Preserve the maximum alignment/size for common symbols.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (bed->elf_backend_create_dynamic_sections == NULL
289 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 struct elf_link_hash_entry *weakdef;
2514
2515 weakdef = h->u.weakdef;
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522
2523 /* If the real definition is defined by a regular object file,
2524 don't do anything special. See the longer description in
2525 _bfd_elf_adjust_dynamic_symbol, below. */
2526 if (weakdef->def_regular)
2527 h->u.weakdef = NULL;
2528 else
2529 {
2530 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2531 || weakdef->root.type == bfd_link_hash_defweak);
2532 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2533 }
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 /* Make the backend pick a good value for a dynamic symbol. This is
2540 called via elf_link_hash_traverse, and also calls itself
2541 recursively. */
2542
2543 static bfd_boolean
2544 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2545 {
2546 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2547 bfd *dynobj;
2548 const struct elf_backend_data *bed;
2549
2550 if (! is_elf_hash_table (eif->info->hash))
2551 return FALSE;
2552
2553 /* Ignore indirect symbols. These are added by the versioning code. */
2554 if (h->root.type == bfd_link_hash_indirect)
2555 return TRUE;
2556
2557 /* Fix the symbol flags. */
2558 if (! _bfd_elf_fix_symbol_flags (h, eif))
2559 return FALSE;
2560
2561 /* If this symbol does not require a PLT entry, and it is not
2562 defined by a dynamic object, or is not referenced by a regular
2563 object, ignore it. We do have to handle a weak defined symbol,
2564 even if no regular object refers to it, if we decided to add it
2565 to the dynamic symbol table. FIXME: Do we normally need to worry
2566 about symbols which are defined by one dynamic object and
2567 referenced by another one? */
2568 if (!h->needs_plt
2569 && h->type != STT_GNU_IFUNC
2570 && (h->def_regular
2571 || !h->def_dynamic
2572 || (!h->ref_regular
2573 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2574 {
2575 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2576 return TRUE;
2577 }
2578
2579 /* If we've already adjusted this symbol, don't do it again. This
2580 can happen via a recursive call. */
2581 if (h->dynamic_adjusted)
2582 return TRUE;
2583
2584 /* Don't look at this symbol again. Note that we must set this
2585 after checking the above conditions, because we may look at a
2586 symbol once, decide not to do anything, and then get called
2587 recursively later after REF_REGULAR is set below. */
2588 h->dynamic_adjusted = 1;
2589
2590 /* If this is a weak definition, and we know a real definition, and
2591 the real symbol is not itself defined by a regular object file,
2592 then get a good value for the real definition. We handle the
2593 real symbol first, for the convenience of the backend routine.
2594
2595 Note that there is a confusing case here. If the real definition
2596 is defined by a regular object file, we don't get the real symbol
2597 from the dynamic object, but we do get the weak symbol. If the
2598 processor backend uses a COPY reloc, then if some routine in the
2599 dynamic object changes the real symbol, we will not see that
2600 change in the corresponding weak symbol. This is the way other
2601 ELF linkers work as well, and seems to be a result of the shared
2602 library model.
2603
2604 I will clarify this issue. Most SVR4 shared libraries define the
2605 variable _timezone and define timezone as a weak synonym. The
2606 tzset call changes _timezone. If you write
2607 extern int timezone;
2608 int _timezone = 5;
2609 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2610 you might expect that, since timezone is a synonym for _timezone,
2611 the same number will print both times. However, if the processor
2612 backend uses a COPY reloc, then actually timezone will be copied
2613 into your process image, and, since you define _timezone
2614 yourself, _timezone will not. Thus timezone and _timezone will
2615 wind up at different memory locations. The tzset call will set
2616 _timezone, leaving timezone unchanged. */
2617
2618 if (h->u.weakdef != NULL)
2619 {
2620 /* If we get to this point, there is an implicit reference to
2621 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2622 h->u.weakdef->ref_regular = 1;
2623
2624 /* Ensure that the backend adjust_dynamic_symbol function sees
2625 H->U.WEAKDEF before H by recursively calling ourselves. */
2626 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2627 return FALSE;
2628 }
2629
2630 /* If a symbol has no type and no size and does not require a PLT
2631 entry, then we are probably about to do the wrong thing here: we
2632 are probably going to create a COPY reloc for an empty object.
2633 This case can arise when a shared object is built with assembly
2634 code, and the assembly code fails to set the symbol type. */
2635 if (h->size == 0
2636 && h->type == STT_NOTYPE
2637 && !h->needs_plt)
2638 (*_bfd_error_handler)
2639 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2640 h->root.root.string);
2641
2642 dynobj = elf_hash_table (eif->info)->dynobj;
2643 bed = get_elf_backend_data (dynobj);
2644
2645 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2646 {
2647 eif->failed = TRUE;
2648 return FALSE;
2649 }
2650
2651 return TRUE;
2652 }
2653
2654 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2655 DYNBSS. */
2656
2657 bfd_boolean
2658 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2659 asection *dynbss)
2660 {
2661 unsigned int power_of_two;
2662 bfd_vma mask;
2663 asection *sec = h->root.u.def.section;
2664
2665 /* The section aligment of definition is the maximum alignment
2666 requirement of symbols defined in the section. Since we don't
2667 know the symbol alignment requirement, we start with the
2668 maximum alignment and check low bits of the symbol address
2669 for the minimum alignment. */
2670 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2671 mask = ((bfd_vma) 1 << power_of_two) - 1;
2672 while ((h->root.u.def.value & mask) != 0)
2673 {
2674 mask >>= 1;
2675 --power_of_two;
2676 }
2677
2678 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2679 dynbss))
2680 {
2681 /* Adjust the section alignment if needed. */
2682 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2683 power_of_two))
2684 return FALSE;
2685 }
2686
2687 /* We make sure that the symbol will be aligned properly. */
2688 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2689
2690 /* Define the symbol as being at this point in DYNBSS. */
2691 h->root.u.def.section = dynbss;
2692 h->root.u.def.value = dynbss->size;
2693
2694 /* Increment the size of DYNBSS to make room for the symbol. */
2695 dynbss->size += h->size;
2696
2697 return TRUE;
2698 }
2699
2700 /* Adjust all external symbols pointing into SEC_MERGE sections
2701 to reflect the object merging within the sections. */
2702
2703 static bfd_boolean
2704 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2705 {
2706 asection *sec;
2707
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2711 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2712 {
2713 bfd *output_bfd = (bfd *) data;
2714
2715 h->root.u.def.value =
2716 _bfd_merged_section_offset (output_bfd,
2717 &h->root.u.def.section,
2718 elf_section_data (sec)->sec_info,
2719 h->root.u.def.value);
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Returns false if the symbol referred to by H should be considered
2726 to resolve local to the current module, and true if it should be
2727 considered to bind dynamically. */
2728
2729 bfd_boolean
2730 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2731 struct bfd_link_info *info,
2732 bfd_boolean not_local_protected)
2733 {
2734 bfd_boolean binding_stays_local_p;
2735 const struct elf_backend_data *bed;
2736 struct elf_link_hash_table *hash_table;
2737
2738 if (h == NULL)
2739 return FALSE;
2740
2741 while (h->root.type == bfd_link_hash_indirect
2742 || h->root.type == bfd_link_hash_warning)
2743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744
2745 /* If it was forced local, then clearly it's not dynamic. */
2746 if (h->dynindx == -1)
2747 return FALSE;
2748 if (h->forced_local)
2749 return FALSE;
2750
2751 /* Identify the cases where name binding rules say that a
2752 visible symbol resolves locally. */
2753 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2754
2755 switch (ELF_ST_VISIBILITY (h->other))
2756 {
2757 case STV_INTERNAL:
2758 case STV_HIDDEN:
2759 return FALSE;
2760
2761 case STV_PROTECTED:
2762 hash_table = elf_hash_table (info);
2763 if (!is_elf_hash_table (hash_table))
2764 return FALSE;
2765
2766 bed = get_elf_backend_data (hash_table->dynobj);
2767
2768 /* Proper resolution for function pointer equality may require
2769 that these symbols perhaps be resolved dynamically, even though
2770 we should be resolving them to the current module. */
2771 if (!not_local_protected || !bed->is_function_type (h->type))
2772 binding_stays_local_p = TRUE;
2773 break;
2774
2775 default:
2776 break;
2777 }
2778
2779 /* If it isn't defined locally, then clearly it's dynamic. */
2780 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2781 return TRUE;
2782
2783 /* Otherwise, the symbol is dynamic if binding rules don't tell
2784 us that it remains local. */
2785 return !binding_stays_local_p;
2786 }
2787
2788 /* Return true if the symbol referred to by H should be considered
2789 to resolve local to the current module, and false otherwise. Differs
2790 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2791 undefined symbols. The two functions are virtually identical except
2792 for the place where forced_local and dynindx == -1 are tested. If
2793 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2794 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2795 the symbol is local only for defined symbols.
2796 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2797 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2798 treatment of undefined weak symbols. For those that do not make
2799 undefined weak symbols dynamic, both functions may return false. */
2800
2801 bfd_boolean
2802 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2803 struct bfd_link_info *info,
2804 bfd_boolean local_protected)
2805 {
2806 const struct elf_backend_data *bed;
2807 struct elf_link_hash_table *hash_table;
2808
2809 /* If it's a local sym, of course we resolve locally. */
2810 if (h == NULL)
2811 return TRUE;
2812
2813 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2814 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2815 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2816 return TRUE;
2817
2818 /* Common symbols that become definitions don't get the DEF_REGULAR
2819 flag set, so test it first, and don't bail out. */
2820 if (ELF_COMMON_DEF_P (h))
2821 /* Do nothing. */;
2822 /* If we don't have a definition in a regular file, then we can't
2823 resolve locally. The sym is either undefined or dynamic. */
2824 else if (!h->def_regular)
2825 return FALSE;
2826
2827 /* Forced local symbols resolve locally. */
2828 if (h->forced_local)
2829 return TRUE;
2830
2831 /* As do non-dynamic symbols. */
2832 if (h->dynindx == -1)
2833 return TRUE;
2834
2835 /* At this point, we know the symbol is defined and dynamic. In an
2836 executable it must resolve locally, likewise when building symbolic
2837 shared libraries. */
2838 if (info->executable || SYMBOLIC_BIND (info, h))
2839 return TRUE;
2840
2841 /* Now deal with defined dynamic symbols in shared libraries. Ones
2842 with default visibility might not resolve locally. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2844 return FALSE;
2845
2846 hash_table = elf_hash_table (info);
2847 if (!is_elf_hash_table (hash_table))
2848 return TRUE;
2849
2850 bed = get_elf_backend_data (hash_table->dynobj);
2851
2852 /* STV_PROTECTED non-function symbols are local. */
2853 if (!bed->is_function_type (h->type))
2854 return TRUE;
2855
2856 /* Function pointer equality tests may require that STV_PROTECTED
2857 symbols be treated as dynamic symbols. If the address of a
2858 function not defined in an executable is set to that function's
2859 plt entry in the executable, then the address of the function in
2860 a shared library must also be the plt entry in the executable. */
2861 return local_protected;
2862 }
2863
2864 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2865 aligned. Returns the first TLS output section. */
2866
2867 struct bfd_section *
2868 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2869 {
2870 struct bfd_section *sec, *tls;
2871 unsigned int align = 0;
2872
2873 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2874 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2875 break;
2876 tls = sec;
2877
2878 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2879 if (sec->alignment_power > align)
2880 align = sec->alignment_power;
2881
2882 elf_hash_table (info)->tls_sec = tls;
2883
2884 /* Ensure the alignment of the first section is the largest alignment,
2885 so that the tls segment starts aligned. */
2886 if (tls != NULL)
2887 tls->alignment_power = align;
2888
2889 return tls;
2890 }
2891
2892 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2893 static bfd_boolean
2894 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2895 Elf_Internal_Sym *sym)
2896 {
2897 const struct elf_backend_data *bed;
2898
2899 /* Local symbols do not count, but target specific ones might. */
2900 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2901 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2902 return FALSE;
2903
2904 bed = get_elf_backend_data (abfd);
2905 /* Function symbols do not count. */
2906 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2907 return FALSE;
2908
2909 /* If the section is undefined, then so is the symbol. */
2910 if (sym->st_shndx == SHN_UNDEF)
2911 return FALSE;
2912
2913 /* If the symbol is defined in the common section, then
2914 it is a common definition and so does not count. */
2915 if (bed->common_definition (sym))
2916 return FALSE;
2917
2918 /* If the symbol is in a target specific section then we
2919 must rely upon the backend to tell us what it is. */
2920 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2921 /* FIXME - this function is not coded yet:
2922
2923 return _bfd_is_global_symbol_definition (abfd, sym);
2924
2925 Instead for now assume that the definition is not global,
2926 Even if this is wrong, at least the linker will behave
2927 in the same way that it used to do. */
2928 return FALSE;
2929
2930 return TRUE;
2931 }
2932
2933 /* Search the symbol table of the archive element of the archive ABFD
2934 whose archive map contains a mention of SYMDEF, and determine if
2935 the symbol is defined in this element. */
2936 static bfd_boolean
2937 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2938 {
2939 Elf_Internal_Shdr * hdr;
2940 bfd_size_type symcount;
2941 bfd_size_type extsymcount;
2942 bfd_size_type extsymoff;
2943 Elf_Internal_Sym *isymbuf;
2944 Elf_Internal_Sym *isym;
2945 Elf_Internal_Sym *isymend;
2946 bfd_boolean result;
2947
2948 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2949 if (abfd == NULL)
2950 return FALSE;
2951
2952 if (! bfd_check_format (abfd, bfd_object))
2953 return FALSE;
2954
2955 /* If we have already included the element containing this symbol in the
2956 link then we do not need to include it again. Just claim that any symbol
2957 it contains is not a definition, so that our caller will not decide to
2958 (re)include this element. */
2959 if (abfd->archive_pass)
2960 return FALSE;
2961
2962 /* Select the appropriate symbol table. */
2963 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2964 hdr = &elf_tdata (abfd)->symtab_hdr;
2965 else
2966 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2967
2968 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2969
2970 /* The sh_info field of the symtab header tells us where the
2971 external symbols start. We don't care about the local symbols. */
2972 if (elf_bad_symtab (abfd))
2973 {
2974 extsymcount = symcount;
2975 extsymoff = 0;
2976 }
2977 else
2978 {
2979 extsymcount = symcount - hdr->sh_info;
2980 extsymoff = hdr->sh_info;
2981 }
2982
2983 if (extsymcount == 0)
2984 return FALSE;
2985
2986 /* Read in the symbol table. */
2987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2988 NULL, NULL, NULL);
2989 if (isymbuf == NULL)
2990 return FALSE;
2991
2992 /* Scan the symbol table looking for SYMDEF. */
2993 result = FALSE;
2994 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2995 {
2996 const char *name;
2997
2998 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2999 isym->st_name);
3000 if (name == NULL)
3001 break;
3002
3003 if (strcmp (name, symdef->name) == 0)
3004 {
3005 result = is_global_data_symbol_definition (abfd, isym);
3006 break;
3007 }
3008 }
3009
3010 free (isymbuf);
3011
3012 return result;
3013 }
3014 \f
3015 /* Add an entry to the .dynamic table. */
3016
3017 bfd_boolean
3018 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3019 bfd_vma tag,
3020 bfd_vma val)
3021 {
3022 struct elf_link_hash_table *hash_table;
3023 const struct elf_backend_data *bed;
3024 asection *s;
3025 bfd_size_type newsize;
3026 bfd_byte *newcontents;
3027 Elf_Internal_Dyn dyn;
3028
3029 hash_table = elf_hash_table (info);
3030 if (! is_elf_hash_table (hash_table))
3031 return FALSE;
3032
3033 bed = get_elf_backend_data (hash_table->dynobj);
3034 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3035 BFD_ASSERT (s != NULL);
3036
3037 newsize = s->size + bed->s->sizeof_dyn;
3038 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3039 if (newcontents == NULL)
3040 return FALSE;
3041
3042 dyn.d_tag = tag;
3043 dyn.d_un.d_val = val;
3044 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3045
3046 s->size = newsize;
3047 s->contents = newcontents;
3048
3049 return TRUE;
3050 }
3051
3052 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3053 otherwise just check whether one already exists. Returns -1 on error,
3054 1 if a DT_NEEDED tag already exists, and 0 on success. */
3055
3056 static int
3057 elf_add_dt_needed_tag (bfd *abfd,
3058 struct bfd_link_info *info,
3059 const char *soname,
3060 bfd_boolean do_it)
3061 {
3062 struct elf_link_hash_table *hash_table;
3063 bfd_size_type oldsize;
3064 bfd_size_type strindex;
3065
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 return -1;
3068
3069 hash_table = elf_hash_table (info);
3070 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3071 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3072 if (strindex == (bfd_size_type) -1)
3073 return -1;
3074
3075 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3076 {
3077 asection *sdyn;
3078 const struct elf_backend_data *bed;
3079 bfd_byte *extdyn;
3080
3081 bed = get_elf_backend_data (hash_table->dynobj);
3082 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3083 if (sdyn != NULL)
3084 for (extdyn = sdyn->contents;
3085 extdyn < sdyn->contents + sdyn->size;
3086 extdyn += bed->s->sizeof_dyn)
3087 {
3088 Elf_Internal_Dyn dyn;
3089
3090 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3091 if (dyn.d_tag == DT_NEEDED
3092 && dyn.d_un.d_val == strindex)
3093 {
3094 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3095 return 1;
3096 }
3097 }
3098 }
3099
3100 if (do_it)
3101 {
3102 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3103 return -1;
3104
3105 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3106 return -1;
3107 }
3108 else
3109 /* We were just checking for existence of the tag. */
3110 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3111
3112 return 0;
3113 }
3114
3115 static bfd_boolean
3116 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3117 {
3118 for (; needed != NULL; needed = needed->next)
3119 if (strcmp (soname, needed->name) == 0)
3120 return TRUE;
3121
3122 return FALSE;
3123 }
3124
3125 /* Sort symbol by value and section. */
3126 static int
3127 elf_sort_symbol (const void *arg1, const void *arg2)
3128 {
3129 const struct elf_link_hash_entry *h1;
3130 const struct elf_link_hash_entry *h2;
3131 bfd_signed_vma vdiff;
3132
3133 h1 = *(const struct elf_link_hash_entry **) arg1;
3134 h2 = *(const struct elf_link_hash_entry **) arg2;
3135 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3136 if (vdiff != 0)
3137 return vdiff > 0 ? 1 : -1;
3138 else
3139 {
3140 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3141 if (sdiff != 0)
3142 return sdiff > 0 ? 1 : -1;
3143 }
3144 return 0;
3145 }
3146
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3149
3150 static bfd_boolean
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3152 {
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3154
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3157 return TRUE;
3158 }
3159
3160 /* Assign string offsets in .dynstr, update all structures referencing
3161 them. */
3162
3163 static bfd_boolean
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3165 {
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3170 asection *sdyn;
3171 bfd_size_type size;
3172 const struct elf_backend_data *bed;
3173 bfd_byte *extdyn;
3174
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3177
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3181
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3186 {
3187 Elf_Internal_Dyn dyn;
3188
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3190 switch (dyn.d_tag)
3191 {
3192 case DT_STRSZ:
3193 dyn.d_un.d_val = size;
3194 break;
3195 case DT_NEEDED:
3196 case DT_SONAME:
3197 case DT_RPATH:
3198 case DT_RUNPATH:
3199 case DT_FILTER:
3200 case DT_AUXILIARY:
3201 case DT_AUDIT:
3202 case DT_DEPAUDIT:
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3204 break;
3205 default:
3206 continue;
3207 }
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 }
3210
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3215
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3218
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3227
3228 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3233 &def);
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3236 continue;
3237 for (i = 0; i < def.vd_cnt; ++i)
3238 {
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3242 defaux.vda_name);
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3246 }
3247 }
3248 while (def.vd_next);
3249 }
3250
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3259
3260 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3265 &need);
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3271 {
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3275 needaux.vna_name);
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3277 &needaux,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3280 }
3281 }
3282 while (need.vn_next);
3283 }
3284
3285 return TRUE;
3286 }
3287 \f
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3290 the same target. */
3291
3292 bfd_boolean
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 return input == output;
3297 }
3298
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3302
3303 bfd_boolean
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3306 {
3307 const struct elf_backend_data *obed, *ibed;
3308
3309 if (input == output)
3310 return TRUE;
3311
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3314
3315 if (ibed->arch != obed->arch)
3316 return FALSE;
3317
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3320 }
3321
3322 /* Add symbols from an ELF object file to the linker hash table. */
3323
3324 static bfd_boolean
3325 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3326 {
3327 Elf_Internal_Ehdr *ehdr;
3328 Elf_Internal_Shdr *hdr;
3329 bfd_size_type symcount;
3330 bfd_size_type extsymcount;
3331 bfd_size_type extsymoff;
3332 struct elf_link_hash_entry **sym_hash;
3333 bfd_boolean dynamic;
3334 Elf_External_Versym *extversym = NULL;
3335 Elf_External_Versym *ever;
3336 struct elf_link_hash_entry *weaks;
3337 struct elf_link_hash_entry **nondeflt_vers = NULL;
3338 bfd_size_type nondeflt_vers_cnt = 0;
3339 Elf_Internal_Sym *isymbuf = NULL;
3340 Elf_Internal_Sym *isym;
3341 Elf_Internal_Sym *isymend;
3342 const struct elf_backend_data *bed;
3343 bfd_boolean add_needed;
3344 struct elf_link_hash_table *htab;
3345 bfd_size_type amt;
3346 void *alloc_mark = NULL;
3347 struct bfd_hash_entry **old_table = NULL;
3348 unsigned int old_size = 0;
3349 unsigned int old_count = 0;
3350 void *old_tab = NULL;
3351 void *old_hash;
3352 void *old_ent;
3353 struct bfd_link_hash_entry *old_undefs = NULL;
3354 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3355 long old_dynsymcount = 0;
3356 size_t tabsize = 0;
3357 size_t hashsize = 0;
3358
3359 htab = elf_hash_table (info);
3360 bed = get_elf_backend_data (abfd);
3361
3362 if ((abfd->flags & DYNAMIC) == 0)
3363 dynamic = FALSE;
3364 else
3365 {
3366 dynamic = TRUE;
3367
3368 /* You can't use -r against a dynamic object. Also, there's no
3369 hope of using a dynamic object which does not exactly match
3370 the format of the output file. */
3371 if (info->relocatable
3372 || !is_elf_hash_table (htab)
3373 || info->output_bfd->xvec != abfd->xvec)
3374 {
3375 if (info->relocatable)
3376 bfd_set_error (bfd_error_invalid_operation);
3377 else
3378 bfd_set_error (bfd_error_wrong_format);
3379 goto error_return;
3380 }
3381 }
3382
3383 ehdr = elf_elfheader (abfd);
3384 if (info->warn_alternate_em
3385 && bed->elf_machine_code != ehdr->e_machine
3386 && ((bed->elf_machine_alt1 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt1)
3388 || (bed->elf_machine_alt2 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt2)))
3390 info->callbacks->einfo
3391 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3392 ehdr->e_machine, abfd, bed->elf_machine_code);
3393
3394 /* As a GNU extension, any input sections which are named
3395 .gnu.warning.SYMBOL are treated as warning symbols for the given
3396 symbol. This differs from .gnu.warning sections, which generate
3397 warnings when they are included in an output file. */
3398 /* PR 12761: Also generate this warning when building shared libraries. */
3399 if (info->executable || info->shared)
3400 {
3401 asection *s;
3402
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 const char *name;
3406
3407 name = bfd_get_section_name (abfd, s);
3408 if (CONST_STRNEQ (name, ".gnu.warning."))
3409 {
3410 char *msg;
3411 bfd_size_type sz;
3412
3413 name += sizeof ".gnu.warning." - 1;
3414
3415 /* If this is a shared object, then look up the symbol
3416 in the hash table. If it is there, and it is already
3417 been defined, then we will not be using the entry
3418 from this shared object, so we don't need to warn.
3419 FIXME: If we see the definition in a regular object
3420 later on, we will warn, but we shouldn't. The only
3421 fix is to keep track of what warnings we are supposed
3422 to emit, and then handle them all at the end of the
3423 link. */
3424 if (dynamic)
3425 {
3426 struct elf_link_hash_entry *h;
3427
3428 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3429
3430 /* FIXME: What about bfd_link_hash_common? */
3431 if (h != NULL
3432 && (h->root.type == bfd_link_hash_defined
3433 || h->root.type == bfd_link_hash_defweak))
3434 {
3435 /* We don't want to issue this warning. Clobber
3436 the section size so that the warning does not
3437 get copied into the output file. */
3438 s->size = 0;
3439 continue;
3440 }
3441 }
3442
3443 sz = s->size;
3444 msg = (char *) bfd_alloc (abfd, sz + 1);
3445 if (msg == NULL)
3446 goto error_return;
3447
3448 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3449 goto error_return;
3450
3451 msg[sz] = '\0';
3452
3453 if (! (_bfd_generic_link_add_one_symbol
3454 (info, abfd, name, BSF_WARNING, s, 0, msg,
3455 FALSE, bed->collect, NULL)))
3456 goto error_return;
3457
3458 if (! info->relocatable)
3459 {
3460 /* Clobber the section size so that the warning does
3461 not get copied into the output file. */
3462 s->size = 0;
3463
3464 /* Also set SEC_EXCLUDE, so that symbols defined in
3465 the warning section don't get copied to the output. */
3466 s->flags |= SEC_EXCLUDE;
3467 }
3468 }
3469 }
3470 }
3471
3472 add_needed = TRUE;
3473 if (! dynamic)
3474 {
3475 /* If we are creating a shared library, create all the dynamic
3476 sections immediately. We need to attach them to something,
3477 so we attach them to this BFD, provided it is the right
3478 format. FIXME: If there are no input BFD's of the same
3479 format as the output, we can't make a shared library. */
3480 if (info->shared
3481 && is_elf_hash_table (htab)
3482 && info->output_bfd->xvec == abfd->xvec
3483 && !htab->dynamic_sections_created)
3484 {
3485 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3486 goto error_return;
3487 }
3488 }
3489 else if (!is_elf_hash_table (htab))
3490 goto error_return;
3491 else
3492 {
3493 asection *s;
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3503 abort ();
3504
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3511 all. */
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3515
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3517 if (s != NULL)
3518 {
3519 bfd_byte *dynbuf;
3520 bfd_byte *extdyn;
3521 unsigned int elfsec;
3522 unsigned long shlink;
3523
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3525 {
3526 error_free_dyn:
3527 free (dynbuf);
3528 goto error_return;
3529 }
3530
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3535
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3539 {
3540 Elf_Internal_Dyn dyn;
3541
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3544 {
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3547 if (soname == NULL)
3548 goto error_free_dyn;
3549 }
3550 if (dyn.d_tag == DT_NEEDED)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3570 ;
3571 *pn = n;
3572 }
3573 if (dyn.d_tag == DT_RUNPATH)
3574 {
3575 struct bfd_link_needed_list *n, **pn;
3576 char *fnm, *anm;
3577 unsigned int tagv = dyn.d_un.d_val;
3578
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3586 if (anm == NULL)
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & runpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & rpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 if (dyn.d_tag == DT_AUDIT)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 }
3629 }
3630
3631 free (dynbuf);
3632 }
3633
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3636 if (runpath)
3637 rpath = runpath;
3638
3639 if (rpath)
3640 {
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3643 ;
3644 *pn = rpath;
3645 }
3646
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3653 file. */
3654 bfd_section_list_clear (abfd);
3655
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3660 name. */
3661 if (soname == NULL || *soname == '\0')
3662 {
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3666 }
3667
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3671
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3673 if (ret < 0)
3674 goto error_return;
3675
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3679 if (ret > 0)
3680 return TRUE;
3681
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3684 }
3685
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3690
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3693 else
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3695
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3697
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3700 this point. */
3701 if (elf_bad_symtab (abfd))
3702 {
3703 extsymcount = symcount;
3704 extsymoff = 0;
3705 }
3706 else
3707 {
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3710 }
3711
3712 sym_hash = NULL;
3713 if (extsymcount != 0)
3714 {
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3716 NULL, NULL, NULL);
3717 if (isymbuf == NULL)
3718 goto error_return;
3719
3720 /* We store a pointer to the hash table entry for each external
3721 symbol. */
3722 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3724 if (sym_hash == NULL)
3725 goto error_free_sym;
3726 elf_sym_hashes (abfd) = sym_hash;
3727 }
3728
3729 if (dynamic)
3730 {
3731 /* Read in any version definitions. */
3732 if (!_bfd_elf_slurp_version_tables (abfd,
3733 info->default_imported_symver))
3734 goto error_free_sym;
3735
3736 /* Read in the symbol versions, but don't bother to convert them
3737 to internal format. */
3738 if (elf_dynversym (abfd) != 0)
3739 {
3740 Elf_Internal_Shdr *versymhdr;
3741
3742 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3744 if (extversym == NULL)
3745 goto error_free_sym;
3746 amt = versymhdr->sh_size;
3747 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3748 || bfd_bread (extversym, amt, abfd) != amt)
3749 goto error_free_vers;
3750 }
3751 }
3752
3753 /* If we are loading an as-needed shared lib, save the symbol table
3754 state before we start adding symbols. If the lib turns out
3755 to be unneeded, restore the state. */
3756 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3757 {
3758 unsigned int i;
3759 size_t entsize;
3760
3761 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3762 {
3763 struct bfd_hash_entry *p;
3764 struct elf_link_hash_entry *h;
3765
3766 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3767 {
3768 h = (struct elf_link_hash_entry *) p;
3769 entsize += htab->root.table.entsize;
3770 if (h->root.type == bfd_link_hash_warning)
3771 entsize += htab->root.table.entsize;
3772 }
3773 }
3774
3775 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3776 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3777 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3778 if (old_tab == NULL)
3779 goto error_free_vers;
3780
3781 /* Remember the current objalloc pointer, so that all mem for
3782 symbols added can later be reclaimed. */
3783 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3784 if (alloc_mark == NULL)
3785 goto error_free_vers;
3786
3787 /* Make a special call to the linker "notice" function to
3788 tell it that we are about to handle an as-needed lib. */
3789 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3790 notice_as_needed, 0, NULL))
3791 goto error_free_vers;
3792
3793 /* Clone the symbol table and sym hashes. Remember some
3794 pointers into the symbol table, and dynamic symbol count. */
3795 old_hash = (char *) old_tab + tabsize;
3796 old_ent = (char *) old_hash + hashsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 memcpy (old_hash, sym_hash, hashsize);
3799 old_undefs = htab->root.undefs;
3800 old_undefs_tail = htab->root.undefs_tail;
3801 old_table = htab->root.table.table;
3802 old_size = htab->root.table.size;
3803 old_count = htab->root.table.count;
3804 old_dynsymcount = htab->dynsymcount;
3805
3806 for (i = 0; i < htab->root.table.size; i++)
3807 {
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3810
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3812 {
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3817 {
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3820 }
3821 }
3822 }
3823 }
3824
3825 weaks = NULL;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3828 isym < isymend;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3830 {
3831 int bind;
3832 bfd_vma value;
3833 asection *sec, *new_sec;
3834 flagword flags;
3835 const char *name;
3836 struct elf_link_hash_entry *h;
3837 bfd_boolean definition;
3838 bfd_boolean size_change_ok;
3839 bfd_boolean type_change_ok;
3840 bfd_boolean new_weakdef;
3841 bfd_boolean override;
3842 bfd_boolean common;
3843 unsigned int old_alignment;
3844 bfd *old_bfd;
3845 bfd * undef_bfd = NULL;
3846
3847 override = FALSE;
3848
3849 flags = BSF_NO_FLAGS;
3850 sec = NULL;
3851 value = isym->st_value;
3852 *sym_hash = NULL;
3853 common = bed->common_definition (isym);
3854
3855 bind = ELF_ST_BIND (isym->st_info);
3856 switch (bind)
3857 {
3858 case STB_LOCAL:
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3862 screws this up. */
3863 continue;
3864
3865 case STB_GLOBAL:
3866 if (isym->st_shndx != SHN_UNDEF && !common)
3867 flags = BSF_GLOBAL;
3868 break;
3869
3870 case STB_WEAK:
3871 flags = BSF_WEAK;
3872 break;
3873
3874 case STB_GNU_UNIQUE:
3875 flags = BSF_GNU_UNIQUE;
3876 break;
3877
3878 default:
3879 /* Leave it up to the processor backend. */
3880 break;
3881 }
3882
3883 if (isym->st_shndx == SHN_UNDEF)
3884 sec = bfd_und_section_ptr;
3885 else if (isym->st_shndx == SHN_ABS)
3886 sec = bfd_abs_section_ptr;
3887 else if (isym->st_shndx == SHN_COMMON)
3888 {
3889 sec = bfd_com_section_ptr;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value = isym->st_size;
3893 }
3894 else
3895 {
3896 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3897 if (sec == NULL)
3898 sec = bfd_abs_section_ptr;
3899 else if (elf_discarded_section (sec))
3900 {
3901 /* Symbols from discarded section are undefined. We keep
3902 its visibility. */
3903 sec = bfd_und_section_ptr;
3904 isym->st_shndx = SHN_UNDEF;
3905 }
3906 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3907 value -= sec->vma;
3908 }
3909
3910 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 isym->st_name);
3912 if (name == NULL)
3913 goto error_free_vers;
3914
3915 if (isym->st_shndx == SHN_COMMON
3916 && (abfd->flags & BFD_PLUGIN) != 0)
3917 {
3918 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3919
3920 if (xc == NULL)
3921 {
3922 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3923 | SEC_EXCLUDE);
3924 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3925 if (xc == NULL)
3926 goto error_free_vers;
3927 }
3928 sec = xc;
3929 }
3930 else if (isym->st_shndx == SHN_COMMON
3931 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3932 && !info->relocatable)
3933 {
3934 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3935
3936 if (tcomm == NULL)
3937 {
3938 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3939 | SEC_LINKER_CREATED);
3940 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3941 if (tcomm == NULL)
3942 goto error_free_vers;
3943 }
3944 sec = tcomm;
3945 }
3946 else if (bed->elf_add_symbol_hook)
3947 {
3948 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3949 &sec, &value))
3950 goto error_free_vers;
3951
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3954 if (name == NULL)
3955 continue;
3956 }
3957
3958 /* Sanity check that all possibilities were handled. */
3959 if (sec == NULL)
3960 {
3961 bfd_set_error (bfd_error_bad_value);
3962 goto error_free_vers;
3963 }
3964
3965 if (bfd_is_und_section (sec)
3966 || bfd_is_com_section (sec))
3967 definition = FALSE;
3968 else
3969 definition = TRUE;
3970
3971 size_change_ok = FALSE;
3972 type_change_ok = bed->type_change_ok;
3973 old_alignment = 0;
3974 old_bfd = NULL;
3975 new_sec = sec;
3976
3977 if (is_elf_hash_table (htab))
3978 {
3979 Elf_Internal_Versym iver;
3980 unsigned int vernum = 0;
3981 bfd_boolean skip;
3982
3983 /* If this is a definition of a symbol which was previously
3984 referenced in a non-weak manner then make a note of the bfd
3985 that contained the reference. This is used if we need to
3986 refer to the source of the reference later on. */
3987 if (! bfd_is_und_section (sec))
3988 {
3989 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3990
3991 if (h != NULL
3992 && h->root.type == bfd_link_hash_undefined
3993 && h->root.u.undef.abfd)
3994 undef_bfd = h->root.u.undef.abfd;
3995 }
3996
3997 if (ever == NULL)
3998 {
3999 if (info->default_imported_symver)
4000 /* Use the default symbol version created earlier. */
4001 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4002 else
4003 iver.vs_vers = 0;
4004 }
4005 else
4006 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4007
4008 vernum = iver.vs_vers & VERSYM_VERSION;
4009
4010 /* If this is a hidden symbol, or if it is not version
4011 1, we append the version name to the symbol name.
