* elf-bfd.h (emum elf_object_id): Rename to elf_target_id. Add
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
591 {
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
600 {
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607 }
608
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613 int
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
617 {
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
627 if (! is_elf_hash_table (info->hash))
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696 }
697
698 /* Return the dynindex of a local dynamic symbol. */
699
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
704 {
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711 }
712
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
720 {
721 size_t *count = (size_t *) data;
722
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799 }
800
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
806
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
811 {
812 unsigned long dynsymcount = 0;
813
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 {
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
825 }
826 *section_sym_count = dynsymcount;
827
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
851 }
852
853 /* Merge st_other field. */
854
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859 {
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899 }
900
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
912
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
959
960 bed = get_elf_backend_data (abfd);
961
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
966
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
983 {
984 h->non_elf = 0;
985 return TRUE;
986 }
987
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
990
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
997
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1014 }
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && ((abfd->flags & DYNAMIC) == 0
1024 || !h->def_regular))
1025 return TRUE;
1026
1027 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1028 respectively, is from a dynamic object. */
1029
1030 newdyn = (abfd->flags & DYNAMIC) != 0;
1031
1032 olddyn = FALSE;
1033 if (oldbfd != NULL)
1034 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1035 else if (oldsec != NULL)
1036 {
1037 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1038 indices used by MIPS ELF. */
1039 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1040 }
1041
1042 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1043 respectively, appear to be a definition rather than reference. */
1044
1045 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1046
1047 olddef = (h->root.type != bfd_link_hash_undefined
1048 && h->root.type != bfd_link_hash_undefweak
1049 && h->root.type != bfd_link_hash_common);
1050
1051 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1052 respectively, appear to be a function. */
1053
1054 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1055 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1056
1057 oldfunc = (h->type != STT_NOTYPE
1058 && bed->is_function_type (h->type));
1059
1060 /* When we try to create a default indirect symbol from the dynamic
1061 definition with the default version, we skip it if its type and
1062 the type of existing regular definition mismatch. We only do it
1063 if the existing regular definition won't be dynamic. */
1064 if (pold_alignment == NULL
1065 && !info->shared
1066 && !info->export_dynamic
1067 && !h->ref_dynamic
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 {
1077 *skip = TRUE;
1078 return TRUE;
1079 }
1080
1081 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 "ld -u". */
1083 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1084 && ELF_ST_TYPE (sym->st_info) != h->type
1085 && oldbfd != NULL)
1086 {
1087 bfd *ntbfd, *tbfd;
1088 bfd_boolean ntdef, tdef;
1089 asection *ntsec, *tsec;
1090
1091 if (h->type == STT_TLS)
1092 {
1093 ntbfd = abfd;
1094 ntsec = sec;
1095 ntdef = newdef;
1096 tbfd = oldbfd;
1097 tsec = oldsec;
1098 tdef = olddef;
1099 }
1100 else
1101 {
1102 ntbfd = oldbfd;
1103 ntsec = oldsec;
1104 ntdef = olddef;
1105 tbfd = abfd;
1106 tsec = sec;
1107 tdef = newdef;
1108 }
1109
1110 if (tdef && ntdef)
1111 (*_bfd_error_handler)
1112 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1113 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1114 else if (!tdef && !ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1117 tbfd, ntbfd, h->root.root.string);
1118 else if (tdef)
1119 (*_bfd_error_handler)
1120 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1121 tbfd, tsec, ntbfd, h->root.root.string);
1122 else
1123 (*_bfd_error_handler)
1124 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1125 tbfd, ntbfd, ntsec, h->root.root.string);
1126
1127 bfd_set_error (bfd_error_bad_value);
1128 return FALSE;
1129 }
1130
1131 /* We need to remember if a symbol has a definition in a dynamic
1132 object or is weak in all dynamic objects. Internal and hidden
1133 visibility will make it unavailable to dynamic objects. */
1134 if (newdyn && !h->dynamic_def)
1135 {
1136 if (!bfd_is_und_section (sec))
1137 h->dynamic_def = 1;
1138 else
1139 {
1140 /* Check if this symbol is weak in all dynamic objects. If it
1141 is the first time we see it in a dynamic object, we mark
1142 if it is weak. Otherwise, we clear it. */
1143 if (!h->ref_dynamic)
1144 {
1145 if (bind == STB_WEAK)
1146 h->dynamic_weak = 1;
1147 }
1148 else if (bind != STB_WEAK)
1149 h->dynamic_weak = 0;
1150 }
1151 }
1152
1153 /* If the old symbol has non-default visibility, we ignore the new
1154 definition from a dynamic object. */
1155 if (newdyn
1156 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1157 && !bfd_is_und_section (sec))
1158 {
1159 *skip = TRUE;
1160 /* Make sure this symbol is dynamic. */
1161 h->ref_dynamic = 1;
1162 /* A protected symbol has external availability. Make sure it is
1163 recorded as dynamic.
1164
1165 FIXME: Should we check type and size for protected symbol? */
1166 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1167 return bfd_elf_link_record_dynamic_symbol (info, h);
1168 else
1169 return TRUE;
1170 }
1171 else if (!newdyn
1172 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1173 && h->def_dynamic)
1174 {
1175 /* If the new symbol with non-default visibility comes from a
1176 relocatable file and the old definition comes from a dynamic
1177 object, we remove the old definition. */
1178 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1179 {
1180 /* Handle the case where the old dynamic definition is
1181 default versioned. We need to copy the symbol info from
1182 the symbol with default version to the normal one if it
1183 was referenced before. */
1184 if (h->ref_regular)
1185 {
1186 struct elf_link_hash_entry *vh = *sym_hash;
1187
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 if (bind == STB_GNU_UNIQUE)
1250 h->unique_global = 1;
1251
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1259
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1262
1263 if (newdef && !newdyn && olddyn)
1264 newweak = FALSE;
1265 if (olddef && newdyn)
1266 oldweak = FALSE;
1267
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc && oldfunc)
1270 *type_change_ok = TRUE;
1271
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1275
1276 if (oldweak
1277 || newweak
1278 || (newdef
1279 && h->root.type == bfd_link_hash_undefined))
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1284
1285 if (*type_change_ok
1286 || h->root.type == bfd_link_hash_undefined)
1287 *size_change_ok = TRUE;
1288
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1300 libraries.
1301
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1304
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1310 harmless. */
1311
1312 if (newdyn
1313 && newdef
1314 && !newweak
1315 && (sec->flags & SEC_ALLOC) != 0
1316 && (sec->flags & SEC_LOAD) == 0
1317 && sym->st_size > 0
1318 && !newfunc)
1319 newdyncommon = TRUE;
1320 else
1321 newdyncommon = FALSE;
1322
1323 if (olddyn
1324 && olddef
1325 && h->root.type == bfd_link_hash_defined
1326 && h->def_dynamic
1327 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1328 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1329 && h->size > 0
1330 && !oldfunc)
1331 olddyncommon = TRUE;
1332 else
1333 olddyncommon = FALSE;
1334
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed->merge_symbol
1338 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1339 pold_alignment, skip, override,
1340 type_change_ok, size_change_ok,
1341 &newdyn, &newdef, &newdyncommon, &newweak,
1342 abfd, &sec,
1343 &olddyn, &olddef, &olddyncommon, &oldweak,
1344 oldbfd, &oldsec))
1345 return FALSE;
1346
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1349 two. */
1350
1351 if (olddyncommon
1352 && newdyncommon
1353 && sym->st_size != h->size)
1354 {
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1360
1361 if (! ((*info->callbacks->multiple_common)
1362 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1363 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1364 return FALSE;
1365
1366 if (sym->st_size > h->size)
1367 h->size = sym->st_size;
1368
1369 *size_change_ok = TRUE;
1370 }
1371
1372 /* If we are looking at a dynamic object, and we have found a
1373 definition, we need to see if the symbol was already defined by
1374 some other object. If so, we want to use the existing
1375 definition, and we do not want to report a multiple symbol
1376 definition error; we do this by clobbering *PSEC to be
1377 bfd_und_section_ptr.
1378
1379 We treat a common symbol as a definition if the symbol in the
1380 shared library is a function, since common symbols always
1381 represent variables; this can cause confusion in principle, but
1382 any such confusion would seem to indicate an erroneous program or
1383 shared library. We also permit a common symbol in a regular
1384 object to override a weak symbol in a shared object. */
1385
1386 if (newdyn
1387 && newdef
1388 && (olddef
1389 || (h->root.type == bfd_link_hash_common
1390 && (newweak || newfunc))))
1391 {
1392 *override = TRUE;
1393 newdef = FALSE;
1394 newdyncommon = FALSE;
1395
1396 *psec = sec = bfd_und_section_ptr;
1397 *size_change_ok = TRUE;
1398
1399 /* If we get here when the old symbol is a common symbol, then
1400 we are explicitly letting it override a weak symbol or
1401 function in a dynamic object, and we don't want to warn about
1402 a type change. If the old symbol is a defined symbol, a type
1403 change warning may still be appropriate. */
1404
1405 if (h->root.type == bfd_link_hash_common)
1406 *type_change_ok = TRUE;
1407 }
1408
1409 /* Handle the special case of an old common symbol merging with a
1410 new symbol which looks like a common symbol in a shared object.
1411 We change *PSEC and *PVALUE to make the new symbol look like a
1412 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 right thing. */
1414
1415 if (newdyncommon
1416 && h->root.type == bfd_link_hash_common)
1417 {
1418 *override = TRUE;
1419 newdef = FALSE;
1420 newdyncommon = FALSE;
1421 *pvalue = sym->st_size;
1422 *psec = sec = bed->common_section (oldsec);
1423 *size_change_ok = TRUE;
1424 }
1425
1426 /* Skip weak definitions of symbols that are already defined. */
1427 if (newdef && olddef && newweak)
1428 {
1429 *skip = TRUE;
1430
1431 /* Merge st_other. If the symbol already has a dynamic index,
1432 but visibility says it should not be visible, turn it into a
1433 local symbol. */
1434 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1435 if (h->dynindx != -1)
1436 switch (ELF_ST_VISIBILITY (h->other))
1437 {
1438 case STV_INTERNAL:
1439 case STV_HIDDEN:
1440 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1441 break;
1442 }
1443 }
1444
1445 /* If the old symbol is from a dynamic object, and the new symbol is
1446 a definition which is not from a dynamic object, then the new
1447 symbol overrides the old symbol. Symbols from regular files
1448 always take precedence over symbols from dynamic objects, even if
1449 they are defined after the dynamic object in the link.
1450
1451 As above, we again permit a common symbol in a regular object to
1452 override a definition in a shared object if the shared object
1453 symbol is a function or is weak. */
1454
1455 flip = NULL;
1456 if (!newdyn
1457 && (newdef
1458 || (bfd_is_com_section (sec)
1459 && (oldweak || oldfunc)))
1460 && olddyn
1461 && olddef
1462 && h->def_dynamic)
1463 {
1464 /* Change the hash table entry to undefined, and let
1465 _bfd_generic_link_add_one_symbol do the right thing with the
1466 new definition. */
1467
1468 h->root.type = bfd_link_hash_undefined;
1469 h->root.u.undef.abfd = h->root.u.def.section->owner;
1470 *size_change_ok = TRUE;
1471
1472 olddef = FALSE;
1473 olddyncommon = FALSE;
1474
1475 /* We again permit a type change when a common symbol may be
1476 overriding a function. */
1477
1478 if (bfd_is_com_section (sec))
1479 {
1480 if (oldfunc)
1481 {
1482 /* If a common symbol overrides a function, make sure
1483 that it isn't defined dynamically nor has type
1484 function. */
1485 h->def_dynamic = 0;
1486 h->type = STT_NOTYPE;
1487 }
1488 *type_change_ok = TRUE;
1489 }
1490
1491 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1492 flip = *sym_hash;
1493 else
1494 /* This union may have been set to be non-NULL when this symbol
1495 was seen in a dynamic object. We must force the union to be
1496 NULL, so that it is correct for a regular symbol. */
1497 h->verinfo.vertree = NULL;
1498 }
1499
1500 /* Handle the special case of a new common symbol merging with an
1501 old symbol that looks like it might be a common symbol defined in
1502 a shared object. Note that we have already handled the case in
1503 which a new common symbol should simply override the definition
1504 in the shared library. */
1505
1506 if (! newdyn
1507 && bfd_is_com_section (sec)
1508 && olddyncommon)
1509 {
1510 /* It would be best if we could set the hash table entry to a
1511 common symbol, but we don't know what to use for the section
1512 or the alignment. */
1513 if (! ((*info->callbacks->multiple_common)
1514 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1515 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1516 return FALSE;
1517
1518 /* If the presumed common symbol in the dynamic object is
1519 larger, pretend that the new symbol has its size. */
1520
1521 if (h->size > *pvalue)
1522 *pvalue = h->size;
1523
1524 /* We need to remember the alignment required by the symbol
1525 in the dynamic object. */
1526 BFD_ASSERT (pold_alignment);
1527 *pold_alignment = h->root.u.def.section->alignment_power;
1528
1529 olddef = FALSE;
1530 olddyncommon = FALSE;
1531
1532 h->root.type = bfd_link_hash_undefined;
1533 h->root.u.undef.abfd = h->root.u.def.section->owner;
1534
1535 *size_change_ok = TRUE;
1536 *type_change_ok = TRUE;
1537
1538 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1539 flip = *sym_hash;
1540 else
1541 h->verinfo.vertree = NULL;
1542 }
1543
1544 if (flip != NULL)
1545 {
1546 /* Handle the case where we had a versioned symbol in a dynamic
1547 library and now find a definition in a normal object. In this
1548 case, we make the versioned symbol point to the normal one. */
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (info->shared
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (info->shared
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = (struct elf_info_failed *) data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = (char *) bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = (const bfd_byte *) external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = (struct elf_link_hash_entry **)
2323 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2324 if (p == NULL)
2325 return FALSE;
2326
2327 elf_section_data (o)->rel_hashes = p;
2328 }
2329
2330 return TRUE;
2331 }
2332
2333 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2334 originated from the section given by INPUT_REL_HDR) to the
2335 OUTPUT_BFD. */
2336
2337 bfd_boolean
2338 _bfd_elf_link_output_relocs (bfd *output_bfd,
2339 asection *input_section,
2340 Elf_Internal_Shdr *input_rel_hdr,
2341 Elf_Internal_Rela *internal_relocs,
2342 struct elf_link_hash_entry **rel_hash
2343 ATTRIBUTE_UNUSED)
2344 {
2345 Elf_Internal_Rela *irela;
2346 Elf_Internal_Rela *irelaend;
2347 bfd_byte *erel;
2348 Elf_Internal_Shdr *output_rel_hdr;
2349 asection *output_section;
2350 unsigned int *rel_countp = NULL;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353
2354 output_section = input_section->output_section;
2355 output_rel_hdr = NULL;
2356
2357 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2358 == input_rel_hdr->sh_entsize)
2359 {
2360 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2361 rel_countp = &elf_section_data (output_section)->rel_count;
2362 }
2363 else if (elf_section_data (output_section)->rel_hdr2
2364 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2365 == input_rel_hdr->sh_entsize))
2366 {
2367 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2368 rel_countp = &elf_section_data (output_section)->rel_count2;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 bed = get_elf_backend_data (output_bfd);
2380 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2381 swap_out = bed->s->swap_reloc_out;
2382 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2383 swap_out = bed->s->swap_reloca_out;
2384 else
2385 abort ();
2386
2387 erel = output_rel_hdr->contents;
2388 erel += *rel_countp * input_rel_hdr->sh_entsize;
2389 irela = internal_relocs;
2390 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2391 * bed->s->int_rels_per_ext_rel);
2392 while (irela < irelaend)
2393 {
2394 (*swap_out) (output_bfd, irela, erel);
2395 irela += bed->s->int_rels_per_ext_rel;
2396 erel += input_rel_hdr->sh_entsize;
2397 }
2398
2399 /* Bump the counter, so that we know where to add the next set of
2400 relocations. */
2401 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2402
2403 return TRUE;
2404 }
2405 \f
2406 /* Make weak undefined symbols in PIE dynamic. */
2407
2408 bfd_boolean
2409 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2410 struct elf_link_hash_entry *h)
2411 {
2412 if (info->pie
2413 && h->dynindx == -1
2414 && h->root.type == bfd_link_hash_undefweak)
2415 return bfd_elf_link_record_dynamic_symbol (info, h);
2416
2417 return TRUE;
2418 }
2419
2420 /* Fix up the flags for a symbol. This handles various cases which
2421 can only be fixed after all the input files are seen. This is
2422 currently called by both adjust_dynamic_symbol and
2423 assign_sym_version, which is unnecessary but perhaps more robust in
2424 the face of future changes. */
2425
2426 static bfd_boolean
2427 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2428 struct elf_info_failed *eif)
2429 {
2430 const struct elf_backend_data *bed;
2431
2432 /* If this symbol was mentioned in a non-ELF file, try to set
2433 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2434 permit a non-ELF file to correctly refer to a symbol defined in
2435 an ELF dynamic object. */
2436 if (h->non_elf)
2437 {
2438 while (h->root.type == bfd_link_hash_indirect)
2439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2440
2441 if (h->root.type != bfd_link_hash_defined
2442 && h->root.type != bfd_link_hash_defweak)
2443 {
2444 h->ref_regular = 1;
2445 h->ref_regular_nonweak = 1;
2446 }
2447 else
2448 {
2449 if (h->root.u.def.section->owner != NULL
2450 && (bfd_get_flavour (h->root.u.def.section->owner)
2451 == bfd_target_elf_flavour))
2452 {
2453 h->ref_regular = 1;
2454 h->ref_regular_nonweak = 1;
2455 }
2456 else
2457 h->def_regular = 1;
2458 }
2459
2460 if (h->dynindx == -1
2461 && (h->def_dynamic
2462 || h->ref_dynamic))
2463 {
2464 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2465 {
2466 eif->failed = TRUE;
2467 return FALSE;
2468 }
2469 }
2470 }
2471 else
2472 {
2473 /* Unfortunately, NON_ELF is only correct if the symbol
2474 was first seen in a non-ELF file. Fortunately, if the symbol
2475 was first seen in an ELF file, we're probably OK unless the
2476 symbol was defined in a non-ELF file. Catch that case here.
2477 FIXME: We're still in trouble if the symbol was first seen in
2478 a dynamic object, and then later in a non-ELF regular object. */
2479 if ((h->root.type == bfd_link_hash_defined
2480 || h->root.type == bfd_link_hash_defweak)
2481 && !h->def_regular
2482 && (h->root.u.def.section->owner != NULL
2483 ? (bfd_get_flavour (h->root.u.def.section->owner)
2484 != bfd_target_elf_flavour)
2485 : (bfd_is_abs_section (h->root.u.def.section)
2486 && !h->def_dynamic)))
2487 h->def_regular = 1;
2488 }
2489
2490 /* Backend specific symbol fixup. */
2491 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2492 if (bed->elf_backend_fixup_symbol
2493 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2494 return FALSE;
2495
2496 /* If this is a final link, and the symbol was defined as a common
2497 symbol in a regular object file, and there was no definition in
2498 any dynamic object, then the linker will have allocated space for
2499 the symbol in a common section but the DEF_REGULAR
2500 flag will not have been set. */
2501 if (h->root.type == bfd_link_hash_defined
2502 && !h->def_regular
2503 && h->ref_regular
2504 && !h->def_dynamic
2505 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2506 h->def_regular = 1;
2507
2508 /* If -Bsymbolic was used (which means to bind references to global
2509 symbols to the definition within the shared object), and this
2510 symbol was defined in a regular object, then it actually doesn't
2511 need a PLT entry. Likewise, if the symbol has non-default
2512 visibility. If the symbol has hidden or internal visibility, we
2513 will force it local. */
2514 if (h->needs_plt
2515 && eif->info->shared
2516 && is_elf_hash_table (eif->info->hash)
2517 && (SYMBOLIC_BIND (eif->info, h)
2518 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2519 && h->def_regular)
2520 {
2521 bfd_boolean force_local;
2522
2523 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2524 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2525 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2526 }
2527
2528 /* If a weak undefined symbol has non-default visibility, we also
2529 hide it from the dynamic linker. */
2530 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2531 && h->root.type == bfd_link_hash_undefweak)
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2533
2534 /* If this is a weak defined symbol in a dynamic object, and we know
2535 the real definition in the dynamic object, copy interesting flags
2536 over to the real definition. */
2537 if (h->u.weakdef != NULL)
2538 {
2539 struct elf_link_hash_entry *weakdef;
2540
2541 weakdef = h->u.weakdef;
2542 if (h->root.type == bfd_link_hash_indirect)
2543 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2544
2545 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2546 || h->root.type == bfd_link_hash_defweak);
2547 BFD_ASSERT (weakdef->def_dynamic);
2548
2549 /* If the real definition is defined by a regular object file,
2550 don't do anything special. See the longer description in
2551 _bfd_elf_adjust_dynamic_symbol, below. */
2552 if (weakdef->def_regular)
2553 h->u.weakdef = NULL;
2554 else
2555 {
2556 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2557 || weakdef->root.type == bfd_link_hash_defweak);
2558 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2559 }
2560 }
2561
2562 return TRUE;
2563 }
2564
2565 /* Make the backend pick a good value for a dynamic symbol. This is
2566 called via elf_link_hash_traverse, and also calls itself
2567 recursively. */
2568
2569 static bfd_boolean
2570 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2571 {
2572 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2573 bfd *dynobj;
2574 const struct elf_backend_data *bed;
2575
2576 if (! is_elf_hash_table (eif->info->hash))
2577 return FALSE;
2578
2579 if (h->root.type == bfd_link_hash_warning)
2580 {
2581 h->got = elf_hash_table (eif->info)->init_got_offset;
2582 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2583
2584 /* When warning symbols are created, they **replace** the "real"
2585 entry in the hash table, thus we never get to see the real
2586 symbol in a hash traversal. So look at it now. */
2587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2588 }
2589
2590 /* Ignore indirect symbols. These are added by the versioning code. */
2591 if (h->root.type == bfd_link_hash_indirect)
2592 return TRUE;
2593
2594 /* Fix the symbol flags. */
2595 if (! _bfd_elf_fix_symbol_flags (h, eif))
2596 return FALSE;
2597
2598 /* If this symbol does not require a PLT entry, and it is not
2599 defined by a dynamic object, or is not referenced by a regular
2600 object, ignore it. We do have to handle a weak defined symbol,
2601 even if no regular object refers to it, if we decided to add it
2602 to the dynamic symbol table. FIXME: Do we normally need to worry
2603 about symbols which are defined by one dynamic object and
2604 referenced by another one? */
2605 if (!h->needs_plt
2606 && h->type != STT_GNU_IFUNC
2607 && (h->def_regular
2608 || !h->def_dynamic
2609 || (!h->ref_regular
2610 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2611 {
2612 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2613 return TRUE;
2614 }
2615
2616 /* If we've already adjusted this symbol, don't do it again. This
2617 can happen via a recursive call. */
2618 if (h->dynamic_adjusted)
2619 return TRUE;
2620
2621 /* Don't look at this symbol again. Note that we must set this
2622 after checking the above conditions, because we may look at a
2623 symbol once, decide not to do anything, and then get called
2624 recursively later after REF_REGULAR is set below. */
2625 h->dynamic_adjusted = 1;
2626
2627 /* If this is a weak definition, and we know a real definition, and
2628 the real symbol is not itself defined by a regular object file,
2629 then get a good value for the real definition. We handle the
2630 real symbol first, for the convenience of the backend routine.
2631
2632 Note that there is a confusing case here. If the real definition
2633 is defined by a regular object file, we don't get the real symbol
2634 from the dynamic object, but we do get the weak symbol. If the
2635 processor backend uses a COPY reloc, then if some routine in the
2636 dynamic object changes the real symbol, we will not see that
2637 change in the corresponding weak symbol. This is the way other
2638 ELF linkers work as well, and seems to be a result of the shared
2639 library model.
2640
2641 I will clarify this issue. Most SVR4 shared libraries define the
2642 variable _timezone and define timezone as a weak synonym. The
2643 tzset call changes _timezone. If you write
2644 extern int timezone;
2645 int _timezone = 5;
2646 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2647 you might expect that, since timezone is a synonym for _timezone,
2648 the same number will print both times. However, if the processor
2649 backend uses a COPY reloc, then actually timezone will be copied
2650 into your process image, and, since you define _timezone
2651 yourself, _timezone will not. Thus timezone and _timezone will
2652 wind up at different memory locations. The tzset call will set
2653 _timezone, leaving timezone unchanged. */
2654
2655 if (h->u.weakdef != NULL)
2656 {
2657 /* If we get to this point, we know there is an implicit
2658 reference by a regular object file via the weak symbol H.
2659 FIXME: Is this really true? What if the traversal finds
2660 H->U.WEAKDEF before it finds H? */
2661 h->u.weakdef->ref_regular = 1;
2662
2663 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2664 return FALSE;
2665 }
2666
2667 /* If a symbol has no type and no size and does not require a PLT
2668 entry, then we are probably about to do the wrong thing here: we
2669 are probably going to create a COPY reloc for an empty object.
2670 This case can arise when a shared object is built with assembly
2671 code, and the assembly code fails to set the symbol type. */
2672 if (h->size == 0
2673 && h->type == STT_NOTYPE
2674 && !h->needs_plt)
2675 (*_bfd_error_handler)
2676 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2677 h->root.root.string);
2678
2679 dynobj = elf_hash_table (eif->info)->dynobj;
2680 bed = get_elf_backend_data (dynobj);
2681
2682 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2683 {
2684 eif->failed = TRUE;
2685 return FALSE;
2686 }
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2692 DYNBSS. */
2693
2694 bfd_boolean
2695 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2696 asection *dynbss)
2697 {
2698 unsigned int power_of_two;
2699 bfd_vma mask;
2700 asection *sec = h->root.u.def.section;
2701
2702 /* The section aligment of definition is the maximum alignment
2703 requirement of symbols defined in the section. Since we don't
2704 know the symbol alignment requirement, we start with the
2705 maximum alignment and check low bits of the symbol address
2706 for the minimum alignment. */
2707 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2708 mask = ((bfd_vma) 1 << power_of_two) - 1;
2709 while ((h->root.u.def.value & mask) != 0)
2710 {
2711 mask >>= 1;
2712 --power_of_two;
2713 }
2714
2715 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2716 dynbss))
2717 {
2718 /* Adjust the section alignment if needed. */
2719 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2720 power_of_two))
2721 return FALSE;
2722 }
2723
2724 /* We make sure that the symbol will be aligned properly. */
2725 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2726
2727 /* Define the symbol as being at this point in DYNBSS. */
2728 h->root.u.def.section = dynbss;
2729 h->root.u.def.value = dynbss->size;
2730
2731 /* Increment the size of DYNBSS to make room for the symbol. */
2732 dynbss->size += h->size;
2733
2734 return TRUE;
2735 }
2736
2737 /* Adjust all external symbols pointing into SEC_MERGE sections
2738 to reflect the object merging within the sections. */
2739
2740 static bfd_boolean
2741 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2742 {
2743 asection *sec;
2744
2745 if (h->root.type == bfd_link_hash_warning)
2746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2747
2748 if ((h->root.type == bfd_link_hash_defined
2749 || h->root.type == bfd_link_hash_defweak)
2750 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2751 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2752 {
2753 bfd *output_bfd = (bfd *) data;
2754
2755 h->root.u.def.value =
2756 _bfd_merged_section_offset (output_bfd,
2757 &h->root.u.def.section,
2758 elf_section_data (sec)->sec_info,
2759 h->root.u.def.value);
2760 }
2761
2762 return TRUE;
2763 }
2764
2765 /* Returns false if the symbol referred to by H should be considered
2766 to resolve local to the current module, and true if it should be
2767 considered to bind dynamically. */
2768
2769 bfd_boolean
2770 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2771 struct bfd_link_info *info,
2772 bfd_boolean ignore_protected)
2773 {
2774 bfd_boolean binding_stays_local_p;
2775 const struct elf_backend_data *bed;
2776 struct elf_link_hash_table *hash_table;
2777
2778 if (h == NULL)
2779 return FALSE;
2780
2781 while (h->root.type == bfd_link_hash_indirect
2782 || h->root.type == bfd_link_hash_warning)
2783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2784
2785 /* If it was forced local, then clearly it's not dynamic. */
2786 if (h->dynindx == -1)
2787 return FALSE;
2788 if (h->forced_local)
2789 return FALSE;
2790
2791 /* Identify the cases where name binding rules say that a
2792 visible symbol resolves locally. */
2793 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2794
2795 switch (ELF_ST_VISIBILITY (h->other))
2796 {
2797 case STV_INTERNAL:
2798 case STV_HIDDEN:
2799 return FALSE;
2800
2801 case STV_PROTECTED:
2802 hash_table = elf_hash_table (info);
2803 if (!is_elf_hash_table (hash_table))
2804 return FALSE;
2805
2806 bed = get_elf_backend_data (hash_table->dynobj);
2807
2808 /* Proper resolution for function pointer equality may require
2809 that these symbols perhaps be resolved dynamically, even though
2810 we should be resolving them to the current module. */
2811 if (!ignore_protected || !bed->is_function_type (h->type))
2812 binding_stays_local_p = TRUE;
2813 break;
2814
2815 default:
2816 break;
2817 }
2818
2819 /* If it isn't defined locally, then clearly it's dynamic. */
2820 if (!h->def_regular)
2821 return TRUE;
2822
2823 /* Otherwise, the symbol is dynamic if binding rules don't tell
2824 us that it remains local. */
2825 return !binding_stays_local_p;
2826 }
2827
2828 /* Return true if the symbol referred to by H should be considered
2829 to resolve local to the current module, and false otherwise. Differs
2830 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2831 undefined symbols and weak symbols. */
2832
2833 bfd_boolean
2834 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2835 struct bfd_link_info *info,
2836 bfd_boolean local_protected)
2837 {
2838 const struct elf_backend_data *bed;
2839 struct elf_link_hash_table *hash_table;
2840
2841 /* If it's a local sym, of course we resolve locally. */
2842 if (h == NULL)
2843 return TRUE;
2844
2845 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2846 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2847 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2848 return TRUE;
2849
2850 /* Common symbols that become definitions don't get the DEF_REGULAR
2851 flag set, so test it first, and don't bail out. */
2852 if (ELF_COMMON_DEF_P (h))
2853 /* Do nothing. */;
2854 /* If we don't have a definition in a regular file, then we can't
2855 resolve locally. The sym is either undefined or dynamic. */
2856 else if (!h->def_regular)
2857 return FALSE;
2858
2859 /* Forced local symbols resolve locally. */
2860 if (h->forced_local)
2861 return TRUE;
2862
2863 /* As do non-dynamic symbols. */
2864 if (h->dynindx == -1)
2865 return TRUE;
2866
2867 /* At this point, we know the symbol is defined and dynamic. In an
2868 executable it must resolve locally, likewise when building symbolic
2869 shared libraries. */
2870 if (info->executable || SYMBOLIC_BIND (info, h))
2871 return TRUE;
2872
2873 /* Now deal with defined dynamic symbols in shared libraries. Ones
2874 with default visibility might not resolve locally. */
2875 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2876 return FALSE;
2877
2878 hash_table = elf_hash_table (info);
2879 if (!is_elf_hash_table (hash_table))
2880 return TRUE;
2881
2882 bed = get_elf_backend_data (hash_table->dynobj);
2883
2884 /* STV_PROTECTED non-function symbols are local. */
2885 if (!bed->is_function_type (h->type))
2886 return TRUE;
2887
2888 /* Function pointer equality tests may require that STV_PROTECTED
2889 symbols be treated as dynamic symbols, even when we know that the
2890 dynamic linker will resolve them locally. */
2891 return local_protected;
2892 }
2893
2894 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2895 aligned. Returns the first TLS output section. */
2896
2897 struct bfd_section *
2898 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2899 {
2900 struct bfd_section *sec, *tls;
2901 unsigned int align = 0;
2902
2903 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2904 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2905 break;
2906 tls = sec;
2907
2908 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2909 if (sec->alignment_power > align)
2910 align = sec->alignment_power;
2911
2912 elf_hash_table (info)->tls_sec = tls;
2913
2914 /* Ensure the alignment of the first section is the largest alignment,
2915 so that the tls segment starts aligned. */
2916 if (tls != NULL)
2917 tls->alignment_power = align;
2918
2919 return tls;
2920 }
2921
2922 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2923 static bfd_boolean
2924 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2925 Elf_Internal_Sym *sym)
2926 {
2927 const struct elf_backend_data *bed;
2928
2929 /* Local symbols do not count, but target specific ones might. */
2930 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2931 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2932 return FALSE;
2933
2934 bed = get_elf_backend_data (abfd);
2935 /* Function symbols do not count. */
2936 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2937 return FALSE;
2938
2939 /* If the section is undefined, then so is the symbol. */
2940 if (sym->st_shndx == SHN_UNDEF)
2941 return FALSE;
2942
2943 /* If the symbol is defined in the common section, then
2944 it is a common definition and so does not count. */
2945 if (bed->common_definition (sym))
2946 return FALSE;
2947
2948 /* If the symbol is in a target specific section then we
2949 must rely upon the backend to tell us what it is. */
2950 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2951 /* FIXME - this function is not coded yet:
2952
2953 return _bfd_is_global_symbol_definition (abfd, sym);
2954
2955 Instead for now assume that the definition is not global,
2956 Even if this is wrong, at least the linker will behave
2957 in the same way that it used to do. */
2958 return FALSE;
2959
2960 return TRUE;
2961 }
2962
2963 /* Search the symbol table of the archive element of the archive ABFD
2964 whose archive map contains a mention of SYMDEF, and determine if
2965 the symbol is defined in this element. */
2966 static bfd_boolean
2967 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2968 {
2969 Elf_Internal_Shdr * hdr;
2970 bfd_size_type symcount;
2971 bfd_size_type extsymcount;
2972 bfd_size_type extsymoff;
2973 Elf_Internal_Sym *isymbuf;
2974 Elf_Internal_Sym *isym;
2975 Elf_Internal_Sym *isymend;
2976 bfd_boolean result;
2977
2978 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2979 if (abfd == NULL)
2980 return FALSE;
2981
2982 if (! bfd_check_format (abfd, bfd_object))
2983 return FALSE;
2984
2985 /* If we have already included the element containing this symbol in the
2986 link then we do not need to include it again. Just claim that any symbol
2987 it contains is not a definition, so that our caller will not decide to
2988 (re)include this element. */
2989 if (abfd->archive_pass)
2990 return FALSE;
2991
2992 /* Select the appropriate symbol table. */
2993 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2994 hdr = &elf_tdata (abfd)->symtab_hdr;
2995 else
2996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2997
2998 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2999
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd))
3003 {
3004 extsymcount = symcount;
3005 extsymoff = 0;
3006 }
3007 else
3008 {
3009 extsymcount = symcount - hdr->sh_info;
3010 extsymoff = hdr->sh_info;
3011 }
3012
3013 if (extsymcount == 0)
3014 return FALSE;
3015
3016 /* Read in the symbol table. */
3017 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3018 NULL, NULL, NULL);
3019 if (isymbuf == NULL)
3020 return FALSE;
3021
3022 /* Scan the symbol table looking for SYMDEF. */
3023 result = FALSE;
3024 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3025 {
3026 const char *name;
3027
3028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3029 isym->st_name);
3030 if (name == NULL)
3031 break;
3032
3033 if (strcmp (name, symdef->name) == 0)
3034 {
3035 result = is_global_data_symbol_definition (abfd, isym);
3036 break;
3037 }
3038 }
3039
3040 free (isymbuf);
3041
3042 return result;
3043 }
3044 \f
3045 /* Add an entry to the .dynamic table. */
3046
3047 bfd_boolean
3048 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3049 bfd_vma tag,
3050 bfd_vma val)
3051 {
3052 struct elf_link_hash_table *hash_table;
3053 const struct elf_backend_data *bed;
3054 asection *s;
3055 bfd_size_type newsize;
3056 bfd_byte *newcontents;
3057 Elf_Internal_Dyn dyn;
3058
3059 hash_table = elf_hash_table (info);
3060 if (! is_elf_hash_table (hash_table))
3061 return FALSE;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3065 BFD_ASSERT (s != NULL);
3066
3067 newsize = s->size + bed->s->sizeof_dyn;
3068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3069 if (newcontents == NULL)
3070 return FALSE;
3071
3072 dyn.d_tag = tag;
3073 dyn.d_un.d_val = val;
3074 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075
3076 s->size = newsize;
3077 s->contents = newcontents;
3078
3079 return TRUE;
3080 }
3081
3082 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085
3086 static int
3087 elf_add_dt_needed_tag (bfd *abfd,
3088 struct bfd_link_info *info,
3089 const char *soname,
3090 bfd_boolean do_it)
3091 {
3092 struct elf_link_hash_table *hash_table;
3093 bfd_size_type oldsize;
3094 bfd_size_type strindex;
3095
3096 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3097 return -1;
3098
3099 hash_table = elf_hash_table (info);
3100 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3101 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3102 if (strindex == (bfd_size_type) -1)
3103 return -1;
3104
3105 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3106 {
3107 asection *sdyn;
3108 const struct elf_backend_data *bed;
3109 bfd_byte *extdyn;
3110
3111 bed = get_elf_backend_data (hash_table->dynobj);
3112 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3113 if (sdyn != NULL)
3114 for (extdyn = sdyn->contents;
3115 extdyn < sdyn->contents + sdyn->size;
3116 extdyn += bed->s->sizeof_dyn)
3117 {
3118 Elf_Internal_Dyn dyn;
3119
