2006-06-13 David Ayers <d.ayers@inode.at>
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* Define a symbol in a dynamic linkage section. */
32
33 struct elf_link_hash_entry *
34 _bfd_elf_define_linkage_sym (bfd *abfd,
35 struct bfd_link_info *info,
36 asection *sec,
37 const char *name)
38 {
39 struct elf_link_hash_entry *h;
40 struct bfd_link_hash_entry *bh;
41 const struct elf_backend_data *bed;
42
43 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
44 if (h != NULL)
45 {
46 /* Zap symbol defined in an as-needed lib that wasn't linked.
47 This is a symptom of a larger problem: Absolute symbols
48 defined in shared libraries can't be overridden, because we
49 lose the link to the bfd which is via the symbol section. */
50 h->root.type = bfd_link_hash_new;
51 }
52
53 bh = &h->root;
54 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
55 sec, 0, NULL, FALSE,
56 get_elf_backend_data (abfd)->collect,
57 &bh))
58 return NULL;
59 h = (struct elf_link_hash_entry *) bh;
60 h->def_regular = 1;
61 h->type = STT_OBJECT;
62 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
63
64 bed = get_elf_backend_data (abfd);
65 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
66 return h;
67 }
68
69 bfd_boolean
70 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
71 {
72 flagword flags;
73 asection *s;
74 struct elf_link_hash_entry *h;
75 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
76 int ptralign;
77
78 /* This function may be called more than once. */
79 s = bfd_get_section_by_name (abfd, ".got");
80 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
81 return TRUE;
82
83 switch (bed->s->arch_size)
84 {
85 case 32:
86 ptralign = 2;
87 break;
88
89 case 64:
90 ptralign = 3;
91 break;
92
93 default:
94 bfd_set_error (bfd_error_bad_value);
95 return FALSE;
96 }
97
98 flags = bed->dynamic_sec_flags;
99
100 s = bfd_make_section_with_flags (abfd, ".got", flags);
101 if (s == NULL
102 || !bfd_set_section_alignment (abfd, s, ptralign))
103 return FALSE;
104
105 if (bed->want_got_plt)
106 {
107 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
108 if (s == NULL
109 || !bfd_set_section_alignment (abfd, s, ptralign))
110 return FALSE;
111 }
112
113 if (bed->want_got_sym)
114 {
115 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
116 (or .got.plt) section. We don't do this in the linker script
117 because we don't want to define the symbol if we are not creating
118 a global offset table. */
119 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
120 elf_hash_table (info)->hgot = h;
121 if (h == NULL)
122 return FALSE;
123 }
124
125 /* The first bit of the global offset table is the header. */
126 s->size += bed->got_header_size;
127
128 return TRUE;
129 }
130 \f
131 /* Create a strtab to hold the dynamic symbol names. */
132 static bfd_boolean
133 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
134 {
135 struct elf_link_hash_table *hash_table;
136
137 hash_table = elf_hash_table (info);
138 if (hash_table->dynobj == NULL)
139 hash_table->dynobj = abfd;
140
141 if (hash_table->dynstr == NULL)
142 {
143 hash_table->dynstr = _bfd_elf_strtab_init ();
144 if (hash_table->dynstr == NULL)
145 return FALSE;
146 }
147 return TRUE;
148 }
149
150 /* Create some sections which will be filled in with dynamic linking
151 information. ABFD is an input file which requires dynamic sections
152 to be created. The dynamic sections take up virtual memory space
153 when the final executable is run, so we need to create them before
154 addresses are assigned to the output sections. We work out the
155 actual contents and size of these sections later. */
156
157 bfd_boolean
158 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
159 {
160 flagword flags;
161 register asection *s;
162 const struct elf_backend_data *bed;
163
164 if (! is_elf_hash_table (info->hash))
165 return FALSE;
166
167 if (elf_hash_table (info)->dynamic_sections_created)
168 return TRUE;
169
170 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
171 return FALSE;
172
173 abfd = elf_hash_table (info)->dynobj;
174 bed = get_elf_backend_data (abfd);
175
176 flags = bed->dynamic_sec_flags;
177
178 /* A dynamically linked executable has a .interp section, but a
179 shared library does not. */
180 if (info->executable)
181 {
182 s = bfd_make_section_with_flags (abfd, ".interp",
183 flags | SEC_READONLY);
184 if (s == NULL)
185 return FALSE;
186 }
187
188 if (! info->traditional_format)
189 {
190 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
191 flags | SEC_READONLY);
192 if (s == NULL
193 || ! bfd_set_section_alignment (abfd, s, 2))
194 return FALSE;
195 elf_hash_table (info)->eh_info.hdr_sec = s;
196 }
197
198 /* Create sections to hold version informations. These are removed
199 if they are not needed. */
200 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
201 flags | SEC_READONLY);
202 if (s == NULL
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 s = bfd_make_section_with_flags (abfd, ".gnu.version",
207 flags | SEC_READONLY);
208 if (s == NULL
209 || ! bfd_set_section_alignment (abfd, s, 1))
210 return FALSE;
211
212 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
213 flags | SEC_READONLY);
214 if (s == NULL
215 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
216 return FALSE;
217
218 s = bfd_make_section_with_flags (abfd, ".dynsym",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".dynstr",
225 flags | SEC_READONLY);
226 if (s == NULL)
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
230 if (s == NULL
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 /* The special symbol _DYNAMIC is always set to the start of the
235 .dynamic section. We could set _DYNAMIC in a linker script, but we
236 only want to define it if we are, in fact, creating a .dynamic
237 section. We don't want to define it if there is no .dynamic
238 section, since on some ELF platforms the start up code examines it
239 to decide how to initialize the process. */
240 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
241 return FALSE;
242
243 s = bfd_make_section_with_flags (abfd, ".hash",
244 flags | SEC_READONLY);
245 if (s == NULL
246 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
247 return FALSE;
248 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
249
250 /* Let the backend create the rest of the sections. This lets the
251 backend set the right flags. The backend will normally create
252 the .got and .plt sections. */
253 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
254 return FALSE;
255
256 elf_hash_table (info)->dynamic_sections_created = TRUE;
257
258 return TRUE;
259 }
260
261 /* Create dynamic sections when linking against a dynamic object. */
262
263 bfd_boolean
264 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
265 {
266 flagword flags, pltflags;
267 struct elf_link_hash_entry *h;
268 asection *s;
269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
270
271 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
272 .rel[a].bss sections. */
273 flags = bed->dynamic_sec_flags;
274
275 pltflags = flags;
276 if (bed->plt_not_loaded)
277 /* We do not clear SEC_ALLOC here because we still want the OS to
278 allocate space for the section; it's just that there's nothing
279 to read in from the object file. */
280 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
281 else
282 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
283 if (bed->plt_readonly)
284 pltflags |= SEC_READONLY;
285
286 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
289 return FALSE;
290
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 if (bed->want_plt_sym)
294 {
295 h = _bfd_elf_define_linkage_sym (abfd, info, s,
296 "_PROCEDURE_LINKAGE_TABLE_");
297 elf_hash_table (info)->hplt = h;
298 if (h == NULL)
299 return FALSE;
300 }
301
302 s = bfd_make_section_with_flags (abfd,
303 (bed->default_use_rela_p
304 ? ".rela.plt" : ".rel.plt"),
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309
310 if (! _bfd_elf_create_got_section (abfd, info))
311 return FALSE;
312
313 if (bed->want_dynbss)
314 {
315 /* The .dynbss section is a place to put symbols which are defined
316 by dynamic objects, are referenced by regular objects, and are
317 not functions. We must allocate space for them in the process
318 image and use a R_*_COPY reloc to tell the dynamic linker to
319 initialize them at run time. The linker script puts the .dynbss
320 section into the .bss section of the final image. */
321 s = bfd_make_section_with_flags (abfd, ".dynbss",
322 (SEC_ALLOC
323 | SEC_LINKER_CREATED));
324 if (s == NULL)
325 return FALSE;
326
327 /* The .rel[a].bss section holds copy relocs. This section is not
328 normally needed. We need to create it here, though, so that the
329 linker will map it to an output section. We can't just create it
330 only if we need it, because we will not know whether we need it
331 until we have seen all the input files, and the first time the
332 main linker code calls BFD after examining all the input files
333 (size_dynamic_sections) the input sections have already been
334 mapped to the output sections. If the section turns out not to
335 be needed, we can discard it later. We will never need this
336 section when generating a shared object, since they do not use
337 copy relocs. */
338 if (! info->shared)
339 {
340 s = bfd_make_section_with_flags (abfd,
341 (bed->default_use_rela_p
342 ? ".rela.bss" : ".rel.bss"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 }
348 }
349
350 return TRUE;
351 }
352 \f
353 /* Record a new dynamic symbol. We record the dynamic symbols as we
354 read the input files, since we need to have a list of all of them
355 before we can determine the final sizes of the output sections.
356 Note that we may actually call this function even though we are not
357 going to output any dynamic symbols; in some cases we know that a
358 symbol should be in the dynamic symbol table, but only if there is
359 one. */
360
361 bfd_boolean
362 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
363 struct elf_link_hash_entry *h)
364 {
365 if (h->dynindx == -1)
366 {
367 struct elf_strtab_hash *dynstr;
368 char *p;
369 const char *name;
370 bfd_size_type indx;
371
372 /* XXX: The ABI draft says the linker must turn hidden and
373 internal symbols into STB_LOCAL symbols when producing the
374 DSO. However, if ld.so honors st_other in the dynamic table,
375 this would not be necessary. */
376 switch (ELF_ST_VISIBILITY (h->other))
377 {
378 case STV_INTERNAL:
379 case STV_HIDDEN:
380 if (h->root.type != bfd_link_hash_undefined
381 && h->root.type != bfd_link_hash_undefweak)
382 {
383 h->forced_local = 1;
384 if (!elf_hash_table (info)->is_relocatable_executable)
385 return TRUE;
386 }
387
388 default:
389 break;
390 }
391
392 h->dynindx = elf_hash_table (info)->dynsymcount;
393 ++elf_hash_table (info)->dynsymcount;
394
395 dynstr = elf_hash_table (info)->dynstr;
396 if (dynstr == NULL)
397 {
398 /* Create a strtab to hold the dynamic symbol names. */
399 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
400 if (dynstr == NULL)
401 return FALSE;
402 }
403
404 /* We don't put any version information in the dynamic string
405 table. */
406 name = h->root.root.string;
407 p = strchr (name, ELF_VER_CHR);
408 if (p != NULL)
409 /* We know that the p points into writable memory. In fact,
410 there are only a few symbols that have read-only names, being
411 those like _GLOBAL_OFFSET_TABLE_ that are created specially
412 by the backends. Most symbols will have names pointing into
413 an ELF string table read from a file, or to objalloc memory. */
414 *p = 0;
415
416 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
417
418 if (p != NULL)
419 *p = ELF_VER_CHR;
420
421 if (indx == (bfd_size_type) -1)
422 return FALSE;
423 h->dynstr_index = indx;
424 }
425
426 return TRUE;
427 }
428 \f
429 /* Record an assignment to a symbol made by a linker script. We need
430 this in case some dynamic object refers to this symbol. */
431
432 bfd_boolean
433 bfd_elf_record_link_assignment (bfd *output_bfd,
434 struct bfd_link_info *info,
435 const char *name,
436 bfd_boolean provide,
437 bfd_boolean hidden)
438 {
439 struct elf_link_hash_entry *h;
440 struct elf_link_hash_table *htab;
441
442 if (!is_elf_hash_table (info->hash))
443 return TRUE;
444
445 htab = elf_hash_table (info);
446 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
447 if (h == NULL)
448 return provide;
449
450 /* Since we're defining the symbol, don't let it seem to have not
451 been defined. record_dynamic_symbol and size_dynamic_sections
452 may depend on this. */
453 if (h->root.type == bfd_link_hash_undefweak
454 || h->root.type == bfd_link_hash_undefined)
455 {
456 h->root.type = bfd_link_hash_new;
457 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
458 bfd_link_repair_undef_list (&htab->root);
459 }
460
461 if (h->root.type == bfd_link_hash_new)
462 h->non_elf = 0;
463
464 /* If this symbol is being provided by the linker script, and it is
465 currently defined by a dynamic object, but not by a regular
466 object, then mark it as undefined so that the generic linker will
467 force the correct value. */
468 if (provide
469 && h->def_dynamic
470 && !h->def_regular)
471 h->root.type = bfd_link_hash_undefined;
472
473 /* If this symbol is not being provided by the linker script, and it is
474 currently defined by a dynamic object, but not by a regular object,
475 then clear out any version information because the symbol will not be
476 associated with the dynamic object any more. */
477 if (!provide
478 && h->def_dynamic
479 && !h->def_regular)
480 h->verinfo.verdef = NULL;
481
482 h->def_regular = 1;
483
484 if (provide && hidden)
485 {
486 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
487
488 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
489 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
490 }
491
492 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
493 and executables. */
494 if (!info->relocatable
495 && h->dynindx != -1
496 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
497 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
498 h->forced_local = 1;
499
500 if ((h->def_dynamic
501 || h->ref_dynamic
502 || info->shared
503 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
504 && h->dynindx == -1)
505 {
506 if (! bfd_elf_link_record_dynamic_symbol (info, h))
507 return FALSE;
508
509 /* If this is a weak defined symbol, and we know a corresponding
510 real symbol from the same dynamic object, make sure the real
511 symbol is also made into a dynamic symbol. */
512 if (h->u.weakdef != NULL
513 && h->u.weakdef->dynindx == -1)
514 {
515 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
516 return FALSE;
517 }
518 }
519
520 return TRUE;
521 }
522
523 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
524 success, and 2 on a failure caused by attempting to record a symbol
525 in a discarded section, eg. a discarded link-once section symbol. */
526
527 int
528 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
529 bfd *input_bfd,
530 long input_indx)
531 {
532 bfd_size_type amt;
533 struct elf_link_local_dynamic_entry *entry;
534 struct elf_link_hash_table *eht;
535 struct elf_strtab_hash *dynstr;
536 unsigned long dynstr_index;
537 char *name;
538 Elf_External_Sym_Shndx eshndx;
539 char esym[sizeof (Elf64_External_Sym)];
540
541 if (! is_elf_hash_table (info->hash))
542 return 0;
543
544 /* See if the entry exists already. */
545 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
546 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
547 return 1;
548
549 amt = sizeof (*entry);
550 entry = bfd_alloc (input_bfd, amt);
551 if (entry == NULL)
552 return 0;
553
554 /* Go find the symbol, so that we can find it's name. */
555 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
556 1, input_indx, &entry->isym, esym, &eshndx))
557 {
558 bfd_release (input_bfd, entry);
559 return 0;
560 }
561
562 if (entry->isym.st_shndx != SHN_UNDEF
563 && (entry->isym.st_shndx < SHN_LORESERVE
564 || entry->isym.st_shndx > SHN_HIRESERVE))
565 {
566 asection *s;
567
568 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
569 if (s == NULL || bfd_is_abs_section (s->output_section))
570 {
571 /* We can still bfd_release here as nothing has done another
572 bfd_alloc. We can't do this later in this function. */
573 bfd_release (input_bfd, entry);
574 return 2;
575 }
576 }
577
578 name = (bfd_elf_string_from_elf_section
579 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
580 entry->isym.st_name));
581
582 dynstr = elf_hash_table (info)->dynstr;
583 if (dynstr == NULL)
584 {
585 /* Create a strtab to hold the dynamic symbol names. */
586 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
587 if (dynstr == NULL)
588 return 0;
589 }
590
591 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
592 if (dynstr_index == (unsigned long) -1)
593 return 0;
594 entry->isym.st_name = dynstr_index;
595
596 eht = elf_hash_table (info);
597
598 entry->next = eht->dynlocal;
599 eht->dynlocal = entry;
600 entry->input_bfd = input_bfd;
601 entry->input_indx = input_indx;
602 eht->dynsymcount++;
603
604 /* Whatever binding the symbol had before, it's now local. */
605 entry->isym.st_info
606 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
607
608 /* The dynindx will be set at the end of size_dynamic_sections. */
609
610 return 1;
611 }
612
613 /* Return the dynindex of a local dynamic symbol. */
614
615 long
616 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
617 bfd *input_bfd,
618 long input_indx)
619 {
620 struct elf_link_local_dynamic_entry *e;
621
622 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
623 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
624 return e->dynindx;
625 return -1;
626 }
627
628 /* This function is used to renumber the dynamic symbols, if some of
629 them are removed because they are marked as local. This is called
630 via elf_link_hash_traverse. */
631
632 static bfd_boolean
633 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
634 void *data)
635 {
636 size_t *count = data;
637
638 if (h->root.type == bfd_link_hash_warning)
639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
640
641 if (h->forced_local)
642 return TRUE;
643
644 if (h->dynindx != -1)
645 h->dynindx = ++(*count);
646
647 return TRUE;
648 }
649
650
651 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
652 STB_LOCAL binding. */
653
654 static bfd_boolean
655 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
656 void *data)
657 {
658 size_t *count = data;
659
660 if (h->root.type == bfd_link_hash_warning)
661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
662
663 if (!h->forced_local)
664 return TRUE;
665
666 if (h->dynindx != -1)
667 h->dynindx = ++(*count);
668
669 return TRUE;
670 }
671
672 /* Return true if the dynamic symbol for a given section should be
673 omitted when creating a shared library. */
674 bfd_boolean
675 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
676 struct bfd_link_info *info,
677 asection *p)
678 {
679 switch (elf_section_data (p)->this_hdr.sh_type)
680 {
681 case SHT_PROGBITS:
682 case SHT_NOBITS:
683 /* If sh_type is yet undecided, assume it could be
684 SHT_PROGBITS/SHT_NOBITS. */
685 case SHT_NULL:
686 if (strcmp (p->name, ".got") == 0
687 || strcmp (p->name, ".got.plt") == 0
688 || strcmp (p->name, ".plt") == 0)
689 {
690 asection *ip;
691 bfd *dynobj = elf_hash_table (info)->dynobj;
692
693 if (dynobj != NULL
694 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
695 && (ip->flags & SEC_LINKER_CREATED)
696 && ip->output_section == p)
697 return TRUE;
698 }
699 return FALSE;
700
701 /* There shouldn't be section relative relocations
702 against any other section. */
703 default:
704 return TRUE;
705 }
706 }
707
708 /* Assign dynsym indices. In a shared library we generate a section
709 symbol for each output section, which come first. Next come symbols
710 which have been forced to local binding. Then all of the back-end
711 allocated local dynamic syms, followed by the rest of the global
712 symbols. */
713
714 static unsigned long
715 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
716 struct bfd_link_info *info,
717 unsigned long *section_sym_count)
718 {
719 unsigned long dynsymcount = 0;
720
721 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
722 {
723 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
724 asection *p;
725 for (p = output_bfd->sections; p ; p = p->next)
726 if ((p->flags & SEC_EXCLUDE) == 0
727 && (p->flags & SEC_ALLOC) != 0
728 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
729 elf_section_data (p)->dynindx = ++dynsymcount;
730 }
731 *section_sym_count = dynsymcount;
732
733 elf_link_hash_traverse (elf_hash_table (info),
734 elf_link_renumber_local_hash_table_dynsyms,
735 &dynsymcount);
736
737 if (elf_hash_table (info)->dynlocal)
738 {
739 struct elf_link_local_dynamic_entry *p;
740 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
741 p->dynindx = ++dynsymcount;
742 }
743
744 elf_link_hash_traverse (elf_hash_table (info),
745 elf_link_renumber_hash_table_dynsyms,
746 &dynsymcount);
747
748 /* There is an unused NULL entry at the head of the table which
749 we must account for in our count. Unless there weren't any
750 symbols, which means we'll have no table at all. */
751 if (dynsymcount != 0)
752 ++dynsymcount;
753
754 elf_hash_table (info)->dynsymcount = dynsymcount;
755 return dynsymcount;
756 }
757
758 /* This function is called when we want to define a new symbol. It
759 handles the various cases which arise when we find a definition in
760 a dynamic object, or when there is already a definition in a
761 dynamic object. The new symbol is described by NAME, SYM, PSEC,
762 and PVALUE. We set SYM_HASH to the hash table entry. We set
763 OVERRIDE if the old symbol is overriding a new definition. We set
764 TYPE_CHANGE_OK if it is OK for the type to change. We set
765 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
766 change, we mean that we shouldn't warn if the type or size does
767 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
768 object is overridden by a regular object. */
769
770 bfd_boolean
771 _bfd_elf_merge_symbol (bfd *abfd,
772 struct bfd_link_info *info,
773 const char *name,
774 Elf_Internal_Sym *sym,
775 asection **psec,
776 bfd_vma *pvalue,
777 unsigned int *pold_alignment,
778 struct elf_link_hash_entry **sym_hash,
779 bfd_boolean *skip,
780 bfd_boolean *override,
781 bfd_boolean *type_change_ok,
782 bfd_boolean *size_change_ok)
783 {
784 asection *sec, *oldsec;
785 struct elf_link_hash_entry *h;
786 struct elf_link_hash_entry *flip;
787 int bind;
788 bfd *oldbfd;
789 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
790 bfd_boolean newweak, oldweak;
791 const struct elf_backend_data *bed;
792
793 *skip = FALSE;
794 *override = FALSE;
795
796 sec = *psec;
797 bind = ELF_ST_BIND (sym->st_info);
798
799 if (! bfd_is_und_section (sec))
800 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
801 else
802 h = ((struct elf_link_hash_entry *)
803 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
804 if (h == NULL)
805 return FALSE;
806 *sym_hash = h;
807
808 /* This code is for coping with dynamic objects, and is only useful
809 if we are doing an ELF link. */
810 if (info->hash->creator != abfd->xvec)
811 return TRUE;
812
813 /* For merging, we only care about real symbols. */
814
815 while (h->root.type == bfd_link_hash_indirect
816 || h->root.type == bfd_link_hash_warning)
817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
818
819 /* If we just created the symbol, mark it as being an ELF symbol.
820 Other than that, there is nothing to do--there is no merge issue
821 with a newly defined symbol--so we just return. */
822
823 if (h->root.type == bfd_link_hash_new)
824 {
825 h->non_elf = 0;
826 return TRUE;
827 }
828
829 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
830 existing symbol. */
831
832 switch (h->root.type)
833 {
834 default:
835 oldbfd = NULL;
836 oldsec = NULL;
837 break;
838
839 case bfd_link_hash_undefined:
840 case bfd_link_hash_undefweak:
841 oldbfd = h->root.u.undef.abfd;
842 oldsec = NULL;
843 break;
844
845 case bfd_link_hash_defined:
846 case bfd_link_hash_defweak:
847 oldbfd = h->root.u.def.section->owner;
848 oldsec = h->root.u.def.section;
849 break;
850
851 case bfd_link_hash_common:
852 oldbfd = h->root.u.c.p->section->owner;
853 oldsec = h->root.u.c.p->section;
854 break;
855 }
856
857 /* In cases involving weak versioned symbols, we may wind up trying
858 to merge a symbol with itself. Catch that here, to avoid the
859 confusion that results if we try to override a symbol with
860 itself. The additional tests catch cases like
861 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
862 dynamic object, which we do want to handle here. */
863 if (abfd == oldbfd
864 && ((abfd->flags & DYNAMIC) == 0
865 || !h->def_regular))
866 return TRUE;
867
868 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
869 respectively, is from a dynamic object. */
870
871 newdyn = (abfd->flags & DYNAMIC) != 0;
872
873 olddyn = FALSE;
874 if (oldbfd != NULL)
875 olddyn = (oldbfd->flags & DYNAMIC) != 0;
876 else if (oldsec != NULL)
877 {
878 /* This handles the special SHN_MIPS_{TEXT,DATA} section
879 indices used by MIPS ELF. */
880 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
881 }
882
883 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
884 respectively, appear to be a definition rather than reference. */
885
886 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
887
888 olddef = (h->root.type != bfd_link_hash_undefined
889 && h->root.type != bfd_link_hash_undefweak
890 && h->root.type != bfd_link_hash_common);
891
892 /* When we try to create a default indirect symbol from the dynamic
893 definition with the default version, we skip it if its type and
894 the type of existing regular definition mismatch. We only do it
895 if the existing regular definition won't be dynamic. */
896 if (pold_alignment == NULL
897 && !info->shared
898 && !info->export_dynamic
899 && !h->ref_dynamic
900 && newdyn
901 && newdef
902 && !olddyn
903 && (olddef || h->root.type == bfd_link_hash_common)
904 && ELF_ST_TYPE (sym->st_info) != h->type
905 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
906 && h->type != STT_NOTYPE)
907 {
908 *skip = TRUE;
909 return TRUE;
910 }
911
912 /* Check TLS symbol. We don't check undefined symbol introduced by
913 "ld -u". */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type
916 && oldbfd != NULL)
917 {
918 bfd *ntbfd, *tbfd;
919 bfd_boolean ntdef, tdef;
920 asection *ntsec, *tsec;
921
922 if (h->type == STT_TLS)
923 {
924 ntbfd = abfd;
925 ntsec = sec;
926 ntdef = newdef;
927 tbfd = oldbfd;
928 tsec = oldsec;
929 tdef = olddef;
930 }
931 else
932 {
933 ntbfd = oldbfd;
934 ntsec = oldsec;
935 ntdef = olddef;
936 tbfd = abfd;
937 tsec = sec;
938 tdef = newdef;
939 }
940
941 if (tdef && ntdef)
942 (*_bfd_error_handler)
943 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
944 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
945 else if (!tdef && !ntdef)
946 (*_bfd_error_handler)
947 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
948 tbfd, ntbfd, h->root.root.string);
949 else if (tdef)
950 (*_bfd_error_handler)
951 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
952 tbfd, tsec, ntbfd, h->root.root.string);
953 else
954 (*_bfd_error_handler)
955 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
956 tbfd, ntbfd, ntsec, h->root.root.string);
957
958 bfd_set_error (bfd_error_bad_value);
959 return FALSE;
960 }
961
962 /* We need to remember if a symbol has a definition in a dynamic
963 object or is weak in all dynamic objects. Internal and hidden
964 visibility will make it unavailable to dynamic objects. */
965 if (newdyn && !h->dynamic_def)
966 {
967 if (!bfd_is_und_section (sec))
968 h->dynamic_def = 1;
969 else
970 {
971 /* Check if this symbol is weak in all dynamic objects. If it
972 is the first time we see it in a dynamic object, we mark
973 if it is weak. Otherwise, we clear it. */
974 if (!h->ref_dynamic)
975 {
976 if (bind == STB_WEAK)
977 h->dynamic_weak = 1;
978 }
979 else if (bind != STB_WEAK)
980 h->dynamic_weak = 0;
981 }
982 }
983
984 /* If the old symbol has non-default visibility, we ignore the new
985 definition from a dynamic object. */
986 if (newdyn
987 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
988 && !bfd_is_und_section (sec))
989 {
990 *skip = TRUE;
991 /* Make sure this symbol is dynamic. */
992 h->ref_dynamic = 1;
993 /* A protected symbol has external availability. Make sure it is
994 recorded as dynamic.
995
996 FIXME: Should we check type and size for protected symbol? */
997 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
998 return bfd_elf_link_record_dynamic_symbol (info, h);
999 else
1000 return TRUE;
1001 }
1002 else if (!newdyn
1003 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1004 && h->def_dynamic)
1005 {
1006 /* If the new symbol with non-default visibility comes from a
1007 relocatable file and the old definition comes from a dynamic
1008 object, we remove the old definition. */
1009 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1010 h = *sym_hash;
1011
1012 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1013 && bfd_is_und_section (sec))
1014 {
1015 /* If the new symbol is undefined and the old symbol was
1016 also undefined before, we need to make sure
1017 _bfd_generic_link_add_one_symbol doesn't mess
1018 up the linker hash table undefs list. Since the old
1019 definition came from a dynamic object, it is still on the
1020 undefs list. */
1021 h->root.type = bfd_link_hash_undefined;
1022 h->root.u.undef.abfd = abfd;
1023 }
1024 else
1025 {
1026 h->root.type = bfd_link_hash_new;
1027 h->root.u.undef.abfd = NULL;
1028 }
1029
1030 if (h->def_dynamic)
1031 {
1032 h->def_dynamic = 0;
1033 h->ref_dynamic = 1;
1034 h->dynamic_def = 1;
1035 }
1036 /* FIXME: Should we check type and size for protected symbol? */
1037 h->size = 0;
1038 h->type = 0;
1039 return TRUE;
1040 }
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046
1047 /* If a new weak symbol definition comes from a regular file and the
1048 old symbol comes from a dynamic library, we treat the new one as
1049 strong. Similarly, an old weak symbol definition from a regular
1050 file is treated as strong when the new symbol comes from a dynamic
1051 library. Further, an old weak symbol from a dynamic library is
1052 treated as strong if the new symbol is from a dynamic library.
1053 This reflects the way glibc's ld.so works.
1054
1055 Do this before setting *type_change_ok or *size_change_ok so that
1056 we warn properly when dynamic library symbols are overridden. */
1057
1058 if (newdef && !newdyn && olddyn)
1059 newweak = FALSE;
1060 if (olddef && newdyn)
1061 oldweak = FALSE;
1062
1063 /* It's OK to change the type if either the existing symbol or the
1064 new symbol is weak. A type change is also OK if the old symbol
1065 is undefined and the new symbol is defined. */
1066
1067 if (oldweak
1068 || newweak
1069 || (newdef
1070 && h->root.type == bfd_link_hash_undefined))
1071 *type_change_ok = TRUE;
1072
1073 /* It's OK to change the size if either the existing symbol or the
1074 new symbol is weak, or if the old symbol is undefined. */
1075
1076 if (*type_change_ok
1077 || h->root.type == bfd_link_hash_undefined)
1078 *size_change_ok = TRUE;
1079
1080 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1081 symbol, respectively, appears to be a common symbol in a dynamic
1082 object. If a symbol appears in an uninitialized section, and is
1083 not weak, and is not a function, then it may be a common symbol
1084 which was resolved when the dynamic object was created. We want
1085 to treat such symbols specially, because they raise special
1086 considerations when setting the symbol size: if the symbol
1087 appears as a common symbol in a regular object, and the size in
1088 the regular object is larger, we must make sure that we use the
1089 larger size. This problematic case can always be avoided in C,
1090 but it must be handled correctly when using Fortran shared
1091 libraries.
1092
1093 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1094 likewise for OLDDYNCOMMON and OLDDEF.
1095
1096 Note that this test is just a heuristic, and that it is quite
1097 possible to have an uninitialized symbol in a shared object which
1098 is really a definition, rather than a common symbol. This could
1099 lead to some minor confusion when the symbol really is a common
1100 symbol in some regular object. However, I think it will be
1101 harmless. */
1102
1103 if (newdyn
1104 && newdef
1105 && !newweak
1106 && (sec->flags & SEC_ALLOC) != 0
1107 && (sec->flags & SEC_LOAD) == 0
1108 && sym->st_size > 0
1109 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1110 newdyncommon = TRUE;
1111 else
1112 newdyncommon = FALSE;
1113
1114 if (olddyn
1115 && olddef
1116 && h->root.type == bfd_link_hash_defined
1117 && h->def_dynamic
1118 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1119 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1120 && h->size > 0
1121 && h->type != STT_FUNC)
1122 olddyncommon = TRUE;
1123 else
1124 olddyncommon = FALSE;
1125
1126 /* We now know everything about the old and new symbols. We ask the
1127 backend to check if we can merge them. */
1128 bed = get_elf_backend_data (abfd);
1129 if (bed->merge_symbol
1130 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1131 pold_alignment, skip, override,
1132 type_change_ok, size_change_ok,
1133 &newdyn, &newdef, &newdyncommon, &newweak,
1134 abfd, &sec,
1135 &olddyn, &olddef, &olddyncommon, &oldweak,
1136 oldbfd, &oldsec))
1137 return FALSE;
1138
1139 /* If both the old and the new symbols look like common symbols in a
1140 dynamic object, set the size of the symbol to the larger of the
1141 two. */
1142
1143 if (olddyncommon
1144 && newdyncommon
1145 && sym->st_size != h->size)
1146 {
1147 /* Since we think we have two common symbols, issue a multiple
1148 common warning if desired. Note that we only warn if the
1149 size is different. If the size is the same, we simply let
1150 the old symbol override the new one as normally happens with
1151 symbols defined in dynamic objects. */
1152
1153 if (! ((*info->callbacks->multiple_common)
1154 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1155 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1156 return FALSE;
1157
1158 if (sym->st_size > h->size)
1159 h->size = sym->st_size;
1160
1161 *size_change_ok = TRUE;
1162 }
1163
1164 /* If we are looking at a dynamic object, and we have found a
1165 definition, we need to see if the symbol was already defined by
1166 some other object. If so, we want to use the existing
1167 definition, and we do not want to report a multiple symbol
1168 definition error; we do this by clobbering *PSEC to be
1169 bfd_und_section_ptr.
1170
1171 We treat a common symbol as a definition if the symbol in the
1172 shared library is a function, since common symbols always
1173 represent variables; this can cause confusion in principle, but
1174 any such confusion would seem to indicate an erroneous program or
1175 shared library. We also permit a common symbol in a regular
1176 object to override a weak symbol in a shared object. */
1177
1178 if (newdyn
1179 && newdef
1180 && (olddef
1181 || (h->root.type == bfd_link_hash_common
1182 && (newweak
1183 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1184 {
1185 *override = TRUE;
1186 newdef = FALSE;
1187 newdyncommon = FALSE;
1188
1189 *psec = sec = bfd_und_section_ptr;
1190 *size_change_ok = TRUE;
1191
1192 /* If we get here when the old symbol is a common symbol, then
1193 we are explicitly letting it override a weak symbol or
1194 function in a dynamic object, and we don't want to warn about
1195 a type change. If the old symbol is a defined symbol, a type
1196 change warning may still be appropriate. */
1197
1198 if (h->root.type == bfd_link_hash_common)
1199 *type_change_ok = TRUE;
1200 }
1201
1202 /* Handle the special case of an old common symbol merging with a
1203 new symbol which looks like a common symbol in a shared object.
1204 We change *PSEC and *PVALUE to make the new symbol look like a
1205 common symbol, and let _bfd_generic_link_add_one_symbol do the
1206 right thing. */
1207
1208 if (newdyncommon
1209 && h->root.type == bfd_link_hash_common)
1210 {
1211 *override = TRUE;
1212 newdef = FALSE;
1213 newdyncommon = FALSE;
1214 *pvalue = sym->st_size;
1215 *psec = sec = bed->common_section (oldsec);
1216 *size_change_ok = TRUE;
1217 }
1218
1219 /* Skip weak definitions of symbols that are already defined. */
1220 if (newdef && olddef && newweak)
1221 *skip = TRUE;
1222
1223 /* If the old symbol is from a dynamic object, and the new symbol is
1224 a definition which is not from a dynamic object, then the new
1225 symbol overrides the old symbol. Symbols from regular files
1226 always take precedence over symbols from dynamic objects, even if
1227 they are defined after the dynamic object in the link.
