_hash_entry *)
4586 bfd_link_hash_lookup (&htab->root, shortname,
4587 FALSE, FALSE, FALSE);
4588 if (hi != NULL
4589 && hi->root.type == h->root.type
4590 && hi->root.u.def.value == h->root.u.def.value
4591 && hi->root.u.def.section == h->root.u.def.section)
4592 {
4593 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4594 hi->root.type = bfd_link_hash_indirect;
4595 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4596 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4597 sym_hash = elf_sym_hashes (abfd);
4598 if (sym_hash)
4599 for (symidx = 0; symidx < extsymcount; ++symidx)
4600 if (sym_hash[symidx] == hi)
4601 {
4602 sym_hash[symidx] = h;
4603 break;
4604 }
4605 }
4606 free (shortname);
4607 }
4608 free (nondeflt_vers);
4609 nondeflt_vers = NULL;
4610 }
4611
4612 /* Now set the weakdefs field correctly for all the weak defined
4613 symbols we found. The only way to do this is to search all the
4614 symbols. Since we only need the information for non functions in
4615 dynamic objects, that's the only time we actually put anything on
4616 the list WEAKS. We need this information so that if a regular
4617 object refers to a symbol defined weakly in a dynamic object, the
4618 real symbol in the dynamic object is also put in the dynamic
4619 symbols; we also must arrange for both symbols to point to the
4620 same memory location. We could handle the general case of symbol
4621 aliasing, but a general symbol alias can only be generated in
4622 assembler code, handling it correctly would be very time
4623 consuming, and other ELF linkers don't handle general aliasing
4624 either. */
4625 if (weaks != NULL)
4626 {
4627 struct elf_link_hash_entry **hpp;
4628 struct elf_link_hash_entry **hppend;
4629 struct elf_link_hash_entry **sorted_sym_hash;
4630 struct elf_link_hash_entry *h;
4631 size_t sym_count;
4632
4633 /* Since we have to search the whole symbol list for each weak
4634 defined symbol, search time for N weak defined symbols will be
4635 O(N^2). Binary search will cut it down to O(NlogN). */
4636 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4637 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4638 if (sorted_sym_hash == NULL)
4639 goto error_return;
4640 sym_hash = sorted_sym_hash;
4641 hpp = elf_sym_hashes (abfd);
4642 hppend = hpp + extsymcount;
4643 sym_count = 0;
4644 for (; hpp < hppend; hpp++)
4645 {
4646 h = *hpp;
4647 if (h != NULL
4648 && h->root.type == bfd_link_hash_defined
4649 && !bed->is_function_type (h->type))
4650 {
4651 *sym_hash = h;
4652 sym_hash++;
4653 sym_count++;
4654 }
4655 }
4656
4657 qsort (sorted_sym_hash, sym_count,
4658 sizeof (struct elf_link_hash_entry *),
4659 elf_sort_symbol);
4660
4661 while (weaks != NULL)
4662 {
4663 struct elf_link_hash_entry *hlook;
4664 asection *slook;
4665 bfd_vma vlook;
4666 long ilook;
4667 size_t i, j, idx;
4668
4669 hlook = weaks;
4670 weaks = hlook->u.weakdef;
4671 hlook->u.weakdef = NULL;
4672
4673 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4674 || hlook->root.type == bfd_link_hash_defweak
4675 || hlook->root.type == bfd_link_hash_common
4676 || hlook->root.type == bfd_link_hash_indirect);
4677 slook = hlook->root.u.def.section;
4678 vlook = hlook->root.u.def.value;
4679
4680 ilook = -1;
4681 i = 0;
4682 j = sym_count;
4683 while (i < j)
4684 {
4685 bfd_signed_vma vdiff;
4686 idx = (i + j) / 2;
4687 h = sorted_sym_hash [idx];
4688 vdiff = vlook - h->root.u.def.value;
4689 if (vdiff < 0)
4690 j = idx;
4691 else if (vdiff > 0)
4692 i = idx + 1;
4693 else
4694 {
4695 long sdiff = slook->id - h->root.u.def.section->id;
4696 if (sdiff < 0)
4697 j = idx;
4698 else if (sdiff > 0)
4699 i = idx + 1;
4700 else
4701 {
4702 ilook = idx;
4703 break;
4704 }
4705 }
4706 }
4707
4708 /* We didn't find a value/section match. */
4709 if (ilook == -1)
4710 continue;
4711
4712 for (i = ilook; i < sym_count; i++)
4713 {
4714 h = sorted_sym_hash [i];
4715
4716 /* Stop if value or section doesn't match. */
4717 if (h->root.u.def.value != vlook
4718 || h->root.u.def.section != slook)
4719 break;
4720 else if (h != hlook)
4721 {
4722 hlook->u.weakdef = h;
4723
4724 /* If the weak definition is in the list of dynamic
4725 symbols, make sure the real definition is put
4726 there as well. */
4727 if (hlook->dynindx != -1 && h->dynindx == -1)
4728 {
4729 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4730 {
4731 err_free_sym_hash:
4732 free (sorted_sym_hash);
4733 goto error_return;
4734 }
4735 }
4736
4737 /* If the real definition is in the list of dynamic
4738 symbols, make sure the weak definition is put
4739 there as well. If we don't do this, then the
4740 dynamic loader might not merge the entries for the
4741 real definition and the weak definition. */
4742 if (h->dynindx != -1 && hlook->dynindx == -1)
4743 {
4744 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4745 goto err_free_sym_hash;
4746 }
4747 break;
4748 }
4749 }
4750 }
4751
4752 free (sorted_sym_hash);
4753 }
4754
4755 if (bed->check_directives
4756 && !(*bed->check_directives) (abfd, info))
4757 return FALSE;
4758
4759 /* If this object is the same format as the output object, and it is
4760 not a shared library, then let the backend look through the
4761 relocs.
4762
4763 This is required to build global offset table entries and to
4764 arrange for dynamic relocs. It is not required for the
4765 particular common case of linking non PIC code, even when linking
4766 against shared libraries, but unfortunately there is no way of
4767 knowing whether an object file has been compiled PIC or not.
4768 Looking through the relocs is not particularly time consuming.
4769 The problem is that we must either (1) keep the relocs in memory,
4770 which causes the linker to require additional runtime memory or
4771 (2) read the relocs twice from the input file, which wastes time.
4772 This would be a good case for using mmap.
4773
4774 I have no idea how to handle linking PIC code into a file of a
4775 different format. It probably can't be done. */
4776 if (! dynamic
4777 && is_elf_hash_table (htab)
4778 && bed->check_relocs != NULL
4779 && elf_object_id (abfd) == elf_hash_table_id (htab)
4780 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4781 {
4782 asection *o;
4783
4784 for (o = abfd->sections; o != NULL; o = o->next)
4785 {
4786 Elf_Internal_Rela *internal_relocs;
4787 bfd_boolean ok;
4788
4789 if ((o->flags & SEC_RELOC) == 0
4790 || o->reloc_count == 0
4791 || ((info->strip == strip_all || info->strip == strip_debugger)
4792 && (o->flags & SEC_DEBUGGING) != 0)
4793 || bfd_is_abs_section (o->output_section))
4794 continue;
4795
4796 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4797 info->keep_memory);
4798 if (internal_relocs == NULL)
4799 goto error_return;
4800
4801 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4802
4803 if (elf_section_data (o)->relocs != internal_relocs)
4804 free (internal_relocs);
4805
4806 if (! ok)
4807 goto error_return;
4808 }
4809 }
4810
4811 /* If this is a non-traditional link, try to optimize the handling
4812 of the .stab/.stabstr sections. */
4813 if (! dynamic
4814 && ! info->traditional_format
4815 && is_elf_hash_table (htab)
4816 && (info->strip != strip_all && info->strip != strip_debugger))
4817 {
4818 asection *stabstr;
4819
4820 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4821 if (stabstr != NULL)
4822 {
4823 bfd_size_type string_offset = 0;
4824 asection *stab;
4825
4826 for (stab = abfd->sections; stab; stab = stab->next)
4827 if (CONST_STRNEQ (stab->name, ".stab")
4828 && (!stab->name[5] ||
4829 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4830 && (stab->flags & SEC_MERGE) == 0
4831 && !bfd_is_abs_section (stab->output_section))
4832 {
4833 struct bfd_elf_section_data *secdata;
4834
4835 secdata = elf_section_data (stab);
4836 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4837 stabstr, &secdata->sec_info,
4838 &string_offset))
4839 goto error_return;
4840 if (secdata->sec_info)
4841 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4842 }
4843 }
4844 }
4845
4846 if (is_elf_hash_table (htab) && add_needed)
4847 {
4848 /* Add this bfd to the loaded list. */
4849 struct elf_link_loaded_list *n;
4850
4851 n = (struct elf_link_loaded_list *)
4852 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4853 if (n == NULL)
4854 goto error_return;
4855 n->abfd = abfd;
4856 n->next = htab->loaded;
4857 htab->loaded = n;
4858 }
4859
4860 return TRUE;
4861
4862 error_free_vers:
4863 if (old_tab != NULL)
4864 free (old_tab);
4865 if (nondeflt_vers != NULL)
4866 free (nondeflt_vers);
4867 if (extversym != NULL)
4868 free (extversym);
4869 error_free_sym:
4870 if (isymbuf != NULL)
4871 free (isymbuf);
4872 error_return:
4873 return FALSE;
4874 }
4875
4876 /* Return the linker hash table entry of a symbol that might be
4877 satisfied by an archive symbol. Return -1 on error. */
4878
4879 struct elf_link_hash_entry *
4880 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4881 struct bfd_link_info *info,
4882 const char *name)
4883 {
4884 struct elf_link_hash_entry *h;
4885 char *p, *copy;
4886 size_t len, first;
4887
4888 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4889 if (h != NULL)
4890 return h;
4891
4892 /* If this is a default version (the name contains @@), look up the
4893 symbol again with only one `@' as well as without the version.
4894 The effect is that references to the symbol with and without the
4895 version will be matched by the default symbol in the archive. */
4896
4897 p = strchr (name, ELF_VER_CHR);
4898 if (p == NULL || p[1] != ELF_VER_CHR)
4899 return h;
4900
4901 /* First check with only one `@'. */
4902 len = strlen (name);
4903 copy = (char *) bfd_alloc (abfd, len);
4904 if (copy == NULL)
4905 return (struct elf_link_hash_entry *) 0 - 1;
4906
4907 first = p - name + 1;
4908 memcpy (copy, name, first);
4909 memcpy (copy + first, name + first + 1, len - first);
4910
4911 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4912 if (h == NULL)
4913 {
4914 /* We also need to check references to the symbol without the
4915 version. */
4916 copy[first - 1] = '\0';
4917 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4918 FALSE, FALSE, TRUE);
4919 }
4920
4921 bfd_release (abfd, copy);
4922 return h;
4923 }
4924
4925 /* Add symbols from an ELF archive file to the linker hash table. We
4926 don't use _bfd_generic_link_add_archive_symbols because of a
4927 problem which arises on UnixWare. The UnixWare libc.so is an
4928 archive which includes an entry libc.so.1 which defines a bunch of
4929 symbols. The libc.so archive also includes a number of other
4930 object files, which also define symbols, some of which are the same
4931 as those defined in libc.so.1. Correct linking requires that we
4932 consider each object file in turn, and include it if it defines any
4933 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4934 this; it looks through the list of undefined symbols, and includes
4935 any object file which defines them. When this algorithm is used on
4936 UnixWare, it winds up pulling in libc.so.1 early and defining a
4937 bunch of symbols. This means that some of the other objects in the
4938 archive are not included in the link, which is incorrect since they
4939 precede libc.so.1 in the archive.
4940
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4945 object file.
4946
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4949
4950 static bfd_boolean
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952 {
4953 symindex c;
4954 bfd_boolean *defined = NULL;
4955 bfd_boolean *included = NULL;
4956 carsym *symdefs;
4957 bfd_boolean loop;
4958 bfd_size_type amt;
4959 const struct elf_backend_data *bed;
4960 struct elf_link_hash_entry * (*archive_symbol_lookup)
4961 (bfd *, struct bfd_link_info *, const char *);
4962
4963 if (! bfd_has_map (abfd))
4964 {
4965 /* An empty archive is a special case. */
4966 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4967 return TRUE;
4968 bfd_set_error (bfd_error_no_armap);
4969 return FALSE;
4970 }
4971
4972 /* Keep track of all symbols we know to be already defined, and all
4973 files we know to be already included. This is to speed up the
4974 second and subsequent passes. */
4975 c = bfd_ardata (abfd)->symdef_count;
4976 if (c == 0)
4977 return TRUE;
4978 amt = c;
4979 amt *= sizeof (bfd_boolean);
4980 defined = (bfd_boolean *) bfd_zmalloc (amt);
4981 included = (bfd_boolean *) bfd_zmalloc (amt);
4982 if (defined == NULL || included == NULL)
4983 goto error_return;
4984
4985 symdefs = bfd_ardata (abfd)->symdefs;
4986 bed = get_elf_backend_data (abfd);
4987 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4988
4989 do
4990 {
4991 file_ptr last;
4992 symindex i;
4993 carsym *symdef;
4994 carsym *symdefend;
4995
4996 loop = FALSE;
4997 last = -1;
4998
4999 symdef = symdefs;
5000 symdefend = symdef + c;
5001 for (i = 0; symdef < symdefend; symdef++, i++)
5002 {
5003 struct elf_link_hash_entry *h;
5004 bfd *element;
5005 struct bfd_link_hash_entry *undefs_tail;
5006 symindex mark;
5007
5008 if (defined[i] || included[i])
5009 continue;
5010 if (symdef->file_offset == last)
5011 {
5012 included[i] = TRUE;
5013 continue;
5014 }
5015
5016 h = archive_symbol_lookup (abfd, info, symdef->name);
5017 if (h == (struct elf_link_hash_entry *) 0 - 1)
5018 goto error_return;
5019
5020 if (h == NULL)
5021 continue;
5022
5023 if (h->root.type == bfd_link_hash_common)
5024 {
5025 /* We currently have a common symbol. The archive map contains
5026 a reference to this symbol, so we may want to include it. We
5027 only want to include it however, if this archive element
5028 contains a definition of the symbol, not just another common
5029 declaration of it.
5030
5031 Unfortunately some archivers (including GNU ar) will put
5032 declarations of common symbols into their archive maps, as
5033 well as real definitions, so we cannot just go by the archive
5034 map alone. Instead we must read in the element's symbol
5035 table and check that to see what kind of symbol definition
5036 this is. */
5037 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5038 continue;
5039 }
5040 else if (h->root.type != bfd_link_hash_undefined)
5041 {
5042 if (h->root.type != bfd_link_hash_undefweak)
5043 defined[i] = TRUE;
5044 continue;
5045 }
5046
5047 /* We need to include this archive member. */
5048 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5049 if (element == NULL)
5050 goto error_return;
5051
5052 if (! bfd_check_format (element, bfd_object))
5053 goto error_return;
5054
5055 /* Doublecheck that we have not included this object
5056 already--it should be impossible, but there may be
5057 something wrong with the archive. */
5058 if (element->archive_pass != 0)
5059 {
5060 bfd_set_error (bfd_error_bad_value);
5061 goto error_return;
5062 }
5063 element->archive_pass = 1;
5064
5065 undefs_tail = info->hash->undefs_tail;
5066
5067 if (!(*info->callbacks
5068 ->add_archive_element) (info, element, symdef->name, &element))
5069 goto error_return;
5070 if (!bfd_link_add_symbols (element, info))
5071 goto error_return;
5072
5073 /* If there are any new undefined symbols, we need to make
5074 another pass through the archive in order to see whether
5075 they can be defined. FIXME: This isn't perfect, because
5076 common symbols wind up on undefs_tail and because an
5077 undefined symbol which is defined later on in this pass
5078 does not require another pass. This isn't a bug, but it
5079 does make the code less efficient than it could be. */
5080 if (undefs_tail != info->hash->undefs_tail)
5081 loop = TRUE;
5082
5083 /* Look backward to mark all symbols from this object file
5084 which we have already seen in this pass. */
5085 mark = i;
5086 do
5087 {
5088 included[mark] = TRUE;
5089 if (mark == 0)
5090 break;
5091 --mark;
5092 }
5093 while (symdefs[mark].file_offset == symdef->file_offset);
5094
5095 /* We mark subsequent symbols from this object file as we go
5096 on through the loop. */
5097 last = symdef->file_offset;
5098 }
5099 }
5100 while (loop);
5101
5102 free (defined);
5103 free (included);
5104
5105 return TRUE;
5106
5107 error_return:
5108 if (defined != NULL)
5109 free (defined);
5110 if (included != NULL)
5111 free (included);
5112 return FALSE;
5113 }
5114
5115 /* Given an ELF BFD, add symbols to the global hash table as
5116 appropriate. */
5117
5118 bfd_boolean
5119 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5120 {
5121 switch (bfd_get_format (abfd))
5122 {
5123 case bfd_object:
5124 return elf_link_add_object_symbols (abfd, info);
5125 case bfd_archive:
5126 return elf_link_add_archive_symbols (abfd, info);
5127 default:
5128 bfd_set_error (bfd_error_wrong_format);
5129 return FALSE;
5130 }
5131 }
5132 \f
5133 struct hash_codes_info
5134 {
5135 unsigned long *hashcodes;
5136 bfd_boolean error;
5137 };
5138
5139 /* This function will be called though elf_link_hash_traverse to store
5140 all hash value of the exported symbols in an array. */
5141
5142 static bfd_boolean
5143 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5144 {
5145 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5146 const char *name;
5147 char *p;
5148 unsigned long ha;
5149 char *alc = NULL;
5150
5151 /* Ignore indirect symbols. These are added by the versioning code. */
5152 if (h->dynindx == -1)
5153 return TRUE;
5154
5155 name = h->root.root.string;
5156 p = strchr (name, ELF_VER_CHR);
5157 if (p != NULL)
5158 {
5159 alc = (char *) bfd_malloc (p - name + 1);
5160 if (alc == NULL)
5161 {
5162 inf->error = TRUE;
5163 return FALSE;
5164 }
5165 memcpy (alc, name, p - name);
5166 alc[p - name] = '\0';
5167 name = alc;
5168 }
5169
5170 /* Compute the hash value. */
5171 ha = bfd_elf_hash (name);
5172
5173 /* Store the found hash value in the array given as the argument. */
5174 *(inf->hashcodes)++ = ha;
5175
5176 /* And store it in the struct so that we can put it in the hash table
5177 later. */
5178 h->u.elf_hash_value = ha;
5179
5180 if (alc != NULL)
5181 free (alc);
5182
5183 return TRUE;
5184 }
5185
5186 struct collect_gnu_hash_codes
5187 {
5188 bfd *output_bfd;
5189 const struct elf_backend_data *bed;
5190 unsigned long int nsyms;
5191 unsigned long int maskbits;
5192 unsigned long int *hashcodes;
5193 unsigned long int *hashval;
5194 unsigned long int *indx;
5195 unsigned long int *counts;
5196 bfd_vma *bitmask;
5197 bfd_byte *contents;
5198 long int min_dynindx;
5199 unsigned long int bucketcount;
5200 unsigned long int symindx;
5201 long int local_indx;
5202 long int shift1, shift2;
5203 unsigned long int mask;
5204 bfd_boolean error;
5205 };
5206
5207 /* This function will be called though elf_link_hash_traverse to store
5208 all hash value of the exported symbols in an array. */
5209
5210 static bfd_boolean
5211 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5212 {
5213 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5214 const char *name;
5215 char *p;
5216 unsigned long ha;
5217 char *alc = NULL;
5218
5219 /* Ignore indirect symbols. These are added by the versioning code. */
5220 if (h->dynindx == -1)
5221 return TRUE;
5222
5223 /* Ignore also local symbols and undefined symbols. */
5224 if (! (*s->bed->elf_hash_symbol) (h))
5225 return TRUE;
5226
5227 name = h->root.root.string;
5228 p = strchr (name, ELF_VER_CHR);
5229 if (p != NULL)
5230 {
5231 alc = (char *) bfd_malloc (p - name + 1);
5232 if (alc == NULL)
5233 {
5234 s->error = TRUE;
5235 return FALSE;
5236 }
5237 memcpy (alc, name, p - name);
5238 alc[p - name] = '\0';
5239 name = alc;
5240 }
5241
5242 /* Compute the hash value. */
5243 ha = bfd_elf_gnu_hash (name);
5244
5245 /* Store the found hash value in the array for compute_bucket_count,
5246 and also for .dynsym reordering purposes. */
5247 s->hashcodes[s->nsyms] = ha;
5248 s->hashval[h->dynindx] = ha;
5249 ++s->nsyms;
5250 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5251 s->min_dynindx = h->dynindx;
5252
5253 if (alc != NULL)
5254 free (alc);
5255
5256 return TRUE;
5257 }
5258
5259 /* This function will be called though elf_link_hash_traverse to do
5260 final dynaminc symbol renumbering. */
5261
5262 static bfd_boolean
5263 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5264 {
5265 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5266 unsigned long int bucket;
5267 unsigned long int val;
5268
5269 /* Ignore indirect symbols. */
5270 if (h->dynindx == -1)
5271 return TRUE;
5272
5273 /* Ignore also local symbols and undefined symbols. */
5274 if (! (*s->bed->elf_hash_symbol) (h))
5275 {
5276 if (h->dynindx >= s->min_dynindx)
5277 h->dynindx = s->local_indx++;
5278 return TRUE;
5279 }
5280
5281 bucket = s->hashval[h->dynindx] % s->bucketcount;
5282 val = (s->hashval[h->dynindx] >> s->shift1)
5283 & ((s->maskbits >> s->shift1) - 1);
5284 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5285 s->bitmask[val]
5286 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5287 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5288 if (s->counts[bucket] == 1)
5289 /* Last element terminates the chain. */
5290 val |= 1;
5291 bfd_put_32 (s->output_bfd, val,
5292 s->contents + (s->indx[bucket] - s->symindx) * 4);
5293 --s->counts[bucket];
5294 h->dynindx = s->indx[bucket]++;
5295 return TRUE;
5296 }
5297
5298 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5299
5300 bfd_boolean
5301 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5302 {
5303 return !(h->forced_local
5304 || h->root.type == bfd_link_hash_undefined
5305 || h->root.type == bfd_link_hash_undefweak
5306 || ((h->root.type == bfd_link_hash_defined
5307 || h->root.type == bfd_link_hash_defweak)
5308 && h->root.u.def.section->output_section == NULL));
5309 }
5310
5311 /* Array used to determine the number of hash table buckets to use
5312 based on the number of symbols there are. If there are fewer than
5313 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5314 fewer than 37 we use 17 buckets, and so forth. We never use more
5315 than 32771 buckets. */
5316
5317 static const size_t elf_buckets[] =
5318 {
5319 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5320 16411, 32771, 0
5321 };
5322
5323 /* Compute bucket count for hashing table. We do not use a static set
5324 of possible tables sizes anymore. Instead we determine for all
5325 possible reasonable sizes of the table the outcome (i.e., the
5326 number of collisions etc) and choose the best solution. The
5327 weighting functions are not too simple to allow the table to grow
5328 without bounds. Instead one of the weighting factors is the size.