4012 However, we do not modify a non-hidden absolute symbol
4013 if it is not a function, because it might be the version
4014 symbol itself. FIXME: What if it isn't? */
4015 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4016 || (vernum > 1
4017 && (!bfd_is_abs_section (sec)
4018 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4019 {
4020 const char *verstr;
4021 size_t namelen, verlen, newlen;
4022 char *newname, *p;
4023
4024 if (isym->st_shndx != SHN_UNDEF)
4025 {
4026 if (vernum > elf_tdata (abfd)->cverdefs)
4027 verstr = NULL;
4028 else if (vernum > 1)
4029 verstr =
4030 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4031 else
4032 verstr = "";
4033
4034 if (verstr == NULL)
4035 {
4036 (*_bfd_error_handler)
4037 (_("%B: %s: invalid version %u (max %d)"),
4038 abfd, name, vernum,
4039 elf_tdata (abfd)->cverdefs);
4040 bfd_set_error (bfd_error_bad_value);
4041 goto error_free_vers;
4042 }
4043 }
4044 else
4045 {
4046 /* We cannot simply test for the number of
4047 entries in the VERNEED section since the
4048 numbers for the needed versions do not start
4049 at 0. */
4050 Elf_Internal_Verneed *t;
4051
4052 verstr = NULL;
4053 for (t = elf_tdata (abfd)->verref;
4054 t != NULL;
4055 t = t->vn_nextref)
4056 {
4057 Elf_Internal_Vernaux *a;
4058
4059 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4060 {
4061 if (a->vna_other == vernum)
4062 {
4063 verstr = a->vna_nodename;
4064 break;
4065 }
4066 }
4067 if (a != NULL)
4068 break;
4069 }
4070 if (verstr == NULL)
4071 {
4072 (*_bfd_error_handler)
4073 (_("%B: %s: invalid needed version %d"),
4074 abfd, name, vernum);
4075 bfd_set_error (bfd_error_bad_value);
4076 goto error_free_vers;
4077 }
4078 }
4079
4080 namelen = strlen (name);
4081 verlen = strlen (verstr);
4082 newlen = namelen + verlen + 2;
4083 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4084 && isym->st_shndx != SHN_UNDEF)
4085 ++newlen;
4086
4087 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4088 if (newname == NULL)
4089 goto error_free_vers;
4090 memcpy (newname, name, namelen);
4091 p = newname + namelen;
4092 *p++ = ELF_VER_CHR;
4093 /* If this is a defined non-hidden version symbol,
4094 we add another @ to the name. This indicates the
4095 default version of the symbol. */
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 *p++ = ELF_VER_CHR;
4099 memcpy (p, verstr, verlen + 1);
4100
4101 name = newname;
4102 }
4103
4104 /* If necessary, make a second attempt to locate the bfd
4105 containing an unresolved, non-weak reference to the
4106 current symbol. */
4107 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4108 {
4109 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4110
4111 if (h != NULL
4112 && h->root.type == bfd_link_hash_undefined
4113 && h->root.u.undef.abfd)
4114 undef_bfd = h->root.u.undef.abfd;
4115 }
4116
4117 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4118 &value, &old_alignment,
4119 sym_hash, &skip, &override,
4120 &type_change_ok, &size_change_ok))
4121 goto error_free_vers;
4122
4123 if (skip)
4124 continue;
4125
4126 if (override)
4127 definition = FALSE;
4128
4129 h = *sym_hash;
4130 while (h->root.type == bfd_link_hash_indirect
4131 || h->root.type == bfd_link_hash_warning)
4132 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4133
4134 /* Remember the old alignment if this is a common symbol, so
4135 that we don't reduce the alignment later on. We can't
4136 check later, because _bfd_generic_link_add_one_symbol
4137 will set a default for the alignment which we want to
4138 override. We also remember the old bfd where the existing
4139 definition comes from. */
4140 switch (h->root.type)
4141 {
4142 default:
4143 break;
4144
4145 case bfd_link_hash_defined:
4146 case bfd_link_hash_defweak:
4147 old_bfd = h->root.u.def.section->owner;
4148 break;
4149
4150 case bfd_link_hash_common:
4151 old_bfd = h->root.u.c.p->section->owner;
4152 old_alignment = h->root.u.c.p->alignment_power;
4153 break;
4154 }
4155
4156 if (elf_tdata (abfd)->verdef != NULL
4157 && ! override
4158 && vernum > 1
4159 && definition)
4160 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4161 }
4162
4163 if (! (_bfd_generic_link_add_one_symbol
4164 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4165 (struct bfd_link_hash_entry **) sym_hash)))
4166 goto error_free_vers;
4167
4168 h = *sym_hash;
4169 while (h->root.type == bfd_link_hash_indirect
4170 || h->root.type == bfd_link_hash_warning)
4171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4172
4173 *sym_hash = h;
4174 if (is_elf_hash_table (htab))
4175 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4176
4177 new_weakdef = FALSE;
4178 if (dynamic
4179 && definition
4180 && (flags & BSF_WEAK) != 0
4181 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4182 && is_elf_hash_table (htab)
4183 && h->u.weakdef == NULL)
4184 {
4185 /* Keep a list of all weak defined non function symbols from
4186 a dynamic object, using the weakdef field. Later in this
4187 function we will set the weakdef field to the correct
4188 value. We only put non-function symbols from dynamic
4189 objects on this list, because that happens to be the only
4190 time we need to know the normal symbol corresponding to a
4191 weak symbol, and the information is time consuming to
4192 figure out. If the weakdef field is not already NULL,
4193 then this symbol was already defined by some previous
4194 dynamic object, and we will be using that previous
4195 definition anyhow. */
4196
4197 h->u.weakdef = weaks;
4198 weaks = h;
4199 new_weakdef = TRUE;
4200 }
4201
4202 /* Set the alignment of a common symbol. */
4203 if ((common || bfd_is_com_section (sec))
4204 && h->root.type == bfd_link_hash_common)
4205 {
4206 unsigned int align;
4207
4208 if (common)
4209 align = bfd_log2 (isym->st_value);
4210 else
4211 {
4212 /* The new symbol is a common symbol in a shared object.
4213 We need to get the alignment from the section. */
4214 align = new_sec->alignment_power;
4215 }
4216 if (align > old_alignment)
4217 h->root.u.c.p->alignment_power = align;
4218 else
4219 h->root.u.c.p->alignment_power = old_alignment;
4220 }
4221
4222 if (is_elf_hash_table (htab))
4223 {
4224 bfd_boolean dynsym;
4225
4226 /* Check the alignment when a common symbol is involved. This
4227 can change when a common symbol is overridden by a normal
4228 definition or a common symbol is ignored due to the old
4229 normal definition. We need to make sure the maximum
4230 alignment is maintained. */
4231 if ((old_alignment || common)
4232 && h->root.type != bfd_link_hash_common)
4233 {
4234 unsigned int common_align;
4235 unsigned int normal_align;
4236 unsigned int symbol_align;
4237 bfd *normal_bfd;
4238 bfd *common_bfd;
4239
4240 symbol_align = ffs (h->root.u.def.value) - 1;
4241 if (h->root.u.def.section->owner != NULL
4242 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4243 {
4244 normal_align = h->root.u.def.section->alignment_power;
4245 if (normal_align > symbol_align)
4246 normal_align = symbol_align;
4247 }
4248 else
4249 normal_align = symbol_align;
4250
4251 if (old_alignment)
4252 {
4253 common_align = old_alignment;
4254 common_bfd = old_bfd;
4255 normal_bfd = abfd;
4256 }
4257 else
4258 {
4259 common_align = bfd_log2 (isym->st_value);
4260 common_bfd = abfd;
4261 normal_bfd = old_bfd;
4262 }
4263
4264 if (normal_align < common_align)
4265 {
4266 /* PR binutils/2735 */
4267 if (normal_bfd == NULL)
4268 (*_bfd_error_handler)
4269 (_("Warning: alignment %u of common symbol `%s' in %B"
4270 " is greater than the alignment (%u) of its section %A"),
4271 common_bfd, h->root.u.def.section,
4272 1 << common_align, name, 1 << normal_align);
4273 else
4274 (*_bfd_error_handler)
4275 (_("Warning: alignment %u of symbol `%s' in %B"
4276 " is smaller than %u in %B"),
4277 normal_bfd, common_bfd,
4278 1 << normal_align, name, 1 << common_align);
4279 }
4280 }
4281
4282 /* Remember the symbol size if it isn't undefined. */
4283 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4284 && (definition || h->size == 0))
4285 {
4286 if (h->size != 0
4287 && h->size != isym->st_size
4288 && ! size_change_ok)
4289 (*_bfd_error_handler)
4290 (_("Warning: size of symbol `%s' changed"
4291 " from %lu in %B to %lu in %B"),
4292 old_bfd, abfd,
4293 name, (unsigned long) h->size,
4294 (unsigned long) isym->st_size);
4295
4296 h->size = isym->st_size;
4297 }
4298
4299 /* If this is a common symbol, then we always want H->SIZE
4300 to be the size of the common symbol. The code just above
4301 won't fix the size if a common symbol becomes larger. We
4302 don't warn about a size change here, because that is
4303 covered by --warn-common. Allow changed between different
4304 function types. */
4305 if (h->root.type == bfd_link_hash_common)
4306 h->size = h->root.u.c.size;
4307
4308 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4309 && (definition || h->type == STT_NOTYPE))
4310 {
4311 unsigned int type = ELF_ST_TYPE (isym->st_info);
4312
4313 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4314 symbol. */
4315 if (type == STT_GNU_IFUNC
4316 && (abfd->flags & DYNAMIC) != 0)
4317 type = STT_FUNC;
4318
4319 if (h->type != type)
4320 {
4321 if (h->type != STT_NOTYPE && ! type_change_ok)
4322 (*_bfd_error_handler)
4323 (_("Warning: type of symbol `%s' changed"
4324 " from %d to %d in %B"),
4325 abfd, name, h->type, type);
4326
4327 h->type = type;
4328 }
4329 }
4330
4331 /* Merge st_other field. */
4332 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4333
4334 /* Set a flag in the hash table entry indicating the type of
4335 reference or definition we just found. Keep a count of
4336 the number of dynamic symbols we find. A dynamic symbol
4337 is one which is referenced or defined by both a regular
4338 object and a shared object. */
4339 dynsym = FALSE;
4340 if (! dynamic)
4341 {
4342 if (! definition)
4343 {
4344 h->ref_regular = 1;
4345 if (bind != STB_WEAK)
4346 h->ref_regular_nonweak = 1;
4347 }
4348 else
4349 {
4350 h->def_regular = 1;
4351 if (h->def_dynamic)
4352 {
4353 h->def_dynamic = 0;
4354 h->ref_dynamic = 1;
4355 }
4356 }
4357 if (! info->executable
4358 || h->def_dynamic
4359 || h->ref_dynamic)
4360 dynsym = TRUE;
4361 }
4362 else
4363 {
4364 if (! definition)
4365 h->ref_dynamic = 1;
4366 else
4367 {
4368 h->def_dynamic = 1;
4369 h->dynamic_def = 1;
4370 }
4371 if (h->def_regular
4372 || h->ref_regular
4373 || (h->u.weakdef != NULL
4374 && ! new_weakdef
4375 && h->u.weakdef->dynindx != -1))
4376 dynsym = TRUE;
4377 }
4378
4379 /* We don't want to make debug symbol dynamic. */
4380 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4381 dynsym = FALSE;
4382
4383 /* Nor should we make plugin symbols dynamic. */
4384 if ((abfd->flags & BFD_PLUGIN) != 0)
4385 dynsym = FALSE;
4386
4387 if (definition)
4388 h->target_internal = isym->st_target_internal;
4389
4390 /* Check to see if we need to add an indirect symbol for
4391 the default name. */
4392 if (definition || h->root.type == bfd_link_hash_common)
4393 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4394 &sec, &value, &dynsym,
4395 override))
4396 goto error_free_vers;
4397
4398 if (definition && !dynamic)
4399 {
4400 char *p = strchr (name, ELF_VER_CHR);
4401 if (p != NULL && p[1] != ELF_VER_CHR)
4402 {
4403 /* Queue non-default versions so that .symver x, x@FOO
4404 aliases can be checked. */
4405 if (!nondeflt_vers)
4406 {
4407 amt = ((isymend - isym + 1)
4408 * sizeof (struct elf_link_hash_entry *));
4409 nondeflt_vers =
4410 (struct elf_link_hash_entry **) bfd_malloc (amt);
4411 if (!nondeflt_vers)
4412 goto error_free_vers;
4413 }
4414 nondeflt_vers[nondeflt_vers_cnt++] = h;
4415 }
4416 }
4417
4418 if (dynsym && h->dynindx == -1)
4419 {
4420 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4421 goto error_free_vers;
4422 if (h->u.weakdef != NULL
4423 && ! new_weakdef
4424 && h->u.weakdef->dynindx == -1)
4425 {
4426 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4427 goto error_free_vers;
4428 }
4429 }
4430 else if (dynsym && h->dynindx != -1)
4431 /* If the symbol already has a dynamic index, but
4432 visibility says it should not be visible, turn it into
4433 a local symbol. */
4434 switch (ELF_ST_VISIBILITY (h->other))
4435 {
4436 case STV_INTERNAL:
4437 case STV_HIDDEN:
4438 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4439 dynsym = FALSE;
4440 break;
4441 }
4442
4443 if (!add_needed
4444 && definition
4445 && ((dynsym
4446 && h->ref_regular)
4447 || (h->ref_dynamic
4448 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4449 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4450 {
4451 int ret;
4452 const char *soname = elf_dt_name (abfd);
4453
4454 /* A symbol from a library loaded via DT_NEEDED of some
4455 other library is referenced by a regular object.
4456 Add a DT_NEEDED entry for it. Issue an error if
4457 --no-add-needed is used and the reference was not
4458 a weak one. */
4459 if (undef_bfd != NULL
4460 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4461 {
4462 (*_bfd_error_handler)
4463 (_("%B: undefined reference to symbol '%s'"),
4464 undef_bfd, name);
4465 (*_bfd_error_handler)
4466 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4467 abfd, name);
4468 bfd_set_error (bfd_error_invalid_operation);
4469 goto error_free_vers;
4470 }
4471
4472 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4473 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4474
4475 add_needed = TRUE;
4476 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4477 if (ret < 0)
4478 goto error_free_vers;
4479
4480 BFD_ASSERT (ret == 0);
4481 }
4482 }
4483 }
4484
4485 if (extversym != NULL)
4486 {
4487 free (extversym);
4488 extversym = NULL;
4489 }
4490
4491 if (isymbuf != NULL)
4492 {
4493 free (isymbuf);
4494 isymbuf = NULL;
4495 }
4496
4497 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4498 {
4499 unsigned int i;
4500
4501 /* Restore the symbol table. */
4502 if (bed->as_needed_cleanup)
4503 (*bed->as_needed_cleanup) (abfd, info);
4504 old_hash = (char *) old_tab + tabsize;
4505 old_ent = (char *) old_hash + hashsize;
4506 sym_hash = elf_sym_hashes (abfd);
4507 htab->root.table.table = old_table;
4508 htab->root.table.size = old_size;
4509 htab->root.table.count = old_count;
4510 memcpy (htab->root.table.table, old_tab, tabsize);
4511 memcpy (sym_hash, old_hash, hashsize);
4512 htab->root.undefs = old_undefs;
4513 htab->root.undefs_tail = old_undefs_tail;
4514 for (i = 0; i < htab->root.table.size; i++)
4515 {
4516 struct bfd_hash_entry *p;
4517 struct elf_link_hash_entry *h;
4518 bfd_size_type size;
4519 unsigned int alignment_power;
4520
4521 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4522 {
4523 h = (struct elf_link_hash_entry *) p;
4524 if (h->root.type == bfd_link_hash_warning)
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 if (h->dynindx >= old_dynsymcount)
4527 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4528
4529 /* Preserve the maximum alignment and size for common
4530 symbols even if this dynamic lib isn't on DT_NEEDED
4531 since it can still be loaded at the run-time by another
4532 dynamic lib. */
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 size = h->root.u.c.size;
4536 alignment_power = h->root.u.c.p->alignment_power;
4537 }
4538 else
4539 {
4540 size = 0;
4541 alignment_power = 0;
4542 }
4543 memcpy (p, old_ent, htab->root.table.entsize);
4544 old_ent = (char *) old_ent + htab->root.table.entsize;
4545 h = (struct elf_link_hash_entry *) p;
4546 if (h->root.type == bfd_link_hash_warning)
4547 {
4548 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4549 old_ent = (char *) old_ent + htab->root.table.entsize;
4550 }
4551 else if (h->root.type == bfd_link_hash_common)
4552 {
4553 if (size > h->root.u.c.size)
4554 h->root.u.c.size = size;
4555 if (alignment_power > h->root.u.c.p->alignment_power)
4556 h->root.u.c.p->alignment_power = alignment_power;
4557 }
4558 }
4559 }
4560
4561 /* Make a special call to the linker "notice" function to
4562 tell it that symbols added for crefs may need to be removed. */
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_not_needed, 0, NULL))
4565 goto error_free_vers;
4566
4567 free (old_tab);
4568 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4569 alloc_mark);
4570 if (nondeflt_vers != NULL)
4571 free (nondeflt_vers);
4572 return TRUE;
4573 }
4574
4575 if (old_tab != NULL)
4576 {
4577 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4578 notice_needed, 0, NULL))
4579 goto error_free_vers;
4580 free (old_tab);
4581 old_tab = NULL;
4582 }
4583
4584 /* Now that all the symbols from this input file are created, handle
4585 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4586 if (nondeflt_vers != NULL)
4587 {
4588 bfd_size_type cnt, symidx;
4589
4590 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4591 {
4592 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4593 char *shortname, *p;
4594
4595 p = strchr (h->root.root.string, ELF_VER_CHR);
4596 if (p == NULL
4597 || (h->root.type != bfd_link_hash_defined
4598 && h->root.type != bfd_link_hash_defweak))
4599 continue;
4600
4601 amt = p - h->root.root.string;
4602 shortname = (char *) bfd_malloc (amt + 1);
4603 if (!shortname)
4604 goto error_free_vers;
4605 memcpy (shortname, h->root.root.string, amt);
4606 shortname[amt] = '\0';
4607
4608 hi = (struct elf_link_hash_entry *)
4609 bfd_link_hash_lookup (&htab->root, shortname,
4610 FALSE, FALSE, FALSE);
4611 if (hi != NULL
4612 && hi->root.type == h->root.type
4613 && hi->root.u.def.value == h->root.u.def.value
4614 && hi->root.u.def.section == h->root.u.def.section)
4615 {
4616 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4617 hi->root.type = bfd_link_hash_indirect;
4618 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4619 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4620 sym_hash = elf_sym_hashes (abfd);
4621 if (sym_hash)
4622 for (symidx = 0; symidx < extsymcount; ++symidx)
4623 if (sym_hash[symidx] == hi)
4624 {
4625 sym_hash[symidx] = h;
4626 break;
4627 }
4628 }
4629 free (shortname);
4630 }
4631 free (nondeflt_vers);
4632 nondeflt_vers = NULL;
4633 }
4634
4635 /* Now set the weakdefs field correctly for all the weak defined
4636 symbols we found. The only way to do this is to search all the
4637 symbols. Since we only need the information for non functions in
4638 dynamic objects, that's the only time we actually put anything on
4639 the list WEAKS. We need this information so that if a regular
4640 object refers to a symbol defined weakly in a dynamic object, the
4641 real symbol in the dynamic object is also put in the dynamic
4642 symbols; we also must arrange for both symbols to point to the
4643 same memory location. We could handle the general case of symbol
4644 aliasing, but a general symbol alias can only be generated in
4645 assembler code, handling it correctly would be very time
4646 consuming, and other ELF linkers don't handle general aliasing
4647 either. */
4648 if (weaks != NULL)
4649 {
4650 struct elf_link_hash_entry **hpp;
4651 struct elf_link_hash_entry **hppend;
4652 struct elf_link_hash_entry **sorted_sym_hash;
4653 struct elf_link_hash_entry *h;
4654 size_t sym_count;
4655
4656 /* Since we have to search the whole symbol list for each weak
4657 defined symbol, search time for N weak defined symbols will be
4658 O(N^2). Binary search will cut it down to O(NlogN). */
4659 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4660 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4661 if (sorted_sym_hash == NULL)
4662 goto error_return;
4663 sym_hash = sorted_sym_hash;
4664 hpp = elf_sym_hashes (abfd);
4665 hppend = hpp + extsymcount;
4666 sym_count = 0;
4667 for (; hpp < hppend; hpp++)
4668 {
4669 h = *hpp;
4670 if (h != NULL
4671 && h->root.type == bfd_link_hash_defined
4672 && !bed->is_function_type (h->type))
4673 {
4674 *sym_hash = h;
4675 sym_hash++;
4676 sym_count++;
4677 }
4678 }
4679
4680 qsort (sorted_sym_hash, sym_count,
4681 sizeof (struct elf_link_hash_entry *),
4682 elf_sort_symbol);
4683
4684 while (weaks != NULL)
4685 {
4686 struct elf_link_hash_entry *hlook;
4687 asection *slook;
4688 bfd_vma vlook;
4689 long ilook;
4690 size_t i, j, idx;
4691
4692 hlook = weaks;
4693 weaks = hlook->u.weakdef;
4694 hlook->u.weakdef = NULL;
4695
4696 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4697 || hlook->root.type == bfd_link_hash_defweak
4698 || hlook->root.type == bfd_link_hash_common
4699 || hlook->root.type == bfd_link_hash_indirect);
4700 slook = hlook->root.u.def.section;
4701 vlook = hlook->root.u.def.value;
4702
4703 ilook = -1;
4704 i = 0;
4705 j = sym_count;
4706 while (i < j)
4707 {
4708 bfd_signed_vma vdiff;
4709 idx = (i + j) / 2;
4710 h = sorted_sym_hash [idx];
4711 vdiff = vlook - h->root.u.def.value;
4712 if (vdiff < 0)
4713 j = idx;
4714 else if (vdiff > 0)
4715 i = idx + 1;
4716 else
4717 {
4718 long sdiff = slook->id - h->root.u.def.section->id;
4719 if (sdiff < 0)
4720 j = idx;
4721 else if (sdiff > 0)
4722 i = idx + 1;
4723 else
4724 {
4725 ilook = idx;
4726 break;
4727 }
4728 }
4729 }
4730
4731 /* We didn't find a value/section match. */
4732 if (ilook == -1)
4733 continue;
4734
4735 for (i = ilook; i < sym_count; i++)
4736 {
4737 h = sorted_sym_hash [i];
4738
4739 /* Stop if value or section doesn't match. */
4740 if (h->root.u.def.value != vlook
4741 || h->root.u.def.section != slook)
4742 break;
4743 else if (h != hlook)
4744 {
4745 hlook->u.weakdef = h;
4746
4747 /* If the weak definition is in the list of dynamic
4748 symbols, make sure the real definition is put
4749 there as well. */
4750 if (hlook->dynindx != -1 && h->dynindx == -1)
4751 {
4752 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4753 {
4754 err_free_sym_hash:
4755 free (sorted_sym_hash);
4756 goto error_return;
4757 }
4758 }
4759
4760 /* If the real definition is in the list of dynamic
4761 symbols, make sure the weak definition is put
4762 there as well. If we don't do this, then the
4763 dynamic loader might not merge the entries for the
4764 real definition and the weak definition. */
4765 if (h->dynindx != -1 && hlook->dynindx == -1)
4766 {
4767 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4768 goto err_free_sym_hash;
4769 }
4770 break;
4771 }
4772 }
4773 }
4774
4775 free (sorted_sym_hash);
4776 }
4777
4778 if (bed->check_directives
4779 && !(*bed->check_directives) (abfd, info))
4780 return FALSE;
4781
4782 /* If this object is the same format as the output object, and it is
4783 not a shared library, then let the backend look through the
4784 relocs.
4785
4786 This is required to build global offset table entries and to
4787 arrange for dynamic relocs. It is not required for the
4788 particular common case of linking non PIC code, even when linking
4789 against shared libraries, but unfortunately there is no way of
4790 knowing whether an object file has been compiled PIC or not.
4791 Looking through the relocs is not particularly time consuming.
4792 The problem is that we must either (1) keep the relocs in memory,
4793 which causes the linker to require additional runtime memory or
4794 (2) read the relocs twice from the input file, which wastes time.
4795 This would be a good case for using mmap.
4796
4797 I have no idea how to handle linking PIC code into a file of a
4798 different format. It probably can't be done. */
4799 if (! dynamic
4800 && is_elf_hash_table (htab)
4801 && bed->check_relocs != NULL
4802 && elf_object_id (abfd) == elf_hash_table_id (htab)
4803 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4804 {
4805 asection *o;
4806
4807 for (o = abfd->sections; o != NULL; o = o->next)
4808 {
4809 Elf_Internal_Rela *internal_relocs;
4810 bfd_boolean ok;
4811
4812 if ((o->flags & SEC_RELOC) == 0
4813 || o->reloc_count == 0
4814 || ((info->strip == strip_all || info->strip == strip_debugger)
4815 && (o->flags & SEC_DEBUGGING) != 0)
4816 || bfd_is_abs_section (o->output_section))
4817 continue;
4818
4819 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4820 info->keep_memory);
4821 if (internal_relocs == NULL)
4822 goto error_return;
4823
4824 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4825
4826 if (elf_section_data (o)->relocs != internal_relocs)
4827 free (internal_relocs);
4828
4829 if (! ok)
4830 goto error_return;
4831 }
4832 }
4833
4834 /* If this is a non-traditional link, try to optimize the handling
4835 of the .stab/.stabstr sections. */
4836 if (! dynamic
4837 && ! info->traditional_format
4838 && is_elf_hash_table (htab)
4839 && (info->strip != strip_all && info->strip != strip_debugger))
4840 {
4841 asection *stabstr;
4842
4843 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4844 if (stabstr != NULL)
4845 {
4846 bfd_size_type string_offset = 0;
4847 asection *stab;
4848
4849 for (stab = abfd->sections; stab; stab = stab->next)
4850 if (CONST_STRNEQ (stab->name, ".stab")
4851 && (!stab->name[5] ||
4852 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4853 && (stab->flags & SEC_MERGE) == 0
4854 && !bfd_is_abs_section (stab->output_section))
4855 {
4856 struct bfd_elf_section_data *secdata;
4857
4858 secdata = elf_section_data (stab);
4859 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4860 stabstr, &secdata->sec_info,
4861 &string_offset))
4862 goto error_return;
4863 if (secdata->sec_info)
4864 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4865 }
4866 }
4867 }
4868
4869 if (is_elf_hash_table (htab) && add_needed)
4870 {
4871 /* Add this bfd to the loaded list. */
4872 struct elf_link_loaded_list *n;
4873
4874 n = (struct elf_link_loaded_list *)
4875 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4876 if (n == NULL)
4877 goto error_return;
4878 n->abfd = abfd;
4879 n->next = htab->loaded;
4880 htab->loaded = n;
4881 }
4882
4883 return TRUE;
4884
4885 error_free_vers:
4886 if (old_tab != NULL)
4887 free (old_tab);
4888 if (nondeflt_vers != NULL)
4889 free (nondeflt_vers);
4890 if (extversym != NULL)
4891 free (extversym);
4892 error_free_sym:
4893 if (isymbuf != NULL)
4894 free (isymbuf);
4895 error_return:
4896 return FALSE;
4897 }
4898
4899 /* Return the linker hash table entry of a symbol that might be
4900 satisfied by an archive symbol. Return -1 on error. */
4901
4902 struct elf_link_hash_entry *
4903 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4904 struct bfd_link_info *info,
4905 const char *name)
4906 {
4907 struct elf_link_hash_entry *h;
4908 char *p, *copy;
4909 size_t len, first;
4910
4911 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4912 if (h != NULL)
4913 return h;
4914
4915 /* If this is a default version (the name contains @@), look up the
4916 symbol again with only one `@' as well as without the version.
4917 The effect is that references to the symbol with and without the
4918 version will be matched by the default symbol in the archive. */
4919
4920 p = strchr (name, ELF_VER_CHR);
4921 if (p == NULL || p[1] != ELF_VER_CHR)
4922 return h;
4923
4924 /* First check with only one `@'. */
4925 len = strlen (name);
4926 copy = (char *) bfd_alloc (abfd, len);
4927 if (copy == NULL)
4928 return (struct elf_link_hash_entry *) 0 - 1;
4929
4930 first = p - name + 1;
4931 memcpy (copy, name, first);
4932 memcpy (copy + first, name + first + 1, len - first);
4933
4934 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4935 if (h == NULL)
4936 {
4937 /* We also need to check references to the symbol without the
4938 version. */
4939 copy[first - 1] = '\0';
4940 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4941 FALSE, FALSE, TRUE);
4942 }
4943
4944 bfd_release (abfd, copy);
4945 return h;
4946 }
4947
4948 /* Add symbols from an ELF archive file to the linker hash table. We
4949 don't use _bfd_generic_link_add_archive_symbols because of a
4950 problem which arises on UnixWare. The UnixWare libc.so is an
4951 archive which includes an entry libc.so.1 which defines a bunch of
4952 symbols. The libc.so archive also includes a number of other
4953 object files, which also define symbols, some of which are the same
4954 as those defined in libc.so.1. Correct linking requires that we
4955 consider each object file in turn, and include it if it defines any
4956 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4957 this; it looks through the list of undefined symbols, and includes
4958 any object file which defines them. When this algorithm is used on
4959 UnixWare, it winds up pulling in libc.so.1 early and defining a
4960 bunch of symbols. This means that some of the other objects in the
4961 archive are not included in the link, which is incorrect since they
4962 precede libc.so.1 in the archive.
4963
4964 Fortunately, ELF archive handling is simpler than that done by
4965 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4966 oddities. In ELF, if we find a symbol in the archive map, and the
4967 symbol is currently undefined, we know that we must pull in that
4968 object file.
4969
4970 Unfortunately, we do have to make multiple passes over the symbol
4971 table until nothing further is resolved. */
4972
4973 static bfd_boolean
4974 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4975 {
4976 symindex c;
4977 bfd_boolean *defined = NULL;
4978 bfd_boolean *included = NULL;
4979 carsym *symdefs;
4980 bfd_boolean loop;
4981 bfd_size_type amt;
4982 const struct elf_backend_data *bed;
4983 struct elf_link_hash_entry * (*archive_symbol_lookup)
4984 (bfd *, struct bfd_link_info *, const char *);
4985
4986 if (! bfd_has_map (abfd))
4987 {
4988 /* An empty archive is a special case. */
4989 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4990 return TRUE;
4991 bfd_set_error (bfd_error_no_armap);
4992 return FALSE;
4993 }
4994
4995 /* Keep track of all symbols we know to be already defined, and all
4996 files we know to be already included. This is to speed up the
4997 second and subsequent passes. */
4998 c = bfd_ardata (abfd)->symdef_count;
4999 if (c == 0)
5000 return TRUE;
5001 amt = c;
5002 amt *= sizeof (bfd_boolean);
5003 defined = (bfd_boolean *) bfd_zmalloc (amt);
5004 included = (bfd_boolean *) bfd_zmalloc (amt);
5005 if (defined == NULL || included == NULL)
5006 goto error_return;
5007
5008 symdefs = bfd_ardata (abfd)->symdefs;
5009 bed = get_elf_backend_data (abfd);
5010 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5011
5012 do
5013 {
5014 file_ptr last;
5015 symindex i;
5016 carsym *symdef;
5017 carsym *symdefend;
5018
5019 loop = FALSE;
5020 last = -1;
5021
5022 symdef = symdefs;
5023 symdefend = symdef + c;
5024 for (i = 0; symdef < symdefend; symdef++, i++)
5025 {
5026 struct elf_link_hash_entry *h;
5027 bfd *element;
5028 struct bfd_link_hash_entry *undefs_tail;
5029 symindex mark;
5030
5031 if (defined[i] || included[i])
5032 continue;
5033 if (symdef->file_offset == last)
5034 {
5035 included[i] = TRUE;
5036 continue;
5037 }
5038
5039 h = archive_symbol_lookup (abfd, info, symdef->name);
5040 if (h == (struct elf_link_hash_entry *) 0 - 1)
5041 goto error_return;
5042
5043 if (h == NULL)
5044 continue;
5045
5046 if (h->root.type == bfd_link_hash_common)
5047 {
5048 /* We currently have a common symbol. The archive map contains
5049 a reference to this symbol, so we may want to include it. We
5050 only want to include it however, if this archive element
5051 contains a definition of the symbol, not just another common
5052 declaration of it.
5053
5054 Unfortunately some archivers (including GNU ar) will put
5055 declarations of common symbols into their archive maps, as
5056 well as real definitions, so we cannot just go by the archive
5057 map alone. Instead we must read in the element's symbol
5058 table and check that to see what kind of symbol definition
5059 this is. */
5060 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5061 continue;
5062 }
5063 else if (h->root.type != bfd_link_hash_undefined)
5064 {
5065 if (h->root.type != bfd_link_hash_undefweak)
5066 defined[i] = TRUE;
5067 continue;
5068 }
5069
5070 /* We need to include this archive member. */
5071 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5072 if (element == NULL)
5073 goto error_return;
5074
5075 if (! bfd_check_format (element, bfd_object))
5076 goto error_return;
5077
5078 /* Doublecheck that we have not included this object
5079 already--it should be impossible, but there may be
5080 something wrong with the archive. */
5081 if (element->archive_pass != 0)
5082 {
5083 bfd_set_error (bfd_error_bad_value);
5084 goto error_return;
5085 }
5086 element->archive_pass = 1;
5087
5088 undefs_tail = info->hash->undefs_tail;
5089
5090 if (!(*info->callbacks
5091 ->add_archive_element) (info, element, symdef->name, &element))
5092 goto error_return;
5093 if (!bfd_link_add_symbols (element, info))
5094 goto error_return;
5095
5096 /* If there are any new undefined symbols, we need to make
5097 another pass through the archive in order to see whether
5098 they can be defined. FIXME: This isn't perfect, because
5099 common symbols wind up on undefs_tail and because an
5100 undefined symbol which is defined later on in this pass
5101 does not require another pass. This isn't a bug, but it
5102 does make the code less efficient than it could be. */
5103 if (undefs_tail != info->hash->undefs_tail)
5104 loop = TRUE;
5105
5106 /* Look backward to mark all symbols from this object file
5107 which we have already seen in this pass. */
5108 mark = i;
5109 do
5110 {
5111 included[mark] = TRUE;
5112 if (mark == 0)
5113 break;
5114 --mark;
5115 }
5116 while (symdefs[mark].file_offset == symdef->file_offset);
5117
5118 /* We mark subsequent symbols from this object file as we go
5119 on through the loop. */
5120 last = symdef->file_offset;
5121 }
5122 }
5123 while (loop);
5124
5125 free (defined);
5126 free (included);
5127
5128 return TRUE;
5129
5130 error_return:
5131 if (defined != NULL)
5132 free (defined);
5133 if (included != NULL)
5134 free (included);
5135 return FALSE;
5136 }
5137
5138 /* Given an ELF BFD, add symbols to the global hash table as
5139 appropriate. */
5140
5141 bfd_boolean
5142 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5143 {
5144 switch (bfd_get_format (abfd))
5145 {
5146 case bfd_object:
5147 return elf_link_add_object_symbols (abfd, info);
5148 case bfd_archive:
5149 return elf_link_add_archive_symbols (abfd, info);
5150 default:
5151 bfd_set_error (bfd_error_wrong_format);
5152 return FALSE;
5153 }
5154 }
5155 \f
5156 struct hash_codes_info
5157 {
5158 unsigned long *hashcodes;
5159 bfd_boolean error;
5160 };
5161
5162 /* This function will be called though elf_link_hash_traverse to store
5163 all hash value of the exported symbols in an array. */
5164
5165 static bfd_boolean
5166 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5167 {
5168 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5169 const char *name;
5170 char *p;
5171 unsigned long ha;
5172 char *alc = NULL;
5173
5174 /* Ignore indirect symbols. These are added by the versioning code. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 name = h->root.root.string;
5179 p = strchr (name, ELF_VER_CHR);
5180 if (p != NULL)
5181 {
5182 alc = (char *) bfd_malloc (p - name + 1);
5183 if (alc == NULL)
5184 {
5185 inf->error = TRUE;
5186 return FALSE;
5187 }
5188 memcpy (alc, name, p - name);
5189 alc[p - name] = '\0';
5190 name = alc;
5191 }
5192
5193 /* Compute the hash value. */
5194 ha = bfd_elf_hash (name);
5195
5196 /* Store the found hash value in the array given as the argument. */
5197 *(inf->hashcodes)++ = ha;
5198
5199 /* And store it in the struct so that we can put it in the hash table
5200 later. */
5201 h->u.elf_hash_value = ha;
5202
5203 if (alc != NULL)
5204 free (alc);
5205
5206 return TRUE;
5207 }
5208
5209 struct collect_gnu_hash_codes
5210 {
5211 bfd *output_bfd;
5212 const struct elf_backend_data *bed;
5213 unsigned long int nsyms;
5214 unsigned long int maskbits;
5215 unsigned long int *hashcodes;
5216 unsigned long int *hashval;
5217 unsigned long int *indx;
5218 unsigned long int *counts;
5219 bfd_vma *bitmask;
5220 bfd_byte *contents;
5221 long int min_dynindx;
5222 unsigned long int bucketcount;
5223 unsigned long int symindx;
5224 long int local_indx;
5225 long int shift1, shift2;
5226 unsigned long int mask;
5227 bfd_boolean error;
5228 };
5229
5230 /* This function will be called though elf_link_hash_traverse to store
5231 all hash value of the exported symbols in an array. */
5232
5233 static bfd_boolean
5234 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5235 {
5236 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5237 const char *name;
5238 char *p;
5239 unsigned long ha;
5240 char *alc = NULL;
5241
5242 /* Ignore indirect symbols. These are added by the versioning code. */
5243 if (h->dynindx == -1)
5244 return TRUE;
5245
5246 /* Ignore also local symbols and undefined symbols. */
5247 if (! (*s->bed->elf_hash_symbol) (h))
5248 return TRUE;
5249
5250 name = h->root.root.string;
5251 p = strchr (name, ELF_VER_CHR);
5252 if (p != NULL)
5253 {
5254 alc = (char *) bfd_malloc (p - name + 1);
5255 if (alc == NULL)
5256 {
5257 s->error = TRUE;
5258 return FALSE;
5259 }
5260 memcpy (alc, name, p - name);
5261 alc[p - name] = '\0';
5262 name = alc;
5263 }
5264
5265 /* Compute the hash value. */
5266 ha = bfd_elf_gnu_hash (name);
5267
5268 /* Store the found hash value in the array for compute_bucket_count,
5269 and also for .dynsym reordering purposes. */
5270 s->hashcodes[s->nsyms] = ha;
5271 s->hashval[h->dynindx] = ha;
5272 ++s->nsyms;
5273 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5274 s->min_dynindx = h->dynindx;
5275
5276 if (alc != NULL)
5277 free (alc);
5278
5279 return TRUE;
5280 }
5281
5282 /* This function will be called though elf_link_hash_traverse to do
5283 final dynaminc symbol renumbering. */
5284
5285 static bfd_boolean
5286 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5287 {
5288 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5289 unsigned long int bucket;
5290 unsigned long int val;
5291
5292 /* Ignore indirect symbols. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 {
5299 if (h->dynindx >= s->min_dynindx)
5300 h->dynindx = s->local_indx++;
5301 return TRUE;
5302 }
5303
5304 bucket = s->hashval[h->dynindx] % s->bucketcount;
5305 val = (s->hashval[h->dynindx] >> s->shift1)
5306 & ((s->maskbits >> s->shift1) - 1);
5307 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5308 s->bitmask[val]
5309 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5310 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5311 if (s->counts[bucket] == 1)
5312 /* Last element terminates the chain. */
5313 val |= 1;
5314 bfd_put_32 (s->output_bfd, val,
5315 s->contents + (s->indx[bucket] - s->symindx) * 4);
5316 --s->counts[bucket];
5317 h->dynindx = s->indx[bucket]++;
5318 return TRUE;
5319 }
5320
5321 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5322
5323 bfd_boolean
5324 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5325 {
5326 return !(h->forced_local
5327 || h->root.type == bfd_link_hash_undefined
5328 || h->root.type == bfd_link_hash_undefweak
5329 || ((h->root.type == bfd_link_hash_defined
5330 || h->root.type == bfd_link_hash_defweak)
5331 && h->root.u.def.section->output_section == NULL));
5332 }
5333
5334 /* Array used to determine the number of hash table buckets to use
5335 based on the number of symbols there are. If there are fewer than
5336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5337 fewer than 37 we use 17 buckets, and so forth. We never use more
5338 than 32771 buckets. */
5339
5340 static const size_t elf_buckets[] =
5341 {
5342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5343 16411, 32771, 0
5344 };
5345
5346 /* Compute bucket count for hashing table. We do not use a static set
5347 of possible tables sizes anymore. Instead we determine for all
5348 possible reasonable sizes of the table the outcome (i.e., the
5349 number of collisions etc) and choose the best solution. The
5350 weighting functions are not too simple to allow the table to grow
5351 without bounds. Instead one of the weighting factors is the size.