1228
1229 As above, we again permit a common symbol in a regular object to
1230 override a definition in a shared object if the shared object
1231 symbol is a function or is weak. */
1232
1233 flip = NULL;
1234 if (!newdyn
1235 && (newdef
1236 || (bfd_is_com_section (sec)
1237 && (oldweak
1238 || h->type == STT_FUNC)))
1239 && olddyn
1240 && olddef
1241 && h->def_dynamic)
1242 {
1243 /* Change the hash table entry to undefined, and let
1244 _bfd_generic_link_add_one_symbol do the right thing with the
1245 new definition. */
1246
1247 h->root.type = bfd_link_hash_undefined;
1248 h->root.u.undef.abfd = h->root.u.def.section->owner;
1249 *size_change_ok = TRUE;
1250
1251 olddef = FALSE;
1252 olddyncommon = FALSE;
1253
1254 /* We again permit a type change when a common symbol may be
1255 overriding a function. */
1256
1257 if (bfd_is_com_section (sec))
1258 *type_change_ok = TRUE;
1259
1260 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1261 flip = *sym_hash;
1262 else
1263 /* This union may have been set to be non-NULL when this symbol
1264 was seen in a dynamic object. We must force the union to be
1265 NULL, so that it is correct for a regular symbol. */
1266 h->verinfo.vertree = NULL;
1267 }
1268
1269 /* Handle the special case of a new common symbol merging with an
1270 old symbol that looks like it might be a common symbol defined in
1271 a shared object. Note that we have already handled the case in
1272 which a new common symbol should simply override the definition
1273 in the shared library. */
1274
1275 if (! newdyn
1276 && bfd_is_com_section (sec)
1277 && olddyncommon)
1278 {
1279 /* It would be best if we could set the hash table entry to a
1280 common symbol, but we don't know what to use for the section
1281 or the alignment. */
1282 if (! ((*info->callbacks->multiple_common)
1283 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1284 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1285 return FALSE;
1286
1287 /* If the presumed common symbol in the dynamic object is
1288 larger, pretend that the new symbol has its size. */
1289
1290 if (h->size > *pvalue)
1291 *pvalue = h->size;
1292
1293 /* We need to remember the alignment required by the symbol
1294 in the dynamic object. */
1295 BFD_ASSERT (pold_alignment);
1296 *pold_alignment = h->root.u.def.section->alignment_power;
1297
1298 olddef = FALSE;
1299 olddyncommon = FALSE;
1300
1301 h->root.type = bfd_link_hash_undefined;
1302 h->root.u.undef.abfd = h->root.u.def.section->owner;
1303
1304 *size_change_ok = TRUE;
1305 *type_change_ok = TRUE;
1306
1307 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1308 flip = *sym_hash;
1309 else
1310 h->verinfo.vertree = NULL;
1311 }
1312
1313 if (flip != NULL)
1314 {
1315 /* Handle the case where we had a versioned symbol in a dynamic
1316 library and now find a definition in a normal object. In this
1317 case, we make the versioned symbol point to the normal one. */
1318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1319 flip->root.type = h->root.type;
1320 h->root.type = bfd_link_hash_indirect;
1321 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1322 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1323 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1324 if (h->def_dynamic)
1325 {
1326 h->def_dynamic = 0;
1327 flip->ref_dynamic = 1;
1328 }
1329 }
1330
1331 return TRUE;
1332 }
1333
1334 /* This function is called to create an indirect symbol from the
1335 default for the symbol with the default version if needed. The
1336 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1337 set DYNSYM if the new indirect symbol is dynamic. */
1338
1339 bfd_boolean
1340 _bfd_elf_add_default_symbol (bfd *abfd,
1341 struct bfd_link_info *info,
1342 struct elf_link_hash_entry *h,
1343 const char *name,
1344 Elf_Internal_Sym *sym,
1345 asection **psec,
1346 bfd_vma *value,
1347 bfd_boolean *dynsym,
1348 bfd_boolean override)
1349 {
1350 bfd_boolean type_change_ok;
1351 bfd_boolean size_change_ok;
1352 bfd_boolean skip;
1353 char *shortname;
1354 struct elf_link_hash_entry *hi;
1355 struct bfd_link_hash_entry *bh;
1356 const struct elf_backend_data *bed;
1357 bfd_boolean collect;
1358 bfd_boolean dynamic;
1359 char *p;
1360 size_t len, shortlen;
1361 asection *sec;
1362
1363 /* If this symbol has a version, and it is the default version, we
1364 create an indirect symbol from the default name to the fully
1365 decorated name. This will cause external references which do not
1366 specify a version to be bound to this version of the symbol. */
1367 p = strchr (name, ELF_VER_CHR);
1368 if (p == NULL || p[1] != ELF_VER_CHR)
1369 return TRUE;
1370
1371 if (override)
1372 {
1373 /* We are overridden by an old definition. We need to check if we
1374 need to create the indirect symbol from the default name. */
1375 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1376 FALSE, FALSE);
1377 BFD_ASSERT (hi != NULL);
1378 if (hi == h)
1379 return TRUE;
1380 while (hi->root.type == bfd_link_hash_indirect
1381 || hi->root.type == bfd_link_hash_warning)
1382 {
1383 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1384 if (hi == h)
1385 return TRUE;
1386 }
1387 }
1388
1389 bed = get_elf_backend_data (abfd);
1390 collect = bed->collect;
1391 dynamic = (abfd->flags & DYNAMIC) != 0;
1392
1393 shortlen = p - name;
1394 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1395 if (shortname == NULL)
1396 return FALSE;
1397 memcpy (shortname, name, shortlen);
1398 shortname[shortlen] = '\0';
1399
1400 /* We are going to create a new symbol. Merge it with any existing
1401 symbol with this name. For the purposes of the merge, act as
1402 though we were defining the symbol we just defined, although we
1403 actually going to define an indirect symbol. */
1404 type_change_ok = FALSE;
1405 size_change_ok = FALSE;
1406 sec = *psec;
1407 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1408 NULL, &hi, &skip, &override,
1409 &type_change_ok, &size_change_ok))
1410 return FALSE;
1411
1412 if (skip)
1413 goto nondefault;
1414
1415 if (! override)
1416 {
1417 bh = &hi->root;
1418 if (! (_bfd_generic_link_add_one_symbol
1419 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1420 0, name, FALSE, collect, &bh)))
1421 return FALSE;
1422 hi = (struct elf_link_hash_entry *) bh;
1423 }
1424 else
1425 {
1426 /* In this case the symbol named SHORTNAME is overriding the
1427 indirect symbol we want to add. We were planning on making
1428 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1429 is the name without a version. NAME is the fully versioned
1430 name, and it is the default version.
1431
1432 Overriding means that we already saw a definition for the
1433 symbol SHORTNAME in a regular object, and it is overriding
1434 the symbol defined in the dynamic object.
1435
1436 When this happens, we actually want to change NAME, the
1437 symbol we just added, to refer to SHORTNAME. This will cause
1438 references to NAME in the shared object to become references
1439 to SHORTNAME in the regular object. This is what we expect
1440 when we override a function in a shared object: that the
1441 references in the shared object will be mapped to the
1442 definition in the regular object. */
1443
1444 while (hi->root.type == bfd_link_hash_indirect
1445 || hi->root.type == bfd_link_hash_warning)
1446 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1447
1448 h->root.type = bfd_link_hash_indirect;
1449 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1450 if (h->def_dynamic)
1451 {
1452 h->def_dynamic = 0;
1453 hi->ref_dynamic = 1;
1454 if (hi->ref_regular
1455 || hi->def_regular)
1456 {
1457 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1458 return FALSE;
1459 }
1460 }
1461
1462 /* Now set HI to H, so that the following code will set the
1463 other fields correctly. */
1464 hi = h;
1465 }
1466
1467 /* If there is a duplicate definition somewhere, then HI may not
1468 point to an indirect symbol. We will have reported an error to
1469 the user in that case. */
1470
1471 if (hi->root.type == bfd_link_hash_indirect)
1472 {
1473 struct elf_link_hash_entry *ht;
1474
1475 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1476 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1477
1478 /* See if the new flags lead us to realize that the symbol must
1479 be dynamic. */
1480 if (! *dynsym)
1481 {
1482 if (! dynamic)
1483 {
1484 if (info->shared
1485 || hi->ref_dynamic)
1486 *dynsym = TRUE;
1487 }
1488 else
1489 {
1490 if (hi->ref_regular)
1491 *dynsym = TRUE;
1492 }
1493 }
1494 }
1495
1496 /* We also need to define an indirection from the nondefault version
1497 of the symbol. */
1498
1499 nondefault:
1500 len = strlen (name);
1501 shortname = bfd_hash_allocate (&info->hash->table, len);
1502 if (shortname == NULL)
1503 return FALSE;
1504 memcpy (shortname, name, shortlen);
1505 memcpy (shortname + shortlen, p + 1, len - shortlen);
1506
1507 /* Once again, merge with any existing symbol. */
1508 type_change_ok = FALSE;
1509 size_change_ok = FALSE;
1510 sec = *psec;
1511 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1512 NULL, &hi, &skip, &override,
1513 &type_change_ok, &size_change_ok))
1514 return FALSE;
1515
1516 if (skip)
1517 return TRUE;
1518
1519 if (override)
1520 {
1521 /* Here SHORTNAME is a versioned name, so we don't expect to see
1522 the type of override we do in the case above unless it is
1523 overridden by a versioned definition. */
1524 if (hi->root.type != bfd_link_hash_defined
1525 && hi->root.type != bfd_link_hash_defweak)
1526 (*_bfd_error_handler)
1527 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1528 abfd, shortname);
1529 }
1530 else
1531 {
1532 bh = &hi->root;
1533 if (! (_bfd_generic_link_add_one_symbol
1534 (info, abfd, shortname, BSF_INDIRECT,
1535 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1536 return FALSE;
1537 hi = (struct elf_link_hash_entry *) bh;
1538
1539 /* If there is a duplicate definition somewhere, then HI may not
1540 point to an indirect symbol. We will have reported an error
1541 to the user in that case. */
1542
1543 if (hi->root.type == bfd_link_hash_indirect)
1544 {
1545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1546
1547 /* See if the new flags lead us to realize that the symbol
1548 must be dynamic. */
1549 if (! *dynsym)
1550 {
1551 if (! dynamic)
1552 {
1553 if (info->shared
1554 || hi->ref_dynamic)
1555 *dynsym = TRUE;
1556 }
1557 else
1558 {
1559 if (hi->ref_regular)
1560 *dynsym = TRUE;
1561 }
1562 }
1563 }
1564 }
1565
1566 return TRUE;
1567 }
1568 \f
1569 /* This routine is used to export all defined symbols into the dynamic
1570 symbol table. It is called via elf_link_hash_traverse. */
1571
1572 bfd_boolean
1573 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1574 {
1575 struct elf_info_failed *eif = data;
1576
1577 /* Ignore indirect symbols. These are added by the versioning code. */
1578 if (h->root.type == bfd_link_hash_indirect)
1579 return TRUE;
1580
1581 if (h->root.type == bfd_link_hash_warning)
1582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1583
1584 if (h->dynindx == -1
1585 && (h->def_regular
1586 || h->ref_regular))
1587 {
1588 struct bfd_elf_version_tree *t;
1589 struct bfd_elf_version_expr *d;
1590
1591 for (t = eif->verdefs; t != NULL; t = t->next)
1592 {
1593 if (t->globals.list != NULL)
1594 {
1595 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1596 if (d != NULL)
1597 goto doit;
1598 }
1599
1600 if (t->locals.list != NULL)
1601 {
1602 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1603 if (d != NULL)
1604 return TRUE;
1605 }
1606 }
1607
1608 if (!eif->verdefs)
1609 {
1610 doit:
1611 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1612 {
1613 eif->failed = TRUE;
1614 return FALSE;
1615 }
1616 }
1617 }
1618
1619 return TRUE;
1620 }
1621 \f
1622 /* Look through the symbols which are defined in other shared
1623 libraries and referenced here. Update the list of version
1624 dependencies. This will be put into the .gnu.version_r section.
1625 This function is called via elf_link_hash_traverse. */
1626
1627 bfd_boolean
1628 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1629 void *data)
1630 {
1631 struct elf_find_verdep_info *rinfo = data;
1632 Elf_Internal_Verneed *t;
1633 Elf_Internal_Vernaux *a;
1634 bfd_size_type amt;
1635
1636 if (h->root.type == bfd_link_hash_warning)
1637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1638
1639 /* We only care about symbols defined in shared objects with version
1640 information. */
1641 if (!h->def_dynamic
1642 || h->def_regular
1643 || h->dynindx == -1
1644 || h->verinfo.verdef == NULL)
1645 return TRUE;
1646
1647 /* See if we already know about this version. */
1648 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1649 {
1650 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1651 continue;
1652
1653 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1654 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1655 return TRUE;
1656
1657 break;
1658 }
1659
1660 /* This is a new version. Add it to tree we are building. */
1661
1662 if (t == NULL)
1663 {
1664 amt = sizeof *t;
1665 t = bfd_zalloc (rinfo->output_bfd, amt);
1666 if (t == NULL)
1667 {
1668 rinfo->failed = TRUE;
1669 return FALSE;
1670 }
1671
1672 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1673 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1674 elf_tdata (rinfo->output_bfd)->verref = t;
1675 }
1676
1677 amt = sizeof *a;
1678 a = bfd_zalloc (rinfo->output_bfd, amt);
1679
1680 /* Note that we are copying a string pointer here, and testing it
1681 above. If bfd_elf_string_from_elf_section is ever changed to
1682 discard the string data when low in memory, this will have to be
1683 fixed. */
1684 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1685
1686 a->vna_flags = h->verinfo.verdef->vd_flags;
1687 a->vna_nextptr = t->vn_auxptr;
1688
1689 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1690 ++rinfo->vers;
1691
1692 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1693
1694 t->vn_auxptr = a;
1695
1696 return TRUE;
1697 }
1698
1699 /* Figure out appropriate versions for all the symbols. We may not
1700 have the version number script until we have read all of the input
1701 files, so until that point we don't know which symbols should be
1702 local. This function is called via elf_link_hash_traverse. */
1703
1704 bfd_boolean
1705 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1706 {
1707 struct elf_assign_sym_version_info *sinfo;
1708 struct bfd_link_info *info;
1709 const struct elf_backend_data *bed;
1710 struct elf_info_failed eif;
1711 char *p;
1712 bfd_size_type amt;
1713
1714 sinfo = data;
1715 info = sinfo->info;
1716
1717 if (h->root.type == bfd_link_hash_warning)
1718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1719
1720 /* Fix the symbol flags. */
1721 eif.failed = FALSE;
1722 eif.info = info;
1723 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1724 {
1725 if (eif.failed)
1726 sinfo->failed = TRUE;
1727 return FALSE;
1728 }
1729
1730 /* We only need version numbers for symbols defined in regular
1731 objects. */
1732 if (!h->def_regular)
1733 return TRUE;
1734
1735 bed = get_elf_backend_data (sinfo->output_bfd);
1736 p = strchr (h->root.root.string, ELF_VER_CHR);
1737 if (p != NULL && h->verinfo.vertree == NULL)
1738 {
1739 struct bfd_elf_version_tree *t;
1740 bfd_boolean hidden;
1741
1742 hidden = TRUE;
1743
1744 /* There are two consecutive ELF_VER_CHR characters if this is
1745 not a hidden symbol. */
1746 ++p;
1747 if (*p == ELF_VER_CHR)
1748 {
1749 hidden = FALSE;
1750 ++p;
1751 }
1752
1753 /* If there is no version string, we can just return out. */
1754 if (*p == '\0')
1755 {
1756 if (hidden)
1757 h->hidden = 1;
1758 return TRUE;
1759 }
1760
1761 /* Look for the version. If we find it, it is no longer weak. */
1762 for (t = sinfo->verdefs; t != NULL; t = t->next)
1763 {
1764 if (strcmp (t->name, p) == 0)
1765 {
1766 size_t len;
1767 char *alc;
1768 struct bfd_elf_version_expr *d;
1769
1770 len = p - h->root.root.string;
1771 alc = bfd_malloc (len);
1772 if (alc == NULL)
1773 return FALSE;
1774 memcpy (alc, h->root.root.string, len - 1);
1775 alc[len - 1] = '\0';
1776 if (alc[len - 2] == ELF_VER_CHR)
1777 alc[len - 2] = '\0';
1778
1779 h->verinfo.vertree = t;
1780 t->used = TRUE;
1781 d = NULL;
1782
1783 if (t->globals.list != NULL)
1784 d = (*t->match) (&t->globals, NULL, alc);
1785
1786 /* See if there is anything to force this symbol to
1787 local scope. */
1788 if (d == NULL && t->locals.list != NULL)
1789 {
1790 d = (*t->match) (&t->locals, NULL, alc);
1791 if (d != NULL
1792 && h->dynindx != -1
1793 && ! info->export_dynamic)
1794 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1795 }
1796
1797 free (alc);
1798 break;
1799 }
1800 }
1801
1802 /* If we are building an application, we need to create a
1803 version node for this version. */
1804 if (t == NULL && info->executable)
1805 {
1806 struct bfd_elf_version_tree **pp;
1807 int version_index;
1808
1809 /* If we aren't going to export this symbol, we don't need
1810 to worry about it. */
1811 if (h->dynindx == -1)
1812 return TRUE;
1813
1814 amt = sizeof *t;
1815 t = bfd_zalloc (sinfo->output_bfd, amt);
1816 if (t == NULL)
1817 {
1818 sinfo->failed = TRUE;
1819 return FALSE;
1820 }
1821
1822 t->name = p;
1823 t->name_indx = (unsigned int) -1;
1824 t->used = TRUE;
1825
1826 version_index = 1;
1827 /* Don't count anonymous version tag. */
1828 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1829 version_index = 0;
1830 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1831 ++version_index;
1832 t->vernum = version_index;
1833
1834 *pp = t;
1835
1836 h->verinfo.vertree = t;
1837 }
1838 else if (t == NULL)
1839 {
1840 /* We could not find the version for a symbol when
1841 generating a shared archive. Return an error. */
1842 (*_bfd_error_handler)
1843 (_("%B: undefined versioned symbol name %s"),
1844 sinfo->output_bfd, h->root.root.string);
1845 bfd_set_error (bfd_error_bad_value);
1846 sinfo->failed = TRUE;
1847 return FALSE;
1848 }
1849
1850 if (hidden)
1851 h->hidden = 1;
1852 }
1853
1854 /* If we don't have a version for this symbol, see if we can find
1855 something. */
1856 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1857 {
1858 struct bfd_elf_version_tree *t;
1859 struct bfd_elf_version_tree *local_ver;
1860 struct bfd_elf_version_expr *d;
1861
1862 /* See if can find what version this symbol is in. If the
1863 symbol is supposed to be local, then don't actually register
1864 it. */
1865 local_ver = NULL;
1866 for (t = sinfo->verdefs; t != NULL; t = t->next)
1867 {
1868 if (t->globals.list != NULL)
1869 {
1870 bfd_boolean matched;
1871
1872 matched = FALSE;
1873 d = NULL;
1874 while ((d = (*t->match) (&t->globals, d,
1875 h->root.root.string)) != NULL)
1876 if (d->symver)
1877 matched = TRUE;
1878 else
1879 {
1880 /* There is a version without definition. Make
1881 the symbol the default definition for this
1882 version. */
1883 h->verinfo.vertree = t;
1884 local_ver = NULL;
1885 d->script = 1;
1886 break;
1887 }
1888 if (d != NULL)
1889 break;
1890 else if (matched)
1891 /* There is no undefined version for this symbol. Hide the
1892 default one. */
1893 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1894 }
1895
1896 if (t->locals.list != NULL)
1897 {
1898 d = NULL;
1899 while ((d = (*t->match) (&t->locals, d,
1900 h->root.root.string)) != NULL)
1901 {
1902 local_ver = t;
1903 /* If the match is "*", keep looking for a more
1904 explicit, perhaps even global, match.
1905 XXX: Shouldn't this be !d->wildcard instead? */
1906 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1907 break;
1908 }
1909
1910 if (d != NULL)
1911 break;
1912 }
1913 }
1914
1915 if (local_ver != NULL)
1916 {
1917 h->verinfo.vertree = local_ver;
1918 if (h->dynindx != -1
1919 && ! info->export_dynamic)
1920 {
1921 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1922 }
1923 }
1924 }
1925
1926 return TRUE;
1927 }
1928 \f
1929 /* Read and swap the relocs from the section indicated by SHDR. This
1930 may be either a REL or a RELA section. The relocations are
1931 translated into RELA relocations and stored in INTERNAL_RELOCS,
1932 which should have already been allocated to contain enough space.
1933 The EXTERNAL_RELOCS are a buffer where the external form of the
1934 relocations should be stored.
1935
1936 Returns FALSE if something goes wrong. */
1937
1938 static bfd_boolean
1939 elf_link_read_relocs_from_section (bfd *abfd,
1940 asection *sec,
1941 Elf_Internal_Shdr *shdr,
1942 void *external_relocs,
1943 Elf_Internal_Rela *internal_relocs)
1944 {
1945 const struct elf_backend_data *bed;
1946 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1947 const bfd_byte *erela;
1948 const bfd_byte *erelaend;
1949 Elf_Internal_Rela *irela;
1950 Elf_Internal_Shdr *symtab_hdr;
1951 size_t nsyms;
1952
1953 /* Position ourselves at the start of the section. */
1954 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1955 return FALSE;
1956
1957 /* Read the relocations. */
1958 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1959 return FALSE;
1960
1961 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1962 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1963
1964 bed = get_elf_backend_data (abfd);
1965
1966 /* Convert the external relocations to the internal format. */
1967 if (shdr->sh_entsize == bed->s->sizeof_rel)
1968 swap_in = bed->s->swap_reloc_in;
1969 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1970 swap_in = bed->s->swap_reloca_in;
1971 else
1972 {
1973 bfd_set_error (bfd_error_wrong_format);
1974 return FALSE;
1975 }
1976
1977 erela = external_relocs;
1978 erelaend = erela + shdr->sh_size;
1979 irela = internal_relocs;
1980 while (erela < erelaend)
1981 {
1982 bfd_vma r_symndx;
1983
1984 (*swap_in) (abfd, erela, irela);
1985 r_symndx = ELF32_R_SYM (irela->r_info);
1986 if (bed->s->arch_size == 64)
1987 r_symndx >>= 24;
1988 if ((size_t) r_symndx >= nsyms)
1989 {
1990 (*_bfd_error_handler)
1991 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1992 " for offset 0x%lx in section `%A'"),
1993 abfd, sec,
1994 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1995 bfd_set_error (bfd_error_bad_value);
1996 return FALSE;
1997 }
1998 irela += bed->s->int_rels_per_ext_rel;
1999 erela += shdr->sh_entsize;
2000 }
2001
2002 return TRUE;
2003 }
2004
2005 /* Read and swap the relocs for a section O. They may have been
2006 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2007 not NULL, they are used as buffers to read into. They are known to
2008 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2009 the return value is allocated using either malloc or bfd_alloc,
2010 according to the KEEP_MEMORY argument. If O has two relocation
2011 sections (both REL and RELA relocations), then the REL_HDR
2012 relocations will appear first in INTERNAL_RELOCS, followed by the
2013 REL_HDR2 relocations. */
2014
2015 Elf_Internal_Rela *
2016 _bfd_elf_link_read_relocs (bfd *abfd,
2017 asection *o,
2018 void *external_relocs,
2019 Elf_Internal_Rela *internal_relocs,
2020 bfd_boolean keep_memory)
2021 {
2022 Elf_Internal_Shdr *rel_hdr;
2023 void *alloc1 = NULL;
2024 Elf_Internal_Rela *alloc2 = NULL;
2025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2026
2027 if (elf_section_data (o)->relocs != NULL)
2028 return elf_section_data (o)->relocs;
2029
2030 if (o->reloc_count == 0)
2031 return NULL;
2032
2033 rel_hdr = &elf_section_data (o)->rel_hdr;
2034
2035 if (internal_relocs == NULL)
2036 {
2037 bfd_size_type size;
2038
2039 size = o->reloc_count;
2040 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2041 if (keep_memory)
2042 internal_relocs = bfd_alloc (abfd, size);
2043 else
2044 internal_relocs = alloc2 = bfd_malloc (size);
2045 if (internal_relocs == NULL)
2046 goto error_return;
2047 }
2048
2049 if (external_relocs == NULL)
2050 {
2051 bfd_size_type size = rel_hdr->sh_size;
2052
2053 if (elf_section_data (o)->rel_hdr2)
2054 size += elf_section_data (o)->rel_hdr2->sh_size;
2055 alloc1 = bfd_malloc (size);
2056 if (alloc1 == NULL)
2057 goto error_return;
2058 external_relocs = alloc1;
2059 }
2060
2061 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2062 external_relocs,
2063 internal_relocs))
2064 goto error_return;
2065 if (elf_section_data (o)->rel_hdr2
2066 && (!elf_link_read_relocs_from_section
2067 (abfd, o,
2068 elf_section_data (o)->rel_hdr2,
2069 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2070 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2071 * bed->s->int_rels_per_ext_rel))))
2072 goto error_return;
2073
2074 /* Cache the results for next time, if we can. */
2075 if (keep_memory)
2076 elf_section_data (o)->relocs = internal_relocs;
2077
2078 if (alloc1 != NULL)
2079 free (alloc1);
2080
2081 /* Don't free alloc2, since if it was allocated we are passing it
2082 back (under the name of internal_relocs). */
2083
2084 return internal_relocs;
2085
2086 error_return:
2087 if (alloc1 != NULL)
2088 free (alloc1);
2089 if (alloc2 != NULL)
2090 free (alloc2);
2091 return NULL;
2092 }
2093
2094 /* Compute the size of, and allocate space for, REL_HDR which is the
2095 section header for a section containing relocations for O. */
2096
2097 bfd_boolean
2098 _bfd_elf_link_size_reloc_section (bfd *abfd,
2099 Elf_Internal_Shdr *rel_hdr,
2100 asection *o)
2101 {
2102 bfd_size_type reloc_count;
2103 bfd_size_type num_rel_hashes;
2104
2105 /* Figure out how many relocations there will be. */
2106 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2107 reloc_count = elf_section_data (o)->rel_count;
2108 else
2109 reloc_count = elf_section_data (o)->rel_count2;
2110
2111 num_rel_hashes = o->reloc_count;
2112 if (num_rel_hashes < reloc_count)
2113 num_rel_hashes = reloc_count;
2114
2115 /* That allows us to calculate the size of the section. */
2116 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2117
2118 /* The contents field must last into write_object_contents, so we
2119 allocate it with bfd_alloc rather than malloc. Also since we
2120 cannot be sure that the contents will actually be filled in,
2121 we zero the allocated space. */
2122 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2123 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2124 return FALSE;
2125
2126 /* We only allocate one set of hash entries, so we only do it the
2127 first time we are called. */
2128 if (elf_section_data (o)->rel_hashes == NULL
2129 && num_rel_hashes)
2130 {
2131 struct elf_link_hash_entry **p;
2132
2133 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2134 if (p == NULL)
2135 return FALSE;
2136
2137 elf_section_data (o)->rel_hashes = p;
2138 }
2139
2140 return TRUE;
2141 }
2142
2143 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2144 originated from the section given by INPUT_REL_HDR) to the
2145 OUTPUT_BFD. */
2146
2147 bfd_boolean
2148 _bfd_elf_link_output_relocs (bfd *output_bfd,
2149 asection *input_section,
2150 Elf_Internal_Shdr *input_rel_hdr,
2151 Elf_Internal_Rela *internal_relocs,
2152 struct elf_link_hash_entry **rel_hash
2153 ATTRIBUTE_UNUSED)
2154 {
2155 Elf_Internal_Rela *irela;
2156 Elf_Internal_Rela *irelaend;
2157 bfd_byte *erel;
2158 Elf_Internal_Shdr *output_rel_hdr;
2159 asection *output_section;
2160 unsigned int *rel_countp = NULL;
2161 const struct elf_backend_data *bed;
2162 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2163
2164 output_section = input_section->output_section;
2165 output_rel_hdr = NULL;
2166
2167 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2168 == input_rel_hdr->sh_entsize)
2169 {
2170 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2171 rel_countp = &elf_section_data (output_section)->rel_count;
2172 }
2173 else if (elf_section_data (output_section)->rel_hdr2
2174 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2175 == input_rel_hdr->sh_entsize))
2176 {
2177 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2178 rel_countp = &elf_section_data (output_section)->rel_count2;
2179 }
2180 else
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: relocation size mismatch in %B section %A"),
2184 output_bfd, input_section->owner, input_section);
2185 bfd_set_error (bfd_error_wrong_object_format);
2186 return FALSE;
2187 }
2188
2189 bed = get_elf_backend_data (output_bfd);
2190 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2191 swap_out = bed->s->swap_reloc_out;
2192 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2193 swap_out = bed->s->swap_reloca_out;
2194 else
2195 abort ();
2196
2197 erel = output_rel_hdr->contents;
2198 erel += *rel_countp * input_rel_hdr->sh_entsize;
2199 irela = internal_relocs;
2200 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2201 * bed->s->int_rels_per_ext_rel);
2202 while (irela < irelaend)
2203 {
2204 (*swap_out) (output_bfd, irela, erel);
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erel += input_rel_hdr->sh_entsize;
2207 }
2208
2209 /* Bump the counter, so that we know where to add the next set of
2210 relocations. */
2211 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2212
2213 return TRUE;
2214 }
2215 \f
2216 /* Make weak undefined symbols in PIE dynamic. */
2217
2218 bfd_boolean
2219 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2220 struct elf_link_hash_entry *h)
2221 {
2222 if (info->pie
2223 && h->dynindx == -1
2224 && h->root.type == bfd_link_hash_undefweak)
2225 return bfd_elf_link_record_dynamic_symbol (info, h);
2226
2227 return TRUE;
2228 }
2229
2230 /* Fix up the flags for a symbol. This handles various cases which
2231 can only be fixed after all the input files are seen. This is
2232 currently called by both adjust_dynamic_symbol and
2233 assign_sym_version, which is unnecessary but perhaps more robust in
2234 the face of future changes. */
2235
2236 bfd_boolean
2237 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2238 struct elf_info_failed *eif)
2239 {
2240 const struct elf_backend_data *bed = NULL;
2241
2242 /* If this symbol was mentioned in a non-ELF file, try to set
2243 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2244 permit a non-ELF file to correctly refer to a symbol defined in
2245 an ELF dynamic object. */
2246 if (h->non_elf)
2247 {
2248 while (h->root.type == bfd_link_hash_indirect)
2249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2250
2251 if (h->root.type != bfd_link_hash_defined
2252 && h->root.type != bfd_link_hash_defweak)
2253 {
2254 h->ref_regular = 1;
2255 h->ref_regular_nonweak = 1;
2256 }
2257 else
2258 {
2259 if (h->root.u.def.section->owner != NULL
2260 && (bfd_get_flavour (h->root.u.def.section->owner)
2261 == bfd_target_elf_flavour))
2262 {
2263 h->ref_regular = 1;
2264 h->ref_regular_nonweak = 1;
2265 }
2266 else
2267 h->def_regular = 1;
2268 }
2269
2270 if (h->dynindx == -1
2271 && (h->def_dynamic
2272 || h->ref_dynamic))
2273 {
2274 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2275 {
2276 eif->failed = TRUE;
2277 return FALSE;
2278 }
2279 }
2280 }
2281 else
2282 {
2283 /* Unfortunately, NON_ELF is only correct if the symbol
2284 was first seen in a non-ELF file. Fortunately, if the symbol
2285 was first seen in an ELF file, we're probably OK unless the
2286 symbol was defined in a non-ELF file. Catch that case here.
2287 FIXME: We're still in trouble if the symbol was first seen in
2288 a dynamic object, and then later in a non-ELF regular object. */
2289 if ((h->root.type == bfd_link_hash_defined
2290 || h->root.type == bfd_link_hash_defweak)
2291 && !h->def_regular
2292 && (h->root.u.def.section->owner != NULL
2293 ? (bfd_get_flavour (h->root.u.def.section->owner)
2294 != bfd_target_elf_flavour)
2295 : (bfd_is_abs_section (h->root.u.def.section)
2296 && !h->def_dynamic)))
2297 h->def_regular = 1;
2298 }
2299
2300 /* Backend specific symbol fixup. */
2301 if (elf_hash_table (eif->info)->dynobj)
2302 {
2303 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2304 if (bed->elf_backend_fixup_symbol
2305 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2306 return FALSE;
2307 }
2308
2309 /* If this is a final link, and the symbol was defined as a common
2310 symbol in a regular object file, and there was no definition in
2311 any dynamic object, then the linker will have allocated space for
2312 the symbol in a common section but the DEF_REGULAR
2313 flag will not have been set. */
2314 if (h->root.type == bfd_link_hash_defined
2315 && !h->def_regular
2316 && h->ref_regular
2317 && !h->def_dynamic
2318 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2319 h->def_regular = 1;
2320
2321 /* If -Bsymbolic was used (which means to bind references to global
2322 symbols to the definition within the shared object), and this
2323 symbol was defined in a regular object, then it actually doesn't
2324 need a PLT entry. Likewise, if the symbol has non-default
2325 visibility. If the symbol has hidden or internal visibility, we
2326 will force it local. */
2327 if (h->needs_plt
2328 && eif->info->shared
2329 && is_elf_hash_table (eif->info->hash)
2330 && (eif->info->symbolic
2331 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2332 && h->def_regular)
2333 {
2334 bfd_boolean force_local;
2335
2336 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2337 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2338 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2339 }
2340
2341 /* If a weak undefined symbol has non-default visibility, we also
2342 hide it from the dynamic linker. */
2343 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2344 && h->root.type == bfd_link_hash_undefweak)
2345 {
2346 const struct elf_backend_data *bed;
2347 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2348 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2349 }
2350
2351 /* If this is a weak defined symbol in a dynamic object, and we know
2352 the real definition in the dynamic object, copy interesting flags
2353 over to the real definition. */
2354 if (h->u.weakdef != NULL)
2355 {
2356 struct elf_link_hash_entry *weakdef;
2357
2358 weakdef = h->u.weakdef;
2359 if (h->root.type == bfd_link_hash_indirect)
2360 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2361
2362 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2363 || h->root.type == bfd_link_hash_defweak);
2364 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2365 || weakdef->root.type == bfd_link_hash_defweak);
2366 BFD_ASSERT (weakdef->def_dynamic);
2367
2368 /* If the real definition is defined by a regular object file,
2369 don't do anything special. See the longer description in
2370 _bfd_elf_adjust_dynamic_symbol, below. */
2371 if (weakdef->def_regular)
2372 h->u.weakdef = NULL;
2373 else
2374 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef,
2375 h);
2376 }
2377
2378 return TRUE;
2379 }
2380
2381 /* Make the backend pick a good value for a dynamic symbol. This is
2382 called via elf_link_hash_traverse, and also calls itself
2383 recursively. */
2384
2385 bfd_boolean
2386 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2387 {
2388 struct elf_info_failed *eif = data;
2389 bfd *dynobj;
2390 const struct elf_backend_data *bed;
2391
2392 if (! is_elf_hash_table (eif->info->hash))
2393 return FALSE;
2394
2395 if (h->root.type == bfd_link_hash_warning)
2396 {
2397 h->got = elf_hash_table (eif->info)->init_got_offset;
2398 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2399
2400 /* When warning symbols are created, they **replace** the "real"
2401 entry in the hash table, thus we never get to see the real
2402 symbol in a hash traversal. So look at it now. */
2403 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2404 }
2405
2406 /* Ignore indirect symbols. These are added by the versioning code. */
2407 if (h->root.type == bfd_link_hash_indirect)
2408 return TRUE;
2409
2410 /* Fix the symbol flags. */
2411 if (! _bfd_elf_fix_symbol_flags (h, eif))
2412 return FALSE;
2413
2414 /* If this symbol does not require a PLT entry, and it is not
2415 defined by a dynamic object, or is not referenced by a regular
2416 object, ignore it. We do have to handle a weak defined symbol,
2417 even if no regular object refers to it, if we decided to add it
2418 to the dynamic symbol table. FIXME: Do we normally need to worry
2419 about symbols which are defined by one dynamic object and
2420 referenced by another one? */
2421 if (!h->needs_plt
2422 && (h->def_regular
2423 || !h->def_dynamic
2424 || (!h->ref_regular
2425 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2426 {
2427 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2428 return TRUE;
2429 }
2430
2431 /* If we've already adjusted this symbol, don't do it again. This
2432 can happen via a recursive call. */
2433 if (h->dynamic_adjusted)
2434 return TRUE;
2435
2436 /* Don't look at this symbol again. Note that we must set this
2437 after checking the above conditions, because we may look at a
2438 symbol once, decide not to do anything, and then get called
2439 recursively later after REF_REGULAR is set below. */
2440 h->dynamic_adjusted = 1;
2441
2442 /* If this is a weak definition, and we know a real definition, and
2443 the real symbol is not itself defined by a regular object file,
2444 then get a good value for the real definition. We handle the
2445 real symbol first, for the convenience of the backend routine.
2446
2447 Note that there is a confusing case here. If the real definition
2448 is defined by a regular object file, we don't get the real symbol
2449 from the dynamic object, but we do get the weak symbol. If the
2450 processor backend uses a COPY reloc, then if some routine in the
2451 dynamic object changes the real symbol, we will not see that
2452 change in the corresponding weak symbol. This is the way other
2453 ELF linkers work as well, and seems to be a result of the shared
2454 library model.
2455
2456 I will clarify this issue. Most SVR4 shared libraries define the
2457 variable _timezone and define timezone as a weak synonym. The
2458 tzset call changes _timezone. If you write
2459 extern int timezone;
2460 int _timezone = 5;
2461 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2462 you might expect that, since timezone is a synonym for _timezone,
2463 the same number will print both times. However, if the processor
2464 backend uses a COPY reloc, then actually timezone will be copied
2465 into your process image, and, since you define _timezone
2466 yourself, _timezone will not. Thus timezone and _timezone will
2467 wind up at different memory locations. The tzset call will set
2468 _timezone, leaving timezone unchanged. */
2469
2470 if (h->u.weakdef != NULL)
2471 {
2472 /* If we get to this point, we know there is an implicit
2473 reference by a regular object file via the weak symbol H.
2474 FIXME: Is this really true? What if the traversal finds
2475 H->U.WEAKDEF before it finds H? */
2476 h->u.weakdef->ref_regular = 1;
2477
2478 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2479 return FALSE;
2480 }
2481
2482 /* If a symbol has no type and no size and does not require a PLT
2483 entry, then we are probably about to do the wrong thing here: we
2484 are probably going to create a COPY reloc for an empty object.