5329 Therefore the result is always a good payoff between few collisions
5330 (= short chain lengths) and table size. */
5331 static size_t
5332 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5333 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5334 unsigned long int nsyms,
5335 int gnu_hash)
5336 {
5337 size_t best_size = 0;
5338 unsigned long int i;
5339
5340 /* We have a problem here. The following code to optimize the table
5341 size requires an integer type with more the 32 bits. If
5342 BFD_HOST_U_64_BIT is set we know about such a type. */
5343 #ifdef BFD_HOST_U_64_BIT
5344 if (info->optimize)
5345 {
5346 size_t minsize;
5347 size_t maxsize;
5348 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5349 bfd *dynobj = elf_hash_table (info)->dynobj;
5350 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5351 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5352 unsigned long int *counts;
5353 bfd_size_type amt;
5354 unsigned int no_improvement_count = 0;
5355
5356 /* Possible optimization parameters: if we have NSYMS symbols we say
5357 that the hashing table must at least have NSYMS/4 and at most
5358 2*NSYMS buckets. */
5359 minsize = nsyms / 4;
5360 if (minsize == 0)
5361 minsize = 1;
5362 best_size = maxsize = nsyms * 2;
5363 if (gnu_hash)
5364 {
5365 if (minsize < 2)
5366 minsize = 2;
5367 if ((best_size & 31) == 0)
5368 ++best_size;
5369 }
5370
5371 /* Create array where we count the collisions in. We must use bfd_malloc
5372 since the size could be large. */
5373 amt = maxsize;
5374 amt *= sizeof (unsigned long int);
5375 counts = (unsigned long int *) bfd_malloc (amt);
5376 if (counts == NULL)
5377 return 0;
5378
5379 /* Compute the "optimal" size for the hash table. The criteria is a
5380 minimal chain length. The minor criteria is (of course) the size
5381 of the table. */
5382 for (i = minsize; i < maxsize; ++i)
5383 {
5384 /* Walk through the array of hashcodes and count the collisions. */
5385 BFD_HOST_U_64_BIT max;
5386 unsigned long int j;
5387 unsigned long int fact;
5388
5389 if (gnu_hash && (i & 31) == 0)
5390 continue;
5391
5392 memset (counts, '\0', i * sizeof (unsigned long int));
5393
5394 /* Determine how often each hash bucket is used. */
5395 for (j = 0; j < nsyms; ++j)
5396 ++counts[hashcodes[j] % i];
5397
5398 /* For the weight function we need some information about the
5399 pagesize on the target. This is information need not be 100%
5400 accurate. Since this information is not available (so far) we
5401 define it here to a reasonable default value. If it is crucial
5402 to have a better value some day simply define this value. */
5403 # ifndef BFD_TARGET_PAGESIZE
5404 # define BFD_TARGET_PAGESIZE (4096)
5405 # endif
5406
5407 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5408 and the chains. */
5409 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5410
5411 # if 1
5412 /* Variant 1: optimize for short chains. We add the squares
5413 of all the chain lengths (which favors many small chain
5414 over a few long chains). */
5415 for (j = 0; j < i; ++j)
5416 max += counts[j] * counts[j];
5417
5418 /* This adds penalties for the overall size of the table. */
5419 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5420 max *= fact * fact;
5421 # else
5422 /* Variant 2: Optimize a lot more for small table. Here we
5423 also add squares of the size but we also add penalties for
5424 empty slots (the +1 term). */
5425 for (j = 0; j < i; ++j)
5426 max += (1 + counts[j]) * (1 + counts[j]);
5427
5428 /* The overall size of the table is considered, but not as
5429 strong as in variant 1, where it is squared. */
5430 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5431 max *= fact;
5432 # endif
5433
5434 /* Compare with current best results. */
5435 if (max < best_chlen)
5436 {
5437 best_chlen = max;
5438 best_size = i;
5439 no_improvement_count = 0;
5440 }
5441 /* PR 11843: Avoid futile long searches for the best bucket size
5442 when there are a large number of symbols. */
5443 else if (++no_improvement_count == 100)
5444 break;
5445 }
5446
5447 free (counts);
5448 }
5449 else
5450 #endif /* defined (BFD_HOST_U_64_BIT) */
5451 {
5452 /* This is the fallback solution if no 64bit type is available or if we
5453 are not supposed to spend much time on optimizations. We select the
5454 bucket count using a fixed set of numbers. */
5455 for (i = 0; elf_buckets[i] != 0; i++)
5456 {
5457 best_size = elf_buckets[i];
5458 if (nsyms < elf_buckets[i + 1])
5459 break;
5460 }
5461 if (gnu_hash && best_size < 2)
5462 best_size = 2;
5463 }
5464
5465 return best_size;
5466 }
5467
5468 /* Size any SHT_GROUP section for ld -r. */
5469
5470 bfd_boolean
5471 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5472 {
5473 bfd *ibfd;
5474
5475 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5476 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5477 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5478 return FALSE;
5479 return TRUE;
5480 }
5481
5482 /* Set up the sizes and contents of the ELF dynamic sections. This is
5483 called by the ELF linker emulation before_allocation routine. We
5484 must set the sizes of the sections before the linker sets the
5485 addresses of the various sections. */
5486
5487 bfd_boolean
5488 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5489 const char *soname,
5490 const char *rpath,
5491 const char *filter_shlib,
5492 const char *audit,
5493 const char *depaudit,
5494 const char * const *auxiliary_filters,
5495 struct bfd_link_info *info,
5496 asection **sinterpptr,
5497 struct bfd_elf_version_tree *verdefs)
5498 {
5499 bfd_size_type soname_indx;
5500 bfd *dynobj;
5501 const struct elf_backend_data *bed;
5502 struct elf_info_failed asvinfo;
5503
5504 *sinterpptr = NULL;
5505
5506 soname_indx = (bfd_size_type) -1;
5507
5508 if (!is_elf_hash_table (info->hash))
5509 return TRUE;
5510
5511 bed = get_elf_backend_data (output_bfd);
5512 if (info->execstack)
5513 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5514 else if (info->noexecstack)
5515 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5516 else
5517 {
5518 bfd *inputobj;
5519 asection *notesec = NULL;
5520 int exec = 0;
5521
5522 for (inputobj = info->input_bfds;
5523 inputobj;
5524 inputobj = inputobj->link_next)
5525 {
5526 asection *s;
5527
5528 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5529 continue;
5530 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5531 if (s)
5532 {
5533 if (s->flags & SEC_CODE)
5534 exec = PF_X;
5535 notesec = s;
5536 }
5537 else if (bed->default_execstack)
5538 exec = PF_X;
5539 }
5540 if (notesec)
5541 {
5542 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5543 if (exec && info->relocatable
5544 && notesec->output_section != bfd_abs_section_ptr)
5545 notesec->output_section->flags |= SEC_CODE;
5546 }
5547 }
5548
5549 /* Any syms created from now on start with -1 in
5550 got.refcount/offset and plt.refcount/offset. */
5551 elf_hash_table (info)->init_got_refcount
5552 = elf_hash_table (info)->init_got_offset;
5553 elf_hash_table (info)->init_plt_refcount
5554 = elf_hash_table (info)->init_plt_offset;
5555
5556 if (info->relocatable
5557 && !_bfd_elf_size_group_sections (info))
5558 return FALSE;
5559
5560 /* The backend may have to create some sections regardless of whether
5561 we're dynamic or not. */
5562 if (bed->elf_backend_always_size_sections
5563 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5564 return FALSE;
5565
5566 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5567 return FALSE;
5568
5569 dynobj = elf_hash_table (info)->dynobj;
5570
5571 /* If there were no dynamic objects in the link, there is nothing to
5572 do here. */
5573 if (dynobj == NULL)
5574 return TRUE;
5575
5576 if (elf_hash_table (info)->dynamic_sections_created)
5577 {
5578 struct elf_info_failed eif;
5579 struct elf_link_hash_entry *h;
5580 asection *dynstr;
5581 struct bfd_elf_version_tree *t;
5582 struct bfd_elf_version_expr *d;
5583 asection *s;
5584 bfd_boolean all_defined;
5585
5586 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5587 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5588
5589 if (soname != NULL)
5590 {
5591 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5592 soname, TRUE);
5593 if (soname_indx == (bfd_size_type) -1
5594 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5595 return FALSE;
5596 }
5597
5598 if (info->symbolic)
5599 {
5600 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5601 return FALSE;
5602 info->flags |= DF_SYMBOLIC;
5603 }
5604
5605 if (rpath != NULL)
5606 {
5607 bfd_size_type indx;
5608
5609 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5610 TRUE);
5611 if (indx == (bfd_size_type) -1
5612 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5613 return FALSE;
5614
5615 if (info->new_dtags)
5616 {
5617 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5618 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5619 return FALSE;
5620 }
5621 }
5622
5623 if (filter_shlib != NULL)
5624 {
5625 bfd_size_type indx;
5626
5627 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5628 filter_shlib, TRUE);
5629 if (indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5631 return FALSE;
5632 }
5633
5634 if (auxiliary_filters != NULL)
5635 {
5636 const char * const *p;
5637
5638 for (p = auxiliary_filters; *p != NULL; p++)
5639 {
5640 bfd_size_type indx;
5641
5642 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5643 *p, TRUE);
5644 if (indx == (bfd_size_type) -1
5645 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5646 return FALSE;
5647 }
5648 }
5649
5650 if (audit != NULL)
5651 {
5652 bfd_size_type indx;
5653
5654 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5655 TRUE);
5656 if (indx == (bfd_size_type) -1
5657 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5658 return FALSE;
5659 }
5660
5661 if (depaudit != NULL)
5662 {
5663 bfd_size_type indx;
5664
5665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5666 TRUE);
5667 if (indx == (bfd_size_type) -1
5668 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5669 return FALSE;
5670 }
5671
5672 eif.info = info;
5673 eif.verdefs = verdefs;
5674 eif.failed = FALSE;
5675
5676 /* If we are supposed to export all symbols into the dynamic symbol
5677 table (this is not the normal case), then do so. */
5678 if (info->export_dynamic
5679 || (info->executable && info->dynamic))
5680 {
5681 elf_link_hash_traverse (elf_hash_table (info),
5682 _bfd_elf_export_symbol,
5683 &eif);
5684 if (eif.failed)
5685 return FALSE;
5686 }
5687
5688 /* Make all global versions with definition. */
5689 for (t = verdefs; t != NULL; t = t->next)
5690 for (d = t->globals.list; d != NULL; d = d->next)
5691 if (!d->symver && d->literal)
5692 {
5693 const char *verstr, *name;
5694 size_t namelen, verlen, newlen;
5695 char *newname, *p, leading_char;
5696 struct elf_link_hash_entry *newh;
5697
5698 leading_char = bfd_get_symbol_leading_char (output_bfd);
5699 name = d->pattern;
5700 namelen = strlen (name) + (leading_char != '\0');
5701 verstr = t->name;
5702 verlen = strlen (verstr);
5703 newlen = namelen + verlen + 3;
5704
5705 newname = (char *) bfd_malloc (newlen);
5706 if (newname == NULL)
5707 return FALSE;
5708 newname[0] = leading_char;
5709 memcpy (newname + (leading_char != '\0'), name, namelen);
5710
5711 /* Check the hidden versioned definition. */
5712 p = newname + namelen;
5713 *p++ = ELF_VER_CHR;
5714 memcpy (p, verstr, verlen + 1);
5715 newh = elf_link_hash_lookup (elf_hash_table (info),
5716 newname, FALSE, FALSE,
5717 FALSE);
5718 if (newh == NULL
5719 || (newh->root.type != bfd_link_hash_defined
5720 && newh->root.type != bfd_link_hash_defweak))
5721 {
5722 /* Check the default versioned definition. */
5723 *p++ = ELF_VER_CHR;
5724 memcpy (p, verstr, verlen + 1);
5725 newh = elf_link_hash_lookup (elf_hash_table (info),
5726 newname, FALSE, FALSE,
5727 FALSE);
5728 }
5729 free (newname);
5730
5731 /* Mark this version if there is a definition and it is
5732 not defined in a shared object. */
5733 if (newh != NULL
5734 && !newh->def_dynamic
5735 && (newh->root.type == bfd_link_hash_defined
5736 || newh->root.type == bfd_link_hash_defweak))
5737 d->symver = 1;
5738 }
5739
5740 /* Attach all the symbols to their version information. */
5741 asvinfo.info = info;
5742 asvinfo.verdefs = verdefs;
5743 asvinfo.failed = FALSE;
5744
5745 elf_link_hash_traverse (elf_hash_table (info),
5746 _bfd_elf_link_assign_sym_version,
5747 &asvinfo);
5748 if (asvinfo.failed)
5749 return FALSE;
5750
5751 if (!info->allow_undefined_version)
5752 {
5753 /* Check if all global versions have a definition. */
5754 all_defined = TRUE;
5755 for (t = verdefs; t != NULL; t = t->next)
5756 for (d = t->globals.list; d != NULL; d = d->next)
5757 if (d->literal && !d->symver && !d->script)
5758 {
5759 (*_bfd_error_handler)
5760 (_("%s: undefined version: %s"),
5761 d->pattern, t->name);
5762 all_defined = FALSE;
5763 }
5764
5765 if (!all_defined)
5766 {
5767 bfd_set_error (bfd_error_bad_value);
5768 return FALSE;
5769 }
5770 }
5771
5772 /* Find all symbols which were defined in a dynamic object and make
5773 the backend pick a reasonable value for them. */
5774 elf_link_hash_traverse (elf_hash_table (info),
5775 _bfd_elf_adjust_dynamic_symbol,
5776 &eif);
5777 if (eif.failed)
5778 return FALSE;
5779
5780 /* Add some entries to the .dynamic section. We fill in some of the
5781 values later, in bfd_elf_final_link, but we must add the entries
5782 now so that we know the final size of the .dynamic section. */
5783
5784 /* If there are initialization and/or finalization functions to
5785 call then add the corresponding DT_INIT/DT_FINI entries. */
5786 h = (info->init_function
5787 ? elf_link_hash_lookup (elf_hash_table (info),
5788 info->init_function, FALSE,
5789 FALSE, FALSE)
5790 : NULL);
5791 if (h != NULL
5792 && (h->ref_regular
5793 || h->def_regular))
5794 {
5795 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5796 return FALSE;
5797 }
5798 h = (info->fini_function
5799 ? elf_link_hash_lookup (elf_hash_table (info),
5800 info->fini_function, FALSE,
5801 FALSE, FALSE)
5802 : NULL);
5803 if (h != NULL
5804 && (h->ref_regular
5805 || h->def_regular))
5806 {
5807 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5808 return FALSE;
5809 }
5810
5811 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5812 if (s != NULL && s->linker_has_input)
5813 {
5814 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5815 if (! info->executable)
5816 {
5817 bfd *sub;
5818 asection *o;
5819
5820 for (sub = info->input_bfds; sub != NULL;
5821 sub = sub->link_next)
5822 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5823 for (o = sub->sections; o != NULL; o = o->next)
5824 if (elf_section_data (o)->this_hdr.sh_type
5825 == SHT_PREINIT_ARRAY)
5826 {
5827 (*_bfd_error_handler)
5828 (_("%B: .preinit_array section is not allowed in DSO"),
5829 sub);
5830 break;
5831 }
5832
5833 bfd_set_error (bfd_error_nonrepresentable_section);
5834 return FALSE;
5835 }
5836
5837 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5838 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5839 return FALSE;
5840 }
5841 s = bfd_get_section_by_name (output_bfd, ".init_array");
5842 if (s != NULL && s->linker_has_input)
5843 {
5844 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5845 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5846 return FALSE;
5847 }
5848 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5849 if (s != NULL && s->linker_has_input)
5850 {
5851 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5852 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5853 return FALSE;
5854 }
5855
5856 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5857 /* If .dynstr is excluded from the link, we don't want any of
5858 these tags. Strictly, we should be checking each section
5859 individually; This quick check covers for the case where
5860 someone does a /DISCARD/ : { *(*) }. */
5861 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5862 {
5863 bfd_size_type strsize;
5864
5865 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5866 if ((info->emit_hash
5867 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5868 || (info->emit_gnu_hash
5869 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5870 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5872 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5874 bed->s->sizeof_sym))
5875 return FALSE;
5876 }
5877 }
5878
5879 /* The backend must work out the sizes of all the other dynamic
5880 sections. */
5881 if (bed->elf_backend_size_dynamic_sections
5882 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5883 return FALSE;
5884
5885 if (elf_hash_table (info)->dynamic_sections_created)
5886 {
5887 unsigned long section_sym_count;
5888 asection *s;
5889
5890 /* Set up the version definition section. */
5891 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5892 BFD_ASSERT (s != NULL);
5893
5894 /* We may have created additional version definitions if we are
5895 just linking a regular application. */
5896 verdefs = asvinfo.verdefs;
5897
5898 /* Skip anonymous version tag. */
5899 if (verdefs != NULL && verdefs->vernum == 0)
5900 verdefs = verdefs->next;
5901
5902 if (verdefs == NULL && !info->create_default_symver)
5903 s->flags |= SEC_EXCLUDE;
5904 else
5905 {
5906 unsigned int cdefs;
5907 bfd_size_type size;
5908 struct bfd_elf_version_tree *t;
5909 bfd_byte *p;
5910 Elf_Internal_Verdef def;
5911 Elf_Internal_Verdaux defaux;
5912 struct bfd_link_hash_entry *bh;
5913 struct elf_link_hash_entry *h;
5914 const char *name;
5915
5916 cdefs = 0;
5917 size = 0;
5918
5919 /* Make space for the base version. */
5920 size += sizeof (Elf_External_Verdef);
5921 size += sizeof (Elf_External_Verdaux);
5922 ++cdefs;
5923
5924 /* Make space for the default version. */
5925 if (info->create_default_symver)
5926 {
5927 size += sizeof (Elf_External_Verdef);
5928 ++cdefs;
5929 }
5930
5931 for (t = verdefs; t != NULL; t = t->next)
5932 {
5933 struct bfd_elf_version_deps *n;
5934
5935 /* Don't emit base version twice. */
5936 if (t->vernum == 0)
5937 continue;
5938
5939 size += sizeof (Elf_External_Verdef);
5940 size += sizeof (Elf_External_Verdaux);
5941 ++cdefs;
5942
5943 for (n = t->deps; n != NULL; n = n->next)
5944 size += sizeof (Elf_External_Verdaux);
5945 }
5946
5947 s->size = size;
5948 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5949 if (s->contents == NULL && s->size != 0)
5950 return FALSE;
5951
5952 /* Fill in the version definition section. */
5953
5954 p = s->contents;
5955
5956 def.vd_version = VER_DEF_CURRENT;
5957 def.vd_flags = VER_FLG_BASE;
5958 def.vd_ndx = 1;
5959 def.vd_cnt = 1;
5960 if (info->create_default_symver)
5961 {
5962 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5963 def.vd_next = sizeof (Elf_External_Verdef);
5964 }
5965 else
5966 {
5967 def.vd_aux = sizeof (Elf_External_Verdef);
5968 def.vd_next = (sizeof (Elf_External_Verdef)
5969 + sizeof (Elf_External_Verdaux));
5970 }
5971
5972 if (soname_indx != (bfd_size_type) -1)
5973 {
5974 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5975 soname_indx);
5976 def.vd_hash = bfd_elf_hash (soname);
5977 defaux.vda_name = soname_indx;
5978 name = soname;
5979 }
5980 else
5981 {
5982 bfd_size_type indx;
5983
5984 name = lbasename (output_bfd->filename);
5985 def.vd_hash = bfd_elf_hash (name);
5986 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5987 name, FALSE);
5988 if (indx == (bfd_size_type) -1)
5989 return FALSE;
5990 defaux.vda_name = indx;
5991 }
5992 defaux.vda_next = 0;
5993
5994 _bfd_elf_swap_verdef_out (output_bfd, &def,
5995 (Elf_External_Verdef *) p);
5996 p += sizeof (Elf_External_Verdef);
5997 if (info->create_default_symver)
5998 {
5999 /* Add a symbol representing this version. */
6000 bh = NULL;
6001 if (! (_bfd_generic_link_add_one_symbol
6002 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6003 0, NULL, FALSE,
6004 get_elf_backend_data (dynobj)->collect, &bh)))
6005 return FALSE;
6006 h = (struct elf_link_hash_entry *) bh;
6007 h->non_elf = 0;
6008 h->def_regular = 1;
6009 h->type = STT_OBJECT;
6010 h->verinfo.vertree = NULL;
6011
6012 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6013 return FALSE;
6014
6015 /* Create a duplicate of the base version with the same
6016 aux block, but different flags. */
6017 def.vd_flags = 0;
6018 def.vd_ndx = 2;
6019 def.vd_aux = sizeof (Elf_External_Verdef);
6020 if (verdefs)
6021 def.vd_next = (sizeof (Elf_External_Verdef)
6022 + sizeof (Elf_External_Verdaux));
6023 else
6024 def.vd_next = 0;
6025 _bfd_elf_swap_verdef_out (output_bfd, &def,
6026 (Elf_External_Verdef *) p);
6027 p += sizeof (Elf_External_Verdef);
6028 }
6029 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6030 (Elf_External_Verdaux *) p);
6031 p += sizeof (Elf_External_Verdaux);
6032
6033 for (t = verdefs; t != NULL; t = t->next)
6034 {
6035 unsigned int cdeps;
6036 struct bfd_elf_version_deps *n;
6037
6038 /* Don't emit the base version twice. */
6039 if (t->vernum == 0)
6040 continue;
6041
6042 cdeps = 0;
6043 for (n = t->deps; n != NULL; n = n->next)
6044 ++cdeps;
6045
6046 /* Add a symbol representing this version. */
6047 bh = NULL;
6048 if (! (_bfd_generic_link_add_one_symbol
6049 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6050 0, NULL, FALSE,
6051 get_elf_backend_data (dynobj)->collect, &bh)))
6052 return FALSE;
6053 h = (struct elf_link_hash_entry *) bh;
6054 h->non_elf = 0;
6055 h->def_regular = 1;
6056 h->type = STT_OBJECT;
6057 h->verinfo.vertree = t;
6058
6059 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6060 return FALSE;
6061
6062 def.vd_version = VER_DEF_CURRENT;
6063 def.vd_flags = 0;
6064 if (t->globals.list == NULL
6065 && t->locals.list == NULL
6066 && ! t->used)
6067 def.vd_flags |= VER_FLG_WEAK;
6068 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6069 def.vd_cnt = cdeps + 1;
6070 def.vd_hash = bfd_elf_hash (t->name);
6071 def.vd_aux = sizeof (Elf_External_Verdef);
6072 def.vd_next = 0;
6073
6074 /* If a basever node is next, it *must* be the last node in
6075 the chain, otherwise Verdef construction breaks. */
6076 if (t->next != NULL && t->next->vernum == 0)
6077 BFD_ASSERT (t->next->next == NULL);
6078
6079 if (t->next != NULL && t->next->vernum != 0)
6080 def.vd_next = (sizeof (Elf_External_Verdef)
6081 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6082
6083 _bfd_elf_swap_verdef_out (output_bfd, &def,
6084 (Elf_External_Verdef *) p);
6085 p += sizeof (Elf_External_Verdef);
6086
6087 defaux.vda_name = h->dynstr_index;
6088 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6089 h->dynstr_index);
6090 defaux.vda_next = 0;
6091 if (t->deps != NULL)
6092 defaux.vda_next = sizeof (Elf_External_Verdaux);
6093 t->name_indx = defaux.vda_name;
6094
6095 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6096 (Elf_External_Verdaux *) p);
6097 p += sizeof (Elf_External_Verdaux);
6098
6099 for (n = t->deps; n != NULL; n = n->next)
6100 {
6101 if (n->version_needed == NULL)
6102 {
6103 /* This can happen if there was an error in the
6104 version script. */
6105 defaux.vda_name = 0;
6106 }
6107 else
6108 {
6109 defaux.vda_name = n->version_needed->name_indx;
6110 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6111 defaux.vda_name);
6112 }
6113 if (n->next == NULL)
6114 defaux.vda_next = 0;
6115 else
6116 defaux.vda_next = sizeof (Elf_External_Verdaux);
6117
6118 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6119 (Elf_External_Verdaux *) p);
6120 p += sizeof (Elf_External_Verdaux);
6121 }
6122 }
6123
6124 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6125 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6126 return FALSE;
6127
6128 elf_tdata (output_bfd)->cverdefs = cdefs;
6129 }
6130
6131 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6132 {
6133 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6134 return FALSE;
6135 }
6136 else if (info->flags & DF_BIND_NOW)
6137 {
6138 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6139 return FALSE;
6140 }
6141
6142 if (info->flags_1)
6143 {
6144 if (info->executable)
6145 info->flags_1 &= ~ (DF_1_INITFIRST
6146 | DF_1_NODELETE
6147 | DF_1_NOOPEN);
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6149 return FALSE;
6150 }
6151
6152 /* Work out the size of the version reference section. */
6153
6154 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6155 BFD_ASSERT (s != NULL);
6156 {
6157 struct elf_find_verdep_info sinfo;
6158
6159 sinfo.info = info;
6160 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6161 if (sinfo.vers == 0)
6162 sinfo.vers = 1;
6163 sinfo.failed = FALSE;
6164
6165 elf_link_hash_traverse (elf_hash_table (info),
6166 _bfd_elf_link_find_version_dependencies,
6167 &sinfo);
6168 if (sinfo.failed)
6169 return FALSE;
6170
6171 if (elf_tdata (output_bfd)->verref == NULL)
6172 s->flags |= SEC_EXCLUDE;
6173 else
6174 {
6175 Elf_Internal_Verneed *t;
6176 unsigned int size;
6177 unsigned int crefs;
6178 bfd_byte *p;
6179
6180 /* Build the version dependency section. */
6181 size = 0;
6182 crefs = 0;
6183 for (t = elf_tdata (output_bfd)->verref;
6184 t != NULL;
6185 t = t->vn_nextref)
6186 {
6187 Elf_Internal_Vernaux *a;
6188
6189 size += sizeof (Elf_External_Verneed);
6190 ++crefs;
6191 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6192 size += sizeof (Elf_External_Vernaux);
6193 }
6194
6195 s->size = size;
6196 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6197 if (s->contents == NULL)
6198 return FALSE;
6199
6200 p = s->contents;
6201 for (t = elf_tdata (output_bfd)->verref;
6202 t != NULL;
6203 t = t->vn_nextref)
6204 {
6205 unsigned int caux;
6206 Elf_Internal_Vernaux *a;
6207 bfd_size_type indx;
6208
6209 caux = 0;
6210 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6211 ++caux;
6212
6213 t->vn_version = VER_NEED_CURRENT;
6214 t->vn_cnt = caux;
6215 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6216 elf_dt_name (t->vn_bfd) != NULL
6217 ? elf_dt_name (t->vn_bfd)
6218 : lbasename (t->vn_bfd->filename),
6219 FALSE);
6220 if (indx == (bfd_size_type) -1)
6221 return FALSE;
6222 t->vn_file = indx;
6223 t->vn_aux = sizeof (Elf_External_Verneed);
6224 if (t->vn_nextref == NULL)
6225 t->vn_next = 0;
6226 else
6227 t->vn_next = (sizeof (Elf_External_Verneed)
6228 + caux * sizeof (Elf_External_Vernaux));
6229
6230 _bfd_elf_swap_verneed_out (output_bfd, t,
6231 (Elf_External_Verneed *) p);
6232 p += sizeof (Elf_External_Verneed);
6233
6234 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6235 {
6236 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6237 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6238 a->vna_nodename, FALSE);
6239 if (indx == (bfd_size_type) -1)
6240 return FALSE;
6241 a->vna_name = indx;
6242 if (a->vna_nextptr == NULL)
6243 a->vna_next = 0;
6244 else
6245 a->vna_next = sizeof (Elf_External_Vernaux);
6246
6247 _bfd_elf_swap_vernaux_out (output_bfd, a,
6248 (Elf_External_Vernaux *) p);
6249 p += sizeof (Elf_External_Vernaux);
6250 }
6251 }
6252
6253 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6254 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6255 return FALSE;
6256
6257 elf_tdata (output_bfd)->cverrefs = crefs;
6258 }
6259 }
6260
6261 if ((elf_tdata (output_bfd)->cverrefs == 0
6262 && elf_tdata (output_bfd)->cverdefs == 0)
6263 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6264 &section_sym_count) == 0)
6265 {
6266 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6267 s->flags |= SEC_EXCLUDE;
6268 }
6269 }
6270 return TRUE;
6271 }
6272
6273 /* Find the first non-excluded output section. We'll use its
6274 section symbol for some emitted relocs. */
6275 void
6276 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6277 {
6278 asection *s;
6279
6280 for (s = output_bfd->sections; s != NULL; s = s->next)
6281 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6282 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6283 {
6284 elf_hash_table (info)->text_index_section = s;
6285 break;
6286 }
6287 }
6288
6289 /* Find two non-excluded output sections, one for code, one for data.
6290 We'll use their section symbols for some emitted relocs. */
6291 void
6292 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6293 {
6294 asection *s;
6295
6296 /* Data first, since setting text_index_section changes
6297 _bfd_elf_link_omit_section_dynsym. */
6298 for (s = output_bfd->sections; s != NULL; s = s->next)
6299 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6300 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6301 {
6302 elf_hash_table (info)->data_index_section = s;
6303 break;
6304 }
6305
6306 for (s = output_bfd->sections; s != NULL; s = s->next)
6307 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6308 == (SEC_ALLOC | SEC_READONLY))
6309 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6310 {
6311 elf_hash_table (info)->text_index_section = s;
6312 break;
6313 }
6314
6315 if (elf_hash_table (info)->text_index_section == NULL)
6316 elf_hash_table (info)->text_index_section
6317 = elf_hash_table (info)->data_index_section;
6318 }
6319
6320 bfd_boolean
6321 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6322 {
6323 const struct elf_backend_data *bed;
6324
6325 if (!is_elf_hash_table (info->hash))
6326 return TRUE;
6327
6328 bed = get_elf_backend_data (output_bfd);
6329 (*bed->elf_backend_init_index_section) (output_bfd, info);
6330
6331 if (elf_hash_table (info)->dynamic_sections_created)
6332 {
6333 bfd *dynobj;
6334 asection *s;
6335 bfd_size_type dynsymcount;
6336 unsigned long section_sym_count;
6337 unsigned int dtagcount;
6338
6339 dynobj = elf_hash_table (info)->dynobj;
6340
6341 /* Assign dynsym indicies. In a shared library we generate a
6342 section symbol for each output section, which come first.
6343 Next come all of the back-end allocated local dynamic syms,
6344 followed by the rest of the global symbols. */
6345
6346 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6347 &section_sym_count);
6348
6349 /* Work out the size of the symbol version section. */
6350 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6351 BFD_ASSERT (s != NULL);
6352 if (dynsymcount != 0
6353 && (s->flags & SEC_EXCLUDE) == 0)
6354 {
6355 s->size = dynsymcount * sizeof (Elf_External_Versym);
6356 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6357 if (s->contents == NULL)
6358 return FALSE;
6359
6360 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6361 return FALSE;
6362 }
6363
6364 /* Set the size of the .dynsym and .hash sections. We counted
6365 the number of dynamic symbols in elf_link_add_object_symbols.
6366 We will build the contents of .dynsym and .hash when we build
6367 the final symbol table, because until then we do not know the
6368 correct value to give the symbols. We built the .dynstr
6369 section as we went along in elf_link_add_object_symbols. */
6370 s = bfd_get_section_by_name (dynobj, ".dynsym");
6371 BFD_ASSERT (s != NULL);
6372 s->size = dynsymcount * bed->s->sizeof_sym;
6373
6374 if (dynsymcount != 0)
6375 {
6376 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6378 return FALSE;
6379
6380 /* The first entry in .dynsym is a dummy symbol.
6381 Clear all the section syms, in case we don't output them all. */
6382 ++section_sym_count;
6383 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6384 }
6385
6386 elf_hash_table (info)->bucketcount = 0;
6387
6388 /* Compute the size of the hashing table. As a side effect this
6389 computes the hash values for all the names we export. */
6390 if (info->emit_hash)
6391 {
6392 unsigned long int *hashcodes;
6393 struct hash_codes_info hashinf;
6394 bfd_size_type amt;
6395 unsigned long int nsyms;
6396 size_t bucketcount;
6397 size_t hash_entry_size;
6398
6399 /* Compute the hash values for all exported symbols. At the same
6400 time store the values in an array so that we could use them for
6401 optimizations. */
6402 amt = dynsymcount * sizeof (unsigned long int);
6403 hashcodes = (unsigned long int *) bfd_malloc (amt);
6404 if (hashcodes == NULL)
6405 return FALSE;
6406 hashinf.hashcodes = hashcodes;
6407 hashinf.error = FALSE;
6408
6409 /* Put all hash values in HASHCODES. */
6410 elf_link_hash_traverse (elf_hash_table (info),
6411 elf_collect_hash_codes, &hashinf);
6412 if (hashinf.error)
6413 {
6414 free (hashcodes);
6415 return FALSE;
6416 }
6417
6418 nsyms = hashinf.hashcodes - hashcodes;
6419 bucketcount
6420 = compute_bucket_count (info, hashcodes, nsyms, 0);
6421 free (hashcodes);
6422
6423 if (bucketcount == 0)
6424 return FALSE;
6425
6426 elf_hash_table (info)->bucketcount = bucketcount;
6427
6428 s = bfd_get_section_by_name (dynobj, ".hash");
6429 BFD_ASSERT (s != NULL);
6430 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6431 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6432 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6433 if (s->contents == NULL)
6434 return FALSE;
6435
6436 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6437 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6438 s->contents + hash_entry_size);
6439 }
6440
6441 if (info->emit_gnu_hash)
6442 {
6443 size_t i, cnt;
6444 unsigned char *contents;
6445 struct collect_gnu_hash_codes cinfo;
6446 bfd_size_type amt;
6447 size_t bucketcount;
6448
6449 memset (&cinfo, 0, sizeof (cinfo));
6450
6451 /* Compute the hash values for all exported symbols. At the same
6452 time store the values in an array so that we could use them for
6453 optimizations. */
6454 amt = dynsymcount * 2 * sizeof (unsigned long int);
6455 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6456 if (cinfo.hashcodes == NULL)
6457 return FALSE;
6458
6459 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6460 cinfo.min_dynindx = -1;
6461 cinfo.output_bfd = output_bfd;
6462 cinfo.bed = bed;
6463
6464 /* Put all hash values in HASHCODES. */
6465 elf_link_hash_traverse (elf_hash_table (info),
6466 elf_collect_gnu_hash_codes, &cinfo);
6467 if (cinfo.error)
6468 {
6469 free (cinfo.hashcodes);
6470 return FALSE;
6471 }
6472
6473 bucketcount
6474 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6475
6476 if (bucketcount == 0)
6477 {
6478 free (cinfo.hashcodes);
6479 return FALSE;
6480 }
6481
6482 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6483 BFD_ASSERT (s != NULL);
6484
6485 if (cinfo.nsyms == 0)
6486 {
6487 /* Empty .gnu.hash section is special. */
6488 BFD_ASSERT (cinfo.min_dynindx == -1);
6489 free (cinfo.hashcodes);
6490 s->size = 5 * 4 + bed->s->arch_size / 8;
6491 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6492 if (contents == NULL)
6493 return FALSE;
6494 s->contents = contents;
6495 /* 1 empty bucket. */
6496 bfd_put_32 (output_bfd, 1, contents);
6497 /* SYMIDX above the special symbol 0. */
6498 bfd_put_32 (output_bfd, 1, contents + 4);
6499 /* Just one word for bitmask. */
6500 bfd_put_32 (output_bfd, 1, contents + 8);
6501 /* Only hash fn bloom filter. */
6502 bfd_put_32 (output_bfd, 0, contents + 12);
6503 /* No hashes are valid - empty bitmask. */
6504 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6505 /* No hashes in the only bucket. */
6506 bfd_put_32 (output_bfd, 0,
6507 contents + 16 + bed->s->arch_size / 8);
6508 }
6509 else
6510 {
6511 unsigned long int maskwords, maskbitslog2, x;
6512 BFD_ASSERT (cinfo.min_dynindx != -1);
6513
6514 x = cinfo.nsyms;
6515 maskbitslog2 = 1;
6516 while ((x >>= 1) != 0)
6517 ++maskbitslog2;
6518 if (maskbitslog2 < 3)
6519 maskbitslog2 = 5;
6520 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6521 maskbitslog2 = maskbitslog2 + 3;
6522 else
6523 maskbitslog2 = maskbitslog2 + 2;
6524 if (bed->s->arch_size == 64)
6525 {
6526 if (maskbitslog2 == 5)
6527 maskbitslog2 = 6;
6528 cinfo.shift1 = 6;
6529 }
6530 else
6531 cinfo.shift1 = 5;
6532 cinfo.mask = (1 << cinfo.shift1) - 1;
6533 cinfo.shift2 = maskbitslog2;
6534 cinfo.maskbits = 1 << maskbitslog2;
6535 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6536 amt = bucketcount * sizeof (unsigned long int) * 2;
6537 amt += maskwords * sizeof (bfd_vma);
6538 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6539 if (cinfo.bitmask == NULL)
6540 {
6541 free (cinfo.hashcodes);
6542 return FALSE;
6543 }
6544
6545 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6546 cinfo.indx = cinfo.counts + bucketcount;
6547 cinfo.symindx = dynsymcount - cinfo.nsyms;
6548 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6549
6550 /* Determine how often each hash bucket is used. */
6551 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6552 for (i = 0; i < cinfo.nsyms; ++i)
6553 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6554
6555 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6556 if (cinfo.counts[i] != 0)
6557 {
6558 cinfo.indx[i] = cnt;
6559 cnt += cinfo.counts[i];
6560 }
6561 BFD_ASSERT (cnt == dynsymcount);
6562 cinfo.bucketcount = bucketcount;
6563 cinfo.local_indx = cinfo.min_dynindx;
6564
6565 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6566 s->size += cinfo.maskbits / 8;
6567 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6568 if (contents == NULL)
6569 {
6570 free (cinfo.bitmask);
6571 free (cinfo.hashcodes);
6572 return FALSE;
6573 }
6574
6575 s->contents = contents;
6576 bfd_put_32 (output_bfd, bucketcount, contents);
6577 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6578 bfd_put_32 (output_bfd, maskwords, contents + 8);
6579 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6580 contents += 16 + cinfo.maskbits / 8;
6581
6582 for (i = 0; i < bucketcount; ++i)
6583 {
6584 if (cinfo.counts[i] == 0)
6585 bfd_put_32 (output_bfd, 0, contents);
6586 else
6587 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6588 contents += 4;
6589 }
6590
6591 cinfo.contents = contents;
6592
6593 /* Renumber dynamic symbols, populate .gnu.hash section. */
6594 elf_link_hash_traverse (elf_hash_table (info),
6595 elf_renumber_gnu_hash_syms, &cinfo);
6596
6597 contents = s->contents + 16;
6598 for (i = 0; i < maskwords; ++i)
6599 {
6600 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6601 contents);
6602 contents += bed->s->arch_size / 8;
6603 }
6604
6605 free (cinfo.bitmask);
6606 free (cinfo.hashcodes);
6607 }
6608 }
6609
6610 s = bfd_get_section_by_name (dynobj, ".dynstr");
6611 BFD_ASSERT (s != NULL);
6612
6613 elf_finalize_dynstr (output_bfd, info);
6614
6615 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6616
6617 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6618 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6619 return FALSE;
6620 }
6621
6622 return TRUE;
6623 }
6624 \f
6625 /* Indicate that we are only retrieving symbol values from this
6626 section. */
6627
6628 void
6629 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6630 {
6631 if (is_elf_hash_table (info->hash))
6632 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6633 _bfd_generic_link_just_syms (sec, info);
6634 }
6635
6636 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6637
6638 static void
6639 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6640 asection *sec)
6641 {
6642 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6643 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6644 }
6645
6646 /* Finish SHF_MERGE section merging. */
6647
6648 bfd_boolean
6649 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6650 {
6651 bfd *ibfd;
6652 asection *sec;
6653
6654 if (!is_elf_hash_table (info->hash))
6655 return FALSE;
6656
6657 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6658 if ((ibfd->flags & DYNAMIC) == 0)
6659 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6660 if ((sec->flags & SEC_MERGE) != 0
6661 && !bfd_is_abs_section (sec->output_section))
6662 {
6663 struct bfd_elf_section_data *secdata;
6664
6665 secdata = elf_section_data (sec);
6666 if (! _bfd_add_merge_section (abfd,
6667 &elf_hash_table (info)->merge_info,
6668 sec, &secdata->sec_info))
6669 return FALSE;
6670 else if (secdata->sec_info)
6671 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6672 }
6673
6674 if (elf_hash_table (info)->merge_info != NULL)
6675 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6676 merge_sections_remove_hook);
6677 return TRUE;
6678 }
6679
6680 /* Create an entry in an ELF linker hash table. */
6681
6682 struct bfd_hash_entry *
6683 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6684 struct bfd_hash_table *table,
6685 const char *string)
6686 {
6687 /* Allocate the structure if it has not already been allocated by a
6688 subclass. */
6689 if (entry == NULL)
6690 {
6691 entry = (struct bfd_hash_entry *)
6692 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6693 if (entry == NULL)
6694 return entry;
6695 }
6696
6697 /* Call the allocation method of the superclass. */
6698 entry = _bfd_link_hash_newfunc (entry, table, string);
6699 if (entry != NULL)
6700 {
6701 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6702 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6703
6704 /* Set local fields. */
6705 ret->indx = -1;
6706 ret->dynindx = -1;
6707 ret->got = htab->init_got_refcount;
6708 ret->plt = htab->init_plt_refcount;
6709 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6710 - offsetof (struct elf_link_hash_entry, size)));
6711 /* Assume that we have been called by a non-ELF symbol reader.