3120 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3121 if (dyn.d_tag == DT_NEEDED
3122 && dyn.d_un.d_val == strindex)
3123 {
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125 return 1;
3126 }
3127 }
3128 }
3129
3130 if (do_it)
3131 {
3132 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3133 return -1;
3134
3135 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3136 return -1;
3137 }
3138 else
3139 /* We were just checking for existence of the tag. */
3140 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3141
3142 return 0;
3143 }
3144
3145 static bfd_boolean
3146 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3147 {
3148 for (; needed != NULL; needed = needed->next)
3149 if (strcmp (soname, needed->name) == 0)
3150 return TRUE;
3151
3152 return FALSE;
3153 }
3154
3155 /* Sort symbol by value and section. */
3156 static int
3157 elf_sort_symbol (const void *arg1, const void *arg2)
3158 {
3159 const struct elf_link_hash_entry *h1;
3160 const struct elf_link_hash_entry *h2;
3161 bfd_signed_vma vdiff;
3162
3163 h1 = *(const struct elf_link_hash_entry **) arg1;
3164 h2 = *(const struct elf_link_hash_entry **) arg2;
3165 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3166 if (vdiff != 0)
3167 return vdiff > 0 ? 1 : -1;
3168 else
3169 {
3170 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3171 if (sdiff != 0)
3172 return sdiff > 0 ? 1 : -1;
3173 }
3174 return 0;
3175 }
3176
3177 /* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3179
3180 static bfd_boolean
3181 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3182 {
3183 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3184
3185 if (h->root.type == bfd_link_hash_warning)
3186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3187
3188 if (h->dynindx != -1)
3189 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3190 return TRUE;
3191 }
3192
3193 /* Assign string offsets in .dynstr, update all structures referencing
3194 them. */
3195
3196 static bfd_boolean
3197 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3198 {
3199 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3200 struct elf_link_local_dynamic_entry *entry;
3201 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3202 bfd *dynobj = hash_table->dynobj;
3203 asection *sdyn;
3204 bfd_size_type size;
3205 const struct elf_backend_data *bed;
3206 bfd_byte *extdyn;
3207
3208 _bfd_elf_strtab_finalize (dynstr);
3209 size = _bfd_elf_strtab_size (dynstr);
3210
3211 bed = get_elf_backend_data (dynobj);
3212 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3213 BFD_ASSERT (sdyn != NULL);
3214
3215 /* Update all .dynamic entries referencing .dynstr strings. */
3216 for (extdyn = sdyn->contents;
3217 extdyn < sdyn->contents + sdyn->size;
3218 extdyn += bed->s->sizeof_dyn)
3219 {
3220 Elf_Internal_Dyn dyn;
3221
3222 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3223 switch (dyn.d_tag)
3224 {
3225 case DT_STRSZ:
3226 dyn.d_un.d_val = size;
3227 break;
3228 case DT_NEEDED:
3229 case DT_SONAME:
3230 case DT_RPATH:
3231 case DT_RUNPATH:
3232 case DT_FILTER:
3233 case DT_AUXILIARY:
3234 case DT_AUDIT:
3235 case DT_DEPAUDIT:
3236 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3237 break;
3238 default:
3239 continue;
3240 }
3241 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3242 }
3243
3244 /* Now update local dynamic symbols. */
3245 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3246 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3247 entry->isym.st_name);
3248
3249 /* And the rest of dynamic symbols. */
3250 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251
3252 /* Adjust version definitions. */
3253 if (elf_tdata (output_bfd)->cverdefs)
3254 {
3255 asection *s;
3256 bfd_byte *p;
3257 bfd_size_type i;
3258 Elf_Internal_Verdef def;
3259 Elf_Internal_Verdaux defaux;
3260
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3262 p = s->contents;
3263 do
3264 {
3265 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 &def);
3267 p += sizeof (Elf_External_Verdef);
3268 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 continue;
3270 for (i = 0; i < def.vd_cnt; ++i)
3271 {
3272 _bfd_elf_swap_verdaux_in (output_bfd,
3273 (Elf_External_Verdaux *) p, &defaux);
3274 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 defaux.vda_name);
3276 _bfd_elf_swap_verdaux_out (output_bfd,
3277 &defaux, (Elf_External_Verdaux *) p);
3278 p += sizeof (Elf_External_Verdaux);
3279 }
3280 }
3281 while (def.vd_next);
3282 }
3283
3284 /* Adjust version references. */
3285 if (elf_tdata (output_bfd)->verref)
3286 {
3287 asection *s;
3288 bfd_byte *p;
3289 bfd_size_type i;
3290 Elf_Internal_Verneed need;
3291 Elf_Internal_Vernaux needaux;
3292
3293 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3294 p = s->contents;
3295 do
3296 {
3297 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 &need);
3299 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3300 _bfd_elf_swap_verneed_out (output_bfd, &need,
3301 (Elf_External_Verneed *) p);
3302 p += sizeof (Elf_External_Verneed);
3303 for (i = 0; i < need.vn_cnt; ++i)
3304 {
3305 _bfd_elf_swap_vernaux_in (output_bfd,
3306 (Elf_External_Vernaux *) p, &needaux);
3307 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 needaux.vna_name);
3309 _bfd_elf_swap_vernaux_out (output_bfd,
3310 &needaux,
3311 (Elf_External_Vernaux *) p);
3312 p += sizeof (Elf_External_Vernaux);
3313 }
3314 }
3315 while (need.vn_next);
3316 }
3317
3318 return TRUE;
3319 }
3320 \f
3321 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3322 The default is to only match when the INPUT and OUTPUT are exactly
3323 the same target. */
3324
3325 bfd_boolean
3326 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3327 const bfd_target *output)
3328 {
3329 return input == output;
3330 }
3331
3332 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3333 This version is used when different targets for the same architecture
3334 are virtually identical. */
3335
3336 bfd_boolean
3337 _bfd_elf_relocs_compatible (const bfd_target *input,
3338 const bfd_target *output)
3339 {
3340 const struct elf_backend_data *obed, *ibed;
3341
3342 if (input == output)
3343 return TRUE;
3344
3345 ibed = xvec_get_elf_backend_data (input);
3346 obed = xvec_get_elf_backend_data (output);
3347
3348 if (ibed->arch != obed->arch)
3349 return FALSE;
3350
3351 /* If both backends are using this function, deem them compatible. */
3352 return ibed->relocs_compatible == obed->relocs_compatible;
3353 }
3354
3355 /* Add symbols from an ELF object file to the linker hash table. */
3356
3357 static bfd_boolean
3358 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 {
3360 Elf_Internal_Ehdr *ehdr;
3361 Elf_Internal_Shdr *hdr;
3362 bfd_size_type symcount;
3363 bfd_size_type extsymcount;
3364 bfd_size_type extsymoff;
3365 struct elf_link_hash_entry **sym_hash;
3366 bfd_boolean dynamic;
3367 Elf_External_Versym *extversym = NULL;
3368 Elf_External_Versym *ever;
3369 struct elf_link_hash_entry *weaks;
3370 struct elf_link_hash_entry **nondeflt_vers = NULL;
3371 bfd_size_type nondeflt_vers_cnt = 0;
3372 Elf_Internal_Sym *isymbuf = NULL;
3373 Elf_Internal_Sym *isym;
3374 Elf_Internal_Sym *isymend;
3375 const struct elf_backend_data *bed;
3376 bfd_boolean add_needed;
3377 struct elf_link_hash_table *htab;
3378 bfd_size_type amt;
3379 void *alloc_mark = NULL;
3380 struct bfd_hash_entry **old_table = NULL;
3381 unsigned int old_size = 0;
3382 unsigned int old_count = 0;
3383 void *old_tab = NULL;
3384 void *old_hash;
3385 void *old_ent;
3386 struct bfd_link_hash_entry *old_undefs = NULL;
3387 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3388 long old_dynsymcount = 0;
3389 size_t tabsize = 0;
3390 size_t hashsize = 0;
3391
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3394
3395 if ((abfd->flags & DYNAMIC) == 0)
3396 dynamic = FALSE;
3397 else
3398 {
3399 dynamic = TRUE;
3400
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3407 {
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3410 else
3411 bfd_set_error (bfd_error_wrong_format);
3412 goto error_return;
3413 }
3414 }
3415
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3426
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 if (info->executable)
3432 {
3433 asection *s;
3434
3435 for (s = abfd->sections; s != NULL; s = s->next)
3436 {
3437 const char *name;
3438
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 {
3442 char *msg;
3443 bfd_size_type sz;
3444
3445 name += sizeof ".gnu.warning." - 1;
3446
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3455 link. */
3456 if (dynamic)
3457 {
3458 struct elf_link_hash_entry *h;
3459
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3461
3462 /* FIXME: What about bfd_link_hash_common? */
3463 if (h != NULL
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3466 {
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3470 s->size = 0;
3471 continue;
3472 }
3473 }
3474
3475 sz = s->size;
3476 msg = (char *) bfd_alloc (abfd, sz + 1);
3477 if (msg == NULL)
3478 goto error_return;
3479
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 goto error_return;
3482
3483 msg[sz] = '\0';
3484
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3488 goto error_return;
3489
3490 if (! info->relocatable)
3491 {
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3494 s->size = 0;
3495
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3499 }
3500 }
3501 }
3502 }
3503
3504 add_needed = TRUE;
3505 if (! dynamic)
3506 {
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3512 if (info->shared
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3516 {
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3518 goto error_return;
3519 }
3520 }
3521 else if (!is_elf_hash_table (htab))
3522 goto error_return;
3523 else
3524 {
3525 asection *s;
3526 const char *soname = NULL;
3527 char *audit = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529 int ret;
3530
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3535 abort ();
3536
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 all. */
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3547
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 if (s != NULL)
3550 {
3551 bfd_byte *dynbuf;
3552 bfd_byte *extdyn;
3553 unsigned int elfsec;
3554 unsigned long shlink;
3555
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 {
3558 error_free_dyn:
3559 free (dynbuf);
3560 goto error_return;
3561 }
3562
3563 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 if (elfsec == SHN_BAD)
3565 goto error_free_dyn;
3566 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3567
3568 for (extdyn = dynbuf;
3569 extdyn < dynbuf + s->size;
3570 extdyn += bed->s->sizeof_dyn)
3571 {
3572 Elf_Internal_Dyn dyn;
3573
3574 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 if (dyn.d_tag == DT_SONAME)
3576 {
3577 unsigned int tagv = dyn.d_un.d_val;
3578 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (soname == NULL)
3580 goto error_free_dyn;
3581 }
3582 if (dyn.d_tag == DT_NEEDED)
3583 {
3584 struct bfd_link_needed_list *n, **pn;
3585 char *fnm, *anm;
3586 unsigned int tagv = dyn.d_un.d_val;
3587
3588 amt = sizeof (struct bfd_link_needed_list);
3589 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 if (n == NULL || fnm == NULL)
3592 goto error_free_dyn;
3593 amt = strlen (fnm) + 1;
3594 anm = (char *) bfd_alloc (abfd, amt);
3595 if (anm == NULL)
3596 goto error_free_dyn;
3597 memcpy (anm, fnm, amt);
3598 n->name = anm;
3599 n->by = abfd;
3600 n->next = NULL;
3601 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3602 ;
3603 *pn = n;
3604 }
3605 if (dyn.d_tag == DT_RUNPATH)
3606 {
3607 struct bfd_link_needed_list *n, **pn;
3608 char *fnm, *anm;
3609 unsigned int tagv = dyn.d_un.d_val;
3610
3611 amt = sizeof (struct bfd_link_needed_list);
3612 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 if (n == NULL || fnm == NULL)
3615 goto error_free_dyn;
3616 amt = strlen (fnm) + 1;
3617 anm = (char *) bfd_alloc (abfd, amt);
3618 if (anm == NULL)
3619 goto error_free_dyn;
3620 memcpy (anm, fnm, amt);
3621 n->name = anm;
3622 n->by = abfd;
3623 n->next = NULL;
3624 for (pn = & runpath;
3625 *pn != NULL;
3626 pn = &(*pn)->next)
3627 ;
3628 *pn = n;
3629 }
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath && dyn.d_tag == DT_RPATH)
3632 {
3633 struct bfd_link_needed_list *n, **pn;
3634 char *fnm, *anm;
3635 unsigned int tagv = dyn.d_un.d_val;
3636
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3644 if (anm == NULL)
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = & rpath;
3651 *pn != NULL;
3652 pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 if (dyn.d_tag == DT_AUDIT)
3657 {
3658 unsigned int tagv = dyn.d_un.d_val;
3659 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3660 }
3661 }
3662
3663 free (dynbuf);
3664 }
3665
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3668 if (runpath)
3669 rpath = runpath;
3670
3671 if (rpath)
3672 {
3673 struct bfd_link_needed_list **pn;
3674 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3675 ;
3676 *pn = rpath;
3677 }
3678
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3685 file. */
3686 bfd_section_list_clear (abfd);
3687
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3692 name. */
3693 if (soname == NULL || *soname == '\0')
3694 {
3695 soname = elf_dt_name (abfd);
3696 if (soname == NULL || *soname == '\0')
3697 soname = bfd_get_filename (abfd);
3698 }
3699
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd) = soname;
3703
3704 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3705 if (ret < 0)
3706 goto error_return;
3707
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3711 if (ret > 0)
3712 return TRUE;
3713
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd) = audit;
3716 }
3717
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3722
3723 if (! dynamic || elf_dynsymtab (abfd) == 0)
3724 hdr = &elf_tdata (abfd)->symtab_hdr;
3725 else
3726 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3727
3728 symcount = hdr->sh_size / bed->s->sizeof_sym;
3729
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3732 this point. */
3733 if (elf_bad_symtab (abfd))
3734 {
3735 extsymcount = symcount;
3736 extsymoff = 0;
3737 }
3738 else
3739 {
3740 extsymcount = symcount - hdr->sh_info;
3741 extsymoff = hdr->sh_info;
3742 }
3743
3744 sym_hash = NULL;
3745 if (extsymcount != 0)
3746 {
3747 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3748 NULL, NULL, NULL);
3749 if (isymbuf == NULL)
3750 goto error_return;
3751
3752 /* We store a pointer to the hash table entry for each external
3753 symbol. */
3754 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3755 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3756 if (sym_hash == NULL)
3757 goto error_free_sym;
3758 elf_sym_hashes (abfd) = sym_hash;
3759 }
3760
3761 if (dynamic)
3762 {
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd,
3765 info->default_imported_symver))
3766 goto error_free_sym;
3767
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd) != 0)
3771 {
3772 Elf_Internal_Shdr *versymhdr;
3773
3774 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3775 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3776 if (extversym == NULL)
3777 goto error_free_sym;
3778 amt = versymhdr->sh_size;
3779 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3780 || bfd_bread (extversym, amt, abfd) != amt)
3781 goto error_free_vers;
3782 }
3783 }
3784
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3789 {
3790 unsigned int i;
3791 size_t entsize;
3792
3793 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 h = (struct elf_link_hash_entry *) p;
3801 entsize += htab->root.table.entsize;
3802 if (h->root.type == bfd_link_hash_warning)
3803 entsize += htab->root.table.entsize;
3804 }
3805 }
3806
3807 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3808 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3809 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3810 if (old_tab == NULL)
3811 goto error_free_vers;
3812
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3816 if (alloc_mark == NULL)
3817 goto error_free_vers;
3818
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3822 notice_as_needed))
3823 goto error_free_vers;
3824
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash = (char *) old_tab + tabsize;
3828 old_ent = (char *) old_hash + hashsize;
3829 memcpy (old_tab, htab->root.table.table, tabsize);
3830 memcpy (old_hash, sym_hash, hashsize);
3831 old_undefs = htab->root.undefs;
3832 old_undefs_tail = htab->root.undefs_tail;
3833 old_table = htab->root.table.table;
3834 old_size = htab->root.table.size;
3835 old_count = htab->root.table.count;
3836 old_dynsymcount = htab->dynsymcount;
3837
3838 for (i = 0; i < htab->root.table.size; i++)
3839 {
3840 struct bfd_hash_entry *p;
3841 struct elf_link_hash_entry *h;
3842
3843 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3844 {
3845 memcpy (old_ent, p, htab->root.table.entsize);
3846 old_ent = (char *) old_ent + htab->root.table.entsize;
3847 h = (struct elf_link_hash_entry *) p;
3848 if (h->root.type == bfd_link_hash_warning)
3849 {
3850 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
3852 }
3853 }
3854 }
3855 }
3856
3857 weaks = NULL;
3858 ever = extversym != NULL ? extversym + extsymoff : NULL;
3859 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3860 isym < isymend;
3861 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3862 {
3863 int bind;
3864 bfd_vma value;
3865 asection *sec, *new_sec;
3866 flagword flags;
3867 const char *name;
3868 struct elf_link_hash_entry *h;
3869 bfd_boolean definition;
3870 bfd_boolean size_change_ok;
3871 bfd_boolean type_change_ok;
3872 bfd_boolean new_weakdef;
3873 bfd_boolean override;
3874 bfd_boolean common;
3875 unsigned int old_alignment;
3876 bfd *old_bfd;
3877 bfd * undef_bfd = NULL;
3878
3879 override = FALSE;
3880
3881 flags = BSF_NO_FLAGS;
3882 sec = NULL;
3883 value = isym->st_value;
3884 *sym_hash = NULL;
3885 common = bed->common_definition (isym);
3886
3887 bind = ELF_ST_BIND (isym->st_info);
3888 switch (bind)
3889 {
3890 case STB_LOCAL:
3891 /* This should be impossible, since ELF requires that all
3892 global symbols follow all local symbols, and that sh_info
3893 point to the first global symbol. Unfortunately, Irix 5
3894 screws this up. */
3895 continue;
3896
3897 case STB_GLOBAL:
3898 if (isym->st_shndx != SHN_UNDEF && !common)
3899 flags = BSF_GLOBAL;
3900 break;
3901
3902 case STB_WEAK:
3903 flags = BSF_WEAK;
3904 break;
3905
3906 case STB_GNU_UNIQUE:
3907 flags = BSF_GNU_UNIQUE;
3908 break;
3909
3910 default:
3911 /* Leave it up to the processor backend. */
3912 break;
3913 }
3914
3915 if (isym->st_shndx == SHN_UNDEF)
3916 sec = bfd_und_section_ptr;
3917 else if (isym->st_shndx == SHN_ABS)
3918 sec = bfd_abs_section_ptr;
3919 else if (isym->st_shndx == SHN_COMMON)
3920 {
3921 sec = bfd_com_section_ptr;
3922 /* What ELF calls the size we call the value. What ELF
3923 calls the value we call the alignment. */
3924 value = isym->st_size;
3925 }
3926 else
3927 {
3928 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3929 if (sec == NULL)
3930 sec = bfd_abs_section_ptr;
3931 else if (sec->kept_section)
3932 {
3933 /* Symbols from discarded section are undefined. We keep
3934 its visibility. */
3935 sec = bfd_und_section_ptr;
3936 isym->st_shndx = SHN_UNDEF;
3937 }
3938 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3939 value -= sec->vma;
3940 }
3941
3942 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3943 isym->st_name);
3944 if (name == NULL)
3945 goto error_free_vers;
3946
3947 if (isym->st_shndx == SHN_COMMON
3948 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && !info->relocatable)
3950 {
3951 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952
3953 if (tcomm == NULL)
3954 {
3955 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3956 (SEC_ALLOC
3957 | SEC_IS_COMMON
3958 | SEC_LINKER_CREATED
3959 | SEC_THREAD_LOCAL));
3960 if (tcomm == NULL)
3961 goto error_free_vers;
3962 }
3963 sec = tcomm;
3964 }
3965 else if (bed->elf_add_symbol_hook)
3966 {
3967 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3968 &sec, &value))
3969 goto error_free_vers;
3970
3971 /* The hook function sets the name to NULL if this symbol
3972 should be skipped for some reason. */
3973 if (name == NULL)
3974 continue;
3975 }
3976
3977 /* Sanity check that all possibilities were handled. */
3978 if (sec == NULL)
3979 {
3980 bfd_set_error (bfd_error_bad_value);
3981 goto error_free_vers;
3982 }
3983
3984 if (bfd_is_und_section (sec)
3985 || bfd_is_com_section (sec))
3986 definition = FALSE;
3987 else
3988 definition = TRUE;
3989
3990 size_change_ok = FALSE;
3991 type_change_ok = bed->type_change_ok;
3992 old_alignment = 0;
3993 old_bfd = NULL;
3994 new_sec = sec;
3995
3996 if (is_elf_hash_table (htab))
3997 {
3998 Elf_Internal_Versym iver;
3999 unsigned int vernum = 0;
4000 bfd_boolean skip;
4001
4002 /* If this is a definition of a symbol which was previously
4003 referenced in a non-weak manner then make a note of the bfd
4004 that contained the reference. This is used if we need to
4005 refer to the source of the reference later on. */
4006 if (! bfd_is_und_section (sec))
4007 {
4008 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4009
4010 if (h != NULL
4011 && h->root.type == bfd_link_hash_undefined
4012 && h->root.u.undef.abfd)
4013 undef_bfd = h->root.u.undef.abfd;
4014 }
4015
4016 if (ever == NULL)
4017 {
4018 if (info->default_imported_symver)
4019 /* Use the default symbol version created earlier. */
4020 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4021 else
4022 iver.vs_vers = 0;
4023 }
4024 else
4025 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4026
4027 vernum = iver.vs_vers & VERSYM_VERSION;
4028
4029 /* If this is a hidden symbol, or if it is not version
4030 1, we append the version name to the symbol name.
4031 However, we do not modify a non-hidden absolute symbol
4032 if it is not a function, because it might be the version
4033 symbol itself. FIXME: What if it isn't? */
4034 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4035 || (vernum > 1
4036 && (!bfd_is_abs_section (sec)
4037 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4038 {
4039 const char *verstr;
4040 size_t namelen, verlen, newlen;
4041 char *newname, *p;
4042
4043 if (isym->st_shndx != SHN_UNDEF)
4044 {
4045 if (vernum > elf_tdata (abfd)->cverdefs)
4046 verstr = NULL;
4047 else if (vernum > 1)
4048 verstr =
4049 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4050 else
4051 verstr = "";
4052
4053 if (verstr == NULL)
4054 {
4055 (*_bfd_error_handler)
4056 (_("%B: %s: invalid version %u (max %d)"),
4057 abfd, name, vernum,
4058 elf_tdata (abfd)->cverdefs);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063 else
4064 {
4065 /* We cannot simply test for the number of
4066 entries in the VERNEED section since the
4067 numbers for the needed versions do not start
4068 at 0. */
4069 Elf_Internal_Verneed *t;
4070
4071 verstr = NULL;
4072 for (t = elf_tdata (abfd)->verref;
4073 t != NULL;
4074 t = t->vn_nextref)
4075 {
4076 Elf_Internal_Vernaux *a;
4077
4078 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4079 {
4080 if (a->vna_other == vernum)
4081 {
4082 verstr = a->vna_nodename;
4083 break;
4084 }
4085 }
4086 if (a != NULL)
4087 break;
4088 }
4089 if (verstr == NULL)
4090 {
4091 (*_bfd_error_handler)
4092 (_("%B: %s: invalid needed version %d"),
4093 abfd, name, vernum);
4094 bfd_set_error (bfd_error_bad_value);
4095 goto error_free_vers;
4096 }
4097 }
4098
4099 namelen = strlen (name);
4100 verlen = strlen (verstr);
4101 newlen = namelen + verlen + 2;
4102 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4103 && isym->st_shndx != SHN_UNDEF)
4104 ++newlen;
4105
4106 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4107 if (newname == NULL)
4108 goto error_free_vers;
4109 memcpy (newname, name, namelen);
4110 p = newname + namelen;
4111 *p++ = ELF_VER_CHR;
4112 /* If this is a defined non-hidden version symbol,
4113 we add another @ to the name. This indicates the
4114 default version of the symbol. */
4115 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4116 && isym->st_shndx != SHN_UNDEF)
4117 *p++ = ELF_VER_CHR;
4118 memcpy (p, verstr, verlen + 1);
4119
4120 name = newname;
4121 }
4122
4123 /* If necessary, make a second attempt to locate the bfd
4124 containing an unresolved, non-weak reference to the
4125 current symbol. */
4126 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 {
4128 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4129
4130 if (h != NULL
4131 && h->root.type == bfd_link_hash_undefined
4132 && h->root.u.undef.abfd)
4133 undef_bfd = h->root.u.undef.abfd;
4134 }
4135
4136 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4137 &value, &old_alignment,
4138 sym_hash, &skip, &override,
4139 &type_change_ok, &size_change_ok))
4140 goto error_free_vers;
4141
4142 if (skip)
4143 continue;
4144
4145 if (override)
4146 definition = FALSE;
4147
4148 h = *sym_hash;
4149 while (h->root.type == bfd_link_hash_indirect
4150 || h->root.type == bfd_link_hash_warning)
4151 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4152
4153 /* Remember the old alignment if this is a common symbol, so
4154 that we don't reduce the alignment later on. We can't
4155 check later, because _bfd_generic_link_add_one_symbol
4156 will set a default for the alignment which we want to
4157 override. We also remember the old bfd where the existing
4158 definition comes from. */
4159 switch (h->root.type)
4160 {
4161 default:
4162 break;
4163
4164 case bfd_link_hash_defined:
4165 case bfd_link_hash_defweak:
4166 old_bfd = h->root.u.def.section->owner;
4167 break;
4168
4169 case bfd_link_hash_common:
4170 old_bfd = h->root.u.c.p->section->owner;
4171 old_alignment = h->root.u.c.p->alignment_power;
4172 break;
4173 }
4174
4175 if (elf_tdata (abfd)->verdef != NULL
4176 && ! override
4177 && vernum > 1
4178 && definition)
4179 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4180 }
4181
4182 if (! (_bfd_generic_link_add_one_symbol
4183 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4184 (struct bfd_link_hash_entry **) sym_hash)))
4185 goto error_free_vers;
4186
4187 h = *sym_hash;
4188 while (h->root.type == bfd_link_hash_indirect
4189 || h->root.type == bfd_link_hash_warning)
4190 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4191
4192 *sym_hash = h;
4193 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4194
4195 new_weakdef = FALSE;
4196 if (dynamic
4197 && definition
4198 && (flags & BSF_WEAK) != 0
4199 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4200 && is_elf_hash_table (htab)
4201 && h->u.weakdef == NULL)
4202 {
4203 /* Keep a list of all weak defined non function symbols from
4204 a dynamic object, using the weakdef field. Later in this
4205 function we will set the weakdef field to the correct
4206 value. We only put non-function symbols from dynamic
4207 objects on this list, because that happens to be the only
4208 time we need to know the normal symbol corresponding to a
4209 weak symbol, and the information is time consuming to
4210 figure out. If the weakdef field is not already NULL,
4211 then this symbol was already defined by some previous
4212 dynamic object, and we will be using that previous
4213 definition anyhow. */
4214
4215 h->u.weakdef = weaks;
4216 weaks = h;
4217 new_weakdef = TRUE;
4218 }
4219
4220 /* Set the alignment of a common symbol. */
4221 if ((common || bfd_is_com_section (sec))
4222 && h->root.type == bfd_link_hash_common)
4223 {
4224 unsigned int align;
4225
4226 if (common)
4227 align = bfd_log2 (isym->st_value);
4228 else
4229 {
4230 /* The new symbol is a common symbol in a shared object.
4231 We need to get the alignment from the section. */
4232 align = new_sec->alignment_power;
4233 }
4234 if (align > old_alignment
4235 /* Permit an alignment power of zero if an alignment of one
4236 is specified and no other alignments have been specified. */
4237 || (isym->st_value == 1 && old_alignment == 0))
4238 h->root.u.c.p->alignment_power = align;
4239 else
4240 h->root.u.c.p->alignment_power = old_alignment;
4241 }
4242
4243 if (is_elf_hash_table (htab))
4244 {
4245 bfd_boolean dynsym;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 {
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4268 }
4269 else
4270 normal_align = symbol_align;
4271
4272 if (old_alignment)
4273 {
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4276 normal_bfd = abfd;
4277 }
4278 else
4279 {
4280 common_align = bfd_log2 (isym->st_value);
4281 common_bfd = abfd;
4282 normal_bfd = old_bfd;
4283 }
4284
4285 if (normal_align < common_align)
4286 {
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B"
4291 " is greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4294 else
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4300 }
4301 }
4302
4303 /* Remember the symbol size if it isn't undefined. */
4304 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changed between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && (definition || h->type == STT_NOTYPE))
4331 {
4332 unsigned int type = ELF_ST_TYPE (isym->st_info);
4333
4334 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4335 symbol. */
4336 if (type == STT_GNU_IFUNC
4337 && (abfd->flags & DYNAMIC) != 0)
4338 type = STT_FUNC;
4339
4340 if (h->type != type)
4341 {
4342 if (h->type != STT_NOTYPE && ! type_change_ok)
4343 (*_bfd_error_handler)
4344 (_("Warning: type of symbol `%s' changed"
4345 " from %d to %d in %B"),
4346 abfd, name, h->type, type);
4347
4348 h->type = type;
4349 }
4350 }
4351
4352 /* Merge st_other field. */
4353 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4354
4355 /* Set a flag in the hash table entry indicating the type of
4356 reference or definition we just found. Keep a count of
4357 the number of dynamic symbols we find. A dynamic symbol
4358 is one which is referenced or defined by both a regular
4359 object and a shared object. */
4360 dynsym = FALSE;
4361 if (! dynamic)
4362 {
4363 if (! definition)
4364 {
4365 h->ref_regular = 1;
4366 if (bind != STB_WEAK)
4367 h->ref_regular_nonweak = 1;
4368 }
4369 else
4370 {
4371 h->def_regular = 1;
4372 if (h->def_dynamic)
4373 {
4374 h->def_dynamic = 0;
4375 h->ref_dynamic = 1;
4376 h->dynamic_def = 1;
4377 }
4378 }
4379 if (! info->executable
4380 || h->def_dynamic
4381 || h->ref_dynamic)
4382 dynsym = TRUE;
4383 }
4384 else
4385 {
4386 if (! definition)
4387 h->ref_dynamic = 1;
4388 else
4389 h->def_dynamic = 1;
4390 if (h->def_regular
4391 || h->ref_regular
4392 || (h->u.weakdef != NULL
4393 && ! new_weakdef
4394 && h->u.weakdef->dynindx != -1))
4395 dynsym = TRUE;
4396 }
4397
4398 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4399 {
4400 /* We don't want to make debug symbol dynamic. */
4401 dynsym = FALSE;
4402 }
4403
4404 /* Check to see if we need to add an indirect symbol for
4405 the default name. */
4406 if (definition || h->root.type == bfd_link_hash_common)
4407 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4408 &sec, &value, &dynsym,
4409 override))
4410 goto error_free_vers;
4411
4412 if (definition && !dynamic)
4413 {
4414 char *p = strchr (name, ELF_VER_CHR);
4415 if (p != NULL && p[1] != ELF_VER_CHR)
4416 {
4417 /* Queue non-default versions so that .symver x, x@FOO
4418 aliases can be checked. */
4419 if (!nondeflt_vers)
4420 {
4421 amt = ((isymend - isym + 1)
4422 * sizeof (struct elf_link_hash_entry *));
4423 nondeflt_vers =
4424 (struct elf_link_hash_entry **) bfd_malloc (amt);
4425 if (!nondeflt_vers)
4426 goto error_free_vers;
4427 }
4428 nondeflt_vers[nondeflt_vers_cnt++] = h;
4429 }
4430 }
4431
4432 if (dynsym && h->dynindx == -1)
4433 {
4434 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4435 goto error_free_vers;
4436 if (h->u.weakdef != NULL
4437 && ! new_weakdef
4438 && h->u.weakdef->dynindx == -1)
4439 {
4440 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4441 goto error_free_vers;
4442 }
4443 }
4444 else if (dynsym && h->dynindx != -1)
4445 /* If the symbol already has a dynamic index, but
4446 visibility says it should not be visible, turn it into
4447 a local symbol. */
4448 switch (ELF_ST_VISIBILITY (h->other))
4449 {
4450 case STV_INTERNAL:
4451 case STV_HIDDEN:
4452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4453 dynsym = FALSE;
4454 break;
4455 }
4456
4457 if (!add_needed
4458 && definition
4459 && ((dynsym
4460 && h->ref_regular)
4461 || (h->ref_dynamic
4462 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4463 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4464 {
4465 int ret;
4466 const char *soname = elf_dt_name (abfd);
4467
4468 /* A symbol from a library loaded via DT_NEEDED of some
4469 other library is referenced by a regular object.
4470 Add a DT_NEEDED entry for it. Issue an error if
4471 --no-add-needed is used and the reference was not
4472 a weak one. */
4473 if (undef_bfd != NULL
4474 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4475 {
4476 (*_bfd_error_handler)
4477 (_("%B: undefined reference to symbol '%s'"),
4478 undef_bfd, name);
4479 (*_bfd_error_handler)
4480 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4481 abfd, name);
4482 bfd_set_error (bfd_error_invalid_operation);
4483 goto error_free_vers;
4484 }
4485
4486 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4487 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4488
4489 add_needed = TRUE;
4490 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4491 if (ret < 0)
4492 goto error_free_vers;
4493
4494 BFD_ASSERT (ret == 0);
4495 }
4496 }
4497 }
4498
4499 if (extversym != NULL)
4500 {
4501 free (extversym);
4502 extversym = NULL;
4503 }
4504
4505 if (isymbuf != NULL)
4506 {
4507 free (isymbuf);
4508 isymbuf = NULL;
4509 }
4510
4511 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4512 {
4513 unsigned int i;
4514
4515 /* Restore the symbol table. */
4516 if (bed->as_needed_cleanup)
4517 (*bed->as_needed_cleanup) (abfd, info);
4518 old_hash = (char *) old_tab + tabsize;
4519 old_ent = (char *) old_hash + hashsize;
4520 sym_hash = elf_sym_hashes (abfd);
4521 htab->root.table.table = old_table;
4522 htab->root.table.size = old_size;
4523 htab->root.table.count = old_count;
4524 memcpy (htab->root.table.table, old_tab, tabsize);
4525 memcpy (sym_hash, old_hash, hashsize);
4526 htab->root.undefs = old_undefs;
4527 htab->root.undefs_tail = old_undefs_tail;
4528 for (i = 0; i < htab->root.table.size; i++)
4529 {
4530 struct bfd_hash_entry *p;
4531 struct elf_link_hash_entry *h;
4532
4533 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4534 {
4535 h = (struct elf_link_hash_entry *) p;
4536 if (h->root.type == bfd_link_hash_warning)
4537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4538 if (h->dynindx >= old_dynsymcount)
4539 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4540
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 }
4550 }
4551
4552 /* Make a special call to the linker "notice" function to
4553 tell it that symbols added for crefs may need to be removed. */
4554 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4555 notice_not_needed))
4556 goto error_free_vers;
4557
4558 free (old_tab);
4559 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4560 alloc_mark);
4561 if (nondeflt_vers != NULL)
4562 free (nondeflt_vers);
4563 return TRUE;
4564 }
4565
4566 if (old_tab != NULL)
4567 {
4568 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4569 notice_needed))
4570 goto error_free_vers;
4571 free (old_tab);
4572 old_tab = NULL;
4573 }
4574
4575 /* Now that all the symbols from this input file are created, handle
4576 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4577 if (nondeflt_vers != NULL)
4578 {
4579 bfd_size_type cnt, symidx;
4580
4581 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4582 {
4583 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4584 char *shortname, *p;
4585
4586 p = strchr (h->root.root.string, ELF_VER_CHR);
4587 if (p == NULL
4588 || (h->root.type != bfd_link_hash_defined
4589 && h->root.type != bfd_link_hash_defweak))
4590 continue;
4591
4592 amt = p - h->root.root.string;
4593 shortname = (char *) bfd_malloc (amt + 1);
4594 if (!shortname)
4595 goto error_free_vers;
4596 memcpy (shortname, h->root.root.string, amt);
4597 shortname[amt] = '\0';
4598
4599 hi = (struct elf_link_hash_entry *)
4600 bfd_link_hash_lookup (&htab->root, shortname,
4601 FALSE, FALSE, FALSE);
4602 if (hi != NULL
4603 && hi->root.type == h->root.type
4604 && hi->root.u.def.value == h->root.u.def.value
4605 && hi->root.u.def.section == h->root.u.def.section)
4606 {
4607 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4608 hi->root.type = bfd_link_hash_indirect;
4609 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4610 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4611 sym_hash = elf_sym_hashes (abfd);
4612 if (sym_hash)
4613 for (symidx = 0; symidx < extsymcount; ++symidx)
4614 if (sym_hash[symidx] == hi)
4615 {
4616 sym_hash[symidx] = h;
4617 break;
4618 }
4619 }
4620 free (shortname);
4621 }
4622 free (nondeflt_vers);
4623 nondeflt_vers = NULL;
4624 }
4625
4626 /* Now set the weakdefs field correctly for all the weak defined
4627 symbols we found. The only way to do this is to search all the
4628 symbols. Since we only need the information for non functions in
4629 dynamic objects, that's the only time we actually put anything on
4630 the list WEAKS. We need this information so that if a regular
4631 object refers to a symbol defined weakly in a dynamic object, the
4632 real symbol in the dynamic object is also put in the dynamic
4633 symbols; we also must arrange for both symbols to point to the
4634 same memory location. We could handle the general case of symbol
4635 aliasing, but a general symbol alias can only be generated in
4636 assembler code, handling it correctly would be very time
4637 consuming, and other ELF linkers don't handle general aliasing
4638 either. */
4639 if (weaks != NULL)
4640 {
4641 struct elf_link_hash_entry **hpp;
4642 struct elf_link_hash_entry **hppend;
4643 struct elf_link_hash_entry **sorted_sym_hash;
4644 struct elf_link_hash_entry *h;
4645 size_t sym_count;
4646
4647 /* Since we have to search the whole symbol list for each weak
4648 defined symbol, search time for N weak defined symbols will be
4649 O(N^2). Binary search will cut it down to O(NlogN). */
4650 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4651 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4652 if (sorted_sym_hash == NULL)
4653 goto error_return;
4654 sym_hash = sorted_sym_hash;
4655 hpp = elf_sym_hashes (abfd);
4656 hppend = hpp + extsymcount;
4657 sym_count = 0;
4658 for (; hpp < hppend; hpp++)
4659 {
4660 h = *hpp;
4661 if (h != NULL
4662 && h->root.type == bfd_link_hash_defined
4663 && !bed->is_function_type (h->type))
4664 {
4665 *sym_hash = h;
4666 sym_hash++;
4667 sym_count++;
4668 }
4669 }
4670
4671 qsort (sorted_sym_hash, sym_count,
4672 sizeof (struct elf_link_hash_entry *),
4673 elf_sort_symbol);
4674
4675 while (weaks != NULL)
4676 {
4677 struct elf_link_hash_entry *hlook;
4678 asection *slook;
4679 bfd_vma vlook;
4680 long ilook;
4681 size_t i, j, idx;
4682
4683 hlook = weaks;
4684 weaks = hlook->u.weakdef;
4685 hlook->u.weakdef = NULL;
4686
4687 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4688 || hlook->root.type == bfd_link_hash_defweak
4689 || hlook->root.type == bfd_link_hash_common
4690 || hlook->root.type == bfd_link_hash_indirect);
4691 slook = hlook->root.u.def.section;
4692 vlook = hlook->root.u.def.value;
4693
4694 ilook = -1;
4695 i = 0;
4696 j = sym_count;
4697 while (i < j)
4698 {
4699 bfd_signed_vma vdiff;
4700 idx = (i + j) / 2;
4701 h = sorted_sym_hash [idx];
4702 vdiff = vlook - h->root.u.def.value;
4703 if (vdiff < 0)
4704 j = idx;
4705 else if (vdiff > 0)
4706 i = idx + 1;
4707 else
4708 {
4709 long sdiff = slook->id - h->root.u.def.section->id;
4710 if (sdiff < 0)
4711 j = idx;
4712 else if (sdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 ilook = idx;
4717 break;
4718 }
4719 }
4720 }
4721
4722 /* We didn't find a value/section match. */
4723 if (ilook == -1)
4724 continue;
4725
4726 for (i = ilook; i < sym_count; i++)
4727 {
4728 h = sorted_sym_hash [i];
4729
4730 /* Stop if value or section doesn't match. */
4731 if (h->root.u.def.value != vlook
4732 || h->root.u.def.section != slook)
4733 break;
4734 else if (h != hlook)
4735 {
4736 hlook->u.weakdef = h;
4737
4738 /* If the weak definition is in the list of dynamic
4739 symbols, make sure the real definition is put
4740 there as well. */
4741 if (hlook->dynindx != -1 && h->dynindx == -1)
4742 {
4743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4744 {
4745 err_free_sym_hash:
4746 free (sorted_sym_hash);
4747 goto error_return;
4748 }
4749 }
4750
4751 /* If the real definition is in the list of dynamic
4752 symbols, make sure the weak definition is put
4753 there as well. If we don't do this, then the
4754 dynamic loader might not merge the entries for the
4755 real definition and the weak definition. */
4756 if (h->dynindx != -1 && hlook->dynindx == -1)
4757 {
4758 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4759 goto err_free_sym_hash;
4760 }
4761 break;
4762 }
4763 }
4764 }
4765
4766 free (sorted_sym_hash);
4767 }
4768
4769 if (bed->check_directives
4770 && !(*bed->check_directives) (abfd, info))
4771 return FALSE;
4772
4773 /* If this object is the same format as the output object, and it is
4774 not a shared library, then let the backend look through the
4775 relocs.