5352 Therefore the result is always a good payoff between few collisions
5353 (= short chain lengths) and table size. */
5354 static size_t
5355 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5356 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5357 unsigned long int nsyms,
5358 int gnu_hash)
5359 {
5360 size_t best_size = 0;
5361 unsigned long int i;
5362
5363 /* We have a problem here. The following code to optimize the table
5364 size requires an integer type with more the 32 bits. If
5365 BFD_HOST_U_64_BIT is set we know about such a type. */
5366 #ifdef BFD_HOST_U_64_BIT
5367 if (info->optimize)
5368 {
5369 size_t minsize;
5370 size_t maxsize;
5371 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5372 bfd *dynobj = elf_hash_table (info)->dynobj;
5373 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5374 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5375 unsigned long int *counts;
5376 bfd_size_type amt;
5377 unsigned int no_improvement_count = 0;
5378
5379 /* Possible optimization parameters: if we have NSYMS symbols we say
5380 that the hashing table must at least have NSYMS/4 and at most
5381 2*NSYMS buckets. */
5382 minsize = nsyms / 4;
5383 if (minsize == 0)
5384 minsize = 1;
5385 best_size = maxsize = nsyms * 2;
5386 if (gnu_hash)
5387 {
5388 if (minsize < 2)
5389 minsize = 2;
5390 if ((best_size & 31) == 0)
5391 ++best_size;
5392 }
5393
5394 /* Create array where we count the collisions in. We must use bfd_malloc
5395 since the size could be large. */
5396 amt = maxsize;
5397 amt *= sizeof (unsigned long int);
5398 counts = (unsigned long int *) bfd_malloc (amt);
5399 if (counts == NULL)
5400 return 0;
5401
5402 /* Compute the "optimal" size for the hash table. The criteria is a
5403 minimal chain length. The minor criteria is (of course) the size
5404 of the table. */
5405 for (i = minsize; i < maxsize; ++i)
5406 {
5407 /* Walk through the array of hashcodes and count the collisions. */
5408 BFD_HOST_U_64_BIT max;
5409 unsigned long int j;
5410 unsigned long int fact;
5411
5412 if (gnu_hash && (i & 31) == 0)
5413 continue;
5414
5415 memset (counts, '\0', i * sizeof (unsigned long int));
5416
5417 /* Determine how often each hash bucket is used. */
5418 for (j = 0; j < nsyms; ++j)
5419 ++counts[hashcodes[j] % i];
5420
5421 /* For the weight function we need some information about the
5422 pagesize on the target. This is information need not be 100%
5423 accurate. Since this information is not available (so far) we
5424 define it here to a reasonable default value. If it is crucial
5425 to have a better value some day simply define this value. */
5426 # ifndef BFD_TARGET_PAGESIZE
5427 # define BFD_TARGET_PAGESIZE (4096)
5428 # endif
5429
5430 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5431 and the chains. */
5432 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5433
5434 # if 1
5435 /* Variant 1: optimize for short chains. We add the squares
5436 of all the chain lengths (which favors many small chain
5437 over a few long chains). */
5438 for (j = 0; j < i; ++j)
5439 max += counts[j] * counts[j];
5440
5441 /* This adds penalties for the overall size of the table. */
5442 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 max *= fact * fact;
5444 # else
5445 /* Variant 2: Optimize a lot more for small table. Here we
5446 also add squares of the size but we also add penalties for
5447 empty slots (the +1 term). */
5448 for (j = 0; j < i; ++j)
5449 max += (1 + counts[j]) * (1 + counts[j]);
5450
5451 /* The overall size of the table is considered, but not as
5452 strong as in variant 1, where it is squared. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact;
5455 # endif
5456
5457 /* Compare with current best results. */
5458 if (max < best_chlen)
5459 {
5460 best_chlen = max;
5461 best_size = i;
5462 no_improvement_count = 0;
5463 }
5464 /* PR 11843: Avoid futile long searches for the best bucket size
5465 when there are a large number of symbols. */
5466 else if (++no_improvement_count == 100)
5467 break;
5468 }
5469
5470 free (counts);
5471 }
5472 else
5473 #endif /* defined (BFD_HOST_U_64_BIT) */
5474 {
5475 /* This is the fallback solution if no 64bit type is available or if we
5476 are not supposed to spend much time on optimizations. We select the
5477 bucket count using a fixed set of numbers. */
5478 for (i = 0; elf_buckets[i] != 0; i++)
5479 {
5480 best_size = elf_buckets[i];
5481 if (nsyms < elf_buckets[i + 1])
5482 break;
5483 }
5484 if (gnu_hash && best_size < 2)
5485 best_size = 2;
5486 }
5487
5488 return best_size;
5489 }
5490
5491 /* Size any SHT_GROUP section for ld -r. */
5492
5493 bfd_boolean
5494 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5495 {
5496 bfd *ibfd;
5497
5498 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5499 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5500 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5501 return FALSE;
5502 return TRUE;
5503 }
5504
5505 /* Set up the sizes and contents of the ELF dynamic sections. This is
5506 called by the ELF linker emulation before_allocation routine. We
5507 must set the sizes of the sections before the linker sets the
5508 addresses of the various sections. */
5509
5510 bfd_boolean
5511 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5512 const char *soname,
5513 const char *rpath,
5514 const char *filter_shlib,
5515 const char *audit,
5516 const char *depaudit,
5517 const char * const *auxiliary_filters,
5518 struct bfd_link_info *info,
5519 asection **sinterpptr)
5520 {
5521 bfd_size_type soname_indx;
5522 bfd *dynobj;
5523 const struct elf_backend_data *bed;
5524 struct elf_info_failed asvinfo;
5525
5526 *sinterpptr = NULL;
5527
5528 soname_indx = (bfd_size_type) -1;
5529
5530 if (!is_elf_hash_table (info->hash))
5531 return TRUE;
5532
5533 bed = get_elf_backend_data (output_bfd);
5534 if (info->execstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5536 else if (info->noexecstack)
5537 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5538 else
5539 {
5540 bfd *inputobj;
5541 asection *notesec = NULL;
5542 int exec = 0;
5543
5544 for (inputobj = info->input_bfds;
5545 inputobj;
5546 inputobj = inputobj->link_next)
5547 {
5548 asection *s;
5549
5550 if (inputobj->flags
5551 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5552 continue;
5553 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5554 if (s)
5555 {
5556 if (s->flags & SEC_CODE)
5557 exec = PF_X;
5558 notesec = s;
5559 }
5560 else if (bed->default_execstack)
5561 exec = PF_X;
5562 }
5563 if (notesec)
5564 {
5565 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5566 if (exec && info->relocatable
5567 && notesec->output_section != bfd_abs_section_ptr)
5568 notesec->output_section->flags |= SEC_CODE;
5569 }
5570 }
5571
5572 /* Any syms created from now on start with -1 in
5573 got.refcount/offset and plt.refcount/offset. */
5574 elf_hash_table (info)->init_got_refcount
5575 = elf_hash_table (info)->init_got_offset;
5576 elf_hash_table (info)->init_plt_refcount
5577 = elf_hash_table (info)->init_plt_offset;
5578
5579 if (info->relocatable
5580 && !_bfd_elf_size_group_sections (info))
5581 return FALSE;
5582
5583 /* The backend may have to create some sections regardless of whether
5584 we're dynamic or not. */
5585 if (bed->elf_backend_always_size_sections
5586 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5587 return FALSE;
5588
5589 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5590 return FALSE;
5591
5592 dynobj = elf_hash_table (info)->dynobj;
5593
5594 /* If there were no dynamic objects in the link, there is nothing to
5595 do here. */
5596 if (dynobj == NULL)
5597 return TRUE;
5598
5599 if (elf_hash_table (info)->dynamic_sections_created)
5600 {
5601 struct elf_info_failed eif;
5602 struct elf_link_hash_entry *h;
5603 asection *dynstr;
5604 struct bfd_elf_version_tree *t;
5605 struct bfd_elf_version_expr *d;
5606 asection *s;
5607 bfd_boolean all_defined;
5608
5609 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5610 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5611
5612 if (soname != NULL)
5613 {
5614 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5615 soname, TRUE);
5616 if (soname_indx == (bfd_size_type) -1
5617 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5618 return FALSE;
5619 }
5620
5621 if (info->symbolic)
5622 {
5623 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5624 return FALSE;
5625 info->flags |= DF_SYMBOLIC;
5626 }
5627
5628 if (rpath != NULL)
5629 {
5630 bfd_size_type indx;
5631
5632 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5633 TRUE);
5634 if (indx == (bfd_size_type) -1
5635 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5636 return FALSE;
5637
5638 if (info->new_dtags)
5639 {
5640 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5641 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5642 return FALSE;
5643 }
5644 }
5645
5646 if (filter_shlib != NULL)
5647 {
5648 bfd_size_type indx;
5649
5650 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5651 filter_shlib, TRUE);
5652 if (indx == (bfd_size_type) -1
5653 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5654 return FALSE;
5655 }
5656
5657 if (auxiliary_filters != NULL)
5658 {
5659 const char * const *p;
5660
5661 for (p = auxiliary_filters; *p != NULL; p++)
5662 {
5663 bfd_size_type indx;
5664
5665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5666 *p, TRUE);
5667 if (indx == (bfd_size_type) -1
5668 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5669 return FALSE;
5670 }
5671 }
5672
5673 if (audit != NULL)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5678 TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5681 return FALSE;
5682 }
5683
5684 if (depaudit != NULL)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5689 TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5692 return FALSE;
5693 }
5694
5695 eif.info = info;
5696 eif.failed = FALSE;
5697
5698 /* If we are supposed to export all symbols into the dynamic symbol
5699 table (this is not the normal case), then do so. */
5700 if (info->export_dynamic
5701 || (info->executable && info->dynamic))
5702 {
5703 elf_link_hash_traverse (elf_hash_table (info),
5704 _bfd_elf_export_symbol,
5705 &eif);
5706 if (eif.failed)
5707 return FALSE;
5708 }
5709
5710 /* Make all global versions with definition. */
5711 for (t = info->version_info; t != NULL; t = t->next)
5712 for (d = t->globals.list; d != NULL; d = d->next)
5713 if (!d->symver && d->literal)
5714 {
5715 const char *verstr, *name;
5716 size_t namelen, verlen, newlen;
5717 char *newname, *p, leading_char;
5718 struct elf_link_hash_entry *newh;
5719
5720 leading_char = bfd_get_symbol_leading_char (output_bfd);
5721 name = d->pattern;
5722 namelen = strlen (name) + (leading_char != '\0');
5723 verstr = t->name;
5724 verlen = strlen (verstr);
5725 newlen = namelen + verlen + 3;
5726
5727 newname = (char *) bfd_malloc (newlen);
5728 if (newname == NULL)
5729 return FALSE;
5730 newname[0] = leading_char;
5731 memcpy (newname + (leading_char != '\0'), name, namelen);
5732
5733 /* Check the hidden versioned definition. */
5734 p = newname + namelen;
5735 *p++ = ELF_VER_CHR;
5736 memcpy (p, verstr, verlen + 1);
5737 newh = elf_link_hash_lookup (elf_hash_table (info),
5738 newname, FALSE, FALSE,
5739 FALSE);
5740 if (newh == NULL
5741 || (newh->root.type != bfd_link_hash_defined
5742 && newh->root.type != bfd_link_hash_defweak))
5743 {
5744 /* Check the default versioned definition. */
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 }
5751 free (newname);
5752
5753 /* Mark this version if there is a definition and it is
5754 not defined in a shared object. */
5755 if (newh != NULL
5756 && !newh->def_dynamic
5757 && (newh->root.type == bfd_link_hash_defined
5758 || newh->root.type == bfd_link_hash_defweak))
5759 d->symver = 1;
5760 }
5761
5762 /* Attach all the symbols to their version information. */
5763 asvinfo.info = info;
5764 asvinfo.failed = FALSE;
5765
5766 elf_link_hash_traverse (elf_hash_table (info),
5767 _bfd_elf_link_assign_sym_version,
5768 &asvinfo);
5769 if (asvinfo.failed)
5770 return FALSE;
5771
5772 if (!info->allow_undefined_version)
5773 {
5774 /* Check if all global versions have a definition. */
5775 all_defined = TRUE;
5776 for (t = info->version_info; t != NULL; t = t->next)
5777 for (d = t->globals.list; d != NULL; d = d->next)
5778 if (d->literal && !d->symver && !d->script)
5779 {
5780 (*_bfd_error_handler)
5781 (_("%s: undefined version: %s"),
5782 d->pattern, t->name);
5783 all_defined = FALSE;
5784 }
5785
5786 if (!all_defined)
5787 {
5788 bfd_set_error (bfd_error_bad_value);
5789 return FALSE;
5790 }
5791 }
5792
5793 /* Find all symbols which were defined in a dynamic object and make
5794 the backend pick a reasonable value for them. */
5795 elf_link_hash_traverse (elf_hash_table (info),
5796 _bfd_elf_adjust_dynamic_symbol,
5797 &eif);
5798 if (eif.failed)
5799 return FALSE;
5800
5801 /* Add some entries to the .dynamic section. We fill in some of the
5802 values later, in bfd_elf_final_link, but we must add the entries
5803 now so that we know the final size of the .dynamic section. */
5804
5805 /* If there are initialization and/or finalization functions to
5806 call then add the corresponding DT_INIT/DT_FINI entries. */
5807 h = (info->init_function
5808 ? elf_link_hash_lookup (elf_hash_table (info),
5809 info->init_function, FALSE,
5810 FALSE, FALSE)
5811 : NULL);
5812 if (h != NULL
5813 && (h->ref_regular
5814 || h->def_regular))
5815 {
5816 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5817 return FALSE;
5818 }
5819 h = (info->fini_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->fini_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5829 return FALSE;
5830 }
5831
5832 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5833 if (s != NULL && s->linker_has_input)
5834 {
5835 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5836 if (! info->executable)
5837 {
5838 bfd *sub;
5839 asection *o;
5840
5841 for (sub = info->input_bfds; sub != NULL;
5842 sub = sub->link_next)
5843 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5844 for (o = sub->sections; o != NULL; o = o->next)
5845 if (elf_section_data (o)->this_hdr.sh_type
5846 == SHT_PREINIT_ARRAY)
5847 {
5848 (*_bfd_error_handler)
5849 (_("%B: .preinit_array section is not allowed in DSO"),
5850 sub);
5851 break;
5852 }
5853
5854 bfd_set_error (bfd_error_nonrepresentable_section);
5855 return FALSE;
5856 }
5857
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5860 return FALSE;
5861 }
5862 s = bfd_get_section_by_name (output_bfd, ".init_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876
5877 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5878 /* If .dynstr is excluded from the link, we don't want any of
5879 these tags. Strictly, we should be checking each section
5880 individually; This quick check covers for the case where
5881 someone does a /DISCARD/ : { *(*) }. */
5882 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5883 {
5884 bfd_size_type strsize;
5885
5886 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5887 if ((info->emit_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5889 || (info->emit_gnu_hash
5890 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5895 bed->s->sizeof_sym))
5896 return FALSE;
5897 }
5898 }
5899
5900 /* The backend must work out the sizes of all the other dynamic
5901 sections. */
5902 if (bed->elf_backend_size_dynamic_sections
5903 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 return FALSE;
5905
5906 if (elf_hash_table (info)->dynamic_sections_created)
5907 {
5908 unsigned long section_sym_count;
5909 struct bfd_elf_version_tree *verdefs;
5910 asection *s;
5911
5912 /* Set up the version definition section. */
5913 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5914 BFD_ASSERT (s != NULL);
5915
5916 /* We may have created additional version definitions if we are
5917 just linking a regular application. */
5918 verdefs = info->version_info;
5919
5920 /* Skip anonymous version tag. */
5921 if (verdefs != NULL && verdefs->vernum == 0)
5922 verdefs = verdefs->next;
5923
5924 if (verdefs == NULL && !info->create_default_symver)
5925 s->flags |= SEC_EXCLUDE;
5926 else
5927 {
5928 unsigned int cdefs;
5929 bfd_size_type size;
5930 struct bfd_elf_version_tree *t;
5931 bfd_byte *p;
5932 Elf_Internal_Verdef def;
5933 Elf_Internal_Verdaux defaux;
5934 struct bfd_link_hash_entry *bh;
5935 struct elf_link_hash_entry *h;
5936 const char *name;
5937
5938 cdefs = 0;
5939 size = 0;
5940
5941 /* Make space for the base version. */
5942 size += sizeof (Elf_External_Verdef);
5943 size += sizeof (Elf_External_Verdaux);
5944 ++cdefs;
5945
5946 /* Make space for the default version. */
5947 if (info->create_default_symver)
5948 {
5949 size += sizeof (Elf_External_Verdef);
5950 ++cdefs;
5951 }
5952
5953 for (t = verdefs; t != NULL; t = t->next)
5954 {
5955 struct bfd_elf_version_deps *n;
5956
5957 /* Don't emit base version twice. */
5958 if (t->vernum == 0)
5959 continue;
5960
5961 size += sizeof (Elf_External_Verdef);
5962 size += sizeof (Elf_External_Verdaux);
5963 ++cdefs;
5964
5965 for (n = t->deps; n != NULL; n = n->next)
5966 size += sizeof (Elf_External_Verdaux);
5967 }
5968
5969 s->size = size;
5970 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5971 if (s->contents == NULL && s->size != 0)
5972 return FALSE;
5973
5974 /* Fill in the version definition section. */
5975
5976 p = s->contents;
5977
5978 def.vd_version = VER_DEF_CURRENT;
5979 def.vd_flags = VER_FLG_BASE;
5980 def.vd_ndx = 1;
5981 def.vd_cnt = 1;
5982 if (info->create_default_symver)
5983 {
5984 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5985 def.vd_next = sizeof (Elf_External_Verdef);
5986 }
5987 else
5988 {
5989 def.vd_aux = sizeof (Elf_External_Verdef);
5990 def.vd_next = (sizeof (Elf_External_Verdef)
5991 + sizeof (Elf_External_Verdaux));
5992 }
5993
5994 if (soname_indx != (bfd_size_type) -1)
5995 {
5996 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5997 soname_indx);
5998 def.vd_hash = bfd_elf_hash (soname);
5999 defaux.vda_name = soname_indx;
6000 name = soname;
6001 }
6002 else
6003 {
6004 bfd_size_type indx;
6005
6006 name = lbasename (output_bfd->filename);
6007 def.vd_hash = bfd_elf_hash (name);
6008 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6009 name, FALSE);
6010 if (indx == (bfd_size_type) -1)
6011 return FALSE;
6012 defaux.vda_name = indx;
6013 }
6014 defaux.vda_next = 0;
6015
6016 _bfd_elf_swap_verdef_out (output_bfd, &def,
6017 (Elf_External_Verdef *) p);
6018 p += sizeof (Elf_External_Verdef);
6019 if (info->create_default_symver)
6020 {
6021 /* Add a symbol representing this version. */
6022 bh = NULL;
6023 if (! (_bfd_generic_link_add_one_symbol
6024 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6025 0, NULL, FALSE,
6026 get_elf_backend_data (dynobj)->collect, &bh)))
6027 return FALSE;
6028 h = (struct elf_link_hash_entry *) bh;
6029 h->non_elf = 0;
6030 h->def_regular = 1;
6031 h->type = STT_OBJECT;
6032 h->verinfo.vertree = NULL;
6033
6034 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6035 return FALSE;
6036
6037 /* Create a duplicate of the base version with the same
6038 aux block, but different flags. */
6039 def.vd_flags = 0;
6040 def.vd_ndx = 2;
6041 def.vd_aux = sizeof (Elf_External_Verdef);
6042 if (verdefs)
6043 def.vd_next = (sizeof (Elf_External_Verdef)
6044 + sizeof (Elf_External_Verdaux));
6045 else
6046 def.vd_next = 0;
6047 _bfd_elf_swap_verdef_out (output_bfd, &def,
6048 (Elf_External_Verdef *) p);
6049 p += sizeof (Elf_External_Verdef);
6050 }
6051 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6052 (Elf_External_Verdaux *) p);
6053 p += sizeof (Elf_External_Verdaux);
6054
6055 for (t = verdefs; t != NULL; t = t->next)
6056 {
6057 unsigned int cdeps;
6058 struct bfd_elf_version_deps *n;
6059
6060 /* Don't emit the base version twice. */
6061 if (t->vernum == 0)
6062 continue;
6063
6064 cdeps = 0;
6065 for (n = t->deps; n != NULL; n = n->next)
6066 ++cdeps;
6067
6068 /* Add a symbol representing this version. */
6069 bh = NULL;
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6072 0, NULL, FALSE,
6073 get_elf_backend_data (dynobj)->collect, &bh)))
6074 return FALSE;
6075 h = (struct elf_link_hash_entry *) bh;
6076 h->non_elf = 0;
6077 h->def_regular = 1;
6078 h->type = STT_OBJECT;
6079 h->verinfo.vertree = t;
6080
6081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 return FALSE;
6083
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = 0;
6086 if (t->globals.list == NULL
6087 && t->locals.list == NULL
6088 && ! t->used)
6089 def.vd_flags |= VER_FLG_WEAK;
6090 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6091 def.vd_cnt = cdeps + 1;
6092 def.vd_hash = bfd_elf_hash (t->name);
6093 def.vd_aux = sizeof (Elf_External_Verdef);
6094 def.vd_next = 0;
6095
6096 /* If a basever node is next, it *must* be the last node in
6097 the chain, otherwise Verdef construction breaks. */
6098 if (t->next != NULL && t->next->vernum == 0)
6099 BFD_ASSERT (t->next->next == NULL);
6100
6101 if (t->next != NULL && t->next->vernum != 0)
6102 def.vd_next = (sizeof (Elf_External_Verdef)
6103 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6104
6105 _bfd_elf_swap_verdef_out (output_bfd, &def,
6106 (Elf_External_Verdef *) p);
6107 p += sizeof (Elf_External_Verdef);
6108
6109 defaux.vda_name = h->dynstr_index;
6110 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6111 h->dynstr_index);
6112 defaux.vda_next = 0;
6113 if (t->deps != NULL)
6114 defaux.vda_next = sizeof (Elf_External_Verdaux);
6115 t->name_indx = defaux.vda_name;
6116
6117 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6118 (Elf_External_Verdaux *) p);
6119 p += sizeof (Elf_External_Verdaux);
6120
6121 for (n = t->deps; n != NULL; n = n->next)
6122 {
6123 if (n->version_needed == NULL)
6124 {
6125 /* This can happen if there was an error in the
6126 version script. */
6127 defaux.vda_name = 0;
6128 }
6129 else
6130 {
6131 defaux.vda_name = n->version_needed->name_indx;
6132 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6133 defaux.vda_name);
6134 }
6135 if (n->next == NULL)
6136 defaux.vda_next = 0;
6137 else
6138 defaux.vda_next = sizeof (Elf_External_Verdaux);
6139
6140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6141 (Elf_External_Verdaux *) p);
6142 p += sizeof (Elf_External_Verdaux);
6143 }
6144 }
6145
6146 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6147 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6148 return FALSE;
6149
6150 elf_tdata (output_bfd)->cverdefs = cdefs;
6151 }
6152
6153 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6154 {
6155 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6156 return FALSE;
6157 }
6158 else if (info->flags & DF_BIND_NOW)
6159 {
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6161 return FALSE;
6162 }
6163
6164 if (info->flags_1)
6165 {
6166 if (info->executable)
6167 info->flags_1 &= ~ (DF_1_INITFIRST
6168 | DF_1_NODELETE
6169 | DF_1_NOOPEN);
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6171 return FALSE;
6172 }
6173
6174 /* Work out the size of the version reference section. */
6175
6176 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6177 BFD_ASSERT (s != NULL);
6178 {
6179 struct elf_find_verdep_info sinfo;
6180
6181 sinfo.info = info;
6182 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6183 if (sinfo.vers == 0)
6184 sinfo.vers = 1;
6185 sinfo.failed = FALSE;
6186
6187 elf_link_hash_traverse (elf_hash_table (info),
6188 _bfd_elf_link_find_version_dependencies,
6189 &sinfo);
6190 if (sinfo.failed)
6191 return FALSE;
6192
6193 if (elf_tdata (output_bfd)->verref == NULL)
6194 s->flags |= SEC_EXCLUDE;
6195 else
6196 {
6197 Elf_Internal_Verneed *t;
6198 unsigned int size;
6199 unsigned int crefs;
6200 bfd_byte *p;
6201
6202 /* Build the version dependency section. */
6203 size = 0;
6204 crefs = 0;
6205 for (t = elf_tdata (output_bfd)->verref;
6206 t != NULL;
6207 t = t->vn_nextref)
6208 {
6209 Elf_Internal_Vernaux *a;
6210
6211 size += sizeof (Elf_External_Verneed);
6212 ++crefs;
6213 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6214 size += sizeof (Elf_External_Vernaux);
6215 }
6216
6217 s->size = size;
6218 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6219 if (s->contents == NULL)
6220 return FALSE;
6221
6222 p = s->contents;
6223 for (t = elf_tdata (output_bfd)->verref;
6224 t != NULL;
6225 t = t->vn_nextref)
6226 {
6227 unsigned int caux;
6228 Elf_Internal_Vernaux *a;
6229 bfd_size_type indx;
6230
6231 caux = 0;
6232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6233 ++caux;
6234
6235 t->vn_version = VER_NEED_CURRENT;
6236 t->vn_cnt = caux;
6237 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6238 elf_dt_name (t->vn_bfd) != NULL
6239 ? elf_dt_name (t->vn_bfd)
6240 : lbasename (t->vn_bfd->filename),
6241 FALSE);
6242 if (indx == (bfd_size_type) -1)
6243 return FALSE;
6244 t->vn_file = indx;
6245 t->vn_aux = sizeof (Elf_External_Verneed);
6246 if (t->vn_nextref == NULL)
6247 t->vn_next = 0;
6248 else
6249 t->vn_next = (sizeof (Elf_External_Verneed)
6250 + caux * sizeof (Elf_External_Vernaux));
6251
6252 _bfd_elf_swap_verneed_out (output_bfd, t,
6253 (Elf_External_Verneed *) p);
6254 p += sizeof (Elf_External_Verneed);
6255
6256 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 {
6258 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6259 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6260 a->vna_nodename, FALSE);
6261 if (indx == (bfd_size_type) -1)
6262 return FALSE;
6263 a->vna_name = indx;
6264 if (a->vna_nextptr == NULL)
6265 a->vna_next = 0;
6266 else
6267 a->vna_next = sizeof (Elf_External_Vernaux);
6268
6269 _bfd_elf_swap_vernaux_out (output_bfd, a,
6270 (Elf_External_Vernaux *) p);
6271 p += sizeof (Elf_External_Vernaux);
6272 }
6273 }
6274
6275 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6276 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6277 return FALSE;
6278
6279 elf_tdata (output_bfd)->cverrefs = crefs;
6280 }
6281 }
6282
6283 if ((elf_tdata (output_bfd)->cverrefs == 0
6284 && elf_tdata (output_bfd)->cverdefs == 0)
6285 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6286 &section_sym_count) == 0)
6287 {
6288 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6289 s->flags |= SEC_EXCLUDE;
6290 }
6291 }
6292 return TRUE;
6293 }
6294
6295 /* Find the first non-excluded output section. We'll use its
6296 section symbol for some emitted relocs. */
6297 void
6298 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6299 {
6300 asection *s;
6301
6302 for (s = output_bfd->sections; s != NULL; s = s->next)
6303 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6304 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6305 {
6306 elf_hash_table (info)->text_index_section = s;
6307 break;
6308 }
6309 }
6310
6311 /* Find two non-excluded output sections, one for code, one for data.
6312 We'll use their section symbols for some emitted relocs. */
6313 void
6314 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 /* Data first, since setting text_index_section changes
6319 _bfd_elf_link_omit_section_dynsym. */
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6323 {
6324 elf_hash_table (info)->data_index_section = s;
6325 break;
6326 }
6327
6328 for (s = output_bfd->sections; s != NULL; s = s->next)
6329 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6330 == (SEC_ALLOC | SEC_READONLY))
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6332 {
6333 elf_hash_table (info)->text_index_section = s;
6334 break;
6335 }
6336
6337 if (elf_hash_table (info)->text_index_section == NULL)
6338 elf_hash_table (info)->text_index_section
6339 = elf_hash_table (info)->data_index_section;
6340 }
6341
6342 bfd_boolean
6343 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6344 {
6345 const struct elf_backend_data *bed;
6346
6347 if (!is_elf_hash_table (info->hash))
6348 return TRUE;
6349
6350 bed = get_elf_backend_data (output_bfd);
6351 (*bed->elf_backend_init_index_section) (output_bfd, info);
6352
6353 if (elf_hash_table (info)->dynamic_sections_created)
6354 {
6355 bfd *dynobj;
6356 asection *s;
6357 bfd_size_type dynsymcount;
6358 unsigned long section_sym_count;
6359 unsigned int dtagcount;
6360
6361 dynobj = elf_hash_table (info)->dynobj;
6362
6363 /* Assign dynsym indicies. In a shared library we generate a
6364 section symbol for each output section, which come first.
6365 Next come all of the back-end allocated local dynamic syms,
6366 followed by the rest of the global symbols. */
6367
6368 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6369 &section_sym_count);
6370
6371 /* Work out the size of the symbol version section. */
6372 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6373 BFD_ASSERT (s != NULL);
6374 if (dynsymcount != 0
6375 && (s->flags & SEC_EXCLUDE) == 0)
6376 {
6377 s->size = dynsymcount * sizeof (Elf_External_Versym);
6378 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6379 if (s->contents == NULL)
6380 return FALSE;
6381
6382 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6383 return FALSE;
6384 }
6385
6386 /* Set the size of the .dynsym and .hash sections. We counted
6387 the number of dynamic symbols in elf_link_add_object_symbols.
6388 We will build the contents of .dynsym and .hash when we build
6389 the final symbol table, because until then we do not know the
6390 correct value to give the symbols. We built the .dynstr
6391 section as we went along in elf_link_add_object_symbols. */
6392 s = bfd_get_section_by_name (dynobj, ".dynsym");
6393 BFD_ASSERT (s != NULL);
6394 s->size = dynsymcount * bed->s->sizeof_sym;
6395
6396 if (dynsymcount != 0)
6397 {
6398 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6399 if (s->contents == NULL)
6400 return FALSE;
6401
6402 /* The first entry in .dynsym is a dummy symbol.