6712 This flag is then reset by the code which reads an ELF input
6713 file. This ensures that a symbol created by a non-ELF symbol
6714 reader will have the flag set correctly. */
6715 ret->non_elf = 1;
6716 }
6717
6718 return entry;
6719 }
6720
6721 /* Copy data from an indirect symbol to its direct symbol, hiding the
6722 old indirect symbol. Also used for copying flags to a weakdef. */
6723
6724 void
6725 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6726 struct elf_link_hash_entry *dir,
6727 struct elf_link_hash_entry *ind)
6728 {
6729 struct elf_link_hash_table *htab;
6730
6731 /* Copy down any references that we may have already seen to the
6732 symbol which just became indirect. */
6733
6734 dir->ref_dynamic |= ind->ref_dynamic;
6735 dir->ref_regular |= ind->ref_regular;
6736 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6737 dir->non_got_ref |= ind->non_got_ref;
6738 dir->needs_plt |= ind->needs_plt;
6739 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6740
6741 if (ind->root.type != bfd_link_hash_indirect)
6742 return;
6743
6744 /* Copy over the global and procedure linkage table refcount entries.
6745 These may have been already set up by a check_relocs routine. */
6746 htab = elf_hash_table (info);
6747 if (ind->got.refcount > htab->init_got_refcount.refcount)
6748 {
6749 if (dir->got.refcount < 0)
6750 dir->got.refcount = 0;
6751 dir->got.refcount += ind->got.refcount;
6752 ind->got.refcount = htab->init_got_refcount.refcount;
6753 }
6754
6755 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6756 {
6757 if (dir->plt.refcount < 0)
6758 dir->plt.refcount = 0;
6759 dir->plt.refcount += ind->plt.refcount;
6760 ind->plt.refcount = htab->init_plt_refcount.refcount;
6761 }
6762
6763 if (ind->dynindx != -1)
6764 {
6765 if (dir->dynindx != -1)
6766 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6767 dir->dynindx = ind->dynindx;
6768 dir->dynstr_index = ind->dynstr_index;
6769 ind->dynindx = -1;
6770 ind->dynstr_index = 0;
6771 }
6772 }
6773
6774 void
6775 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6776 struct elf_link_hash_entry *h,
6777 bfd_boolean force_local)
6778 {
6779 /* STT_GNU_IFUNC symbol must go through PLT. */
6780 if (h->type != STT_GNU_IFUNC)
6781 {
6782 h->plt = elf_hash_table (info)->init_plt_offset;
6783 h->needs_plt = 0;
6784 }
6785 if (force_local)
6786 {
6787 h->forced_local = 1;
6788 if (h->dynindx != -1)
6789 {
6790 h->dynindx = -1;
6791 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6792 h->dynstr_index);
6793 }
6794 }
6795 }
6796
6797 /* Initialize an ELF linker hash table. */
6798
6799 bfd_boolean
6800 _bfd_elf_link_hash_table_init
6801 (struct elf_link_hash_table *table,
6802 bfd *abfd,
6803 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6804 struct bfd_hash_table *,
6805 const char *),
6806 unsigned int entsize,
6807 enum elf_target_id target_id)
6808 {
6809 bfd_boolean ret;
6810 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6811
6812 memset (table, 0, sizeof * table);
6813 table->init_got_refcount.refcount = can_refcount - 1;
6814 table->init_plt_refcount.refcount = can_refcount - 1;
6815 table->init_got_offset.offset = -(bfd_vma) 1;
6816 table->init_plt_offset.offset = -(bfd_vma) 1;
6817 /* The first dynamic symbol is a dummy. */
6818 table->dynsymcount = 1;
6819
6820 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6821
6822 table->root.type = bfd_link_elf_hash_table;
6823 table->hash_table_id = target_id;
6824
6825 return ret;
6826 }
6827
6828 /* Create an ELF linker hash table. */
6829
6830 struct bfd_link_hash_table *
6831 _bfd_elf_link_hash_table_create (bfd *abfd)
6832 {
6833 struct elf_link_hash_table *ret;
6834 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6835
6836 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6837 if (ret == NULL)
6838 return NULL;
6839
6840 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6841 sizeof (struct elf_link_hash_entry),
6842 GENERIC_ELF_DATA))
6843 {
6844 free (ret);
6845 return NULL;
6846 }
6847
6848 return &ret->root;
6849 }
6850
6851 /* This is a hook for the ELF emulation code in the generic linker to
6852 tell the backend linker what file name to use for the DT_NEEDED
6853 entry for a dynamic object. */
6854
6855 void
6856 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6857 {
6858 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6859 && bfd_get_format (abfd) == bfd_object)
6860 elf_dt_name (abfd) = name;
6861 }
6862
6863 int
6864 bfd_elf_get_dyn_lib_class (bfd *abfd)
6865 {
6866 int lib_class;
6867 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6868 && bfd_get_format (abfd) == bfd_object)
6869 lib_class = elf_dyn_lib_class (abfd);
6870 else
6871 lib_class = 0;
6872 return lib_class;
6873 }
6874
6875 void
6876 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6877 {
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 elf_dyn_lib_class (abfd) = lib_class;
6881 }
6882
6883 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6884 the linker ELF emulation code. */
6885
6886 struct bfd_link_needed_list *
6887 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6888 struct bfd_link_info *info)
6889 {
6890 if (! is_elf_hash_table (info->hash))
6891 return NULL;
6892 return elf_hash_table (info)->needed;
6893 }
6894
6895 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6896 hook for the linker ELF emulation code. */
6897
6898 struct bfd_link_needed_list *
6899 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6900 struct bfd_link_info *info)
6901 {
6902 if (! is_elf_hash_table (info->hash))
6903 return NULL;
6904 return elf_hash_table (info)->runpath;
6905 }
6906
6907 /* Get the name actually used for a dynamic object for a link. This
6908 is the SONAME entry if there is one. Otherwise, it is the string
6909 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6910
6911 const char *
6912 bfd_elf_get_dt_soname (bfd *abfd)
6913 {
6914 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6915 && bfd_get_format (abfd) == bfd_object)
6916 return elf_dt_name (abfd);
6917 return NULL;
6918 }
6919
6920 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6921 the ELF linker emulation code. */
6922
6923 bfd_boolean
6924 bfd_elf_get_bfd_needed_list (bfd *abfd,
6925 struct bfd_link_needed_list **pneeded)
6926 {
6927 asection *s;
6928 bfd_byte *dynbuf = NULL;
6929 unsigned int elfsec;
6930 unsigned long shlink;
6931 bfd_byte *extdyn, *extdynend;
6932 size_t extdynsize;
6933 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6934
6935 *pneeded = NULL;
6936
6937 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6938 || bfd_get_format (abfd) != bfd_object)
6939 return TRUE;
6940
6941 s = bfd_get_section_by_name (abfd, ".dynamic");
6942 if (s == NULL || s->size == 0)
6943 return TRUE;
6944
6945 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6946 goto error_return;
6947
6948 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6949 if (elfsec == SHN_BAD)
6950 goto error_return;
6951
6952 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6953
6954 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6955 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6956
6957 extdyn = dynbuf;
6958 extdynend = extdyn + s->size;
6959 for (; extdyn < extdynend; extdyn += extdynsize)
6960 {
6961 Elf_Internal_Dyn dyn;
6962
6963 (*swap_dyn_in) (abfd, extdyn, &dyn);
6964
6965 if (dyn.d_tag == DT_NULL)
6966 break;
6967
6968 if (dyn.d_tag == DT_NEEDED)
6969 {
6970 const char *string;
6971 struct bfd_link_needed_list *l;
6972 unsigned int tagv = dyn.d_un.d_val;
6973 bfd_size_type amt;
6974
6975 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6976 if (string == NULL)
6977 goto error_return;
6978
6979 amt = sizeof *l;
6980 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6981 if (l == NULL)
6982 goto error_return;
6983
6984 l->by = abfd;
6985 l->name = string;
6986 l->next = *pneeded;
6987 *pneeded = l;
6988 }
6989 }
6990
6991 free (dynbuf);
6992
6993 return TRUE;
6994
6995 error_return:
6996 if (dynbuf != NULL)
6997 free (dynbuf);
6998 return FALSE;
6999 }
7000
7001 struct elf_symbuf_symbol
7002 {
7003 unsigned long st_name; /* Symbol name, index in string tbl */
7004 unsigned char st_info; /* Type and binding attributes */
7005 unsigned char st_other; /* Visibilty, and target specific */
7006 };
7007
7008 struct elf_symbuf_head
7009 {
7010 struct elf_symbuf_symbol *ssym;
7011 bfd_size_type count;
7012 unsigned int st_shndx;
7013 };
7014
7015 struct elf_symbol
7016 {
7017 union
7018 {
7019 Elf_Internal_Sym *isym;
7020 struct elf_symbuf_symbol *ssym;
7021 } u;
7022 const char *name;
7023 };
7024
7025 /* Sort references to symbols by ascending section number. */
7026
7027 static int
7028 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7029 {
7030 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7031 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7032
7033 return s1->st_shndx - s2->st_shndx;
7034 }
7035
7036 static int
7037 elf_sym_name_compare (const void *arg1, const void *arg2)
7038 {
7039 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7040 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7041 return strcmp (s1->name, s2->name);
7042 }
7043
7044 static struct elf_symbuf_head *
7045 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7046 {
7047 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7048 struct elf_symbuf_symbol *ssym;
7049 struct elf_symbuf_head *ssymbuf, *ssymhead;
7050 bfd_size_type i, shndx_count, total_size;
7051
7052 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7053 if (indbuf == NULL)
7054 return NULL;
7055
7056 for (ind = indbuf, i = 0; i < symcount; i++)
7057 if (isymbuf[i].st_shndx != SHN_UNDEF)
7058 *ind++ = &isymbuf[i];
7059 indbufend = ind;
7060
7061 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7062 elf_sort_elf_symbol);
7063
7064 shndx_count = 0;
7065 if (indbufend > indbuf)
7066 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7067 if (ind[0]->st_shndx != ind[1]->st_shndx)
7068 shndx_count++;
7069
7070 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7071 + (indbufend - indbuf) * sizeof (*ssym));
7072 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7073 if (ssymbuf == NULL)
7074 {
7075 free (indbuf);
7076 return NULL;
7077 }
7078
7079 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7080 ssymbuf->ssym = NULL;
7081 ssymbuf->count = shndx_count;
7082 ssymbuf->st_shndx = 0;
7083 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7084 {
7085 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7086 {
7087 ssymhead++;
7088 ssymhead->ssym = ssym;
7089 ssymhead->count = 0;
7090 ssymhead->st_shndx = (*ind)->st_shndx;
7091 }
7092 ssym->st_name = (*ind)->st_name;
7093 ssym->st_info = (*ind)->st_info;
7094 ssym->st_other = (*ind)->st_other;
7095 ssymhead->count++;
7096 }
7097 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7098 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7099 == total_size));
7100
7101 free (indbuf);
7102 return ssymbuf;
7103 }
7104
7105 /* Check if 2 sections define the same set of local and global
7106 symbols. */
7107
7108 static bfd_boolean
7109 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7110 struct bfd_link_info *info)
7111 {
7112 bfd *bfd1, *bfd2;
7113 const struct elf_backend_data *bed1, *bed2;
7114 Elf_Internal_Shdr *hdr1, *hdr2;
7115 bfd_size_type symcount1, symcount2;
7116 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7117 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7118 Elf_Internal_Sym *isym, *isymend;
7119 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7120 bfd_size_type count1, count2, i;
7121 unsigned int shndx1, shndx2;
7122 bfd_boolean result;
7123
7124 bfd1 = sec1->owner;
7125 bfd2 = sec2->owner;
7126
7127 /* Both sections have to be in ELF. */
7128 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7129 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7130 return FALSE;
7131
7132 if (elf_section_type (sec1) != elf_section_type (sec2))
7133 return FALSE;
7134
7135 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7136 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7137 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7138 return FALSE;
7139
7140 bed1 = get_elf_backend_data (bfd1);
7141 bed2 = get_elf_backend_data (bfd2);
7142 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7143 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7144 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7145 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7146
7147 if (symcount1 == 0 || symcount2 == 0)
7148 return FALSE;
7149
7150 result = FALSE;
7151 isymbuf1 = NULL;
7152 isymbuf2 = NULL;
7153 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7154 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7155
7156 if (ssymbuf1 == NULL)
7157 {
7158 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7159 NULL, NULL, NULL);
7160 if (isymbuf1 == NULL)
7161 goto done;
7162
7163 if (!info->reduce_memory_overheads)
7164 elf_tdata (bfd1)->symbuf = ssymbuf1
7165 = elf_create_symbuf (symcount1, isymbuf1);
7166 }
7167
7168 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7169 {
7170 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7171 NULL, NULL, NULL);
7172 if (isymbuf2 == NULL)
7173 goto done;
7174
7175 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7176 elf_tdata (bfd2)->symbuf = ssymbuf2
7177 = elf_create_symbuf (symcount2, isymbuf2);
7178 }
7179
7180 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7181 {
7182 /* Optimized faster version. */
7183 bfd_size_type lo, hi, mid;
7184 struct elf_symbol *symp;
7185 struct elf_symbuf_symbol *ssym, *ssymend;
7186
7187 lo = 0;
7188 hi = ssymbuf1->count;
7189 ssymbuf1++;
7190 count1 = 0;
7191 while (lo < hi)
7192 {
7193 mid = (lo + hi) / 2;
7194 if (shndx1 < ssymbuf1[mid].st_shndx)
7195 hi = mid;
7196 else if (shndx1 > ssymbuf1[mid].st_shndx)
7197 lo = mid + 1;
7198 else
7199 {
7200 count1 = ssymbuf1[mid].count;
7201 ssymbuf1 += mid;
7202 break;
7203 }
7204 }
7205
7206 lo = 0;
7207 hi = ssymbuf2->count;
7208 ssymbuf2++;
7209 count2 = 0;
7210 while (lo < hi)
7211 {
7212 mid = (lo + hi) / 2;
7213 if (shndx2 < ssymbuf2[mid].st_shndx)
7214 hi = mid;
7215 else if (shndx2 > ssymbuf2[mid].st_shndx)
7216 lo = mid + 1;
7217 else
7218 {
7219 count2 = ssymbuf2[mid].count;
7220 ssymbuf2 += mid;
7221 break;
7222 }
7223 }
7224
7225 if (count1 == 0 || count2 == 0 || count1 != count2)
7226 goto done;
7227
7228 symtable1 = (struct elf_symbol *)
7229 bfd_malloc (count1 * sizeof (struct elf_symbol));
7230 symtable2 = (struct elf_symbol *)
7231 bfd_malloc (count2 * sizeof (struct elf_symbol));
7232 if (symtable1 == NULL || symtable2 == NULL)
7233 goto done;
7234
7235 symp = symtable1;
7236 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7237 ssym < ssymend; ssym++, symp++)
7238 {
7239 symp->u.ssym = ssym;
7240 symp->name = bfd_elf_string_from_elf_section (bfd1,
7241 hdr1->sh_link,
7242 ssym->st_name);
7243 }
7244
7245 symp = symtable2;
7246 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7247 ssym < ssymend; ssym++, symp++)
7248 {
7249 symp->u.ssym = ssym;
7250 symp->name = bfd_elf_string_from_elf_section (bfd2,
7251 hdr2->sh_link,
7252 ssym->st_name);
7253 }
7254
7255 /* Sort symbol by name. */
7256 qsort (symtable1, count1, sizeof (struct elf_symbol),
7257 elf_sym_name_compare);
7258 qsort (symtable2, count1, sizeof (struct elf_symbol),
7259 elf_sym_name_compare);
7260
7261 for (i = 0; i < count1; i++)
7262 /* Two symbols must have the same binding, type and name. */
7263 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7264 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7265 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7266 goto done;
7267
7268 result = TRUE;
7269 goto done;
7270 }
7271
7272 symtable1 = (struct elf_symbol *)
7273 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7274 symtable2 = (struct elf_symbol *)
7275 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7276 if (symtable1 == NULL || symtable2 == NULL)
7277 goto done;
7278
7279 /* Count definitions in the section. */
7280 count1 = 0;
7281 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7282 if (isym->st_shndx == shndx1)
7283 symtable1[count1++].u.isym = isym;
7284
7285 count2 = 0;
7286 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7287 if (isym->st_shndx == shndx2)
7288 symtable2[count2++].u.isym = isym;
7289
7290 if (count1 == 0 || count2 == 0 || count1 != count2)
7291 goto done;
7292
7293 for (i = 0; i < count1; i++)
7294 symtable1[i].name
7295 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7296 symtable1[i].u.isym->st_name);
7297
7298 for (i = 0; i < count2; i++)
7299 symtable2[i].name
7300 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7301 symtable2[i].u.isym->st_name);
7302
7303 /* Sort symbol by name. */
7304 qsort (symtable1, count1, sizeof (struct elf_symbol),
7305 elf_sym_name_compare);
7306 qsort (symtable2, count1, sizeof (struct elf_symbol),
7307 elf_sym_name_compare);
7308
7309 for (i = 0; i < count1; i++)
7310 /* Two symbols must have the same binding, type and name. */
7311 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7312 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7313 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7314 goto done;
7315
7316 result = TRUE;
7317
7318 done:
7319 if (symtable1)
7320 free (symtable1);
7321 if (symtable2)
7322 free (symtable2);
7323 if (isymbuf1)
7324 free (isymbuf1);
7325 if (isymbuf2)
7326 free (isymbuf2);
7327
7328 return result;
7329 }
7330
7331 /* Return TRUE if 2 section types are compatible. */
7332
7333 bfd_boolean
7334 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7335 bfd *bbfd, const asection *bsec)
7336 {
7337 if (asec == NULL
7338 || bsec == NULL
7339 || abfd->xvec->flavour != bfd_target_elf_flavour
7340 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7341 return TRUE;
7342
7343 return elf_section_type (asec) == elf_section_type (bsec);
7344 }
7345 \f
7346 /* Final phase of ELF linker. */
7347
7348 /* A structure we use to avoid passing large numbers of arguments. */
7349
7350 struct elf_final_link_info
7351 {
7352 /* General link information. */
7353 struct bfd_link_info *info;
7354 /* Output BFD. */
7355 bfd *output_bfd;
7356 /* Symbol string table. */
7357 struct bfd_strtab_hash *symstrtab;
7358 /* .dynsym section. */
7359 asection *dynsym_sec;
7360 /* .hash section. */
7361 asection *hash_sec;
7362 /* symbol version section (.gnu.version). */
7363 asection *symver_sec;
7364 /* Buffer large enough to hold contents of any section. */
7365 bfd_byte *contents;
7366 /* Buffer large enough to hold external relocs of any section. */
7367 void *external_relocs;
7368 /* Buffer large enough to hold internal relocs of any section. */
7369 Elf_Internal_Rela *internal_relocs;
7370 /* Buffer large enough to hold external local symbols of any input
7371 BFD. */
7372 bfd_byte *external_syms;
7373 /* And a buffer for symbol section indices. */
7374 Elf_External_Sym_Shndx *locsym_shndx;
7375 /* Buffer large enough to hold internal local symbols of any input
7376 BFD. */
7377 Elf_Internal_Sym *internal_syms;
7378 /* Array large enough to hold a symbol index for each local symbol
7379 of any input BFD. */
7380 long *indices;
7381 /* Array large enough to hold a section pointer for each local
7382 symbol of any input BFD. */
7383 asection **sections;
7384 /* Buffer to hold swapped out symbols. */
7385 bfd_byte *symbuf;
7386 /* And one for symbol section indices. */
7387 Elf_External_Sym_Shndx *symshndxbuf;
7388 /* Number of swapped out symbols in buffer. */
7389 size_t symbuf_count;
7390 /* Number of symbols which fit in symbuf. */
7391 size_t symbuf_size;
7392 /* And same for symshndxbuf. */
7393 size_t shndxbuf_size;
7394 };
7395
7396 /* This struct is used to pass information to elf_link_output_extsym. */
7397
7398 struct elf_outext_info
7399 {
7400 bfd_boolean failed;
7401 bfd_boolean localsyms;
7402 struct elf_final_link_info *finfo;
7403 };
7404
7405
7406 /* Support for evaluating a complex relocation.
7407
7408 Complex relocations are generalized, self-describing relocations. The
7409 implementation of them consists of two parts: complex symbols, and the
7410 relocations themselves.
7411
7412 The relocations are use a reserved elf-wide relocation type code (R_RELC
7413 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7414 information (start bit, end bit, word width, etc) into the addend. This
7415 information is extracted from CGEN-generated operand tables within gas.
7416
7417 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7418 internal) representing prefix-notation expressions, including but not
7419 limited to those sorts of expressions normally encoded as addends in the
7420 addend field. The symbol mangling format is:
7421
7422 <node> := <literal>
7423 | <unary-operator> ':' <node>
7424 | <binary-operator> ':' <node> ':' <node>
7425 ;
7426
7427 <literal> := 's' <digits=N> ':' <N character symbol name>
7428 | 'S' <digits=N> ':' <N character section name>
7429 | '#' <hexdigits>
7430 ;
7431
7432 <binary-operator> := as in C
7433 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7434
7435 static void
7436 set_symbol_value (bfd *bfd_with_globals,
7437 Elf_Internal_Sym *isymbuf,
7438 size_t locsymcount,
7439 size_t symidx,
7440 bfd_vma val)
7441 {
7442 struct elf_link_hash_entry **sym_hashes;
7443 struct elf_link_hash_entry *h;
7444 size_t extsymoff = locsymcount;
7445
7446 if (symidx < locsymcount)
7447 {
7448 Elf_Internal_Sym *sym;
7449
7450 sym = isymbuf + symidx;
7451 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7452 {
7453 /* It is a local symbol: move it to the
7454 "absolute" section and give it a value. */
7455 sym->st_shndx = SHN_ABS;
7456 sym->st_value = val;
7457 return;
7458 }
7459 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7460 extsymoff = 0;
7461 }
7462
7463 /* It is a global symbol: set its link type
7464 to "defined" and give it a value. */
7465
7466 sym_hashes = elf_sym_hashes (bfd_with_globals);
7467 h = sym_hashes [symidx - extsymoff];
7468 while (h->root.type == bfd_link_hash_indirect
7469 || h->root.type == bfd_link_hash_warning)
7470 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7471 h->root.type = bfd_link_hash_defined;
7472 h->root.u.def.value = val;
7473 h->root.u.def.section = bfd_abs_section_ptr;
7474 }
7475
7476 static bfd_boolean
7477 resolve_symbol (const char *name,
7478 bfd *input_bfd,
7479 struct elf_final_link_info *finfo,
7480 bfd_vma *result,
7481 Elf_Internal_Sym *isymbuf,
7482 size_t locsymcount)
7483 {
7484 Elf_Internal_Sym *sym;
7485 struct bfd_link_hash_entry *global_entry;
7486 const char *candidate = NULL;
7487 Elf_Internal_Shdr *symtab_hdr;
7488 size_t i;
7489
7490 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7491
7492 for (i = 0; i < locsymcount; ++ i)
7493 {
7494 sym = isymbuf + i;
7495
7496 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7497 continue;
7498
7499 candidate = bfd_elf_string_from_elf_section (input_bfd,
7500 symtab_hdr->sh_link,
7501 sym->st_name);
7502 #ifdef DEBUG
7503 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7504 name, candidate, (unsigned long) sym->st_value);
7505 #endif
7506 if (candidate && strcmp (candidate, name) == 0)
7507 {
7508 asection *sec = finfo->sections [i];
7509
7510 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7511 *result += sec->output_offset + sec->output_section->vma;
7512 #ifdef DEBUG
7513 printf ("Found symbol with value %8.8lx\n",
7514 (unsigned long) *result);
7515 #endif
7516 return TRUE;
7517 }
7518 }
7519
7520 /* Hmm, haven't found it yet. perhaps it is a global. */
7521 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7522 FALSE, FALSE, TRUE);
7523 if (!global_entry)
7524 return FALSE;
7525
7526 if (global_entry->type == bfd_link_hash_defined
7527 || global_entry->type == bfd_link_hash_defweak)
7528 {
7529 *result = (global_entry->u.def.value
7530 + global_entry->u.def.section->output_section->vma
7531 + global_entry->u.def.section->output_offset);
7532 #ifdef DEBUG
7533 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7534 global_entry->root.string, (unsigned long) *result);
7535 #endif
7536 return TRUE;
7537 }
7538
7539 return FALSE;
7540 }
7541
7542 static bfd_boolean
7543 resolve_section (const char *name,
7544 asection *sections,
7545 bfd_vma *result)
7546 {
7547 asection *curr;
7548 unsigned int len;
7549
7550 for (curr = sections; curr; curr = curr->next)
7551 if (strcmp (curr->name, name) == 0)
7552 {
7553 *result = curr->vma;
7554 return TRUE;
7555 }
7556
7557 /* Hmm. still haven't found it. try pseudo-section names. */
7558 for (curr = sections; curr; curr = curr->next)
7559 {
7560 len = strlen (curr->name);
7561 if (len > strlen (name))
7562 continue;
7563
7564 if (strncmp (curr->name, name, len) == 0)
7565 {
7566 if (strncmp (".end", name + len, 4) == 0)
7567 {
7568 *result = curr->vma + curr->size;
7569 return TRUE;
7570 }
7571
7572 /* Insert more pseudo-section names here, if you like. */
7573 }
7574 }
7575
7576 return FALSE;
7577 }
7578
7579 static void
7580 undefined_reference (const char *reftype, const char *name)
7581 {
7582 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7583 reftype, name);
7584 }
7585
7586 static bfd_boolean
7587 eval_symbol (bfd_vma *result,
7588 const char **symp,
7589 bfd *input_bfd,
7590 struct elf_final_link_info *finfo,
7591 bfd_vma dot,
7592 Elf_Internal_Sym *isymbuf,
7593 size_t locsymcount,
7594 int signed_p)
7595 {
7596 size_t len;
7597 size_t symlen;
7598 bfd_vma a;
7599 bfd_vma b;
7600 char symbuf[4096];
7601 const char *sym = *symp;
7602 const char *symend;
7603 bfd_boolean symbol_is_section = FALSE;
7604
7605 len = strlen (sym);
7606 symend = sym + len;
7607
7608 if (len < 1 || len > sizeof (symbuf))
7609 {
7610 bfd_set_error (bfd_error_invalid_operation);
7611 return FALSE;
7612 }
7613
7614 switch (* sym)
7615 {
7616 case '.':
7617 *result = dot;
7618 *symp = sym + 1;
7619 return TRUE;
7620
7621 case '#':
7622 ++sym;
7623 *result = strtoul (sym, (char **) symp, 16);
7624 return TRUE;
7625
7626 case 'S':
7627 symbol_is_section = TRUE;
7628 case 's':
7629 ++sym;
7630 symlen = strtol (sym, (char **) symp, 10);
7631 sym = *symp + 1; /* Skip the trailing ':'. */
7632
7633 if (symend < sym || symlen + 1 > sizeof (symbuf))
7634 {
7635 bfd_set_error (bfd_error_invalid_operation);
7636 return FALSE;
7637 }
7638
7639 memcpy (symbuf, sym, symlen);
7640 symbuf[symlen] = '\0';
7641 *symp = sym + symlen;
7642
7643 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7644 the symbol as a section, or vice-versa. so we're pretty liberal in our
7645 interpretation here; section means "try section first", not "must be a
7646 section", and likewise with symbol. */
7647
7648 if (symbol_is_section)
7649 {
7650 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7651 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7652 isymbuf, locsymcount))
7653 {
7654 undefined_reference ("section", symbuf);
7655 return FALSE;
7656 }
7657 }
7658 else
7659 {
7660 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7661 isymbuf, locsymcount)
7662 && !resolve_section (symbuf, finfo->output_bfd->sections,
7663 result))
7664 {
7665 undefined_reference ("symbol", symbuf);
7666 return FALSE;
7667 }
7668 }
7669
7670 return TRUE;
7671
7672 /* All that remains are operators. */
7673
7674 #define UNARY_OP(op) \
7675 if (strncmp (sym, #op, strlen (#op)) == 0) \
7676 { \
7677 sym += strlen (#op); \
7678 if (*sym == ':') \
7679 ++sym; \
7680 *symp = sym; \
7681 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7682 isymbuf, locsymcount, signed_p)) \
7683 return FALSE; \
7684 if (signed_p) \
7685 *result = op ((bfd_signed_vma) a); \
7686 else \
7687 *result = op a; \
7688 return TRUE; \
7689 }
7690
7691 #define BINARY_OP(op) \
7692 if (strncmp (sym, #op, strlen (#op)) == 0) \
7693 { \
7694 sym += strlen (#op); \
7695 if (*sym == ':') \
7696 ++sym; \
7697 *symp = sym; \
7698 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7699 isymbuf, locsymcount, signed_p)) \
7700 return FALSE; \
7701 ++*symp; \
7702 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7703 isymbuf, locsymcount, signed_p)) \
7704 return FALSE; \
7705 if (signed_p) \
7706 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7707 else \
7708 *result = a op b; \
7709 return TRUE; \
7710 }
7711
7712 default:
7713 UNARY_OP (0-);
7714 BINARY_OP (<<);
7715 BINARY_OP (>>);
7716 BINARY_OP (==);
7717 BINARY_OP (!=);
7718 BINARY_OP (<=);
7719 BINARY_OP (>=);
7720 BINARY_OP (&&);
7721 BINARY_OP (||);
7722 UNARY_OP (~);
7723 UNARY_OP (!);
7724 BINARY_OP (*);
7725 BINARY_OP (/);
7726 BINARY_OP (%);
7727 BINARY_OP (^);
7728 BINARY_OP (|);
7729 BINARY_OP (&);
7730 BINARY_OP (+);
7731 BINARY_OP (-);
7732 BINARY_OP (<);
7733 BINARY_OP (>);
7734 #undef UNARY_OP
7735 #undef BINARY_OP
7736 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7737 bfd_set_error (bfd_error_invalid_operation);
7738 return FALSE;
7739 }
7740 }
7741
7742 static void
7743 put_value (bfd_vma size,
7744 unsigned long chunksz,
7745 bfd *input_bfd,
7746 bfd_vma x,
7747 bfd_byte *location)
7748 {
7749 location += (size - chunksz);
7750
7751 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7752 {
7753 switch (chunksz)
7754 {
7755 default:
7756 case 0:
7757 abort ();
7758 case 1:
7759 bfd_put_8 (input_bfd, x, location);
7760 break;
7761 case 2:
7762 bfd_put_16 (input_bfd, x, location);
7763 break;
7764 case 4:
7765 bfd_put_32 (input_bfd, x, location);
7766 break;
7767 case 8:
7768 #ifdef BFD64
7769 bfd_put_64 (input_bfd, x, location);
7770 #else
7771 abort ();
7772 #endif
7773 break;
7774 }
7775 }
7776 }
7777
7778 static bfd_vma
7779 get_value (bfd_vma size,
7780 unsigned long chunksz,
7781 bfd *input_bfd,
7782 bfd_byte *location)
7783 {
7784 bfd_vma x = 0;
7785
7786 for (; size; size -= chunksz, location += chunksz)
7787 {
7788 switch (chunksz)
7789 {
7790 default:
7791 case 0:
7792 abort ();
7793 case 1:
7794 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7795 break;
7796 case 2:
7797 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7798 break;
7799 case 4:
7800 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7801 break;
7802 case 8:
7803 #ifdef BFD64
7804 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7805 #else
7806 abort ();
7807 #endif
7808 break;
7809 }
7810 }
7811 return x;
7812 }
7813
7814 static void
7815 decode_complex_addend (unsigned long *start, /* in bits */
7816 unsigned long *oplen, /* in bits */
7817 unsigned long *len, /* in bits */
7818 unsigned long *wordsz, /* in bytes */
7819 unsigned long *chunksz, /* in bytes */
7820 unsigned long *lsb0_p,
7821 unsigned long *signed_p,
7822 unsigned long *trunc_p,
7823 unsigned long encoded)
7824 {
7825 * start = encoded & 0x3F;
7826 * len = (encoded >> 6) & 0x3F;
7827 * oplen = (encoded >> 12) & 0x3F;
7828 * wordsz = (encoded >> 18) & 0xF;
7829 * chunksz = (encoded >> 22) & 0xF;
7830 * lsb0_p = (encoded >> 27) & 1;
7831 * signed_p = (encoded >> 28) & 1;
7832 * trunc_p = (encoded >> 29) & 1;
7833 }
7834
7835 bfd_reloc_status_type
7836 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7837 asection *input_section ATTRIBUTE_UNUSED,
7838 bfd_byte *contents,
7839 Elf_Internal_Rela *rel,
7840 bfd_vma relocation)
7841 {
7842 bfd_vma shift, x, mask;
7843 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7844 bfd_reloc_status_type r;
7845
7846 /* Perform this reloc, since it is complex.