4776
4777 This is required to build global offset table entries and to
4778 arrange for dynamic relocs. It is not required for the
4779 particular common case of linking non PIC code, even when linking
4780 against shared libraries, but unfortunately there is no way of
4781 knowing whether an object file has been compiled PIC or not.
4782 Looking through the relocs is not particularly time consuming.
4783 The problem is that we must either (1) keep the relocs in memory,
4784 which causes the linker to require additional runtime memory or
4785 (2) read the relocs twice from the input file, which wastes time.
4786 This would be a good case for using mmap.
4787
4788 I have no idea how to handle linking PIC code into a file of a
4789 different format. It probably can't be done. */
4790 if (! dynamic
4791 && is_elf_hash_table (htab)
4792 && bed->check_relocs != NULL
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *)
4865 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4866 if (n == NULL)
4867 goto error_return;
4868 n->abfd = abfd;
4869 n->next = htab->loaded;
4870 htab->loaded = n;
4871 }
4872
4873 return TRUE;
4874
4875 error_free_vers:
4876 if (old_tab != NULL)
4877 free (old_tab);
4878 if (nondeflt_vers != NULL)
4879 free (nondeflt_vers);
4880 if (extversym != NULL)
4881 free (extversym);
4882 error_free_sym:
4883 if (isymbuf != NULL)
4884 free (isymbuf);
4885 error_return:
4886 return FALSE;
4887 }
4888
4889 /* Return the linker hash table entry of a symbol that might be
4890 satisfied by an archive symbol. Return -1 on error. */
4891
4892 struct elf_link_hash_entry *
4893 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4894 struct bfd_link_info *info,
4895 const char *name)
4896 {
4897 struct elf_link_hash_entry *h;
4898 char *p, *copy;
4899 size_t len, first;
4900
4901 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4902 if (h != NULL)
4903 return h;
4904
4905 /* If this is a default version (the name contains @@), look up the
4906 symbol again with only one `@' as well as without the version.
4907 The effect is that references to the symbol with and without the
4908 version will be matched by the default symbol in the archive. */
4909
4910 p = strchr (name, ELF_VER_CHR);
4911 if (p == NULL || p[1] != ELF_VER_CHR)
4912 return h;
4913
4914 /* First check with only one `@'. */
4915 len = strlen (name);
4916 copy = (char *) bfd_alloc (abfd, len);
4917 if (copy == NULL)
4918 return (struct elf_link_hash_entry *) 0 - 1;
4919
4920 first = p - name + 1;
4921 memcpy (copy, name, first);
4922 memcpy (copy + first, name + first + 1, len - first);
4923
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4925 if (h == NULL)
4926 {
4927 /* We also need to check references to the symbol without the
4928 version. */
4929 copy[first - 1] = '\0';
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4931 FALSE, FALSE, FALSE);
4932 }
4933
4934 bfd_release (abfd, copy);
4935 return h;
4936 }
4937
4938 /* Add symbols from an ELF archive file to the linker hash table. We
4939 don't use _bfd_generic_link_add_archive_symbols because of a
4940 problem which arises on UnixWare. The UnixWare libc.so is an
4941 archive which includes an entry libc.so.1 which defines a bunch of
4942 symbols. The libc.so archive also includes a number of other
4943 object files, which also define symbols, some of which are the same
4944 as those defined in libc.so.1. Correct linking requires that we
4945 consider each object file in turn, and include it if it defines any
4946 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4947 this; it looks through the list of undefined symbols, and includes
4948 any object file which defines them. When this algorithm is used on
4949 UnixWare, it winds up pulling in libc.so.1 early and defining a
4950 bunch of symbols. This means that some of the other objects in the
4951 archive are not included in the link, which is incorrect since they
4952 precede libc.so.1 in the archive.
4953
4954 Fortunately, ELF archive handling is simpler than that done by
4955 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4956 oddities. In ELF, if we find a symbol in the archive map, and the
4957 symbol is currently undefined, we know that we must pull in that
4958 object file.
4959
4960 Unfortunately, we do have to make multiple passes over the symbol
4961 table until nothing further is resolved. */
4962
4963 static bfd_boolean
4964 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4965 {
4966 symindex c;
4967 bfd_boolean *defined = NULL;
4968 bfd_boolean *included = NULL;
4969 carsym *symdefs;
4970 bfd_boolean loop;
4971 bfd_size_type amt;
4972 const struct elf_backend_data *bed;
4973 struct elf_link_hash_entry * (*archive_symbol_lookup)
4974 (bfd *, struct bfd_link_info *, const char *);
4975
4976 if (! bfd_has_map (abfd))
4977 {
4978 /* An empty archive is a special case. */
4979 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4980 return TRUE;
4981 bfd_set_error (bfd_error_no_armap);
4982 return FALSE;
4983 }
4984
4985 /* Keep track of all symbols we know to be already defined, and all
4986 files we know to be already included. This is to speed up the
4987 second and subsequent passes. */
4988 c = bfd_ardata (abfd)->symdef_count;
4989 if (c == 0)
4990 return TRUE;
4991 amt = c;
4992 amt *= sizeof (bfd_boolean);
4993 defined = (bfd_boolean *) bfd_zmalloc (amt);
4994 included = (bfd_boolean *) bfd_zmalloc (amt);
4995 if (defined == NULL || included == NULL)
4996 goto error_return;
4997
4998 symdefs = bfd_ardata (abfd)->symdefs;
4999 bed = get_elf_backend_data (abfd);
5000 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5001
5002 do
5003 {
5004 file_ptr last;
5005 symindex i;
5006 carsym *symdef;
5007 carsym *symdefend;
5008
5009 loop = FALSE;
5010 last = -1;
5011
5012 symdef = symdefs;
5013 symdefend = symdef + c;
5014 for (i = 0; symdef < symdefend; symdef++, i++)
5015 {
5016 struct elf_link_hash_entry *h;
5017 bfd *element;
5018 struct bfd_link_hash_entry *undefs_tail;
5019 symindex mark;
5020
5021 if (defined[i] || included[i])
5022 continue;
5023 if (symdef->file_offset == last)
5024 {
5025 included[i] = TRUE;
5026 continue;
5027 }
5028
5029 h = archive_symbol_lookup (abfd, info, symdef->name);
5030 if (h == (struct elf_link_hash_entry *) 0 - 1)
5031 goto error_return;
5032
5033 if (h == NULL)
5034 continue;
5035
5036 if (h->root.type == bfd_link_hash_common)
5037 {
5038 /* We currently have a common symbol. The archive map contains
5039 a reference to this symbol, so we may want to include it. We
5040 only want to include it however, if this archive element
5041 contains a definition of the symbol, not just another common
5042 declaration of it.
5043
5044 Unfortunately some archivers (including GNU ar) will put
5045 declarations of common symbols into their archive maps, as
5046 well as real definitions, so we cannot just go by the archive
5047 map alone. Instead we must read in the element's symbol
5048 table and check that to see what kind of symbol definition
5049 this is. */
5050 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5051 continue;
5052 }
5053 else if (h->root.type != bfd_link_hash_undefined)
5054 {
5055 if (h->root.type != bfd_link_hash_undefweak)
5056 defined[i] = TRUE;
5057 continue;
5058 }
5059
5060 /* We need to include this archive member. */
5061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5062 if (element == NULL)
5063 goto error_return;
5064
5065 if (! bfd_check_format (element, bfd_object))
5066 goto error_return;
5067
5068 /* Doublecheck that we have not included this object
5069 already--it should be impossible, but there may be
5070 something wrong with the archive. */
5071 if (element->archive_pass != 0)
5072 {
5073 bfd_set_error (bfd_error_bad_value);
5074 goto error_return;
5075 }
5076 element->archive_pass = 1;
5077
5078 undefs_tail = info->hash->undefs_tail;
5079
5080 if (! (*info->callbacks->add_archive_element) (info, element,
5081 symdef->name))
5082 goto error_return;
5083 if (! bfd_link_add_symbols (element, info))
5084 goto error_return;
5085
5086 /* If there are any new undefined symbols, we need to make
5087 another pass through the archive in order to see whether
5088 they can be defined. FIXME: This isn't perfect, because
5089 common symbols wind up on undefs_tail and because an
5090 undefined symbol which is defined later on in this pass
5091 does not require another pass. This isn't a bug, but it
5092 does make the code less efficient than it could be. */
5093 if (undefs_tail != info->hash->undefs_tail)
5094 loop = TRUE;
5095
5096 /* Look backward to mark all symbols from this object file
5097 which we have already seen in this pass. */
5098 mark = i;
5099 do
5100 {
5101 included[mark] = TRUE;
5102 if (mark == 0)
5103 break;
5104 --mark;
5105 }
5106 while (symdefs[mark].file_offset == symdef->file_offset);
5107
5108 /* We mark subsequent symbols from this object file as we go
5109 on through the loop. */
5110 last = symdef->file_offset;
5111 }
5112 }
5113 while (loop);
5114
5115 free (defined);
5116 free (included);
5117
5118 return TRUE;
5119
5120 error_return:
5121 if (defined != NULL)
5122 free (defined);
5123 if (included != NULL)
5124 free (included);
5125 return FALSE;
5126 }
5127
5128 /* Given an ELF BFD, add symbols to the global hash table as
5129 appropriate. */
5130
5131 bfd_boolean
5132 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5133 {
5134 switch (bfd_get_format (abfd))
5135 {
5136 case bfd_object:
5137 return elf_link_add_object_symbols (abfd, info);
5138 case bfd_archive:
5139 return elf_link_add_archive_symbols (abfd, info);
5140 default:
5141 bfd_set_error (bfd_error_wrong_format);
5142 return FALSE;
5143 }
5144 }
5145 \f
5146 struct hash_codes_info
5147 {
5148 unsigned long *hashcodes;
5149 bfd_boolean error;
5150 };
5151
5152 /* This function will be called though elf_link_hash_traverse to store
5153 all hash value of the exported symbols in an array. */
5154
5155 static bfd_boolean
5156 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5157 {
5158 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5159 const char *name;
5160 char *p;
5161 unsigned long ha;
5162 char *alc = NULL;
5163
5164 if (h->root.type == bfd_link_hash_warning)
5165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5166
5167 /* Ignore indirect symbols. These are added by the versioning code. */
5168 if (h->dynindx == -1)
5169 return TRUE;
5170
5171 name = h->root.root.string;
5172 p = strchr (name, ELF_VER_CHR);
5173 if (p != NULL)
5174 {
5175 alc = (char *) bfd_malloc (p - name + 1);
5176 if (alc == NULL)
5177 {
5178 inf->error = TRUE;
5179 return FALSE;
5180 }
5181 memcpy (alc, name, p - name);
5182 alc[p - name] = '\0';
5183 name = alc;
5184 }
5185
5186 /* Compute the hash value. */
5187 ha = bfd_elf_hash (name);
5188
5189 /* Store the found hash value in the array given as the argument. */
5190 *(inf->hashcodes)++ = ha;
5191
5192 /* And store it in the struct so that we can put it in the hash table
5193 later. */
5194 h->u.elf_hash_value = ha;
5195
5196 if (alc != NULL)
5197 free (alc);
5198
5199 return TRUE;
5200 }
5201
5202 struct collect_gnu_hash_codes
5203 {
5204 bfd *output_bfd;
5205 const struct elf_backend_data *bed;
5206 unsigned long int nsyms;
5207 unsigned long int maskbits;
5208 unsigned long int *hashcodes;
5209 unsigned long int *hashval;
5210 unsigned long int *indx;
5211 unsigned long int *counts;
5212 bfd_vma *bitmask;
5213 bfd_byte *contents;
5214 long int min_dynindx;
5215 unsigned long int bucketcount;
5216 unsigned long int symindx;
5217 long int local_indx;
5218 long int shift1, shift2;
5219 unsigned long int mask;
5220 bfd_boolean error;
5221 };
5222
5223 /* This function will be called though elf_link_hash_traverse to store
5224 all hash value of the exported symbols in an array. */
5225
5226 static bfd_boolean
5227 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5228 {
5229 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5230 const char *name;
5231 char *p;
5232 unsigned long ha;
5233 char *alc = NULL;
5234
5235 if (h->root.type == bfd_link_hash_warning)
5236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5237
5238 /* Ignore indirect symbols. These are added by the versioning code. */
5239 if (h->dynindx == -1)
5240 return TRUE;
5241
5242 /* Ignore also local symbols and undefined symbols. */
5243 if (! (*s->bed->elf_hash_symbol) (h))
5244 return TRUE;
5245
5246 name = h->root.root.string;
5247 p = strchr (name, ELF_VER_CHR);
5248 if (p != NULL)
5249 {
5250 alc = (char *) bfd_malloc (p - name + 1);
5251 if (alc == NULL)
5252 {
5253 s->error = TRUE;
5254 return FALSE;
5255 }
5256 memcpy (alc, name, p - name);
5257 alc[p - name] = '\0';
5258 name = alc;
5259 }
5260
5261 /* Compute the hash value. */
5262 ha = bfd_elf_gnu_hash (name);
5263
5264 /* Store the found hash value in the array for compute_bucket_count,
5265 and also for .dynsym reordering purposes. */
5266 s->hashcodes[s->nsyms] = ha;
5267 s->hashval[h->dynindx] = ha;
5268 ++s->nsyms;
5269 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5270 s->min_dynindx = h->dynindx;
5271
5272 if (alc != NULL)
5273 free (alc);
5274
5275 return TRUE;
5276 }
5277
5278 /* This function will be called though elf_link_hash_traverse to do
5279 final dynaminc symbol renumbering. */
5280
5281 static bfd_boolean
5282 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5283 {
5284 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5285 unsigned long int bucket;
5286 unsigned long int val;
5287
5288 if (h->root.type == bfd_link_hash_warning)
5289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5290
5291 /* Ignore indirect symbols. */
5292 if (h->dynindx == -1)
5293 return TRUE;
5294
5295 /* Ignore also local symbols and undefined symbols. */
5296 if (! (*s->bed->elf_hash_symbol) (h))
5297 {
5298 if (h->dynindx >= s->min_dynindx)
5299 h->dynindx = s->local_indx++;
5300 return TRUE;
5301 }
5302
5303 bucket = s->hashval[h->dynindx] % s->bucketcount;
5304 val = (s->hashval[h->dynindx] >> s->shift1)
5305 & ((s->maskbits >> s->shift1) - 1);
5306 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5307 s->bitmask[val]
5308 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5309 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5310 if (s->counts[bucket] == 1)
5311 /* Last element terminates the chain. */
5312 val |= 1;
5313 bfd_put_32 (s->output_bfd, val,
5314 s->contents + (s->indx[bucket] - s->symindx) * 4);
5315 --s->counts[bucket];
5316 h->dynindx = s->indx[bucket]++;
5317 return TRUE;
5318 }
5319
5320 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5321
5322 bfd_boolean
5323 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5324 {
5325 return !(h->forced_local
5326 || h->root.type == bfd_link_hash_undefined
5327 || h->root.type == bfd_link_hash_undefweak
5328 || ((h->root.type == bfd_link_hash_defined
5329 || h->root.type == bfd_link_hash_defweak)
5330 && h->root.u.def.section->output_section == NULL));
5331 }
5332
5333 /* Array used to determine the number of hash table buckets to use
5334 based on the number of symbols there are. If there are fewer than
5335 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5336 fewer than 37 we use 17 buckets, and so forth. We never use more
5337 than 32771 buckets. */
5338
5339 static const size_t elf_buckets[] =
5340 {
5341 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5342 16411, 32771, 0
5343 };
5344
5345 /* Compute bucket count for hashing table. We do not use a static set
5346 of possible tables sizes anymore. Instead we determine for all
5347 possible reasonable sizes of the table the outcome (i.e., the
5348 number of collisions etc) and choose the best solution. The
5349 weighting functions are not too simple to allow the table to grow
5350 without bounds. Instead one of the weighting factors is the size.
5351 Therefore the result is always a good payoff between few collisions
5352 (= short chain lengths) and table size. */
5353 static size_t
5354 compute_bucket_count (struct bfd_link_info *info,
5355 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5356 unsigned long int nsyms,
5357 int gnu_hash)
5358 {
5359 size_t best_size = 0;
5360 unsigned long int i;
5361
5362 /* We have a problem here. The following code to optimize the table
5363 size requires an integer type with more the 32 bits. If
5364 BFD_HOST_U_64_BIT is set we know about such a type. */
5365 #ifdef BFD_HOST_U_64_BIT
5366 if (info->optimize)
5367 {
5368 size_t minsize;
5369 size_t maxsize;
5370 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5371 bfd *dynobj = elf_hash_table (info)->dynobj;
5372 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5373 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5374 unsigned long int *counts;
5375 bfd_size_type amt;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 }
5461 }
5462
5463 free (counts);
5464 }
5465 else
5466 #endif /* defined (BFD_HOST_U_64_BIT) */
5467 {
5468 /* This is the fallback solution if no 64bit type is available or if we
5469 are not supposed to spend much time on optimizations. We select the
5470 bucket count using a fixed set of numbers. */
5471 for (i = 0; elf_buckets[i] != 0; i++)
5472 {
5473 best_size = elf_buckets[i];
5474 if (nsyms < elf_buckets[i + 1])
5475 break;
5476 }
5477 if (gnu_hash && best_size < 2)
5478 best_size = 2;
5479 }
5480
5481 return best_size;
5482 }
5483
5484 /* Set up the sizes and contents of the ELF dynamic sections. This is
5485 called by the ELF linker emulation before_allocation routine. We
5486 must set the sizes of the sections before the linker sets the
5487 addresses of the various sections. */
5488
5489 bfd_boolean
5490 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5491 const char *soname,
5492 const char *rpath,
5493 const char *filter_shlib,
5494 const char *audit,
5495 const char *depaudit,
5496 const char * const *auxiliary_filters,
5497 struct bfd_link_info *info,
5498 asection **sinterpptr,
5499 struct bfd_elf_version_tree *verdefs)
5500 {
5501 bfd_size_type soname_indx;
5502 bfd *dynobj;
5503 const struct elf_backend_data *bed;
5504 struct elf_info_failed asvinfo;
5505
5506 *sinterpptr = NULL;
5507
5508 soname_indx = (bfd_size_type) -1;
5509
5510 if (!is_elf_hash_table (info->hash))
5511 return TRUE;
5512
5513 bed = get_elf_backend_data (output_bfd);
5514 if (info->execstack)
5515 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5516 else if (info->noexecstack)
5517 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5518 else
5519 {
5520 bfd *inputobj;
5521 asection *notesec = NULL;
5522 int exec = 0;
5523
5524 for (inputobj = info->input_bfds;
5525 inputobj;
5526 inputobj = inputobj->link_next)
5527 {
5528 asection *s;
5529
5530 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5531 continue;
5532 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5533 if (s)
5534 {
5535 if (s->flags & SEC_CODE)
5536 exec = PF_X;
5537 notesec = s;
5538 }
5539 else if (bed->default_execstack)
5540 exec = PF_X;
5541 }
5542 if (notesec)
5543 {
5544 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5545 if (exec && info->relocatable
5546 && notesec->output_section != bfd_abs_section_ptr)
5547 notesec->output_section->flags |= SEC_CODE;
5548 }
5549 }
5550
5551 /* Any syms created from now on start with -1 in
5552 got.refcount/offset and plt.refcount/offset. */
5553 elf_hash_table (info)->init_got_refcount
5554 = elf_hash_table (info)->init_got_offset;
5555 elf_hash_table (info)->init_plt_refcount
5556 = elf_hash_table (info)->init_plt_offset;
5557
5558 /* The backend may have to create some sections regardless of whether
5559 we're dynamic or not. */
5560 if (bed->elf_backend_always_size_sections
5561 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5562 return FALSE;
5563
5564 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5565 return FALSE;
5566
5567 dynobj = elf_hash_table (info)->dynobj;
5568
5569 /* If there were no dynamic objects in the link, there is nothing to
5570 do here. */
5571 if (dynobj == NULL)
5572 return TRUE;
5573
5574 if (elf_hash_table (info)->dynamic_sections_created)
5575 {
5576 struct elf_info_failed eif;
5577 struct elf_link_hash_entry *h;
5578 asection *dynstr;
5579 struct bfd_elf_version_tree *t;
5580 struct bfd_elf_version_expr *d;
5581 asection *s;
5582 bfd_boolean all_defined;
5583
5584 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5585 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5586
5587 if (soname != NULL)
5588 {
5589 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5590 soname, TRUE);
5591 if (soname_indx == (bfd_size_type) -1
5592 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5593 return FALSE;
5594 }
5595
5596 if (info->symbolic)
5597 {
5598 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5599 return FALSE;
5600 info->flags |= DF_SYMBOLIC;
5601 }
5602
5603 if (rpath != NULL)
5604 {
5605 bfd_size_type indx;
5606
5607 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5608 TRUE);
5609 if (indx == (bfd_size_type) -1
5610 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5611 return FALSE;
5612
5613 if (info->new_dtags)
5614 {
5615 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5616 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5617 return FALSE;
5618 }
5619 }
5620
5621 if (filter_shlib != NULL)
5622 {
5623 bfd_size_type indx;
5624
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 filter_shlib, TRUE);
5627 if (indx == (bfd_size_type) -1
5628 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5629 return FALSE;
5630 }
5631
5632 if (auxiliary_filters != NULL)
5633 {
5634 const char * const *p;
5635
5636 for (p = auxiliary_filters; *p != NULL; p++)
5637 {
5638 bfd_size_type indx;
5639
5640 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5641 *p, TRUE);
5642 if (indx == (bfd_size_type) -1
5643 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5644 return FALSE;
5645 }
5646 }
5647
5648 if (audit != NULL)
5649 {
5650 bfd_size_type indx;
5651
5652 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5653 TRUE);
5654 if (indx == (bfd_size_type) -1
5655 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5656 return FALSE;
5657 }
5658
5659 if (depaudit != NULL)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5664 TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5667 return FALSE;
5668 }
5669
5670 eif.info = info;
5671 eif.verdefs = verdefs;
5672 eif.failed = FALSE;
5673
5674 /* If we are supposed to export all symbols into the dynamic symbol
5675 table (this is not the normal case), then do so. */
5676 if (info->export_dynamic
5677 || (info->executable && info->dynamic))
5678 {
5679 elf_link_hash_traverse (elf_hash_table (info),
5680 _bfd_elf_export_symbol,
5681 &eif);
5682 if (eif.failed)
5683 return FALSE;
5684 }
5685
5686 /* Make all global versions with definition. */
5687 for (t = verdefs; t != NULL; t = t->next)
5688 for (d = t->globals.list; d != NULL; d = d->next)
5689 if (!d->symver && d->literal)
5690 {
5691 const char *verstr, *name;
5692 size_t namelen, verlen, newlen;
5693 char *newname, *p;
5694 struct elf_link_hash_entry *newh;
5695
5696 name = d->pattern;
5697 namelen = strlen (name);
5698 verstr = t->name;
5699 verlen = strlen (verstr);
5700 newlen = namelen + verlen + 3;
5701
5702 newname = (char *) bfd_malloc (newlen);
5703 if (newname == NULL)
5704 return FALSE;
5705 memcpy (newname, name, namelen);
5706
5707 /* Check the hidden versioned definition. */
5708 p = newname + namelen;
5709 *p++ = ELF_VER_CHR;
5710 memcpy (p, verstr, verlen + 1);
5711 newh = elf_link_hash_lookup (elf_hash_table (info),
5712 newname, FALSE, FALSE,
5713 FALSE);
5714 if (newh == NULL
5715 || (newh->root.type != bfd_link_hash_defined
5716 && newh->root.type != bfd_link_hash_defweak))
5717 {
5718 /* Check the default versioned definition. */
5719 *p++ = ELF_VER_CHR;
5720 memcpy (p, verstr, verlen + 1);
5721 newh = elf_link_hash_lookup (elf_hash_table (info),
5722 newname, FALSE, FALSE,
5723 FALSE);
5724 }
5725 free (newname);
5726
5727 /* Mark this version if there is a definition and it is
5728 not defined in a shared object. */
5729 if (newh != NULL
5730 && !newh->def_dynamic
5731 && (newh->root.type == bfd_link_hash_defined
5732 || newh->root.type == bfd_link_hash_defweak))
5733 d->symver = 1;
5734 }
5735
5736 /* Attach all the symbols to their version information. */
5737 asvinfo.info = info;
5738 asvinfo.verdefs = verdefs;
5739 asvinfo.failed = FALSE;
5740
5741 elf_link_hash_traverse (elf_hash_table (info),
5742 _bfd_elf_link_assign_sym_version,
5743 &asvinfo);
5744 if (asvinfo.failed)
5745 return FALSE;
5746
5747 if (!info->allow_undefined_version)
5748 {
5749 /* Check if all global versions have a definition. */
5750 all_defined = TRUE;
5751 for (t = verdefs; t != NULL; t = t->next)
5752 for (d = t->globals.list; d != NULL; d = d->next)
5753 if (d->literal && !d->symver && !d->script)
5754 {
5755 (*_bfd_error_handler)
5756 (_("%s: undefined version: %s"),
5757 d->pattern, t->name);
5758 all_defined = FALSE;
5759 }
5760
5761 if (!all_defined)
5762 {
5763 bfd_set_error (bfd_error_bad_value);
5764 return FALSE;
5765 }
5766 }
5767
5768 /* Find all symbols which were defined in a dynamic object and make
5769 the backend pick a reasonable value for them. */
5770 elf_link_hash_traverse (elf_hash_table (info),
5771 _bfd_elf_adjust_dynamic_symbol,
5772 &eif);
5773 if (eif.failed)
5774 return FALSE;
5775
5776 /* Add some entries to the .dynamic section. We fill in some of the
5777 values later, in bfd_elf_final_link, but we must add the entries
5778 now so that we know the final size of the .dynamic section. */
5779
5780 /* If there are initialization and/or finalization functions to
5781 call then add the corresponding DT_INIT/DT_FINI entries. */
5782 h = (info->init_function
5783 ? elf_link_hash_lookup (elf_hash_table (info),
5784 info->init_function, FALSE,
5785 FALSE, FALSE)
5786 : NULL);
5787 if (h != NULL
5788 && (h->ref_regular
5789 || h->def_regular))
5790 {
5791 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5792 return FALSE;
5793 }
5794 h = (info->fini_function
5795 ? elf_link_hash_lookup (elf_hash_table (info),
5796 info->fini_function, FALSE,
5797 FALSE, FALSE)
5798 : NULL);
5799 if (h != NULL
5800 && (h->ref_regular
5801 || h->def_regular))
5802 {
5803 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5804 return FALSE;
5805 }
5806
5807 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5808 if (s != NULL && s->linker_has_input)
5809 {
5810 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5811 if (! info->executable)
5812 {
5813 bfd *sub;
5814 asection *o;
5815
5816 for (sub = info->input_bfds; sub != NULL;
5817 sub = sub->link_next)
5818 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5819 for (o = sub->sections; o != NULL; o = o->next)
5820 if (elf_section_data (o)->this_hdr.sh_type
5821 == SHT_PREINIT_ARRAY)
5822 {
5823 (*_bfd_error_handler)
5824 (_("%B: .preinit_array section is not allowed in DSO"),
5825 sub);
5826 break;
5827 }
5828
5829 bfd_set_error (bfd_error_nonrepresentable_section);
5830 return FALSE;
5831 }
5832
5833 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5834 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5835 return FALSE;
5836 }
5837 s = bfd_get_section_by_name (output_bfd, ".init_array");
5838 if (s != NULL && s->linker_has_input)
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5841 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5842 return FALSE;
5843 }
5844 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5848 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5849 return FALSE;
5850 }
5851
5852 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5853 /* If .dynstr is excluded from the link, we don't want any of
5854 these tags. Strictly, we should be checking each section
5855 individually; This quick check covers for the case where
5856 someone does a /DISCARD/ : { *(*) }. */
5857 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5858 {
5859 bfd_size_type strsize;
5860
5861 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5862 if ((info->emit_hash
5863 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5864 || (info->emit_gnu_hash
5865 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5866 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5869 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5870 bed->s->sizeof_sym))
5871 return FALSE;
5872 }
5873 }
5874
5875 /* The backend must work out the sizes of all the other dynamic
5876 sections. */
5877 if (bed->elf_backend_size_dynamic_sections
5878 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5879 return FALSE;
5880
5881 if (elf_hash_table (info)->dynamic_sections_created)
5882 {
5883 unsigned long section_sym_count;
5884 asection *s;
5885
5886 /* Set up the version definition section. */
5887 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5888 BFD_ASSERT (s != NULL);
5889
5890 /* We may have created additional version definitions if we are
5891 just linking a regular application. */
5892 verdefs = asvinfo.verdefs;
5893
5894 /* Skip anonymous version tag. */
5895 if (verdefs != NULL && verdefs->vernum == 0)
5896 verdefs = verdefs->next;
5897
5898 if (verdefs == NULL && !info->create_default_symver)
5899 s->flags |= SEC_EXCLUDE;
5900 else
5901 {
5902 unsigned int cdefs;
5903 bfd_size_type size;
5904 struct bfd_elf_version_tree *t;
5905 bfd_byte *p;
5906 Elf_Internal_Verdef def;
5907 Elf_Internal_Verdaux defaux;
5908 struct bfd_link_hash_entry *bh;
5909 struct elf_link_hash_entry *h;
5910 const char *name;
5911
5912 cdefs = 0;
5913 size = 0;
5914
5915 /* Make space for the base version. */
5916 size += sizeof (Elf_External_Verdef);
5917 size += sizeof (Elf_External_Verdaux);
5918 ++cdefs;
5919
5920 /* Make space for the default version. */
5921 if (info->create_default_symver)
5922 {
5923 size += sizeof (Elf_External_Verdef);
5924 ++cdefs;
5925 }
5926
5927 for (t = verdefs; t != NULL; t = t->next)
5928 {
5929 struct bfd_elf_version_deps *n;
5930
5931 size += sizeof (Elf_External_Verdef);
5932 size += sizeof (Elf_External_Verdaux);
5933 ++cdefs;
5934
5935 for (n = t->deps; n != NULL; n = n->next)
5936 size += sizeof (Elf_External_Verdaux);
5937 }
5938
5939 s->size = size;
5940 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5941 if (s->contents == NULL && s->size != 0)
5942 return FALSE;
5943
5944 /* Fill in the version definition section. */
5945
5946 p = s->contents;
5947
5948 def.vd_version = VER_DEF_CURRENT;
5949 def.vd_flags = VER_FLG_BASE;
5950 def.vd_ndx = 1;
5951 def.vd_cnt = 1;
5952 if (info->create_default_symver)
5953 {
5954 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5955 def.vd_next = sizeof (Elf_External_Verdef);
5956 }
5957 else
5958 {
5959 def.vd_aux = sizeof (Elf_External_Verdef);
5960 def.vd_next = (sizeof (Elf_External_Verdef)
5961 + sizeof (Elf_External_Verdaux));
5962 }
5963
5964 if (soname_indx != (bfd_size_type) -1)
5965 {
5966 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5967 soname_indx);
5968 def.vd_hash = bfd_elf_hash (soname);
5969 defaux.vda_name = soname_indx;
5970 name = soname;
5971 }
5972 else
5973 {
5974 bfd_size_type indx;
5975
5976 name = lbasename (output_bfd->filename);
5977 def.vd_hash = bfd_elf_hash (name);
5978 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5979 name, FALSE);
5980 if (indx == (bfd_size_type) -1)
5981 return FALSE;
5982 defaux.vda_name = indx;
5983 }
5984 defaux.vda_next = 0;
5985
5986 _bfd_elf_swap_verdef_out (output_bfd, &def,
5987 (Elf_External_Verdef *) p);
5988 p += sizeof (Elf_External_Verdef);
5989 if (info->create_default_symver)
5990 {
5991 /* Add a symbol representing this version. */
5992 bh = NULL;
5993 if (! (_bfd_generic_link_add_one_symbol
5994 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5995 0, NULL, FALSE,
5996 get_elf_backend_data (dynobj)->collect, &bh)))
5997 return FALSE;
5998 h = (struct elf_link_hash_entry *) bh;
5999 h->non_elf = 0;
6000 h->def_regular = 1;
6001 h->type = STT_OBJECT;
6002 h->verinfo.vertree = NULL;
6003
6004 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6005 return FALSE;
6006
6007 /* Create a duplicate of the base version with the same
6008 aux block, but different flags. */
6009 def.vd_flags = 0;
6010 def.vd_ndx = 2;
6011 def.vd_aux = sizeof (Elf_External_Verdef);
6012 if (verdefs)
6013 def.vd_next = (sizeof (Elf_External_Verdef)
6014 + sizeof (Elf_External_Verdaux));
6015 else
6016 def.vd_next = 0;
6017 _bfd_elf_swap_verdef_out (output_bfd, &def,
6018 (Elf_External_Verdef *) p);
6019 p += sizeof (Elf_External_Verdef);
6020 }
6021 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6022 (Elf_External_Verdaux *) p);
6023 p += sizeof (Elf_External_Verdaux);
6024
6025 for (t = verdefs; t != NULL; t = t->next)
6026 {
6027 unsigned int cdeps;
6028 struct bfd_elf_version_deps *n;
6029
6030 cdeps = 0;
6031 for (n = t->deps; n != NULL; n = n->next)
6032 ++cdeps;
6033
6034 /* Add a symbol representing this version. */
6035 bh = NULL;
6036 if (! (_bfd_generic_link_add_one_symbol
6037 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6038 0, NULL, FALSE,
6039 get_elf_backend_data (dynobj)->collect, &bh)))
6040 return FALSE;
6041 h = (struct elf_link_hash_entry *) bh;
6042 h->non_elf = 0;
6043 h->def_regular = 1;
6044 h->type = STT_OBJECT;
6045 h->verinfo.vertree = t;
6046
6047 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6048 return FALSE;
6049
6050 def.vd_version = VER_DEF_CURRENT;
6051 def.vd_flags = 0;
6052 if (t->globals.list == NULL
6053 && t->locals.list == NULL
6054 && ! t->used)
6055 def.vd_flags |= VER_FLG_WEAK;
6056 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6057 def.vd_cnt = cdeps + 1;
6058 def.vd_hash = bfd_elf_hash (t->name);
6059 def.vd_aux = sizeof (Elf_External_Verdef);
6060 def.vd_next = 0;
6061 if (t->next != NULL)
6062 def.vd_next = (sizeof (Elf_External_Verdef)
6063 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6064
6065 _bfd_elf_swap_verdef_out (output_bfd, &def,
6066 (Elf_External_Verdef *) p);
6067 p += sizeof (Elf_External_Verdef);
6068
6069 defaux.vda_name = h->dynstr_index;
6070 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6071 h->dynstr_index);
6072 defaux.vda_next = 0;
6073 if (t->deps != NULL)
6074 defaux.vda_next = sizeof (Elf_External_Verdaux);
6075 t->name_indx = defaux.vda_name;
6076
6077 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6078 (Elf_External_Verdaux *) p);
6079 p += sizeof (Elf_External_Verdaux);
6080
6081 for (n = t->deps; n != NULL; n = n->next)
6082 {
6083 if (n->version_needed == NULL)
6084 {
6085 /* This can happen if there was an error in the
6086 version script. */
6087 defaux.vda_name = 0;
6088 }
6089 else
6090 {
6091 defaux.vda_name = n->version_needed->name_indx;
6092 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6093 defaux.vda_name);
6094 }
6095 if (n->next == NULL)
6096 defaux.vda_next = 0;
6097 else
6098 defaux.vda_next = sizeof (Elf_External_Verdaux);
6099
6100 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6101 (Elf_External_Verdaux *) p);
6102 p += sizeof (Elf_External_Verdaux);
6103 }
6104 }
6105
6106 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6107 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6108 return FALSE;
6109
6110 elf_tdata (output_bfd)->cverdefs = cdefs;
6111 }
6112
6113 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6114 {
6115 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6116 return FALSE;
6117 }
6118 else if (info->flags & DF_BIND_NOW)
6119 {
6120 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6121 return FALSE;
6122 }
6123
6124 if (info->flags_1)
6125 {
6126 if (info->executable)
6127 info->flags_1 &= ~ (DF_1_INITFIRST
6128 | DF_1_NODELETE
6129 | DF_1_NOOPEN);
6130 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6131 return FALSE;
6132 }
6133
6134 /* Work out the size of the version reference section. */
6135
6136 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6137 BFD_ASSERT (s != NULL);
6138 {
6139 struct elf_find_verdep_info sinfo;
6140
6141 sinfo.info = info;
6142 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6143 if (sinfo.vers == 0)
6144 sinfo.vers = 1;
6145 sinfo.failed = FALSE;
6146
6147 elf_link_hash_traverse (elf_hash_table (info),
6148 _bfd_elf_link_find_version_dependencies,
6149 &sinfo);
6150 if (sinfo.failed)
6151 return FALSE;
6152
6153 if (elf_tdata (output_bfd)->verref == NULL)
6154 s->flags |= SEC_EXCLUDE;
6155 else
6156 {
6157 Elf_Internal_Verneed *t;
6158 unsigned int size;
6159 unsigned int crefs;
6160 bfd_byte *p;
6161
6162 /* Build the version definition section. */
6163 size = 0;
6164 crefs = 0;
6165 for (t = elf_tdata (output_bfd)->verref;
6166 t != NULL;
6167 t = t->vn_nextref)
6168 {
6169 Elf_Internal_Vernaux *a;
6170
6171 size += sizeof (Elf_External_Verneed);
6172 ++crefs;
6173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6174 size += sizeof (Elf_External_Vernaux);
6175 }
6176
6177 s->size = size;
6178 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6179 if (s->contents == NULL)
6180 return FALSE;
6181
6182 p = s->contents;
6183 for (t = elf_tdata (output_bfd)->verref;
6184 t != NULL;
6185 t = t->vn_nextref)
6186 {
6187 unsigned int caux;
6188 Elf_Internal_Vernaux *a;
6189 bfd_size_type indx;
6190
6191 caux = 0;
6192 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6193 ++caux;
6194
6195 t->vn_version = VER_NEED_CURRENT;
6196 t->vn_cnt = caux;
6197 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6198 elf_dt_name (t->vn_bfd) != NULL
6199 ? elf_dt_name (t->vn_bfd)
6200 : lbasename (t->vn_bfd->filename),
6201 FALSE);
6202 if (indx == (bfd_size_type) -1)
6203 return FALSE;
6204 t->vn_file = indx;
6205 t->vn_aux = sizeof (Elf_External_Verneed);
6206 if (t->vn_nextref == NULL)
6207 t->vn_next = 0;
6208 else
6209 t->vn_next = (sizeof (Elf_External_Verneed)
6210 + caux * sizeof (Elf_External_Vernaux));
6211
6212 _bfd_elf_swap_verneed_out (output_bfd, t,
6213 (Elf_External_Verneed *) p);
6214 p += sizeof (Elf_External_Verneed);
6215
6216 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6217 {
6218 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6219 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6220 a->vna_nodename, FALSE);
6221 if (indx == (bfd_size_type) -1)
6222 return FALSE;
6223 a->vna_name = indx;
6224 if (a->vna_nextptr == NULL)
6225 a->vna_next = 0;
6226 else
6227 a->vna_next = sizeof (Elf_External_Vernaux);
6228
6229 _bfd_elf_swap_vernaux_out (output_bfd, a,
6230 (Elf_External_Vernaux *) p);
6231 p += sizeof (Elf_External_Vernaux);
6232 }
6233 }
6234
6235 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6236 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6237 return FALSE;
6238
6239 elf_tdata (output_bfd)->cverrefs = crefs;
6240 }
6241 }
6242
6243 if ((elf_tdata (output_bfd)->cverrefs == 0
6244 && elf_tdata (output_bfd)->cverdefs == 0)
6245 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6246 &section_sym_count) == 0)
6247 {
6248 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6249 s->flags |= SEC_EXCLUDE;
6250 }
6251 }
6252 return TRUE;
6253 }
6254
6255 /* Find the first non-excluded output section. We'll use its
6256 section symbol for some emitted relocs. */
6257 void
6258 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6259 {
6260 asection *s;
6261
6262 for (s = output_bfd->sections; s != NULL; s = s->next)
6263 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6264 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6265 {
6266 elf_hash_table (info)->text_index_section = s;
6267 break;
6268 }
6269 }
6270
6271 /* Find two non-excluded output sections, one for code, one for data.