6403 Clear all the section syms, in case we don't output them all. */
6404 ++section_sym_count;
6405 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6406 }
6407
6408 elf_hash_table (info)->bucketcount = 0;
6409
6410 /* Compute the size of the hashing table. As a side effect this
6411 computes the hash values for all the names we export. */
6412 if (info->emit_hash)
6413 {
6414 unsigned long int *hashcodes;
6415 struct hash_codes_info hashinf;
6416 bfd_size_type amt;
6417 unsigned long int nsyms;
6418 size_t bucketcount;
6419 size_t hash_entry_size;
6420
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6423 optimizations. */
6424 amt = dynsymcount * sizeof (unsigned long int);
6425 hashcodes = (unsigned long int *) bfd_malloc (amt);
6426 if (hashcodes == NULL)
6427 return FALSE;
6428 hashinf.hashcodes = hashcodes;
6429 hashinf.error = FALSE;
6430
6431 /* Put all hash values in HASHCODES. */
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 elf_collect_hash_codes, &hashinf);
6434 if (hashinf.error)
6435 {
6436 free (hashcodes);
6437 return FALSE;
6438 }
6439
6440 nsyms = hashinf.hashcodes - hashcodes;
6441 bucketcount
6442 = compute_bucket_count (info, hashcodes, nsyms, 0);
6443 free (hashcodes);
6444
6445 if (bucketcount == 0)
6446 return FALSE;
6447
6448 elf_hash_table (info)->bucketcount = bucketcount;
6449
6450 s = bfd_get_section_by_name (dynobj, ".hash");
6451 BFD_ASSERT (s != NULL);
6452 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6453 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6454 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6455 if (s->contents == NULL)
6456 return FALSE;
6457
6458 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6459 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6460 s->contents + hash_entry_size);
6461 }
6462
6463 if (info->emit_gnu_hash)
6464 {
6465 size_t i, cnt;
6466 unsigned char *contents;
6467 struct collect_gnu_hash_codes cinfo;
6468 bfd_size_type amt;
6469 size_t bucketcount;
6470
6471 memset (&cinfo, 0, sizeof (cinfo));
6472
6473 /* Compute the hash values for all exported symbols. At the same
6474 time store the values in an array so that we could use them for
6475 optimizations. */
6476 amt = dynsymcount * 2 * sizeof (unsigned long int);
6477 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6478 if (cinfo.hashcodes == NULL)
6479 return FALSE;
6480
6481 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6482 cinfo.min_dynindx = -1;
6483 cinfo.output_bfd = output_bfd;
6484 cinfo.bed = bed;
6485
6486 /* Put all hash values in HASHCODES. */
6487 elf_link_hash_traverse (elf_hash_table (info),
6488 elf_collect_gnu_hash_codes, &cinfo);
6489 if (cinfo.error)
6490 {
6491 free (cinfo.hashcodes);
6492 return FALSE;
6493 }
6494
6495 bucketcount
6496 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6497
6498 if (bucketcount == 0)
6499 {
6500 free (cinfo.hashcodes);
6501 return FALSE;
6502 }
6503
6504 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6505 BFD_ASSERT (s != NULL);
6506
6507 if (cinfo.nsyms == 0)
6508 {
6509 /* Empty .gnu.hash section is special. */
6510 BFD_ASSERT (cinfo.min_dynindx == -1);
6511 free (cinfo.hashcodes);
6512 s->size = 5 * 4 + bed->s->arch_size / 8;
6513 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6514 if (contents == NULL)
6515 return FALSE;
6516 s->contents = contents;
6517 /* 1 empty bucket. */
6518 bfd_put_32 (output_bfd, 1, contents);
6519 /* SYMIDX above the special symbol 0. */
6520 bfd_put_32 (output_bfd, 1, contents + 4);
6521 /* Just one word for bitmask. */
6522 bfd_put_32 (output_bfd, 1, contents + 8);
6523 /* Only hash fn bloom filter. */
6524 bfd_put_32 (output_bfd, 0, contents + 12);
6525 /* No hashes are valid - empty bitmask. */
6526 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6527 /* No hashes in the only bucket. */
6528 bfd_put_32 (output_bfd, 0,
6529 contents + 16 + bed->s->arch_size / 8);
6530 }
6531 else
6532 {
6533 unsigned long int maskwords, maskbitslog2, x;
6534 BFD_ASSERT (cinfo.min_dynindx != -1);
6535
6536 x = cinfo.nsyms;
6537 maskbitslog2 = 1;
6538 while ((x >>= 1) != 0)
6539 ++maskbitslog2;
6540 if (maskbitslog2 < 3)
6541 maskbitslog2 = 5;
6542 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6543 maskbitslog2 = maskbitslog2 + 3;
6544 else
6545 maskbitslog2 = maskbitslog2 + 2;
6546 if (bed->s->arch_size == 64)
6547 {
6548 if (maskbitslog2 == 5)
6549 maskbitslog2 = 6;
6550 cinfo.shift1 = 6;
6551 }
6552 else
6553 cinfo.shift1 = 5;
6554 cinfo.mask = (1 << cinfo.shift1) - 1;
6555 cinfo.shift2 = maskbitslog2;
6556 cinfo.maskbits = 1 << maskbitslog2;
6557 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6558 amt = bucketcount * sizeof (unsigned long int) * 2;
6559 amt += maskwords * sizeof (bfd_vma);
6560 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6561 if (cinfo.bitmask == NULL)
6562 {
6563 free (cinfo.hashcodes);
6564 return FALSE;
6565 }
6566
6567 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6568 cinfo.indx = cinfo.counts + bucketcount;
6569 cinfo.symindx = dynsymcount - cinfo.nsyms;
6570 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6571
6572 /* Determine how often each hash bucket is used. */
6573 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6574 for (i = 0; i < cinfo.nsyms; ++i)
6575 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6576
6577 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6578 if (cinfo.counts[i] != 0)
6579 {
6580 cinfo.indx[i] = cnt;
6581 cnt += cinfo.counts[i];
6582 }
6583 BFD_ASSERT (cnt == dynsymcount);
6584 cinfo.bucketcount = bucketcount;
6585 cinfo.local_indx = cinfo.min_dynindx;
6586
6587 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6588 s->size += cinfo.maskbits / 8;
6589 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6590 if (contents == NULL)
6591 {
6592 free (cinfo.bitmask);
6593 free (cinfo.hashcodes);
6594 return FALSE;
6595 }
6596
6597 s->contents = contents;
6598 bfd_put_32 (output_bfd, bucketcount, contents);
6599 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6600 bfd_put_32 (output_bfd, maskwords, contents + 8);
6601 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6602 contents += 16 + cinfo.maskbits / 8;
6603
6604 for (i = 0; i < bucketcount; ++i)
6605 {
6606 if (cinfo.counts[i] == 0)
6607 bfd_put_32 (output_bfd, 0, contents);
6608 else
6609 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6610 contents += 4;
6611 }
6612
6613 cinfo.contents = contents;
6614
6615 /* Renumber dynamic symbols, populate .gnu.hash section. */
6616 elf_link_hash_traverse (elf_hash_table (info),
6617 elf_renumber_gnu_hash_syms, &cinfo);
6618
6619 contents = s->contents + 16;
6620 for (i = 0; i < maskwords; ++i)
6621 {
6622 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6623 contents);
6624 contents += bed->s->arch_size / 8;
6625 }
6626
6627 free (cinfo.bitmask);
6628 free (cinfo.hashcodes);
6629 }
6630 }
6631
6632 s = bfd_get_section_by_name (dynobj, ".dynstr");
6633 BFD_ASSERT (s != NULL);
6634
6635 elf_finalize_dynstr (output_bfd, info);
6636
6637 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6638
6639 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6640 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6641 return FALSE;
6642 }
6643
6644 return TRUE;
6645 }
6646 \f
6647 /* Indicate that we are only retrieving symbol values from this
6648 section. */
6649
6650 void
6651 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6652 {
6653 if (is_elf_hash_table (info->hash))
6654 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6655 _bfd_generic_link_just_syms (sec, info);
6656 }
6657
6658 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6659
6660 static void
6661 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6662 asection *sec)
6663 {
6664 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6665 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6666 }
6667
6668 /* Finish SHF_MERGE section merging. */
6669
6670 bfd_boolean
6671 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6672 {
6673 bfd *ibfd;
6674 asection *sec;
6675
6676 if (!is_elf_hash_table (info->hash))
6677 return FALSE;
6678
6679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6680 if ((ibfd->flags & DYNAMIC) == 0)
6681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6682 if ((sec->flags & SEC_MERGE) != 0
6683 && !bfd_is_abs_section (sec->output_section))
6684 {
6685 struct bfd_elf_section_data *secdata;
6686
6687 secdata = elf_section_data (sec);
6688 if (! _bfd_add_merge_section (abfd,
6689 &elf_hash_table (info)->merge_info,
6690 sec, &secdata->sec_info))
6691 return FALSE;
6692 else if (secdata->sec_info)
6693 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6694 }
6695
6696 if (elf_hash_table (info)->merge_info != NULL)
6697 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6698 merge_sections_remove_hook);
6699 return TRUE;
6700 }
6701
6702 /* Create an entry in an ELF linker hash table. */
6703
6704 struct bfd_hash_entry *
6705 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6706 struct bfd_hash_table *table,
6707 const char *string)
6708 {
6709 /* Allocate the structure if it has not already been allocated by a
6710 subclass. */
6711 if (entry == NULL)
6712 {
6713 entry = (struct bfd_hash_entry *)
6714 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6715 if (entry == NULL)
6716 return entry;
6717 }
6718
6719 /* Call the allocation method of the superclass. */
6720 entry = _bfd_link_hash_newfunc (entry, table, string);
6721 if (entry != NULL)
6722 {
6723 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6724 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6725
6726 /* Set local fields. */
6727 ret->indx = -1;
6728 ret->dynindx = -1;
6729 ret->got = htab->init_got_refcount;
6730 ret->plt = htab->init_plt_refcount;
6731 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6732 - offsetof (struct elf_link_hash_entry, size)));
6733 /* Assume that we have been called by a non-ELF symbol reader.
6734 This flag is then reset by the code which reads an ELF input
6735 file. This ensures that a symbol created by a non-ELF symbol
6736 reader will have the flag set correctly. */
6737 ret->non_elf = 1;
6738 }
6739
6740 return entry;
6741 }
6742
6743 /* Copy data from an indirect symbol to its direct symbol, hiding the
6744 old indirect symbol. Also used for copying flags to a weakdef. */
6745
6746 void
6747 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6748 struct elf_link_hash_entry *dir,
6749 struct elf_link_hash_entry *ind)
6750 {
6751 struct elf_link_hash_table *htab;
6752
6753 /* Copy down any references that we may have already seen to the
6754 symbol which just became indirect. */
6755
6756 dir->ref_dynamic |= ind->ref_dynamic;
6757 dir->ref_regular |= ind->ref_regular;
6758 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6759 dir->non_got_ref |= ind->non_got_ref;
6760 dir->needs_plt |= ind->needs_plt;
6761 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6762
6763 if (ind->root.type != bfd_link_hash_indirect)
6764 return;
6765
6766 /* Copy over the global and procedure linkage table refcount entries.
6767 These may have been already set up by a check_relocs routine. */
6768 htab = elf_hash_table (info);
6769 if (ind->got.refcount > htab->init_got_refcount.refcount)
6770 {
6771 if (dir->got.refcount < 0)
6772 dir->got.refcount = 0;
6773 dir->got.refcount += ind->got.refcount;
6774 ind->got.refcount = htab->init_got_refcount.refcount;
6775 }
6776
6777 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6778 {
6779 if (dir->plt.refcount < 0)
6780 dir->plt.refcount = 0;
6781 dir->plt.refcount += ind->plt.refcount;
6782 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 }
6784
6785 if (ind->dynindx != -1)
6786 {
6787 if (dir->dynindx != -1)
6788 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6789 dir->dynindx = ind->dynindx;
6790 dir->dynstr_index = ind->dynstr_index;
6791 ind->dynindx = -1;
6792 ind->dynstr_index = 0;
6793 }
6794 }
6795
6796 void
6797 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6798 struct elf_link_hash_entry *h,
6799 bfd_boolean force_local)
6800 {
6801 /* STT_GNU_IFUNC symbol must go through PLT. */
6802 if (h->type != STT_GNU_IFUNC)
6803 {
6804 h->plt = elf_hash_table (info)->init_plt_offset;
6805 h->needs_plt = 0;
6806 }
6807 if (force_local)
6808 {
6809 h->forced_local = 1;
6810 if (h->dynindx != -1)
6811 {
6812 h->dynindx = -1;
6813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6814 h->dynstr_index);
6815 }
6816 }
6817 }
6818
6819 /* Initialize an ELF linker hash table. */
6820
6821 bfd_boolean
6822 _bfd_elf_link_hash_table_init
6823 (struct elf_link_hash_table *table,
6824 bfd *abfd,
6825 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6826 struct bfd_hash_table *,
6827 const char *),
6828 unsigned int entsize,
6829 enum elf_target_id target_id)
6830 {
6831 bfd_boolean ret;
6832 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6833
6834 memset (table, 0, sizeof * table);
6835 table->init_got_refcount.refcount = can_refcount - 1;
6836 table->init_plt_refcount.refcount = can_refcount - 1;
6837 table->init_got_offset.offset = -(bfd_vma) 1;
6838 table->init_plt_offset.offset = -(bfd_vma) 1;
6839 /* The first dynamic symbol is a dummy. */
6840 table->dynsymcount = 1;
6841
6842 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6843
6844 table->root.type = bfd_link_elf_hash_table;
6845 table->hash_table_id = target_id;
6846
6847 return ret;
6848 }
6849
6850 /* Create an ELF linker hash table. */
6851
6852 struct bfd_link_hash_table *
6853 _bfd_elf_link_hash_table_create (bfd *abfd)
6854 {
6855 struct elf_link_hash_table *ret;
6856 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6857
6858 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6859 if (ret == NULL)
6860 return NULL;
6861
6862 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6863 sizeof (struct elf_link_hash_entry),
6864 GENERIC_ELF_DATA))
6865 {
6866 free (ret);
6867 return NULL;
6868 }
6869
6870 return &ret->root;
6871 }
6872
6873 /* This is a hook for the ELF emulation code in the generic linker to
6874 tell the backend linker what file name to use for the DT_NEEDED
6875 entry for a dynamic object. */
6876
6877 void
6878 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6879 {
6880 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6881 && bfd_get_format (abfd) == bfd_object)
6882 elf_dt_name (abfd) = name;
6883 }
6884
6885 int
6886 bfd_elf_get_dyn_lib_class (bfd *abfd)
6887 {
6888 int lib_class;
6889 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6890 && bfd_get_format (abfd) == bfd_object)
6891 lib_class = elf_dyn_lib_class (abfd);
6892 else
6893 lib_class = 0;
6894 return lib_class;
6895 }
6896
6897 void
6898 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dyn_lib_class (abfd) = lib_class;
6903 }
6904
6905 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6906 the linker ELF emulation code. */
6907
6908 struct bfd_link_needed_list *
6909 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6910 struct bfd_link_info *info)
6911 {
6912 if (! is_elf_hash_table (info->hash))
6913 return NULL;
6914 return elf_hash_table (info)->needed;
6915 }
6916
6917 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6918 hook for the linker ELF emulation code. */
6919
6920 struct bfd_link_needed_list *
6921 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6922 struct bfd_link_info *info)
6923 {
6924 if (! is_elf_hash_table (info->hash))
6925 return NULL;
6926 return elf_hash_table (info)->runpath;
6927 }
6928
6929 /* Get the name actually used for a dynamic object for a link. This
6930 is the SONAME entry if there is one. Otherwise, it is the string
6931 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6932
6933 const char *
6934 bfd_elf_get_dt_soname (bfd *abfd)
6935 {
6936 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6937 && bfd_get_format (abfd) == bfd_object)
6938 return elf_dt_name (abfd);
6939 return NULL;
6940 }
6941
6942 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6943 the ELF linker emulation code. */
6944
6945 bfd_boolean
6946 bfd_elf_get_bfd_needed_list (bfd *abfd,
6947 struct bfd_link_needed_list **pneeded)
6948 {
6949 asection *s;
6950 bfd_byte *dynbuf = NULL;
6951 unsigned int elfsec;
6952 unsigned long shlink;
6953 bfd_byte *extdyn, *extdynend;
6954 size_t extdynsize;
6955 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6956
6957 *pneeded = NULL;
6958
6959 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6960 || bfd_get_format (abfd) != bfd_object)
6961 return TRUE;
6962
6963 s = bfd_get_section_by_name (abfd, ".dynamic");
6964 if (s == NULL || s->size == 0)
6965 return TRUE;
6966
6967 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6968 goto error_return;
6969
6970 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6971 if (elfsec == SHN_BAD)
6972 goto error_return;
6973
6974 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6975
6976 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6977 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6978
6979 extdyn = dynbuf;
6980 extdynend = extdyn + s->size;
6981 for (; extdyn < extdynend; extdyn += extdynsize)
6982 {
6983 Elf_Internal_Dyn dyn;
6984
6985 (*swap_dyn_in) (abfd, extdyn, &dyn);
6986
6987 if (dyn.d_tag == DT_NULL)
6988 break;
6989
6990 if (dyn.d_tag == DT_NEEDED)
6991 {
6992 const char *string;
6993 struct bfd_link_needed_list *l;
6994 unsigned int tagv = dyn.d_un.d_val;
6995 bfd_size_type amt;
6996
6997 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6998 if (string == NULL)
6999 goto error_return;
7000
7001 amt = sizeof *l;
7002 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7003 if (l == NULL)
7004 goto error_return;
7005
7006 l->by = abfd;
7007 l->name = string;
7008 l->next = *pneeded;
7009 *pneeded = l;
7010 }
7011 }
7012
7013 free (dynbuf);
7014
7015 return TRUE;
7016
7017 error_return:
7018 if (dynbuf != NULL)
7019 free (dynbuf);
7020 return FALSE;
7021 }
7022
7023 struct elf_symbuf_symbol
7024 {
7025 unsigned long st_name; /* Symbol name, index in string tbl */
7026 unsigned char st_info; /* Type and binding attributes */
7027 unsigned char st_other; /* Visibilty, and target specific */
7028 };
7029
7030 struct elf_symbuf_head
7031 {
7032 struct elf_symbuf_symbol *ssym;
7033 bfd_size_type count;
7034 unsigned int st_shndx;
7035 };
7036
7037 struct elf_symbol
7038 {
7039 union
7040 {
7041 Elf_Internal_Sym *isym;
7042 struct elf_symbuf_symbol *ssym;
7043 } u;
7044 const char *name;
7045 };
7046
7047 /* Sort references to symbols by ascending section number. */
7048
7049 static int
7050 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7051 {
7052 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7053 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7054
7055 return s1->st_shndx - s2->st_shndx;
7056 }
7057
7058 static int
7059 elf_sym_name_compare (const void *arg1, const void *arg2)
7060 {
7061 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7062 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7063 return strcmp (s1->name, s2->name);
7064 }
7065
7066 static struct elf_symbuf_head *
7067 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7068 {
7069 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7070 struct elf_symbuf_symbol *ssym;
7071 struct elf_symbuf_head *ssymbuf, *ssymhead;
7072 bfd_size_type i, shndx_count, total_size;
7073
7074 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7075 if (indbuf == NULL)
7076 return NULL;
7077
7078 for (ind = indbuf, i = 0; i < symcount; i++)
7079 if (isymbuf[i].st_shndx != SHN_UNDEF)
7080 *ind++ = &isymbuf[i];
7081 indbufend = ind;
7082
7083 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7084 elf_sort_elf_symbol);
7085
7086 shndx_count = 0;
7087 if (indbufend > indbuf)
7088 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7089 if (ind[0]->st_shndx != ind[1]->st_shndx)
7090 shndx_count++;
7091
7092 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7093 + (indbufend - indbuf) * sizeof (*ssym));
7094 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7095 if (ssymbuf == NULL)
7096 {
7097 free (indbuf);
7098 return NULL;
7099 }
7100
7101 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7102 ssymbuf->ssym = NULL;
7103 ssymbuf->count = shndx_count;
7104 ssymbuf->st_shndx = 0;
7105 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7106 {
7107 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7108 {
7109 ssymhead++;
7110 ssymhead->ssym = ssym;
7111 ssymhead->count = 0;
7112 ssymhead->st_shndx = (*ind)->st_shndx;
7113 }
7114 ssym->st_name = (*ind)->st_name;
7115 ssym->st_info = (*ind)->st_info;
7116 ssym->st_other = (*ind)->st_other;
7117 ssymhead->count++;
7118 }
7119 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7120 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7121 == total_size));
7122
7123 free (indbuf);
7124 return ssymbuf;
7125 }
7126
7127 /* Check if 2 sections define the same set of local and global
7128 symbols. */
7129
7130 static bfd_boolean
7131 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7132 struct bfd_link_info *info)
7133 {
7134 bfd *bfd1, *bfd2;
7135 const struct elf_backend_data *bed1, *bed2;
7136 Elf_Internal_Shdr *hdr1, *hdr2;
7137 bfd_size_type symcount1, symcount2;
7138 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7139 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7140 Elf_Internal_Sym *isym, *isymend;
7141 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7142 bfd_size_type count1, count2, i;
7143 unsigned int shndx1, shndx2;
7144 bfd_boolean result;
7145
7146 bfd1 = sec1->owner;
7147 bfd2 = sec2->owner;
7148
7149 /* Both sections have to be in ELF. */
7150 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7151 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7152 return FALSE;
7153
7154 if (elf_section_type (sec1) != elf_section_type (sec2))
7155 return FALSE;
7156
7157 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7158 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7159 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7160 return FALSE;
7161
7162 bed1 = get_elf_backend_data (bfd1);
7163 bed2 = get_elf_backend_data (bfd2);
7164 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7165 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7166 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7167 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7168
7169 if (symcount1 == 0 || symcount2 == 0)
7170 return FALSE;
7171
7172 result = FALSE;
7173 isymbuf1 = NULL;
7174 isymbuf2 = NULL;
7175 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7176 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7177
7178 if (ssymbuf1 == NULL)
7179 {
7180 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7181 NULL, NULL, NULL);
7182 if (isymbuf1 == NULL)
7183 goto done;
7184
7185 if (!info->reduce_memory_overheads)
7186 elf_tdata (bfd1)->symbuf = ssymbuf1
7187 = elf_create_symbuf (symcount1, isymbuf1);
7188 }
7189
7190 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7191 {
7192 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7193 NULL, NULL, NULL);
7194 if (isymbuf2 == NULL)
7195 goto done;
7196
7197 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7198 elf_tdata (bfd2)->symbuf = ssymbuf2
7199 = elf_create_symbuf (symcount2, isymbuf2);
7200 }
7201
7202 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7203 {
7204 /* Optimized faster version. */
7205 bfd_size_type lo, hi, mid;
7206 struct elf_symbol *symp;
7207 struct elf_symbuf_symbol *ssym, *ssymend;
7208
7209 lo = 0;
7210 hi = ssymbuf1->count;
7211 ssymbuf1++;
7212 count1 = 0;
7213 while (lo < hi)
7214 {
7215 mid = (lo + hi) / 2;
7216 if (shndx1 < ssymbuf1[mid].st_shndx)
7217 hi = mid;
7218 else if (shndx1 > ssymbuf1[mid].st_shndx)
7219 lo = mid + 1;
7220 else
7221 {
7222 count1 = ssymbuf1[mid].count;
7223 ssymbuf1 += mid;
7224 break;
7225 }
7226 }
7227
7228 lo = 0;
7229 hi = ssymbuf2->count;
7230 ssymbuf2++;
7231 count2 = 0;
7232 while (lo < hi)
7233 {
7234 mid = (lo + hi) / 2;
7235 if (shndx2 < ssymbuf2[mid].st_shndx)
7236 hi = mid;
7237 else if (shndx2 > ssymbuf2[mid].st_shndx)
7238 lo = mid + 1;
7239 else
7240 {
7241 count2 = ssymbuf2[mid].count;
7242 ssymbuf2 += mid;
7243 break;
7244 }
7245 }
7246
7247 if (count1 == 0 || count2 == 0 || count1 != count2)
7248 goto done;
7249
7250 symtable1 = (struct elf_symbol *)
7251 bfd_malloc (count1 * sizeof (struct elf_symbol));
7252 symtable2 = (struct elf_symbol *)
7253 bfd_malloc (count2 * sizeof (struct elf_symbol));
7254 if (symtable1 == NULL || symtable2 == NULL)
7255 goto done;
7256
7257 symp = symtable1;
7258 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7259 ssym < ssymend; ssym++, symp++)
7260 {
7261 symp->u.ssym = ssym;
7262 symp->name = bfd_elf_string_from_elf_section (bfd1,
7263 hdr1->sh_link,
7264 ssym->st_name);
7265 }
7266
7267 symp = symtable2;
7268 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7269 ssym < ssymend; ssym++, symp++)
7270 {
7271 symp->u.ssym = ssym;
7272 symp->name = bfd_elf_string_from_elf_section (bfd2,
7273 hdr2->sh_link,
7274 ssym->st_name);
7275 }
7276
7277 /* Sort symbol by name. */
7278 qsort (symtable1, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7280 qsort (symtable2, count1, sizeof (struct elf_symbol),
7281 elf_sym_name_compare);
7282
7283 for (i = 0; i < count1; i++)
7284 /* Two symbols must have the same binding, type and name. */
7285 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7286 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7287 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7288 goto done;
7289
7290 result = TRUE;
7291 goto done;
7292 }
7293
7294 symtable1 = (struct elf_symbol *)
7295 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7296 symtable2 = (struct elf_symbol *)
7297 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7298 if (symtable1 == NULL || symtable2 == NULL)
7299 goto done;
7300
7301 /* Count definitions in the section. */
7302 count1 = 0;
7303 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7304 if (isym->st_shndx == shndx1)
7305 symtable1[count1++].u.isym = isym;
7306
7307 count2 = 0;
7308 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7309 if (isym->st_shndx == shndx2)
7310 symtable2[count2++].u.isym = isym;
7311
7312 if (count1 == 0 || count2 == 0 || count1 != count2)
7313 goto done;
7314
7315 for (i = 0; i < count1; i++)
7316 symtable1[i].name
7317 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7318 symtable1[i].u.isym->st_name);
7319
7320 for (i = 0; i < count2; i++)
7321 symtable2[i].name
7322 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7323 symtable2[i].u.isym->st_name);
7324
7325 /* Sort symbol by name. */
7326 qsort (symtable1, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328 qsort (symtable2, count1, sizeof (struct elf_symbol),
7329 elf_sym_name_compare);
7330
7331 for (i = 0; i < count1; i++)
7332 /* Two symbols must have the same binding, type and name. */
7333 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7334 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7335 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7336 goto done;
7337
7338 result = TRUE;
7339
7340 done:
7341 if (symtable1)
7342 free (symtable1);
7343 if (symtable2)
7344 free (symtable2);
7345 if (isymbuf1)
7346 free (isymbuf1);
7347 if (isymbuf2)
7348 free (isymbuf2);
7349
7350 return result;
7351 }
7352
7353 /* Return TRUE if 2 section types are compatible. */
7354
7355 bfd_boolean
7356 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7357 bfd *bbfd, const asection *bsec)
7358 {
7359 if (asec == NULL
7360 || bsec == NULL
7361 || abfd->xvec->flavour != bfd_target_elf_flavour
7362 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7363 return TRUE;
7364
7365 return elf_section_type (asec) == elf_section_type (bsec);
7366 }
7367 \f
7368 /* Final phase of ELF linker. */
7369
7370 /* A structure we use to avoid passing large numbers of arguments. */
7371
7372 struct elf_final_link_info
7373 {
7374 /* General link information. */
7375 struct bfd_link_info *info;
7376 /* Output BFD. */
7377 bfd *output_bfd;
7378 /* Symbol string table. */
7379 struct bfd_strtab_hash *symstrtab;
7380 /* .dynsym section. */
7381 asection *dynsym_sec;
7382 /* .hash section. */
7383 asection *hash_sec;
7384 /* symbol version section (.gnu.version). */
7385 asection *symver_sec;
7386 /* Buffer large enough to hold contents of any section. */
7387 bfd_byte *contents;
7388 /* Buffer large enough to hold external relocs of any section. */
7389 void *external_relocs;
7390 /* Buffer large enough to hold internal relocs of any section. */
7391 Elf_Internal_Rela *internal_relocs;
7392 /* Buffer large enough to hold external local symbols of any input
7393 BFD. */
7394 bfd_byte *external_syms;
7395 /* And a buffer for symbol section indices. */
7396 Elf_External_Sym_Shndx *locsym_shndx;
7397 /* Buffer large enough to hold internal local symbols of any input
7398 BFD. */
7399 Elf_Internal_Sym *internal_syms;
7400 /* Array large enough to hold a symbol index for each local symbol
7401 of any input BFD. */
7402 long *indices;
7403 /* Array large enough to hold a section pointer for each local
7404 symbol of any input BFD. */
7405 asection **sections;
7406 /* Buffer to hold swapped out symbols. */
7407 bfd_byte *symbuf;
7408 /* And one for symbol section indices. */
7409 Elf_External_Sym_Shndx *symshndxbuf;
7410 /* Number of swapped out symbols in buffer. */
7411 size_t symbuf_count;
7412 /* Number of symbols which fit in symbuf. */
7413 size_t symbuf_size;
7414 /* And same for symshndxbuf. */
7415 size_t shndxbuf_size;
7416 };
7417
7418 /* This struct is used to pass information to elf_link_output_extsym. */
7419
7420 struct elf_outext_info
7421 {
7422 bfd_boolean failed;
7423 bfd_boolean localsyms;
7424 struct elf_final_link_info *finfo;
7425 };
7426
7427
7428 /* Support for evaluating a complex relocation.
7429
7430 Complex relocations are generalized, self-describing relocations. The
7431 implementation of them consists of two parts: complex symbols, and the
7432 relocations themselves.
7433
7434 The relocations are use a reserved elf-wide relocation type code (R_RELC
7435 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7436 information (start bit, end bit, word width, etc) into the addend. This
7437 information is extracted from CGEN-generated operand tables within gas.
7438
7439 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7440 internal) representing prefix-notation expressions, including but not
7441 limited to those sorts of expressions normally encoded as addends in the
7442 addend field. The symbol mangling format is:
7443
7444 <node> := <literal>
7445 | <unary-operator> ':' <node>
7446 | <binary-operator> ':' <node> ':' <node>
7447 ;
7448
7449 <literal> := 's' <digits=N> ':' <N character symbol name>
7450 | 'S' <digits=N> ':' <N character section name>
7451 | '#' <hexdigits>
7452 ;
7453
7454 <binary-operator> := as in C
7455 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7456
7457 static void
7458 set_symbol_value (bfd *bfd_with_globals,
7459 Elf_Internal_Sym *isymbuf,
7460 size_t locsymcount,
7461 size_t symidx,
7462 bfd_vma val)
7463 {
7464 struct elf_link_hash_entry **sym_hashes;
7465 struct elf_link_hash_entry *h;
7466 size_t extsymoff = locsymcount;
7467
7468 if (symidx < locsymcount)
7469 {
7470 Elf_Internal_Sym *sym;
7471
7472 sym = isymbuf + symidx;
7473 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7474 {
7475 /* It is a local symbol: move it to the
7476 "absolute" section and give it a value. */
7477 sym->st_shndx = SHN_ABS;
7478 sym->st_value = val;
7479 return;
7480 }
7481 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7482 extsymoff = 0;
7483 }
7484
7485 /* It is a global symbol: set its link type
7486 to "defined" and give it a value. */
7487
7488 sym_hashes = elf_sym_hashes (bfd_with_globals);
7489 h = sym_hashes [symidx - extsymoff];
7490 while (h->root.type == bfd_link_hash_indirect
7491 || h->root.type == bfd_link_hash_warning)
7492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7493 h->root.type = bfd_link_hash_defined;
7494 h->root.u.def.value = val;
7495 h->root.u.def.section = bfd_abs_section_ptr;
7496 }
7497
7498 static bfd_boolean
7499 resolve_symbol (const char *name,
7500 bfd *input_bfd,
7501 struct elf_final_link_info *finfo,
7502 bfd_vma *result,
7503 Elf_Internal_Sym *isymbuf,
7504 size_t locsymcount)
7505 {
7506 Elf_Internal_Sym *sym;
7507 struct bfd_link_hash_entry *global_entry;
7508 const char *candidate = NULL;
7509 Elf_Internal_Shdr *symtab_hdr;
7510 size_t i;
7511
7512 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7513
7514 for (i = 0; i < locsymcount; ++ i)
7515 {
7516 sym = isymbuf + i;
7517
7518 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7519 continue;
7520
7521 candidate = bfd_elf_string_from_elf_section (input_bfd,
7522 symtab_hdr->sh_link,
7523 sym->st_name);
7524 #ifdef DEBUG
7525 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7526 name, candidate, (unsigned long) sym->st_value);
7527 #endif
7528 if (candidate && strcmp (candidate, name) == 0)
7529 {
7530 asection *sec = finfo->sections [i];
7531
7532 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7533 *result += sec->output_offset + sec->output_section->vma;
7534 #ifdef DEBUG
7535 printf ("Found symbol with value %8.8lx\n",
7536 (unsigned long) *result);
7537 #endif
7538 return TRUE;
7539 }
7540 }
7541
7542 /* Hmm, haven't found it yet. perhaps it is a global. */
7543 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7544 FALSE, FALSE, TRUE);
7545 if (!global_entry)
7546 return FALSE;
7547
7548 if (global_entry->type == bfd_link_hash_defined
7549 || global_entry->type == bfd_link_hash_defweak)
7550 {
7551 *result = (global_entry->u.def.value
7552 + global_entry->u.def.section->output_section->vma
7553 + global_entry->u.def.section->output_offset);
7554 #ifdef DEBUG
7555 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7556 global_entry->root.string, (unsigned long) *result);
7557 #endif
7558 return TRUE;
7559 }
7560
7561 return FALSE;
7562 }
7563
7564 static bfd_boolean
7565 resolve_section (const char *name,
7566 asection *sections,
7567 bfd_vma *result)
7568 {
7569 asection *curr;
7570 unsigned int len;
7571
7572 for (curr = sections; curr; curr = curr->next)
7573 if (strcmp (curr->name, name) == 0)
7574 {
7575 *result = curr->vma;
7576 return TRUE;
7577 }
7578
7579 /* Hmm. still haven't found it. try pseudo-section names. */
7580 for (curr = sections; curr; curr = curr->next)
7581 {
7582 len = strlen (curr->name);
7583 if (len > strlen (name))
7584 continue;
7585
7586 if (strncmp (curr->name, name, len) == 0)
7587 {
7588 if (strncmp (".end", name + len, 4) == 0)
7589 {
7590 *result = curr->vma + curr->size;
7591 return TRUE;
7592 }
7593
7594 /* Insert more pseudo-section names here, if you like. */
7595 }
7596 }
7597
7598 return FALSE;
7599 }
7600
7601 static void
7602 undefined_reference (const char *reftype, const char *name)
7603 {
7604 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7605 reftype, name);
7606 }
7607
7608 static bfd_boolean
7609 eval_symbol (bfd_vma *result,
7610 const char **symp,
7611 bfd *input_bfd,
7612 struct elf_final_link_info *finfo,
7613 bfd_vma dot,
7614 Elf_Internal_Sym *isymbuf,
7615 size_t locsymcount,
7616 int signed_p)
7617 {
7618 size_t len;
7619 size_t symlen;
7620 bfd_vma a;
7621 bfd_vma b;
7622 char symbuf[4096];
7623 const char *sym = *symp;
7624 const char *symend;
7625 bfd_boolean symbol_is_section = FALSE;
7626
7627 len = strlen (sym);
7628 symend = sym + len;
7629
7630 if (len < 1 || len > sizeof (symbuf))
7631 {
7632 bfd_set_error (bfd_error_invalid_operation);
7633 return FALSE;
7634 }
7635
7636 switch (* sym)
7637 {
7638 case '.':
7639 *result = dot;
7640 *symp = sym + 1;
7641 return TRUE;
7642
7643 case '#':
7644 ++sym;
7645 *result = strtoul (sym, (char **) symp, 16);
7646 return TRUE;
7647
7648 case 'S':
7649 symbol_is_section = TRUE;
7650 case 's':
7651 ++sym;
7652 symlen = strtol (sym, (char **) symp, 10);
7653 sym = *symp + 1; /* Skip the trailing ':'. */
7654
7655 if (symend < sym || symlen + 1 > sizeof (symbuf))
7656 {
7657 bfd_set_error (bfd_error_invalid_operation);
7658 return FALSE;
7659 }
7660
7661 memcpy (symbuf, sym, symlen);
7662 symbuf[symlen] = '\0';
7663 *symp = sym + symlen;
7664
7665 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7666 the symbol as a section, or vice-versa. so we're pretty liberal in our
7667 interpretation here; section means "try section first", not "must be a
7668 section", and likewise with symbol. */
7669
7670 if (symbol_is_section)
7671 {
7672 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7673 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7674 isymbuf, locsymcount))
7675 {
7676 undefined_reference ("section", symbuf);
7677 return FALSE;
7678 }
7679 }
7680 else
7681 {
7682 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7683 isymbuf, locsymcount)
7684 && !resolve_section (symbuf, finfo->output_bfd->sections,
7685 result))
7686 {
7687 undefined_reference ("symbol", symbuf);
7688 return FALSE;
7689 }
7690 }
7691
7692 return TRUE;
7693
7694 /* All that remains are operators. */
7695
7696 #define UNARY_OP(op) \
7697 if (strncmp (sym, #op, strlen (#op)) == 0) \
7698 { \
7699 sym += strlen (#op); \
7700 if (*sym == ':') \
7701 ++sym; \
7702 *symp = sym; \
7703 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7704 isymbuf, locsymcount, signed_p)) \
7705 return FALSE; \
7706 if (signed_p) \
7707 *result = op ((bfd_signed_vma) a); \
7708 else \
7709 *result = op a; \
7710 return TRUE; \
7711 }
7712
7713 #define BINARY_OP(op) \
7714 if (strncmp (sym, #op, strlen (#op)) == 0) \
7715 { \
7716 sym += strlen (#op); \
7717 if (*sym == ':') \
7718 ++sym; \
7719 *symp = sym; \
7720 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7722 return FALSE; \
7723 ++*symp; \
7724 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7726 return FALSE; \
7727 if (signed_p) \
7728 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7729 else \
7730 *result = a op b; \
7731 return TRUE; \
7732 }
7733
7734 default:
7735 UNARY_OP (0-);
7736 BINARY_OP (<<);
7737 BINARY_OP (>>);
7738 BINARY_OP (==);
7739 BINARY_OP (!=);
7740 BINARY_OP (<=);
7741 BINARY_OP (>=);
7742 BINARY_OP (&&);
7743 BINARY_OP (||);
7744 UNARY_OP (~);
7745 UNARY_OP (!);
7746 BINARY_OP (*);
7747 BINARY_OP (/);
7748 BINARY_OP (%);
7749 BINARY_OP (^);
7750 BINARY_OP (|);
7751 BINARY_OP (&);
7752 BINARY_OP (+);
7753 BINARY_OP (-);
7754 BINARY_OP (<);
7755 BINARY_OP (>);
7756 #undef UNARY_OP
7757 #undef BINARY_OP
7758 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7759 bfd_set_error (bfd_error_invalid_operation);
7760 return FALSE;
7761 }
7762 }
7763
7764 static void
7765 put_value (bfd_vma size,
7766 unsigned long chunksz,
7767 bfd *input_bfd,
7768 bfd_vma x,
7769 bfd_byte *location)
7770 {
7771 location += (size - chunksz);
7772
7773 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7774 {
7775 switch (chunksz)
7776 {
7777 default:
7778 case 0:
7779 abort ();
7780 case 1:
7781 bfd_put_8 (input_bfd, x, location);
7782 break;
7783 case 2:
7784 bfd_put_16 (input_bfd, x, location);
7785 break;
7786 case 4:
7787 bfd_put_32 (input_bfd, x, location);
7788 break;
7789 case 8:
7790 #ifdef BFD64
7791 bfd_put_64 (input_bfd, x, location);
7792 #else
7793 abort ();
7794 #endif
7795 break;
7796 }
7797 }
7798 }
7799
7800 static bfd_vma
7801 get_value (bfd_vma size,
7802 unsigned long chunksz,
7803 bfd *input_bfd,
7804 bfd_byte *location)
7805 {
7806 bfd_vma x = 0;
7807
7808 for (; size; size -= chunksz, location += chunksz)
7809 {
7810 switch (chunksz)
7811 {
7812 default:
7813 case 0:
7814 abort ();
7815 case 1:
7816 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7817 break;
7818 case 2:
7819 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7820 break;
7821 case 4:
7822 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7823 break;
7824 case 8:
7825 #ifdef BFD64
7826 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7827 #else
7828 abort ();
7829 #endif
7830 break;
7831 }
7832 }
7833 return x;
7834 }
7835
7836 static void
7837 decode_complex_addend (unsigned long *start, /* in bits */
7838 unsigned long *oplen, /* in bits */
7839 unsigned long *len, /* in bits */
7840 unsigned long *wordsz, /* in bytes */
7841 unsigned long *chunksz, /* in bytes */
7842 unsigned long *lsb0_p,
7843 unsigned long *signed_p,
7844 unsigned long *trunc_p,
7845 unsigned long encoded)
7846 {
7847 * start = encoded & 0x3F;
7848 * len = (encoded >> 6) & 0x3F;
7849 * oplen = (encoded >> 12) & 0x3F;
7850 * wordsz = (encoded >> 18) & 0xF;
7851 * chunksz = (encoded >> 22) & 0xF;
7852 * lsb0_p = (encoded >> 27) & 1;
7853 * signed_p = (encoded >> 28) & 1;
7854 * trunc_p = (encoded >> 29) & 1;
7855 }
7856
7857 bfd_reloc_status_type
7858 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7859 asection *input_section ATTRIBUTE_UNUSED,
7860 bfd_byte *contents,
7861 Elf_Internal_Rela *rel,
7862 bfd_vma relocation)
7863 {
7864 bfd_vma shift, x, mask;
7865 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7866 bfd_reloc_status_type r;
7867
7868 /* Perform this reloc, since it is complex.