7847 (this is not to say that it necessarily refers to a complex
7848 symbol; merely that it is a self-describing CGEN based reloc.
7849 i.e. the addend has the complete reloc information (bit start, end,
7850 word size, etc) encoded within it.). */
7851
7852 decode_complex_addend (&start, &oplen, &len, &wordsz,
7853 &chunksz, &lsb0_p, &signed_p,
7854 &trunc_p, rel->r_addend);
7855
7856 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7857
7858 if (lsb0_p)
7859 shift = (start + 1) - len;
7860 else
7861 shift = (8 * wordsz) - (start + len);
7862
7863 /* FIXME: octets_per_byte. */
7864 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7865
7866 #ifdef DEBUG
7867 printf ("Doing complex reloc: "
7868 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7869 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7870 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7871 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7872 oplen, (unsigned long) x, (unsigned long) mask,
7873 (unsigned long) relocation);
7874 #endif
7875
7876 r = bfd_reloc_ok;
7877 if (! trunc_p)
7878 /* Now do an overflow check. */
7879 r = bfd_check_overflow ((signed_p
7880 ? complain_overflow_signed
7881 : complain_overflow_unsigned),
7882 len, 0, (8 * wordsz),
7883 relocation);
7884
7885 /* Do the deed. */
7886 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7887
7888 #ifdef DEBUG
7889 printf (" relocation: %8.8lx\n"
7890 " shifted mask: %8.8lx\n"
7891 " shifted/masked reloc: %8.8lx\n"
7892 " result: %8.8lx\n",
7893 (unsigned long) relocation, (unsigned long) (mask << shift),
7894 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7895 #endif
7896 /* FIXME: octets_per_byte. */
7897 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7898 return r;
7899 }
7900
7901 /* When performing a relocatable link, the input relocations are
7902 preserved. But, if they reference global symbols, the indices
7903 referenced must be updated. Update all the relocations found in
7904 RELDATA. */
7905
7906 static void
7907 elf_link_adjust_relocs (bfd *abfd,
7908 struct bfd_elf_section_reloc_data *reldata)
7909 {
7910 unsigned int i;
7911 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7912 bfd_byte *erela;
7913 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7914 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7915 bfd_vma r_type_mask;
7916 int r_sym_shift;
7917 unsigned int count = reldata->count;
7918 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7919
7920 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7921 {
7922 swap_in = bed->s->swap_reloc_in;
7923 swap_out = bed->s->swap_reloc_out;
7924 }
7925 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7926 {
7927 swap_in = bed->s->swap_reloca_in;
7928 swap_out = bed->s->swap_reloca_out;
7929 }
7930 else
7931 abort ();
7932
7933 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7934 abort ();
7935
7936 if (bed->s->arch_size == 32)
7937 {
7938 r_type_mask = 0xff;
7939 r_sym_shift = 8;
7940 }
7941 else
7942 {
7943 r_type_mask = 0xffffffff;
7944 r_sym_shift = 32;
7945 }
7946
7947 erela = reldata->hdr->contents;
7948 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7949 {
7950 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7951 unsigned int j;
7952
7953 if (*rel_hash == NULL)
7954 continue;
7955
7956 BFD_ASSERT ((*rel_hash)->indx >= 0);
7957
7958 (*swap_in) (abfd, erela, irela);
7959 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7960 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7961 | (irela[j].r_info & r_type_mask));
7962 (*swap_out) (abfd, irela, erela);
7963 }
7964 }
7965
7966 struct elf_link_sort_rela
7967 {
7968 union {
7969 bfd_vma offset;
7970 bfd_vma sym_mask;
7971 } u;
7972 enum elf_reloc_type_class type;
7973 /* We use this as an array of size int_rels_per_ext_rel. */
7974 Elf_Internal_Rela rela[1];
7975 };
7976
7977 static int
7978 elf_link_sort_cmp1 (const void *A, const void *B)
7979 {
7980 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7981 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7982 int relativea, relativeb;
7983
7984 relativea = a->type == reloc_class_relative;
7985 relativeb = b->type == reloc_class_relative;
7986
7987 if (relativea < relativeb)
7988 return 1;
7989 if (relativea > relativeb)
7990 return -1;
7991 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7992 return -1;
7993 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7994 return 1;
7995 if (a->rela->r_offset < b->rela->r_offset)
7996 return -1;
7997 if (a->rela->r_offset > b->rela->r_offset)
7998 return 1;
7999 return 0;
8000 }
8001
8002 static int
8003 elf_link_sort_cmp2 (const void *A, const void *B)
8004 {
8005 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8006 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8007 int copya, copyb;
8008
8009 if (a->u.offset < b->u.offset)
8010 return -1;
8011 if (a->u.offset > b->u.offset)
8012 return 1;
8013 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8014 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8015 if (copya < copyb)
8016 return -1;
8017 if (copya > copyb)
8018 return 1;
8019 if (a->rela->r_offset < b->rela->r_offset)
8020 return -1;
8021 if (a->rela->r_offset > b->rela->r_offset)
8022 return 1;
8023 return 0;
8024 }
8025
8026 static size_t
8027 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8028 {
8029 asection *dynamic_relocs;
8030 asection *rela_dyn;
8031 asection *rel_dyn;
8032 bfd_size_type count, size;
8033 size_t i, ret, sort_elt, ext_size;
8034 bfd_byte *sort, *s_non_relative, *p;
8035 struct elf_link_sort_rela *sq;
8036 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8037 int i2e = bed->s->int_rels_per_ext_rel;
8038 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8039 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8040 struct bfd_link_order *lo;
8041 bfd_vma r_sym_mask;
8042 bfd_boolean use_rela;
8043
8044 /* Find a dynamic reloc section. */
8045 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8046 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8047 if (rela_dyn != NULL && rela_dyn->size > 0
8048 && rel_dyn != NULL && rel_dyn->size > 0)
8049 {
8050 bfd_boolean use_rela_initialised = FALSE;
8051
8052 /* This is just here to stop gcc from complaining.
8053 It's initialization checking code is not perfect. */
8054 use_rela = TRUE;
8055
8056 /* Both sections are present. Examine the sizes
8057 of the indirect sections to help us choose. */
8058 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8059 if (lo->type == bfd_indirect_link_order)
8060 {
8061 asection *o = lo->u.indirect.section;
8062
8063 if ((o->size % bed->s->sizeof_rela) == 0)
8064 {
8065 if ((o->size % bed->s->sizeof_rel) == 0)
8066 /* Section size is divisible by both rel and rela sizes.
8067 It is of no help to us. */
8068 ;
8069 else
8070 {
8071 /* Section size is only divisible by rela. */
8072 if (use_rela_initialised && (use_rela == FALSE))
8073 {
8074 _bfd_error_handler
8075 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8076 bfd_set_error (bfd_error_invalid_operation);
8077 return 0;
8078 }
8079 else
8080 {
8081 use_rela = TRUE;
8082 use_rela_initialised = TRUE;
8083 }
8084 }
8085 }
8086 else if ((o->size % bed->s->sizeof_rel) == 0)
8087 {
8088 /* Section size is only divisible by rel. */
8089 if (use_rela_initialised && (use_rela == TRUE))
8090 {
8091 _bfd_error_handler
8092 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8093 bfd_set_error (bfd_error_invalid_operation);
8094 return 0;
8095 }
8096 else
8097 {
8098 use_rela = FALSE;
8099 use_rela_initialised = TRUE;
8100 }
8101 }
8102 else
8103 {
8104 /* The section size is not divisible by either - something is wrong. */
8105 _bfd_error_handler
8106 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8107 bfd_set_error (bfd_error_invalid_operation);
8108 return 0;
8109 }
8110 }
8111
8112 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8113 if (lo->type == bfd_indirect_link_order)
8114 {
8115 asection *o = lo->u.indirect.section;
8116
8117 if ((o->size % bed->s->sizeof_rela) == 0)
8118 {
8119 if ((o->size % bed->s->sizeof_rel) == 0)
8120 /* Section size is divisible by both rel and rela sizes.
8121 It is of no help to us. */
8122 ;
8123 else
8124 {
8125 /* Section size is only divisible by rela. */
8126 if (use_rela_initialised && (use_rela == FALSE))
8127 {
8128 _bfd_error_handler
8129 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8130 bfd_set_error (bfd_error_invalid_operation);
8131 return 0;
8132 }
8133 else
8134 {
8135 use_rela = TRUE;
8136 use_rela_initialised = TRUE;
8137 }
8138 }
8139 }
8140 else if ((o->size % bed->s->sizeof_rel) == 0)
8141 {
8142 /* Section size is only divisible by rel. */
8143 if (use_rela_initialised && (use_rela == TRUE))
8144 {
8145 _bfd_error_handler
8146 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8147 bfd_set_error (bfd_error_invalid_operation);
8148 return 0;
8149 }
8150 else
8151 {
8152 use_rela = FALSE;
8153 use_rela_initialised = TRUE;
8154 }
8155 }
8156 else
8157 {
8158 /* The section size is not divisible by either - something is wrong. */
8159 _bfd_error_handler
8160 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8161 bfd_set_error (bfd_error_invalid_operation);
8162 return 0;
8163 }
8164 }
8165
8166 if (! use_rela_initialised)
8167 /* Make a guess. */
8168 use_rela = TRUE;
8169 }
8170 else if (rela_dyn != NULL && rela_dyn->size > 0)
8171 use_rela = TRUE;
8172 else if (rel_dyn != NULL && rel_dyn->size > 0)
8173 use_rela = FALSE;
8174 else
8175 return 0;
8176
8177 if (use_rela)
8178 {
8179 dynamic_relocs = rela_dyn;
8180 ext_size = bed->s->sizeof_rela;
8181 swap_in = bed->s->swap_reloca_in;
8182 swap_out = bed->s->swap_reloca_out;
8183 }
8184 else
8185 {
8186 dynamic_relocs = rel_dyn;
8187 ext_size = bed->s->sizeof_rel;
8188 swap_in = bed->s->swap_reloc_in;
8189 swap_out = bed->s->swap_reloc_out;
8190 }
8191
8192 size = 0;
8193 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8194 if (lo->type == bfd_indirect_link_order)
8195 size += lo->u.indirect.section->size;
8196
8197 if (size != dynamic_relocs->size)
8198 return 0;
8199
8200 sort_elt = (sizeof (struct elf_link_sort_rela)
8201 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8202
8203 count = dynamic_relocs->size / ext_size;
8204 if (count == 0)
8205 return 0;
8206 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8207
8208 if (sort == NULL)
8209 {
8210 (*info->callbacks->warning)
8211 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8212 return 0;
8213 }
8214
8215 if (bed->s->arch_size == 32)
8216 r_sym_mask = ~(bfd_vma) 0xff;
8217 else
8218 r_sym_mask = ~(bfd_vma) 0xffffffff;
8219
8220 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8221 if (lo->type == bfd_indirect_link_order)
8222 {
8223 bfd_byte *erel, *erelend;
8224 asection *o = lo->u.indirect.section;
8225
8226 if (o->contents == NULL && o->size != 0)
8227 {
8228 /* This is a reloc section that is being handled as a normal
8229 section. See bfd_section_from_shdr. We can't combine
8230 relocs in this case. */
8231 free (sort);
8232 return 0;
8233 }
8234 erel = o->contents;
8235 erelend = o->contents + o->size;
8236 /* FIXME: octets_per_byte. */
8237 p = sort + o->output_offset / ext_size * sort_elt;
8238
8239 while (erel < erelend)
8240 {
8241 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8242
8243 (*swap_in) (abfd, erel, s->rela);
8244 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8245 s->u.sym_mask = r_sym_mask;
8246 p += sort_elt;
8247 erel += ext_size;
8248 }
8249 }
8250
8251 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8252
8253 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8254 {
8255 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8256 if (s->type != reloc_class_relative)
8257 break;
8258 }
8259 ret = i;
8260 s_non_relative = p;
8261
8262 sq = (struct elf_link_sort_rela *) s_non_relative;
8263 for (; i < count; i++, p += sort_elt)
8264 {
8265 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8266 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8267 sq = sp;
8268 sp->u.offset = sq->rela->r_offset;
8269 }
8270
8271 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8272
8273 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8274 if (lo->type == bfd_indirect_link_order)
8275 {
8276 bfd_byte *erel, *erelend;
8277 asection *o = lo->u.indirect.section;
8278
8279 erel = o->contents;
8280 erelend = o->contents + o->size;
8281 /* FIXME: octets_per_byte. */
8282 p = sort + o->output_offset / ext_size * sort_elt;
8283 while (erel < erelend)
8284 {
8285 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8286 (*swap_out) (abfd, s->rela, erel);
8287 p += sort_elt;
8288 erel += ext_size;
8289 }
8290 }
8291
8292 free (sort);
8293 *psec = dynamic_relocs;
8294 return ret;
8295 }
8296
8297 /* Flush the output symbols to the file. */
8298
8299 static bfd_boolean
8300 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8301 const struct elf_backend_data *bed)
8302 {
8303 if (finfo->symbuf_count > 0)
8304 {
8305 Elf_Internal_Shdr *hdr;
8306 file_ptr pos;
8307 bfd_size_type amt;
8308
8309 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8310 pos = hdr->sh_offset + hdr->sh_size;
8311 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8312 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8313 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8314 return FALSE;
8315
8316 hdr->sh_size += amt;
8317 finfo->symbuf_count = 0;
8318 }
8319
8320 return TRUE;
8321 }
8322
8323 /* Add a symbol to the output symbol table. */
8324
8325 static int
8326 elf_link_output_sym (struct elf_final_link_info *finfo,
8327 const char *name,
8328 Elf_Internal_Sym *elfsym,
8329 asection *input_sec,
8330 struct elf_link_hash_entry *h)
8331 {
8332 bfd_byte *dest;
8333 Elf_External_Sym_Shndx *destshndx;
8334 int (*output_symbol_hook)
8335 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8336 struct elf_link_hash_entry *);
8337 const struct elf_backend_data *bed;
8338
8339 bed = get_elf_backend_data (finfo->output_bfd);
8340 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8341 if (output_symbol_hook != NULL)
8342 {
8343 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8344 if (ret != 1)
8345 return ret;
8346 }
8347
8348 if (name == NULL || *name == '\0')
8349 elfsym->st_name = 0;
8350 else if (input_sec->flags & SEC_EXCLUDE)
8351 elfsym->st_name = 0;
8352 else
8353 {
8354 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8355 name, TRUE, FALSE);
8356 if (elfsym->st_name == (unsigned long) -1)
8357 return 0;
8358 }
8359
8360 if (finfo->symbuf_count >= finfo->symbuf_size)
8361 {
8362 if (! elf_link_flush_output_syms (finfo, bed))
8363 return 0;
8364 }
8365
8366 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8367 destshndx = finfo->symshndxbuf;
8368 if (destshndx != NULL)
8369 {
8370 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8371 {
8372 bfd_size_type amt;
8373
8374 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8375 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8376 amt * 2);
8377 if (destshndx == NULL)
8378 return 0;
8379 finfo->symshndxbuf = destshndx;
8380 memset ((char *) destshndx + amt, 0, amt);
8381 finfo->shndxbuf_size *= 2;
8382 }
8383 destshndx += bfd_get_symcount (finfo->output_bfd);
8384 }
8385
8386 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8387 finfo->symbuf_count += 1;
8388 bfd_get_symcount (finfo->output_bfd) += 1;
8389
8390 return 1;
8391 }
8392
8393 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8394
8395 static bfd_boolean
8396 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8397 {
8398 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8399 && sym->st_shndx < SHN_LORESERVE)
8400 {
8401 /* The gABI doesn't support dynamic symbols in output sections
8402 beyond 64k. */
8403 (*_bfd_error_handler)
8404 (_("%B: Too many sections: %d (>= %d)"),
8405 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8406 bfd_set_error (bfd_error_nonrepresentable_section);
8407 return FALSE;
8408 }
8409 return TRUE;
8410 }
8411
8412 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8413 allowing an unsatisfied unversioned symbol in the DSO to match a
8414 versioned symbol that would normally require an explicit version.
8415 We also handle the case that a DSO references a hidden symbol
8416 which may be satisfied by a versioned symbol in another DSO. */
8417
8418 static bfd_boolean
8419 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8420 const struct elf_backend_data *bed,
8421 struct elf_link_hash_entry *h)
8422 {
8423 bfd *abfd;
8424 struct elf_link_loaded_list *loaded;
8425
8426 if (!is_elf_hash_table (info->hash))
8427 return FALSE;
8428
8429 switch (h->root.type)
8430 {
8431 default:
8432 abfd = NULL;
8433 break;
8434
8435 case bfd_link_hash_undefined:
8436 case bfd_link_hash_undefweak:
8437 abfd = h->root.u.undef.abfd;
8438 if ((abfd->flags & DYNAMIC) == 0
8439 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8440 return FALSE;
8441 break;
8442
8443 case bfd_link_hash_defined:
8444 case bfd_link_hash_defweak:
8445 abfd = h->root.u.def.section->owner;
8446 break;
8447
8448 case bfd_link_hash_common:
8449 abfd = h->root.u.c.p->section->owner;
8450 break;
8451 }
8452 BFD_ASSERT (abfd != NULL);
8453
8454 for (loaded = elf_hash_table (info)->loaded;
8455 loaded != NULL;
8456 loaded = loaded->next)
8457 {
8458 bfd *input;
8459 Elf_Internal_Shdr *hdr;
8460 bfd_size_type symcount;
8461 bfd_size_type extsymcount;
8462 bfd_size_type extsymoff;
8463 Elf_Internal_Shdr *versymhdr;
8464 Elf_Internal_Sym *isym;
8465 Elf_Internal_Sym *isymend;
8466 Elf_Internal_Sym *isymbuf;
8467 Elf_External_Versym *ever;
8468 Elf_External_Versym *extversym;
8469
8470 input = loaded->abfd;
8471
8472 /* We check each DSO for a possible hidden versioned definition. */
8473 if (input == abfd
8474 || (input->flags & DYNAMIC) == 0
8475 || elf_dynversym (input) == 0)
8476 continue;
8477
8478 hdr = &elf_tdata (input)->dynsymtab_hdr;
8479
8480 symcount = hdr->sh_size / bed->s->sizeof_sym;
8481 if (elf_bad_symtab (input))
8482 {
8483 extsymcount = symcount;
8484 extsymoff = 0;
8485 }
8486 else
8487 {
8488 extsymcount = symcount - hdr->sh_info;
8489 extsymoff = hdr->sh_info;
8490 }
8491
8492 if (extsymcount == 0)
8493 continue;
8494
8495 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8496 NULL, NULL, NULL);
8497 if (isymbuf == NULL)
8498 return FALSE;
8499
8500 /* Read in any version definitions. */
8501 versymhdr = &elf_tdata (input)->dynversym_hdr;
8502 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8503 if (extversym == NULL)
8504 goto error_ret;
8505
8506 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8507 || (bfd_bread (extversym, versymhdr->sh_size, input)
8508 != versymhdr->sh_size))
8509 {
8510 free (extversym);
8511 error_ret:
8512 free (isymbuf);
8513 return FALSE;
8514 }
8515
8516 ever = extversym + extsymoff;
8517 isymend = isymbuf + extsymcount;
8518 for (isym = isymbuf; isym < isymend; isym++, ever++)
8519 {
8520 const char *name;
8521 Elf_Internal_Versym iver;
8522 unsigned short version_index;
8523
8524 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8525 || isym->st_shndx == SHN_UNDEF)
8526 continue;
8527
8528 name = bfd_elf_string_from_elf_section (input,
8529 hdr->sh_link,
8530 isym->st_name);
8531 if (strcmp (name, h->root.root.string) != 0)
8532 continue;
8533
8534 _bfd_elf_swap_versym_in (input, ever, &iver);
8535
8536 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8537 && !(h->def_regular
8538 && h->forced_local))
8539 {
8540 /* If we have a non-hidden versioned sym, then it should
8541 have provided a definition for the undefined sym unless
8542 it is defined in a non-shared object and forced local.
8543 */
8544 abort ();
8545 }
8546
8547 version_index = iver.vs_vers & VERSYM_VERSION;
8548 if (version_index == 1 || version_index == 2)
8549 {
8550 /* This is the base or first version. We can use it. */
8551 free (extversym);
8552 free (isymbuf);
8553 return TRUE;
8554 }
8555 }
8556
8557 free (extversym);
8558 free (isymbuf);
8559 }
8560
8561 return FALSE;
8562 }
8563
8564 /* Add an external symbol to the symbol table. This is called from
8565 the hash table traversal routine. When generating a shared object,
8566 we go through the symbol table twice. The first time we output
8567 anything that might have been forced to local scope in a version
8568 script. The second time we output the symbols that are still
8569 global symbols. */
8570
8571 static bfd_boolean
8572 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8573 {
8574 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8575 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8576 struct elf_final_link_info *finfo = eoinfo->finfo;
8577 bfd_boolean strip;
8578 Elf_Internal_Sym sym;
8579 asection *input_sec;
8580 const struct elf_backend_data *bed;
8581 long indx;
8582 int ret;
8583
8584 if (h->root.type == bfd_link_hash_warning)
8585 {
8586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8587 if (h->root.type == bfd_link_hash_new)
8588 return TRUE;
8589 }
8590
8591 /* Decide whether to output this symbol in this pass. */
8592 if (eoinfo->localsyms)
8593 {
8594 if (!h->forced_local)
8595 return TRUE;
8596 }
8597 else
8598 {
8599 if (h->forced_local)
8600 return TRUE;
8601 }
8602
8603 bed = get_elf_backend_data (finfo->output_bfd);
8604
8605 if (h->root.type == bfd_link_hash_undefined)
8606 {
8607 /* If we have an undefined symbol reference here then it must have
8608 come from a shared library that is being linked in. (Undefined
8609 references in regular files have already been handled unless
8610 they are in unreferenced sections which are removed by garbage
8611 collection). */
8612 bfd_boolean ignore_undef = FALSE;
8613
8614 /* Some symbols may be special in that the fact that they're
8615 undefined can be safely ignored - let backend determine that. */
8616 if (bed->elf_backend_ignore_undef_symbol)
8617 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8618
8619 /* If we are reporting errors for this situation then do so now. */
8620 if (!ignore_undef
8621 && h->ref_dynamic
8622 && (!h->ref_regular || finfo->info->gc_sections)
8623 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8624 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8625 {
8626 if (! (finfo->info->callbacks->undefined_symbol
8627 (finfo->info, h->root.root.string,
8628 h->ref_regular ? NULL : h->root.u.undef.abfd,
8629 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8630 {
8631 bfd_set_error (bfd_error_bad_value);
8632 eoinfo->failed = TRUE;
8633 return FALSE;
8634 }
8635 }
8636 }
8637
8638 /* We should also warn if a forced local symbol is referenced from
8639 shared libraries. */
8640 if (! finfo->info->relocatable
8641 && (! finfo->info->shared)
8642 && h->forced_local
8643 && h->ref_dynamic
8644 && !h->dynamic_def
8645 && !h->dynamic_weak
8646 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8647 {
8648 bfd *def_bfd;
8649 const char *msg;
8650
8651 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8652 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8653 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8654 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8655 else
8656 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8657 def_bfd = finfo->output_bfd;
8658 if (h->root.u.def.section != bfd_abs_section_ptr)
8659 def_bfd = h->root.u.def.section->owner;
8660 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8661 h->root.root.string);
8662 bfd_set_error (bfd_error_bad_value);
8663 eoinfo->failed = TRUE;
8664 return FALSE;
8665 }
8666
8667 /* We don't want to output symbols that have never been mentioned by
8668 a regular file, or that we have been told to strip. However, if
8669 h->indx is set to -2, the symbol is used by a reloc and we must
8670 output it. */
8671 if (h->indx == -2)
8672 strip = FALSE;
8673 else if ((h->def_dynamic
8674 || h->ref_dynamic
8675 || h->root.type == bfd_link_hash_new)
8676 && !h->def_regular
8677 && !h->ref_regular)
8678 strip = TRUE;
8679 else if (finfo->info->strip == strip_all)
8680 strip = TRUE;
8681 else if (finfo->info->strip == strip_some
8682 && bfd_hash_lookup (finfo->info->keep_hash,
8683 h->root.root.string, FALSE, FALSE) == NULL)
8684 strip = TRUE;
8685 else if (finfo->info->strip_discarded
8686 && (h->root.type == bfd_link_hash_defined
8687 || h->root.type == bfd_link_hash_defweak)
8688 && elf_discarded_section (h->root.u.def.section))
8689 strip = TRUE;
8690 else if ((h->root.type == bfd_link_hash_undefined
8691 || h->root.type == bfd_link_hash_undefweak)
8692 && h->root.u.undef.abfd != NULL
8693 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8694 strip = TRUE;
8695 else
8696 strip = FALSE;
8697
8698 /* If we're stripping it, and it's not a dynamic symbol, there's
8699 nothing else to do unless it is a forced local symbol or a
8700 STT_GNU_IFUNC symbol. */
8701 if (strip
8702 && h->dynindx == -1
8703 && h->type != STT_GNU_IFUNC
8704 && !h->forced_local)
8705 return TRUE;
8706
8707 sym.st_value = 0;
8708 sym.st_size = h->size;
8709 sym.st_other = h->other;
8710 if (h->forced_local)
8711 {
8712 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8713 /* Turn off visibility on local symbol. */
8714 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8715 }
8716 else if (h->unique_global)
8717 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8718 else if (h->root.type == bfd_link_hash_undefweak
8719 || h->root.type == bfd_link_hash_defweak)
8720 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8721 else
8722 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8723 sym.st_target_internal = h->target_internal;
8724
8725 switch (h->root.type)
8726 {
8727 default:
8728 case bfd_link_hash_new:
8729 case bfd_link_hash_warning:
8730 abort ();
8731 return FALSE;
8732
8733 case bfd_link_hash_undefined:
8734 case bfd_link_hash_undefweak:
8735 input_sec = bfd_und_section_ptr;
8736 sym.st_shndx = SHN_UNDEF;
8737 break;
8738
8739 case bfd_link_hash_defined:
8740 case bfd_link_hash_defweak:
8741 {
8742 input_sec = h->root.u.def.section;
8743 if (input_sec->output_section != NULL)
8744 {
8745 sym.st_shndx =
8746 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8747 input_sec->output_section);
8748 if (sym.st_shndx == SHN_BAD)
8749 {
8750 (*_bfd_error_handler)
8751 (_("%B: could not find output section %A for input section %A"),
8752 finfo->output_bfd, input_sec->output_section, input_sec);
8753 bfd_set_error (bfd_error_nonrepresentable_section);
8754 eoinfo->failed = TRUE;
8755 return FALSE;
8756 }
8757
8758 /* ELF symbols in relocatable files are section relative,
8759 but in nonrelocatable files they are virtual
8760 addresses. */
8761 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8762 if (! finfo->info->relocatable)
8763 {
8764 sym.st_value += input_sec->output_section->vma;
8765 if (h->type == STT_TLS)
8766 {
8767 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8768 if (tls_sec != NULL)
8769 sym.st_value -= tls_sec->vma;
8770 else
8771 {
8772 /* The TLS section may have been garbage collected. */
8773 BFD_ASSERT (finfo->info->gc_sections
8774 && !input_sec->gc_mark);
8775 }
8776 }
8777 }
8778 }
8779 else
8780 {
8781 BFD_ASSERT (input_sec->owner == NULL
8782 || (input_sec->owner->flags & DYNAMIC) != 0);
8783 sym.st_shndx = SHN_UNDEF;
8784 input_sec = bfd_und_section_ptr;
8785 }
8786 }
8787 break;
8788
8789 case bfd_link_hash_common:
8790 input_sec = h->root.u.c.p->section;
8791 sym.st_shndx = bed->common_section_index (input_sec);
8792 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8793 break;
8794
8795 case bfd_link_hash_indirect:
8796 /* These symbols are created by symbol versioning. They point
8797 to the decorated version of the name. For example, if the
8798 symbol foo@@GNU_1.2 is the default, which should be used when
8799 foo is used with no version, then we add an indirect symbol
8800 foo which points to foo@@GNU_1.2. We ignore these symbols,
8801 since the indirected symbol is already in the hash table. */
8802 return TRUE;
8803 }
8804
8805 /* Give the processor backend a chance to tweak the symbol value,
8806 and also to finish up anything that needs to be done for this
8807 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8808 forced local syms when non-shared is due to a historical quirk.