6272 We'll use their section symbols for some emitted relocs. */
6273 void
6274 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6275 {
6276 asection *s;
6277
6278 /* Data first, since setting text_index_section changes
6279 _bfd_elf_link_omit_section_dynsym. */
6280 for (s = output_bfd->sections; s != NULL; s = s->next)
6281 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6282 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6283 {
6284 elf_hash_table (info)->data_index_section = s;
6285 break;
6286 }
6287
6288 for (s = output_bfd->sections; s != NULL; s = s->next)
6289 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6290 == (SEC_ALLOC | SEC_READONLY))
6291 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6292 {
6293 elf_hash_table (info)->text_index_section = s;
6294 break;
6295 }
6296
6297 if (elf_hash_table (info)->text_index_section == NULL)
6298 elf_hash_table (info)->text_index_section
6299 = elf_hash_table (info)->data_index_section;
6300 }
6301
6302 bfd_boolean
6303 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6304 {
6305 const struct elf_backend_data *bed;
6306
6307 if (!is_elf_hash_table (info->hash))
6308 return TRUE;
6309
6310 bed = get_elf_backend_data (output_bfd);
6311 (*bed->elf_backend_init_index_section) (output_bfd, info);
6312
6313 if (elf_hash_table (info)->dynamic_sections_created)
6314 {
6315 bfd *dynobj;
6316 asection *s;
6317 bfd_size_type dynsymcount;
6318 unsigned long section_sym_count;
6319 unsigned int dtagcount;
6320
6321 dynobj = elf_hash_table (info)->dynobj;
6322
6323 /* Assign dynsym indicies. In a shared library we generate a
6324 section symbol for each output section, which come first.
6325 Next come all of the back-end allocated local dynamic syms,
6326 followed by the rest of the global symbols. */
6327
6328 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6329 &section_sym_count);
6330
6331 /* Work out the size of the symbol version section. */
6332 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6333 BFD_ASSERT (s != NULL);
6334 if (dynsymcount != 0
6335 && (s->flags & SEC_EXCLUDE) == 0)
6336 {
6337 s->size = dynsymcount * sizeof (Elf_External_Versym);
6338 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6339 if (s->contents == NULL)
6340 return FALSE;
6341
6342 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6343 return FALSE;
6344 }
6345
6346 /* Set the size of the .dynsym and .hash sections. We counted
6347 the number of dynamic symbols in elf_link_add_object_symbols.
6348 We will build the contents of .dynsym and .hash when we build
6349 the final symbol table, because until then we do not know the
6350 correct value to give the symbols. We built the .dynstr
6351 section as we went along in elf_link_add_object_symbols. */
6352 s = bfd_get_section_by_name (dynobj, ".dynsym");
6353 BFD_ASSERT (s != NULL);
6354 s->size = dynsymcount * bed->s->sizeof_sym;
6355
6356 if (dynsymcount != 0)
6357 {
6358 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6359 if (s->contents == NULL)
6360 return FALSE;
6361
6362 /* The first entry in .dynsym is a dummy symbol.
6363 Clear all the section syms, in case we don't output them all. */
6364 ++section_sym_count;
6365 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6366 }
6367
6368 elf_hash_table (info)->bucketcount = 0;
6369
6370 /* Compute the size of the hashing table. As a side effect this
6371 computes the hash values for all the names we export. */
6372 if (info->emit_hash)
6373 {
6374 unsigned long int *hashcodes;
6375 struct hash_codes_info hashinf;
6376 bfd_size_type amt;
6377 unsigned long int nsyms;
6378 size_t bucketcount;
6379 size_t hash_entry_size;
6380
6381 /* Compute the hash values for all exported symbols. At the same
6382 time store the values in an array so that we could use them for
6383 optimizations. */
6384 amt = dynsymcount * sizeof (unsigned long int);
6385 hashcodes = (unsigned long int *) bfd_malloc (amt);
6386 if (hashcodes == NULL)
6387 return FALSE;
6388 hashinf.hashcodes = hashcodes;
6389 hashinf.error = FALSE;
6390
6391 /* Put all hash values in HASHCODES. */
6392 elf_link_hash_traverse (elf_hash_table (info),
6393 elf_collect_hash_codes, &hashinf);
6394 if (hashinf.error)
6395 {
6396 free (hashcodes);
6397 return FALSE;
6398 }
6399
6400 nsyms = hashinf.hashcodes - hashcodes;
6401 bucketcount
6402 = compute_bucket_count (info, hashcodes, nsyms, 0);
6403 free (hashcodes);
6404
6405 if (bucketcount == 0)
6406 return FALSE;
6407
6408 elf_hash_table (info)->bucketcount = bucketcount;
6409
6410 s = bfd_get_section_by_name (dynobj, ".hash");
6411 BFD_ASSERT (s != NULL);
6412 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6413 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6414 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6416 return FALSE;
6417
6418 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6419 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6420 s->contents + hash_entry_size);
6421 }
6422
6423 if (info->emit_gnu_hash)
6424 {
6425 size_t i, cnt;
6426 unsigned char *contents;
6427 struct collect_gnu_hash_codes cinfo;
6428 bfd_size_type amt;
6429 size_t bucketcount;
6430
6431 memset (&cinfo, 0, sizeof (cinfo));
6432
6433 /* Compute the hash values for all exported symbols. At the same
6434 time store the values in an array so that we could use them for
6435 optimizations. */
6436 amt = dynsymcount * 2 * sizeof (unsigned long int);
6437 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6438 if (cinfo.hashcodes == NULL)
6439 return FALSE;
6440
6441 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6442 cinfo.min_dynindx = -1;
6443 cinfo.output_bfd = output_bfd;
6444 cinfo.bed = bed;
6445
6446 /* Put all hash values in HASHCODES. */
6447 elf_link_hash_traverse (elf_hash_table (info),
6448 elf_collect_gnu_hash_codes, &cinfo);
6449 if (cinfo.error)
6450 {
6451 free (cinfo.hashcodes);
6452 return FALSE;
6453 }
6454
6455 bucketcount
6456 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6457
6458 if (bucketcount == 0)
6459 {
6460 free (cinfo.hashcodes);
6461 return FALSE;
6462 }
6463
6464 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6465 BFD_ASSERT (s != NULL);
6466
6467 if (cinfo.nsyms == 0)
6468 {
6469 /* Empty .gnu.hash section is special. */
6470 BFD_ASSERT (cinfo.min_dynindx == -1);
6471 free (cinfo.hashcodes);
6472 s->size = 5 * 4 + bed->s->arch_size / 8;
6473 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6474 if (contents == NULL)
6475 return FALSE;
6476 s->contents = contents;
6477 /* 1 empty bucket. */
6478 bfd_put_32 (output_bfd, 1, contents);
6479 /* SYMIDX above the special symbol 0. */
6480 bfd_put_32 (output_bfd, 1, contents + 4);
6481 /* Just one word for bitmask. */
6482 bfd_put_32 (output_bfd, 1, contents + 8);
6483 /* Only hash fn bloom filter. */
6484 bfd_put_32 (output_bfd, 0, contents + 12);
6485 /* No hashes are valid - empty bitmask. */
6486 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6487 /* No hashes in the only bucket. */
6488 bfd_put_32 (output_bfd, 0,
6489 contents + 16 + bed->s->arch_size / 8);
6490 }
6491 else
6492 {
6493 unsigned long int maskwords, maskbitslog2;
6494 BFD_ASSERT (cinfo.min_dynindx != -1);
6495
6496 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6497 if (maskbitslog2 < 3)
6498 maskbitslog2 = 5;
6499 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6500 maskbitslog2 = maskbitslog2 + 3;
6501 else
6502 maskbitslog2 = maskbitslog2 + 2;
6503 if (bed->s->arch_size == 64)
6504 {
6505 if (maskbitslog2 == 5)
6506 maskbitslog2 = 6;
6507 cinfo.shift1 = 6;
6508 }
6509 else
6510 cinfo.shift1 = 5;
6511 cinfo.mask = (1 << cinfo.shift1) - 1;
6512 cinfo.shift2 = maskbitslog2;
6513 cinfo.maskbits = 1 << maskbitslog2;
6514 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6515 amt = bucketcount * sizeof (unsigned long int) * 2;
6516 amt += maskwords * sizeof (bfd_vma);
6517 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6518 if (cinfo.bitmask == NULL)
6519 {
6520 free (cinfo.hashcodes);
6521 return FALSE;
6522 }
6523
6524 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6525 cinfo.indx = cinfo.counts + bucketcount;
6526 cinfo.symindx = dynsymcount - cinfo.nsyms;
6527 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6528
6529 /* Determine how often each hash bucket is used. */
6530 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6531 for (i = 0; i < cinfo.nsyms; ++i)
6532 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6533
6534 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6535 if (cinfo.counts[i] != 0)
6536 {
6537 cinfo.indx[i] = cnt;
6538 cnt += cinfo.counts[i];
6539 }
6540 BFD_ASSERT (cnt == dynsymcount);
6541 cinfo.bucketcount = bucketcount;
6542 cinfo.local_indx = cinfo.min_dynindx;
6543
6544 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6545 s->size += cinfo.maskbits / 8;
6546 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6547 if (contents == NULL)
6548 {
6549 free (cinfo.bitmask);
6550 free (cinfo.hashcodes);
6551 return FALSE;
6552 }
6553
6554 s->contents = contents;
6555 bfd_put_32 (output_bfd, bucketcount, contents);
6556 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6557 bfd_put_32 (output_bfd, maskwords, contents + 8);
6558 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6559 contents += 16 + cinfo.maskbits / 8;
6560
6561 for (i = 0; i < bucketcount; ++i)
6562 {
6563 if (cinfo.counts[i] == 0)
6564 bfd_put_32 (output_bfd, 0, contents);
6565 else
6566 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6567 contents += 4;
6568 }
6569
6570 cinfo.contents = contents;
6571
6572 /* Renumber dynamic symbols, populate .gnu.hash section. */
6573 elf_link_hash_traverse (elf_hash_table (info),
6574 elf_renumber_gnu_hash_syms, &cinfo);
6575
6576 contents = s->contents + 16;
6577 for (i = 0; i < maskwords; ++i)
6578 {
6579 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6580 contents);
6581 contents += bed->s->arch_size / 8;
6582 }
6583
6584 free (cinfo.bitmask);
6585 free (cinfo.hashcodes);
6586 }
6587 }
6588
6589 s = bfd_get_section_by_name (dynobj, ".dynstr");
6590 BFD_ASSERT (s != NULL);
6591
6592 elf_finalize_dynstr (output_bfd, info);
6593
6594 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6595
6596 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6597 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6598 return FALSE;
6599 }
6600
6601 return TRUE;
6602 }
6603 \f
6604 /* Indicate that we are only retrieving symbol values from this
6605 section. */
6606
6607 void
6608 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6609 {
6610 if (is_elf_hash_table (info->hash))
6611 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6612 _bfd_generic_link_just_syms (sec, info);
6613 }
6614
6615 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6616
6617 static void
6618 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6619 asection *sec)
6620 {
6621 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6622 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6623 }
6624
6625 /* Finish SHF_MERGE section merging. */
6626
6627 bfd_boolean
6628 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6629 {
6630 bfd *ibfd;
6631 asection *sec;
6632
6633 if (!is_elf_hash_table (info->hash))
6634 return FALSE;
6635
6636 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6637 if ((ibfd->flags & DYNAMIC) == 0)
6638 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6639 if ((sec->flags & SEC_MERGE) != 0
6640 && !bfd_is_abs_section (sec->output_section))
6641 {
6642 struct bfd_elf_section_data *secdata;
6643
6644 secdata = elf_section_data (sec);
6645 if (! _bfd_add_merge_section (abfd,
6646 &elf_hash_table (info)->merge_info,
6647 sec, &secdata->sec_info))
6648 return FALSE;
6649 else if (secdata->sec_info)
6650 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6651 }
6652
6653 if (elf_hash_table (info)->merge_info != NULL)
6654 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6655 merge_sections_remove_hook);
6656 return TRUE;
6657 }
6658
6659 /* Create an entry in an ELF linker hash table. */
6660
6661 struct bfd_hash_entry *
6662 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6663 struct bfd_hash_table *table,
6664 const char *string)
6665 {
6666 /* Allocate the structure if it has not already been allocated by a
6667 subclass. */
6668 if (entry == NULL)
6669 {
6670 entry = (struct bfd_hash_entry *)
6671 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6672 if (entry == NULL)
6673 return entry;
6674 }
6675
6676 /* Call the allocation method of the superclass. */
6677 entry = _bfd_link_hash_newfunc (entry, table, string);
6678 if (entry != NULL)
6679 {
6680 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6681 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6682
6683 /* Set local fields. */
6684 ret->indx = -1;
6685 ret->dynindx = -1;
6686 ret->got = htab->init_got_refcount;
6687 ret->plt = htab->init_plt_refcount;
6688 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6689 - offsetof (struct elf_link_hash_entry, size)));
6690 /* Assume that we have been called by a non-ELF symbol reader.
6691 This flag is then reset by the code which reads an ELF input
6692 file. This ensures that a symbol created by a non-ELF symbol
6693 reader will have the flag set correctly. */
6694 ret->non_elf = 1;
6695 }
6696
6697 return entry;
6698 }
6699
6700 /* Copy data from an indirect symbol to its direct symbol, hiding the
6701 old indirect symbol. Also used for copying flags to a weakdef. */
6702
6703 void
6704 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6705 struct elf_link_hash_entry *dir,
6706 struct elf_link_hash_entry *ind)
6707 {
6708 struct elf_link_hash_table *htab;
6709
6710 /* Copy down any references that we may have already seen to the
6711 symbol which just became indirect. */
6712
6713 dir->ref_dynamic |= ind->ref_dynamic;
6714 dir->ref_regular |= ind->ref_regular;
6715 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6716 dir->non_got_ref |= ind->non_got_ref;
6717 dir->needs_plt |= ind->needs_plt;
6718 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6719
6720 if (ind->root.type != bfd_link_hash_indirect)
6721 return;
6722
6723 /* Copy over the global and procedure linkage table refcount entries.
6724 These may have been already set up by a check_relocs routine. */
6725 htab = elf_hash_table (info);
6726 if (ind->got.refcount > htab->init_got_refcount.refcount)
6727 {
6728 if (dir->got.refcount < 0)
6729 dir->got.refcount = 0;
6730 dir->got.refcount += ind->got.refcount;
6731 ind->got.refcount = htab->init_got_refcount.refcount;
6732 }
6733
6734 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6735 {
6736 if (dir->plt.refcount < 0)
6737 dir->plt.refcount = 0;
6738 dir->plt.refcount += ind->plt.refcount;
6739 ind->plt.refcount = htab->init_plt_refcount.refcount;
6740 }
6741
6742 if (ind->dynindx != -1)
6743 {
6744 if (dir->dynindx != -1)
6745 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6746 dir->dynindx = ind->dynindx;
6747 dir->dynstr_index = ind->dynstr_index;
6748 ind->dynindx = -1;
6749 ind->dynstr_index = 0;
6750 }
6751 }
6752
6753 void
6754 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6755 struct elf_link_hash_entry *h,
6756 bfd_boolean force_local)
6757 {
6758 /* STT_GNU_IFUNC symbol must go through PLT. */
6759 if (h->type != STT_GNU_IFUNC)
6760 {
6761 h->plt = elf_hash_table (info)->init_plt_offset;
6762 h->needs_plt = 0;
6763 }
6764 if (force_local)
6765 {
6766 h->forced_local = 1;
6767 if (h->dynindx != -1)
6768 {
6769 h->dynindx = -1;
6770 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6771 h->dynstr_index);
6772 }
6773 }
6774 }
6775
6776 /* Initialize an ELF linker hash table. */
6777
6778 bfd_boolean
6779 _bfd_elf_link_hash_table_init
6780 (struct elf_link_hash_table *table,
6781 bfd *abfd,
6782 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6783 struct bfd_hash_table *,
6784 const char *),
6785 unsigned int entsize,
6786 enum elf_target_id target_id)
6787 {
6788 bfd_boolean ret;
6789 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6790
6791 memset (table, 0, sizeof * table);
6792 table->init_got_refcount.refcount = can_refcount - 1;
6793 table->init_plt_refcount.refcount = can_refcount - 1;
6794 table->init_got_offset.offset = -(bfd_vma) 1;
6795 table->init_plt_offset.offset = -(bfd_vma) 1;
6796 /* The first dynamic symbol is a dummy. */
6797 table->dynsymcount = 1;
6798
6799 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6800
6801 table->root.type = bfd_link_elf_hash_table;
6802 table->hash_table_id = target_id;
6803
6804 return ret;
6805 }
6806
6807 /* Create an ELF linker hash table. */
6808
6809 struct bfd_link_hash_table *
6810 _bfd_elf_link_hash_table_create (bfd *abfd)
6811 {
6812 struct elf_link_hash_table *ret;
6813 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6814
6815 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6816 if (ret == NULL)
6817 return NULL;
6818
6819 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6820 sizeof (struct elf_link_hash_entry),
6821 GENERIC_ELF_DATA))
6822 {
6823 free (ret);
6824 return NULL;
6825 }
6826
6827 return &ret->root;
6828 }
6829
6830 /* This is a hook for the ELF emulation code in the generic linker to
6831 tell the backend linker what file name to use for the DT_NEEDED
6832 entry for a dynamic object. */
6833
6834 void
6835 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6836 {
6837 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6838 && bfd_get_format (abfd) == bfd_object)
6839 elf_dt_name (abfd) = name;
6840 }
6841
6842 int
6843 bfd_elf_get_dyn_lib_class (bfd *abfd)
6844 {
6845 int lib_class;
6846 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6847 && bfd_get_format (abfd) == bfd_object)
6848 lib_class = elf_dyn_lib_class (abfd);
6849 else
6850 lib_class = 0;
6851 return lib_class;
6852 }
6853
6854 void
6855 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6856 {
6857 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6858 && bfd_get_format (abfd) == bfd_object)
6859 elf_dyn_lib_class (abfd) = lib_class;
6860 }
6861
6862 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6863 the linker ELF emulation code. */
6864
6865 struct bfd_link_needed_list *
6866 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6867 struct bfd_link_info *info)
6868 {
6869 if (! is_elf_hash_table (info->hash))
6870 return NULL;
6871 return elf_hash_table (info)->needed;
6872 }
6873
6874 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6875 hook for the linker ELF emulation code. */
6876
6877 struct bfd_link_needed_list *
6878 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6879 struct bfd_link_info *info)
6880 {
6881 if (! is_elf_hash_table (info->hash))
6882 return NULL;
6883 return elf_hash_table (info)->runpath;
6884 }
6885
6886 /* Get the name actually used for a dynamic object for a link. This
6887 is the SONAME entry if there is one. Otherwise, it is the string
6888 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6889
6890 const char *
6891 bfd_elf_get_dt_soname (bfd *abfd)
6892 {
6893 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6894 && bfd_get_format (abfd) == bfd_object)
6895 return elf_dt_name (abfd);
6896 return NULL;
6897 }
6898
6899 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6900 the ELF linker emulation code. */
6901
6902 bfd_boolean
6903 bfd_elf_get_bfd_needed_list (bfd *abfd,
6904 struct bfd_link_needed_list **pneeded)
6905 {
6906 asection *s;
6907 bfd_byte *dynbuf = NULL;
6908 unsigned int elfsec;
6909 unsigned long shlink;
6910 bfd_byte *extdyn, *extdynend;
6911 size_t extdynsize;
6912 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6913
6914 *pneeded = NULL;
6915
6916 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6917 || bfd_get_format (abfd) != bfd_object)
6918 return TRUE;
6919
6920 s = bfd_get_section_by_name (abfd, ".dynamic");
6921 if (s == NULL || s->size == 0)
6922 return TRUE;
6923
6924 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6925 goto error_return;
6926
6927 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6928 if (elfsec == SHN_BAD)
6929 goto error_return;
6930
6931 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6932
6933 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6934 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6935
6936 extdyn = dynbuf;
6937 extdynend = extdyn + s->size;
6938 for (; extdyn < extdynend; extdyn += extdynsize)
6939 {
6940 Elf_Internal_Dyn dyn;
6941
6942 (*swap_dyn_in) (abfd, extdyn, &dyn);
6943
6944 if (dyn.d_tag == DT_NULL)
6945 break;
6946
6947 if (dyn.d_tag == DT_NEEDED)
6948 {
6949 const char *string;
6950 struct bfd_link_needed_list *l;
6951 unsigned int tagv = dyn.d_un.d_val;
6952 bfd_size_type amt;
6953
6954 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6955 if (string == NULL)
6956 goto error_return;
6957
6958 amt = sizeof *l;
6959 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6960 if (l == NULL)
6961 goto error_return;
6962
6963 l->by = abfd;
6964 l->name = string;
6965 l->next = *pneeded;
6966 *pneeded = l;
6967 }
6968 }
6969
6970 free (dynbuf);
6971
6972 return TRUE;
6973
6974 error_return:
6975 if (dynbuf != NULL)
6976 free (dynbuf);
6977 return FALSE;
6978 }
6979
6980 struct elf_symbuf_symbol
6981 {
6982 unsigned long st_name; /* Symbol name, index in string tbl */
6983 unsigned char st_info; /* Type and binding attributes */
6984 unsigned char st_other; /* Visibilty, and target specific */
6985 };
6986
6987 struct elf_symbuf_head
6988 {
6989 struct elf_symbuf_symbol *ssym;
6990 bfd_size_type count;
6991 unsigned int st_shndx;
6992 };
6993
6994 struct elf_symbol
6995 {
6996 union
6997 {
6998 Elf_Internal_Sym *isym;
6999 struct elf_symbuf_symbol *ssym;
7000 } u;
7001 const char *name;
7002 };
7003
7004 /* Sort references to symbols by ascending section number. */
7005
7006 static int
7007 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7008 {
7009 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7010 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7011
7012 return s1->st_shndx - s2->st_shndx;
7013 }
7014
7015 static int
7016 elf_sym_name_compare (const void *arg1, const void *arg2)
7017 {
7018 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7019 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7020 return strcmp (s1->name, s2->name);
7021 }
7022
7023 static struct elf_symbuf_head *
7024 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7025 {
7026 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7027 struct elf_symbuf_symbol *ssym;
7028 struct elf_symbuf_head *ssymbuf, *ssymhead;
7029 bfd_size_type i, shndx_count, total_size;
7030
7031 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7032 if (indbuf == NULL)
7033 return NULL;
7034
7035 for (ind = indbuf, i = 0; i < symcount; i++)
7036 if (isymbuf[i].st_shndx != SHN_UNDEF)
7037 *ind++ = &isymbuf[i];
7038 indbufend = ind;
7039
7040 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7041 elf_sort_elf_symbol);
7042
7043 shndx_count = 0;
7044 if (indbufend > indbuf)
7045 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7046 if (ind[0]->st_shndx != ind[1]->st_shndx)
7047 shndx_count++;
7048
7049 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7050 + (indbufend - indbuf) * sizeof (*ssym));
7051 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7052 if (ssymbuf == NULL)
7053 {
7054 free (indbuf);
7055 return NULL;
7056 }
7057
7058 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7059 ssymbuf->ssym = NULL;
7060 ssymbuf->count = shndx_count;
7061 ssymbuf->st_shndx = 0;
7062 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7063 {
7064 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7065 {
7066 ssymhead++;
7067 ssymhead->ssym = ssym;
7068 ssymhead->count = 0;
7069 ssymhead->st_shndx = (*ind)->st_shndx;
7070 }
7071 ssym->st_name = (*ind)->st_name;
7072 ssym->st_info = (*ind)->st_info;
7073 ssym->st_other = (*ind)->st_other;
7074 ssymhead->count++;
7075 }
7076 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7077 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7078 == total_size));
7079
7080 free (indbuf);
7081 return ssymbuf;
7082 }
7083
7084 /* Check if 2 sections define the same set of local and global
7085 symbols. */
7086
7087 static bfd_boolean
7088 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7089 struct bfd_link_info *info)
7090 {
7091 bfd *bfd1, *bfd2;
7092 const struct elf_backend_data *bed1, *bed2;
7093 Elf_Internal_Shdr *hdr1, *hdr2;
7094 bfd_size_type symcount1, symcount2;
7095 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7096 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7097 Elf_Internal_Sym *isym, *isymend;
7098 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7099 bfd_size_type count1, count2, i;
7100 unsigned int shndx1, shndx2;
7101 bfd_boolean result;
7102
7103 bfd1 = sec1->owner;
7104 bfd2 = sec2->owner;
7105
7106 /* Both sections have to be in ELF. */
7107 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7108 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7109 return FALSE;
7110
7111 if (elf_section_type (sec1) != elf_section_type (sec2))
7112 return FALSE;
7113
7114 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7115 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7116 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7117 return FALSE;
7118
7119 bed1 = get_elf_backend_data (bfd1);
7120 bed2 = get_elf_backend_data (bfd2);
7121 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7122 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7123 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7124 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7125
7126 if (symcount1 == 0 || symcount2 == 0)
7127 return FALSE;
7128
7129 result = FALSE;
7130 isymbuf1 = NULL;
7131 isymbuf2 = NULL;
7132 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7133 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7134
7135 if (ssymbuf1 == NULL)
7136 {
7137 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7138 NULL, NULL, NULL);
7139 if (isymbuf1 == NULL)
7140 goto done;
7141
7142 if (!info->reduce_memory_overheads)
7143 elf_tdata (bfd1)->symbuf = ssymbuf1
7144 = elf_create_symbuf (symcount1, isymbuf1);
7145 }
7146
7147 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7148 {
7149 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7150 NULL, NULL, NULL);
7151 if (isymbuf2 == NULL)
7152 goto done;
7153
7154 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7155 elf_tdata (bfd2)->symbuf = ssymbuf2
7156 = elf_create_symbuf (symcount2, isymbuf2);
7157 }
7158
7159 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7160 {
7161 /* Optimized faster version. */
7162 bfd_size_type lo, hi, mid;
7163 struct elf_symbol *symp;
7164 struct elf_symbuf_symbol *ssym, *ssymend;
7165
7166 lo = 0;
7167 hi = ssymbuf1->count;
7168 ssymbuf1++;
7169 count1 = 0;
7170 while (lo < hi)
7171 {
7172 mid = (lo + hi) / 2;
7173 if (shndx1 < ssymbuf1[mid].st_shndx)
7174 hi = mid;
7175 else if (shndx1 > ssymbuf1[mid].st_shndx)
7176 lo = mid + 1;
7177 else
7178 {
7179 count1 = ssymbuf1[mid].count;
7180 ssymbuf1 += mid;
7181 break;
7182 }
7183 }
7184
7185 lo = 0;
7186 hi = ssymbuf2->count;
7187 ssymbuf2++;
7188 count2 = 0;
7189 while (lo < hi)
7190 {
7191 mid = (lo + hi) / 2;
7192 if (shndx2 < ssymbuf2[mid].st_shndx)
7193 hi = mid;
7194 else if (shndx2 > ssymbuf2[mid].st_shndx)
7195 lo = mid + 1;
7196 else
7197 {
7198 count2 = ssymbuf2[mid].count;
7199 ssymbuf2 += mid;
7200 break;
7201 }
7202 }
7203
7204 if (count1 == 0 || count2 == 0 || count1 != count2)
7205 goto done;
7206
7207 symtable1 = (struct elf_symbol *)
7208 bfd_malloc (count1 * sizeof (struct elf_symbol));
7209 symtable2 = (struct elf_symbol *)
7210 bfd_malloc (count2 * sizeof (struct elf_symbol));
7211 if (symtable1 == NULL || symtable2 == NULL)
7212 goto done;
7213
7214 symp = symtable1;
7215 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7216 ssym < ssymend; ssym++, symp++)
7217 {
7218 symp->u.ssym = ssym;
7219 symp->name = bfd_elf_string_from_elf_section (bfd1,
7220 hdr1->sh_link,
7221 ssym->st_name);
7222 }
7223
7224 symp = symtable2;
7225 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7226 ssym < ssymend; ssym++, symp++)
7227 {
7228 symp->u.ssym = ssym;
7229 symp->name = bfd_elf_string_from_elf_section (bfd2,
7230 hdr2->sh_link,
7231 ssym->st_name);
7232 }
7233
7234 /* Sort symbol by name. */
7235 qsort (symtable1, count1, sizeof (struct elf_symbol),
7236 elf_sym_name_compare);
7237 qsort (symtable2, count1, sizeof (struct elf_symbol),
7238 elf_sym_name_compare);
7239
7240 for (i = 0; i < count1; i++)
7241 /* Two symbols must have the same binding, type and name. */
7242 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7243 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7244 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7245 goto done;
7246
7247 result = TRUE;
7248 goto done;
7249 }
7250
7251 symtable1 = (struct elf_symbol *)
7252 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7253 symtable2 = (struct elf_symbol *)
7254 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7255 if (symtable1 == NULL || symtable2 == NULL)
7256 goto done;
7257
7258 /* Count definitions in the section. */
7259 count1 = 0;
7260 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7261 if (isym->st_shndx == shndx1)
7262 symtable1[count1++].u.isym = isym;
7263
7264 count2 = 0;
7265 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7266 if (isym->st_shndx == shndx2)
7267 symtable2[count2++].u.isym = isym;
7268
7269 if (count1 == 0 || count2 == 0 || count1 != count2)
7270 goto done;
7271
7272 for (i = 0; i < count1; i++)
7273 symtable1[i].name
7274 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7275 symtable1[i].u.isym->st_name);
7276
7277 for (i = 0; i < count2; i++)
7278 symtable2[i].name
7279 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7280 symtable2[i].u.isym->st_name);
7281
7282 /* Sort symbol by name. */
7283 qsort (symtable1, count1, sizeof (struct elf_symbol),
7284 elf_sym_name_compare);
7285 qsort (symtable2, count1, sizeof (struct elf_symbol),
7286 elf_sym_name_compare);
7287
7288 for (i = 0; i < count1; i++)
7289 /* Two symbols must have the same binding, type and name. */
7290 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7291 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7292 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7293 goto done;
7294
7295 result = TRUE;
7296
7297 done:
7298 if (symtable1)
7299 free (symtable1);
7300 if (symtable2)
7301 free (symtable2);
7302 if (isymbuf1)
7303 free (isymbuf1);
7304 if (isymbuf2)
7305 free (isymbuf2);
7306
7307 return result;
7308 }
7309
7310 /* Return TRUE if 2 section types are compatible. */
7311
7312 bfd_boolean
7313 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7314 bfd *bbfd, const asection *bsec)
7315 {
7316 if (asec == NULL
7317 || bsec == NULL
7318 || abfd->xvec->flavour != bfd_target_elf_flavour
7319 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7320 return TRUE;
7321
7322 return elf_section_type (asec) == elf_section_type (bsec);
7323 }
7324 \f
7325 /* Final phase of ELF linker. */
7326
7327 /* A structure we use to avoid passing large numbers of arguments. */
7328
7329 struct elf_final_link_info
7330 {
7331 /* General link information. */
7332 struct bfd_link_info *info;
7333 /* Output BFD. */
7334 bfd *output_bfd;
7335 /* Symbol string table. */
7336 struct bfd_strtab_hash *symstrtab;
7337 /* .dynsym section. */
7338 asection *dynsym_sec;
7339 /* .hash section. */
7340 asection *hash_sec;
7341 /* symbol version section (.gnu.version). */
7342 asection *symver_sec;
7343 /* Buffer large enough to hold contents of any section. */
7344 bfd_byte *contents;
7345 /* Buffer large enough to hold external relocs of any section. */
7346 void *external_relocs;
7347 /* Buffer large enough to hold internal relocs of any section. */
7348 Elf_Internal_Rela *internal_relocs;
7349 /* Buffer large enough to hold external local symbols of any input
7350 BFD. */
7351 bfd_byte *external_syms;
7352 /* And a buffer for symbol section indices. */
7353 Elf_External_Sym_Shndx *locsym_shndx;
7354 /* Buffer large enough to hold internal local symbols of any input
7355 BFD. */
7356 Elf_Internal_Sym *internal_syms;
7357 /* Array large enough to hold a symbol index for each local symbol
7358 of any input BFD. */
7359 long *indices;
7360 /* Array large enough to hold a section pointer for each local
7361 symbol of any input BFD. */
7362 asection **sections;
7363 /* Buffer to hold swapped out symbols. */
7364 bfd_byte *symbuf;
7365 /* And one for symbol section indices. */
7366 Elf_External_Sym_Shndx *symshndxbuf;
7367 /* Number of swapped out symbols in buffer. */
7368 size_t symbuf_count;
7369 /* Number of symbols which fit in symbuf. */
7370 size_t symbuf_size;
7371 /* And same for symshndxbuf. */
7372 size_t shndxbuf_size;
7373 };
7374
7375 /* This struct is used to pass information to elf_link_output_extsym. */
7376
7377 struct elf_outext_info
7378 {
7379 bfd_boolean failed;
7380 bfd_boolean localsyms;
7381 struct elf_final_link_info *finfo;
7382 };
7383
7384
7385 /* Support for evaluating a complex relocation.
7386
7387 Complex relocations are generalized, self-describing relocations. The
7388 implementation of them consists of two parts: complex symbols, and the
7389 relocations themselves.
7390
7391 The relocations are use a reserved elf-wide relocation type code (R_RELC
7392 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7393 information (start bit, end bit, word width, etc) into the addend. This
7394 information is extracted from CGEN-generated operand tables within gas.