2485 This case can arise when a shared object is built with assembly
2486 code, and the assembly code fails to set the symbol type. */
2487 if (h->size == 0
2488 && h->type == STT_NOTYPE
2489 && !h->needs_plt)
2490 (*_bfd_error_handler)
2491 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2492 h->root.root.string);
2493
2494 dynobj = elf_hash_table (eif->info)->dynobj;
2495 bed = get_elf_backend_data (dynobj);
2496 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2497 {
2498 eif->failed = TRUE;
2499 return FALSE;
2500 }
2501
2502 return TRUE;
2503 }
2504
2505 /* Adjust all external symbols pointing into SEC_MERGE sections
2506 to reflect the object merging within the sections. */
2507
2508 bfd_boolean
2509 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2510 {
2511 asection *sec;
2512
2513 if (h->root.type == bfd_link_hash_warning)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 if ((h->root.type == bfd_link_hash_defined
2517 || h->root.type == bfd_link_hash_defweak)
2518 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2519 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2520 {
2521 bfd *output_bfd = data;
2522
2523 h->root.u.def.value =
2524 _bfd_merged_section_offset (output_bfd,
2525 &h->root.u.def.section,
2526 elf_section_data (sec)->sec_info,
2527 h->root.u.def.value);
2528 }
2529
2530 return TRUE;
2531 }
2532
2533 /* Returns false if the symbol referred to by H should be considered
2534 to resolve local to the current module, and true if it should be
2535 considered to bind dynamically. */
2536
2537 bfd_boolean
2538 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2539 struct bfd_link_info *info,
2540 bfd_boolean ignore_protected)
2541 {
2542 bfd_boolean binding_stays_local_p;
2543
2544 if (h == NULL)
2545 return FALSE;
2546
2547 while (h->root.type == bfd_link_hash_indirect
2548 || h->root.type == bfd_link_hash_warning)
2549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2550
2551 /* If it was forced local, then clearly it's not dynamic. */
2552 if (h->dynindx == -1)
2553 return FALSE;
2554 if (h->forced_local)
2555 return FALSE;
2556
2557 /* Identify the cases where name binding rules say that a
2558 visible symbol resolves locally. */
2559 binding_stays_local_p = info->executable || info->symbolic;
2560
2561 switch (ELF_ST_VISIBILITY (h->other))
2562 {
2563 case STV_INTERNAL:
2564 case STV_HIDDEN:
2565 return FALSE;
2566
2567 case STV_PROTECTED:
2568 /* Proper resolution for function pointer equality may require
2569 that these symbols perhaps be resolved dynamically, even though
2570 we should be resolving them to the current module. */
2571 if (!ignore_protected || h->type != STT_FUNC)
2572 binding_stays_local_p = TRUE;
2573 break;
2574
2575 default:
2576 break;
2577 }
2578
2579 /* If it isn't defined locally, then clearly it's dynamic. */
2580 if (!h->def_regular)
2581 return TRUE;
2582
2583 /* Otherwise, the symbol is dynamic if binding rules don't tell
2584 us that it remains local. */
2585 return !binding_stays_local_p;
2586 }
2587
2588 /* Return true if the symbol referred to by H should be considered
2589 to resolve local to the current module, and false otherwise. Differs
2590 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2591 undefined symbols and weak symbols. */
2592
2593 bfd_boolean
2594 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2595 struct bfd_link_info *info,
2596 bfd_boolean local_protected)
2597 {
2598 /* If it's a local sym, of course we resolve locally. */
2599 if (h == NULL)
2600 return TRUE;
2601
2602 /* Common symbols that become definitions don't get the DEF_REGULAR
2603 flag set, so test it first, and don't bail out. */
2604 if (ELF_COMMON_DEF_P (h))
2605 /* Do nothing. */;
2606 /* If we don't have a definition in a regular file, then we can't
2607 resolve locally. The sym is either undefined or dynamic. */
2608 else if (!h->def_regular)
2609 return FALSE;
2610
2611 /* Forced local symbols resolve locally. */
2612 if (h->forced_local)
2613 return TRUE;
2614
2615 /* As do non-dynamic symbols. */
2616 if (h->dynindx == -1)
2617 return TRUE;
2618
2619 /* At this point, we know the symbol is defined and dynamic. In an
2620 executable it must resolve locally, likewise when building symbolic
2621 shared libraries. */
2622 if (info->executable || info->symbolic)
2623 return TRUE;
2624
2625 /* Now deal with defined dynamic symbols in shared libraries. Ones
2626 with default visibility might not resolve locally. */
2627 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2628 return FALSE;
2629
2630 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2631 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2632 return TRUE;
2633
2634 /* STV_PROTECTED non-function symbols are local. */
2635 if (h->type != STT_FUNC)
2636 return TRUE;
2637
2638 /* Function pointer equality tests may require that STV_PROTECTED
2639 symbols be treated as dynamic symbols, even when we know that the
2640 dynamic linker will resolve them locally. */
2641 return local_protected;
2642 }
2643
2644 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2645 aligned. Returns the first TLS output section. */
2646
2647 struct bfd_section *
2648 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2649 {
2650 struct bfd_section *sec, *tls;
2651 unsigned int align = 0;
2652
2653 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2654 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2655 break;
2656 tls = sec;
2657
2658 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2659 if (sec->alignment_power > align)
2660 align = sec->alignment_power;
2661
2662 elf_hash_table (info)->tls_sec = tls;
2663
2664 /* Ensure the alignment of the first section is the largest alignment,
2665 so that the tls segment starts aligned. */
2666 if (tls != NULL)
2667 tls->alignment_power = align;
2668
2669 return tls;
2670 }
2671
2672 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2673 static bfd_boolean
2674 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2675 Elf_Internal_Sym *sym)
2676 {
2677 const struct elf_backend_data *bed;
2678
2679 /* Local symbols do not count, but target specific ones might. */
2680 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2681 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2682 return FALSE;
2683
2684 /* Function symbols do not count. */
2685 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2686 return FALSE;
2687
2688 /* If the section is undefined, then so is the symbol. */
2689 if (sym->st_shndx == SHN_UNDEF)
2690 return FALSE;
2691
2692 /* If the symbol is defined in the common section, then
2693 it is a common definition and so does not count. */
2694 bed = get_elf_backend_data (abfd);
2695 if (bed->common_definition (sym))
2696 return FALSE;
2697
2698 /* If the symbol is in a target specific section then we
2699 must rely upon the backend to tell us what it is. */
2700 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2701 /* FIXME - this function is not coded yet:
2702
2703 return _bfd_is_global_symbol_definition (abfd, sym);
2704
2705 Instead for now assume that the definition is not global,
2706 Even if this is wrong, at least the linker will behave
2707 in the same way that it used to do. */
2708 return FALSE;
2709
2710 return TRUE;
2711 }
2712
2713 /* Search the symbol table of the archive element of the archive ABFD
2714 whose archive map contains a mention of SYMDEF, and determine if
2715 the symbol is defined in this element. */
2716 static bfd_boolean
2717 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2718 {
2719 Elf_Internal_Shdr * hdr;
2720 bfd_size_type symcount;
2721 bfd_size_type extsymcount;
2722 bfd_size_type extsymoff;
2723 Elf_Internal_Sym *isymbuf;
2724 Elf_Internal_Sym *isym;
2725 Elf_Internal_Sym *isymend;
2726 bfd_boolean result;
2727
2728 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2729 if (abfd == NULL)
2730 return FALSE;
2731
2732 if (! bfd_check_format (abfd, bfd_object))
2733 return FALSE;
2734
2735 /* If we have already included the element containing this symbol in the
2736 link then we do not need to include it again. Just claim that any symbol
2737 it contains is not a definition, so that our caller will not decide to
2738 (re)include this element. */
2739 if (abfd->archive_pass)
2740 return FALSE;
2741
2742 /* Select the appropriate symbol table. */
2743 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2744 hdr = &elf_tdata (abfd)->symtab_hdr;
2745 else
2746 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2747
2748 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2749
2750 /* The sh_info field of the symtab header tells us where the
2751 external symbols start. We don't care about the local symbols. */
2752 if (elf_bad_symtab (abfd))
2753 {
2754 extsymcount = symcount;
2755 extsymoff = 0;
2756 }
2757 else
2758 {
2759 extsymcount = symcount - hdr->sh_info;
2760 extsymoff = hdr->sh_info;
2761 }
2762
2763 if (extsymcount == 0)
2764 return FALSE;
2765
2766 /* Read in the symbol table. */
2767 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2768 NULL, NULL, NULL);
2769 if (isymbuf == NULL)
2770 return FALSE;
2771
2772 /* Scan the symbol table looking for SYMDEF. */
2773 result = FALSE;
2774 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2775 {
2776 const char *name;
2777
2778 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2779 isym->st_name);
2780 if (name == NULL)
2781 break;
2782
2783 if (strcmp (name, symdef->name) == 0)
2784 {
2785 result = is_global_data_symbol_definition (abfd, isym);
2786 break;
2787 }
2788 }
2789
2790 free (isymbuf);
2791
2792 return result;
2793 }
2794 \f
2795 /* Add an entry to the .dynamic table. */
2796
2797 bfd_boolean
2798 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2799 bfd_vma tag,
2800 bfd_vma val)
2801 {
2802 struct elf_link_hash_table *hash_table;
2803 const struct elf_backend_data *bed;
2804 asection *s;
2805 bfd_size_type newsize;
2806 bfd_byte *newcontents;
2807 Elf_Internal_Dyn dyn;
2808
2809 hash_table = elf_hash_table (info);
2810 if (! is_elf_hash_table (hash_table))
2811 return FALSE;
2812
2813 bed = get_elf_backend_data (hash_table->dynobj);
2814 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2815 BFD_ASSERT (s != NULL);
2816
2817 newsize = s->size + bed->s->sizeof_dyn;
2818 newcontents = bfd_realloc (s->contents, newsize);
2819 if (newcontents == NULL)
2820 return FALSE;
2821
2822 dyn.d_tag = tag;
2823 dyn.d_un.d_val = val;
2824 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2825
2826 s->size = newsize;
2827 s->contents = newcontents;
2828
2829 return TRUE;
2830 }
2831
2832 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2833 otherwise just check whether one already exists. Returns -1 on error,
2834 1 if a DT_NEEDED tag already exists, and 0 on success. */
2835
2836 static int
2837 elf_add_dt_needed_tag (bfd *abfd,
2838 struct bfd_link_info *info,
2839 const char *soname,
2840 bfd_boolean do_it)
2841 {
2842 struct elf_link_hash_table *hash_table;
2843 bfd_size_type oldsize;
2844 bfd_size_type strindex;
2845
2846 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2847 return -1;
2848
2849 hash_table = elf_hash_table (info);
2850 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2851 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2852 if (strindex == (bfd_size_type) -1)
2853 return -1;
2854
2855 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2856 {
2857 asection *sdyn;
2858 const struct elf_backend_data *bed;
2859 bfd_byte *extdyn;
2860
2861 bed = get_elf_backend_data (hash_table->dynobj);
2862 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2863 if (sdyn != NULL)
2864 for (extdyn = sdyn->contents;
2865 extdyn < sdyn->contents + sdyn->size;
2866 extdyn += bed->s->sizeof_dyn)
2867 {
2868 Elf_Internal_Dyn dyn;
2869
2870 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2871 if (dyn.d_tag == DT_NEEDED
2872 && dyn.d_un.d_val == strindex)
2873 {
2874 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2875 return 1;
2876 }
2877 }
2878 }
2879
2880 if (do_it)
2881 {
2882 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2883 return -1;
2884
2885 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2886 return -1;
2887 }
2888 else
2889 /* We were just checking for existence of the tag. */
2890 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2891
2892 return 0;
2893 }
2894
2895 /* Sort symbol by value and section. */
2896 static int
2897 elf_sort_symbol (const void *arg1, const void *arg2)
2898 {
2899 const struct elf_link_hash_entry *h1;
2900 const struct elf_link_hash_entry *h2;
2901 bfd_signed_vma vdiff;
2902
2903 h1 = *(const struct elf_link_hash_entry **) arg1;
2904 h2 = *(const struct elf_link_hash_entry **) arg2;
2905 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2906 if (vdiff != 0)
2907 return vdiff > 0 ? 1 : -1;
2908 else
2909 {
2910 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2911 if (sdiff != 0)
2912 return sdiff > 0 ? 1 : -1;
2913 }
2914 return 0;
2915 }
2916
2917 /* This function is used to adjust offsets into .dynstr for
2918 dynamic symbols. This is called via elf_link_hash_traverse. */
2919
2920 static bfd_boolean
2921 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2922 {
2923 struct elf_strtab_hash *dynstr = data;
2924
2925 if (h->root.type == bfd_link_hash_warning)
2926 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2927
2928 if (h->dynindx != -1)
2929 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2930 return TRUE;
2931 }
2932
2933 /* Assign string offsets in .dynstr, update all structures referencing
2934 them. */
2935
2936 static bfd_boolean
2937 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2938 {
2939 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2940 struct elf_link_local_dynamic_entry *entry;
2941 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2942 bfd *dynobj = hash_table->dynobj;
2943 asection *sdyn;
2944 bfd_size_type size;
2945 const struct elf_backend_data *bed;
2946 bfd_byte *extdyn;
2947
2948 _bfd_elf_strtab_finalize (dynstr);
2949 size = _bfd_elf_strtab_size (dynstr);
2950
2951 bed = get_elf_backend_data (dynobj);
2952 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2953 BFD_ASSERT (sdyn != NULL);
2954
2955 /* Update all .dynamic entries referencing .dynstr strings. */
2956 for (extdyn = sdyn->contents;
2957 extdyn < sdyn->contents + sdyn->size;
2958 extdyn += bed->s->sizeof_dyn)
2959 {
2960 Elf_Internal_Dyn dyn;
2961
2962 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2963 switch (dyn.d_tag)
2964 {
2965 case DT_STRSZ:
2966 dyn.d_un.d_val = size;
2967 break;
2968 case DT_NEEDED:
2969 case DT_SONAME:
2970 case DT_RPATH:
2971 case DT_RUNPATH:
2972 case DT_FILTER:
2973 case DT_AUXILIARY:
2974 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2975 break;
2976 default:
2977 continue;
2978 }
2979 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2980 }
2981
2982 /* Now update local dynamic symbols. */
2983 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2984 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2985 entry->isym.st_name);
2986
2987 /* And the rest of dynamic symbols. */
2988 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2989
2990 /* Adjust version definitions. */
2991 if (elf_tdata (output_bfd)->cverdefs)
2992 {
2993 asection *s;
2994 bfd_byte *p;
2995 bfd_size_type i;
2996 Elf_Internal_Verdef def;
2997 Elf_Internal_Verdaux defaux;
2998
2999 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3000 p = s->contents;
3001 do
3002 {
3003 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3004 &def);
3005 p += sizeof (Elf_External_Verdef);
3006 if (def.vd_aux != sizeof (Elf_External_Verdef))
3007 continue;
3008 for (i = 0; i < def.vd_cnt; ++i)
3009 {
3010 _bfd_elf_swap_verdaux_in (output_bfd,
3011 (Elf_External_Verdaux *) p, &defaux);
3012 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3013 defaux.vda_name);
3014 _bfd_elf_swap_verdaux_out (output_bfd,
3015 &defaux, (Elf_External_Verdaux *) p);
3016 p += sizeof (Elf_External_Verdaux);
3017 }
3018 }
3019 while (def.vd_next);
3020 }
3021
3022 /* Adjust version references. */
3023 if (elf_tdata (output_bfd)->verref)
3024 {
3025 asection *s;
3026 bfd_byte *p;
3027 bfd_size_type i;
3028 Elf_Internal_Verneed need;
3029 Elf_Internal_Vernaux needaux;
3030
3031 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3032 p = s->contents;
3033 do
3034 {
3035 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3036 &need);
3037 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3038 _bfd_elf_swap_verneed_out (output_bfd, &need,
3039 (Elf_External_Verneed *) p);
3040 p += sizeof (Elf_External_Verneed);
3041 for (i = 0; i < need.vn_cnt; ++i)
3042 {
3043 _bfd_elf_swap_vernaux_in (output_bfd,
3044 (Elf_External_Vernaux *) p, &needaux);
3045 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3046 needaux.vna_name);
3047 _bfd_elf_swap_vernaux_out (output_bfd,
3048 &needaux,
3049 (Elf_External_Vernaux *) p);
3050 p += sizeof (Elf_External_Vernaux);
3051 }
3052 }
3053 while (need.vn_next);
3054 }
3055
3056 return TRUE;
3057 }
3058 \f
3059 /* Add symbols from an ELF object file to the linker hash table. */
3060
3061 static bfd_boolean
3062 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3063 {
3064 Elf_Internal_Shdr *hdr;
3065 bfd_size_type symcount;
3066 bfd_size_type extsymcount;
3067 bfd_size_type extsymoff;
3068 struct elf_link_hash_entry **sym_hash;
3069 bfd_boolean dynamic;
3070 Elf_External_Versym *extversym = NULL;
3071 Elf_External_Versym *ever;
3072 struct elf_link_hash_entry *weaks;
3073 struct elf_link_hash_entry **nondeflt_vers = NULL;
3074 bfd_size_type nondeflt_vers_cnt = 0;
3075 Elf_Internal_Sym *isymbuf = NULL;
3076 Elf_Internal_Sym *isym;
3077 Elf_Internal_Sym *isymend;
3078 const struct elf_backend_data *bed;
3079 bfd_boolean add_needed;
3080 struct elf_link_hash_table *htab;
3081 bfd_size_type amt;
3082 void *alloc_mark = NULL;
3083 void *old_tab = NULL;
3084 void *old_hash;
3085 void *old_ent;
3086 struct bfd_link_hash_entry *old_undefs = NULL;
3087 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3088 long old_dynsymcount = 0;
3089 size_t tabsize = 0;
3090 size_t hashsize = 0;
3091
3092 htab = elf_hash_table (info);
3093 bed = get_elf_backend_data (abfd);
3094
3095 if ((abfd->flags & DYNAMIC) == 0)
3096 dynamic = FALSE;
3097 else
3098 {
3099 dynamic = TRUE;
3100
3101 /* You can't use -r against a dynamic object. Also, there's no
3102 hope of using a dynamic object which does not exactly match
3103 the format of the output file. */
3104 if (info->relocatable
3105 || !is_elf_hash_table (htab)
3106 || htab->root.creator != abfd->xvec)
3107 {
3108 if (info->relocatable)
3109 bfd_set_error (bfd_error_invalid_operation);
3110 else
3111 bfd_set_error (bfd_error_wrong_format);
3112 goto error_return;
3113 }
3114 }
3115
3116 /* As a GNU extension, any input sections which are named
3117 .gnu.warning.SYMBOL are treated as warning symbols for the given
3118 symbol. This differs from .gnu.warning sections, which generate
3119 warnings when they are included in an output file. */
3120 if (info->executable)
3121 {
3122 asection *s;
3123
3124 for (s = abfd->sections; s != NULL; s = s->next)
3125 {
3126 const char *name;
3127
3128 name = bfd_get_section_name (abfd, s);
3129 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3130 {
3131 char *msg;
3132 bfd_size_type sz;
3133
3134 name += sizeof ".gnu.warning." - 1;
3135
3136 /* If this is a shared object, then look up the symbol
3137 in the hash table. If it is there, and it is already
3138 been defined, then we will not be using the entry
3139 from this shared object, so we don't need to warn.
3140 FIXME: If we see the definition in a regular object
3141 later on, we will warn, but we shouldn't. The only
3142 fix is to keep track of what warnings we are supposed
3143 to emit, and then handle them all at the end of the
3144 link. */
3145 if (dynamic)
3146 {
3147 struct elf_link_hash_entry *h;
3148
3149 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3150
3151 /* FIXME: What about bfd_link_hash_common? */
3152 if (h != NULL
3153 && (h->root.type == bfd_link_hash_defined
3154 || h->root.type == bfd_link_hash_defweak))
3155 {
3156 /* We don't want to issue this warning. Clobber
3157 the section size so that the warning does not
3158 get copied into the output file. */
3159 s->size = 0;
3160 continue;
3161 }
3162 }
3163
3164 sz = s->size;
3165 msg = bfd_alloc (abfd, sz + 1);
3166 if (msg == NULL)
3167 goto error_return;
3168
3169 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3170 goto error_return;
3171
3172 msg[sz] = '\0';
3173
3174 if (! (_bfd_generic_link_add_one_symbol
3175 (info, abfd, name, BSF_WARNING, s, 0, msg,
3176 FALSE, bed->collect, NULL)))
3177 goto error_return;
3178
3179 if (! info->relocatable)
3180 {
3181 /* Clobber the section size so that the warning does
3182 not get copied into the output file. */
3183 s->size = 0;
3184
3185 /* Also set SEC_EXCLUDE, so that symbols defined in
3186 the warning section don't get copied to the output. */
3187 s->flags |= SEC_EXCLUDE;
3188 }
3189 }
3190 }
3191 }
3192
3193 add_needed = TRUE;
3194 if (! dynamic)
3195 {
3196 /* If we are creating a shared library, create all the dynamic
3197 sections immediately. We need to attach them to something,
3198 so we attach them to this BFD, provided it is the right
3199 format. FIXME: If there are no input BFD's of the same
3200 format as the output, we can't make a shared library. */
3201 if (info->shared
3202 && is_elf_hash_table (htab)
3203 && htab->root.creator == abfd->xvec
3204 && !htab->dynamic_sections_created)
3205 {
3206 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3207 goto error_return;
3208 }
3209 }
3210 else if (!is_elf_hash_table (htab))
3211 goto error_return;
3212 else
3213 {
3214 asection *s;
3215 const char *soname = NULL;
3216 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3217 int ret;
3218
3219 /* ld --just-symbols and dynamic objects don't mix very well.
3220 ld shouldn't allow it. */
3221 if ((s = abfd->sections) != NULL
3222 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3223 abort ();
3224
3225 /* If this dynamic lib was specified on the command line with
3226 --as-needed in effect, then we don't want to add a DT_NEEDED
3227 tag unless the lib is actually used. Similary for libs brought
3228 in by another lib's DT_NEEDED. When --no-add-needed is used
3229 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3230 any dynamic library in DT_NEEDED tags in the dynamic lib at
3231 all. */
3232 add_needed = (elf_dyn_lib_class (abfd)
3233 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3234 | DYN_NO_NEEDED)) == 0;
3235
3236 s = bfd_get_section_by_name (abfd, ".dynamic");
3237 if (s != NULL)
3238 {
3239 bfd_byte *dynbuf;
3240 bfd_byte *extdyn;
3241 int elfsec;
3242 unsigned long shlink;
3243
3244 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3245 goto error_free_dyn;
3246
3247 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3248 if (elfsec == -1)
3249 goto error_free_dyn;
3250 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3251
3252 for (extdyn = dynbuf;
3253 extdyn < dynbuf + s->size;
3254 extdyn += bed->s->sizeof_dyn)
3255 {
3256 Elf_Internal_Dyn dyn;
3257
3258 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3259 if (dyn.d_tag == DT_SONAME)
3260 {
3261 unsigned int tagv = dyn.d_un.d_val;
3262 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3263 if (soname == NULL)
3264 goto error_free_dyn;
3265 }
3266 if (dyn.d_tag == DT_NEEDED)
3267 {
3268 struct bfd_link_needed_list *n, **pn;
3269 char *fnm, *anm;
3270 unsigned int tagv = dyn.d_un.d_val;
3271
3272 amt = sizeof (struct bfd_link_needed_list);
3273 n = bfd_alloc (abfd, amt);
3274 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3275 if (n == NULL || fnm == NULL)
3276 goto error_free_dyn;
3277 amt = strlen (fnm) + 1;
3278 anm = bfd_alloc (abfd, amt);
3279 if (anm == NULL)
3280 goto error_free_dyn;
3281 memcpy (anm, fnm, amt);
3282 n->name = anm;
3283 n->by = abfd;
3284 n->next = NULL;
3285 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3286 ;
3287 *pn = n;
3288 }
3289 if (dyn.d_tag == DT_RUNPATH)
3290 {
3291 struct bfd_link_needed_list *n, **pn;
3292 char *fnm, *anm;
3293 unsigned int tagv = dyn.d_un.d_val;
3294
3295 amt = sizeof (struct bfd_link_needed_list);
3296 n = bfd_alloc (abfd, amt);
3297 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3298 if (n == NULL || fnm == NULL)
3299 goto error_free_dyn;
3300 amt = strlen (fnm) + 1;
3301 anm = bfd_alloc (abfd, amt);
3302 if (anm == NULL)
3303 goto error_free_dyn;
3304 memcpy (anm, fnm, amt);
3305 n->name = anm;
3306 n->by = abfd;
3307 n->next = NULL;
3308 for (pn = & runpath;
3309 *pn != NULL;
3310 pn = &(*pn)->next)
3311 ;
3312 *pn = n;
3313 }
3314 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3315 if (!runpath && dyn.d_tag == DT_RPATH)
3316 {
3317 struct bfd_link_needed_list *n, **pn;
3318 char *fnm, *anm;
3319 unsigned int tagv = dyn.d_un.d_val;
3320
3321 amt = sizeof (struct bfd_link_needed_list);
3322 n = bfd_alloc (abfd, amt);
3323 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3324 if (n == NULL || fnm == NULL)
3325 goto error_free_dyn;
3326 amt = strlen (fnm) + 1;
3327 anm = bfd_alloc (abfd, amt);
3328 if (anm == NULL)
3329 {
3330 error_free_dyn:
3331 free (dynbuf);
3332 goto error_return;
3333 }
3334 memcpy (anm, fnm, amt);
3335 n->name = anm;
3336 n->by = abfd;
3337 n->next = NULL;
3338 for (pn = & rpath;
3339 *pn != NULL;
3340 pn = &(*pn)->next)
3341 ;
3342 *pn = n;
3343 }
3344 }
3345
3346 free (dynbuf);
3347 }
3348
3349 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3350 frees all more recently bfd_alloc'd blocks as well. */
3351 if (runpath)
3352 rpath = runpath;
3353
3354 if (rpath)
3355 {
3356 struct bfd_link_needed_list **pn;
3357 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3358 ;
3359 *pn = rpath;
3360 }
3361
3362 /* We do not want to include any of the sections in a dynamic
3363 object in the output file. We hack by simply clobbering the
3364 list of sections in the BFD. This could be handled more
3365 cleanly by, say, a new section flag; the existing
3366 SEC_NEVER_LOAD flag is not the one we want, because that one
3367 still implies that the section takes up space in the output
3368 file. */
3369 bfd_section_list_clear (abfd);
3370
3371 /* Find the name to use in a DT_NEEDED entry that refers to this
3372 object. If the object has a DT_SONAME entry, we use it.
3373 Otherwise, if the generic linker stuck something in
3374 elf_dt_name, we use that. Otherwise, we just use the file
3375 name. */
3376 if (soname == NULL || *soname == '\0')
3377 {
3378 soname = elf_dt_name (abfd);
3379 if (soname == NULL || *soname == '\0')
3380 soname = bfd_get_filename (abfd);
3381 }
3382
3383 /* Save the SONAME because sometimes the linker emulation code
3384 will need to know it. */
3385 elf_dt_name (abfd) = soname;
3386
3387 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3388 if (ret < 0)
3389 goto error_return;
3390
3391 /* If we have already included this dynamic object in the
3392 link, just ignore it. There is no reason to include a
3393 particular dynamic object more than once. */
3394 if (ret > 0)
3395 return TRUE;
3396 }
3397
3398 /* If this is a dynamic object, we always link against the .dynsym
3399 symbol table, not the .symtab symbol table. The dynamic linker
3400 will only see the .dynsym symbol table, so there is no reason to
3401 look at .symtab for a dynamic object. */
3402
3403 if (! dynamic || elf_dynsymtab (abfd) == 0)
3404 hdr = &elf_tdata (abfd)->symtab_hdr;
3405 else
3406 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3407
3408 symcount = hdr->sh_size / bed->s->sizeof_sym;
3409
3410 /* The sh_info field of the symtab header tells us where the
3411 external symbols start. We don't care about the local symbols at
3412 this point. */
3413 if (elf_bad_symtab (abfd))
3414 {
3415 extsymcount = symcount;
3416 extsymoff = 0;
3417 }
3418 else
3419 {
3420 extsymcount = symcount - hdr->sh_info;
3421 extsymoff = hdr->sh_info;
3422 }
3423
3424 sym_hash = NULL;
3425 if (extsymcount != 0)
3426 {
3427 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3428 NULL, NULL, NULL);
3429 if (isymbuf == NULL)
3430 goto error_return;
3431
3432 /* We store a pointer to the hash table entry for each external
3433 symbol. */
3434 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3435 sym_hash = bfd_alloc (abfd, amt);
3436 if (sym_hash == NULL)
3437 goto error_free_sym;
3438 elf_sym_hashes (abfd) = sym_hash;
3439 }
3440
3441 if (dynamic)
3442 {
3443 /* Read in any version definitions. */
3444 if (!_bfd_elf_slurp_version_tables (abfd,
3445 info->default_imported_symver))
3446 goto error_free_sym;
3447
3448 /* Read in the symbol versions, but don't bother to convert them
3449 to internal format. */
3450 if (elf_dynversym (abfd) != 0)
3451 {
3452 Elf_Internal_Shdr *versymhdr;
3453
3454 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3455 extversym = bfd_malloc (versymhdr->sh_size);
3456 if (extversym == NULL)
3457 goto error_free_sym;
3458 amt = versymhdr->sh_size;
3459 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3460 || bfd_bread (extversym, amt, abfd) != amt)
3461 goto error_free_vers;
3462 }
3463 }
3464
3465 /* If we are loading an as-needed shared lib, save the symbol table
3466 state before we start adding symbols. If the lib turns out
3467 to be unneeded, restore the state. */
3468 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3469 {
3470 unsigned int i;
3471 size_t entsize;
3472
3473 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3474 {
3475 struct bfd_hash_entry *p;
3476 struct elf_link_hash_entry *h;
3477
3478 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3479 {
3480 h = (struct elf_link_hash_entry *) p;
3481 entsize += htab->root.table.entsize;
3482 if (h->root.type == bfd_link_hash_warning)
3483 entsize += htab->root.table.entsize;
3484 }
3485 }
3486
3487 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3488 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3489 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3490 if (old_tab == NULL)
3491 goto error_free_vers;
3492
3493 /* Remember the current objalloc pointer, so that all mem for
3494 symbols added can later be reclaimed. */
3495 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3496 if (alloc_mark == NULL)
3497 goto error_free_vers;
3498
3499 /* Clone the symbol table and sym hashes. Remember some
3500 pointers into the symbol table, and dynamic symbol count. */
3501 old_hash = (char *) old_tab + tabsize;
3502 old_ent = (char *) old_hash + hashsize;
3503 memcpy (old_tab, htab->root.table.table, tabsize);
3504 memcpy (old_hash, sym_hash, hashsize);
3505 old_undefs = htab->root.undefs;
3506 old_undefs_tail = htab->root.undefs_tail;
3507 old_dynsymcount = htab->dynsymcount;
3508
3509 for (i = 0; i < htab->root.table.size; i++)
3510 {
3511 struct bfd_hash_entry *p;
3512 struct elf_link_hash_entry *h;
3513
3514 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3515 {
3516 memcpy (old_ent, p, htab->root.table.entsize);
3517 old_ent = (char *) old_ent + htab->root.table.entsize;
3518 h = (struct elf_link_hash_entry *) p;
3519 if (h->root.type == bfd_link_hash_warning)
3520 {
3521 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3522 old_ent = (char *) old_ent + htab->root.table.entsize;
3523 }
3524 }
3525 }
3526 }
3527
3528 weaks = NULL;
3529 ever = extversym != NULL ? extversym + extsymoff : NULL;
3530 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3531 isym < isymend;
3532 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3533 {
3534 int bind;
3535 bfd_vma value;
3536 asection *sec, *new_sec;
3537 flagword flags;
3538 const char *name;
3539 struct elf_link_hash_entry *h;
3540 bfd_boolean definition;
3541 bfd_boolean size_change_ok;
3542 bfd_boolean type_change_ok;
3543 bfd_boolean new_weakdef;
3544 bfd_boolean override;
3545 bfd_boolean common;
3546 unsigned int old_alignment;
3547 bfd *old_bfd;
3548
3549 override = FALSE;
3550
3551 flags = BSF_NO_FLAGS;
3552 sec = NULL;
3553 value = isym->st_value;
3554 *sym_hash = NULL;
3555 common = bed->common_definition (isym);
3556
3557 bind = ELF_ST_BIND (isym->st_info);
3558 if (bind == STB_LOCAL)
3559 {
3560 /* This should be impossible, since ELF requires that all
3561 global symbols follow all local symbols, and that sh_info
3562 point to the first global symbol. Unfortunately, Irix 5
3563 screws this up. */
3564 continue;
3565 }
3566 else if (bind == STB_GLOBAL)
3567 {
3568 if (isym->st_shndx != SHN_UNDEF && !common)
3569 flags = BSF_GLOBAL;
3570 }
3571 else if (bind == STB_WEAK)
3572 flags = BSF_WEAK;
3573 else
3574 {
3575 /* Leave it up to the processor backend. */
3576 }
3577
3578 if (isym->st_shndx == SHN_UNDEF)
3579 sec = bfd_und_section_ptr;
3580 else if (isym->st_shndx < SHN_LORESERVE
3581 || isym->st_shndx > SHN_HIRESERVE)
3582 {
3583 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3584 if (sec == NULL)
3585 sec = bfd_abs_section_ptr;
3586 else if (sec->kept_section)
3587 {
3588 /* Symbols from discarded section are undefined, and have
3589 default visibility. */
3590 sec = bfd_und_section_ptr;
3591 isym->st_shndx = SHN_UNDEF;
3592 isym->st_other = (STV_DEFAULT
3593 | (isym->st_other & ~ ELF_ST_VISIBILITY (-1)));
3594 }
3595 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3596 value -= sec->vma;
3597 }
3598 else if (isym->st_shndx == SHN_ABS)
3599 sec = bfd_abs_section_ptr;
3600 else if (isym->st_shndx == SHN_COMMON)
3601 {
3602 sec = bfd_com_section_ptr;
3603 /* What ELF calls the size we call the value. What ELF
3604 calls the value we call the alignment. */
3605 value = isym->st_size;
3606 }
3607 else
3608 {
3609 /* Leave it up to the processor backend. */
3610 }
3611
3612 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3613 isym->st_name);
3614 if (name == NULL)
3615 goto error_free_vers;
3616
3617 if (isym->st_shndx == SHN_COMMON
3618 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3619 {
3620 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3621
3622 if (tcomm == NULL)
3623 {
3624 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3625 (SEC_ALLOC
3626 | SEC_IS_COMMON
3627 | SEC_LINKER_CREATED
3628 | SEC_THREAD_LOCAL));
3629 if (tcomm == NULL)
3630 goto error_free_vers;
3631 }
3632 sec = tcomm;
3633 }
3634 else if (bed->elf_add_symbol_hook)
3635 {
3636 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3637 &sec, &value))
3638 goto error_free_vers;
3639
3640 /* The hook function sets the name to NULL if this symbol
3641 should be skipped for some reason. */
3642 if (name == NULL)
3643 continue;
3644 }
3645
3646 /* Sanity check that all possibilities were handled. */
3647 if (sec == NULL)
3648 {
3649 bfd_set_error (bfd_error_bad_value);
3650 goto error_free_vers;
3651 }
3652
3653 if (bfd_is_und_section (sec)
3654 || bfd_is_com_section (sec))
3655 definition = FALSE;
3656 else
3657 definition = TRUE;
3658
3659 size_change_ok = FALSE;
3660 type_change_ok = bed->type_change_ok;
3661 old_alignment = 0;
3662 old_bfd = NULL;
3663 new_sec = sec;
3664
3665 if (is_elf_hash_table (htab))
3666 {
3667 Elf_Internal_Versym iver;
3668 unsigned int vernum = 0;
3669 bfd_boolean skip;
3670
3671 if (ever == NULL)
3672 {
3673 if (info->default_imported_symver)
3674 /* Use the default symbol version created earlier. */
3675 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3676 else
3677 iver.vs_vers = 0;
3678 }
3679 else
3680 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3681
3682 vernum = iver.vs_vers & VERSYM_VERSION;
3683
3684 /* If this is a hidden symbol, or if it is not version
3685 1, we append the version name to the symbol name.
3686 However, we do not modify a non-hidden absolute symbol
3687 if it is not a function, because it might be the version
3688 symbol itself. FIXME: What if it isn't? */
3689 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3690 || (vernum > 1 && (! bfd_is_abs_section (sec)
3691 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
3692 {
3693 const char *verstr;
3694 size_t namelen, verlen, newlen;
3695 char *newname, *p;
3696
3697 if (isym->st_shndx != SHN_UNDEF)
3698 {
3699 if (vernum > elf_tdata (abfd)->cverdefs)
3700 verstr = NULL;
3701 else if (vernum > 1)
3702 verstr =
3703 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3704 else
3705 verstr = "";
3706
3707 if (verstr == NULL)
3708 {
3709 (*_bfd_error_handler)
3710 (_("%B: %s: invalid version %u (max %d)"),
3711 abfd, name, vernum,
3712 elf_tdata (abfd)->cverdefs);
3713 bfd_set_error (bfd_error_bad_value);
3714 goto error_free_vers;
3715 }
3716 }
3717 else
3718 {
3719 /* We cannot simply test for the number of
3720 entries in the VERNEED section since the
3721 numbers for the needed versions do not start
3722 at 0. */
3723 Elf_Internal_Verneed *t;
3724
3725 verstr = NULL;
3726 for (t = elf_tdata (abfd)->verref;
3727 t != NULL;
3728 t = t->vn_nextref)
3729 {
3730 Elf_Internal_Vernaux *a;
3731
3732 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3733 {
3734 if (a->vna_other == vernum)
3735 {
3736 verstr = a->vna_nodename;
3737 break;
3738 }
3739 }
3740 if (a != NULL)
3741 break;
3742 }
3743 if (verstr == NULL)
3744 {
3745 (*_bfd_error_handler)
3746 (_("%B: %s: invalid needed version %d"),
3747 abfd, name, vernum);
3748 bfd_set_error (bfd_error_bad_value);
3749 goto error_free_vers;
3750 }
3751 }
3752
3753 namelen = strlen (name);
3754 verlen = strlen (verstr);
3755 newlen = namelen + verlen + 2;
3756 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3757 && isym->st_shndx != SHN_UNDEF)
3758 ++newlen;
3759
3760 newname = bfd_hash_allocate (&htab->root.table, newlen);
3761 if (newname == NULL)
3762 goto error_free_vers;
3763 memcpy (newname, name, namelen);
3764 p = newname + namelen;
3765 *p++ = ELF_VER_CHR;
3766 /* If this is a defined non-hidden version symbol,
3767 we add another @ to the name. This indicates the
3768 default version of the symbol. */
3769 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3770 && isym->st_shndx != SHN_UNDEF)
3771 *p++ = ELF_VER_CHR;
3772 memcpy (p, verstr, verlen + 1);
3773
3774 name = newname;
3775 }
3776
3777 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3778 &value, &old_alignment,
3779 sym_hash, &skip, &override,
3780 &type_change_ok, &size_change_ok))
3781 goto error_free_vers;
3782
3783 if (skip)
3784 continue;
3785
3786 if (override)
3787 definition = FALSE;
3788
3789 h = *sym_hash;
3790 while (h->root.type == bfd_link_hash_indirect
3791 || h->root.type == bfd_link_hash_warning)
3792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3793
3794 /* Remember the old alignment if this is a common symbol, so
3795 that we don't reduce the alignment later on. We can't
3796 check later, because _bfd_generic_link_add_one_symbol
3797 will set a default for the alignment which we want to
3798 override. We also remember the old bfd where the existing
3799 definition comes from. */
3800 switch (h->root.type)
3801 {
3802 default:
3803 break;
3804
3805 case bfd_link_hash_defined:
3806 case bfd_link_hash_defweak:
3807 old_bfd = h->root.u.def.section->owner;
3808 break;
3809
3810 case bfd_link_hash_common:
3811 old_bfd = h->root.u.c.p->section->owner;
3812 old_alignment = h->root.u.c.p->alignment_power;
3813 break;
3814 }
3815
3816 if (elf_tdata (abfd)->verdef != NULL
3817 && ! override
3818 && vernum > 1
3819 && definition)
3820 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3821 }
3822
3823 if (! (_bfd_generic_link_add_one_symbol
3824 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
3825 (struct bfd_link_hash_entry **) sym_hash)))
3826 goto error_free_vers;
3827
3828 h = *sym_hash;
3829 while (h->root.type == bfd_link_hash_indirect
3830 || h->root.type == bfd_link_hash_warning)
3831 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3832 *sym_hash = h;
3833
3834 new_weakdef = FALSE;
3835 if (dynamic
3836 && definition
3837 && (flags & BSF_WEAK) != 0
3838 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3839 && is_elf_hash_table (htab)
3840 && h->u.weakdef == NULL)
3841 {
3842 /* Keep a list of all weak defined non function symbols from
3843 a dynamic object, using the weakdef field. Later in this
3844 function we will set the weakdef field to the correct
3845 value. We only put non-function symbols from dynamic
3846 objects on this list, because that happens to be the only
3847 time we need to know the normal symbol corresponding to a
3848 weak symbol, and the information is time consuming to
3849 figure out. If the weakdef field is not already NULL,
3850 then this symbol was already defined by some previous
3851 dynamic object, and we will be using that previous
3852 definition anyhow. */
3853
3854 h->u.weakdef = weaks;
3855 weaks = h;
3856 new_weakdef = TRUE;
3857 }
3858
3859 /* Set the alignment of a common symbol. */
3860 if ((common || bfd_is_com_section (sec))
3861 && h->root.type == bfd_link_hash_common)
3862 {
3863 unsigned int align;
3864
3865 if (common)
3866 align = bfd_log2 (isym->st_value);
3867 else
3868 {
3869 /* The new symbol is a common symbol in a shared object.