8809 STT_GNU_IFUNC symbol must go through PLT. */
8810 if ((h->type == STT_GNU_IFUNC
8811 && h->def_regular
8812 && !finfo->info->relocatable)
8813 || ((h->dynindx != -1
8814 || h->forced_local)
8815 && ((finfo->info->shared
8816 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8817 || h->root.type != bfd_link_hash_undefweak))
8818 || !h->forced_local)
8819 && elf_hash_table (finfo->info)->dynamic_sections_created))
8820 {
8821 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8822 (finfo->output_bfd, finfo->info, h, &sym)))
8823 {
8824 eoinfo->failed = TRUE;
8825 return FALSE;
8826 }
8827 }
8828
8829 /* If we are marking the symbol as undefined, and there are no
8830 non-weak references to this symbol from a regular object, then
8831 mark the symbol as weak undefined; if there are non-weak
8832 references, mark the symbol as strong. We can't do this earlier,
8833 because it might not be marked as undefined until the
8834 finish_dynamic_symbol routine gets through with it. */
8835 if (sym.st_shndx == SHN_UNDEF
8836 && h->ref_regular
8837 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8838 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8839 {
8840 int bindtype;
8841 unsigned int type = ELF_ST_TYPE (sym.st_info);
8842
8843 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8844 if (type == STT_GNU_IFUNC)
8845 type = STT_FUNC;
8846
8847 if (h->ref_regular_nonweak)
8848 bindtype = STB_GLOBAL;
8849 else
8850 bindtype = STB_WEAK;
8851 sym.st_info = ELF_ST_INFO (bindtype, type);
8852 }
8853
8854 /* If this is a symbol defined in a dynamic library, don't use the
8855 symbol size from the dynamic library. Relinking an executable
8856 against a new library may introduce gratuitous changes in the
8857 executable's symbols if we keep the size. */
8858 if (sym.st_shndx == SHN_UNDEF
8859 && !h->def_regular
8860 && h->def_dynamic)
8861 sym.st_size = 0;
8862
8863 /* If a non-weak symbol with non-default visibility is not defined
8864 locally, it is a fatal error. */
8865 if (! finfo->info->relocatable
8866 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8867 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8868 && h->root.type == bfd_link_hash_undefined
8869 && !h->def_regular)
8870 {
8871 const char *msg;
8872
8873 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8874 msg = _("%B: protected symbol `%s' isn't defined");
8875 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8876 msg = _("%B: internal symbol `%s' isn't defined");
8877 else
8878 msg = _("%B: hidden symbol `%s' isn't defined");
8879 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8880 bfd_set_error (bfd_error_bad_value);
8881 eoinfo->failed = TRUE;
8882 return FALSE;
8883 }
8884
8885 /* If this symbol should be put in the .dynsym section, then put it
8886 there now. We already know the symbol index. We also fill in
8887 the entry in the .hash section. */
8888 if (h->dynindx != -1
8889 && elf_hash_table (finfo->info)->dynamic_sections_created)
8890 {
8891 bfd_byte *esym;
8892
8893 sym.st_name = h->dynstr_index;
8894 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8895 if (! check_dynsym (finfo->output_bfd, &sym))
8896 {
8897 eoinfo->failed = TRUE;
8898 return FALSE;
8899 }
8900 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8901
8902 if (finfo->hash_sec != NULL)
8903 {
8904 size_t hash_entry_size;
8905 bfd_byte *bucketpos;
8906 bfd_vma chain;
8907 size_t bucketcount;
8908 size_t bucket;
8909
8910 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8911 bucket = h->u.elf_hash_value % bucketcount;
8912
8913 hash_entry_size
8914 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8915 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8916 + (bucket + 2) * hash_entry_size);
8917 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8918 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8919 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8920 ((bfd_byte *) finfo->hash_sec->contents
8921 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8922 }
8923
8924 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8925 {
8926 Elf_Internal_Versym iversym;
8927 Elf_External_Versym *eversym;
8928
8929 if (!h->def_regular)
8930 {
8931 if (h->verinfo.verdef == NULL)
8932 iversym.vs_vers = 0;
8933 else
8934 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8935 }
8936 else
8937 {
8938 if (h->verinfo.vertree == NULL)
8939 iversym.vs_vers = 1;
8940 else
8941 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8942 if (finfo->info->create_default_symver)
8943 iversym.vs_vers++;
8944 }
8945
8946 if (h->hidden)
8947 iversym.vs_vers |= VERSYM_HIDDEN;
8948
8949 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8950 eversym += h->dynindx;
8951 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8952 }
8953 }
8954
8955 /* If we're stripping it, then it was just a dynamic symbol, and
8956 there's nothing else to do. */
8957 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8958 return TRUE;
8959
8960 indx = bfd_get_symcount (finfo->output_bfd);
8961 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8962 if (ret == 0)
8963 {
8964 eoinfo->failed = TRUE;
8965 return FALSE;
8966 }
8967 else if (ret == 1)
8968 h->indx = indx;
8969 else if (h->indx == -2)
8970 abort();
8971
8972 return TRUE;
8973 }
8974
8975 /* Return TRUE if special handling is done for relocs in SEC against
8976 symbols defined in discarded sections. */
8977
8978 static bfd_boolean
8979 elf_section_ignore_discarded_relocs (asection *sec)
8980 {
8981 const struct elf_backend_data *bed;
8982
8983 switch (sec->sec_info_type)
8984 {
8985 case ELF_INFO_TYPE_STABS:
8986 case ELF_INFO_TYPE_EH_FRAME:
8987 return TRUE;
8988 default:
8989 break;
8990 }
8991
8992 bed = get_elf_backend_data (sec->owner);
8993 if (bed->elf_backend_ignore_discarded_relocs != NULL
8994 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8995 return TRUE;
8996
8997 return FALSE;
8998 }
8999
9000 /* Return a mask saying how ld should treat relocations in SEC against
9001 symbols defined in discarded sections. If this function returns
9002 COMPLAIN set, ld will issue a warning message. If this function
9003 returns PRETEND set, and the discarded section was link-once and the
9004 same size as the kept link-once section, ld will pretend that the
9005 symbol was actually defined in the kept section. Otherwise ld will
9006 zero the reloc (at least that is the intent, but some cooperation by
9007 the target dependent code is needed, particularly for REL targets). */
9008
9009 unsigned int
9010 _bfd_elf_default_action_discarded (asection *sec)
9011 {
9012 if (sec->flags & SEC_DEBUGGING)
9013 return PRETEND;
9014
9015 if (strcmp (".eh_frame", sec->name) == 0)
9016 return 0;
9017
9018 if (strcmp (".gcc_except_table", sec->name) == 0)
9019 return 0;
9020
9021 return COMPLAIN | PRETEND;
9022 }
9023
9024 /* Find a match between a section and a member of a section group. */
9025
9026 static asection *
9027 match_group_member (asection *sec, asection *group,
9028 struct bfd_link_info *info)
9029 {
9030 asection *first = elf_next_in_group (group);
9031 asection *s = first;
9032
9033 while (s != NULL)
9034 {
9035 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9036 return s;
9037
9038 s = elf_next_in_group (s);
9039 if (s == first)
9040 break;
9041 }
9042
9043 return NULL;
9044 }
9045
9046 /* Check if the kept section of a discarded section SEC can be used
9047 to replace it. Return the replacement if it is OK. Otherwise return
9048 NULL. */
9049
9050 asection *
9051 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9052 {
9053 asection *kept;
9054
9055 kept = sec->kept_section;
9056 if (kept != NULL)
9057 {
9058 if ((kept->flags & SEC_GROUP) != 0)
9059 kept = match_group_member (sec, kept, info);
9060 if (kept != NULL
9061 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9062 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9063 kept = NULL;
9064 sec->kept_section = kept;
9065 }
9066 return kept;
9067 }
9068
9069 /* Link an input file into the linker output file. This function
9070 handles all the sections and relocations of the input file at once.
9071 This is so that we only have to read the local symbols once, and
9072 don't have to keep them in memory. */
9073
9074 static bfd_boolean
9075 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9076 {
9077 int (*relocate_section)
9078 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9079 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9080 bfd *output_bfd;
9081 Elf_Internal_Shdr *symtab_hdr;
9082 size_t locsymcount;
9083 size_t extsymoff;
9084 Elf_Internal_Sym *isymbuf;
9085 Elf_Internal_Sym *isym;
9086 Elf_Internal_Sym *isymend;
9087 long *pindex;
9088 asection **ppsection;
9089 asection *o;
9090 const struct elf_backend_data *bed;
9091 struct elf_link_hash_entry **sym_hashes;
9092 bfd_size_type address_size;
9093 bfd_vma r_type_mask;
9094 int r_sym_shift;
9095
9096 output_bfd = finfo->output_bfd;
9097 bed = get_elf_backend_data (output_bfd);
9098 relocate_section = bed->elf_backend_relocate_section;
9099
9100 /* If this is a dynamic object, we don't want to do anything here:
9101 we don't want the local symbols, and we don't want the section
9102 contents. */
9103 if ((input_bfd->flags & DYNAMIC) != 0)
9104 return TRUE;
9105
9106 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9107 if (elf_bad_symtab (input_bfd))
9108 {
9109 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9110 extsymoff = 0;
9111 }
9112 else
9113 {
9114 locsymcount = symtab_hdr->sh_info;
9115 extsymoff = symtab_hdr->sh_info;
9116 }
9117
9118 /* Read the local symbols. */
9119 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9120 if (isymbuf == NULL && locsymcount != 0)
9121 {
9122 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9123 finfo->internal_syms,
9124 finfo->external_syms,
9125 finfo->locsym_shndx);
9126 if (isymbuf == NULL)
9127 return FALSE;
9128 }
9129
9130 /* Find local symbol sections and adjust values of symbols in
9131 SEC_MERGE sections. Write out those local symbols we know are
9132 going into the output file. */
9133 isymend = isymbuf + locsymcount;
9134 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9135 isym < isymend;
9136 isym++, pindex++, ppsection++)
9137 {
9138 asection *isec;
9139 const char *name;
9140 Elf_Internal_Sym osym;
9141 long indx;
9142 int ret;
9143
9144 *pindex = -1;
9145
9146 if (elf_bad_symtab (input_bfd))
9147 {
9148 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9149 {
9150 *ppsection = NULL;
9151 continue;
9152 }
9153 }
9154
9155 if (isym->st_shndx == SHN_UNDEF)
9156 isec = bfd_und_section_ptr;
9157 else if (isym->st_shndx == SHN_ABS)
9158 isec = bfd_abs_section_ptr;
9159 else if (isym->st_shndx == SHN_COMMON)
9160 isec = bfd_com_section_ptr;
9161 else
9162 {
9163 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9164 if (isec == NULL)
9165 {
9166 /* Don't attempt to output symbols with st_shnx in the
9167 reserved range other than SHN_ABS and SHN_COMMON. */
9168 *ppsection = NULL;
9169 continue;
9170 }
9171 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9172 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9173 isym->st_value =
9174 _bfd_merged_section_offset (output_bfd, &isec,
9175 elf_section_data (isec)->sec_info,
9176 isym->st_value);
9177 }
9178
9179 *ppsection = isec;
9180
9181 /* Don't output the first, undefined, symbol. */
9182 if (ppsection == finfo->sections)
9183 continue;
9184
9185 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9186 {
9187 /* We never output section symbols. Instead, we use the
9188 section symbol of the corresponding section in the output
9189 file. */
9190 continue;
9191 }
9192
9193 /* If we are stripping all symbols, we don't want to output this
9194 one. */
9195 if (finfo->info->strip == strip_all)
9196 continue;
9197
9198 /* If we are discarding all local symbols, we don't want to
9199 output this one. If we are generating a relocatable output
9200 file, then some of the local symbols may be required by
9201 relocs; we output them below as we discover that they are
9202 needed. */
9203 if (finfo->info->discard == discard_all)
9204 continue;
9205
9206 /* If this symbol is defined in a section which we are
9207 discarding, we don't need to keep it. */
9208 if (isym->st_shndx != SHN_UNDEF
9209 && isym->st_shndx < SHN_LORESERVE
9210 && bfd_section_removed_from_list (output_bfd,
9211 isec->output_section))
9212 continue;
9213
9214 /* Get the name of the symbol. */
9215 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9216 isym->st_name);
9217 if (name == NULL)
9218 return FALSE;
9219
9220 /* See if we are discarding symbols with this name. */
9221 if ((finfo->info->strip == strip_some
9222 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9223 == NULL))
9224 || (((finfo->info->discard == discard_sec_merge
9225 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9226 || finfo->info->discard == discard_l)
9227 && bfd_is_local_label_name (input_bfd, name)))
9228 continue;
9229
9230 osym = *isym;
9231
9232 /* Adjust the section index for the output file. */
9233 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9234 isec->output_section);
9235 if (osym.st_shndx == SHN_BAD)
9236 return FALSE;
9237
9238 /* ELF symbols in relocatable files are section relative, but
9239 in executable files they are virtual addresses. Note that
9240 this code assumes that all ELF sections have an associated
9241 BFD section with a reasonable value for output_offset; below
9242 we assume that they also have a reasonable value for
9243 output_section. Any special sections must be set up to meet
9244 these requirements. */
9245 osym.st_value += isec->output_offset;
9246 if (! finfo->info->relocatable)
9247 {
9248 osym.st_value += isec->output_section->vma;
9249 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9250 {
9251 /* STT_TLS symbols are relative to PT_TLS segment base. */
9252 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9253 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9254 }
9255 }
9256
9257 indx = bfd_get_symcount (output_bfd);
9258 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9259 if (ret == 0)
9260 return FALSE;
9261 else if (ret == 1)
9262 *pindex = indx;
9263 }
9264
9265 if (bed->s->arch_size == 32)
9266 {
9267 r_type_mask = 0xff;
9268 r_sym_shift = 8;
9269 address_size = 4;
9270 }
9271 else
9272 {
9273 r_type_mask = 0xffffffff;
9274 r_sym_shift = 32;
9275 address_size = 8;
9276 }
9277
9278 /* Relocate the contents of each section. */
9279 sym_hashes = elf_sym_hashes (input_bfd);
9280 for (o = input_bfd->sections; o != NULL; o = o->next)
9281 {
9282 bfd_byte *contents;
9283
9284 if (! o->linker_mark)
9285 {
9286 /* This section was omitted from the link. */
9287 continue;
9288 }
9289
9290 if (finfo->info->relocatable
9291 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9292 {
9293 /* Deal with the group signature symbol. */
9294 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9295 unsigned long symndx = sec_data->this_hdr.sh_info;
9296 asection *osec = o->output_section;
9297
9298 if (symndx >= locsymcount
9299 || (elf_bad_symtab (input_bfd)
9300 && finfo->sections[symndx] == NULL))
9301 {
9302 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9303 while (h->root.type == bfd_link_hash_indirect
9304 || h->root.type == bfd_link_hash_warning)
9305 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9306 /* Arrange for symbol to be output. */
9307 h->indx = -2;
9308 elf_section_data (osec)->this_hdr.sh_info = -2;
9309 }
9310 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9311 {
9312 /* We'll use the output section target_index. */
9313 asection *sec = finfo->sections[symndx]->output_section;
9314 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9315 }
9316 else
9317 {
9318 if (finfo->indices[symndx] == -1)
9319 {
9320 /* Otherwise output the local symbol now. */
9321 Elf_Internal_Sym sym = isymbuf[symndx];
9322 asection *sec = finfo->sections[symndx]->output_section;
9323 const char *name;
9324 long indx;
9325 int ret;
9326
9327 name = bfd_elf_string_from_elf_section (input_bfd,
9328 symtab_hdr->sh_link,
9329 sym.st_name);
9330 if (name == NULL)
9331 return FALSE;
9332
9333 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9334 sec);
9335 if (sym.st_shndx == SHN_BAD)
9336 return FALSE;
9337
9338 sym.st_value += o->output_offset;
9339
9340 indx = bfd_get_symcount (output_bfd);
9341 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9342 if (ret == 0)
9343 return FALSE;
9344 else if (ret == 1)
9345 finfo->indices[symndx] = indx;
9346 else
9347 abort ();
9348 }
9349 elf_section_data (osec)->this_hdr.sh_info
9350 = finfo->indices[symndx];
9351 }
9352 }
9353
9354 if ((o->flags & SEC_HAS_CONTENTS) == 0
9355 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9356 continue;
9357
9358 if ((o->flags & SEC_LINKER_CREATED) != 0)
9359 {
9360 /* Section was created by _bfd_elf_link_create_dynamic_sections
9361 or somesuch. */
9362 continue;
9363 }
9364
9365 /* Get the contents of the section. They have been cached by a
9366 relaxation routine. Note that o is a section in an input
9367 file, so the contents field will not have been set by any of
9368 the routines which work on output files. */
9369 if (elf_section_data (o)->this_hdr.contents != NULL)
9370 contents = elf_section_data (o)->this_hdr.contents;
9371 else
9372 {
9373 contents = finfo->contents;
9374 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9375 return FALSE;
9376 }
9377
9378 if ((o->flags & SEC_RELOC) != 0)
9379 {
9380 Elf_Internal_Rela *internal_relocs;
9381 Elf_Internal_Rela *rel, *relend;
9382 int action_discarded;
9383 int ret;
9384
9385 /* Get the swapped relocs. */
9386 internal_relocs
9387 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9388 finfo->internal_relocs, FALSE);
9389 if (internal_relocs == NULL
9390 && o->reloc_count > 0)
9391 return FALSE;
9392
9393 /* We need to reverse-copy input .ctors/.dtors sections if
9394 they are placed in .init_array/.finit_array for output. */
9395 if (o->size > address_size
9396 && ((strncmp (o->name, ".ctors", 6) == 0
9397 && strcmp (o->output_section->name,
9398 ".init_array") == 0)
9399 || (strncmp (o->name, ".dtors", 6) == 0
9400 && strcmp (o->output_section->name,
9401 ".fini_array") == 0))
9402 && (o->name[6] == 0 || o->name[6] == '.'))
9403 {
9404 if (o->size != o->reloc_count * address_size)
9405 {
9406 (*_bfd_error_handler)
9407 (_("error: %B: size of section %A is not "
9408 "multiple of address size"),
9409 input_bfd, o);
9410 bfd_set_error (bfd_error_on_input);
9411 return FALSE;
9412 }
9413 o->flags |= SEC_ELF_REVERSE_COPY;
9414 }
9415
9416 action_discarded = -1;
9417 if (!elf_section_ignore_discarded_relocs (o))
9418 action_discarded = (*bed->action_discarded) (o);
9419
9420 /* Run through the relocs evaluating complex reloc symbols and
9421 looking for relocs against symbols from discarded sections
9422 or section symbols from removed link-once sections.
9423 Complain about relocs against discarded sections. Zero
9424 relocs against removed link-once sections. */
9425
9426 rel = internal_relocs;
9427 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9428 for ( ; rel < relend; rel++)
9429 {
9430 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9431 unsigned int s_type;
9432 asection **ps, *sec;
9433 struct elf_link_hash_entry *h = NULL;
9434 const char *sym_name;
9435
9436 if (r_symndx == STN_UNDEF)
9437 continue;
9438
9439 if (r_symndx >= locsymcount
9440 || (elf_bad_symtab (input_bfd)
9441 && finfo->sections[r_symndx] == NULL))
9442 {
9443 h = sym_hashes[r_symndx - extsymoff];
9444
9445 /* Badly formatted input files can contain relocs that
9446 reference non-existant symbols. Check here so that
9447 we do not seg fault. */
9448 if (h == NULL)
9449 {
9450 char buffer [32];
9451
9452 sprintf_vma (buffer, rel->r_info);
9453 (*_bfd_error_handler)
9454 (_("error: %B contains a reloc (0x%s) for section %A "
9455 "that references a non-existent global symbol"),
9456 input_bfd, o, buffer);
9457 bfd_set_error (bfd_error_bad_value);
9458 return FALSE;
9459 }
9460
9461 while (h->root.type == bfd_link_hash_indirect
9462 || h->root.type == bfd_link_hash_warning)
9463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9464
9465 s_type = h->type;
9466
9467 ps = NULL;
9468 if (h->root.type == bfd_link_hash_defined
9469 || h->root.type == bfd_link_hash_defweak)
9470 ps = &h->root.u.def.section;
9471
9472 sym_name = h->root.root.string;
9473 }
9474 else
9475 {
9476 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9477
9478 s_type = ELF_ST_TYPE (sym->st_info);
9479 ps = &finfo->sections[r_symndx];
9480 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9481 sym, *ps);
9482 }
9483
9484 if ((s_type == STT_RELC || s_type == STT_SRELC)
9485 && !finfo->info->relocatable)
9486 {
9487 bfd_vma val;
9488 bfd_vma dot = (rel->r_offset
9489 + o->output_offset + o->output_section->vma);
9490 #ifdef DEBUG
9491 printf ("Encountered a complex symbol!");
9492 printf (" (input_bfd %s, section %s, reloc %ld\n",
9493 input_bfd->filename, o->name,
9494 (long) (rel - internal_relocs));
9495 printf (" symbol: idx %8.8lx, name %s\n",
9496 r_symndx, sym_name);
9497 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9498 (unsigned long) rel->r_info,
9499 (unsigned long) rel->r_offset);
9500 #endif
9501 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9502 isymbuf, locsymcount, s_type == STT_SRELC))
9503 return FALSE;
9504
9505 /* Symbol evaluated OK. Update to absolute value. */
9506 set_symbol_value (input_bfd, isymbuf, locsymcount,
9507 r_symndx, val);
9508 continue;
9509 }
9510
9511 if (action_discarded != -1 && ps != NULL)
9512 {
9513 /* Complain if the definition comes from a
9514 discarded section. */
9515 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9516 {
9517 BFD_ASSERT (r_symndx != STN_UNDEF);
9518 if (action_discarded & COMPLAIN)
9519 (*finfo->info->callbacks->einfo)
9520 (_("%X`%s' referenced in section `%A' of %B: "
9521 "defined in discarded section `%A' of %B\n"),
9522 sym_name, o, input_bfd, sec, sec->owner);
9523
9524 /* Try to do the best we can to support buggy old
9525 versions of gcc. Pretend that the symbol is
9526 really defined in the kept linkonce section.
9527 FIXME: This is quite broken. Modifying the
9528 symbol here means we will be changing all later
9529 uses of the symbol, not just in this section. */
9530 if (action_discarded & PRETEND)
9531 {
9532 asection *kept;
9533
9534 kept = _bfd_elf_check_kept_section (sec,
9535 finfo->info);
9536 if (kept != NULL)
9537 {
9538 *ps = kept;
9539 continue;
9540 }
9541 }
9542 }
9543 }
9544 }
9545
9546 /* Relocate the section by invoking a back end routine.
9547
9548 The back end routine is responsible for adjusting the
9549 section contents as necessary, and (if using Rela relocs
9550 and generating a relocatable output file) adjusting the
9551 reloc addend as necessary.
9552
9553 The back end routine does not have to worry about setting
9554 the reloc address or the reloc symbol index.
9555
9556 The back end routine is given a pointer to the swapped in
9557 internal symbols, and can access the hash table entries
9558 for the external symbols via elf_sym_hashes (input_bfd).
9559
9560 When generating relocatable output, the back end routine
9561 must handle STB_LOCAL/STT_SECTION symbols specially. The
9562 output symbol is going to be a section symbol
9563 corresponding to the output section, which will require
9564 the addend to be adjusted. */
9565
9566 ret = (*relocate_section) (output_bfd, finfo->info,
9567 input_bfd, o, contents,
9568 internal_relocs,
9569 isymbuf,
9570 finfo->sections);
9571 if (!ret)
9572 return FALSE;
9573
9574 if (ret == 2
9575 || finfo->info->relocatable
9576 || finfo->info->emitrelocations)
9577 {
9578 Elf_Internal_Rela *irela;
9579 Elf_Internal_Rela *irelaend, *irelamid;
9580 bfd_vma last_offset;
9581 struct elf_link_hash_entry **rel_hash;
9582 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9583 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9584 unsigned int next_erel;
9585 bfd_boolean rela_normal;
9586 struct bfd_elf_section_data *esdi, *esdo;
9587
9588 esdi = elf_section_data (o);
9589 esdo = elf_section_data (o->output_section);
9590 rela_normal = FALSE;
9591
9592 /* Adjust the reloc addresses and symbol indices. */
9593
9594 irela = internal_relocs;
9595 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9596 rel_hash = esdo->rel.hashes + esdo->rel.count;
9597 /* We start processing the REL relocs, if any. When we reach
9598 IRELAMID in the loop, we switch to the RELA relocs. */
9599 irelamid = irela;
9600 if (esdi->rel.hdr != NULL)
9601 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9602 * bed->s->int_rels_per_ext_rel);
9603 rel_hash_list = rel_hash;
9604 rela_hash_list = NULL;
9605 last_offset = o->output_offset;
9606 if (!finfo->info->relocatable)
9607 last_offset += o->output_section->vma;
9608 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9609 {
9610 unsigned long r_symndx;
9611 asection *sec;
9612 Elf_Internal_Sym sym;
9613
9614 if (next_erel == bed->s->int_rels_per_ext_rel)
9615 {
9616 rel_hash++;
9617 next_erel = 0;
9618 }
9619
9620 if (irela == irelamid)
9621 {
9622 rel_hash = esdo->rela.hashes + esdo->rela.count;
9623 rela_hash_list = rel_hash;
9624 rela_normal = bed->rela_normal;
9625 }
9626
9627 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9628 finfo->info, o,
9629 irela->r_offset);
9630 if (irela->r_offset >= (bfd_vma) -2)
9631 {
9632 /* This is a reloc for a deleted entry or somesuch.