7395
7396 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7397 internal) representing prefix-notation expressions, including but not
7398 limited to those sorts of expressions normally encoded as addends in the
7399 addend field. The symbol mangling format is:
7400
7401 <node> := <literal>
7402 | <unary-operator> ':' <node>
7403 | <binary-operator> ':' <node> ':' <node>
7404 ;
7405
7406 <literal> := 's' <digits=N> ':' <N character symbol name>
7407 | 'S' <digits=N> ':' <N character section name>
7408 | '#' <hexdigits>
7409 ;
7410
7411 <binary-operator> := as in C
7412 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7413
7414 static void
7415 set_symbol_value (bfd *bfd_with_globals,
7416 Elf_Internal_Sym *isymbuf,
7417 size_t locsymcount,
7418 size_t symidx,
7419 bfd_vma val)
7420 {
7421 struct elf_link_hash_entry **sym_hashes;
7422 struct elf_link_hash_entry *h;
7423 size_t extsymoff = locsymcount;
7424
7425 if (symidx < locsymcount)
7426 {
7427 Elf_Internal_Sym *sym;
7428
7429 sym = isymbuf + symidx;
7430 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7431 {
7432 /* It is a local symbol: move it to the
7433 "absolute" section and give it a value. */
7434 sym->st_shndx = SHN_ABS;
7435 sym->st_value = val;
7436 return;
7437 }
7438 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7439 extsymoff = 0;
7440 }
7441
7442 /* It is a global symbol: set its link type
7443 to "defined" and give it a value. */
7444
7445 sym_hashes = elf_sym_hashes (bfd_with_globals);
7446 h = sym_hashes [symidx - extsymoff];
7447 while (h->root.type == bfd_link_hash_indirect
7448 || h->root.type == bfd_link_hash_warning)
7449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7450 h->root.type = bfd_link_hash_defined;
7451 h->root.u.def.value = val;
7452 h->root.u.def.section = bfd_abs_section_ptr;
7453 }
7454
7455 static bfd_boolean
7456 resolve_symbol (const char *name,
7457 bfd *input_bfd,
7458 struct elf_final_link_info *finfo,
7459 bfd_vma *result,
7460 Elf_Internal_Sym *isymbuf,
7461 size_t locsymcount)
7462 {
7463 Elf_Internal_Sym *sym;
7464 struct bfd_link_hash_entry *global_entry;
7465 const char *candidate = NULL;
7466 Elf_Internal_Shdr *symtab_hdr;
7467 size_t i;
7468
7469 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7470
7471 for (i = 0; i < locsymcount; ++ i)
7472 {
7473 sym = isymbuf + i;
7474
7475 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7476 continue;
7477
7478 candidate = bfd_elf_string_from_elf_section (input_bfd,
7479 symtab_hdr->sh_link,
7480 sym->st_name);
7481 #ifdef DEBUG
7482 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7483 name, candidate, (unsigned long) sym->st_value);
7484 #endif
7485 if (candidate && strcmp (candidate, name) == 0)
7486 {
7487 asection *sec = finfo->sections [i];
7488
7489 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7490 *result += sec->output_offset + sec->output_section->vma;
7491 #ifdef DEBUG
7492 printf ("Found symbol with value %8.8lx\n",
7493 (unsigned long) *result);
7494 #endif
7495 return TRUE;
7496 }
7497 }
7498
7499 /* Hmm, haven't found it yet. perhaps it is a global. */
7500 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7501 FALSE, FALSE, TRUE);
7502 if (!global_entry)
7503 return FALSE;
7504
7505 if (global_entry->type == bfd_link_hash_defined
7506 || global_entry->type == bfd_link_hash_defweak)
7507 {
7508 *result = (global_entry->u.def.value
7509 + global_entry->u.def.section->output_section->vma
7510 + global_entry->u.def.section->output_offset);
7511 #ifdef DEBUG
7512 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7513 global_entry->root.string, (unsigned long) *result);
7514 #endif
7515 return TRUE;
7516 }
7517
7518 return FALSE;
7519 }
7520
7521 static bfd_boolean
7522 resolve_section (const char *name,
7523 asection *sections,
7524 bfd_vma *result)
7525 {
7526 asection *curr;
7527 unsigned int len;
7528
7529 for (curr = sections; curr; curr = curr->next)
7530 if (strcmp (curr->name, name) == 0)
7531 {
7532 *result = curr->vma;
7533 return TRUE;
7534 }
7535
7536 /* Hmm. still haven't found it. try pseudo-section names. */
7537 for (curr = sections; curr; curr = curr->next)
7538 {
7539 len = strlen (curr->name);
7540 if (len > strlen (name))
7541 continue;
7542
7543 if (strncmp (curr->name, name, len) == 0)
7544 {
7545 if (strncmp (".end", name + len, 4) == 0)
7546 {
7547 *result = curr->vma + curr->size;
7548 return TRUE;
7549 }
7550
7551 /* Insert more pseudo-section names here, if you like. */
7552 }
7553 }
7554
7555 return FALSE;
7556 }
7557
7558 static void
7559 undefined_reference (const char *reftype, const char *name)
7560 {
7561 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7562 reftype, name);
7563 }
7564
7565 static bfd_boolean
7566 eval_symbol (bfd_vma *result,
7567 const char **symp,
7568 bfd *input_bfd,
7569 struct elf_final_link_info *finfo,
7570 bfd_vma dot,
7571 Elf_Internal_Sym *isymbuf,
7572 size_t locsymcount,
7573 int signed_p)
7574 {
7575 size_t len;
7576 size_t symlen;
7577 bfd_vma a;
7578 bfd_vma b;
7579 char symbuf[4096];
7580 const char *sym = *symp;
7581 const char *symend;
7582 bfd_boolean symbol_is_section = FALSE;
7583
7584 len = strlen (sym);
7585 symend = sym + len;
7586
7587 if (len < 1 || len > sizeof (symbuf))
7588 {
7589 bfd_set_error (bfd_error_invalid_operation);
7590 return FALSE;
7591 }
7592
7593 switch (* sym)
7594 {
7595 case '.':
7596 *result = dot;
7597 *symp = sym + 1;
7598 return TRUE;
7599
7600 case '#':
7601 ++sym;
7602 *result = strtoul (sym, (char **) symp, 16);
7603 return TRUE;
7604
7605 case 'S':
7606 symbol_is_section = TRUE;
7607 case 's':
7608 ++sym;
7609 symlen = strtol (sym, (char **) symp, 10);
7610 sym = *symp + 1; /* Skip the trailing ':'. */
7611
7612 if (symend < sym || symlen + 1 > sizeof (symbuf))
7613 {
7614 bfd_set_error (bfd_error_invalid_operation);
7615 return FALSE;
7616 }
7617
7618 memcpy (symbuf, sym, symlen);
7619 symbuf[symlen] = '\0';
7620 *symp = sym + symlen;
7621
7622 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7623 the symbol as a section, or vice-versa. so we're pretty liberal in our
7624 interpretation here; section means "try section first", not "must be a
7625 section", and likewise with symbol. */
7626
7627 if (symbol_is_section)
7628 {
7629 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7630 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7631 isymbuf, locsymcount))
7632 {
7633 undefined_reference ("section", symbuf);
7634 return FALSE;
7635 }
7636 }
7637 else
7638 {
7639 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7640 isymbuf, locsymcount)
7641 && !resolve_section (symbuf, finfo->output_bfd->sections,
7642 result))
7643 {
7644 undefined_reference ("symbol", symbuf);
7645 return FALSE;
7646 }
7647 }
7648
7649 return TRUE;
7650
7651 /* All that remains are operators. */
7652
7653 #define UNARY_OP(op) \
7654 if (strncmp (sym, #op, strlen (#op)) == 0) \
7655 { \
7656 sym += strlen (#op); \
7657 if (*sym == ':') \
7658 ++sym; \
7659 *symp = sym; \
7660 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7661 isymbuf, locsymcount, signed_p)) \
7662 return FALSE; \
7663 if (signed_p) \
7664 *result = op ((bfd_signed_vma) a); \
7665 else \
7666 *result = op a; \
7667 return TRUE; \
7668 }
7669
7670 #define BINARY_OP(op) \
7671 if (strncmp (sym, #op, strlen (#op)) == 0) \
7672 { \
7673 sym += strlen (#op); \
7674 if (*sym == ':') \
7675 ++sym; \
7676 *symp = sym; \
7677 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7678 isymbuf, locsymcount, signed_p)) \
7679 return FALSE; \
7680 ++*symp; \
7681 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7682 isymbuf, locsymcount, signed_p)) \
7683 return FALSE; \
7684 if (signed_p) \
7685 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7686 else \
7687 *result = a op b; \
7688 return TRUE; \
7689 }
7690
7691 default:
7692 UNARY_OP (0-);
7693 BINARY_OP (<<);
7694 BINARY_OP (>>);
7695 BINARY_OP (==);
7696 BINARY_OP (!=);
7697 BINARY_OP (<=);
7698 BINARY_OP (>=);
7699 BINARY_OP (&&);
7700 BINARY_OP (||);
7701 UNARY_OP (~);
7702 UNARY_OP (!);
7703 BINARY_OP (*);
7704 BINARY_OP (/);
7705 BINARY_OP (%);
7706 BINARY_OP (^);
7707 BINARY_OP (|);
7708 BINARY_OP (&);
7709 BINARY_OP (+);
7710 BINARY_OP (-);
7711 BINARY_OP (<);
7712 BINARY_OP (>);
7713 #undef UNARY_OP
7714 #undef BINARY_OP
7715 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7716 bfd_set_error (bfd_error_invalid_operation);
7717 return FALSE;
7718 }
7719 }
7720
7721 static void
7722 put_value (bfd_vma size,
7723 unsigned long chunksz,
7724 bfd *input_bfd,
7725 bfd_vma x,
7726 bfd_byte *location)
7727 {
7728 location += (size - chunksz);
7729
7730 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7731 {
7732 switch (chunksz)
7733 {
7734 default:
7735 case 0:
7736 abort ();
7737 case 1:
7738 bfd_put_8 (input_bfd, x, location);
7739 break;
7740 case 2:
7741 bfd_put_16 (input_bfd, x, location);
7742 break;
7743 case 4:
7744 bfd_put_32 (input_bfd, x, location);
7745 break;
7746 case 8:
7747 #ifdef BFD64
7748 bfd_put_64 (input_bfd, x, location);
7749 #else
7750 abort ();
7751 #endif
7752 break;
7753 }
7754 }
7755 }
7756
7757 static bfd_vma
7758 get_value (bfd_vma size,
7759 unsigned long chunksz,
7760 bfd *input_bfd,
7761 bfd_byte *location)
7762 {
7763 bfd_vma x = 0;
7764
7765 for (; size; size -= chunksz, location += chunksz)
7766 {
7767 switch (chunksz)
7768 {
7769 default:
7770 case 0:
7771 abort ();
7772 case 1:
7773 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7774 break;
7775 case 2:
7776 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7777 break;
7778 case 4:
7779 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7780 break;
7781 case 8:
7782 #ifdef BFD64
7783 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7784 #else
7785 abort ();
7786 #endif
7787 break;
7788 }
7789 }
7790 return x;
7791 }
7792
7793 static void
7794 decode_complex_addend (unsigned long *start, /* in bits */
7795 unsigned long *oplen, /* in bits */
7796 unsigned long *len, /* in bits */
7797 unsigned long *wordsz, /* in bytes */
7798 unsigned long *chunksz, /* in bytes */
7799 unsigned long *lsb0_p,
7800 unsigned long *signed_p,
7801 unsigned long *trunc_p,
7802 unsigned long encoded)
7803 {
7804 * start = encoded & 0x3F;
7805 * len = (encoded >> 6) & 0x3F;
7806 * oplen = (encoded >> 12) & 0x3F;
7807 * wordsz = (encoded >> 18) & 0xF;
7808 * chunksz = (encoded >> 22) & 0xF;
7809 * lsb0_p = (encoded >> 27) & 1;
7810 * signed_p = (encoded >> 28) & 1;
7811 * trunc_p = (encoded >> 29) & 1;
7812 }
7813
7814 bfd_reloc_status_type
7815 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7816 asection *input_section ATTRIBUTE_UNUSED,
7817 bfd_byte *contents,
7818 Elf_Internal_Rela *rel,
7819 bfd_vma relocation)
7820 {
7821 bfd_vma shift, x, mask;
7822 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7823 bfd_reloc_status_type r;
7824
7825 /* Perform this reloc, since it is complex.
7826 (this is not to say that it necessarily refers to a complex
7827 symbol; merely that it is a self-describing CGEN based reloc.
7828 i.e. the addend has the complete reloc information (bit start, end,
7829 word size, etc) encoded within it.). */
7830
7831 decode_complex_addend (&start, &oplen, &len, &wordsz,
7832 &chunksz, &lsb0_p, &signed_p,
7833 &trunc_p, rel->r_addend);
7834
7835 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7836
7837 if (lsb0_p)
7838 shift = (start + 1) - len;
7839 else
7840 shift = (8 * wordsz) - (start + len);
7841
7842 /* FIXME: octets_per_byte. */
7843 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7844
7845 #ifdef DEBUG
7846 printf ("Doing complex reloc: "
7847 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7848 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7849 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7850 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7851 oplen, x, mask, relocation);
7852 #endif
7853
7854 r = bfd_reloc_ok;
7855 if (! trunc_p)
7856 /* Now do an overflow check. */
7857 r = bfd_check_overflow ((signed_p
7858 ? complain_overflow_signed
7859 : complain_overflow_unsigned),
7860 len, 0, (8 * wordsz),
7861 relocation);
7862
7863 /* Do the deed. */
7864 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7865
7866 #ifdef DEBUG
7867 printf (" relocation: %8.8lx\n"
7868 " shifted mask: %8.8lx\n"
7869 " shifted/masked reloc: %8.8lx\n"
7870 " result: %8.8lx\n",
7871 relocation, (mask << shift),
7872 ((relocation & mask) << shift), x);
7873 #endif
7874 /* FIXME: octets_per_byte. */
7875 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7876 return r;
7877 }
7878
7879 /* When performing a relocatable link, the input relocations are
7880 preserved. But, if they reference global symbols, the indices
7881 referenced must be updated. Update all the relocations in
7882 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7883
7884 static void
7885 elf_link_adjust_relocs (bfd *abfd,
7886 Elf_Internal_Shdr *rel_hdr,
7887 unsigned int count,
7888 struct elf_link_hash_entry **rel_hash)
7889 {
7890 unsigned int i;
7891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7892 bfd_byte *erela;
7893 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7894 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7895 bfd_vma r_type_mask;
7896 int r_sym_shift;
7897
7898 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7899 {
7900 swap_in = bed->s->swap_reloc_in;
7901 swap_out = bed->s->swap_reloc_out;
7902 }
7903 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7904 {
7905 swap_in = bed->s->swap_reloca_in;
7906 swap_out = bed->s->swap_reloca_out;
7907 }
7908 else
7909 abort ();
7910
7911 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7912 abort ();
7913
7914 if (bed->s->arch_size == 32)
7915 {
7916 r_type_mask = 0xff;
7917 r_sym_shift = 8;
7918 }
7919 else
7920 {
7921 r_type_mask = 0xffffffff;
7922 r_sym_shift = 32;
7923 }
7924
7925 erela = rel_hdr->contents;
7926 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7927 {
7928 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7929 unsigned int j;
7930
7931 if (*rel_hash == NULL)
7932 continue;
7933
7934 BFD_ASSERT ((*rel_hash)->indx >= 0);
7935
7936 (*swap_in) (abfd, erela, irela);
7937 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7938 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7939 | (irela[j].r_info & r_type_mask));
7940 (*swap_out) (abfd, irela, erela);
7941 }
7942 }
7943
7944 struct elf_link_sort_rela
7945 {
7946 union {
7947 bfd_vma offset;
7948 bfd_vma sym_mask;
7949 } u;
7950 enum elf_reloc_type_class type;
7951 /* We use this as an array of size int_rels_per_ext_rel. */
7952 Elf_Internal_Rela rela[1];
7953 };
7954
7955 static int
7956 elf_link_sort_cmp1 (const void *A, const void *B)
7957 {
7958 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7959 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7960 int relativea, relativeb;
7961
7962 relativea = a->type == reloc_class_relative;
7963 relativeb = b->type == reloc_class_relative;
7964
7965 if (relativea < relativeb)
7966 return 1;
7967 if (relativea > relativeb)
7968 return -1;
7969 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7970 return -1;
7971 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7972 return 1;
7973 if (a->rela->r_offset < b->rela->r_offset)
7974 return -1;
7975 if (a->rela->r_offset > b->rela->r_offset)
7976 return 1;
7977 return 0;
7978 }
7979
7980 static int
7981 elf_link_sort_cmp2 (const void *A, const void *B)
7982 {
7983 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7984 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7985 int copya, copyb;
7986
7987 if (a->u.offset < b->u.offset)
7988 return -1;
7989 if (a->u.offset > b->u.offset)
7990 return 1;
7991 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7992 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7993 if (copya < copyb)
7994 return -1;
7995 if (copya > copyb)
7996 return 1;
7997 if (a->rela->r_offset < b->rela->r_offset)
7998 return -1;
7999 if (a->rela->r_offset > b->rela->r_offset)
8000 return 1;
8001 return 0;
8002 }
8003
8004 static size_t
8005 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8006 {
8007 asection *dynamic_relocs;
8008 asection *rela_dyn;
8009 asection *rel_dyn;
8010 bfd_size_type count, size;
8011 size_t i, ret, sort_elt, ext_size;
8012 bfd_byte *sort, *s_non_relative, *p;
8013 struct elf_link_sort_rela *sq;
8014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8015 int i2e = bed->s->int_rels_per_ext_rel;
8016 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8017 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8018 struct bfd_link_order *lo;
8019 bfd_vma r_sym_mask;
8020 bfd_boolean use_rela;
8021
8022 /* Find a dynamic reloc section. */
8023 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8024 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8025 if (rela_dyn != NULL && rela_dyn->size > 0
8026 && rel_dyn != NULL && rel_dyn->size > 0)
8027 {
8028 bfd_boolean use_rela_initialised = FALSE;
8029
8030 /* This is just here to stop gcc from complaining.
8031 It's initialization checking code is not perfect. */
8032 use_rela = TRUE;
8033
8034 /* Both sections are present. Examine the sizes
8035 of the indirect sections to help us choose. */
8036 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8037 if (lo->type == bfd_indirect_link_order)
8038 {
8039 asection *o = lo->u.indirect.section;
8040
8041 if ((o->size % bed->s->sizeof_rela) == 0)
8042 {
8043 if ((o->size % bed->s->sizeof_rel) == 0)
8044 /* Section size is divisible by both rel and rela sizes.
8045 It is of no help to us. */
8046 ;
8047 else
8048 {
8049 /* Section size is only divisible by rela. */
8050 if (use_rela_initialised && (use_rela == FALSE))
8051 {
8052 _bfd_error_handler
8053 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8054 bfd_set_error (bfd_error_invalid_operation);
8055 return 0;
8056 }
8057 else
8058 {
8059 use_rela = TRUE;
8060 use_rela_initialised = TRUE;
8061 }
8062 }
8063 }
8064 else if ((o->size % bed->s->sizeof_rel) == 0)
8065 {
8066 /* Section size is only divisible by rel. */
8067 if (use_rela_initialised && (use_rela == TRUE))
8068 {
8069 _bfd_error_handler
8070 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8071 bfd_set_error (bfd_error_invalid_operation);
8072 return 0;
8073 }
8074 else
8075 {
8076 use_rela = FALSE;
8077 use_rela_initialised = TRUE;
8078 }
8079 }
8080 else
8081 {
8082 /* The section size is not divisible by either - something is wrong. */
8083 _bfd_error_handler
8084 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8085 bfd_set_error (bfd_error_invalid_operation);
8086 return 0;
8087 }
8088 }
8089
8090 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8091 if (lo->type == bfd_indirect_link_order)
8092 {
8093 asection *o = lo->u.indirect.section;
8094
8095 if ((o->size % bed->s->sizeof_rela) == 0)
8096 {
8097 if ((o->size % bed->s->sizeof_rel) == 0)
8098 /* Section size is divisible by both rel and rela sizes.
8099 It is of no help to us. */
8100 ;
8101 else
8102 {
8103 /* Section size is only divisible by rela. */
8104 if (use_rela_initialised && (use_rela == FALSE))
8105 {
8106 _bfd_error_handler
8107 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8108 bfd_set_error (bfd_error_invalid_operation);
8109 return 0;
8110 }
8111 else
8112 {
8113 use_rela = TRUE;
8114 use_rela_initialised = TRUE;
8115 }
8116 }
8117 }
8118 else if ((o->size % bed->s->sizeof_rel) == 0)
8119 {
8120 /* Section size is only divisible by rel. */
8121 if (use_rela_initialised && (use_rela == TRUE))
8122 {
8123 _bfd_error_handler
8124 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8125 bfd_set_error (bfd_error_invalid_operation);
8126 return 0;
8127 }
8128 else
8129 {
8130 use_rela = FALSE;
8131 use_rela_initialised = TRUE;
8132 }
8133 }
8134 else
8135 {
8136 /* The section size is not divisible by either - something is wrong. */
8137 _bfd_error_handler
8138 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8139 bfd_set_error (bfd_error_invalid_operation);
8140 return 0;
8141 }
8142 }
8143
8144 if (! use_rela_initialised)
8145 /* Make a guess. */
8146 use_rela = TRUE;
8147 }
8148 else if (rela_dyn != NULL && rela_dyn->size > 0)
8149 use_rela = TRUE;
8150 else if (rel_dyn != NULL && rel_dyn->size > 0)
8151 use_rela = FALSE;
8152 else
8153 return 0;
8154
8155 if (use_rela)
8156 {
8157 dynamic_relocs = rela_dyn;
8158 ext_size = bed->s->sizeof_rela;
8159 swap_in = bed->s->swap_reloca_in;
8160 swap_out = bed->s->swap_reloca_out;
8161 }
8162 else
8163 {
8164 dynamic_relocs = rel_dyn;
8165 ext_size = bed->s->sizeof_rel;
8166 swap_in = bed->s->swap_reloc_in;
8167 swap_out = bed->s->swap_reloc_out;
8168 }
8169
8170 size = 0;
8171 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8172 if (lo->type == bfd_indirect_link_order)
8173 size += lo->u.indirect.section->size;
8174
8175 if (size != dynamic_relocs->size)
8176 return 0;
8177
8178 sort_elt = (sizeof (struct elf_link_sort_rela)
8179 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8180
8181 count = dynamic_relocs->size / ext_size;
8182 if (count == 0)
8183 return 0;
8184 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8185
8186 if (sort == NULL)
8187 {
8188 (*info->callbacks->warning)
8189 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8190 return 0;
8191 }
8192
8193 if (bed->s->arch_size == 32)
8194 r_sym_mask = ~(bfd_vma) 0xff;
8195 else
8196 r_sym_mask = ~(bfd_vma) 0xffffffff;
8197
8198 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8199 if (lo->type == bfd_indirect_link_order)
8200 {
8201 bfd_byte *erel, *erelend;
8202 asection *o = lo->u.indirect.section;
8203
8204 if (o->contents == NULL && o->size != 0)
8205 {
8206 /* This is a reloc section that is being handled as a normal
8207 section. See bfd_section_from_shdr. We can't combine
8208 relocs in this case. */
8209 free (sort);
8210 return 0;
8211 }
8212 erel = o->contents;
8213 erelend = o->contents + o->size;
8214 /* FIXME: octets_per_byte. */
8215 p = sort + o->output_offset / ext_size * sort_elt;
8216
8217 while (erel < erelend)
8218 {
8219 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8220
8221 (*swap_in) (abfd, erel, s->rela);
8222 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8223 s->u.sym_mask = r_sym_mask;
8224 p += sort_elt;
8225 erel += ext_size;
8226 }
8227 }
8228
8229 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8230
8231 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8232 {
8233 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8234 if (s->type != reloc_class_relative)
8235 break;
8236 }
8237 ret = i;
8238 s_non_relative = p;
8239
8240 sq = (struct elf_link_sort_rela *) s_non_relative;
8241 for (; i < count; i++, p += sort_elt)
8242 {
8243 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8244 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8245 sq = sp;
8246 sp->u.offset = sq->rela->r_offset;
8247 }
8248
8249 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8250
8251 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8252 if (lo->type == bfd_indirect_link_order)
8253 {
8254 bfd_byte *erel, *erelend;
8255 asection *o = lo->u.indirect.section;
8256
8257 erel = o->contents;
8258 erelend = o->contents + o->size;
8259 /* FIXME: octets_per_byte. */
8260 p = sort + o->output_offset / ext_size * sort_elt;
8261 while (erel < erelend)
8262 {
8263 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8264 (*swap_out) (abfd, s->rela, erel);
8265 p += sort_elt;
8266 erel += ext_size;
8267 }
8268 }
8269
8270 free (sort);
8271 *psec = dynamic_relocs;
8272 return ret;
8273 }
8274
8275 /* Flush the output symbols to the file. */
8276
8277 static bfd_boolean
8278 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8279 const struct elf_backend_data *bed)
8280 {
8281 if (finfo->symbuf_count > 0)
8282 {
8283 Elf_Internal_Shdr *hdr;
8284 file_ptr pos;
8285 bfd_size_type amt;
8286
8287 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8288 pos = hdr->sh_offset + hdr->sh_size;
8289 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8290 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8291 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8292 return FALSE;
8293
8294 hdr->sh_size += amt;
8295 finfo->symbuf_count = 0;
8296 }
8297
8298 return TRUE;
8299 }
8300
8301 /* Add a symbol to the output symbol table. */
8302
8303 static int
8304 elf_link_output_sym (struct elf_final_link_info *finfo,
8305 const char *name,
8306 Elf_Internal_Sym *elfsym,
8307 asection *input_sec,
8308 struct elf_link_hash_entry *h)
8309 {
8310 bfd_byte *dest;
8311 Elf_External_Sym_Shndx *destshndx;
8312 int (*output_symbol_hook)
8313 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8314 struct elf_link_hash_entry *);
8315 const struct elf_backend_data *bed;
8316
8317 bed = get_elf_backend_data (finfo->output_bfd);
8318 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8319 if (output_symbol_hook != NULL)
8320 {
8321 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8322 if (ret != 1)
8323 return ret;
8324 }
8325
8326 if (name == NULL || *name == '\0')
8327 elfsym->st_name = 0;
8328 else if (input_sec->flags & SEC_EXCLUDE)
8329 elfsym->st_name = 0;
8330 else
8331 {
8332 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8333 name, TRUE, FALSE);
8334 if (elfsym->st_name == (unsigned long) -1)
8335 return 0;
8336 }
8337
8338 if (finfo->symbuf_count >= finfo->symbuf_size)
8339 {
8340 if (! elf_link_flush_output_syms (finfo, bed))
8341 return 0;
8342 }
8343
8344 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8345 destshndx = finfo->symshndxbuf;
8346 if (destshndx != NULL)
8347 {
8348 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8349 {
8350 bfd_size_type amt;
8351
8352 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8353 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8354 amt * 2);
8355 if (destshndx == NULL)
8356 return 0;
8357 finfo->symshndxbuf = destshndx;
8358 memset ((char *) destshndx + amt, 0, amt);
8359 finfo->shndxbuf_size *= 2;
8360 }
8361 destshndx += bfd_get_symcount (finfo->output_bfd);
8362 }
8363
8364 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8365 finfo->symbuf_count += 1;
8366 bfd_get_symcount (finfo->output_bfd) += 1;
8367
8368 return 1;
8369 }
8370
8371 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8372
8373 static bfd_boolean
8374 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8375 {
8376 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8377 && sym->st_shndx < SHN_LORESERVE)
8378 {
8379 /* The gABI doesn't support dynamic symbols in output sections
8380 beyond 64k. */
8381 (*_bfd_error_handler)
8382 (_("%B: Too many sections: %d (>= %d)"),
8383 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8384 bfd_set_error (bfd_error_nonrepresentable_section);
8385 return FALSE;
8386 }
8387 return TRUE;
8388 }
8389
8390 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8391 allowing an unsatisfied unversioned symbol in the DSO to match a
8392 versioned symbol that would normally require an explicit version.
8393 We also handle the case that a DSO references a hidden symbol
8394 which may be satisfied by a versioned symbol in another DSO. */
8395
8396 static bfd_boolean
8397 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8398 const struct elf_backend_data *bed,
8399 struct elf_link_hash_entry *h)
8400 {
8401 bfd *abfd;
8402 struct elf_link_loaded_list *loaded;
8403
8404 if (!is_elf_hash_table (info->hash))
8405 return FALSE;
8406
8407 switch (h->root.type)
8408 {
8409 default:
8410 abfd = NULL;
8411 break;
8412
8413 case bfd_link_hash_undefined:
8414 case bfd_link_hash_undefweak:
8415 abfd = h->root.u.undef.abfd;
8416 if ((abfd->flags & DYNAMIC) == 0
8417 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8418 return FALSE;
8419 break;
8420
8421 case bfd_link_hash_defined:
8422 case bfd_link_hash_defweak:
8423 abfd = h->root.u.def.section->owner;
8424 break;
8425
8426 case bfd_link_hash_common:
8427 abfd = h->root.u.c.p->section->owner;
8428 break;
8429 }
8430 BFD_ASSERT (abfd != NULL);
8431
8432 for (loaded = elf_hash_table (info)->loaded;
8433 loaded != NULL;
8434 loaded = loaded->next)
8435 {
8436 bfd *input;
8437 Elf_Internal_Shdr *hdr;
8438 bfd_size_type symcount;
8439 bfd_size_type extsymcount;
8440 bfd_size_type extsymoff;
8441 Elf_Internal_Shdr *versymhdr;
8442 Elf_Internal_Sym *isym;
8443 Elf_Internal_Sym *isymend;
8444 Elf_Internal_Sym *isymbuf;
8445 Elf_External_Versym *ever;
8446 Elf_External_Versym *extversym;
8447
8448 input = loaded->abfd;
8449
8450 /* We check each DSO for a possible hidden versioned definition. */
8451 if (input == abfd
8452 || (input->flags & DYNAMIC) == 0
8453 || elf_dynversym (input) == 0)
8454 continue;
8455
8456 hdr = &elf_tdata (input)->dynsymtab_hdr;
8457
8458 symcount = hdr->sh_size / bed->s->sizeof_sym;
8459 if (elf_bad_symtab (input))
8460 {
8461 extsymcount = symcount;
8462 extsymoff = 0;
8463 }
8464 else
8465 {
8466 extsymcount = symcount - hdr->sh_info;
8467 extsymoff = hdr->sh_info;
8468 }
8469
8470 if (extsymcount == 0)
8471 continue;
8472
8473 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8474 NULL, NULL, NULL);
8475 if (isymbuf == NULL)
8476 return FALSE;
8477
8478 /* Read in any version definitions. */
8479 versymhdr = &elf_tdata (input)->dynversym_hdr;
8480 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8481 if (extversym == NULL)
8482 goto error_ret;
8483
8484 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8485 || (bfd_bread (extversym, versymhdr->sh_size, input)
8486 != versymhdr->sh_size))
8487 {
8488 free (extversym);
8489 error_ret:
8490 free (isymbuf);
8491 return FALSE;
8492 }
8493
8494 ever = extversym + extsymoff;
8495 isymend = isymbuf + extsymcount;
8496 for (isym = isymbuf; isym < isymend; isym++, ever++)
8497 {
8498 const char *name;
8499 Elf_Internal_Versym iver;
8500 unsigned short version_index;
8501
8502 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8503 || isym->st_shndx == SHN_UNDEF)
8504 continue;
8505
8506 name = bfd_elf_string_from_elf_section (input,
8507 hdr->sh_link,
8508 isym->st_name);
8509 if (strcmp (name, h->root.root.string) != 0)
8510 continue;
8511
8512 _bfd_elf_swap_versym_in (input, ever, &iver);
8513
8514 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8515 && !(h->def_regular
8516 && h->forced_local))
8517 {
8518 /* If we have a non-hidden versioned sym, then it should
8519 have provided a definition for the undefined sym unless
8520 it is defined in a non-shared object and forced local.
8521 */
8522 abort ();
8523 }
8524
8525 version_index = iver.vs_vers & VERSYM_VERSION;
8526 if (version_index == 1 || version_index == 2)
8527 {
8528 /* This is the base or first version. We can use it. */
8529 free (extversym);
8530 free (isymbuf);
8531 return TRUE;
8532 }
8533 }
8534
8535 free (extversym);
8536 free (isymbuf);
8537 }
8538
8539 return FALSE;
8540 }
8541
8542 /* Add an external symbol to the symbol table. This is called from
8543 the hash table traversal routine. When generating a shared object,
8544 we go through the symbol table twice. The first time we output
8545 anything that might have been forced to local scope in a version
8546 script. The second time we output the symbols that are still
8547 global symbols. */
8548
8549 static bfd_boolean
8550 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8551 {
8552 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8553 struct elf_final_link_info *finfo = eoinfo->finfo;
8554 bfd_boolean strip;
8555 Elf_Internal_Sym sym;
8556 asection *input_sec;
8557 const struct elf_backend_data *bed;
8558 long indx;
8559 int ret;
8560
8561 if (h->root.type == bfd_link_hash_warning)
8562 {
8563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8564 if (h->root.type == bfd_link_hash_new)
8565 return TRUE;
8566 }
8567
8568 /* Decide whether to output this symbol in this pass. */
8569 if (eoinfo->localsyms)
8570 {
8571 if (!h->forced_local)
8572 return TRUE;
8573 }
8574 else
8575 {
8576 if (h->forced_local)
8577 return TRUE;
8578 }
8579
8580 bed = get_elf_backend_data (finfo->output_bfd);
8581
8582 if (h->root.type == bfd_link_hash_undefined)
8583 {
8584 /* If we have an undefined symbol reference here then it must have
8585 come from a shared library that is being linked in. (Undefined
8586 references in regular files have already been handled unless
8587 they are in unreferenced sections which are removed by garbage
8588 collection). */
8589 bfd_boolean ignore_undef = FALSE;
8590
8591 /* Some symbols may be special in that the fact that they're
8592 undefined can be safely ignored - let backend determine that. */
8593 if (bed->elf_backend_ignore_undef_symbol)
8594 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8595
8596 /* If we are reporting errors for this situation then do so now. */
8597 if (ignore_undef == FALSE
8598 && h->ref_dynamic
8599 && (!h->ref_regular || finfo->info->gc_sections)
8600 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8601 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8602 {
8603 if (! (finfo->info->callbacks->undefined_symbol
8604 (finfo->info, h->root.root.string,
8605 h->ref_regular ? NULL : h->root.u.undef.abfd,
8606 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8607 {
8608 eoinfo->failed = TRUE;
8609 return FALSE;
8610 }
8611 }
8612 }
8613
8614 /* We should also warn if a forced local symbol is referenced from
8615 shared libraries. */
8616 if (! finfo->info->relocatable
8617 && (! finfo->info->shared)
8618 && h->forced_local
8619 && h->ref_dynamic
8620 && !h->dynamic_def
8621 && !h->dynamic_weak
8622 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8623 {
8624 (*_bfd_error_handler)
8625 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8626 finfo->output_bfd,
8627 h->root.u.def.section == bfd_abs_section_ptr
8628 ? finfo->output_bfd : h->root.u.def.section->owner,
8629 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8630 ? "internal"
8631 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8632 ? "hidden" : "local",
8633 h->root.root.string);
8634 eoinfo->failed = TRUE;
8635 return FALSE;
8636 }
8637
8638 /* We don't want to output symbols that have never been mentioned by
8639 a regular file, or that we have been told to strip. However, if
8640 h->indx is set to -2, the symbol is used by a reloc and we must
8641 output it. */
8642 if (h->indx == -2)
8643 strip = FALSE;
8644 else if ((h->def_dynamic
8645 || h->ref_dynamic
8646 || h->root.type == bfd_link_hash_new)
8647 && !h->def_regular
8648 && !h->ref_regular)
8649 strip = TRUE;
8650 else if (finfo->info->strip == strip_all)
8651 strip = TRUE;
8652 else if (finfo->info->strip == strip_some
8653 && bfd_hash_lookup (finfo->info->keep_hash,
8654 h->root.root.string, FALSE, FALSE) == NULL)
8655 strip = TRUE;
8656 else if (finfo->info->strip_discarded
8657 && (h->root.type == bfd_link_hash_defined
8658 || h->root.type == bfd_link_hash_defweak)
8659 && elf_discarded_section (h->root.u.def.section))
8660 strip = TRUE;
8661 else
8662 strip = FALSE;
8663
8664 /* If we're stripping it, and it's not a dynamic symbol, there's
8665 nothing else to do unless it is a forced local symbol or a
8666 STT_GNU_IFUNC symbol. */
8667 if (strip
8668 && h->dynindx == -1
8669 && h->type != STT_GNU_IFUNC
8670 && !h->forced_local)
8671 return TRUE;
8672
8673 sym.st_value = 0;
8674 sym.st_size = h->size;
8675 sym.st_other = h->other;
8676 if (h->forced_local)
8677 {
8678 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8679 /* Turn off visibility on local symbol. */
8680 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8681 }
8682 else if (h->unique_global)
8683 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8684 else if (h->root.type == bfd_link_hash_undefweak
8685 || h->root.type == bfd_link_hash_defweak)
8686 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8687 else
8688 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8689
8690 switch (h->root.type)
8691 {
8692 default:
8693 case bfd_link_hash_new:
8694 case bfd_link_hash_warning:
8695 abort ();
8696 return FALSE;
8697
8698 case bfd_link_hash_undefined:
8699 case bfd_link_hash_undefweak:
8700 input_sec = bfd_und_section_ptr;
8701 sym.st_shndx = SHN_UNDEF;
8702 break;
8703
8704 case bfd_link_hash_defined:
8705 case bfd_link_hash_defweak:
8706 {
8707 input_sec = h->root.u.def.section;
8708 if (input_sec->output_section != NULL)
8709 {
8710 sym.st_shndx =
8711 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8712 input_sec->output_section);
8713 if (sym.st_shndx == SHN_BAD)
8714 {
8715 (*_bfd_error_handler)
8716 (_("%B: could not find output section %A for input section %A"),
8717 finfo->output_bfd, input_sec->output_section, input_sec);
8718 eoinfo->failed = TRUE;
8719 return FALSE;
8720 }
8721
8722 /* ELF symbols in relocatable files are section relative,
8723 but in nonrelocatable files they are virtual
8724 addresses. */
8725 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8726 if (! finfo->info->relocatable)
8727 {
8728 sym.st_value += input_sec->output_section->vma;
8729 if (h->type == STT_TLS)
8730 {
8731 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8732 if (tls_sec != NULL)
8733 sym.st_value -= tls_sec->vma;
8734 else
8735 {
8736 /* The TLS section may have been garbage collected. */
8737 BFD_ASSERT (finfo->info->gc_sections
8738 && !input_sec->gc_mark);
8739 }
8740 }
8741 }
8742 }
8743 else
8744 {
8745 BFD_ASSERT (input_sec->owner == NULL
8746 || (input_sec->owner->flags & DYNAMIC) != 0);
8747 sym.st_shndx = SHN_UNDEF;
8748 input_sec = bfd_und_section_ptr;
8749 }
8750 }
8751 break;
8752
8753 case bfd_link_hash_common:
8754 input_sec = h->root.u.c.p->section;
8755 sym.st_shndx = bed->common_section_index (input_sec);
8756 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8757 break;
8758
8759 case bfd_link_hash_indirect:
8760 /* These symbols are created by symbol versioning. They point
8761 to the decorated version of the name. For example, if the
8762 symbol foo@@GNU_1.2 is the default, which should be used when
8763 foo is used with no version, then we add an indirect symbol
8764 foo which points to foo@@GNU_1.2. We ignore these symbols,
8765 since the indirected symbol is already in the hash table. */
8766 return TRUE;
8767 }
8768
8769 /* Give the processor backend a chance to tweak the symbol value,
8770 and also to finish up anything that needs to be done for this
8771 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8772 forced local syms when non-shared is due to a historical quirk.