3870 We need to get the alignment from the section. */
3871 align = new_sec->alignment_power;
3872 }
3873 if (align > old_alignment
3874 /* Permit an alignment power of zero if an alignment of one
3875 is specified and no other alignments have been specified. */
3876 || (isym->st_value == 1 && old_alignment == 0))
3877 h->root.u.c.p->alignment_power = align;
3878 else
3879 h->root.u.c.p->alignment_power = old_alignment;
3880 }
3881
3882 if (is_elf_hash_table (htab))
3883 {
3884 bfd_boolean dynsym;
3885
3886 /* Check the alignment when a common symbol is involved. This
3887 can change when a common symbol is overridden by a normal
3888 definition or a common symbol is ignored due to the old
3889 normal definition. We need to make sure the maximum
3890 alignment is maintained. */
3891 if ((old_alignment || common)
3892 && h->root.type != bfd_link_hash_common)
3893 {
3894 unsigned int common_align;
3895 unsigned int normal_align;
3896 unsigned int symbol_align;
3897 bfd *normal_bfd;
3898 bfd *common_bfd;
3899
3900 symbol_align = ffs (h->root.u.def.value) - 1;
3901 if (h->root.u.def.section->owner != NULL
3902 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3903 {
3904 normal_align = h->root.u.def.section->alignment_power;
3905 if (normal_align > symbol_align)
3906 normal_align = symbol_align;
3907 }
3908 else
3909 normal_align = symbol_align;
3910
3911 if (old_alignment)
3912 {
3913 common_align = old_alignment;
3914 common_bfd = old_bfd;
3915 normal_bfd = abfd;
3916 }
3917 else
3918 {
3919 common_align = bfd_log2 (isym->st_value);
3920 common_bfd = abfd;
3921 normal_bfd = old_bfd;
3922 }
3923
3924 if (normal_align < common_align)
3925 {
3926 /* PR binutils/2735 */
3927 if (normal_bfd == NULL)
3928 (*_bfd_error_handler)
3929 (_("Warning: alignment %u of common symbol `%s' in %B"
3930 " is greater than the alignment (%u) of its section %A"),
3931 common_bfd, h->root.u.def.section,
3932 1 << common_align, name, 1 << normal_align);
3933 else
3934 (*_bfd_error_handler)
3935 (_("Warning: alignment %u of symbol `%s' in %B"
3936 " is smaller than %u in %B"),
3937 normal_bfd, common_bfd,
3938 1 << normal_align, name, 1 << common_align);
3939 }
3940 }
3941
3942 /* Remember the symbol size and type. */
3943 if (isym->st_size != 0
3944 && (definition || h->size == 0))
3945 {
3946 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3947 (*_bfd_error_handler)
3948 (_("Warning: size of symbol `%s' changed"
3949 " from %lu in %B to %lu in %B"),
3950 old_bfd, abfd,
3951 name, (unsigned long) h->size,
3952 (unsigned long) isym->st_size);
3953
3954 h->size = isym->st_size;
3955 }
3956
3957 /* If this is a common symbol, then we always want H->SIZE
3958 to be the size of the common symbol. The code just above
3959 won't fix the size if a common symbol becomes larger. We
3960 don't warn about a size change here, because that is
3961 covered by --warn-common. */
3962 if (h->root.type == bfd_link_hash_common)
3963 h->size = h->root.u.c.size;
3964
3965 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3966 && (definition || h->type == STT_NOTYPE))
3967 {
3968 if (h->type != STT_NOTYPE
3969 && h->type != ELF_ST_TYPE (isym->st_info)
3970 && ! type_change_ok)
3971 (*_bfd_error_handler)
3972 (_("Warning: type of symbol `%s' changed"
3973 " from %d to %d in %B"),
3974 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3975
3976 h->type = ELF_ST_TYPE (isym->st_info);
3977 }
3978
3979 /* If st_other has a processor-specific meaning, specific
3980 code might be needed here. We never merge the visibility
3981 attribute with the one from a dynamic object. */
3982 if (bed->elf_backend_merge_symbol_attribute)
3983 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3984 dynamic);
3985
3986 /* If this symbol has default visibility and the user has requested
3987 we not re-export it, then mark it as hidden. */
3988 if (definition && !dynamic
3989 && (abfd->no_export
3990 || (abfd->my_archive && abfd->my_archive->no_export))
3991 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3992 isym->st_other = (STV_HIDDEN
3993 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
3994
3995 if (isym->st_other != 0 && !dynamic)
3996 {
3997 unsigned char hvis, symvis, other, nvis;
3998
3999 /* Take the balance of OTHER from the definition. */
4000 other = (definition ? isym->st_other : h->other);
4001 other &= ~ ELF_ST_VISIBILITY (-1);
4002
4003 /* Combine visibilities, using the most constraining one. */
4004 hvis = ELF_ST_VISIBILITY (h->other);
4005 symvis = ELF_ST_VISIBILITY (isym->st_other);
4006 if (! hvis)
4007 nvis = symvis;
4008 else if (! symvis)
4009 nvis = hvis;
4010 else
4011 nvis = hvis < symvis ? hvis : symvis;
4012
4013 h->other = other | nvis;
4014 }
4015
4016 /* Set a flag in the hash table entry indicating the type of
4017 reference or definition we just found. Keep a count of
4018 the number of dynamic symbols we find. A dynamic symbol
4019 is one which is referenced or defined by both a regular
4020 object and a shared object. */
4021 dynsym = FALSE;
4022 if (! dynamic)
4023 {
4024 if (! definition)
4025 {
4026 h->ref_regular = 1;
4027 if (bind != STB_WEAK)
4028 h->ref_regular_nonweak = 1;
4029 }
4030 else
4031 h->def_regular = 1;
4032 if (! info->executable
4033 || h->def_dynamic
4034 || h->ref_dynamic)
4035 dynsym = TRUE;
4036 }
4037 else
4038 {
4039 if (! definition)
4040 h->ref_dynamic = 1;
4041 else
4042 h->def_dynamic = 1;
4043 if (h->def_regular
4044 || h->ref_regular
4045 || (h->u.weakdef != NULL
4046 && ! new_weakdef
4047 && h->u.weakdef->dynindx != -1))
4048 dynsym = TRUE;
4049 }
4050
4051 /* Check to see if we need to add an indirect symbol for
4052 the default name. */
4053 if (definition || h->root.type == bfd_link_hash_common)
4054 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4055 &sec, &value, &dynsym,
4056 override))
4057 goto error_free_vers;
4058
4059 if (definition && !dynamic)
4060 {
4061 char *p = strchr (name, ELF_VER_CHR);
4062 if (p != NULL && p[1] != ELF_VER_CHR)
4063 {
4064 /* Queue non-default versions so that .symver x, x@FOO
4065 aliases can be checked. */
4066 if (!nondeflt_vers)
4067 {
4068 amt = ((isymend - isym + 1)
4069 * sizeof (struct elf_link_hash_entry *));
4070 nondeflt_vers = bfd_malloc (amt);
4071 }
4072 nondeflt_vers[nondeflt_vers_cnt++] = h;
4073 }
4074 }
4075
4076 if (dynsym && h->dynindx == -1)
4077 {
4078 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4079 goto error_free_vers;
4080 if (h->u.weakdef != NULL
4081 && ! new_weakdef
4082 && h->u.weakdef->dynindx == -1)
4083 {
4084 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4085 goto error_free_vers;
4086 }
4087 }
4088 else if (dynsym && h->dynindx != -1)
4089 /* If the symbol already has a dynamic index, but
4090 visibility says it should not be visible, turn it into
4091 a local symbol. */
4092 switch (ELF_ST_VISIBILITY (h->other))
4093 {
4094 case STV_INTERNAL:
4095 case STV_HIDDEN:
4096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4097 dynsym = FALSE;
4098 break;
4099 }
4100
4101 if (!add_needed
4102 && definition
4103 && dynsym
4104 && h->ref_regular)
4105 {
4106 int ret;
4107 const char *soname = elf_dt_name (abfd);
4108
4109 /* A symbol from a library loaded via DT_NEEDED of some
4110 other library is referenced by a regular object.
4111 Add a DT_NEEDED entry for it. Issue an error if
4112 --no-add-needed is used. */
4113 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4114 {
4115 (*_bfd_error_handler)
4116 (_("%s: invalid DSO for symbol `%s' definition"),
4117 abfd, name);
4118 bfd_set_error (bfd_error_bad_value);
4119 goto error_free_vers;
4120 }
4121
4122 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4123
4124 add_needed = TRUE;
4125 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4126 if (ret < 0)
4127 goto error_free_vers;
4128
4129 BFD_ASSERT (ret == 0);
4130 }
4131 }
4132 }
4133
4134 if (extversym != NULL)
4135 {
4136 free (extversym);
4137 extversym = NULL;
4138 }
4139
4140 if (isymbuf != NULL)
4141 {
4142 free (isymbuf);
4143 isymbuf = NULL;
4144 }
4145
4146 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4147 {
4148 unsigned int i;
4149
4150 /* Restore the symbol table. */
4151 old_hash = (char *) old_tab + tabsize;
4152 old_ent = (char *) old_hash + hashsize;
4153 sym_hash = elf_sym_hashes (abfd);
4154 memcpy (htab->root.table.table, old_tab, tabsize);
4155 memcpy (sym_hash, old_hash, hashsize);
4156 htab->root.undefs = old_undefs;
4157 htab->root.undefs_tail = old_undefs_tail;
4158 for (i = 0; i < htab->root.table.size; i++)
4159 {
4160 struct bfd_hash_entry *p;
4161 struct elf_link_hash_entry *h;
4162
4163 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4164 {
4165 h = (struct elf_link_hash_entry *) p;
4166 if (h->root.type == bfd_link_hash_warning)
4167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4168 if (h->dynindx >= old_dynsymcount)
4169 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4170
4171 memcpy (p, old_ent, htab->root.table.entsize);
4172 old_ent = (char *) old_ent + htab->root.table.entsize;
4173 h = (struct elf_link_hash_entry *) p;
4174 if (h->root.type == bfd_link_hash_warning)
4175 {
4176 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4177 old_ent = (char *) old_ent + htab->root.table.entsize;
4178 }
4179 }
4180 }
4181
4182 free (old_tab);
4183 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4184 alloc_mark);
4185 if (nondeflt_vers != NULL)
4186 free (nondeflt_vers);
4187 return TRUE;
4188 }
4189
4190 if (old_tab != NULL)
4191 {
4192 free (old_tab);
4193 old_tab = NULL;
4194 }
4195
4196 /* Now that all the symbols from this input file are created, handle
4197 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4198 if (nondeflt_vers != NULL)
4199 {
4200 bfd_size_type cnt, symidx;
4201
4202 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4203 {
4204 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4205 char *shortname, *p;
4206
4207 p = strchr (h->root.root.string, ELF_VER_CHR);
4208 if (p == NULL
4209 || (h->root.type != bfd_link_hash_defined
4210 && h->root.type != bfd_link_hash_defweak))
4211 continue;
4212
4213 amt = p - h->root.root.string;
4214 shortname = bfd_malloc (amt + 1);
4215 memcpy (shortname, h->root.root.string, amt);
4216 shortname[amt] = '\0';
4217
4218 hi = (struct elf_link_hash_entry *)
4219 bfd_link_hash_lookup (&htab->root, shortname,
4220 FALSE, FALSE, FALSE);
4221 if (hi != NULL
4222 && hi->root.type == h->root.type
4223 && hi->root.u.def.value == h->root.u.def.value
4224 && hi->root.u.def.section == h->root.u.def.section)
4225 {
4226 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4227 hi->root.type = bfd_link_hash_indirect;
4228 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4229 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4230 sym_hash = elf_sym_hashes (abfd);
4231 if (sym_hash)
4232 for (symidx = 0; symidx < extsymcount; ++symidx)
4233 if (sym_hash[symidx] == hi)
4234 {
4235 sym_hash[symidx] = h;
4236 break;
4237 }
4238 }
4239 free (shortname);
4240 }
4241 free (nondeflt_vers);
4242 nondeflt_vers = NULL;
4243 }
4244
4245 /* Now set the weakdefs field correctly for all the weak defined
4246 symbols we found. The only way to do this is to search all the
4247 symbols. Since we only need the information for non functions in
4248 dynamic objects, that's the only time we actually put anything on
4249 the list WEAKS. We need this information so that if a regular
4250 object refers to a symbol defined weakly in a dynamic object, the
4251 real symbol in the dynamic object is also put in the dynamic
4252 symbols; we also must arrange for both symbols to point to the
4253 same memory location. We could handle the general case of symbol
4254 aliasing, but a general symbol alias can only be generated in
4255 assembler code, handling it correctly would be very time
4256 consuming, and other ELF linkers don't handle general aliasing
4257 either. */
4258 if (weaks != NULL)
4259 {
4260 struct elf_link_hash_entry **hpp;
4261 struct elf_link_hash_entry **hppend;
4262 struct elf_link_hash_entry **sorted_sym_hash;
4263 struct elf_link_hash_entry *h;
4264 size_t sym_count;
4265
4266 /* Since we have to search the whole symbol list for each weak
4267 defined symbol, search time for N weak defined symbols will be
4268 O(N^2). Binary search will cut it down to O(NlogN). */
4269 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4270 sorted_sym_hash = bfd_malloc (amt);
4271 if (sorted_sym_hash == NULL)
4272 goto error_return;
4273 sym_hash = sorted_sym_hash;
4274 hpp = elf_sym_hashes (abfd);
4275 hppend = hpp + extsymcount;
4276 sym_count = 0;
4277 for (; hpp < hppend; hpp++)
4278 {
4279 h = *hpp;
4280 if (h != NULL
4281 && h->root.type == bfd_link_hash_defined
4282 && h->type != STT_FUNC)
4283 {
4284 *sym_hash = h;
4285 sym_hash++;
4286 sym_count++;
4287 }
4288 }
4289
4290 qsort (sorted_sym_hash, sym_count,
4291 sizeof (struct elf_link_hash_entry *),
4292 elf_sort_symbol);
4293
4294 while (weaks != NULL)
4295 {
4296 struct elf_link_hash_entry *hlook;
4297 asection *slook;
4298 bfd_vma vlook;
4299 long ilook;
4300 size_t i, j, idx;
4301
4302 hlook = weaks;
4303 weaks = hlook->u.weakdef;
4304 hlook->u.weakdef = NULL;
4305
4306 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4307 || hlook->root.type == bfd_link_hash_defweak
4308 || hlook->root.type == bfd_link_hash_common
4309 || hlook->root.type == bfd_link_hash_indirect);
4310 slook = hlook->root.u.def.section;
4311 vlook = hlook->root.u.def.value;
4312
4313 ilook = -1;
4314 i = 0;
4315 j = sym_count;
4316 while (i < j)
4317 {
4318 bfd_signed_vma vdiff;
4319 idx = (i + j) / 2;
4320 h = sorted_sym_hash [idx];
4321 vdiff = vlook - h->root.u.def.value;
4322 if (vdiff < 0)
4323 j = idx;
4324 else if (vdiff > 0)
4325 i = idx + 1;
4326 else
4327 {
4328 long sdiff = slook->id - h->root.u.def.section->id;
4329 if (sdiff < 0)
4330 j = idx;
4331 else if (sdiff > 0)
4332 i = idx + 1;
4333 else
4334 {
4335 ilook = idx;
4336 break;
4337 }
4338 }
4339 }
4340
4341 /* We didn't find a value/section match. */
4342 if (ilook == -1)
4343 continue;
4344
4345 for (i = ilook; i < sym_count; i++)
4346 {
4347 h = sorted_sym_hash [i];
4348
4349 /* Stop if value or section doesn't match. */
4350 if (h->root.u.def.value != vlook
4351 || h->root.u.def.section != slook)
4352 break;
4353 else if (h != hlook)
4354 {
4355 hlook->u.weakdef = h;
4356
4357 /* If the weak definition is in the list of dynamic
4358 symbols, make sure the real definition is put
4359 there as well. */
4360 if (hlook->dynindx != -1 && h->dynindx == -1)
4361 {
4362 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4363 goto error_return;
4364 }
4365
4366 /* If the real definition is in the list of dynamic
4367 symbols, make sure the weak definition is put
4368 there as well. If we don't do this, then the
4369 dynamic loader might not merge the entries for the
4370 real definition and the weak definition. */
4371 if (h->dynindx != -1 && hlook->dynindx == -1)
4372 {
4373 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4374 goto error_return;
4375 }
4376 break;
4377 }
4378 }
4379 }
4380
4381 free (sorted_sym_hash);
4382 }
4383
4384 if (bed->check_directives)
4385 (*bed->check_directives) (abfd, info);
4386
4387 /* If this object is the same format as the output object, and it is
4388 not a shared library, then let the backend look through the
4389 relocs.
4390
4391 This is required to build global offset table entries and to
4392 arrange for dynamic relocs. It is not required for the
4393 particular common case of linking non PIC code, even when linking
4394 against shared libraries, but unfortunately there is no way of
4395 knowing whether an object file has been compiled PIC or not.
4396 Looking through the relocs is not particularly time consuming.
4397 The problem is that we must either (1) keep the relocs in memory,
4398 which causes the linker to require additional runtime memory or
4399 (2) read the relocs twice from the input file, which wastes time.
4400 This would be a good case for using mmap.
4401
4402 I have no idea how to handle linking PIC code into a file of a
4403 different format. It probably can't be done. */
4404 if (! dynamic
4405 && is_elf_hash_table (htab)
4406 && htab->root.creator == abfd->xvec
4407 && bed->check_relocs != NULL)
4408 {
4409 asection *o;
4410
4411 for (o = abfd->sections; o != NULL; o = o->next)
4412 {
4413 Elf_Internal_Rela *internal_relocs;
4414 bfd_boolean ok;
4415
4416 if ((o->flags & SEC_RELOC) == 0
4417 || o->reloc_count == 0
4418 || ((info->strip == strip_all || info->strip == strip_debugger)
4419 && (o->flags & SEC_DEBUGGING) != 0)
4420 || bfd_is_abs_section (o->output_section))
4421 continue;
4422
4423 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4424 info->keep_memory);
4425 if (internal_relocs == NULL)
4426 goto error_return;
4427
4428 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4429
4430 if (elf_section_data (o)->relocs != internal_relocs)
4431 free (internal_relocs);
4432
4433 if (! ok)
4434 goto error_return;
4435 }
4436 }
4437
4438 /* If this is a non-traditional link, try to optimize the handling
4439 of the .stab/.stabstr sections. */
4440 if (! dynamic
4441 && ! info->traditional_format
4442 && is_elf_hash_table (htab)
4443 && (info->strip != strip_all && info->strip != strip_debugger))
4444 {
4445 asection *stabstr;
4446
4447 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4448 if (stabstr != NULL)
4449 {
4450 bfd_size_type string_offset = 0;
4451 asection *stab;
4452
4453 for (stab = abfd->sections; stab; stab = stab->next)
4454 if (strncmp (".stab", stab->name, 5) == 0
4455 && (!stab->name[5] ||
4456 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4457 && (stab->flags & SEC_MERGE) == 0
4458 && !bfd_is_abs_section (stab->output_section))
4459 {
4460 struct bfd_elf_section_data *secdata;
4461
4462 secdata = elf_section_data (stab);
4463 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4464 stabstr, &secdata->sec_info,
4465 &string_offset))
4466 goto error_return;
4467 if (secdata->sec_info)
4468 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4469 }
4470 }
4471 }
4472
4473 if (is_elf_hash_table (htab) && add_needed)
4474 {
4475 /* Add this bfd to the loaded list. */
4476 struct elf_link_loaded_list *n;
4477
4478 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4479 if (n == NULL)
4480 goto error_return;
4481 n->abfd = abfd;
4482 n->next = htab->loaded;
4483 htab->loaded = n;
4484 }
4485
4486 return TRUE;
4487
4488 error_free_vers:
4489 if (old_tab != NULL)
4490 free (old_tab);
4491 if (nondeflt_vers != NULL)
4492 free (nondeflt_vers);
4493 if (extversym != NULL)
4494 free (extversym);
4495 error_free_sym:
4496 if (isymbuf != NULL)
4497 free (isymbuf);
4498 error_return:
4499 return FALSE;
4500 }
4501
4502 /* Return the linker hash table entry of a symbol that might be
4503 satisfied by an archive symbol. Return -1 on error. */
4504
4505 struct elf_link_hash_entry *
4506 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4507 struct bfd_link_info *info,
4508 const char *name)
4509 {
4510 struct elf_link_hash_entry *h;
4511 char *p, *copy;
4512 size_t len, first;
4513
4514 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4515 if (h != NULL)
4516 return h;
4517
4518 /* If this is a default version (the name contains @@), look up the
4519 symbol again with only one `@' as well as without the version.
4520 The effect is that references to the symbol with and without the
4521 version will be matched by the default symbol in the archive. */
4522
4523 p = strchr (name, ELF_VER_CHR);
4524 if (p == NULL || p[1] != ELF_VER_CHR)
4525 return h;
4526
4527 /* First check with only one `@'. */
4528 len = strlen (name);
4529 copy = bfd_alloc (abfd, len);
4530 if (copy == NULL)
4531 return (struct elf_link_hash_entry *) 0 - 1;
4532
4533 first = p - name + 1;
4534 memcpy (copy, name, first);
4535 memcpy (copy + first, name + first + 1, len - first);
4536
4537 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4538 if (h == NULL)
4539 {
4540 /* We also need to check references to the symbol without the
4541 version. */
4542 copy[first - 1] = '\0';
4543 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4544 FALSE, FALSE, FALSE);
4545 }
4546
4547 bfd_release (abfd, copy);
4548 return h;
4549 }
4550
4551 /* Add symbols from an ELF archive file to the linker hash table. We
4552 don't use _bfd_generic_link_add_archive_symbols because of a
4553 problem which arises on UnixWare. The UnixWare libc.so is an
4554 archive which includes an entry libc.so.1 which defines a bunch of
4555 symbols. The libc.so archive also includes a number of other
4556 object files, which also define symbols, some of which are the same
4557 as those defined in libc.so.1. Correct linking requires that we
4558 consider each object file in turn, and include it if it defines any
4559 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4560 this; it looks through the list of undefined symbols, and includes
4561 any object file which defines them. When this algorithm is used on
4562 UnixWare, it winds up pulling in libc.so.1 early and defining a
4563 bunch of symbols. This means that some of the other objects in the
4564 archive are not included in the link, which is incorrect since they
4565 precede libc.so.1 in the archive.
4566
4567 Fortunately, ELF archive handling is simpler than that done by
4568 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4569 oddities. In ELF, if we find a symbol in the archive map, and the
4570 symbol is currently undefined, we know that we must pull in that
4571 object file.
4572
4573 Unfortunately, we do have to make multiple passes over the symbol
4574 table until nothing further is resolved. */
4575
4576 static bfd_boolean
4577 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4578 {
4579 symindex c;
4580 bfd_boolean *defined = NULL;
4581 bfd_boolean *included = NULL;
4582 carsym *symdefs;
4583 bfd_boolean loop;
4584 bfd_size_type amt;
4585 const struct elf_backend_data *bed;
4586 struct elf_link_hash_entry * (*archive_symbol_lookup)
4587 (bfd *, struct bfd_link_info *, const char *);
4588
4589 if (! bfd_has_map (abfd))
4590 {
4591 /* An empty archive is a special case. */
4592 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4593 return TRUE;
4594 bfd_set_error (bfd_error_no_armap);
4595 return FALSE;
4596 }
4597
4598 /* Keep track of all symbols we know to be already defined, and all
4599 files we know to be already included. This is to speed up the
4600 second and subsequent passes. */
4601 c = bfd_ardata (abfd)->symdef_count;
4602 if (c == 0)
4603 return TRUE;
4604 amt = c;
4605 amt *= sizeof (bfd_boolean);
4606 defined = bfd_zmalloc (amt);
4607 included = bfd_zmalloc (amt);
4608 if (defined == NULL || included == NULL)
4609 goto error_return;
4610
4611 symdefs = bfd_ardata (abfd)->symdefs;
4612 bed = get_elf_backend_data (abfd);
4613 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4614
4615 do
4616 {
4617 file_ptr last;
4618 symindex i;
4619 carsym *symdef;
4620 carsym *symdefend;
4621
4622 loop = FALSE;
4623 last = -1;
4624
4625 symdef = symdefs;
4626 symdefend = symdef + c;
4627 for (i = 0; symdef < symdefend; symdef++, i++)
4628 {
4629 struct elf_link_hash_entry *h;
4630 bfd *element;
4631 struct bfd_link_hash_entry *undefs_tail;
4632 symindex mark;
4633
4634 if (defined[i] || included[i])
4635 continue;
4636 if (symdef->file_offset == last)
4637 {
4638 included[i] = TRUE;
4639 continue;
4640 }
4641
4642 h = archive_symbol_lookup (abfd, info, symdef->name);
4643 if (h == (struct elf_link_hash_entry *) 0 - 1)
4644 goto error_return;
4645
4646 if (h == NULL)
4647 continue;
4648
4649 if (h->root.type == bfd_link_hash_common)
4650 {
4651 /* We currently have a common symbol. The archive map contains
4652 a reference to this symbol, so we may want to include it. We
4653 only want to include it however, if this archive element
4654 contains a definition of the symbol, not just another common
4655 declaration of it.
4656
4657 Unfortunately some archivers (including GNU ar) will put
4658 declarations of common symbols into their archive maps, as
4659 well as real definitions, so we cannot just go by the archive
4660 map alone. Instead we must read in the element's symbol
4661 table and check that to see what kind of symbol definition
4662 this is. */
4663 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4664 continue;
4665 }
4666 else if (h->root.type != bfd_link_hash_undefined)
4667 {
4668 if (h->root.type != bfd_link_hash_undefweak)
4669 defined[i] = TRUE;
4670 continue;
4671 }
4672
4673 /* We need to include this archive member. */
4674 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4675 if (element == NULL)
4676 goto error_return;
4677
4678 if (! bfd_check_format (element, bfd_object))
4679 goto error_return;
4680
4681 /* Doublecheck that we have not included this object
4682 already--it should be impossible, but there may be
4683 something wrong with the archive. */
4684 if (element->archive_pass != 0)
4685 {
4686 bfd_set_error (bfd_error_bad_value);
4687 goto error_return;
4688 }
4689 element->archive_pass = 1;
4690
4691 undefs_tail = info->hash->undefs_tail;
4692
4693 if (! (*info->callbacks->add_archive_element) (info, element,
4694 symdef->name))
4695 goto error_return;
4696 if (! bfd_link_add_symbols (element, info))
4697 goto error_return;
4698
4699 /* If there are any new undefined symbols, we need to make
4700 another pass through the archive in order to see whether
4701 they can be defined. FIXME: This isn't perfect, because
4702 common symbols wind up on undefs_tail and because an
4703 undefined symbol which is defined later on in this pass
4704 does not require another pass. This isn't a bug, but it
4705 does make the code less efficient than it could be. */
4706 if (undefs_tail != info->hash->undefs_tail)
4707 loop = TRUE;
4708
4709 /* Look backward to mark all symbols from this object file
4710 which we have already seen in this pass. */
4711 mark = i;
4712 do
4713 {
4714 included[mark] = TRUE;
4715 if (mark == 0)
4716 break;
4717 --mark;
4718 }
4719 while (symdefs[mark].file_offset == symdef->file_offset);
4720
4721 /* We mark subsequent symbols from this object file as we go
4722 on through the loop. */
4723 last = symdef->file_offset;
4724 }
4725 }
4726 while (loop);
4727
4728 free (defined);
4729 free (included);
4730
4731 return TRUE;
4732
4733 error_return:
4734 if (defined != NULL)
4735 free (defined);
4736 if (included != NULL)
4737 free (included);
4738 return FALSE;
4739 }
4740
4741 /* Given an ELF BFD, add symbols to the global hash table as
4742 appropriate. */
4743
4744 bfd_boolean
4745 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4746 {
4747 switch (bfd_get_format (abfd))
4748 {
4749 case bfd_object:
4750 return elf_link_add_object_symbols (abfd, info);
4751 case bfd_archive:
4752 return elf_link_add_archive_symbols (abfd, info);
4753 default:
4754 bfd_set_error (bfd_error_wrong_format);
4755 return FALSE;
4756 }
4757 }
4758 \f
4759 /* This function will be called though elf_link_hash_traverse to store
4760 all hash value of the exported symbols in an array. */
4761
4762 static bfd_boolean
4763 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4764 {
4765 unsigned long **valuep = data;
4766 const char *name;
4767 char *p;
4768 unsigned long ha;
4769 char *alc = NULL;
4770
4771 if (h->root.type == bfd_link_hash_warning)
4772 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4773
4774 /* Ignore indirect symbols. These are added by the versioning code. */
4775 if (h->dynindx == -1)
4776 return TRUE;
4777
4778 name = h->root.root.string;
4779 p = strchr (name, ELF_VER_CHR);
4780 if (p != NULL)
4781 {
4782 alc = bfd_malloc (p - name + 1);
4783 memcpy (alc, name, p - name);
4784 alc[p - name] = '\0';
4785 name = alc;
4786 }
4787
4788 /* Compute the hash value. */
4789 ha = bfd_elf_hash (name);
4790
4791 /* Store the found hash value in the array given as the argument. */
4792 *(*valuep)++ = ha;
4793
4794 /* And store it in the struct so that we can put it in the hash table
4795 later. */
4796 h->u.elf_hash_value = ha;
4797
4798 if (alc != NULL)
4799 free (alc);
4800
4801 return TRUE;
4802 }
4803
4804 /* Array used to determine the number of hash table buckets to use
4805 based on the number of symbols there are. If there are fewer than
4806 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4807 fewer than 37 we use 17 buckets, and so forth. We never use more
4808 than 32771 buckets. */
4809
4810 static const size_t elf_buckets[] =
4811 {
4812 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4813 16411, 32771, 0
4814 };
4815
4816 /* Compute bucket count for hashing table. We do not use a static set
4817 of possible tables sizes anymore. Instead we determine for all
4818 possible reasonable sizes of the table the outcome (i.e., the
4819 number of collisions etc) and choose the best solution. The
4820 weighting functions are not too simple to allow the table to grow
4821 without bounds. Instead one of the weighting factors is the size.