9633 Turn it into an R_*_NONE reloc, at the same
9634 offset as the last reloc. elf_eh_frame.c and
9635 bfd_elf_discard_info rely on reloc offsets
9636 being ordered. */
9637 irela->r_offset = last_offset;
9638 irela->r_info = 0;
9639 irela->r_addend = 0;
9640 continue;
9641 }
9642
9643 irela->r_offset += o->output_offset;
9644
9645 /* Relocs in an executable have to be virtual addresses. */
9646 if (!finfo->info->relocatable)
9647 irela->r_offset += o->output_section->vma;
9648
9649 last_offset = irela->r_offset;
9650
9651 r_symndx = irela->r_info >> r_sym_shift;
9652 if (r_symndx == STN_UNDEF)
9653 continue;
9654
9655 if (r_symndx >= locsymcount
9656 || (elf_bad_symtab (input_bfd)
9657 && finfo->sections[r_symndx] == NULL))
9658 {
9659 struct elf_link_hash_entry *rh;
9660 unsigned long indx;
9661
9662 /* This is a reloc against a global symbol. We
9663 have not yet output all the local symbols, so
9664 we do not know the symbol index of any global
9665 symbol. We set the rel_hash entry for this
9666 reloc to point to the global hash table entry
9667 for this symbol. The symbol index is then
9668 set at the end of bfd_elf_final_link. */
9669 indx = r_symndx - extsymoff;
9670 rh = elf_sym_hashes (input_bfd)[indx];
9671 while (rh->root.type == bfd_link_hash_indirect
9672 || rh->root.type == bfd_link_hash_warning)
9673 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9674
9675 /* Setting the index to -2 tells
9676 elf_link_output_extsym that this symbol is
9677 used by a reloc. */
9678 BFD_ASSERT (rh->indx < 0);
9679 rh->indx = -2;
9680
9681 *rel_hash = rh;
9682
9683 continue;
9684 }
9685
9686 /* This is a reloc against a local symbol. */
9687
9688 *rel_hash = NULL;
9689 sym = isymbuf[r_symndx];
9690 sec = finfo->sections[r_symndx];
9691 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9692 {
9693 /* I suppose the backend ought to fill in the
9694 section of any STT_SECTION symbol against a
9695 processor specific section. */
9696 r_symndx = STN_UNDEF;
9697 if (bfd_is_abs_section (sec))
9698 ;
9699 else if (sec == NULL || sec->owner == NULL)
9700 {
9701 bfd_set_error (bfd_error_bad_value);
9702 return FALSE;
9703 }
9704 else
9705 {
9706 asection *osec = sec->output_section;
9707
9708 /* If we have discarded a section, the output
9709 section will be the absolute section. In
9710 case of discarded SEC_MERGE sections, use
9711 the kept section. relocate_section should
9712 have already handled discarded linkonce
9713 sections. */
9714 if (bfd_is_abs_section (osec)
9715 && sec->kept_section != NULL
9716 && sec->kept_section->output_section != NULL)
9717 {
9718 osec = sec->kept_section->output_section;
9719 irela->r_addend -= osec->vma;
9720 }
9721
9722 if (!bfd_is_abs_section (osec))
9723 {
9724 r_symndx = osec->target_index;
9725 if (r_symndx == STN_UNDEF)
9726 {
9727 struct elf_link_hash_table *htab;
9728 asection *oi;
9729
9730 htab = elf_hash_table (finfo->info);
9731 oi = htab->text_index_section;
9732 if ((osec->flags & SEC_READONLY) == 0
9733 && htab->data_index_section != NULL)
9734 oi = htab->data_index_section;
9735
9736 if (oi != NULL)
9737 {
9738 irela->r_addend += osec->vma - oi->vma;
9739 r_symndx = oi->target_index;
9740 }
9741 }
9742
9743 BFD_ASSERT (r_symndx != STN_UNDEF);
9744 }
9745 }
9746
9747 /* Adjust the addend according to where the
9748 section winds up in the output section. */
9749 if (rela_normal)
9750 irela->r_addend += sec->output_offset;
9751 }
9752 else
9753 {
9754 if (finfo->indices[r_symndx] == -1)
9755 {
9756 unsigned long shlink;
9757 const char *name;
9758 asection *osec;
9759 long indx;
9760
9761 if (finfo->info->strip == strip_all)
9762 {
9763 /* You can't do ld -r -s. */
9764 bfd_set_error (bfd_error_invalid_operation);
9765 return FALSE;
9766 }
9767
9768 /* This symbol was skipped earlier, but
9769 since it is needed by a reloc, we
9770 must output it now. */
9771 shlink = symtab_hdr->sh_link;
9772 name = (bfd_elf_string_from_elf_section
9773 (input_bfd, shlink, sym.st_name));
9774 if (name == NULL)
9775 return FALSE;
9776
9777 osec = sec->output_section;
9778 sym.st_shndx =
9779 _bfd_elf_section_from_bfd_section (output_bfd,
9780 osec);
9781 if (sym.st_shndx == SHN_BAD)
9782 return FALSE;
9783
9784 sym.st_value += sec->output_offset;
9785 if (! finfo->info->relocatable)
9786 {
9787 sym.st_value += osec->vma;
9788 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9789 {
9790 /* STT_TLS symbols are relative to PT_TLS
9791 segment base. */
9792 BFD_ASSERT (elf_hash_table (finfo->info)
9793 ->tls_sec != NULL);
9794 sym.st_value -= (elf_hash_table (finfo->info)
9795 ->tls_sec->vma);
9796 }
9797 }
9798
9799 indx = bfd_get_symcount (output_bfd);
9800 ret = elf_link_output_sym (finfo, name, &sym, sec,
9801 NULL);
9802 if (ret == 0)
9803 return FALSE;
9804 else if (ret == 1)
9805 finfo->indices[r_symndx] = indx;
9806 else
9807 abort ();
9808 }
9809
9810 r_symndx = finfo->indices[r_symndx];
9811 }
9812
9813 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9814 | (irela->r_info & r_type_mask));
9815 }
9816
9817 /* Swap out the relocs. */
9818 input_rel_hdr = esdi->rel.hdr;
9819 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9820 {
9821 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9822 input_rel_hdr,
9823 internal_relocs,
9824 rel_hash_list))
9825 return FALSE;
9826 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9827 * bed->s->int_rels_per_ext_rel);
9828 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9829 }
9830
9831 input_rela_hdr = esdi->rela.hdr;
9832 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9833 {
9834 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9835 input_rela_hdr,
9836 internal_relocs,
9837 rela_hash_list))
9838 return FALSE;
9839 }
9840 }
9841 }
9842
9843 /* Write out the modified section contents. */
9844 if (bed->elf_backend_write_section
9845 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9846 contents))
9847 {
9848 /* Section written out. */
9849 }
9850 else switch (o->sec_info_type)
9851 {
9852 case ELF_INFO_TYPE_STABS:
9853 if (! (_bfd_write_section_stabs
9854 (output_bfd,
9855 &elf_hash_table (finfo->info)->stab_info,
9856 o, &elf_section_data (o)->sec_info, contents)))
9857 return FALSE;
9858 break;
9859 case ELF_INFO_TYPE_MERGE:
9860 if (! _bfd_write_merged_section (output_bfd, o,
9861 elf_section_data (o)->sec_info))
9862 return FALSE;
9863 break;
9864 case ELF_INFO_TYPE_EH_FRAME:
9865 {
9866 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9867 o, contents))
9868 return FALSE;
9869 }
9870 break;
9871 default:
9872 {
9873 /* FIXME: octets_per_byte. */
9874 if (! (o->flags & SEC_EXCLUDE))
9875 {
9876 file_ptr offset = (file_ptr) o->output_offset;
9877 bfd_size_type todo = o->size;
9878 if ((o->flags & SEC_ELF_REVERSE_COPY))
9879 {
9880 /* Reverse-copy input section to output. */
9881 do
9882 {
9883 todo -= address_size;
9884 if (! bfd_set_section_contents (output_bfd,
9885 o->output_section,
9886 contents + todo,
9887 offset,
9888 address_size))
9889 return FALSE;
9890 if (todo == 0)
9891 break;
9892 offset += address_size;
9893 }
9894 while (1);
9895 }
9896 else if (! bfd_set_section_contents (output_bfd,
9897 o->output_section,
9898 contents,
9899 offset, todo))
9900 return FALSE;
9901 }
9902 }
9903 break;
9904 }
9905 }
9906
9907 return TRUE;
9908 }
9909
9910 /* Generate a reloc when linking an ELF file. This is a reloc
9911 requested by the linker, and does not come from any input file. This
9912 is used to build constructor and destructor tables when linking
9913 with -Ur. */
9914
9915 static bfd_boolean
9916 elf_reloc_link_order (bfd *output_bfd,
9917 struct bfd_link_info *info,
9918 asection *output_section,
9919 struct bfd_link_order *link_order)
9920 {
9921 reloc_howto_type *howto;
9922 long indx;
9923 bfd_vma offset;
9924 bfd_vma addend;
9925 struct bfd_elf_section_reloc_data *reldata;
9926 struct elf_link_hash_entry **rel_hash_ptr;
9927 Elf_Internal_Shdr *rel_hdr;
9928 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9929 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9930 bfd_byte *erel;
9931 unsigned int i;
9932 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9933
9934 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9935 if (howto == NULL)
9936 {
9937 bfd_set_error (bfd_error_bad_value);
9938 return FALSE;
9939 }
9940
9941 addend = link_order->u.reloc.p->addend;
9942
9943 if (esdo->rel.hdr)
9944 reldata = &esdo->rel;
9945 else if (esdo->rela.hdr)
9946 reldata = &esdo->rela;
9947 else
9948 {
9949 reldata = NULL;
9950 BFD_ASSERT (0);
9951 }
9952
9953 /* Figure out the symbol index. */
9954 rel_hash_ptr = reldata->hashes + reldata->count;
9955 if (link_order->type == bfd_section_reloc_link_order)
9956 {
9957 indx = link_order->u.reloc.p->u.section->target_index;
9958 BFD_ASSERT (indx != 0);
9959 *rel_hash_ptr = NULL;
9960 }
9961 else
9962 {
9963 struct elf_link_hash_entry *h;
9964
9965 /* Treat a reloc against a defined symbol as though it were
9966 actually against the section. */
9967 h = ((struct elf_link_hash_entry *)
9968 bfd_wrapped_link_hash_lookup (output_bfd, info,
9969 link_order->u.reloc.p->u.name,
9970 FALSE, FALSE, TRUE));
9971 if (h != NULL
9972 && (h->root.type == bfd_link_hash_defined
9973 || h->root.type == bfd_link_hash_defweak))
9974 {
9975 asection *section;
9976
9977 section = h->root.u.def.section;
9978 indx = section->output_section->target_index;
9979 *rel_hash_ptr = NULL;
9980 /* It seems that we ought to add the symbol value to the
9981 addend here, but in practice it has already been added
9982 because it was passed to constructor_callback. */
9983 addend += section->output_section->vma + section->output_offset;
9984 }
9985 else if (h != NULL)
9986 {
9987 /* Setting the index to -2 tells elf_link_output_extsym that
9988 this symbol is used by a reloc. */
9989 h->indx = -2;
9990 *rel_hash_ptr = h;
9991 indx = 0;
9992 }
9993 else
9994 {
9995 if (! ((*info->callbacks->unattached_reloc)
9996 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9997 return FALSE;
9998 indx = 0;
9999 }
10000 }
10001
10002 /* If this is an inplace reloc, we must write the addend into the
10003 object file. */
10004 if (howto->partial_inplace && addend != 0)
10005 {
10006 bfd_size_type size;
10007 bfd_reloc_status_type rstat;
10008 bfd_byte *buf;
10009 bfd_boolean ok;
10010 const char *sym_name;
10011
10012 size = (bfd_size_type) bfd_get_reloc_size (howto);
10013 buf = (bfd_byte *) bfd_zmalloc (size);
10014 if (buf == NULL)
10015 return FALSE;
10016 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10017 switch (rstat)
10018 {
10019 case bfd_reloc_ok:
10020 break;
10021
10022 default:
10023 case bfd_reloc_outofrange:
10024 abort ();
10025
10026 case bfd_reloc_overflow:
10027 if (link_order->type == bfd_section_reloc_link_order)
10028 sym_name = bfd_section_name (output_bfd,
10029 link_order->u.reloc.p->u.section);
10030 else
10031 sym_name = link_order->u.reloc.p->u.name;
10032 if (! ((*info->callbacks->reloc_overflow)
10033 (info, NULL, sym_name, howto->name, addend, NULL,
10034 NULL, (bfd_vma) 0)))
10035 {
10036 free (buf);
10037 return FALSE;
10038 }
10039 break;
10040 }
10041 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10042 link_order->offset, size);
10043 free (buf);
10044 if (! ok)
10045 return FALSE;
10046 }
10047
10048 /* The address of a reloc is relative to the section in a
10049 relocatable file, and is a virtual address in an executable
10050 file. */
10051 offset = link_order->offset;
10052 if (! info->relocatable)
10053 offset += output_section->vma;
10054
10055 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10056 {
10057 irel[i].r_offset = offset;
10058 irel[i].r_info = 0;
10059 irel[i].r_addend = 0;
10060 }
10061 if (bed->s->arch_size == 32)
10062 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10063 else
10064 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10065
10066 rel_hdr = reldata->hdr;
10067 erel = rel_hdr->contents;
10068 if (rel_hdr->sh_type == SHT_REL)
10069 {
10070 erel += reldata->count * bed->s->sizeof_rel;
10071 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10072 }
10073 else
10074 {
10075 irel[0].r_addend = addend;
10076 erel += reldata->count * bed->s->sizeof_rela;
10077 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10078 }
10079
10080 ++reldata->count;
10081
10082 return TRUE;
10083 }
10084
10085
10086 /* Get the output vma of the section pointed to by the sh_link field. */
10087
10088 static bfd_vma
10089 elf_get_linked_section_vma (struct bfd_link_order *p)
10090 {
10091 Elf_Internal_Shdr **elf_shdrp;
10092 asection *s;
10093 int elfsec;
10094
10095 s = p->u.indirect.section;
10096 elf_shdrp = elf_elfsections (s->owner);
10097 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10098 elfsec = elf_shdrp[elfsec]->sh_link;
10099 /* PR 290:
10100 The Intel C compiler generates SHT_IA_64_UNWIND with
10101 SHF_LINK_ORDER. But it doesn't set the sh_link or
10102 sh_info fields. Hence we could get the situation
10103 where elfsec is 0. */
10104 if (elfsec == 0)
10105 {
10106 const struct elf_backend_data *bed
10107 = get_elf_backend_data (s->owner);
10108 if (bed->link_order_error_handler)
10109 bed->link_order_error_handler
10110 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10111 return 0;
10112 }
10113 else
10114 {
10115 s = elf_shdrp[elfsec]->bfd_section;
10116 return s->output_section->vma + s->output_offset;
10117 }
10118 }
10119
10120
10121 /* Compare two sections based on the locations of the sections they are
10122 linked to. Used by elf_fixup_link_order. */
10123
10124 static int
10125 compare_link_order (const void * a, const void * b)
10126 {
10127 bfd_vma apos;
10128 bfd_vma bpos;
10129
10130 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10131 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10132 if (apos < bpos)
10133 return -1;
10134 return apos > bpos;
10135 }
10136
10137
10138 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10139 order as their linked sections. Returns false if this could not be done
10140 because an output section includes both ordered and unordered
10141 sections. Ideally we'd do this in the linker proper. */
10142
10143 static bfd_boolean
10144 elf_fixup_link_order (bfd *abfd, asection *o)
10145 {
10146 int seen_linkorder;
10147 int seen_other;
10148 int n;
10149 struct bfd_link_order *p;
10150 bfd *sub;
10151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10152 unsigned elfsec;
10153 struct bfd_link_order **sections;
10154 asection *s, *other_sec, *linkorder_sec;
10155 bfd_vma offset;
10156
10157 other_sec = NULL;
10158 linkorder_sec = NULL;
10159 seen_other = 0;
10160 seen_linkorder = 0;
10161 for (p = o->map_head.link_order; p != NULL; p = p->next)
10162 {
10163 if (p->type == bfd_indirect_link_order)
10164 {
10165 s = p->u.indirect.section;
10166 sub = s->owner;
10167 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10168 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10169 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10170 && elfsec < elf_numsections (sub)
10171 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10172 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10173 {
10174 seen_linkorder++;
10175 linkorder_sec = s;
10176 }
10177 else
10178 {
10179 seen_other++;
10180 other_sec = s;
10181 }
10182 }
10183 else
10184 seen_other++;
10185
10186 if (seen_other && seen_linkorder)
10187 {
10188 if (other_sec && linkorder_sec)
10189 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10190 o, linkorder_sec,
10191 linkorder_sec->owner, other_sec,
10192 other_sec->owner);
10193 else
10194 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10195 o);
10196 bfd_set_error (bfd_error_bad_value);
10197 return FALSE;
10198 }
10199 }
10200
10201 if (!seen_linkorder)
10202 return TRUE;
10203
10204 sections = (struct bfd_link_order **)
10205 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10206 if (sections == NULL)
10207 return FALSE;
10208 seen_linkorder = 0;
10209
10210 for (p = o->map_head.link_order; p != NULL; p = p->next)
10211 {
10212 sections[seen_linkorder++] = p;
10213 }
10214 /* Sort the input sections in the order of their linked section. */
10215 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10216 compare_link_order);
10217
10218 /* Change the offsets of the sections. */
10219 offset = 0;
10220 for (n = 0; n < seen_linkorder; n++)
10221 {
10222 s = sections[n]->u.indirect.section;
10223 offset &= ~(bfd_vma) 0 << s->alignment_power;
10224 s->output_offset = offset;
10225 sections[n]->offset = offset;
10226 /* FIXME: octets_per_byte. */
10227 offset += sections[n]->size;
10228 }
10229
10230 free (sections);
10231 return TRUE;
10232 }
10233
10234
10235 /* Do the final step of an ELF link. */
10236
10237 bfd_boolean
10238 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10239 {
10240 bfd_boolean dynamic;
10241 bfd_boolean emit_relocs;
10242 bfd *dynobj;
10243 struct elf_final_link_info finfo;
10244 asection *o;
10245 struct bfd_link_order *p;
10246 bfd *sub;
10247 bfd_size_type max_contents_size;
10248 bfd_size_type max_external_reloc_size;
10249 bfd_size_type max_internal_reloc_count;
10250 bfd_size_type max_sym_count;
10251 bfd_size_type max_sym_shndx_count;
10252 file_ptr off;
10253 Elf_Internal_Sym elfsym;
10254 unsigned int i;
10255 Elf_Internal_Shdr *symtab_hdr;
10256 Elf_Internal_Shdr *symtab_shndx_hdr;
10257 Elf_Internal_Shdr *symstrtab_hdr;
10258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10259 struct elf_outext_info eoinfo;
10260 bfd_boolean merged;
10261 size_t relativecount = 0;
10262 asection *reldyn = 0;
10263 bfd_size_type amt;
10264 asection *attr_section = NULL;
10265 bfd_vma attr_size = 0;
10266 const char *std_attrs_section;
10267
10268 if (! is_elf_hash_table (info->hash))
10269 return FALSE;
10270
10271 if (info->shared)
10272 abfd->flags |= DYNAMIC;
10273
10274 dynamic = elf_hash_table (info)->dynamic_sections_created;
10275 dynobj = elf_hash_table (info)->dynobj;
10276
10277 emit_relocs = (info->relocatable
10278 || info->emitrelocations);
10279
10280 finfo.info = info;
10281 finfo.output_bfd = abfd;
10282 finfo.symstrtab = _bfd_elf_stringtab_init ();
10283 if (finfo.symstrtab == NULL)
10284 return FALSE;
10285
10286 if (! dynamic)
10287 {
10288 finfo.dynsym_sec = NULL;
10289 finfo.hash_sec = NULL;
10290 finfo.symver_sec = NULL;
10291 }
10292 else
10293 {
10294 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10295 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10296 BFD_ASSERT (finfo.dynsym_sec != NULL);
10297 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10298 /* Note that it is OK if symver_sec is NULL. */
10299 }
10300
10301 finfo.contents = NULL;
10302 finfo.external_relocs = NULL;
10303 finfo.internal_relocs = NULL;
10304 finfo.external_syms = NULL;
10305 finfo.locsym_shndx = NULL;
10306 finfo.internal_syms = NULL;
10307 finfo.indices = NULL;
10308 finfo.sections = NULL;
10309 finfo.symbuf = NULL;
10310 finfo.symshndxbuf = NULL;
10311 finfo.symbuf_count = 0;
10312 finfo.shndxbuf_size = 0;
10313
10314 /* The object attributes have been merged. Remove the input
10315 sections from the link, and set the contents of the output
10316 secton. */
10317 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10318 for (o = abfd->sections; o != NULL; o = o->next)
10319 {
10320 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10321 || strcmp (o->name, ".gnu.attributes") == 0)
10322 {
10323 for (p = o->map_head.link_order; p != NULL; p = p->next)
10324 {
10325 asection *input_section;
10326
10327 if (p->type != bfd_indirect_link_order)
10328 continue;
10329 input_section = p->u.indirect.section;
10330 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10331 elf_link_input_bfd ignores this section. */
10332 input_section->flags &= ~SEC_HAS_CONTENTS;
10333 }
10334
10335 attr_size = bfd_elf_obj_attr_size (abfd);
10336 if (attr_size)
10337 {
10338 bfd_set_section_size (abfd, o, attr_size);
10339 attr_section = o;
10340 /* Skip this section later on. */
10341 o->map_head.link_order = NULL;
10342 }
10343 else
10344 o->flags |= SEC_EXCLUDE;
10345 }
10346 }
10347
10348 /* Count up the number of relocations we will output for each output
10349 section, so that we know the sizes of the reloc sections. We
10350 also figure out some maximum sizes. */
10351 max_contents_size = 0;
10352 max_external_reloc_size = 0;
10353 max_internal_reloc_count = 0;
10354 max_sym_count = 0;
10355 max_sym_shndx_count = 0;
10356 merged = FALSE;
10357 for (o = abfd->sections; o != NULL; o = o->next)
10358 {
10359 struct bfd_elf_section_data *esdo = elf_section_data (o);
10360 o->reloc_count = 0;
10361
10362 for (p = o->map_head.link_order; p != NULL; p = p->next)
10363 {
10364 unsigned int reloc_count = 0;
10365 struct bfd_elf_section_data *esdi = NULL;
10366
10367 if (p->type == bfd_section_reloc_link_order
10368 || p->type == bfd_symbol_reloc_link_order)
10369 reloc_count = 1;
10370 else if (p->type == bfd_indirect_link_order)
10371 {
10372 asection *sec;
10373
10374 sec = p->u.indirect.section;
10375 esdi = elf_section_data (sec);
10376
10377 /* Mark all sections which are to be included in the
10378 link. This will normally be every section. We need
10379 to do this so that we can identify any sections which
10380 the linker has decided to not include. */
10381 sec->linker_mark = TRUE;
10382
10383 if (sec->flags & SEC_MERGE)
10384 merged = TRUE;
10385
10386 if (info->relocatable || info->emitrelocations)
10387 reloc_count = sec->reloc_count;
10388 else if (bed->elf_backend_count_relocs)
10389 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10390
10391 if (sec->rawsize > max_contents_size)
10392 max_contents_size = sec->rawsize;
10393 if (sec->size > max_contents_size)
10394 max_contents_size = sec->size;
10395
10396 /* We are interested in just local symbols, not all
10397 symbols. */
10398 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10399 && (sec->owner->flags & DYNAMIC) == 0)
10400 {
10401 size_t sym_count;
10402
10403 if (elf_bad_symtab (sec->owner))
10404 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10405 / bed->s->sizeof_sym);
10406 else
10407 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10408
10409 if (sym_count > max_sym_count)
10410 max_sym_count = sym_count;
10411
10412 if (sym_count > max_sym_shndx_count
10413 && elf_symtab_shndx (sec->owner) != 0)
10414 max_sym_shndx_count = sym_count;
10415
10416 if ((sec->flags & SEC_RELOC) != 0)
10417 {
10418 size_t ext_size = 0;
10419
10420 if (esdi->rel.hdr != NULL)
10421 ext_size = esdi->rel.hdr->sh_size;
10422 if (esdi->rela.hdr != NULL)
10423 ext_size += esdi->rela.hdr->sh_size;
10424
10425 if (ext_size > max_external_reloc_size)
10426 max_external_reloc_size = ext_size;
10427 if (sec->reloc_count > max_internal_reloc_count)
10428 max_internal_reloc_count = sec->reloc_count;
10429 }
10430 }
10431 }
10432
10433 if (reloc_count == 0)
10434 continue;
10435
10436 o->reloc_count += reloc_count;
10437
10438 if (p->type == bfd_indirect_link_order
10439 && (info->relocatable || info->emitrelocations))
10440 {
10441 if (esdi->rel.hdr)
10442 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10443 if (esdi->rela.hdr)
10444 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10445 }
10446 else
10447 {
10448 if (o->use_rela_p)
10449 esdo->rela.count += reloc_count;
10450 else
10451 esdo->rel.count += reloc_count;
10452 }
10453 }
10454
10455 if (o->reloc_count > 0)
10456 o->flags |= SEC_RELOC;
10457 else
10458 {
10459 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10460 set it (this is probably a bug) and if it is set
10461 assign_section_numbers will create a reloc section. */
10462 o->flags &=~ SEC_RELOC;
10463 }
10464
10465 /* If the SEC_ALLOC flag is not set, force the section VMA to
10466 zero. This is done in elf_fake_sections as well, but forcing
10467 the VMA to 0 here will ensure that relocs against these
10468 sections are handled correctly. */
10469 if ((o->flags & SEC_ALLOC) == 0
10470 && ! o->user_set_vma)
10471 o->vma = 0;
10472 }
10473
10474 if (! info->relocatable && merged)
10475 elf_link_hash_traverse (elf_hash_table (info),
10476 _bfd_elf_link_sec_merge_syms, abfd);
10477
10478 /* Figure out the file positions for everything but the symbol table
10479 and the relocs. We set symcount to force assign_section_numbers
10480 to create a symbol table. */
10481 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10482 BFD_ASSERT (! abfd->output_has_begun);
10483 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10484 goto error_return;
10485
10486 /* Set sizes, and assign file positions for reloc sections. */
10487 for (o = abfd->sections; o != NULL; o = o->next)
10488 {
10489 struct bfd_elf_section_data *esdo = elf_section_data (o);
10490 if ((o->flags & SEC_RELOC) != 0)
10491 {
10492 if (esdo->rel.hdr
10493 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10494 goto error_return;
10495
10496 if (esdo->rela.hdr
10497 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10498 goto error_return;
10499 }
10500
10501 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10502 to count upwards while actually outputting the relocations. */
10503 esdo->rel.count = 0;
10504 esdo->rela.count = 0;
10505 }
10506
10507 _bfd_elf_assign_file_positions_for_relocs (abfd);
10508
10509 /* We have now assigned file positions for all the sections except
10510 .symtab and .strtab. We start the .symtab section at the current
10511 file position, and write directly to it. We build the .strtab
10512 section in memory. */
10513 bfd_get_symcount (abfd) = 0;
10514 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10515 /* sh_name is set in prep_headers. */
10516 symtab_hdr->sh_type = SHT_SYMTAB;
10517 /* sh_flags, sh_addr and sh_size all start off zero. */
10518 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10519 /* sh_link is set in assign_section_numbers. */
10520 /* sh_info is set below. */
10521 /* sh_offset is set just below. */
10522 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10523
10524 off = elf_tdata (abfd)->next_file_pos;
10525 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10526
10527 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10528 incorrect. We do not yet know the size of the .symtab section.
10529 We correct next_file_pos below, after we do know the size. */
10530
10531 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10532 continuously seeking to the right position in the file. */
10533 if (! info->keep_memory || max_sym_count < 20)
10534 finfo.symbuf_size = 20;
10535 else
10536 finfo.symbuf_size = max_sym_count;
10537 amt = finfo.symbuf_size;
10538 amt *= bed->s->sizeof_sym;
10539 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10540 if (finfo.symbuf == NULL)
10541 goto error_return;
10542 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10543 {
10544 /* Wild guess at number of output symbols. realloc'd as needed. */
10545 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10546 finfo.shndxbuf_size = amt;
10547 amt *= sizeof (Elf_External_Sym_Shndx);
10548 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10549 if (finfo.symshndxbuf == NULL)
10550 goto error_return;
10551 }
10552
10553 /* Start writing out the symbol table. The first symbol is always a
10554 dummy symbol. */
10555 if (info->strip != strip_all
10556 || emit_relocs)
10557 {
10558 elfsym.st_value = 0;
10559 elfsym.st_size = 0;
10560 elfsym.st_info = 0;
10561 elfsym.st_other = 0;
10562 elfsym.st_shndx = SHN_UNDEF;
10563 elfsym.st_target_internal = 0;
10564 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10565 NULL) != 1)
10566 goto error_return;
10567 }
10568
10569 /* Output a symbol for each section. We output these even if we are
10570 discarding local symbols, since they are used for relocs. These
10571 symbols have no names. We store the index of each one in the
10572 index field of the section, so that we can find it again when
10573 outputting relocs. */
10574 if (info->strip != strip_all
10575 || emit_relocs)
10576 {
10577 elfsym.st_size = 0;
10578 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10579 elfsym.st_other = 0;
10580 elfsym.st_value = 0;
10581 elfsym.st_target_internal = 0;
10582 for (i = 1; i < elf_numsections (abfd); i++)
10583 {
10584 o = bfd_section_from_elf_index (abfd, i);
10585 if (o != NULL)
10586 {
10587 o->target_index = bfd_get_symcount (abfd);
10588 elfsym.st_shndx = i;
10589 if (!info->relocatable)
10590 elfsym.st_value = o->vma;
10591 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10592 goto error_return;
10593 }
10594 }
10595 }
10596
10597 /* Allocate some memory to hold information read in from the input
10598 files. */
10599 if (max_contents_size != 0)
10600 {
10601 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10602 if (finfo.contents == NULL)
10603 goto error_return;
10604 }
10605
10606 if (max_external_reloc_size != 0)
10607 {
10608 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10609 if (finfo.external_relocs == NULL)
10610 goto error_return;
10611 }
10612
10613 if (max_internal_reloc_count != 0)
10614 {
10615 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10616 amt *= sizeof (Elf_Internal_Rela);
10617 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10618 if (finfo.internal_relocs == NULL)
10619 goto error_return;
10620 }
10621
10622 if (max_sym_count != 0)
10623 {
10624 amt = max_sym_count * bed->s->sizeof_sym;
10625 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10626 if (finfo.external_syms == NULL)
10627 goto error_return;
10628
10629 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10630 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10631 if (finfo.internal_syms == NULL)
10632 goto error_return;
10633
10634 amt = max_sym_count * sizeof (long);
10635 finfo.indices = (long int *) bfd_malloc (amt);
10636 if (finfo.indices == NULL)
10637 goto error_return;
10638
10639 amt = max_sym_count * sizeof (asection *);
10640 finfo.sections = (asection **) bfd_malloc (amt);
10641 if (finfo.sections == NULL)
10642 goto error_return;
10643 }
10644
10645 if (max_sym_shndx_count != 0)
10646 {
10647 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10648 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10649 if (finfo.locsym_shndx == NULL)
10650 goto error_return;
10651 }
10652
10653 if (elf_hash_table (info)->tls_sec)
10654 {
10655 bfd_vma base, end = 0;
10656 asection *sec;
10657
10658 for (sec = elf_hash_table (info)->tls_sec;
10659 sec && (sec->flags & SEC_THREAD_LOCAL);
10660 sec = sec->next)
10661 {
10662 bfd_size_type size = sec->size;
10663
10664 if (size == 0
10665 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10666 {
10667 struct bfd_link_order *ord = sec->map_tail.link_order;
10668
10669 if (ord != NULL)
10670 size = ord->offset + ord->size;
10671 }
10672 end = sec->vma + size;
10673 }
10674 base = elf_hash_table (info)->tls_sec->vma;
10675 /* Only align end of TLS section if static TLS doesn't have special
10676 alignment requirements. */
10677 if (bed->static_tls_alignment == 1)
10678 end = align_power (end,
10679 elf_hash_table (info)->tls_sec->alignment_power);
10680 elf_hash_table (info)->tls_size = end - base;
10681 }
10682
10683 /* Reorder SHF_LINK_ORDER sections. */
10684 for (o = abfd->sections; o != NULL; o = o->next)
10685 {
10686 if (!elf_fixup_link_order (abfd, o))
10687 return FALSE;
10688 }
10689
10690 /* Since ELF permits relocations to be against local symbols, we
10691 must have the local symbols available when we do the relocations.