7869 (this is not to say that it necessarily refers to a complex
7870 symbol; merely that it is a self-describing CGEN based reloc.
7871 i.e. the addend has the complete reloc information (bit start, end,
7872 word size, etc) encoded within it.). */
7873
7874 decode_complex_addend (&start, &oplen, &len, &wordsz,
7875 &chunksz, &lsb0_p, &signed_p,
7876 &trunc_p, rel->r_addend);
7877
7878 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7879
7880 if (lsb0_p)
7881 shift = (start + 1) - len;
7882 else
7883 shift = (8 * wordsz) - (start + len);
7884
7885 /* FIXME: octets_per_byte. */
7886 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7887
7888 #ifdef DEBUG
7889 printf ("Doing complex reloc: "
7890 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7891 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7892 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7893 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7894 oplen, (unsigned long) x, (unsigned long) mask,
7895 (unsigned long) relocation);
7896 #endif
7897
7898 r = bfd_reloc_ok;
7899 if (! trunc_p)
7900 /* Now do an overflow check. */
7901 r = bfd_check_overflow ((signed_p
7902 ? complain_overflow_signed
7903 : complain_overflow_unsigned),
7904 len, 0, (8 * wordsz),
7905 relocation);
7906
7907 /* Do the deed. */
7908 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7909
7910 #ifdef DEBUG
7911 printf (" relocation: %8.8lx\n"
7912 " shifted mask: %8.8lx\n"
7913 " shifted/masked reloc: %8.8lx\n"
7914 " result: %8.8lx\n",
7915 (unsigned long) relocation, (unsigned long) (mask << shift),
7916 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7917 #endif
7918 /* FIXME: octets_per_byte. */
7919 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7920 return r;
7921 }
7922
7923 /* When performing a relocatable link, the input relocations are
7924 preserved. But, if they reference global symbols, the indices
7925 referenced must be updated. Update all the relocations found in
7926 RELDATA. */
7927
7928 static void
7929 elf_link_adjust_relocs (bfd *abfd,
7930 struct bfd_elf_section_reloc_data *reldata)
7931 {
7932 unsigned int i;
7933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7934 bfd_byte *erela;
7935 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7936 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7937 bfd_vma r_type_mask;
7938 int r_sym_shift;
7939 unsigned int count = reldata->count;
7940 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7941
7942 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7943 {
7944 swap_in = bed->s->swap_reloc_in;
7945 swap_out = bed->s->swap_reloc_out;
7946 }
7947 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7948 {
7949 swap_in = bed->s->swap_reloca_in;
7950 swap_out = bed->s->swap_reloca_out;
7951 }
7952 else
7953 abort ();
7954
7955 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7956 abort ();
7957
7958 if (bed->s->arch_size == 32)
7959 {
7960 r_type_mask = 0xff;
7961 r_sym_shift = 8;
7962 }
7963 else
7964 {
7965 r_type_mask = 0xffffffff;
7966 r_sym_shift = 32;
7967 }
7968
7969 erela = reldata->hdr->contents;
7970 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7971 {
7972 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7973 unsigned int j;
7974
7975 if (*rel_hash == NULL)
7976 continue;
7977
7978 BFD_ASSERT ((*rel_hash)->indx >= 0);
7979
7980 (*swap_in) (abfd, erela, irela);
7981 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7982 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7983 | (irela[j].r_info & r_type_mask));
7984 (*swap_out) (abfd, irela, erela);
7985 }
7986 }
7987
7988 struct elf_link_sort_rela
7989 {
7990 union {
7991 bfd_vma offset;
7992 bfd_vma sym_mask;
7993 } u;
7994 enum elf_reloc_type_class type;
7995 /* We use this as an array of size int_rels_per_ext_rel. */
7996 Elf_Internal_Rela rela[1];
7997 };
7998
7999 static int
8000 elf_link_sort_cmp1 (const void *A, const void *B)
8001 {
8002 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8003 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8004 int relativea, relativeb;
8005
8006 relativea = a->type == reloc_class_relative;
8007 relativeb = b->type == reloc_class_relative;
8008
8009 if (relativea < relativeb)
8010 return 1;
8011 if (relativea > relativeb)
8012 return -1;
8013 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8014 return -1;
8015 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8016 return 1;
8017 if (a->rela->r_offset < b->rela->r_offset)
8018 return -1;
8019 if (a->rela->r_offset > b->rela->r_offset)
8020 return 1;
8021 return 0;
8022 }
8023
8024 static int
8025 elf_link_sort_cmp2 (const void *A, const void *B)
8026 {
8027 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8028 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8029 int copya, copyb;
8030
8031 if (a->u.offset < b->u.offset)
8032 return -1;
8033 if (a->u.offset > b->u.offset)
8034 return 1;
8035 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8036 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8037 if (copya < copyb)
8038 return -1;
8039 if (copya > copyb)
8040 return 1;
8041 if (a->rela->r_offset < b->rela->r_offset)
8042 return -1;
8043 if (a->rela->r_offset > b->rela->r_offset)
8044 return 1;
8045 return 0;
8046 }
8047
8048 static size_t
8049 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8050 {
8051 asection *dynamic_relocs;
8052 asection *rela_dyn;
8053 asection *rel_dyn;
8054 bfd_size_type count, size;
8055 size_t i, ret, sort_elt, ext_size;
8056 bfd_byte *sort, *s_non_relative, *p;
8057 struct elf_link_sort_rela *sq;
8058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8059 int i2e = bed->s->int_rels_per_ext_rel;
8060 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8061 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8062 struct bfd_link_order *lo;
8063 bfd_vma r_sym_mask;
8064 bfd_boolean use_rela;
8065
8066 /* Find a dynamic reloc section. */
8067 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8068 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8069 if (rela_dyn != NULL && rela_dyn->size > 0
8070 && rel_dyn != NULL && rel_dyn->size > 0)
8071 {
8072 bfd_boolean use_rela_initialised = FALSE;
8073
8074 /* This is just here to stop gcc from complaining.
8075 It's initialization checking code is not perfect. */
8076 use_rela = TRUE;
8077
8078 /* Both sections are present. Examine the sizes
8079 of the indirect sections to help us choose. */
8080 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8081 if (lo->type == bfd_indirect_link_order)
8082 {
8083 asection *o = lo->u.indirect.section;
8084
8085 if ((o->size % bed->s->sizeof_rela) == 0)
8086 {
8087 if ((o->size % bed->s->sizeof_rel) == 0)
8088 /* Section size is divisible by both rel and rela sizes.
8089 It is of no help to us. */
8090 ;
8091 else
8092 {
8093 /* Section size is only divisible by rela. */
8094 if (use_rela_initialised && (use_rela == FALSE))
8095 {
8096 _bfd_error_handler
8097 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8098 bfd_set_error (bfd_error_invalid_operation);
8099 return 0;
8100 }
8101 else
8102 {
8103 use_rela = TRUE;
8104 use_rela_initialised = TRUE;
8105 }
8106 }
8107 }
8108 else if ((o->size % bed->s->sizeof_rel) == 0)
8109 {
8110 /* Section size is only divisible by rel. */
8111 if (use_rela_initialised && (use_rela == TRUE))
8112 {
8113 _bfd_error_handler
8114 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8115 bfd_set_error (bfd_error_invalid_operation);
8116 return 0;
8117 }
8118 else
8119 {
8120 use_rela = FALSE;
8121 use_rela_initialised = TRUE;
8122 }
8123 }
8124 else
8125 {
8126 /* The section size is not divisible by either - something is wrong. */
8127 _bfd_error_handler
8128 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8129 bfd_set_error (bfd_error_invalid_operation);
8130 return 0;
8131 }
8132 }
8133
8134 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8135 if (lo->type == bfd_indirect_link_order)
8136 {
8137 asection *o = lo->u.indirect.section;
8138
8139 if ((o->size % bed->s->sizeof_rela) == 0)
8140 {
8141 if ((o->size % bed->s->sizeof_rel) == 0)
8142 /* Section size is divisible by both rel and rela sizes.
8143 It is of no help to us. */
8144 ;
8145 else
8146 {
8147 /* Section size is only divisible by rela. */
8148 if (use_rela_initialised && (use_rela == FALSE))
8149 {
8150 _bfd_error_handler
8151 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8152 bfd_set_error (bfd_error_invalid_operation);
8153 return 0;
8154 }
8155 else
8156 {
8157 use_rela = TRUE;
8158 use_rela_initialised = TRUE;
8159 }
8160 }
8161 }
8162 else if ((o->size % bed->s->sizeof_rel) == 0)
8163 {
8164 /* Section size is only divisible by rel. */
8165 if (use_rela_initialised && (use_rela == TRUE))
8166 {
8167 _bfd_error_handler
8168 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8169 bfd_set_error (bfd_error_invalid_operation);
8170 return 0;
8171 }
8172 else
8173 {
8174 use_rela = FALSE;
8175 use_rela_initialised = TRUE;
8176 }
8177 }
8178 else
8179 {
8180 /* The section size is not divisible by either - something is wrong. */
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 }
8187
8188 if (! use_rela_initialised)
8189 /* Make a guess. */
8190 use_rela = TRUE;
8191 }
8192 else if (rela_dyn != NULL && rela_dyn->size > 0)
8193 use_rela = TRUE;
8194 else if (rel_dyn != NULL && rel_dyn->size > 0)
8195 use_rela = FALSE;
8196 else
8197 return 0;
8198
8199 if (use_rela)
8200 {
8201 dynamic_relocs = rela_dyn;
8202 ext_size = bed->s->sizeof_rela;
8203 swap_in = bed->s->swap_reloca_in;
8204 swap_out = bed->s->swap_reloca_out;
8205 }
8206 else
8207 {
8208 dynamic_relocs = rel_dyn;
8209 ext_size = bed->s->sizeof_rel;
8210 swap_in = bed->s->swap_reloc_in;
8211 swap_out = bed->s->swap_reloc_out;
8212 }
8213
8214 size = 0;
8215 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8216 if (lo->type == bfd_indirect_link_order)
8217 size += lo->u.indirect.section->size;
8218
8219 if (size != dynamic_relocs->size)
8220 return 0;
8221
8222 sort_elt = (sizeof (struct elf_link_sort_rela)
8223 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8224
8225 count = dynamic_relocs->size / ext_size;
8226 if (count == 0)
8227 return 0;
8228 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8229
8230 if (sort == NULL)
8231 {
8232 (*info->callbacks->warning)
8233 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8234 return 0;
8235 }
8236
8237 if (bed->s->arch_size == 32)
8238 r_sym_mask = ~(bfd_vma) 0xff;
8239 else
8240 r_sym_mask = ~(bfd_vma) 0xffffffff;
8241
8242 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8243 if (lo->type == bfd_indirect_link_order)
8244 {
8245 bfd_byte *erel, *erelend;
8246 asection *o = lo->u.indirect.section;
8247
8248 if (o->contents == NULL && o->size != 0)
8249 {
8250 /* This is a reloc section that is being handled as a normal
8251 section. See bfd_section_from_shdr. We can't combine
8252 relocs in this case. */
8253 free (sort);
8254 return 0;
8255 }
8256 erel = o->contents;
8257 erelend = o->contents + o->size;
8258 /* FIXME: octets_per_byte. */
8259 p = sort + o->output_offset / ext_size * sort_elt;
8260
8261 while (erel < erelend)
8262 {
8263 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8264
8265 (*swap_in) (abfd, erel, s->rela);
8266 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8267 s->u.sym_mask = r_sym_mask;
8268 p += sort_elt;
8269 erel += ext_size;
8270 }
8271 }
8272
8273 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8274
8275 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8276 {
8277 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8278 if (s->type != reloc_class_relative)
8279 break;
8280 }
8281 ret = i;
8282 s_non_relative = p;
8283
8284 sq = (struct elf_link_sort_rela *) s_non_relative;
8285 for (; i < count; i++, p += sort_elt)
8286 {
8287 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8288 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8289 sq = sp;
8290 sp->u.offset = sq->rela->r_offset;
8291 }
8292
8293 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8294
8295 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8296 if (lo->type == bfd_indirect_link_order)
8297 {
8298 bfd_byte *erel, *erelend;
8299 asection *o = lo->u.indirect.section;
8300
8301 erel = o->contents;
8302 erelend = o->contents + o->size;
8303 /* FIXME: octets_per_byte. */
8304 p = sort + o->output_offset / ext_size * sort_elt;
8305 while (erel < erelend)
8306 {
8307 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8308 (*swap_out) (abfd, s->rela, erel);
8309 p += sort_elt;
8310 erel += ext_size;
8311 }
8312 }
8313
8314 free (sort);
8315 *psec = dynamic_relocs;
8316 return ret;
8317 }
8318
8319 /* Flush the output symbols to the file. */
8320
8321 static bfd_boolean
8322 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8323 const struct elf_backend_data *bed)
8324 {
8325 if (finfo->symbuf_count > 0)
8326 {
8327 Elf_Internal_Shdr *hdr;
8328 file_ptr pos;
8329 bfd_size_type amt;
8330
8331 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8332 pos = hdr->sh_offset + hdr->sh_size;
8333 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8334 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8335 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8336 return FALSE;
8337
8338 hdr->sh_size += amt;
8339 finfo->symbuf_count = 0;
8340 }
8341
8342 return TRUE;
8343 }
8344
8345 /* Add a symbol to the output symbol table. */
8346
8347 static int
8348 elf_link_output_sym (struct elf_final_link_info *finfo,
8349 const char *name,
8350 Elf_Internal_Sym *elfsym,
8351 asection *input_sec,
8352 struct elf_link_hash_entry *h)
8353 {
8354 bfd_byte *dest;
8355 Elf_External_Sym_Shndx *destshndx;
8356 int (*output_symbol_hook)
8357 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8358 struct elf_link_hash_entry *);
8359 const struct elf_backend_data *bed;
8360
8361 bed = get_elf_backend_data (finfo->output_bfd);
8362 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8363 if (output_symbol_hook != NULL)
8364 {
8365 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8366 if (ret != 1)
8367 return ret;
8368 }
8369
8370 if (name == NULL || *name == '\0')
8371 elfsym->st_name = 0;
8372 else if (input_sec->flags & SEC_EXCLUDE)
8373 elfsym->st_name = 0;
8374 else
8375 {
8376 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8377 name, TRUE, FALSE);
8378 if (elfsym->st_name == (unsigned long) -1)
8379 return 0;
8380 }
8381
8382 if (finfo->symbuf_count >= finfo->symbuf_size)
8383 {
8384 if (! elf_link_flush_output_syms (finfo, bed))
8385 return 0;
8386 }
8387
8388 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8389 destshndx = finfo->symshndxbuf;
8390 if (destshndx != NULL)
8391 {
8392 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8393 {
8394 bfd_size_type amt;
8395
8396 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8397 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8398 amt * 2);
8399 if (destshndx == NULL)
8400 return 0;
8401 finfo->symshndxbuf = destshndx;
8402 memset ((char *) destshndx + amt, 0, amt);
8403 finfo->shndxbuf_size *= 2;
8404 }
8405 destshndx += bfd_get_symcount (finfo->output_bfd);
8406 }
8407
8408 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8409 finfo->symbuf_count += 1;
8410 bfd_get_symcount (finfo->output_bfd) += 1;
8411
8412 return 1;
8413 }
8414
8415 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8416
8417 static bfd_boolean
8418 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8419 {
8420 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8421 && sym->st_shndx < SHN_LORESERVE)
8422 {
8423 /* The gABI doesn't support dynamic symbols in output sections
8424 beyond 64k. */
8425 (*_bfd_error_handler)
8426 (_("%B: Too many sections: %d (>= %d)"),
8427 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8428 bfd_set_error (bfd_error_nonrepresentable_section);
8429 return FALSE;
8430 }
8431 return TRUE;
8432 }
8433
8434 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8435 allowing an unsatisfied unversioned symbol in the DSO to match a
8436 versioned symbol that would normally require an explicit version.
8437 We also handle the case that a DSO references a hidden symbol
8438 which may be satisfied by a versioned symbol in another DSO. */
8439
8440 static bfd_boolean
8441 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8442 const struct elf_backend_data *bed,
8443 struct elf_link_hash_entry *h)
8444 {
8445 bfd *abfd;
8446 struct elf_link_loaded_list *loaded;
8447
8448 if (!is_elf_hash_table (info->hash))
8449 return FALSE;
8450
8451 switch (h->root.type)
8452 {
8453 default:
8454 abfd = NULL;
8455 break;
8456
8457 case bfd_link_hash_undefined:
8458 case bfd_link_hash_undefweak:
8459 abfd = h->root.u.undef.abfd;
8460 if ((abfd->flags & DYNAMIC) == 0
8461 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8462 return FALSE;
8463 break;
8464
8465 case bfd_link_hash_defined:
8466 case bfd_link_hash_defweak:
8467 abfd = h->root.u.def.section->owner;
8468 break;
8469
8470 case bfd_link_hash_common:
8471 abfd = h->root.u.c.p->section->owner;
8472 break;
8473 }
8474 BFD_ASSERT (abfd != NULL);
8475
8476 for (loaded = elf_hash_table (info)->loaded;
8477 loaded != NULL;
8478 loaded = loaded->next)
8479 {
8480 bfd *input;
8481 Elf_Internal_Shdr *hdr;
8482 bfd_size_type symcount;
8483 bfd_size_type extsymcount;
8484 bfd_size_type extsymoff;
8485 Elf_Internal_Shdr *versymhdr;
8486 Elf_Internal_Sym *isym;
8487 Elf_Internal_Sym *isymend;
8488 Elf_Internal_Sym *isymbuf;
8489 Elf_External_Versym *ever;
8490 Elf_External_Versym *extversym;
8491
8492 input = loaded->abfd;
8493
8494 /* We check each DSO for a possible hidden versioned definition. */
8495 if (input == abfd
8496 || (input->flags & DYNAMIC) == 0
8497 || elf_dynversym (input) == 0)
8498 continue;
8499
8500 hdr = &elf_tdata (input)->dynsymtab_hdr;
8501
8502 symcount = hdr->sh_size / bed->s->sizeof_sym;
8503 if (elf_bad_symtab (input))
8504 {
8505 extsymcount = symcount;
8506 extsymoff = 0;
8507 }
8508 else
8509 {
8510 extsymcount = symcount - hdr->sh_info;
8511 extsymoff = hdr->sh_info;
8512 }
8513
8514 if (extsymcount == 0)
8515 continue;
8516
8517 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8518 NULL, NULL, NULL);
8519 if (isymbuf == NULL)
8520 return FALSE;
8521
8522 /* Read in any version definitions. */
8523 versymhdr = &elf_tdata (input)->dynversym_hdr;
8524 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8525 if (extversym == NULL)
8526 goto error_ret;
8527
8528 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8529 || (bfd_bread (extversym, versymhdr->sh_size, input)
8530 != versymhdr->sh_size))
8531 {
8532 free (extversym);
8533 error_ret:
8534 free (isymbuf);
8535 return FALSE;
8536 }
8537
8538 ever = extversym + extsymoff;
8539 isymend = isymbuf + extsymcount;
8540 for (isym = isymbuf; isym < isymend; isym++, ever++)
8541 {
8542 const char *name;
8543 Elf_Internal_Versym iver;
8544 unsigned short version_index;
8545
8546 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8547 || isym->st_shndx == SHN_UNDEF)
8548 continue;
8549
8550 name = bfd_elf_string_from_elf_section (input,
8551 hdr->sh_link,
8552 isym->st_name);
8553 if (strcmp (name, h->root.root.string) != 0)
8554 continue;
8555
8556 _bfd_elf_swap_versym_in (input, ever, &iver);
8557
8558 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8559 && !(h->def_regular
8560 && h->forced_local))
8561 {
8562 /* If we have a non-hidden versioned sym, then it should
8563 have provided a definition for the undefined sym unless
8564 it is defined in a non-shared object and forced local.
8565 */
8566 abort ();
8567 }
8568
8569 version_index = iver.vs_vers & VERSYM_VERSION;
8570 if (version_index == 1 || version_index == 2)
8571 {
8572 /* This is the base or first version. We can use it. */
8573 free (extversym);
8574 free (isymbuf);
8575 return TRUE;
8576 }
8577 }
8578
8579 free (extversym);
8580 free (isymbuf);
8581 }
8582
8583 return FALSE;
8584 }
8585
8586 /* Add an external symbol to the symbol table. This is called from
8587 the hash table traversal routine. When generating a shared object,
8588 we go through the symbol table twice. The first time we output
8589 anything that might have been forced to local scope in a version
8590 script. The second time we output the symbols that are still
8591 global symbols. */
8592
8593 static bfd_boolean
8594 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8595 {
8596 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8597 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8598 struct elf_final_link_info *finfo = eoinfo->finfo;
8599 bfd_boolean strip;
8600 Elf_Internal_Sym sym;
8601 asection *input_sec;
8602 const struct elf_backend_data *bed;
8603 long indx;
8604 int ret;
8605
8606 if (h->root.type == bfd_link_hash_warning)
8607 {
8608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8609 if (h->root.type == bfd_link_hash_new)
8610 return TRUE;
8611 }
8612
8613 /* Decide whether to output this symbol in this pass. */
8614 if (eoinfo->localsyms)
8615 {
8616 if (!h->forced_local)
8617 return TRUE;
8618 }
8619 else
8620 {
8621 if (h->forced_local)
8622 return TRUE;
8623 }
8624
8625 bed = get_elf_backend_data (finfo->output_bfd);
8626
8627 if (h->root.type == bfd_link_hash_undefined)
8628 {
8629 /* If we have an undefined symbol reference here then it must have
8630 come from a shared library that is being linked in. (Undefined
8631 references in regular files have already been handled unless
8632 they are in unreferenced sections which are removed by garbage
8633 collection). */
8634 bfd_boolean ignore_undef = FALSE;
8635
8636 /* Some symbols may be special in that the fact that they're
8637 undefined can be safely ignored - let backend determine that. */
8638 if (bed->elf_backend_ignore_undef_symbol)
8639 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8640
8641 /* If we are reporting errors for this situation then do so now. */
8642 if (!ignore_undef
8643 && h->ref_dynamic
8644 && (!h->ref_regular || finfo->info->gc_sections)
8645 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8646 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8647 {
8648 if (! (finfo->info->callbacks->undefined_symbol
8649 (finfo->info, h->root.root.string,
8650 h->ref_regular ? NULL : h->root.u.undef.abfd,
8651 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8652 {
8653 bfd_set_error (bfd_error_bad_value);
8654 eoinfo->failed = TRUE;
8655 return FALSE;
8656 }
8657 }
8658 }
8659
8660 /* We should also warn if a forced local symbol is referenced from
8661 shared libraries. */
8662 if (! finfo->info->relocatable
8663 && (! finfo->info->shared)
8664 && h->forced_local
8665 && h->ref_dynamic
8666 && !h->dynamic_def
8667 && !h->dynamic_weak
8668 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8669 {
8670 bfd *def_bfd;
8671 const char *msg;
8672
8673 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8674 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8675 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8676 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8677 else
8678 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8679 def_bfd = finfo->output_bfd;
8680 if (h->root.u.def.section != bfd_abs_section_ptr)
8681 def_bfd = h->root.u.def.section->owner;
8682 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8683 h->root.root.string);
8684 bfd_set_error (bfd_error_bad_value);
8685 eoinfo->failed = TRUE;
8686 return FALSE;
8687 }
8688
8689 /* We don't want to output symbols that have never been mentioned by
8690 a regular file, or that we have been told to strip. However, if
8691 h->indx is set to -2, the symbol is used by a reloc and we must
8692 output it. */
8693 if (h->indx == -2)
8694 strip = FALSE;
8695 else if ((h->def_dynamic
8696 || h->ref_dynamic
8697 || h->root.type == bfd_link_hash_new)
8698 && !h->def_regular
8699 && !h->ref_regular)
8700 strip = TRUE;
8701 else if (finfo->info->strip == strip_all)
8702 strip = TRUE;
8703 else if (finfo->info->strip == strip_some
8704 && bfd_hash_lookup (finfo->info->keep_hash,
8705 h->root.root.string, FALSE, FALSE) == NULL)
8706 strip = TRUE;
8707 else if ((h->root.type == bfd_link_hash_defined
8708 || h->root.type == bfd_link_hash_defweak)
8709 && ((finfo->info->strip_discarded
8710 && elf_discarded_section (h->root.u.def.section))
8711 || (h->root.u.def.section->owner != NULL
8712 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8713 strip = TRUE;
8714 else if ((h->root.type == bfd_link_hash_undefined
8715 || h->root.type == bfd_link_hash_undefweak)
8716 && h->root.u.undef.abfd != NULL
8717 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8718 strip = TRUE;
8719 else
8720 strip = FALSE;
8721
8722 /* If we're stripping it, and it's not a dynamic symbol, there's
8723 nothing else to do unless it is a forced local symbol or a
8724 STT_GNU_IFUNC symbol. */
8725 if (strip
8726 && h->dynindx == -1
8727 && h->type != STT_GNU_IFUNC
8728 && !h->forced_local)
8729 return TRUE;
8730
8731 sym.st_value = 0;
8732 sym.st_size = h->size;
8733 sym.st_other = h->other;
8734 if (h->forced_local)
8735 {
8736 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8737 /* Turn off visibility on local symbol. */
8738 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8739 }
8740 else if (h->unique_global)
8741 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8742 else if (h->root.type == bfd_link_hash_undefweak
8743 || h->root.type == bfd_link_hash_defweak)
8744 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8745 else
8746 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8747 sym.st_target_internal = h->target_internal;
8748
8749 switch (h->root.type)
8750 {
8751 default:
8752 case bfd_link_hash_new:
8753 case bfd_link_hash_warning:
8754 abort ();
8755 return FALSE;
8756
8757 case bfd_link_hash_undefined:
8758 case bfd_link_hash_undefweak:
8759 input_sec = bfd_und_section_ptr;
8760 sym.st_shndx = SHN_UNDEF;
8761 break;
8762
8763 case bfd_link_hash_defined:
8764 case bfd_link_hash_defweak:
8765 {
8766 input_sec = h->root.u.def.section;
8767 if (input_sec->output_section != NULL)
8768 {
8769 sym.st_shndx =
8770 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8771 input_sec->output_section);
8772 if (sym.st_shndx == SHN_BAD)
8773 {
8774 (*_bfd_error_handler)
8775 (_("%B: could not find output section %A for input section %A"),
8776 finfo->output_bfd, input_sec->output_section, input_sec);
8777 bfd_set_error (bfd_error_nonrepresentable_section);
8778 eoinfo->failed = TRUE;
8779 return FALSE;
8780 }
8781
8782 /* ELF symbols in relocatable files are section relative,
8783 but in nonrelocatable files they are virtual
8784 addresses. */
8785 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8786 if (! finfo->info->relocatable)
8787 {
8788 sym.st_value += input_sec->output_section->vma;
8789 if (h->type == STT_TLS)
8790 {
8791 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8792 if (tls_sec != NULL)
8793 sym.st_value -= tls_sec->vma;
8794 else
8795 {
8796 /* The TLS section may have been garbage collected. */
8797 BFD_ASSERT (finfo->info->gc_sections
8798 && !input_sec->gc_mark);
8799 }
8800 }
8801 }
8802 }
8803 else
8804 {
8805 BFD_ASSERT (input_sec->owner == NULL
8806 || (input_sec->owner->flags & DYNAMIC) != 0);
8807 sym.st_shndx = SHN_UNDEF;
8808 input_sec = bfd_und_section_ptr;
8809 }
8810 }
8811 break;
8812
8813 case bfd_link_hash_common:
8814 input_sec = h->root.u.c.p->section;
8815 sym.st_shndx = bed->common_section_index (input_sec);
8816 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8817 break;
8818
8819 case bfd_link_hash_indirect:
8820 /* These symbols are created by symbol versioning. They point
8821 to the decorated version of the name. For example, if the
8822 symbol foo@@GNU_1.2 is the default, which should be used when
8823 foo is used with no version, then we add an indirect symbol
8824 foo which points to foo@@GNU_1.2. We ignore these symbols,
8825 since the indirected symbol is already in the hash table. */
8826 return TRUE;
8827 }
8828
8829 /* Give the processor backend a chance to tweak the symbol value,
8830 and also to finish up anything that needs to be done for this
8831 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8832 forced local syms when non-shared is due to a historical quirk.
8833 STT_GNU_IFUNC symbol must go through PLT. */
8834 if ((h->type == STT_GNU_IFUNC
8835 && h->def_regular
8836 && !finfo->info->relocatable)
8837 || ((h->dynindx != -1
8838 || h->forced_local)
8839 && ((finfo->info->shared
8840 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8841 || h->root.type != bfd_link_hash_undefweak))
8842 || !h->forced_local)
8843 && elf_hash_table (finfo->info)->dynamic_sections_created))
8844 {
8845 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8846 (finfo->output_bfd, finfo->info, h, &sym)))
8847 {
8848 eoinfo->failed = TRUE;
8849 return FALSE;
8850 }
8851 }
8852
8853 /* If we are marking the symbol as undefined, and there are no
8854 non-weak references to this symbol from a regular object, then
8855 mark the symbol as weak undefined; if there are non-weak
8856 references, mark the symbol as strong. We can't do this earlier,
8857 because it might not be marked as undefined until the
8858 finish_dynamic_symbol routine gets through with it. */
8859 if (sym.st_shndx == SHN_UNDEF
8860 && h->ref_regular
8861 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8862 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8863 {
8864 int bindtype;
8865 unsigned int type = ELF_ST_TYPE (sym.st_info);
8866
8867 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8868 if (type == STT_GNU_IFUNC)
8869 type = STT_FUNC;
8870
8871 if (h->ref_regular_nonweak)
8872 bindtype = STB_GLOBAL;
8873 else
8874 bindtype = STB_WEAK;
8875 sym.st_info = ELF_ST_INFO (bindtype, type);
8876 }
8877
8878 /* If this is a symbol defined in a dynamic library, don't use the
8879 symbol size from the dynamic library. Relinking an executable
8880 against a new library may introduce gratuitous changes in the
8881 executable's symbols if we keep the size. */
8882 if (sym.st_shndx == SHN_UNDEF
8883 && !h->def_regular
8884 && h->def_dynamic)
8885 sym.st_size = 0;
8886
8887 /* If a non-weak symbol with non-default visibility is not defined
8888 locally, it is a fatal error. */
8889 if (! finfo->info->relocatable
8890 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8891 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8892 && h->root.type == bfd_link_hash_undefined
8893 && !h->def_regular)
8894 {
8895 const char *msg;
8896
8897 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8898 msg = _("%B: protected symbol `%s' isn't defined");
8899 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8900 msg = _("%B: internal symbol `%s' isn't defined");
8901 else
8902 msg = _("%B: hidden symbol `%s' isn't defined");
8903 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8904 bfd_set_error (bfd_error_bad_value);
8905 eoinfo->failed = TRUE;
8906 return FALSE;
8907 }
8908
8909 /* If this symbol should be put in the .dynsym section, then put it
8910 there now. We already know the symbol index. We also fill in
8911 the entry in the .hash section. */
8912 if (h->dynindx != -1
8913 && elf_hash_table (finfo->info)->dynamic_sections_created)
8914 {
8915 bfd_byte *esym;
8916
8917 sym.st_name = h->dynstr_index;
8918 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8919 if (! check_dynsym (finfo->output_bfd, &sym))
8920 {
8921 eoinfo->failed = TRUE;
8922 return FALSE;
8923 }
8924 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8925
8926 if (finfo->hash_sec != NULL)
8927 {
8928 size_t hash_entry_size;
8929 bfd_byte *bucketpos;
8930 bfd_vma chain;
8931 size_t bucketcount;
8932 size_t bucket;
8933
8934 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8935 bucket = h->u.elf_hash_value % bucketcount;
8936
8937 hash_entry_size
8938 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8939 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8940 + (bucket + 2) * hash_entry_size);
8941 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8942 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8943 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8944 ((bfd_byte *) finfo->hash_sec->contents
8945 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8946 }
8947
8948 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8949 {
8950 Elf_Internal_Versym iversym;
8951 Elf_External_Versym *eversym;
8952
8953 if (!h->def_regular)
8954 {
8955 if (h->verinfo.verdef == NULL)
8956 iversym.vs_vers = 0;
8957 else
8958 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8959 }
8960 else
8961 {
8962 if (h->verinfo.vertree == NULL)
8963 iversym.vs_vers = 1;
8964 else
8965 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8966 if (finfo->info->create_default_symver)
8967 iversym.vs_vers++;
8968 }
8969
8970 if (h->hidden)
8971 iversym.vs_vers |= VERSYM_HIDDEN;
8972
8973 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8974 eversym += h->dynindx;
8975 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8976 }
8977 }
8978
8979 /* If we're stripping it, then it was just a dynamic symbol, and
8980 there's nothing else to do. */
8981 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8982 return TRUE;
8983
8984 indx = bfd_get_symcount (finfo->output_bfd);
8985 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8986 if (ret == 0)
8987 {
8988 eoinfo->failed = TRUE;
8989 return FALSE;
8990 }
8991 else if (ret == 1)
8992 h->indx = indx;
8993 else if (h->indx == -2)
8994 abort();
8995
8996 return TRUE;
8997 }
8998
8999 /* Return TRUE if special handling is done for relocs in SEC against
9000 symbols defined in discarded sections. */
9001
9002 static bfd_boolean
9003 elf_section_ignore_discarded_relocs (asection *sec)
9004 {
9005 const struct elf_backend_data *bed;
9006
9007 switch (sec->sec_info_type)
9008 {
9009 case ELF_INFO_TYPE_STABS:
9010 case ELF_INFO_TYPE_EH_FRAME:
9011 return TRUE;
9012 default:
9013 break;
9014 }
9015
9016 bed = get_elf_backend_data (sec->owner);
9017 if (bed->elf_backend_ignore_discarded_relocs != NULL
9018 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9019 return TRUE;
9020
9021 return FALSE;
9022 }
9023
9024 /* Return a mask saying how ld should treat relocations in SEC against
9025 symbols defined in discarded sections. If this function returns
9026 COMPLAIN set, ld will issue a warning message. If this function
9027 returns PRETEND set, and the discarded section was link-once and the
9028 same size as the kept link-once section, ld will pretend that the
9029 symbol was actually defined in the kept section. Otherwise ld will
9030 zero the reloc (at least that is the intent, but some cooperation by
9031 the target dependent code is needed, particularly for REL targets). */
9032
9033 unsigned int
9034 _bfd_elf_default_action_discarded (asection *sec)
9035 {
9036 if (sec->flags & SEC_DEBUGGING)
9037 return PRETEND;
9038
9039 if (strcmp (".eh_frame", sec->name) == 0)
9040 return 0;
9041
9042 if (strcmp (".gcc_except_table", sec->name) == 0)
9043 return 0;
9044
9045 return COMPLAIN | PRETEND;
9046 }
9047
9048 /* Find a match between a section and a member of a section group. */
9049
9050 static asection *
9051 match_group_member (asection *sec, asection *group,
9052 struct bfd_link_info *info)
9053 {
9054 asection *first = elf_next_in_group (group);
9055 asection *s = first;
9056
9057 while (s != NULL)
9058 {
9059 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9060 return s;
9061
9062 s = elf_next_in_group (s);
9063 if (s == first)
9064 break;
9065 }
9066
9067 return NULL;
9068 }
9069
9070 /* Check if the kept section of a discarded section SEC can be used
9071 to replace it. Return the replacement if it is OK. Otherwise return
9072 NULL. */
9073
9074 asection *
9075 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9076 {
9077 asection *kept;
9078
9079 kept = sec->kept_section;
9080 if (kept != NULL)
9081 {
9082 if ((kept->flags & SEC_GROUP) != 0)
9083 kept = match_group_member (sec, kept, info);
9084 if (kept != NULL
9085 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9086 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9087 kept = NULL;
9088 sec->kept_section = kept;
9089 }
9090 return kept;
9091 }
9092
9093 /* Link an input file into the linker output file. This function
9094 handles all the sections and relocations of the input file at once.