4822 Therefore the result is always a good payoff between few collisions
4823 (= short chain lengths) and table size. */
4824 static size_t
4825 compute_bucket_count (struct bfd_link_info *info)
4826 {
4827 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4828 size_t best_size = 0;
4829 unsigned long int *hashcodes;
4830 unsigned long int *hashcodesp;
4831 unsigned long int i;
4832 bfd_size_type amt;
4833
4834 /* Compute the hash values for all exported symbols. At the same
4835 time store the values in an array so that we could use them for
4836 optimizations. */
4837 amt = dynsymcount;
4838 amt *= sizeof (unsigned long int);
4839 hashcodes = bfd_malloc (amt);
4840 if (hashcodes == NULL)
4841 return 0;
4842 hashcodesp = hashcodes;
4843
4844 /* Put all hash values in HASHCODES. */
4845 elf_link_hash_traverse (elf_hash_table (info),
4846 elf_collect_hash_codes, &hashcodesp);
4847
4848 /* We have a problem here. The following code to optimize the table
4849 size requires an integer type with more the 32 bits. If
4850 BFD_HOST_U_64_BIT is set we know about such a type. */
4851 #ifdef BFD_HOST_U_64_BIT
4852 if (info->optimize)
4853 {
4854 unsigned long int nsyms = hashcodesp - hashcodes;
4855 size_t minsize;
4856 size_t maxsize;
4857 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4858 unsigned long int *counts ;
4859 bfd *dynobj = elf_hash_table (info)->dynobj;
4860 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4861
4862 /* Possible optimization parameters: if we have NSYMS symbols we say
4863 that the hashing table must at least have NSYMS/4 and at most
4864 2*NSYMS buckets. */
4865 minsize = nsyms / 4;
4866 if (minsize == 0)
4867 minsize = 1;
4868 best_size = maxsize = nsyms * 2;
4869
4870 /* Create array where we count the collisions in. We must use bfd_malloc
4871 since the size could be large. */
4872 amt = maxsize;
4873 amt *= sizeof (unsigned long int);
4874 counts = bfd_malloc (amt);
4875 if (counts == NULL)
4876 {
4877 free (hashcodes);
4878 return 0;
4879 }
4880
4881 /* Compute the "optimal" size for the hash table. The criteria is a
4882 minimal chain length. The minor criteria is (of course) the size
4883 of the table. */
4884 for (i = minsize; i < maxsize; ++i)
4885 {
4886 /* Walk through the array of hashcodes and count the collisions. */
4887 BFD_HOST_U_64_BIT max;
4888 unsigned long int j;
4889 unsigned long int fact;
4890
4891 memset (counts, '\0', i * sizeof (unsigned long int));
4892
4893 /* Determine how often each hash bucket is used. */
4894 for (j = 0; j < nsyms; ++j)
4895 ++counts[hashcodes[j] % i];
4896
4897 /* For the weight function we need some information about the
4898 pagesize on the target. This is information need not be 100%
4899 accurate. Since this information is not available (so far) we
4900 define it here to a reasonable default value. If it is crucial
4901 to have a better value some day simply define this value. */
4902 # ifndef BFD_TARGET_PAGESIZE
4903 # define BFD_TARGET_PAGESIZE (4096)
4904 # endif
4905
4906 /* We in any case need 2 + NSYMS entries for the size values and
4907 the chains. */
4908 max = (2 + nsyms) * (bed->s->arch_size / 8);
4909
4910 # if 1
4911 /* Variant 1: optimize for short chains. We add the squares
4912 of all the chain lengths (which favors many small chain
4913 over a few long chains). */
4914 for (j = 0; j < i; ++j)
4915 max += counts[j] * counts[j];
4916
4917 /* This adds penalties for the overall size of the table. */
4918 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4919 max *= fact * fact;
4920 # else
4921 /* Variant 2: Optimize a lot more for small table. Here we
4922 also add squares of the size but we also add penalties for
4923 empty slots (the +1 term). */
4924 for (j = 0; j < i; ++j)
4925 max += (1 + counts[j]) * (1 + counts[j]);
4926
4927 /* The overall size of the table is considered, but not as
4928 strong as in variant 1, where it is squared. */
4929 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4930 max *= fact;
4931 # endif
4932
4933 /* Compare with current best results. */
4934 if (max < best_chlen)
4935 {
4936 best_chlen = max;
4937 best_size = i;
4938 }
4939 }
4940
4941 free (counts);
4942 }
4943 else
4944 #endif /* defined (BFD_HOST_U_64_BIT) */
4945 {
4946 /* This is the fallback solution if no 64bit type is available or if we
4947 are not supposed to spend much time on optimizations. We select the
4948 bucket count using a fixed set of numbers. */
4949 for (i = 0; elf_buckets[i] != 0; i++)
4950 {
4951 best_size = elf_buckets[i];
4952 if (dynsymcount < elf_buckets[i + 1])
4953 break;
4954 }
4955 }
4956
4957 /* Free the arrays we needed. */
4958 free (hashcodes);
4959
4960 return best_size;
4961 }
4962
4963 /* Set up the sizes and contents of the ELF dynamic sections. This is
4964 called by the ELF linker emulation before_allocation routine. We
4965 must set the sizes of the sections before the linker sets the
4966 addresses of the various sections. */
4967
4968 bfd_boolean
4969 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4970 const char *soname,
4971 const char *rpath,
4972 const char *filter_shlib,
4973 const char * const *auxiliary_filters,
4974 struct bfd_link_info *info,
4975 asection **sinterpptr,
4976 struct bfd_elf_version_tree *verdefs)
4977 {
4978 bfd_size_type soname_indx;
4979 bfd *dynobj;
4980 const struct elf_backend_data *bed;
4981 struct elf_assign_sym_version_info asvinfo;
4982
4983 *sinterpptr = NULL;
4984
4985 soname_indx = (bfd_size_type) -1;
4986
4987 if (!is_elf_hash_table (info->hash))
4988 return TRUE;
4989
4990 elf_tdata (output_bfd)->relro = info->relro;
4991 if (info->execstack)
4992 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4993 else if (info->noexecstack)
4994 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4995 else
4996 {
4997 bfd *inputobj;
4998 asection *notesec = NULL;
4999 int exec = 0;
5000
5001 for (inputobj = info->input_bfds;
5002 inputobj;
5003 inputobj = inputobj->link_next)
5004 {
5005 asection *s;
5006
5007 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5008 continue;
5009 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5010 if (s)
5011 {
5012 if (s->flags & SEC_CODE)
5013 exec = PF_X;
5014 notesec = s;
5015 }
5016 else
5017 exec = PF_X;
5018 }
5019 if (notesec)
5020 {
5021 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5022 if (exec && info->relocatable
5023 && notesec->output_section != bfd_abs_section_ptr)
5024 notesec->output_section->flags |= SEC_CODE;
5025 }
5026 }
5027
5028 /* Any syms created from now on start with -1 in
5029 got.refcount/offset and plt.refcount/offset. */
5030 elf_hash_table (info)->init_got_refcount
5031 = elf_hash_table (info)->init_got_offset;
5032 elf_hash_table (info)->init_plt_refcount
5033 = elf_hash_table (info)->init_plt_offset;
5034
5035 /* The backend may have to create some sections regardless of whether
5036 we're dynamic or not. */
5037 bed = get_elf_backend_data (output_bfd);
5038 if (bed->elf_backend_always_size_sections
5039 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5040 return FALSE;
5041
5042 dynobj = elf_hash_table (info)->dynobj;
5043
5044 /* If there were no dynamic objects in the link, there is nothing to
5045 do here. */
5046 if (dynobj == NULL)
5047 return TRUE;
5048
5049 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5050 return FALSE;
5051
5052 if (elf_hash_table (info)->dynamic_sections_created)
5053 {
5054 struct elf_info_failed eif;
5055 struct elf_link_hash_entry *h;
5056 asection *dynstr;
5057 struct bfd_elf_version_tree *t;
5058 struct bfd_elf_version_expr *d;
5059 asection *s;
5060 bfd_boolean all_defined;
5061
5062 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5063 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5064
5065 if (soname != NULL)
5066 {
5067 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5068 soname, TRUE);
5069 if (soname_indx == (bfd_size_type) -1
5070 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5071 return FALSE;
5072 }
5073
5074 if (info->symbolic)
5075 {
5076 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5077 return FALSE;
5078 info->flags |= DF_SYMBOLIC;
5079 }
5080
5081 if (rpath != NULL)
5082 {
5083 bfd_size_type indx;
5084
5085 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5086 TRUE);
5087 if (indx == (bfd_size_type) -1
5088 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5089 return FALSE;
5090
5091 if (info->new_dtags)
5092 {
5093 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5094 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5095 return FALSE;
5096 }
5097 }
5098
5099 if (filter_shlib != NULL)
5100 {
5101 bfd_size_type indx;
5102
5103 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5104 filter_shlib, TRUE);
5105 if (indx == (bfd_size_type) -1
5106 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5107 return FALSE;
5108 }
5109
5110 if (auxiliary_filters != NULL)
5111 {
5112 const char * const *p;
5113
5114 for (p = auxiliary_filters; *p != NULL; p++)
5115 {
5116 bfd_size_type indx;
5117
5118 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5119 *p, TRUE);
5120 if (indx == (bfd_size_type) -1
5121 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5122 return FALSE;
5123 }
5124 }
5125
5126 eif.info = info;
5127 eif.verdefs = verdefs;
5128 eif.failed = FALSE;
5129
5130 /* If we are supposed to export all symbols into the dynamic symbol
5131 table (this is not the normal case), then do so. */
5132 if (info->export_dynamic)
5133 {
5134 elf_link_hash_traverse (elf_hash_table (info),
5135 _bfd_elf_export_symbol,
5136 &eif);
5137 if (eif.failed)
5138 return FALSE;
5139 }
5140
5141 /* Make all global versions with definition. */
5142 for (t = verdefs; t != NULL; t = t->next)
5143 for (d = t->globals.list; d != NULL; d = d->next)
5144 if (!d->symver && d->symbol)
5145 {
5146 const char *verstr, *name;
5147 size_t namelen, verlen, newlen;
5148 char *newname, *p;
5149 struct elf_link_hash_entry *newh;
5150
5151 name = d->symbol;
5152 namelen = strlen (name);
5153 verstr = t->name;
5154 verlen = strlen (verstr);
5155 newlen = namelen + verlen + 3;
5156
5157 newname = bfd_malloc (newlen);
5158 if (newname == NULL)
5159 return FALSE;
5160 memcpy (newname, name, namelen);
5161
5162 /* Check the hidden versioned definition. */
5163 p = newname + namelen;
5164 *p++ = ELF_VER_CHR;
5165 memcpy (p, verstr, verlen + 1);
5166 newh = elf_link_hash_lookup (elf_hash_table (info),
5167 newname, FALSE, FALSE,
5168 FALSE);
5169 if (newh == NULL
5170 || (newh->root.type != bfd_link_hash_defined
5171 && newh->root.type != bfd_link_hash_defweak))
5172 {
5173 /* Check the default versioned definition. */
5174 *p++ = ELF_VER_CHR;
5175 memcpy (p, verstr, verlen + 1);
5176 newh = elf_link_hash_lookup (elf_hash_table (info),
5177 newname, FALSE, FALSE,
5178 FALSE);
5179 }
5180 free (newname);
5181
5182 /* Mark this version if there is a definition and it is
5183 not defined in a shared object. */
5184 if (newh != NULL
5185 && !newh->def_dynamic
5186 && (newh->root.type == bfd_link_hash_defined
5187 || newh->root.type == bfd_link_hash_defweak))
5188 d->symver = 1;
5189 }
5190
5191 /* Attach all the symbols to their version information. */
5192 asvinfo.output_bfd = output_bfd;
5193 asvinfo.info = info;
5194 asvinfo.verdefs = verdefs;
5195 asvinfo.failed = FALSE;
5196
5197 elf_link_hash_traverse (elf_hash_table (info),
5198 _bfd_elf_link_assign_sym_version,
5199 &asvinfo);
5200 if (asvinfo.failed)
5201 return FALSE;
5202
5203 if (!info->allow_undefined_version)
5204 {
5205 /* Check if all global versions have a definition. */
5206 all_defined = TRUE;
5207 for (t = verdefs; t != NULL; t = t->next)
5208 for (d = t->globals.list; d != NULL; d = d->next)
5209 if (!d->symver && !d->script)
5210 {
5211 (*_bfd_error_handler)
5212 (_("%s: undefined version: %s"),
5213 d->pattern, t->name);
5214 all_defined = FALSE;
5215 }
5216
5217 if (!all_defined)
5218 {
5219 bfd_set_error (bfd_error_bad_value);
5220 return FALSE;
5221 }
5222 }
5223
5224 /* Find all symbols which were defined in a dynamic object and make
5225 the backend pick a reasonable value for them. */
5226 elf_link_hash_traverse (elf_hash_table (info),
5227 _bfd_elf_adjust_dynamic_symbol,
5228 &eif);
5229 if (eif.failed)
5230 return FALSE;
5231
5232 /* Add some entries to the .dynamic section. We fill in some of the
5233 values later, in bfd_elf_final_link, but we must add the entries
5234 now so that we know the final size of the .dynamic section. */
5235
5236 /* If there are initialization and/or finalization functions to
5237 call then add the corresponding DT_INIT/DT_FINI entries. */
5238 h = (info->init_function
5239 ? elf_link_hash_lookup (elf_hash_table (info),
5240 info->init_function, FALSE,
5241 FALSE, FALSE)
5242 : NULL);
5243 if (h != NULL
5244 && (h->ref_regular
5245 || h->def_regular))
5246 {
5247 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5248 return FALSE;
5249 }
5250 h = (info->fini_function
5251 ? elf_link_hash_lookup (elf_hash_table (info),
5252 info->fini_function, FALSE,
5253 FALSE, FALSE)
5254 : NULL);
5255 if (h != NULL
5256 && (h->ref_regular
5257 || h->def_regular))
5258 {
5259 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5260 return FALSE;
5261 }
5262
5263 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5264 if (s != NULL && s->linker_has_input)
5265 {
5266 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5267 if (! info->executable)
5268 {
5269 bfd *sub;
5270 asection *o;
5271
5272 for (sub = info->input_bfds; sub != NULL;
5273 sub = sub->link_next)
5274 for (o = sub->sections; o != NULL; o = o->next)
5275 if (elf_section_data (o)->this_hdr.sh_type
5276 == SHT_PREINIT_ARRAY)
5277 {
5278 (*_bfd_error_handler)
5279 (_("%B: .preinit_array section is not allowed in DSO"),
5280 sub);
5281 break;
5282 }
5283
5284 bfd_set_error (bfd_error_nonrepresentable_section);
5285 return FALSE;
5286 }
5287
5288 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5289 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5290 return FALSE;
5291 }
5292 s = bfd_get_section_by_name (output_bfd, ".init_array");
5293 if (s != NULL && s->linker_has_input)
5294 {
5295 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5296 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5297 return FALSE;
5298 }
5299 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5300 if (s != NULL && s->linker_has_input)
5301 {
5302 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5303 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5304 return FALSE;
5305 }
5306
5307 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5308 /* If .dynstr is excluded from the link, we don't want any of
5309 these tags. Strictly, we should be checking each section
5310 individually; This quick check covers for the case where
5311 someone does a /DISCARD/ : { *(*) }. */
5312 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5313 {
5314 bfd_size_type strsize;
5315
5316 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5317 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5318 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5319 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5320 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5321 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5322 bed->s->sizeof_sym))
5323 return FALSE;
5324 }
5325 }
5326
5327 /* The backend must work out the sizes of all the other dynamic
5328 sections. */
5329 if (bed->elf_backend_size_dynamic_sections
5330 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5331 return FALSE;
5332
5333 if (elf_hash_table (info)->dynamic_sections_created)
5334 {
5335 unsigned long section_sym_count;
5336 asection *s;
5337
5338 /* Set up the version definition section. */
5339 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5340 BFD_ASSERT (s != NULL);
5341
5342 /* We may have created additional version definitions if we are
5343 just linking a regular application. */
5344 verdefs = asvinfo.verdefs;
5345
5346 /* Skip anonymous version tag. */
5347 if (verdefs != NULL && verdefs->vernum == 0)
5348 verdefs = verdefs->next;
5349
5350 if (verdefs == NULL && !info->create_default_symver)
5351 s->flags |= SEC_EXCLUDE;
5352 else
5353 {
5354 unsigned int cdefs;
5355 bfd_size_type size;
5356 struct bfd_elf_version_tree *t;
5357 bfd_byte *p;
5358 Elf_Internal_Verdef def;
5359 Elf_Internal_Verdaux defaux;
5360 struct bfd_link_hash_entry *bh;
5361 struct elf_link_hash_entry *h;
5362 const char *name;
5363
5364 cdefs = 0;
5365 size = 0;
5366
5367 /* Make space for the base version. */
5368 size += sizeof (Elf_External_Verdef);
5369 size += sizeof (Elf_External_Verdaux);
5370 ++cdefs;
5371
5372 /* Make space for the default version. */
5373 if (info->create_default_symver)
5374 {
5375 size += sizeof (Elf_External_Verdef);
5376 ++cdefs;
5377 }
5378
5379 for (t = verdefs; t != NULL; t = t->next)
5380 {
5381 struct bfd_elf_version_deps *n;
5382
5383 size += sizeof (Elf_External_Verdef);
5384 size += sizeof (Elf_External_Verdaux);
5385 ++cdefs;
5386
5387 for (n = t->deps; n != NULL; n = n->next)
5388 size += sizeof (Elf_External_Verdaux);
5389 }
5390
5391 s->size = size;
5392 s->contents = bfd_alloc (output_bfd, s->size);
5393 if (s->contents == NULL && s->size != 0)
5394 return FALSE;
5395
5396 /* Fill in the version definition section. */
5397
5398 p = s->contents;
5399
5400 def.vd_version = VER_DEF_CURRENT;
5401 def.vd_flags = VER_FLG_BASE;
5402 def.vd_ndx = 1;
5403 def.vd_cnt = 1;
5404 if (info->create_default_symver)
5405 {
5406 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5407 def.vd_next = sizeof (Elf_External_Verdef);
5408 }
5409 else
5410 {
5411 def.vd_aux = sizeof (Elf_External_Verdef);
5412 def.vd_next = (sizeof (Elf_External_Verdef)
5413 + sizeof (Elf_External_Verdaux));
5414 }
5415
5416 if (soname_indx != (bfd_size_type) -1)
5417 {
5418 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5419 soname_indx);
5420 def.vd_hash = bfd_elf_hash (soname);
5421 defaux.vda_name = soname_indx;
5422 name = soname;
5423 }
5424 else
5425 {
5426 bfd_size_type indx;
5427
5428 name = lbasename (output_bfd->filename);
5429 def.vd_hash = bfd_elf_hash (name);
5430 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5431 name, FALSE);
5432 if (indx == (bfd_size_type) -1)
5433 return FALSE;
5434 defaux.vda_name = indx;
5435 }
5436 defaux.vda_next = 0;
5437
5438 _bfd_elf_swap_verdef_out (output_bfd, &def,
5439 (Elf_External_Verdef *) p);
5440 p += sizeof (Elf_External_Verdef);
5441 if (info->create_default_symver)
5442 {
5443 /* Add a symbol representing this version. */
5444 bh = NULL;
5445 if (! (_bfd_generic_link_add_one_symbol
5446 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5447 0, NULL, FALSE,
5448 get_elf_backend_data (dynobj)->collect, &bh)))
5449 return FALSE;
5450 h = (struct elf_link_hash_entry *) bh;
5451 h->non_elf = 0;
5452 h->def_regular = 1;
5453 h->type = STT_OBJECT;
5454 h->verinfo.vertree = NULL;
5455
5456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5457 return FALSE;
5458
5459 /* Create a duplicate of the base version with the same
5460 aux block, but different flags. */
5461 def.vd_flags = 0;
5462 def.vd_ndx = 2;
5463 def.vd_aux = sizeof (Elf_External_Verdef);
5464 if (verdefs)
5465 def.vd_next = (sizeof (Elf_External_Verdef)
5466 + sizeof (Elf_External_Verdaux));
5467 else
5468 def.vd_next = 0;
5469 _bfd_elf_swap_verdef_out (output_bfd, &def,
5470 (Elf_External_Verdef *) p);
5471 p += sizeof (Elf_External_Verdef);
5472 }
5473 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5474 (Elf_External_Verdaux *) p);
5475 p += sizeof (Elf_External_Verdaux);
5476
5477 for (t = verdefs; t != NULL; t = t->next)
5478 {
5479 unsigned int cdeps;
5480 struct bfd_elf_version_deps *n;
5481
5482 cdeps = 0;
5483 for (n = t->deps; n != NULL; n = n->next)
5484 ++cdeps;
5485
5486 /* Add a symbol representing this version. */
5487 bh = NULL;
5488 if (! (_bfd_generic_link_add_one_symbol
5489 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5490 0, NULL, FALSE,
5491 get_elf_backend_data (dynobj)->collect, &bh)))
5492 return FALSE;
5493 h = (struct elf_link_hash_entry *) bh;
5494 h->non_elf = 0;
5495 h->def_regular = 1;
5496 h->type = STT_OBJECT;
5497 h->verinfo.vertree = t;
5498
5499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5500 return FALSE;
5501
5502 def.vd_version = VER_DEF_CURRENT;
5503 def.vd_flags = 0;
5504 if (t->globals.list == NULL
5505 && t->locals.list == NULL
5506 && ! t->used)
5507 def.vd_flags |= VER_FLG_WEAK;
5508 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5509 def.vd_cnt = cdeps + 1;
5510 def.vd_hash = bfd_elf_hash (t->name);
5511 def.vd_aux = sizeof (Elf_External_Verdef);
5512 def.vd_next = 0;
5513 if (t->next != NULL)
5514 def.vd_next = (sizeof (Elf_External_Verdef)
5515 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5516
5517 _bfd_elf_swap_verdef_out (output_bfd, &def,
5518 (Elf_External_Verdef *) p);
5519 p += sizeof (Elf_External_Verdef);
5520
5521 defaux.vda_name = h->dynstr_index;
5522 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5523 h->dynstr_index);
5524 defaux.vda_next = 0;
5525 if (t->deps != NULL)
5526 defaux.vda_next = sizeof (Elf_External_Verdaux);
5527 t->name_indx = defaux.vda_name;
5528
5529 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5530 (Elf_External_Verdaux *) p);
5531 p += sizeof (Elf_External_Verdaux);
5532
5533 for (n = t->deps; n != NULL; n = n->next)
5534 {
5535 if (n->version_needed == NULL)
5536 {
5537 /* This can happen if there was an error in the
5538 version script. */
5539 defaux.vda_name = 0;
5540 }
5541 else
5542 {
5543 defaux.vda_name = n->version_needed->name_indx;
5544 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5545 defaux.vda_name);
5546 }
5547 if (n->next == NULL)
5548 defaux.vda_next = 0;
5549 else
5550 defaux.vda_next = sizeof (Elf_External_Verdaux);
5551
5552 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5553 (Elf_External_Verdaux *) p);
5554 p += sizeof (Elf_External_Verdaux);
5555 }
5556 }
5557
5558 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5559 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5560 return FALSE;
5561
5562 elf_tdata (output_bfd)->cverdefs = cdefs;
5563 }
5564
5565 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5566 {
5567 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5568 return FALSE;
5569 }
5570 else if (info->flags & DF_BIND_NOW)
5571 {
5572 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5573 return FALSE;
5574 }
5575
5576 if (info->flags_1)
5577 {
5578 if (info->executable)
5579 info->flags_1 &= ~ (DF_1_INITFIRST
5580 | DF_1_NODELETE
5581 | DF_1_NOOPEN);
5582 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5583 return FALSE;
5584 }
5585
5586 /* Work out the size of the version reference section. */
5587
5588 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5589 BFD_ASSERT (s != NULL);
5590 {
5591 struct elf_find_verdep_info sinfo;
5592
5593 sinfo.output_bfd = output_bfd;
5594 sinfo.info = info;
5595 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5596 if (sinfo.vers == 0)
5597 sinfo.vers = 1;
5598 sinfo.failed = FALSE;
5599
5600 elf_link_hash_traverse (elf_hash_table (info),
5601 _bfd_elf_link_find_version_dependencies,
5602 &sinfo);
5603
5604 if (elf_tdata (output_bfd)->verref == NULL)
5605 s->flags |= SEC_EXCLUDE;
5606 else
5607 {
5608 Elf_Internal_Verneed *t;
5609 unsigned int size;
5610 unsigned int crefs;
5611 bfd_byte *p;
5612
5613 /* Build the version definition section. */
5614 size = 0;
5615 crefs = 0;
5616 for (t = elf_tdata (output_bfd)->verref;
5617 t != NULL;
5618 t = t->vn_nextref)
5619 {
5620 Elf_Internal_Vernaux *a;
5621
5622 size += sizeof (Elf_External_Verneed);
5623 ++crefs;
5624 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5625 size += sizeof (Elf_External_Vernaux);
5626 }
5627
5628 s->size = size;
5629 s->contents = bfd_alloc (output_bfd, s->size);
5630 if (s->contents == NULL)
5631 return FALSE;
5632
5633 p = s->contents;
5634 for (t = elf_tdata (output_bfd)->verref;
5635 t != NULL;
5636 t = t->vn_nextref)
5637 {
5638 unsigned int caux;
5639 Elf_Internal_Vernaux *a;
5640 bfd_size_type indx;
5641
5642 caux = 0;
5643 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5644 ++caux;
5645
5646 t->vn_version = VER_NEED_CURRENT;
5647 t->vn_cnt = caux;
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 elf_dt_name (t->vn_bfd) != NULL
5650 ? elf_dt_name (t->vn_bfd)
5651 : lbasename (t->vn_bfd->filename),
5652 FALSE);
5653 if (indx == (bfd_size_type) -1)
5654 return FALSE;
5655 t->vn_file = indx;
5656 t->vn_aux = sizeof (Elf_External_Verneed);
5657 if (t->vn_nextref == NULL)
5658 t->vn_next = 0;
5659 else
5660 t->vn_next = (sizeof (Elf_External_Verneed)
5661 + caux * sizeof (Elf_External_Vernaux));
5662
5663 _bfd_elf_swap_verneed_out (output_bfd, t,
5664 (Elf_External_Verneed *) p);
5665 p += sizeof (Elf_External_Verneed);
5666
5667 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5668 {
5669 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5670 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5671 a->vna_nodename, FALSE);
5672 if (indx == (bfd_size_type) -1)
5673 return FALSE;
5674 a->vna_name = indx;
5675 if (a->vna_nextptr == NULL)
5676 a->vna_next = 0;
5677 else
5678 a->vna_next = sizeof (Elf_External_Vernaux);
5679
5680 _bfd_elf_swap_vernaux_out (output_bfd, a,
5681 (Elf_External_Vernaux *) p);
5682 p += sizeof (Elf_External_Vernaux);
5683 }
5684 }
5685
5686 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5687 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5688 return FALSE;
5689
5690 elf_tdata (output_bfd)->cverrefs = crefs;
5691 }
5692 }
5693
5694 if ((elf_tdata (output_bfd)->cverrefs == 0
5695 && elf_tdata (output_bfd)->cverdefs == 0)
5696 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5697 &section_sym_count) == 0)
5698 {
5699 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5700 s->flags |= SEC_EXCLUDE;
5701 }
5702 }
5703 return TRUE;
5704 }
5705
5706 bfd_boolean
5707 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5708 {
5709 if (!is_elf_hash_table (info->hash))
5710 return TRUE;
5711
5712 if (elf_hash_table (info)->dynamic_sections_created)
5713 {
5714 bfd *dynobj;
5715 const struct elf_backend_data *bed;
5716 asection *s;
5717 bfd_size_type dynsymcount;
5718 unsigned long section_sym_count;
5719 size_t bucketcount = 0;
5720 size_t hash_entry_size;
5721 unsigned int dtagcount;
5722
5723 dynobj = elf_hash_table (info)->dynobj;
5724
5725 /* Assign dynsym indicies. In a shared library we generate a
5726 section symbol for each output section, which come first.
5727 Next come all of the back-end allocated local dynamic syms,
5728 followed by the rest of the global symbols. */
5729
5730 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5731 &section_sym_count);
5732
5733 /* Work out the size of the symbol version section. */
5734 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5735 BFD_ASSERT (s != NULL);
5736 if (dynsymcount != 0
5737 && (s->flags & SEC_EXCLUDE) == 0)
5738 {
5739 s->size = dynsymcount * sizeof (Elf_External_Versym);
5740 s->contents = bfd_zalloc (output_bfd, s->size);
5741 if (s->contents == NULL)
5742 return FALSE;
5743
5744 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5745 return FALSE;
5746 }
5747
5748 /* Set the size of the .dynsym and .hash sections. We counted
5749 the number of dynamic symbols in elf_link_add_object_symbols.
5750 We will build the contents of .dynsym and .hash when we build
5751 the final symbol table, because until then we do not know the
5752 correct value to give the symbols. We built the .dynstr
5753 section as we went along in elf_link_add_object_symbols. */
5754 s = bfd_get_section_by_name (dynobj, ".dynsym");
5755 BFD_ASSERT (s != NULL);
5756 bed = get_elf_backend_data (output_bfd);
5757 s->size = dynsymcount * bed->s->sizeof_sym;
5758
5759 if (dynsymcount != 0)
5760 {
5761 s->contents = bfd_alloc (output_bfd, s->size);
5762 if (s->contents == NULL)
5763 return FALSE;
5764
5765 /* The first entry in .dynsym is a dummy symbol.
5766 Clear all the section syms, in case we don't output them all. */
5767 ++section_sym_count;
5768 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5769 }
5770
5771 /* Compute the size of the hashing table. As a side effect this
5772 computes the hash values for all the names we export. */
5773 bucketcount = compute_bucket_count (info);
5774
5775 s = bfd_get_section_by_name (dynobj, ".hash");
5776 BFD_ASSERT (s != NULL);
5777 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5778 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5779 s->contents = bfd_zalloc (output_bfd, s->size);
5780 if (s->contents == NULL)
5781 return FALSE;
5782
5783 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5784 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5785 s->contents + hash_entry_size);
5786
5787 elf_hash_table (info)->bucketcount = bucketcount;
5788
5789 s = bfd_get_section_by_name (dynobj, ".dynstr");
5790 BFD_ASSERT (s != NULL);
5791
5792 elf_finalize_dynstr (output_bfd, info);
5793
5794 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5795
5796 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5797 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5798 return FALSE;
5799 }
5800
5801 return TRUE;
5802 }
5803
5804 /* Final phase of ELF linker. */
5805
5806 /* A structure we use to avoid passing large numbers of arguments. */
5807
5808 struct elf_final_link_info
5809 {
5810 /* General link information. */
5811 struct bfd_link_info *info;
5812 /* Output BFD. */
5813 bfd *output_bfd;
5814 /* Symbol string table. */
5815 struct bfd_strtab_hash *symstrtab;
5816 /* .dynsym section. */
5817 asection *dynsym_sec;
5818 /* .hash section. */
5819 asection *hash_sec;
5820 /* symbol version section (.gnu.version). */
5821 asection *symver_sec;
5822 /* Buffer large enough to hold contents of any section. */
5823 bfd_byte *contents;
5824 /* Buffer large enough to hold external relocs of any section. */
5825 void *external_relocs;
5826 /* Buffer large enough to hold internal relocs of any section. */
5827 Elf_Internal_Rela *internal_relocs;
5828 /* Buffer large enough to hold external local symbols of any input
5829 BFD. */
5830 bfd_byte *external_syms;
5831 /* And a buffer for symbol section indices. */
5832 Elf_External_Sym_Shndx *locsym_shndx;
5833 /* Buffer large enough to hold internal local symbols of any input
5834 BFD. */
5835 Elf_Internal_Sym *internal_syms;
5836 /* Array large enough to hold a symbol index for each local symbol
5837 of any input BFD. */
5838 long *indices;
5839 /* Array large enough to hold a section pointer for each local
5840 symbol of any input BFD. */
5841 asection **sections;
5842 /* Buffer to hold swapped out symbols. */
5843 bfd_byte *symbuf;
5844 /* And one for symbol section indices. */
5845 Elf_External_Sym_Shndx *symshndxbuf;
5846 /* Number of swapped out symbols in buffer. */
5847 size_t symbuf_count;
5848 /* Number of symbols which fit in symbuf. */
5849 size_t symbuf_size;
5850 /* And same for symshndxbuf. */
5851 size_t shndxbuf_size;
5852 };
5853
5854 /* This struct is used to pass information to elf_link_output_extsym. */
5855
5856 struct elf_outext_info
5857 {
5858 bfd_boolean failed;
5859 bfd_boolean localsyms;
5860 struct elf_final_link_info *finfo;
5861 };
5862
5863 /* When performing a relocatable link, the input relocations are
5864 preserved. But, if they reference global symbols, the indices
5865 referenced must be updated. Update all the relocations in
5866 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5867
5868 static void
5869 elf_link_adjust_relocs (bfd *abfd,
5870 Elf_Internal_Shdr *rel_hdr,
5871 unsigned int count,
5872 struct elf_link_hash_entry **rel_hash)
5873 {
5874 unsigned int i;
5875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5876 bfd_byte *erela;
5877 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5878 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5879 bfd_vma r_type_mask;
5880 int r_sym_shift;
5881
5882 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5883 {
5884 swap_in = bed->s->swap_reloc_in;
5885 swap_out = bed->s->swap_reloc_out;
5886 }
5887 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5888 {
5889 swap_in = bed->s->swap_reloca_in;
5890 swap_out = bed->s->swap_reloca_out;
5891 }
5892 else
5893 abort ();
5894
5895 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5896 abort ();
5897
5898 if (bed->s->arch_size == 32)
5899 {
5900 r_type_mask = 0xff;
5901 r_sym_shift = 8;
5902 }
5903 else
5904 {
5905 r_type_mask = 0xffffffff;
5906 r_sym_shift = 32;
5907 }
5908
5909 erela = rel_hdr->contents;
5910 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5911 {
5912 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5913 unsigned int j;
5914
5915 if (*rel_hash == NULL)
5916 continue;
5917
5918 BFD_ASSERT ((*rel_hash)->indx >= 0);
5919
5920 (*swap_in) (abfd, erela, irela);
5921 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5922 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5923 | (irela[j].r_info & r_type_mask));
5924 (*swap_out) (abfd, irela, erela);
5925 }
5926 }
5927
5928 struct elf_link_sort_rela
5929 {
5930 union {
5931 bfd_vma offset;
5932 bfd_vma sym_mask;
5933 } u;
5934 enum elf_reloc_type_class type;
5935 /* We use this as an array of size int_rels_per_ext_rel. */
5936 Elf_Internal_Rela rela[1];
5937 };
5938
5939 static int
5940 elf_link_sort_cmp1 (const void *A, const void *B)
5941 {
5942 const struct elf_link_sort_rela *a = A;
5943 const struct elf_link_sort_rela *b = B;
5944 int relativea, relativeb;
5945
5946 relativea = a->type == reloc_class_relative;
5947 relativeb = b->type == reloc_class_relative;
5948
5949 if (relativea < relativeb)
5950 return 1;
5951 if (relativea > relativeb)
5952 return -1;
5953 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5954 return -1;
5955 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5956 return 1;
5957 if (a->rela->r_offset < b->rela->r_offset)
5958 return -1;
5959 if (a->rela->r_offset > b->rela->r_offset)
5960 return 1;
5961 return 0;
5962 }
5963
5964 static int
5965 elf_link_sort_cmp2 (const void *A, const void *B)
5966 {
5967 const struct elf_link_sort_rela *a = A;
5968 const struct elf_link_sort_rela *b = B;
5969 int copya, copyb;
5970
5971 if (a->u.offset < b->u.offset)
5972 return -1;
5973 if (a->u.offset > b->u.offset)
5974 return 1;
5975 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5976 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5977 if (copya < copyb)
5978 return -1;
5979 if (copya > copyb)
5980 return 1;
5981 if (a->rela->r_offset < b->rela->r_offset)
5982 return -1;
5983 if (a->rela->r_offset > b->rela->r_offset)
5984 return 1;
5985 return 0;
5986 }
5987
5988 static size_t
5989 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5990 {
5991 asection *reldyn;
5992 bfd_size_type count, size;
5993 size_t i, ret, sort_elt, ext_size;
5994 bfd_byte *sort, *s_non_relative, *p;
5995 struct elf_link_sort_rela *sq;
5996 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5997 int i2e = bed->s->int_rels_per_ext_rel;
5998 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5999 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
6000 struct bfd_link_order *lo;
6001 bfd_vma r_sym_mask;
6002
6003 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
6004 if (reldyn == NULL || reldyn->size == 0)
6005 {
6006 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
6007 if (reldyn == NULL || reldyn->size == 0)
6008 return 0;
6009 ext_size = bed->s->sizeof_rel;
6010 swap_in = bed->s->swap_reloc_in;
6011 swap_out = bed->s->swap_reloc_out;
6012 }
6013 else
6014 {
6015 ext_size = bed->s->sizeof_rela;
6016 swap_in = bed->s->swap_reloca_in;
6017 swap_out = bed->s->swap_reloca_out;
6018 }
6019 count = reldyn->size / ext_size;
6020
6021 size = 0;
6022 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6023 if (lo->type == bfd_indirect_link_order)
6024 {
6025 asection *o = lo->u.indirect.section;
6026 size += o->size;
6027 }
6028
6029 if (size != reldyn->size)
6030 return 0;
6031
6032 sort_elt = (sizeof (struct elf_link_sort_rela)
6033 + (i2e - 1) * sizeof (Elf_Internal_Rela));
6034 sort = bfd_zmalloc (sort_elt * count);
6035 if (sort == NULL)
6036 {
6037 (*info->callbacks->warning)
6038 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
6039 return 0;
6040 }
6041
6042 if (bed->s->arch_size == 32)
6043 r_sym_mask = ~(bfd_vma) 0xff;
6044 else
6045 r_sym_mask = ~(bfd_vma) 0xffffffff;
6046
6047 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6048 if (lo->type == bfd_indirect_link_order)
6049 {
6050 bfd_byte *erel, *erelend;
6051 asection *o = lo->u.indirect.section;
6052
6053 if (o->contents == NULL && o->size != 0)
6054 {
6055 /* This is a reloc section that is being handled as a normal
6056 section. See bfd_section_from_shdr. We can't combine
6057 relocs in this case. */
6058 free (sort);
6059 return 0;
6060 }
6061 erel = o->contents;
6062 erelend = o->contents + o->size;
6063 p = sort + o->output_offset / ext_size * sort_elt;
6064 while (erel < erelend)
6065 {
6066 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6067 (*swap_in) (abfd, erel, s->rela);
6068 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6069 s->u.sym_mask = r_sym_mask;
6070 p += sort_elt;
6071 erel += ext_size;
6072 }
6073 }
6074
6075 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6076
6077 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6078 {
6079 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6080 if (s->type != reloc_class_relative)
6081 break;
6082 }
6083 ret = i;
6084 s_non_relative = p;
6085
6086 sq = (struct elf_link_sort_rela *) s_non_relative;
6087 for (; i < count; i++, p += sort_elt)
6088 {
6089 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6090 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6091 sq = sp;
6092 sp->u.offset = sq->rela->r_offset;
6093 }
6094
6095 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6096
6097 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6098 if (lo->type == bfd_indirect_link_order)
6099 {
6100 bfd_byte *erel, *erelend;
6101 asection *o = lo->u.indirect.section;
6102
6103 erel = o->contents;
6104 erelend = o->contents + o->size;
6105 p = sort + o->output_offset / ext_size * sort_elt;
6106 while (erel < erelend)
6107 {
6108 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6109 (*swap_out) (abfd, s->rela, erel);
6110 p += sort_elt;
6111 erel += ext_size;
6112 }
6113 }
6114
6115 free (sort);
6116 *psec = reldyn;
6117 return ret;
6118 }
6119
6120 /* Flush the output symbols to the file. */
6121
6122 static bfd_boolean
6123 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6124 const struct elf_backend_data *bed)
6125 {
6126 if (finfo->symbuf_count > 0)
6127 {
6128 Elf_Internal_Shdr *hdr;
6129 file_ptr pos;
6130 bfd_size_type amt;
6131
6132 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6133 pos = hdr->sh_offset + hdr->sh_size;
6134 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6135 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6136 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6137 return FALSE;
6138
6139 hdr->sh_size += amt;
6140 finfo->symbuf_count = 0;
6141 }
6142
6143 return TRUE;
6144 }
6145
6146 /* Add a symbol to the output symbol table. */
6147
6148 static bfd_boolean
6149 elf_link_output_sym (struct elf_final_link_info *finfo,
6150 const char *name,
6151 Elf_Internal_Sym *elfsym,
6152 asection *input_sec,
6153 struct elf_link_hash_entry *h)
6154 {
6155 bfd_byte *dest;
6156 Elf_External_Sym_Shndx *destshndx;
6157 bfd_boolean (*output_symbol_hook)
6158 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6159 struct elf_link_hash_entry *);
6160 const struct elf_backend_data *bed;
6161
6162 bed = get_elf_backend_data (finfo->output_bfd);
6163 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6164 if (output_symbol_hook != NULL)
6165 {
6166 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6167 return FALSE;
6168 }
6169
6170 if (name == NULL || *name == '\0')
6171 elfsym->st_name = 0;
6172 else if (input_sec->flags & SEC_EXCLUDE)
6173 elfsym->st_name = 0;
6174 else
6175 {
6176 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6177 name, TRUE, FALSE);
6178 if (elfsym->st_name == (unsigned long) -1)
6179 return FALSE;
6180 }
6181
6182 if (finfo->symbuf_count >= finfo->symbuf_size)
6183 {
6184 if (! elf_link_flush_output_syms (finfo, bed))
6185 return FALSE;
6186 }
6187
6188 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6189 destshndx = finfo->symshndxbuf;
6190 if (destshndx != NULL)
6191 {
6192 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6193 {
6194 bfd_size_type amt;
6195
6196 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6197 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6198 if (destshndx == NULL)
6199 return FALSE;
6200 memset ((char *) destshndx + amt, 0, amt);
6201 finfo->shndxbuf_size *= 2;
6202 }
6203 destshndx += bfd_get_symcount (finfo->output_bfd);
6204 }
6205
6206 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6207 finfo->symbuf_count += 1;
6208 bfd_get_symcount (finfo->output_bfd) += 1;
6209
6210 return TRUE;
6211 }
6212
6213 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
6214
6215 static bfd_boolean
6216 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
6217 {
6218 if (sym->st_shndx > SHN_HIRESERVE)
6219 {
6220 /* The gABI doesn't support dynamic symbols in output sections
6221 beyond 64k. */
6222 (*_bfd_error_handler)
6223 (_("%B: Too many sections: %d (>= %d)"),
6224 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
6225 bfd_set_error (bfd_error_nonrepresentable_section);
6226 return FALSE;
6227 }
6228 return TRUE;
6229 }
6230
6231 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6232 allowing an unsatisfied unversioned symbol in the DSO to match a
6233 versioned symbol that would normally require an explicit version.