10692 Since we would rather only read the local symbols once, and we
10693 would rather not keep them in memory, we handle all the
10694 relocations for a single input file at the same time.
10695
10696 Unfortunately, there is no way to know the total number of local
10697 symbols until we have seen all of them, and the local symbol
10698 indices precede the global symbol indices. This means that when
10699 we are generating relocatable output, and we see a reloc against
10700 a global symbol, we can not know the symbol index until we have
10701 finished examining all the local symbols to see which ones we are
10702 going to output. To deal with this, we keep the relocations in
10703 memory, and don't output them until the end of the link. This is
10704 an unfortunate waste of memory, but I don't see a good way around
10705 it. Fortunately, it only happens when performing a relocatable
10706 link, which is not the common case. FIXME: If keep_memory is set
10707 we could write the relocs out and then read them again; I don't
10708 know how bad the memory loss will be. */
10709
10710 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10711 sub->output_has_begun = FALSE;
10712 for (o = abfd->sections; o != NULL; o = o->next)
10713 {
10714 for (p = o->map_head.link_order; p != NULL; p = p->next)
10715 {
10716 if (p->type == bfd_indirect_link_order
10717 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10718 == bfd_target_elf_flavour)
10719 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10720 {
10721 if (! sub->output_has_begun)
10722 {
10723 if (! elf_link_input_bfd (&finfo, sub))
10724 goto error_return;
10725 sub->output_has_begun = TRUE;
10726 }
10727 }
10728 else if (p->type == bfd_section_reloc_link_order
10729 || p->type == bfd_symbol_reloc_link_order)
10730 {
10731 if (! elf_reloc_link_order (abfd, info, o, p))
10732 goto error_return;
10733 }
10734 else
10735 {
10736 if (! _bfd_default_link_order (abfd, info, o, p))
10737 {
10738 if (p->type == bfd_indirect_link_order
10739 && (bfd_get_flavour (sub)
10740 == bfd_target_elf_flavour)
10741 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10742 != bed->s->elfclass))
10743 {
10744 const char *iclass, *oclass;
10745
10746 if (bed->s->elfclass == ELFCLASS64)
10747 {
10748 iclass = "ELFCLASS32";
10749 oclass = "ELFCLASS64";
10750 }
10751 else
10752 {
10753 iclass = "ELFCLASS64";
10754 oclass = "ELFCLASS32";
10755 }
10756
10757 bfd_set_error (bfd_error_wrong_format);
10758 (*_bfd_error_handler)
10759 (_("%B: file class %s incompatible with %s"),
10760 sub, iclass, oclass);
10761 }
10762
10763 goto error_return;
10764 }
10765 }
10766 }
10767 }
10768
10769 /* Free symbol buffer if needed. */
10770 if (!info->reduce_memory_overheads)
10771 {
10772 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10773 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10774 && elf_tdata (sub)->symbuf)
10775 {
10776 free (elf_tdata (sub)->symbuf);
10777 elf_tdata (sub)->symbuf = NULL;
10778 }
10779 }
10780
10781 /* Output any global symbols that got converted to local in a
10782 version script or due to symbol visibility. We do this in a
10783 separate step since ELF requires all local symbols to appear
10784 prior to any global symbols. FIXME: We should only do this if
10785 some global symbols were, in fact, converted to become local.
10786 FIXME: Will this work correctly with the Irix 5 linker? */
10787 eoinfo.failed = FALSE;
10788 eoinfo.finfo = &finfo;
10789 eoinfo.localsyms = TRUE;
10790 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10791 if (eoinfo.failed)
10792 return FALSE;
10793
10794 /* If backend needs to output some local symbols not present in the hash
10795 table, do it now. */
10796 if (bed->elf_backend_output_arch_local_syms)
10797 {
10798 typedef int (*out_sym_func)
10799 (void *, const char *, Elf_Internal_Sym *, asection *,
10800 struct elf_link_hash_entry *);
10801
10802 if (! ((*bed->elf_backend_output_arch_local_syms)
10803 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10804 return FALSE;
10805 }
10806
10807 /* That wrote out all the local symbols. Finish up the symbol table
10808 with the global symbols. Even if we want to strip everything we
10809 can, we still need to deal with those global symbols that got
10810 converted to local in a version script. */
10811
10812 /* The sh_info field records the index of the first non local symbol. */
10813 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10814
10815 if (dynamic
10816 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10817 {
10818 Elf_Internal_Sym sym;
10819 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10820 long last_local = 0;
10821
10822 /* Write out the section symbols for the output sections. */
10823 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10824 {
10825 asection *s;
10826
10827 sym.st_size = 0;
10828 sym.st_name = 0;
10829 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10830 sym.st_other = 0;
10831 sym.st_target_internal = 0;
10832
10833 for (s = abfd->sections; s != NULL; s = s->next)
10834 {
10835 int indx;
10836 bfd_byte *dest;
10837 long dynindx;
10838
10839 dynindx = elf_section_data (s)->dynindx;
10840 if (dynindx <= 0)
10841 continue;
10842 indx = elf_section_data (s)->this_idx;
10843 BFD_ASSERT (indx > 0);
10844 sym.st_shndx = indx;
10845 if (! check_dynsym (abfd, &sym))
10846 return FALSE;
10847 sym.st_value = s->vma;
10848 dest = dynsym + dynindx * bed->s->sizeof_sym;
10849 if (last_local < dynindx)
10850 last_local = dynindx;
10851 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10852 }
10853 }
10854
10855 /* Write out the local dynsyms. */
10856 if (elf_hash_table (info)->dynlocal)
10857 {
10858 struct elf_link_local_dynamic_entry *e;
10859 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10860 {
10861 asection *s;
10862 bfd_byte *dest;
10863
10864 /* Copy the internal symbol and turn off visibility.
10865 Note that we saved a word of storage and overwrote
10866 the original st_name with the dynstr_index. */
10867 sym = e->isym;
10868 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10869
10870 s = bfd_section_from_elf_index (e->input_bfd,
10871 e->isym.st_shndx);
10872 if (s != NULL)
10873 {
10874 sym.st_shndx =
10875 elf_section_data (s->output_section)->this_idx;
10876 if (! check_dynsym (abfd, &sym))
10877 return FALSE;
10878 sym.st_value = (s->output_section->vma
10879 + s->output_offset
10880 + e->isym.st_value);
10881 }
10882
10883 if (last_local < e->dynindx)
10884 last_local = e->dynindx;
10885
10886 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10887 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10888 }
10889 }
10890
10891 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10892 last_local + 1;
10893 }
10894
10895 /* We get the global symbols from the hash table. */
10896 eoinfo.failed = FALSE;
10897 eoinfo.localsyms = FALSE;
10898 eoinfo.finfo = &finfo;
10899 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10900 if (eoinfo.failed)
10901 return FALSE;
10902
10903 /* If backend needs to output some symbols not present in the hash
10904 table, do it now. */
10905 if (bed->elf_backend_output_arch_syms)
10906 {
10907 typedef int (*out_sym_func)
10908 (void *, const char *, Elf_Internal_Sym *, asection *,
10909 struct elf_link_hash_entry *);
10910
10911 if (! ((*bed->elf_backend_output_arch_syms)
10912 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10913 return FALSE;
10914 }
10915
10916 /* Flush all symbols to the file. */
10917 if (! elf_link_flush_output_syms (&finfo, bed))
10918 return FALSE;
10919
10920 /* Now we know the size of the symtab section. */
10921 off += symtab_hdr->sh_size;
10922
10923 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10924 if (symtab_shndx_hdr->sh_name != 0)
10925 {
10926 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10927 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10928 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10929 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10930 symtab_shndx_hdr->sh_size = amt;
10931
10932 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10933 off, TRUE);
10934
10935 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10936 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10937 return FALSE;
10938 }
10939
10940
10941 /* Finish up and write out the symbol string table (.strtab)
10942 section. */
10943 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10944 /* sh_name was set in prep_headers. */
10945 symstrtab_hdr->sh_type = SHT_STRTAB;
10946 symstrtab_hdr->sh_flags = 0;
10947 symstrtab_hdr->sh_addr = 0;
10948 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10949 symstrtab_hdr->sh_entsize = 0;
10950 symstrtab_hdr->sh_link = 0;
10951 symstrtab_hdr->sh_info = 0;
10952 /* sh_offset is set just below. */
10953 symstrtab_hdr->sh_addralign = 1;
10954
10955 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10956 elf_tdata (abfd)->next_file_pos = off;
10957
10958 if (bfd_get_symcount (abfd) > 0)
10959 {
10960 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10961 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10962 return FALSE;
10963 }
10964
10965 /* Adjust the relocs to have the correct symbol indices. */
10966 for (o = abfd->sections; o != NULL; o = o->next)
10967 {
10968 struct bfd_elf_section_data *esdo = elf_section_data (o);
10969 if ((o->flags & SEC_RELOC) == 0)
10970 continue;
10971
10972 if (esdo->rel.hdr != NULL)
10973 elf_link_adjust_relocs (abfd, &esdo->rel);
10974 if (esdo->rela.hdr != NULL)
10975 elf_link_adjust_relocs (abfd, &esdo->rela);
10976
10977 /* Set the reloc_count field to 0 to prevent write_relocs from
10978 trying to swap the relocs out itself. */
10979 o->reloc_count = 0;
10980 }
10981
10982 if (dynamic && info->combreloc && dynobj != NULL)
10983 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10984
10985 /* If we are linking against a dynamic object, or generating a
10986 shared library, finish up the dynamic linking information. */
10987 if (dynamic)
10988 {
10989 bfd_byte *dyncon, *dynconend;
10990
10991 /* Fix up .dynamic entries. */
10992 o = bfd_get_section_by_name (dynobj, ".dynamic");
10993 BFD_ASSERT (o != NULL);
10994
10995 dyncon = o->contents;
10996 dynconend = o->contents + o->size;
10997 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10998 {
10999 Elf_Internal_Dyn dyn;
11000 const char *name;
11001 unsigned int type;
11002
11003 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11004
11005 switch (dyn.d_tag)
11006 {
11007 default:
11008 continue;
11009 case DT_NULL:
11010 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11011 {
11012 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11013 {
11014 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11015 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11016 default: continue;
11017 }
11018 dyn.d_un.d_val = relativecount;
11019 relativecount = 0;
11020 break;
11021 }
11022 continue;
11023
11024 case DT_INIT:
11025 name = info->init_function;
11026 goto get_sym;
11027 case DT_FINI:
11028 name = info->fini_function;
11029 get_sym:
11030 {
11031 struct elf_link_hash_entry *h;
11032
11033 h = elf_link_hash_lookup (elf_hash_table (info), name,
11034 FALSE, FALSE, TRUE);
11035 if (h != NULL
11036 && (h->root.type == bfd_link_hash_defined
11037 || h->root.type == bfd_link_hash_defweak))
11038 {
11039 dyn.d_un.d_ptr = h->root.u.def.value;
11040 o = h->root.u.def.section;
11041 if (o->output_section != NULL)
11042 dyn.d_un.d_ptr += (o->output_section->vma
11043 + o->output_offset);
11044 else
11045 {
11046 /* The symbol is imported from another shared
11047 library and does not apply to this one. */
11048 dyn.d_un.d_ptr = 0;
11049 }
11050 break;
11051 }
11052 }
11053 continue;
11054
11055 case DT_PREINIT_ARRAYSZ:
11056 name = ".preinit_array";
11057 goto get_size;
11058 case DT_INIT_ARRAYSZ:
11059 name = ".init_array";
11060 goto get_size;
11061 case DT_FINI_ARRAYSZ:
11062 name = ".fini_array";
11063 get_size:
11064 o = bfd_get_section_by_name (abfd, name);
11065 if (o == NULL)
11066 {
11067 (*_bfd_error_handler)
11068 (_("%B: could not find output section %s"), abfd, name);
11069 goto error_return;
11070 }
11071 if (o->size == 0)
11072 (*_bfd_error_handler)
11073 (_("warning: %s section has zero size"), name);
11074 dyn.d_un.d_val = o->size;
11075 break;
11076
11077 case DT_PREINIT_ARRAY:
11078 name = ".preinit_array";
11079 goto get_vma;
11080 case DT_INIT_ARRAY:
11081 name = ".init_array";
11082 goto get_vma;
11083 case DT_FINI_ARRAY:
11084 name = ".fini_array";
11085 goto get_vma;
11086
11087 case DT_HASH:
11088 name = ".hash";
11089 goto get_vma;
11090 case DT_GNU_HASH:
11091 name = ".gnu.hash";
11092 goto get_vma;
11093 case DT_STRTAB:
11094 name = ".dynstr";
11095 goto get_vma;
11096 case DT_SYMTAB:
11097 name = ".dynsym";
11098 goto get_vma;
11099 case DT_VERDEF:
11100 name = ".gnu.version_d";
11101 goto get_vma;
11102 case DT_VERNEED:
11103 name = ".gnu.version_r";
11104 goto get_vma;
11105 case DT_VERSYM:
11106 name = ".gnu.version";
11107 get_vma:
11108 o = bfd_get_section_by_name (abfd, name);
11109 if (o == NULL)
11110 {
11111 (*_bfd_error_handler)
11112 (_("%B: could not find output section %s"), abfd, name);
11113 goto error_return;
11114 }
11115 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11116 {
11117 (*_bfd_error_handler)
11118 (_("warning: section '%s' is being made into a note"), name);
11119 bfd_set_error (bfd_error_nonrepresentable_section);
11120 goto error_return;
11121 }
11122 dyn.d_un.d_ptr = o->vma;
11123 break;
11124
11125 case DT_REL:
11126 case DT_RELA:
11127 case DT_RELSZ:
11128 case DT_RELASZ:
11129 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11130 type = SHT_REL;
11131 else
11132 type = SHT_RELA;
11133 dyn.d_un.d_val = 0;
11134 dyn.d_un.d_ptr = 0;
11135 for (i = 1; i < elf_numsections (abfd); i++)
11136 {
11137 Elf_Internal_Shdr *hdr;
11138
11139 hdr = elf_elfsections (abfd)[i];
11140 if (hdr->sh_type == type
11141 && (hdr->sh_flags & SHF_ALLOC) != 0)
11142 {
11143 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11144 dyn.d_un.d_val += hdr->sh_size;
11145 else
11146 {
11147 if (dyn.d_un.d_ptr == 0
11148 || hdr->sh_addr < dyn.d_un.d_ptr)
11149 dyn.d_un.d_ptr = hdr->sh_addr;
11150 }
11151 }
11152 }
11153 break;
11154 }
11155 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11156 }
11157 }
11158
11159 /* If we have created any dynamic sections, then output them. */
11160 if (dynobj != NULL)
11161 {
11162 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11163 goto error_return;
11164
11165 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11166 if (info->warn_shared_textrel && info->shared)
11167 {
11168 bfd_byte *dyncon, *dynconend;
11169
11170 /* Fix up .dynamic entries. */
11171 o = bfd_get_section_by_name (dynobj, ".dynamic");
11172 BFD_ASSERT (o != NULL);
11173
11174 dyncon = o->contents;
11175 dynconend = o->contents + o->size;
11176 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11177 {
11178 Elf_Internal_Dyn dyn;
11179
11180 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11181
11182 if (dyn.d_tag == DT_TEXTREL)
11183 {
11184 info->callbacks->einfo
11185 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11186 break;
11187 }
11188 }
11189 }
11190
11191 for (o = dynobj->sections; o != NULL; o = o->next)
11192 {
11193 if ((o->flags & SEC_HAS_CONTENTS) == 0
11194 || o->size == 0
11195 || o->output_section == bfd_abs_section_ptr)
11196 continue;
11197 if ((o->flags & SEC_LINKER_CREATED) == 0)
11198 {
11199 /* At this point, we are only interested in sections
11200 created by _bfd_elf_link_create_dynamic_sections. */
11201 continue;
11202 }
11203 if (elf_hash_table (info)->stab_info.stabstr == o)
11204 continue;
11205 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11206 continue;
11207 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11208 != SHT_STRTAB)
11209 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11210 {
11211 /* FIXME: octets_per_byte. */
11212 if (! bfd_set_section_contents (abfd, o->output_section,
11213 o->contents,
11214 (file_ptr) o->output_offset,
11215 o->size))
11216 goto error_return;
11217 }
11218 else
11219 {
11220 /* The contents of the .dynstr section are actually in a
11221 stringtab. */
11222 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11223 if (bfd_seek (abfd, off, SEEK_SET) != 0
11224 || ! _bfd_elf_strtab_emit (abfd,
11225 elf_hash_table (info)->dynstr))
11226 goto error_return;
11227 }
11228 }
11229 }
11230
11231 if (info->relocatable)
11232 {
11233 bfd_boolean failed = FALSE;
11234
11235 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11236 if (failed)
11237 goto error_return;
11238 }
11239
11240 /* If we have optimized stabs strings, output them. */
11241 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11242 {
11243 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11244 goto error_return;
11245 }
11246
11247 if (info->eh_frame_hdr)
11248 {
11249 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11250 goto error_return;
11251 }
11252
11253 if (finfo.symstrtab != NULL)
11254 _bfd_stringtab_free (finfo.symstrtab);
11255 if (finfo.contents != NULL)
11256 free (finfo.contents);
11257 if (finfo.external_relocs != NULL)
11258 free (finfo.external_relocs);
11259 if (finfo.internal_relocs != NULL)
11260 free (finfo.internal_relocs);
11261 if (finfo.external_syms != NULL)
11262 free (finfo.external_syms);
11263 if (finfo.locsym_shndx != NULL)
11264 free (finfo.locsym_shndx);
11265 if (finfo.internal_syms != NULL)
11266 free (finfo.internal_syms);
11267 if (finfo.indices != NULL)
11268 free (finfo.indices);
11269 if (finfo.sections != NULL)
11270 free (finfo.sections);
11271 if (finfo.symbuf != NULL)
11272 free (finfo.symbuf);
11273 if (finfo.symshndxbuf != NULL)
11274 free (finfo.symshndxbuf);
11275 for (o = abfd->sections; o != NULL; o = o->next)
11276 {
11277 struct bfd_elf_section_data *esdo = elf_section_data (o);
11278 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11279 free (esdo->rel.hashes);
11280 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11281 free (esdo->rela.hashes);
11282 }
11283
11284 elf_tdata (abfd)->linker = TRUE;
11285
11286 if (attr_section)
11287 {
11288 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11289 if (contents == NULL)
11290 return FALSE; /* Bail out and fail. */
11291 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11292 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11293 free (contents);
11294 }
11295
11296 return TRUE;
11297
11298 error_return:
11299 if (finfo.symstrtab != NULL)
11300 _bfd_stringtab_free (finfo.symstrtab);
11301 if (finfo.contents != NULL)
11302 free (finfo.contents);
11303 if (finfo.external_relocs != NULL)
11304 free (finfo.external_relocs);
11305 if (finfo.internal_relocs != NULL)
11306 free (finfo.internal_relocs);
11307 if (finfo.external_syms != NULL)
11308 free (finfo.external_syms);
11309 if (finfo.locsym_shndx != NULL)
11310 free (finfo.locsym_shndx);
11311 if (finfo.internal_syms != NULL)
11312 free (finfo.internal_syms);
11313 if (finfo.indices != NULL)
11314 free (finfo.indices);
11315 if (finfo.sections != NULL)
11316 free (finfo.sections);
11317 if (finfo.symbuf != NULL)
11318 free (finfo.symbuf);
11319 if (finfo.symshndxbuf != NULL)
11320 free (finfo.symshndxbuf);
11321 for (o = abfd->sections; o != NULL; o = o->next)
11322 {
11323 struct bfd_elf_section_data *esdo = elf_section_data (o);
11324 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11325 free (esdo->rel.hashes);
11326 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11327 free (esdo->rela.hashes);
11328 }
11329
11330 return FALSE;
11331 }
11332 \f
11333 /* Initialize COOKIE for input bfd ABFD. */
11334
11335 static bfd_boolean
11336 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11337 struct bfd_link_info *info, bfd *abfd)
11338 {
11339 Elf_Internal_Shdr *symtab_hdr;
11340 const struct elf_backend_data *bed;
11341
11342 bed = get_elf_backend_data (abfd);
11343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11344
11345 cookie->abfd = abfd;
11346 cookie->sym_hashes = elf_sym_hashes (abfd);
11347 cookie->bad_symtab = elf_bad_symtab (abfd);
11348 if (cookie->bad_symtab)
11349 {
11350 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11351 cookie->extsymoff = 0;
11352 }
11353 else
11354 {
11355 cookie->locsymcount = symtab_hdr->sh_info;
11356 cookie->extsymoff = symtab_hdr->sh_info;
11357 }
11358
11359 if (bed->s->arch_size == 32)
11360 cookie->r_sym_shift = 8;
11361 else
11362 cookie->r_sym_shift = 32;
11363
11364 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11365 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11366 {
11367 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11368 cookie->locsymcount, 0,
11369 NULL, NULL, NULL);
11370 if (cookie->locsyms == NULL)
11371 {
11372 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11373 return FALSE;
11374 }
11375 if (info->keep_memory)
11376 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11377 }
11378 return TRUE;
11379 }
11380
11381 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11382
11383 static void
11384 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11385 {
11386 Elf_Internal_Shdr *symtab_hdr;
11387
11388 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11389 if (cookie->locsyms != NULL
11390 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11391 free (cookie->locsyms);
11392 }
11393
11394 /* Initialize the relocation information in COOKIE for input section SEC
11395 of input bfd ABFD. */
11396
11397 static bfd_boolean
11398 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11399 struct bfd_link_info *info, bfd *abfd,
11400 asection *sec)
11401 {
11402 const struct elf_backend_data *bed;
11403
11404 if (sec->reloc_count == 0)
11405 {
11406 cookie->rels = NULL;
11407 cookie->relend = NULL;
11408 }
11409 else
11410 {
11411 bed = get_elf_backend_data (abfd);
11412
11413 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11414 info->keep_memory);
11415 if (cookie->rels == NULL)
11416 return FALSE;
11417 cookie->rel = cookie->rels;
11418 cookie->relend = (cookie->rels
11419 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11420 }
11421 cookie->rel = cookie->rels;
11422 return TRUE;
11423 }
11424
11425 /* Free the memory allocated by init_reloc_cookie_rels,
11426 if appropriate. */
11427
11428 static void
11429 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11430 asection *sec)
11431 {
11432 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11433 free (cookie->rels);
11434 }
11435
11436 /* Initialize the whole of COOKIE for input section SEC. */
11437
11438 static bfd_boolean
11439 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11440 struct bfd_link_info *info,
11441 asection *sec)
11442 {
11443 if (!init_reloc_cookie (cookie, info, sec->owner))
11444 goto error1;
11445 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11446 goto error2;
11447 return TRUE;
11448
11449 error2:
11450 fini_reloc_cookie (cookie, sec->owner);
11451 error1:
11452 return FALSE;
11453 }
11454
11455 /* Free the memory allocated by init_reloc_cookie_for_section,
11456 if appropriate. */
11457
11458 static void
11459 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11460 asection *sec)
11461 {
11462 fini_reloc_cookie_rels (cookie, sec);
11463 fini_reloc_cookie (cookie, sec->owner);
11464 }
11465 \f
11466 /* Garbage collect unused sections. */
11467
11468 /* Default gc_mark_hook. */
11469
11470 asection *
11471 _bfd_elf_gc_mark_hook (asection *sec,
11472 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11473 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11474 struct elf_link_hash_entry *h,
11475 Elf_Internal_Sym *sym)
11476 {
11477 const char *sec_name;
11478
11479 if (h != NULL)
11480 {
11481 switch (h->root.type)
11482 {
11483 case bfd_link_hash_defined:
11484 case bfd_link_hash_defweak:
11485 return h->root.u.def.section;
11486
11487 case bfd_link_hash_common:
11488 return h->root.u.c.p->section;
11489
11490 case bfd_link_hash_undefined:
11491 case bfd_link_hash_undefweak:
11492 /* To work around a glibc bug, keep all XXX input sections
11493 when there is an as yet undefined reference to __start_XXX
11494 or __stop_XXX symbols. The linker will later define such
11495 symbols for orphan input sections that have a name
11496 representable as a C identifier. */
11497 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11498 sec_name = h->root.root.string + 8;
11499 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11500 sec_name = h->root.root.string + 7;
11501 else
11502 sec_name = NULL;
11503
11504 if (sec_name && *sec_name != '\0')
11505 {
11506 bfd *i;
11507
11508 for (i = info->input_bfds; i; i = i->link_next)
11509 {
11510 sec = bfd_get_section_by_name (i, sec_name);
11511 if (sec)
11512 sec->flags |= SEC_KEEP;
11513 }
11514 }
11515 break;
11516
11517 default:
11518 break;
11519 }
11520 }
11521 else
11522 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11523
11524 return NULL;
11525 }
11526
11527 /* COOKIE->rel describes a relocation against section SEC, which is
11528 a section we've decided to keep. Return the section that contains
11529 the relocation symbol, or NULL if no section contains it. */
11530
11531 asection *
11532 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11533 elf_gc_mark_hook_fn gc_mark_hook,
11534 struct elf_reloc_cookie *cookie)
11535 {
11536 unsigned long r_symndx;
11537 struct elf_link_hash_entry *h;
11538
11539 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11540 if (r_symndx == STN_UNDEF)
11541 return NULL;
11542
11543 if (r_symndx >= cookie->locsymcount
11544 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11545 {
11546 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11547 while (h->root.type == bfd_link_hash_indirect
11548 || h->root.type == bfd_link_hash_warning)
11549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11550 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11551 }
11552
11553 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11554 &cookie->locsyms[r_symndx]);
11555 }
11556
11557 /* COOKIE->rel describes a relocation against section SEC, which is
11558 a section we've decided to keep. Mark the section that contains
11559 the relocation symbol. */
11560
11561 bfd_boolean
11562 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11563 asection *sec,
11564 elf_gc_mark_hook_fn gc_mark_hook,
11565 struct elf_reloc_cookie *cookie)
11566 {
11567 asection *rsec;
11568
11569 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11570 if (rsec && !rsec->gc_mark)
11571 {
11572 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11573 rsec->gc_mark = 1;
11574 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11575 return FALSE;
11576 }
11577 return TRUE;
11578 }
11579
11580 /* The mark phase of garbage collection. For a given section, mark
11581 it and any sections in this section's group, and all the sections
11582 which define symbols to which it refers. */
11583
11584 bfd_boolean
11585 _bfd_elf_gc_mark (struct bfd_link_info *info,
11586 asection *sec,
11587 elf_gc_mark_hook_fn gc_mark_hook)
11588 {
11589 bfd_boolean ret;
11590 asection *group_sec, *eh_frame;
11591
11592 sec->gc_mark = 1;
11593
11594 /* Mark all the sections in the group. */
11595 group_sec = elf_section_data (sec)->next_in_group;
11596 if (group_sec && !group_sec->gc_mark)
11597 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11598 return FALSE;
11599
11600 /* Look through the section relocs. */
11601 ret = TRUE;
11602 eh_frame = elf_eh_frame_section (sec->owner);
11603 if ((sec->flags & SEC_RELOC) != 0
11604 && sec->reloc_count > 0
11605 && sec != eh_frame)
11606 {
11607 struct elf_reloc_cookie cookie;
11608
11609 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11610 ret = FALSE;
11611 else
11612 {
11613 for (; cookie.rel < cookie.relend; cookie.rel++)
11614 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11615 {
11616 ret = FALSE;
11617 break;
11618 }
11619 fini_reloc_cookie_for_section (&cookie, sec);
11620 }
11621 }
11622
11623 if (ret && eh_frame && elf_fde_list (sec))
11624 {
11625 struct elf_reloc_cookie cookie;
11626
11627 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11628 ret = FALSE;
11629 else
11630 {
11631 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11632 gc_mark_hook, &cookie))
11633 ret = FALSE;
11634 fini_reloc_cookie_for_section (&cookie, eh_frame);
11635 }
11636 }
11637
11638 return ret;
11639 }
11640
11641 /* Keep debug and special sections. */
11642
11643 bfd_boolean
11644 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11645 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11646 {
11647 bfd *ibfd;
11648
11649 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11650 {
11651 asection *isec;
11652 bfd_boolean some_kept;
11653
11654 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11655 continue;
11656
11657 /* Ensure all linker created sections are kept, and see whether
11658 any other section is already marked. */
11659 some_kept = FALSE;
11660 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11661 {
11662 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11663 isec->gc_mark = 1;
11664 else if (isec->gc_mark)
11665 some_kept = TRUE;
11666 }
11667
11668 /* If no section in this file will be kept, then we can
11669 toss out debug sections. */
11670 if (!some_kept)
11671 continue;
11672
11673 /* Keep debug and special sections like .comment when they are
11674 not part of a group. */
11675 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11676 if (elf_next_in_group (isec) == NULL
11677 && ((isec->flags & SEC_DEBUGGING) != 0
11678 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11679 isec->gc_mark = 1;
11680 }
11681 return TRUE;
11682 }
11683
11684 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11685
11686 struct elf_gc_sweep_symbol_info
11687 {
11688 struct bfd_link_info *info;
11689 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11690 bfd_boolean);
11691 };
11692
11693 static bfd_boolean
11694 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11695 {
11696 if ((h->root.type == bfd_link_hash_defined
11697 || h->root.type == bfd_link_hash_defweak)
11698 && !h->root.u.def.section->gc_mark
11699 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11700 {
11701 struct elf_gc_sweep_symbol_info *inf =
11702 (struct elf_gc_sweep_symbol_info *) data;
11703 (*inf->hide_symbol) (inf->info, h, TRUE);
11704 }
11705
11706 return TRUE;
11707 }
11708
11709 /* The sweep phase of garbage collection. Remove all garbage sections. */
11710
11711 typedef bfd_boolean (*gc_sweep_hook_fn)
11712 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11713
11714 static bfd_boolean
11715 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11716 {
11717 bfd *sub;
11718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11719 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11720 unsigned long section_sym_count;
11721 struct elf_gc_sweep_symbol_info sweep_info;
11722
11723 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11724 {
11725 asection *o;
11726
11727 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11728 continue;
11729
11730 for (o = sub->sections; o != NULL; o = o->next)
11731 {
11732 /* When any section in a section group is kept, we keep all
11733 sections in the section group. If the first member of
11734 the section group is excluded, we will also exclude the
11735 group section. */
11736 if (o->flags & SEC_GROUP)
11737 {
11738 asection *first = elf_next_in_group (o);
11739 o->gc_mark = first->gc_mark;
11740 }
11741
11742 if (o->gc_mark)
11743 continue;
11744
11745 /* Skip sweeping sections already excluded. */
11746 if (o->flags & SEC_EXCLUDE)
11747 continue;
11748
11749 /* Since this is early in the link process, it is simple
11750 to remove a section from the output. */
11751 o->flags |= SEC_EXCLUDE;
11752
11753 if (info->print_gc_sections && o->size != 0)
11754 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11755
11756 /* But we also have to update some of the relocation
11757 info we collected before. */
11758 if (gc_sweep_hook
11759 && (o->flags & SEC_RELOC) != 0
11760 && o->reloc_count > 0
11761 && !bfd_is_abs_section (o->output_section))
11762 {
11763 Elf_Internal_Rela *internal_relocs;
11764 bfd_boolean r;
11765