9095 This is so that we only have to read the local symbols once, and
9096 don't have to keep them in memory. */
9097
9098 static bfd_boolean
9099 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9100 {
9101 int (*relocate_section)
9102 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9103 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9104 bfd *output_bfd;
9105 Elf_Internal_Shdr *symtab_hdr;
9106 size_t locsymcount;
9107 size_t extsymoff;
9108 Elf_Internal_Sym *isymbuf;
9109 Elf_Internal_Sym *isym;
9110 Elf_Internal_Sym *isymend;
9111 long *pindex;
9112 asection **ppsection;
9113 asection *o;
9114 const struct elf_backend_data *bed;
9115 struct elf_link_hash_entry **sym_hashes;
9116 bfd_size_type address_size;
9117 bfd_vma r_type_mask;
9118 int r_sym_shift;
9119
9120 output_bfd = finfo->output_bfd;
9121 bed = get_elf_backend_data (output_bfd);
9122 relocate_section = bed->elf_backend_relocate_section;
9123
9124 /* If this is a dynamic object, we don't want to do anything here:
9125 we don't want the local symbols, and we don't want the section
9126 contents. */
9127 if ((input_bfd->flags & DYNAMIC) != 0)
9128 return TRUE;
9129
9130 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9131 if (elf_bad_symtab (input_bfd))
9132 {
9133 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9134 extsymoff = 0;
9135 }
9136 else
9137 {
9138 locsymcount = symtab_hdr->sh_info;
9139 extsymoff = symtab_hdr->sh_info;
9140 }
9141
9142 /* Read the local symbols. */
9143 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9144 if (isymbuf == NULL && locsymcount != 0)
9145 {
9146 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9147 finfo->internal_syms,
9148 finfo->external_syms,
9149 finfo->locsym_shndx);
9150 if (isymbuf == NULL)
9151 return FALSE;
9152 }
9153
9154 /* Find local symbol sections and adjust values of symbols in
9155 SEC_MERGE sections. Write out those local symbols we know are
9156 going into the output file. */
9157 isymend = isymbuf + locsymcount;
9158 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9159 isym < isymend;
9160 isym++, pindex++, ppsection++)
9161 {
9162 asection *isec;
9163 const char *name;
9164 Elf_Internal_Sym osym;
9165 long indx;
9166 int ret;
9167
9168 *pindex = -1;
9169
9170 if (elf_bad_symtab (input_bfd))
9171 {
9172 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9173 {
9174 *ppsection = NULL;
9175 continue;
9176 }
9177 }
9178
9179 if (isym->st_shndx == SHN_UNDEF)
9180 isec = bfd_und_section_ptr;
9181 else if (isym->st_shndx == SHN_ABS)
9182 isec = bfd_abs_section_ptr;
9183 else if (isym->st_shndx == SHN_COMMON)
9184 isec = bfd_com_section_ptr;
9185 else
9186 {
9187 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9188 if (isec == NULL)
9189 {
9190 /* Don't attempt to output symbols with st_shnx in the
9191 reserved range other than SHN_ABS and SHN_COMMON. */
9192 *ppsection = NULL;
9193 continue;
9194 }
9195 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9196 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9197 isym->st_value =
9198 _bfd_merged_section_offset (output_bfd, &isec,
9199 elf_section_data (isec)->sec_info,
9200 isym->st_value);
9201 }
9202
9203 *ppsection = isec;
9204
9205 /* Don't output the first, undefined, symbol. */
9206 if (ppsection == finfo->sections)
9207 continue;
9208
9209 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9210 {
9211 /* We never output section symbols. Instead, we use the
9212 section symbol of the corresponding section in the output
9213 file. */
9214 continue;
9215 }
9216
9217 /* If we are stripping all symbols, we don't want to output this
9218 one. */
9219 if (finfo->info->strip == strip_all)
9220 continue;
9221
9222 /* If we are discarding all local symbols, we don't want to
9223 output this one. If we are generating a relocatable output
9224 file, then some of the local symbols may be required by
9225 relocs; we output them below as we discover that they are
9226 needed. */
9227 if (finfo->info->discard == discard_all)
9228 continue;
9229
9230 /* If this symbol is defined in a section which we are
9231 discarding, we don't need to keep it. */
9232 if (isym->st_shndx != SHN_UNDEF
9233 && isym->st_shndx < SHN_LORESERVE
9234 && bfd_section_removed_from_list (output_bfd,
9235 isec->output_section))
9236 continue;
9237
9238 /* Get the name of the symbol. */
9239 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9240 isym->st_name);
9241 if (name == NULL)
9242 return FALSE;
9243
9244 /* See if we are discarding symbols with this name. */
9245 if ((finfo->info->strip == strip_some
9246 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9247 == NULL))
9248 || (((finfo->info->discard == discard_sec_merge
9249 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9250 || finfo->info->discard == discard_l)
9251 && bfd_is_local_label_name (input_bfd, name)))
9252 continue;
9253
9254 osym = *isym;
9255
9256 /* Adjust the section index for the output file. */
9257 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9258 isec->output_section);
9259 if (osym.st_shndx == SHN_BAD)
9260 return FALSE;
9261
9262 /* ELF symbols in relocatable files are section relative, but
9263 in executable files they are virtual addresses. Note that
9264 this code assumes that all ELF sections have an associated
9265 BFD section with a reasonable value for output_offset; below
9266 we assume that they also have a reasonable value for
9267 output_section. Any special sections must be set up to meet
9268 these requirements. */
9269 osym.st_value += isec->output_offset;
9270 if (! finfo->info->relocatable)
9271 {
9272 osym.st_value += isec->output_section->vma;
9273 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9274 {
9275 /* STT_TLS symbols are relative to PT_TLS segment base. */
9276 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9277 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9278 }
9279 }
9280
9281 indx = bfd_get_symcount (output_bfd);
9282 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9283 if (ret == 0)
9284 return FALSE;
9285 else if (ret == 1)
9286 *pindex = indx;
9287 }
9288
9289 if (bed->s->arch_size == 32)
9290 {
9291 r_type_mask = 0xff;
9292 r_sym_shift = 8;
9293 address_size = 4;
9294 }
9295 else
9296 {
9297 r_type_mask = 0xffffffff;
9298 r_sym_shift = 32;
9299 address_size = 8;
9300 }
9301
9302 /* Relocate the contents of each section. */
9303 sym_hashes = elf_sym_hashes (input_bfd);
9304 for (o = input_bfd->sections; o != NULL; o = o->next)
9305 {
9306 bfd_byte *contents;
9307
9308 if (! o->linker_mark)
9309 {
9310 /* This section was omitted from the link. */
9311 continue;
9312 }
9313
9314 if (finfo->info->relocatable
9315 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9316 {
9317 /* Deal with the group signature symbol. */
9318 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9319 unsigned long symndx = sec_data->this_hdr.sh_info;
9320 asection *osec = o->output_section;
9321
9322 if (symndx >= locsymcount
9323 || (elf_bad_symtab (input_bfd)
9324 && finfo->sections[symndx] == NULL))
9325 {
9326 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9327 while (h->root.type == bfd_link_hash_indirect
9328 || h->root.type == bfd_link_hash_warning)
9329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9330 /* Arrange for symbol to be output. */
9331 h->indx = -2;
9332 elf_section_data (osec)->this_hdr.sh_info = -2;
9333 }
9334 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9335 {
9336 /* We'll use the output section target_index. */
9337 asection *sec = finfo->sections[symndx]->output_section;
9338 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9339 }
9340 else
9341 {
9342 if (finfo->indices[symndx] == -1)
9343 {
9344 /* Otherwise output the local symbol now. */
9345 Elf_Internal_Sym sym = isymbuf[symndx];
9346 asection *sec = finfo->sections[symndx]->output_section;
9347 const char *name;
9348 long indx;
9349 int ret;
9350
9351 name = bfd_elf_string_from_elf_section (input_bfd,
9352 symtab_hdr->sh_link,
9353 sym.st_name);
9354 if (name == NULL)
9355 return FALSE;
9356
9357 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9358 sec);
9359 if (sym.st_shndx == SHN_BAD)
9360 return FALSE;
9361
9362 sym.st_value += o->output_offset;
9363
9364 indx = bfd_get_symcount (output_bfd);
9365 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9366 if (ret == 0)
9367 return FALSE;
9368 else if (ret == 1)
9369 finfo->indices[symndx] = indx;
9370 else
9371 abort ();
9372 }
9373 elf_section_data (osec)->this_hdr.sh_info
9374 = finfo->indices[symndx];
9375 }
9376 }
9377
9378 if ((o->flags & SEC_HAS_CONTENTS) == 0
9379 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9380 continue;
9381
9382 if ((o->flags & SEC_LINKER_CREATED) != 0)
9383 {
9384 /* Section was created by _bfd_elf_link_create_dynamic_sections
9385 or somesuch. */
9386 continue;
9387 }
9388
9389 /* Get the contents of the section. They have been cached by a
9390 relaxation routine. Note that o is a section in an input
9391 file, so the contents field will not have been set by any of
9392 the routines which work on output files. */
9393 if (elf_section_data (o)->this_hdr.contents != NULL)
9394 contents = elf_section_data (o)->this_hdr.contents;
9395 else
9396 {
9397 contents = finfo->contents;
9398 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9399 return FALSE;
9400 }
9401
9402 if ((o->flags & SEC_RELOC) != 0)
9403 {
9404 Elf_Internal_Rela *internal_relocs;
9405 Elf_Internal_Rela *rel, *relend;
9406 int action_discarded;
9407 int ret;
9408
9409 /* Get the swapped relocs. */
9410 internal_relocs
9411 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9412 finfo->internal_relocs, FALSE);
9413 if (internal_relocs == NULL
9414 && o->reloc_count > 0)
9415 return FALSE;
9416
9417 /* We need to reverse-copy input .ctors/.dtors sections if
9418 they are placed in .init_array/.finit_array for output. */
9419 if (o->size > address_size
9420 && ((strncmp (o->name, ".ctors", 6) == 0
9421 && strcmp (o->output_section->name,
9422 ".init_array") == 0)
9423 || (strncmp (o->name, ".dtors", 6) == 0
9424 && strcmp (o->output_section->name,
9425 ".fini_array") == 0))
9426 && (o->name[6] == 0 || o->name[6] == '.'))
9427 {
9428 if (o->size != o->reloc_count * address_size)
9429 {
9430 (*_bfd_error_handler)
9431 (_("error: %B: size of section %A is not "
9432 "multiple of address size"),
9433 input_bfd, o);
9434 bfd_set_error (bfd_error_on_input);
9435 return FALSE;
9436 }
9437 o->flags |= SEC_ELF_REVERSE_COPY;
9438 }
9439
9440 action_discarded = -1;
9441 if (!elf_section_ignore_discarded_relocs (o))
9442 action_discarded = (*bed->action_discarded) (o);
9443
9444 /* Run through the relocs evaluating complex reloc symbols and
9445 looking for relocs against symbols from discarded sections
9446 or section symbols from removed link-once sections.
9447 Complain about relocs against discarded sections. Zero
9448 relocs against removed link-once sections. */
9449
9450 rel = internal_relocs;
9451 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9452 for ( ; rel < relend; rel++)
9453 {
9454 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9455 unsigned int s_type;
9456 asection **ps, *sec;
9457 struct elf_link_hash_entry *h = NULL;
9458 const char *sym_name;
9459
9460 if (r_symndx == STN_UNDEF)
9461 continue;
9462
9463 if (r_symndx >= locsymcount
9464 || (elf_bad_symtab (input_bfd)
9465 && finfo->sections[r_symndx] == NULL))
9466 {
9467 h = sym_hashes[r_symndx - extsymoff];
9468
9469 /* Badly formatted input files can contain relocs that
9470 reference non-existant symbols. Check here so that
9471 we do not seg fault. */
9472 if (h == NULL)
9473 {
9474 char buffer [32];
9475
9476 sprintf_vma (buffer, rel->r_info);
9477 (*_bfd_error_handler)
9478 (_("error: %B contains a reloc (0x%s) for section %A "
9479 "that references a non-existent global symbol"),
9480 input_bfd, o, buffer);
9481 bfd_set_error (bfd_error_bad_value);
9482 return FALSE;
9483 }
9484
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488
9489 s_type = h->type;
9490
9491 ps = NULL;
9492 if (h->root.type == bfd_link_hash_defined
9493 || h->root.type == bfd_link_hash_defweak)
9494 ps = &h->root.u.def.section;
9495
9496 sym_name = h->root.root.string;
9497 }
9498 else
9499 {
9500 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9501
9502 s_type = ELF_ST_TYPE (sym->st_info);
9503 ps = &finfo->sections[r_symndx];
9504 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9505 sym, *ps);
9506 }
9507
9508 if ((s_type == STT_RELC || s_type == STT_SRELC)
9509 && !finfo->info->relocatable)
9510 {
9511 bfd_vma val;
9512 bfd_vma dot = (rel->r_offset
9513 + o->output_offset + o->output_section->vma);
9514 #ifdef DEBUG
9515 printf ("Encountered a complex symbol!");
9516 printf (" (input_bfd %s, section %s, reloc %ld\n",
9517 input_bfd->filename, o->name,
9518 (long) (rel - internal_relocs));
9519 printf (" symbol: idx %8.8lx, name %s\n",
9520 r_symndx, sym_name);
9521 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9522 (unsigned long) rel->r_info,
9523 (unsigned long) rel->r_offset);
9524 #endif
9525 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9526 isymbuf, locsymcount, s_type == STT_SRELC))
9527 return FALSE;
9528
9529 /* Symbol evaluated OK. Update to absolute value. */
9530 set_symbol_value (input_bfd, isymbuf, locsymcount,
9531 r_symndx, val);
9532 continue;
9533 }
9534
9535 if (action_discarded != -1 && ps != NULL)
9536 {
9537 /* Complain if the definition comes from a
9538 discarded section. */
9539 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9540 {
9541 BFD_ASSERT (r_symndx != STN_UNDEF);
9542 if (action_discarded & COMPLAIN)
9543 (*finfo->info->callbacks->einfo)
9544 (_("%X`%s' referenced in section `%A' of %B: "
9545 "defined in discarded section `%A' of %B\n"),
9546 sym_name, o, input_bfd, sec, sec->owner);
9547
9548 /* Try to do the best we can to support buggy old
9549 versions of gcc. Pretend that the symbol is
9550 really defined in the kept linkonce section.
9551 FIXME: This is quite broken. Modifying the
9552 symbol here means we will be changing all later
9553 uses of the symbol, not just in this section. */
9554 if (action_discarded & PRETEND)
9555 {
9556 asection *kept;
9557
9558 kept = _bfd_elf_check_kept_section (sec,
9559 finfo->info);
9560 if (kept != NULL)
9561 {
9562 *ps = kept;
9563 continue;
9564 }
9565 }
9566 }
9567 }
9568 }
9569
9570 /* Relocate the section by invoking a back end routine.
9571
9572 The back end routine is responsible for adjusting the
9573 section contents as necessary, and (if using Rela relocs
9574 and generating a relocatable output file) adjusting the
9575 reloc addend as necessary.
9576
9577 The back end routine does not have to worry about setting
9578 the reloc address or the reloc symbol index.
9579
9580 The back end routine is given a pointer to the swapped in
9581 internal symbols, and can access the hash table entries
9582 for the external symbols via elf_sym_hashes (input_bfd).
9583
9584 When generating relocatable output, the back end routine
9585 must handle STB_LOCAL/STT_SECTION symbols specially. The
9586 output symbol is going to be a section symbol
9587 corresponding to the output section, which will require
9588 the addend to be adjusted. */
9589
9590 ret = (*relocate_section) (output_bfd, finfo->info,
9591 input_bfd, o, contents,
9592 internal_relocs,
9593 isymbuf,
9594 finfo->sections);
9595 if (!ret)
9596 return FALSE;
9597
9598 if (ret == 2
9599 || finfo->info->relocatable
9600 || finfo->info->emitrelocations)
9601 {
9602 Elf_Internal_Rela *irela;
9603 Elf_Internal_Rela *irelaend, *irelamid;
9604 bfd_vma last_offset;
9605 struct elf_link_hash_entry **rel_hash;
9606 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9607 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9608 unsigned int next_erel;
9609 bfd_boolean rela_normal;
9610 struct bfd_elf_section_data *esdi, *esdo;
9611
9612 esdi = elf_section_data (o);
9613 esdo = elf_section_data (o->output_section);
9614 rela_normal = FALSE;
9615
9616 /* Adjust the reloc addresses and symbol indices. */
9617
9618 irela = internal_relocs;
9619 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9620 rel_hash = esdo->rel.hashes + esdo->rel.count;
9621 /* We start processing the REL relocs, if any. When we reach
9622 IRELAMID in the loop, we switch to the RELA relocs. */
9623 irelamid = irela;
9624 if (esdi->rel.hdr != NULL)
9625 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9626 * bed->s->int_rels_per_ext_rel);
9627 rel_hash_list = rel_hash;
9628 rela_hash_list = NULL;
9629 last_offset = o->output_offset;
9630 if (!finfo->info->relocatable)
9631 last_offset += o->output_section->vma;
9632 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9633 {
9634 unsigned long r_symndx;
9635 asection *sec;
9636 Elf_Internal_Sym sym;
9637
9638 if (next_erel == bed->s->int_rels_per_ext_rel)
9639 {
9640 rel_hash++;
9641 next_erel = 0;
9642 }
9643
9644 if (irela == irelamid)
9645 {
9646 rel_hash = esdo->rela.hashes + esdo->rela.count;
9647 rela_hash_list = rel_hash;
9648 rela_normal = bed->rela_normal;
9649 }
9650
9651 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9652 finfo->info, o,
9653 irela->r_offset);
9654 if (irela->r_offset >= (bfd_vma) -2)
9655 {
9656 /* This is a reloc for a deleted entry or somesuch.
9657 Turn it into an R_*_NONE reloc, at the same
9658 offset as the last reloc. elf_eh_frame.c and
9659 bfd_elf_discard_info rely on reloc offsets
9660 being ordered. */
9661 irela->r_offset = last_offset;
9662 irela->r_info = 0;
9663 irela->r_addend = 0;
9664 continue;
9665 }
9666
9667 irela->r_offset += o->output_offset;
9668
9669 /* Relocs in an executable have to be virtual addresses. */
9670 if (!finfo->info->relocatable)
9671 irela->r_offset += o->output_section->vma;
9672
9673 last_offset = irela->r_offset;
9674
9675 r_symndx = irela->r_info >> r_sym_shift;
9676 if (r_symndx == STN_UNDEF)
9677 continue;
9678
9679 if (r_symndx >= locsymcount
9680 || (elf_bad_symtab (input_bfd)
9681 && finfo->sections[r_symndx] == NULL))
9682 {
9683 struct elf_link_hash_entry *rh;
9684 unsigned long indx;
9685
9686 /* This is a reloc against a global symbol. We
9687 have not yet output all the local symbols, so
9688 we do not know the symbol index of any global
9689 symbol. We set the rel_hash entry for this
9690 reloc to point to the global hash table entry
9691 for this symbol. The symbol index is then
9692 set at the end of bfd_elf_final_link. */
9693 indx = r_symndx - extsymoff;
9694 rh = elf_sym_hashes (input_bfd)[indx];
9695 while (rh->root.type == bfd_link_hash_indirect
9696 || rh->root.type == bfd_link_hash_warning)
9697 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9698
9699 /* Setting the index to -2 tells
9700 elf_link_output_extsym that this symbol is
9701 used by a reloc. */
9702 BFD_ASSERT (rh->indx < 0);
9703 rh->indx = -2;
9704
9705 *rel_hash = rh;
9706
9707 continue;
9708 }
9709
9710 /* This is a reloc against a local symbol. */
9711
9712 *rel_hash = NULL;
9713 sym = isymbuf[r_symndx];
9714 sec = finfo->sections[r_symndx];
9715 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9716 {
9717 /* I suppose the backend ought to fill in the
9718 section of any STT_SECTION symbol against a
9719 processor specific section. */
9720 r_symndx = STN_UNDEF;
9721 if (bfd_is_abs_section (sec))
9722 ;
9723 else if (sec == NULL || sec->owner == NULL)
9724 {
9725 bfd_set_error (bfd_error_bad_value);
9726 return FALSE;
9727 }
9728 else
9729 {
9730 asection *osec = sec->output_section;
9731
9732 /* If we have discarded a section, the output
9733 section will be the absolute section. In
9734 case of discarded SEC_MERGE sections, use
9735 the kept section. relocate_section should
9736 have already handled discarded linkonce
9737 sections. */
9738 if (bfd_is_abs_section (osec)
9739 && sec->kept_section != NULL
9740 && sec->kept_section->output_section != NULL)
9741 {
9742 osec = sec->kept_section->output_section;
9743 irela->r_addend -= osec->vma;
9744 }
9745
9746 if (!bfd_is_abs_section (osec))
9747 {
9748 r_symndx = osec->target_index;
9749 if (r_symndx == STN_UNDEF)
9750 {
9751 struct elf_link_hash_table *htab;
9752 asection *oi;
9753
9754 htab = elf_hash_table (finfo->info);
9755 oi = htab->text_index_section;
9756 if ((osec->flags & SEC_READONLY) == 0
9757 && htab->data_index_section != NULL)
9758 oi = htab->data_index_section;
9759
9760 if (oi != NULL)
9761 {
9762 irela->r_addend += osec->vma - oi->vma;
9763 r_symndx = oi->target_index;
9764 }
9765 }
9766
9767 BFD_ASSERT (r_symndx != STN_UNDEF);
9768 }
9769 }
9770
9771 /* Adjust the addend according to where the
9772 section winds up in the output section. */
9773 if (rela_normal)
9774 irela->r_addend += sec->output_offset;
9775 }
9776 else
9777 {
9778 if (finfo->indices[r_symndx] == -1)
9779 {
9780 unsigned long shlink;
9781 const char *name;
9782 asection *osec;
9783 long indx;
9784
9785 if (finfo->info->strip == strip_all)
9786 {
9787 /* You can't do ld -r -s. */
9788 bfd_set_error (bfd_error_invalid_operation);
9789 return FALSE;
9790 }
9791
9792 /* This symbol was skipped earlier, but
9793 since it is needed by a reloc, we
9794 must output it now. */
9795 shlink = symtab_hdr->sh_link;
9796 name = (bfd_elf_string_from_elf_section
9797 (input_bfd, shlink, sym.st_name));
9798 if (name == NULL)
9799 return FALSE;
9800
9801 osec = sec->output_section;
9802 sym.st_shndx =
9803 _bfd_elf_section_from_bfd_section (output_bfd,
9804 osec);
9805 if (sym.st_shndx == SHN_BAD)
9806 return FALSE;
9807
9808 sym.st_value += sec->output_offset;
9809 if (! finfo->info->relocatable)
9810 {
9811 sym.st_value += osec->vma;
9812 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9813 {
9814 /* STT_TLS symbols are relative to PT_TLS
9815 segment base. */
9816 BFD_ASSERT (elf_hash_table (finfo->info)
9817 ->tls_sec != NULL);
9818 sym.st_value -= (elf_hash_table (finfo->info)
9819 ->tls_sec->vma);
9820 }
9821 }
9822
9823 indx = bfd_get_symcount (output_bfd);
9824 ret = elf_link_output_sym (finfo, name, &sym, sec,
9825 NULL);
9826 if (ret == 0)
9827 return FALSE;
9828 else if (ret == 1)
9829 finfo->indices[r_symndx] = indx;
9830 else
9831 abort ();
9832 }
9833
9834 r_symndx = finfo->indices[r_symndx];
9835 }
9836
9837 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9838 | (irela->r_info & r_type_mask));
9839 }
9840
9841 /* Swap out the relocs. */
9842 input_rel_hdr = esdi->rel.hdr;
9843 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9844 {
9845 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9846 input_rel_hdr,
9847 internal_relocs,
9848 rel_hash_list))
9849 return FALSE;
9850 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9851 * bed->s->int_rels_per_ext_rel);
9852 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9853 }
9854
9855 input_rela_hdr = esdi->rela.hdr;
9856 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9857 {
9858 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9859 input_rela_hdr,
9860 internal_relocs,
9861 rela_hash_list))
9862 return FALSE;
9863 }
9864 }
9865 }
9866
9867 /* Write out the modified section contents. */
9868 if (bed->elf_backend_write_section
9869 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9870 contents))
9871 {
9872 /* Section written out. */
9873 }
9874 else switch (o->sec_info_type)
9875 {
9876 case ELF_INFO_TYPE_STABS:
9877 if (! (_bfd_write_section_stabs
9878 (output_bfd,
9879 &elf_hash_table (finfo->info)->stab_info,
9880 o, &elf_section_data (o)->sec_info, contents)))
9881 return FALSE;
9882 break;
9883 case ELF_INFO_TYPE_MERGE:
9884 if (! _bfd_write_merged_section (output_bfd, o,
9885 elf_section_data (o)->sec_info))
9886 return FALSE;
9887 break;
9888 case ELF_INFO_TYPE_EH_FRAME:
9889 {
9890 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9891 o, contents))
9892 return FALSE;
9893 }
9894 break;
9895 default:
9896 {
9897 /* FIXME: octets_per_byte. */
9898 if (! (o->flags & SEC_EXCLUDE))
9899 {
9900 file_ptr offset = (file_ptr) o->output_offset;
9901 bfd_size_type todo = o->size;
9902 if ((o->flags & SEC_ELF_REVERSE_COPY))
9903 {
9904 /* Reverse-copy input section to output. */
9905 do
9906 {
9907 todo -= address_size;
9908 if (! bfd_set_section_contents (output_bfd,
9909 o->output_section,
9910 contents + todo,
9911 offset,
9912 address_size))
9913 return FALSE;
9914 if (todo == 0)
9915 break;
9916 offset += address_size;
9917 }
9918 while (1);
9919 }
9920 else if (! bfd_set_section_contents (output_bfd,
9921 o->output_section,
9922 contents,
9923 offset, todo))
9924 return FALSE;
9925 }
9926 }
9927 break;
9928 }
9929 }
9930
9931 return TRUE;
9932 }
9933
9934 /* Generate a reloc when linking an ELF file. This is a reloc
9935 requested by the linker, and does not come from any input file. This
9936 is used to build constructor and destructor tables when linking
9937 with -Ur. */
9938
9939 static bfd_boolean
9940 elf_reloc_link_order (bfd *output_bfd,
9941 struct bfd_link_info *info,
9942 asection *output_section,
9943 struct bfd_link_order *link_order)
9944 {
9945 reloc_howto_type *howto;
9946 long indx;
9947 bfd_vma offset;
9948 bfd_vma addend;
9949 struct bfd_elf_section_reloc_data *reldata;
9950 struct elf_link_hash_entry **rel_hash_ptr;
9951 Elf_Internal_Shdr *rel_hdr;
9952 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9953 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9954 bfd_byte *erel;
9955 unsigned int i;
9956 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9957
9958 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9959 if (howto == NULL)
9960 {
9961 bfd_set_error (bfd_error_bad_value);
9962 return FALSE;
9963 }
9964
9965 addend = link_order->u.reloc.p->addend;
9966
9967 if (esdo->rel.hdr)
9968 reldata = &esdo->rel;
9969 else if (esdo->rela.hdr)
9970 reldata = &esdo->rela;
9971 else
9972 {
9973 reldata = NULL;
9974 BFD_ASSERT (0);
9975 }
9976
9977 /* Figure out the symbol index. */
9978 rel_hash_ptr = reldata->hashes + reldata->count;
9979 if (link_order->type == bfd_section_reloc_link_order)
9980 {
9981 indx = link_order->u.reloc.p->u.section->target_index;
9982 BFD_ASSERT (indx != 0);
9983 *rel_hash_ptr = NULL;
9984 }
9985 else
9986 {
9987 struct elf_link_hash_entry *h;
9988
9989 /* Treat a reloc against a defined symbol as though it were
9990 actually against the section. */
9991 h = ((struct elf_link_hash_entry *)
9992 bfd_wrapped_link_hash_lookup (output_bfd, info,
9993 link_order->u.reloc.p->u.name,
9994 FALSE, FALSE, TRUE));
9995 if (h != NULL
9996 && (h->root.type == bfd_link_hash_defined
9997 || h->root.type == bfd_link_hash_defweak))
9998 {
9999 asection *section;
10000
10001 section = h->root.u.def.section;
10002 indx = section->output_section->target_index;
10003 *rel_hash_ptr = NULL;
10004 /* It seems that we ought to add the symbol value to the
10005 addend here, but in practice it has already been added
10006 because it was passed to constructor_callback. */
10007 addend += section->output_section->vma + section->output_offset;
10008 }
10009 else if (h != NULL)
10010 {
10011 /* Setting the index to -2 tells elf_link_output_extsym that
10012 this symbol is used by a reloc. */
10013 h->indx = -2;
10014 *rel_hash_ptr = h;
10015 indx = 0;
10016 }
10017 else
10018 {
10019 if (! ((*info->callbacks->unattached_reloc)
10020 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10021 return FALSE;
10022 indx = 0;
10023 }
10024 }
10025
10026 /* If this is an inplace reloc, we must write the addend into the
10027 object file. */
10028 if (howto->partial_inplace && addend != 0)
10029 {
10030 bfd_size_type size;
10031 bfd_reloc_status_type rstat;
10032 bfd_byte *buf;
10033 bfd_boolean ok;
10034 const char *sym_name;
10035
10036 size = (bfd_size_type) bfd_get_reloc_size (howto);
10037 buf = (bfd_byte *) bfd_zmalloc (size);
10038 if (buf == NULL)
10039 return FALSE;
10040 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10041 switch (rstat)
10042 {
10043 case bfd_reloc_ok:
10044 break;
10045
10046 default:
10047 case bfd_reloc_outofrange:
10048 abort ();
10049
10050 case bfd_reloc_overflow:
10051 if (link_order->type == bfd_section_reloc_link_order)
10052 sym_name = bfd_section_name (output_bfd,
10053 link_order->u.reloc.p->u.section);
10054 else
10055 sym_name = link_order->u.reloc.p->u.name;
10056 if (! ((*info->callbacks->reloc_overflow)
10057 (info, NULL, sym_name, howto->name, addend, NULL,
10058 NULL, (bfd_vma) 0)))
10059 {
10060 free (buf);
10061 return FALSE;
10062 }
10063 break;
10064 }
10065 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10066 link_order->offset, size);
10067 free (buf);
10068 if (! ok)
10069 return FALSE;
10070 }
10071
10072 /* The address of a reloc is relative to the section in a
10073 relocatable file, and is a virtual address in an executable
10074 file. */
10075 offset = link_order->offset;
10076 if (! info->relocatable)
10077 offset += output_section->vma;
10078
10079 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10080 {
10081 irel[i].r_offset = offset;
10082 irel[i].r_info = 0;
10083 irel[i].r_addend = 0;
10084 }
10085 if (bed->s->arch_size == 32)
10086 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10087 else
10088 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10089
10090 rel_hdr = reldata->hdr;
10091 erel = rel_hdr->contents;
10092 if (rel_hdr->sh_type == SHT_REL)
10093 {
10094 erel += reldata->count * bed->s->sizeof_rel;
10095 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10096 }
10097 else
10098 {
10099 irel[0].r_addend = addend;
10100 erel += reldata->count * bed->s->sizeof_rela;
10101 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10102 }
10103
10104 ++reldata->count;
10105
10106 return TRUE;
10107 }
10108
10109
10110 /* Get the output vma of the section pointed to by the sh_link field. */
10111
10112 static bfd_vma
10113 elf_get_linked_section_vma (struct bfd_link_order *p)
10114 {
10115 Elf_Internal_Shdr **elf_shdrp;
10116 asection *s;
10117 int elfsec;
10118
10119 s = p->u.indirect.section;
10120 elf_shdrp = elf_elfsections (s->owner);
10121 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10122 elfsec = elf_shdrp[elfsec]->sh_link;
10123 /* PR 290:
10124 The Intel C compiler generates SHT_IA_64_UNWIND with
10125 SHF_LINK_ORDER. But it doesn't set the sh_link or
10126 sh_info fields. Hence we could get the situation
10127 where elfsec is 0. */
10128 if (elfsec == 0)
10129 {
10130 const struct elf_backend_data *bed
10131 = get_elf_backend_data (s->owner);
10132 if (bed->link_order_error_handler)
10133 bed->link_order_error_handler
10134 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10135 return 0;
10136 }
10137 else
10138 {
10139 s = elf_shdrp[elfsec]->bfd_section;
10140 return s->output_section->vma + s->output_offset;
10141 }
10142 }
10143
10144
10145 /* Compare two sections based on the locations of the sections they are
10146 linked to. Used by elf_fixup_link_order. */
10147
10148 static int
10149 compare_link_order (const void * a, const void * b)
10150 {
10151 bfd_vma apos;
10152 bfd_vma bpos;
10153
10154 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10155 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10156 if (apos < bpos)
10157 return -1;
10158 return apos > bpos;
10159 }
10160
10161
10162 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10163 order as their linked sections. Returns false if this could not be done
10164 because an output section includes both ordered and unordered
10165 sections. Ideally we'd do this in the linker proper. */
10166
10167 static bfd_boolean
10168 elf_fixup_link_order (bfd *abfd, asection *o)
10169 {
10170 int seen_linkorder;
10171 int seen_other;
10172 int n;
10173 struct bfd_link_order *p;
10174 bfd *sub;
10175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10176 unsigned elfsec;
10177 struct bfd_link_order **sections;
10178 asection *s, *other_sec, *linkorder_sec;
10179 bfd_vma offset;
10180
10181 other_sec = NULL;
10182 linkorder_sec = NULL;
10183 seen_other = 0;
10184 seen_linkorder = 0;
10185 for (p = o->map_head.link_order; p != NULL; p = p->next)
10186 {
10187 if (p->type == bfd_indirect_link_order)
10188 {
10189 s = p->u.indirect.section;
10190 sub = s->owner;
10191 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10192 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10193 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10194 && elfsec < elf_numsections (sub)
10195 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10196 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10197 {
10198 seen_linkorder++;
10199 linkorder_sec = s;
10200 }
10201 else
10202 {
10203 seen_other++;
10204 other_sec = s;
10205 }
10206 }
10207 else
10208 seen_other++;
10209
10210 if (seen_other && seen_linkorder)
10211 {
10212 if (other_sec && linkorder_sec)
10213 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10214 o, linkorder_sec,
10215 linkorder_sec->owner, other_sec,
10216 other_sec->owner);
10217 else
10218 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10219 o);
10220 bfd_set_error (bfd_error_bad_value);
10221 return FALSE;
10222 }
10223 }
10224
10225 if (!seen_linkorder)
10226 return TRUE;
10227
10228 sections = (struct bfd_link_order **)
10229 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10230 if (sections == NULL)
10231 return FALSE;
10232 seen_linkorder = 0;
10233
10234 for (p = o->map_head.link_order; p != NULL; p = p->next)
10235 {
10236 sections[seen_linkorder++] = p;
10237 }
10238 /* Sort the input sections in the order of their linked section. */
10239 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10240 compare_link_order);
10241
10242 /* Change the offsets of the sections. */
10243 offset = 0;
10244 for (n = 0; n < seen_linkorder; n++)
10245 {
10246 s = sections[n]->u.indirect.section;
10247 offset &= ~(bfd_vma) 0 << s->alignment_power;
10248 s->output_offset = offset;
10249 sections[n]->offset = offset;
10250 /* FIXME: octets_per_byte. */
10251 offset += sections[n]->size;
10252 }
10253
10254 free (sections);
10255 return TRUE;
10256 }
10257
10258
10259 /* Do the final step of an ELF link. */
10260
10261 bfd_boolean
10262 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10263 {
10264 bfd_boolean dynamic;
10265 bfd_boolean emit_relocs;
10266 bfd *dynobj;
10267 struct elf_final_link_info finfo;
10268 asection *o;
10269 struct bfd_link_order *p;
10270 bfd *sub;
10271 bfd_size_type max_contents_size;
10272 bfd_size_type max_external_reloc_size;
10273 bfd_size_type max_internal_reloc_count;
10274 bfd_size_type max_sym_count;
10275 bfd_size_type max_sym_shndx_count;
10276 file_ptr off;
10277 Elf_Internal_Sym elfsym;
10278 unsigned int i;
10279 Elf_Internal_Shdr *symtab_hdr;
10280 Elf_Internal_Shdr *symtab_shndx_hdr;
10281 Elf_Internal_Shdr *symstrtab_hdr;
10282 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10283 struct elf_outext_info eoinfo;
10284 bfd_boolean merged;
10285 size_t relativecount = 0;
10286 asection *reldyn = 0;
10287 bfd_size_type amt;
10288 asection *attr_section = NULL;
10289 bfd_vma attr_size = 0;
10290 const char *std_attrs_section;
10291
10292 if (! is_elf_hash_table (info->hash))
10293 return FALSE;
10294
10295 if (info->shared)
10296 abfd->flags |= DYNAMIC;
10297
10298 dynamic = elf_hash_table (info)->dynamic_sections_created;
10299 dynobj = elf_hash_table (info)->dynobj;
10300
10301 emit_relocs = (info->relocatable
10302 || info->emitrelocations);
10303
10304 finfo.info = info;
10305 finfo.output_bfd = abfd;
10306 finfo.symstrtab = _bfd_elf_stringtab_init ();
10307 if (finfo.symstrtab == NULL)
10308 return FALSE;
10309
10310 if (! dynamic)
10311 {
10312 finfo.dynsym_sec = NULL;
10313 finfo.hash_sec = NULL;
10314 finfo.symver_sec = NULL;
10315 }
10316 else
10317 {
10318 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10319 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10320 BFD_ASSERT (finfo.dynsym_sec != NULL);
10321 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10322 /* Note that it is OK if symver_sec is NULL. */
10323 }
10324
10325 finfo.contents = NULL;
10326 finfo.external_relocs = NULL;
10327 finfo.internal_relocs = NULL;
10328 finfo.external_syms = NULL;
10329 finfo.locsym_shndx = NULL;
10330 finfo.internal_syms = NULL;
10331 finfo.indices = NULL;
10332 finfo.sections = NULL;
10333 finfo.symbuf = NULL;
10334 finfo.symshndxbuf = NULL;
10335 finfo.symbuf_count = 0;
10336 finfo.shndxbuf_size = 0;
10337
10338 /* The object attributes have been merged. Remove the input
10339 sections from the link, and set the contents of the output
10340 secton. */
10341 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10342 for (o = abfd->sections; o != NULL; o = o->next)
10343 {
10344 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10345 || strcmp (o->name, ".gnu.attributes") == 0)
10346 {
10347 for (p = o->map_head.link_order; p != NULL; p = p->next)
10348 {
10349 asection *input_section;
10350
10351 if (p->type != bfd_indirect_link_order)
10352 continue;
10353 input_section = p->u.indirect.section;
10354 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10355 elf_link_input_bfd ignores this section. */
10356 input_section->flags &= ~SEC_HAS_CONTENTS;
10357 }
10358
10359 attr_size = bfd_elf_obj_attr_size (abfd);
10360 if (attr_size)
10361 {
10362 bfd_set_section_size (abfd, o, attr_size);
10363 attr_section = o;
10364 /* Skip this section later on. */
10365 o->map_head.link_order = NULL;
10366 }
10367 else
10368 o->flags |= SEC_EXCLUDE;
10369 }
10370 }
10371
10372 /* Count up the number of relocations we will output for each output
10373 section, so that we know the sizes of the reloc sections. We
10374 also figure out some maximum sizes. */
10375 max_contents_size = 0;
10376 max_external_reloc_size = 0;
10377 max_internal_reloc_count = 0;
10378 max_sym_count = 0;
10379 max_sym_shndx_count = 0;
10380 merged = FALSE;
10381 for (o = abfd->sections; o != NULL; o = o->next)
10382 {
10383 struct bfd_elf_section_data *esdo = elf_section_data (o);
10384 o->reloc_count = 0;
10385
10386 for (p = o->map_head.link_order; p != NULL; p = p->next)
10387 {
10388 unsigned int reloc_count = 0;
10389 struct bfd_elf_section_data *esdi = NULL;
10390
10391 if (p->type == bfd_section_reloc_link_order
10392 || p->type == bfd_symbol_reloc_link_order)
10393 reloc_count = 1;
10394 else if (p->type == bfd_indirect_link_order)
10395 {
10396 asection *sec;
10397
10398 sec = p->u.indirect.section;
10399 esdi = elf_section_data (sec);
10400
10401 /* Mark all sections which are to be included in the
10402 link. This will normally be every section. We need
10403 to do this so that we can identify any sections which
10404 the linker has decided to not include. */
10405 sec->linker_mark = TRUE;
10406
10407 if (sec->flags & SEC_MERGE)
10408 merged = TRUE;
10409
10410 if (info->relocatable || info->emitrelocations)
10411 reloc_count = sec->reloc_count;
10412 else if (bed->elf_backend_count_relocs)
10413 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10414
10415 if (sec->rawsize > max_contents_size)
10416 max_contents_size = sec->rawsize;
10417 if (sec->size > max_contents_size)
10418 max_contents_size = sec->size;
10419
10420 /* We are interested in just local symbols, not all
10421 symbols. */
10422 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10423 && (sec->owner->flags & DYNAMIC) == 0)
10424 {
10425 size_t sym_count;
10426
10427 if (elf_bad_symtab (sec->owner))
10428 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10429 / bed->s->sizeof_sym);
10430 else
10431 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10432
10433 if (sym_count > max_sym_count)
10434 max_sym_count = sym_count;
10435
10436 if (sym_count > max_sym_shndx_count
10437 && elf_symtab_shndx (sec->owner) != 0)
10438 max_sym_shndx_count = sym_count;
10439
10440 if ((sec->flags & SEC_RELOC) != 0)
10441 {
10442 size_t ext_size = 0;
10443
10444 if (esdi->rel.hdr != NULL)
10445 ext_size = esdi->rel.hdr->sh_size;
10446 if (esdi->rela.hdr != NULL)
10447 ext_size += esdi->rela.hdr->sh_size;
10448
10449 if (ext_size > max_external_reloc_size)
10450 max_external_reloc_size = ext_size;
10451 if (sec->reloc_count > max_internal_reloc_count)
10452 max_internal_reloc_count = sec->reloc_count;
10453 }
10454 }
10455 }
10456
10457 if (reloc_count == 0)
10458 continue;
10459
10460 o->reloc_count += reloc_count;
10461
10462 if (p->type == bfd_indirect_link_order
10463 && (info->relocatable || info->emitrelocations))
10464 {
10465 if (esdi->rel.hdr)
10466 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10467 if (esdi->rela.hdr)
10468 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10469 }
10470 else
10471 {
10472 if (o->use_rela_p)
10473 esdo->rela.count += reloc_count;
10474 else
10475 esdo->rel.count += reloc_count;
10476 }
10477 }
10478
10479 if (o->reloc_count > 0)
10480 o->flags |= SEC_RELOC;
10481 else
10482 {
10483 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10484 set it (this is probably a bug) and if it is set
10485 assign_section_numbers will create a reloc section. */
10486 o->flags &=~ SEC_RELOC;
10487 }
10488
10489 /* If the SEC_ALLOC flag is not set, force the section VMA to
10490 zero. This is done in elf_fake_sections as well, but forcing
10491 the VMA to 0 here will ensure that relocs against these
10492 sections are handled correctly. */
10493 if ((o->flags & SEC_ALLOC) == 0
10494 && ! o->user_set_vma)
10495 o->vma = 0;
10496 }
10497
10498 if (! info->relocatable && merged)
10499 elf_link_hash_traverse (elf_hash_table (info),
10500 _bfd_elf_link_sec_merge_syms, abfd);
10501
10502 /* Figure out the file positions for everything but the symbol table
10503 and the relocs. We set symcount to force assign_section_numbers
10504 to create a symbol table. */
10505 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10506 BFD_ASSERT (! abfd->output_has_begun);
10507 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10508 goto error_return;
10509
10510 /* Set sizes, and assign file positions for reloc sections. */
10511 for (o = abfd->sections; o != NULL; o = o->next)
10512 {
10513 struct bfd_elf_section_data *esdo = elf_section_data (o);
10514 if ((o->flags & SEC_RELOC) != 0)
10515 {
10516 if (esdo->rel.hdr
10517 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10518 goto error_return;
10519
10520 if (esdo->rela.hdr
10521 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10522 goto error_return;
10523 }
10524
10525 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10526 to count upwards while actually outputting the relocations. */
10527 esdo->rel.count = 0;
10528 esdo->rela.count = 0;
10529 }
10530
10531 _bfd_elf_assign_file_positions_for_relocs (abfd);
10532
10533 /* We have now assigned file positions for all the sections except
10534 .symtab and .strtab. We start the .symtab section at the current
10535 file position, and write directly to it. We build the .strtab
10536 section in memory. */
10537 bfd_get_symcount (abfd) = 0;
10538 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10539 /* sh_name is set in prep_headers. */
10540 symtab_hdr->sh_type = SHT_SYMTAB;
10541 /* sh_flags, sh_addr and sh_size all start off zero. */
10542 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10543 /* sh_link is set in assign_section_numbers. */
10544 /* sh_info is set below. */
10545 /* sh_offset is set just below. */
10546 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10547
10548 off = elf_tdata (abfd)->next_file_pos;
10549 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10550
10551 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10552 incorrect. We do not yet know the size of the .symtab section.