6234 We also handle the case that a DSO references a hidden symbol
6235 which may be satisfied by a versioned symbol in another DSO. */
6236
6237 static bfd_boolean
6238 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6239 const struct elf_backend_data *bed,
6240 struct elf_link_hash_entry *h)
6241 {
6242 bfd *abfd;
6243 struct elf_link_loaded_list *loaded;
6244
6245 if (!is_elf_hash_table (info->hash))
6246 return FALSE;
6247
6248 switch (h->root.type)
6249 {
6250 default:
6251 abfd = NULL;
6252 break;
6253
6254 case bfd_link_hash_undefined:
6255 case bfd_link_hash_undefweak:
6256 abfd = h->root.u.undef.abfd;
6257 if ((abfd->flags & DYNAMIC) == 0
6258 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6259 return FALSE;
6260 break;
6261
6262 case bfd_link_hash_defined:
6263 case bfd_link_hash_defweak:
6264 abfd = h->root.u.def.section->owner;
6265 break;
6266
6267 case bfd_link_hash_common:
6268 abfd = h->root.u.c.p->section->owner;
6269 break;
6270 }
6271 BFD_ASSERT (abfd != NULL);
6272
6273 for (loaded = elf_hash_table (info)->loaded;
6274 loaded != NULL;
6275 loaded = loaded->next)
6276 {
6277 bfd *input;
6278 Elf_Internal_Shdr *hdr;
6279 bfd_size_type symcount;
6280 bfd_size_type extsymcount;
6281 bfd_size_type extsymoff;
6282 Elf_Internal_Shdr *versymhdr;
6283 Elf_Internal_Sym *isym;
6284 Elf_Internal_Sym *isymend;
6285 Elf_Internal_Sym *isymbuf;
6286 Elf_External_Versym *ever;
6287 Elf_External_Versym *extversym;
6288
6289 input = loaded->abfd;
6290
6291 /* We check each DSO for a possible hidden versioned definition. */
6292 if (input == abfd
6293 || (input->flags & DYNAMIC) == 0
6294 || elf_dynversym (input) == 0)
6295 continue;
6296
6297 hdr = &elf_tdata (input)->dynsymtab_hdr;
6298
6299 symcount = hdr->sh_size / bed->s->sizeof_sym;
6300 if (elf_bad_symtab (input))
6301 {
6302 extsymcount = symcount;
6303 extsymoff = 0;
6304 }
6305 else
6306 {
6307 extsymcount = symcount - hdr->sh_info;
6308 extsymoff = hdr->sh_info;
6309 }
6310
6311 if (extsymcount == 0)
6312 continue;
6313
6314 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6315 NULL, NULL, NULL);
6316 if (isymbuf == NULL)
6317 return FALSE;
6318
6319 /* Read in any version definitions. */
6320 versymhdr = &elf_tdata (input)->dynversym_hdr;
6321 extversym = bfd_malloc (versymhdr->sh_size);
6322 if (extversym == NULL)
6323 goto error_ret;
6324
6325 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6326 || (bfd_bread (extversym, versymhdr->sh_size, input)
6327 != versymhdr->sh_size))
6328 {
6329 free (extversym);
6330 error_ret:
6331 free (isymbuf);
6332 return FALSE;
6333 }
6334
6335 ever = extversym + extsymoff;
6336 isymend = isymbuf + extsymcount;
6337 for (isym = isymbuf; isym < isymend; isym++, ever++)
6338 {
6339 const char *name;
6340 Elf_Internal_Versym iver;
6341 unsigned short version_index;
6342
6343 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6344 || isym->st_shndx == SHN_UNDEF)
6345 continue;
6346
6347 name = bfd_elf_string_from_elf_section (input,
6348 hdr->sh_link,
6349 isym->st_name);
6350 if (strcmp (name, h->root.root.string) != 0)
6351 continue;
6352
6353 _bfd_elf_swap_versym_in (input, ever, &iver);
6354
6355 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6356 {
6357 /* If we have a non-hidden versioned sym, then it should
6358 have provided a definition for the undefined sym. */
6359 abort ();
6360 }
6361
6362 version_index = iver.vs_vers & VERSYM_VERSION;
6363 if (version_index == 1 || version_index == 2)
6364 {
6365 /* This is the base or first version. We can use it. */
6366 free (extversym);
6367 free (isymbuf);
6368 return TRUE;
6369 }
6370 }
6371
6372 free (extversym);
6373 free (isymbuf);
6374 }
6375
6376 return FALSE;
6377 }
6378
6379 /* Add an external symbol to the symbol table. This is called from
6380 the hash table traversal routine. When generating a shared object,
6381 we go through the symbol table twice. The first time we output
6382 anything that might have been forced to local scope in a version
6383 script. The second time we output the symbols that are still
6384 global symbols. */
6385
6386 static bfd_boolean
6387 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6388 {
6389 struct elf_outext_info *eoinfo = data;
6390 struct elf_final_link_info *finfo = eoinfo->finfo;
6391 bfd_boolean strip;
6392 Elf_Internal_Sym sym;
6393 asection *input_sec;
6394 const struct elf_backend_data *bed;
6395
6396 if (h->root.type == bfd_link_hash_warning)
6397 {
6398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6399 if (h->root.type == bfd_link_hash_new)
6400 return TRUE;
6401 }
6402
6403 /* Decide whether to output this symbol in this pass. */
6404 if (eoinfo->localsyms)
6405 {
6406 if (!h->forced_local)
6407 return TRUE;
6408 }
6409 else
6410 {
6411 if (h->forced_local)
6412 return TRUE;
6413 }
6414
6415 bed = get_elf_backend_data (finfo->output_bfd);
6416
6417 if (h->root.type == bfd_link_hash_undefined)
6418 {
6419 /* If we have an undefined symbol reference here then it must have
6420 come from a shared library that is being linked in. (Undefined
6421 references in regular files have already been handled). */
6422 bfd_boolean ignore_undef = FALSE;
6423
6424 /* Some symbols may be special in that the fact that they're
6425 undefined can be safely ignored - let backend determine that. */
6426 if (bed->elf_backend_ignore_undef_symbol)
6427 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
6428
6429 /* If we are reporting errors for this situation then do so now. */
6430 if (ignore_undef == FALSE
6431 && h->ref_dynamic
6432 && ! h->ref_regular
6433 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6434 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6435 {
6436 if (! (finfo->info->callbacks->undefined_symbol
6437 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6438 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6439 {
6440 eoinfo->failed = TRUE;
6441 return FALSE;
6442 }
6443 }
6444 }
6445
6446 /* We should also warn if a forced local symbol is referenced from
6447 shared libraries. */
6448 if (! finfo->info->relocatable
6449 && (! finfo->info->shared)
6450 && h->forced_local
6451 && h->ref_dynamic
6452 && !h->dynamic_def
6453 && !h->dynamic_weak
6454 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6455 {
6456 (*_bfd_error_handler)
6457 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6458 finfo->output_bfd,
6459 h->root.u.def.section == bfd_abs_section_ptr
6460 ? finfo->output_bfd : h->root.u.def.section->owner,
6461 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6462 ? "internal"
6463 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6464 ? "hidden" : "local",
6465 h->root.root.string);
6466 eoinfo->failed = TRUE;
6467 return FALSE;
6468 }
6469
6470 /* We don't want to output symbols that have never been mentioned by
6471 a regular file, or that we have been told to strip. However, if
6472 h->indx is set to -2, the symbol is used by a reloc and we must
6473 output it. */
6474 if (h->indx == -2)
6475 strip = FALSE;
6476 else if ((h->def_dynamic
6477 || h->ref_dynamic
6478 || h->root.type == bfd_link_hash_new)
6479 && !h->def_regular
6480 && !h->ref_regular)
6481 strip = TRUE;
6482 else if (finfo->info->strip == strip_all)
6483 strip = TRUE;
6484 else if (finfo->info->strip == strip_some
6485 && bfd_hash_lookup (finfo->info->keep_hash,
6486 h->root.root.string, FALSE, FALSE) == NULL)
6487 strip = TRUE;
6488 else if (finfo->info->strip_discarded
6489 && (h->root.type == bfd_link_hash_defined
6490 || h->root.type == bfd_link_hash_defweak)
6491 && elf_discarded_section (h->root.u.def.section))
6492 strip = TRUE;
6493 else
6494 strip = FALSE;
6495
6496 /* If we're stripping it, and it's not a dynamic symbol, there's
6497 nothing else to do unless it is a forced local symbol. */
6498 if (strip
6499 && h->dynindx == -1
6500 && !h->forced_local)
6501 return TRUE;
6502
6503 sym.st_value = 0;
6504 sym.st_size = h->size;
6505 sym.st_other = h->other;
6506 if (h->forced_local)
6507 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6508 else if (h->root.type == bfd_link_hash_undefweak
6509 || h->root.type == bfd_link_hash_defweak)
6510 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6511 else
6512 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6513
6514 switch (h->root.type)
6515 {
6516 default:
6517 case bfd_link_hash_new:
6518 case bfd_link_hash_warning:
6519 abort ();
6520 return FALSE;
6521
6522 case bfd_link_hash_undefined:
6523 case bfd_link_hash_undefweak:
6524 input_sec = bfd_und_section_ptr;
6525 sym.st_shndx = SHN_UNDEF;
6526 break;
6527
6528 case bfd_link_hash_defined:
6529 case bfd_link_hash_defweak:
6530 {
6531 input_sec = h->root.u.def.section;
6532 if (input_sec->output_section != NULL)
6533 {
6534 sym.st_shndx =
6535 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6536 input_sec->output_section);
6537 if (sym.st_shndx == SHN_BAD)
6538 {
6539 (*_bfd_error_handler)
6540 (_("%B: could not find output section %A for input section %A"),
6541 finfo->output_bfd, input_sec->output_section, input_sec);
6542 eoinfo->failed = TRUE;
6543 return FALSE;
6544 }
6545
6546 /* ELF symbols in relocatable files are section relative,
6547 but in nonrelocatable files they are virtual
6548 addresses. */
6549 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6550 if (! finfo->info->relocatable)
6551 {
6552 sym.st_value += input_sec->output_section->vma;
6553 if (h->type == STT_TLS)
6554 {
6555 /* STT_TLS symbols are relative to PT_TLS segment
6556 base. */
6557 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6558 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6559 }
6560 }
6561 }
6562 else
6563 {
6564 BFD_ASSERT (input_sec->owner == NULL
6565 || (input_sec->owner->flags & DYNAMIC) != 0);
6566 sym.st_shndx = SHN_UNDEF;
6567 input_sec = bfd_und_section_ptr;
6568 }
6569 }
6570 break;
6571
6572 case bfd_link_hash_common:
6573 input_sec = h->root.u.c.p->section;
6574 sym.st_shndx = bed->common_section_index (input_sec);
6575 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6576 break;
6577
6578 case bfd_link_hash_indirect:
6579 /* These symbols are created by symbol versioning. They point
6580 to the decorated version of the name. For example, if the
6581 symbol foo@@GNU_1.2 is the default, which should be used when
6582 foo is used with no version, then we add an indirect symbol
6583 foo which points to foo@@GNU_1.2. We ignore these symbols,
6584 since the indirected symbol is already in the hash table. */
6585 return TRUE;
6586 }
6587
6588 /* Give the processor backend a chance to tweak the symbol value,
6589 and also to finish up anything that needs to be done for this
6590 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6591 forced local syms when non-shared is due to a historical quirk. */
6592 if ((h->dynindx != -1
6593 || h->forced_local)
6594 && ((finfo->info->shared
6595 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6596 || h->root.type != bfd_link_hash_undefweak))
6597 || !h->forced_local)
6598 && elf_hash_table (finfo->info)->dynamic_sections_created)
6599 {
6600 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6601 (finfo->output_bfd, finfo->info, h, &sym)))
6602 {
6603 eoinfo->failed = TRUE;
6604 return FALSE;
6605 }
6606 }
6607
6608 /* If we are marking the symbol as undefined, and there are no
6609 non-weak references to this symbol from a regular object, then
6610 mark the symbol as weak undefined; if there are non-weak
6611 references, mark the symbol as strong. We can't do this earlier,
6612 because it might not be marked as undefined until the
6613 finish_dynamic_symbol routine gets through with it. */
6614 if (sym.st_shndx == SHN_UNDEF
6615 && h->ref_regular
6616 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6617 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6618 {
6619 int bindtype;
6620
6621 if (h->ref_regular_nonweak)
6622 bindtype = STB_GLOBAL;
6623 else
6624 bindtype = STB_WEAK;
6625 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6626 }
6627
6628 /* If a non-weak symbol with non-default visibility is not defined
6629 locally, it is a fatal error. */
6630 if (! finfo->info->relocatable
6631 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6632 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6633 && h->root.type == bfd_link_hash_undefined
6634 && !h->def_regular)
6635 {
6636 (*_bfd_error_handler)
6637 (_("%B: %s symbol `%s' isn't defined"),
6638 finfo->output_bfd,
6639 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6640 ? "protected"
6641 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6642 ? "internal" : "hidden",
6643 h->root.root.string);
6644 eoinfo->failed = TRUE;
6645 return FALSE;
6646 }
6647
6648 /* If this symbol should be put in the .dynsym section, then put it
6649 there now. We already know the symbol index. We also fill in
6650 the entry in the .hash section. */
6651 if (h->dynindx != -1
6652 && elf_hash_table (finfo->info)->dynamic_sections_created)
6653 {
6654 size_t bucketcount;
6655 size_t bucket;
6656 size_t hash_entry_size;
6657 bfd_byte *bucketpos;
6658 bfd_vma chain;
6659 bfd_byte *esym;
6660
6661 sym.st_name = h->dynstr_index;
6662 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6663 if (! check_dynsym (finfo->output_bfd, &sym))
6664 {
6665 eoinfo->failed = TRUE;
6666 return FALSE;
6667 }
6668 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6669
6670 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6671 bucket = h->u.elf_hash_value % bucketcount;
6672 hash_entry_size
6673 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6674 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6675 + (bucket + 2) * hash_entry_size);
6676 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6677 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6678 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6679 ((bfd_byte *) finfo->hash_sec->contents
6680 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6681
6682 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6683 {
6684 Elf_Internal_Versym iversym;
6685 Elf_External_Versym *eversym;
6686
6687 if (!h->def_regular)
6688 {
6689 if (h->verinfo.verdef == NULL)
6690 iversym.vs_vers = 0;
6691 else
6692 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6693 }
6694 else
6695 {
6696 if (h->verinfo.vertree == NULL)
6697 iversym.vs_vers = 1;
6698 else
6699 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6700 if (finfo->info->create_default_symver)
6701 iversym.vs_vers++;
6702 }
6703
6704 if (h->hidden)
6705 iversym.vs_vers |= VERSYM_HIDDEN;
6706
6707 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6708 eversym += h->dynindx;
6709 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6710 }
6711 }
6712
6713 /* If we're stripping it, then it was just a dynamic symbol, and
6714 there's nothing else to do. */
6715 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6716 return TRUE;
6717
6718 h->indx = bfd_get_symcount (finfo->output_bfd);
6719
6720 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6721 {
6722 eoinfo->failed = TRUE;
6723 return FALSE;
6724 }
6725
6726 return TRUE;
6727 }
6728
6729 /* Return TRUE if special handling is done for relocs in SEC against
6730 symbols defined in discarded sections. */
6731
6732 static bfd_boolean
6733 elf_section_ignore_discarded_relocs (asection *sec)
6734 {
6735 const struct elf_backend_data *bed;
6736
6737 switch (sec->sec_info_type)
6738 {
6739 case ELF_INFO_TYPE_STABS:
6740 case ELF_INFO_TYPE_EH_FRAME:
6741 return TRUE;
6742 default:
6743 break;
6744 }
6745
6746 bed = get_elf_backend_data (sec->owner);
6747 if (bed->elf_backend_ignore_discarded_relocs != NULL
6748 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6749 return TRUE;
6750
6751 return FALSE;
6752 }
6753
6754 /* Return a mask saying how ld should treat relocations in SEC against
6755 symbols defined in discarded sections. If this function returns
6756 COMPLAIN set, ld will issue a warning message. If this function
6757 returns PRETEND set, and the discarded section was link-once and the
6758 same size as the kept link-once section, ld will pretend that the
6759 symbol was actually defined in the kept section. Otherwise ld will
6760 zero the reloc (at least that is the intent, but some cooperation by
6761 the target dependent code is needed, particularly for REL targets). */
6762
6763 unsigned int
6764 _bfd_elf_default_action_discarded (asection *sec)
6765 {
6766 if (sec->flags & SEC_DEBUGGING)
6767 return PRETEND;
6768
6769 if (strcmp (".eh_frame", sec->name) == 0)
6770 return 0;
6771
6772 if (strcmp (".gcc_except_table", sec->name) == 0)
6773 return 0;
6774
6775 return COMPLAIN | PRETEND;
6776 }
6777
6778 /* Find a match between a section and a member of a section group. */
6779
6780 static asection *
6781 match_group_member (asection *sec, asection *group)
6782 {
6783 asection *first = elf_next_in_group (group);
6784 asection *s = first;
6785
6786 while (s != NULL)
6787 {
6788 if (bfd_elf_match_symbols_in_sections (s, sec))
6789 return s;
6790
6791 s = elf_next_in_group (s);
6792 if (s == first)
6793 break;
6794 }
6795
6796 return NULL;
6797 }
6798
6799 /* Check if the kept section of a discarded section SEC can be used
6800 to replace it. Return the replacement if it is OK. Otherwise return
6801 NULL. */
6802
6803 asection *
6804 _bfd_elf_check_kept_section (asection *sec)
6805 {
6806 asection *kept;
6807
6808 kept = sec->kept_section;
6809 if (kept != NULL)
6810 {
6811 if (elf_sec_group (sec) != NULL)
6812 kept = match_group_member (sec, kept);
6813 if (kept != NULL && sec->size != kept->size)
6814 kept = NULL;
6815 }
6816 return kept;
6817 }
6818
6819 /* Link an input file into the linker output file. This function
6820 handles all the sections and relocations of the input file at once.
6821 This is so that we only have to read the local symbols once, and
6822 don't have to keep them in memory. */
6823
6824 static bfd_boolean
6825 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6826 {
6827 bfd_boolean (*relocate_section)
6828 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6829 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6830 bfd *output_bfd;
6831 Elf_Internal_Shdr *symtab_hdr;
6832 size_t locsymcount;
6833 size_t extsymoff;
6834 Elf_Internal_Sym *isymbuf;
6835 Elf_Internal_Sym *isym;
6836 Elf_Internal_Sym *isymend;
6837 long *pindex;
6838 asection **ppsection;
6839 asection *o;
6840 const struct elf_backend_data *bed;
6841 bfd_boolean emit_relocs;
6842 struct elf_link_hash_entry **sym_hashes;
6843
6844 output_bfd = finfo->output_bfd;
6845 bed = get_elf_backend_data (output_bfd);
6846 relocate_section = bed->elf_backend_relocate_section;
6847
6848 /* If this is a dynamic object, we don't want to do anything here:
6849 we don't want the local symbols, and we don't want the section
6850 contents. */
6851 if ((input_bfd->flags & DYNAMIC) != 0)
6852 return TRUE;
6853
6854 emit_relocs = (finfo->info->relocatable
6855 || finfo->info->emitrelocations);
6856
6857 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6858 if (elf_bad_symtab (input_bfd))
6859 {
6860 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6861 extsymoff = 0;
6862 }
6863 else
6864 {
6865 locsymcount = symtab_hdr->sh_info;
6866 extsymoff = symtab_hdr->sh_info;
6867 }
6868
6869 /* Read the local symbols. */
6870 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6871 if (isymbuf == NULL && locsymcount != 0)
6872 {
6873 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6874 finfo->internal_syms,
6875 finfo->external_syms,
6876 finfo->locsym_shndx);
6877 if (isymbuf == NULL)
6878 return FALSE;
6879 }
6880
6881 /* Find local symbol sections and adjust values of symbols in
6882 SEC_MERGE sections. Write out those local symbols we know are
6883 going into the output file. */
6884 isymend = isymbuf + locsymcount;
6885 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6886 isym < isymend;
6887 isym++, pindex++, ppsection++)
6888 {
6889 asection *isec;
6890 const char *name;
6891 Elf_Internal_Sym osym;
6892
6893 *pindex = -1;
6894
6895 if (elf_bad_symtab (input_bfd))
6896 {
6897 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6898 {
6899 *ppsection = NULL;
6900 continue;
6901 }
6902 }
6903
6904 if (isym->st_shndx == SHN_UNDEF)
6905 isec = bfd_und_section_ptr;
6906 else if (isym->st_shndx < SHN_LORESERVE
6907 || isym->st_shndx > SHN_HIRESERVE)
6908 {
6909 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6910 if (isec
6911 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6912 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6913 isym->st_value =
6914 _bfd_merged_section_offset (output_bfd, &isec,
6915 elf_section_data (isec)->sec_info,
6916 isym->st_value);
6917 }
6918 else if (isym->st_shndx == SHN_ABS)
6919 isec = bfd_abs_section_ptr;
6920 else if (isym->st_shndx == SHN_COMMON)
6921 isec = bfd_com_section_ptr;
6922 else
6923 {
6924 /* Don't attempt to output symbols with st_shnx in the
6925 reserved range other than SHN_ABS and SHN_COMMON. */
6926 *ppsection = NULL;
6927 continue;
6928 }
6929
6930 *ppsection = isec;
6931
6932 /* Don't output the first, undefined, symbol. */
6933 if (ppsection == finfo->sections)
6934 continue;
6935
6936 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6937 {
6938 /* We never output section symbols. Instead, we use the
6939 section symbol of the corresponding section in the output
6940 file. */
6941 continue;
6942 }
6943
6944 /* If we are stripping all symbols, we don't want to output this
6945 one. */
6946 if (finfo->info->strip == strip_all)
6947 continue;
6948
6949 /* If we are discarding all local symbols, we don't want to
6950 output this one. If we are generating a relocatable output
6951 file, then some of the local symbols may be required by
6952 relocs; we output them below as we discover that they are
6953 needed. */
6954 if (finfo->info->discard == discard_all)
6955 continue;
6956
6957 /* If this symbol is defined in a section which we are
6958 discarding, we don't need to keep it. */
6959 if (isym->st_shndx != SHN_UNDEF
6960 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6961 && (isec == NULL
6962 || bfd_section_removed_from_list (output_bfd,
6963 isec->output_section)))
6964 continue;
6965
6966 /* Get the name of the symbol. */
6967 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6968 isym->st_name);
6969 if (name == NULL)
6970 return FALSE;
6971
6972 /* See if we are discarding symbols with this name. */
6973 if ((finfo->info->strip == strip_some
6974 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6975 == NULL))
6976 || (((finfo->info->discard == discard_sec_merge
6977 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6978 || finfo->info->discard == discard_l)
6979 && bfd_is_local_label_name (input_bfd, name)))
6980 continue;
6981
6982 /* If we get here, we are going to output this symbol. */
6983
6984 osym = *isym;
6985
6986 /* Adjust the section index for the output file. */
6987 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6988 isec->output_section);
6989 if (osym.st_shndx == SHN_BAD)
6990 return FALSE;
6991
6992 *pindex = bfd_get_symcount (output_bfd);
6993
6994 /* ELF symbols in relocatable files are section relative, but
6995 in executable files they are virtual addresses. Note that
6996 this code assumes that all ELF sections have an associated
6997 BFD section with a reasonable value for output_offset; below
6998 we assume that they also have a reasonable value for
6999 output_section. Any special sections must be set up to meet
7000 these requirements. */
7001 osym.st_value += isec->output_offset;
7002 if (! finfo->info->relocatable)
7003 {
7004 osym.st_value += isec->output_section->vma;
7005 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
7006 {
7007 /* STT_TLS symbols are relative to PT_TLS segment base. */
7008 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
7009 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
7010 }
7011 }
7012
7013 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
7014 return FALSE;
7015 }
7016
7017 /* Relocate the contents of each section. */
7018 sym_hashes = elf_sym_hashes (input_bfd);
7019 for (o = input_bfd->sections; o != NULL; o = o->next)
7020 {
7021 bfd_byte *contents;
7022
7023 if (! o->linker_mark)
7024 {
7025 /* This section was omitted from the link. */
7026 continue;
7027 }
7028
7029 if ((o->flags & SEC_HAS_CONTENTS) == 0
7030 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
7031 continue;
7032
7033 if ((o->flags & SEC_LINKER_CREATED) != 0)
7034 {
7035 /* Section was created by _bfd_elf_link_create_dynamic_sections
7036 or somesuch. */
7037 continue;
7038 }
7039
7040 /* Get the contents of the section. They have been cached by a
7041 relaxation routine. Note that o is a section in an input
7042 file, so the contents field will not have been set by any of
7043 the routines which work on output files. */
7044 if (elf_section_data (o)->this_hdr.contents != NULL)
7045 contents = elf_section_data (o)->this_hdr.contents;
7046 else
7047 {
7048 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
7049
7050 contents = finfo->contents;
7051 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
7052 return FALSE;
7053 }
7054
7055 if ((o->flags & SEC_RELOC) != 0)
7056 {
7057 Elf_Internal_Rela *internal_relocs;
7058 bfd_vma r_type_mask;
7059 int r_sym_shift;
7060
7061 /* Get the swapped relocs. */
7062 internal_relocs
7063 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7064 finfo->internal_relocs, FALSE);
7065 if (internal_relocs == NULL
7066 && o->reloc_count > 0)
7067 return FALSE;
7068
7069 if (bed->s->arch_size == 32)
7070 {
7071 r_type_mask = 0xff;
7072 r_sym_shift = 8;
7073 }
7074 else
7075 {
7076 r_type_mask = 0xffffffff;
7077 r_sym_shift = 32;
7078 }
7079
7080 /* Run through the relocs looking for any against symbols
7081 from discarded sections and section symbols from
7082 removed link-once sections. Complain about relocs
7083 against discarded sections. Zero relocs against removed
7084 link-once sections. */
7085 if (!elf_section_ignore_discarded_relocs (o))
7086 {
7087 Elf_Internal_Rela *rel, *relend;
7088 unsigned int action = (*bed->action_discarded) (o);
7089
7090 rel = internal_relocs;
7091 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7092 for ( ; rel < relend; rel++)
7093 {
7094 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7095 asection **ps, *sec;
7096 struct elf_link_hash_entry *h = NULL;
7097 const char *sym_name;
7098
7099 if (r_symndx == STN_UNDEF)
7100 continue;
7101
7102 if (r_symndx >= locsymcount
7103 || (elf_bad_symtab (input_bfd)
7104 && finfo->sections[r_symndx] == NULL))
7105 {
7106 h = sym_hashes[r_symndx - extsymoff];
7107
7108 /* Badly formatted input files can contain relocs that
7109 reference non-existant symbols. Check here so that
7110 we do not seg fault. */
7111 if (h == NULL)
7112 {
7113 char buffer [32];
7114
7115 sprintf_vma (buffer, rel->r_info);
7116 (*_bfd_error_handler)
7117 (_("error: %B contains a reloc (0x%s) for section %A "
7118 "that references a non-existent global symbol"),
7119 input_bfd, o, buffer);
7120 bfd_set_error (bfd_error_bad_value);
7121 return FALSE;
7122 }
7123
7124 while (h->root.type == bfd_link_hash_indirect
7125 || h->root.type == bfd_link_hash_warning)
7126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7127
7128 if (h->root.type != bfd_link_hash_defined
7129 && h->root.type != bfd_link_hash_defweak)
7130 continue;
7131
7132 ps = &h->root.u.def.section;
7133 sym_name = h->root.root.string;
7134 }
7135 else
7136 {
7137 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7138 ps = &finfo->sections[r_symndx];
7139 sym_name = bfd_elf_sym_name (input_bfd,
7140 symtab_hdr,
7141 sym, *ps);
7142 }
7143
7144 /* Complain if the definition comes from a
7145 discarded section. */
7146 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7147 {
7148 BFD_ASSERT (r_symndx != 0);
7149 if (action & COMPLAIN)
7150 (*finfo->info->callbacks->einfo)
7151 (_("%X`%s' referenced in section `%A' of %B: "
7152 "defined in discarded section `%A' of %B\n"),
7153 sym_name, o, input_bfd, sec, sec->owner);
7154
7155 /* Try to do the best we can to support buggy old
7156 versions of gcc. Pretend that the symbol is
7157 really defined in the kept linkonce section.
7158 FIXME: This is quite broken. Modifying the
7159 symbol here means we will be changing all later
7160 uses of the symbol, not just in this section. */
7161 if (action & PRETEND)
7162 {
7163 asection *kept;
7164
7165 kept = _bfd_elf_check_kept_section (sec);
7166 if (kept != NULL)
7167 {
7168 *ps = kept;
7169 continue;
7170 }
7171 }
7172
7173 /* Remove the symbol reference from the reloc, but
7174 don't kill the reloc completely. This is so that
7175 a zero value will be written into the section,
7176 which may have non-zero contents put there by the
7177 assembler. Zero in things like an eh_frame fde
7178 pc_begin allows stack unwinders to recognize the
7179 fde as bogus. */
7180 rel->r_info &= r_type_mask;
7181 rel->r_addend = 0;
7182 }
7183 }
7184 }
7185
7186 /* Relocate the section by invoking a back end routine.
7187
7188 The back end routine is responsible for adjusting the
7189 section contents as necessary, and (if using Rela relocs
7190 and generating a relocatable output file) adjusting the
7191 reloc addend as necessary.
7192
7193 The back end routine does not have to worry about setting
7194 the reloc address or the reloc symbol index.
7195
7196 The back end routine is given a pointer to the swapped in
7197 internal symbols, and can access the hash table entries
7198 for the external symbols via elf_sym_hashes (input_bfd).
7199
7200 When generating relocatable output, the back end routine
7201 must handle STB_LOCAL/STT_SECTION symbols specially. The
7202 output symbol is going to be a section symbol
7203 corresponding to the output section, which will require
7204 the addend to be adjusted. */
7205
7206 if (! (*relocate_section) (output_bfd, finfo->info,
7207 input_bfd, o, contents,
7208 internal_relocs,
7209 isymbuf,
7210 finfo->sections))
7211 return FALSE;
7212
7213 if (emit_relocs)
7214 {
7215 Elf_Internal_Rela *irela;
7216 Elf_Internal_Rela *irelaend;
7217 bfd_vma last_offset;
7218 struct elf_link_hash_entry **rel_hash;
7219 struct elf_link_hash_entry **rel_hash_list;
7220 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7221 unsigned int next_erel;
7222 bfd_boolean rela_normal;
7223
7224 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7225 rela_normal = (bed->rela_normal
7226 && (input_rel_hdr->sh_entsize
7227 == bed->s->sizeof_rela));
7228
7229 /* Adjust the reloc addresses and symbol indices. */
7230
7231 irela = internal_relocs;
7232 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7233 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7234 + elf_section_data (o->output_section)->rel_count
7235 + elf_section_data (o->output_section)->rel_count2);
7236 rel_hash_list = rel_hash;
7237 last_offset = o->output_offset;
7238 if (!finfo->info->relocatable)
7239 last_offset += o->output_section->vma;
7240 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7241 {
7242 unsigned long r_symndx;
7243 asection *sec;
7244 Elf_Internal_Sym sym;
7245
7246 if (next_erel == bed->s->int_rels_per_ext_rel)
7247 {
7248 rel_hash++;
7249 next_erel = 0;
7250 }
7251
7252 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7253 finfo->info, o,
7254 irela->r_offset);
7255 if (irela->r_offset >= (bfd_vma) -2)
7256 {
7257 /* This is a reloc for a deleted entry or somesuch.