8773 STT_GNU_IFUNC symbol must go through PLT. */
8774 if ((h->type == STT_GNU_IFUNC
8775 && h->def_regular
8776 && !finfo->info->relocatable)
8777 || ((h->dynindx != -1
8778 || h->forced_local)
8779 && ((finfo->info->shared
8780 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8781 || h->root.type != bfd_link_hash_undefweak))
8782 || !h->forced_local)
8783 && elf_hash_table (finfo->info)->dynamic_sections_created))
8784 {
8785 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8786 (finfo->output_bfd, finfo->info, h, &sym)))
8787 {
8788 eoinfo->failed = TRUE;
8789 return FALSE;
8790 }
8791 }
8792
8793 /* If we are marking the symbol as undefined, and there are no
8794 non-weak references to this symbol from a regular object, then
8795 mark the symbol as weak undefined; if there are non-weak
8796 references, mark the symbol as strong. We can't do this earlier,
8797 because it might not be marked as undefined until the
8798 finish_dynamic_symbol routine gets through with it. */
8799 if (sym.st_shndx == SHN_UNDEF
8800 && h->ref_regular
8801 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8802 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8803 {
8804 int bindtype;
8805 unsigned int type = ELF_ST_TYPE (sym.st_info);
8806
8807 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8808 if (type == STT_GNU_IFUNC)
8809 type = STT_FUNC;
8810
8811 if (h->ref_regular_nonweak)
8812 bindtype = STB_GLOBAL;
8813 else
8814 bindtype = STB_WEAK;
8815 sym.st_info = ELF_ST_INFO (bindtype, type);
8816 }
8817
8818 /* If this is a symbol defined in a dynamic library, don't use the
8819 symbol size from the dynamic library. Relinking an executable
8820 against a new library may introduce gratuitous changes in the
8821 executable's symbols if we keep the size. */
8822 if (sym.st_shndx == SHN_UNDEF
8823 && !h->def_regular
8824 && h->def_dynamic)
8825 sym.st_size = 0;
8826
8827 /* If a non-weak symbol with non-default visibility is not defined
8828 locally, it is a fatal error. */
8829 if (! finfo->info->relocatable
8830 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8831 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8832 && h->root.type == bfd_link_hash_undefined
8833 && !h->def_regular)
8834 {
8835 (*_bfd_error_handler)
8836 (_("%B: %s symbol `%s' isn't defined"),
8837 finfo->output_bfd,
8838 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8839 ? "protected"
8840 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8841 ? "internal" : "hidden",
8842 h->root.root.string);
8843 eoinfo->failed = TRUE;
8844 return FALSE;
8845 }
8846
8847 /* If this symbol should be put in the .dynsym section, then put it
8848 there now. We already know the symbol index. We also fill in
8849 the entry in the .hash section. */
8850 if (h->dynindx != -1
8851 && elf_hash_table (finfo->info)->dynamic_sections_created)
8852 {
8853 bfd_byte *esym;
8854
8855 sym.st_name = h->dynstr_index;
8856 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8857 if (! check_dynsym (finfo->output_bfd, &sym))
8858 {
8859 eoinfo->failed = TRUE;
8860 return FALSE;
8861 }
8862 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8863
8864 if (finfo->hash_sec != NULL)
8865 {
8866 size_t hash_entry_size;
8867 bfd_byte *bucketpos;
8868 bfd_vma chain;
8869 size_t bucketcount;
8870 size_t bucket;
8871
8872 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8873 bucket = h->u.elf_hash_value % bucketcount;
8874
8875 hash_entry_size
8876 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8877 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8878 + (bucket + 2) * hash_entry_size);
8879 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8880 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8881 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8882 ((bfd_byte *) finfo->hash_sec->contents
8883 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8884 }
8885
8886 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8887 {
8888 Elf_Internal_Versym iversym;
8889 Elf_External_Versym *eversym;
8890
8891 if (!h->def_regular)
8892 {
8893 if (h->verinfo.verdef == NULL)
8894 iversym.vs_vers = 0;
8895 else
8896 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8897 }
8898 else
8899 {
8900 if (h->verinfo.vertree == NULL)
8901 iversym.vs_vers = 1;
8902 else
8903 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8904 if (finfo->info->create_default_symver)
8905 iversym.vs_vers++;
8906 }
8907
8908 if (h->hidden)
8909 iversym.vs_vers |= VERSYM_HIDDEN;
8910
8911 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8912 eversym += h->dynindx;
8913 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8914 }
8915 }
8916
8917 /* If we're stripping it, then it was just a dynamic symbol, and
8918 there's nothing else to do. */
8919 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8920 return TRUE;
8921
8922 indx = bfd_get_symcount (finfo->output_bfd);
8923 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8924 if (ret == 0)
8925 {
8926 eoinfo->failed = TRUE;
8927 return FALSE;
8928 }
8929 else if (ret == 1)
8930 h->indx = indx;
8931 else if (h->indx == -2)
8932 abort();
8933
8934 return TRUE;
8935 }
8936
8937 /* Return TRUE if special handling is done for relocs in SEC against
8938 symbols defined in discarded sections. */
8939
8940 static bfd_boolean
8941 elf_section_ignore_discarded_relocs (asection *sec)
8942 {
8943 const struct elf_backend_data *bed;
8944
8945 switch (sec->sec_info_type)
8946 {
8947 case ELF_INFO_TYPE_STABS:
8948 case ELF_INFO_TYPE_EH_FRAME:
8949 return TRUE;
8950 default:
8951 break;
8952 }
8953
8954 bed = get_elf_backend_data (sec->owner);
8955 if (bed->elf_backend_ignore_discarded_relocs != NULL
8956 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8957 return TRUE;
8958
8959 return FALSE;
8960 }
8961
8962 /* Return a mask saying how ld should treat relocations in SEC against
8963 symbols defined in discarded sections. If this function returns
8964 COMPLAIN set, ld will issue a warning message. If this function
8965 returns PRETEND set, and the discarded section was link-once and the
8966 same size as the kept link-once section, ld will pretend that the
8967 symbol was actually defined in the kept section. Otherwise ld will
8968 zero the reloc (at least that is the intent, but some cooperation by
8969 the target dependent code is needed, particularly for REL targets). */
8970
8971 unsigned int
8972 _bfd_elf_default_action_discarded (asection *sec)
8973 {
8974 if (sec->flags & SEC_DEBUGGING)
8975 return PRETEND;
8976
8977 if (strcmp (".eh_frame", sec->name) == 0)
8978 return 0;
8979
8980 if (strcmp (".gcc_except_table", sec->name) == 0)
8981 return 0;
8982
8983 return COMPLAIN | PRETEND;
8984 }
8985
8986 /* Find a match between a section and a member of a section group. */
8987
8988 static asection *
8989 match_group_member (asection *sec, asection *group,
8990 struct bfd_link_info *info)
8991 {
8992 asection *first = elf_next_in_group (group);
8993 asection *s = first;
8994
8995 while (s != NULL)
8996 {
8997 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8998 return s;
8999
9000 s = elf_next_in_group (s);
9001 if (s == first)
9002 break;
9003 }
9004
9005 return NULL;
9006 }
9007
9008 /* Check if the kept section of a discarded section SEC can be used
9009 to replace it. Return the replacement if it is OK. Otherwise return
9010 NULL. */
9011
9012 asection *
9013 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9014 {
9015 asection *kept;
9016
9017 kept = sec->kept_section;
9018 if (kept != NULL)
9019 {
9020 if ((kept->flags & SEC_GROUP) != 0)
9021 kept = match_group_member (sec, kept, info);
9022 if (kept != NULL
9023 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9024 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9025 kept = NULL;
9026 sec->kept_section = kept;
9027 }
9028 return kept;
9029 }
9030
9031 /* Link an input file into the linker output file. This function
9032 handles all the sections and relocations of the input file at once.
9033 This is so that we only have to read the local symbols once, and
9034 don't have to keep them in memory. */
9035
9036 static bfd_boolean
9037 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9038 {
9039 int (*relocate_section)
9040 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9041 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9042 bfd *output_bfd;
9043 Elf_Internal_Shdr *symtab_hdr;
9044 size_t locsymcount;
9045 size_t extsymoff;
9046 Elf_Internal_Sym *isymbuf;
9047 Elf_Internal_Sym *isym;
9048 Elf_Internal_Sym *isymend;
9049 long *pindex;
9050 asection **ppsection;
9051 asection *o;
9052 const struct elf_backend_data *bed;
9053 struct elf_link_hash_entry **sym_hashes;
9054
9055 output_bfd = finfo->output_bfd;
9056 bed = get_elf_backend_data (output_bfd);
9057 relocate_section = bed->elf_backend_relocate_section;
9058
9059 /* If this is a dynamic object, we don't want to do anything here:
9060 we don't want the local symbols, and we don't want the section
9061 contents. */
9062 if ((input_bfd->flags & DYNAMIC) != 0)
9063 return TRUE;
9064
9065 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9066 if (elf_bad_symtab (input_bfd))
9067 {
9068 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9069 extsymoff = 0;
9070 }
9071 else
9072 {
9073 locsymcount = symtab_hdr->sh_info;
9074 extsymoff = symtab_hdr->sh_info;
9075 }
9076
9077 /* Read the local symbols. */
9078 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9079 if (isymbuf == NULL && locsymcount != 0)
9080 {
9081 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9082 finfo->internal_syms,
9083 finfo->external_syms,
9084 finfo->locsym_shndx);
9085 if (isymbuf == NULL)
9086 return FALSE;
9087 }
9088
9089 /* Find local symbol sections and adjust values of symbols in
9090 SEC_MERGE sections. Write out those local symbols we know are
9091 going into the output file. */
9092 isymend = isymbuf + locsymcount;
9093 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9094 isym < isymend;
9095 isym++, pindex++, ppsection++)
9096 {
9097 asection *isec;
9098 const char *name;
9099 Elf_Internal_Sym osym;
9100 long indx;
9101 int ret;
9102
9103 *pindex = -1;
9104
9105 if (elf_bad_symtab (input_bfd))
9106 {
9107 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9108 {
9109 *ppsection = NULL;
9110 continue;
9111 }
9112 }
9113
9114 if (isym->st_shndx == SHN_UNDEF)
9115 isec = bfd_und_section_ptr;
9116 else if (isym->st_shndx == SHN_ABS)
9117 isec = bfd_abs_section_ptr;
9118 else if (isym->st_shndx == SHN_COMMON)
9119 isec = bfd_com_section_ptr;
9120 else
9121 {
9122 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9123 if (isec == NULL)
9124 {
9125 /* Don't attempt to output symbols with st_shnx in the
9126 reserved range other than SHN_ABS and SHN_COMMON. */
9127 *ppsection = NULL;
9128 continue;
9129 }
9130 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9131 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9132 isym->st_value =
9133 _bfd_merged_section_offset (output_bfd, &isec,
9134 elf_section_data (isec)->sec_info,
9135 isym->st_value);
9136 }
9137
9138 *ppsection = isec;
9139
9140 /* Don't output the first, undefined, symbol. */
9141 if (ppsection == finfo->sections)
9142 continue;
9143
9144 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9145 {
9146 /* We never output section symbols. Instead, we use the
9147 section symbol of the corresponding section in the output
9148 file. */
9149 continue;
9150 }
9151
9152 /* If we are stripping all symbols, we don't want to output this
9153 one. */
9154 if (finfo->info->strip == strip_all)
9155 continue;
9156
9157 /* If we are discarding all local symbols, we don't want to
9158 output this one. If we are generating a relocatable output
9159 file, then some of the local symbols may be required by
9160 relocs; we output them below as we discover that they are
9161 needed. */
9162 if (finfo->info->discard == discard_all)
9163 continue;
9164
9165 /* If this symbol is defined in a section which we are
9166 discarding, we don't need to keep it. */
9167 if (isym->st_shndx != SHN_UNDEF
9168 && isym->st_shndx < SHN_LORESERVE
9169 && bfd_section_removed_from_list (output_bfd,
9170 isec->output_section))
9171 continue;
9172
9173 /* Get the name of the symbol. */
9174 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9175 isym->st_name);
9176 if (name == NULL)
9177 return FALSE;
9178
9179 /* See if we are discarding symbols with this name. */
9180 if ((finfo->info->strip == strip_some
9181 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9182 == NULL))
9183 || (((finfo->info->discard == discard_sec_merge
9184 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9185 || finfo->info->discard == discard_l)
9186 && bfd_is_local_label_name (input_bfd, name)))
9187 continue;
9188
9189 osym = *isym;
9190
9191 /* Adjust the section index for the output file. */
9192 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9193 isec->output_section);
9194 if (osym.st_shndx == SHN_BAD)
9195 return FALSE;
9196
9197 /* ELF symbols in relocatable files are section relative, but
9198 in executable files they are virtual addresses. Note that
9199 this code assumes that all ELF sections have an associated
9200 BFD section with a reasonable value for output_offset; below
9201 we assume that they also have a reasonable value for
9202 output_section. Any special sections must be set up to meet
9203 these requirements. */
9204 osym.st_value += isec->output_offset;
9205 if (! finfo->info->relocatable)
9206 {
9207 osym.st_value += isec->output_section->vma;
9208 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9209 {
9210 /* STT_TLS symbols are relative to PT_TLS segment base. */
9211 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9212 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9213 }
9214 }
9215
9216 indx = bfd_get_symcount (output_bfd);
9217 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9218 if (ret == 0)
9219 return FALSE;
9220 else if (ret == 1)
9221 *pindex = indx;
9222 }
9223
9224 /* Relocate the contents of each section. */
9225 sym_hashes = elf_sym_hashes (input_bfd);
9226 for (o = input_bfd->sections; o != NULL; o = o->next)
9227 {
9228 bfd_byte *contents;
9229
9230 if (! o->linker_mark)
9231 {
9232 /* This section was omitted from the link. */
9233 continue;
9234 }
9235
9236 if (finfo->info->relocatable
9237 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9238 {
9239 /* Deal with the group signature symbol. */
9240 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9241 unsigned long symndx = sec_data->this_hdr.sh_info;
9242 asection *osec = o->output_section;
9243
9244 if (symndx >= locsymcount
9245 || (elf_bad_symtab (input_bfd)
9246 && finfo->sections[symndx] == NULL))
9247 {
9248 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9249 while (h->root.type == bfd_link_hash_indirect
9250 || h->root.type == bfd_link_hash_warning)
9251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9252 /* Arrange for symbol to be output. */
9253 h->indx = -2;
9254 elf_section_data (osec)->this_hdr.sh_info = -2;
9255 }
9256 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9257 {
9258 /* We'll use the output section target_index. */
9259 asection *sec = finfo->sections[symndx]->output_section;
9260 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9261 }
9262 else
9263 {
9264 if (finfo->indices[symndx] == -1)
9265 {
9266 /* Otherwise output the local symbol now. */
9267 Elf_Internal_Sym sym = isymbuf[symndx];
9268 asection *sec = finfo->sections[symndx]->output_section;
9269 const char *name;
9270 long indx;
9271 int ret;
9272
9273 name = bfd_elf_string_from_elf_section (input_bfd,
9274 symtab_hdr->sh_link,
9275 sym.st_name);
9276 if (name == NULL)
9277 return FALSE;
9278
9279 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9280 sec);
9281 if (sym.st_shndx == SHN_BAD)
9282 return FALSE;
9283
9284 sym.st_value += o->output_offset;
9285
9286 indx = bfd_get_symcount (output_bfd);
9287 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9288 if (ret == 0)
9289 return FALSE;
9290 else if (ret == 1)
9291 finfo->indices[symndx] = indx;
9292 else
9293 abort ();
9294 }
9295 elf_section_data (osec)->this_hdr.sh_info
9296 = finfo->indices[symndx];
9297 }
9298 }
9299
9300 if ((o->flags & SEC_HAS_CONTENTS) == 0
9301 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9302 continue;
9303
9304 if ((o->flags & SEC_LINKER_CREATED) != 0)
9305 {
9306 /* Section was created by _bfd_elf_link_create_dynamic_sections
9307 or somesuch. */
9308 continue;
9309 }
9310
9311 /* Get the contents of the section. They have been cached by a
9312 relaxation routine. Note that o is a section in an input
9313 file, so the contents field will not have been set by any of
9314 the routines which work on output files. */
9315 if (elf_section_data (o)->this_hdr.contents != NULL)
9316 contents = elf_section_data (o)->this_hdr.contents;
9317 else
9318 {
9319 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9320
9321 contents = finfo->contents;
9322 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9323 return FALSE;
9324 }
9325
9326 if ((o->flags & SEC_RELOC) != 0)
9327 {
9328 Elf_Internal_Rela *internal_relocs;
9329 Elf_Internal_Rela *rel, *relend;
9330 bfd_vma r_type_mask;
9331 int r_sym_shift;
9332 int action_discarded;
9333 int ret;
9334
9335 /* Get the swapped relocs. */
9336 internal_relocs
9337 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9338 finfo->internal_relocs, FALSE);
9339 if (internal_relocs == NULL
9340 && o->reloc_count > 0)
9341 return FALSE;
9342
9343 if (bed->s->arch_size == 32)
9344 {
9345 r_type_mask = 0xff;
9346 r_sym_shift = 8;
9347 }
9348 else
9349 {
9350 r_type_mask = 0xffffffff;
9351 r_sym_shift = 32;
9352 }
9353
9354 action_discarded = -1;
9355 if (!elf_section_ignore_discarded_relocs (o))
9356 action_discarded = (*bed->action_discarded) (o);
9357
9358 /* Run through the relocs evaluating complex reloc symbols and
9359 looking for relocs against symbols from discarded sections
9360 or section symbols from removed link-once sections.
9361 Complain about relocs against discarded sections. Zero
9362 relocs against removed link-once sections. */
9363
9364 rel = internal_relocs;
9365 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9366 for ( ; rel < relend; rel++)
9367 {
9368 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9369 unsigned int s_type;
9370 asection **ps, *sec;
9371 struct elf_link_hash_entry *h = NULL;
9372 const char *sym_name;
9373
9374 if (r_symndx == STN_UNDEF)
9375 continue;
9376
9377 if (r_symndx >= locsymcount
9378 || (elf_bad_symtab (input_bfd)
9379 && finfo->sections[r_symndx] == NULL))
9380 {
9381 h = sym_hashes[r_symndx - extsymoff];
9382
9383 /* Badly formatted input files can contain relocs that
9384 reference non-existant symbols. Check here so that
9385 we do not seg fault. */
9386 if (h == NULL)
9387 {
9388 char buffer [32];
9389
9390 sprintf_vma (buffer, rel->r_info);
9391 (*_bfd_error_handler)
9392 (_("error: %B contains a reloc (0x%s) for section %A "
9393 "that references a non-existent global symbol"),
9394 input_bfd, o, buffer);
9395 bfd_set_error (bfd_error_bad_value);
9396 return FALSE;
9397 }
9398
9399 while (h->root.type == bfd_link_hash_indirect
9400 || h->root.type == bfd_link_hash_warning)
9401 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9402
9403 s_type = h->type;
9404
9405 ps = NULL;
9406 if (h->root.type == bfd_link_hash_defined
9407 || h->root.type == bfd_link_hash_defweak)
9408 ps = &h->root.u.def.section;
9409
9410 sym_name = h->root.root.string;
9411 }
9412 else
9413 {
9414 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9415
9416 s_type = ELF_ST_TYPE (sym->st_info);
9417 ps = &finfo->sections[r_symndx];
9418 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9419 sym, *ps);
9420 }
9421
9422 if ((s_type == STT_RELC || s_type == STT_SRELC)
9423 && !finfo->info->relocatable)
9424 {
9425 bfd_vma val;
9426 bfd_vma dot = (rel->r_offset
9427 + o->output_offset + o->output_section->vma);
9428 #ifdef DEBUG
9429 printf ("Encountered a complex symbol!");
9430 printf (" (input_bfd %s, section %s, reloc %ld\n",
9431 input_bfd->filename, o->name, rel - internal_relocs);
9432 printf (" symbol: idx %8.8lx, name %s\n",
9433 r_symndx, sym_name);
9434 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9435 (unsigned long) rel->r_info,
9436 (unsigned long) rel->r_offset);
9437 #endif
9438 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9439 isymbuf, locsymcount, s_type == STT_SRELC))
9440 return FALSE;
9441
9442 /* Symbol evaluated OK. Update to absolute value. */
9443 set_symbol_value (input_bfd, isymbuf, locsymcount,
9444 r_symndx, val);
9445 continue;
9446 }
9447
9448 if (action_discarded != -1 && ps != NULL)
9449 {
9450 /* Complain if the definition comes from a
9451 discarded section. */
9452 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9453 {
9454 BFD_ASSERT (r_symndx != 0);
9455 if (action_discarded & COMPLAIN)
9456 (*finfo->info->callbacks->einfo)
9457 (_("%X`%s' referenced in section `%A' of %B: "
9458 "defined in discarded section `%A' of %B\n"),
9459 sym_name, o, input_bfd, sec, sec->owner);
9460
9461 /* Try to do the best we can to support buggy old
9462 versions of gcc. Pretend that the symbol is
9463 really defined in the kept linkonce section.
9464 FIXME: This is quite broken. Modifying the
9465 symbol here means we will be changing all later
9466 uses of the symbol, not just in this section. */
9467 if (action_discarded & PRETEND)
9468 {
9469 asection *kept;
9470
9471 kept = _bfd_elf_check_kept_section (sec,
9472 finfo->info);
9473 if (kept != NULL)
9474 {
9475 *ps = kept;
9476 continue;
9477 }
9478 }
9479 }
9480 }
9481 }
9482
9483 /* Relocate the section by invoking a back end routine.
9484
9485 The back end routine is responsible for adjusting the
9486 section contents as necessary, and (if using Rela relocs
9487 and generating a relocatable output file) adjusting the
9488 reloc addend as necessary.
9489
9490 The back end routine does not have to worry about setting
9491 the reloc address or the reloc symbol index.
9492
9493 The back end routine is given a pointer to the swapped in
9494 internal symbols, and can access the hash table entries
9495 for the external symbols via elf_sym_hashes (input_bfd).
9496
9497 When generating relocatable output, the back end routine
9498 must handle STB_LOCAL/STT_SECTION symbols specially. The
9499 output symbol is going to be a section symbol
9500 corresponding to the output section, which will require
9501 the addend to be adjusted. */
9502
9503 ret = (*relocate_section) (output_bfd, finfo->info,
9504 input_bfd, o, contents,
9505 internal_relocs,
9506 isymbuf,
9507 finfo->sections);
9508 if (!ret)
9509 return FALSE;
9510
9511 if (ret == 2
9512 || finfo->info->relocatable
9513 || finfo->info->emitrelocations)
9514 {
9515 Elf_Internal_Rela *irela;
9516 Elf_Internal_Rela *irelaend;
9517 bfd_vma last_offset;
9518 struct elf_link_hash_entry **rel_hash;
9519 struct elf_link_hash_entry **rel_hash_list;
9520 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9521 unsigned int next_erel;
9522 bfd_boolean rela_normal;
9523
9524 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9525 rela_normal = (bed->rela_normal
9526 && (input_rel_hdr->sh_entsize
9527 == bed->s->sizeof_rela));
9528
9529 /* Adjust the reloc addresses and symbol indices. */
9530
9531 irela = internal_relocs;
9532 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9533 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9534 + elf_section_data (o->output_section)->rel_count
9535 + elf_section_data (o->output_section)->rel_count2);
9536 rel_hash_list = rel_hash;
9537 last_offset = o->output_offset;
9538 if (!finfo->info->relocatable)
9539 last_offset += o->output_section->vma;
9540 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9541 {
9542 unsigned long r_symndx;
9543 asection *sec;
9544 Elf_Internal_Sym sym;
9545
9546 if (next_erel == bed->s->int_rels_per_ext_rel)
9547 {
9548 rel_hash++;
9549 next_erel = 0;
9550 }
9551
9552 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9553 finfo->info, o,
9554 irela->r_offset);
9555 if (irela->r_offset >= (bfd_vma) -2)
9556 {
9557 /* This is a reloc for a deleted entry or somesuch.
9558 Turn it into an R_*_NONE reloc, at the same
9559 offset as the last reloc. elf_eh_frame.c and
9560 bfd_elf_discard_info rely on reloc offsets
9561 being ordered. */
9562 irela->r_offset = last_offset;
9563 irela->r_info = 0;
9564 irela->r_addend = 0;
9565 continue;
9566 }
9567
9568 irela->r_offset += o->output_offset;
9569
9570 /* Relocs in an executable have to be virtual addresses. */
9571 if (!finfo->info->relocatable)
9572 irela->r_offset += o->output_section->vma;
9573
9574 last_offset = irela->r_offset;
9575
9576 r_symndx = irela->r_info >> r_sym_shift;
9577 if (r_symndx == STN_UNDEF)
9578 continue;
9579
9580 if (r_symndx >= locsymcount
9581 || (elf_bad_symtab (input_bfd)
9582 && finfo->sections[r_symndx] == NULL))
9583 {
9584 struct elf_link_hash_entry *rh;
9585 unsigned long indx;
9586
9587 /* This is a reloc against a global symbol. We
9588 have not yet output all the local symbols, so
9589 we do not know the symbol index of any global
9590 symbol. We set the rel_hash entry for this
9591 reloc to point to the global hash table entry
9592 for this symbol. The symbol index is then
9593 set at the end of bfd_elf_final_link. */
9594 indx = r_symndx - extsymoff;
9595 rh = elf_sym_hashes (input_bfd)[indx];
9596 while (rh->root.type == bfd_link_hash_indirect
9597 || rh->root.type == bfd_link_hash_warning)
9598 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9599
9600 /* Setting the index to -2 tells
9601 elf_link_output_extsym that this symbol is
9602 used by a reloc. */
9603 BFD_ASSERT (rh->indx < 0);
9604 rh->indx = -2;
9605
9606 *rel_hash = rh;
9607
9608 continue;
9609 }
9610
9611 /* This is a reloc against a local symbol. */
9612
9613 *rel_hash = NULL;
9614 sym = isymbuf[r_symndx];
9615 sec = finfo->sections[r_symndx];
9616 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9617 {
9618 /* I suppose the backend ought to fill in the
9619 section of any STT_SECTION symbol against a
9620 processor specific section. */
9621 r_symndx = 0;
9622 if (bfd_is_abs_section (sec))
9623 ;
9624 else if (sec == NULL || sec->owner == NULL)
9625 {
9626 bfd_set_error (bfd_error_bad_value);
9627 return FALSE;
9628 }
9629 else
9630 {
9631 asection *osec = sec->output_section;
9632
9633 /* If we have discarded a section, the output
9634 section will be the absolute section. In
9635 case of discarded SEC_MERGE sections, use
9636 the kept section. relocate_section should
9637 have already handled discarded linkonce
9638 sections. */
9639 if (bfd_is_abs_section (osec)
9640 && sec->kept_section != NULL
9641 && sec->kept_section->output_section != NULL)
9642 {
9643 osec = sec->kept_section->output_section;
9644 irela->r_addend -= osec->vma;
9645 }
9646
9647 if (!bfd_is_abs_section (osec))
9648 {
9649 r_symndx = osec->target_index;
9650 if (r_symndx == 0)
9651 {
9652 struct elf_link_hash_table *htab;
9653 asection *oi;
9654
9655 htab = elf_hash_table (finfo->info);
9656 oi = htab->text_index_section;
9657 if ((osec->flags & SEC_READONLY) == 0
9658 && htab->data_index_section != NULL)
9659 oi = htab->data_index_section;
9660
9661 if (oi != NULL)
9662 {
9663 irela->r_addend += osec->vma - oi->vma;
9664 r_symndx = oi->target_index;
9665 }
9666 }
9667
9668 BFD_ASSERT (r_symndx != 0);
9669 }
9670 }
9671
9672 /* Adjust the addend according to where the
9673 section winds up in the output section. */
9674 if (rela_normal)
9675 irela->r_addend += sec->output_offset;
9676 }
9677 else
9678 {
9679 if (finfo->indices[r_symndx] == -1)
9680 {
9681 unsigned long shlink;
9682 const char *name;
9683 asection *osec;
9684 long indx;
9685
9686 if (finfo->info->strip == strip_all)
9687 {
9688 /* You can't do ld -r -s. */
9689 bfd_set_error (bfd_error_invalid_operation);
9690 return FALSE;
9691 }
9692
9693 /* This symbol was skipped earlier, but
9694 since it is needed by a reloc, we
9695 must output it now. */
9696 shlink = symtab_hdr->sh_link;
9697 name = (bfd_elf_string_from_elf_section
9698 (input_bfd, shlink, sym.st_name));
9699 if (name == NULL)
9700 return FALSE;
9701
9702 osec = sec->output_section;
9703 sym.st_shndx =
9704 _bfd_elf_section_from_bfd_section (output_bfd,
9705 osec);
9706 if (sym.st_shndx == SHN_BAD)
9707 return FALSE;
9708
9709 sym.st_value += sec->output_offset;
9710 if (! finfo->info->relocatable)
9711 {
9712 sym.st_value += osec->vma;
9713 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9714 {
9715 /* STT_TLS symbols are relative to PT_TLS
9716 segment base. */
9717 BFD_ASSERT (elf_hash_table (finfo->info)
9718 ->tls_sec != NULL);
9719 sym.st_value -= (elf_hash_table (finfo->info)
9720 ->tls_sec->vma);
9721 }
9722 }
9723
9724 indx = bfd_get_symcount (output_bfd);
9725 ret = elf_link_output_sym (finfo, name, &sym, sec,
9726 NULL);
9727 if (ret == 0)
9728 return FALSE;
9729 else if (ret == 1)
9730 finfo->indices[r_symndx] = indx;
9731 else
9732 abort ();
9733 }
9734
9735 r_symndx = finfo->indices[r_symndx];
9736 }
9737
9738 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9739 | (irela->r_info & r_type_mask));
9740 }
9741
9742 /* Swap out the relocs. */
9743 if (input_rel_hdr->sh_size != 0
9744 && !bed->elf_backend_emit_relocs (output_bfd, o,
9745 input_rel_hdr,
9746 internal_relocs,
9747 rel_hash_list))
9748 return FALSE;
9749
9750 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9751 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9752 {
9753 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9754 * bed->s->int_rels_per_ext_rel);
9755 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9756 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9757 input_rel_hdr2,
9758 internal_relocs,
9759 rel_hash_list))
9760 return FALSE;
9761 }
9762 }
9763 }
9764
9765 /* Write out the modified section contents. */
9766 if (bed->elf_backend_write_section
9767 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9768 contents))
9769 {
9770 /* Section written out. */
9771 }
9772 else switch (o->sec_info_type)
9773 {
9774 case ELF_INFO_TYPE_STABS:
9775 if (! (_bfd_write_section_stabs
9776 (output_bfd,
9777 &elf_hash_table (finfo->info)->stab_info,
9778 o, &elf_section_data (o)->sec_info, contents)))
9779 return FALSE;
9780 break;
9781 case ELF_INFO_TYPE_MERGE:
9782 if (! _bfd_write_merged_section (output_bfd, o,
9783 elf_section_data (o)->sec_info))
9784 return FALSE;
9785 break;
9786 case ELF_INFO_TYPE_EH_FRAME:
9787 {
9788 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9789 o, contents))
9790 return FALSE;
9791 }
9792 break;
9793 default:
9794 {
9795 /* FIXME: octets_per_byte. */
9796 if (! (o->flags & SEC_EXCLUDE)
9797 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9798 && ! bfd_set_section_contents (output_bfd, o->output_section,
9799 contents,
9800 (file_ptr) o->output_offset,
9801 o->size))
9802 return FALSE;
9803 }
9804 break;
9805 }
9806 }
9807
9808 return TRUE;
9809 }
9810
9811 /* Generate a reloc when linking an ELF file. This is a reloc
9812 requested by the linker, and does not come from any input file. This
9813 is used to build constructor and destructor tables when linking
9814 with -Ur. */
9815
9816 static bfd_boolean
9817 elf_reloc_link_order (bfd *output_bfd,
9818 struct bfd_link_info *info,
9819 asection *output_section,
9820 struct bfd_link_order *link_order)
9821 {
9822 reloc_howto_type *howto;
9823 long indx;
9824 bfd_vma offset;
9825 bfd_vma addend;
9826 struct elf_link_hash_entry **rel_hash_ptr;
9827 Elf_Internal_Shdr *rel_hdr;
9828 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9829 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9830 bfd_byte *erel;
9831 unsigned int i;
9832
9833 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9834 if (howto == NULL)
9835 {
9836 bfd_set_error (bfd_error_bad_value);
9837 return FALSE;
9838 }
9839
9840 addend = link_order->u.reloc.p->addend;
9841
9842 /* Figure out the symbol index. */
9843 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9844 + elf_section_data (output_section)->rel_count
9845 + elf_section_data (output_section)->rel_count2);
9846 if (link_order->type == bfd_section_reloc_link_order)
9847 {
9848 indx = link_order->u.reloc.p->u.section->target_index;
9849 BFD_ASSERT (indx != 0);
9850 *rel_hash_ptr = NULL;
9851 }
9852 else
9853 {
9854 struct elf_link_hash_entry *h;
9855
9856 /* Treat a reloc against a defined symbol as though it were
9857 actually against the section. */
9858 h = ((struct elf_link_hash_entry *)
9859 bfd_wrapped_link_hash_lookup (output_bfd, info,
9860 link_order->u.reloc.p->u.name,
9861 FALSE, FALSE, TRUE));
9862 if (h != NULL
9863 && (h->root.type == bfd_link_hash_defined
9864 || h->root.type == bfd_link_hash_defweak))
9865 {
9866 asection *section;
9867
9868 section = h->root.u.def.section;
9869 indx = section->output_section->target_index;
9870 *rel_hash_ptr = NULL;
9871 /* It seems that we ought to add the symbol value to the
9872 addend here, but in practice it has already been added
9873 because it was passed to constructor_callback. */
9874 addend += section->output_section->vma + section->output_offset;
9875 }
9876 else if (h != NULL)
9877 {
9878 /* Setting the index to -2 tells elf_link_output_extsym that
9879 this symbol is used by a reloc. */
9880 h->indx = -2;
9881 *rel_hash_ptr = h;
9882 indx = 0;
9883 }
9884 else
9885 {
9886 if (! ((*info->callbacks->unattached_reloc)
9887 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9888 return FALSE;
9889 indx = 0;
9890 }
9891 }
9892
9893 /* If this is an inplace reloc, we must write the addend into the
9894 object file. */
9895 if (howto->partial_inplace && addend != 0)
9896 {
9897 bfd_size_type size;
9898 bfd_reloc_status_type rstat;
9899 bfd_byte *buf;
9900 bfd_boolean ok;
9901 const char *sym_name;
9902
9903 size = (bfd_size_type) bfd_get_reloc_size (howto);
9904 buf = (bfd_byte *) bfd_zmalloc (size);
9905 if (buf == NULL)
9906 return FALSE;
9907 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9908 switch (rstat)
9909 {
9910 case bfd_reloc_ok:
9911 break;
9912
9913 default:
9914 case bfd_reloc_outofrange:
9915 abort ();
9916
9917 case bfd_reloc_overflow:
9918 if (link_order->type == bfd_section_reloc_link_order)
9919 sym_name = bfd_section_name (output_bfd,
9920 link_order->u.reloc.p->u.section);
9921 else
9922 sym_name = link_order->u.reloc.p->u.name;
9923 if (! ((*info->callbacks->reloc_overflow)
9924 (info, NULL, sym_name, howto->name, addend, NULL,
9925 NULL, (bfd_vma) 0)))
9926 {
9927 free (buf);
9928 return FALSE;
9929 }
9930 break;
9931 }
9932 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9933 link_order->offset, size);
9934 free (buf);
9935 if (! ok)
9936 return FALSE;
9937 }
9938
9939 /* The address of a reloc is relative to the section in a
9940 relocatable file, and is a virtual address in an executable
9941 file. */
9942 offset = link_order->offset;
9943 if (! info->relocatable)
9944 offset += output_section->vma;
9945
9946 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9947 {
9948 irel[i].r_offset = offset;
9949 irel[i].r_info = 0;
9950 irel[i].r_addend = 0;
9951 }
9952 if (bed->s->arch_size == 32)
9953 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9954 else
9955 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9956
9957 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9958 erel = rel_hdr->contents;
9959 if (rel_hdr->sh_type == SHT_REL)
9960 {
9961 erel += (elf_section_data (output_section)->rel_count
9962 * bed->s->sizeof_rel);
9963 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9964 }
9965 else
9966 {
9967 irel[0].r_addend = addend;
9968 erel += (elf_section_data (output_section)->rel_count
9969 * bed->s->sizeof_rela);
9970 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9971 }
9972
9973 ++elf_section_data (output_section)->rel_count;
9974
9975 return TRUE;
9976 }
9977
9978
9979 /* Get the output vma of the section pointed to by the sh_link field. */
9980
9981 static bfd_vma
9982 elf_get_linked_section_vma (struct bfd_link_order *p)
9983 {
9984 Elf_Internal_Shdr **elf_shdrp;
9985 asection *s;
9986 int elfsec;
9987
9988 s = p->u.indirect.section;
9989 elf_shdrp = elf_elfsections (s->owner);
9990 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9991 elfsec = elf_shdrp[elfsec]->sh_link;
9992 /* PR 290:
9993 The Intel C compiler generates SHT_IA_64_UNWIND with
9994 SHF_LINK_ORDER. But it doesn't set the sh_link or
9995 sh_info fields. Hence we could get the situation
9996 where elfsec is 0. */
9997 if (elfsec == 0)
9998 {
9999 const struct elf_backend_data *bed
10000 = get_elf_backend_data (s->owner);
10001 if (bed->link_order_error_handler)
10002 bed->link_order_error_handler
10003 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10004 return 0;
10005 }
10006 else
10007 {
10008 s = elf_shdrp[elfsec]->bfd_section;
10009 return s->output_section->vma + s->output_offset;
10010 }
10011 }
10012
10013
10014 /* Compare two sections based on the locations of the sections they are
10015 linked to. Used by elf_fixup_link_order. */
10016
10017 static int
10018 compare_link_order (const void * a, const void * b)
10019 {
10020 bfd_vma apos;
10021 bfd_vma bpos;
10022
10023 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10024 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10025 if (apos < bpos)
10026 return -1;
10027 return apos > bpos;
10028 }
10029
10030
10031 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10032 order as their linked sections. Returns false if this could not be done
10033 because an output section includes both ordered and unordered
10034 sections. Ideally we'd do this in the linker proper. */
10035
10036 static bfd_boolean
10037 elf_fixup_link_order (bfd *abfd, asection *o)
10038 {
10039 int seen_linkorder;
10040 int seen_other;
10041 int n;
10042 struct bfd_link_order *p;
10043 bfd *sub;
10044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10045 unsigned elfsec;
10046 struct bfd_link_order **sections;
10047 asection *s, *other_sec, *linkorder_sec;
10048 bfd_vma offset;
10049
10050 other_sec = NULL;
10051 linkorder_sec = NULL;
10052 seen_other = 0;
10053 seen_linkorder = 0;
10054 for (p = o->map_head.link_order; p != NULL; p = p->next)
10055 {
10056 if (p->type == bfd_indirect_link_order)
10057 {
10058 s = p->u.indirect.section;
10059 sub = s->owner;
10060 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10061 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10062 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10063 && elfsec < elf_numsections (sub)
10064 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10065 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10066 {
10067 seen_linkorder++;
10068 linkorder_sec = s;
10069 }
10070 else
10071 {
10072 seen_other++;
10073 other_sec = s;
10074 }
10075 }
10076 else
10077 seen_other++;
10078
10079 if (seen_other && seen_linkorder)
10080 {
10081 if (other_sec && linkorder_sec)
10082 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10083 o, linkorder_sec,
10084 linkorder_sec->owner, other_sec,
10085 other_sec->owner);
10086 else
10087 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10088 o);
10089 bfd_set_error (bfd_error_bad_value);
10090 return FALSE;
10091 }
10092 }
10093
10094 if (!seen_linkorder)
10095 return TRUE;
10096
10097 sections = (struct bfd_link_order **)
10098 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10099 if (sections == NULL)
10100 return FALSE;
10101 seen_linkorder = 0;
10102
10103 for (p = o->map_head.link_order; p != NULL; p = p->next)
10104 {
10105 sections[seen_linkorder++] = p;
10106 }
10107 /* Sort the input sections in the order of their linked section. */
10108 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10109 compare_link_order);
10110
10111 /* Change the offsets of the sections. */
10112 offset = 0;
10113 for (n = 0; n < seen_linkorder; n++)
10114 {
10115 s = sections[n]->u.indirect.section;
10116 offset &= ~(bfd_vma) 0 << s->alignment_power;
10117 s->output_offset = offset;
10118 sections[n]->offset = offset;
10119 /* FIXME: octets_per_byte. */
10120 offset += sections[n]->size;
10121 }
10122
10123 free (sections);
10124 return TRUE;
10125 }
10126
10127
10128 /* Do the final step of an ELF link. */
10129
10130 bfd_boolean
10131 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10132 {
10133 bfd_boolean dynamic;
10134 bfd_boolean emit_relocs;
10135 bfd *dynobj;
10136 struct elf_final_link_info finfo;
10137 asection *o;
10138 struct bfd_link_order *p;
10139 bfd *sub;
10140 bfd_size_type max_contents_size;
10141 bfd_size_type max_external_reloc_size;
10142 bfd_size_type max_internal_reloc_count;
10143 bfd_size_type max_sym_count;
10144 bfd_size_type max_sym_shndx_count;
10145 file_ptr off;
10146 Elf_Internal_Sym elfsym;
10147 unsigned int i;
10148 Elf_Internal_Shdr *symtab_hdr;
10149 Elf_Internal_Shdr *symtab_shndx_hdr;
10150 Elf_Internal_Shdr *symstrtab_hdr;
10151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10152 struct elf_outext_info eoinfo;
10153 bfd_boolean merged;
10154 size_t relativecount = 0;
10155 asection *reldyn = 0;
10156 bfd_size_type amt;
10157 asection *attr_section = NULL;
10158 bfd_vma attr_size = 0;
10159 const char *std_attrs_section;
10160
10161 if (! is_elf_hash_table (info->hash))
10162 return FALSE;
10163
10164 if (info->shared)
10165 abfd->flags |= DYNAMIC;
10166
10167 dynamic = elf_hash_table (info)->dynamic_sections_created;
10168 dynobj = elf_hash_table (info)->dynobj;
10169
10170 emit_relocs = (info->relocatable
10171 || info->emitrelocations);
10172
10173 finfo.info = info;
10174 finfo.output_bfd = abfd;
10175 finfo.symstrtab = _bfd_elf_stringtab_init ();
10176 if (finfo.symstrtab == NULL)
10177 return FALSE;
10178
10179 if (! dynamic)
10180 {
10181 finfo.dynsym_sec = NULL;
10182 finfo.hash_sec = NULL;
10183 finfo.symver_sec = NULL;
10184 }
10185 else
10186 {
10187 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10188 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10189 BFD_ASSERT (finfo.dynsym_sec != NULL);
10190 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10191 /* Note that it is OK if symver_sec is NULL. */
10192 }
10193
10194 finfo.contents = NULL;
10195 finfo.external_relocs = NULL;
10196 finfo.internal_relocs = NULL;
10197 finfo.external_syms = NULL;
10198 finfo.locsym_shndx = NULL;
10199 finfo.internal_syms = NULL;
10200 finfo.indices = NULL;
10201 finfo.sections = NULL;
10202 finfo.symbuf = NULL;
10203 finfo.symshndxbuf = NULL;
10204 finfo.symbuf_count = 0;
10205 finfo.shndxbuf_size = 0;
10206
10207 /* The object attributes have been merged. Remove the input
10208 sections from the link, and set the contents of the output
10209 secton. */
10210 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10211 for (o = abfd->sections; o != NULL; o = o->next)
10212 {
10213 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10214 || strcmp (o->name, ".gnu.attributes") == 0)
10215 {
10216 for (p = o->map_head.link_order; p != NULL; p = p->next)
10217 {
10218 asection *input_section;
10219
10220 if (p->type != bfd_indirect_link_order)
10221 continue;
10222 input_section = p->u.indirect.section;
10223 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10224 elf_link_input_bfd ignores this section. */
10225 input_section->flags &= ~SEC_HAS_CONTENTS;
10226 }
10227
10228 attr_size = bfd_elf_obj_attr_size (abfd);
10229 if (attr_size)
10230 {
10231 bfd_set_section_size (abfd, o, attr_size);
10232 attr_section = o;
10233 /* Skip this section later on. */
10234 o->map_head.link_order = NULL;
10235 }
10236 else
10237 o->flags |= SEC_EXCLUDE;
10238 }
10239 }
10240
10241 /* Count up the number of relocations we will output for each output
10242 section, so that we know the sizes of the reloc sections. We
10243 also figure out some maximum sizes. */
10244 max_contents_size = 0;
10245 max_external_reloc_size = 0;
10246 max_internal_reloc_count = 0;
10247 max_sym_count = 0;
10248 max_sym_shndx_count = 0;
10249 merged = FALSE;
10250 for (o = abfd->sections; o != NULL; o = o->next)
10251 {
10252 struct bfd_elf_section_data *esdo = elf_section_data (o);
10253 o->reloc_count = 0;
10254
10255 for (p = o->map_head.link_order; p != NULL; p = p->next)
10256 {
10257 unsigned int reloc_count = 0;
10258 struct bfd_elf_section_data *esdi = NULL;
10259 unsigned int *rel_count1;
10260
10261 if (p->type == bfd_section_reloc_link_order
10262 || p->type == bfd_symbol_reloc_link_order)
10263 reloc_count = 1;
10264 else if (p->type == bfd_indirect_link_order)
10265 {
10266 asection *sec;
10267
10268 sec = p->u.indirect.section;
10269 esdi = elf_section_data (sec);
10270
10271 /* Mark all sections which are to be included in the
10272 link. This will normally be every section. We need
10273 to do this so that we can identify any sections which
10274 the linker has decided to not include. */
10275 sec->linker_mark = TRUE;
10276
10277 if (sec->flags & SEC_MERGE)
10278 merged = TRUE;
10279
10280 if (info->relocatable || info->emitrelocations)
10281 reloc_count = sec->reloc_count;
10282 else if (bed->elf_backend_count_relocs)
10283 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10284
10285 if (sec->rawsize > max_contents_size)
10286 max_contents_size = sec->rawsize;
10287 if (sec->size > max_contents_size)
10288 max_contents_size = sec->size;
10289
10290 /* We are interested in just local symbols, not all
10291 symbols. */
10292 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10293 && (sec->owner->flags & DYNAMIC) == 0)
10294 {
10295 size_t sym_count;
10296
10297 if (elf_bad_symtab (sec->owner))
10298 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10299 / bed->s->sizeof_sym);
10300 else
10301 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10302
10303 if (sym_count > max_sym_count)
10304 max_sym_count = sym_count;
10305
10306 if (sym_count > max_sym_shndx_count
10307 && elf_symtab_shndx (sec->owner) != 0)
10308 max_sym_shndx_count = sym_count;
10309
10310 if ((sec->flags & SEC_RELOC) != 0)
10311 {
10312 size_t ext_size;
10313
10314 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10315 if (ext_size > max_external_reloc_size)
10316 max_external_reloc_size = ext_size;
10317 if (sec->reloc_count > max_internal_reloc_count)
10318 max_internal_reloc_count = sec->reloc_count;
10319 }
10320 }
10321 }
10322
10323 if (reloc_count == 0)
10324 continue;
10325
10326 o->reloc_count += reloc_count;
10327
10328 /* MIPS may have a mix of REL and RELA relocs on sections.