11766 internal_relocs
11767 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11768 info->keep_memory);
11769 if (internal_relocs == NULL)
11770 return FALSE;
11771
11772 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11773
11774 if (elf_section_data (o)->relocs != internal_relocs)
11775 free (internal_relocs);
11776
11777 if (!r)
11778 return FALSE;
11779 }
11780 }
11781 }
11782
11783 /* Remove the symbols that were in the swept sections from the dynamic
11784 symbol table. GCFIXME: Anyone know how to get them out of the
11785 static symbol table as well? */
11786 sweep_info.info = info;
11787 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11788 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11789 &sweep_info);
11790
11791 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11792 return TRUE;
11793 }
11794
11795 /* Propagate collected vtable information. This is called through
11796 elf_link_hash_traverse. */
11797
11798 static bfd_boolean
11799 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11800 {
11801 /* Those that are not vtables. */
11802 if (h->vtable == NULL || h->vtable->parent == NULL)
11803 return TRUE;
11804
11805 /* Those vtables that do not have parents, we cannot merge. */
11806 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11807 return TRUE;
11808
11809 /* If we've already been done, exit. */
11810 if (h->vtable->used && h->vtable->used[-1])
11811 return TRUE;
11812
11813 /* Make sure the parent's table is up to date. */
11814 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11815
11816 if (h->vtable->used == NULL)
11817 {
11818 /* None of this table's entries were referenced. Re-use the
11819 parent's table. */
11820 h->vtable->used = h->vtable->parent->vtable->used;
11821 h->vtable->size = h->vtable->parent->vtable->size;
11822 }
11823 else
11824 {
11825 size_t n;
11826 bfd_boolean *cu, *pu;
11827
11828 /* Or the parent's entries into ours. */
11829 cu = h->vtable->used;
11830 cu[-1] = TRUE;
11831 pu = h->vtable->parent->vtable->used;
11832 if (pu != NULL)
11833 {
11834 const struct elf_backend_data *bed;
11835 unsigned int log_file_align;
11836
11837 bed = get_elf_backend_data (h->root.u.def.section->owner);
11838 log_file_align = bed->s->log_file_align;
11839 n = h->vtable->parent->vtable->size >> log_file_align;
11840 while (n--)
11841 {
11842 if (*pu)
11843 *cu = TRUE;
11844 pu++;
11845 cu++;
11846 }
11847 }
11848 }
11849
11850 return TRUE;
11851 }
11852
11853 static bfd_boolean
11854 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11855 {
11856 asection *sec;
11857 bfd_vma hstart, hend;
11858 Elf_Internal_Rela *relstart, *relend, *rel;
11859 const struct elf_backend_data *bed;
11860 unsigned int log_file_align;
11861
11862 /* Take care of both those symbols that do not describe vtables as
11863 well as those that are not loaded. */
11864 if (h->vtable == NULL || h->vtable->parent == NULL)
11865 return TRUE;
11866
11867 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11868 || h->root.type == bfd_link_hash_defweak);
11869
11870 sec = h->root.u.def.section;
11871 hstart = h->root.u.def.value;
11872 hend = hstart + h->size;
11873
11874 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11875 if (!relstart)
11876 return *(bfd_boolean *) okp = FALSE;
11877 bed = get_elf_backend_data (sec->owner);
11878 log_file_align = bed->s->log_file_align;
11879
11880 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11881
11882 for (rel = relstart; rel < relend; ++rel)
11883 if (rel->r_offset >= hstart && rel->r_offset < hend)
11884 {
11885 /* If the entry is in use, do nothing. */
11886 if (h->vtable->used
11887 && (rel->r_offset - hstart) < h->vtable->size)
11888 {
11889 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11890 if (h->vtable->used[entry])
11891 continue;
11892 }
11893 /* Otherwise, kill it. */
11894 rel->r_offset = rel->r_info = rel->r_addend = 0;
11895 }
11896
11897 return TRUE;
11898 }
11899
11900 /* Mark sections containing dynamically referenced symbols. When
11901 building shared libraries, we must assume that any visible symbol is
11902 referenced. */
11903
11904 bfd_boolean
11905 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11906 {
11907 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11908
11909 if ((h->root.type == bfd_link_hash_defined
11910 || h->root.type == bfd_link_hash_defweak)
11911 && (h->ref_dynamic
11912 || (!info->executable
11913 && h->def_regular
11914 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11915 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11916 h->root.u.def.section->flags |= SEC_KEEP;
11917
11918 return TRUE;
11919 }
11920
11921 /* Keep all sections containing symbols undefined on the command-line,
11922 and the section containing the entry symbol. */
11923
11924 void
11925 _bfd_elf_gc_keep (struct bfd_link_info *info)
11926 {
11927 struct bfd_sym_chain *sym;
11928
11929 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11930 {
11931 struct elf_link_hash_entry *h;
11932
11933 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11934 FALSE, FALSE, FALSE);
11935
11936 if (h != NULL
11937 && (h->root.type == bfd_link_hash_defined
11938 || h->root.type == bfd_link_hash_defweak)
11939 && !bfd_is_abs_section (h->root.u.def.section))
11940 h->root.u.def.section->flags |= SEC_KEEP;
11941 }
11942 }
11943
11944 /* Do mark and sweep of unused sections. */
11945
11946 bfd_boolean
11947 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11948 {
11949 bfd_boolean ok = TRUE;
11950 bfd *sub;
11951 elf_gc_mark_hook_fn gc_mark_hook;
11952 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11953
11954 if (!bed->can_gc_sections
11955 || !is_elf_hash_table (info->hash))
11956 {
11957 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11958 return TRUE;
11959 }
11960
11961 bed->gc_keep (info);
11962
11963 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11964 at the .eh_frame section if we can mark the FDEs individually. */
11965 _bfd_elf_begin_eh_frame_parsing (info);
11966 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11967 {
11968 asection *sec;
11969 struct elf_reloc_cookie cookie;
11970
11971 sec = bfd_get_section_by_name (sub, ".eh_frame");
11972 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11973 {
11974 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11975 if (elf_section_data (sec)->sec_info)
11976 elf_eh_frame_section (sub) = sec;
11977 fini_reloc_cookie_for_section (&cookie, sec);
11978 }
11979 }
11980 _bfd_elf_end_eh_frame_parsing (info);
11981
11982 /* Apply transitive closure to the vtable entry usage info. */
11983 elf_link_hash_traverse (elf_hash_table (info),
11984 elf_gc_propagate_vtable_entries_used,
11985 &ok);
11986 if (!ok)
11987 return FALSE;
11988
11989 /* Kill the vtable relocations that were not used. */
11990 elf_link_hash_traverse (elf_hash_table (info),
11991 elf_gc_smash_unused_vtentry_relocs,
11992 &ok);
11993 if (!ok)
11994 return FALSE;
11995
11996 /* Mark dynamically referenced symbols. */
11997 if (elf_hash_table (info)->dynamic_sections_created)
11998 elf_link_hash_traverse (elf_hash_table (info),
11999 bed->gc_mark_dynamic_ref,
12000 info);
12001
12002 /* Grovel through relocs to find out who stays ... */
12003 gc_mark_hook = bed->gc_mark_hook;
12004 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12005 {
12006 asection *o;
12007
12008 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12009 continue;
12010
12011 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12012 Also treat note sections as a root, if the section is not part
12013 of a group. */
12014 for (o = sub->sections; o != NULL; o = o->next)
12015 if (!o->gc_mark
12016 && (o->flags & SEC_EXCLUDE) == 0
12017 && ((o->flags & SEC_KEEP) != 0
12018 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12019 && elf_next_in_group (o) == NULL )))
12020 {
12021 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12022 return FALSE;
12023 }
12024 }
12025
12026 /* Allow the backend to mark additional target specific sections. */
12027 bed->gc_mark_extra_sections (info, gc_mark_hook);
12028
12029 /* ... and mark SEC_EXCLUDE for those that go. */
12030 return elf_gc_sweep (abfd, info);
12031 }
12032 \f
12033 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12034
12035 bfd_boolean
12036 bfd_elf_gc_record_vtinherit (bfd *abfd,
12037 asection *sec,
12038 struct elf_link_hash_entry *h,
12039 bfd_vma offset)
12040 {
12041 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12042 struct elf_link_hash_entry **search, *child;
12043 bfd_size_type extsymcount;
12044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12045
12046 /* The sh_info field of the symtab header tells us where the
12047 external symbols start. We don't care about the local symbols at
12048 this point. */
12049 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12050 if (!elf_bad_symtab (abfd))
12051 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12052
12053 sym_hashes = elf_sym_hashes (abfd);
12054 sym_hashes_end = sym_hashes + extsymcount;
12055
12056 /* Hunt down the child symbol, which is in this section at the same
12057 offset as the relocation. */
12058 for (search = sym_hashes; search != sym_hashes_end; ++search)
12059 {
12060 if ((child = *search) != NULL
12061 && (child->root.type == bfd_link_hash_defined
12062 || child->root.type == bfd_link_hash_defweak)
12063 && child->root.u.def.section == sec
12064 && child->root.u.def.value == offset)
12065 goto win;
12066 }
12067
12068 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12069 abfd, sec, (unsigned long) offset);
12070 bfd_set_error (bfd_error_invalid_operation);
12071 return FALSE;
12072
12073 win:
12074 if (!child->vtable)
12075 {
12076 child->vtable = (struct elf_link_virtual_table_entry *)
12077 bfd_zalloc (abfd, sizeof (*child->vtable));
12078 if (!child->vtable)
12079 return FALSE;
12080 }
12081 if (!h)
12082 {
12083 /* This *should* only be the absolute section. It could potentially
12084 be that someone has defined a non-global vtable though, which
12085 would be bad. It isn't worth paging in the local symbols to be
12086 sure though; that case should simply be handled by the assembler. */
12087
12088 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12089 }
12090 else
12091 child->vtable->parent = h;
12092
12093 return TRUE;
12094 }
12095
12096 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12097
12098 bfd_boolean
12099 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12100 asection *sec ATTRIBUTE_UNUSED,
12101 struct elf_link_hash_entry *h,
12102 bfd_vma addend)
12103 {
12104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12105 unsigned int log_file_align = bed->s->log_file_align;
12106
12107 if (!h->vtable)
12108 {
12109 h->vtable = (struct elf_link_virtual_table_entry *)
12110 bfd_zalloc (abfd, sizeof (*h->vtable));
12111 if (!h->vtable)
12112 return FALSE;
12113 }
12114
12115 if (addend >= h->vtable->size)
12116 {
12117 size_t size, bytes, file_align;
12118 bfd_boolean *ptr = h->vtable->used;
12119
12120 /* While the symbol is undefined, we have to be prepared to handle
12121 a zero size. */
12122 file_align = 1 << log_file_align;
12123 if (h->root.type == bfd_link_hash_undefined)
12124 size = addend + file_align;
12125 else
12126 {
12127 size = h->size;
12128 if (addend >= size)
12129 {
12130 /* Oops! We've got a reference past the defined end of
12131 the table. This is probably a bug -- shall we warn? */
12132 size = addend + file_align;
12133 }
12134 }
12135 size = (size + file_align - 1) & -file_align;
12136
12137 /* Allocate one extra entry for use as a "done" flag for the
12138 consolidation pass. */
12139 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12140
12141 if (ptr)
12142 {
12143 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12144
12145 if (ptr != NULL)
12146 {
12147 size_t oldbytes;
12148
12149 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12150 * sizeof (bfd_boolean));
12151 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12152 }
12153 }
12154 else
12155 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12156
12157 if (ptr == NULL)
12158 return FALSE;
12159
12160 /* And arrange for that done flag to be at index -1. */
12161 h->vtable->used = ptr + 1;
12162 h->vtable->size = size;
12163 }
12164
12165 h->vtable->used[addend >> log_file_align] = TRUE;
12166
12167 return TRUE;
12168 }
12169
12170 struct alloc_got_off_arg {
12171 bfd_vma gotoff;
12172 struct bfd_link_info *info;
12173 };
12174
12175 /* We need a special top-level link routine to convert got reference counts
12176 to real got offsets. */
12177
12178 static bfd_boolean
12179 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12180 {
12181 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12182 bfd *obfd = gofarg->info->output_bfd;
12183 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12184
12185 if (h->got.refcount > 0)
12186 {
12187 h->got.offset = gofarg->gotoff;
12188 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12189 }
12190 else
12191 h->got.offset = (bfd_vma) -1;
12192
12193 return TRUE;
12194 }
12195
12196 /* And an accompanying bit to work out final got entry offsets once
12197 we're done. Should be called from final_link. */
12198
12199 bfd_boolean
12200 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12201 struct bfd_link_info *info)
12202 {
12203 bfd *i;
12204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12205 bfd_vma gotoff;
12206 struct alloc_got_off_arg gofarg;
12207
12208 BFD_ASSERT (abfd == info->output_bfd);
12209
12210 if (! is_elf_hash_table (info->hash))
12211 return FALSE;
12212
12213 /* The GOT offset is relative to the .got section, but the GOT header is
12214 put into the .got.plt section, if the backend uses it. */
12215 if (bed->want_got_plt)
12216 gotoff = 0;
12217 else
12218 gotoff = bed->got_header_size;
12219
12220 /* Do the local .got entries first. */
12221 for (i = info->input_bfds; i; i = i->link_next)
12222 {
12223 bfd_signed_vma *local_got;
12224 bfd_size_type j, locsymcount;
12225 Elf_Internal_Shdr *symtab_hdr;
12226
12227 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12228 continue;
12229
12230 local_got = elf_local_got_refcounts (i);
12231 if (!local_got)
12232 continue;
12233
12234 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12235 if (elf_bad_symtab (i))
12236 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12237 else
12238 locsymcount = symtab_hdr->sh_info;
12239
12240 for (j = 0; j < locsymcount; ++j)
12241 {
12242 if (local_got[j] > 0)
12243 {
12244 local_got[j] = gotoff;
12245 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12246 }
12247 else
12248 local_got[j] = (bfd_vma) -1;
12249 }
12250 }
12251
12252 /* Then the global .got entries. .plt refcounts are handled by
12253 adjust_dynamic_symbol */
12254 gofarg.gotoff = gotoff;
12255 gofarg.info = info;
12256 elf_link_hash_traverse (elf_hash_table (info),
12257 elf_gc_allocate_got_offsets,
12258 &gofarg);
12259 return TRUE;
12260 }
12261
12262 /* Many folk need no more in the way of final link than this, once
12263 got entry reference counting is enabled. */
12264
12265 bfd_boolean
12266 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12267 {
12268 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12269 return FALSE;
12270
12271 /* Invoke the regular ELF backend linker to do all the work. */
12272 return bfd_elf_final_link (abfd, info);
12273 }
12274
12275 bfd_boolean
12276 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12277 {
12278 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12279
12280 if (rcookie->bad_symtab)
12281 rcookie->rel = rcookie->rels;
12282
12283 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12284 {
12285 unsigned long r_symndx;
12286
12287 if (! rcookie->bad_symtab)
12288 if (rcookie->rel->r_offset > offset)
12289 return FALSE;
12290 if (rcookie->rel->r_offset != offset)
12291 continue;
12292
12293 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12294 if (r_symndx == STN_UNDEF)
12295 return TRUE;
12296
12297 if (r_symndx >= rcookie->locsymcount
12298 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12299 {
12300 struct elf_link_hash_entry *h;
12301
12302 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12303
12304 while (h->root.type == bfd_link_hash_indirect
12305 || h->root.type == bfd_link_hash_warning)
12306 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12307
12308 if ((h->root.type == bfd_link_hash_defined
12309 || h->root.type == bfd_link_hash_defweak)
12310 && elf_discarded_section (h->root.u.def.section))
12311 return TRUE;
12312 else
12313 return FALSE;
12314 }
12315 else
12316 {
12317 /* It's not a relocation against a global symbol,
12318 but it could be a relocation against a local
12319 symbol for a discarded section. */
12320 asection *isec;
12321 Elf_Internal_Sym *isym;
12322
12323 /* Need to: get the symbol; get the section. */
12324 isym = &rcookie->locsyms[r_symndx];
12325 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12326 if (isec != NULL && elf_discarded_section (isec))
12327 return TRUE;
12328 }
12329 return FALSE;
12330 }
12331 return FALSE;
12332 }
12333
12334 /* Discard unneeded references to discarded sections.
12335 Returns TRUE if any section's size was changed. */
12336 /* This function assumes that the relocations are in sorted order,
12337 which is true for all known assemblers. */
12338
12339 bfd_boolean
12340 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12341 {
12342 struct elf_reloc_cookie cookie;
12343 asection *stab, *eh;
12344 const struct elf_backend_data *bed;
12345 bfd *abfd;
12346 bfd_boolean ret = FALSE;
12347
12348 if (info->traditional_format
12349 || !is_elf_hash_table (info->hash))
12350 return FALSE;
12351
12352 _bfd_elf_begin_eh_frame_parsing (info);
12353 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12354 {
12355 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12356 continue;
12357
12358 bed = get_elf_backend_data (abfd);
12359
12360 if ((abfd->flags & DYNAMIC) != 0)
12361 continue;
12362
12363 eh = NULL;
12364 if (!info->relocatable)
12365 {
12366 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12367 if (eh != NULL
12368 && (eh->size == 0
12369 || bfd_is_abs_section (eh->output_section)))
12370 eh = NULL;
12371 }
12372
12373 stab = bfd_get_section_by_name (abfd, ".stab");
12374 if (stab != NULL
12375 && (stab->size == 0
12376 || bfd_is_abs_section (stab->output_section)
12377 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12378 stab = NULL;
12379
12380 if (stab == NULL
12381 && eh == NULL
12382 && bed->elf_backend_discard_info == NULL)
12383 continue;
12384
12385 if (!init_reloc_cookie (&cookie, info, abfd))
12386 return FALSE;
12387
12388 if (stab != NULL
12389 && stab->reloc_count > 0
12390 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12391 {
12392 if (_bfd_discard_section_stabs (abfd, stab,
12393 elf_section_data (stab)->sec_info,
12394 bfd_elf_reloc_symbol_deleted_p,
12395 &cookie))
12396 ret = TRUE;
12397 fini_reloc_cookie_rels (&cookie, stab);
12398 }
12399
12400 if (eh != NULL
12401 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12402 {
12403 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12404 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12405 bfd_elf_reloc_symbol_deleted_p,
12406 &cookie))
12407 ret = TRUE;
12408 fini_reloc_cookie_rels (&cookie, eh);
12409 }
12410
12411 if (bed->elf_backend_discard_info != NULL
12412 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12413 ret = TRUE;
12414
12415 fini_reloc_cookie (&cookie, abfd);
12416 }
12417 _bfd_elf_end_eh_frame_parsing (info);
12418
12419 if (info->eh_frame_hdr
12420 && !info->relocatable
12421 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12422 ret = TRUE;
12423
12424 return ret;
12425 }
12426
12427 /* For a SHT_GROUP section, return the group signature. For other
12428 sections, return the normal section name. */
12429
12430 static const char *
12431 section_signature (asection *sec)
12432 {
12433 if ((sec->flags & SEC_GROUP) != 0
12434 && elf_next_in_group (sec) != NULL
12435 && elf_group_name (elf_next_in_group (sec)) != NULL)
12436 return elf_group_name (elf_next_in_group (sec));
12437 return sec->name;
12438 }
12439
12440 void
12441 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12442 struct bfd_link_info *info)
12443 {
12444 flagword flags;
12445 const char *name, *p;
12446 struct bfd_section_already_linked *l;
12447 struct bfd_section_already_linked_hash_entry *already_linked_list;
12448
12449 if (sec->output_section == bfd_abs_section_ptr)
12450 return;
12451
12452 flags = sec->flags;
12453
12454 /* Return if it isn't a linkonce section. A comdat group section
12455 also has SEC_LINK_ONCE set. */
12456 if ((flags & SEC_LINK_ONCE) == 0)
12457 return;
12458
12459 /* Don't put group member sections on our list of already linked
12460 sections. They are handled as a group via their group section. */
12461 if (elf_sec_group (sec) != NULL)
12462 return;
12463
12464 /* FIXME: When doing a relocatable link, we may have trouble
12465 copying relocations in other sections that refer to local symbols
12466 in the section being discarded. Those relocations will have to
12467 be converted somehow; as of this writing I'm not sure that any of
12468 the backends handle that correctly.
12469
12470 It is tempting to instead not discard link once sections when
12471 doing a relocatable link (technically, they should be discarded
12472 whenever we are building constructors). However, that fails,
12473 because the linker winds up combining all the link once sections
12474 into a single large link once section, which defeats the purpose
12475 of having link once sections in the first place.
12476
12477 Also, not merging link once sections in a relocatable link
12478 causes trouble for MIPS ELF, which relies on link once semantics
12479 to handle the .reginfo section correctly. */
12480
12481 name = section_signature (sec);
12482
12483 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12484 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12485 p++;
12486 else
12487 p = name;
12488
12489 already_linked_list = bfd_section_already_linked_table_lookup (p);
12490
12491 for (l = already_linked_list->entry; l != NULL; l = l->next)
12492 {
12493 /* We may have 2 different types of sections on the list: group
12494 sections and linkonce sections. Match like sections. */
12495 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12496 && strcmp (name, section_signature (l->sec)) == 0
12497 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12498 {
12499 /* The section has already been linked. See if we should
12500 issue a warning. */
12501 switch (flags & SEC_LINK_DUPLICATES)
12502 {
12503 default:
12504 abort ();
12505
12506 case SEC_LINK_DUPLICATES_DISCARD:
12507 break;
12508
12509 case SEC_LINK_DUPLICATES_ONE_ONLY:
12510 (*_bfd_error_handler)
12511 (_("%B: ignoring duplicate section `%A'"),
12512 abfd, sec);
12513 break;
12514
12515 case SEC_LINK_DUPLICATES_SAME_SIZE:
12516 if (sec->size != l->sec->size)
12517 (*_bfd_error_handler)
12518 (_("%B: duplicate section `%A' has different size"),
12519 abfd, sec);
12520 break;
12521
12522 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12523 if (sec->size != l->sec->size)
12524 (*_bfd_error_handler)
12525 (_("%B: duplicate section `%A' has different size"),
12526 abfd, sec);
12527 else if (sec->size != 0)
12528 {
12529 bfd_byte *sec_contents, *l_sec_contents;
12530
12531 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12532 (*_bfd_error_handler)
12533 (_("%B: warning: could not read contents of section `%A'"),
12534 abfd, sec);
12535 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12536 &l_sec_contents))
12537 (*_bfd_error_handler)
12538 (_("%B: warning: could not read contents of section `%A'"),
12539 l->sec->owner, l->sec);
12540 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12541 (*_bfd_error_handler)
12542 (_("%B: warning: duplicate section `%A' has different contents"),
12543 abfd, sec);
12544
12545 if (sec_contents)
12546 free (sec_contents);
12547 if (l_sec_contents)
12548 free (l_sec_contents);
12549 }
12550 break;
12551 }
12552
12553 /* Set the output_section field so that lang_add_section
12554 does not create a lang_input_section structure for this
12555 section. Since there might be a symbol in the section
12556 being discarded, we must retain a pointer to the section
12557 which we are really going to use. */
12558 sec->output_section = bfd_abs_section_ptr;
12559 sec->kept_section = l->sec;
12560
12561 if (flags & SEC_GROUP)
12562 {
12563 asection *first = elf_next_in_group (sec);
12564 asection *s = first;
12565
12566 while (s != NULL)
12567 {
12568 s->output_section = bfd_abs_section_ptr;
12569 /* Record which group discards it. */
12570 s->kept_section = l->sec;
12571 s = elf_next_in_group (s);
12572 /* These lists are circular. */
12573 if (s == first)
12574 break;
12575 }
12576 }
12577
12578 return;
12579 }
12580 }
12581
12582 /* A single member comdat group section may be discarded by a
12583 linkonce section and vice versa. */
12584
12585 if ((flags & SEC_GROUP) != 0)
12586 {
12587 asection *first = elf_next_in_group (sec);
12588
12589 if (first != NULL && elf_next_in_group (first) == first)
12590 /* Check this single member group against linkonce sections. */
12591 for (l = already_linked_list->entry; l != NULL; l = l->next)
12592 if ((l->sec->flags & SEC_GROUP) == 0
12593 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12594 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12595 {
12596 first->output_section = bfd_abs_section_ptr;
12597 first->kept_section = l->sec;
12598 sec->output_section = bfd_abs_section_ptr;
12599 break;
12600 }
12601 }
12602 else
12603 /* Check this linkonce section against single member groups. */
12604 for (l = already_linked_list->entry; l != NULL; l = l->next)
12605 if (l->sec->flags & SEC_GROUP)
12606 {
12607 asection *first = elf_next_in_group (l->sec);
12608
12609 if (first != NULL
12610 && elf_next_in_group (first) == first
12611 && bfd_elf_match_symbols_in_sections (first, sec, info))
12612 {
12613 sec->output_section = bfd_abs_section_ptr;
12614 sec->kept_section = first;
12615 break;
12616 }
12617 }
12618
12619 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12620 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12621 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12622 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12623 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12624 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12625 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12626 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12627 The reverse order cannot happen as there is never a bfd with only the
12628 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12629 matter as here were are looking only for cross-bfd sections. */
12630
12631 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12632 for (l = already_linked_list->entry; l != NULL; l = l->next)
12633 if ((l->sec->flags & SEC_GROUP) == 0
12634 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12635 {
12636 if (abfd != l->sec->owner)
12637 sec->output_section = bfd_abs_section_ptr;
12638 break;
12639 }
12640
12641 /* This is the first section with this name. Record it. */
12642 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12643 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12644 }
12645
12646 bfd_boolean
12647 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12648 {
12649 return sym->st_shndx == SHN_COMMON;
12650 }
12651
12652 unsigned int
12653 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12654 {
12655 return SHN_COMMON;
12656 }
12657
12658 asection *
12659 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12660 {
12661 return bfd_com_section_ptr;
12662 }
12663
12664 bfd_vma
12665 _bfd_elf_default_got_elt_size (bfd *abfd,
12666 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12667 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12668 bfd *ibfd ATTRIBUTE_UNUSED,
12669 unsigned long symndx ATTRIBUTE_UNUSED)
12670 {
12671 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12672 return bed->s->arch_size / 8;
12673 }
12674
12675 /* Routines to support the creation of dynamic relocs. */
12676
12677 /* Returns the name of the dynamic reloc section associated with SEC. */
12678
12679 static const char *
12680 get_dynamic_reloc_section_name (bfd * abfd,
12681 asection * sec,
12682 bfd_boolean is_rela)
12683 {
12684 char *name;
12685 const char *old_name = bfd_get_section_name (NULL, sec);
12686 const char *prefix = is_rela ? ".rela" : ".rel";
12687
12688 if (old_name == NULL)
12689 return NULL;
12690
12691 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12692 sprintf (name, "%s%s", prefix, old_name);
12693
12694 return name;
12695 }
12696
12697 /* Returns the dynamic reloc section associated with SEC.
12698 If necessary compute the name of the dynamic reloc section based
12699 on SEC's name (looked up in ABFD's string table) and the setting
12700 of IS_RELA. */
12701
12702 asection *
12703 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12704 asection * sec,
12705 bfd_boolean is_rela)
12706 {
12707 asection * reloc_sec = elf_section_data (sec)->sreloc;
12708
12709 if (reloc_sec == NULL)
12710 {
12711 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12712
12713 if (name != NULL)
12714 {
12715 reloc_sec = bfd_get_section_by_name (abfd, name);
12716
12717 if (reloc_sec != NULL)
12718 elf_section_data (sec)->sreloc = reloc_sec;
12719 }
12720 }
12721
12722 return reloc_sec;
12723 }
12724
12725 /* Returns the dynamic reloc section associated with SEC. If the
12726 section does not exist it is created and attached to the DYNOBJ
12727 bfd and stored in the SRELOC field of SEC's elf_section_data
12728 structure.
12729
12730 ALIGNMENT is the alignment for the newly created section and
12731 IS_RELA defines whether the name should be .rela.<SEC's name>
12732 or .rel.<SEC's name>. The section name is looked up in the
12733 string table associated with ABFD. */
12734
12735 asection *
12736 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12737 bfd * dynobj,
12738 unsigned int alignment,
12739 bfd * abfd,
12740 bfd_boolean is_rela)
12741 {
12742 asection * reloc_sec = elf_section_data (sec)->sreloc;
12743
12744 if (reloc_sec == NULL)
12745 {
12746 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12747
12748 if (name == NULL)
12749 return NULL;
12750
12751 reloc_sec = bfd_get_section_by_name (dynobj, name);
12752
12753 if (reloc_sec == NULL)
12754 {
12755 flagword flags;
12756
12757 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12758 if ((sec->flags & SEC_ALLOC) != 0)
12759 flags |= SEC_ALLOC | SEC_LOAD;
12760
12761 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12762 if (reloc_sec != NULL)
12763 {
12764 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12765 reloc_sec = NULL;
12766 }
12767 }
12768
12769 elf_section_data (sec)->sreloc = reloc_sec;
12770 }
12771
12772 return reloc_sec;
12773 }
12774
12775 /* Copy the ELF symbol type associated with a linker hash entry. */
12776 void
12777 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12778 struct bfd_link_hash_entry * hdest,
12779 struct bfd_link_hash_entry * hsrc)
12780 {
12781 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12782 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12783
12784 ehdest->type = ehsrc->type;
12785 ehdest->target_internal = ehsrc->target_internal;
12786 }
12787
12788 /* Append a RELA relocation REL to section S in BFD. */
12789
12790 void
12791 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12792 {
12793 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12794 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12795 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12796 bed->s->swap_reloca_out (abfd, rel, loc);
12797 }
12798
12799 /* Append a REL relocation REL to section S in BFD. */
12800
12801 void
12802 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12803 {
12804 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12805 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12806 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12807 bed->s->swap_reloca_out (abfd, rel, loc);
12808 }
This page took 0.280424 seconds and 5 git commands to generate.