7258 Turn it into an R_*_NONE reloc, at the same
7259 offset as the last reloc. elf_eh_frame.c and
7260 bfd_elf_discard_info rely on reloc offsets
7261 being ordered. */
7262 irela->r_offset = last_offset;
7263 irela->r_info = 0;
7264 irela->r_addend = 0;
7265 continue;
7266 }
7267
7268 irela->r_offset += o->output_offset;
7269
7270 /* Relocs in an executable have to be virtual addresses. */
7271 if (!finfo->info->relocatable)
7272 irela->r_offset += o->output_section->vma;
7273
7274 last_offset = irela->r_offset;
7275
7276 r_symndx = irela->r_info >> r_sym_shift;
7277 if (r_symndx == STN_UNDEF)
7278 continue;
7279
7280 if (r_symndx >= locsymcount
7281 || (elf_bad_symtab (input_bfd)
7282 && finfo->sections[r_symndx] == NULL))
7283 {
7284 struct elf_link_hash_entry *rh;
7285 unsigned long indx;
7286
7287 /* This is a reloc against a global symbol. We
7288 have not yet output all the local symbols, so
7289 we do not know the symbol index of any global
7290 symbol. We set the rel_hash entry for this
7291 reloc to point to the global hash table entry
7292 for this symbol. The symbol index is then
7293 set at the end of bfd_elf_final_link. */
7294 indx = r_symndx - extsymoff;
7295 rh = elf_sym_hashes (input_bfd)[indx];
7296 while (rh->root.type == bfd_link_hash_indirect
7297 || rh->root.type == bfd_link_hash_warning)
7298 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7299
7300 /* Setting the index to -2 tells
7301 elf_link_output_extsym that this symbol is
7302 used by a reloc. */
7303 BFD_ASSERT (rh->indx < 0);
7304 rh->indx = -2;
7305
7306 *rel_hash = rh;
7307
7308 continue;
7309 }
7310
7311 /* This is a reloc against a local symbol. */
7312
7313 *rel_hash = NULL;
7314 sym = isymbuf[r_symndx];
7315 sec = finfo->sections[r_symndx];
7316 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7317 {
7318 /* I suppose the backend ought to fill in the
7319 section of any STT_SECTION symbol against a
7320 processor specific section. */
7321 r_symndx = 0;
7322 if (bfd_is_abs_section (sec))
7323 ;
7324 else if (sec == NULL || sec->owner == NULL)
7325 {
7326 bfd_set_error (bfd_error_bad_value);
7327 return FALSE;
7328 }
7329 else
7330 {
7331 asection *osec = sec->output_section;
7332
7333 /* If we have discarded a section, the output
7334 section will be the absolute section. In
7335 case of discarded link-once and discarded
7336 SEC_MERGE sections, use the kept section. */
7337 if (bfd_is_abs_section (osec)
7338 && sec->kept_section != NULL
7339 && sec->kept_section->output_section != NULL)
7340 {
7341 osec = sec->kept_section->output_section;
7342 irela->r_addend -= osec->vma;
7343 }
7344
7345 if (!bfd_is_abs_section (osec))
7346 {
7347 r_symndx = osec->target_index;
7348 BFD_ASSERT (r_symndx != 0);
7349 }
7350 }
7351
7352 /* Adjust the addend according to where the
7353 section winds up in the output section. */
7354 if (rela_normal)
7355 irela->r_addend += sec->output_offset;
7356 }
7357 else
7358 {
7359 if (finfo->indices[r_symndx] == -1)
7360 {
7361 unsigned long shlink;
7362 const char *name;
7363 asection *osec;
7364
7365 if (finfo->info->strip == strip_all)
7366 {
7367 /* You can't do ld -r -s. */
7368 bfd_set_error (bfd_error_invalid_operation);
7369 return FALSE;
7370 }
7371
7372 /* This symbol was skipped earlier, but
7373 since it is needed by a reloc, we
7374 must output it now. */
7375 shlink = symtab_hdr->sh_link;
7376 name = (bfd_elf_string_from_elf_section
7377 (input_bfd, shlink, sym.st_name));
7378 if (name == NULL)
7379 return FALSE;
7380
7381 osec = sec->output_section;
7382 sym.st_shndx =
7383 _bfd_elf_section_from_bfd_section (output_bfd,
7384 osec);
7385 if (sym.st_shndx == SHN_BAD)
7386 return FALSE;
7387
7388 sym.st_value += sec->output_offset;
7389 if (! finfo->info->relocatable)
7390 {
7391 sym.st_value += osec->vma;
7392 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7393 {
7394 /* STT_TLS symbols are relative to PT_TLS
7395 segment base. */
7396 BFD_ASSERT (elf_hash_table (finfo->info)
7397 ->tls_sec != NULL);
7398 sym.st_value -= (elf_hash_table (finfo->info)
7399 ->tls_sec->vma);
7400 }
7401 }
7402
7403 finfo->indices[r_symndx]
7404 = bfd_get_symcount (output_bfd);
7405
7406 if (! elf_link_output_sym (finfo, name, &sym, sec,
7407 NULL))
7408 return FALSE;
7409 }
7410
7411 r_symndx = finfo->indices[r_symndx];
7412 }
7413
7414 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7415 | (irela->r_info & r_type_mask));
7416 }
7417
7418 /* Swap out the relocs. */
7419 if (input_rel_hdr->sh_size != 0
7420 && !bed->elf_backend_emit_relocs (output_bfd, o,
7421 input_rel_hdr,
7422 internal_relocs,
7423 rel_hash_list))
7424 return FALSE;
7425
7426 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7427 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7428 {
7429 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7430 * bed->s->int_rels_per_ext_rel);
7431 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7432 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7433 input_rel_hdr2,
7434 internal_relocs,
7435 rel_hash_list))
7436 return FALSE;
7437 }
7438 }
7439 }
7440
7441 /* Write out the modified section contents. */
7442 if (bed->elf_backend_write_section
7443 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7444 {
7445 /* Section written out. */
7446 }
7447 else switch (o->sec_info_type)
7448 {
7449 case ELF_INFO_TYPE_STABS:
7450 if (! (_bfd_write_section_stabs
7451 (output_bfd,
7452 &elf_hash_table (finfo->info)->stab_info,
7453 o, &elf_section_data (o)->sec_info, contents)))
7454 return FALSE;
7455 break;
7456 case ELF_INFO_TYPE_MERGE:
7457 if (! _bfd_write_merged_section (output_bfd, o,
7458 elf_section_data (o)->sec_info))
7459 return FALSE;
7460 break;
7461 case ELF_INFO_TYPE_EH_FRAME:
7462 {
7463 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7464 o, contents))
7465 return FALSE;
7466 }
7467 break;
7468 default:
7469 {
7470 if (! (o->flags & SEC_EXCLUDE)
7471 && ! bfd_set_section_contents (output_bfd, o->output_section,
7472 contents,
7473 (file_ptr) o->output_offset,
7474 o->size))
7475 return FALSE;
7476 }
7477 break;
7478 }
7479 }
7480
7481 return TRUE;
7482 }
7483
7484 /* Generate a reloc when linking an ELF file. This is a reloc
7485 requested by the linker, and does not come from any input file. This
7486 is used to build constructor and destructor tables when linking
7487 with -Ur. */
7488
7489 static bfd_boolean
7490 elf_reloc_link_order (bfd *output_bfd,
7491 struct bfd_link_info *info,
7492 asection *output_section,
7493 struct bfd_link_order *link_order)
7494 {
7495 reloc_howto_type *howto;
7496 long indx;
7497 bfd_vma offset;
7498 bfd_vma addend;
7499 struct elf_link_hash_entry **rel_hash_ptr;
7500 Elf_Internal_Shdr *rel_hdr;
7501 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7502 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7503 bfd_byte *erel;
7504 unsigned int i;
7505
7506 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7507 if (howto == NULL)
7508 {
7509 bfd_set_error (bfd_error_bad_value);
7510 return FALSE;
7511 }
7512
7513 addend = link_order->u.reloc.p->addend;
7514
7515 /* Figure out the symbol index. */
7516 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7517 + elf_section_data (output_section)->rel_count
7518 + elf_section_data (output_section)->rel_count2);
7519 if (link_order->type == bfd_section_reloc_link_order)
7520 {
7521 indx = link_order->u.reloc.p->u.section->target_index;
7522 BFD_ASSERT (indx != 0);
7523 *rel_hash_ptr = NULL;
7524 }
7525 else
7526 {
7527 struct elf_link_hash_entry *h;
7528
7529 /* Treat a reloc against a defined symbol as though it were
7530 actually against the section. */
7531 h = ((struct elf_link_hash_entry *)
7532 bfd_wrapped_link_hash_lookup (output_bfd, info,
7533 link_order->u.reloc.p->u.name,
7534 FALSE, FALSE, TRUE));
7535 if (h != NULL
7536 && (h->root.type == bfd_link_hash_defined
7537 || h->root.type == bfd_link_hash_defweak))
7538 {
7539 asection *section;
7540
7541 section = h->root.u.def.section;
7542 indx = section->output_section->target_index;
7543 *rel_hash_ptr = NULL;
7544 /* It seems that we ought to add the symbol value to the
7545 addend here, but in practice it has already been added
7546 because it was passed to constructor_callback. */
7547 addend += section->output_section->vma + section->output_offset;
7548 }
7549 else if (h != NULL)
7550 {
7551 /* Setting the index to -2 tells elf_link_output_extsym that
7552 this symbol is used by a reloc. */
7553 h->indx = -2;
7554 *rel_hash_ptr = h;
7555 indx = 0;
7556 }
7557 else
7558 {
7559 if (! ((*info->callbacks->unattached_reloc)
7560 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7561 return FALSE;
7562 indx = 0;
7563 }
7564 }
7565
7566 /* If this is an inplace reloc, we must write the addend into the
7567 object file. */
7568 if (howto->partial_inplace && addend != 0)
7569 {
7570 bfd_size_type size;
7571 bfd_reloc_status_type rstat;
7572 bfd_byte *buf;
7573 bfd_boolean ok;
7574 const char *sym_name;
7575
7576 size = bfd_get_reloc_size (howto);
7577 buf = bfd_zmalloc (size);
7578 if (buf == NULL)
7579 return FALSE;
7580 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7581 switch (rstat)
7582 {
7583 case bfd_reloc_ok:
7584 break;
7585
7586 default:
7587 case bfd_reloc_outofrange:
7588 abort ();
7589
7590 case bfd_reloc_overflow:
7591 if (link_order->type == bfd_section_reloc_link_order)
7592 sym_name = bfd_section_name (output_bfd,
7593 link_order->u.reloc.p->u.section);
7594 else
7595 sym_name = link_order->u.reloc.p->u.name;
7596 if (! ((*info->callbacks->reloc_overflow)
7597 (info, NULL, sym_name, howto->name, addend, NULL,
7598 NULL, (bfd_vma) 0)))
7599 {
7600 free (buf);
7601 return FALSE;
7602 }
7603 break;
7604 }
7605 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7606 link_order->offset, size);
7607 free (buf);
7608 if (! ok)
7609 return FALSE;
7610 }
7611
7612 /* The address of a reloc is relative to the section in a
7613 relocatable file, and is a virtual address in an executable
7614 file. */
7615 offset = link_order->offset;
7616 if (! info->relocatable)
7617 offset += output_section->vma;
7618
7619 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7620 {
7621 irel[i].r_offset = offset;
7622 irel[i].r_info = 0;
7623 irel[i].r_addend = 0;
7624 }
7625 if (bed->s->arch_size == 32)
7626 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7627 else
7628 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7629
7630 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7631 erel = rel_hdr->contents;
7632 if (rel_hdr->sh_type == SHT_REL)
7633 {
7634 erel += (elf_section_data (output_section)->rel_count
7635 * bed->s->sizeof_rel);
7636 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7637 }
7638 else
7639 {
7640 irel[0].r_addend = addend;
7641 erel += (elf_section_data (output_section)->rel_count
7642 * bed->s->sizeof_rela);
7643 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7644 }
7645
7646 ++elf_section_data (output_section)->rel_count;
7647
7648 return TRUE;
7649 }
7650
7651
7652 /* Get the output vma of the section pointed to by the sh_link field. */
7653
7654 static bfd_vma
7655 elf_get_linked_section_vma (struct bfd_link_order *p)
7656 {
7657 Elf_Internal_Shdr **elf_shdrp;
7658 asection *s;
7659 int elfsec;
7660
7661 s = p->u.indirect.section;
7662 elf_shdrp = elf_elfsections (s->owner);
7663 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7664 elfsec = elf_shdrp[elfsec]->sh_link;
7665 /* PR 290:
7666 The Intel C compiler generates SHT_IA_64_UNWIND with
7667 SHF_LINK_ORDER. But it doesn't set the sh_link or
7668 sh_info fields. Hence we could get the situation
7669 where elfsec is 0. */
7670 if (elfsec == 0)
7671 {
7672 const struct elf_backend_data *bed
7673 = get_elf_backend_data (s->owner);
7674 if (bed->link_order_error_handler)
7675 bed->link_order_error_handler
7676 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7677 return 0;
7678 }
7679 else
7680 {
7681 s = elf_shdrp[elfsec]->bfd_section;
7682 return s->output_section->vma + s->output_offset;
7683 }
7684 }
7685
7686
7687 /* Compare two sections based on the locations of the sections they are
7688 linked to. Used by elf_fixup_link_order. */
7689
7690 static int
7691 compare_link_order (const void * a, const void * b)
7692 {
7693 bfd_vma apos;
7694 bfd_vma bpos;
7695
7696 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7697 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7698 if (apos < bpos)
7699 return -1;
7700 return apos > bpos;
7701 }
7702
7703
7704 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7705 order as their linked sections. Returns false if this could not be done
7706 because an output section includes both ordered and unordered
7707 sections. Ideally we'd do this in the linker proper. */
7708
7709 static bfd_boolean
7710 elf_fixup_link_order (bfd *abfd, asection *o)
7711 {
7712 int seen_linkorder;
7713 int seen_other;
7714 int n;
7715 struct bfd_link_order *p;
7716 bfd *sub;
7717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7718 unsigned elfsec;
7719 struct bfd_link_order **sections;
7720 asection *s, *other_sec, *linkorder_sec;
7721 bfd_vma offset;
7722
7723 other_sec = NULL;
7724 linkorder_sec = NULL;
7725 seen_other = 0;
7726 seen_linkorder = 0;
7727 for (p = o->map_head.link_order; p != NULL; p = p->next)
7728 {
7729 if (p->type == bfd_indirect_link_order)
7730 {
7731 s = p->u.indirect.section;
7732 sub = s->owner;
7733 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7734 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
7735 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
7736 && elfsec < elf_numsections (sub)
7737 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7738 {
7739 seen_linkorder++;
7740 linkorder_sec = s;
7741 }
7742 else
7743 {
7744 seen_other++;
7745 other_sec = s;
7746 }
7747 }
7748 else
7749 seen_other++;
7750
7751 if (seen_other && seen_linkorder)
7752 {
7753 if (other_sec && linkorder_sec)
7754 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
7755 o, linkorder_sec,
7756 linkorder_sec->owner, other_sec,
7757 other_sec->owner);
7758 else
7759 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7760 o);
7761 bfd_set_error (bfd_error_bad_value);
7762 return FALSE;
7763 }
7764 }
7765
7766 if (!seen_linkorder)
7767 return TRUE;
7768
7769 sections = (struct bfd_link_order **)
7770 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7771 seen_linkorder = 0;
7772
7773 for (p = o->map_head.link_order; p != NULL; p = p->next)
7774 {
7775 sections[seen_linkorder++] = p;
7776 }
7777 /* Sort the input sections in the order of their linked section. */
7778 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7779 compare_link_order);
7780
7781 /* Change the offsets of the sections. */
7782 offset = 0;
7783 for (n = 0; n < seen_linkorder; n++)
7784 {
7785 s = sections[n]->u.indirect.section;
7786 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7787 s->output_offset = offset;
7788 sections[n]->offset = offset;
7789 offset += sections[n]->size;
7790 }
7791
7792 return TRUE;
7793 }
7794
7795
7796 /* Do the final step of an ELF link. */
7797
7798 bfd_boolean
7799 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7800 {
7801 bfd_boolean dynamic;
7802 bfd_boolean emit_relocs;
7803 bfd *dynobj;
7804 struct elf_final_link_info finfo;
7805 register asection *o;
7806 register struct bfd_link_order *p;
7807 register bfd *sub;
7808 bfd_size_type max_contents_size;
7809 bfd_size_type max_external_reloc_size;
7810 bfd_size_type max_internal_reloc_count;
7811 bfd_size_type max_sym_count;
7812 bfd_size_type max_sym_shndx_count;
7813 file_ptr off;
7814 Elf_Internal_Sym elfsym;
7815 unsigned int i;
7816 Elf_Internal_Shdr *symtab_hdr;
7817 Elf_Internal_Shdr *symtab_shndx_hdr;
7818 Elf_Internal_Shdr *symstrtab_hdr;
7819 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7820 struct elf_outext_info eoinfo;
7821 bfd_boolean merged;
7822 size_t relativecount = 0;
7823 asection *reldyn = 0;
7824 bfd_size_type amt;
7825
7826 if (! is_elf_hash_table (info->hash))
7827 return FALSE;
7828
7829 if (info->shared)
7830 abfd->flags |= DYNAMIC;
7831
7832 dynamic = elf_hash_table (info)->dynamic_sections_created;
7833 dynobj = elf_hash_table (info)->dynobj;
7834
7835 emit_relocs = (info->relocatable
7836 || info->emitrelocations);
7837
7838 finfo.info = info;
7839 finfo.output_bfd = abfd;
7840 finfo.symstrtab = _bfd_elf_stringtab_init ();
7841 if (finfo.symstrtab == NULL)
7842 return FALSE;
7843
7844 if (! dynamic)
7845 {
7846 finfo.dynsym_sec = NULL;
7847 finfo.hash_sec = NULL;
7848 finfo.symver_sec = NULL;
7849 }
7850 else
7851 {
7852 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7853 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7854 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7855 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7856 /* Note that it is OK if symver_sec is NULL. */
7857 }
7858
7859 finfo.contents = NULL;
7860 finfo.external_relocs = NULL;
7861 finfo.internal_relocs = NULL;
7862 finfo.external_syms = NULL;
7863 finfo.locsym_shndx = NULL;
7864 finfo.internal_syms = NULL;
7865 finfo.indices = NULL;
7866 finfo.sections = NULL;
7867 finfo.symbuf = NULL;
7868 finfo.symshndxbuf = NULL;
7869 finfo.symbuf_count = 0;
7870 finfo.shndxbuf_size = 0;
7871
7872 /* Count up the number of relocations we will output for each output
7873 section, so that we know the sizes of the reloc sections. We
7874 also figure out some maximum sizes. */
7875 max_contents_size = 0;
7876 max_external_reloc_size = 0;
7877 max_internal_reloc_count = 0;
7878 max_sym_count = 0;
7879 max_sym_shndx_count = 0;
7880 merged = FALSE;
7881 for (o = abfd->sections; o != NULL; o = o->next)
7882 {
7883 struct bfd_elf_section_data *esdo = elf_section_data (o);
7884 o->reloc_count = 0;
7885
7886 for (p = o->map_head.link_order; p != NULL; p = p->next)
7887 {
7888 unsigned int reloc_count = 0;
7889 struct bfd_elf_section_data *esdi = NULL;
7890 unsigned int *rel_count1;
7891
7892 if (p->type == bfd_section_reloc_link_order
7893 || p->type == bfd_symbol_reloc_link_order)
7894 reloc_count = 1;
7895 else if (p->type == bfd_indirect_link_order)
7896 {
7897 asection *sec;
7898
7899 sec = p->u.indirect.section;
7900 esdi = elf_section_data (sec);
7901
7902 /* Mark all sections which are to be included in the
7903 link. This will normally be every section. We need
7904 to do this so that we can identify any sections which
7905 the linker has decided to not include. */
7906 sec->linker_mark = TRUE;
7907
7908 if (sec->flags & SEC_MERGE)
7909 merged = TRUE;
7910
7911 if (info->relocatable || info->emitrelocations)
7912 reloc_count = sec->reloc_count;
7913 else if (bed->elf_backend_count_relocs)
7914 {
7915 Elf_Internal_Rela * relocs;
7916
7917 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7918 info->keep_memory);
7919
7920 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7921
7922 if (elf_section_data (o)->relocs != relocs)
7923 free (relocs);
7924 }
7925
7926 if (sec->rawsize > max_contents_size)
7927 max_contents_size = sec->rawsize;
7928 if (sec->size > max_contents_size)
7929 max_contents_size = sec->size;
7930
7931 /* We are interested in just local symbols, not all
7932 symbols. */
7933 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7934 && (sec->owner->flags & DYNAMIC) == 0)
7935 {
7936 size_t sym_count;
7937
7938 if (elf_bad_symtab (sec->owner))
7939 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7940 / bed->s->sizeof_sym);
7941 else
7942 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7943
7944 if (sym_count > max_sym_count)
7945 max_sym_count = sym_count;
7946
7947 if (sym_count > max_sym_shndx_count
7948 && elf_symtab_shndx (sec->owner) != 0)
7949 max_sym_shndx_count = sym_count;
7950
7951 if ((sec->flags & SEC_RELOC) != 0)
7952 {
7953 size_t ext_size;
7954
7955 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7956 if (ext_size > max_external_reloc_size)
7957 max_external_reloc_size = ext_size;
7958 if (sec->reloc_count > max_internal_reloc_count)
7959 max_internal_reloc_count = sec->reloc_count;
7960 }
7961 }
7962 }
7963
7964 if (reloc_count == 0)
7965 continue;
7966
7967 o->reloc_count += reloc_count;
7968
7969 /* MIPS may have a mix of REL and RELA relocs on sections.
7970 To support this curious ABI we keep reloc counts in
7971 elf_section_data too. We must be careful to add the
7972 relocations from the input section to the right output
7973 count. FIXME: Get rid of one count. We have
7974 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7975 rel_count1 = &esdo->rel_count;
7976 if (esdi != NULL)
7977 {
7978 bfd_boolean same_size;
7979 bfd_size_type entsize1;
7980
7981 entsize1 = esdi->rel_hdr.sh_entsize;
7982 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7983 || entsize1 == bed->s->sizeof_rela);
7984 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7985
7986 if (!same_size)
7987 rel_count1 = &esdo->rel_count2;
7988
7989 if (esdi->rel_hdr2 != NULL)
7990 {
7991 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7992 unsigned int alt_count;
7993 unsigned int *rel_count2;
7994
7995 BFD_ASSERT (entsize2 != entsize1
7996 && (entsize2 == bed->s->sizeof_rel
7997 || entsize2 == bed->s->sizeof_rela));
7998
7999 rel_count2 = &esdo->rel_count2;
8000 if (!same_size)
8001 rel_count2 = &esdo->rel_count;
8002
8003 /* The following is probably too simplistic if the
8004 backend counts output relocs unusually. */
8005 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
8006 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
8007 *rel_count2 += alt_count;
8008 reloc_count -= alt_count;
8009 }
8010 }
8011 *rel_count1 += reloc_count;
8012 }
8013
8014 if (o->reloc_count > 0)
8015 o->flags |= SEC_RELOC;
8016 else
8017 {
8018 /* Explicitly clear the SEC_RELOC flag. The linker tends to
8019 set it (this is probably a bug) and if it is set
8020 assign_section_numbers will create a reloc section. */
8021 o->flags &=~ SEC_RELOC;
8022 }
8023
8024 /* If the SEC_ALLOC flag is not set, force the section VMA to
8025 zero. This is done in elf_fake_sections as well, but forcing
8026 the VMA to 0 here will ensure that relocs against these
8027 sections are handled correctly. */
8028 if ((o->flags & SEC_ALLOC) == 0
8029 && ! o->user_set_vma)
8030 o->vma = 0;
8031 }
8032
8033 if (! info->relocatable && merged)
8034 elf_link_hash_traverse (elf_hash_table (info),
8035 _bfd_elf_link_sec_merge_syms, abfd);
8036
8037 /* Figure out the file positions for everything but the symbol table
8038 and the relocs. We set symcount to force assign_section_numbers
8039 to create a symbol table. */
8040 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
8041 BFD_ASSERT (! abfd->output_has_begun);
8042 if (! _bfd_elf_compute_section_file_positions (abfd, info))
8043 goto error_return;
8044
8045 /* Set sizes, and assign file positions for reloc sections. */
8046 for (o = abfd->sections; o != NULL; o = o->next)
8047 {
8048 if ((o->flags & SEC_RELOC) != 0)
8049 {
8050 if (!(_bfd_elf_link_size_reloc_section
8051 (abfd, &elf_section_data (o)->rel_hdr, o)))
8052 goto error_return;
8053
8054 if (elf_section_data (o)->rel_hdr2
8055 && !(_bfd_elf_link_size_reloc_section
8056 (abfd, elf_section_data (o)->rel_hdr2, o)))
8057 goto error_return;
8058 }
8059
8060 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
8061 to count upwards while actually outputting the relocations. */
8062 elf_section_data (o)->rel_count = 0;
8063 elf_section_data (o)->rel_count2 = 0;
8064 }
8065
8066 _bfd_elf_assign_file_positions_for_relocs (abfd);
8067
8068 /* We have now assigned file positions for all the sections except
8069 .symtab and .strtab. We start the .symtab section at the current
8070 file position, and write directly to it. We build the .strtab
8071 section in memory. */
8072 bfd_get_symcount (abfd) = 0;
8073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8074 /* sh_name is set in prep_headers. */
8075 symtab_hdr->sh_type = SHT_SYMTAB;
8076 /* sh_flags, sh_addr and sh_size all start off zero. */
8077 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8078 /* sh_link is set in assign_section_numbers. */
8079 /* sh_info is set below. */
8080 /* sh_offset is set just below. */
8081 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8082
8083 off = elf_tdata (abfd)->next_file_pos;
8084 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8085
8086 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8087 incorrect. We do not yet know the size of the .symtab section.
8088 We correct next_file_pos below, after we do know the size. */
8089
8090 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8091 continuously seeking to the right position in the file. */
8092 if (! info->keep_memory || max_sym_count < 20)
8093 finfo.symbuf_size = 20;
8094 else
8095 finfo.symbuf_size = max_sym_count;
8096 amt = finfo.symbuf_size;
8097 amt *= bed->s->sizeof_sym;
8098 finfo.symbuf = bfd_malloc (amt);
8099 if (finfo.symbuf == NULL)
8100 goto error_return;
8101 if (elf_numsections (abfd) > SHN_LORESERVE)
8102 {
8103 /* Wild guess at number of output symbols. realloc'd as needed. */
8104 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8105 finfo.shndxbuf_size = amt;
8106 amt *= sizeof (Elf_External_Sym_Shndx);
8107 finfo.symshndxbuf = bfd_zmalloc (amt);
8108 if (finfo.symshndxbuf == NULL)
8109 goto error_return;
8110 }
8111
8112 /* Start writing out the symbol table. The first symbol is always a
8113 dummy symbol. */
8114 if (info->strip != strip_all
8115 || emit_relocs)
8116 {
8117 elfsym.st_value = 0;
8118 elfsym.st_size = 0;
8119 elfsym.st_info = 0;
8120 elfsym.st_other = 0;
8121 elfsym.st_shndx = SHN_UNDEF;
8122 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8123 NULL))
8124 goto error_return;
8125 }
8126
8127 /* Output a symbol for each section. We output these even if we are
8128 discarding local symbols, since they are used for relocs. These
8129 symbols have no names. We store the index of each one in the
8130 index field of the section, so that we can find it again when
8131 outputting relocs. */
8132 if (info->strip != strip_all
8133 || emit_relocs)
8134 {
8135 elfsym.st_size = 0;
8136 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8137 elfsym.st_other = 0;
8138 elfsym.st_value = 0;
8139 for (i = 1; i < elf_numsections (abfd); i++)
8140 {
8141 o = bfd_section_from_elf_index (abfd, i);
8142 if (o != NULL)
8143 {
8144 o->target_index = bfd_get_symcount (abfd);
8145 elfsym.st_shndx = i;
8146 if (!info->relocatable)
8147 elfsym.st_value = o->vma;
8148 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8149 goto error_return;
8150 }
8151 if (i == SHN_LORESERVE - 1)
8152 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8153 }
8154 }
8155
8156 /* Allocate some memory to hold information read in from the input
8157 files. */
8158 if (max_contents_size != 0)
8159 {
8160 finfo.contents = bfd_malloc (max_contents_size);
8161 if (finfo.contents == NULL)
8162 goto error_return;
8163 }
8164
8165 if (max_external_reloc_size != 0)
8166 {
8167 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8168 if (finfo.external_relocs == NULL)
8169 goto error_return;
8170 }
8171
8172 if (max_internal_reloc_count != 0)
8173 {
8174 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8175 amt *= sizeof (Elf_Internal_Rela);
8176 finfo.internal_relocs = bfd_malloc (amt);
8177 if (finfo.internal_relocs == NULL)
8178 goto error_return;
8179 }
8180
8181 if (max_sym_count != 0)
8182 {
8183 amt = max_sym_count * bed->s->sizeof_sym;
8184 finfo.external_syms = bfd_malloc (amt);
8185 if (finfo.external_syms == NULL)
8186 goto error_return;
8187
8188 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8189 finfo.internal_syms = bfd_malloc (amt);
8190 if (finfo.internal_syms == NULL)
8191 goto error_return;
8192
8193 amt = max_sym_count * sizeof (long);
8194 finfo.indices = bfd_malloc (amt);
8195 if (finfo.indices == NULL)
8196 goto error_return;
8197
8198 amt = max_sym_count * sizeof (asection *);
8199 finfo.sections = bfd_malloc (amt);
8200 if (finfo.sections == NULL)
8201 goto error_return;
8202 }
8203
8204 if (max_sym_shndx_count != 0)
8205 {
8206 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8207 finfo.locsym_shndx = bfd_malloc (amt);
8208 if (finfo.locsym_shndx == NULL)
8209 goto error_return;
8210 }
8211
8212 if (elf_hash_table (info)->tls_sec)
8213 {
8214 bfd_vma base, end = 0;
8215 asection *sec;
8216
8217 for (sec = elf_hash_table (info)->tls_sec;
8218 sec && (sec->flags & SEC_THREAD_LOCAL);
8219 sec = sec->next)
8220 {
8221 bfd_size_type size = sec->size;
8222
8223 if (size == 0
8224 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8225 {
8226 struct bfd_link_order *o = sec->map_tail.link_order;
8227 if (o != NULL)
8228 size = o->offset + o->size;
8229 }
8230 end = sec->vma + size;
8231 }
8232 base = elf_hash_table (info)->tls_sec->vma;
8233 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8234 elf_hash_table (info)->tls_size = end - base;
8235 }
8236
8237 /* Reorder SHF_LINK_ORDER sections. */
8238 for (o = abfd->sections; o != NULL; o = o->next)
8239 {
8240 if (!elf_fixup_link_order (abfd, o))
8241 return FALSE;
8242 }
8243
8244 /* Since ELF permits relocations to be against local symbols, we
8245 must have the local symbols available when we do the relocations.
8246 Since we would rather only read the local symbols once, and we
8247 would rather not keep them in memory, we handle all the
8248 relocations for a single input file at the same time.
8249
8250 Unfortunately, there is no way to know the total number of local
8251 symbols until we have seen all of them, and the local symbol
8252 indices precede the global symbol indices. This means that when
8253 we are generating relocatable output, and we see a reloc against
8254 a global symbol, we can not know the symbol index until we have
8255 finished examining all the local symbols to see which ones we are
8256 going to output. To deal with this, we keep the relocations in
8257 memory, and don't output them until the end of the link. This is
8258 an unfortunate waste of memory, but I don't see a good way around
8259 it. Fortunately, it only happens when performing a relocatable
8260 link, which is not the common case. FIXME: If keep_memory is set
8261 we could write the relocs out and then read them again; I don't
8262 know how bad the memory loss will be. */
8263
8264 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8265 sub->output_has_begun = FALSE;
8266 for (o = abfd->sections; o != NULL; o = o->next)
8267 {
8268 for (p = o->map_head.link_order; p != NULL; p = p->next)
8269 {
8270 if (p->type == bfd_indirect_link_order
8271 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8272 == bfd_target_elf_flavour)
8273 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8274 {
8275 if (! sub->output_has_begun)
8276 {
8277 if (! elf_link_input_bfd (&finfo, sub))
8278 goto error_return;
8279 sub->output_has_begun = TRUE;
8280 }
8281 }
8282 else if (p->type == bfd_section_reloc_link_order
8283 || p->type == bfd_symbol_reloc_link_order)
8284 {
8285 if (! elf_reloc_link_order (abfd, info, o, p))
8286 goto error_return;
8287 }
8288 else
8289 {
8290 if (! _bfd_default_link_order (abfd, info, o, p))
8291 goto error_return;
8292 }
8293 }
8294 }
8295
8296 /* Output any global symbols that got converted to local in a
8297 version script or due to symbol visibility. We do this in a
8298 separate step since ELF requires all local symbols to appear
8299 prior to any global symbols. FIXME: We should only do this if
8300 some global symbols were, in fact, converted to become local.
8301 FIXME: Will this work correctly with the Irix 5 linker? */
8302 eoinfo.failed = FALSE;
8303 eoinfo.finfo = &finfo;
8304 eoinfo.localsyms = TRUE;
8305 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8306 &eoinfo);
8307 if (eoinfo.failed)
8308 return FALSE;
8309
8310 /* If backend needs to output some local symbols not present in the hash
8311 table, do it now. */
8312 if (bed->elf_backend_output_arch_local_syms)
8313 {
8314 typedef bfd_boolean (*out_sym_func)
8315 (void *, const char *, Elf_Internal_Sym *, asection *,
8316 struct elf_link_hash_entry *);
8317
8318 if (! ((*bed->elf_backend_output_arch_local_syms)
8319 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8320 return FALSE;
8321 }
8322
8323 /* That wrote out all the local symbols. Finish up the symbol table
8324 with the global symbols. Even if we want to strip everything we
8325 can, we still need to deal with those global symbols that got
8326 converted to local in a version script. */
8327
8328 /* The sh_info field records the index of the first non local symbol. */
8329 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8330
8331 if (dynamic
8332 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8333 {
8334 Elf_Internal_Sym sym;
8335 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8336 long last_local = 0;
8337
8338 /* Write out the section symbols for the output sections. */
8339 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8340 {
8341 asection *s;
8342
8343 sym.st_size = 0;
8344 sym.st_name = 0;
8345 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8346 sym.st_other = 0;
8347
8348 for (s = abfd->sections; s != NULL; s = s->next)
8349 {
8350 int indx;
8351 bfd_byte *dest;
8352 long dynindx;
8353
8354 dynindx = elf_section_data (s)->dynindx;
8355 if (dynindx <= 0)
8356 continue;
8357 indx = elf_section_data (s)->this_idx;
8358 BFD_ASSERT (indx > 0);
8359 sym.st_shndx = indx;
8360 if (! check_dynsym (abfd, &sym))
8361 return FALSE;
8362 sym.st_value = s->vma;
8363 dest = dynsym + dynindx * bed->s->sizeof_sym;
8364 if (last_local < dynindx)
8365 last_local = dynindx;
8366 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8367 }
8368 }
8369
8370 /* Write out the local dynsyms. */
8371 if (elf_hash_table (info)->dynlocal)
8372 {
8373 struct elf_link_local_dynamic_entry *e;
8374 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8375 {
8376 asection *s;
8377 bfd_byte *dest;
8378
8379 sym.st_size = e->isym.st_size;
8380 sym.st_other = e->isym.st_other;
8381
8382 /* Copy the internal symbol as is.