10329 To support this curious ABI we keep reloc counts in
10330 elf_section_data too. We must be careful to add the
10331 relocations from the input section to the right output
10332 count. FIXME: Get rid of one count. We have
10333 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10334 rel_count1 = &esdo->rel_count;
10335 if (esdi != NULL)
10336 {
10337 bfd_boolean same_size;
10338 bfd_size_type entsize1;
10339
10340 entsize1 = esdi->rel_hdr.sh_entsize;
10341 /* PR 9827: If the header size has not been set yet then
10342 assume that it will match the output section's reloc type. */
10343 if (entsize1 == 0)
10344 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10345 else
10346 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10347 || entsize1 == bed->s->sizeof_rela);
10348 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10349
10350 if (!same_size)
10351 rel_count1 = &esdo->rel_count2;
10352
10353 if (esdi->rel_hdr2 != NULL)
10354 {
10355 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10356 unsigned int alt_count;
10357 unsigned int *rel_count2;
10358
10359 BFD_ASSERT (entsize2 != entsize1
10360 && (entsize2 == bed->s->sizeof_rel
10361 || entsize2 == bed->s->sizeof_rela));
10362
10363 rel_count2 = &esdo->rel_count2;
10364 if (!same_size)
10365 rel_count2 = &esdo->rel_count;
10366
10367 /* The following is probably too simplistic if the
10368 backend counts output relocs unusually. */
10369 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10370 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10371 *rel_count2 += alt_count;
10372 reloc_count -= alt_count;
10373 }
10374 }
10375 *rel_count1 += reloc_count;
10376 }
10377
10378 if (o->reloc_count > 0)
10379 o->flags |= SEC_RELOC;
10380 else
10381 {
10382 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10383 set it (this is probably a bug) and if it is set
10384 assign_section_numbers will create a reloc section. */
10385 o->flags &=~ SEC_RELOC;
10386 }
10387
10388 /* If the SEC_ALLOC flag is not set, force the section VMA to
10389 zero. This is done in elf_fake_sections as well, but forcing
10390 the VMA to 0 here will ensure that relocs against these
10391 sections are handled correctly. */
10392 if ((o->flags & SEC_ALLOC) == 0
10393 && ! o->user_set_vma)
10394 o->vma = 0;
10395 }
10396
10397 if (! info->relocatable && merged)
10398 elf_link_hash_traverse (elf_hash_table (info),
10399 _bfd_elf_link_sec_merge_syms, abfd);
10400
10401 /* Figure out the file positions for everything but the symbol table
10402 and the relocs. We set symcount to force assign_section_numbers
10403 to create a symbol table. */
10404 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10405 BFD_ASSERT (! abfd->output_has_begun);
10406 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10407 goto error_return;
10408
10409 /* Set sizes, and assign file positions for reloc sections. */
10410 for (o = abfd->sections; o != NULL; o = o->next)
10411 {
10412 if ((o->flags & SEC_RELOC) != 0)
10413 {
10414 if (!(_bfd_elf_link_size_reloc_section
10415 (abfd, &elf_section_data (o)->rel_hdr, o)))
10416 goto error_return;
10417
10418 if (elf_section_data (o)->rel_hdr2
10419 && !(_bfd_elf_link_size_reloc_section
10420 (abfd, elf_section_data (o)->rel_hdr2, o)))
10421 goto error_return;
10422 }
10423
10424 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10425 to count upwards while actually outputting the relocations. */
10426 elf_section_data (o)->rel_count = 0;
10427 elf_section_data (o)->rel_count2 = 0;
10428 }
10429
10430 _bfd_elf_assign_file_positions_for_relocs (abfd);
10431
10432 /* We have now assigned file positions for all the sections except
10433 .symtab and .strtab. We start the .symtab section at the current
10434 file position, and write directly to it. We build the .strtab
10435 section in memory. */
10436 bfd_get_symcount (abfd) = 0;
10437 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10438 /* sh_name is set in prep_headers. */
10439 symtab_hdr->sh_type = SHT_SYMTAB;
10440 /* sh_flags, sh_addr and sh_size all start off zero. */
10441 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10442 /* sh_link is set in assign_section_numbers. */
10443 /* sh_info is set below. */
10444 /* sh_offset is set just below. */
10445 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10446
10447 off = elf_tdata (abfd)->next_file_pos;
10448 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10449
10450 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10451 incorrect. We do not yet know the size of the .symtab section.
10452 We correct next_file_pos below, after we do know the size. */
10453
10454 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10455 continuously seeking to the right position in the file. */
10456 if (! info->keep_memory || max_sym_count < 20)
10457 finfo.symbuf_size = 20;
10458 else
10459 finfo.symbuf_size = max_sym_count;
10460 amt = finfo.symbuf_size;
10461 amt *= bed->s->sizeof_sym;
10462 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10463 if (finfo.symbuf == NULL)
10464 goto error_return;
10465 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10466 {
10467 /* Wild guess at number of output symbols. realloc'd as needed. */
10468 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10469 finfo.shndxbuf_size = amt;
10470 amt *= sizeof (Elf_External_Sym_Shndx);
10471 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10472 if (finfo.symshndxbuf == NULL)
10473 goto error_return;
10474 }
10475
10476 /* Start writing out the symbol table. The first symbol is always a
10477 dummy symbol. */
10478 if (info->strip != strip_all
10479 || emit_relocs)
10480 {
10481 elfsym.st_value = 0;
10482 elfsym.st_size = 0;
10483 elfsym.st_info = 0;
10484 elfsym.st_other = 0;
10485 elfsym.st_shndx = SHN_UNDEF;
10486 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10487 NULL) != 1)
10488 goto error_return;
10489 }
10490
10491 /* Output a symbol for each section. We output these even if we are
10492 discarding local symbols, since they are used for relocs. These
10493 symbols have no names. We store the index of each one in the
10494 index field of the section, so that we can find it again when
10495 outputting relocs. */
10496 if (info->strip != strip_all
10497 || emit_relocs)
10498 {
10499 elfsym.st_size = 0;
10500 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10501 elfsym.st_other = 0;
10502 elfsym.st_value = 0;
10503 for (i = 1; i < elf_numsections (abfd); i++)
10504 {
10505 o = bfd_section_from_elf_index (abfd, i);
10506 if (o != NULL)
10507 {
10508 o->target_index = bfd_get_symcount (abfd);
10509 elfsym.st_shndx = i;
10510 if (!info->relocatable)
10511 elfsym.st_value = o->vma;
10512 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10513 goto error_return;
10514 }
10515 }
10516 }
10517
10518 /* Allocate some memory to hold information read in from the input
10519 files. */
10520 if (max_contents_size != 0)
10521 {
10522 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10523 if (finfo.contents == NULL)
10524 goto error_return;
10525 }
10526
10527 if (max_external_reloc_size != 0)
10528 {
10529 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10530 if (finfo.external_relocs == NULL)
10531 goto error_return;
10532 }
10533
10534 if (max_internal_reloc_count != 0)
10535 {
10536 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10537 amt *= sizeof (Elf_Internal_Rela);
10538 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10539 if (finfo.internal_relocs == NULL)
10540 goto error_return;
10541 }
10542
10543 if (max_sym_count != 0)
10544 {
10545 amt = max_sym_count * bed->s->sizeof_sym;
10546 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10547 if (finfo.external_syms == NULL)
10548 goto error_return;
10549
10550 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10551 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10552 if (finfo.internal_syms == NULL)
10553 goto error_return;
10554
10555 amt = max_sym_count * sizeof (long);
10556 finfo.indices = (long int *) bfd_malloc (amt);
10557 if (finfo.indices == NULL)
10558 goto error_return;
10559
10560 amt = max_sym_count * sizeof (asection *);
10561 finfo.sections = (asection **) bfd_malloc (amt);
10562 if (finfo.sections == NULL)
10563 goto error_return;
10564 }
10565
10566 if (max_sym_shndx_count != 0)
10567 {
10568 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10569 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10570 if (finfo.locsym_shndx == NULL)
10571 goto error_return;
10572 }
10573
10574 if (elf_hash_table (info)->tls_sec)
10575 {
10576 bfd_vma base, end = 0;
10577 asection *sec;
10578
10579 for (sec = elf_hash_table (info)->tls_sec;
10580 sec && (sec->flags & SEC_THREAD_LOCAL);
10581 sec = sec->next)
10582 {
10583 bfd_size_type size = sec->size;
10584
10585 if (size == 0
10586 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10587 {
10588 struct bfd_link_order *ord = sec->map_tail.link_order;
10589
10590 if (ord != NULL)
10591 size = ord->offset + ord->size;
10592 }
10593 end = sec->vma + size;
10594 }
10595 base = elf_hash_table (info)->tls_sec->vma;
10596 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10597 elf_hash_table (info)->tls_size = end - base;
10598 }
10599
10600 /* Reorder SHF_LINK_ORDER sections. */
10601 for (o = abfd->sections; o != NULL; o = o->next)
10602 {
10603 if (!elf_fixup_link_order (abfd, o))
10604 return FALSE;
10605 }
10606
10607 /* Since ELF permits relocations to be against local symbols, we
10608 must have the local symbols available when we do the relocations.
10609 Since we would rather only read the local symbols once, and we
10610 would rather not keep them in memory, we handle all the
10611 relocations for a single input file at the same time.
10612
10613 Unfortunately, there is no way to know the total number of local
10614 symbols until we have seen all of them, and the local symbol
10615 indices precede the global symbol indices. This means that when
10616 we are generating relocatable output, and we see a reloc against
10617 a global symbol, we can not know the symbol index until we have
10618 finished examining all the local symbols to see which ones we are
10619 going to output. To deal with this, we keep the relocations in
10620 memory, and don't output them until the end of the link. This is
10621 an unfortunate waste of memory, but I don't see a good way around
10622 it. Fortunately, it only happens when performing a relocatable
10623 link, which is not the common case. FIXME: If keep_memory is set
10624 we could write the relocs out and then read them again; I don't
10625 know how bad the memory loss will be. */
10626
10627 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10628 sub->output_has_begun = FALSE;
10629 for (o = abfd->sections; o != NULL; o = o->next)
10630 {
10631 for (p = o->map_head.link_order; p != NULL; p = p->next)
10632 {
10633 if (p->type == bfd_indirect_link_order
10634 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10635 == bfd_target_elf_flavour)
10636 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10637 {
10638 if (! sub->output_has_begun)
10639 {
10640 if (! elf_link_input_bfd (&finfo, sub))
10641 goto error_return;
10642 sub->output_has_begun = TRUE;
10643 }
10644 }
10645 else if (p->type == bfd_section_reloc_link_order
10646 || p->type == bfd_symbol_reloc_link_order)
10647 {
10648 if (! elf_reloc_link_order (abfd, info, o, p))
10649 goto error_return;
10650 }
10651 else
10652 {
10653 if (! _bfd_default_link_order (abfd, info, o, p))
10654 goto error_return;
10655 }
10656 }
10657 }
10658
10659 /* Free symbol buffer if needed. */
10660 if (!info->reduce_memory_overheads)
10661 {
10662 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10663 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10664 && elf_tdata (sub)->symbuf)
10665 {
10666 free (elf_tdata (sub)->symbuf);
10667 elf_tdata (sub)->symbuf = NULL;
10668 }
10669 }
10670
10671 /* Output any global symbols that got converted to local in a
10672 version script or due to symbol visibility. We do this in a
10673 separate step since ELF requires all local symbols to appear
10674 prior to any global symbols. FIXME: We should only do this if
10675 some global symbols were, in fact, converted to become local.
10676 FIXME: Will this work correctly with the Irix 5 linker? */
10677 eoinfo.failed = FALSE;
10678 eoinfo.finfo = &finfo;
10679 eoinfo.localsyms = TRUE;
10680 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10681 &eoinfo);
10682 if (eoinfo.failed)
10683 return FALSE;
10684
10685 /* If backend needs to output some local symbols not present in the hash
10686 table, do it now. */
10687 if (bed->elf_backend_output_arch_local_syms)
10688 {
10689 typedef int (*out_sym_func)
10690 (void *, const char *, Elf_Internal_Sym *, asection *,
10691 struct elf_link_hash_entry *);
10692
10693 if (! ((*bed->elf_backend_output_arch_local_syms)
10694 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10695 return FALSE;
10696 }
10697
10698 /* That wrote out all the local symbols. Finish up the symbol table
10699 with the global symbols. Even if we want to strip everything we
10700 can, we still need to deal with those global symbols that got
10701 converted to local in a version script. */
10702
10703 /* The sh_info field records the index of the first non local symbol. */
10704 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10705
10706 if (dynamic
10707 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10708 {
10709 Elf_Internal_Sym sym;
10710 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10711 long last_local = 0;
10712
10713 /* Write out the section symbols for the output sections. */
10714 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10715 {
10716 asection *s;
10717
10718 sym.st_size = 0;
10719 sym.st_name = 0;
10720 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10721 sym.st_other = 0;
10722
10723 for (s = abfd->sections; s != NULL; s = s->next)
10724 {
10725 int indx;
10726 bfd_byte *dest;
10727 long dynindx;
10728
10729 dynindx = elf_section_data (s)->dynindx;
10730 if (dynindx <= 0)
10731 continue;
10732 indx = elf_section_data (s)->this_idx;
10733 BFD_ASSERT (indx > 0);
10734 sym.st_shndx = indx;
10735 if (! check_dynsym (abfd, &sym))
10736 return FALSE;
10737 sym.st_value = s->vma;
10738 dest = dynsym + dynindx * bed->s->sizeof_sym;
10739 if (last_local < dynindx)
10740 last_local = dynindx;
10741 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10742 }
10743 }
10744
10745 /* Write out the local dynsyms. */
10746 if (elf_hash_table (info)->dynlocal)
10747 {
10748 struct elf_link_local_dynamic_entry *e;
10749 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10750 {
10751 asection *s;
10752 bfd_byte *dest;
10753
10754 /* Copy the internal symbol and turn off visibility.
10755 Note that we saved a word of storage and overwrote
10756 the original st_name with the dynstr_index. */
10757 sym = e->isym;
10758 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10759
10760 s = bfd_section_from_elf_index (e->input_bfd,
10761 e->isym.st_shndx);
10762 if (s != NULL)
10763 {
10764 sym.st_shndx =
10765 elf_section_data (s->output_section)->this_idx;
10766 if (! check_dynsym (abfd, &sym))
10767 return FALSE;
10768 sym.st_value = (s->output_section->vma
10769 + s->output_offset
10770 + e->isym.st_value);
10771 }
10772
10773 if (last_local < e->dynindx)
10774 last_local = e->dynindx;
10775
10776 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10777 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10778 }
10779 }
10780
10781 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10782 last_local + 1;
10783 }
10784
10785 /* We get the global symbols from the hash table. */
10786 eoinfo.failed = FALSE;
10787 eoinfo.localsyms = FALSE;
10788 eoinfo.finfo = &finfo;
10789 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10790 &eoinfo);
10791 if (eoinfo.failed)
10792 return FALSE;
10793
10794 /* If backend needs to output some symbols not present in the hash
10795 table, do it now. */
10796 if (bed->elf_backend_output_arch_syms)
10797 {
10798 typedef int (*out_sym_func)
10799 (void *, const char *, Elf_Internal_Sym *, asection *,
10800 struct elf_link_hash_entry *);
10801
10802 if (! ((*bed->elf_backend_output_arch_syms)
10803 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10804 return FALSE;
10805 }
10806
10807 /* Flush all symbols to the file. */
10808 if (! elf_link_flush_output_syms (&finfo, bed))
10809 return FALSE;
10810
10811 /* Now we know the size of the symtab section. */
10812 off += symtab_hdr->sh_size;
10813
10814 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10815 if (symtab_shndx_hdr->sh_name != 0)
10816 {
10817 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10818 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10819 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10820 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10821 symtab_shndx_hdr->sh_size = amt;
10822
10823 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10824 off, TRUE);
10825
10826 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10827 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10828 return FALSE;
10829 }
10830
10831
10832 /* Finish up and write out the symbol string table (.strtab)
10833 section. */
10834 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10835 /* sh_name was set in prep_headers. */
10836 symstrtab_hdr->sh_type = SHT_STRTAB;
10837 symstrtab_hdr->sh_flags = 0;
10838 symstrtab_hdr->sh_addr = 0;
10839 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10840 symstrtab_hdr->sh_entsize = 0;
10841 symstrtab_hdr->sh_link = 0;
10842 symstrtab_hdr->sh_info = 0;
10843 /* sh_offset is set just below. */
10844 symstrtab_hdr->sh_addralign = 1;
10845
10846 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10847 elf_tdata (abfd)->next_file_pos = off;
10848
10849 if (bfd_get_symcount (abfd) > 0)
10850 {
10851 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10852 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10853 return FALSE;
10854 }
10855
10856 /* Adjust the relocs to have the correct symbol indices. */
10857 for (o = abfd->sections; o != NULL; o = o->next)
10858 {
10859 if ((o->flags & SEC_RELOC) == 0)
10860 continue;
10861
10862 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10863 elf_section_data (o)->rel_count,
10864 elf_section_data (o)->rel_hashes);
10865 if (elf_section_data (o)->rel_hdr2 != NULL)
10866 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10867 elf_section_data (o)->rel_count2,
10868 (elf_section_data (o)->rel_hashes
10869 + elf_section_data (o)->rel_count));
10870
10871 /* Set the reloc_count field to 0 to prevent write_relocs from
10872 trying to swap the relocs out itself. */
10873 o->reloc_count = 0;
10874 }
10875
10876 if (dynamic && info->combreloc && dynobj != NULL)
10877 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10878
10879 /* If we are linking against a dynamic object, or generating a
10880 shared library, finish up the dynamic linking information. */
10881 if (dynamic)
10882 {
10883 bfd_byte *dyncon, *dynconend;
10884
10885 /* Fix up .dynamic entries. */
10886 o = bfd_get_section_by_name (dynobj, ".dynamic");
10887 BFD_ASSERT (o != NULL);
10888
10889 dyncon = o->contents;
10890 dynconend = o->contents + o->size;
10891 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10892 {
10893 Elf_Internal_Dyn dyn;
10894 const char *name;
10895 unsigned int type;
10896
10897 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10898
10899 switch (dyn.d_tag)
10900 {
10901 default:
10902 continue;
10903 case DT_NULL:
10904 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10905 {
10906 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10907 {
10908 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10909 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10910 default: continue;
10911 }
10912 dyn.d_un.d_val = relativecount;
10913 relativecount = 0;
10914 break;
10915 }
10916 continue;
10917
10918 case DT_INIT:
10919 name = info->init_function;
10920 goto get_sym;
10921 case DT_FINI:
10922 name = info->fini_function;
10923 get_sym:
10924 {
10925 struct elf_link_hash_entry *h;
10926
10927 h = elf_link_hash_lookup (elf_hash_table (info), name,
10928 FALSE, FALSE, TRUE);
10929 if (h != NULL
10930 && (h->root.type == bfd_link_hash_defined
10931 || h->root.type == bfd_link_hash_defweak))
10932 {
10933 dyn.d_un.d_ptr = h->root.u.def.value;
10934 o = h->root.u.def.section;
10935 if (o->output_section != NULL)
10936 dyn.d_un.d_ptr += (o->output_section->vma
10937 + o->output_offset);
10938 else
10939 {
10940 /* The symbol is imported from another shared
10941 library and does not apply to this one. */
10942 dyn.d_un.d_ptr = 0;
10943 }
10944 break;
10945 }
10946 }
10947 continue;
10948
10949 case DT_PREINIT_ARRAYSZ:
10950 name = ".preinit_array";
10951 goto get_size;
10952 case DT_INIT_ARRAYSZ:
10953 name = ".init_array";
10954 goto get_size;
10955 case DT_FINI_ARRAYSZ:
10956 name = ".fini_array";
10957 get_size:
10958 o = bfd_get_section_by_name (abfd, name);
10959 if (o == NULL)
10960 {
10961 (*_bfd_error_handler)
10962 (_("%B: could not find output section %s"), abfd, name);
10963 goto error_return;
10964 }
10965 if (o->size == 0)
10966 (*_bfd_error_handler)
10967 (_("warning: %s section has zero size"), name);
10968 dyn.d_un.d_val = o->size;
10969 break;
10970
10971 case DT_PREINIT_ARRAY:
10972 name = ".preinit_array";
10973 goto get_vma;
10974 case DT_INIT_ARRAY:
10975 name = ".init_array";
10976 goto get_vma;
10977 case DT_FINI_ARRAY:
10978 name = ".fini_array";
10979 goto get_vma;
10980
10981 case DT_HASH:
10982 name = ".hash";
10983 goto get_vma;
10984 case DT_GNU_HASH:
10985 name = ".gnu.hash";
10986 goto get_vma;
10987 case DT_STRTAB:
10988 name = ".dynstr";
10989 goto get_vma;
10990 case DT_SYMTAB:
10991 name = ".dynsym";
10992 goto get_vma;
10993 case DT_VERDEF:
10994 name = ".gnu.version_d";
10995 goto get_vma;
10996 case DT_VERNEED:
10997 name = ".gnu.version_r";
10998 goto get_vma;
10999 case DT_VERSYM:
11000 name = ".gnu.version";
11001 get_vma:
11002 o = bfd_get_section_by_name (abfd, name);
11003 if (o == NULL)
11004 {
11005 (*_bfd_error_handler)
11006 (_("%B: could not find output section %s"), abfd, name);
11007 goto error_return;
11008 }
11009 dyn.d_un.d_ptr = o->vma;
11010 break;
11011
11012 case DT_REL:
11013 case DT_RELA:
11014 case DT_RELSZ:
11015 case DT_RELASZ:
11016 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11017 type = SHT_REL;
11018 else
11019 type = SHT_RELA;
11020 dyn.d_un.d_val = 0;
11021 dyn.d_un.d_ptr = 0;
11022 for (i = 1; i < elf_numsections (abfd); i++)
11023 {
11024 Elf_Internal_Shdr *hdr;
11025
11026 hdr = elf_elfsections (abfd)[i];
11027 if (hdr->sh_type == type
11028 && (hdr->sh_flags & SHF_ALLOC) != 0)
11029 {
11030 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11031 dyn.d_un.d_val += hdr->sh_size;
11032 else
11033 {
11034 if (dyn.d_un.d_ptr == 0
11035 || hdr->sh_addr < dyn.d_un.d_ptr)
11036 dyn.d_un.d_ptr = hdr->sh_addr;
11037 }
11038 }
11039 }
11040 break;
11041 }
11042 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11043 }
11044 }
11045
11046 /* If we have created any dynamic sections, then output them. */
11047 if (dynobj != NULL)
11048 {
11049 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11050 goto error_return;
11051
11052 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11053 if (info->warn_shared_textrel && info->shared)
11054 {
11055 bfd_byte *dyncon, *dynconend;
11056
11057 /* Fix up .dynamic entries. */
11058 o = bfd_get_section_by_name (dynobj, ".dynamic");
11059 BFD_ASSERT (o != NULL);
11060
11061 dyncon = o->contents;
11062 dynconend = o->contents + o->size;
11063 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11064 {
11065 Elf_Internal_Dyn dyn;
11066
11067 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11068
11069 if (dyn.d_tag == DT_TEXTREL)
11070 {
11071 info->callbacks->einfo
11072 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11073 break;
11074 }
11075 }
11076 }
11077
11078 for (o = dynobj->sections; o != NULL; o = o->next)
11079 {
11080 if ((o->flags & SEC_HAS_CONTENTS) == 0
11081 || o->size == 0
11082 || o->output_section == bfd_abs_section_ptr)
11083 continue;
11084 if ((o->flags & SEC_LINKER_CREATED) == 0)
11085 {
11086 /* At this point, we are only interested in sections
11087 created by _bfd_elf_link_create_dynamic_sections. */
11088 continue;
11089 }
11090 if (elf_hash_table (info)->stab_info.stabstr == o)
11091 continue;
11092 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11093 continue;
11094 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11095 != SHT_STRTAB)
11096 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11097 {
11098 /* FIXME: octets_per_byte. */
11099 if (! bfd_set_section_contents (abfd, o->output_section,
11100 o->contents,
11101 (file_ptr) o->output_offset,
11102 o->size))
11103 goto error_return;
11104 }
11105 else
11106 {
11107 /* The contents of the .dynstr section are actually in a
11108 stringtab. */
11109 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11110 if (bfd_seek (abfd, off, SEEK_SET) != 0
11111 || ! _bfd_elf_strtab_emit (abfd,
11112 elf_hash_table (info)->dynstr))
11113 goto error_return;
11114 }
11115 }
11116 }
11117
11118 if (info->relocatable)
11119 {
11120 bfd_boolean failed = FALSE;
11121
11122 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11123 if (failed)
11124 goto error_return;
11125 }
11126
11127 /* If we have optimized stabs strings, output them. */
11128 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11129 {
11130 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11131 goto error_return;
11132 }
11133
11134 if (info->eh_frame_hdr)
11135 {
11136 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11137 goto error_return;
11138 }
11139
11140 if (finfo.symstrtab != NULL)
11141 _bfd_stringtab_free (finfo.symstrtab);
11142 if (finfo.contents != NULL)
11143 free (finfo.contents);
11144 if (finfo.external_relocs != NULL)
11145 free (finfo.external_relocs);
11146 if (finfo.internal_relocs != NULL)
11147 free (finfo.internal_relocs);
11148 if (finfo.external_syms != NULL)
11149 free (finfo.external_syms);
11150 if (finfo.locsym_shndx != NULL)
11151 free (finfo.locsym_shndx);
11152 if (finfo.internal_syms != NULL)
11153 free (finfo.internal_syms);
11154 if (finfo.indices != NULL)
11155 free (finfo.indices);
11156 if (finfo.sections != NULL)
11157 free (finfo.sections);
11158 if (finfo.symbuf != NULL)
11159 free (finfo.symbuf);
11160 if (finfo.symshndxbuf != NULL)
11161 free (finfo.symshndxbuf);
11162 for (o = abfd->sections; o != NULL; o = o->next)
11163 {
11164 if ((o->flags & SEC_RELOC) != 0
11165 && elf_section_data (o)->rel_hashes != NULL)
11166 free (elf_section_data (o)->rel_hashes);
11167 }
11168
11169 elf_tdata (abfd)->linker = TRUE;
11170
11171 if (attr_section)
11172 {
11173 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11174 if (contents == NULL)
11175 return FALSE; /* Bail out and fail. */
11176 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11177 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11178 free (contents);
11179 }
11180
11181 return TRUE;
11182
11183 error_return:
11184 if (finfo.symstrtab != NULL)
11185 _bfd_stringtab_free (finfo.symstrtab);
11186 if (finfo.contents != NULL)
11187 free (finfo.contents);
11188 if (finfo.external_relocs != NULL)
11189 free (finfo.external_relocs);
11190 if (finfo.internal_relocs != NULL)
11191 free (finfo.internal_relocs);
11192 if (finfo.external_syms != NULL)
11193 free (finfo.external_syms);
11194 if (finfo.locsym_shndx != NULL)
11195 free (finfo.locsym_shndx);
11196 if (finfo.internal_syms != NULL)
11197 free (finfo.internal_syms);
11198 if (finfo.indices != NULL)
11199 free (finfo.indices);
11200 if (finfo.sections != NULL)
11201 free (finfo.sections);
11202 if (finfo.symbuf != NULL)
11203 free (finfo.symbuf);
11204 if (finfo.symshndxbuf != NULL)
11205 free (finfo.symshndxbuf);
11206 for (o = abfd->sections; o != NULL; o = o->next)
11207 {
11208 if ((o->flags & SEC_RELOC) != 0
11209 && elf_section_data (o)->rel_hashes != NULL)
11210 free (elf_section_data (o)->rel_hashes);
11211 }
11212
11213 return FALSE;
11214 }
11215 \f
11216 /* Initialize COOKIE for input bfd ABFD. */
11217
11218 static bfd_boolean
11219 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11220 struct bfd_link_info *info, bfd *abfd)
11221 {
11222 Elf_Internal_Shdr *symtab_hdr;
11223 const struct elf_backend_data *bed;
11224
11225 bed = get_elf_backend_data (abfd);
11226 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11227
11228 cookie->abfd = abfd;
11229 cookie->sym_hashes = elf_sym_hashes (abfd);
11230 cookie->bad_symtab = elf_bad_symtab (abfd);
11231 if (cookie->bad_symtab)
11232 {
11233 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11234 cookie->extsymoff = 0;
11235 }
11236 else
11237 {
11238 cookie->locsymcount = symtab_hdr->sh_info;
11239 cookie->extsymoff = symtab_hdr->sh_info;
11240 }
11241
11242 if (bed->s->arch_size == 32)
11243 cookie->r_sym_shift = 8;
11244 else
11245 cookie->r_sym_shift = 32;
11246
11247 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11248 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11249 {
11250 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11251 cookie->locsymcount, 0,
11252 NULL, NULL, NULL);
11253 if (cookie->locsyms == NULL)
11254 {
11255 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11256 return FALSE;
11257 }
11258 if (info->keep_memory)
11259 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11260 }
11261 return TRUE;
11262 }
11263
11264 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11265
11266 static void
11267 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11268 {
11269 Elf_Internal_Shdr *symtab_hdr;
11270
11271 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11272 if (cookie->locsyms != NULL
11273 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11274 free (cookie->locsyms);
11275 }
11276
11277 /* Initialize the relocation information in COOKIE for input section SEC
11278 of input bfd ABFD. */
11279
11280 static bfd_boolean
11281 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11282 struct bfd_link_info *info, bfd *abfd,
11283 asection *sec)
11284 {
11285 const struct elf_backend_data *bed;
11286
11287 if (sec->reloc_count == 0)
11288 {
11289 cookie->rels = NULL;
11290 cookie->relend = NULL;
11291 }
11292 else
11293 {
11294 bed = get_elf_backend_data (abfd);
11295
11296 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11297 info->keep_memory);
11298 if (cookie->rels == NULL)
11299 return FALSE;
11300 cookie->rel = cookie->rels;
11301 cookie->relend = (cookie->rels
11302 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11303 }
11304 cookie->rel = cookie->rels;
11305 return TRUE;
11306 }
11307
11308 /* Free the memory allocated by init_reloc_cookie_rels,
11309 if appropriate. */
11310
11311 static void
11312 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11313 asection *sec)
11314 {
11315 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11316 free (cookie->rels);
11317 }
11318
11319 /* Initialize the whole of COOKIE for input section SEC. */
11320
11321 static bfd_boolean
11322 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11323 struct bfd_link_info *info,
11324 asection *sec)
11325 {
11326 if (!init_reloc_cookie (cookie, info, sec->owner))
11327 goto error1;
11328 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11329 goto error2;
11330 return TRUE;
11331
11332 error2:
11333 fini_reloc_cookie (cookie, sec->owner);
11334 error1:
11335 return FALSE;
11336 }
11337
11338 /* Free the memory allocated by init_reloc_cookie_for_section,
11339 if appropriate. */
11340
11341 static void
11342 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11343 asection *sec)
11344 {
11345 fini_reloc_cookie_rels (cookie, sec);
11346 fini_reloc_cookie (cookie, sec->owner);
11347 }
11348 \f
11349 /* Garbage collect unused sections. */
11350
11351 /* Default gc_mark_hook. */
11352
11353 asection *
11354 _bfd_elf_gc_mark_hook (asection *sec,
11355 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11356 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11357 struct elf_link_hash_entry *h,
11358 Elf_Internal_Sym *sym)
11359 {
11360 const char *sec_name;
11361
11362 if (h != NULL)
11363 {
11364 switch (h->root.type)
11365 {
11366 case bfd_link_hash_defined:
11367 case bfd_link_hash_defweak:
11368 return h->root.u.def.section;
11369
11370 case bfd_link_hash_common:
11371 return h->root.u.c.p->section;
11372
11373 case bfd_link_hash_undefined:
11374 case bfd_link_hash_undefweak:
11375 /* To work around a glibc bug, keep all XXX input sections
11376 when there is an as yet undefined reference to __start_XXX
11377 or __stop_XXX symbols. The linker will later define such
11378 symbols for orphan input sections that have a name
11379 representable as a C identifier. */
11380 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11381 sec_name = h->root.root.string + 8;
11382 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11383 sec_name = h->root.root.string + 7;
11384 else
11385 sec_name = NULL;
11386
11387 if (sec_name && *sec_name != '\0')
11388 {
11389 bfd *i;
11390
11391 for (i = info->input_bfds; i; i = i->link_next)
11392 {
11393 sec = bfd_get_section_by_name (i, sec_name);
11394 if (sec)
11395 sec->flags |= SEC_KEEP;
11396 }
11397 }
11398 break;
11399
11400 default:
11401 break;
11402 }
11403 }
11404 else
11405 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11406
11407 return NULL;
11408 }
11409
11410 /* COOKIE->rel describes a relocation against section SEC, which is
11411 a section we've decided to keep. Return the section that contains
11412 the relocation symbol, or NULL if no section contains it. */
11413
11414 asection *
11415 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11416 elf_gc_mark_hook_fn gc_mark_hook,
11417 struct elf_reloc_cookie *cookie)
11418 {
11419 unsigned long r_symndx;
11420 struct elf_link_hash_entry *h;
11421
11422 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11423 if (r_symndx == 0)
11424 return NULL;
11425
11426 if (r_symndx >= cookie->locsymcount
11427 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11428 {
11429 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11430 while (h->root.type == bfd_link_hash_indirect
11431 || h->root.type == bfd_link_hash_warning)
11432 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11433 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11434 }
11435
11436 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11437 &cookie->locsyms[r_symndx]);
11438 }
11439
11440 /* COOKIE->rel describes a relocation against section SEC, which is
11441 a section we've decided to keep. Mark the section that contains
11442 the relocation symbol. */
11443
11444 bfd_boolean
11445 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11446 asection *sec,
11447 elf_gc_mark_hook_fn gc_mark_hook,
11448 struct elf_reloc_cookie *cookie)
11449 {
11450 asection *rsec;
11451
11452 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11453 if (rsec && !rsec->gc_mark)
11454 {
11455 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11456 rsec->gc_mark = 1;
11457 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11458 return FALSE;
11459 }
11460 return TRUE;
11461 }
11462
11463 /* The mark phase of garbage collection. For a given section, mark
11464 it and any sections in this section's group, and all the sections
11465 which define symbols to which it refers. */
11466
11467 bfd_boolean
11468 _bfd_elf_gc_mark (struct bfd_link_info *info,
11469 asection *sec,
11470 elf_gc_mark_hook_fn gc_mark_hook)
11471 {
11472 bfd_boolean ret;
11473 asection *group_sec, *eh_frame;
11474
11475 sec->gc_mark = 1;
11476
11477 /* Mark all the sections in the group. */
11478 group_sec = elf_section_data (sec)->next_in_group;
11479 if (group_sec && !group_sec->gc_mark)
11480 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11481 return FALSE;
11482
11483 /* Look through the section relocs. */
11484 ret = TRUE;
11485 eh_frame = elf_eh_frame_section (sec->owner);
11486 if ((sec->flags & SEC_RELOC) != 0