10553 We correct next_file_pos below, after we do know the size. */
10554
10555 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10556 continuously seeking to the right position in the file. */
10557 if (! info->keep_memory || max_sym_count < 20)
10558 finfo.symbuf_size = 20;
10559 else
10560 finfo.symbuf_size = max_sym_count;
10561 amt = finfo.symbuf_size;
10562 amt *= bed->s->sizeof_sym;
10563 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10564 if (finfo.symbuf == NULL)
10565 goto error_return;
10566 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10567 {
10568 /* Wild guess at number of output symbols. realloc'd as needed. */
10569 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10570 finfo.shndxbuf_size = amt;
10571 amt *= sizeof (Elf_External_Sym_Shndx);
10572 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10573 if (finfo.symshndxbuf == NULL)
10574 goto error_return;
10575 }
10576
10577 /* Start writing out the symbol table. The first symbol is always a
10578 dummy symbol. */
10579 if (info->strip != strip_all
10580 || emit_relocs)
10581 {
10582 elfsym.st_value = 0;
10583 elfsym.st_size = 0;
10584 elfsym.st_info = 0;
10585 elfsym.st_other = 0;
10586 elfsym.st_shndx = SHN_UNDEF;
10587 elfsym.st_target_internal = 0;
10588 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10589 NULL) != 1)
10590 goto error_return;
10591 }
10592
10593 /* Output a symbol for each section. We output these even if we are
10594 discarding local symbols, since they are used for relocs. These
10595 symbols have no names. We store the index of each one in the
10596 index field of the section, so that we can find it again when
10597 outputting relocs. */
10598 if (info->strip != strip_all
10599 || emit_relocs)
10600 {
10601 elfsym.st_size = 0;
10602 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10603 elfsym.st_other = 0;
10604 elfsym.st_value = 0;
10605 elfsym.st_target_internal = 0;
10606 for (i = 1; i < elf_numsections (abfd); i++)
10607 {
10608 o = bfd_section_from_elf_index (abfd, i);
10609 if (o != NULL)
10610 {
10611 o->target_index = bfd_get_symcount (abfd);
10612 elfsym.st_shndx = i;
10613 if (!info->relocatable)
10614 elfsym.st_value = o->vma;
10615 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10616 goto error_return;
10617 }
10618 }
10619 }
10620
10621 /* Allocate some memory to hold information read in from the input
10622 files. */
10623 if (max_contents_size != 0)
10624 {
10625 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10626 if (finfo.contents == NULL)
10627 goto error_return;
10628 }
10629
10630 if (max_external_reloc_size != 0)
10631 {
10632 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10633 if (finfo.external_relocs == NULL)
10634 goto error_return;
10635 }
10636
10637 if (max_internal_reloc_count != 0)
10638 {
10639 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10640 amt *= sizeof (Elf_Internal_Rela);
10641 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10642 if (finfo.internal_relocs == NULL)
10643 goto error_return;
10644 }
10645
10646 if (max_sym_count != 0)
10647 {
10648 amt = max_sym_count * bed->s->sizeof_sym;
10649 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10650 if (finfo.external_syms == NULL)
10651 goto error_return;
10652
10653 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10654 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10655 if (finfo.internal_syms == NULL)
10656 goto error_return;
10657
10658 amt = max_sym_count * sizeof (long);
10659 finfo.indices = (long int *) bfd_malloc (amt);
10660 if (finfo.indices == NULL)
10661 goto error_return;
10662
10663 amt = max_sym_count * sizeof (asection *);
10664 finfo.sections = (asection **) bfd_malloc (amt);
10665 if (finfo.sections == NULL)
10666 goto error_return;
10667 }
10668
10669 if (max_sym_shndx_count != 0)
10670 {
10671 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10672 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10673 if (finfo.locsym_shndx == NULL)
10674 goto error_return;
10675 }
10676
10677 if (elf_hash_table (info)->tls_sec)
10678 {
10679 bfd_vma base, end = 0;
10680 asection *sec;
10681
10682 for (sec = elf_hash_table (info)->tls_sec;
10683 sec && (sec->flags & SEC_THREAD_LOCAL);
10684 sec = sec->next)
10685 {
10686 bfd_size_type size = sec->size;
10687
10688 if (size == 0
10689 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10690 {
10691 struct bfd_link_order *ord = sec->map_tail.link_order;
10692
10693 if (ord != NULL)
10694 size = ord->offset + ord->size;
10695 }
10696 end = sec->vma + size;
10697 }
10698 base = elf_hash_table (info)->tls_sec->vma;
10699 /* Only align end of TLS section if static TLS doesn't have special
10700 alignment requirements. */
10701 if (bed->static_tls_alignment == 1)
10702 end = align_power (end,
10703 elf_hash_table (info)->tls_sec->alignment_power);
10704 elf_hash_table (info)->tls_size = end - base;
10705 }
10706
10707 /* Reorder SHF_LINK_ORDER sections. */
10708 for (o = abfd->sections; o != NULL; o = o->next)
10709 {
10710 if (!elf_fixup_link_order (abfd, o))
10711 return FALSE;
10712 }
10713
10714 /* Since ELF permits relocations to be against local symbols, we
10715 must have the local symbols available when we do the relocations.
10716 Since we would rather only read the local symbols once, and we
10717 would rather not keep them in memory, we handle all the
10718 relocations for a single input file at the same time.
10719
10720 Unfortunately, there is no way to know the total number of local
10721 symbols until we have seen all of them, and the local symbol
10722 indices precede the global symbol indices. This means that when
10723 we are generating relocatable output, and we see a reloc against
10724 a global symbol, we can not know the symbol index until we have
10725 finished examining all the local symbols to see which ones we are
10726 going to output. To deal with this, we keep the relocations in
10727 memory, and don't output them until the end of the link. This is
10728 an unfortunate waste of memory, but I don't see a good way around
10729 it. Fortunately, it only happens when performing a relocatable
10730 link, which is not the common case. FIXME: If keep_memory is set
10731 we could write the relocs out and then read them again; I don't
10732 know how bad the memory loss will be. */
10733
10734 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10735 sub->output_has_begun = FALSE;
10736 for (o = abfd->sections; o != NULL; o = o->next)
10737 {
10738 for (p = o->map_head.link_order; p != NULL; p = p->next)
10739 {
10740 if (p->type == bfd_indirect_link_order
10741 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10742 == bfd_target_elf_flavour)
10743 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10744 {
10745 if (! sub->output_has_begun)
10746 {
10747 if (! elf_link_input_bfd (&finfo, sub))
10748 goto error_return;
10749 sub->output_has_begun = TRUE;
10750 }
10751 }
10752 else if (p->type == bfd_section_reloc_link_order
10753 || p->type == bfd_symbol_reloc_link_order)
10754 {
10755 if (! elf_reloc_link_order (abfd, info, o, p))
10756 goto error_return;
10757 }
10758 else
10759 {
10760 if (! _bfd_default_link_order (abfd, info, o, p))
10761 {
10762 if (p->type == bfd_indirect_link_order
10763 && (bfd_get_flavour (sub)
10764 == bfd_target_elf_flavour)
10765 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10766 != bed->s->elfclass))
10767 {
10768 const char *iclass, *oclass;
10769
10770 if (bed->s->elfclass == ELFCLASS64)
10771 {
10772 iclass = "ELFCLASS32";
10773 oclass = "ELFCLASS64";
10774 }
10775 else
10776 {
10777 iclass = "ELFCLASS64";
10778 oclass = "ELFCLASS32";
10779 }
10780
10781 bfd_set_error (bfd_error_wrong_format);
10782 (*_bfd_error_handler)
10783 (_("%B: file class %s incompatible with %s"),
10784 sub, iclass, oclass);
10785 }
10786
10787 goto error_return;
10788 }
10789 }
10790 }
10791 }
10792
10793 /* Free symbol buffer if needed. */
10794 if (!info->reduce_memory_overheads)
10795 {
10796 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10797 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10798 && elf_tdata (sub)->symbuf)
10799 {
10800 free (elf_tdata (sub)->symbuf);
10801 elf_tdata (sub)->symbuf = NULL;
10802 }
10803 }
10804
10805 /* Output any global symbols that got converted to local in a
10806 version script or due to symbol visibility. We do this in a
10807 separate step since ELF requires all local symbols to appear
10808 prior to any global symbols. FIXME: We should only do this if
10809 some global symbols were, in fact, converted to become local.
10810 FIXME: Will this work correctly with the Irix 5 linker? */
10811 eoinfo.failed = FALSE;
10812 eoinfo.finfo = &finfo;
10813 eoinfo.localsyms = TRUE;
10814 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10815 if (eoinfo.failed)
10816 return FALSE;
10817
10818 /* If backend needs to output some local symbols not present in the hash
10819 table, do it now. */
10820 if (bed->elf_backend_output_arch_local_syms)
10821 {
10822 typedef int (*out_sym_func)
10823 (void *, const char *, Elf_Internal_Sym *, asection *,
10824 struct elf_link_hash_entry *);
10825
10826 if (! ((*bed->elf_backend_output_arch_local_syms)
10827 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10828 return FALSE;
10829 }
10830
10831 /* That wrote out all the local symbols. Finish up the symbol table
10832 with the global symbols. Even if we want to strip everything we
10833 can, we still need to deal with those global symbols that got
10834 converted to local in a version script. */
10835
10836 /* The sh_info field records the index of the first non local symbol. */
10837 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10838
10839 if (dynamic
10840 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10841 {
10842 Elf_Internal_Sym sym;
10843 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10844 long last_local = 0;
10845
10846 /* Write out the section symbols for the output sections. */
10847 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10848 {
10849 asection *s;
10850
10851 sym.st_size = 0;
10852 sym.st_name = 0;
10853 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10854 sym.st_other = 0;
10855 sym.st_target_internal = 0;
10856
10857 for (s = abfd->sections; s != NULL; s = s->next)
10858 {
10859 int indx;
10860 bfd_byte *dest;
10861 long dynindx;
10862
10863 dynindx = elf_section_data (s)->dynindx;
10864 if (dynindx <= 0)
10865 continue;
10866 indx = elf_section_data (s)->this_idx;
10867 BFD_ASSERT (indx > 0);
10868 sym.st_shndx = indx;
10869 if (! check_dynsym (abfd, &sym))
10870 return FALSE;
10871 sym.st_value = s->vma;
10872 dest = dynsym + dynindx * bed->s->sizeof_sym;
10873 if (last_local < dynindx)
10874 last_local = dynindx;
10875 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10876 }
10877 }
10878
10879 /* Write out the local dynsyms. */
10880 if (elf_hash_table (info)->dynlocal)
10881 {
10882 struct elf_link_local_dynamic_entry *e;
10883 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10884 {
10885 asection *s;
10886 bfd_byte *dest;
10887
10888 /* Copy the internal symbol and turn off visibility.
10889 Note that we saved a word of storage and overwrote
10890 the original st_name with the dynstr_index. */
10891 sym = e->isym;
10892 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10893
10894 s = bfd_section_from_elf_index (e->input_bfd,
10895 e->isym.st_shndx);
10896 if (s != NULL)
10897 {
10898 sym.st_shndx =
10899 elf_section_data (s->output_section)->this_idx;
10900 if (! check_dynsym (abfd, &sym))
10901 return FALSE;
10902 sym.st_value = (s->output_section->vma
10903 + s->output_offset
10904 + e->isym.st_value);
10905 }
10906
10907 if (last_local < e->dynindx)
10908 last_local = e->dynindx;
10909
10910 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10911 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10912 }
10913 }
10914
10915 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10916 last_local + 1;
10917 }
10918
10919 /* We get the global symbols from the hash table. */
10920 eoinfo.failed = FALSE;
10921 eoinfo.localsyms = FALSE;
10922 eoinfo.finfo = &finfo;
10923 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10924 if (eoinfo.failed)
10925 return FALSE;
10926
10927 /* If backend needs to output some symbols not present in the hash
10928 table, do it now. */
10929 if (bed->elf_backend_output_arch_syms)
10930 {
10931 typedef int (*out_sym_func)
10932 (void *, const char *, Elf_Internal_Sym *, asection *,
10933 struct elf_link_hash_entry *);
10934
10935 if (! ((*bed->elf_backend_output_arch_syms)
10936 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10937 return FALSE;
10938 }
10939
10940 /* Flush all symbols to the file. */
10941 if (! elf_link_flush_output_syms (&finfo, bed))
10942 return FALSE;
10943
10944 /* Now we know the size of the symtab section. */
10945 off += symtab_hdr->sh_size;
10946
10947 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10948 if (symtab_shndx_hdr->sh_name != 0)
10949 {
10950 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10951 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10952 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10953 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10954 symtab_shndx_hdr->sh_size = amt;
10955
10956 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10957 off, TRUE);
10958
10959 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10960 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10961 return FALSE;
10962 }
10963
10964
10965 /* Finish up and write out the symbol string table (.strtab)
10966 section. */
10967 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10968 /* sh_name was set in prep_headers. */
10969 symstrtab_hdr->sh_type = SHT_STRTAB;
10970 symstrtab_hdr->sh_flags = 0;
10971 symstrtab_hdr->sh_addr = 0;
10972 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10973 symstrtab_hdr->sh_entsize = 0;
10974 symstrtab_hdr->sh_link = 0;
10975 symstrtab_hdr->sh_info = 0;
10976 /* sh_offset is set just below. */
10977 symstrtab_hdr->sh_addralign = 1;
10978
10979 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10980 elf_tdata (abfd)->next_file_pos = off;
10981
10982 if (bfd_get_symcount (abfd) > 0)
10983 {
10984 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10985 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10986 return FALSE;
10987 }
10988
10989 /* Adjust the relocs to have the correct symbol indices. */
10990 for (o = abfd->sections; o != NULL; o = o->next)
10991 {
10992 struct bfd_elf_section_data *esdo = elf_section_data (o);
10993 if ((o->flags & SEC_RELOC) == 0)
10994 continue;
10995
10996 if (esdo->rel.hdr != NULL)
10997 elf_link_adjust_relocs (abfd, &esdo->rel);
10998 if (esdo->rela.hdr != NULL)
10999 elf_link_adjust_relocs (abfd, &esdo->rela);
11000
11001 /* Set the reloc_count field to 0 to prevent write_relocs from
11002 trying to swap the relocs out itself. */
11003 o->reloc_count = 0;
11004 }
11005
11006 if (dynamic && info->combreloc && dynobj != NULL)
11007 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11008
11009 /* If we are linking against a dynamic object, or generating a
11010 shared library, finish up the dynamic linking information. */
11011 if (dynamic)
11012 {
11013 bfd_byte *dyncon, *dynconend;
11014
11015 /* Fix up .dynamic entries. */
11016 o = bfd_get_section_by_name (dynobj, ".dynamic");
11017 BFD_ASSERT (o != NULL);
11018
11019 dyncon = o->contents;
11020 dynconend = o->contents + o->size;
11021 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11022 {
11023 Elf_Internal_Dyn dyn;
11024 const char *name;
11025 unsigned int type;
11026
11027 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11028
11029 switch (dyn.d_tag)
11030 {
11031 default:
11032 continue;
11033 case DT_NULL:
11034 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11035 {
11036 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11037 {
11038 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11039 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11040 default: continue;
11041 }
11042 dyn.d_un.d_val = relativecount;
11043 relativecount = 0;
11044 break;
11045 }
11046 continue;
11047
11048 case DT_INIT:
11049 name = info->init_function;
11050 goto get_sym;
11051 case DT_FINI:
11052 name = info->fini_function;
11053 get_sym:
11054 {
11055 struct elf_link_hash_entry *h;
11056
11057 h = elf_link_hash_lookup (elf_hash_table (info), name,
11058 FALSE, FALSE, TRUE);
11059 if (h != NULL
11060 && (h->root.type == bfd_link_hash_defined
11061 || h->root.type == bfd_link_hash_defweak))
11062 {
11063 dyn.d_un.d_ptr = h->root.u.def.value;
11064 o = h->root.u.def.section;
11065 if (o->output_section != NULL)
11066 dyn.d_un.d_ptr += (o->output_section->vma
11067 + o->output_offset);
11068 else
11069 {
11070 /* The symbol is imported from another shared
11071 library and does not apply to this one. */
11072 dyn.d_un.d_ptr = 0;
11073 }
11074 break;
11075 }
11076 }
11077 continue;
11078
11079 case DT_PREINIT_ARRAYSZ:
11080 name = ".preinit_array";
11081 goto get_size;
11082 case DT_INIT_ARRAYSZ:
11083 name = ".init_array";
11084 goto get_size;
11085 case DT_FINI_ARRAYSZ:
11086 name = ".fini_array";
11087 get_size:
11088 o = bfd_get_section_by_name (abfd, name);
11089 if (o == NULL)
11090 {
11091 (*_bfd_error_handler)
11092 (_("%B: could not find output section %s"), abfd, name);
11093 goto error_return;
11094 }
11095 if (o->size == 0)
11096 (*_bfd_error_handler)
11097 (_("warning: %s section has zero size"), name);
11098 dyn.d_un.d_val = o->size;
11099 break;
11100
11101 case DT_PREINIT_ARRAY:
11102 name = ".preinit_array";
11103 goto get_vma;
11104 case DT_INIT_ARRAY:
11105 name = ".init_array";
11106 goto get_vma;
11107 case DT_FINI_ARRAY:
11108 name = ".fini_array";
11109 goto get_vma;
11110
11111 case DT_HASH:
11112 name = ".hash";
11113 goto get_vma;
11114 case DT_GNU_HASH:
11115 name = ".gnu.hash";
11116 goto get_vma;
11117 case DT_STRTAB:
11118 name = ".dynstr";
11119 goto get_vma;
11120 case DT_SYMTAB:
11121 name = ".dynsym";
11122 goto get_vma;
11123 case DT_VERDEF:
11124 name = ".gnu.version_d";
11125 goto get_vma;
11126 case DT_VERNEED:
11127 name = ".gnu.version_r";
11128 goto get_vma;
11129 case DT_VERSYM:
11130 name = ".gnu.version";
11131 get_vma:
11132 o = bfd_get_section_by_name (abfd, name);
11133 if (o == NULL)
11134 {
11135 (*_bfd_error_handler)
11136 (_("%B: could not find output section %s"), abfd, name);
11137 goto error_return;
11138 }
11139 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11140 {
11141 (*_bfd_error_handler)
11142 (_("warning: section '%s' is being made into a note"), name);
11143 bfd_set_error (bfd_error_nonrepresentable_section);
11144 goto error_return;
11145 }
11146 dyn.d_un.d_ptr = o->vma;
11147 break;
11148
11149 case DT_REL:
11150 case DT_RELA:
11151 case DT_RELSZ:
11152 case DT_RELASZ:
11153 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11154 type = SHT_REL;
11155 else
11156 type = SHT_RELA;
11157 dyn.d_un.d_val = 0;
11158 dyn.d_un.d_ptr = 0;
11159 for (i = 1; i < elf_numsections (abfd); i++)
11160 {
11161 Elf_Internal_Shdr *hdr;
11162
11163 hdr = elf_elfsections (abfd)[i];
11164 if (hdr->sh_type == type
11165 && (hdr->sh_flags & SHF_ALLOC) != 0)
11166 {
11167 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11168 dyn.d_un.d_val += hdr->sh_size;
11169 else
11170 {
11171 if (dyn.d_un.d_ptr == 0
11172 || hdr->sh_addr < dyn.d_un.d_ptr)
11173 dyn.d_un.d_ptr = hdr->sh_addr;
11174 }
11175 }
11176 }
11177 break;
11178 }
11179 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11180 }
11181 }
11182
11183 /* If we have created any dynamic sections, then output them. */
11184 if (dynobj != NULL)
11185 {
11186 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11187 goto error_return;
11188
11189 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11190 if (info->warn_shared_textrel && info->shared)
11191 {
11192 bfd_byte *dyncon, *dynconend;
11193
11194 /* Fix up .dynamic entries. */
11195 o = bfd_get_section_by_name (dynobj, ".dynamic");
11196 BFD_ASSERT (o != NULL);
11197
11198 dyncon = o->contents;
11199 dynconend = o->contents + o->size;
11200 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11201 {
11202 Elf_Internal_Dyn dyn;
11203
11204 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11205
11206 if (dyn.d_tag == DT_TEXTREL)
11207 {
11208 info->callbacks->einfo
11209 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11210 break;
11211 }
11212 }
11213 }
11214
11215 for (o = dynobj->sections; o != NULL; o = o->next)
11216 {
11217 if ((o->flags & SEC_HAS_CONTENTS) == 0
11218 || o->size == 0
11219 || o->output_section == bfd_abs_section_ptr)
11220 continue;
11221 if ((o->flags & SEC_LINKER_CREATED) == 0)
11222 {
11223 /* At this point, we are only interested in sections
11224 created by _bfd_elf_link_create_dynamic_sections. */
11225 continue;
11226 }
11227 if (elf_hash_table (info)->stab_info.stabstr == o)
11228 continue;
11229 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11230 continue;
11231 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11232 != SHT_STRTAB)
11233 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11234 {
11235 /* FIXME: octets_per_byte. */
11236 if (! bfd_set_section_contents (abfd, o->output_section,
11237 o->contents,
11238 (file_ptr) o->output_offset,
11239 o->size))
11240 goto error_return;
11241 }
11242 else
11243 {
11244 /* The contents of the .dynstr section are actually in a
11245 stringtab. */
11246 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11247 if (bfd_seek (abfd, off, SEEK_SET) != 0
11248 || ! _bfd_elf_strtab_emit (abfd,
11249 elf_hash_table (info)->dynstr))
11250 goto error_return;
11251 }
11252 }
11253 }
11254
11255 if (info->relocatable)
11256 {
11257 bfd_boolean failed = FALSE;
11258
11259 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11260 if (failed)
11261 goto error_return;
11262 }
11263
11264 /* If we have optimized stabs strings, output them. */
11265 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11266 {
11267 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11268 goto error_return;
11269 }
11270
11271 if (info->eh_frame_hdr)
11272 {
11273 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11274 goto error_return;
11275 }
11276
11277 if (finfo.symstrtab != NULL)
11278 _bfd_stringtab_free (finfo.symstrtab);
11279 if (finfo.contents != NULL)
11280 free (finfo.contents);
11281 if (finfo.external_relocs != NULL)
11282 free (finfo.external_relocs);
11283 if (finfo.internal_relocs != NULL)
11284 free (finfo.internal_relocs);
11285 if (finfo.external_syms != NULL)
11286 free (finfo.external_syms);
11287 if (finfo.locsym_shndx != NULL)
11288 free (finfo.locsym_shndx);
11289 if (finfo.internal_syms != NULL)
11290 free (finfo.internal_syms);
11291 if (finfo.indices != NULL)
11292 free (finfo.indices);
11293 if (finfo.sections != NULL)
11294 free (finfo.sections);
11295 if (finfo.symbuf != NULL)
11296 free (finfo.symbuf);
11297 if (finfo.symshndxbuf != NULL)
11298 free (finfo.symshndxbuf);
11299 for (o = abfd->sections; o != NULL; o = o->next)
11300 {
11301 struct bfd_elf_section_data *esdo = elf_section_data (o);
11302 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11303 free (esdo->rel.hashes);
11304 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11305 free (esdo->rela.hashes);
11306 }
11307
11308 elf_tdata (abfd)->linker = TRUE;
11309
11310 if (attr_section)
11311 {
11312 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11313 if (contents == NULL)
11314 return FALSE; /* Bail out and fail. */
11315 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11316 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11317 free (contents);
11318 }
11319
11320 return TRUE;
11321
11322 error_return:
11323 if (finfo.symstrtab != NULL)
11324 _bfd_stringtab_free (finfo.symstrtab);
11325 if (finfo.contents != NULL)
11326 free (finfo.contents);
11327 if (finfo.external_relocs != NULL)
11328 free (finfo.external_relocs);
11329 if (finfo.internal_relocs != NULL)
11330 free (finfo.internal_relocs);
11331 if (finfo.external_syms != NULL)
11332 free (finfo.external_syms);
11333 if (finfo.locsym_shndx != NULL)
11334 free (finfo.locsym_shndx);
11335 if (finfo.internal_syms != NULL)
11336 free (finfo.internal_syms);
11337 if (finfo.indices != NULL)
11338 free (finfo.indices);
11339 if (finfo.sections != NULL)
11340 free (finfo.sections);
11341 if (finfo.symbuf != NULL)
11342 free (finfo.symbuf);
11343 if (finfo.symshndxbuf != NULL)
11344 free (finfo.symshndxbuf);
11345 for (o = abfd->sections; o != NULL; o = o->next)
11346 {
11347 struct bfd_elf_section_data *esdo = elf_section_data (o);
11348 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11349 free (esdo->rel.hashes);
11350 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11351 free (esdo->rela.hashes);
11352 }
11353
11354 return FALSE;
11355 }
11356 \f
11357 /* Initialize COOKIE for input bfd ABFD. */
11358
11359 static bfd_boolean
11360 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11361 struct bfd_link_info *info, bfd *abfd)
11362 {
11363 Elf_Internal_Shdr *symtab_hdr;
11364 const struct elf_backend_data *bed;
11365
11366 bed = get_elf_backend_data (abfd);
11367 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11368
11369 cookie->abfd = abfd;
11370 cookie->sym_hashes = elf_sym_hashes (abfd);
11371 cookie->bad_symtab = elf_bad_symtab (abfd);
11372 if (cookie->bad_symtab)
11373 {
11374 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11375 cookie->extsymoff = 0;
11376 }
11377 else
11378 {
11379 cookie->locsymcount = symtab_hdr->sh_info;
11380 cookie->extsymoff = symtab_hdr->sh_info;
11381 }
11382
11383 if (bed->s->arch_size == 32)
11384 cookie->r_sym_shift = 8;
11385 else
11386 cookie->r_sym_shift = 32;
11387
11388 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11389 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11390 {
11391 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11392 cookie->locsymcount, 0,
11393 NULL, NULL, NULL);
11394 if (cookie->locsyms == NULL)
11395 {
11396 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11397 return FALSE;
11398 }
11399 if (info->keep_memory)
11400 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11401 }
11402 return TRUE;
11403 }
11404
11405 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11406
11407 static void
11408 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11409 {
11410 Elf_Internal_Shdr *symtab_hdr;
11411
11412 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11413 if (cookie->locsyms != NULL
11414 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11415 free (cookie->locsyms);
11416 }
11417
11418 /* Initialize the relocation information in COOKIE for input section SEC
11419 of input bfd ABFD. */
11420
11421 static bfd_boolean
11422 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11423 struct bfd_link_info *info, bfd *abfd,
11424 asection *sec)
11425 {
11426 const struct elf_backend_data *bed;
11427
11428 if (sec->reloc_count == 0)
11429 {
11430 cookie->rels = NULL;
11431 cookie->relend = NULL;
11432 }
11433 else
11434 {
11435 bed = get_elf_backend_data (abfd);
11436
11437 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11438 info->keep_memory);
11439 if (cookie->rels == NULL)
11440 return FALSE;
11441 cookie->rel = cookie->rels;
11442 cookie->relend = (cookie->rels
11443 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11444 }
11445 cookie->rel = cookie->rels;
11446 return TRUE;
11447 }
11448
11449 /* Free the memory allocated by init_reloc_cookie_rels,
11450 if appropriate. */
11451
11452 static void
11453 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11454 asection *sec)
11455 {
11456 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11457 free (cookie->rels);
11458 }
11459
11460 /* Initialize the whole of COOKIE for input section SEC. */
11461
11462 static bfd_boolean
11463 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11464 struct bfd_link_info *info,
11465 asection *sec)
11466 {
11467 if (!init_reloc_cookie (cookie, info, sec->owner))
11468 goto error1;
11469 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11470 goto error2;
11471 return TRUE;
11472
11473 error2:
11474 fini_reloc_cookie (cookie, sec->owner);
11475 error1:
11476 return FALSE;
11477 }
11478
11479 /* Free the memory allocated by init_reloc_cookie_for_section,
11480 if appropriate. */
11481
11482 static void
11483 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11484 asection *sec)
11485 {
11486 fini_reloc_cookie_rels (cookie, sec);
11487 fini_reloc_cookie (cookie, sec->owner);
11488 }
11489 \f
11490 /* Garbage collect unused sections. */
11491
11492 /* Default gc_mark_hook. */
11493
11494 asection *
11495 _bfd_elf_gc_mark_hook (asection *sec,
11496 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11497 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11498 struct elf_link_hash_entry *h,
11499 Elf_Internal_Sym *sym)
11500 {
11501 const char *sec_name;
11502
11503 if (h != NULL)
11504 {
11505 switch (h->root.type)
11506 {
11507 case bfd_link_hash_defined:
11508 case bfd_link_hash_defweak:
11509 return h->root.u.def.section;
11510
11511 case bfd_link_hash_common:
11512 return h->root.u.c.p->section;
11513
11514 case bfd_link_hash_undefined:
11515 case bfd_link_hash_undefweak:
11516 /* To work around a glibc bug, keep all XXX input sections
11517 when there is an as yet undefined reference to __start_XXX
11518 or __stop_XXX symbols. The linker will later define such
11519 symbols for orphan input sections that have a name
11520 representable as a C identifier. */
11521 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11522 sec_name = h->root.root.string + 8;
11523 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11524 sec_name = h->root.root.string + 7;
11525 else
11526 sec_name = NULL;
11527
11528 if (sec_name && *sec_name != '\0')
11529 {
11530 bfd *i;
11531
11532 for (i = info->input_bfds; i; i = i->link_next)
11533 {
11534 sec = bfd_get_section_by_name (i, sec_name);
11535 if (sec)
11536 sec->flags |= SEC_KEEP;
11537 }
11538 }
11539 break;
11540
11541 default:
11542 break;
11543 }
11544 }
11545 else
11546 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11547
11548 return NULL;
11549 }
11550
11551 /* COOKIE->rel describes a relocation against section SEC, which is
11552 a section we've decided to keep. Return the section that contains
11553 the relocation symbol, or NULL if no section contains it. */
11554
11555 asection *
11556 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11557 elf_gc_mark_hook_fn gc_mark_hook,
11558 struct elf_reloc_cookie *cookie)
11559 {
11560 unsigned long r_symndx;
11561 struct elf_link_hash_entry *h;
11562
11563 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11564 if (r_symndx == STN_UNDEF)
11565 return NULL;
11566
11567 if (r_symndx >= cookie->locsymcount
11568 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11569 {
11570 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11571 while (h->root.type == bfd_link_hash_indirect
11572 || h->root.type == bfd_link_hash_warning)
11573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11574 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11575 }
11576
11577 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11578 &cookie->locsyms[r_symndx]);
11579 }
11580
11581 /* COOKIE->rel describes a relocation against section SEC, which is
11582 a section we've decided to keep. Mark the section that contains
11583 the relocation symbol. */
11584
11585 bfd_boolean
11586 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11587 asection *sec,
11588 elf_gc_mark_hook_fn gc_mark_hook,
11589 struct elf_reloc_cookie *cookie)
11590 {
11591 asection *rsec;
11592
11593 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11594 if (rsec && !rsec->gc_mark)
11595 {
11596 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11597 rsec->gc_mark = 1;
11598 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11599 return FALSE;
11600 }
11601 return TRUE;
11602 }
11603
11604 /* The mark phase of garbage collection. For a given section, mark
11605 it and any sections in this section's group, and all the sections
11606 which define symbols to which it refers. */
11607
11608 bfd_boolean
11609 _bfd_elf_gc_mark (struct bfd_link_info *info,
11610 asection *sec,
11611 elf_gc_mark_hook_fn gc_mark_hook)
11612 {
11613 bfd_boolean ret;
11614 asection *group_sec, *eh_frame;
11615
11616 sec->gc_mark = 1;
11617
11618 /* Mark all the sections in the group. */
11619 group_sec = elf_section_data (sec)->next_in_group;
11620 if (group_sec && !group_sec->gc_mark)
11621 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11622 return FALSE;
11623
11624 /* Look through the section relocs. */
11625 ret = TRUE;
11626 eh_frame = elf_eh_frame_section (sec->owner);
11627 if ((sec->flags & SEC_RELOC) != 0
11628 && sec->reloc_count > 0
11629 && sec != eh_frame)
11630 {
11631 struct elf_reloc_cookie cookie;
11632
11633 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11634 ret = FALSE;
11635 else
11636 {
11637 for (; cookie.rel < cookie.relend; cookie.rel++)
11638 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11639 {
11640 ret = FALSE;
11641 break;
11642 }
11643 fini_reloc_cookie_for_section (&cookie, sec);
11644 }
11645 }
11646
11647 if (ret && eh_frame && elf_fde_list (sec))
11648 {
11649 struct elf_reloc_cookie cookie;
11650
11651 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11652 ret = FALSE;
11653 else
11654 {
11655 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11656 gc_mark_hook, &cookie))
11657 ret = FALSE;
11658 fini_reloc_cookie_for_section (&cookie, eh_frame);
11659 }
11660 }
11661
11662 return ret;
11663 }
11664
11665 /* Keep debug and special sections. */
11666
11667 bfd_boolean
11668 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11669 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11670 {
11671 bfd *ibfd;
11672
11673 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11674 {
11675 asection *isec;
11676 bfd_boolean some_kept;
11677
11678 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11679 continue;
11680
11681 /* Ensure all linker created sections are kept, and see whether
11682 any other section is already marked. */
11683 some_kept = FALSE;
11684 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11685 {
11686 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11687 isec->gc_mark = 1;
11688 else if (isec->gc_mark)
11689 some_kept = TRUE;
11690 }
11691
11692 /* If no section in this file will be kept, then we can
11693 toss out debug sections. */
11694 if (!some_kept)
11695 continue;
11696
11697 /* Keep debug and special sections like .comment when they are
11698 not part of a group, or when we have single-member groups. */
11699 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11700 if ((elf_next_in_group (isec) == NULL
11701 || elf_next_in_group (isec) == isec)
11702 && ((isec->flags & SEC_DEBUGGING) != 0
11703 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11704 isec->gc_mark = 1;