8383 Note that we saved a word of storage and overwrote
8384 the original st_name with the dynstr_index. */
8385 sym = e->isym;
8386
8387 if (e->isym.st_shndx != SHN_UNDEF
8388 && (e->isym.st_shndx < SHN_LORESERVE
8389 || e->isym.st_shndx > SHN_HIRESERVE))
8390 {
8391 s = bfd_section_from_elf_index (e->input_bfd,
8392 e->isym.st_shndx);
8393
8394 sym.st_shndx =
8395 elf_section_data (s->output_section)->this_idx;
8396 if (! check_dynsym (abfd, &sym))
8397 return FALSE;
8398 sym.st_value = (s->output_section->vma
8399 + s->output_offset
8400 + e->isym.st_value);
8401 }
8402
8403 if (last_local < e->dynindx)
8404 last_local = e->dynindx;
8405
8406 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8407 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8408 }
8409 }
8410
8411 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8412 last_local + 1;
8413 }
8414
8415 /* We get the global symbols from the hash table. */
8416 eoinfo.failed = FALSE;
8417 eoinfo.localsyms = FALSE;
8418 eoinfo.finfo = &finfo;
8419 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8420 &eoinfo);
8421 if (eoinfo.failed)
8422 return FALSE;
8423
8424 /* If backend needs to output some symbols not present in the hash
8425 table, do it now. */
8426 if (bed->elf_backend_output_arch_syms)
8427 {
8428 typedef bfd_boolean (*out_sym_func)
8429 (void *, const char *, Elf_Internal_Sym *, asection *,
8430 struct elf_link_hash_entry *);
8431
8432 if (! ((*bed->elf_backend_output_arch_syms)
8433 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8434 return FALSE;
8435 }
8436
8437 /* Flush all symbols to the file. */
8438 if (! elf_link_flush_output_syms (&finfo, bed))
8439 return FALSE;
8440
8441 /* Now we know the size of the symtab section. */
8442 off += symtab_hdr->sh_size;
8443
8444 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8445 if (symtab_shndx_hdr->sh_name != 0)
8446 {
8447 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8448 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8449 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8450 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8451 symtab_shndx_hdr->sh_size = amt;
8452
8453 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8454 off, TRUE);
8455
8456 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8457 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8458 return FALSE;
8459 }
8460
8461
8462 /* Finish up and write out the symbol string table (.strtab)
8463 section. */
8464 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8465 /* sh_name was set in prep_headers. */
8466 symstrtab_hdr->sh_type = SHT_STRTAB;
8467 symstrtab_hdr->sh_flags = 0;
8468 symstrtab_hdr->sh_addr = 0;
8469 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8470 symstrtab_hdr->sh_entsize = 0;
8471 symstrtab_hdr->sh_link = 0;
8472 symstrtab_hdr->sh_info = 0;
8473 /* sh_offset is set just below. */
8474 symstrtab_hdr->sh_addralign = 1;
8475
8476 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8477 elf_tdata (abfd)->next_file_pos = off;
8478
8479 if (bfd_get_symcount (abfd) > 0)
8480 {
8481 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8482 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8483 return FALSE;
8484 }
8485
8486 /* Adjust the relocs to have the correct symbol indices. */
8487 for (o = abfd->sections; o != NULL; o = o->next)
8488 {
8489 if ((o->flags & SEC_RELOC) == 0)
8490 continue;
8491
8492 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8493 elf_section_data (o)->rel_count,
8494 elf_section_data (o)->rel_hashes);
8495 if (elf_section_data (o)->rel_hdr2 != NULL)
8496 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8497 elf_section_data (o)->rel_count2,
8498 (elf_section_data (o)->rel_hashes
8499 + elf_section_data (o)->rel_count));
8500
8501 /* Set the reloc_count field to 0 to prevent write_relocs from
8502 trying to swap the relocs out itself. */
8503 o->reloc_count = 0;
8504 }
8505
8506 if (dynamic && info->combreloc && dynobj != NULL)
8507 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8508
8509 /* If we are linking against a dynamic object, or generating a
8510 shared library, finish up the dynamic linking information. */
8511 if (dynamic)
8512 {
8513 bfd_byte *dyncon, *dynconend;
8514
8515 /* Fix up .dynamic entries. */
8516 o = bfd_get_section_by_name (dynobj, ".dynamic");
8517 BFD_ASSERT (o != NULL);
8518
8519 dyncon = o->contents;
8520 dynconend = o->contents + o->size;
8521 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8522 {
8523 Elf_Internal_Dyn dyn;
8524 const char *name;
8525 unsigned int type;
8526
8527 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8528
8529 switch (dyn.d_tag)
8530 {
8531 default:
8532 continue;
8533 case DT_NULL:
8534 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8535 {
8536 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8537 {
8538 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8539 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8540 default: continue;
8541 }
8542 dyn.d_un.d_val = relativecount;
8543 relativecount = 0;
8544 break;
8545 }
8546 continue;
8547
8548 case DT_INIT:
8549 name = info->init_function;
8550 goto get_sym;
8551 case DT_FINI:
8552 name = info->fini_function;
8553 get_sym:
8554 {
8555 struct elf_link_hash_entry *h;
8556
8557 h = elf_link_hash_lookup (elf_hash_table (info), name,
8558 FALSE, FALSE, TRUE);
8559 if (h != NULL
8560 && (h->root.type == bfd_link_hash_defined
8561 || h->root.type == bfd_link_hash_defweak))
8562 {
8563 dyn.d_un.d_val = h->root.u.def.value;
8564 o = h->root.u.def.section;
8565 if (o->output_section != NULL)
8566 dyn.d_un.d_val += (o->output_section->vma
8567 + o->output_offset);
8568 else
8569 {
8570 /* The symbol is imported from another shared
8571 library and does not apply to this one. */
8572 dyn.d_un.d_val = 0;
8573 }
8574 break;
8575 }
8576 }
8577 continue;
8578
8579 case DT_PREINIT_ARRAYSZ:
8580 name = ".preinit_array";
8581 goto get_size;
8582 case DT_INIT_ARRAYSZ:
8583 name = ".init_array";
8584 goto get_size;
8585 case DT_FINI_ARRAYSZ:
8586 name = ".fini_array";
8587 get_size:
8588 o = bfd_get_section_by_name (abfd, name);
8589 if (o == NULL)
8590 {
8591 (*_bfd_error_handler)
8592 (_("%B: could not find output section %s"), abfd, name);
8593 goto error_return;
8594 }
8595 if (o->size == 0)
8596 (*_bfd_error_handler)
8597 (_("warning: %s section has zero size"), name);
8598 dyn.d_un.d_val = o->size;
8599 break;
8600
8601 case DT_PREINIT_ARRAY:
8602 name = ".preinit_array";
8603 goto get_vma;
8604 case DT_INIT_ARRAY:
8605 name = ".init_array";
8606 goto get_vma;
8607 case DT_FINI_ARRAY:
8608 name = ".fini_array";
8609 goto get_vma;
8610
8611 case DT_HASH:
8612 name = ".hash";
8613 goto get_vma;
8614 case DT_STRTAB:
8615 name = ".dynstr";
8616 goto get_vma;
8617 case DT_SYMTAB:
8618 name = ".dynsym";
8619 goto get_vma;
8620 case DT_VERDEF:
8621 name = ".gnu.version_d";
8622 goto get_vma;
8623 case DT_VERNEED:
8624 name = ".gnu.version_r";
8625 goto get_vma;
8626 case DT_VERSYM:
8627 name = ".gnu.version";
8628 get_vma:
8629 o = bfd_get_section_by_name (abfd, name);
8630 if (o == NULL)
8631 {
8632 (*_bfd_error_handler)
8633 (_("%B: could not find output section %s"), abfd, name);
8634 goto error_return;
8635 }
8636 dyn.d_un.d_ptr = o->vma;
8637 break;
8638
8639 case DT_REL:
8640 case DT_RELA:
8641 case DT_RELSZ:
8642 case DT_RELASZ:
8643 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8644 type = SHT_REL;
8645 else
8646 type = SHT_RELA;
8647 dyn.d_un.d_val = 0;
8648 for (i = 1; i < elf_numsections (abfd); i++)
8649 {
8650 Elf_Internal_Shdr *hdr;
8651
8652 hdr = elf_elfsections (abfd)[i];
8653 if (hdr->sh_type == type
8654 && (hdr->sh_flags & SHF_ALLOC) != 0)
8655 {
8656 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8657 dyn.d_un.d_val += hdr->sh_size;
8658 else
8659 {
8660 if (dyn.d_un.d_val == 0
8661 || hdr->sh_addr < dyn.d_un.d_val)
8662 dyn.d_un.d_val = hdr->sh_addr;
8663 }
8664 }
8665 }
8666 break;
8667 }
8668 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8669 }
8670 }
8671
8672 /* If we have created any dynamic sections, then output them. */
8673 if (dynobj != NULL)
8674 {
8675 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8676 goto error_return;
8677
8678 /* Check for DT_TEXTREL (late, in case the backend removes it). */
8679 if (info->warn_shared_textrel && info->shared)
8680 {
8681 bfd_byte *dyncon, *dynconend;
8682
8683 /* Fix up .dynamic entries. */
8684 o = bfd_get_section_by_name (dynobj, ".dynamic");
8685 BFD_ASSERT (o != NULL);
8686
8687 dyncon = o->contents;
8688 dynconend = o->contents + o->size;
8689 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8690 {
8691 Elf_Internal_Dyn dyn;
8692
8693 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8694
8695 if (dyn.d_tag == DT_TEXTREL)
8696 {
8697 _bfd_error_handler
8698 (_("warning: creating a DT_TEXTREL in a shared object."));
8699 break;
8700 }
8701 }
8702 }
8703
8704 for (o = dynobj->sections; o != NULL; o = o->next)
8705 {
8706 if ((o->flags & SEC_HAS_CONTENTS) == 0
8707 || o->size == 0
8708 || o->output_section == bfd_abs_section_ptr)
8709 continue;
8710 if ((o->flags & SEC_LINKER_CREATED) == 0)
8711 {
8712 /* At this point, we are only interested in sections
8713 created by _bfd_elf_link_create_dynamic_sections. */
8714 continue;
8715 }
8716 if (elf_hash_table (info)->stab_info.stabstr == o)
8717 continue;
8718 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8719 continue;
8720 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8721 != SHT_STRTAB)
8722 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8723 {
8724 if (! bfd_set_section_contents (abfd, o->output_section,
8725 o->contents,
8726 (file_ptr) o->output_offset,
8727 o->size))
8728 goto error_return;
8729 }
8730 else
8731 {
8732 /* The contents of the .dynstr section are actually in a
8733 stringtab. */
8734 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8735 if (bfd_seek (abfd, off, SEEK_SET) != 0
8736 || ! _bfd_elf_strtab_emit (abfd,
8737 elf_hash_table (info)->dynstr))
8738 goto error_return;
8739 }
8740 }
8741 }
8742
8743 if (info->relocatable)
8744 {
8745 bfd_boolean failed = FALSE;
8746
8747 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8748 if (failed)
8749 goto error_return;
8750 }
8751
8752 /* If we have optimized stabs strings, output them. */
8753 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8754 {
8755 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8756 goto error_return;
8757 }
8758
8759 if (info->eh_frame_hdr)
8760 {
8761 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8762 goto error_return;
8763 }
8764
8765 if (finfo.symstrtab != NULL)
8766 _bfd_stringtab_free (finfo.symstrtab);
8767 if (finfo.contents != NULL)
8768 free (finfo.contents);
8769 if (finfo.external_relocs != NULL)
8770 free (finfo.external_relocs);
8771 if (finfo.internal_relocs != NULL)
8772 free (finfo.internal_relocs);
8773 if (finfo.external_syms != NULL)
8774 free (finfo.external_syms);
8775 if (finfo.locsym_shndx != NULL)
8776 free (finfo.locsym_shndx);
8777 if (finfo.internal_syms != NULL)
8778 free (finfo.internal_syms);
8779 if (finfo.indices != NULL)
8780 free (finfo.indices);
8781 if (finfo.sections != NULL)
8782 free (finfo.sections);
8783 if (finfo.symbuf != NULL)
8784 free (finfo.symbuf);
8785 if (finfo.symshndxbuf != NULL)
8786 free (finfo.symshndxbuf);
8787 for (o = abfd->sections; o != NULL; o = o->next)
8788 {
8789 if ((o->flags & SEC_RELOC) != 0
8790 && elf_section_data (o)->rel_hashes != NULL)
8791 free (elf_section_data (o)->rel_hashes);
8792 }
8793
8794 elf_tdata (abfd)->linker = TRUE;
8795
8796 return TRUE;
8797
8798 error_return:
8799 if (finfo.symstrtab != NULL)
8800 _bfd_stringtab_free (finfo.symstrtab);
8801 if (finfo.contents != NULL)
8802 free (finfo.contents);
8803 if (finfo.external_relocs != NULL)
8804 free (finfo.external_relocs);
8805 if (finfo.internal_relocs != NULL)
8806 free (finfo.internal_relocs);
8807 if (finfo.external_syms != NULL)
8808 free (finfo.external_syms);
8809 if (finfo.locsym_shndx != NULL)
8810 free (finfo.locsym_shndx);
8811 if (finfo.internal_syms != NULL)
8812 free (finfo.internal_syms);
8813 if (finfo.indices != NULL)
8814 free (finfo.indices);
8815 if (finfo.sections != NULL)
8816 free (finfo.sections);
8817 if (finfo.symbuf != NULL)
8818 free (finfo.symbuf);
8819 if (finfo.symshndxbuf != NULL)
8820 free (finfo.symshndxbuf);
8821 for (o = abfd->sections; o != NULL; o = o->next)
8822 {
8823 if ((o->flags & SEC_RELOC) != 0
8824 && elf_section_data (o)->rel_hashes != NULL)
8825 free (elf_section_data (o)->rel_hashes);
8826 }
8827
8828 return FALSE;
8829 }
8830 \f
8831 /* Garbage collect unused sections. */
8832
8833 /* The mark phase of garbage collection. For a given section, mark
8834 it and any sections in this section's group, and all the sections
8835 which define symbols to which it refers. */
8836
8837 typedef asection * (*gc_mark_hook_fn)
8838 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8839 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8840
8841 bfd_boolean
8842 _bfd_elf_gc_mark (struct bfd_link_info *info,
8843 asection *sec,
8844 gc_mark_hook_fn gc_mark_hook)
8845 {
8846 bfd_boolean ret;
8847 bfd_boolean is_eh;
8848 asection *group_sec;
8849
8850 sec->gc_mark = 1;
8851
8852 /* Mark all the sections in the group. */
8853 group_sec = elf_section_data (sec)->next_in_group;
8854 if (group_sec && !group_sec->gc_mark)
8855 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8856 return FALSE;
8857
8858 /* Look through the section relocs. */
8859 ret = TRUE;
8860 is_eh = strcmp (sec->name, ".eh_frame") == 0;
8861 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8862 {
8863 Elf_Internal_Rela *relstart, *rel, *relend;
8864 Elf_Internal_Shdr *symtab_hdr;
8865 struct elf_link_hash_entry **sym_hashes;
8866 size_t nlocsyms;
8867 size_t extsymoff;
8868 bfd *input_bfd = sec->owner;
8869 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8870 Elf_Internal_Sym *isym = NULL;
8871 int r_sym_shift;
8872
8873 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8874 sym_hashes = elf_sym_hashes (input_bfd);
8875
8876 /* Read the local symbols. */
8877 if (elf_bad_symtab (input_bfd))
8878 {
8879 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8880 extsymoff = 0;
8881 }
8882 else
8883 extsymoff = nlocsyms = symtab_hdr->sh_info;
8884
8885 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8886 if (isym == NULL && nlocsyms != 0)
8887 {
8888 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8889 NULL, NULL, NULL);
8890 if (isym == NULL)
8891 return FALSE;
8892 }
8893
8894 /* Read the relocations. */
8895 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8896 info->keep_memory);
8897 if (relstart == NULL)
8898 {
8899 ret = FALSE;
8900 goto out1;
8901 }
8902 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8903
8904 if (bed->s->arch_size == 32)
8905 r_sym_shift = 8;
8906 else
8907 r_sym_shift = 32;
8908
8909 for (rel = relstart; rel < relend; rel++)
8910 {
8911 unsigned long r_symndx;
8912 asection *rsec;
8913 struct elf_link_hash_entry *h;
8914
8915 r_symndx = rel->r_info >> r_sym_shift;
8916 if (r_symndx == 0)
8917 continue;
8918
8919 if (r_symndx >= nlocsyms
8920 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8921 {
8922 h = sym_hashes[r_symndx - extsymoff];
8923 while (h->root.type == bfd_link_hash_indirect
8924 || h->root.type == bfd_link_hash_warning)
8925 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8926 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8927 }
8928 else
8929 {
8930 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8931 }
8932
8933 if (rsec && !rsec->gc_mark)
8934 {
8935 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8936 rsec->gc_mark = 1;
8937 else if (is_eh)
8938 rsec->gc_mark_from_eh = 1;
8939 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8940 {
8941 ret = FALSE;
8942 goto out2;
8943 }
8944 }
8945 }
8946
8947 out2:
8948 if (elf_section_data (sec)->relocs != relstart)
8949 free (relstart);
8950 out1:
8951 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8952 {
8953 if (! info->keep_memory)
8954 free (isym);
8955 else
8956 symtab_hdr->contents = (unsigned char *) isym;
8957 }
8958 }
8959
8960 return ret;
8961 }
8962
8963 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8964
8965 struct elf_gc_sweep_symbol_info {
8966 struct bfd_link_info *info;
8967 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
8968 bfd_boolean);
8969 };
8970
8971 static bfd_boolean
8972 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
8973 {
8974 if (h->root.type == bfd_link_hash_warning)
8975 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8976
8977 if ((h->root.type == bfd_link_hash_defined
8978 || h->root.type == bfd_link_hash_defweak)
8979 && !h->root.u.def.section->gc_mark
8980 && !(h->root.u.def.section->owner->flags & DYNAMIC))
8981 {
8982 struct elf_gc_sweep_symbol_info *inf = data;
8983 (*inf->hide_symbol) (inf->info, h, TRUE);
8984 }
8985
8986 return TRUE;
8987 }
8988
8989 /* The sweep phase of garbage collection. Remove all garbage sections. */
8990
8991 typedef bfd_boolean (*gc_sweep_hook_fn)
8992 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8993
8994 static bfd_boolean
8995 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
8996 {
8997 bfd *sub;
8998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8999 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
9000 unsigned long section_sym_count;
9001 struct elf_gc_sweep_symbol_info sweep_info;
9002
9003 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9004 {
9005 asection *o;
9006
9007 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9008 continue;
9009
9010 for (o = sub->sections; o != NULL; o = o->next)
9011 {
9012 /* Keep debug and special sections. */
9013 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
9014 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
9015 o->gc_mark = 1;
9016
9017 if (o->gc_mark)
9018 continue;
9019
9020 /* Skip sweeping sections already excluded. */
9021 if (o->flags & SEC_EXCLUDE)
9022 continue;
9023
9024 /* Since this is early in the link process, it is simple
9025 to remove a section from the output. */
9026 o->flags |= SEC_EXCLUDE;
9027
9028 /* But we also have to update some of the relocation
9029 info we collected before. */
9030 if (gc_sweep_hook
9031 && (o->flags & SEC_RELOC) != 0
9032 && o->reloc_count > 0
9033 && !bfd_is_abs_section (o->output_section))
9034 {
9035 Elf_Internal_Rela *internal_relocs;
9036 bfd_boolean r;
9037
9038 internal_relocs
9039 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
9040 info->keep_memory);
9041 if (internal_relocs == NULL)
9042 return FALSE;
9043
9044 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
9045
9046 if (elf_section_data (o)->relocs != internal_relocs)
9047 free (internal_relocs);
9048
9049 if (!r)
9050 return FALSE;
9051 }
9052 }
9053 }
9054
9055 /* Remove the symbols that were in the swept sections from the dynamic
9056 symbol table. GCFIXME: Anyone know how to get them out of the
9057 static symbol table as well? */
9058 sweep_info.info = info;
9059 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
9060 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
9061 &sweep_info);
9062
9063 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
9064 return TRUE;
9065 }
9066
9067 /* Propagate collected vtable information. This is called through
9068 elf_link_hash_traverse. */
9069
9070 static bfd_boolean
9071 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
9072 {
9073 if (h->root.type == bfd_link_hash_warning)
9074 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9075
9076 /* Those that are not vtables. */
9077 if (h->vtable == NULL || h->vtable->parent == NULL)
9078 return TRUE;
9079
9080 /* Those vtables that do not have parents, we cannot merge. */
9081 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
9082 return TRUE;
9083
9084 /* If we've already been done, exit. */
9085 if (h->vtable->used && h->vtable->used[-1])
9086 return TRUE;
9087
9088 /* Make sure the parent's table is up to date. */
9089 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
9090
9091 if (h->vtable->used == NULL)
9092 {
9093 /* None of this table's entries were referenced. Re-use the
9094 parent's table. */
9095 h->vtable->used = h->vtable->parent->vtable->used;
9096 h->vtable->size = h->vtable->parent->vtable->size;
9097 }
9098 else
9099 {
9100 size_t n;
9101 bfd_boolean *cu, *pu;
9102
9103 /* Or the parent's entries into ours. */
9104 cu = h->vtable->used;
9105 cu[-1] = TRUE;
9106 pu = h->vtable->parent->vtable->used;
9107 if (pu != NULL)
9108 {
9109 const struct elf_backend_data *bed;
9110 unsigned int log_file_align;
9111
9112 bed = get_elf_backend_data (h->root.u.def.section->owner);
9113 log_file_align = bed->s->log_file_align;
9114 n = h->vtable->parent->vtable->size >> log_file_align;
9115 while (n--)
9116 {
9117 if (*pu)
9118 *cu = TRUE;
9119 pu++;
9120 cu++;
9121 }
9122 }
9123 }
9124
9125 return TRUE;
9126 }
9127
9128 static bfd_boolean
9129 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9130 {
9131 asection *sec;
9132 bfd_vma hstart, hend;
9133 Elf_Internal_Rela *relstart, *relend, *rel;
9134 const struct elf_backend_data *bed;
9135 unsigned int log_file_align;
9136
9137 if (h->root.type == bfd_link_hash_warning)
9138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9139
9140 /* Take care of both those symbols that do not describe vtables as
9141 well as those that are not loaded. */
9142 if (h->vtable == NULL || h->vtable->parent == NULL)
9143 return TRUE;
9144
9145 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9146 || h->root.type == bfd_link_hash_defweak);
9147
9148 sec = h->root.u.def.section;
9149 hstart = h->root.u.def.value;
9150 hend = hstart + h->size;
9151
9152 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9153 if (!relstart)
9154 return *(bfd_boolean *) okp = FALSE;
9155 bed = get_elf_backend_data (sec->owner);
9156 log_file_align = bed->s->log_file_align;
9157
9158 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9159
9160 for (rel = relstart; rel < relend; ++rel)
9161 if (rel->r_offset >= hstart && rel->r_offset < hend)
9162 {
9163 /* If the entry is in use, do nothing. */
9164 if (h->vtable->used
9165 && (rel->r_offset - hstart) < h->vtable->size)
9166 {
9167 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9168 if (h->vtable->used[entry])
9169 continue;
9170 }
9171 /* Otherwise, kill it. */
9172 rel->r_offset = rel->r_info = rel->r_addend = 0;
9173 }
9174
9175 return TRUE;
9176 }
9177
9178 /* Mark sections containing dynamically referenced symbols. When
9179 building shared libraries, we must assume that any visible symbol is
9180 referenced. */
9181
9182 bfd_boolean
9183 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
9184 {
9185 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9186
9187 if (h->root.type == bfd_link_hash_warning)
9188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9189
9190 if ((h->root.type == bfd_link_hash_defined
9191 || h->root.type == bfd_link_hash_defweak)
9192 && (h->ref_dynamic
9193 || (!info->executable
9194 && h->def_regular
9195 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
9196 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
9197 h->root.u.def.section->flags |= SEC_KEEP;
9198
9199 return TRUE;
9200 }
9201
9202 /* Do mark and sweep of unused sections. */
9203
9204 bfd_boolean
9205 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9206 {
9207 bfd_boolean ok = TRUE;
9208 bfd *sub;
9209 asection * (*gc_mark_hook)
9210 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9211 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9213
9214 if (!bed->can_gc_sections
9215 || info->relocatable
9216 || info->emitrelocations
9217 || !is_elf_hash_table (info->hash))
9218 {
9219 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9220 return TRUE;
9221 }
9222
9223 /* Apply transitive closure to the vtable entry usage info. */
9224 elf_link_hash_traverse (elf_hash_table (info),
9225 elf_gc_propagate_vtable_entries_used,
9226 &ok);
9227 if (!ok)
9228 return FALSE;
9229
9230 /* Kill the vtable relocations that were not used. */
9231 elf_link_hash_traverse (elf_hash_table (info),
9232 elf_gc_smash_unused_vtentry_relocs,
9233 &ok);
9234 if (!ok)
9235 return FALSE;
9236
9237 /* Mark dynamically referenced symbols. */
9238 if (elf_hash_table (info)->dynamic_sections_created)
9239 elf_link_hash_traverse (elf_hash_table (info),
9240 bed->gc_mark_dynamic_ref,
9241 info);
9242
9243 /* Grovel through relocs to find out who stays ... */
9244 gc_mark_hook = bed->gc_mark_hook;
9245 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9246 {
9247 asection *o;
9248
9249 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9250 continue;
9251
9252 for (o = sub->sections; o != NULL; o = o->next)
9253 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9254 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9255 return FALSE;
9256 }
9257
9258 /* ... again for sections marked from eh_frame. */
9259 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9260 {
9261 asection *o;
9262
9263 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9264 continue;
9265
9266 /* Keep .gcc_except_table.* if the associated .text.* is
9267 marked. This isn't very nice, but the proper solution,
9268 splitting .eh_frame up and using comdat doesn't pan out
9269 easily due to needing special relocs to handle the
9270 difference of two symbols in separate sections.
9271 Don't keep code sections referenced by .eh_frame. */
9272 for (o = sub->sections; o != NULL; o = o->next)
9273 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
9274 {
9275 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
9276 {
9277 unsigned long len;
9278 char *fn_name;
9279 asection *fn_text;
9280
9281 len = strlen (o->name + 18) + 1;
9282 fn_name = bfd_malloc (len + 6);
9283 if (fn_name == NULL)
9284 return FALSE;
9285 memcpy (fn_name, ".text.", 6);
9286 memcpy (fn_name + 6, o->name + 18, len);
9287 fn_text = bfd_get_section_by_name (sub, fn_name);
9288 free (fn_name);
9289 if (fn_text == NULL || !fn_text->gc_mark)
9290 continue;
9291 }
9292
9293 /* If not using specially named exception table section,
9294 then keep whatever we are using. */
9295 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9296 return FALSE;
9297 }
9298 }
9299
9300 /* ... and mark SEC_EXCLUDE for those that go. */
9301 return elf_gc_sweep (abfd, info);
9302 }
9303 \f
9304 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9305
9306 bfd_boolean
9307 bfd_elf_gc_record_vtinherit (bfd *abfd,
9308 asection *sec,
9309 struct elf_link_hash_entry *h,
9310 bfd_vma offset)
9311 {
9312 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9313 struct elf_link_hash_entry **search, *child;
9314 bfd_size_type extsymcount;
9315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9316
9317 /* The sh_info field of the symtab header tells us where the
9318 external symbols start. We don't care about the local symbols at
9319 this point. */
9320 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9321 if (!elf_bad_symtab (abfd))
9322 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9323
9324 sym_hashes = elf_sym_hashes (abfd);
9325 sym_hashes_end = sym_hashes + extsymcount;
9326
9327 /* Hunt down the child symbol, which is in this section at the same
9328 offset as the relocation. */
9329 for (search = sym_hashes; search != sym_hashes_end; ++search)
9330 {
9331 if ((child = *search) != NULL
9332 && (child->root.type == bfd_link_hash_defined
9333 || child->root.type == bfd_link_hash_defweak)
9334 && child->root.u.def.section == sec
9335 && child->root.u.def.value == offset)
9336 goto win;
9337 }
9338
9339 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9340 abfd, sec, (unsigned long) offset);
9341 bfd_set_error (bfd_error_invalid_operation);
9342 return FALSE;
9343
9344 win:
9345 if (!child->vtable)
9346 {
9347 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9348 if (!child->vtable)
9349 return FALSE;
9350 }
9351 if (!h)
9352 {
9353 /* This *should* only be the absolute section. It could potentially
9354 be that someone has defined a non-global vtable though, which
9355 would be bad. It isn't worth paging in the local symbols to be
9356 sure though; that case should simply be handled by the assembler. */
9357
9358 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9359 }
9360 else
9361 child->vtable->parent = h;
9362
9363 return TRUE;
9364 }
9365
9366 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9367
9368 bfd_boolean
9369 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9370 asection *sec ATTRIBUTE_UNUSED,
9371 struct elf_link_hash_entry *h,
9372 bfd_vma addend)
9373 {
9374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9375 unsigned int log_file_align = bed->s->log_file_align;
9376
9377 if (!h->vtable)
9378 {
9379 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9380 if (!h->vtable)
9381 return FALSE;
9382 }
9383
9384 if (addend >= h->vtable->size)
9385 {
9386 size_t size, bytes, file_align;
9387 bfd_boolean *ptr = h->vtable->used;
9388
9389 /* While the symbol is undefined, we have to be prepared to handle
9390 a zero size. */
9391 file_align = 1 << log_file_align;
9392 if (h->root.type == bfd_link_hash_undefined)
9393 size = addend + file_align;
9394 else
9395 {
9396 size = h->size;
9397 if (addend >= size)
9398 {
9399 /* Oops! We've got a reference past the defined end of
9400 the table. This is probably a bug -- shall we warn? */
9401 size = addend + file_align;
9402 }
9403 }
9404 size = (size + file_align - 1) & -file_align;
9405
9406 /* Allocate one extra entry for use as a "done" flag for the
9407 consolidation pass. */
9408 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9409
9410 if (ptr)
9411 {
9412 ptr = bfd_realloc (ptr - 1, bytes);
9413
9414 if (ptr != NULL)
9415 {
9416 size_t oldbytes;
9417
9418 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9419 * sizeof (bfd_boolean));
9420 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9421 }
9422 }
9423 else
9424 ptr = bfd_zmalloc (bytes);
9425
9426 if (ptr == NULL)
9427 return FALSE;
9428
9429 /* And arrange for that done flag to be at index -1. */
9430 h->vtable->used = ptr + 1;
9431 h->vtable->size = size;
9432 }
9433
9434 h->vtable->used[addend >> log_file_align] = TRUE;
9435
9436 return TRUE;
9437 }
9438
9439 struct alloc_got_off_arg {
9440 bfd_vma gotoff;
9441 unsigned int got_elt_size;
9442 };
9443
9444 /* We need a special top-level link routine to convert got reference counts
9445 to real got offsets. */
9446
9447 static bfd_boolean
9448 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9449 {
9450 struct alloc_got_off_arg *gofarg = arg;
9451
9452 if (h->root.type == bfd_link_hash_warning)
9453 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9454
9455 if (h->got.refcount > 0)
9456 {
9457 h->got.offset = gofarg->gotoff;
9458 gofarg->gotoff += gofarg->got_elt_size;
9459 }
9460 else
9461 h->got.offset = (bfd_vma) -1;
9462
9463 return TRUE;
9464 }
9465
9466 /* And an accompanying bit to work out final got entry offsets once
9467 we're done. Should be called from final_link. */
9468
9469 bfd_boolean
9470 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9471 struct bfd_link_info *info)
9472 {
9473 bfd *i;
9474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9475 bfd_vma gotoff;
9476 unsigned int got_elt_size = bed->s->arch_size / 8;
9477 struct alloc_got_off_arg gofarg;
9478
9479 if (! is_elf_hash_table (info->hash))
9480 return FALSE;
9481
9482 /* The GOT offset is relative to the .got section, but the GOT header is
9483 put into the .got.plt section, if the backend uses it. */
9484 if (bed->want_got_plt)
9485 gotoff = 0;
9486 else
9487 gotoff = bed->got_header_size;
9488
9489 /* Do the local .got entries first. */
9490 for (i = info->input_bfds; i; i = i->link_next)
9491 {
9492 bfd_signed_vma *local_got;
9493 bfd_size_type j, locsymcount;
9494 Elf_Internal_Shdr *symtab_hdr;
9495
9496 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9497 continue;
9498
9499 local_got = elf_local_got_refcounts (i);
9500 if (!local_got)
9501 continue;
9502
9503 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9504 if (elf_bad_symtab (i))
9505 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9506 else
9507 locsymcount = symtab_hdr->sh_info;
9508
9509 for (j = 0; j < locsymcount; ++j)
9510 {
9511 if (local_got[j] > 0)
9512 {
9513 local_got[j] = gotoff;
9514 gotoff += got_elt_size;
9515 }
9516 else
9517 local_got[j] = (bfd_vma) -1;
9518 }
9519 }
9520
9521 /* Then the global .got entries. .plt refcounts are handled by
9522 adjust_dynamic_symbol */
9523 gofarg.gotoff = gotoff;
9524 gofarg.got_elt_size = got_elt_size;
9525 elf_link_hash_traverse (elf_hash_table (info),
9526 elf_gc_allocate_got_offsets,
9527 &gofarg);
9528 return TRUE;
9529 }
9530
9531 /* Many folk need no more in the way of final link than this, once
9532 got entry reference counting is enabled. */
9533
9534 bfd_boolean
9535 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9536 {
9537 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9538 return FALSE;
9539
9540 /* Invoke the regular ELF backend linker to do all the work. */
9541 return bfd_elf_final_link (abfd, info);
9542 }
9543
9544 bfd_boolean
9545 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9546 {
9547 struct elf_reloc_cookie *rcookie = cookie;
9548
9549 if (rcookie->bad_symtab)
9550 rcookie->rel = rcookie->rels;
9551
9552 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9553 {
9554 unsigned long r_symndx;
9555
9556 if (! rcookie->bad_symtab)
9557 if (rcookie->rel->r_offset > offset)
9558 return FALSE;
9559 if (rcookie->rel->r_offset != offset)
9560 continue;
9561
9562 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9563 if (r_symndx == SHN_UNDEF)
9564 return TRUE;
9565
9566 if (r_symndx >= rcookie->locsymcount
9567 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9568 {
9569 struct elf_link_hash_entry *h;
9570
9571 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9572
9573 while (h->root.type == bfd_link_hash_indirect
9574 || h->root.type == bfd_link_hash_warning)
9575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9576
9577 if ((h->root.type == bfd_link_hash_defined
9578 || h->root.type == bfd_link_hash_defweak)
9579 && elf_discarded_section (h->root.u.def.section))
9580 return TRUE;
9581 else
9582 return FALSE;
9583 }
9584 else
9585 {
9586 /* It's not a relocation against a global symbol,
9587 but it could be a relocation against a local
9588 symbol for a discarded section. */
9589 asection *isec;
9590 Elf_Internal_Sym *isym;
9591
9592 /* Need to: get the symbol; get the section. */
9593 isym = &rcookie->locsyms[r_symndx];
9594 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9595 {
9596 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9597 if (isec != NULL && elf_discarded_section (isec))
9598 return TRUE;
9599 }
9600 }
9601 return FALSE;
9602 }
9603 return FALSE;
9604 }
9605
9606 /* Discard unneeded references to discarded sections.
9607 Returns TRUE if any section's size was changed. */
9608 /* This function assumes that the relocations are in sorted order,
9609 which is true for all known assemblers. */
9610
9611 bfd_boolean
9612 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9613 {
9614 struct elf_reloc_cookie cookie;
9615 asection *stab, *eh;
9616 Elf_Internal_Shdr *symtab_hdr;
9617 const struct elf_backend_data *bed;
9618 bfd *abfd;
9619 unsigned int count;
9620 bfd_boolean ret = FALSE;
9621
9622 if (info->traditional_format
9623 || !is_elf_hash_table (info->hash))
9624 return FALSE;
9625
9626 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9627 {
9628 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9629 continue;
9630
9631 bed = get_elf_backend_data (abfd);
9632
9633 if ((abfd->flags & DYNAMIC) != 0)
9634 continue;
9635
9636 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9637 if (info->relocatable
9638 || (eh != NULL
9639 && (eh->size == 0
9640 || bfd_is_abs_section (eh->output_section))))
9641 eh = NULL;
9642
9643 stab = bfd_get_section_by_name (abfd, ".stab");
9644 if (stab != NULL
9645 && (stab->size == 0
9646 || bfd_is_abs_section (stab->output_section)
9647 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9648 stab = NULL;
9649
9650 if (stab == NULL
9651 && eh == NULL
9652 && bed->elf_backend_discard_info == NULL)
9653 continue;
9654
9655 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9656 cookie.abfd = abfd;
9657 cookie.sym_hashes = elf_sym_hashes (abfd);
9658 cookie.bad_symtab = elf_bad_symtab (abfd);
9659 if (cookie.bad_symtab)
9660 {
9661 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9662 cookie.extsymoff = 0;
9663 }
9664 else
9665 {
9666 cookie.locsymcount = symtab_hdr->sh_info;
9667 cookie.extsymoff = symtab_hdr->sh_info;
9668 }
9669
9670 if (bed->s->arch_size == 32)
9671 cookie.r_sym_shift = 8;
9672 else
9673 cookie.r_sym_shift = 32;
9674
9675 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9676 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9677 {
9678 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9679 cookie.locsymcount, 0,
9680 NULL, NULL, NULL);
9681 if (cookie.locsyms == NULL)
9682 return FALSE;
9683 }
9684
9685 if (stab != NULL)
9686 {
9687 cookie.rels = NULL;
9688 count = stab->reloc_count;
9689 if (count != 0)
9690 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9691 info->keep_memory);
9692 if (cookie.rels != NULL)
9693 {
9694 cookie.rel = cookie.rels;
9695 cookie.relend = cookie.rels;
9696 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9697 if (_bfd_discard_section_stabs (abfd, stab,
9698 elf_section_data (stab)->sec_info,
9699 bfd_elf_reloc_symbol_deleted_p,
9700 &cookie))
9701 ret = TRUE;
9702 if (elf_section_data (stab)->relocs != cookie.rels)
9703 free (cookie.rels);
9704 }
9705 }
9706
9707 if (eh != NULL)
9708 {
9709 cookie.rels = NULL;
9710 count = eh->reloc_count;
9711 if (count != 0)
9712 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9713 info->keep_memory);
9714 cookie.rel = cookie.rels;
9715 cookie.relend = cookie.rels;
9716 if (cookie.rels != NULL)
9717 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9718
9719 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9720 bfd_elf_reloc_symbol_deleted_p,
9721 &cookie))
9722 ret = TRUE;
9723
9724 if (cookie.rels != NULL
9725 && elf_section_data (eh)->relocs != cookie.rels)
9726 free (cookie.rels);
9727 }
9728
9729 if (bed->elf_backend_discard_info != NULL
9730 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9731 ret = TRUE;
9732
9733 if (cookie.locsyms != NULL
9734 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9735 {
9736 if (! info->keep_memory)
9737 free (cookie.locsyms);
9738 else
9739 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9740 }
9741 }
9742
9743 if (info->eh_frame_hdr
9744 && !info->relocatable
9745 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9746 ret = TRUE;
9747
9748 return ret;
9749 }
9750
9751 void
9752 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9753 {
9754 flagword flags;
9755 const char *name, *p;
9756 struct bfd_section_already_linked *l;
9757 struct bfd_section_already_linked_hash_entry *already_linked_list;
9758 asection *group;
9759
9760 /* A single member comdat group section may be discarded by a
9761 linkonce section. See below. */
9762 if (sec->output_section == bfd_abs_section_ptr)
9763 return;
9764
9765 flags = sec->flags;
9766
9767 /* Check if it belongs to a section group. */
9768 group = elf_sec_group (sec);
9769
9770 /* Return if it isn't a linkonce section nor a member of a group. A
9771 comdat group section also has SEC_LINK_ONCE set. */
9772 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9773 return;
9774
9775 if (group)
9776 {
9777 /* If this is the member of a single member comdat group, check if
9778 the group should be discarded. */
9779 if (elf_next_in_group (sec) == sec
9780 && (group->flags & SEC_LINK_ONCE) != 0)
9781 sec = group;
9782 else
9783 return;
9784 }
9785
9786 /* FIXME: When doing a relocatable link, we may have trouble
9787 copying relocations in other sections that refer to local symbols
9788 in the section being discarded. Those relocations will have to
9789 be converted somehow; as of this writing I'm not sure that any of
9790 the backends handle that correctly.
9791
9792 It is tempting to instead not discard link once sections when
9793 doing a relocatable link (technically, they should be discarded
9794 whenever we are building constructors). However, that fails,
9795 because the linker winds up combining all the link once sections
9796 into a single large link once section, which defeats the purpose
9797 of having link once sections in the first place.
9798
9799 Also, not merging link once sections in a relocatable link
9800 causes trouble for MIPS ELF, which relies on link once semantics
9801 to handle the .reginfo section correctly. */
9802
9803 name = bfd_get_section_name (abfd, sec);
9804
9805 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9806 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9807 p++;
9808 else
9809 p = name;
9810
9811 already_linked_list = bfd_section_already_linked_table_lookup (p);
9812
9813 for (l = already_linked_list->entry; l != NULL; l = l->next)
9814 {
9815 /* We may have 3 different sections on the list: group section,
9816 comdat section and linkonce section. SEC may be a linkonce or
9817 group section. We match a group section with a group section,
9818 a linkonce section with a linkonce section, and ignore comdat
9819 section. */
9820 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9821 && strcmp (name, l->sec->name) == 0
9822 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9823 {
9824 /* The section has already been linked. See if we should
9825 issue a warning. */
9826 switch (flags & SEC_LINK_DUPLICATES)
9827 {
9828 default:
9829 abort ();
9830
9831 case SEC_LINK_DUPLICATES_DISCARD:
9832 break;
9833
9834 case SEC_LINK_DUPLICATES_ONE_ONLY:
9835 (*_bfd_error_handler)
9836 (_("%B: ignoring duplicate section `%A'"),
9837 abfd, sec);
9838 break;
9839
9840 case SEC_LINK_DUPLICATES_SAME_SIZE:
9841 if (sec->size != l->sec->size)
9842 (*_bfd_error_handler)
9843 (_("%B: duplicate section `%A' has different size"),
9844 abfd, sec);
9845 break;
9846
9847 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9848 if (sec->size != l->sec->size)
9849 (*_bfd_error_handler)
9850 (_("%B: duplicate section `%A' has different size"),
9851 abfd, sec);
9852 else if (sec->size != 0)
9853 {
9854 bfd_byte *sec_contents, *l_sec_contents;
9855
9856 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9857 (*_bfd_error_handler)
9858 (_("%B: warning: could not read contents of section `%A'"),
9859 abfd, sec);
9860 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9861 &l_sec_contents))
9862 (*_bfd_error_handler)
9863 (_("%B: warning: could not read contents of section `%A'"),
9864 l->sec->owner, l->sec);
9865 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9866 (*_bfd_error_handler)
9867 (_("%B: warning: duplicate section `%A' has different contents"),
9868 abfd, sec);
9869
9870 if (sec_contents)
9871 free (sec_contents);
9872 if (l_sec_contents)
9873 free (l_sec_contents);
9874 }
9875 break;
9876 }
9877
9878 /* Set the output_section field so that lang_add_section
9879 does not create a lang_input_section structure for this
9880 section. Since there might be a symbol in the section
9881 being discarded, we must retain a pointer to the section
9882 which we are really going to use. */
9883 sec->output_section = bfd_abs_section_ptr;
9884 sec->kept_section = l->sec;
9885
9886 if (flags & SEC_GROUP)
9887 {
9888 asection *first = elf_next_in_group (sec);
9889 asection *s = first;
9890
9891 while (s != NULL)
9892 {
9893 s->output_section = bfd_abs_section_ptr;
9894 /* Record which group discards it. */
9895 s->kept_section = l->sec;
9896 s = elf_next_in_group (s);
9897 /* These lists are circular. */
9898 if (s == first)
9899 break;
9900 }
9901 }
9902
9903 return;
9904 }
9905 }
9906
9907 if (group)
9908 {
9909 /* If this is the member of a single member comdat group and the
9910 group hasn't be discarded, we check if it matches a linkonce
9911 section. We only record the discarded comdat group. Otherwise
9912 the undiscarded group will be discarded incorrectly later since
9913 itself has been recorded. */
9914 for (l = already_linked_list->entry; l != NULL; l = l->next)
9915 if ((l->sec->flags & SEC_GROUP) == 0
9916 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9917 && bfd_elf_match_symbols_in_sections (l->sec,
9918 elf_next_in_group (sec)))
9919 {
9920 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9921 elf_next_in_group (sec)->kept_section = l->sec;
9922 group->output_section = bfd_abs_section_ptr;
9923 break;
9924 }
9925 if (l == NULL)
9926 return;
9927 }
9928 else
9929 /* There is no direct match. But for linkonce section, we should
9930 check if there is a match with comdat group member. We always
9931 record the linkonce section, discarded or not. */
9932 for (l = already_linked_list->entry; l != NULL; l = l->next)
9933 if (l->sec->flags & SEC_GROUP)
9934 {
9935 asection *first = elf_next_in_group (l->sec);
9936
9937 if (first != NULL
9938 && elf_next_in_group (first) == first
9939 && bfd_elf_match_symbols_in_sections (first, sec))
9940 {
9941 sec->output_section = bfd_abs_section_ptr;
9942 sec->kept_section = l->sec;
9943 break;
9944 }
9945 }
9946
9947 /* This is the first section with this name. Record it. */
9948 bfd_section_already_linked_table_insert (already_linked_list, sec);
9949 }
9950
9951 bfd_boolean
9952 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
9953 {
9954 return sym->st_shndx == SHN_COMMON;
9955 }
9956
9957 unsigned int
9958 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
9959 {
9960 return SHN_COMMON;
9961 }
9962
9963 asection *
9964 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
9965 {
9966 return bfd_com_section_ptr;
9967 }
This page took 0.227749 seconds and 5 git commands to generate.