11487 && sec->reloc_count > 0
11488 && sec != eh_frame)
11489 {
11490 struct elf_reloc_cookie cookie;
11491
11492 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11493 ret = FALSE;
11494 else
11495 {
11496 for (; cookie.rel < cookie.relend; cookie.rel++)
11497 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11498 {
11499 ret = FALSE;
11500 break;
11501 }
11502 fini_reloc_cookie_for_section (&cookie, sec);
11503 }
11504 }
11505
11506 if (ret && eh_frame && elf_fde_list (sec))
11507 {
11508 struct elf_reloc_cookie cookie;
11509
11510 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11511 ret = FALSE;
11512 else
11513 {
11514 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11515 gc_mark_hook, &cookie))
11516 ret = FALSE;
11517 fini_reloc_cookie_for_section (&cookie, eh_frame);
11518 }
11519 }
11520
11521 return ret;
11522 }
11523
11524 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11525
11526 struct elf_gc_sweep_symbol_info
11527 {
11528 struct bfd_link_info *info;
11529 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11530 bfd_boolean);
11531 };
11532
11533 static bfd_boolean
11534 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11535 {
11536 if (h->root.type == bfd_link_hash_warning)
11537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11538
11539 if ((h->root.type == bfd_link_hash_defined
11540 || h->root.type == bfd_link_hash_defweak)
11541 && !h->root.u.def.section->gc_mark
11542 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11543 {
11544 struct elf_gc_sweep_symbol_info *inf =
11545 (struct elf_gc_sweep_symbol_info *) data;
11546 (*inf->hide_symbol) (inf->info, h, TRUE);
11547 }
11548
11549 return TRUE;
11550 }
11551
11552 /* The sweep phase of garbage collection. Remove all garbage sections. */
11553
11554 typedef bfd_boolean (*gc_sweep_hook_fn)
11555 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11556
11557 static bfd_boolean
11558 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11559 {
11560 bfd *sub;
11561 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11562 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11563 unsigned long section_sym_count;
11564 struct elf_gc_sweep_symbol_info sweep_info;
11565
11566 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11567 {
11568 asection *o;
11569
11570 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11571 continue;
11572
11573 for (o = sub->sections; o != NULL; o = o->next)
11574 {
11575 /* When any section in a section group is kept, we keep all
11576 sections in the section group. If the first member of
11577 the section group is excluded, we will also exclude the
11578 group section. */
11579 if (o->flags & SEC_GROUP)
11580 {
11581 asection *first = elf_next_in_group (o);
11582 o->gc_mark = first->gc_mark;
11583 }
11584 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11585 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11586 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11587 {
11588 /* Keep debug, special and SHT_NOTE sections. */
11589 o->gc_mark = 1;
11590 }
11591
11592 if (o->gc_mark)
11593 continue;
11594
11595 /* Skip sweeping sections already excluded. */
11596 if (o->flags & SEC_EXCLUDE)
11597 continue;
11598
11599 /* Since this is early in the link process, it is simple
11600 to remove a section from the output. */
11601 o->flags |= SEC_EXCLUDE;
11602
11603 if (info->print_gc_sections && o->size != 0)
11604 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11605
11606 /* But we also have to update some of the relocation
11607 info we collected before. */
11608 if (gc_sweep_hook
11609 && (o->flags & SEC_RELOC) != 0
11610 && o->reloc_count > 0
11611 && !bfd_is_abs_section (o->output_section))
11612 {
11613 Elf_Internal_Rela *internal_relocs;
11614 bfd_boolean r;
11615
11616 internal_relocs
11617 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11618 info->keep_memory);
11619 if (internal_relocs == NULL)
11620 return FALSE;
11621
11622 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11623
11624 if (elf_section_data (o)->relocs != internal_relocs)
11625 free (internal_relocs);
11626
11627 if (!r)
11628 return FALSE;
11629 }
11630 }
11631 }
11632
11633 /* Remove the symbols that were in the swept sections from the dynamic
11634 symbol table. GCFIXME: Anyone know how to get them out of the
11635 static symbol table as well? */
11636 sweep_info.info = info;
11637 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11638 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11639 &sweep_info);
11640
11641 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11642 return TRUE;
11643 }
11644
11645 /* Propagate collected vtable information. This is called through
11646 elf_link_hash_traverse. */
11647
11648 static bfd_boolean
11649 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11650 {
11651 if (h->root.type == bfd_link_hash_warning)
11652 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11653
11654 /* Those that are not vtables. */
11655 if (h->vtable == NULL || h->vtable->parent == NULL)
11656 return TRUE;
11657
11658 /* Those vtables that do not have parents, we cannot merge. */
11659 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11660 return TRUE;
11661
11662 /* If we've already been done, exit. */
11663 if (h->vtable->used && h->vtable->used[-1])
11664 return TRUE;
11665
11666 /* Make sure the parent's table is up to date. */
11667 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11668
11669 if (h->vtable->used == NULL)
11670 {
11671 /* None of this table's entries were referenced. Re-use the
11672 parent's table. */
11673 h->vtable->used = h->vtable->parent->vtable->used;
11674 h->vtable->size = h->vtable->parent->vtable->size;
11675 }
11676 else
11677 {
11678 size_t n;
11679 bfd_boolean *cu, *pu;
11680
11681 /* Or the parent's entries into ours. */
11682 cu = h->vtable->used;
11683 cu[-1] = TRUE;
11684 pu = h->vtable->parent->vtable->used;
11685 if (pu != NULL)
11686 {
11687 const struct elf_backend_data *bed;
11688 unsigned int log_file_align;
11689
11690 bed = get_elf_backend_data (h->root.u.def.section->owner);
11691 log_file_align = bed->s->log_file_align;
11692 n = h->vtable->parent->vtable->size >> log_file_align;
11693 while (n--)
11694 {
11695 if (*pu)
11696 *cu = TRUE;
11697 pu++;
11698 cu++;
11699 }
11700 }
11701 }
11702
11703 return TRUE;
11704 }
11705
11706 static bfd_boolean
11707 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11708 {
11709 asection *sec;
11710 bfd_vma hstart, hend;
11711 Elf_Internal_Rela *relstart, *relend, *rel;
11712 const struct elf_backend_data *bed;
11713 unsigned int log_file_align;
11714
11715 if (h->root.type == bfd_link_hash_warning)
11716 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11717
11718 /* Take care of both those symbols that do not describe vtables as
11719 well as those that are not loaded. */
11720 if (h->vtable == NULL || h->vtable->parent == NULL)
11721 return TRUE;
11722
11723 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11724 || h->root.type == bfd_link_hash_defweak);
11725
11726 sec = h->root.u.def.section;
11727 hstart = h->root.u.def.value;
11728 hend = hstart + h->size;
11729
11730 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11731 if (!relstart)
11732 return *(bfd_boolean *) okp = FALSE;
11733 bed = get_elf_backend_data (sec->owner);
11734 log_file_align = bed->s->log_file_align;
11735
11736 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11737
11738 for (rel = relstart; rel < relend; ++rel)
11739 if (rel->r_offset >= hstart && rel->r_offset < hend)
11740 {
11741 /* If the entry is in use, do nothing. */
11742 if (h->vtable->used
11743 && (rel->r_offset - hstart) < h->vtable->size)
11744 {
11745 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11746 if (h->vtable->used[entry])
11747 continue;
11748 }
11749 /* Otherwise, kill it. */
11750 rel->r_offset = rel->r_info = rel->r_addend = 0;
11751 }
11752
11753 return TRUE;
11754 }
11755
11756 /* Mark sections containing dynamically referenced symbols. When
11757 building shared libraries, we must assume that any visible symbol is
11758 referenced. */
11759
11760 bfd_boolean
11761 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11762 {
11763 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11764
11765 if (h->root.type == bfd_link_hash_warning)
11766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11767
11768 if ((h->root.type == bfd_link_hash_defined
11769 || h->root.type == bfd_link_hash_defweak)
11770 && (h->ref_dynamic
11771 || (!info->executable
11772 && h->def_regular
11773 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11774 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11775 h->root.u.def.section->flags |= SEC_KEEP;
11776
11777 return TRUE;
11778 }
11779
11780 /* Keep all sections containing symbols undefined on the command-line,
11781 and the section containing the entry symbol. */
11782
11783 void
11784 _bfd_elf_gc_keep (struct bfd_link_info *info)
11785 {
11786 struct bfd_sym_chain *sym;
11787
11788 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11789 {
11790 struct elf_link_hash_entry *h;
11791
11792 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11793 FALSE, FALSE, FALSE);
11794
11795 if (h != NULL
11796 && (h->root.type == bfd_link_hash_defined
11797 || h->root.type == bfd_link_hash_defweak)
11798 && !bfd_is_abs_section (h->root.u.def.section))
11799 h->root.u.def.section->flags |= SEC_KEEP;
11800 }
11801 }
11802
11803 /* Do mark and sweep of unused sections. */
11804
11805 bfd_boolean
11806 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11807 {
11808 bfd_boolean ok = TRUE;
11809 bfd *sub;
11810 elf_gc_mark_hook_fn gc_mark_hook;
11811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11812
11813 if (!bed->can_gc_sections
11814 || !is_elf_hash_table (info->hash))
11815 {
11816 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11817 return TRUE;
11818 }
11819
11820 bed->gc_keep (info);
11821
11822 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11823 at the .eh_frame section if we can mark the FDEs individually. */
11824 _bfd_elf_begin_eh_frame_parsing (info);
11825 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11826 {
11827 asection *sec;
11828 struct elf_reloc_cookie cookie;
11829
11830 sec = bfd_get_section_by_name (sub, ".eh_frame");
11831 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11832 {
11833 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11834 if (elf_section_data (sec)->sec_info)
11835 elf_eh_frame_section (sub) = sec;
11836 fini_reloc_cookie_for_section (&cookie, sec);
11837 }
11838 }
11839 _bfd_elf_end_eh_frame_parsing (info);
11840
11841 /* Apply transitive closure to the vtable entry usage info. */
11842 elf_link_hash_traverse (elf_hash_table (info),
11843 elf_gc_propagate_vtable_entries_used,
11844 &ok);
11845 if (!ok)
11846 return FALSE;
11847
11848 /* Kill the vtable relocations that were not used. */
11849 elf_link_hash_traverse (elf_hash_table (info),
11850 elf_gc_smash_unused_vtentry_relocs,
11851 &ok);
11852 if (!ok)
11853 return FALSE;
11854
11855 /* Mark dynamically referenced symbols. */
11856 if (elf_hash_table (info)->dynamic_sections_created)
11857 elf_link_hash_traverse (elf_hash_table (info),
11858 bed->gc_mark_dynamic_ref,
11859 info);
11860
11861 /* Grovel through relocs to find out who stays ... */
11862 gc_mark_hook = bed->gc_mark_hook;
11863 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11864 {
11865 asection *o;
11866
11867 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11868 continue;
11869
11870 for (o = sub->sections; o != NULL; o = o->next)
11871 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11872 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11873 return FALSE;
11874 }
11875
11876 /* Allow the backend to mark additional target specific sections. */
11877 if (bed->gc_mark_extra_sections)
11878 bed->gc_mark_extra_sections (info, gc_mark_hook);
11879
11880 /* ... and mark SEC_EXCLUDE for those that go. */
11881 return elf_gc_sweep (abfd, info);
11882 }
11883 \f
11884 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11885
11886 bfd_boolean
11887 bfd_elf_gc_record_vtinherit (bfd *abfd,
11888 asection *sec,
11889 struct elf_link_hash_entry *h,
11890 bfd_vma offset)
11891 {
11892 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11893 struct elf_link_hash_entry **search, *child;
11894 bfd_size_type extsymcount;
11895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11896
11897 /* The sh_info field of the symtab header tells us where the
11898 external symbols start. We don't care about the local symbols at
11899 this point. */
11900 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11901 if (!elf_bad_symtab (abfd))
11902 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11903
11904 sym_hashes = elf_sym_hashes (abfd);
11905 sym_hashes_end = sym_hashes + extsymcount;
11906
11907 /* Hunt down the child symbol, which is in this section at the same
11908 offset as the relocation. */
11909 for (search = sym_hashes; search != sym_hashes_end; ++search)
11910 {
11911 if ((child = *search) != NULL
11912 && (child->root.type == bfd_link_hash_defined
11913 || child->root.type == bfd_link_hash_defweak)
11914 && child->root.u.def.section == sec
11915 && child->root.u.def.value == offset)
11916 goto win;
11917 }
11918
11919 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11920 abfd, sec, (unsigned long) offset);
11921 bfd_set_error (bfd_error_invalid_operation);
11922 return FALSE;
11923
11924 win:
11925 if (!child->vtable)
11926 {
11927 child->vtable = (struct elf_link_virtual_table_entry *)
11928 bfd_zalloc (abfd, sizeof (*child->vtable));
11929 if (!child->vtable)
11930 return FALSE;
11931 }
11932 if (!h)
11933 {
11934 /* This *should* only be the absolute section. It could potentially
11935 be that someone has defined a non-global vtable though, which
11936 would be bad. It isn't worth paging in the local symbols to be
11937 sure though; that case should simply be handled by the assembler. */
11938
11939 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11940 }
11941 else
11942 child->vtable->parent = h;
11943
11944 return TRUE;
11945 }
11946
11947 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11948
11949 bfd_boolean
11950 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11951 asection *sec ATTRIBUTE_UNUSED,
11952 struct elf_link_hash_entry *h,
11953 bfd_vma addend)
11954 {
11955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11956 unsigned int log_file_align = bed->s->log_file_align;
11957
11958 if (!h->vtable)
11959 {
11960 h->vtable = (struct elf_link_virtual_table_entry *)
11961 bfd_zalloc (abfd, sizeof (*h->vtable));
11962 if (!h->vtable)
11963 return FALSE;
11964 }
11965
11966 if (addend >= h->vtable->size)
11967 {
11968 size_t size, bytes, file_align;
11969 bfd_boolean *ptr = h->vtable->used;
11970
11971 /* While the symbol is undefined, we have to be prepared to handle
11972 a zero size. */
11973 file_align = 1 << log_file_align;
11974 if (h->root.type == bfd_link_hash_undefined)
11975 size = addend + file_align;
11976 else
11977 {
11978 size = h->size;
11979 if (addend >= size)
11980 {
11981 /* Oops! We've got a reference past the defined end of
11982 the table. This is probably a bug -- shall we warn? */
11983 size = addend + file_align;
11984 }
11985 }
11986 size = (size + file_align - 1) & -file_align;
11987
11988 /* Allocate one extra entry for use as a "done" flag for the
11989 consolidation pass. */
11990 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11991
11992 if (ptr)
11993 {
11994 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
11995
11996 if (ptr != NULL)
11997 {
11998 size_t oldbytes;
11999
12000 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12001 * sizeof (bfd_boolean));
12002 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12003 }
12004 }
12005 else
12006 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12007
12008 if (ptr == NULL)
12009 return FALSE;
12010
12011 /* And arrange for that done flag to be at index -1. */
12012 h->vtable->used = ptr + 1;
12013 h->vtable->size = size;
12014 }
12015
12016 h->vtable->used[addend >> log_file_align] = TRUE;
12017
12018 return TRUE;
12019 }
12020
12021 struct alloc_got_off_arg {
12022 bfd_vma gotoff;
12023 struct bfd_link_info *info;
12024 };
12025
12026 /* We need a special top-level link routine to convert got reference counts
12027 to real got offsets. */
12028
12029 static bfd_boolean
12030 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12031 {
12032 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12033 bfd *obfd = gofarg->info->output_bfd;
12034 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12035
12036 if (h->root.type == bfd_link_hash_warning)
12037 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12038
12039 if (h->got.refcount > 0)
12040 {
12041 h->got.offset = gofarg->gotoff;
12042 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12043 }
12044 else
12045 h->got.offset = (bfd_vma) -1;
12046
12047 return TRUE;
12048 }
12049
12050 /* And an accompanying bit to work out final got entry offsets once
12051 we're done. Should be called from final_link. */
12052
12053 bfd_boolean
12054 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12055 struct bfd_link_info *info)
12056 {
12057 bfd *i;
12058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12059 bfd_vma gotoff;
12060 struct alloc_got_off_arg gofarg;
12061
12062 BFD_ASSERT (abfd == info->output_bfd);
12063
12064 if (! is_elf_hash_table (info->hash))
12065 return FALSE;
12066
12067 /* The GOT offset is relative to the .got section, but the GOT header is
12068 put into the .got.plt section, if the backend uses it. */
12069 if (bed->want_got_plt)
12070 gotoff = 0;
12071 else
12072 gotoff = bed->got_header_size;
12073
12074 /* Do the local .got entries first. */
12075 for (i = info->input_bfds; i; i = i->link_next)
12076 {
12077 bfd_signed_vma *local_got;
12078 bfd_size_type j, locsymcount;
12079 Elf_Internal_Shdr *symtab_hdr;
12080
12081 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12082 continue;
12083
12084 local_got = elf_local_got_refcounts (i);
12085 if (!local_got)
12086 continue;
12087
12088 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12089 if (elf_bad_symtab (i))
12090 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12091 else
12092 locsymcount = symtab_hdr->sh_info;
12093
12094 for (j = 0; j < locsymcount; ++j)
12095 {
12096 if (local_got[j] > 0)
12097 {
12098 local_got[j] = gotoff;
12099 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12100 }
12101 else
12102 local_got[j] = (bfd_vma) -1;
12103 }
12104 }
12105
12106 /* Then the global .got entries. .plt refcounts are handled by
12107 adjust_dynamic_symbol */
12108 gofarg.gotoff = gotoff;
12109 gofarg.info = info;
12110 elf_link_hash_traverse (elf_hash_table (info),
12111 elf_gc_allocate_got_offsets,
12112 &gofarg);
12113 return TRUE;
12114 }
12115
12116 /* Many folk need no more in the way of final link than this, once
12117 got entry reference counting is enabled. */
12118
12119 bfd_boolean
12120 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12121 {
12122 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12123 return FALSE;
12124
12125 /* Invoke the regular ELF backend linker to do all the work. */
12126 return bfd_elf_final_link (abfd, info);
12127 }
12128
12129 bfd_boolean
12130 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12131 {
12132 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12133
12134 if (rcookie->bad_symtab)
12135 rcookie->rel = rcookie->rels;
12136
12137 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12138 {
12139 unsigned long r_symndx;
12140
12141 if (! rcookie->bad_symtab)
12142 if (rcookie->rel->r_offset > offset)
12143 return FALSE;
12144 if (rcookie->rel->r_offset != offset)
12145 continue;
12146
12147 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12148 if (r_symndx == SHN_UNDEF)
12149 return TRUE;
12150
12151 if (r_symndx >= rcookie->locsymcount
12152 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12153 {
12154 struct elf_link_hash_entry *h;
12155
12156 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12157
12158 while (h->root.type == bfd_link_hash_indirect
12159 || h->root.type == bfd_link_hash_warning)
12160 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12161
12162 if ((h->root.type == bfd_link_hash_defined
12163 || h->root.type == bfd_link_hash_defweak)
12164 && elf_discarded_section (h->root.u.def.section))
12165 return TRUE;
12166 else
12167 return FALSE;
12168 }
12169 else
12170 {
12171 /* It's not a relocation against a global symbol,
12172 but it could be a relocation against a local
12173 symbol for a discarded section. */
12174 asection *isec;
12175 Elf_Internal_Sym *isym;
12176
12177 /* Need to: get the symbol; get the section. */
12178 isym = &rcookie->locsyms[r_symndx];
12179 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12180 if (isec != NULL && elf_discarded_section (isec))
12181 return TRUE;
12182 }
12183 return FALSE;
12184 }
12185 return FALSE;
12186 }
12187
12188 /* Discard unneeded references to discarded sections.
12189 Returns TRUE if any section's size was changed. */
12190 /* This function assumes that the relocations are in sorted order,
12191 which is true for all known assemblers. */
12192
12193 bfd_boolean
12194 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12195 {
12196 struct elf_reloc_cookie cookie;
12197 asection *stab, *eh;
12198 const struct elf_backend_data *bed;
12199 bfd *abfd;
12200 bfd_boolean ret = FALSE;
12201
12202 if (info->traditional_format
12203 || !is_elf_hash_table (info->hash))
12204 return FALSE;
12205
12206 _bfd_elf_begin_eh_frame_parsing (info);
12207 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12208 {
12209 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12210 continue;
12211
12212 bed = get_elf_backend_data (abfd);
12213
12214 if ((abfd->flags & DYNAMIC) != 0)
12215 continue;
12216
12217 eh = NULL;
12218 if (!info->relocatable)
12219 {
12220 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12221 if (eh != NULL
12222 && (eh->size == 0
12223 || bfd_is_abs_section (eh->output_section)))
12224 eh = NULL;
12225 }
12226
12227 stab = bfd_get_section_by_name (abfd, ".stab");
12228 if (stab != NULL
12229 && (stab->size == 0
12230 || bfd_is_abs_section (stab->output_section)
12231 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12232 stab = NULL;
12233
12234 if (stab == NULL
12235 && eh == NULL
12236 && bed->elf_backend_discard_info == NULL)
12237 continue;
12238
12239 if (!init_reloc_cookie (&cookie, info, abfd))
12240 return FALSE;
12241
12242 if (stab != NULL
12243 && stab->reloc_count > 0
12244 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12245 {
12246 if (_bfd_discard_section_stabs (abfd, stab,
12247 elf_section_data (stab)->sec_info,
12248 bfd_elf_reloc_symbol_deleted_p,
12249 &cookie))
12250 ret = TRUE;
12251 fini_reloc_cookie_rels (&cookie, stab);
12252 }
12253
12254 if (eh != NULL
12255 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12256 {
12257 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12258 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12259 bfd_elf_reloc_symbol_deleted_p,
12260 &cookie))
12261 ret = TRUE;
12262 fini_reloc_cookie_rels (&cookie, eh);
12263 }
12264
12265 if (bed->elf_backend_discard_info != NULL
12266 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12267 ret = TRUE;
12268
12269 fini_reloc_cookie (&cookie, abfd);
12270 }
12271 _bfd_elf_end_eh_frame_parsing (info);
12272
12273 if (info->eh_frame_hdr
12274 && !info->relocatable
12275 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12276 ret = TRUE;
12277
12278 return ret;
12279 }
12280
12281 /* For a SHT_GROUP section, return the group signature. For other
12282 sections, return the normal section name. */
12283
12284 static const char *
12285 section_signature (asection *sec)
12286 {
12287 if ((sec->flags & SEC_GROUP) != 0
12288 && elf_next_in_group (sec) != NULL
12289 && elf_group_name (elf_next_in_group (sec)) != NULL)
12290 return elf_group_name (elf_next_in_group (sec));
12291 return sec->name;
12292 }
12293
12294 void
12295 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12296 struct bfd_link_info *info)
12297 {
12298 flagword flags;
12299 const char *name, *p;
12300 struct bfd_section_already_linked *l;
12301 struct bfd_section_already_linked_hash_entry *already_linked_list;
12302
12303 if (sec->output_section == bfd_abs_section_ptr)
12304 return;
12305
12306 flags = sec->flags;
12307
12308 /* Return if it isn't a linkonce section. A comdat group section
12309 also has SEC_LINK_ONCE set. */
12310 if ((flags & SEC_LINK_ONCE) == 0)
12311 return;
12312
12313 /* Don't put group member sections on our list of already linked
12314 sections. They are handled as a group via their group section. */
12315 if (elf_sec_group (sec) != NULL)
12316 return;
12317
12318 /* FIXME: When doing a relocatable link, we may have trouble
12319 copying relocations in other sections that refer to local symbols
12320 in the section being discarded. Those relocations will have to
12321 be converted somehow; as of this writing I'm not sure that any of
12322 the backends handle that correctly.
12323
12324 It is tempting to instead not discard link once sections when
12325 doing a relocatable link (technically, they should be discarded
12326 whenever we are building constructors). However, that fails,
12327 because the linker winds up combining all the link once sections
12328 into a single large link once section, which defeats the purpose
12329 of having link once sections in the first place.
12330
12331 Also, not merging link once sections in a relocatable link
12332 causes trouble for MIPS ELF, which relies on link once semantics
12333 to handle the .reginfo section correctly. */
12334
12335 name = section_signature (sec);
12336
12337 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12338 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12339 p++;
12340 else
12341 p = name;
12342
12343 already_linked_list = bfd_section_already_linked_table_lookup (p);
12344
12345 for (l = already_linked_list->entry; l != NULL; l = l->next)
12346 {
12347 /* We may have 2 different types of sections on the list: group
12348 sections and linkonce sections. Match like sections. */
12349 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12350 && strcmp (name, section_signature (l->sec)) == 0
12351 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12352 {
12353 /* The section has already been linked. See if we should
12354 issue a warning. */
12355 switch (flags & SEC_LINK_DUPLICATES)
12356 {
12357 default:
12358 abort ();
12359
12360 case SEC_LINK_DUPLICATES_DISCARD:
12361 break;
12362
12363 case SEC_LINK_DUPLICATES_ONE_ONLY:
12364 (*_bfd_error_handler)
12365 (_("%B: ignoring duplicate section `%A'"),
12366 abfd, sec);
12367 break;
12368
12369 case SEC_LINK_DUPLICATES_SAME_SIZE:
12370 if (sec->size != l->sec->size)
12371 (*_bfd_error_handler)
12372 (_("%B: duplicate section `%A' has different size"),
12373 abfd, sec);
12374 break;
12375
12376 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12377 if (sec->size != l->sec->size)
12378 (*_bfd_error_handler)
12379 (_("%B: duplicate section `%A' has different size"),
12380 abfd, sec);
12381 else if (sec->size != 0)
12382 {
12383 bfd_byte *sec_contents, *l_sec_contents;
12384
12385 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12386 (*_bfd_error_handler)
12387 (_("%B: warning: could not read contents of section `%A'"),
12388 abfd, sec);
12389 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12390 &l_sec_contents))
12391 (*_bfd_error_handler)
12392 (_("%B: warning: could not read contents of section `%A'"),
12393 l->sec->owner, l->sec);
12394 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12395 (*_bfd_error_handler)
12396 (_("%B: warning: duplicate section `%A' has different contents"),
12397 abfd, sec);
12398
12399 if (sec_contents)
12400 free (sec_contents);
12401 if (l_sec_contents)
12402 free (l_sec_contents);
12403 }
12404 break;
12405 }
12406
12407 /* Set the output_section field so that lang_add_section
12408 does not create a lang_input_section structure for this
12409 section. Since there might be a symbol in the section
12410 being discarded, we must retain a pointer to the section
12411 which we are really going to use. */
12412 sec->output_section = bfd_abs_section_ptr;
12413 sec->kept_section = l->sec;
12414
12415 if (flags & SEC_GROUP)
12416 {
12417 asection *first = elf_next_in_group (sec);
12418 asection *s = first;
12419
12420 while (s != NULL)
12421 {
12422 s->output_section = bfd_abs_section_ptr;
12423 /* Record which group discards it. */
12424 s->kept_section = l->sec;
12425 s = elf_next_in_group (s);
12426 /* These lists are circular. */
12427 if (s == first)
12428 break;
12429 }
12430 }
12431
12432 return;
12433 }
12434 }
12435
12436 /* A single member comdat group section may be discarded by a
12437 linkonce section and vice versa. */
12438
12439 if ((flags & SEC_GROUP) != 0)
12440 {
12441 asection *first = elf_next_in_group (sec);
12442
12443 if (first != NULL && elf_next_in_group (first) == first)
12444 /* Check this single member group against linkonce sections. */
12445 for (l = already_linked_list->entry; l != NULL; l = l->next)
12446 if ((l->sec->flags & SEC_GROUP) == 0
12447 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12448 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12449 {
12450 first->output_section = bfd_abs_section_ptr;
12451 first->kept_section = l->sec;
12452 sec->output_section = bfd_abs_section_ptr;
12453 break;
12454 }
12455 }
12456 else
12457 /* Check this linkonce section against single member groups. */
12458 for (l = already_linked_list->entry; l != NULL; l = l->next)
12459 if (l->sec->flags & SEC_GROUP)
12460 {
12461 asection *first = elf_next_in_group (l->sec);
12462
12463 if (first != NULL
12464 && elf_next_in_group (first) == first
12465 && bfd_elf_match_symbols_in_sections (first, sec, info))
12466 {
12467 sec->output_section = bfd_abs_section_ptr;
12468 sec->kept_section = first;
12469 break;
12470 }
12471 }
12472
12473 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12474 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12475 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12476 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12477 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12478 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12479 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12480 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12481 The reverse order cannot happen as there is never a bfd with only the
12482 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12483 matter as here were are looking only for cross-bfd sections. */
12484
12485 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12486 for (l = already_linked_list->entry; l != NULL; l = l->next)
12487 if ((l->sec->flags & SEC_GROUP) == 0
12488 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12489 {
12490 if (abfd != l->sec->owner)
12491 sec->output_section = bfd_abs_section_ptr;
12492 break;
12493 }
12494
12495 /* This is the first section with this name. Record it. */
12496 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12497 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12498 }
12499
12500 bfd_boolean
12501 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12502 {
12503 return sym->st_shndx == SHN_COMMON;
12504 }
12505
12506 unsigned int
12507 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12508 {
12509 return SHN_COMMON;
12510 }
12511
12512 asection *
12513 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12514 {
12515 return bfd_com_section_ptr;
12516 }
12517
12518 bfd_vma
12519 _bfd_elf_default_got_elt_size (bfd *abfd,
12520 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12521 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12522 bfd *ibfd ATTRIBUTE_UNUSED,
12523 unsigned long symndx ATTRIBUTE_UNUSED)
12524 {
12525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12526 return bed->s->arch_size / 8;
12527 }
12528
12529 /* Routines to support the creation of dynamic relocs. */
12530
12531 /* Return true if NAME is a name of a relocation
12532 section associated with section S. */
12533
12534 static bfd_boolean
12535 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12536 {
12537 if (rela)
12538 return CONST_STRNEQ (name, ".rela")
12539 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12540
12541 return CONST_STRNEQ (name, ".rel")
12542 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12543 }
12544
12545 /* Returns the name of the dynamic reloc section associated with SEC. */
12546
12547 static const char *
12548 get_dynamic_reloc_section_name (bfd * abfd,
12549 asection * sec,
12550 bfd_boolean is_rela)
12551 {
12552 const char * name;
12553 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12554 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12555
12556 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12557 if (name == NULL)
12558 return NULL;
12559
12560 if (! is_reloc_section (is_rela, name, sec))
12561 {
12562 static bfd_boolean complained = FALSE;
12563
12564 if (! complained)
12565 {
12566 (*_bfd_error_handler)
12567 (_("%B: bad relocation section name `%s\'"), abfd, name);
12568 complained = TRUE;
12569 }
12570 name = NULL;
12571 }
12572
12573 return name;
12574 }
12575
12576 /* Returns the dynamic reloc section associated with SEC.
12577 If necessary compute the name of the dynamic reloc section based
12578 on SEC's name (looked up in ABFD's string table) and the setting
12579 of IS_RELA. */
12580
12581 asection *
12582 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12583 asection * sec,
12584 bfd_boolean is_rela)
12585 {
12586 asection * reloc_sec = elf_section_data (sec)->sreloc;
12587
12588 if (reloc_sec == NULL)
12589 {
12590 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12591
12592 if (name != NULL)
12593 {
12594 reloc_sec = bfd_get_section_by_name (abfd, name);
12595
12596 if (reloc_sec != NULL)
12597 elf_section_data (sec)->sreloc = reloc_sec;
12598 }
12599 }
12600
12601 return reloc_sec;
12602 }
12603
12604 /* Returns the dynamic reloc section associated with SEC. If the
12605 section does not exist it is created and attached to the DYNOBJ
12606 bfd and stored in the SRELOC field of SEC's elf_section_data
12607 structure.
12608
12609 ALIGNMENT is the alignment for the newly created section and
12610 IS_RELA defines whether the name should be .rela.<SEC's name>
12611 or .rel.<SEC's name>. The section name is looked up in the
12612 string table associated with ABFD. */
12613
12614 asection *
12615 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12616 bfd * dynobj,
12617 unsigned int alignment,
12618 bfd * abfd,
12619 bfd_boolean is_rela)
12620 {
12621 asection * reloc_sec = elf_section_data (sec)->sreloc;
12622
12623 if (reloc_sec == NULL)
12624 {
12625 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12626
12627 if (name == NULL)
12628 return NULL;
12629
12630 reloc_sec = bfd_get_section_by_name (dynobj, name);
12631
12632 if (reloc_sec == NULL)
12633 {
12634 flagword flags;
12635
12636 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12637 if ((sec->flags & SEC_ALLOC) != 0)
12638 flags |= SEC_ALLOC | SEC_LOAD;
12639
12640 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12641 if (reloc_sec != NULL)
12642 {
12643 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12644 reloc_sec = NULL;
12645 }
12646 }
12647
12648 elf_section_data (sec)->sreloc = reloc_sec;
12649 }
12650
12651 return reloc_sec;
12652 }
12653
12654 /* Copy the ELF symbol type associated with a linker hash entry. */
12655 void
12656 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12657 struct bfd_link_hash_entry * hdest,
12658 struct bfd_link_hash_entry * hsrc)
12659 {
12660 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12661 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12662
12663 ehdest->type = ehsrc->type;
12664 }
This page took 0.292009 seconds and 5 git commands to generate.