11705 }
11706 return TRUE;
11707 }
11708
11709 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11710
11711 struct elf_gc_sweep_symbol_info
11712 {
11713 struct bfd_link_info *info;
11714 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11715 bfd_boolean);
11716 };
11717
11718 static bfd_boolean
11719 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11720 {
11721 if (((h->root.type == bfd_link_hash_defined
11722 || h->root.type == bfd_link_hash_defweak)
11723 && !h->root.u.def.section->gc_mark
11724 && (!(h->root.u.def.section->owner->flags & DYNAMIC)
11725 || (h->plt.refcount <= 0
11726 && h->got.refcount <= 0)))
11727 || (h->root.type == bfd_link_hash_undefined
11728 && h->plt.refcount <= 0
11729 && h->got.refcount <= 0))
11730 {
11731 struct elf_gc_sweep_symbol_info *inf =
11732 (struct elf_gc_sweep_symbol_info *) data;
11733 (*inf->hide_symbol) (inf->info, h, TRUE);
11734 }
11735
11736 return TRUE;
11737 }
11738
11739 /* The sweep phase of garbage collection. Remove all garbage sections. */
11740
11741 typedef bfd_boolean (*gc_sweep_hook_fn)
11742 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11743
11744 static bfd_boolean
11745 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11746 {
11747 bfd *sub;
11748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11749 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11750 unsigned long section_sym_count;
11751 struct elf_gc_sweep_symbol_info sweep_info;
11752
11753 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11754 {
11755 asection *o;
11756
11757 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11758 continue;
11759
11760 for (o = sub->sections; o != NULL; o = o->next)
11761 {
11762 /* When any section in a section group is kept, we keep all
11763 sections in the section group. If the first member of
11764 the section group is excluded, we will also exclude the
11765 group section. */
11766 if (o->flags & SEC_GROUP)
11767 {
11768 asection *first = elf_next_in_group (o);
11769 o->gc_mark = first->gc_mark;
11770 }
11771
11772 if (o->gc_mark)
11773 continue;
11774
11775 /* Skip sweeping sections already excluded. */
11776 if (o->flags & SEC_EXCLUDE)
11777 continue;
11778
11779 /* Since this is early in the link process, it is simple
11780 to remove a section from the output. */
11781 o->flags |= SEC_EXCLUDE;
11782
11783 if (info->print_gc_sections && o->size != 0)
11784 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11785
11786 /* But we also have to update some of the relocation
11787 info we collected before. */
11788 if (gc_sweep_hook
11789 && (o->flags & SEC_RELOC) != 0
11790 && o->reloc_count > 0
11791 && !bfd_is_abs_section (o->output_section))
11792 {
11793 Elf_Internal_Rela *internal_relocs;
11794 bfd_boolean r;
11795
11796 internal_relocs
11797 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11798 info->keep_memory);
11799 if (internal_relocs == NULL)
11800 return FALSE;
11801
11802 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11803
11804 if (elf_section_data (o)->relocs != internal_relocs)
11805 free (internal_relocs);
11806
11807 if (!r)
11808 return FALSE;
11809 }
11810 }
11811 }
11812
11813 /* Remove the symbols that were in the swept sections from the dynamic
11814 symbol table. GCFIXME: Anyone know how to get them out of the
11815 static symbol table as well? */
11816 sweep_info.info = info;
11817 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11818 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11819 &sweep_info);
11820
11821 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11822 return TRUE;
11823 }
11824
11825 /* Propagate collected vtable information. This is called through
11826 elf_link_hash_traverse. */
11827
11828 static bfd_boolean
11829 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11830 {
11831 /* Those that are not vtables. */
11832 if (h->vtable == NULL || h->vtable->parent == NULL)
11833 return TRUE;
11834
11835 /* Those vtables that do not have parents, we cannot merge. */
11836 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11837 return TRUE;
11838
11839 /* If we've already been done, exit. */
11840 if (h->vtable->used && h->vtable->used[-1])
11841 return TRUE;
11842
11843 /* Make sure the parent's table is up to date. */
11844 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11845
11846 if (h->vtable->used == NULL)
11847 {
11848 /* None of this table's entries were referenced. Re-use the
11849 parent's table. */
11850 h->vtable->used = h->vtable->parent->vtable->used;
11851 h->vtable->size = h->vtable->parent->vtable->size;
11852 }
11853 else
11854 {
11855 size_t n;
11856 bfd_boolean *cu, *pu;
11857
11858 /* Or the parent's entries into ours. */
11859 cu = h->vtable->used;
11860 cu[-1] = TRUE;
11861 pu = h->vtable->parent->vtable->used;
11862 if (pu != NULL)
11863 {
11864 const struct elf_backend_data *bed;
11865 unsigned int log_file_align;
11866
11867 bed = get_elf_backend_data (h->root.u.def.section->owner);
11868 log_file_align = bed->s->log_file_align;
11869 n = h->vtable->parent->vtable->size >> log_file_align;
11870 while (n--)
11871 {
11872 if (*pu)
11873 *cu = TRUE;
11874 pu++;
11875 cu++;
11876 }
11877 }
11878 }
11879
11880 return TRUE;
11881 }
11882
11883 static bfd_boolean
11884 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11885 {
11886 asection *sec;
11887 bfd_vma hstart, hend;
11888 Elf_Internal_Rela *relstart, *relend, *rel;
11889 const struct elf_backend_data *bed;
11890 unsigned int log_file_align;
11891
11892 /* Take care of both those symbols that do not describe vtables as
11893 well as those that are not loaded. */
11894 if (h->vtable == NULL || h->vtable->parent == NULL)
11895 return TRUE;
11896
11897 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11898 || h->root.type == bfd_link_hash_defweak);
11899
11900 sec = h->root.u.def.section;
11901 hstart = h->root.u.def.value;
11902 hend = hstart + h->size;
11903
11904 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11905 if (!relstart)
11906 return *(bfd_boolean *) okp = FALSE;
11907 bed = get_elf_backend_data (sec->owner);
11908 log_file_align = bed->s->log_file_align;
11909
11910 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11911
11912 for (rel = relstart; rel < relend; ++rel)
11913 if (rel->r_offset >= hstart && rel->r_offset < hend)
11914 {
11915 /* If the entry is in use, do nothing. */
11916 if (h->vtable->used
11917 && (rel->r_offset - hstart) < h->vtable->size)
11918 {
11919 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11920 if (h->vtable->used[entry])
11921 continue;
11922 }
11923 /* Otherwise, kill it. */
11924 rel->r_offset = rel->r_info = rel->r_addend = 0;
11925 }
11926
11927 return TRUE;
11928 }
11929
11930 /* Mark sections containing dynamically referenced symbols. When
11931 building shared libraries, we must assume that any visible symbol is
11932 referenced. */
11933
11934 bfd_boolean
11935 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11936 {
11937 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11938
11939 if ((h->root.type == bfd_link_hash_defined
11940 || h->root.type == bfd_link_hash_defweak)
11941 && (h->ref_dynamic
11942 || (!info->executable
11943 && h->def_regular
11944 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11945 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11946 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11947 || !bfd_hide_sym_by_version (info->version_info,
11948 h->root.root.string)))))
11949 h->root.u.def.section->flags |= SEC_KEEP;
11950
11951 return TRUE;
11952 }
11953
11954 /* Keep all sections containing symbols undefined on the command-line,
11955 and the section containing the entry symbol. */
11956
11957 void
11958 _bfd_elf_gc_keep (struct bfd_link_info *info)
11959 {
11960 struct bfd_sym_chain *sym;
11961
11962 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11963 {
11964 struct elf_link_hash_entry *h;
11965
11966 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11967 FALSE, FALSE, FALSE);
11968
11969 if (h != NULL
11970 && (h->root.type == bfd_link_hash_defined
11971 || h->root.type == bfd_link_hash_defweak)
11972 && !bfd_is_abs_section (h->root.u.def.section))
11973 h->root.u.def.section->flags |= SEC_KEEP;
11974 }
11975 }
11976
11977 /* Do mark and sweep of unused sections. */
11978
11979 bfd_boolean
11980 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11981 {
11982 bfd_boolean ok = TRUE;
11983 bfd *sub;
11984 elf_gc_mark_hook_fn gc_mark_hook;
11985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11986
11987 if (!bed->can_gc_sections
11988 || !is_elf_hash_table (info->hash))
11989 {
11990 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11991 return TRUE;
11992 }
11993
11994 bed->gc_keep (info);
11995
11996 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11997 at the .eh_frame section if we can mark the FDEs individually. */
11998 _bfd_elf_begin_eh_frame_parsing (info);
11999 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12000 {
12001 asection *sec;
12002 struct elf_reloc_cookie cookie;
12003
12004 sec = bfd_get_section_by_name (sub, ".eh_frame");
12005 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12006 {
12007 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12008 if (elf_section_data (sec)->sec_info)
12009 elf_eh_frame_section (sub) = sec;
12010 fini_reloc_cookie_for_section (&cookie, sec);
12011 }
12012 }
12013 _bfd_elf_end_eh_frame_parsing (info);
12014
12015 /* Apply transitive closure to the vtable entry usage info. */
12016 elf_link_hash_traverse (elf_hash_table (info),
12017 elf_gc_propagate_vtable_entries_used,
12018 &ok);
12019 if (!ok)
12020 return FALSE;
12021
12022 /* Kill the vtable relocations that were not used. */
12023 elf_link_hash_traverse (elf_hash_table (info),
12024 elf_gc_smash_unused_vtentry_relocs,
12025 &ok);
12026 if (!ok)
12027 return FALSE;
12028
12029 /* Mark dynamically referenced symbols. */
12030 if (elf_hash_table (info)->dynamic_sections_created)
12031 elf_link_hash_traverse (elf_hash_table (info),
12032 bed->gc_mark_dynamic_ref,
12033 info);
12034
12035 /* Grovel through relocs to find out who stays ... */
12036 gc_mark_hook = bed->gc_mark_hook;
12037 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12038 {
12039 asection *o;
12040
12041 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12042 continue;
12043
12044 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12045 Also treat note sections as a root, if the section is not part
12046 of a group. */
12047 for (o = sub->sections; o != NULL; o = o->next)
12048 if (!o->gc_mark
12049 && (o->flags & SEC_EXCLUDE) == 0
12050 && ((o->flags & SEC_KEEP) != 0
12051 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12052 && elf_next_in_group (o) == NULL )))
12053 {
12054 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12055 return FALSE;
12056 }
12057 }
12058
12059 /* Allow the backend to mark additional target specific sections. */
12060 bed->gc_mark_extra_sections (info, gc_mark_hook);
12061
12062 /* ... and mark SEC_EXCLUDE for those that go. */
12063 return elf_gc_sweep (abfd, info);
12064 }
12065 \f
12066 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12067
12068 bfd_boolean
12069 bfd_elf_gc_record_vtinherit (bfd *abfd,
12070 asection *sec,
12071 struct elf_link_hash_entry *h,
12072 bfd_vma offset)
12073 {
12074 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12075 struct elf_link_hash_entry **search, *child;
12076 bfd_size_type extsymcount;
12077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12078
12079 /* The sh_info field of the symtab header tells us where the
12080 external symbols start. We don't care about the local symbols at
12081 this point. */
12082 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12083 if (!elf_bad_symtab (abfd))
12084 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12085
12086 sym_hashes = elf_sym_hashes (abfd);
12087 sym_hashes_end = sym_hashes + extsymcount;
12088
12089 /* Hunt down the child symbol, which is in this section at the same
12090 offset as the relocation. */
12091 for (search = sym_hashes; search != sym_hashes_end; ++search)
12092 {
12093 if ((child = *search) != NULL
12094 && (child->root.type == bfd_link_hash_defined
12095 || child->root.type == bfd_link_hash_defweak)
12096 && child->root.u.def.section == sec
12097 && child->root.u.def.value == offset)
12098 goto win;
12099 }
12100
12101 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12102 abfd, sec, (unsigned long) offset);
12103 bfd_set_error (bfd_error_invalid_operation);
12104 return FALSE;
12105
12106 win:
12107 if (!child->vtable)
12108 {
12109 child->vtable = (struct elf_link_virtual_table_entry *)
12110 bfd_zalloc (abfd, sizeof (*child->vtable));
12111 if (!child->vtable)
12112 return FALSE;
12113 }
12114 if (!h)
12115 {
12116 /* This *should* only be the absolute section. It could potentially
12117 be that someone has defined a non-global vtable though, which
12118 would be bad. It isn't worth paging in the local symbols to be
12119 sure though; that case should simply be handled by the assembler. */
12120
12121 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12122 }
12123 else
12124 child->vtable->parent = h;
12125
12126 return TRUE;
12127 }
12128
12129 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12130
12131 bfd_boolean
12132 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12133 asection *sec ATTRIBUTE_UNUSED,
12134 struct elf_link_hash_entry *h,
12135 bfd_vma addend)
12136 {
12137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12138 unsigned int log_file_align = bed->s->log_file_align;
12139
12140 if (!h->vtable)
12141 {
12142 h->vtable = (struct elf_link_virtual_table_entry *)
12143 bfd_zalloc (abfd, sizeof (*h->vtable));
12144 if (!h->vtable)
12145 return FALSE;
12146 }
12147
12148 if (addend >= h->vtable->size)
12149 {
12150 size_t size, bytes, file_align;
12151 bfd_boolean *ptr = h->vtable->used;
12152
12153 /* While the symbol is undefined, we have to be prepared to handle
12154 a zero size. */
12155 file_align = 1 << log_file_align;
12156 if (h->root.type == bfd_link_hash_undefined)
12157 size = addend + file_align;
12158 else
12159 {
12160 size = h->size;
12161 if (addend >= size)
12162 {
12163 /* Oops! We've got a reference past the defined end of
12164 the table. This is probably a bug -- shall we warn? */
12165 size = addend + file_align;
12166 }
12167 }
12168 size = (size + file_align - 1) & -file_align;
12169
12170 /* Allocate one extra entry for use as a "done" flag for the
12171 consolidation pass. */
12172 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12173
12174 if (ptr)
12175 {
12176 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12177
12178 if (ptr != NULL)
12179 {
12180 size_t oldbytes;
12181
12182 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12183 * sizeof (bfd_boolean));
12184 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12185 }
12186 }
12187 else
12188 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12189
12190 if (ptr == NULL)
12191 return FALSE;
12192
12193 /* And arrange for that done flag to be at index -1. */
12194 h->vtable->used = ptr + 1;
12195 h->vtable->size = size;
12196 }
12197
12198 h->vtable->used[addend >> log_file_align] = TRUE;
12199
12200 return TRUE;
12201 }
12202
12203 /* Map an ELF section header flag to its corresponding string. */
12204 typedef struct
12205 {
12206 char *flag_name;
12207 flagword flag_value;
12208 } elf_flags_to_name_table;
12209
12210 static elf_flags_to_name_table elf_flags_to_names [] =
12211 {
12212 { "SHF_WRITE", SHF_WRITE },
12213 { "SHF_ALLOC", SHF_ALLOC },
12214 { "SHF_EXECINSTR", SHF_EXECINSTR },
12215 { "SHF_MERGE", SHF_MERGE },
12216 { "SHF_STRINGS", SHF_STRINGS },
12217 { "SHF_INFO_LINK", SHF_INFO_LINK},
12218 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12219 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12220 { "SHF_GROUP", SHF_GROUP },
12221 { "SHF_TLS", SHF_TLS },
12222 { "SHF_MASKOS", SHF_MASKOS },
12223 { "SHF_EXCLUDE", SHF_EXCLUDE },
12224 };
12225
12226 void
12227 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12228 struct flag_info *finfo)
12229 {
12230 bfd *output_bfd = info->output_bfd;
12231 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12232 struct flag_info_list *tf = finfo->flag_list;
12233 int with_hex = 0;
12234 int without_hex = 0;
12235
12236 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12237 {
12238 int i;
12239 if (bed->elf_backend_lookup_section_flags_hook)
12240 {
12241 flagword hexval =
12242 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12243
12244 if (hexval != 0)
12245 {
12246 if (tf->with == with_flags)
12247 with_hex |= hexval;
12248 else if (tf->with == without_flags)
12249 without_hex |= hexval;
12250 tf->valid = TRUE;
12251 continue;
12252 }
12253 }
12254 for (i = 0; i < 12; i++)
12255 {
12256 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12257 {
12258 if (tf->with == with_flags)
12259 with_hex |= elf_flags_to_names[i].flag_value;
12260 else if (tf->with == without_flags)
12261 without_hex |= elf_flags_to_names[i].flag_value;
12262 tf->valid = TRUE;
12263 continue;
12264 }
12265 }
12266 if (tf->valid == FALSE)
12267 {
12268 info->callbacks->einfo
12269 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12270 return;
12271 }
12272 }
12273 finfo->flags_initialized = TRUE;
12274 finfo->only_with_flags |= with_hex;
12275 finfo->not_with_flags |= without_hex;
12276
12277 return;
12278 }
12279
12280 struct alloc_got_off_arg {
12281 bfd_vma gotoff;
12282 struct bfd_link_info *info;
12283 };
12284
12285 /* We need a special top-level link routine to convert got reference counts
12286 to real got offsets. */
12287
12288 static bfd_boolean
12289 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12290 {
12291 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12292 bfd *obfd = gofarg->info->output_bfd;
12293 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12294
12295 if (h->got.refcount > 0)
12296 {
12297 h->got.offset = gofarg->gotoff;
12298 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12299 }
12300 else
12301 h->got.offset = (bfd_vma) -1;
12302
12303 return TRUE;
12304 }
12305
12306 /* And an accompanying bit to work out final got entry offsets once
12307 we're done. Should be called from final_link. */
12308
12309 bfd_boolean
12310 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12311 struct bfd_link_info *info)
12312 {
12313 bfd *i;
12314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12315 bfd_vma gotoff;
12316 struct alloc_got_off_arg gofarg;
12317
12318 BFD_ASSERT (abfd == info->output_bfd);
12319
12320 if (! is_elf_hash_table (info->hash))
12321 return FALSE;
12322
12323 /* The GOT offset is relative to the .got section, but the GOT header is
12324 put into the .got.plt section, if the backend uses it. */
12325 if (bed->want_got_plt)
12326 gotoff = 0;
12327 else
12328 gotoff = bed->got_header_size;
12329
12330 /* Do the local .got entries first. */
12331 for (i = info->input_bfds; i; i = i->link_next)
12332 {
12333 bfd_signed_vma *local_got;
12334 bfd_size_type j, locsymcount;
12335 Elf_Internal_Shdr *symtab_hdr;
12336
12337 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12338 continue;
12339
12340 local_got = elf_local_got_refcounts (i);
12341 if (!local_got)
12342 continue;
12343
12344 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12345 if (elf_bad_symtab (i))
12346 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12347 else
12348 locsymcount = symtab_hdr->sh_info;
12349
12350 for (j = 0; j < locsymcount; ++j)
12351 {
12352 if (local_got[j] > 0)
12353 {
12354 local_got[j] = gotoff;
12355 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12356 }
12357 else
12358 local_got[j] = (bfd_vma) -1;
12359 }
12360 }
12361
12362 /* Then the global .got entries. .plt refcounts are handled by
12363 adjust_dynamic_symbol */
12364 gofarg.gotoff = gotoff;
12365 gofarg.info = info;
12366 elf_link_hash_traverse (elf_hash_table (info),
12367 elf_gc_allocate_got_offsets,
12368 &gofarg);
12369 return TRUE;
12370 }
12371
12372 /* Many folk need no more in the way of final link than this, once
12373 got entry reference counting is enabled. */
12374
12375 bfd_boolean
12376 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12377 {
12378 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12379 return FALSE;
12380
12381 /* Invoke the regular ELF backend linker to do all the work. */
12382 return bfd_elf_final_link (abfd, info);
12383 }
12384
12385 bfd_boolean
12386 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12387 {
12388 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12389
12390 if (rcookie->bad_symtab)
12391 rcookie->rel = rcookie->rels;
12392
12393 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12394 {
12395 unsigned long r_symndx;
12396
12397 if (! rcookie->bad_symtab)
12398 if (rcookie->rel->r_offset > offset)
12399 return FALSE;
12400 if (rcookie->rel->r_offset != offset)
12401 continue;
12402
12403 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12404 if (r_symndx == STN_UNDEF)
12405 return TRUE;
12406
12407 if (r_symndx >= rcookie->locsymcount
12408 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12409 {
12410 struct elf_link_hash_entry *h;
12411
12412 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12413
12414 while (h->root.type == bfd_link_hash_indirect
12415 || h->root.type == bfd_link_hash_warning)
12416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12417
12418 if ((h->root.type == bfd_link_hash_defined
12419 || h->root.type == bfd_link_hash_defweak)
12420 && elf_discarded_section (h->root.u.def.section))
12421 return TRUE;
12422 else
12423 return FALSE;
12424 }
12425 else
12426 {
12427 /* It's not a relocation against a global symbol,
12428 but it could be a relocation against a local
12429 symbol for a discarded section. */
12430 asection *isec;
12431 Elf_Internal_Sym *isym;
12432
12433 /* Need to: get the symbol; get the section. */
12434 isym = &rcookie->locsyms[r_symndx];
12435 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12436 if (isec != NULL && elf_discarded_section (isec))
12437 return TRUE;
12438 }
12439 return FALSE;
12440 }
12441 return FALSE;
12442 }
12443
12444 /* Discard unneeded references to discarded sections.
12445 Returns TRUE if any section's size was changed. */
12446 /* This function assumes that the relocations are in sorted order,
12447 which is true for all known assemblers. */
12448
12449 bfd_boolean
12450 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12451 {
12452 struct elf_reloc_cookie cookie;
12453 asection *stab, *eh;
12454 const struct elf_backend_data *bed;
12455 bfd *abfd;
12456 bfd_boolean ret = FALSE;
12457
12458 if (info->traditional_format
12459 || !is_elf_hash_table (info->hash))
12460 return FALSE;
12461
12462 _bfd_elf_begin_eh_frame_parsing (info);
12463 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12464 {
12465 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12466 continue;
12467
12468 bed = get_elf_backend_data (abfd);
12469
12470 if ((abfd->flags & DYNAMIC) != 0)
12471 continue;
12472
12473 eh = NULL;
12474 if (!info->relocatable)
12475 {
12476 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12477 if (eh != NULL
12478 && (eh->size == 0
12479 || bfd_is_abs_section (eh->output_section)))
12480 eh = NULL;
12481 }
12482
12483 stab = bfd_get_section_by_name (abfd, ".stab");
12484 if (stab != NULL
12485 && (stab->size == 0
12486 || bfd_is_abs_section (stab->output_section)
12487 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12488 stab = NULL;
12489
12490 if (stab == NULL
12491 && eh == NULL
12492 && bed->elf_backend_discard_info == NULL)
12493 continue;
12494
12495 if (!init_reloc_cookie (&cookie, info, abfd))
12496 return FALSE;
12497
12498 if (stab != NULL
12499 && stab->reloc_count > 0
12500 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12501 {
12502 if (_bfd_discard_section_stabs (abfd, stab,
12503 elf_section_data (stab)->sec_info,
12504 bfd_elf_reloc_symbol_deleted_p,
12505 &cookie))
12506 ret = TRUE;
12507 fini_reloc_cookie_rels (&cookie, stab);
12508 }
12509
12510 if (eh != NULL
12511 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12512 {
12513 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12514 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12515 bfd_elf_reloc_symbol_deleted_p,
12516 &cookie))
12517 ret = TRUE;
12518 fini_reloc_cookie_rels (&cookie, eh);
12519 }
12520
12521 if (bed->elf_backend_discard_info != NULL
12522 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12523 ret = TRUE;
12524
12525 fini_reloc_cookie (&cookie, abfd);
12526 }
12527 _bfd_elf_end_eh_frame_parsing (info);
12528
12529 if (info->eh_frame_hdr
12530 && !info->relocatable
12531 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12532 ret = TRUE;
12533
12534 return ret;
12535 }
12536
12537 bfd_boolean
12538 _bfd_elf_section_already_linked (bfd *abfd,
12539 asection *sec,
12540 struct bfd_link_info *info)
12541 {
12542 flagword flags;
12543 const char *name, *key;
12544 struct bfd_section_already_linked *l;
12545 struct bfd_section_already_linked_hash_entry *already_linked_list;
12546
12547 if (sec->output_section == bfd_abs_section_ptr)
12548 return FALSE;
12549
12550 flags = sec->flags;
12551
12552 /* Return if it isn't a linkonce section. A comdat group section
12553 also has SEC_LINK_ONCE set. */
12554 if ((flags & SEC_LINK_ONCE) == 0)
12555 return FALSE;
12556
12557 /* Don't put group member sections on our list of already linked
12558 sections. They are handled as a group via their group section. */
12559 if (elf_sec_group (sec) != NULL)
12560 return FALSE;
12561
12562 /* For a SHT_GROUP section, use the group signature as the key. */
12563 name = sec->name;
12564 if ((flags & SEC_GROUP) != 0
12565 && elf_next_in_group (sec) != NULL
12566 && elf_group_name (elf_next_in_group (sec)) != NULL)
12567 key = elf_group_name (elf_next_in_group (sec));
12568 else
12569 {
12570 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12571 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12572 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12573 key++;
12574 else
12575 /* Must be a user linkonce section that doesn't follow gcc's
12576 naming convention. In this case we won't be matching
12577 single member groups. */
12578 key = name;
12579 }
12580
12581 already_linked_list = bfd_section_already_linked_table_lookup (key);
12582
12583 for (l = already_linked_list->entry; l != NULL; l = l->next)
12584 {
12585 /* We may have 2 different types of sections on the list: group
12586 sections with a signature of <key> (<key> is some string),
12587 and linkonce sections named .gnu.linkonce.<type>.<key>.
12588 Match like sections. LTO plugin sections are an exception.
12589 They are always named .gnu.linkonce.t.<key> and match either
12590 type of section. */
12591 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12592 && ((flags & SEC_GROUP) != 0
12593 || strcmp (name, l->sec->name) == 0))
12594 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12595 {
12596 /* The section has already been linked. See if we should
12597 issue a warning. */
12598 if (!_bfd_handle_already_linked (sec, l, info))
12599 return FALSE;
12600
12601 if (flags & SEC_GROUP)
12602 {
12603 asection *first = elf_next_in_group (sec);
12604 asection *s = first;
12605
12606 while (s != NULL)
12607 {
12608 s->output_section = bfd_abs_section_ptr;
12609 /* Record which group discards it. */
12610 s->kept_section = l->sec;
12611 s = elf_next_in_group (s);
12612 /* These lists are circular. */
12613 if (s == first)
12614 break;
12615 }
12616 }
12617
12618 return TRUE;
12619 }
12620 }
12621
12622 /* A single member comdat group section may be discarded by a
12623 linkonce section and vice versa. */
12624 if ((flags & SEC_GROUP) != 0)
12625 {
12626 asection *first = elf_next_in_group (sec);
12627
12628 if (first != NULL && elf_next_in_group (first) == first)
12629 /* Check this single member group against linkonce sections. */
12630 for (l = already_linked_list->entry; l != NULL; l = l->next)
12631 if ((l->sec->flags & SEC_GROUP) == 0
12632 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12633 {
12634 first->output_section = bfd_abs_section_ptr;
12635 first->kept_section = l->sec;
12636 sec->output_section = bfd_abs_section_ptr;
12637 break;
12638 }
12639 }
12640 else
12641 /* Check this linkonce section against single member groups. */
12642 for (l = already_linked_list->entry; l != NULL; l = l->next)
12643 if (l->sec->flags & SEC_GROUP)
12644 {
12645 asection *first = elf_next_in_group (l->sec);
12646
12647 if (first != NULL
12648 && elf_next_in_group (first) == first
12649 && bfd_elf_match_symbols_in_sections (first, sec, info))
12650 {
12651 sec->output_section = bfd_abs_section_ptr;
12652 sec->kept_section = first;
12653 break;
12654 }
12655 }
12656
12657 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12658 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12659 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12660 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12661 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12662 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12663 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12664 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12665 The reverse order cannot happen as there is never a bfd with only the
12666 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12667 matter as here were are looking only for cross-bfd sections. */
12668
12669 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12670 for (l = already_linked_list->entry; l != NULL; l = l->next)
12671 if ((l->sec->flags & SEC_GROUP) == 0
12672 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12673 {
12674 if (abfd != l->sec->owner)
12675 sec->output_section = bfd_abs_section_ptr;
12676 break;
12677 }
12678
12679 /* This is the first section with this name. Record it. */
12680 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12681 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12682 return sec->output_section == bfd_abs_section_ptr;
12683 }
12684
12685 bfd_boolean
12686 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12687 {
12688 return sym->st_shndx == SHN_COMMON;
12689 }
12690
12691 unsigned int
12692 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12693 {
12694 return SHN_COMMON;
12695 }
12696
12697 asection *
12698 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12699 {
12700 return bfd_com_section_ptr;
12701 }
12702
12703 bfd_vma
12704 _bfd_elf_default_got_elt_size (bfd *abfd,
12705 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12706 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12707 bfd *ibfd ATTRIBUTE_UNUSED,
12708 unsigned long symndx ATTRIBUTE_UNUSED)
12709 {
12710 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12711 return bed->s->arch_size / 8;
12712 }
12713
12714 /* Routines to support the creation of dynamic relocs. */
12715
12716 /* Returns the name of the dynamic reloc section associated with SEC. */
12717
12718 static const char *
12719 get_dynamic_reloc_section_name (bfd * abfd,
12720 asection * sec,
12721 bfd_boolean is_rela)
12722 {
12723 char *name;
12724 const char *old_name = bfd_get_section_name (NULL, sec);
12725 const char *prefix = is_rela ? ".rela" : ".rel";
12726
12727 if (old_name == NULL)
12728 return NULL;
12729
12730 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12731 sprintf (name, "%s%s", prefix, old_name);
12732
12733 return name;
12734 }
12735
12736 /* Returns the dynamic reloc section associated with SEC.
12737 If necessary compute the name of the dynamic reloc section based
12738 on SEC's name (looked up in ABFD's string table) and the setting
12739 of IS_RELA. */
12740
12741 asection *
12742 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12743 asection * sec,
12744 bfd_boolean is_rela)
12745 {
12746 asection * reloc_sec = elf_section_data (sec)->sreloc;
12747
12748 if (reloc_sec == NULL)
12749 {
12750 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12751
12752 if (name != NULL)
12753 {
12754 reloc_sec = bfd_get_section_by_name (abfd, name);
12755
12756 if (reloc_sec != NULL)
12757 elf_section_data (sec)->sreloc = reloc_sec;
12758 }
12759 }
12760
12761 return reloc_sec;
12762 }
12763
12764 /* Returns the dynamic reloc section associated with SEC. If the
12765 section does not exist it is created and attached to the DYNOBJ
12766 bfd and stored in the SRELOC field of SEC's elf_section_data
12767 structure.
12768
12769 ALIGNMENT is the alignment for the newly created section and
12770 IS_RELA defines whether the name should be .rela.<SEC's name>
12771 or .rel.<SEC's name>. The section name is looked up in the
12772 string table associated with ABFD. */
12773
12774 asection *
12775 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12776 bfd * dynobj,
12777 unsigned int alignment,
12778 bfd * abfd,
12779 bfd_boolean is_rela)
12780 {
12781 asection * reloc_sec = elf_section_data (sec)->sreloc;
12782
12783 if (reloc_sec == NULL)
12784 {
12785 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12786
12787 if (name == NULL)
12788 return NULL;
12789
12790 reloc_sec = bfd_get_section_by_name (dynobj, name);
12791
12792 if (reloc_sec == NULL)
12793 {
12794 flagword flags;
12795
12796 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12797 if ((sec->flags & SEC_ALLOC) != 0)
12798 flags |= SEC_ALLOC | SEC_LOAD;
12799
12800 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12801 if (reloc_sec != NULL)
12802 {
12803 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12804 reloc_sec = NULL;
12805 }
12806 }
12807
12808 elf_section_data (sec)->sreloc = reloc_sec;
12809 }
12810
12811 return reloc_sec;
12812 }
12813
12814 /* Copy the ELF symbol type associated with a linker hash entry. */
12815 void
12816 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12817 struct bfd_link_hash_entry * hdest,
12818 struct bfd_link_hash_entry * hsrc)
12819 {
12820 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12821 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12822
12823 ehdest->type = ehsrc->type;
12824 ehdest->target_internal = ehsrc->target_internal;
12825 }
12826
12827 /* Append a RELA relocation REL to section S in BFD. */
12828
12829 void
12830 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12831 {
12832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12833 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12834 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12835 bed->s->swap_reloca_out (abfd, rel, loc);
12836 }
12837
12838 /* Append a REL relocation REL to section S in BFD. */
12839
12840 void
12841 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12842 {
12843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12844 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12845 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12846 bed->s->swap_reloca_out (abfd, rel, loc);
12847 }
This page took 0.290843 seconds and 5 git commands to generate.